Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h +147 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CPUApplyUtils.h +344 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CachedTensorUtils.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Config.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h +41 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DimVector.h +2 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DynamicLibrary.h +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h +124 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/FunctionalTensorWrapper.h +392 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Functions.h +1405 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Generator.h +2 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedTensorImpl.h +161 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapTransforms.h +183 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h +139 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/MethodOperators.h +441 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/NamedTensor.h +1 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h +194 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Operators.h +1336 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Parallel-inl.h +83 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ParallelNative.h +19 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h +58 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/PythonTorchFunctionTLS.h +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/SavedTensorHooks.h +52 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Scalar.h +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ScalarType.h +4 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Storage.h +2 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Tensor.h +3 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h +2 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorIterator.h +987 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h +137 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorNames.h +75 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorOptions.h +2 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorSubclassLikeUtils.h +87 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorUtils.h +186 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalState.h +114 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TypeDefault.h +30 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/autocast_mode.h +647 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/code_template.h +245 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpp_custom_type_hack.h +112 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/jit_macros.h +7 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDAAlgorithm.h +33 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDAAllocatorConfig.h +116 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDACachingAllocator.h +450 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDADeviceAssertion.h +98 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDADeviceAssertionHost.h +158 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/AccumulateType.h
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/Config.h>
|
3 |
+
#include <c10/core/DeviceType.h>
|
4 |
+
#include <c10/core/ScalarType.h>
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
#include <c10/util/Float8_e4m3fn.h>
|
7 |
+
#include <c10/util/Float8_e5m2.h>
|
8 |
+
#include <c10/util/Half.h>
|
9 |
+
|
10 |
+
// Defines the accumulation type for a scalar type.
|
11 |
+
// Example:
|
12 |
+
// using accscalar_t = acc_type<scalar_t, /*is_cuda*/true>;
|
13 |
+
//
|
14 |
+
// Accumulation types are an important concept in numeric computing
|
15 |
+
// because you frequently want to perform intermediate computations
|
16 |
+
// at a higher precision than the input and output precision, to avoid
|
17 |
+
// compounding internal rounding errors. Accumulation is the most
|
18 |
+
// well-known intermediate computation (it is of great importance for
|
19 |
+
// sum reduction and matrix multiply, for example), but in PyTorch
|
20 |
+
// acc_type ends up getting used for all sorts of other intermediate
|
21 |
+
// computations, so it perhaps would be more accurately (ahem) called an
|
22 |
+
// "accurate" type. acc_type is especially important for reduced
|
23 |
+
// precision operations like float16 and bfloat16, where relatively
|
24 |
+
// benign looking inputs can easily end up overflowing/underflowing.
|
25 |
+
//
|
26 |
+
// acc_type is parametrized by whether or not you are running on CUDA
|
27 |
+
// or not, because on CUDA double precision operations are expensive
|
28 |
+
// and so by default, we don't actually want to use double as an
|
29 |
+
// acc_type on CUDA. A lot of things are typed out below, but
|
30 |
+
// basically, the table is generated by a few rules:
|
31 |
+
//
|
32 |
+
// If bool:
|
33 |
+
// Use 'bool' as acc_type.
|
34 |
+
// If floating point:
|
35 |
+
// If CUDA, use 'float' as acc_type (unless scalar_t is double),
|
36 |
+
// otherwise (CPU) use 'double'
|
37 |
+
// If integral:
|
38 |
+
// Use 'int64_t' as acc_type
|
39 |
+
//
|
40 |
+
// You're not forced to use this template; if you happen to know
|
41 |
+
// something specific about your use case, you can specify your own
|
42 |
+
// desired behavior. This template, however, will give you a reasonable
|
43 |
+
// default that will work for all dtypes supported in PyTorch.
|
44 |
+
|
45 |
+
#if defined(__CUDACC__)
|
46 |
+
#include <cuda.h>
|
47 |
+
#include <cuda_fp16.h>
|
48 |
+
#elif defined(__HIPCC__)
|
49 |
+
#include <hip/hip_fp16.h>
|
50 |
+
#include <hip/hip_runtime.h>
|
51 |
+
#endif
|
52 |
+
|
53 |
+
namespace at {
|
54 |
+
|
55 |
+
template <typename T, c10::DeviceType D>
|
56 |
+
struct AccumulateTypeDevice {};
|
57 |
+
|
58 |
+
template <typename T, bool>
|
59 |
+
struct AccumulateType {};
|
60 |
+
|
61 |
+
template <typename T>
|
62 |
+
struct AccumulateType<T, false> {
|
63 |
+
using type = typename AccumulateTypeDevice<T, c10::DeviceType::CPU>::type;
|
64 |
+
};
|
65 |
+
|
66 |
+
template <typename T>
|
67 |
+
struct AccumulateType<T, true> {
|
68 |
+
using type = typename AccumulateTypeDevice<T, c10::DeviceType::CUDA>::type;
|
69 |
+
};
|
70 |
+
|
71 |
+
template <typename T, c10::DeviceType device>
|
72 |
+
using acc_type_device = typename AccumulateTypeDevice<T, device>::type;
|
73 |
+
|
74 |
+
template <typename T, bool is_cuda>
|
75 |
+
using acc_type = typename AccumulateType<T, is_cuda>::type;
|
76 |
+
|
77 |
+
#define ACC_TYPE(t, acc_t, device_type) \
|
78 |
+
template <> \
|
79 |
+
struct AccumulateTypeDevice<t, device_type> { \
|
80 |
+
using type = acc_t; \
|
81 |
+
};
|
82 |
+
#define MPS_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::MPS)
|
83 |
+
#define CUDA_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CUDA)
|
84 |
+
#define CPU_ACC_TYPE(t, acc_t) ACC_TYPE(t, acc_t, c10::DeviceType::CPU)
|
85 |
+
|
86 |
+
MPS_ACC_TYPE(BFloat16, float);
|
87 |
+
MPS_ACC_TYPE(Half, float);
|
88 |
+
MPS_ACC_TYPE(Float8_e5m2, float);
|
89 |
+
MPS_ACC_TYPE(Float8_e4m3fn, float);
|
90 |
+
MPS_ACC_TYPE(float, float);
|
91 |
+
MPS_ACC_TYPE(double, float);
|
92 |
+
MPS_ACC_TYPE(int8_t, int64_t);
|
93 |
+
MPS_ACC_TYPE(uint8_t, int64_t);
|
94 |
+
MPS_ACC_TYPE(char, int64_t);
|
95 |
+
MPS_ACC_TYPE(int16_t, int64_t);
|
96 |
+
MPS_ACC_TYPE(int32_t, int64_t);
|
97 |
+
MPS_ACC_TYPE(int64_t, int64_t);
|
98 |
+
MPS_ACC_TYPE(bool, bool);
|
99 |
+
MPS_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
100 |
+
MPS_ACC_TYPE(c10::complex<float>, c10::complex<float>);
|
101 |
+
MPS_ACC_TYPE(c10::complex<double>, c10::complex<float>);
|
102 |
+
|
103 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
104 |
+
CUDA_ACC_TYPE(half, float);
|
105 |
+
#endif
|
106 |
+
CUDA_ACC_TYPE(BFloat16, float);
|
107 |
+
CUDA_ACC_TYPE(Half, float);
|
108 |
+
CUDA_ACC_TYPE(Float8_e5m2, float);
|
109 |
+
CUDA_ACC_TYPE(Float8_e4m3fn, float);
|
110 |
+
CUDA_ACC_TYPE(float, float);
|
111 |
+
CUDA_ACC_TYPE(double, double);
|
112 |
+
CUDA_ACC_TYPE(int8_t, int64_t);
|
113 |
+
CUDA_ACC_TYPE(uint8_t, int64_t);
|
114 |
+
CUDA_ACC_TYPE(char, int64_t);
|
115 |
+
CUDA_ACC_TYPE(int16_t, int64_t);
|
116 |
+
CUDA_ACC_TYPE(int32_t, int64_t);
|
117 |
+
CUDA_ACC_TYPE(int64_t, int64_t);
|
118 |
+
CUDA_ACC_TYPE(bool, bool);
|
119 |
+
CUDA_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
120 |
+
CUDA_ACC_TYPE(c10::complex<float>, c10::complex<float>);
|
121 |
+
CUDA_ACC_TYPE(c10::complex<double>, c10::complex<double>);
|
122 |
+
|
123 |
+
CPU_ACC_TYPE(BFloat16, float);
|
124 |
+
CPU_ACC_TYPE(Half, float);
|
125 |
+
CPU_ACC_TYPE(Float8_e5m2, float);
|
126 |
+
CPU_ACC_TYPE(Float8_e5m2fnuz, float);
|
127 |
+
CPU_ACC_TYPE(Float8_e4m3fn, float);
|
128 |
+
CPU_ACC_TYPE(Float8_e4m3fnuz, float);
|
129 |
+
CPU_ACC_TYPE(float, double);
|
130 |
+
CPU_ACC_TYPE(double, double);
|
131 |
+
CPU_ACC_TYPE(int8_t, int64_t);
|
132 |
+
CPU_ACC_TYPE(uint8_t, int64_t);
|
133 |
+
CPU_ACC_TYPE(char, int64_t);
|
134 |
+
CPU_ACC_TYPE(int16_t, int64_t);
|
135 |
+
CPU_ACC_TYPE(int32_t, int64_t);
|
136 |
+
CPU_ACC_TYPE(int64_t, int64_t);
|
137 |
+
CPU_ACC_TYPE(bool, bool);
|
138 |
+
CPU_ACC_TYPE(c10::complex<Half>, c10::complex<float>);
|
139 |
+
CPU_ACC_TYPE(c10::complex<float>, c10::complex<double>);
|
140 |
+
CPU_ACC_TYPE(c10::complex<double>, c10::complex<double>);
|
141 |
+
|
142 |
+
TORCH_API c10::ScalarType toAccumulateType(
|
143 |
+
c10::ScalarType type,
|
144 |
+
c10::DeviceType device);
|
145 |
+
TORCH_API c10::ScalarType toAccumulateType(c10::ScalarType type, bool is_cuda);
|
146 |
+
|
147 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CPUApplyUtils.h
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CollapseDims.h>
|
4 |
+
#include <ATen/Parallel.h>
|
5 |
+
#include <ATen/TensorUtils.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
#include <cstring>
|
8 |
+
#include <limits>
|
9 |
+
#include <utility>
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
|
13 |
+
/*
|
14 |
+
* The basic strategy for apply is as follows:
|
15 |
+
*
|
16 |
+
* 1. Starting with the outermost index, loop until we reach a dimension where
|
17 |
+
* the data is no longer contiguous, i.e. the stride at that dimension is not
|
18 |
+
* equal to the size of the tensor defined by the outer dimensions. Let's call
|
19 |
+
* this outer (contiguous) tensor A. Note that if the Tensor is contiguous, then
|
20 |
+
* A is equal to the entire Tensor. Let's call the inner tensor B.
|
21 |
+
*
|
22 |
+
* 2. We loop through the indices in B, starting at its outermost dimension. For
|
23 |
+
* example, if B is a 2x2 matrix, then we do:
|
24 |
+
*
|
25 |
+
* B[0][0]
|
26 |
+
* B[0][1]
|
27 |
+
* B[1][0]
|
28 |
+
* B[1][1]
|
29 |
+
*
|
30 |
+
* We set the offset into the underlying storage as (storageOffset + stride_B *
|
31 |
+
* index_B), i.e. basically we compute the offset into the storage as we would
|
32 |
+
* normally for a Tensor. But because we are guaranteed the subsequent data is
|
33 |
+
* contiguous in memory, we can simply loop for sizeof(A) iterations and perform
|
34 |
+
* the operation, without having to follow the order described by the strides of
|
35 |
+
* A.
|
36 |
+
*
|
37 |
+
* 3. As an optimization, we merge dimensions of A that are contiguous in
|
38 |
+
* memory. For example, if A is a 3x3x3x3 tensor narrowed from a 3x3x4x3 tensor,
|
39 |
+
* then the first two dimensions can be merged for the purposes of APPLY,
|
40 |
+
* reducing the number of nested loops.
|
41 |
+
*/
|
42 |
+
|
43 |
+
inline Tensor sort_strides(Tensor& tensor_) {
|
44 |
+
IntArrayRef strides = tensor_.strides();
|
45 |
+
std::vector<int64_t> indices;
|
46 |
+
indices.reserve(tensor_.ndimension());
|
47 |
+
for (const auto i : c10::irange(tensor_.ndimension())) {
|
48 |
+
indices.push_back(i);
|
49 |
+
}
|
50 |
+
std::sort(indices.begin(), indices.end(), [&strides](int64_t i1, int64_t i2) {
|
51 |
+
return strides[i1] > strides[i2];
|
52 |
+
});
|
53 |
+
Tensor tensor = tensor_.permute(indices);
|
54 |
+
return tensor;
|
55 |
+
}
|
56 |
+
|
57 |
+
template <typename T, int N>
|
58 |
+
struct strided_tensor_iter_fixed {
|
59 |
+
public:
|
60 |
+
T* data_ = NULL;
|
61 |
+
int64_t dim_ = 0;
|
62 |
+
|
63 |
+
int64_t counter_[N] = {0};
|
64 |
+
int64_t sizes_[N] = {0};
|
65 |
+
int64_t strides_[N] = {0};
|
66 |
+
|
67 |
+
strided_tensor_iter_fixed(strided_tensor_iter_fixed const&) = delete;
|
68 |
+
void operator=(strided_tensor_iter_fixed const& x) = delete;
|
69 |
+
strided_tensor_iter_fixed(strided_tensor_iter_fixed&&) = default;
|
70 |
+
strided_tensor_iter_fixed(
|
71 |
+
Tensor& tensor,
|
72 |
+
C10_UNUSED bool sort_strides = false)
|
73 |
+
: data_(tensor.data_ptr<T>()) {
|
74 |
+
std::memset(counter_, 0, sizeof(int64_t) * N);
|
75 |
+
if (tensor.dim() > 0) {
|
76 |
+
std::memcpy(
|
77 |
+
sizes_, tensor.sizes().data(), tensor.dim() * sizeof(int64_t));
|
78 |
+
std::memcpy(
|
79 |
+
strides_, tensor.strides().data(), tensor.dim() * sizeof(int64_t));
|
80 |
+
}
|
81 |
+
dim_ = std::get<1>(collapse_dims(sizes_, strides_, tensor.ndimension()));
|
82 |
+
}
|
83 |
+
};
|
84 |
+
|
85 |
+
template <typename T>
|
86 |
+
struct strided_tensor_iter {
|
87 |
+
private:
|
88 |
+
public:
|
89 |
+
T* data_ = NULL;
|
90 |
+
int64_t dim_;
|
91 |
+
|
92 |
+
std::vector<int64_t> counter_;
|
93 |
+
std::vector<int64_t> sizes_;
|
94 |
+
std::vector<int64_t> strides_;
|
95 |
+
|
96 |
+
strided_tensor_iter(strided_tensor_iter const&) = delete;
|
97 |
+
void operator=(strided_tensor_iter const& x) = delete;
|
98 |
+
strided_tensor_iter(strided_tensor_iter&&) = default;
|
99 |
+
strided_tensor_iter(Tensor& tensor)
|
100 |
+
: data_(tensor.data_ptr<T>()),
|
101 |
+
dim_(tensor.ndimension()),
|
102 |
+
counter_(dim_, 0),
|
103 |
+
sizes_(tensor.sizes().vec()),
|
104 |
+
strides_(tensor.strides().vec()) {
|
105 |
+
dim_ = std::get<1>(collapse_dims(sizes_.data(), strides_.data(), dim_));
|
106 |
+
}
|
107 |
+
};
|
108 |
+
|
109 |
+
inline bool _all_equal_numel(at::ArrayRef<Tensor> tensors) {
|
110 |
+
if (tensors.empty())
|
111 |
+
return true;
|
112 |
+
int64_t all_numel = tensors[0].numel();
|
113 |
+
for (const auto i : c10::irange(1, tensors.size())) {
|
114 |
+
if (tensors[i].numel() != all_numel)
|
115 |
+
return false;
|
116 |
+
}
|
117 |
+
return true;
|
118 |
+
}
|
119 |
+
|
120 |
+
inline std::string _all_equal_numel_error(at::ArrayRef<Tensor> tensors) {
|
121 |
+
std::ostringstream oss;
|
122 |
+
oss << "inconsistent tensor size, expected ";
|
123 |
+
for (size_t i = 0; i < tensors.size() - 1; i++) {
|
124 |
+
oss << tensors[i].sizes() << ", ";
|
125 |
+
}
|
126 |
+
oss << "and " << tensors[tensors.size() - 1].sizes()
|
127 |
+
<< " to have the same number of elements, but got ";
|
128 |
+
for (size_t i = 0; i < tensors.size() - 1; i++) {
|
129 |
+
oss << tensors[i].numel() << ", ";
|
130 |
+
}
|
131 |
+
oss << "and " << tensors[tensors.size() - 1].numel()
|
132 |
+
<< " elements respectively";
|
133 |
+
return oss.str();
|
134 |
+
}
|
135 |
+
|
136 |
+
inline bool _apply_preamble(ArrayRef<Tensor> tensors) {
|
137 |
+
checkDeviceType("CPU_tensor_apply", tensors, kCPU);
|
138 |
+
checkLayout("CPU_tensor_apply", tensors, kStrided);
|
139 |
+
if (!_all_equal_numel(tensors))
|
140 |
+
AT_ERROR(_all_equal_numel_error(tensors));
|
141 |
+
// An empty tensor has no elements
|
142 |
+
for (auto& t : tensors)
|
143 |
+
if (t.numel() == 0)
|
144 |
+
return false;
|
145 |
+
return true;
|
146 |
+
}
|
147 |
+
|
148 |
+
inline int64_t _max_dim_tensors(ArrayRef<Tensor> tensors) {
|
149 |
+
int64_t dim = 0;
|
150 |
+
for (auto& t : tensors)
|
151 |
+
dim = std::max(dim, t.ndimension());
|
152 |
+
return dim;
|
153 |
+
}
|
154 |
+
|
155 |
+
inline void iterate(int64_t /*size*/){};
|
156 |
+
|
157 |
+
template <typename Arg, typename... Args>
|
158 |
+
inline void iterate(int64_t size, Arg& iter, Args&... iter_tail) {
|
159 |
+
iter.counter_[iter.dim_ - 1] += size;
|
160 |
+
iter.data_ = iter.data_ + size * iter.strides_[iter.dim_ - 1];
|
161 |
+
iterate(size, iter_tail...);
|
162 |
+
}
|
163 |
+
|
164 |
+
inline bool iterate_continue() {
|
165 |
+
return true;
|
166 |
+
};
|
167 |
+
|
168 |
+
template <typename Arg, typename... Args>
|
169 |
+
inline bool iterate_continue(Arg& iter, Args&... iter_tail) {
|
170 |
+
return iter.counter_[iter.dim_ - 1] < iter.sizes_[iter.dim_ - 1] &&
|
171 |
+
iterate_continue(iter_tail...);
|
172 |
+
}
|
173 |
+
|
174 |
+
inline int64_t max_iterate_size() {
|
175 |
+
return std::numeric_limits<int64_t>::max();
|
176 |
+
};
|
177 |
+
|
178 |
+
template <typename Arg, typename... Args>
|
179 |
+
inline int64_t max_iterate_size(Arg& iter, Args&... iter_tail) {
|
180 |
+
return std::min(
|
181 |
+
(iter.sizes_[iter.dim_ - 1] - iter.counter_[iter.dim_ - 1]),
|
182 |
+
max_iterate_size(iter_tail...));
|
183 |
+
}
|
184 |
+
|
185 |
+
inline void iterate_overflow(){};
|
186 |
+
|
187 |
+
template <typename Arg, typename... Args>
|
188 |
+
inline void iterate_overflow(Arg& iter, Args&... iter_tail) {
|
189 |
+
if (iter.counter_[iter.dim_ - 1] == iter.sizes_[iter.dim_ - 1]) {
|
190 |
+
for (int64_t i = iter.dim_ - 1; i > 0; i--) {
|
191 |
+
if (iter.counter_[i] == iter.sizes_[i]) {
|
192 |
+
iter.counter_[i] = 0;
|
193 |
+
iter.counter_[i - 1]++;
|
194 |
+
iter.data_ = iter.data_ - (iter.sizes_[i] * iter.strides_[i]) +
|
195 |
+
iter.strides_[i - 1];
|
196 |
+
}
|
197 |
+
}
|
198 |
+
}
|
199 |
+
iterate_overflow(iter_tail...);
|
200 |
+
}
|
201 |
+
|
202 |
+
inline void forward(int64_t /*offset*/){};
|
203 |
+
|
204 |
+
template <typename Arg, typename... Args>
|
205 |
+
inline void forward(int64_t offset, Arg& iter, Args&... iter_tail) {
|
206 |
+
int64_t multi = offset;
|
207 |
+
for (int64_t i = iter.dim_ - 1; i >= 0; i--) {
|
208 |
+
int64_t inc = multi % iter.sizes_[i];
|
209 |
+
multi = multi / iter.sizes_[i];
|
210 |
+
iter.data_ = iter.data_ + inc * iter.strides_[i];
|
211 |
+
iter.counter_[i] += inc;
|
212 |
+
}
|
213 |
+
forward(offset, iter_tail...);
|
214 |
+
}
|
215 |
+
|
216 |
+
inline int64_t max_dim() {
|
217 |
+
return 0;
|
218 |
+
}
|
219 |
+
|
220 |
+
template <typename Arg, typename... Args>
|
221 |
+
inline int64_t max_dim(Arg& iter, Args&... iter_tail) {
|
222 |
+
return std::max(iter.dim_, max_dim(iter_tail...));
|
223 |
+
}
|
224 |
+
|
225 |
+
inline void apply_op(){};
|
226 |
+
|
227 |
+
template <typename Op, typename... Args>
|
228 |
+
inline void apply_op(
|
229 |
+
int64_t numel,
|
230 |
+
int64_t offset,
|
231 |
+
const Op& op,
|
232 |
+
Args... iters) {
|
233 |
+
// For 0-dim tensors
|
234 |
+
if (numel == 1 && max_dim(iters...) == 0) {
|
235 |
+
op(*iters.data_...);
|
236 |
+
return;
|
237 |
+
}
|
238 |
+
if (offset > 0)
|
239 |
+
forward(offset, iters...);
|
240 |
+
// Splitting this into chunks helps the compiler create faster assembly
|
241 |
+
for (int64_t i = 0; i < numel;) {
|
242 |
+
for (; iterate_continue(iters...) && i < numel;) {
|
243 |
+
op(*iters.data_...);
|
244 |
+
iterate(1, iters...);
|
245 |
+
i++;
|
246 |
+
}
|
247 |
+
iterate_overflow(iters...);
|
248 |
+
}
|
249 |
+
}
|
250 |
+
|
251 |
+
/*
|
252 |
+
Apply a pointwise operator to sequence of tensors
|
253 |
+
|
254 |
+
The calling convention for op is a function/functor that takes the same
|
255 |
+
number of pointers of type scalar as the number of given tensors. For example,
|
256 |
+
to compute a = b * c, op would be of the form:
|
257 |
+
[](scalar* a_val, const scalar* b_val, const scalar* c_val) { a_val[0] =
|
258 |
+
b_val[0] * c_val[0]; };
|
259 |
+
*/
|
260 |
+
|
261 |
+
template <typename scalar1, typename scalar2, typename Op>
|
262 |
+
inline void CPU_tensor_apply2(Tensor tensor1, Tensor tensor2, const Op op) {
|
263 |
+
if (!_apply_preamble({tensor1, tensor2}))
|
264 |
+
return;
|
265 |
+
if (_max_dim_tensors({tensor1, tensor2}) <= 8) {
|
266 |
+
apply_op(
|
267 |
+
tensor1.numel(),
|
268 |
+
0,
|
269 |
+
op,
|
270 |
+
strided_tensor_iter_fixed<scalar1, 8>(tensor1),
|
271 |
+
strided_tensor_iter_fixed<scalar2, 8>(tensor2));
|
272 |
+
} else {
|
273 |
+
apply_op(
|
274 |
+
tensor1.numel(),
|
275 |
+
0,
|
276 |
+
op,
|
277 |
+
strided_tensor_iter<scalar1>(tensor1),
|
278 |
+
strided_tensor_iter<scalar2>(tensor2));
|
279 |
+
}
|
280 |
+
}
|
281 |
+
|
282 |
+
template <typename scalar1, typename scalar2, typename scalar3, typename Op>
|
283 |
+
inline void CPU_tensor_apply3(
|
284 |
+
Tensor tensor1,
|
285 |
+
Tensor tensor2,
|
286 |
+
Tensor tensor3,
|
287 |
+
const Op op) {
|
288 |
+
if (!_apply_preamble({tensor1, tensor2, tensor3}))
|
289 |
+
return;
|
290 |
+
if (_max_dim_tensors({tensor1, tensor2, tensor3}) <= 8) {
|
291 |
+
apply_op(
|
292 |
+
tensor1.numel(),
|
293 |
+
0,
|
294 |
+
op,
|
295 |
+
strided_tensor_iter_fixed<scalar1, 8>(tensor1),
|
296 |
+
strided_tensor_iter_fixed<scalar2, 8>(tensor2),
|
297 |
+
strided_tensor_iter_fixed<scalar3, 8>(tensor3));
|
298 |
+
} else {
|
299 |
+
apply_op(
|
300 |
+
tensor1.numel(),
|
301 |
+
0,
|
302 |
+
op,
|
303 |
+
strided_tensor_iter<scalar1>(tensor1),
|
304 |
+
strided_tensor_iter<scalar2>(tensor2),
|
305 |
+
strided_tensor_iter<scalar3>(tensor3));
|
306 |
+
}
|
307 |
+
}
|
308 |
+
|
309 |
+
template <
|
310 |
+
typename scalar1,
|
311 |
+
typename scalar2,
|
312 |
+
typename scalar3,
|
313 |
+
typename scalar4,
|
314 |
+
typename Op>
|
315 |
+
inline void CPU_tensor_apply4(
|
316 |
+
Tensor tensor1,
|
317 |
+
Tensor tensor2,
|
318 |
+
Tensor tensor3,
|
319 |
+
Tensor tensor4,
|
320 |
+
const Op op) {
|
321 |
+
if (!_apply_preamble({tensor1, tensor2, tensor3, tensor4}))
|
322 |
+
return;
|
323 |
+
if (_max_dim_tensors({tensor1, tensor2, tensor3, tensor4}) <= 8) {
|
324 |
+
apply_op(
|
325 |
+
tensor1.numel(),
|
326 |
+
0,
|
327 |
+
op,
|
328 |
+
strided_tensor_iter_fixed<scalar1, 8>(tensor1),
|
329 |
+
strided_tensor_iter_fixed<scalar2, 8>(tensor2),
|
330 |
+
strided_tensor_iter_fixed<scalar3, 8>(tensor3),
|
331 |
+
strided_tensor_iter_fixed<scalar4, 8>(tensor4));
|
332 |
+
} else {
|
333 |
+
apply_op(
|
334 |
+
tensor1.numel(),
|
335 |
+
0,
|
336 |
+
op,
|
337 |
+
strided_tensor_iter<scalar1>(tensor1),
|
338 |
+
strided_tensor_iter<scalar2>(tensor2),
|
339 |
+
strided_tensor_iter<scalar3>(tensor3),
|
340 |
+
strided_tensor_iter<scalar4>(tensor4));
|
341 |
+
}
|
342 |
+
}
|
343 |
+
|
344 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CUDAFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CUDAFunctions_inl.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CachedTensorUtils.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
|
5 |
+
namespace at::caching {
|
6 |
+
|
7 |
+
// Some systems (just cudagraphs currently) will persist a static tensor output
|
8 |
+
// whose TensorImpl does not change across iterations. For these tensors caching
|
9 |
+
// dtype conversions is invalid. Additionally, there will be an extra reference
|
10 |
+
// count to these cached tensors that would prevent buffer inplacing and other
|
11 |
+
// checks on tensor uniqueness. If we are not using these systems the enabled
|
12 |
+
// flag will be false and we will avoid the hash lookup.
|
13 |
+
|
14 |
+
TORCH_API bool is_cached_tensor(const at::Tensor& t);
|
15 |
+
TORCH_API void add_cached_tensor(const at::Tensor& t);
|
16 |
+
TORCH_API void remove_cached_tensor(const at::Tensor& t);
|
17 |
+
TORCH_API void set_cached_tensors_enabled(bool enable);
|
18 |
+
|
19 |
+
// For gradient buffer stealing we will adjust the use count of tensors
|
20 |
+
// which are persisted by cudagraphs, just as we need to adjust reference
|
21 |
+
// count of tensors with hooks.
|
22 |
+
TORCH_API size_t adjusted_use_count(const at::Tensor& t);
|
23 |
+
|
24 |
+
} // namespace at::caching
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeExplicitAutogradFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeExplicitAutogradFunctions_inl.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeImplicitAutogradFunctions_inl.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/CompositeImplicitAutogradNestedTensorFunctions.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/core/TensorBody.h>
|
2 |
+
|
3 |
+
// TODO Undo all logic introduced for Note [Avoiding Include Cycles In Static Dispatch]
|
4 |
+
// Code introduced to avoid cyclic dependency in static dispatch is no longer
|
5 |
+
// needed as static dispatch logic is moved from TensorBody.h, which caused cycles in the first place,
|
6 |
+
// to Operators.cpp for supporting multiple backends with multiple kernels.
|
7 |
+
//
|
8 |
+
// Note [Avoiding Include Cycles In Static Dispatch]
|
9 |
+
// In order to avoid #include cycles in the static dispatch build, we've carefully split out
|
10 |
+
// the static function definition files into {DispatchKey}Functions.h and {DispatchKey}Functions_inl.h.
|
11 |
+
//
|
12 |
+
// Without this split, the include cycle looks like TensorBody.h -> CPUFunctions.h -> TensorBody.h.
|
13 |
+
// - TensorBody.h #includes CPUFunctions.h in the static dispatch build, because the tensor methods
|
14 |
+
// all need to call into the fastpath C++ API defined in CPUFunctions.h. The methods are also all
|
15 |
+
// directly inlined into TensorBody.h.
|
16 |
+
// - CPUFunctions.h #includes TensorBody.h because it contains function declarations for the entire C++ API,
|
17 |
+
// which include functions that have defaultable optional<Tensor> arguments.
|
18 |
+
// That requires knowing the full Tensor class definition.
|
19 |
+
//
|
20 |
+
// We break the cycle by doing the following:
|
21 |
+
// - Split out CPUFunction.h into two files: CPUFunctions.h and CPUFunctions_inl.h
|
22 |
+
// - CPUFunction.h is a dummy file that just includes the Tensor class and includes CPUFunctions_inl.,
|
23 |
+
// - CPUFunctions_inl.h includes everything else
|
24 |
+
// - (only in the static dispatch build) TensorBody.h makes sure to finish defining the Tensor class,
|
25 |
+
// and then it includes CPUFunctions_inl.h.
|
26 |
+
// - All other files that want the cpu fastpath functions can include CPUFunctions.h directly.
|
27 |
+
// - This also means that static dispatch build, CPUFunctions.h only needs to
|
28 |
+
// #include TensorBody.h, and it will automatically bring in CPUFunctions_inl.h.
|
29 |
+
#include <ATen/CompositeImplicitAutogradNestedTensorFunctions_inl.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Config.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Test these using #if AT_MKL_ENABLED(), not #ifdef, so that it's
|
4 |
+
// obvious if you forgot to include Config.h
|
5 |
+
// c.f. https://stackoverflow.com/questions/33759787/generating-an-error-if-checked-boolean-macro-is-not-defined
|
6 |
+
//
|
7 |
+
// DO NOT put the macros for CUDA libraries in this file; they belong in cuda/CUDAConfig.h
|
8 |
+
|
9 |
+
#define AT_MKLDNN_ENABLED() 1
|
10 |
+
#define AT_MKLDNN_ACL_ENABLED() 0
|
11 |
+
#define AT_MKL_ENABLED() 1
|
12 |
+
#define AT_MKL_SEQUENTIAL() 0
|
13 |
+
#define AT_POCKETFFT_ENABLED() 0
|
14 |
+
#define AT_NNPACK_ENABLED() 1
|
15 |
+
#define CAFFE2_STATIC_LINK_CUDA() 0
|
16 |
+
#define AT_BUILD_WITH_BLAS() 1
|
17 |
+
#define AT_BUILD_WITH_LAPACK() 1
|
18 |
+
#define AT_PARALLEL_OPENMP 1
|
19 |
+
#define AT_PARALLEL_NATIVE 0
|
20 |
+
#define AT_PARALLEL_NATIVE_TBB 0
|
21 |
+
#define AT_BLAS_F2C() 0
|
22 |
+
#define AT_BLAS_USE_CBLAS_DOT() 0
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DeviceGuard.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/IListRef.h>
|
4 |
+
#include <ATen/core/Tensor.h>
|
5 |
+
#include <c10/core/DeviceGuard.h>
|
6 |
+
#include <c10/core/ScalarType.h> // TensorList whyyyyy
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
// Are you here because you're wondering why DeviceGuard(tensor) no
|
11 |
+
// longer works? For code organization reasons, we have temporarily(?)
|
12 |
+
// removed this constructor from DeviceGuard. The new way to
|
13 |
+
// spell it is:
|
14 |
+
//
|
15 |
+
// OptionalDeviceGuard guard(device_of(tensor));
|
16 |
+
|
17 |
+
/// Return the Device of a Tensor, if the Tensor is defined.
|
18 |
+
inline c10::optional<Device> device_of(const Tensor& t) {
|
19 |
+
if (t.defined()) {
|
20 |
+
return c10::make_optional(t.device());
|
21 |
+
} else {
|
22 |
+
return c10::nullopt;
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
inline c10::optional<Device> device_of(const c10::optional<Tensor>& t) {
|
27 |
+
return t.has_value() ? device_of(t.value()) : c10::nullopt;
|
28 |
+
}
|
29 |
+
|
30 |
+
/// Return the Device of a TensorList, if the list is non-empty and
|
31 |
+
/// the first Tensor is defined. (This function implicitly assumes
|
32 |
+
/// that all tensors in the list have the same device.)
|
33 |
+
inline c10::optional<Device> device_of(ITensorListRef t) {
|
34 |
+
if (!t.empty()) {
|
35 |
+
return device_of(t.front());
|
36 |
+
} else {
|
37 |
+
return c10::nullopt;
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DimVector.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/DimVector.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/DynamicLibrary.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Utils.h>
|
4 |
+
#include <c10/macros/Export.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
|
7 |
+
namespace c10 {
|
8 |
+
|
9 |
+
class DynamicLibraryError : public Error {
|
10 |
+
using Error::Error;
|
11 |
+
};
|
12 |
+
|
13 |
+
} // namespace c10
|
14 |
+
|
15 |
+
namespace at {
|
16 |
+
|
17 |
+
struct DynamicLibrary {
|
18 |
+
AT_DISALLOW_COPY_AND_ASSIGN(DynamicLibrary);
|
19 |
+
|
20 |
+
TORCH_API DynamicLibrary(
|
21 |
+
const char* name,
|
22 |
+
const char* alt_name = nullptr,
|
23 |
+
bool leak_handle = false);
|
24 |
+
|
25 |
+
TORCH_API void* sym(const char* name);
|
26 |
+
|
27 |
+
TORCH_API ~DynamicLibrary();
|
28 |
+
|
29 |
+
private:
|
30 |
+
bool leak_handle;
|
31 |
+
void* handle = nullptr;
|
32 |
+
};
|
33 |
+
|
34 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/FunctionalStorageImpl.h
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
|
5 |
+
namespace at::functionalization {
|
6 |
+
|
7 |
+
// See Note [Functionalization Pass In Core]
|
8 |
+
|
9 |
+
// ViewMeta is a class used by the functionalization pass to navigate between
|
10 |
+
// a base tensor and a view tensor.
|
11 |
+
// For example, if I call `b = a.view1(...)`
|
12 |
+
// the functionalization pass will generate and store a ViewMeta on b that looks
|
13 |
+
// like:
|
14 |
+
//
|
15 |
+
// ViewMeta(
|
16 |
+
// [<captures>](const Tensor& base, int64_t mutated_view_idx) {
|
17 |
+
// return base.view1(...);
|
18 |
+
// },
|
19 |
+
// [<captures>](const at::Tensor& base, const at::Tensor& mutated_view,
|
20 |
+
// int64_t mutated_view_idx) -> at::Tensor {
|
21 |
+
// return at::functionalization::impl::view1_inverse(base, mutated_view,
|
22 |
+
// ...);
|
23 |
+
// }
|
24 |
+
//
|
25 |
+
// The forward_fn lambda describes how to replay view1 on a tensor.
|
26 |
+
//
|
27 |
+
// The reverse_fn lambda describes how, given a tensor that is already a view,
|
28 |
+
// how to get the corresponding base tensor. See Note [Functionalization Pass:
|
29 |
+
// View Inverses] for details.
|
30 |
+
struct ViewMeta {
|
31 |
+
ViewMeta(
|
32 |
+
std::function<Tensor(const Tensor&, int64_t)> forward,
|
33 |
+
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse,
|
34 |
+
bool is_multi_output = false,
|
35 |
+
int64_t out_idx = 0)
|
36 |
+
: forward_fn(std::move(forward)),
|
37 |
+
reverse_fn(std::move(reverse)),
|
38 |
+
out_index(out_idx),
|
39 |
+
is_multi_output(is_multi_output) {}
|
40 |
+
|
41 |
+
std::function<Tensor(const Tensor&, int64_t)> forward_fn;
|
42 |
+
std::function<Tensor(const Tensor&, const Tensor&, int64_t)> reverse_fn;
|
43 |
+
// See Note [out_idx in ViewMeta]
|
44 |
+
int64_t out_index;
|
45 |
+
|
46 |
+
// Tells us if this is a multi-output view
|
47 |
+
bool is_multi_output;
|
48 |
+
|
49 |
+
// Returns a copy of the current ViewMeta, if out_idx matches the current
|
50 |
+
// out_index. Otherwise, returns a new ViewMeta with the same forward/reverse
|
51 |
+
// functions, but a new out index.
|
52 |
+
ViewMeta to_out_idx(int64_t out_idx);
|
53 |
+
};
|
54 |
+
|
55 |
+
// FunctionalStorageImpl is a subclass of StorageImpl used by the
|
56 |
+
// functionalization pass. It has no underlying data (similar to meta storage).
|
57 |
+
// It also knows how to reflect mutations to tensors in the absence of a valid
|
58 |
+
// data pointer.
|
59 |
+
//
|
60 |
+
// A storage represents the state shared by (potentially multiple) views of the
|
61 |
+
// same tensor. For example, in the following code:
|
62 |
+
//
|
63 |
+
// b = a.view1(...)
|
64 |
+
// c = b.view2(...)
|
65 |
+
// b.add_(1)
|
66 |
+
// --> storage.add_update(b, {view1_meta})
|
67 |
+
//
|
68 |
+
// The call to add_(1) will result in a call to alias.add_update(b,
|
69 |
+
// {view1_meta}), queueing up the mutation from b onto the alias. Later, suppose
|
70 |
+
// c is used in an expression (e.g. you try to print c, or pass it to an
|
71 |
+
// operator). Doing so will involve "syncing" c. First we apply any pending
|
72 |
+
// updates to the alias, and then we regenerate c by replaying its views off of
|
73 |
+
// the updated alias. E.g:
|
74 |
+
//
|
75 |
+
// print(str(c))
|
76 |
+
// --> c.sync_()
|
77 |
+
// --> alias.apply_updates() // after this, the alias will be updated to
|
78 |
+
// reflect the mutation to b
|
79 |
+
struct TORCH_API FunctionalStorageImpl : public c10::StorageImpl {
|
80 |
+
public:
|
81 |
+
struct Update {
|
82 |
+
const at::Tensor new_val;
|
83 |
+
const std::vector<ViewMeta> view_metas;
|
84 |
+
};
|
85 |
+
|
86 |
+
explicit FunctionalStorageImpl(const Tensor& value);
|
87 |
+
|
88 |
+
void add_update(
|
89 |
+
const Tensor& updated_val,
|
90 |
+
const std::vector<ViewMeta>& view_metas);
|
91 |
+
bool apply_updates();
|
92 |
+
const Tensor& base() {
|
93 |
+
return base_;
|
94 |
+
}
|
95 |
+
size_t generation() const {
|
96 |
+
return generation_;
|
97 |
+
}
|
98 |
+
void freeze() {
|
99 |
+
frozen_ = true;
|
100 |
+
}
|
101 |
+
|
102 |
+
~FunctionalStorageImpl() override = default;
|
103 |
+
|
104 |
+
private:
|
105 |
+
// NB: base_ should always point to a tensor BELOW the current
|
106 |
+
// functionalization layer. This is mainly to avoid reference cycles. e.g.
|
107 |
+
// given `b = a.view(...)` Both a.storage_ and b.storage_ are a
|
108 |
+
// FunctionStorageImpl containing an Walualias, with contains a Tensor
|
109 |
+
// `base_`. In this case (where a and b are FunctionalTensorWrapper's), base_
|
110 |
+
// should point not to a, but to a's unwrapped value, a.value_` See Note
|
111 |
+
// [Functionalization: Walualias Removal] for a diagram that shows this
|
112 |
+
// visually.
|
113 |
+
at::Tensor base_;
|
114 |
+
std::vector<Update> updates_;
|
115 |
+
// generation_ gets incremented every time a mutation is queued onto the
|
116 |
+
// alias. It is used to determine if a given tensor is "up to date", or if it
|
117 |
+
// needs to be regenerated from the alias.
|
118 |
+
size_t generation_ = 0;
|
119 |
+
// If frozen, no more mutations are allowed on this storage. Once frozen, a
|
120 |
+
// storage cannot be unfrozen.
|
121 |
+
bool frozen_ = false;
|
122 |
+
};
|
123 |
+
|
124 |
+
} // namespace at::functionalization
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/FunctionalTensorWrapper.h
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <ATen/ArrayRef.h>
|
5 |
+
#include <ATen/FunctionalStorageImpl.h>
|
6 |
+
#include <ATen/core/IListRef.h>
|
7 |
+
#include <ATen/core/List.h>
|
8 |
+
#include <ATen/core/boxing/BoxedKernel.h>
|
9 |
+
#include <ATen/core/boxing/impl/boxing.h>
|
10 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
11 |
+
|
12 |
+
#include <c10/core/DispatchKey.h>
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
|
16 |
+
// Note [Functionalization Pass In Core]
|
17 |
+
// The Functionalization pass is used to remove aliasing from a pytorch program.
|
18 |
+
//
|
19 |
+
// This is useful for backends that don't support aliasing, like XLA and Vulkan.
|
20 |
+
// It's also necessary in order to remove mutation from a program, which is
|
21 |
+
// needed in Functorch.
|
22 |
+
//
|
23 |
+
// Consider this program:
|
24 |
+
// a = torch.ones(...)
|
25 |
+
// b = a.view(...)
|
26 |
+
// b.add_(1)
|
27 |
+
//
|
28 |
+
// In this program, b is meant to alias with a due to the use of view(). At the
|
29 |
+
// end of the program, both a and b are full of 2's. However, backends that
|
30 |
+
// don't support aliasing aren't able to correctly implement the view()
|
31 |
+
// operator. Instead, they can opt into the Functionalization pass, which will
|
32 |
+
// sit between the user and the backend, and provide the necessary aliasing
|
33 |
+
// logic.
|
34 |
+
//
|
35 |
+
// The functionalization pass will turn the above program into a slightly
|
36 |
+
// different program that has the same semantics, transparently to the user,
|
37 |
+
// that backends like XLA/Vulkan are able to implement a = torch.ones(...) b =
|
38 |
+
// a.view_copy(...) # view() replaced with view_copy(). Backends like
|
39 |
+
// XLA/Vulkan can implement this! b.add_(1) a.add_(1) # Our functionalization
|
40 |
+
// pass machinery knows that a and b are aliased - it applies b's mutation to a
|
41 |
+
// too.
|
42 |
+
//
|
43 |
+
// So, how does the functionalization pass keep track of which tensors are
|
44 |
+
// aliased? The pass works by wrapping EVERY tensor in the program inside of a
|
45 |
+
// FunctionalTensorWrapper, which knows about its alias'd tensors.
|
46 |
+
//
|
47 |
+
// See Note [Functionalization: Alias Removal] for details on the aliasing
|
48 |
+
// machinery. See Note [Functionalization: Mutation Removal] for details on
|
49 |
+
// mutation removal.
|
50 |
+
struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
|
51 |
+
explicit FunctionalTensorWrapper(const Tensor& value);
|
52 |
+
// Additional constructor to create a FunctionalTensorWrapper directly from an
|
53 |
+
// underlying tensor that was created from a view. For example, the code b =
|
54 |
+
// a.view1() will generate a constructor call to FunctionalTensorWrapper(b, a,
|
55 |
+
// view1_meta)
|
56 |
+
explicit FunctionalTensorWrapper(
|
57 |
+
const Tensor& view_value,
|
58 |
+
const FunctionalTensorWrapper* base,
|
59 |
+
functionalization::ViewMeta meta);
|
60 |
+
|
61 |
+
// Get the underlying, actual tensor, that doesn't know anything about
|
62 |
+
// functionalization.
|
63 |
+
const Tensor& value() const {
|
64 |
+
return value_;
|
65 |
+
};
|
66 |
+
// The concept of "level" is only ever important to functorch; it's exposed
|
67 |
+
// here as more of a hook for functorch to use.
|
68 |
+
int64_t level() const {
|
69 |
+
return level_;
|
70 |
+
};
|
71 |
+
void set_level(int64_t level) {
|
72 |
+
level_ = level;
|
73 |
+
}
|
74 |
+
bool has_metadata_mutation() const {
|
75 |
+
return has_metadata_mutation_;
|
76 |
+
};
|
77 |
+
|
78 |
+
// Denotes a mutation that's hidden from autograd,
|
79 |
+
// e.g. for the purposes of passing a tensor to a triton kernel
|
80 |
+
void mark_mutation_hidden_from_autograd() {
|
81 |
+
mutation_hidden_from_autograd_counter_++;
|
82 |
+
}
|
83 |
+
void mark_mutation_during_no_grad_or_inference_mode() {
|
84 |
+
mutation_during_no_grad_or_inference_mode_++;
|
85 |
+
}
|
86 |
+
// Are all the mutations happening to the tensor hidden from autograd
|
87 |
+
bool are_all_mutations_hidden_from_autograd() const {
|
88 |
+
return mutation_hidden_from_autograd_counter_ == mutation_counter_;
|
89 |
+
}
|
90 |
+
// Did all mutations happen under no_grad or inference_mode
|
91 |
+
// (We also need to ignore mutations fully hidden from autograd here)
|
92 |
+
bool are_all_mutations_under_no_grad_or_inference_mode() const {
|
93 |
+
return mutation_hidden_from_autograd_counter_ +
|
94 |
+
mutation_during_no_grad_or_inference_mode_ ==
|
95 |
+
mutation_counter_;
|
96 |
+
}
|
97 |
+
|
98 |
+
// Sync's the underlying tensor with its alias, if it's out of date. This
|
99 |
+
// involves two steps: 1) Apply any pending updates/mutations to the alias 2)
|
100 |
+
// Replay the views (if any) to regenerate the current tensor off of the
|
101 |
+
// updated alias.
|
102 |
+
void sync_();
|
103 |
+
// Performs step (1) of the sync. This is its own public API because it's
|
104 |
+
// needed by view_inplace ops like transpose_. See Note [Functionalization
|
105 |
+
// Pass - Inplace View Ops]
|
106 |
+
void regenerate_from_base();
|
107 |
+
// Performs step (2) of the sync. This is its own public API because it's
|
108 |
+
// needed by functorch. functorch wants to make sure that all input tensors to
|
109 |
+
// a functionalized program have been properly synced so it can properly
|
110 |
+
// propagate mutations to inputs. It can't just call sync_(), because the
|
111 |
+
// FunctionalTensorWrapper will look like it has no aliases and sync_ will be
|
112 |
+
// a noop. We use the reference count on storage_ to determine if the wrapper
|
113 |
+
// is aliased, and by the time functorch is ready to propagate updates to
|
114 |
+
// inputs, any intermediate views of the input created by the program will
|
115 |
+
// have been deallocated. This function also returns whether or not the base
|
116 |
+
// actually had any updates to apply.
|
117 |
+
bool apply_updates();
|
118 |
+
// Takes the current state of value_ and snapshots it, sending it as a pending
|
119 |
+
// update to the alias.
|
120 |
+
void commit_update();
|
121 |
+
// When any tensor is mutated, the tensor increments its alias's "generation".
|
122 |
+
// Separately, each tensor maintains its own "generation" counter, which is
|
123 |
+
// used to determine if it's up-to-date with its alias. The act of syncing a
|
124 |
+
// tensor will set a tensor's generation equal to its alias's generation.
|
125 |
+
bool is_up_to_date() const;
|
126 |
+
// Freezes the storage of this tensor, preventing subsequent mutations
|
127 |
+
void freeze_storage() const;
|
128 |
+
// Every FunctionalTensorWrapper contains a vector<ViewMeta> objects
|
129 |
+
// describing the series of view ops that ran to generate the current tensor
|
130 |
+
// from the base tensor. This method is used by inplace-view ops like
|
131 |
+
// transpose_. It appends a ViewMeta to the existing stack, and refreshes the
|
132 |
+
// tensor by replaying the views off of the alias.
|
133 |
+
void mutate_view_meta(at::functionalization::ViewMeta meta);
|
134 |
+
|
135 |
+
// Custom implementation of self.set_(src)
|
136 |
+
void set__impl(const FunctionalTensorWrapper* other);
|
137 |
+
|
138 |
+
// Returns whether the current tensor's data was ever mutated
|
139 |
+
bool has_data_mutation();
|
140 |
+
//
|
141 |
+
// Returns whether the current FunctionalTensorWrapper
|
142 |
+
// experienced a set_() call.
|
143 |
+
bool was_storage_changed() {
|
144 |
+
return was_storage_changed_;
|
145 |
+
}
|
146 |
+
|
147 |
+
// The functionalization pass can be used to remove mutations.
|
148 |
+
// It does so by replacing any mutation op with it's corresponding
|
149 |
+
// out-of-place op, followed by a call to replace_(). e.g:
|
150 |
+
//
|
151 |
+
// a.add_(1)
|
152 |
+
//
|
153 |
+
// will turn into:
|
154 |
+
//
|
155 |
+
// tmp = a.add(1)
|
156 |
+
// a.replace_(tmp)
|
157 |
+
//
|
158 |
+
// replace_() swaps out the wrapped tensor, value_, with tmp.
|
159 |
+
void replace_(const Tensor& other);
|
160 |
+
|
161 |
+
bool is_multi_output_view() {
|
162 |
+
return is_multi_output_view_;
|
163 |
+
}
|
164 |
+
|
165 |
+
// See Note[resize_() in functionalization pass]
|
166 |
+
void maybe_replace_storage(const Tensor& other);
|
167 |
+
|
168 |
+
// Replaces the storage with a new functional storage,
|
169 |
+
// and clears the view_metas_ stack.
|
170 |
+
// WARNING: Calling this function will sever the aliasing relationship between
|
171 |
+
// the current FunctionalTensorWrapper and any of its outstanding aliases.
|
172 |
+
// Please only call if you know what you're doing.
|
173 |
+
void _unsafe_reset_storage();
|
174 |
+
|
175 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
176 |
+
const c10::VariableVersion& version_counter,
|
177 |
+
bool allow_tensor_metadata_change) const override;
|
178 |
+
|
179 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
|
180 |
+
c10::VariableVersion&& version_counter,
|
181 |
+
bool allow_tensor_metadata_change) const override;
|
182 |
+
|
183 |
+
~FunctionalTensorWrapper() override = default;
|
184 |
+
|
185 |
+
// FunctionalTensorWrapper overrides all custom size/stride function,
|
186 |
+
// so that if the inner tensor has a custom implementation
|
187 |
+
// we make sure to call that implementation.
|
188 |
+
at::IntArrayRef sizes_custom() const override;
|
189 |
+
at::IntArrayRef strides_custom() const override;
|
190 |
+
int64_t dim_custom() const override;
|
191 |
+
int64_t numel_custom() const override;
|
192 |
+
bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
|
193 |
+
c10::SymIntArrayRef sym_sizes_custom() const override;
|
194 |
+
c10::SymInt sym_size_custom(int64_t d) const override;
|
195 |
+
c10::SymIntArrayRef sym_strides_custom() const override;
|
196 |
+
c10::SymInt sym_storage_offset_custom() const override;
|
197 |
+
c10::Device device_custom() const override;
|
198 |
+
|
199 |
+
private:
|
200 |
+
const char* tensorimpl_type_name() const override;
|
201 |
+
void set_constructor_metadata();
|
202 |
+
functionalization::FunctionalStorageImpl* functional_storage_impl() const;
|
203 |
+
|
204 |
+
// This is used to re-implement shallow_copy_and_detach for
|
205 |
+
// FunctionalTensorWrapper. The implementation is identical, but we just need
|
206 |
+
// to return a subclass instead of a plain TensorImpl.
|
207 |
+
// TODO: maybe it's possible to arrange for that to happen automatically
|
208 |
+
// without an override here?
|
209 |
+
template <typename VariableVersion>
|
210 |
+
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
|
211 |
+
VariableVersion&& version_counter,
|
212 |
+
bool allow_tensor_metadata_change) const;
|
213 |
+
|
214 |
+
// Note that value is not taken by reference: internally, the wrapper will
|
215 |
+
// change the value tensor that it points to over time.
|
216 |
+
Tensor value_;
|
217 |
+
int64_t level_;
|
218 |
+
// These two counters are used for identifying
|
219 |
+
// whether all the mutations on a given tensor are hidden from autograd or
|
220 |
+
// not. If we have an input mutation that is hidden from autograd, then once
|
221 |
+
// we convert the input mutation to a copy_() we know it will be safe to hide
|
222 |
+
// the copy_() from autograd as well.
|
223 |
+
uint64_t mutation_counter_ = 0;
|
224 |
+
uint64_t mutation_hidden_from_autograd_counter_ = 0;
|
225 |
+
uint64_t mutation_during_no_grad_or_inference_mode_ = 0;
|
226 |
+
bool has_metadata_mutation_ = false;
|
227 |
+
bool is_multi_output_view_ = false;
|
228 |
+
// Did the tensor experience a set_() call.
|
229 |
+
bool was_storage_changed_ = false;
|
230 |
+
|
231 |
+
size_t generation_ = 0;
|
232 |
+
std::vector<at::functionalization::ViewMeta> view_metas_;
|
233 |
+
};
|
234 |
+
|
235 |
+
// Utility functions for the functionalization pass.
|
236 |
+
|
237 |
+
namespace functionalization {
|
238 |
+
namespace impl {
|
239 |
+
|
240 |
+
TORCH_API inline FunctionalTensorWrapper* unsafeGetFunctionalWrapper(
|
241 |
+
const Tensor& tensor) {
|
242 |
+
auto functional_impl =
|
243 |
+
static_cast<FunctionalTensorWrapper*>(tensor.unsafeGetTensorImpl());
|
244 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(functional_impl != nullptr);
|
245 |
+
return functional_impl;
|
246 |
+
}
|
247 |
+
|
248 |
+
TORCH_API bool isFunctionalTensor(const at::Tensor& tensor);
|
249 |
+
TORCH_API bool isFunctionalTensor(const c10::optional<Tensor>& t);
|
250 |
+
TORCH_API bool isFunctionalTensor(
|
251 |
+
const c10::List<c10::optional<Tensor>>& t_list);
|
252 |
+
TORCH_API bool isFunctionalTensor(ITensorListRef list);
|
253 |
+
|
254 |
+
TORCH_API Tensor to_functional_tensor(const Tensor& tensor);
|
255 |
+
TORCH_API c10::optional<Tensor> to_functional_tensor(
|
256 |
+
const c10::optional<Tensor>& tensor);
|
257 |
+
TORCH_API c10::List<c10::optional<Tensor>> to_functional_tensor(
|
258 |
+
const c10::List<c10::optional<Tensor>>& t_list);
|
259 |
+
TORCH_API std::vector<Tensor> to_functional_tensor(ITensorListRef t_list);
|
260 |
+
|
261 |
+
TORCH_API void freeze_functional_tensor(const Tensor& tensor);
|
262 |
+
|
263 |
+
TORCH_API Tensor
|
264 |
+
from_functional_tensor(const Tensor& tensor, bool assert_functional = true);
|
265 |
+
TORCH_API c10::optional<Tensor> from_functional_tensor(
|
266 |
+
const c10::optional<Tensor>& t,
|
267 |
+
bool assert_functional = true);
|
268 |
+
TORCH_API c10::List<c10::optional<Tensor>> from_functional_tensor(
|
269 |
+
const c10::List<c10::optional<Tensor>>& t_list);
|
270 |
+
TORCH_API std::vector<Tensor> from_functional_tensor(ITensorListRef t_list);
|
271 |
+
|
272 |
+
TORCH_API void sync(const at::Tensor& t);
|
273 |
+
TORCH_API void sync(const c10::optional<Tensor>& t);
|
274 |
+
TORCH_API void sync(const c10::List<c10::optional<Tensor>>& t_list);
|
275 |
+
TORCH_API void sync(ITensorListRef t_list);
|
276 |
+
|
277 |
+
TORCH_API void replace_(const Tensor& functional_tensor, const Tensor& other);
|
278 |
+
TORCH_API void replace_(
|
279 |
+
const ITensorListRef functional_tensor,
|
280 |
+
ITensorListRef other);
|
281 |
+
|
282 |
+
TORCH_API void commit_update(const Tensor& functional_tensor);
|
283 |
+
TORCH_API void commit_update(ITensorListRef functional_tensor);
|
284 |
+
|
285 |
+
TORCH_API void unsafe_reset_storage(const Tensor& functional_tensor);
|
286 |
+
|
287 |
+
TORCH_API void mark_mutation_hidden_from_autograd(
|
288 |
+
const Tensor& functional_tensor);
|
289 |
+
|
290 |
+
TORCH_API bool are_all_mutations_hidden_from_autograd(
|
291 |
+
const Tensor& functional_tensor);
|
292 |
+
|
293 |
+
TORCH_API bool are_all_mutations_under_no_grad_or_inference_mode(
|
294 |
+
const Tensor& functional_tensor);
|
295 |
+
|
296 |
+
// These two methods are XLA-specific logic and are no-ops
|
297 |
+
// for the normal functionalization flow.
|
298 |
+
TORCH_API void propagate_xla_data(
|
299 |
+
const Tensor& functional_tensor,
|
300 |
+
const Tensor& other);
|
301 |
+
TORCH_API void propagate_xla_data(
|
302 |
+
const ITensorListRef functional_tensor,
|
303 |
+
ITensorListRef other);
|
304 |
+
|
305 |
+
Tensor create_functional_tensor_with_view_meta(
|
306 |
+
const Tensor& view_to_wrap,
|
307 |
+
const Tensor& base,
|
308 |
+
functionalization::ViewMeta meta,
|
309 |
+
int64_t out_idx = 0);
|
310 |
+
std::vector<Tensor> create_functional_tensor_with_view_meta(
|
311 |
+
ITensorListRef view_to_wrap,
|
312 |
+
const Tensor& base,
|
313 |
+
functionalization::ViewMeta meta);
|
314 |
+
|
315 |
+
void mutate_view_meta(const Tensor& self, functionalization::ViewMeta meta);
|
316 |
+
|
317 |
+
void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
|
318 |
+
void set_sizes_strides_offset(
|
319 |
+
const std::vector<Tensor>& outs,
|
320 |
+
const std::vector<Tensor>& meta_outs);
|
321 |
+
|
322 |
+
// ~~~~~ TLS used in functionalization ~~~~~
|
323 |
+
|
324 |
+
TORCH_API bool getFunctionalizationReapplyViewsTLS();
|
325 |
+
TORCH_API void setFunctionalizationReapplyViewsTLS(bool reapply_views);
|
326 |
+
|
327 |
+
class TORCH_API FunctionalizationReapplyViewsGuard {
|
328 |
+
public:
|
329 |
+
FunctionalizationReapplyViewsGuard(bool reapply_views)
|
330 |
+
: prev_(getFunctionalizationReapplyViewsTLS()) {
|
331 |
+
setFunctionalizationReapplyViewsTLS(reapply_views);
|
332 |
+
}
|
333 |
+
|
334 |
+
~FunctionalizationReapplyViewsGuard() {
|
335 |
+
setFunctionalizationReapplyViewsTLS(prev_);
|
336 |
+
}
|
337 |
+
|
338 |
+
FunctionalizationReapplyViewsGuard(
|
339 |
+
const FunctionalizationReapplyViewsGuard&) = delete;
|
340 |
+
FunctionalizationReapplyViewsGuard operator=(
|
341 |
+
const FunctionalizationReapplyViewsGuard&) = delete;
|
342 |
+
FunctionalizationReapplyViewsGuard(FunctionalizationReapplyViewsGuard&&) =
|
343 |
+
delete;
|
344 |
+
FunctionalizationReapplyViewsGuard operator=(
|
345 |
+
FunctionalizationReapplyViewsGuard&&) = delete;
|
346 |
+
|
347 |
+
private:
|
348 |
+
bool prev_;
|
349 |
+
};
|
350 |
+
|
351 |
+
} // namespace impl
|
352 |
+
|
353 |
+
// Helper function to call an out-of-place composite aten kernel that may use
|
354 |
+
// mutations / views internally, and functionalize them.
|
355 |
+
TORCH_API void functionalize_op_helper(
|
356 |
+
const c10::OperatorHandle& op,
|
357 |
+
torch::jit::Stack* stack);
|
358 |
+
|
359 |
+
template <class Op, bool symint, class ReturnType, class... ParameterTypes>
|
360 |
+
struct _functionalize_aten_op final {};
|
361 |
+
|
362 |
+
template <class Op, bool symint, class ReturnType, class... ParameterTypes>
|
363 |
+
struct _functionalize_aten_op<Op, symint, ReturnType(ParameterTypes...)> final {
|
364 |
+
static ReturnType call(
|
365 |
+
typename c10::maybe_keep_symint<symint, ParameterTypes>::type... args) {
|
366 |
+
using FuncType = ReturnType(
|
367 |
+
typename c10::maybe_keep_symint<symint, ParameterTypes>::type...);
|
368 |
+
auto op = c10::Dispatcher::singleton()
|
369 |
+
.findSchemaOrThrow(
|
370 |
+
(const char*)Op::name, (const char*)Op::overload_name)
|
371 |
+
.typed<FuncType>();
|
372 |
+
|
373 |
+
return c10::impl::BoxedKernelWrapper<FuncType>::call(
|
374 |
+
c10::BoxedKernel::makeFromFunction<functionalize_op_helper>(),
|
375 |
+
op,
|
376 |
+
// BoxedKernelWrapper knows to ignore this keyset argument,
|
377 |
+
// because functionalize_op_helper doesn't take in a DispatchKeySet
|
378 |
+
c10::DispatchKeySet(),
|
379 |
+
args...);
|
380 |
+
}
|
381 |
+
};
|
382 |
+
|
383 |
+
template <class Op>
|
384 |
+
using functionalize_aten_op =
|
385 |
+
_functionalize_aten_op<Op, false, typename Op::schema>;
|
386 |
+
|
387 |
+
template <class Op>
|
388 |
+
using functionalize_aten_op_symint =
|
389 |
+
_functionalize_aten_op<Op, true, typename Op::schema>;
|
390 |
+
|
391 |
+
} // namespace functionalization
|
392 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Functions.h
ADDED
@@ -0,0 +1,1405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Functions.h
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
14 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
15 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
16 |
+
Consider including a specific operator from <ATen/ops/{my_operator}.h> and \
|
17 |
+
see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
18 |
+
#endif
|
19 |
+
|
20 |
+
// NOTE: [TORCH_ASSERT_ONLY_METHOD_OPERATORS]
|
21 |
+
//
|
22 |
+
// In ATen, certain generated headers files include the definitions of
|
23 |
+
// every single operator in PyTorch. Unfortunately this means every
|
24 |
+
// time an operator signature is updated or changed in
|
25 |
+
// native_functions.yaml, you (and every other PyTorch developer) need
|
26 |
+
// to recompile every source file that includes any of these headers.
|
27 |
+
//
|
28 |
+
// To break up these header dependencies, and improve incremental
|
29 |
+
// build times for all PyTorch developers. These headers are split
|
30 |
+
// into per-operator headers in the `ATen/ops` folder. This limits
|
31 |
+
// incremental builds to only changes to methods of `Tensor`, or files
|
32 |
+
// that use the specific operator being changed. With `at::sum` as an
|
33 |
+
// example, you should include
|
34 |
+
//
|
35 |
+
// <ATen/ops/sum.h> // instead of ATen/Functions.h
|
36 |
+
// <ATen/ops/sum_native.h> // instead of ATen/NativeFunctions.h
|
37 |
+
// <ATen/ops/sum_ops.h> // instead of ATen/Operators.h
|
38 |
+
// <ATen/ops/sum_cpu_dispatch.h> // instead of ATen/CPUFunctions.h
|
39 |
+
//
|
40 |
+
// However, even if you're careful to use this in your own code.
|
41 |
+
// `Functions.h` might be included indirectly through another header
|
42 |
+
// without you realising. To avoid this, you can add
|
43 |
+
//
|
44 |
+
// #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
|
45 |
+
//
|
46 |
+
// to the top of your source file. This way any time the non-specific
|
47 |
+
// headers are included, the compiler will error out.
|
48 |
+
//
|
49 |
+
// Also, be aware that `ops` are not available in all build
|
50 |
+
// configurations (namely fb-internal) so you must guard these
|
51 |
+
// includes with `#ifdef AT_PER_OPERATOR_HEADERS`. e.g.
|
52 |
+
//
|
53 |
+
// #ifndef AT_PER_OPERATOR_HEADERS
|
54 |
+
// #include <ATen/Functions.h>
|
55 |
+
// #else
|
56 |
+
// #include <ATen/ops/sum.h>
|
57 |
+
// #endif
|
58 |
+
|
59 |
+
#include <ATen/Context.h>
|
60 |
+
#include <ATen/DeviceGuard.h>
|
61 |
+
#include <ATen/TensorUtils.h>
|
62 |
+
#include <ATen/TracerMode.h>
|
63 |
+
#include <ATen/core/Generator.h>
|
64 |
+
#include <ATen/core/Reduction.h>
|
65 |
+
#include <c10/core/SymInt.h>
|
66 |
+
#include <ATen/core/Tensor.h>
|
67 |
+
#include <c10/core/Scalar.h>
|
68 |
+
#include <c10/core/Storage.h>
|
69 |
+
#include <c10/core/TensorOptions.h>
|
70 |
+
#include <c10/util/Deprecated.h>
|
71 |
+
#include <c10/util/Optional.h>
|
72 |
+
#include <c10/util/OptionalArrayRef.h>
|
73 |
+
|
74 |
+
#include <ATen/ops/from_blob.h>
|
75 |
+
#include <ATen/ops/tensor.h>
|
76 |
+
|
77 |
+
#include <ATen/ops/_adaptive_avg_pool2d.h>
|
78 |
+
#include <ATen/ops/_adaptive_avg_pool2d_backward.h>
|
79 |
+
#include <ATen/ops/_adaptive_avg_pool3d.h>
|
80 |
+
#include <ATen/ops/_adaptive_avg_pool3d_backward.h>
|
81 |
+
#include <ATen/ops/_add_batch_dim.h>
|
82 |
+
#include <ATen/ops/_add_relu.h>
|
83 |
+
#include <ATen/ops/_addmm_activation.h>
|
84 |
+
#include <ATen/ops/_aminmax.h>
|
85 |
+
#include <ATen/ops/_amp_foreach_non_finite_check_and_unscale.h>
|
86 |
+
#include <ATen/ops/_amp_update_scale.h>
|
87 |
+
#include <ATen/ops/_assert_async.h>
|
88 |
+
#include <ATen/ops/_assert_tensor_metadata.h>
|
89 |
+
#include <ATen/ops/_autocast_to_full_precision.h>
|
90 |
+
#include <ATen/ops/_autocast_to_reduced_precision.h>
|
91 |
+
#include <ATen/ops/_backward.h>
|
92 |
+
#include <ATen/ops/_batch_norm_impl_index.h>
|
93 |
+
#include <ATen/ops/_batch_norm_impl_index_backward.h>
|
94 |
+
#include <ATen/ops/_cast_Byte.h>
|
95 |
+
#include <ATen/ops/_cast_Char.h>
|
96 |
+
#include <ATen/ops/_cast_Double.h>
|
97 |
+
#include <ATen/ops/_cast_Float.h>
|
98 |
+
#include <ATen/ops/_cast_Half.h>
|
99 |
+
#include <ATen/ops/_cast_Int.h>
|
100 |
+
#include <ATen/ops/_cast_Long.h>
|
101 |
+
#include <ATen/ops/_cast_Short.h>
|
102 |
+
#include <ATen/ops/_cdist_backward.h>
|
103 |
+
#include <ATen/ops/_cdist_forward.h>
|
104 |
+
#include <ATen/ops/_cholesky_solve_helper.h>
|
105 |
+
#include <ATen/ops/_choose_qparams_per_tensor.h>
|
106 |
+
#include <ATen/ops/_coalesce.h>
|
107 |
+
#include <ATen/ops/_coalesced.h>
|
108 |
+
#include <ATen/ops/_compute_linear_combination.h>
|
109 |
+
#include <ATen/ops/_conj.h>
|
110 |
+
#include <ATen/ops/_conj_copy.h>
|
111 |
+
#include <ATen/ops/_conj_physical.h>
|
112 |
+
#include <ATen/ops/_conv_depthwise2d.h>
|
113 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr.h>
|
114 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo.h>
|
115 |
+
#include <ATen/ops/_convert_weight_to_int4pack.h>
|
116 |
+
#include <ATen/ops/_convolution.h>
|
117 |
+
#include <ATen/ops/_convolution_double_backward.h>
|
118 |
+
#include <ATen/ops/_convolution_mode.h>
|
119 |
+
#include <ATen/ops/_copy_from.h>
|
120 |
+
#include <ATen/ops/_copy_from_and_resize.h>
|
121 |
+
#include <ATen/ops/_cslt_compress.h>
|
122 |
+
#include <ATen/ops/_cslt_sparse_mm.h>
|
123 |
+
#include <ATen/ops/_ctc_loss.h>
|
124 |
+
#include <ATen/ops/_ctc_loss_backward.h>
|
125 |
+
#include <ATen/ops/_cudnn_ctc_loss.h>
|
126 |
+
#include <ATen/ops/_cudnn_init_dropout_state.h>
|
127 |
+
#include <ATen/ops/_cudnn_rnn.h>
|
128 |
+
#include <ATen/ops/_cudnn_rnn_backward.h>
|
129 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight.h>
|
130 |
+
#include <ATen/ops/_cufft_clear_plan_cache.h>
|
131 |
+
#include <ATen/ops/_cufft_get_plan_cache_max_size.h>
|
132 |
+
#include <ATen/ops/_cufft_get_plan_cache_size.h>
|
133 |
+
#include <ATen/ops/_cufft_set_plan_cache_max_size.h>
|
134 |
+
#include <ATen/ops/_cummax_helper.h>
|
135 |
+
#include <ATen/ops/_cummin_helper.h>
|
136 |
+
#include <ATen/ops/_debug_has_internal_overlap.h>
|
137 |
+
#include <ATen/ops/_dimI.h>
|
138 |
+
#include <ATen/ops/_dimV.h>
|
139 |
+
#include <ATen/ops/_dim_arange.h>
|
140 |
+
#include <ATen/ops/_dirichlet_grad.h>
|
141 |
+
#include <ATen/ops/_efficient_attention_backward.h>
|
142 |
+
#include <ATen/ops/_efficient_attention_forward.h>
|
143 |
+
#include <ATen/ops/_efficientzerotensor.h>
|
144 |
+
#include <ATen/ops/_embedding_bag.h>
|
145 |
+
#include <ATen/ops/_embedding_bag_backward.h>
|
146 |
+
#include <ATen/ops/_embedding_bag_dense_backward.h>
|
147 |
+
#include <ATen/ops/_embedding_bag_forward_only.h>
|
148 |
+
#include <ATen/ops/_embedding_bag_per_sample_weights_backward.h>
|
149 |
+
#include <ATen/ops/_embedding_bag_sparse_backward.h>
|
150 |
+
#include <ATen/ops/_empty_affine_quantized.h>
|
151 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized.h>
|
152 |
+
#include <ATen/ops/_euclidean_dist.h>
|
153 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine.h>
|
154 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward.h>
|
155 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine.h>
|
156 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward.h>
|
157 |
+
#include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams.h>
|
158 |
+
#include <ATen/ops/_fft_c2c.h>
|
159 |
+
#include <ATen/ops/_fft_c2r.h>
|
160 |
+
#include <ATen/ops/_fft_r2c.h>
|
161 |
+
#include <ATen/ops/_fill_mem_eff_dropout_mask.h>
|
162 |
+
#include <ATen/ops/_flash_attention_backward.h>
|
163 |
+
#include <ATen/ops/_flash_attention_forward.h>
|
164 |
+
#include <ATen/ops/_foobar.h>
|
165 |
+
#include <ATen/ops/_foreach_abs.h>
|
166 |
+
#include <ATen/ops/_foreach_acos.h>
|
167 |
+
#include <ATen/ops/_foreach_add.h>
|
168 |
+
#include <ATen/ops/_foreach_addcdiv.h>
|
169 |
+
#include <ATen/ops/_foreach_addcmul.h>
|
170 |
+
#include <ATen/ops/_foreach_asin.h>
|
171 |
+
#include <ATen/ops/_foreach_atan.h>
|
172 |
+
#include <ATen/ops/_foreach_ceil.h>
|
173 |
+
#include <ATen/ops/_foreach_clamp_max.h>
|
174 |
+
#include <ATen/ops/_foreach_clamp_min.h>
|
175 |
+
#include <ATen/ops/_foreach_copy.h>
|
176 |
+
#include <ATen/ops/_foreach_cos.h>
|
177 |
+
#include <ATen/ops/_foreach_cosh.h>
|
178 |
+
#include <ATen/ops/_foreach_div.h>
|
179 |
+
#include <ATen/ops/_foreach_erf.h>
|
180 |
+
#include <ATen/ops/_foreach_erfc.h>
|
181 |
+
#include <ATen/ops/_foreach_exp.h>
|
182 |
+
#include <ATen/ops/_foreach_expm1.h>
|
183 |
+
#include <ATen/ops/_foreach_floor.h>
|
184 |
+
#include <ATen/ops/_foreach_frac.h>
|
185 |
+
#include <ATen/ops/_foreach_lerp.h>
|
186 |
+
#include <ATen/ops/_foreach_lgamma.h>
|
187 |
+
#include <ATen/ops/_foreach_log.h>
|
188 |
+
#include <ATen/ops/_foreach_log10.h>
|
189 |
+
#include <ATen/ops/_foreach_log1p.h>
|
190 |
+
#include <ATen/ops/_foreach_log2.h>
|
191 |
+
#include <ATen/ops/_foreach_maximum.h>
|
192 |
+
#include <ATen/ops/_foreach_minimum.h>
|
193 |
+
#include <ATen/ops/_foreach_mul.h>
|
194 |
+
#include <ATen/ops/_foreach_neg.h>
|
195 |
+
#include <ATen/ops/_foreach_norm.h>
|
196 |
+
#include <ATen/ops/_foreach_pow.h>
|
197 |
+
#include <ATen/ops/_foreach_reciprocal.h>
|
198 |
+
#include <ATen/ops/_foreach_round.h>
|
199 |
+
#include <ATen/ops/_foreach_sigmoid.h>
|
200 |
+
#include <ATen/ops/_foreach_sign.h>
|
201 |
+
#include <ATen/ops/_foreach_sin.h>
|
202 |
+
#include <ATen/ops/_foreach_sinh.h>
|
203 |
+
#include <ATen/ops/_foreach_sqrt.h>
|
204 |
+
#include <ATen/ops/_foreach_sub.h>
|
205 |
+
#include <ATen/ops/_foreach_tan.h>
|
206 |
+
#include <ATen/ops/_foreach_tanh.h>
|
207 |
+
#include <ATen/ops/_foreach_trunc.h>
|
208 |
+
#include <ATen/ops/_foreach_zero.h>
|
209 |
+
#include <ATen/ops/_functional_assert_async.h>
|
210 |
+
#include <ATen/ops/_functional_sym_constrain_range.h>
|
211 |
+
#include <ATen/ops/_functional_sym_constrain_range_for_size.h>
|
212 |
+
#include <ATen/ops/_fused_adam.h>
|
213 |
+
#include <ATen/ops/_fused_adamw.h>
|
214 |
+
#include <ATen/ops/_fused_dropout.h>
|
215 |
+
#include <ATen/ops/_fused_moving_avg_obs_fq_helper.h>
|
216 |
+
#include <ATen/ops/_fused_sdp_choice.h>
|
217 |
+
#include <ATen/ops/_fw_primal.h>
|
218 |
+
#include <ATen/ops/_fw_primal_copy.h>
|
219 |
+
#include <ATen/ops/_gather_sparse_backward.h>
|
220 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback.h>
|
221 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward.h>
|
222 |
+
#include <ATen/ops/_has_compatible_shallow_copy_type.h>
|
223 |
+
#include <ATen/ops/_has_same_storage_numel.h>
|
224 |
+
#include <ATen/ops/_histogramdd_bin_edges.h>
|
225 |
+
#include <ATen/ops/_histogramdd_from_bin_cts.h>
|
226 |
+
#include <ATen/ops/_histogramdd_from_bin_tensors.h>
|
227 |
+
#include <ATen/ops/_index_put_impl.h>
|
228 |
+
#include <ATen/ops/_indices.h>
|
229 |
+
#include <ATen/ops/_indices_copy.h>
|
230 |
+
#include <ATen/ops/_int_mm.h>
|
231 |
+
#include <ATen/ops/_is_all_true.h>
|
232 |
+
#include <ATen/ops/_is_any_true.h>
|
233 |
+
#include <ATen/ops/_is_zerotensor.h>
|
234 |
+
#include <ATen/ops/_linalg_check_errors.h>
|
235 |
+
#include <ATen/ops/_linalg_det.h>
|
236 |
+
#include <ATen/ops/_linalg_eigh.h>
|
237 |
+
#include <ATen/ops/_linalg_slogdet.h>
|
238 |
+
#include <ATen/ops/_linalg_solve_ex.h>
|
239 |
+
#include <ATen/ops/_linalg_svd.h>
|
240 |
+
#include <ATen/ops/_local_scalar_dense.h>
|
241 |
+
#include <ATen/ops/_log_softmax.h>
|
242 |
+
#include <ATen/ops/_log_softmax_backward_data.h>
|
243 |
+
#include <ATen/ops/_logcumsumexp.h>
|
244 |
+
#include <ATen/ops/_lstm_mps.h>
|
245 |
+
#include <ATen/ops/_lu_with_info.h>
|
246 |
+
#include <ATen/ops/_make_dep_token.h>
|
247 |
+
#include <ATen/ops/_make_dual.h>
|
248 |
+
#include <ATen/ops/_make_dual_copy.h>
|
249 |
+
#include <ATen/ops/_make_per_channel_quantized_tensor.h>
|
250 |
+
#include <ATen/ops/_make_per_tensor_quantized_tensor.h>
|
251 |
+
#include <ATen/ops/_masked_scale.h>
|
252 |
+
#include <ATen/ops/_masked_softmax.h>
|
253 |
+
#include <ATen/ops/_masked_softmax_backward.h>
|
254 |
+
#include <ATen/ops/_mixed_dtypes_linear.h>
|
255 |
+
#include <ATen/ops/_mkldnn_reshape.h>
|
256 |
+
#include <ATen/ops/_mkldnn_transpose.h>
|
257 |
+
#include <ATen/ops/_mps_convolution.h>
|
258 |
+
#include <ATen/ops/_mps_convolution_transpose.h>
|
259 |
+
#include <ATen/ops/_native_batch_norm_legit.h>
|
260 |
+
#include <ATen/ops/_native_batch_norm_legit_no_training.h>
|
261 |
+
#include <ATen/ops/_native_multi_head_attention.h>
|
262 |
+
#include <ATen/ops/_neg_view.h>
|
263 |
+
#include <ATen/ops/_neg_view_copy.h>
|
264 |
+
#include <ATen/ops/_nested_from_padded.h>
|
265 |
+
#include <ATen/ops/_nested_from_padded_and_nested_example.h>
|
266 |
+
#include <ATen/ops/_nested_select_backward.h>
|
267 |
+
#include <ATen/ops/_nested_sum_backward.h>
|
268 |
+
#include <ATen/ops/_nested_tensor_from_mask.h>
|
269 |
+
#include <ATen/ops/_nested_tensor_from_mask_left_aligned.h>
|
270 |
+
#include <ATen/ops/_nested_tensor_from_tensor_list.h>
|
271 |
+
#include <ATen/ops/_nested_tensor_size.h>
|
272 |
+
#include <ATen/ops/_nested_tensor_softmax_with_shape.h>
|
273 |
+
#include <ATen/ops/_nested_tensor_storage_offsets.h>
|
274 |
+
#include <ATen/ops/_nested_tensor_strides.h>
|
275 |
+
#include <ATen/ops/_nested_view_from_buffer.h>
|
276 |
+
#include <ATen/ops/_nested_view_from_buffer_copy.h>
|
277 |
+
#include <ATen/ops/_new_zeros_with_same_feature_meta.h>
|
278 |
+
#include <ATen/ops/_nnpack_available.h>
|
279 |
+
#include <ATen/ops/_nnpack_spatial_convolution.h>
|
280 |
+
#include <ATen/ops/_nnz.h>
|
281 |
+
#include <ATen/ops/_pack_padded_sequence.h>
|
282 |
+
#include <ATen/ops/_pack_padded_sequence_backward.h>
|
283 |
+
#include <ATen/ops/_pad_circular.h>
|
284 |
+
#include <ATen/ops/_pad_enum.h>
|
285 |
+
#include <ATen/ops/_pad_packed_sequence.h>
|
286 |
+
#include <ATen/ops/_pdist_backward.h>
|
287 |
+
#include <ATen/ops/_pdist_forward.h>
|
288 |
+
#include <ATen/ops/_pin_memory.h>
|
289 |
+
#include <ATen/ops/_prelu_kernel.h>
|
290 |
+
#include <ATen/ops/_prelu_kernel_backward.h>
|
291 |
+
#include <ATen/ops/_propagate_xla_data.h>
|
292 |
+
#include <ATen/ops/_remove_batch_dim.h>
|
293 |
+
#include <ATen/ops/_reshape_alias.h>
|
294 |
+
#include <ATen/ops/_reshape_alias_copy.h>
|
295 |
+
#include <ATen/ops/_reshape_copy.h>
|
296 |
+
#include <ATen/ops/_reshape_from_tensor.h>
|
297 |
+
#include <ATen/ops/_resize_output.h>
|
298 |
+
#include <ATen/ops/_rowwise_prune.h>
|
299 |
+
#include <ATen/ops/_sample_dirichlet.h>
|
300 |
+
#include <ATen/ops/_saturate_weight_to_fp16.h>
|
301 |
+
#include <ATen/ops/_scaled_dot_product_attention_math.h>
|
302 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention.h>
|
303 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention_backward.h>
|
304 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention.h>
|
305 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_backward.h>
|
306 |
+
#include <ATen/ops/_scaled_mm.h>
|
307 |
+
#include <ATen/ops/_segment_reduce_backward.h>
|
308 |
+
#include <ATen/ops/_shape_as_tensor.h>
|
309 |
+
#include <ATen/ops/_slow_conv2d_backward.h>
|
310 |
+
#include <ATen/ops/_slow_conv2d_forward.h>
|
311 |
+
#include <ATen/ops/_sobol_engine_draw.h>
|
312 |
+
#include <ATen/ops/_sobol_engine_ff.h>
|
313 |
+
#include <ATen/ops/_sobol_engine_initialize_state.h>
|
314 |
+
#include <ATen/ops/_sobol_engine_scramble.h>
|
315 |
+
#include <ATen/ops/_softmax.h>
|
316 |
+
#include <ATen/ops/_softmax_backward_data.h>
|
317 |
+
#include <ATen/ops/_sparse_addmm.h>
|
318 |
+
#include <ATen/ops/_sparse_broadcast_to.h>
|
319 |
+
#include <ATen/ops/_sparse_broadcast_to_copy.h>
|
320 |
+
#include <ATen/ops/_sparse_bsc_tensor_unsafe.h>
|
321 |
+
#include <ATen/ops/_sparse_bsr_tensor_unsafe.h>
|
322 |
+
#include <ATen/ops/_sparse_compressed_tensor_unsafe.h>
|
323 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe.h>
|
324 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims.h>
|
325 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors.h>
|
326 |
+
#include <ATen/ops/_sparse_csc_tensor_unsafe.h>
|
327 |
+
#include <ATen/ops/_sparse_csr_prod.h>
|
328 |
+
#include <ATen/ops/_sparse_csr_sum.h>
|
329 |
+
#include <ATen/ops/_sparse_csr_tensor_unsafe.h>
|
330 |
+
#include <ATen/ops/_sparse_log_softmax.h>
|
331 |
+
#include <ATen/ops/_sparse_log_softmax_backward_data.h>
|
332 |
+
#include <ATen/ops/_sparse_mask_projection.h>
|
333 |
+
#include <ATen/ops/_sparse_mm.h>
|
334 |
+
#include <ATen/ops/_sparse_mm_reduce_impl.h>
|
335 |
+
#include <ATen/ops/_sparse_mm_reduce_impl_backward.h>
|
336 |
+
#include <ATen/ops/_sparse_semi_structured_linear.h>
|
337 |
+
#include <ATen/ops/_sparse_softmax.h>
|
338 |
+
#include <ATen/ops/_sparse_softmax_backward_data.h>
|
339 |
+
#include <ATen/ops/_sparse_sparse_matmul.h>
|
340 |
+
#include <ATen/ops/_sparse_sum.h>
|
341 |
+
#include <ATen/ops/_sparse_sum_backward.h>
|
342 |
+
#include <ATen/ops/_spdiags.h>
|
343 |
+
#include <ATen/ops/_stack.h>
|
344 |
+
#include <ATen/ops/_standard_gamma.h>
|
345 |
+
#include <ATen/ops/_standard_gamma_grad.h>
|
346 |
+
#include <ATen/ops/_test_ambiguous_defaults.h>
|
347 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch.h>
|
348 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view.h>
|
349 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_copy.h>
|
350 |
+
#include <ATen/ops/_test_check_tensor.h>
|
351 |
+
#include <ATen/ops/_test_functorch_fallback.h>
|
352 |
+
#include <ATen/ops/_test_optional_filled_intlist.h>
|
353 |
+
#include <ATen/ops/_test_optional_floatlist.h>
|
354 |
+
#include <ATen/ops/_test_optional_intlist.h>
|
355 |
+
#include <ATen/ops/_test_serialization_subcmul.h>
|
356 |
+
#include <ATen/ops/_test_string_default.h>
|
357 |
+
#include <ATen/ops/_test_warn_in_autograd.h>
|
358 |
+
#include <ATen/ops/_thnn_differentiable_gru_cell_backward.h>
|
359 |
+
#include <ATen/ops/_thnn_differentiable_lstm_cell_backward.h>
|
360 |
+
#include <ATen/ops/_thnn_fused_gru_cell.h>
|
361 |
+
#include <ATen/ops/_thnn_fused_gru_cell_backward.h>
|
362 |
+
#include <ATen/ops/_thnn_fused_lstm_cell.h>
|
363 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward.h>
|
364 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward_impl.h>
|
365 |
+
#include <ATen/ops/_to_copy.h>
|
366 |
+
#include <ATen/ops/_to_cpu.h>
|
367 |
+
#include <ATen/ops/_to_dense.h>
|
368 |
+
#include <ATen/ops/_to_sparse.h>
|
369 |
+
#include <ATen/ops/_to_sparse_bsc.h>
|
370 |
+
#include <ATen/ops/_to_sparse_bsr.h>
|
371 |
+
#include <ATen/ops/_to_sparse_csc.h>
|
372 |
+
#include <ATen/ops/_to_sparse_csr.h>
|
373 |
+
#include <ATen/ops/_to_sparse_semi_structured.h>
|
374 |
+
#include <ATen/ops/_transform_bias_rescale_qkv.h>
|
375 |
+
#include <ATen/ops/_transformer_encoder_layer_fwd.h>
|
376 |
+
#include <ATen/ops/_trilinear.h>
|
377 |
+
#include <ATen/ops/_triton_multi_head_attention.h>
|
378 |
+
#include <ATen/ops/_triton_scaled_dot_attention.h>
|
379 |
+
#include <ATen/ops/_unique.h>
|
380 |
+
#include <ATen/ops/_unique2.h>
|
381 |
+
#include <ATen/ops/_unpack_dual.h>
|
382 |
+
#include <ATen/ops/_unsafe_index.h>
|
383 |
+
#include <ATen/ops/_unsafe_index_put.h>
|
384 |
+
#include <ATen/ops/_unsafe_view.h>
|
385 |
+
#include <ATen/ops/_upsample_bicubic2d_aa.h>
|
386 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward.h>
|
387 |
+
#include <ATen/ops/_upsample_bilinear2d_aa.h>
|
388 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward.h>
|
389 |
+
#include <ATen/ops/_upsample_nearest_exact1d.h>
|
390 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward.h>
|
391 |
+
#include <ATen/ops/_upsample_nearest_exact2d.h>
|
392 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward.h>
|
393 |
+
#include <ATen/ops/_upsample_nearest_exact3d.h>
|
394 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward.h>
|
395 |
+
#include <ATen/ops/_use_cudnn_ctc_loss.h>
|
396 |
+
#include <ATen/ops/_use_cudnn_rnn_flatten_weight.h>
|
397 |
+
#include <ATen/ops/_validate_compressed_sparse_indices.h>
|
398 |
+
#include <ATen/ops/_validate_sparse_bsc_tensor_args.h>
|
399 |
+
#include <ATen/ops/_validate_sparse_bsr_tensor_args.h>
|
400 |
+
#include <ATen/ops/_validate_sparse_compressed_tensor_args.h>
|
401 |
+
#include <ATen/ops/_validate_sparse_coo_tensor_args.h>
|
402 |
+
#include <ATen/ops/_validate_sparse_csc_tensor_args.h>
|
403 |
+
#include <ATen/ops/_validate_sparse_csr_tensor_args.h>
|
404 |
+
#include <ATen/ops/_values.h>
|
405 |
+
#include <ATen/ops/_values_copy.h>
|
406 |
+
#include <ATen/ops/_version.h>
|
407 |
+
#include <ATen/ops/_weight_int4pack_mm.h>
|
408 |
+
#include <ATen/ops/_weight_norm.h>
|
409 |
+
#include <ATen/ops/_weight_norm_differentiable_backward.h>
|
410 |
+
#include <ATen/ops/_weight_norm_interface.h>
|
411 |
+
#include <ATen/ops/_weight_norm_interface_backward.h>
|
412 |
+
#include <ATen/ops/abs.h>
|
413 |
+
#include <ATen/ops/absolute.h>
|
414 |
+
#include <ATen/ops/acos.h>
|
415 |
+
#include <ATen/ops/acosh.h>
|
416 |
+
#include <ATen/ops/adaptive_avg_pool1d.h>
|
417 |
+
#include <ATen/ops/adaptive_avg_pool2d.h>
|
418 |
+
#include <ATen/ops/adaptive_avg_pool3d.h>
|
419 |
+
#include <ATen/ops/adaptive_avg_pool3d_backward.h>
|
420 |
+
#include <ATen/ops/adaptive_max_pool1d.h>
|
421 |
+
#include <ATen/ops/adaptive_max_pool2d.h>
|
422 |
+
#include <ATen/ops/adaptive_max_pool2d_backward.h>
|
423 |
+
#include <ATen/ops/adaptive_max_pool3d.h>
|
424 |
+
#include <ATen/ops/adaptive_max_pool3d_backward.h>
|
425 |
+
#include <ATen/ops/add.h>
|
426 |
+
#include <ATen/ops/addbmm.h>
|
427 |
+
#include <ATen/ops/addcdiv.h>
|
428 |
+
#include <ATen/ops/addcmul.h>
|
429 |
+
#include <ATen/ops/addmm.h>
|
430 |
+
#include <ATen/ops/addmv.h>
|
431 |
+
#include <ATen/ops/addr.h>
|
432 |
+
#include <ATen/ops/adjoint.h>
|
433 |
+
#include <ATen/ops/affine_grid_generator.h>
|
434 |
+
#include <ATen/ops/affine_grid_generator_backward.h>
|
435 |
+
#include <ATen/ops/alias.h>
|
436 |
+
#include <ATen/ops/alias_copy.h>
|
437 |
+
#include <ATen/ops/align_as.h>
|
438 |
+
#include <ATen/ops/align_tensors.h>
|
439 |
+
#include <ATen/ops/align_to.h>
|
440 |
+
#include <ATen/ops/all.h>
|
441 |
+
#include <ATen/ops/allclose.h>
|
442 |
+
#include <ATen/ops/alpha_dropout.h>
|
443 |
+
#include <ATen/ops/amax.h>
|
444 |
+
#include <ATen/ops/amin.h>
|
445 |
+
#include <ATen/ops/aminmax.h>
|
446 |
+
#include <ATen/ops/and.h>
|
447 |
+
#include <ATen/ops/angle.h>
|
448 |
+
#include <ATen/ops/any.h>
|
449 |
+
#include <ATen/ops/arange.h>
|
450 |
+
#include <ATen/ops/arccos.h>
|
451 |
+
#include <ATen/ops/arccosh.h>
|
452 |
+
#include <ATen/ops/arcsin.h>
|
453 |
+
#include <ATen/ops/arcsinh.h>
|
454 |
+
#include <ATen/ops/arctan.h>
|
455 |
+
#include <ATen/ops/arctan2.h>
|
456 |
+
#include <ATen/ops/arctanh.h>
|
457 |
+
#include <ATen/ops/argmax.h>
|
458 |
+
#include <ATen/ops/argmin.h>
|
459 |
+
#include <ATen/ops/argsort.h>
|
460 |
+
#include <ATen/ops/argwhere.h>
|
461 |
+
#include <ATen/ops/as_strided.h>
|
462 |
+
#include <ATen/ops/as_strided_copy.h>
|
463 |
+
#include <ATen/ops/as_strided_scatter.h>
|
464 |
+
#include <ATen/ops/asin.h>
|
465 |
+
#include <ATen/ops/asinh.h>
|
466 |
+
#include <ATen/ops/atan.h>
|
467 |
+
#include <ATen/ops/atan2.h>
|
468 |
+
#include <ATen/ops/atanh.h>
|
469 |
+
#include <ATen/ops/atleast_1d.h>
|
470 |
+
#include <ATen/ops/atleast_2d.h>
|
471 |
+
#include <ATen/ops/atleast_3d.h>
|
472 |
+
#include <ATen/ops/avg_pool1d.h>
|
473 |
+
#include <ATen/ops/avg_pool2d.h>
|
474 |
+
#include <ATen/ops/avg_pool2d_backward.h>
|
475 |
+
#include <ATen/ops/avg_pool3d.h>
|
476 |
+
#include <ATen/ops/avg_pool3d_backward.h>
|
477 |
+
#include <ATen/ops/baddbmm.h>
|
478 |
+
#include <ATen/ops/bartlett_window.h>
|
479 |
+
#include <ATen/ops/batch_norm.h>
|
480 |
+
#include <ATen/ops/batch_norm_backward_elemt.h>
|
481 |
+
#include <ATen/ops/batch_norm_backward_reduce.h>
|
482 |
+
#include <ATen/ops/batch_norm_elemt.h>
|
483 |
+
#include <ATen/ops/batch_norm_gather_stats.h>
|
484 |
+
#include <ATen/ops/batch_norm_gather_stats_with_counts.h>
|
485 |
+
#include <ATen/ops/batch_norm_stats.h>
|
486 |
+
#include <ATen/ops/batch_norm_update_stats.h>
|
487 |
+
#include <ATen/ops/bernoulli.h>
|
488 |
+
#include <ATen/ops/bilinear.h>
|
489 |
+
#include <ATen/ops/binary_cross_entropy.h>
|
490 |
+
#include <ATen/ops/binary_cross_entropy_backward.h>
|
491 |
+
#include <ATen/ops/binary_cross_entropy_with_logits.h>
|
492 |
+
#include <ATen/ops/bincount.h>
|
493 |
+
#include <ATen/ops/binomial.h>
|
494 |
+
#include <ATen/ops/bitwise_and.h>
|
495 |
+
#include <ATen/ops/bitwise_left_shift.h>
|
496 |
+
#include <ATen/ops/bitwise_not.h>
|
497 |
+
#include <ATen/ops/bitwise_or.h>
|
498 |
+
#include <ATen/ops/bitwise_right_shift.h>
|
499 |
+
#include <ATen/ops/bitwise_xor.h>
|
500 |
+
#include <ATen/ops/blackman_window.h>
|
501 |
+
#include <ATen/ops/block_diag.h>
|
502 |
+
#include <ATen/ops/bmm.h>
|
503 |
+
#include <ATen/ops/broadcast_tensors.h>
|
504 |
+
#include <ATen/ops/broadcast_to.h>
|
505 |
+
#include <ATen/ops/bucketize.h>
|
506 |
+
#include <ATen/ops/can_cast.h>
|
507 |
+
#include <ATen/ops/cartesian_prod.h>
|
508 |
+
#include <ATen/ops/cat.h>
|
509 |
+
#include <ATen/ops/cauchy.h>
|
510 |
+
#include <ATen/ops/ccol_indices.h>
|
511 |
+
#include <ATen/ops/ccol_indices_copy.h>
|
512 |
+
#include <ATen/ops/cdist.h>
|
513 |
+
#include <ATen/ops/ceil.h>
|
514 |
+
#include <ATen/ops/celu.h>
|
515 |
+
#include <ATen/ops/chain_matmul.h>
|
516 |
+
#include <ATen/ops/chalf.h>
|
517 |
+
#include <ATen/ops/channel_shuffle.h>
|
518 |
+
#include <ATen/ops/cholesky.h>
|
519 |
+
#include <ATen/ops/cholesky_inverse.h>
|
520 |
+
#include <ATen/ops/cholesky_solve.h>
|
521 |
+
#include <ATen/ops/choose_qparams_optimized.h>
|
522 |
+
#include <ATen/ops/chunk.h>
|
523 |
+
#include <ATen/ops/clamp.h>
|
524 |
+
#include <ATen/ops/clamp_max.h>
|
525 |
+
#include <ATen/ops/clamp_min.h>
|
526 |
+
#include <ATen/ops/clip.h>
|
527 |
+
#include <ATen/ops/clone.h>
|
528 |
+
#include <ATen/ops/coalesce.h>
|
529 |
+
#include <ATen/ops/col2im.h>
|
530 |
+
#include <ATen/ops/col_indices.h>
|
531 |
+
#include <ATen/ops/col_indices_copy.h>
|
532 |
+
#include <ATen/ops/column_stack.h>
|
533 |
+
#include <ATen/ops/combinations.h>
|
534 |
+
#include <ATen/ops/complex.h>
|
535 |
+
#include <ATen/ops/concat.h>
|
536 |
+
#include <ATen/ops/concatenate.h>
|
537 |
+
#include <ATen/ops/conj.h>
|
538 |
+
#include <ATen/ops/conj_physical.h>
|
539 |
+
#include <ATen/ops/constant_pad_nd.h>
|
540 |
+
#include <ATen/ops/contiguous.h>
|
541 |
+
#include <ATen/ops/conv1d.h>
|
542 |
+
#include <ATen/ops/conv2d.h>
|
543 |
+
#include <ATen/ops/conv3d.h>
|
544 |
+
#include <ATen/ops/conv_depthwise3d.h>
|
545 |
+
#include <ATen/ops/conv_tbc.h>
|
546 |
+
#include <ATen/ops/conv_tbc_backward.h>
|
547 |
+
#include <ATen/ops/conv_transpose1d.h>
|
548 |
+
#include <ATen/ops/conv_transpose2d.h>
|
549 |
+
#include <ATen/ops/conv_transpose3d.h>
|
550 |
+
#include <ATen/ops/convolution.h>
|
551 |
+
#include <ATen/ops/convolution_backward.h>
|
552 |
+
#include <ATen/ops/convolution_backward_overrideable.h>
|
553 |
+
#include <ATen/ops/convolution_overrideable.h>
|
554 |
+
#include <ATen/ops/copy.h>
|
555 |
+
#include <ATen/ops/copy_sparse_to_sparse.h>
|
556 |
+
#include <ATen/ops/copysign.h>
|
557 |
+
#include <ATen/ops/corrcoef.h>
|
558 |
+
#include <ATen/ops/cos.h>
|
559 |
+
#include <ATen/ops/cosh.h>
|
560 |
+
#include <ATen/ops/cosine_embedding_loss.h>
|
561 |
+
#include <ATen/ops/cosine_similarity.h>
|
562 |
+
#include <ATen/ops/count_nonzero.h>
|
563 |
+
#include <ATen/ops/cov.h>
|
564 |
+
#include <ATen/ops/cross.h>
|
565 |
+
#include <ATen/ops/cross_entropy_loss.h>
|
566 |
+
#include <ATen/ops/crow_indices.h>
|
567 |
+
#include <ATen/ops/crow_indices_copy.h>
|
568 |
+
#include <ATen/ops/ctc_loss.h>
|
569 |
+
#include <ATen/ops/cudnn_affine_grid_generator.h>
|
570 |
+
#include <ATen/ops/cudnn_affine_grid_generator_backward.h>
|
571 |
+
#include <ATen/ops/cudnn_batch_norm.h>
|
572 |
+
#include <ATen/ops/cudnn_batch_norm_backward.h>
|
573 |
+
#include <ATen/ops/cudnn_convolution.h>
|
574 |
+
#include <ATen/ops/cudnn_convolution_add_relu.h>
|
575 |
+
#include <ATen/ops/cudnn_convolution_relu.h>
|
576 |
+
#include <ATen/ops/cudnn_convolution_transpose.h>
|
577 |
+
#include <ATen/ops/cudnn_grid_sampler.h>
|
578 |
+
#include <ATen/ops/cudnn_grid_sampler_backward.h>
|
579 |
+
#include <ATen/ops/cudnn_is_acceptable.h>
|
580 |
+
#include <ATen/ops/cummax.h>
|
581 |
+
#include <ATen/ops/cummaxmin_backward.h>
|
582 |
+
#include <ATen/ops/cummin.h>
|
583 |
+
#include <ATen/ops/cumprod.h>
|
584 |
+
#include <ATen/ops/cumprod_backward.h>
|
585 |
+
#include <ATen/ops/cumsum.h>
|
586 |
+
#include <ATen/ops/cumulative_trapezoid.h>
|
587 |
+
#include <ATen/ops/data.h>
|
588 |
+
#include <ATen/ops/deg2rad.h>
|
589 |
+
#include <ATen/ops/dense_dim.h>
|
590 |
+
#include <ATen/ops/dequantize.h>
|
591 |
+
#include <ATen/ops/det.h>
|
592 |
+
#include <ATen/ops/detach.h>
|
593 |
+
#include <ATen/ops/detach_copy.h>
|
594 |
+
#include <ATen/ops/diag.h>
|
595 |
+
#include <ATen/ops/diag_embed.h>
|
596 |
+
#include <ATen/ops/diagflat.h>
|
597 |
+
#include <ATen/ops/diagonal.h>
|
598 |
+
#include <ATen/ops/diagonal_backward.h>
|
599 |
+
#include <ATen/ops/diagonal_copy.h>
|
600 |
+
#include <ATen/ops/diagonal_scatter.h>
|
601 |
+
#include <ATen/ops/diff.h>
|
602 |
+
#include <ATen/ops/digamma.h>
|
603 |
+
#include <ATen/ops/dist.h>
|
604 |
+
#include <ATen/ops/div.h>
|
605 |
+
#include <ATen/ops/divide.h>
|
606 |
+
#include <ATen/ops/dot.h>
|
607 |
+
#include <ATen/ops/dropout.h>
|
608 |
+
#include <ATen/ops/dsplit.h>
|
609 |
+
#include <ATen/ops/dstack.h>
|
610 |
+
#include <ATen/ops/einsum.h>
|
611 |
+
#include <ATen/ops/elu.h>
|
612 |
+
#include <ATen/ops/elu_backward.h>
|
613 |
+
#include <ATen/ops/embedding.h>
|
614 |
+
#include <ATen/ops/embedding_backward.h>
|
615 |
+
#include <ATen/ops/embedding_bag.h>
|
616 |
+
#include <ATen/ops/embedding_dense_backward.h>
|
617 |
+
#include <ATen/ops/embedding_renorm.h>
|
618 |
+
#include <ATen/ops/embedding_sparse_backward.h>
|
619 |
+
#include <ATen/ops/empty.h>
|
620 |
+
#include <ATen/ops/empty_like.h>
|
621 |
+
#include <ATen/ops/empty_permuted.h>
|
622 |
+
#include <ATen/ops/empty_quantized.h>
|
623 |
+
#include <ATen/ops/empty_strided.h>
|
624 |
+
#include <ATen/ops/eq.h>
|
625 |
+
#include <ATen/ops/equal.h>
|
626 |
+
#include <ATen/ops/erf.h>
|
627 |
+
#include <ATen/ops/erfc.h>
|
628 |
+
#include <ATen/ops/erfinv.h>
|
629 |
+
#include <ATen/ops/exp.h>
|
630 |
+
#include <ATen/ops/exp2.h>
|
631 |
+
#include <ATen/ops/expand.h>
|
632 |
+
#include <ATen/ops/expand_as.h>
|
633 |
+
#include <ATen/ops/expand_copy.h>
|
634 |
+
#include <ATen/ops/expm1.h>
|
635 |
+
#include <ATen/ops/exponential.h>
|
636 |
+
#include <ATen/ops/eye.h>
|
637 |
+
#include <ATen/ops/fake_quantize_per_channel_affine.h>
|
638 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask.h>
|
639 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward.h>
|
640 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine.h>
|
641 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask.h>
|
642 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward.h>
|
643 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight.h>
|
644 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation.h>
|
645 |
+
#include <ATen/ops/fbgemm_linear_int8_weight.h>
|
646 |
+
#include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation.h>
|
647 |
+
#include <ATen/ops/fbgemm_linear_quantize_weight.h>
|
648 |
+
#include <ATen/ops/fbgemm_pack_gemm_matrix_fp16.h>
|
649 |
+
#include <ATen/ops/fbgemm_pack_quantized_matrix.h>
|
650 |
+
#include <ATen/ops/feature_alpha_dropout.h>
|
651 |
+
#include <ATen/ops/feature_dropout.h>
|
652 |
+
#include <ATen/ops/fft_fft.h>
|
653 |
+
#include <ATen/ops/fft_fft2.h>
|
654 |
+
#include <ATen/ops/fft_fftfreq.h>
|
655 |
+
#include <ATen/ops/fft_fftn.h>
|
656 |
+
#include <ATen/ops/fft_fftshift.h>
|
657 |
+
#include <ATen/ops/fft_hfft.h>
|
658 |
+
#include <ATen/ops/fft_hfft2.h>
|
659 |
+
#include <ATen/ops/fft_hfftn.h>
|
660 |
+
#include <ATen/ops/fft_ifft.h>
|
661 |
+
#include <ATen/ops/fft_ifft2.h>
|
662 |
+
#include <ATen/ops/fft_ifftn.h>
|
663 |
+
#include <ATen/ops/fft_ifftshift.h>
|
664 |
+
#include <ATen/ops/fft_ihfft.h>
|
665 |
+
#include <ATen/ops/fft_ihfft2.h>
|
666 |
+
#include <ATen/ops/fft_ihfftn.h>
|
667 |
+
#include <ATen/ops/fft_irfft.h>
|
668 |
+
#include <ATen/ops/fft_irfft2.h>
|
669 |
+
#include <ATen/ops/fft_irfftn.h>
|
670 |
+
#include <ATen/ops/fft_rfft.h>
|
671 |
+
#include <ATen/ops/fft_rfft2.h>
|
672 |
+
#include <ATen/ops/fft_rfftfreq.h>
|
673 |
+
#include <ATen/ops/fft_rfftn.h>
|
674 |
+
#include <ATen/ops/fill.h>
|
675 |
+
#include <ATen/ops/fill_diagonal.h>
|
676 |
+
#include <ATen/ops/fix.h>
|
677 |
+
#include <ATen/ops/flatten.h>
|
678 |
+
#include <ATen/ops/flatten_dense_tensors.h>
|
679 |
+
#include <ATen/ops/flip.h>
|
680 |
+
#include <ATen/ops/fliplr.h>
|
681 |
+
#include <ATen/ops/flipud.h>
|
682 |
+
#include <ATen/ops/float_power.h>
|
683 |
+
#include <ATen/ops/floor.h>
|
684 |
+
#include <ATen/ops/floor_divide.h>
|
685 |
+
#include <ATen/ops/fmax.h>
|
686 |
+
#include <ATen/ops/fmin.h>
|
687 |
+
#include <ATen/ops/fmod.h>
|
688 |
+
#include <ATen/ops/frac.h>
|
689 |
+
#include <ATen/ops/fractional_max_pool2d.h>
|
690 |
+
#include <ATen/ops/fractional_max_pool2d_backward.h>
|
691 |
+
#include <ATen/ops/fractional_max_pool3d.h>
|
692 |
+
#include <ATen/ops/fractional_max_pool3d_backward.h>
|
693 |
+
#include <ATen/ops/frexp.h>
|
694 |
+
#include <ATen/ops/frobenius_norm.h>
|
695 |
+
#include <ATen/ops/from_file.h>
|
696 |
+
#include <ATen/ops/full.h>
|
697 |
+
#include <ATen/ops/full_like.h>
|
698 |
+
#include <ATen/ops/fused_moving_avg_obs_fake_quant.h>
|
699 |
+
#include <ATen/ops/gather.h>
|
700 |
+
#include <ATen/ops/gather_backward.h>
|
701 |
+
#include <ATen/ops/gcd.h>
|
702 |
+
#include <ATen/ops/ge.h>
|
703 |
+
#include <ATen/ops/gelu.h>
|
704 |
+
#include <ATen/ops/gelu_backward.h>
|
705 |
+
#include <ATen/ops/geometric.h>
|
706 |
+
#include <ATen/ops/geqrf.h>
|
707 |
+
#include <ATen/ops/ger.h>
|
708 |
+
#include <ATen/ops/glu.h>
|
709 |
+
#include <ATen/ops/glu_backward.h>
|
710 |
+
#include <ATen/ops/glu_backward_jvp.h>
|
711 |
+
#include <ATen/ops/glu_jvp.h>
|
712 |
+
#include <ATen/ops/gradient.h>
|
713 |
+
#include <ATen/ops/greater.h>
|
714 |
+
#include <ATen/ops/greater_equal.h>
|
715 |
+
#include <ATen/ops/grid_sampler.h>
|
716 |
+
#include <ATen/ops/grid_sampler_2d.h>
|
717 |
+
#include <ATen/ops/grid_sampler_2d_backward.h>
|
718 |
+
#include <ATen/ops/grid_sampler_3d.h>
|
719 |
+
#include <ATen/ops/grid_sampler_3d_backward.h>
|
720 |
+
#include <ATen/ops/group_norm.h>
|
721 |
+
#include <ATen/ops/gru.h>
|
722 |
+
#include <ATen/ops/gru_cell.h>
|
723 |
+
#include <ATen/ops/gt.h>
|
724 |
+
#include <ATen/ops/hamming_window.h>
|
725 |
+
#include <ATen/ops/hann_window.h>
|
726 |
+
#include <ATen/ops/hardshrink.h>
|
727 |
+
#include <ATen/ops/hardshrink_backward.h>
|
728 |
+
#include <ATen/ops/hardsigmoid.h>
|
729 |
+
#include <ATen/ops/hardsigmoid_backward.h>
|
730 |
+
#include <ATen/ops/hardswish.h>
|
731 |
+
#include <ATen/ops/hardswish_backward.h>
|
732 |
+
#include <ATen/ops/hardtanh.h>
|
733 |
+
#include <ATen/ops/hardtanh_backward.h>
|
734 |
+
#include <ATen/ops/heaviside.h>
|
735 |
+
#include <ATen/ops/hinge_embedding_loss.h>
|
736 |
+
#include <ATen/ops/histc.h>
|
737 |
+
#include <ATen/ops/histogram.h>
|
738 |
+
#include <ATen/ops/histogramdd.h>
|
739 |
+
#include <ATen/ops/hsplit.h>
|
740 |
+
#include <ATen/ops/hspmm.h>
|
741 |
+
#include <ATen/ops/hstack.h>
|
742 |
+
#include <ATen/ops/huber_loss.h>
|
743 |
+
#include <ATen/ops/huber_loss_backward.h>
|
744 |
+
#include <ATen/ops/hypot.h>
|
745 |
+
#include <ATen/ops/i0.h>
|
746 |
+
#include <ATen/ops/igamma.h>
|
747 |
+
#include <ATen/ops/igammac.h>
|
748 |
+
#include <ATen/ops/im2col.h>
|
749 |
+
#include <ATen/ops/imag.h>
|
750 |
+
#include <ATen/ops/index.h>
|
751 |
+
#include <ATen/ops/index_add.h>
|
752 |
+
#include <ATen/ops/index_copy.h>
|
753 |
+
#include <ATen/ops/index_fill.h>
|
754 |
+
#include <ATen/ops/index_put.h>
|
755 |
+
#include <ATen/ops/index_reduce.h>
|
756 |
+
#include <ATen/ops/index_select.h>
|
757 |
+
#include <ATen/ops/index_select_backward.h>
|
758 |
+
#include <ATen/ops/indices.h>
|
759 |
+
#include <ATen/ops/indices_copy.h>
|
760 |
+
#include <ATen/ops/infinitely_differentiable_gelu_backward.h>
|
761 |
+
#include <ATen/ops/inner.h>
|
762 |
+
#include <ATen/ops/instance_norm.h>
|
763 |
+
#include <ATen/ops/int_repr.h>
|
764 |
+
#include <ATen/ops/inverse.h>
|
765 |
+
#include <ATen/ops/is_coalesced.h>
|
766 |
+
#include <ATen/ops/is_complex.h>
|
767 |
+
#include <ATen/ops/is_conj.h>
|
768 |
+
#include <ATen/ops/is_distributed.h>
|
769 |
+
#include <ATen/ops/is_floating_point.h>
|
770 |
+
#include <ATen/ops/is_inference.h>
|
771 |
+
#include <ATen/ops/is_leaf.h>
|
772 |
+
#include <ATen/ops/is_neg.h>
|
773 |
+
#include <ATen/ops/is_nonzero.h>
|
774 |
+
#include <ATen/ops/is_pinned.h>
|
775 |
+
#include <ATen/ops/is_same_size.h>
|
776 |
+
#include <ATen/ops/is_set_to.h>
|
777 |
+
#include <ATen/ops/is_signed.h>
|
778 |
+
#include <ATen/ops/is_vulkan_available.h>
|
779 |
+
#include <ATen/ops/isclose.h>
|
780 |
+
#include <ATen/ops/isfinite.h>
|
781 |
+
#include <ATen/ops/isin.h>
|
782 |
+
#include <ATen/ops/isinf.h>
|
783 |
+
#include <ATen/ops/isnan.h>
|
784 |
+
#include <ATen/ops/isneginf.h>
|
785 |
+
#include <ATen/ops/isposinf.h>
|
786 |
+
#include <ATen/ops/isreal.h>
|
787 |
+
#include <ATen/ops/istft.h>
|
788 |
+
#include <ATen/ops/item.h>
|
789 |
+
#include <ATen/ops/kaiser_window.h>
|
790 |
+
#include <ATen/ops/kl_div.h>
|
791 |
+
#include <ATen/ops/kron.h>
|
792 |
+
#include <ATen/ops/kthvalue.h>
|
793 |
+
#include <ATen/ops/l1_loss.h>
|
794 |
+
#include <ATen/ops/layer_norm.h>
|
795 |
+
#include <ATen/ops/lcm.h>
|
796 |
+
#include <ATen/ops/ldexp.h>
|
797 |
+
#include <ATen/ops/le.h>
|
798 |
+
#include <ATen/ops/leaky_relu.h>
|
799 |
+
#include <ATen/ops/leaky_relu_backward.h>
|
800 |
+
#include <ATen/ops/lerp.h>
|
801 |
+
#include <ATen/ops/less.h>
|
802 |
+
#include <ATen/ops/less_equal.h>
|
803 |
+
#include <ATen/ops/lgamma.h>
|
804 |
+
#include <ATen/ops/lift.h>
|
805 |
+
#include <ATen/ops/lift_fresh.h>
|
806 |
+
#include <ATen/ops/lift_fresh_copy.h>
|
807 |
+
#include <ATen/ops/linalg_cholesky.h>
|
808 |
+
#include <ATen/ops/linalg_cholesky_ex.h>
|
809 |
+
#include <ATen/ops/linalg_cond.h>
|
810 |
+
#include <ATen/ops/linalg_cross.h>
|
811 |
+
#include <ATen/ops/linalg_det.h>
|
812 |
+
#include <ATen/ops/linalg_diagonal.h>
|
813 |
+
#include <ATen/ops/linalg_eig.h>
|
814 |
+
#include <ATen/ops/linalg_eigh.h>
|
815 |
+
#include <ATen/ops/linalg_eigvals.h>
|
816 |
+
#include <ATen/ops/linalg_eigvalsh.h>
|
817 |
+
#include <ATen/ops/linalg_householder_product.h>
|
818 |
+
#include <ATen/ops/linalg_inv.h>
|
819 |
+
#include <ATen/ops/linalg_inv_ex.h>
|
820 |
+
#include <ATen/ops/linalg_ldl_factor.h>
|
821 |
+
#include <ATen/ops/linalg_ldl_factor_ex.h>
|
822 |
+
#include <ATen/ops/linalg_ldl_solve.h>
|
823 |
+
#include <ATen/ops/linalg_lstsq.h>
|
824 |
+
#include <ATen/ops/linalg_lu.h>
|
825 |
+
#include <ATen/ops/linalg_lu_factor.h>
|
826 |
+
#include <ATen/ops/linalg_lu_factor_ex.h>
|
827 |
+
#include <ATen/ops/linalg_lu_solve.h>
|
828 |
+
#include <ATen/ops/linalg_matmul.h>
|
829 |
+
#include <ATen/ops/linalg_matrix_exp.h>
|
830 |
+
#include <ATen/ops/linalg_matrix_norm.h>
|
831 |
+
#include <ATen/ops/linalg_matrix_power.h>
|
832 |
+
#include <ATen/ops/linalg_matrix_rank.h>
|
833 |
+
#include <ATen/ops/linalg_multi_dot.h>
|
834 |
+
#include <ATen/ops/linalg_norm.h>
|
835 |
+
#include <ATen/ops/linalg_pinv.h>
|
836 |
+
#include <ATen/ops/linalg_qr.h>
|
837 |
+
#include <ATen/ops/linalg_slogdet.h>
|
838 |
+
#include <ATen/ops/linalg_solve.h>
|
839 |
+
#include <ATen/ops/linalg_solve_ex.h>
|
840 |
+
#include <ATen/ops/linalg_solve_triangular.h>
|
841 |
+
#include <ATen/ops/linalg_svd.h>
|
842 |
+
#include <ATen/ops/linalg_svdvals.h>
|
843 |
+
#include <ATen/ops/linalg_tensorinv.h>
|
844 |
+
#include <ATen/ops/linalg_tensorsolve.h>
|
845 |
+
#include <ATen/ops/linalg_vander.h>
|
846 |
+
#include <ATen/ops/linalg_vecdot.h>
|
847 |
+
#include <ATen/ops/linalg_vector_norm.h>
|
848 |
+
#include <ATen/ops/linear.h>
|
849 |
+
#include <ATen/ops/linear_backward.h>
|
850 |
+
#include <ATen/ops/linspace.h>
|
851 |
+
#include <ATen/ops/log.h>
|
852 |
+
#include <ATen/ops/log10.h>
|
853 |
+
#include <ATen/ops/log1p.h>
|
854 |
+
#include <ATen/ops/log2.h>
|
855 |
+
#include <ATen/ops/log_normal.h>
|
856 |
+
#include <ATen/ops/log_sigmoid.h>
|
857 |
+
#include <ATen/ops/log_sigmoid_backward.h>
|
858 |
+
#include <ATen/ops/log_sigmoid_forward.h>
|
859 |
+
#include <ATen/ops/log_softmax.h>
|
860 |
+
#include <ATen/ops/logaddexp.h>
|
861 |
+
#include <ATen/ops/logaddexp2.h>
|
862 |
+
#include <ATen/ops/logcumsumexp.h>
|
863 |
+
#include <ATen/ops/logdet.h>
|
864 |
+
#include <ATen/ops/logical_and.h>
|
865 |
+
#include <ATen/ops/logical_not.h>
|
866 |
+
#include <ATen/ops/logical_or.h>
|
867 |
+
#include <ATen/ops/logical_xor.h>
|
868 |
+
#include <ATen/ops/logit.h>
|
869 |
+
#include <ATen/ops/logit_backward.h>
|
870 |
+
#include <ATen/ops/logspace.h>
|
871 |
+
#include <ATen/ops/logsumexp.h>
|
872 |
+
#include <ATen/ops/lshift.h>
|
873 |
+
#include <ATen/ops/lstm.h>
|
874 |
+
#include <ATen/ops/lstm_cell.h>
|
875 |
+
#include <ATen/ops/lstm_mps_backward.h>
|
876 |
+
#include <ATen/ops/lt.h>
|
877 |
+
#include <ATen/ops/lu_solve.h>
|
878 |
+
#include <ATen/ops/lu_unpack.h>
|
879 |
+
#include <ATen/ops/mH.h>
|
880 |
+
#include <ATen/ops/mT.h>
|
881 |
+
#include <ATen/ops/margin_ranking_loss.h>
|
882 |
+
#include <ATen/ops/masked_fill.h>
|
883 |
+
#include <ATen/ops/masked_scatter.h>
|
884 |
+
#include <ATen/ops/masked_scatter_backward.h>
|
885 |
+
#include <ATen/ops/masked_select.h>
|
886 |
+
#include <ATen/ops/masked_select_backward.h>
|
887 |
+
#include <ATen/ops/matmul.h>
|
888 |
+
#include <ATen/ops/matmul_backward.h>
|
889 |
+
#include <ATen/ops/matrix_H.h>
|
890 |
+
#include <ATen/ops/matrix_exp.h>
|
891 |
+
#include <ATen/ops/matrix_exp_backward.h>
|
892 |
+
#include <ATen/ops/matrix_power.h>
|
893 |
+
#include <ATen/ops/max.h>
|
894 |
+
#include <ATen/ops/max_pool1d.h>
|
895 |
+
#include <ATen/ops/max_pool1d_with_indices.h>
|
896 |
+
#include <ATen/ops/max_pool2d.h>
|
897 |
+
#include <ATen/ops/max_pool2d_backward.h>
|
898 |
+
#include <ATen/ops/max_pool2d_with_indices.h>
|
899 |
+
#include <ATen/ops/max_pool2d_with_indices_backward.h>
|
900 |
+
#include <ATen/ops/max_pool3d.h>
|
901 |
+
#include <ATen/ops/max_pool3d_with_indices.h>
|
902 |
+
#include <ATen/ops/max_pool3d_with_indices_backward.h>
|
903 |
+
#include <ATen/ops/max_unpool2d.h>
|
904 |
+
#include <ATen/ops/max_unpool3d.h>
|
905 |
+
#include <ATen/ops/maximum.h>
|
906 |
+
#include <ATen/ops/mean.h>
|
907 |
+
#include <ATen/ops/median.h>
|
908 |
+
#include <ATen/ops/meshgrid.h>
|
909 |
+
#include <ATen/ops/min.h>
|
910 |
+
#include <ATen/ops/minimum.h>
|
911 |
+
#include <ATen/ops/miopen_batch_norm.h>
|
912 |
+
#include <ATen/ops/miopen_batch_norm_backward.h>
|
913 |
+
#include <ATen/ops/miopen_convolution.h>
|
914 |
+
#include <ATen/ops/miopen_convolution_add_relu.h>
|
915 |
+
#include <ATen/ops/miopen_convolution_relu.h>
|
916 |
+
#include <ATen/ops/miopen_convolution_transpose.h>
|
917 |
+
#include <ATen/ops/miopen_depthwise_convolution.h>
|
918 |
+
#include <ATen/ops/miopen_rnn.h>
|
919 |
+
#include <ATen/ops/miopen_rnn_backward.h>
|
920 |
+
#include <ATen/ops/mish.h>
|
921 |
+
#include <ATen/ops/mish_backward.h>
|
922 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d.h>
|
923 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward.h>
|
924 |
+
#include <ATen/ops/mkldnn_convolution.h>
|
925 |
+
#include <ATen/ops/mkldnn_linear.h>
|
926 |
+
#include <ATen/ops/mkldnn_linear_backward.h>
|
927 |
+
#include <ATen/ops/mkldnn_linear_backward_input.h>
|
928 |
+
#include <ATen/ops/mkldnn_linear_backward_weights.h>
|
929 |
+
#include <ATen/ops/mkldnn_max_pool2d.h>
|
930 |
+
#include <ATen/ops/mkldnn_max_pool2d_backward.h>
|
931 |
+
#include <ATen/ops/mkldnn_max_pool3d.h>
|
932 |
+
#include <ATen/ops/mkldnn_max_pool3d_backward.h>
|
933 |
+
#include <ATen/ops/mkldnn_reorder_conv2d_weight.h>
|
934 |
+
#include <ATen/ops/mkldnn_reorder_conv3d_weight.h>
|
935 |
+
#include <ATen/ops/mkldnn_rnn_layer.h>
|
936 |
+
#include <ATen/ops/mkldnn_rnn_layer_backward.h>
|
937 |
+
#include <ATen/ops/mm.h>
|
938 |
+
#include <ATen/ops/mode.h>
|
939 |
+
#include <ATen/ops/moveaxis.h>
|
940 |
+
#include <ATen/ops/movedim.h>
|
941 |
+
#include <ATen/ops/mps_convolution_backward.h>
|
942 |
+
#include <ATen/ops/mps_convolution_transpose_backward.h>
|
943 |
+
#include <ATen/ops/mse_loss.h>
|
944 |
+
#include <ATen/ops/mse_loss_backward.h>
|
945 |
+
#include <ATen/ops/msort.h>
|
946 |
+
#include <ATen/ops/mul.h>
|
947 |
+
#include <ATen/ops/multi_margin_loss.h>
|
948 |
+
#include <ATen/ops/multi_margin_loss_backward.h>
|
949 |
+
#include <ATen/ops/multilabel_margin_loss.h>
|
950 |
+
#include <ATen/ops/multilabel_margin_loss_backward.h>
|
951 |
+
#include <ATen/ops/multilabel_margin_loss_forward.h>
|
952 |
+
#include <ATen/ops/multinomial.h>
|
953 |
+
#include <ATen/ops/multiply.h>
|
954 |
+
#include <ATen/ops/mv.h>
|
955 |
+
#include <ATen/ops/mvlgamma.h>
|
956 |
+
#include <ATen/ops/nan_to_num.h>
|
957 |
+
#include <ATen/ops/nanmean.h>
|
958 |
+
#include <ATen/ops/nanmedian.h>
|
959 |
+
#include <ATen/ops/nanquantile.h>
|
960 |
+
#include <ATen/ops/nansum.h>
|
961 |
+
#include <ATen/ops/narrow.h>
|
962 |
+
#include <ATen/ops/narrow_copy.h>
|
963 |
+
#include <ATen/ops/native_batch_norm.h>
|
964 |
+
#include <ATen/ops/native_batch_norm_backward.h>
|
965 |
+
#include <ATen/ops/native_channel_shuffle.h>
|
966 |
+
#include <ATen/ops/native_dropout.h>
|
967 |
+
#include <ATen/ops/native_dropout_backward.h>
|
968 |
+
#include <ATen/ops/native_group_norm.h>
|
969 |
+
#include <ATen/ops/native_group_norm_backward.h>
|
970 |
+
#include <ATen/ops/native_layer_norm.h>
|
971 |
+
#include <ATen/ops/native_layer_norm_backward.h>
|
972 |
+
#include <ATen/ops/native_norm.h>
|
973 |
+
#include <ATen/ops/ne.h>
|
974 |
+
#include <ATen/ops/neg.h>
|
975 |
+
#include <ATen/ops/negative.h>
|
976 |
+
#include <ATen/ops/nested_to_padded_tensor.h>
|
977 |
+
#include <ATen/ops/new_empty.h>
|
978 |
+
#include <ATen/ops/new_empty_strided.h>
|
979 |
+
#include <ATen/ops/new_full.h>
|
980 |
+
#include <ATen/ops/new_ones.h>
|
981 |
+
#include <ATen/ops/new_zeros.h>
|
982 |
+
#include <ATen/ops/nextafter.h>
|
983 |
+
#include <ATen/ops/nll_loss.h>
|
984 |
+
#include <ATen/ops/nll_loss2d.h>
|
985 |
+
#include <ATen/ops/nll_loss2d_backward.h>
|
986 |
+
#include <ATen/ops/nll_loss2d_forward.h>
|
987 |
+
#include <ATen/ops/nll_loss_backward.h>
|
988 |
+
#include <ATen/ops/nll_loss_forward.h>
|
989 |
+
#include <ATen/ops/nll_loss_nd.h>
|
990 |
+
#include <ATen/ops/nonzero.h>
|
991 |
+
#include <ATen/ops/nonzero_numpy.h>
|
992 |
+
#include <ATen/ops/nonzero_static.h>
|
993 |
+
#include <ATen/ops/norm.h>
|
994 |
+
#include <ATen/ops/norm_except_dim.h>
|
995 |
+
#include <ATen/ops/normal.h>
|
996 |
+
#include <ATen/ops/not_equal.h>
|
997 |
+
#include <ATen/ops/nuclear_norm.h>
|
998 |
+
#include <ATen/ops/numpy_T.h>
|
999 |
+
#include <ATen/ops/one_hot.h>
|
1000 |
+
#include <ATen/ops/ones.h>
|
1001 |
+
#include <ATen/ops/ones_like.h>
|
1002 |
+
#include <ATen/ops/or.h>
|
1003 |
+
#include <ATen/ops/orgqr.h>
|
1004 |
+
#include <ATen/ops/ormqr.h>
|
1005 |
+
#include <ATen/ops/outer.h>
|
1006 |
+
#include <ATen/ops/output_nr.h>
|
1007 |
+
#include <ATen/ops/pad.h>
|
1008 |
+
#include <ATen/ops/pad_sequence.h>
|
1009 |
+
#include <ATen/ops/pairwise_distance.h>
|
1010 |
+
#include <ATen/ops/pdist.h>
|
1011 |
+
#include <ATen/ops/permute.h>
|
1012 |
+
#include <ATen/ops/permute_copy.h>
|
1013 |
+
#include <ATen/ops/pin_memory.h>
|
1014 |
+
#include <ATen/ops/pinverse.h>
|
1015 |
+
#include <ATen/ops/pixel_shuffle.h>
|
1016 |
+
#include <ATen/ops/pixel_unshuffle.h>
|
1017 |
+
#include <ATen/ops/poisson.h>
|
1018 |
+
#include <ATen/ops/poisson_nll_loss.h>
|
1019 |
+
#include <ATen/ops/polar.h>
|
1020 |
+
#include <ATen/ops/polygamma.h>
|
1021 |
+
#include <ATen/ops/positive.h>
|
1022 |
+
#include <ATen/ops/pow.h>
|
1023 |
+
#include <ATen/ops/prelu.h>
|
1024 |
+
#include <ATen/ops/prod.h>
|
1025 |
+
#include <ATen/ops/promote_types.h>
|
1026 |
+
#include <ATen/ops/put.h>
|
1027 |
+
#include <ATen/ops/q_per_channel_axis.h>
|
1028 |
+
#include <ATen/ops/q_per_channel_scales.h>
|
1029 |
+
#include <ATen/ops/q_per_channel_zero_points.h>
|
1030 |
+
#include <ATen/ops/q_scale.h>
|
1031 |
+
#include <ATen/ops/q_zero_point.h>
|
1032 |
+
#include <ATen/ops/qr.h>
|
1033 |
+
#include <ATen/ops/qscheme.h>
|
1034 |
+
#include <ATen/ops/quantile.h>
|
1035 |
+
#include <ATen/ops/quantize_per_channel.h>
|
1036 |
+
#include <ATen/ops/quantize_per_tensor.h>
|
1037 |
+
#include <ATen/ops/quantize_per_tensor_dynamic.h>
|
1038 |
+
#include <ATen/ops/quantized_batch_norm.h>
|
1039 |
+
#include <ATen/ops/quantized_gru_cell.h>
|
1040 |
+
#include <ATen/ops/quantized_lstm_cell.h>
|
1041 |
+
#include <ATen/ops/quantized_max_pool1d.h>
|
1042 |
+
#include <ATen/ops/quantized_max_pool2d.h>
|
1043 |
+
#include <ATen/ops/quantized_max_pool3d.h>
|
1044 |
+
#include <ATen/ops/quantized_rnn_relu_cell.h>
|
1045 |
+
#include <ATen/ops/quantized_rnn_tanh_cell.h>
|
1046 |
+
#include <ATen/ops/rad2deg.h>
|
1047 |
+
#include <ATen/ops/rand.h>
|
1048 |
+
#include <ATen/ops/rand_like.h>
|
1049 |
+
#include <ATen/ops/randint.h>
|
1050 |
+
#include <ATen/ops/randint_like.h>
|
1051 |
+
#include <ATen/ops/randn.h>
|
1052 |
+
#include <ATen/ops/randn_like.h>
|
1053 |
+
#include <ATen/ops/random.h>
|
1054 |
+
#include <ATen/ops/randperm.h>
|
1055 |
+
#include <ATen/ops/range.h>
|
1056 |
+
#include <ATen/ops/ravel.h>
|
1057 |
+
#include <ATen/ops/real.h>
|
1058 |
+
#include <ATen/ops/reciprocal.h>
|
1059 |
+
#include <ATen/ops/record_stream.h>
|
1060 |
+
#include <ATen/ops/refine_names.h>
|
1061 |
+
#include <ATen/ops/reflection_pad1d.h>
|
1062 |
+
#include <ATen/ops/reflection_pad1d_backward.h>
|
1063 |
+
#include <ATen/ops/reflection_pad2d.h>
|
1064 |
+
#include <ATen/ops/reflection_pad2d_backward.h>
|
1065 |
+
#include <ATen/ops/reflection_pad3d.h>
|
1066 |
+
#include <ATen/ops/reflection_pad3d_backward.h>
|
1067 |
+
#include <ATen/ops/relu.h>
|
1068 |
+
#include <ATen/ops/relu6.h>
|
1069 |
+
#include <ATen/ops/remainder.h>
|
1070 |
+
#include <ATen/ops/rename.h>
|
1071 |
+
#include <ATen/ops/renorm.h>
|
1072 |
+
#include <ATen/ops/repeat.h>
|
1073 |
+
#include <ATen/ops/repeat_interleave.h>
|
1074 |
+
#include <ATen/ops/replication_pad1d.h>
|
1075 |
+
#include <ATen/ops/replication_pad1d_backward.h>
|
1076 |
+
#include <ATen/ops/replication_pad2d.h>
|
1077 |
+
#include <ATen/ops/replication_pad2d_backward.h>
|
1078 |
+
#include <ATen/ops/replication_pad3d.h>
|
1079 |
+
#include <ATen/ops/replication_pad3d_backward.h>
|
1080 |
+
#include <ATen/ops/requires_grad.h>
|
1081 |
+
#include <ATen/ops/reshape.h>
|
1082 |
+
#include <ATen/ops/reshape_as.h>
|
1083 |
+
#include <ATen/ops/resize.h>
|
1084 |
+
#include <ATen/ops/resize_as.h>
|
1085 |
+
#include <ATen/ops/resize_as_sparse.h>
|
1086 |
+
#include <ATen/ops/resolve_conj.h>
|
1087 |
+
#include <ATen/ops/resolve_neg.h>
|
1088 |
+
#include <ATen/ops/result_type.h>
|
1089 |
+
#include <ATen/ops/retain_grad.h>
|
1090 |
+
#include <ATen/ops/retains_grad.h>
|
1091 |
+
#include <ATen/ops/rnn_relu.h>
|
1092 |
+
#include <ATen/ops/rnn_relu_cell.h>
|
1093 |
+
#include <ATen/ops/rnn_tanh.h>
|
1094 |
+
#include <ATen/ops/rnn_tanh_cell.h>
|
1095 |
+
#include <ATen/ops/roll.h>
|
1096 |
+
#include <ATen/ops/rot90.h>
|
1097 |
+
#include <ATen/ops/round.h>
|
1098 |
+
#include <ATen/ops/row_indices.h>
|
1099 |
+
#include <ATen/ops/row_indices_copy.h>
|
1100 |
+
#include <ATen/ops/row_stack.h>
|
1101 |
+
#include <ATen/ops/rrelu.h>
|
1102 |
+
#include <ATen/ops/rrelu_with_noise.h>
|
1103 |
+
#include <ATen/ops/rrelu_with_noise_backward.h>
|
1104 |
+
#include <ATen/ops/rshift.h>
|
1105 |
+
#include <ATen/ops/rsqrt.h>
|
1106 |
+
#include <ATen/ops/rsub.h>
|
1107 |
+
#include <ATen/ops/scalar_tensor.h>
|
1108 |
+
#include <ATen/ops/scaled_dot_product_attention.h>
|
1109 |
+
#include <ATen/ops/scatter.h>
|
1110 |
+
#include <ATen/ops/scatter_add.h>
|
1111 |
+
#include <ATen/ops/scatter_reduce.h>
|
1112 |
+
#include <ATen/ops/searchsorted.h>
|
1113 |
+
#include <ATen/ops/segment_reduce.h>
|
1114 |
+
#include <ATen/ops/select.h>
|
1115 |
+
#include <ATen/ops/select_backward.h>
|
1116 |
+
#include <ATen/ops/select_copy.h>
|
1117 |
+
#include <ATen/ops/select_scatter.h>
|
1118 |
+
#include <ATen/ops/selu.h>
|
1119 |
+
#include <ATen/ops/set.h>
|
1120 |
+
#include <ATen/ops/set_data.h>
|
1121 |
+
#include <ATen/ops/sgn.h>
|
1122 |
+
#include <ATen/ops/sigmoid.h>
|
1123 |
+
#include <ATen/ops/sigmoid_backward.h>
|
1124 |
+
#include <ATen/ops/sign.h>
|
1125 |
+
#include <ATen/ops/signbit.h>
|
1126 |
+
#include <ATen/ops/silu.h>
|
1127 |
+
#include <ATen/ops/silu_backward.h>
|
1128 |
+
#include <ATen/ops/sin.h>
|
1129 |
+
#include <ATen/ops/sinc.h>
|
1130 |
+
#include <ATen/ops/sinh.h>
|
1131 |
+
#include <ATen/ops/size.h>
|
1132 |
+
#include <ATen/ops/slice.h>
|
1133 |
+
#include <ATen/ops/slice_backward.h>
|
1134 |
+
#include <ATen/ops/slice_copy.h>
|
1135 |
+
#include <ATen/ops/slice_scatter.h>
|
1136 |
+
#include <ATen/ops/slogdet.h>
|
1137 |
+
#include <ATen/ops/slow_conv3d.h>
|
1138 |
+
#include <ATen/ops/slow_conv3d_forward.h>
|
1139 |
+
#include <ATen/ops/slow_conv_dilated2d.h>
|
1140 |
+
#include <ATen/ops/slow_conv_dilated3d.h>
|
1141 |
+
#include <ATen/ops/slow_conv_transpose2d.h>
|
1142 |
+
#include <ATen/ops/slow_conv_transpose3d.h>
|
1143 |
+
#include <ATen/ops/smm.h>
|
1144 |
+
#include <ATen/ops/smooth_l1_loss.h>
|
1145 |
+
#include <ATen/ops/smooth_l1_loss_backward.h>
|
1146 |
+
#include <ATen/ops/soft_margin_loss.h>
|
1147 |
+
#include <ATen/ops/soft_margin_loss_backward.h>
|
1148 |
+
#include <ATen/ops/softmax.h>
|
1149 |
+
#include <ATen/ops/softplus.h>
|
1150 |
+
#include <ATen/ops/softplus_backward.h>
|
1151 |
+
#include <ATen/ops/softshrink.h>
|
1152 |
+
#include <ATen/ops/softshrink_backward.h>
|
1153 |
+
#include <ATen/ops/sort.h>
|
1154 |
+
#include <ATen/ops/sparse_bsc_tensor.h>
|
1155 |
+
#include <ATen/ops/sparse_bsr_tensor.h>
|
1156 |
+
#include <ATen/ops/sparse_compressed_tensor.h>
|
1157 |
+
#include <ATen/ops/sparse_coo_tensor.h>
|
1158 |
+
#include <ATen/ops/sparse_csc_tensor.h>
|
1159 |
+
#include <ATen/ops/sparse_csr_tensor.h>
|
1160 |
+
#include <ATen/ops/sparse_dim.h>
|
1161 |
+
#include <ATen/ops/sparse_mask.h>
|
1162 |
+
#include <ATen/ops/sparse_resize.h>
|
1163 |
+
#include <ATen/ops/sparse_resize_and_clear.h>
|
1164 |
+
#include <ATen/ops/sparse_sampled_addmm.h>
|
1165 |
+
#include <ATen/ops/special_airy_ai.h>
|
1166 |
+
#include <ATen/ops/special_bessel_j0.h>
|
1167 |
+
#include <ATen/ops/special_bessel_j1.h>
|
1168 |
+
#include <ATen/ops/special_bessel_y0.h>
|
1169 |
+
#include <ATen/ops/special_bessel_y1.h>
|
1170 |
+
#include <ATen/ops/special_chebyshev_polynomial_t.h>
|
1171 |
+
#include <ATen/ops/special_chebyshev_polynomial_u.h>
|
1172 |
+
#include <ATen/ops/special_chebyshev_polynomial_v.h>
|
1173 |
+
#include <ATen/ops/special_chebyshev_polynomial_w.h>
|
1174 |
+
#include <ATen/ops/special_digamma.h>
|
1175 |
+
#include <ATen/ops/special_entr.h>
|
1176 |
+
#include <ATen/ops/special_erf.h>
|
1177 |
+
#include <ATen/ops/special_erfc.h>
|
1178 |
+
#include <ATen/ops/special_erfcx.h>
|
1179 |
+
#include <ATen/ops/special_erfinv.h>
|
1180 |
+
#include <ATen/ops/special_exp2.h>
|
1181 |
+
#include <ATen/ops/special_expit.h>
|
1182 |
+
#include <ATen/ops/special_expm1.h>
|
1183 |
+
#include <ATen/ops/special_gammainc.h>
|
1184 |
+
#include <ATen/ops/special_gammaincc.h>
|
1185 |
+
#include <ATen/ops/special_gammaln.h>
|
1186 |
+
#include <ATen/ops/special_hermite_polynomial_h.h>
|
1187 |
+
#include <ATen/ops/special_hermite_polynomial_he.h>
|
1188 |
+
#include <ATen/ops/special_i0.h>
|
1189 |
+
#include <ATen/ops/special_i0e.h>
|
1190 |
+
#include <ATen/ops/special_i1.h>
|
1191 |
+
#include <ATen/ops/special_i1e.h>
|
1192 |
+
#include <ATen/ops/special_laguerre_polynomial_l.h>
|
1193 |
+
#include <ATen/ops/special_legendre_polynomial_p.h>
|
1194 |
+
#include <ATen/ops/special_log1p.h>
|
1195 |
+
#include <ATen/ops/special_log_ndtr.h>
|
1196 |
+
#include <ATen/ops/special_log_softmax.h>
|
1197 |
+
#include <ATen/ops/special_logit.h>
|
1198 |
+
#include <ATen/ops/special_logsumexp.h>
|
1199 |
+
#include <ATen/ops/special_modified_bessel_i0.h>
|
1200 |
+
#include <ATen/ops/special_modified_bessel_i1.h>
|
1201 |
+
#include <ATen/ops/special_modified_bessel_k0.h>
|
1202 |
+
#include <ATen/ops/special_modified_bessel_k1.h>
|
1203 |
+
#include <ATen/ops/special_multigammaln.h>
|
1204 |
+
#include <ATen/ops/special_ndtr.h>
|
1205 |
+
#include <ATen/ops/special_ndtri.h>
|
1206 |
+
#include <ATen/ops/special_polygamma.h>
|
1207 |
+
#include <ATen/ops/special_psi.h>
|
1208 |
+
#include <ATen/ops/special_round.h>
|
1209 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0.h>
|
1210 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1.h>
|
1211 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t.h>
|
1212 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u.h>
|
1213 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v.h>
|
1214 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w.h>
|
1215 |
+
#include <ATen/ops/special_sinc.h>
|
1216 |
+
#include <ATen/ops/special_softmax.h>
|
1217 |
+
#include <ATen/ops/special_spherical_bessel_j0.h>
|
1218 |
+
#include <ATen/ops/special_xlog1py.h>
|
1219 |
+
#include <ATen/ops/special_xlogy.h>
|
1220 |
+
#include <ATen/ops/special_zeta.h>
|
1221 |
+
#include <ATen/ops/split.h>
|
1222 |
+
#include <ATen/ops/split_copy.h>
|
1223 |
+
#include <ATen/ops/split_with_sizes.h>
|
1224 |
+
#include <ATen/ops/split_with_sizes_copy.h>
|
1225 |
+
#include <ATen/ops/sqrt.h>
|
1226 |
+
#include <ATen/ops/square.h>
|
1227 |
+
#include <ATen/ops/squeeze.h>
|
1228 |
+
#include <ATen/ops/squeeze_copy.h>
|
1229 |
+
#include <ATen/ops/sspaddmm.h>
|
1230 |
+
#include <ATen/ops/stack.h>
|
1231 |
+
#include <ATen/ops/std.h>
|
1232 |
+
#include <ATen/ops/std_mean.h>
|
1233 |
+
#include <ATen/ops/stft.h>
|
1234 |
+
#include <ATen/ops/stride.h>
|
1235 |
+
#include <ATen/ops/sub.h>
|
1236 |
+
#include <ATen/ops/subtract.h>
|
1237 |
+
#include <ATen/ops/sum.h>
|
1238 |
+
#include <ATen/ops/sum_to_size.h>
|
1239 |
+
#include <ATen/ops/svd.h>
|
1240 |
+
#include <ATen/ops/swapaxes.h>
|
1241 |
+
#include <ATen/ops/swapdims.h>
|
1242 |
+
#include <ATen/ops/sym_constrain_range.h>
|
1243 |
+
#include <ATen/ops/sym_constrain_range_for_size.h>
|
1244 |
+
#include <ATen/ops/sym_numel.h>
|
1245 |
+
#include <ATen/ops/sym_size.h>
|
1246 |
+
#include <ATen/ops/sym_storage_offset.h>
|
1247 |
+
#include <ATen/ops/sym_stride.h>
|
1248 |
+
#include <ATen/ops/t.h>
|
1249 |
+
#include <ATen/ops/t_copy.h>
|
1250 |
+
#include <ATen/ops/take.h>
|
1251 |
+
#include <ATen/ops/take_along_dim.h>
|
1252 |
+
#include <ATen/ops/tan.h>
|
1253 |
+
#include <ATen/ops/tanh.h>
|
1254 |
+
#include <ATen/ops/tanh_backward.h>
|
1255 |
+
#include <ATen/ops/tensor_split.h>
|
1256 |
+
#include <ATen/ops/tensordot.h>
|
1257 |
+
#include <ATen/ops/thnn_conv2d.h>
|
1258 |
+
#include <ATen/ops/threshold.h>
|
1259 |
+
#include <ATen/ops/threshold_backward.h>
|
1260 |
+
#include <ATen/ops/tile.h>
|
1261 |
+
#include <ATen/ops/to.h>
|
1262 |
+
#include <ATen/ops/to_dense.h>
|
1263 |
+
#include <ATen/ops/to_dense_backward.h>
|
1264 |
+
#include <ATen/ops/to_mkldnn.h>
|
1265 |
+
#include <ATen/ops/to_mkldnn_backward.h>
|
1266 |
+
#include <ATen/ops/to_padded_tensor.h>
|
1267 |
+
#include <ATen/ops/to_sparse.h>
|
1268 |
+
#include <ATen/ops/to_sparse_bsc.h>
|
1269 |
+
#include <ATen/ops/to_sparse_bsr.h>
|
1270 |
+
#include <ATen/ops/to_sparse_csc.h>
|
1271 |
+
#include <ATen/ops/to_sparse_csr.h>
|
1272 |
+
#include <ATen/ops/topk.h>
|
1273 |
+
#include <ATen/ops/trace.h>
|
1274 |
+
#include <ATen/ops/trace_backward.h>
|
1275 |
+
#include <ATen/ops/transpose.h>
|
1276 |
+
#include <ATen/ops/transpose_copy.h>
|
1277 |
+
#include <ATen/ops/trapezoid.h>
|
1278 |
+
#include <ATen/ops/trapz.h>
|
1279 |
+
#include <ATen/ops/triangular_solve.h>
|
1280 |
+
#include <ATen/ops/tril.h>
|
1281 |
+
#include <ATen/ops/tril_indices.h>
|
1282 |
+
#include <ATen/ops/triplet_margin_loss.h>
|
1283 |
+
#include <ATen/ops/triu.h>
|
1284 |
+
#include <ATen/ops/triu_indices.h>
|
1285 |
+
#include <ATen/ops/true_divide.h>
|
1286 |
+
#include <ATen/ops/trunc.h>
|
1287 |
+
#include <ATen/ops/type_as.h>
|
1288 |
+
#include <ATen/ops/unbind.h>
|
1289 |
+
#include <ATen/ops/unbind_copy.h>
|
1290 |
+
#include <ATen/ops/unflatten.h>
|
1291 |
+
#include <ATen/ops/unflatten_dense_tensors.h>
|
1292 |
+
#include <ATen/ops/unfold.h>
|
1293 |
+
#include <ATen/ops/unfold_backward.h>
|
1294 |
+
#include <ATen/ops/unfold_copy.h>
|
1295 |
+
#include <ATen/ops/uniform.h>
|
1296 |
+
#include <ATen/ops/unique_consecutive.h>
|
1297 |
+
#include <ATen/ops/unique_dim.h>
|
1298 |
+
#include <ATen/ops/unique_dim_consecutive.h>
|
1299 |
+
#include <ATen/ops/unsafe_chunk.h>
|
1300 |
+
#include <ATen/ops/unsafe_split.h>
|
1301 |
+
#include <ATen/ops/unsafe_split_with_sizes.h>
|
1302 |
+
#include <ATen/ops/unsqueeze.h>
|
1303 |
+
#include <ATen/ops/unsqueeze_copy.h>
|
1304 |
+
#include <ATen/ops/upsample_bicubic2d.h>
|
1305 |
+
#include <ATen/ops/upsample_bicubic2d_backward.h>
|
1306 |
+
#include <ATen/ops/upsample_bilinear2d.h>
|
1307 |
+
#include <ATen/ops/upsample_bilinear2d_backward.h>
|
1308 |
+
#include <ATen/ops/upsample_linear1d.h>
|
1309 |
+
#include <ATen/ops/upsample_linear1d_backward.h>
|
1310 |
+
#include <ATen/ops/upsample_nearest1d.h>
|
1311 |
+
#include <ATen/ops/upsample_nearest1d_backward.h>
|
1312 |
+
#include <ATen/ops/upsample_nearest2d.h>
|
1313 |
+
#include <ATen/ops/upsample_nearest2d_backward.h>
|
1314 |
+
#include <ATen/ops/upsample_nearest3d.h>
|
1315 |
+
#include <ATen/ops/upsample_nearest3d_backward.h>
|
1316 |
+
#include <ATen/ops/upsample_trilinear3d.h>
|
1317 |
+
#include <ATen/ops/upsample_trilinear3d_backward.h>
|
1318 |
+
#include <ATen/ops/value_selecting_reduction_backward.h>
|
1319 |
+
#include <ATen/ops/values.h>
|
1320 |
+
#include <ATen/ops/values_copy.h>
|
1321 |
+
#include <ATen/ops/vander.h>
|
1322 |
+
#include <ATen/ops/var.h>
|
1323 |
+
#include <ATen/ops/var_mean.h>
|
1324 |
+
#include <ATen/ops/vdot.h>
|
1325 |
+
#include <ATen/ops/view.h>
|
1326 |
+
#include <ATen/ops/view_as.h>
|
1327 |
+
#include <ATen/ops/view_as_complex.h>
|
1328 |
+
#include <ATen/ops/view_as_complex_copy.h>
|
1329 |
+
#include <ATen/ops/view_as_real.h>
|
1330 |
+
#include <ATen/ops/view_as_real_copy.h>
|
1331 |
+
#include <ATen/ops/view_copy.h>
|
1332 |
+
#include <ATen/ops/vsplit.h>
|
1333 |
+
#include <ATen/ops/vstack.h>
|
1334 |
+
#include <ATen/ops/where.h>
|
1335 |
+
#include <ATen/ops/xlogy.h>
|
1336 |
+
#include <ATen/ops/xor.h>
|
1337 |
+
#include <ATen/ops/zero.h>
|
1338 |
+
#include <ATen/ops/zeros.h>
|
1339 |
+
#include <ATen/ops/zeros_like.h>
|
1340 |
+
|
1341 |
+
namespace at {
|
1342 |
+
|
1343 |
+
|
1344 |
+
|
1345 |
+
// Special C++ only overloads for std()-like functions (See gh-40287)
|
1346 |
+
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
|
1347 |
+
// So, for example std(0) would select the std(unbiased=False) overload
|
1348 |
+
TORCH_API inline Tensor var(const Tensor& self, int dim) {
|
1349 |
+
return at::var(self, IntArrayRef{dim});
|
1350 |
+
}
|
1351 |
+
TORCH_API inline std::tuple<Tensor, Tensor> var_mean(const Tensor& self, int dim) {
|
1352 |
+
return at::var_mean(self, IntArrayRef{dim});
|
1353 |
+
}
|
1354 |
+
TORCH_API inline Tensor std(const Tensor& self, int dim) {
|
1355 |
+
return at::std(self, IntArrayRef{dim});
|
1356 |
+
}
|
1357 |
+
TORCH_API inline std::tuple<Tensor, Tensor> std_mean(const Tensor& self, int dim) {
|
1358 |
+
return at::std_mean(self, IntArrayRef{dim});
|
1359 |
+
}
|
1360 |
+
|
1361 |
+
inline int64_t numel(const Tensor& tensor) {
|
1362 |
+
return tensor.numel();
|
1363 |
+
}
|
1364 |
+
|
1365 |
+
inline int64_t size(const Tensor& tensor, int64_t dim) {
|
1366 |
+
return tensor.size(dim);
|
1367 |
+
}
|
1368 |
+
|
1369 |
+
inline int64_t stride(const Tensor& tensor, int64_t dim) {
|
1370 |
+
return tensor.stride(dim);
|
1371 |
+
}
|
1372 |
+
|
1373 |
+
inline bool is_complex(const Tensor& tensor) {
|
1374 |
+
return tensor.is_complex();
|
1375 |
+
}
|
1376 |
+
|
1377 |
+
inline bool is_floating_point(const Tensor& tensor) {
|
1378 |
+
return tensor.is_floating_point();
|
1379 |
+
}
|
1380 |
+
|
1381 |
+
inline bool is_signed(const Tensor& tensor) {
|
1382 |
+
return tensor.is_signed();
|
1383 |
+
}
|
1384 |
+
|
1385 |
+
inline bool is_inference(const Tensor& tensor) {
|
1386 |
+
return tensor.is_inference();
|
1387 |
+
}
|
1388 |
+
|
1389 |
+
inline bool _is_zerotensor(const Tensor& tensor) {
|
1390 |
+
return tensor._is_zerotensor();
|
1391 |
+
}
|
1392 |
+
|
1393 |
+
inline bool is_conj(const Tensor& tensor) {
|
1394 |
+
return tensor.is_conj();
|
1395 |
+
}
|
1396 |
+
|
1397 |
+
inline Tensor conj(const Tensor& tensor) {
|
1398 |
+
return tensor.conj();
|
1399 |
+
}
|
1400 |
+
|
1401 |
+
inline bool is_neg(const Tensor& tensor) {
|
1402 |
+
return tensor.is_neg();
|
1403 |
+
}
|
1404 |
+
|
1405 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Generator.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/Generator.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/LegacyBatchedTensorImpl.h
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <bitset>
|
4 |
+
#include <utility>
|
5 |
+
|
6 |
+
#include <ATen/ArrayRef.h>
|
7 |
+
#include <ATen/SmallVector.h>
|
8 |
+
#include <ATen/Tensor.h>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
|
12 |
+
// We assume this in a few other places in the codebase,
|
13 |
+
// but there isn't a centralized definition.
|
14 |
+
constexpr int64_t kVmapMaxTensorDims = 64;
|
15 |
+
|
16 |
+
// The valid vmap levels range from [0, 64). This effectively means that we
|
17 |
+
// support a maximum of 64 nested vmaps.
|
18 |
+
constexpr int64_t kVmapNumLevels = 64;
|
19 |
+
|
20 |
+
// Store this number of elements of BatchDims on the stack. Most people will
|
21 |
+
// probably use <= 5 nested vmaps, but adjust this number as necessary.
|
22 |
+
constexpr int64_t kBatchDimsStackSize = 5;
|
23 |
+
|
24 |
+
// a BatchDim represents a "private" dimension on a Tensor created inside of
|
25 |
+
// vmap. It is a (level, dim) tuple, with the `dim` indicating which dimension
|
26 |
+
// is being vmap'ed over and the `level` being an identifier for which vmap
|
27 |
+
// said dimension was created inside. The `dim` corresponds to a "physical
|
28 |
+
// dim" - it is a dimension index on the underlying physical tensor that is
|
29 |
+
// being vmapped over.
|
30 |
+
struct BatchDim {
|
31 |
+
BatchDim(int64_t level, int64_t dim) : dim_(dim), level_(level) {}
|
32 |
+
int64_t dim() const {
|
33 |
+
return dim_;
|
34 |
+
}
|
35 |
+
int64_t level() const {
|
36 |
+
return level_;
|
37 |
+
}
|
38 |
+
|
39 |
+
private:
|
40 |
+
int64_t dim_;
|
41 |
+
int64_t level_;
|
42 |
+
};
|
43 |
+
|
44 |
+
using BatchDims = SmallVector<BatchDim, kBatchDimsStackSize>;
|
45 |
+
using BatchDimsRef = ArrayRef<BatchDim>;
|
46 |
+
|
47 |
+
// A BatchedTensorImpl holds an underlying Tensor and a list of BatchDim
|
48 |
+
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
|
49 |
+
// BatchedTensorImpl.
|
50 |
+
//
|
51 |
+
// The batch dimensions are treated as being "private"; they are not
|
52 |
+
// user-visible. For example, in the following Tensor,
|
53 |
+
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2, dim=1)])
|
54 |
+
// dimensions 0 and 1 are batch dimensions.
|
55 |
+
//
|
56 |
+
// bt.sizes() returns (5, 7); bt.sum(0) performs a reduction over the (public)
|
57 |
+
// dim 0, which is equivalent to dim 3 in the underlying ones(2, 3, 5, 7)
|
58 |
+
// tensor.
|
59 |
+
struct TORCH_API BatchedTensorImpl : public c10::TensorImpl {
|
60 |
+
explicit BatchedTensorImpl(Tensor value, BatchDims bdims);
|
61 |
+
|
62 |
+
// Returns a reference to BatchDims that represent which dimensions of this
|
63 |
+
// tensor are private.
|
64 |
+
BatchDimsRef bdims() const {
|
65 |
+
return bdims_;
|
66 |
+
}
|
67 |
+
|
68 |
+
// BatchedTensorImpl wraps a Tensor
|
69 |
+
const Tensor& value() const {
|
70 |
+
return value_;
|
71 |
+
};
|
72 |
+
|
73 |
+
// Given a public dimension index, return the dimension index in the
|
74 |
+
// underlying value() tensor. For example, if we have
|
75 |
+
// bt = BatchedTensorImpl(ones(2, 3, 5, 7), [(lvl=1, dim=0), (lvl=2,
|
76 |
+
// dim=2)])
|
77 |
+
// bt.actualDim(0) -> 1
|
78 |
+
// bt.actualDim(1) -> 3
|
79 |
+
// bt.actualDim(2) -> Error
|
80 |
+
int64_t actualDim(int64_t dim, bool wrap_dim = true) const;
|
81 |
+
|
82 |
+
// We have to override this because we opted into CustomStrides
|
83 |
+
IntArrayRef strides_custom() const override;
|
84 |
+
// Override a bunch of methods inherited from TensorImpl to return error
|
85 |
+
// messages.
|
86 |
+
bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
|
87 |
+
void set_size(int64_t dim, int64_t new_size) override;
|
88 |
+
void set_stride(int64_t dim, int64_t new_stride) override;
|
89 |
+
void set_storage_offset(int64_t storage_offset) override;
|
90 |
+
#ifdef DEBUG
|
91 |
+
bool has_storage() const override;
|
92 |
+
#endif
|
93 |
+
|
94 |
+
private:
|
95 |
+
// see NOTE: [BatchedTensorImpl levels invariant]
|
96 |
+
void checkInvariants() const;
|
97 |
+
const char* tensorimpl_type_name() const override;
|
98 |
+
|
99 |
+
Tensor value_;
|
100 |
+
|
101 |
+
// Note: [BatchedTensorImpl levels invariant]
|
102 |
+
// There is an invariant that the BatchDims must be stored in increasing
|
103 |
+
// `level` order. That is, for i < j, bdims_[i].level must be less than
|
104 |
+
// bdims_[j].level.
|
105 |
+
BatchDims bdims_;
|
106 |
+
};
|
107 |
+
|
108 |
+
// NB: We use the term "BatchedTensor" to mean a Tensor that is backed with a
|
109 |
+
// BatchedTensorImpl.
|
110 |
+
inline bool isBatchedTensor(const Tensor& tensor) {
|
111 |
+
return tensor.unsafeGetTensorImpl()->key_set().has(DispatchKey::Batched);
|
112 |
+
}
|
113 |
+
|
114 |
+
// It is unsafe to call this on a Tensor that is not backed by a
|
115 |
+
// BatchedTensorImpl. Please use `maybeGetBatchedImpl` whenever possible.
|
116 |
+
inline BatchedTensorImpl* unsafeGetBatchedImpl(const Tensor& tensor) {
|
117 |
+
return static_cast<BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
|
118 |
+
}
|
119 |
+
|
120 |
+
inline BatchedTensorImpl* maybeGetBatchedImpl(const Tensor& tensor) {
|
121 |
+
if (!isBatchedTensor(tensor)) {
|
122 |
+
return nullptr;
|
123 |
+
}
|
124 |
+
return unsafeGetBatchedImpl(tensor);
|
125 |
+
}
|
126 |
+
|
127 |
+
// Returns a bitset. If bit i is set, then that means dim i is a batchdim.
|
128 |
+
inline std::bitset<kVmapMaxTensorDims> createBatchDimBitset(
|
129 |
+
BatchDimsRef bdims) {
|
130 |
+
std::bitset<kVmapMaxTensorDims> is_bdim;
|
131 |
+
for (const auto& bdim : bdims) {
|
132 |
+
is_bdim.set(bdim.dim());
|
133 |
+
}
|
134 |
+
return is_bdim;
|
135 |
+
}
|
136 |
+
|
137 |
+
// Creates a bitset for all of the levels present in `bdims`
|
138 |
+
inline std::bitset<kVmapNumLevels> createVmapLevelsBitset(BatchDimsRef bdims) {
|
139 |
+
std::bitset<kVmapNumLevels> result;
|
140 |
+
for (const auto& bdim : bdims) {
|
141 |
+
result.set(bdim.level());
|
142 |
+
}
|
143 |
+
return result;
|
144 |
+
}
|
145 |
+
|
146 |
+
inline std::ostream& operator<<(std::ostream& out, const BatchDim& bdim) {
|
147 |
+
out << "(lvl=" << bdim.level() << ", dim=" << bdim.dim() << ")";
|
148 |
+
return out;
|
149 |
+
}
|
150 |
+
|
151 |
+
// Use this to construct a BatchedTensor from a regular Tensor
|
152 |
+
TORCH_API Tensor makeBatched(const Tensor& tensor, BatchDims bdims);
|
153 |
+
|
154 |
+
// Adds a batch dim to `tensor`, returning a BatchedTensor
|
155 |
+
TORCH_API Tensor addBatchDim(const Tensor& tensor, int64_t level, int64_t dim);
|
156 |
+
|
157 |
+
// Checks if an inplace operation on self and other is "vmap compatible".
|
158 |
+
// See NOTE: [vmap-incompatible in-place operations] for the definition of this.
|
159 |
+
TORCH_API bool inplaceIsVmapCompatible(const Tensor& self, const Tensor& other);
|
160 |
+
|
161 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/LegacyVmapTransforms.h
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/LegacyBatchedTensorImpl.h>
|
4 |
+
#include <ATen/core/IListRef.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
// This file contains abstractions used for transforming *logical* vmap
|
9 |
+
// arguments into *physical* arguments. (Keep reading for definitions of these
|
10 |
+
// terms).
|
11 |
+
|
12 |
+
// NOTE: [Logical vs physical args]
|
13 |
+
// Consider the following vmap.
|
14 |
+
// vmap(vmap(func, in_dims=(2,)), in_dims=(0,))(torch.ones(2, 3, 4))
|
15 |
+
// This would produce a BatchedTensor wrapping a Tensor of size [2, 3, 4],
|
16 |
+
// with batch dims 0 and 2:
|
17 |
+
// BatchedTensor(ones(2, 3, 4), bdims=[(lvl=1,dim=0),(lvl=2,dim=2)])
|
18 |
+
//
|
19 |
+
// We say the *logical* view of the tensor has size [3] -- tensors inside
|
20 |
+
// `func` appear to have size [3].
|
21 |
+
// However, the *physical* underlying tensor (the one passed to vmap) has size
|
22 |
+
// [2, 3, 4].
|
23 |
+
//
|
24 |
+
// This notion of logical vs physical also extends to non-tensor arguments.
|
25 |
+
// Consider the previous tensor; let's assume the user called
|
26 |
+
// `torch.sum(tensor, dim=0)` inside of `func`. Then the logical
|
27 |
+
// dimension they are reducing over is dim 0 but the physical dim is dim 1
|
28 |
+
// (the first non-batch dimension)
|
29 |
+
|
30 |
+
// Forward declared; see NOTE: [What is a VmapPhysicalView?]
|
31 |
+
struct VmapPhysicalView;
|
32 |
+
|
33 |
+
// Most PyTorch operators take 4 or fewer inputs.
|
34 |
+
constexpr int64_t kVmapTransformStaticInputSize = 4;
|
35 |
+
using VmapPhysicalViewVec =
|
36 |
+
SmallVector<VmapPhysicalView, kVmapTransformStaticInputSize>;
|
37 |
+
|
38 |
+
// Pytorch generally advertises good performance for <= 5 dims.
|
39 |
+
// (see ATen/core/DimVector.h). We add a few extra dims (~3) for vmap
|
40 |
+
// dimensions to get 8. Adjust this number as necessary
|
41 |
+
constexpr int64_t kVmapStaticDimVecSize = 8;
|
42 |
+
using VmapDimVector = SmallVector<int64_t, kVmapStaticDimVecSize>;
|
43 |
+
using VmapSymDimVector = SmallVector<c10::SymInt, kVmapStaticDimVecSize>;
|
44 |
+
|
45 |
+
// NOTE: [What is an VmapTransform?]
|
46 |
+
// An *VmapTransform* converts logical views of tensors to physical views.
|
47 |
+
//
|
48 |
+
// Batching rules use VmapTransforms to convert logical arguments to
|
49 |
+
// physical arguments, then call one or more at:: operator that handles the
|
50 |
+
// physical arguments, and then converts the physical result back to a logical
|
51 |
+
// argument.
|
52 |
+
|
53 |
+
// VmapTransform for operators that take tensors with multiple batch dims.
|
54 |
+
// Given one or more logical views on Tensors, `logicalToPhysical`
|
55 |
+
// permutes all of the batch dims to the front of the tensor, aligns
|
56 |
+
// and expands the batch dims to match each other (according to their `level`),
|
57 |
+
// and returns a VmapPhysicalView on the tensor(s).
|
58 |
+
struct TORCH_API MultiBatchVmapTransform {
|
59 |
+
static VmapPhysicalView logicalToPhysical(const Tensor& logical_tensor);
|
60 |
+
static VmapPhysicalViewVec logicalToPhysical(ITensorListRef logical_tensors);
|
61 |
+
};
|
62 |
+
|
63 |
+
// VmapTransform for operators that broadcast all inputs.
|
64 |
+
// Given some logical views on Tensors, `logicalToPhysical`:
|
65 |
+
// - permutes all of the batch dims to the front of the tensors
|
66 |
+
// - aligns all the batch dims to the collective levels of all of the tensors.
|
67 |
+
// If a tensor does not have a batch dim for a vmap level, then it receives
|
68 |
+
// a size-one dimension for said level.
|
69 |
+
// - aligns the non-batch dims to have the same dimensionality, adding extra
|
70 |
+
// size-1 dimensions in between the batch dimensions and the non-batch
|
71 |
+
// dimensions so that the batch dimensions are lined up from the right.
|
72 |
+
//
|
73 |
+
// For example: given inputs of size (B, 2) and (B, 3, 2) where B is the batch
|
74 |
+
// dimension, BroadcastingVmapTransform returns VmapPhysicalViews that wrap
|
75 |
+
// tensors of size (B, 1, 2) and (B, 3, 2).
|
76 |
+
//
|
77 |
+
// Given inputs of size (B, 2) and (2,), BroadcastingVmapTransform returns
|
78 |
+
// VmapPhysicalViews wrapping tensors of size (B, 2) and (1, 2). We don't
|
79 |
+
// actually *need* to return a tensor of size (1, 2) for the second tensor
|
80 |
+
// because the broadcasting operation takes care of that for us, but we do
|
81 |
+
// it anyways to keep things simple.
|
82 |
+
struct TORCH_API BroadcastingVmapTransform {
|
83 |
+
static VmapPhysicalViewVec logicalToPhysical(TensorList logical_tensors);
|
84 |
+
};
|
85 |
+
|
86 |
+
// Forward declared, if you're reading this file head to toe, don't worry about
|
87 |
+
// it yet.
|
88 |
+
struct VmapPhysicalToLogicalMap;
|
89 |
+
|
90 |
+
// NOTE: [What is a VmapPhysicalView?]
|
91 |
+
// VmapPhysicalView represents a physical view on a Tensor.
|
92 |
+
//
|
93 |
+
// One can use it to further convert logical dimension indices, logical shapes,
|
94 |
+
// and more to their physical variants, or convert a new (physical) tensor into
|
95 |
+
// a logical BatchedTensor. (TODO(rzou): some of these are not yet implemented).
|
96 |
+
//
|
97 |
+
// VmapPhysicalView stores a physical tensor with all of its batch dimensions at
|
98 |
+
// the front and some levels that correspond to said batch dimensions.
|
99 |
+
//
|
100 |
+
// The levels bitset specifies which vmap levels correspond to the batch
|
101 |
+
// dimensions at the front of the tensor. In particular, the number of set bits
|
102 |
+
// corresponds to the number of batch dimensions on `tensor` and the rightmost
|
103 |
+
// bit of `levels` specifies the maximum number of nested vmaps we are in at
|
104 |
+
// this point in time.
|
105 |
+
// For example, given:
|
106 |
+
// physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5, 6), levels={1, 3})
|
107 |
+
//
|
108 |
+
// Rightmost bit of `levels` is 3 indicating the number of nested vmaps less
|
109 |
+
// than or equal to 3.
|
110 |
+
// bitset: 010100
|
111 |
+
// ^
|
112 |
+
// |
|
113 |
+
// levels: 012345
|
114 |
+
struct TORCH_API VmapPhysicalView {
|
115 |
+
VmapPhysicalView(Tensor&& tensor, std::bitset<kVmapNumLevels> levels)
|
116 |
+
: levels_(levels), tensor_(tensor) {
|
117 |
+
TORCH_INTERNAL_ASSERT(!isBatchedTensor(tensor));
|
118 |
+
}
|
119 |
+
|
120 |
+
Tensor& tensor() {
|
121 |
+
return tensor_;
|
122 |
+
}
|
123 |
+
const Tensor& tensor() const {
|
124 |
+
return tensor_;
|
125 |
+
}
|
126 |
+
|
127 |
+
// Maps logical dim indices to physical dim indices. Also does dim wrapping.
|
128 |
+
//
|
129 |
+
// For example, given:
|
130 |
+
// physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5), levels={1, 3})
|
131 |
+
//
|
132 |
+
// Then physical_view.getPhysicalDims({0, 1}) returns {2, 3}.
|
133 |
+
// This is because the size of levels tell us that the first two dimensions
|
134 |
+
// of `tensor_` are batch dimensions, so a logical dim of `n` is actually
|
135 |
+
// a physical dim of `n + 2`.
|
136 |
+
VmapDimVector getPhysicalDims(OptionalIntArrayRef logical_dims) const;
|
137 |
+
int64_t getPhysicalDim(int64_t logical_dim) const;
|
138 |
+
|
139 |
+
// Returns a VmapPhysicalToLogicalMap object. This can be used for
|
140 |
+
// mapping a physical tensor to a new logical tensor (BatchedTensor)
|
141 |
+
VmapPhysicalToLogicalMap getPhysicalToLogicalMap() const;
|
142 |
+
|
143 |
+
// Maps a logical shape to a physical shape by pre-pending the batch
|
144 |
+
// sizes to the logical shape.
|
145 |
+
VmapDimVector getPhysicalShape(IntArrayRef logical_shape) const;
|
146 |
+
|
147 |
+
int64_t numBatchDims() const;
|
148 |
+
|
149 |
+
private:
|
150 |
+
int64_t numLogicalDims() const;
|
151 |
+
|
152 |
+
std::bitset<kVmapNumLevels> levels_;
|
153 |
+
Tensor tensor_;
|
154 |
+
};
|
155 |
+
|
156 |
+
// Convenience struct used for mapping a physical tensor (a non-BatchedTensor)
|
157 |
+
// to a logical one (BatchedTensor). It holds some levels that are used to do
|
158 |
+
// the mapping and assumes that the batch dimensions in the physical tensor all
|
159 |
+
// occur at the front of the tensor.
|
160 |
+
struct TORCH_API VmapPhysicalToLogicalMap {
|
161 |
+
VmapPhysicalToLogicalMap(std::bitset<kVmapNumLevels> levels)
|
162 |
+
: levels_(levels) {}
|
163 |
+
|
164 |
+
// Maps a physical tensor to a new logical tensor (BatchedTensor).
|
165 |
+
// Assumes that all of the "batch dimensions" are at the front
|
166 |
+
// of the physical tensor. For example, given:
|
167 |
+
// - x = rank-4 Tensor with size 2, 3, 5, 7
|
168 |
+
// - levels = (2, 4)
|
169 |
+
// Returns:
|
170 |
+
// - BatchedTensor(x, bdims=[(dim=0,lvl=2), (dim=1, lvl=4)])
|
171 |
+
Tensor apply(const Tensor& physical_tensor) const;
|
172 |
+
|
173 |
+
// Given a vector of physical tensors,
|
174 |
+
// 1. maps each tensor to a new logical tensor. Assumes that all of the
|
175 |
+
// "batch dimensions" are at the front of the physical tensors.
|
176 |
+
// 2. stores the new logical tensors back into the passed-in vector. This is
|
177 |
+
// to avoid additional dynamic allocations.
|
178 |
+
void applyInplace(std::vector<Tensor>& physical_tensors) const;
|
179 |
+
|
180 |
+
std::bitset<kVmapNumLevels> levels_;
|
181 |
+
};
|
182 |
+
|
183 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/MapAllocator.h
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/util/string_view.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
enum MappedAllocatorModes {
|
9 |
+
ALLOCATOR_MAPPED_SHARED = 1,
|
10 |
+
ALLOCATOR_MAPPED_SHAREDMEM = 2,
|
11 |
+
ALLOCATOR_MAPPED_EXCLUSIVE = 4,
|
12 |
+
ALLOCATOR_MAPPED_NOCREATE = 8,
|
13 |
+
ALLOCATOR_MAPPED_KEEPFD = 16,
|
14 |
+
ALLOCATOR_MAPPED_FROMFD = 32,
|
15 |
+
ALLOCATOR_MAPPED_UNLINK = 64
|
16 |
+
};
|
17 |
+
|
18 |
+
// Sentinel value/type to help distinguish the file descriptor constructor from
|
19 |
+
// the non-file descriptor constructor
|
20 |
+
enum WithFd { WITH_FD };
|
21 |
+
|
22 |
+
TORCH_API std::string NewProcessWideShmHandle();
|
23 |
+
|
24 |
+
class TORCH_API MapAllocator {
|
25 |
+
public:
|
26 |
+
MapAllocator(c10::string_view filename, int flags, size_t size);
|
27 |
+
MapAllocator(
|
28 |
+
WithFd,
|
29 |
+
c10::string_view filename,
|
30 |
+
int fd,
|
31 |
+
int flags,
|
32 |
+
size_t size);
|
33 |
+
MapAllocator(const MapAllocator&) = delete;
|
34 |
+
MapAllocator& operator=(const MapAllocator&) = delete;
|
35 |
+
MapAllocator(MapAllocator&&) = delete;
|
36 |
+
MapAllocator& operator=(MapAllocator&&) = delete;
|
37 |
+
|
38 |
+
const char* filename() const {
|
39 |
+
return filename_.c_str();
|
40 |
+
}
|
41 |
+
int fd() const {
|
42 |
+
#ifdef _WIN32
|
43 |
+
TORCH_CHECK(false, "MapAllocator::fd() is unsupported on Windows");
|
44 |
+
#else
|
45 |
+
return fd_;
|
46 |
+
#endif
|
47 |
+
}
|
48 |
+
ptrdiff_t size() const {
|
49 |
+
return size_;
|
50 |
+
}
|
51 |
+
// Return a pointer to the actual data for this allocator
|
52 |
+
// (in the case of the refcounted allocator, this is offset
|
53 |
+
// from the base pointer.)
|
54 |
+
virtual void* data() const {
|
55 |
+
return base_ptr_;
|
56 |
+
}
|
57 |
+
|
58 |
+
static MapAllocator* fromDataPtr(const at::DataPtr&);
|
59 |
+
static at::DataPtr makeDataPtr(
|
60 |
+
c10::string_view filename,
|
61 |
+
int flags,
|
62 |
+
size_t size,
|
63 |
+
size_t* actual_size_out);
|
64 |
+
static at::DataPtr makeDataPtr(
|
65 |
+
WithFd,
|
66 |
+
const char* filename,
|
67 |
+
int fd,
|
68 |
+
int flags,
|
69 |
+
size_t size,
|
70 |
+
size_t* actual_size_out);
|
71 |
+
|
72 |
+
// Closes the data. Helps us avoid destructor shenanigans
|
73 |
+
virtual void close();
|
74 |
+
|
75 |
+
// This is very dangerous. You have to redefine this destructor for each
|
76 |
+
// subclass
|
77 |
+
virtual ~MapAllocator();
|
78 |
+
|
79 |
+
protected:
|
80 |
+
bool closed_ = false;
|
81 |
+
std::string filename_;
|
82 |
+
int flags_ = 0;
|
83 |
+
ptrdiff_t size_; /* mapped size */
|
84 |
+
#ifdef _WIN32
|
85 |
+
void* handle_;
|
86 |
+
void* event_;
|
87 |
+
std::string eventname_;
|
88 |
+
#else
|
89 |
+
int fd_ = -1;
|
90 |
+
#endif
|
91 |
+
void* base_ptr_ = nullptr;
|
92 |
+
};
|
93 |
+
|
94 |
+
// Base-from-member idiom
|
95 |
+
struct TORCH_API RefcountedMapAllocatorArgCheck {
|
96 |
+
RefcountedMapAllocatorArgCheck(int flags);
|
97 |
+
};
|
98 |
+
|
99 |
+
class TORCH_API RefcountedMapAllocator : private RefcountedMapAllocatorArgCheck,
|
100 |
+
public MapAllocator {
|
101 |
+
public:
|
102 |
+
RefcountedMapAllocator(const char* filename, int flags, size_t size);
|
103 |
+
RefcountedMapAllocator(
|
104 |
+
WithFd,
|
105 |
+
const char* filename,
|
106 |
+
int fd,
|
107 |
+
int flags,
|
108 |
+
size_t size);
|
109 |
+
|
110 |
+
static RefcountedMapAllocator* fromDataPtr(const at::DataPtr&);
|
111 |
+
static at::DataPtr makeDataPtr(
|
112 |
+
const char* filename,
|
113 |
+
int flags,
|
114 |
+
size_t size,
|
115 |
+
size_t* actual_size_out);
|
116 |
+
static at::DataPtr makeDataPtr(
|
117 |
+
WithFd,
|
118 |
+
const char* filename,
|
119 |
+
int fd,
|
120 |
+
int flags,
|
121 |
+
size_t size,
|
122 |
+
size_t* actual_size_out);
|
123 |
+
|
124 |
+
void* data() const override;
|
125 |
+
|
126 |
+
void incref();
|
127 |
+
int decref();
|
128 |
+
void close() override;
|
129 |
+
|
130 |
+
~RefcountedMapAllocator() override {
|
131 |
+
close();
|
132 |
+
}
|
133 |
+
|
134 |
+
protected:
|
135 |
+
void checkFlags();
|
136 |
+
void initializeAlloc();
|
137 |
+
};
|
138 |
+
|
139 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/MethodOperators.h
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from MethodOperators.h
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
// Forward declarations of any types needed in the operator signatures.
|
14 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
15 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
16 |
+
#include <ATen/core/ATen_fwd.h>
|
17 |
+
|
18 |
+
#include <ATen/ops/_addmm_activation_ops.h>
|
19 |
+
#include <ATen/ops/_autocast_to_full_precision_ops.h>
|
20 |
+
#include <ATen/ops/_autocast_to_reduced_precision_ops.h>
|
21 |
+
#include <ATen/ops/_backward_ops.h>
|
22 |
+
#include <ATen/ops/_coalesced_ops.h>
|
23 |
+
#include <ATen/ops/_conj_ops.h>
|
24 |
+
#include <ATen/ops/_conj_physical_ops.h>
|
25 |
+
#include <ATen/ops/_dimI_ops.h>
|
26 |
+
#include <ATen/ops/_dimV_ops.h>
|
27 |
+
#include <ATen/ops/_fw_primal_ops.h>
|
28 |
+
#include <ATen/ops/_indices_ops.h>
|
29 |
+
#include <ATen/ops/_is_all_true_ops.h>
|
30 |
+
#include <ATen/ops/_is_any_true_ops.h>
|
31 |
+
#include <ATen/ops/_is_zerotensor_ops.h>
|
32 |
+
#include <ATen/ops/_neg_view_ops.h>
|
33 |
+
#include <ATen/ops/_nested_tensor_size_ops.h>
|
34 |
+
#include <ATen/ops/_nested_tensor_storage_offsets_ops.h>
|
35 |
+
#include <ATen/ops/_nested_tensor_strides_ops.h>
|
36 |
+
#include <ATen/ops/_nnz_ops.h>
|
37 |
+
#include <ATen/ops/_reshape_alias_ops.h>
|
38 |
+
#include <ATen/ops/_sparse_mask_projection_ops.h>
|
39 |
+
#include <ATen/ops/_to_dense_ops.h>
|
40 |
+
#include <ATen/ops/_to_sparse_bsc_ops.h>
|
41 |
+
#include <ATen/ops/_to_sparse_bsr_ops.h>
|
42 |
+
#include <ATen/ops/_to_sparse_csc_ops.h>
|
43 |
+
#include <ATen/ops/_to_sparse_csr_ops.h>
|
44 |
+
#include <ATen/ops/_to_sparse_ops.h>
|
45 |
+
#include <ATen/ops/_values_ops.h>
|
46 |
+
#include <ATen/ops/_version_ops.h>
|
47 |
+
#include <ATen/ops/abs_ops.h>
|
48 |
+
#include <ATen/ops/absolute_ops.h>
|
49 |
+
#include <ATen/ops/acos_ops.h>
|
50 |
+
#include <ATen/ops/acosh_ops.h>
|
51 |
+
#include <ATen/ops/add_ops.h>
|
52 |
+
#include <ATen/ops/addbmm_ops.h>
|
53 |
+
#include <ATen/ops/addcdiv_ops.h>
|
54 |
+
#include <ATen/ops/addcmul_ops.h>
|
55 |
+
#include <ATen/ops/addmm_ops.h>
|
56 |
+
#include <ATen/ops/addmv_ops.h>
|
57 |
+
#include <ATen/ops/addr_ops.h>
|
58 |
+
#include <ATen/ops/adjoint_ops.h>
|
59 |
+
#include <ATen/ops/alias_ops.h>
|
60 |
+
#include <ATen/ops/align_as_ops.h>
|
61 |
+
#include <ATen/ops/align_to_ops.h>
|
62 |
+
#include <ATen/ops/all_ops.h>
|
63 |
+
#include <ATen/ops/allclose_ops.h>
|
64 |
+
#include <ATen/ops/amax_ops.h>
|
65 |
+
#include <ATen/ops/amin_ops.h>
|
66 |
+
#include <ATen/ops/aminmax_ops.h>
|
67 |
+
#include <ATen/ops/and_ops.h>
|
68 |
+
#include <ATen/ops/angle_ops.h>
|
69 |
+
#include <ATen/ops/any_ops.h>
|
70 |
+
#include <ATen/ops/arccos_ops.h>
|
71 |
+
#include <ATen/ops/arccosh_ops.h>
|
72 |
+
#include <ATen/ops/arcsin_ops.h>
|
73 |
+
#include <ATen/ops/arcsinh_ops.h>
|
74 |
+
#include <ATen/ops/arctan2_ops.h>
|
75 |
+
#include <ATen/ops/arctan_ops.h>
|
76 |
+
#include <ATen/ops/arctanh_ops.h>
|
77 |
+
#include <ATen/ops/argmax_ops.h>
|
78 |
+
#include <ATen/ops/argmin_ops.h>
|
79 |
+
#include <ATen/ops/argsort_ops.h>
|
80 |
+
#include <ATen/ops/argwhere_ops.h>
|
81 |
+
#include <ATen/ops/as_strided_ops.h>
|
82 |
+
#include <ATen/ops/as_strided_scatter_ops.h>
|
83 |
+
#include <ATen/ops/asin_ops.h>
|
84 |
+
#include <ATen/ops/asinh_ops.h>
|
85 |
+
#include <ATen/ops/atan2_ops.h>
|
86 |
+
#include <ATen/ops/atan_ops.h>
|
87 |
+
#include <ATen/ops/atanh_ops.h>
|
88 |
+
#include <ATen/ops/baddbmm_ops.h>
|
89 |
+
#include <ATen/ops/bernoulli_ops.h>
|
90 |
+
#include <ATen/ops/bincount_ops.h>
|
91 |
+
#include <ATen/ops/bitwise_and_ops.h>
|
92 |
+
#include <ATen/ops/bitwise_left_shift_ops.h>
|
93 |
+
#include <ATen/ops/bitwise_not_ops.h>
|
94 |
+
#include <ATen/ops/bitwise_or_ops.h>
|
95 |
+
#include <ATen/ops/bitwise_right_shift_ops.h>
|
96 |
+
#include <ATen/ops/bitwise_xor_ops.h>
|
97 |
+
#include <ATen/ops/bmm_ops.h>
|
98 |
+
#include <ATen/ops/broadcast_to_ops.h>
|
99 |
+
#include <ATen/ops/cauchy_ops.h>
|
100 |
+
#include <ATen/ops/ccol_indices_ops.h>
|
101 |
+
#include <ATen/ops/ceil_ops.h>
|
102 |
+
#include <ATen/ops/chalf_ops.h>
|
103 |
+
#include <ATen/ops/cholesky_inverse_ops.h>
|
104 |
+
#include <ATen/ops/cholesky_ops.h>
|
105 |
+
#include <ATen/ops/cholesky_solve_ops.h>
|
106 |
+
#include <ATen/ops/chunk_ops.h>
|
107 |
+
#include <ATen/ops/clamp_max_ops.h>
|
108 |
+
#include <ATen/ops/clamp_min_ops.h>
|
109 |
+
#include <ATen/ops/clamp_ops.h>
|
110 |
+
#include <ATen/ops/clip_ops.h>
|
111 |
+
#include <ATen/ops/clone_ops.h>
|
112 |
+
#include <ATen/ops/coalesce_ops.h>
|
113 |
+
#include <ATen/ops/col_indices_ops.h>
|
114 |
+
#include <ATen/ops/conj_ops.h>
|
115 |
+
#include <ATen/ops/conj_physical_ops.h>
|
116 |
+
#include <ATen/ops/contiguous_ops.h>
|
117 |
+
#include <ATen/ops/copy_ops.h>
|
118 |
+
#include <ATen/ops/copysign_ops.h>
|
119 |
+
#include <ATen/ops/corrcoef_ops.h>
|
120 |
+
#include <ATen/ops/cos_ops.h>
|
121 |
+
#include <ATen/ops/cosh_ops.h>
|
122 |
+
#include <ATen/ops/count_nonzero_ops.h>
|
123 |
+
#include <ATen/ops/cov_ops.h>
|
124 |
+
#include <ATen/ops/cross_ops.h>
|
125 |
+
#include <ATen/ops/crow_indices_ops.h>
|
126 |
+
#include <ATen/ops/cummax_ops.h>
|
127 |
+
#include <ATen/ops/cummin_ops.h>
|
128 |
+
#include <ATen/ops/cumprod_ops.h>
|
129 |
+
#include <ATen/ops/cumsum_ops.h>
|
130 |
+
#include <ATen/ops/data_ops.h>
|
131 |
+
#include <ATen/ops/deg2rad_ops.h>
|
132 |
+
#include <ATen/ops/dense_dim_ops.h>
|
133 |
+
#include <ATen/ops/dequantize_ops.h>
|
134 |
+
#include <ATen/ops/det_ops.h>
|
135 |
+
#include <ATen/ops/detach_ops.h>
|
136 |
+
#include <ATen/ops/diag_embed_ops.h>
|
137 |
+
#include <ATen/ops/diag_ops.h>
|
138 |
+
#include <ATen/ops/diagflat_ops.h>
|
139 |
+
#include <ATen/ops/diagonal_ops.h>
|
140 |
+
#include <ATen/ops/diagonal_scatter_ops.h>
|
141 |
+
#include <ATen/ops/diff_ops.h>
|
142 |
+
#include <ATen/ops/digamma_ops.h>
|
143 |
+
#include <ATen/ops/dist_ops.h>
|
144 |
+
#include <ATen/ops/div_ops.h>
|
145 |
+
#include <ATen/ops/divide_ops.h>
|
146 |
+
#include <ATen/ops/dot_ops.h>
|
147 |
+
#include <ATen/ops/dsplit_ops.h>
|
148 |
+
#include <ATen/ops/eq_ops.h>
|
149 |
+
#include <ATen/ops/equal_ops.h>
|
150 |
+
#include <ATen/ops/erf_ops.h>
|
151 |
+
#include <ATen/ops/erfc_ops.h>
|
152 |
+
#include <ATen/ops/erfinv_ops.h>
|
153 |
+
#include <ATen/ops/exp2_ops.h>
|
154 |
+
#include <ATen/ops/exp_ops.h>
|
155 |
+
#include <ATen/ops/expand_as_ops.h>
|
156 |
+
#include <ATen/ops/expand_ops.h>
|
157 |
+
#include <ATen/ops/expm1_ops.h>
|
158 |
+
#include <ATen/ops/exponential_ops.h>
|
159 |
+
#include <ATen/ops/fill_diagonal_ops.h>
|
160 |
+
#include <ATen/ops/fill_ops.h>
|
161 |
+
#include <ATen/ops/fix_ops.h>
|
162 |
+
#include <ATen/ops/flatten_ops.h>
|
163 |
+
#include <ATen/ops/flip_ops.h>
|
164 |
+
#include <ATen/ops/fliplr_ops.h>
|
165 |
+
#include <ATen/ops/flipud_ops.h>
|
166 |
+
#include <ATen/ops/float_power_ops.h>
|
167 |
+
#include <ATen/ops/floor_divide_ops.h>
|
168 |
+
#include <ATen/ops/floor_ops.h>
|
169 |
+
#include <ATen/ops/fmax_ops.h>
|
170 |
+
#include <ATen/ops/fmin_ops.h>
|
171 |
+
#include <ATen/ops/fmod_ops.h>
|
172 |
+
#include <ATen/ops/frac_ops.h>
|
173 |
+
#include <ATen/ops/frexp_ops.h>
|
174 |
+
#include <ATen/ops/gather_ops.h>
|
175 |
+
#include <ATen/ops/gcd_ops.h>
|
176 |
+
#include <ATen/ops/ge_ops.h>
|
177 |
+
#include <ATen/ops/geometric_ops.h>
|
178 |
+
#include <ATen/ops/geqrf_ops.h>
|
179 |
+
#include <ATen/ops/ger_ops.h>
|
180 |
+
#include <ATen/ops/greater_equal_ops.h>
|
181 |
+
#include <ATen/ops/greater_ops.h>
|
182 |
+
#include <ATen/ops/gt_ops.h>
|
183 |
+
#include <ATen/ops/hardshrink_backward_ops.h>
|
184 |
+
#include <ATen/ops/hardshrink_ops.h>
|
185 |
+
#include <ATen/ops/heaviside_ops.h>
|
186 |
+
#include <ATen/ops/histc_ops.h>
|
187 |
+
#include <ATen/ops/histogram_ops.h>
|
188 |
+
#include <ATen/ops/hsplit_ops.h>
|
189 |
+
#include <ATen/ops/hypot_ops.h>
|
190 |
+
#include <ATen/ops/i0_ops.h>
|
191 |
+
#include <ATen/ops/igamma_ops.h>
|
192 |
+
#include <ATen/ops/igammac_ops.h>
|
193 |
+
#include <ATen/ops/index_add_ops.h>
|
194 |
+
#include <ATen/ops/index_copy_ops.h>
|
195 |
+
#include <ATen/ops/index_fill_ops.h>
|
196 |
+
#include <ATen/ops/index_ops.h>
|
197 |
+
#include <ATen/ops/index_put_ops.h>
|
198 |
+
#include <ATen/ops/index_reduce_ops.h>
|
199 |
+
#include <ATen/ops/index_select_ops.h>
|
200 |
+
#include <ATen/ops/indices_ops.h>
|
201 |
+
#include <ATen/ops/inner_ops.h>
|
202 |
+
#include <ATen/ops/int_repr_ops.h>
|
203 |
+
#include <ATen/ops/inverse_ops.h>
|
204 |
+
#include <ATen/ops/is_coalesced_ops.h>
|
205 |
+
#include <ATen/ops/is_complex_ops.h>
|
206 |
+
#include <ATen/ops/is_conj_ops.h>
|
207 |
+
#include <ATen/ops/is_distributed_ops.h>
|
208 |
+
#include <ATen/ops/is_floating_point_ops.h>
|
209 |
+
#include <ATen/ops/is_inference_ops.h>
|
210 |
+
#include <ATen/ops/is_leaf_ops.h>
|
211 |
+
#include <ATen/ops/is_neg_ops.h>
|
212 |
+
#include <ATen/ops/is_nonzero_ops.h>
|
213 |
+
#include <ATen/ops/is_pinned_ops.h>
|
214 |
+
#include <ATen/ops/is_same_size_ops.h>
|
215 |
+
#include <ATen/ops/is_set_to_ops.h>
|
216 |
+
#include <ATen/ops/is_signed_ops.h>
|
217 |
+
#include <ATen/ops/isclose_ops.h>
|
218 |
+
#include <ATen/ops/isfinite_ops.h>
|
219 |
+
#include <ATen/ops/isinf_ops.h>
|
220 |
+
#include <ATen/ops/isnan_ops.h>
|
221 |
+
#include <ATen/ops/isneginf_ops.h>
|
222 |
+
#include <ATen/ops/isposinf_ops.h>
|
223 |
+
#include <ATen/ops/isreal_ops.h>
|
224 |
+
#include <ATen/ops/istft_ops.h>
|
225 |
+
#include <ATen/ops/item_ops.h>
|
226 |
+
#include <ATen/ops/kron_ops.h>
|
227 |
+
#include <ATen/ops/kthvalue_ops.h>
|
228 |
+
#include <ATen/ops/lcm_ops.h>
|
229 |
+
#include <ATen/ops/ldexp_ops.h>
|
230 |
+
#include <ATen/ops/le_ops.h>
|
231 |
+
#include <ATen/ops/lerp_ops.h>
|
232 |
+
#include <ATen/ops/less_equal_ops.h>
|
233 |
+
#include <ATen/ops/less_ops.h>
|
234 |
+
#include <ATen/ops/lgamma_ops.h>
|
235 |
+
#include <ATen/ops/log10_ops.h>
|
236 |
+
#include <ATen/ops/log1p_ops.h>
|
237 |
+
#include <ATen/ops/log2_ops.h>
|
238 |
+
#include <ATen/ops/log_normal_ops.h>
|
239 |
+
#include <ATen/ops/log_ops.h>
|
240 |
+
#include <ATen/ops/log_softmax_ops.h>
|
241 |
+
#include <ATen/ops/logaddexp2_ops.h>
|
242 |
+
#include <ATen/ops/logaddexp_ops.h>
|
243 |
+
#include <ATen/ops/logcumsumexp_ops.h>
|
244 |
+
#include <ATen/ops/logdet_ops.h>
|
245 |
+
#include <ATen/ops/logical_and_ops.h>
|
246 |
+
#include <ATen/ops/logical_not_ops.h>
|
247 |
+
#include <ATen/ops/logical_or_ops.h>
|
248 |
+
#include <ATen/ops/logical_xor_ops.h>
|
249 |
+
#include <ATen/ops/logit_ops.h>
|
250 |
+
#include <ATen/ops/logsumexp_ops.h>
|
251 |
+
#include <ATen/ops/lshift_ops.h>
|
252 |
+
#include <ATen/ops/lt_ops.h>
|
253 |
+
#include <ATen/ops/lu_solve_ops.h>
|
254 |
+
#include <ATen/ops/mH_ops.h>
|
255 |
+
#include <ATen/ops/mT_ops.h>
|
256 |
+
#include <ATen/ops/masked_fill_ops.h>
|
257 |
+
#include <ATen/ops/masked_scatter_ops.h>
|
258 |
+
#include <ATen/ops/masked_select_ops.h>
|
259 |
+
#include <ATen/ops/matmul_ops.h>
|
260 |
+
#include <ATen/ops/matrix_H_ops.h>
|
261 |
+
#include <ATen/ops/matrix_exp_ops.h>
|
262 |
+
#include <ATen/ops/matrix_power_ops.h>
|
263 |
+
#include <ATen/ops/max_ops.h>
|
264 |
+
#include <ATen/ops/maximum_ops.h>
|
265 |
+
#include <ATen/ops/mean_ops.h>
|
266 |
+
#include <ATen/ops/median_ops.h>
|
267 |
+
#include <ATen/ops/min_ops.h>
|
268 |
+
#include <ATen/ops/minimum_ops.h>
|
269 |
+
#include <ATen/ops/mm_ops.h>
|
270 |
+
#include <ATen/ops/mode_ops.h>
|
271 |
+
#include <ATen/ops/moveaxis_ops.h>
|
272 |
+
#include <ATen/ops/movedim_ops.h>
|
273 |
+
#include <ATen/ops/msort_ops.h>
|
274 |
+
#include <ATen/ops/mul_ops.h>
|
275 |
+
#include <ATen/ops/multinomial_ops.h>
|
276 |
+
#include <ATen/ops/multiply_ops.h>
|
277 |
+
#include <ATen/ops/mv_ops.h>
|
278 |
+
#include <ATen/ops/mvlgamma_ops.h>
|
279 |
+
#include <ATen/ops/nan_to_num_ops.h>
|
280 |
+
#include <ATen/ops/nanmean_ops.h>
|
281 |
+
#include <ATen/ops/nanmedian_ops.h>
|
282 |
+
#include <ATen/ops/nanquantile_ops.h>
|
283 |
+
#include <ATen/ops/nansum_ops.h>
|
284 |
+
#include <ATen/ops/narrow_copy_ops.h>
|
285 |
+
#include <ATen/ops/narrow_ops.h>
|
286 |
+
#include <ATen/ops/ne_ops.h>
|
287 |
+
#include <ATen/ops/neg_ops.h>
|
288 |
+
#include <ATen/ops/negative_ops.h>
|
289 |
+
#include <ATen/ops/new_empty_ops.h>
|
290 |
+
#include <ATen/ops/new_empty_strided_ops.h>
|
291 |
+
#include <ATen/ops/new_full_ops.h>
|
292 |
+
#include <ATen/ops/new_ones_ops.h>
|
293 |
+
#include <ATen/ops/new_zeros_ops.h>
|
294 |
+
#include <ATen/ops/nextafter_ops.h>
|
295 |
+
#include <ATen/ops/nonzero_numpy_ops.h>
|
296 |
+
#include <ATen/ops/nonzero_ops.h>
|
297 |
+
#include <ATen/ops/nonzero_static_ops.h>
|
298 |
+
#include <ATen/ops/norm_ops.h>
|
299 |
+
#include <ATen/ops/normal_ops.h>
|
300 |
+
#include <ATen/ops/not_equal_ops.h>
|
301 |
+
#include <ATen/ops/numpy_T_ops.h>
|
302 |
+
#include <ATen/ops/or_ops.h>
|
303 |
+
#include <ATen/ops/orgqr_ops.h>
|
304 |
+
#include <ATen/ops/ormqr_ops.h>
|
305 |
+
#include <ATen/ops/outer_ops.h>
|
306 |
+
#include <ATen/ops/output_nr_ops.h>
|
307 |
+
#include <ATen/ops/permute_ops.h>
|
308 |
+
#include <ATen/ops/pin_memory_ops.h>
|
309 |
+
#include <ATen/ops/pinverse_ops.h>
|
310 |
+
#include <ATen/ops/polygamma_ops.h>
|
311 |
+
#include <ATen/ops/positive_ops.h>
|
312 |
+
#include <ATen/ops/pow_ops.h>
|
313 |
+
#include <ATen/ops/prelu_ops.h>
|
314 |
+
#include <ATen/ops/prod_ops.h>
|
315 |
+
#include <ATen/ops/put_ops.h>
|
316 |
+
#include <ATen/ops/q_per_channel_axis_ops.h>
|
317 |
+
#include <ATen/ops/q_per_channel_scales_ops.h>
|
318 |
+
#include <ATen/ops/q_per_channel_zero_points_ops.h>
|
319 |
+
#include <ATen/ops/q_scale_ops.h>
|
320 |
+
#include <ATen/ops/q_zero_point_ops.h>
|
321 |
+
#include <ATen/ops/qr_ops.h>
|
322 |
+
#include <ATen/ops/qscheme_ops.h>
|
323 |
+
#include <ATen/ops/quantile_ops.h>
|
324 |
+
#include <ATen/ops/rad2deg_ops.h>
|
325 |
+
#include <ATen/ops/random_ops.h>
|
326 |
+
#include <ATen/ops/ravel_ops.h>
|
327 |
+
#include <ATen/ops/reciprocal_ops.h>
|
328 |
+
#include <ATen/ops/record_stream_ops.h>
|
329 |
+
#include <ATen/ops/refine_names_ops.h>
|
330 |
+
#include <ATen/ops/relu_ops.h>
|
331 |
+
#include <ATen/ops/remainder_ops.h>
|
332 |
+
#include <ATen/ops/rename_ops.h>
|
333 |
+
#include <ATen/ops/renorm_ops.h>
|
334 |
+
#include <ATen/ops/repeat_interleave_ops.h>
|
335 |
+
#include <ATen/ops/repeat_ops.h>
|
336 |
+
#include <ATen/ops/requires_grad_ops.h>
|
337 |
+
#include <ATen/ops/reshape_as_ops.h>
|
338 |
+
#include <ATen/ops/reshape_ops.h>
|
339 |
+
#include <ATen/ops/resize_as_ops.h>
|
340 |
+
#include <ATen/ops/resize_as_sparse_ops.h>
|
341 |
+
#include <ATen/ops/resize_ops.h>
|
342 |
+
#include <ATen/ops/resolve_conj_ops.h>
|
343 |
+
#include <ATen/ops/resolve_neg_ops.h>
|
344 |
+
#include <ATen/ops/retain_grad_ops.h>
|
345 |
+
#include <ATen/ops/retains_grad_ops.h>
|
346 |
+
#include <ATen/ops/roll_ops.h>
|
347 |
+
#include <ATen/ops/rot90_ops.h>
|
348 |
+
#include <ATen/ops/round_ops.h>
|
349 |
+
#include <ATen/ops/row_indices_ops.h>
|
350 |
+
#include <ATen/ops/rshift_ops.h>
|
351 |
+
#include <ATen/ops/rsqrt_ops.h>
|
352 |
+
#include <ATen/ops/scatter_add_ops.h>
|
353 |
+
#include <ATen/ops/scatter_ops.h>
|
354 |
+
#include <ATen/ops/scatter_reduce_ops.h>
|
355 |
+
#include <ATen/ops/select_ops.h>
|
356 |
+
#include <ATen/ops/select_scatter_ops.h>
|
357 |
+
#include <ATen/ops/set_data_ops.h>
|
358 |
+
#include <ATen/ops/set_ops.h>
|
359 |
+
#include <ATen/ops/sgn_ops.h>
|
360 |
+
#include <ATen/ops/sigmoid_ops.h>
|
361 |
+
#include <ATen/ops/sign_ops.h>
|
362 |
+
#include <ATen/ops/signbit_ops.h>
|
363 |
+
#include <ATen/ops/sin_ops.h>
|
364 |
+
#include <ATen/ops/sinc_ops.h>
|
365 |
+
#include <ATen/ops/sinh_ops.h>
|
366 |
+
#include <ATen/ops/size_ops.h>
|
367 |
+
#include <ATen/ops/slice_ops.h>
|
368 |
+
#include <ATen/ops/slice_scatter_ops.h>
|
369 |
+
#include <ATen/ops/slogdet_ops.h>
|
370 |
+
#include <ATen/ops/smm_ops.h>
|
371 |
+
#include <ATen/ops/softmax_ops.h>
|
372 |
+
#include <ATen/ops/sort_ops.h>
|
373 |
+
#include <ATen/ops/sparse_dim_ops.h>
|
374 |
+
#include <ATen/ops/sparse_mask_ops.h>
|
375 |
+
#include <ATen/ops/sparse_resize_and_clear_ops.h>
|
376 |
+
#include <ATen/ops/sparse_resize_ops.h>
|
377 |
+
#include <ATen/ops/split_ops.h>
|
378 |
+
#include <ATen/ops/split_with_sizes_ops.h>
|
379 |
+
#include <ATen/ops/sqrt_ops.h>
|
380 |
+
#include <ATen/ops/square_ops.h>
|
381 |
+
#include <ATen/ops/squeeze_ops.h>
|
382 |
+
#include <ATen/ops/sspaddmm_ops.h>
|
383 |
+
#include <ATen/ops/std_ops.h>
|
384 |
+
#include <ATen/ops/stft_ops.h>
|
385 |
+
#include <ATen/ops/stride_ops.h>
|
386 |
+
#include <ATen/ops/sub_ops.h>
|
387 |
+
#include <ATen/ops/subtract_ops.h>
|
388 |
+
#include <ATen/ops/sum_ops.h>
|
389 |
+
#include <ATen/ops/sum_to_size_ops.h>
|
390 |
+
#include <ATen/ops/svd_ops.h>
|
391 |
+
#include <ATen/ops/swapaxes_ops.h>
|
392 |
+
#include <ATen/ops/swapdims_ops.h>
|
393 |
+
#include <ATen/ops/t_ops.h>
|
394 |
+
#include <ATen/ops/take_along_dim_ops.h>
|
395 |
+
#include <ATen/ops/take_ops.h>
|
396 |
+
#include <ATen/ops/tan_ops.h>
|
397 |
+
#include <ATen/ops/tanh_ops.h>
|
398 |
+
#include <ATen/ops/tensor_split_ops.h>
|
399 |
+
#include <ATen/ops/tile_ops.h>
|
400 |
+
#include <ATen/ops/to_dense_ops.h>
|
401 |
+
#include <ATen/ops/to_mkldnn_ops.h>
|
402 |
+
#include <ATen/ops/to_ops.h>
|
403 |
+
#include <ATen/ops/to_padded_tensor_ops.h>
|
404 |
+
#include <ATen/ops/to_sparse_bsc_ops.h>
|
405 |
+
#include <ATen/ops/to_sparse_bsr_ops.h>
|
406 |
+
#include <ATen/ops/to_sparse_csc_ops.h>
|
407 |
+
#include <ATen/ops/to_sparse_csr_ops.h>
|
408 |
+
#include <ATen/ops/to_sparse_ops.h>
|
409 |
+
#include <ATen/ops/topk_ops.h>
|
410 |
+
#include <ATen/ops/trace_ops.h>
|
411 |
+
#include <ATen/ops/transpose_ops.h>
|
412 |
+
#include <ATen/ops/triangular_solve_ops.h>
|
413 |
+
#include <ATen/ops/tril_ops.h>
|
414 |
+
#include <ATen/ops/triu_ops.h>
|
415 |
+
#include <ATen/ops/true_divide_ops.h>
|
416 |
+
#include <ATen/ops/trunc_ops.h>
|
417 |
+
#include <ATen/ops/type_as_ops.h>
|
418 |
+
#include <ATen/ops/unbind_ops.h>
|
419 |
+
#include <ATen/ops/unflatten_ops.h>
|
420 |
+
#include <ATen/ops/unfold_ops.h>
|
421 |
+
#include <ATen/ops/uniform_ops.h>
|
422 |
+
#include <ATen/ops/unsafe_chunk_ops.h>
|
423 |
+
#include <ATen/ops/unsafe_split_ops.h>
|
424 |
+
#include <ATen/ops/unsafe_split_with_sizes_ops.h>
|
425 |
+
#include <ATen/ops/unsqueeze_ops.h>
|
426 |
+
#include <ATen/ops/values_ops.h>
|
427 |
+
#include <ATen/ops/var_ops.h>
|
428 |
+
#include <ATen/ops/vdot_ops.h>
|
429 |
+
#include <ATen/ops/view_as_ops.h>
|
430 |
+
#include <ATen/ops/view_ops.h>
|
431 |
+
#include <ATen/ops/vsplit_ops.h>
|
432 |
+
#include <ATen/ops/where_ops.h>
|
433 |
+
#include <ATen/ops/xlogy_ops.h>
|
434 |
+
#include <ATen/ops/xor_ops.h>
|
435 |
+
#include <ATen/ops/zero_ops.h>
|
436 |
+
|
437 |
+
namespace at {
|
438 |
+
namespace _ops {
|
439 |
+
|
440 |
+
} // namespace _ops
|
441 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/NamedTensor.h
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
#include <ATen/core/NamedTensor.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/NumericUtils.h
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef __HIPCC__
|
4 |
+
#include <hip/hip_runtime.h>
|
5 |
+
#endif
|
6 |
+
|
7 |
+
#include <c10/macros/Macros.h>
|
8 |
+
#include <c10/util/BFloat16.h>
|
9 |
+
#include <c10/util/Float8_e4m3fn.h>
|
10 |
+
#include <c10/util/Float8_e5m2.h>
|
11 |
+
#include <c10/util/Half.h>
|
12 |
+
#include <c10/util/complex.h>
|
13 |
+
|
14 |
+
#include <cmath>
|
15 |
+
#include <type_traits>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
|
19 |
+
// std::isnan isn't performant to use on integral types; it will
|
20 |
+
// (uselessly) convert to floating point and then do the test.
|
21 |
+
// This function is.
|
22 |
+
|
23 |
+
template <
|
24 |
+
typename T,
|
25 |
+
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
26 |
+
inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
|
27 |
+
return false;
|
28 |
+
}
|
29 |
+
|
30 |
+
template <
|
31 |
+
typename T,
|
32 |
+
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
|
33 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
34 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
35 |
+
return ::isnan(val);
|
36 |
+
#else
|
37 |
+
return std::isnan(val);
|
38 |
+
#endif
|
39 |
+
}
|
40 |
+
|
41 |
+
template <
|
42 |
+
typename T,
|
43 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
44 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
45 |
+
return std::isnan(val.real()) || std::isnan(val.imag());
|
46 |
+
}
|
47 |
+
|
48 |
+
template <
|
49 |
+
typename T,
|
50 |
+
typename std::enable_if<std::is_same<T, at::Half>::value, int>::type = 0>
|
51 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
52 |
+
return at::_isnan(static_cast<float>(val));
|
53 |
+
}
|
54 |
+
|
55 |
+
template <
|
56 |
+
typename T,
|
57 |
+
typename std::enable_if<std::is_same<T, at::BFloat16>::value, int>::type =
|
58 |
+
0>
|
59 |
+
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
|
60 |
+
return at::_isnan(static_cast<float>(val));
|
61 |
+
}
|
62 |
+
|
63 |
+
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
|
64 |
+
return at::_isnan(static_cast<float>(val));
|
65 |
+
}
|
66 |
+
|
67 |
+
template <
|
68 |
+
typename T,
|
69 |
+
typename std::enable_if<std::is_same<T, at::Float8_e5m2>::value, int>::
|
70 |
+
type = 0>
|
71 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
72 |
+
return val.isnan();
|
73 |
+
}
|
74 |
+
|
75 |
+
template <
|
76 |
+
typename T,
|
77 |
+
typename std::enable_if<std::is_same<T, at::Float8_e4m3fn>::value, int>::
|
78 |
+
type = 0>
|
79 |
+
inline C10_HOST_DEVICE bool _isnan(T val) {
|
80 |
+
return val.isnan();
|
81 |
+
}
|
82 |
+
|
83 |
+
// std::isinf isn't performant to use on integral types; it will
|
84 |
+
// (uselessly) convert to floating point and then do the test.
|
85 |
+
// This function is.
|
86 |
+
|
87 |
+
template <
|
88 |
+
typename T,
|
89 |
+
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
90 |
+
inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
|
91 |
+
return false;
|
92 |
+
}
|
93 |
+
|
94 |
+
template <
|
95 |
+
typename T,
|
96 |
+
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
|
97 |
+
inline C10_HOST_DEVICE bool _isinf(T val) {
|
98 |
+
#if defined(__CUDACC__) || defined(__HIPCC__)
|
99 |
+
return ::isinf(val);
|
100 |
+
#else
|
101 |
+
return std::isinf(val);
|
102 |
+
#endif
|
103 |
+
}
|
104 |
+
|
105 |
+
inline C10_HOST_DEVICE bool _isinf(at::Half val) {
|
106 |
+
return at::_isinf(static_cast<float>(val));
|
107 |
+
}
|
108 |
+
|
109 |
+
inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
|
110 |
+
return at::_isinf(static_cast<float>(val));
|
111 |
+
}
|
112 |
+
|
113 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
|
114 |
+
return val.isinf();
|
115 |
+
}
|
116 |
+
|
117 |
+
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val) {
|
118 |
+
return false;
|
119 |
+
}
|
120 |
+
|
121 |
+
template <typename T>
|
122 |
+
C10_HOST_DEVICE inline T exp(T x) {
|
123 |
+
static_assert(
|
124 |
+
!std::is_same<T, double>::value,
|
125 |
+
"this template must be used with float or less precise type");
|
126 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
127 |
+
// use __expf fast approximation for peak bandwidth
|
128 |
+
return __expf(x);
|
129 |
+
#else
|
130 |
+
return ::exp(x);
|
131 |
+
#endif
|
132 |
+
}
|
133 |
+
|
134 |
+
template <>
|
135 |
+
C10_HOST_DEVICE inline double exp<double>(double x) {
|
136 |
+
return ::exp(x);
|
137 |
+
}
|
138 |
+
|
139 |
+
template <typename T>
|
140 |
+
C10_HOST_DEVICE inline T log(T x) {
|
141 |
+
static_assert(
|
142 |
+
!std::is_same<T, double>::value,
|
143 |
+
"this template must be used with float or less precise type");
|
144 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
145 |
+
// use __logf fast approximation for peak bandwidth
|
146 |
+
return __logf(x);
|
147 |
+
#else
|
148 |
+
return ::log(x);
|
149 |
+
#endif
|
150 |
+
}
|
151 |
+
|
152 |
+
template <>
|
153 |
+
C10_HOST_DEVICE inline double log<double>(double x) {
|
154 |
+
return ::log(x);
|
155 |
+
}
|
156 |
+
|
157 |
+
template <typename T>
|
158 |
+
C10_HOST_DEVICE inline T log1p(T x) {
|
159 |
+
static_assert(
|
160 |
+
!std::is_same<T, double>::value,
|
161 |
+
"this template must be used with float or less precise type");
|
162 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
163 |
+
// use __logf fast approximation for peak bandwidth
|
164 |
+
// NOTE: There is no __log1pf so unfortunately we lose precision.
|
165 |
+
return __logf(1.0f + x);
|
166 |
+
#else
|
167 |
+
return ::log1p(x);
|
168 |
+
#endif
|
169 |
+
}
|
170 |
+
|
171 |
+
template <>
|
172 |
+
C10_HOST_DEVICE inline double log1p<double>(double x) {
|
173 |
+
return ::log1p(x);
|
174 |
+
}
|
175 |
+
|
176 |
+
template <typename T>
|
177 |
+
C10_HOST_DEVICE inline T tan(T x) {
|
178 |
+
static_assert(
|
179 |
+
!std::is_same<T, double>::value,
|
180 |
+
"this template must be used with float or less precise type");
|
181 |
+
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
|
182 |
+
// use __tanf fast approximation for peak bandwidth
|
183 |
+
return __tanf(x);
|
184 |
+
#else
|
185 |
+
return ::tan(x);
|
186 |
+
#endif
|
187 |
+
}
|
188 |
+
|
189 |
+
template <>
|
190 |
+
C10_HOST_DEVICE inline double tan<double>(double x) {
|
191 |
+
return ::tan(x);
|
192 |
+
}
|
193 |
+
|
194 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Operators.h
ADDED
@@ -0,0 +1,1336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operators.h
|
4 |
+
|
5 |
+
#ifdef TORCH_ASSERT_NO_OPERATORS
|
6 |
+
#error This change adds a dependency on native_functions.yaml, \
|
7 |
+
meaning the file will need to be re-compiled every time an operator \
|
8 |
+
is changed or added. Consider if your change would be better placed in \
|
9 |
+
another file, or if a more specific header might achieve the same goal. \
|
10 |
+
See NOTE: [Tensor vs. TensorBase]
|
11 |
+
#endif
|
12 |
+
|
13 |
+
#if defined(AT_PER_OPERATOR_HEADERS) && defined(TORCH_ASSERT_ONLY_METHOD_OPERATORS)
|
14 |
+
#error This change adds a dependency on all pytorch operators, meaning the \
|
15 |
+
file will need to be re-compiled every time an operator is changed or added. \
|
16 |
+
Consider including a specific operator from <ATen/ops/{my_operator}_ops.h> \
|
17 |
+
and see NOTE [TORCH_ASSERT_ONLY_METHOD_OPERATORS].
|
18 |
+
#endif
|
19 |
+
|
20 |
+
#include <c10/core/SymInt.h>
|
21 |
+
#include <c10/core/SymIntArrayRef.h>
|
22 |
+
#include <c10/core/Scalar.h>
|
23 |
+
#include <c10/core/TensorOptions.h>
|
24 |
+
#include <c10/core/QScheme.h>
|
25 |
+
#include <c10/util/OptionalArrayRef.h>
|
26 |
+
#include <tuple>
|
27 |
+
#include <vector>
|
28 |
+
|
29 |
+
#include <ATen/ops/_adaptive_avg_pool2d_ops.h>
|
30 |
+
#include <ATen/ops/_adaptive_avg_pool2d_backward_ops.h>
|
31 |
+
#include <ATen/ops/_adaptive_avg_pool3d_ops.h>
|
32 |
+
#include <ATen/ops/_adaptive_avg_pool3d_backward_ops.h>
|
33 |
+
#include <ATen/ops/_add_batch_dim_ops.h>
|
34 |
+
#include <ATen/ops/_add_relu_ops.h>
|
35 |
+
#include <ATen/ops/_addmm_activation_ops.h>
|
36 |
+
#include <ATen/ops/_aminmax_ops.h>
|
37 |
+
#include <ATen/ops/_amp_foreach_non_finite_check_and_unscale_ops.h>
|
38 |
+
#include <ATen/ops/_amp_update_scale_ops.h>
|
39 |
+
#include <ATen/ops/_assert_async_ops.h>
|
40 |
+
#include <ATen/ops/_assert_tensor_metadata_ops.h>
|
41 |
+
#include <ATen/ops/_autocast_to_full_precision_ops.h>
|
42 |
+
#include <ATen/ops/_autocast_to_reduced_precision_ops.h>
|
43 |
+
#include <ATen/ops/_backward_ops.h>
|
44 |
+
#include <ATen/ops/_batch_norm_impl_index_ops.h>
|
45 |
+
#include <ATen/ops/_batch_norm_impl_index_backward_ops.h>
|
46 |
+
#include <ATen/ops/_cast_Byte_ops.h>
|
47 |
+
#include <ATen/ops/_cast_Char_ops.h>
|
48 |
+
#include <ATen/ops/_cast_Double_ops.h>
|
49 |
+
#include <ATen/ops/_cast_Float_ops.h>
|
50 |
+
#include <ATen/ops/_cast_Half_ops.h>
|
51 |
+
#include <ATen/ops/_cast_Int_ops.h>
|
52 |
+
#include <ATen/ops/_cast_Long_ops.h>
|
53 |
+
#include <ATen/ops/_cast_Short_ops.h>
|
54 |
+
#include <ATen/ops/_cdist_backward_ops.h>
|
55 |
+
#include <ATen/ops/_cdist_forward_ops.h>
|
56 |
+
#include <ATen/ops/_cholesky_solve_helper_ops.h>
|
57 |
+
#include <ATen/ops/_choose_qparams_per_tensor_ops.h>
|
58 |
+
#include <ATen/ops/_coalesce_ops.h>
|
59 |
+
#include <ATen/ops/_coalesced_ops.h>
|
60 |
+
#include <ATen/ops/_compute_linear_combination_ops.h>
|
61 |
+
#include <ATen/ops/_conj_ops.h>
|
62 |
+
#include <ATen/ops/_conj_copy_ops.h>
|
63 |
+
#include <ATen/ops/_conj_physical_ops.h>
|
64 |
+
#include <ATen/ops/_conv_depthwise2d_ops.h>
|
65 |
+
#include <ATen/ops/_convert_indices_from_coo_to_csr_ops.h>
|
66 |
+
#include <ATen/ops/_convert_indices_from_csr_to_coo_ops.h>
|
67 |
+
#include <ATen/ops/_convert_weight_to_int4pack_ops.h>
|
68 |
+
#include <ATen/ops/_convolution_ops.h>
|
69 |
+
#include <ATen/ops/_convolution_double_backward_ops.h>
|
70 |
+
#include <ATen/ops/_convolution_mode_ops.h>
|
71 |
+
#include <ATen/ops/_copy_from_ops.h>
|
72 |
+
#include <ATen/ops/_copy_from_and_resize_ops.h>
|
73 |
+
#include <ATen/ops/_cslt_compress_ops.h>
|
74 |
+
#include <ATen/ops/_cslt_sparse_mm_ops.h>
|
75 |
+
#include <ATen/ops/_ctc_loss_ops.h>
|
76 |
+
#include <ATen/ops/_ctc_loss_backward_ops.h>
|
77 |
+
#include <ATen/ops/_cudnn_ctc_loss_ops.h>
|
78 |
+
#include <ATen/ops/_cudnn_init_dropout_state_ops.h>
|
79 |
+
#include <ATen/ops/_cudnn_rnn_ops.h>
|
80 |
+
#include <ATen/ops/_cudnn_rnn_backward_ops.h>
|
81 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
|
82 |
+
#include <ATen/ops/_cufft_clear_plan_cache_ops.h>
|
83 |
+
#include <ATen/ops/_cufft_get_plan_cache_max_size_ops.h>
|
84 |
+
#include <ATen/ops/_cufft_get_plan_cache_size_ops.h>
|
85 |
+
#include <ATen/ops/_cufft_set_plan_cache_max_size_ops.h>
|
86 |
+
#include <ATen/ops/_cummax_helper_ops.h>
|
87 |
+
#include <ATen/ops/_cummin_helper_ops.h>
|
88 |
+
#include <ATen/ops/_debug_has_internal_overlap_ops.h>
|
89 |
+
#include <ATen/ops/_dimI_ops.h>
|
90 |
+
#include <ATen/ops/_dimV_ops.h>
|
91 |
+
#include <ATen/ops/_dim_arange_ops.h>
|
92 |
+
#include <ATen/ops/_dirichlet_grad_ops.h>
|
93 |
+
#include <ATen/ops/_efficient_attention_backward_ops.h>
|
94 |
+
#include <ATen/ops/_efficient_attention_forward_ops.h>
|
95 |
+
#include <ATen/ops/_efficientzerotensor_ops.h>
|
96 |
+
#include <ATen/ops/_embedding_bag_ops.h>
|
97 |
+
#include <ATen/ops/_embedding_bag_backward_ops.h>
|
98 |
+
#include <ATen/ops/_embedding_bag_dense_backward_ops.h>
|
99 |
+
#include <ATen/ops/_embedding_bag_forward_only_ops.h>
|
100 |
+
#include <ATen/ops/_embedding_bag_per_sample_weights_backward_ops.h>
|
101 |
+
#include <ATen/ops/_embedding_bag_sparse_backward_ops.h>
|
102 |
+
#include <ATen/ops/_empty_affine_quantized_ops.h>
|
103 |
+
#include <ATen/ops/_empty_per_channel_affine_quantized_ops.h>
|
104 |
+
#include <ATen/ops/_euclidean_dist_ops.h>
|
105 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_ops.h>
|
106 |
+
#include <ATen/ops/_fake_quantize_learnable_per_channel_affine_backward_ops.h>
|
107 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_ops.h>
|
108 |
+
#include <ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_ops.h>
|
109 |
+
#include <ATen/ops/_fake_quantize_per_tensor_affine_cachemask_tensor_qparams_ops.h>
|
110 |
+
#include <ATen/ops/_fft_c2c_ops.h>
|
111 |
+
#include <ATen/ops/_fft_c2r_ops.h>
|
112 |
+
#include <ATen/ops/_fft_r2c_ops.h>
|
113 |
+
#include <ATen/ops/_fill_mem_eff_dropout_mask_ops.h>
|
114 |
+
#include <ATen/ops/_flash_attention_backward_ops.h>
|
115 |
+
#include <ATen/ops/_flash_attention_forward_ops.h>
|
116 |
+
#include <ATen/ops/_foobar_ops.h>
|
117 |
+
#include <ATen/ops/_foreach_abs_ops.h>
|
118 |
+
#include <ATen/ops/_foreach_acos_ops.h>
|
119 |
+
#include <ATen/ops/_foreach_add_ops.h>
|
120 |
+
#include <ATen/ops/_foreach_addcdiv_ops.h>
|
121 |
+
#include <ATen/ops/_foreach_addcmul_ops.h>
|
122 |
+
#include <ATen/ops/_foreach_asin_ops.h>
|
123 |
+
#include <ATen/ops/_foreach_atan_ops.h>
|
124 |
+
#include <ATen/ops/_foreach_ceil_ops.h>
|
125 |
+
#include <ATen/ops/_foreach_clamp_max_ops.h>
|
126 |
+
#include <ATen/ops/_foreach_clamp_min_ops.h>
|
127 |
+
#include <ATen/ops/_foreach_copy_ops.h>
|
128 |
+
#include <ATen/ops/_foreach_cos_ops.h>
|
129 |
+
#include <ATen/ops/_foreach_cosh_ops.h>
|
130 |
+
#include <ATen/ops/_foreach_div_ops.h>
|
131 |
+
#include <ATen/ops/_foreach_erf_ops.h>
|
132 |
+
#include <ATen/ops/_foreach_erfc_ops.h>
|
133 |
+
#include <ATen/ops/_foreach_exp_ops.h>
|
134 |
+
#include <ATen/ops/_foreach_expm1_ops.h>
|
135 |
+
#include <ATen/ops/_foreach_floor_ops.h>
|
136 |
+
#include <ATen/ops/_foreach_frac_ops.h>
|
137 |
+
#include <ATen/ops/_foreach_lerp_ops.h>
|
138 |
+
#include <ATen/ops/_foreach_lgamma_ops.h>
|
139 |
+
#include <ATen/ops/_foreach_log_ops.h>
|
140 |
+
#include <ATen/ops/_foreach_log10_ops.h>
|
141 |
+
#include <ATen/ops/_foreach_log1p_ops.h>
|
142 |
+
#include <ATen/ops/_foreach_log2_ops.h>
|
143 |
+
#include <ATen/ops/_foreach_maximum_ops.h>
|
144 |
+
#include <ATen/ops/_foreach_minimum_ops.h>
|
145 |
+
#include <ATen/ops/_foreach_mul_ops.h>
|
146 |
+
#include <ATen/ops/_foreach_neg_ops.h>
|
147 |
+
#include <ATen/ops/_foreach_norm_ops.h>
|
148 |
+
#include <ATen/ops/_foreach_pow_ops.h>
|
149 |
+
#include <ATen/ops/_foreach_reciprocal_ops.h>
|
150 |
+
#include <ATen/ops/_foreach_round_ops.h>
|
151 |
+
#include <ATen/ops/_foreach_sigmoid_ops.h>
|
152 |
+
#include <ATen/ops/_foreach_sign_ops.h>
|
153 |
+
#include <ATen/ops/_foreach_sin_ops.h>
|
154 |
+
#include <ATen/ops/_foreach_sinh_ops.h>
|
155 |
+
#include <ATen/ops/_foreach_sqrt_ops.h>
|
156 |
+
#include <ATen/ops/_foreach_sub_ops.h>
|
157 |
+
#include <ATen/ops/_foreach_tan_ops.h>
|
158 |
+
#include <ATen/ops/_foreach_tanh_ops.h>
|
159 |
+
#include <ATen/ops/_foreach_trunc_ops.h>
|
160 |
+
#include <ATen/ops/_foreach_zero_ops.h>
|
161 |
+
#include <ATen/ops/_functional_assert_async_ops.h>
|
162 |
+
#include <ATen/ops/_functional_sym_constrain_range_ops.h>
|
163 |
+
#include <ATen/ops/_functional_sym_constrain_range_for_size_ops.h>
|
164 |
+
#include <ATen/ops/_fused_adam_ops.h>
|
165 |
+
#include <ATen/ops/_fused_adamw_ops.h>
|
166 |
+
#include <ATen/ops/_fused_dropout_ops.h>
|
167 |
+
#include <ATen/ops/_fused_moving_avg_obs_fq_helper_ops.h>
|
168 |
+
#include <ATen/ops/_fused_sdp_choice_ops.h>
|
169 |
+
#include <ATen/ops/_fw_primal_ops.h>
|
170 |
+
#include <ATen/ops/_fw_primal_copy_ops.h>
|
171 |
+
#include <ATen/ops/_gather_sparse_backward_ops.h>
|
172 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback_ops.h>
|
173 |
+
#include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_ops.h>
|
174 |
+
#include <ATen/ops/_has_compatible_shallow_copy_type_ops.h>
|
175 |
+
#include <ATen/ops/_has_same_storage_numel_ops.h>
|
176 |
+
#include <ATen/ops/_histogramdd_bin_edges_ops.h>
|
177 |
+
#include <ATen/ops/_histogramdd_from_bin_cts_ops.h>
|
178 |
+
#include <ATen/ops/_histogramdd_from_bin_tensors_ops.h>
|
179 |
+
#include <ATen/ops/_index_put_impl_ops.h>
|
180 |
+
#include <ATen/ops/_indices_ops.h>
|
181 |
+
#include <ATen/ops/_indices_copy_ops.h>
|
182 |
+
#include <ATen/ops/_int_mm_ops.h>
|
183 |
+
#include <ATen/ops/_is_all_true_ops.h>
|
184 |
+
#include <ATen/ops/_is_any_true_ops.h>
|
185 |
+
#include <ATen/ops/_is_zerotensor_ops.h>
|
186 |
+
#include <ATen/ops/_linalg_check_errors_ops.h>
|
187 |
+
#include <ATen/ops/_linalg_det_ops.h>
|
188 |
+
#include <ATen/ops/_linalg_eigh_ops.h>
|
189 |
+
#include <ATen/ops/_linalg_slogdet_ops.h>
|
190 |
+
#include <ATen/ops/_linalg_solve_ex_ops.h>
|
191 |
+
#include <ATen/ops/_linalg_svd_ops.h>
|
192 |
+
#include <ATen/ops/_local_scalar_dense_ops.h>
|
193 |
+
#include <ATen/ops/_log_softmax_ops.h>
|
194 |
+
#include <ATen/ops/_log_softmax_backward_data_ops.h>
|
195 |
+
#include <ATen/ops/_logcumsumexp_ops.h>
|
196 |
+
#include <ATen/ops/_lstm_mps_ops.h>
|
197 |
+
#include <ATen/ops/_lu_with_info_ops.h>
|
198 |
+
#include <ATen/ops/_make_dep_token_ops.h>
|
199 |
+
#include <ATen/ops/_make_dual_ops.h>
|
200 |
+
#include <ATen/ops/_make_dual_copy_ops.h>
|
201 |
+
#include <ATen/ops/_make_per_channel_quantized_tensor_ops.h>
|
202 |
+
#include <ATen/ops/_make_per_tensor_quantized_tensor_ops.h>
|
203 |
+
#include <ATen/ops/_masked_scale_ops.h>
|
204 |
+
#include <ATen/ops/_masked_softmax_ops.h>
|
205 |
+
#include <ATen/ops/_masked_softmax_backward_ops.h>
|
206 |
+
#include <ATen/ops/_mixed_dtypes_linear_ops.h>
|
207 |
+
#include <ATen/ops/_mkldnn_reshape_ops.h>
|
208 |
+
#include <ATen/ops/_mkldnn_transpose_ops.h>
|
209 |
+
#include <ATen/ops/_mps_convolution_ops.h>
|
210 |
+
#include <ATen/ops/_mps_convolution_transpose_ops.h>
|
211 |
+
#include <ATen/ops/_native_batch_norm_legit_ops.h>
|
212 |
+
#include <ATen/ops/_native_batch_norm_legit_no_training_ops.h>
|
213 |
+
#include <ATen/ops/_native_multi_head_attention_ops.h>
|
214 |
+
#include <ATen/ops/_neg_view_ops.h>
|
215 |
+
#include <ATen/ops/_neg_view_copy_ops.h>
|
216 |
+
#include <ATen/ops/_nested_from_padded_ops.h>
|
217 |
+
#include <ATen/ops/_nested_from_padded_and_nested_example_ops.h>
|
218 |
+
#include <ATen/ops/_nested_select_backward_ops.h>
|
219 |
+
#include <ATen/ops/_nested_sum_backward_ops.h>
|
220 |
+
#include <ATen/ops/_nested_tensor_from_mask_ops.h>
|
221 |
+
#include <ATen/ops/_nested_tensor_from_mask_left_aligned_ops.h>
|
222 |
+
#include <ATen/ops/_nested_tensor_from_tensor_list_ops.h>
|
223 |
+
#include <ATen/ops/_nested_tensor_size_ops.h>
|
224 |
+
#include <ATen/ops/_nested_tensor_softmax_with_shape_ops.h>
|
225 |
+
#include <ATen/ops/_nested_tensor_storage_offsets_ops.h>
|
226 |
+
#include <ATen/ops/_nested_tensor_strides_ops.h>
|
227 |
+
#include <ATen/ops/_nested_view_from_buffer_ops.h>
|
228 |
+
#include <ATen/ops/_nested_view_from_buffer_copy_ops.h>
|
229 |
+
#include <ATen/ops/_new_zeros_with_same_feature_meta_ops.h>
|
230 |
+
#include <ATen/ops/_nnpack_available_ops.h>
|
231 |
+
#include <ATen/ops/_nnpack_spatial_convolution_ops.h>
|
232 |
+
#include <ATen/ops/_nnz_ops.h>
|
233 |
+
#include <ATen/ops/_pack_padded_sequence_ops.h>
|
234 |
+
#include <ATen/ops/_pack_padded_sequence_backward_ops.h>
|
235 |
+
#include <ATen/ops/_pad_circular_ops.h>
|
236 |
+
#include <ATen/ops/_pad_enum_ops.h>
|
237 |
+
#include <ATen/ops/_pad_packed_sequence_ops.h>
|
238 |
+
#include <ATen/ops/_pdist_backward_ops.h>
|
239 |
+
#include <ATen/ops/_pdist_forward_ops.h>
|
240 |
+
#include <ATen/ops/_pin_memory_ops.h>
|
241 |
+
#include <ATen/ops/_prelu_kernel_ops.h>
|
242 |
+
#include <ATen/ops/_prelu_kernel_backward_ops.h>
|
243 |
+
#include <ATen/ops/_propagate_xla_data_ops.h>
|
244 |
+
#include <ATen/ops/_remove_batch_dim_ops.h>
|
245 |
+
#include <ATen/ops/_reshape_alias_ops.h>
|
246 |
+
#include <ATen/ops/_reshape_alias_copy_ops.h>
|
247 |
+
#include <ATen/ops/_reshape_copy_ops.h>
|
248 |
+
#include <ATen/ops/_reshape_from_tensor_ops.h>
|
249 |
+
#include <ATen/ops/_resize_output_ops.h>
|
250 |
+
#include <ATen/ops/_rowwise_prune_ops.h>
|
251 |
+
#include <ATen/ops/_sample_dirichlet_ops.h>
|
252 |
+
#include <ATen/ops/_saturate_weight_to_fp16_ops.h>
|
253 |
+
#include <ATen/ops/_scaled_dot_product_attention_math_ops.h>
|
254 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention_ops.h>
|
255 |
+
#include <ATen/ops/_scaled_dot_product_efficient_attention_backward_ops.h>
|
256 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_ops.h>
|
257 |
+
#include <ATen/ops/_scaled_dot_product_flash_attention_backward_ops.h>
|
258 |
+
#include <ATen/ops/_scaled_mm_ops.h>
|
259 |
+
#include <ATen/ops/_segment_reduce_backward_ops.h>
|
260 |
+
#include <ATen/ops/_shape_as_tensor_ops.h>
|
261 |
+
#include <ATen/ops/_slow_conv2d_backward_ops.h>
|
262 |
+
#include <ATen/ops/_slow_conv2d_forward_ops.h>
|
263 |
+
#include <ATen/ops/_sobol_engine_draw_ops.h>
|
264 |
+
#include <ATen/ops/_sobol_engine_ff_ops.h>
|
265 |
+
#include <ATen/ops/_sobol_engine_initialize_state_ops.h>
|
266 |
+
#include <ATen/ops/_sobol_engine_scramble_ops.h>
|
267 |
+
#include <ATen/ops/_softmax_ops.h>
|
268 |
+
#include <ATen/ops/_softmax_backward_data_ops.h>
|
269 |
+
#include <ATen/ops/_sparse_addmm_ops.h>
|
270 |
+
#include <ATen/ops/_sparse_broadcast_to_ops.h>
|
271 |
+
#include <ATen/ops/_sparse_broadcast_to_copy_ops.h>
|
272 |
+
#include <ATen/ops/_sparse_bsc_tensor_unsafe_ops.h>
|
273 |
+
#include <ATen/ops/_sparse_bsr_tensor_unsafe_ops.h>
|
274 |
+
#include <ATen/ops/_sparse_compressed_tensor_unsafe_ops.h>
|
275 |
+
#include <ATen/ops/_sparse_coo_tensor_unsafe_ops.h>
|
276 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_ops.h>
|
277 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_and_tensors_ops.h>
|
278 |
+
#include <ATen/ops/_sparse_csc_tensor_unsafe_ops.h>
|
279 |
+
#include <ATen/ops/_sparse_csr_prod_ops.h>
|
280 |
+
#include <ATen/ops/_sparse_csr_sum_ops.h>
|
281 |
+
#include <ATen/ops/_sparse_csr_tensor_unsafe_ops.h>
|
282 |
+
#include <ATen/ops/_sparse_log_softmax_ops.h>
|
283 |
+
#include <ATen/ops/_sparse_log_softmax_backward_data_ops.h>
|
284 |
+
#include <ATen/ops/_sparse_mask_projection_ops.h>
|
285 |
+
#include <ATen/ops/_sparse_mm_ops.h>
|
286 |
+
#include <ATen/ops/_sparse_mm_reduce_impl_ops.h>
|
287 |
+
#include <ATen/ops/_sparse_mm_reduce_impl_backward_ops.h>
|
288 |
+
#include <ATen/ops/_sparse_semi_structured_linear_ops.h>
|
289 |
+
#include <ATen/ops/_sparse_softmax_ops.h>
|
290 |
+
#include <ATen/ops/_sparse_softmax_backward_data_ops.h>
|
291 |
+
#include <ATen/ops/_sparse_sparse_matmul_ops.h>
|
292 |
+
#include <ATen/ops/_sparse_sum_ops.h>
|
293 |
+
#include <ATen/ops/_sparse_sum_backward_ops.h>
|
294 |
+
#include <ATen/ops/_spdiags_ops.h>
|
295 |
+
#include <ATen/ops/_stack_ops.h>
|
296 |
+
#include <ATen/ops/_standard_gamma_ops.h>
|
297 |
+
#include <ATen/ops/_standard_gamma_grad_ops.h>
|
298 |
+
#include <ATen/ops/_test_ambiguous_defaults_ops.h>
|
299 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_ops.h>
|
300 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_ops.h>
|
301 |
+
#include <ATen/ops/_test_autograd_multiple_dispatch_view_copy_ops.h>
|
302 |
+
#include <ATen/ops/_test_check_tensor_ops.h>
|
303 |
+
#include <ATen/ops/_test_functorch_fallback_ops.h>
|
304 |
+
#include <ATen/ops/_test_optional_filled_intlist_ops.h>
|
305 |
+
#include <ATen/ops/_test_optional_floatlist_ops.h>
|
306 |
+
#include <ATen/ops/_test_optional_intlist_ops.h>
|
307 |
+
#include <ATen/ops/_test_serialization_subcmul_ops.h>
|
308 |
+
#include <ATen/ops/_test_string_default_ops.h>
|
309 |
+
#include <ATen/ops/_test_warn_in_autograd_ops.h>
|
310 |
+
#include <ATen/ops/_thnn_differentiable_gru_cell_backward_ops.h>
|
311 |
+
#include <ATen/ops/_thnn_differentiable_lstm_cell_backward_ops.h>
|
312 |
+
#include <ATen/ops/_thnn_fused_gru_cell_ops.h>
|
313 |
+
#include <ATen/ops/_thnn_fused_gru_cell_backward_ops.h>
|
314 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_ops.h>
|
315 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward_ops.h>
|
316 |
+
#include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h>
|
317 |
+
#include <ATen/ops/_to_copy_ops.h>
|
318 |
+
#include <ATen/ops/_to_cpu_ops.h>
|
319 |
+
#include <ATen/ops/_to_dense_ops.h>
|
320 |
+
#include <ATen/ops/_to_sparse_ops.h>
|
321 |
+
#include <ATen/ops/_to_sparse_bsc_ops.h>
|
322 |
+
#include <ATen/ops/_to_sparse_bsr_ops.h>
|
323 |
+
#include <ATen/ops/_to_sparse_csc_ops.h>
|
324 |
+
#include <ATen/ops/_to_sparse_csr_ops.h>
|
325 |
+
#include <ATen/ops/_to_sparse_semi_structured_ops.h>
|
326 |
+
#include <ATen/ops/_transform_bias_rescale_qkv_ops.h>
|
327 |
+
#include <ATen/ops/_transformer_encoder_layer_fwd_ops.h>
|
328 |
+
#include <ATen/ops/_trilinear_ops.h>
|
329 |
+
#include <ATen/ops/_triton_multi_head_attention_ops.h>
|
330 |
+
#include <ATen/ops/_triton_scaled_dot_attention_ops.h>
|
331 |
+
#include <ATen/ops/_unique_ops.h>
|
332 |
+
#include <ATen/ops/_unique2_ops.h>
|
333 |
+
#include <ATen/ops/_unpack_dual_ops.h>
|
334 |
+
#include <ATen/ops/_unsafe_index_ops.h>
|
335 |
+
#include <ATen/ops/_unsafe_index_put_ops.h>
|
336 |
+
#include <ATen/ops/_unsafe_view_ops.h>
|
337 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_ops.h>
|
338 |
+
#include <ATen/ops/_upsample_bicubic2d_aa_backward_ops.h>
|
339 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_ops.h>
|
340 |
+
#include <ATen/ops/_upsample_bilinear2d_aa_backward_ops.h>
|
341 |
+
#include <ATen/ops/_upsample_nearest_exact1d_ops.h>
|
342 |
+
#include <ATen/ops/_upsample_nearest_exact1d_backward_ops.h>
|
343 |
+
#include <ATen/ops/_upsample_nearest_exact2d_ops.h>
|
344 |
+
#include <ATen/ops/_upsample_nearest_exact2d_backward_ops.h>
|
345 |
+
#include <ATen/ops/_upsample_nearest_exact3d_ops.h>
|
346 |
+
#include <ATen/ops/_upsample_nearest_exact3d_backward_ops.h>
|
347 |
+
#include <ATen/ops/_use_cudnn_ctc_loss_ops.h>
|
348 |
+
#include <ATen/ops/_use_cudnn_rnn_flatten_weight_ops.h>
|
349 |
+
#include <ATen/ops/_validate_compressed_sparse_indices_ops.h>
|
350 |
+
#include <ATen/ops/_validate_sparse_bsc_tensor_args_ops.h>
|
351 |
+
#include <ATen/ops/_validate_sparse_bsr_tensor_args_ops.h>
|
352 |
+
#include <ATen/ops/_validate_sparse_compressed_tensor_args_ops.h>
|
353 |
+
#include <ATen/ops/_validate_sparse_coo_tensor_args_ops.h>
|
354 |
+
#include <ATen/ops/_validate_sparse_csc_tensor_args_ops.h>
|
355 |
+
#include <ATen/ops/_validate_sparse_csr_tensor_args_ops.h>
|
356 |
+
#include <ATen/ops/_values_ops.h>
|
357 |
+
#include <ATen/ops/_values_copy_ops.h>
|
358 |
+
#include <ATen/ops/_version_ops.h>
|
359 |
+
#include <ATen/ops/_weight_int4pack_mm_ops.h>
|
360 |
+
#include <ATen/ops/_weight_norm_ops.h>
|
361 |
+
#include <ATen/ops/_weight_norm_differentiable_backward_ops.h>
|
362 |
+
#include <ATen/ops/_weight_norm_interface_ops.h>
|
363 |
+
#include <ATen/ops/_weight_norm_interface_backward_ops.h>
|
364 |
+
#include <ATen/ops/abs_ops.h>
|
365 |
+
#include <ATen/ops/absolute_ops.h>
|
366 |
+
#include <ATen/ops/acos_ops.h>
|
367 |
+
#include <ATen/ops/acosh_ops.h>
|
368 |
+
#include <ATen/ops/adaptive_avg_pool1d_ops.h>
|
369 |
+
#include <ATen/ops/adaptive_avg_pool2d_ops.h>
|
370 |
+
#include <ATen/ops/adaptive_avg_pool3d_ops.h>
|
371 |
+
#include <ATen/ops/adaptive_avg_pool3d_backward_ops.h>
|
372 |
+
#include <ATen/ops/adaptive_max_pool1d_ops.h>
|
373 |
+
#include <ATen/ops/adaptive_max_pool2d_ops.h>
|
374 |
+
#include <ATen/ops/adaptive_max_pool2d_backward_ops.h>
|
375 |
+
#include <ATen/ops/adaptive_max_pool3d_ops.h>
|
376 |
+
#include <ATen/ops/adaptive_max_pool3d_backward_ops.h>
|
377 |
+
#include <ATen/ops/add_ops.h>
|
378 |
+
#include <ATen/ops/addbmm_ops.h>
|
379 |
+
#include <ATen/ops/addcdiv_ops.h>
|
380 |
+
#include <ATen/ops/addcmul_ops.h>
|
381 |
+
#include <ATen/ops/addmm_ops.h>
|
382 |
+
#include <ATen/ops/addmv_ops.h>
|
383 |
+
#include <ATen/ops/addr_ops.h>
|
384 |
+
#include <ATen/ops/adjoint_ops.h>
|
385 |
+
#include <ATen/ops/affine_grid_generator_ops.h>
|
386 |
+
#include <ATen/ops/affine_grid_generator_backward_ops.h>
|
387 |
+
#include <ATen/ops/alias_ops.h>
|
388 |
+
#include <ATen/ops/alias_copy_ops.h>
|
389 |
+
#include <ATen/ops/align_as_ops.h>
|
390 |
+
#include <ATen/ops/align_tensors_ops.h>
|
391 |
+
#include <ATen/ops/align_to_ops.h>
|
392 |
+
#include <ATen/ops/all_ops.h>
|
393 |
+
#include <ATen/ops/allclose_ops.h>
|
394 |
+
#include <ATen/ops/alpha_dropout_ops.h>
|
395 |
+
#include <ATen/ops/amax_ops.h>
|
396 |
+
#include <ATen/ops/amin_ops.h>
|
397 |
+
#include <ATen/ops/aminmax_ops.h>
|
398 |
+
#include <ATen/ops/and_ops.h>
|
399 |
+
#include <ATen/ops/angle_ops.h>
|
400 |
+
#include <ATen/ops/any_ops.h>
|
401 |
+
#include <ATen/ops/arange_ops.h>
|
402 |
+
#include <ATen/ops/arccos_ops.h>
|
403 |
+
#include <ATen/ops/arccosh_ops.h>
|
404 |
+
#include <ATen/ops/arcsin_ops.h>
|
405 |
+
#include <ATen/ops/arcsinh_ops.h>
|
406 |
+
#include <ATen/ops/arctan_ops.h>
|
407 |
+
#include <ATen/ops/arctan2_ops.h>
|
408 |
+
#include <ATen/ops/arctanh_ops.h>
|
409 |
+
#include <ATen/ops/argmax_ops.h>
|
410 |
+
#include <ATen/ops/argmin_ops.h>
|
411 |
+
#include <ATen/ops/argsort_ops.h>
|
412 |
+
#include <ATen/ops/argwhere_ops.h>
|
413 |
+
#include <ATen/ops/as_strided_ops.h>
|
414 |
+
#include <ATen/ops/as_strided_copy_ops.h>
|
415 |
+
#include <ATen/ops/as_strided_scatter_ops.h>
|
416 |
+
#include <ATen/ops/asin_ops.h>
|
417 |
+
#include <ATen/ops/asinh_ops.h>
|
418 |
+
#include <ATen/ops/atan_ops.h>
|
419 |
+
#include <ATen/ops/atan2_ops.h>
|
420 |
+
#include <ATen/ops/atanh_ops.h>
|
421 |
+
#include <ATen/ops/atleast_1d_ops.h>
|
422 |
+
#include <ATen/ops/atleast_2d_ops.h>
|
423 |
+
#include <ATen/ops/atleast_3d_ops.h>
|
424 |
+
#include <ATen/ops/avg_pool1d_ops.h>
|
425 |
+
#include <ATen/ops/avg_pool2d_ops.h>
|
426 |
+
#include <ATen/ops/avg_pool2d_backward_ops.h>
|
427 |
+
#include <ATen/ops/avg_pool3d_ops.h>
|
428 |
+
#include <ATen/ops/avg_pool3d_backward_ops.h>
|
429 |
+
#include <ATen/ops/baddbmm_ops.h>
|
430 |
+
#include <ATen/ops/bartlett_window_ops.h>
|
431 |
+
#include <ATen/ops/batch_norm_ops.h>
|
432 |
+
#include <ATen/ops/batch_norm_backward_elemt_ops.h>
|
433 |
+
#include <ATen/ops/batch_norm_backward_reduce_ops.h>
|
434 |
+
#include <ATen/ops/batch_norm_elemt_ops.h>
|
435 |
+
#include <ATen/ops/batch_norm_gather_stats_ops.h>
|
436 |
+
#include <ATen/ops/batch_norm_gather_stats_with_counts_ops.h>
|
437 |
+
#include <ATen/ops/batch_norm_stats_ops.h>
|
438 |
+
#include <ATen/ops/batch_norm_update_stats_ops.h>
|
439 |
+
#include <ATen/ops/bernoulli_ops.h>
|
440 |
+
#include <ATen/ops/bilinear_ops.h>
|
441 |
+
#include <ATen/ops/binary_cross_entropy_ops.h>
|
442 |
+
#include <ATen/ops/binary_cross_entropy_backward_ops.h>
|
443 |
+
#include <ATen/ops/binary_cross_entropy_with_logits_ops.h>
|
444 |
+
#include <ATen/ops/bincount_ops.h>
|
445 |
+
#include <ATen/ops/binomial_ops.h>
|
446 |
+
#include <ATen/ops/bitwise_and_ops.h>
|
447 |
+
#include <ATen/ops/bitwise_left_shift_ops.h>
|
448 |
+
#include <ATen/ops/bitwise_not_ops.h>
|
449 |
+
#include <ATen/ops/bitwise_or_ops.h>
|
450 |
+
#include <ATen/ops/bitwise_right_shift_ops.h>
|
451 |
+
#include <ATen/ops/bitwise_xor_ops.h>
|
452 |
+
#include <ATen/ops/blackman_window_ops.h>
|
453 |
+
#include <ATen/ops/block_diag_ops.h>
|
454 |
+
#include <ATen/ops/bmm_ops.h>
|
455 |
+
#include <ATen/ops/broadcast_tensors_ops.h>
|
456 |
+
#include <ATen/ops/broadcast_to_ops.h>
|
457 |
+
#include <ATen/ops/bucketize_ops.h>
|
458 |
+
#include <ATen/ops/can_cast_ops.h>
|
459 |
+
#include <ATen/ops/cartesian_prod_ops.h>
|
460 |
+
#include <ATen/ops/cat_ops.h>
|
461 |
+
#include <ATen/ops/cauchy_ops.h>
|
462 |
+
#include <ATen/ops/ccol_indices_ops.h>
|
463 |
+
#include <ATen/ops/ccol_indices_copy_ops.h>
|
464 |
+
#include <ATen/ops/cdist_ops.h>
|
465 |
+
#include <ATen/ops/ceil_ops.h>
|
466 |
+
#include <ATen/ops/celu_ops.h>
|
467 |
+
#include <ATen/ops/chain_matmul_ops.h>
|
468 |
+
#include <ATen/ops/chalf_ops.h>
|
469 |
+
#include <ATen/ops/channel_shuffle_ops.h>
|
470 |
+
#include <ATen/ops/cholesky_ops.h>
|
471 |
+
#include <ATen/ops/cholesky_inverse_ops.h>
|
472 |
+
#include <ATen/ops/cholesky_solve_ops.h>
|
473 |
+
#include <ATen/ops/choose_qparams_optimized_ops.h>
|
474 |
+
#include <ATen/ops/chunk_ops.h>
|
475 |
+
#include <ATen/ops/clamp_ops.h>
|
476 |
+
#include <ATen/ops/clamp_max_ops.h>
|
477 |
+
#include <ATen/ops/clamp_min_ops.h>
|
478 |
+
#include <ATen/ops/clip_ops.h>
|
479 |
+
#include <ATen/ops/clone_ops.h>
|
480 |
+
#include <ATen/ops/coalesce_ops.h>
|
481 |
+
#include <ATen/ops/col2im_ops.h>
|
482 |
+
#include <ATen/ops/col_indices_ops.h>
|
483 |
+
#include <ATen/ops/col_indices_copy_ops.h>
|
484 |
+
#include <ATen/ops/column_stack_ops.h>
|
485 |
+
#include <ATen/ops/combinations_ops.h>
|
486 |
+
#include <ATen/ops/complex_ops.h>
|
487 |
+
#include <ATen/ops/concat_ops.h>
|
488 |
+
#include <ATen/ops/concatenate_ops.h>
|
489 |
+
#include <ATen/ops/conj_ops.h>
|
490 |
+
#include <ATen/ops/conj_physical_ops.h>
|
491 |
+
#include <ATen/ops/constant_pad_nd_ops.h>
|
492 |
+
#include <ATen/ops/contiguous_ops.h>
|
493 |
+
#include <ATen/ops/conv1d_ops.h>
|
494 |
+
#include <ATen/ops/conv2d_ops.h>
|
495 |
+
#include <ATen/ops/conv3d_ops.h>
|
496 |
+
#include <ATen/ops/conv_depthwise3d_ops.h>
|
497 |
+
#include <ATen/ops/conv_tbc_ops.h>
|
498 |
+
#include <ATen/ops/conv_tbc_backward_ops.h>
|
499 |
+
#include <ATen/ops/conv_transpose1d_ops.h>
|
500 |
+
#include <ATen/ops/conv_transpose2d_ops.h>
|
501 |
+
#include <ATen/ops/conv_transpose3d_ops.h>
|
502 |
+
#include <ATen/ops/convolution_ops.h>
|
503 |
+
#include <ATen/ops/convolution_backward_ops.h>
|
504 |
+
#include <ATen/ops/convolution_backward_overrideable_ops.h>
|
505 |
+
#include <ATen/ops/convolution_overrideable_ops.h>
|
506 |
+
#include <ATen/ops/copy_ops.h>
|
507 |
+
#include <ATen/ops/copy_sparse_to_sparse_ops.h>
|
508 |
+
#include <ATen/ops/copysign_ops.h>
|
509 |
+
#include <ATen/ops/corrcoef_ops.h>
|
510 |
+
#include <ATen/ops/cos_ops.h>
|
511 |
+
#include <ATen/ops/cosh_ops.h>
|
512 |
+
#include <ATen/ops/cosine_embedding_loss_ops.h>
|
513 |
+
#include <ATen/ops/cosine_similarity_ops.h>
|
514 |
+
#include <ATen/ops/count_nonzero_ops.h>
|
515 |
+
#include <ATen/ops/cov_ops.h>
|
516 |
+
#include <ATen/ops/cross_ops.h>
|
517 |
+
#include <ATen/ops/cross_entropy_loss_ops.h>
|
518 |
+
#include <ATen/ops/crow_indices_ops.h>
|
519 |
+
#include <ATen/ops/crow_indices_copy_ops.h>
|
520 |
+
#include <ATen/ops/ctc_loss_ops.h>
|
521 |
+
#include <ATen/ops/cudnn_affine_grid_generator_ops.h>
|
522 |
+
#include <ATen/ops/cudnn_affine_grid_generator_backward_ops.h>
|
523 |
+
#include <ATen/ops/cudnn_batch_norm_ops.h>
|
524 |
+
#include <ATen/ops/cudnn_batch_norm_backward_ops.h>
|
525 |
+
#include <ATen/ops/cudnn_convolution_ops.h>
|
526 |
+
#include <ATen/ops/cudnn_convolution_add_relu_ops.h>
|
527 |
+
#include <ATen/ops/cudnn_convolution_relu_ops.h>
|
528 |
+
#include <ATen/ops/cudnn_convolution_transpose_ops.h>
|
529 |
+
#include <ATen/ops/cudnn_grid_sampler_ops.h>
|
530 |
+
#include <ATen/ops/cudnn_grid_sampler_backward_ops.h>
|
531 |
+
#include <ATen/ops/cudnn_is_acceptable_ops.h>
|
532 |
+
#include <ATen/ops/cummax_ops.h>
|
533 |
+
#include <ATen/ops/cummaxmin_backward_ops.h>
|
534 |
+
#include <ATen/ops/cummin_ops.h>
|
535 |
+
#include <ATen/ops/cumprod_ops.h>
|
536 |
+
#include <ATen/ops/cumprod_backward_ops.h>
|
537 |
+
#include <ATen/ops/cumsum_ops.h>
|
538 |
+
#include <ATen/ops/cumulative_trapezoid_ops.h>
|
539 |
+
#include <ATen/ops/data_ops.h>
|
540 |
+
#include <ATen/ops/deg2rad_ops.h>
|
541 |
+
#include <ATen/ops/dense_dim_ops.h>
|
542 |
+
#include <ATen/ops/dequantize_ops.h>
|
543 |
+
#include <ATen/ops/det_ops.h>
|
544 |
+
#include <ATen/ops/detach_ops.h>
|
545 |
+
#include <ATen/ops/detach_copy_ops.h>
|
546 |
+
#include <ATen/ops/diag_ops.h>
|
547 |
+
#include <ATen/ops/diag_embed_ops.h>
|
548 |
+
#include <ATen/ops/diagflat_ops.h>
|
549 |
+
#include <ATen/ops/diagonal_ops.h>
|
550 |
+
#include <ATen/ops/diagonal_backward_ops.h>
|
551 |
+
#include <ATen/ops/diagonal_copy_ops.h>
|
552 |
+
#include <ATen/ops/diagonal_scatter_ops.h>
|
553 |
+
#include <ATen/ops/diff_ops.h>
|
554 |
+
#include <ATen/ops/digamma_ops.h>
|
555 |
+
#include <ATen/ops/dist_ops.h>
|
556 |
+
#include <ATen/ops/div_ops.h>
|
557 |
+
#include <ATen/ops/divide_ops.h>
|
558 |
+
#include <ATen/ops/dot_ops.h>
|
559 |
+
#include <ATen/ops/dropout_ops.h>
|
560 |
+
#include <ATen/ops/dsplit_ops.h>
|
561 |
+
#include <ATen/ops/dstack_ops.h>
|
562 |
+
#include <ATen/ops/einsum_ops.h>
|
563 |
+
#include <ATen/ops/elu_ops.h>
|
564 |
+
#include <ATen/ops/elu_backward_ops.h>
|
565 |
+
#include <ATen/ops/embedding_ops.h>
|
566 |
+
#include <ATen/ops/embedding_backward_ops.h>
|
567 |
+
#include <ATen/ops/embedding_bag_ops.h>
|
568 |
+
#include <ATen/ops/embedding_dense_backward_ops.h>
|
569 |
+
#include <ATen/ops/embedding_renorm_ops.h>
|
570 |
+
#include <ATen/ops/embedding_sparse_backward_ops.h>
|
571 |
+
#include <ATen/ops/empty_ops.h>
|
572 |
+
#include <ATen/ops/empty_like_ops.h>
|
573 |
+
#include <ATen/ops/empty_permuted_ops.h>
|
574 |
+
#include <ATen/ops/empty_quantized_ops.h>
|
575 |
+
#include <ATen/ops/empty_strided_ops.h>
|
576 |
+
#include <ATen/ops/eq_ops.h>
|
577 |
+
#include <ATen/ops/equal_ops.h>
|
578 |
+
#include <ATen/ops/erf_ops.h>
|
579 |
+
#include <ATen/ops/erfc_ops.h>
|
580 |
+
#include <ATen/ops/erfinv_ops.h>
|
581 |
+
#include <ATen/ops/exp_ops.h>
|
582 |
+
#include <ATen/ops/exp2_ops.h>
|
583 |
+
#include <ATen/ops/expand_ops.h>
|
584 |
+
#include <ATen/ops/expand_as_ops.h>
|
585 |
+
#include <ATen/ops/expand_copy_ops.h>
|
586 |
+
#include <ATen/ops/expm1_ops.h>
|
587 |
+
#include <ATen/ops/exponential_ops.h>
|
588 |
+
#include <ATen/ops/eye_ops.h>
|
589 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_ops.h>
|
590 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask_ops.h>
|
591 |
+
#include <ATen/ops/fake_quantize_per_channel_affine_cachemask_backward_ops.h>
|
592 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_ops.h>
|
593 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_ops.h>
|
594 |
+
#include <ATen/ops/fake_quantize_per_tensor_affine_cachemask_backward_ops.h>
|
595 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight_ops.h>
|
596 |
+
#include <ATen/ops/fbgemm_linear_fp16_weight_fp32_activation_ops.h>
|
597 |
+
#include <ATen/ops/fbgemm_linear_int8_weight_ops.h>
|
598 |
+
#include <ATen/ops/fbgemm_linear_int8_weight_fp32_activation_ops.h>
|
599 |
+
#include <ATen/ops/fbgemm_linear_quantize_weight_ops.h>
|
600 |
+
#include <ATen/ops/fbgemm_pack_gemm_matrix_fp16_ops.h>
|
601 |
+
#include <ATen/ops/fbgemm_pack_quantized_matrix_ops.h>
|
602 |
+
#include <ATen/ops/feature_alpha_dropout_ops.h>
|
603 |
+
#include <ATen/ops/feature_dropout_ops.h>
|
604 |
+
#include <ATen/ops/fft_fft_ops.h>
|
605 |
+
#include <ATen/ops/fft_fft2_ops.h>
|
606 |
+
#include <ATen/ops/fft_fftfreq_ops.h>
|
607 |
+
#include <ATen/ops/fft_fftn_ops.h>
|
608 |
+
#include <ATen/ops/fft_fftshift_ops.h>
|
609 |
+
#include <ATen/ops/fft_hfft_ops.h>
|
610 |
+
#include <ATen/ops/fft_hfft2_ops.h>
|
611 |
+
#include <ATen/ops/fft_hfftn_ops.h>
|
612 |
+
#include <ATen/ops/fft_ifft_ops.h>
|
613 |
+
#include <ATen/ops/fft_ifft2_ops.h>
|
614 |
+
#include <ATen/ops/fft_ifftn_ops.h>
|
615 |
+
#include <ATen/ops/fft_ifftshift_ops.h>
|
616 |
+
#include <ATen/ops/fft_ihfft_ops.h>
|
617 |
+
#include <ATen/ops/fft_ihfft2_ops.h>
|
618 |
+
#include <ATen/ops/fft_ihfftn_ops.h>
|
619 |
+
#include <ATen/ops/fft_irfft_ops.h>
|
620 |
+
#include <ATen/ops/fft_irfft2_ops.h>
|
621 |
+
#include <ATen/ops/fft_irfftn_ops.h>
|
622 |
+
#include <ATen/ops/fft_rfft_ops.h>
|
623 |
+
#include <ATen/ops/fft_rfft2_ops.h>
|
624 |
+
#include <ATen/ops/fft_rfftfreq_ops.h>
|
625 |
+
#include <ATen/ops/fft_rfftn_ops.h>
|
626 |
+
#include <ATen/ops/fill_ops.h>
|
627 |
+
#include <ATen/ops/fill_diagonal_ops.h>
|
628 |
+
#include <ATen/ops/fix_ops.h>
|
629 |
+
#include <ATen/ops/flatten_ops.h>
|
630 |
+
#include <ATen/ops/flatten_dense_tensors_ops.h>
|
631 |
+
#include <ATen/ops/flip_ops.h>
|
632 |
+
#include <ATen/ops/fliplr_ops.h>
|
633 |
+
#include <ATen/ops/flipud_ops.h>
|
634 |
+
#include <ATen/ops/float_power_ops.h>
|
635 |
+
#include <ATen/ops/floor_ops.h>
|
636 |
+
#include <ATen/ops/floor_divide_ops.h>
|
637 |
+
#include <ATen/ops/fmax_ops.h>
|
638 |
+
#include <ATen/ops/fmin_ops.h>
|
639 |
+
#include <ATen/ops/fmod_ops.h>
|
640 |
+
#include <ATen/ops/frac_ops.h>
|
641 |
+
#include <ATen/ops/fractional_max_pool2d_ops.h>
|
642 |
+
#include <ATen/ops/fractional_max_pool2d_backward_ops.h>
|
643 |
+
#include <ATen/ops/fractional_max_pool3d_ops.h>
|
644 |
+
#include <ATen/ops/fractional_max_pool3d_backward_ops.h>
|
645 |
+
#include <ATen/ops/frexp_ops.h>
|
646 |
+
#include <ATen/ops/frobenius_norm_ops.h>
|
647 |
+
#include <ATen/ops/from_file_ops.h>
|
648 |
+
#include <ATen/ops/full_ops.h>
|
649 |
+
#include <ATen/ops/full_like_ops.h>
|
650 |
+
#include <ATen/ops/fused_moving_avg_obs_fake_quant_ops.h>
|
651 |
+
#include <ATen/ops/gather_ops.h>
|
652 |
+
#include <ATen/ops/gather_backward_ops.h>
|
653 |
+
#include <ATen/ops/gcd_ops.h>
|
654 |
+
#include <ATen/ops/ge_ops.h>
|
655 |
+
#include <ATen/ops/gelu_ops.h>
|
656 |
+
#include <ATen/ops/gelu_backward_ops.h>
|
657 |
+
#include <ATen/ops/geometric_ops.h>
|
658 |
+
#include <ATen/ops/geqrf_ops.h>
|
659 |
+
#include <ATen/ops/ger_ops.h>
|
660 |
+
#include <ATen/ops/glu_ops.h>
|
661 |
+
#include <ATen/ops/glu_backward_ops.h>
|
662 |
+
#include <ATen/ops/glu_backward_jvp_ops.h>
|
663 |
+
#include <ATen/ops/glu_jvp_ops.h>
|
664 |
+
#include <ATen/ops/gradient_ops.h>
|
665 |
+
#include <ATen/ops/greater_ops.h>
|
666 |
+
#include <ATen/ops/greater_equal_ops.h>
|
667 |
+
#include <ATen/ops/grid_sampler_ops.h>
|
668 |
+
#include <ATen/ops/grid_sampler_2d_ops.h>
|
669 |
+
#include <ATen/ops/grid_sampler_2d_backward_ops.h>
|
670 |
+
#include <ATen/ops/grid_sampler_3d_ops.h>
|
671 |
+
#include <ATen/ops/grid_sampler_3d_backward_ops.h>
|
672 |
+
#include <ATen/ops/group_norm_ops.h>
|
673 |
+
#include <ATen/ops/gru_ops.h>
|
674 |
+
#include <ATen/ops/gru_cell_ops.h>
|
675 |
+
#include <ATen/ops/gt_ops.h>
|
676 |
+
#include <ATen/ops/hamming_window_ops.h>
|
677 |
+
#include <ATen/ops/hann_window_ops.h>
|
678 |
+
#include <ATen/ops/hardshrink_ops.h>
|
679 |
+
#include <ATen/ops/hardshrink_backward_ops.h>
|
680 |
+
#include <ATen/ops/hardsigmoid_ops.h>
|
681 |
+
#include <ATen/ops/hardsigmoid_backward_ops.h>
|
682 |
+
#include <ATen/ops/hardswish_ops.h>
|
683 |
+
#include <ATen/ops/hardswish_backward_ops.h>
|
684 |
+
#include <ATen/ops/hardtanh_ops.h>
|
685 |
+
#include <ATen/ops/hardtanh_backward_ops.h>
|
686 |
+
#include <ATen/ops/heaviside_ops.h>
|
687 |
+
#include <ATen/ops/hinge_embedding_loss_ops.h>
|
688 |
+
#include <ATen/ops/histc_ops.h>
|
689 |
+
#include <ATen/ops/histogram_ops.h>
|
690 |
+
#include <ATen/ops/histogramdd_ops.h>
|
691 |
+
#include <ATen/ops/hsplit_ops.h>
|
692 |
+
#include <ATen/ops/hspmm_ops.h>
|
693 |
+
#include <ATen/ops/hstack_ops.h>
|
694 |
+
#include <ATen/ops/huber_loss_ops.h>
|
695 |
+
#include <ATen/ops/huber_loss_backward_ops.h>
|
696 |
+
#include <ATen/ops/hypot_ops.h>
|
697 |
+
#include <ATen/ops/i0_ops.h>
|
698 |
+
#include <ATen/ops/igamma_ops.h>
|
699 |
+
#include <ATen/ops/igammac_ops.h>
|
700 |
+
#include <ATen/ops/im2col_ops.h>
|
701 |
+
#include <ATen/ops/imag_ops.h>
|
702 |
+
#include <ATen/ops/index_ops.h>
|
703 |
+
#include <ATen/ops/index_add_ops.h>
|
704 |
+
#include <ATen/ops/index_copy_ops.h>
|
705 |
+
#include <ATen/ops/index_fill_ops.h>
|
706 |
+
#include <ATen/ops/index_put_ops.h>
|
707 |
+
#include <ATen/ops/index_reduce_ops.h>
|
708 |
+
#include <ATen/ops/index_select_ops.h>
|
709 |
+
#include <ATen/ops/index_select_backward_ops.h>
|
710 |
+
#include <ATen/ops/indices_ops.h>
|
711 |
+
#include <ATen/ops/indices_copy_ops.h>
|
712 |
+
#include <ATen/ops/infinitely_differentiable_gelu_backward_ops.h>
|
713 |
+
#include <ATen/ops/inner_ops.h>
|
714 |
+
#include <ATen/ops/instance_norm_ops.h>
|
715 |
+
#include <ATen/ops/int_repr_ops.h>
|
716 |
+
#include <ATen/ops/inverse_ops.h>
|
717 |
+
#include <ATen/ops/is_coalesced_ops.h>
|
718 |
+
#include <ATen/ops/is_complex_ops.h>
|
719 |
+
#include <ATen/ops/is_conj_ops.h>
|
720 |
+
#include <ATen/ops/is_distributed_ops.h>
|
721 |
+
#include <ATen/ops/is_floating_point_ops.h>
|
722 |
+
#include <ATen/ops/is_inference_ops.h>
|
723 |
+
#include <ATen/ops/is_leaf_ops.h>
|
724 |
+
#include <ATen/ops/is_neg_ops.h>
|
725 |
+
#include <ATen/ops/is_nonzero_ops.h>
|
726 |
+
#include <ATen/ops/is_pinned_ops.h>
|
727 |
+
#include <ATen/ops/is_same_size_ops.h>
|
728 |
+
#include <ATen/ops/is_set_to_ops.h>
|
729 |
+
#include <ATen/ops/is_signed_ops.h>
|
730 |
+
#include <ATen/ops/is_vulkan_available_ops.h>
|
731 |
+
#include <ATen/ops/isclose_ops.h>
|
732 |
+
#include <ATen/ops/isfinite_ops.h>
|
733 |
+
#include <ATen/ops/isin_ops.h>
|
734 |
+
#include <ATen/ops/isinf_ops.h>
|
735 |
+
#include <ATen/ops/isnan_ops.h>
|
736 |
+
#include <ATen/ops/isneginf_ops.h>
|
737 |
+
#include <ATen/ops/isposinf_ops.h>
|
738 |
+
#include <ATen/ops/isreal_ops.h>
|
739 |
+
#include <ATen/ops/istft_ops.h>
|
740 |
+
#include <ATen/ops/item_ops.h>
|
741 |
+
#include <ATen/ops/kaiser_window_ops.h>
|
742 |
+
#include <ATen/ops/kl_div_ops.h>
|
743 |
+
#include <ATen/ops/kron_ops.h>
|
744 |
+
#include <ATen/ops/kthvalue_ops.h>
|
745 |
+
#include <ATen/ops/l1_loss_ops.h>
|
746 |
+
#include <ATen/ops/layer_norm_ops.h>
|
747 |
+
#include <ATen/ops/lcm_ops.h>
|
748 |
+
#include <ATen/ops/ldexp_ops.h>
|
749 |
+
#include <ATen/ops/le_ops.h>
|
750 |
+
#include <ATen/ops/leaky_relu_ops.h>
|
751 |
+
#include <ATen/ops/leaky_relu_backward_ops.h>
|
752 |
+
#include <ATen/ops/lerp_ops.h>
|
753 |
+
#include <ATen/ops/less_ops.h>
|
754 |
+
#include <ATen/ops/less_equal_ops.h>
|
755 |
+
#include <ATen/ops/lgamma_ops.h>
|
756 |
+
#include <ATen/ops/lift_ops.h>
|
757 |
+
#include <ATen/ops/lift_fresh_ops.h>
|
758 |
+
#include <ATen/ops/lift_fresh_copy_ops.h>
|
759 |
+
#include <ATen/ops/linalg_cholesky_ops.h>
|
760 |
+
#include <ATen/ops/linalg_cholesky_ex_ops.h>
|
761 |
+
#include <ATen/ops/linalg_cond_ops.h>
|
762 |
+
#include <ATen/ops/linalg_cross_ops.h>
|
763 |
+
#include <ATen/ops/linalg_det_ops.h>
|
764 |
+
#include <ATen/ops/linalg_diagonal_ops.h>
|
765 |
+
#include <ATen/ops/linalg_eig_ops.h>
|
766 |
+
#include <ATen/ops/linalg_eigh_ops.h>
|
767 |
+
#include <ATen/ops/linalg_eigvals_ops.h>
|
768 |
+
#include <ATen/ops/linalg_eigvalsh_ops.h>
|
769 |
+
#include <ATen/ops/linalg_householder_product_ops.h>
|
770 |
+
#include <ATen/ops/linalg_inv_ops.h>
|
771 |
+
#include <ATen/ops/linalg_inv_ex_ops.h>
|
772 |
+
#include <ATen/ops/linalg_ldl_factor_ops.h>
|
773 |
+
#include <ATen/ops/linalg_ldl_factor_ex_ops.h>
|
774 |
+
#include <ATen/ops/linalg_ldl_solve_ops.h>
|
775 |
+
#include <ATen/ops/linalg_lstsq_ops.h>
|
776 |
+
#include <ATen/ops/linalg_lu_ops.h>
|
777 |
+
#include <ATen/ops/linalg_lu_factor_ops.h>
|
778 |
+
#include <ATen/ops/linalg_lu_factor_ex_ops.h>
|
779 |
+
#include <ATen/ops/linalg_lu_solve_ops.h>
|
780 |
+
#include <ATen/ops/linalg_matmul_ops.h>
|
781 |
+
#include <ATen/ops/linalg_matrix_exp_ops.h>
|
782 |
+
#include <ATen/ops/linalg_matrix_norm_ops.h>
|
783 |
+
#include <ATen/ops/linalg_matrix_power_ops.h>
|
784 |
+
#include <ATen/ops/linalg_matrix_rank_ops.h>
|
785 |
+
#include <ATen/ops/linalg_multi_dot_ops.h>
|
786 |
+
#include <ATen/ops/linalg_norm_ops.h>
|
787 |
+
#include <ATen/ops/linalg_pinv_ops.h>
|
788 |
+
#include <ATen/ops/linalg_qr_ops.h>
|
789 |
+
#include <ATen/ops/linalg_slogdet_ops.h>
|
790 |
+
#include <ATen/ops/linalg_solve_ops.h>
|
791 |
+
#include <ATen/ops/linalg_solve_ex_ops.h>
|
792 |
+
#include <ATen/ops/linalg_solve_triangular_ops.h>
|
793 |
+
#include <ATen/ops/linalg_svd_ops.h>
|
794 |
+
#include <ATen/ops/linalg_svdvals_ops.h>
|
795 |
+
#include <ATen/ops/linalg_tensorinv_ops.h>
|
796 |
+
#include <ATen/ops/linalg_tensorsolve_ops.h>
|
797 |
+
#include <ATen/ops/linalg_vander_ops.h>
|
798 |
+
#include <ATen/ops/linalg_vecdot_ops.h>
|
799 |
+
#include <ATen/ops/linalg_vector_norm_ops.h>
|
800 |
+
#include <ATen/ops/linear_ops.h>
|
801 |
+
#include <ATen/ops/linear_backward_ops.h>
|
802 |
+
#include <ATen/ops/linspace_ops.h>
|
803 |
+
#include <ATen/ops/log_ops.h>
|
804 |
+
#include <ATen/ops/log10_ops.h>
|
805 |
+
#include <ATen/ops/log1p_ops.h>
|
806 |
+
#include <ATen/ops/log2_ops.h>
|
807 |
+
#include <ATen/ops/log_normal_ops.h>
|
808 |
+
#include <ATen/ops/log_sigmoid_ops.h>
|
809 |
+
#include <ATen/ops/log_sigmoid_backward_ops.h>
|
810 |
+
#include <ATen/ops/log_sigmoid_forward_ops.h>
|
811 |
+
#include <ATen/ops/log_softmax_ops.h>
|
812 |
+
#include <ATen/ops/logaddexp_ops.h>
|
813 |
+
#include <ATen/ops/logaddexp2_ops.h>
|
814 |
+
#include <ATen/ops/logcumsumexp_ops.h>
|
815 |
+
#include <ATen/ops/logdet_ops.h>
|
816 |
+
#include <ATen/ops/logical_and_ops.h>
|
817 |
+
#include <ATen/ops/logical_not_ops.h>
|
818 |
+
#include <ATen/ops/logical_or_ops.h>
|
819 |
+
#include <ATen/ops/logical_xor_ops.h>
|
820 |
+
#include <ATen/ops/logit_ops.h>
|
821 |
+
#include <ATen/ops/logit_backward_ops.h>
|
822 |
+
#include <ATen/ops/logspace_ops.h>
|
823 |
+
#include <ATen/ops/logsumexp_ops.h>
|
824 |
+
#include <ATen/ops/lshift_ops.h>
|
825 |
+
#include <ATen/ops/lstm_ops.h>
|
826 |
+
#include <ATen/ops/lstm_cell_ops.h>
|
827 |
+
#include <ATen/ops/lstm_mps_backward_ops.h>
|
828 |
+
#include <ATen/ops/lt_ops.h>
|
829 |
+
#include <ATen/ops/lu_solve_ops.h>
|
830 |
+
#include <ATen/ops/lu_unpack_ops.h>
|
831 |
+
#include <ATen/ops/mH_ops.h>
|
832 |
+
#include <ATen/ops/mT_ops.h>
|
833 |
+
#include <ATen/ops/margin_ranking_loss_ops.h>
|
834 |
+
#include <ATen/ops/masked_fill_ops.h>
|
835 |
+
#include <ATen/ops/masked_scatter_ops.h>
|
836 |
+
#include <ATen/ops/masked_scatter_backward_ops.h>
|
837 |
+
#include <ATen/ops/masked_select_ops.h>
|
838 |
+
#include <ATen/ops/masked_select_backward_ops.h>
|
839 |
+
#include <ATen/ops/matmul_ops.h>
|
840 |
+
#include <ATen/ops/matmul_backward_ops.h>
|
841 |
+
#include <ATen/ops/matrix_H_ops.h>
|
842 |
+
#include <ATen/ops/matrix_exp_ops.h>
|
843 |
+
#include <ATen/ops/matrix_exp_backward_ops.h>
|
844 |
+
#include <ATen/ops/matrix_power_ops.h>
|
845 |
+
#include <ATen/ops/max_ops.h>
|
846 |
+
#include <ATen/ops/max_pool1d_ops.h>
|
847 |
+
#include <ATen/ops/max_pool1d_with_indices_ops.h>
|
848 |
+
#include <ATen/ops/max_pool2d_ops.h>
|
849 |
+
#include <ATen/ops/max_pool2d_backward_ops.h>
|
850 |
+
#include <ATen/ops/max_pool2d_with_indices_ops.h>
|
851 |
+
#include <ATen/ops/max_pool2d_with_indices_backward_ops.h>
|
852 |
+
#include <ATen/ops/max_pool3d_ops.h>
|
853 |
+
#include <ATen/ops/max_pool3d_with_indices_ops.h>
|
854 |
+
#include <ATen/ops/max_pool3d_with_indices_backward_ops.h>
|
855 |
+
#include <ATen/ops/max_unpool2d_ops.h>
|
856 |
+
#include <ATen/ops/max_unpool3d_ops.h>
|
857 |
+
#include <ATen/ops/maximum_ops.h>
|
858 |
+
#include <ATen/ops/mean_ops.h>
|
859 |
+
#include <ATen/ops/median_ops.h>
|
860 |
+
#include <ATen/ops/meshgrid_ops.h>
|
861 |
+
#include <ATen/ops/min_ops.h>
|
862 |
+
#include <ATen/ops/minimum_ops.h>
|
863 |
+
#include <ATen/ops/miopen_batch_norm_ops.h>
|
864 |
+
#include <ATen/ops/miopen_batch_norm_backward_ops.h>
|
865 |
+
#include <ATen/ops/miopen_convolution_ops.h>
|
866 |
+
#include <ATen/ops/miopen_convolution_add_relu_ops.h>
|
867 |
+
#include <ATen/ops/miopen_convolution_relu_ops.h>
|
868 |
+
#include <ATen/ops/miopen_convolution_transpose_ops.h>
|
869 |
+
#include <ATen/ops/miopen_depthwise_convolution_ops.h>
|
870 |
+
#include <ATen/ops/miopen_rnn_ops.h>
|
871 |
+
#include <ATen/ops/miopen_rnn_backward_ops.h>
|
872 |
+
#include <ATen/ops/mish_ops.h>
|
873 |
+
#include <ATen/ops/mish_backward_ops.h>
|
874 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d_ops.h>
|
875 |
+
#include <ATen/ops/mkldnn_adaptive_avg_pool2d_backward_ops.h>
|
876 |
+
#include <ATen/ops/mkldnn_convolution_ops.h>
|
877 |
+
#include <ATen/ops/mkldnn_linear_ops.h>
|
878 |
+
#include <ATen/ops/mkldnn_linear_backward_ops.h>
|
879 |
+
#include <ATen/ops/mkldnn_linear_backward_input_ops.h>
|
880 |
+
#include <ATen/ops/mkldnn_linear_backward_weights_ops.h>
|
881 |
+
#include <ATen/ops/mkldnn_max_pool2d_ops.h>
|
882 |
+
#include <ATen/ops/mkldnn_max_pool2d_backward_ops.h>
|
883 |
+
#include <ATen/ops/mkldnn_max_pool3d_ops.h>
|
884 |
+
#include <ATen/ops/mkldnn_max_pool3d_backward_ops.h>
|
885 |
+
#include <ATen/ops/mkldnn_reorder_conv2d_weight_ops.h>
|
886 |
+
#include <ATen/ops/mkldnn_reorder_conv3d_weight_ops.h>
|
887 |
+
#include <ATen/ops/mkldnn_rnn_layer_ops.h>
|
888 |
+
#include <ATen/ops/mkldnn_rnn_layer_backward_ops.h>
|
889 |
+
#include <ATen/ops/mm_ops.h>
|
890 |
+
#include <ATen/ops/mode_ops.h>
|
891 |
+
#include <ATen/ops/moveaxis_ops.h>
|
892 |
+
#include <ATen/ops/movedim_ops.h>
|
893 |
+
#include <ATen/ops/mps_convolution_backward_ops.h>
|
894 |
+
#include <ATen/ops/mps_convolution_transpose_backward_ops.h>
|
895 |
+
#include <ATen/ops/mse_loss_ops.h>
|
896 |
+
#include <ATen/ops/mse_loss_backward_ops.h>
|
897 |
+
#include <ATen/ops/msort_ops.h>
|
898 |
+
#include <ATen/ops/mul_ops.h>
|
899 |
+
#include <ATen/ops/multi_margin_loss_ops.h>
|
900 |
+
#include <ATen/ops/multi_margin_loss_backward_ops.h>
|
901 |
+
#include <ATen/ops/multilabel_margin_loss_ops.h>
|
902 |
+
#include <ATen/ops/multilabel_margin_loss_backward_ops.h>
|
903 |
+
#include <ATen/ops/multilabel_margin_loss_forward_ops.h>
|
904 |
+
#include <ATen/ops/multinomial_ops.h>
|
905 |
+
#include <ATen/ops/multiply_ops.h>
|
906 |
+
#include <ATen/ops/mv_ops.h>
|
907 |
+
#include <ATen/ops/mvlgamma_ops.h>
|
908 |
+
#include <ATen/ops/nan_to_num_ops.h>
|
909 |
+
#include <ATen/ops/nanmean_ops.h>
|
910 |
+
#include <ATen/ops/nanmedian_ops.h>
|
911 |
+
#include <ATen/ops/nanquantile_ops.h>
|
912 |
+
#include <ATen/ops/nansum_ops.h>
|
913 |
+
#include <ATen/ops/narrow_ops.h>
|
914 |
+
#include <ATen/ops/narrow_copy_ops.h>
|
915 |
+
#include <ATen/ops/native_batch_norm_ops.h>
|
916 |
+
#include <ATen/ops/native_batch_norm_backward_ops.h>
|
917 |
+
#include <ATen/ops/native_channel_shuffle_ops.h>
|
918 |
+
#include <ATen/ops/native_dropout_ops.h>
|
919 |
+
#include <ATen/ops/native_dropout_backward_ops.h>
|
920 |
+
#include <ATen/ops/native_group_norm_ops.h>
|
921 |
+
#include <ATen/ops/native_group_norm_backward_ops.h>
|
922 |
+
#include <ATen/ops/native_layer_norm_ops.h>
|
923 |
+
#include <ATen/ops/native_layer_norm_backward_ops.h>
|
924 |
+
#include <ATen/ops/native_norm_ops.h>
|
925 |
+
#include <ATen/ops/ne_ops.h>
|
926 |
+
#include <ATen/ops/neg_ops.h>
|
927 |
+
#include <ATen/ops/negative_ops.h>
|
928 |
+
#include <ATen/ops/nested_to_padded_tensor_ops.h>
|
929 |
+
#include <ATen/ops/new_empty_ops.h>
|
930 |
+
#include <ATen/ops/new_empty_strided_ops.h>
|
931 |
+
#include <ATen/ops/new_full_ops.h>
|
932 |
+
#include <ATen/ops/new_ones_ops.h>
|
933 |
+
#include <ATen/ops/new_zeros_ops.h>
|
934 |
+
#include <ATen/ops/nextafter_ops.h>
|
935 |
+
#include <ATen/ops/nll_loss_ops.h>
|
936 |
+
#include <ATen/ops/nll_loss2d_ops.h>
|
937 |
+
#include <ATen/ops/nll_loss2d_backward_ops.h>
|
938 |
+
#include <ATen/ops/nll_loss2d_forward_ops.h>
|
939 |
+
#include <ATen/ops/nll_loss_backward_ops.h>
|
940 |
+
#include <ATen/ops/nll_loss_forward_ops.h>
|
941 |
+
#include <ATen/ops/nll_loss_nd_ops.h>
|
942 |
+
#include <ATen/ops/nonzero_ops.h>
|
943 |
+
#include <ATen/ops/nonzero_numpy_ops.h>
|
944 |
+
#include <ATen/ops/nonzero_static_ops.h>
|
945 |
+
#include <ATen/ops/norm_ops.h>
|
946 |
+
#include <ATen/ops/norm_except_dim_ops.h>
|
947 |
+
#include <ATen/ops/normal_ops.h>
|
948 |
+
#include <ATen/ops/not_equal_ops.h>
|
949 |
+
#include <ATen/ops/nuclear_norm_ops.h>
|
950 |
+
#include <ATen/ops/numpy_T_ops.h>
|
951 |
+
#include <ATen/ops/one_hot_ops.h>
|
952 |
+
#include <ATen/ops/ones_ops.h>
|
953 |
+
#include <ATen/ops/ones_like_ops.h>
|
954 |
+
#include <ATen/ops/or_ops.h>
|
955 |
+
#include <ATen/ops/orgqr_ops.h>
|
956 |
+
#include <ATen/ops/ormqr_ops.h>
|
957 |
+
#include <ATen/ops/outer_ops.h>
|
958 |
+
#include <ATen/ops/output_nr_ops.h>
|
959 |
+
#include <ATen/ops/pad_ops.h>
|
960 |
+
#include <ATen/ops/pad_sequence_ops.h>
|
961 |
+
#include <ATen/ops/pairwise_distance_ops.h>
|
962 |
+
#include <ATen/ops/pdist_ops.h>
|
963 |
+
#include <ATen/ops/permute_ops.h>
|
964 |
+
#include <ATen/ops/permute_copy_ops.h>
|
965 |
+
#include <ATen/ops/pin_memory_ops.h>
|
966 |
+
#include <ATen/ops/pinverse_ops.h>
|
967 |
+
#include <ATen/ops/pixel_shuffle_ops.h>
|
968 |
+
#include <ATen/ops/pixel_unshuffle_ops.h>
|
969 |
+
#include <ATen/ops/poisson_ops.h>
|
970 |
+
#include <ATen/ops/poisson_nll_loss_ops.h>
|
971 |
+
#include <ATen/ops/polar_ops.h>
|
972 |
+
#include <ATen/ops/polygamma_ops.h>
|
973 |
+
#include <ATen/ops/positive_ops.h>
|
974 |
+
#include <ATen/ops/pow_ops.h>
|
975 |
+
#include <ATen/ops/prelu_ops.h>
|
976 |
+
#include <ATen/ops/prod_ops.h>
|
977 |
+
#include <ATen/ops/promote_types_ops.h>
|
978 |
+
#include <ATen/ops/put_ops.h>
|
979 |
+
#include <ATen/ops/q_per_channel_axis_ops.h>
|
980 |
+
#include <ATen/ops/q_per_channel_scales_ops.h>
|
981 |
+
#include <ATen/ops/q_per_channel_zero_points_ops.h>
|
982 |
+
#include <ATen/ops/q_scale_ops.h>
|
983 |
+
#include <ATen/ops/q_zero_point_ops.h>
|
984 |
+
#include <ATen/ops/qr_ops.h>
|
985 |
+
#include <ATen/ops/qscheme_ops.h>
|
986 |
+
#include <ATen/ops/quantile_ops.h>
|
987 |
+
#include <ATen/ops/quantize_per_channel_ops.h>
|
988 |
+
#include <ATen/ops/quantize_per_tensor_ops.h>
|
989 |
+
#include <ATen/ops/quantize_per_tensor_dynamic_ops.h>
|
990 |
+
#include <ATen/ops/quantized_batch_norm_ops.h>
|
991 |
+
#include <ATen/ops/quantized_gru_cell_ops.h>
|
992 |
+
#include <ATen/ops/quantized_lstm_cell_ops.h>
|
993 |
+
#include <ATen/ops/quantized_max_pool1d_ops.h>
|
994 |
+
#include <ATen/ops/quantized_max_pool2d_ops.h>
|
995 |
+
#include <ATen/ops/quantized_max_pool3d_ops.h>
|
996 |
+
#include <ATen/ops/quantized_rnn_relu_cell_ops.h>
|
997 |
+
#include <ATen/ops/quantized_rnn_tanh_cell_ops.h>
|
998 |
+
#include <ATen/ops/rad2deg_ops.h>
|
999 |
+
#include <ATen/ops/rand_ops.h>
|
1000 |
+
#include <ATen/ops/rand_like_ops.h>
|
1001 |
+
#include <ATen/ops/randint_ops.h>
|
1002 |
+
#include <ATen/ops/randint_like_ops.h>
|
1003 |
+
#include <ATen/ops/randn_ops.h>
|
1004 |
+
#include <ATen/ops/randn_like_ops.h>
|
1005 |
+
#include <ATen/ops/random_ops.h>
|
1006 |
+
#include <ATen/ops/randperm_ops.h>
|
1007 |
+
#include <ATen/ops/range_ops.h>
|
1008 |
+
#include <ATen/ops/ravel_ops.h>
|
1009 |
+
#include <ATen/ops/real_ops.h>
|
1010 |
+
#include <ATen/ops/reciprocal_ops.h>
|
1011 |
+
#include <ATen/ops/record_stream_ops.h>
|
1012 |
+
#include <ATen/ops/refine_names_ops.h>
|
1013 |
+
#include <ATen/ops/reflection_pad1d_ops.h>
|
1014 |
+
#include <ATen/ops/reflection_pad1d_backward_ops.h>
|
1015 |
+
#include <ATen/ops/reflection_pad2d_ops.h>
|
1016 |
+
#include <ATen/ops/reflection_pad2d_backward_ops.h>
|
1017 |
+
#include <ATen/ops/reflection_pad3d_ops.h>
|
1018 |
+
#include <ATen/ops/reflection_pad3d_backward_ops.h>
|
1019 |
+
#include <ATen/ops/relu_ops.h>
|
1020 |
+
#include <ATen/ops/relu6_ops.h>
|
1021 |
+
#include <ATen/ops/remainder_ops.h>
|
1022 |
+
#include <ATen/ops/rename_ops.h>
|
1023 |
+
#include <ATen/ops/renorm_ops.h>
|
1024 |
+
#include <ATen/ops/repeat_ops.h>
|
1025 |
+
#include <ATen/ops/repeat_interleave_ops.h>
|
1026 |
+
#include <ATen/ops/replication_pad1d_ops.h>
|
1027 |
+
#include <ATen/ops/replication_pad1d_backward_ops.h>
|
1028 |
+
#include <ATen/ops/replication_pad2d_ops.h>
|
1029 |
+
#include <ATen/ops/replication_pad2d_backward_ops.h>
|
1030 |
+
#include <ATen/ops/replication_pad3d_ops.h>
|
1031 |
+
#include <ATen/ops/replication_pad3d_backward_ops.h>
|
1032 |
+
#include <ATen/ops/requires_grad_ops.h>
|
1033 |
+
#include <ATen/ops/reshape_ops.h>
|
1034 |
+
#include <ATen/ops/reshape_as_ops.h>
|
1035 |
+
#include <ATen/ops/resize_ops.h>
|
1036 |
+
#include <ATen/ops/resize_as_ops.h>
|
1037 |
+
#include <ATen/ops/resize_as_sparse_ops.h>
|
1038 |
+
#include <ATen/ops/resolve_conj_ops.h>
|
1039 |
+
#include <ATen/ops/resolve_neg_ops.h>
|
1040 |
+
#include <ATen/ops/result_type_ops.h>
|
1041 |
+
#include <ATen/ops/retain_grad_ops.h>
|
1042 |
+
#include <ATen/ops/retains_grad_ops.h>
|
1043 |
+
#include <ATen/ops/rnn_relu_ops.h>
|
1044 |
+
#include <ATen/ops/rnn_relu_cell_ops.h>
|
1045 |
+
#include <ATen/ops/rnn_tanh_ops.h>
|
1046 |
+
#include <ATen/ops/rnn_tanh_cell_ops.h>
|
1047 |
+
#include <ATen/ops/roll_ops.h>
|
1048 |
+
#include <ATen/ops/rot90_ops.h>
|
1049 |
+
#include <ATen/ops/round_ops.h>
|
1050 |
+
#include <ATen/ops/row_indices_ops.h>
|
1051 |
+
#include <ATen/ops/row_indices_copy_ops.h>
|
1052 |
+
#include <ATen/ops/row_stack_ops.h>
|
1053 |
+
#include <ATen/ops/rrelu_ops.h>
|
1054 |
+
#include <ATen/ops/rrelu_with_noise_ops.h>
|
1055 |
+
#include <ATen/ops/rrelu_with_noise_backward_ops.h>
|
1056 |
+
#include <ATen/ops/rshift_ops.h>
|
1057 |
+
#include <ATen/ops/rsqrt_ops.h>
|
1058 |
+
#include <ATen/ops/rsub_ops.h>
|
1059 |
+
#include <ATen/ops/scalar_tensor_ops.h>
|
1060 |
+
#include <ATen/ops/scaled_dot_product_attention_ops.h>
|
1061 |
+
#include <ATen/ops/scatter_ops.h>
|
1062 |
+
#include <ATen/ops/scatter_add_ops.h>
|
1063 |
+
#include <ATen/ops/scatter_reduce_ops.h>
|
1064 |
+
#include <ATen/ops/searchsorted_ops.h>
|
1065 |
+
#include <ATen/ops/segment_reduce_ops.h>
|
1066 |
+
#include <ATen/ops/select_ops.h>
|
1067 |
+
#include <ATen/ops/select_backward_ops.h>
|
1068 |
+
#include <ATen/ops/select_copy_ops.h>
|
1069 |
+
#include <ATen/ops/select_scatter_ops.h>
|
1070 |
+
#include <ATen/ops/selu_ops.h>
|
1071 |
+
#include <ATen/ops/set_ops.h>
|
1072 |
+
#include <ATen/ops/set_data_ops.h>
|
1073 |
+
#include <ATen/ops/sgn_ops.h>
|
1074 |
+
#include <ATen/ops/sigmoid_ops.h>
|
1075 |
+
#include <ATen/ops/sigmoid_backward_ops.h>
|
1076 |
+
#include <ATen/ops/sign_ops.h>
|
1077 |
+
#include <ATen/ops/signbit_ops.h>
|
1078 |
+
#include <ATen/ops/silu_ops.h>
|
1079 |
+
#include <ATen/ops/silu_backward_ops.h>
|
1080 |
+
#include <ATen/ops/sin_ops.h>
|
1081 |
+
#include <ATen/ops/sinc_ops.h>
|
1082 |
+
#include <ATen/ops/sinh_ops.h>
|
1083 |
+
#include <ATen/ops/size_ops.h>
|
1084 |
+
#include <ATen/ops/slice_ops.h>
|
1085 |
+
#include <ATen/ops/slice_backward_ops.h>
|
1086 |
+
#include <ATen/ops/slice_copy_ops.h>
|
1087 |
+
#include <ATen/ops/slice_scatter_ops.h>
|
1088 |
+
#include <ATen/ops/slogdet_ops.h>
|
1089 |
+
#include <ATen/ops/slow_conv3d_ops.h>
|
1090 |
+
#include <ATen/ops/slow_conv3d_forward_ops.h>
|
1091 |
+
#include <ATen/ops/slow_conv_dilated2d_ops.h>
|
1092 |
+
#include <ATen/ops/slow_conv_dilated3d_ops.h>
|
1093 |
+
#include <ATen/ops/slow_conv_transpose2d_ops.h>
|
1094 |
+
#include <ATen/ops/slow_conv_transpose3d_ops.h>
|
1095 |
+
#include <ATen/ops/smm_ops.h>
|
1096 |
+
#include <ATen/ops/smooth_l1_loss_ops.h>
|
1097 |
+
#include <ATen/ops/smooth_l1_loss_backward_ops.h>
|
1098 |
+
#include <ATen/ops/soft_margin_loss_ops.h>
|
1099 |
+
#include <ATen/ops/soft_margin_loss_backward_ops.h>
|
1100 |
+
#include <ATen/ops/softmax_ops.h>
|
1101 |
+
#include <ATen/ops/softplus_ops.h>
|
1102 |
+
#include <ATen/ops/softplus_backward_ops.h>
|
1103 |
+
#include <ATen/ops/softshrink_ops.h>
|
1104 |
+
#include <ATen/ops/softshrink_backward_ops.h>
|
1105 |
+
#include <ATen/ops/sort_ops.h>
|
1106 |
+
#include <ATen/ops/sparse_bsc_tensor_ops.h>
|
1107 |
+
#include <ATen/ops/sparse_bsr_tensor_ops.h>
|
1108 |
+
#include <ATen/ops/sparse_compressed_tensor_ops.h>
|
1109 |
+
#include <ATen/ops/sparse_coo_tensor_ops.h>
|
1110 |
+
#include <ATen/ops/sparse_csc_tensor_ops.h>
|
1111 |
+
#include <ATen/ops/sparse_csr_tensor_ops.h>
|
1112 |
+
#include <ATen/ops/sparse_dim_ops.h>
|
1113 |
+
#include <ATen/ops/sparse_mask_ops.h>
|
1114 |
+
#include <ATen/ops/sparse_resize_ops.h>
|
1115 |
+
#include <ATen/ops/sparse_resize_and_clear_ops.h>
|
1116 |
+
#include <ATen/ops/sparse_sampled_addmm_ops.h>
|
1117 |
+
#include <ATen/ops/special_airy_ai_ops.h>
|
1118 |
+
#include <ATen/ops/special_bessel_j0_ops.h>
|
1119 |
+
#include <ATen/ops/special_bessel_j1_ops.h>
|
1120 |
+
#include <ATen/ops/special_bessel_y0_ops.h>
|
1121 |
+
#include <ATen/ops/special_bessel_y1_ops.h>
|
1122 |
+
#include <ATen/ops/special_chebyshev_polynomial_t_ops.h>
|
1123 |
+
#include <ATen/ops/special_chebyshev_polynomial_u_ops.h>
|
1124 |
+
#include <ATen/ops/special_chebyshev_polynomial_v_ops.h>
|
1125 |
+
#include <ATen/ops/special_chebyshev_polynomial_w_ops.h>
|
1126 |
+
#include <ATen/ops/special_digamma_ops.h>
|
1127 |
+
#include <ATen/ops/special_entr_ops.h>
|
1128 |
+
#include <ATen/ops/special_erf_ops.h>
|
1129 |
+
#include <ATen/ops/special_erfc_ops.h>
|
1130 |
+
#include <ATen/ops/special_erfcx_ops.h>
|
1131 |
+
#include <ATen/ops/special_erfinv_ops.h>
|
1132 |
+
#include <ATen/ops/special_exp2_ops.h>
|
1133 |
+
#include <ATen/ops/special_expit_ops.h>
|
1134 |
+
#include <ATen/ops/special_expm1_ops.h>
|
1135 |
+
#include <ATen/ops/special_gammainc_ops.h>
|
1136 |
+
#include <ATen/ops/special_gammaincc_ops.h>
|
1137 |
+
#include <ATen/ops/special_gammaln_ops.h>
|
1138 |
+
#include <ATen/ops/special_hermite_polynomial_h_ops.h>
|
1139 |
+
#include <ATen/ops/special_hermite_polynomial_he_ops.h>
|
1140 |
+
#include <ATen/ops/special_i0_ops.h>
|
1141 |
+
#include <ATen/ops/special_i0e_ops.h>
|
1142 |
+
#include <ATen/ops/special_i1_ops.h>
|
1143 |
+
#include <ATen/ops/special_i1e_ops.h>
|
1144 |
+
#include <ATen/ops/special_laguerre_polynomial_l_ops.h>
|
1145 |
+
#include <ATen/ops/special_legendre_polynomial_p_ops.h>
|
1146 |
+
#include <ATen/ops/special_log1p_ops.h>
|
1147 |
+
#include <ATen/ops/special_log_ndtr_ops.h>
|
1148 |
+
#include <ATen/ops/special_log_softmax_ops.h>
|
1149 |
+
#include <ATen/ops/special_logit_ops.h>
|
1150 |
+
#include <ATen/ops/special_logsumexp_ops.h>
|
1151 |
+
#include <ATen/ops/special_modified_bessel_i0_ops.h>
|
1152 |
+
#include <ATen/ops/special_modified_bessel_i1_ops.h>
|
1153 |
+
#include <ATen/ops/special_modified_bessel_k0_ops.h>
|
1154 |
+
#include <ATen/ops/special_modified_bessel_k1_ops.h>
|
1155 |
+
#include <ATen/ops/special_multigammaln_ops.h>
|
1156 |
+
#include <ATen/ops/special_ndtr_ops.h>
|
1157 |
+
#include <ATen/ops/special_ndtri_ops.h>
|
1158 |
+
#include <ATen/ops/special_polygamma_ops.h>
|
1159 |
+
#include <ATen/ops/special_psi_ops.h>
|
1160 |
+
#include <ATen/ops/special_round_ops.h>
|
1161 |
+
#include <ATen/ops/special_scaled_modified_bessel_k0_ops.h>
|
1162 |
+
#include <ATen/ops/special_scaled_modified_bessel_k1_ops.h>
|
1163 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_t_ops.h>
|
1164 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_u_ops.h>
|
1165 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_v_ops.h>
|
1166 |
+
#include <ATen/ops/special_shifted_chebyshev_polynomial_w_ops.h>
|
1167 |
+
#include <ATen/ops/special_sinc_ops.h>
|
1168 |
+
#include <ATen/ops/special_softmax_ops.h>
|
1169 |
+
#include <ATen/ops/special_spherical_bessel_j0_ops.h>
|
1170 |
+
#include <ATen/ops/special_xlog1py_ops.h>
|
1171 |
+
#include <ATen/ops/special_xlogy_ops.h>
|
1172 |
+
#include <ATen/ops/special_zeta_ops.h>
|
1173 |
+
#include <ATen/ops/split_ops.h>
|
1174 |
+
#include <ATen/ops/split_copy_ops.h>
|
1175 |
+
#include <ATen/ops/split_with_sizes_ops.h>
|
1176 |
+
#include <ATen/ops/split_with_sizes_copy_ops.h>
|
1177 |
+
#include <ATen/ops/sqrt_ops.h>
|
1178 |
+
#include <ATen/ops/square_ops.h>
|
1179 |
+
#include <ATen/ops/squeeze_ops.h>
|
1180 |
+
#include <ATen/ops/squeeze_copy_ops.h>
|
1181 |
+
#include <ATen/ops/sspaddmm_ops.h>
|
1182 |
+
#include <ATen/ops/stack_ops.h>
|
1183 |
+
#include <ATen/ops/std_ops.h>
|
1184 |
+
#include <ATen/ops/std_mean_ops.h>
|
1185 |
+
#include <ATen/ops/stft_ops.h>
|
1186 |
+
#include <ATen/ops/stride_ops.h>
|
1187 |
+
#include <ATen/ops/sub_ops.h>
|
1188 |
+
#include <ATen/ops/subtract_ops.h>
|
1189 |
+
#include <ATen/ops/sum_ops.h>
|
1190 |
+
#include <ATen/ops/sum_to_size_ops.h>
|
1191 |
+
#include <ATen/ops/svd_ops.h>
|
1192 |
+
#include <ATen/ops/swapaxes_ops.h>
|
1193 |
+
#include <ATen/ops/swapdims_ops.h>
|
1194 |
+
#include <ATen/ops/sym_constrain_range_ops.h>
|
1195 |
+
#include <ATen/ops/sym_constrain_range_for_size_ops.h>
|
1196 |
+
#include <ATen/ops/sym_numel_ops.h>
|
1197 |
+
#include <ATen/ops/sym_size_ops.h>
|
1198 |
+
#include <ATen/ops/sym_storage_offset_ops.h>
|
1199 |
+
#include <ATen/ops/sym_stride_ops.h>
|
1200 |
+
#include <ATen/ops/t_ops.h>
|
1201 |
+
#include <ATen/ops/t_copy_ops.h>
|
1202 |
+
#include <ATen/ops/take_ops.h>
|
1203 |
+
#include <ATen/ops/take_along_dim_ops.h>
|
1204 |
+
#include <ATen/ops/tan_ops.h>
|
1205 |
+
#include <ATen/ops/tanh_ops.h>
|
1206 |
+
#include <ATen/ops/tanh_backward_ops.h>
|
1207 |
+
#include <ATen/ops/tensor_split_ops.h>
|
1208 |
+
#include <ATen/ops/tensordot_ops.h>
|
1209 |
+
#include <ATen/ops/thnn_conv2d_ops.h>
|
1210 |
+
#include <ATen/ops/threshold_ops.h>
|
1211 |
+
#include <ATen/ops/threshold_backward_ops.h>
|
1212 |
+
#include <ATen/ops/tile_ops.h>
|
1213 |
+
#include <ATen/ops/to_ops.h>
|
1214 |
+
#include <ATen/ops/to_dense_ops.h>
|
1215 |
+
#include <ATen/ops/to_dense_backward_ops.h>
|
1216 |
+
#include <ATen/ops/to_mkldnn_ops.h>
|
1217 |
+
#include <ATen/ops/to_mkldnn_backward_ops.h>
|
1218 |
+
#include <ATen/ops/to_padded_tensor_ops.h>
|
1219 |
+
#include <ATen/ops/to_sparse_ops.h>
|
1220 |
+
#include <ATen/ops/to_sparse_bsc_ops.h>
|
1221 |
+
#include <ATen/ops/to_sparse_bsr_ops.h>
|
1222 |
+
#include <ATen/ops/to_sparse_csc_ops.h>
|
1223 |
+
#include <ATen/ops/to_sparse_csr_ops.h>
|
1224 |
+
#include <ATen/ops/topk_ops.h>
|
1225 |
+
#include <ATen/ops/trace_ops.h>
|
1226 |
+
#include <ATen/ops/trace_backward_ops.h>
|
1227 |
+
#include <ATen/ops/transpose_ops.h>
|
1228 |
+
#include <ATen/ops/transpose_copy_ops.h>
|
1229 |
+
#include <ATen/ops/trapezoid_ops.h>
|
1230 |
+
#include <ATen/ops/trapz_ops.h>
|
1231 |
+
#include <ATen/ops/triangular_solve_ops.h>
|
1232 |
+
#include <ATen/ops/tril_ops.h>
|
1233 |
+
#include <ATen/ops/tril_indices_ops.h>
|
1234 |
+
#include <ATen/ops/triplet_margin_loss_ops.h>
|
1235 |
+
#include <ATen/ops/triu_ops.h>
|
1236 |
+
#include <ATen/ops/triu_indices_ops.h>
|
1237 |
+
#include <ATen/ops/true_divide_ops.h>
|
1238 |
+
#include <ATen/ops/trunc_ops.h>
|
1239 |
+
#include <ATen/ops/type_as_ops.h>
|
1240 |
+
#include <ATen/ops/unbind_ops.h>
|
1241 |
+
#include <ATen/ops/unbind_copy_ops.h>
|
1242 |
+
#include <ATen/ops/unflatten_ops.h>
|
1243 |
+
#include <ATen/ops/unflatten_dense_tensors_ops.h>
|
1244 |
+
#include <ATen/ops/unfold_ops.h>
|
1245 |
+
#include <ATen/ops/unfold_backward_ops.h>
|
1246 |
+
#include <ATen/ops/unfold_copy_ops.h>
|
1247 |
+
#include <ATen/ops/uniform_ops.h>
|
1248 |
+
#include <ATen/ops/unique_consecutive_ops.h>
|
1249 |
+
#include <ATen/ops/unique_dim_ops.h>
|
1250 |
+
#include <ATen/ops/unique_dim_consecutive_ops.h>
|
1251 |
+
#include <ATen/ops/unsafe_chunk_ops.h>
|
1252 |
+
#include <ATen/ops/unsafe_split_ops.h>
|
1253 |
+
#include <ATen/ops/unsafe_split_with_sizes_ops.h>
|
1254 |
+
#include <ATen/ops/unsqueeze_ops.h>
|
1255 |
+
#include <ATen/ops/unsqueeze_copy_ops.h>
|
1256 |
+
#include <ATen/ops/upsample_bicubic2d_ops.h>
|
1257 |
+
#include <ATen/ops/upsample_bicubic2d_backward_ops.h>
|
1258 |
+
#include <ATen/ops/upsample_bilinear2d_ops.h>
|
1259 |
+
#include <ATen/ops/upsample_bilinear2d_backward_ops.h>
|
1260 |
+
#include <ATen/ops/upsample_linear1d_ops.h>
|
1261 |
+
#include <ATen/ops/upsample_linear1d_backward_ops.h>
|
1262 |
+
#include <ATen/ops/upsample_nearest1d_ops.h>
|
1263 |
+
#include <ATen/ops/upsample_nearest1d_backward_ops.h>
|
1264 |
+
#include <ATen/ops/upsample_nearest2d_ops.h>
|
1265 |
+
#include <ATen/ops/upsample_nearest2d_backward_ops.h>
|
1266 |
+
#include <ATen/ops/upsample_nearest3d_ops.h>
|
1267 |
+
#include <ATen/ops/upsample_nearest3d_backward_ops.h>
|
1268 |
+
#include <ATen/ops/upsample_trilinear3d_ops.h>
|
1269 |
+
#include <ATen/ops/upsample_trilinear3d_backward_ops.h>
|
1270 |
+
#include <ATen/ops/value_selecting_reduction_backward_ops.h>
|
1271 |
+
#include <ATen/ops/values_ops.h>
|
1272 |
+
#include <ATen/ops/values_copy_ops.h>
|
1273 |
+
#include <ATen/ops/vander_ops.h>
|
1274 |
+
#include <ATen/ops/var_ops.h>
|
1275 |
+
#include <ATen/ops/var_mean_ops.h>
|
1276 |
+
#include <ATen/ops/vdot_ops.h>
|
1277 |
+
#include <ATen/ops/view_ops.h>
|
1278 |
+
#include <ATen/ops/view_as_ops.h>
|
1279 |
+
#include <ATen/ops/view_as_complex_ops.h>
|
1280 |
+
#include <ATen/ops/view_as_complex_copy_ops.h>
|
1281 |
+
#include <ATen/ops/view_as_real_ops.h>
|
1282 |
+
#include <ATen/ops/view_as_real_copy_ops.h>
|
1283 |
+
#include <ATen/ops/view_copy_ops.h>
|
1284 |
+
#include <ATen/ops/vsplit_ops.h>
|
1285 |
+
#include <ATen/ops/vstack_ops.h>
|
1286 |
+
#include <ATen/ops/where_ops.h>
|
1287 |
+
#include <ATen/ops/xlogy_ops.h>
|
1288 |
+
#include <ATen/ops/xor_ops.h>
|
1289 |
+
#include <ATen/ops/zero_ops.h>
|
1290 |
+
#include <ATen/ops/zeros_ops.h>
|
1291 |
+
#include <ATen/ops/zeros_like_ops.h>
|
1292 |
+
|
1293 |
+
// Extension writers: do you write wrapper functions? Are you frustrated with
|
1294 |
+
// resolving overloads of operators? Are you frustrated with dealing with
|
1295 |
+
// pointer-to-methods and resolving overloads of pointer-to-methods?? Look no
|
1296 |
+
// further, this is the utility for you.
|
1297 |
+
//
|
1298 |
+
// Given an operator schema: aten::op.overload(...
|
1299 |
+
//
|
1300 |
+
// Use ATEN_FN2(op, overload) to get a *function* version of the operator
|
1301 |
+
// that is guaranteed to not be overloaded. This means that you can safely
|
1302 |
+
// decltype(&ATEN_FN2(op, overload)) it. NB: the 2 means this macro takes 2 args.
|
1303 |
+
//
|
1304 |
+
// Given an operator schema without an overload name: aten::op(...
|
1305 |
+
//
|
1306 |
+
// Use ATEN_FN(op) to get an unambiguous *function* version of the operator.
|
1307 |
+
//
|
1308 |
+
// There is some interesting behavior for out= operations.
|
1309 |
+
// ATEN_FN2(sin, out) gives a function that is *faithful* to the schema;
|
1310 |
+
// that is, the order of arguments is exactly what it looks like in the schema.
|
1311 |
+
|
1312 |
+
#define ATEN_FN2(op_name, overload) at::_ops::op_name##_##overload::call
|
1313 |
+
#define ATEN_FN(op_name) at::_ops::op_name::call
|
1314 |
+
|
1315 |
+
// Separately, ATEN_OP(op) and ATEN_OP2(op, overload) define a class containing compile-time
|
1316 |
+
// metadata about a given aten operator.
|
1317 |
+
// Notable data on the class includes:
|
1318 |
+
// - ATEN_OP2(add, Tensor)::name // returns the string name: "add"
|
1319 |
+
// - ATEN_OP2(add, Tensor)::overload_name // returns the string overload name: "Tensor"
|
1320 |
+
// - ATEN_OP2(add, Tensor)::schema // returns the C++ schema type: at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &)
|
1321 |
+
// - ATEN_OP2(add, Tensor)::schema_str // returns the string jit type: "add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor"
|
1322 |
+
|
1323 |
+
#define ATEN_OP2(op_name, overload) at::_ops::op_name##_##overload
|
1324 |
+
#define ATEN_OP(op_name) at::_ops::op_name
|
1325 |
+
|
1326 |
+
// WARNING: Please do not call any of the ops in the _ops namespace directly.
|
1327 |
+
// Use the ATEN_FN macros. We do not guarantee stability of the naming
|
1328 |
+
// scheme for the functions in at::_ops
|
1329 |
+
|
1330 |
+
// See Note [The ATen Operators API] for details of the at::_ops namespace
|
1331 |
+
|
1332 |
+
namespace at {
|
1333 |
+
namespace _ops {
|
1334 |
+
|
1335 |
+
} // namespace _ops
|
1336 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Parallel-inl.h
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/Exception.h>
|
4 |
+
#include <c10/util/SmallVector.h>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
|
8 |
+
template <class F>
|
9 |
+
inline void parallel_for(
|
10 |
+
const int64_t begin,
|
11 |
+
const int64_t end,
|
12 |
+
const int64_t grain_size,
|
13 |
+
const F& f) {
|
14 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(grain_size >= 0);
|
15 |
+
if (begin >= end) {
|
16 |
+
return;
|
17 |
+
}
|
18 |
+
|
19 |
+
#ifdef INTRA_OP_PARALLEL
|
20 |
+
at::internal::lazy_init_num_threads();
|
21 |
+
const auto numiter = end - begin;
|
22 |
+
const bool use_parallel =
|
23 |
+
(numiter > grain_size && numiter > 1 && !at::in_parallel_region() &&
|
24 |
+
at::get_num_threads() > 1);
|
25 |
+
if (!use_parallel) {
|
26 |
+
internal::ThreadIdGuard tid_guard(0);
|
27 |
+
f(begin, end);
|
28 |
+
return;
|
29 |
+
}
|
30 |
+
|
31 |
+
internal::invoke_parallel(begin, end, grain_size, f);
|
32 |
+
#else
|
33 |
+
internal::ThreadIdGuard tid_guard(0);
|
34 |
+
f(begin, end);
|
35 |
+
#endif
|
36 |
+
}
|
37 |
+
|
38 |
+
template <class scalar_t, class F, class SF>
|
39 |
+
inline scalar_t parallel_reduce(
|
40 |
+
const int64_t begin,
|
41 |
+
const int64_t end,
|
42 |
+
const int64_t grain_size,
|
43 |
+
const scalar_t ident,
|
44 |
+
const F& f,
|
45 |
+
const SF& sf) {
|
46 |
+
TORCH_CHECK(grain_size >= 0);
|
47 |
+
if (begin >= end) {
|
48 |
+
return ident;
|
49 |
+
}
|
50 |
+
|
51 |
+
#ifdef INTRA_OP_PARALLEL
|
52 |
+
at::internal::lazy_init_num_threads();
|
53 |
+
const auto max_threads = at::get_num_threads();
|
54 |
+
const bool use_parallel =
|
55 |
+
((end - begin) > grain_size && !at::in_parallel_region() &&
|
56 |
+
max_threads > 1);
|
57 |
+
if (!use_parallel) {
|
58 |
+
internal::ThreadIdGuard tid_guard(0);
|
59 |
+
return f(begin, end, ident);
|
60 |
+
}
|
61 |
+
|
62 |
+
c10::SmallVector<scalar_t, 64> results(max_threads, ident);
|
63 |
+
internal::invoke_parallel(
|
64 |
+
begin,
|
65 |
+
end,
|
66 |
+
grain_size,
|
67 |
+
[&](const int64_t my_begin, const int64_t my_end) {
|
68 |
+
const auto tid = at::get_thread_num();
|
69 |
+
results[tid] = f(my_begin, my_end, ident);
|
70 |
+
});
|
71 |
+
|
72 |
+
scalar_t result = ident;
|
73 |
+
for (auto partial_result : results) {
|
74 |
+
result = sf(result, partial_result);
|
75 |
+
}
|
76 |
+
return result;
|
77 |
+
#else
|
78 |
+
internal::ThreadIdGuard tid_guard(0);
|
79 |
+
return f(begin, end, ident);
|
80 |
+
#endif
|
81 |
+
}
|
82 |
+
|
83 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ParallelNative.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <cstddef>
|
5 |
+
#include <exception>
|
6 |
+
|
7 |
+
#include <c10/util/Exception.h>
|
8 |
+
|
9 |
+
#define INTRA_OP_PARALLEL
|
10 |
+
|
11 |
+
namespace at::internal {
|
12 |
+
|
13 |
+
TORCH_API void invoke_parallel(
|
14 |
+
const int64_t begin,
|
15 |
+
const int64_t end,
|
16 |
+
const int64_t grain_size,
|
17 |
+
const std::function<void(int64_t, int64_t)>& f);
|
18 |
+
|
19 |
+
} // namespace at::internal
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ParallelOpenMP.h
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <atomic>
|
5 |
+
#include <cstddef>
|
6 |
+
#include <exception>
|
7 |
+
|
8 |
+
#ifdef _OPENMP
|
9 |
+
#define INTRA_OP_PARALLEL
|
10 |
+
|
11 |
+
#include <omp.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
|
16 |
+
#ifdef _OPENMP
|
17 |
+
namespace internal {
|
18 |
+
template <typename F>
|
19 |
+
inline void invoke_parallel(
|
20 |
+
int64_t begin,
|
21 |
+
int64_t end,
|
22 |
+
int64_t grain_size,
|
23 |
+
const F& f) {
|
24 |
+
std::atomic_flag err_flag = ATOMIC_FLAG_INIT;
|
25 |
+
std::exception_ptr eptr;
|
26 |
+
|
27 |
+
#pragma omp parallel
|
28 |
+
{
|
29 |
+
// choose number of tasks based on grain size and number of threads
|
30 |
+
// can't use num_threads clause due to bugs in GOMP's thread pool (See
|
31 |
+
// #32008)
|
32 |
+
int64_t num_threads = omp_get_num_threads();
|
33 |
+
if (grain_size > 0) {
|
34 |
+
num_threads = std::min(num_threads, divup((end - begin), grain_size));
|
35 |
+
}
|
36 |
+
|
37 |
+
int64_t tid = omp_get_thread_num();
|
38 |
+
int64_t chunk_size = divup((end - begin), num_threads);
|
39 |
+
int64_t begin_tid = begin + tid * chunk_size;
|
40 |
+
if (begin_tid < end) {
|
41 |
+
try {
|
42 |
+
internal::ThreadIdGuard tid_guard(tid);
|
43 |
+
f(begin_tid, std::min(end, chunk_size + begin_tid));
|
44 |
+
} catch (...) {
|
45 |
+
if (!err_flag.test_and_set()) {
|
46 |
+
eptr = std::current_exception();
|
47 |
+
}
|
48 |
+
}
|
49 |
+
}
|
50 |
+
}
|
51 |
+
if (eptr) {
|
52 |
+
std::rethrow_exception(eptr);
|
53 |
+
}
|
54 |
+
}
|
55 |
+
} // namespace internal
|
56 |
+
#endif // _OPENMP
|
57 |
+
|
58 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/PythonTorchFunctionTLS.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/SafePyObject.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
|
6 |
+
namespace at::impl {
|
7 |
+
|
8 |
+
enum TorchFunctionDisabledState { ENABLED, SUBCLASSES_DISABLED, ALL_DISABLED };
|
9 |
+
|
10 |
+
struct TORCH_API PythonTorchFunctionTLS {
|
11 |
+
static void set_disabled_state(TorchFunctionDisabledState disabled_state_);
|
12 |
+
static TorchFunctionDisabledState get_disabled_state();
|
13 |
+
|
14 |
+
static void push_onto_stack(std::shared_ptr<SafePyObject> mode);
|
15 |
+
static const std::shared_ptr<SafePyObject> pop_stack();
|
16 |
+
static const std::shared_ptr<SafePyObject>& get_stack_at(int64_t idx);
|
17 |
+
static int64_t stack_len();
|
18 |
+
|
19 |
+
static const PythonTorchFunctionTLS& get_state();
|
20 |
+
static void set_state(const PythonTorchFunctionTLS& state);
|
21 |
+
|
22 |
+
private:
|
23 |
+
// The mode TLS is split into
|
24 |
+
// - disabled_state, which says which part of torch function are disabled
|
25 |
+
// - stack_, which is a vector of modes representing the stack of user
|
26 |
+
// defined modes
|
27 |
+
TorchFunctionDisabledState disabled_state_ =
|
28 |
+
TorchFunctionDisabledState::ENABLED;
|
29 |
+
std::vector<std::shared_ptr<c10::SafePyObject>> stack_;
|
30 |
+
};
|
31 |
+
|
32 |
+
TORCH_API bool torch_function_mode_enabled();
|
33 |
+
|
34 |
+
} // namespace at::impl
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/RedispatchFunctions.h
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/SavedTensorHooks.h
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
#include <c10/util/Optional.h>
|
5 |
+
#include <c10/util/python_stub.h>
|
6 |
+
#include <stack>
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
#include <utility>
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
|
13 |
+
namespace impl {
|
14 |
+
|
15 |
+
struct TORCH_API SavedTensorDefaultHooksTLS {
|
16 |
+
// PyObject is defined in c10/util/python_stub.h
|
17 |
+
std::stack<std::pair<PyObject*, PyObject*>> stack;
|
18 |
+
|
19 |
+
// See NOTE: [Disabling SavedTensorDefaultHooks] for context
|
20 |
+
// NOTE: [disabled_error_message invariant]
|
21 |
+
// disabled_error_message is nullopt IFF Saved Tensor hooks is enabled
|
22 |
+
// We did this for efficiency (so we didn't have to keep a separate bool
|
23 |
+
// around)
|
24 |
+
c10::optional<std::string> disabled_error_message;
|
25 |
+
};
|
26 |
+
|
27 |
+
} // namespace impl
|
28 |
+
|
29 |
+
struct TORCH_API SavedTensorDefaultHooks {
|
30 |
+
static void push_hooks(PyObject* pack_hook, PyObject* unpack_hook);
|
31 |
+
static void pop_hooks();
|
32 |
+
static std::pair<PyObject*, PyObject*> get_hooks();
|
33 |
+
static void lazy_initialize();
|
34 |
+
static std::stack<std::pair<PyObject*, PyObject*>> get_stack();
|
35 |
+
static void set_stack(std::stack<std::pair<PyObject*, PyObject*>>);
|
36 |
+
|
37 |
+
static const impl::SavedTensorDefaultHooksTLS& get_tls_state();
|
38 |
+
static void set_tls_state(const impl::SavedTensorDefaultHooksTLS& tls);
|
39 |
+
|
40 |
+
// NOTE: [Disabling SavedTensorDefaultHooks]
|
41 |
+
// A developer of a PyTorch feature may choose to disable SavedTensorDefault
|
42 |
+
// hooks, especially if their feature does not work with it. If they are
|
43 |
+
// disabled, then the following will raise an error:
|
44 |
+
// - Attempting to push_hooks
|
45 |
+
// - calling disable(message) with a non-zero stack (from get_stack) size
|
46 |
+
static void disable(const std::string& error_message);
|
47 |
+
static void enable();
|
48 |
+
static bool is_enabled();
|
49 |
+
static const c10::optional<std::string>& get_disabled_error_message();
|
50 |
+
};
|
51 |
+
|
52 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Scalar.h
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Scalar.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ScalarType.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/ATenGeneral.h> // for BC reasons
|
3 |
+
#include <c10/core/Backend.h>
|
4 |
+
#include <c10/core/ScalarType.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Storage.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/Storage.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/Tensor.h
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorAccessor.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/TensorAccessor.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorIterator.h
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/TensorMeta.h>
|
4 |
+
#include <ATen/core/Dimname.h>
|
5 |
+
#include <ATen/core/Range.h>
|
6 |
+
#include <ATen/core/TensorBase.h>
|
7 |
+
#include <c10/core/DynamicCast.h>
|
8 |
+
#include <c10/util/FunctionRef.h>
|
9 |
+
#include <c10/util/MaybeOwned.h>
|
10 |
+
#include <c10/util/SmallVector.h>
|
11 |
+
#include <c10/util/TypeCast.h>
|
12 |
+
#include <c10/util/irange.h>
|
13 |
+
|
14 |
+
#include <array>
|
15 |
+
#include <bitset>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
class Tensor;
|
19 |
+
class OptionalTensorRef;
|
20 |
+
using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
|
21 |
+
} // namespace at
|
22 |
+
|
23 |
+
// TensorIterator is a helper class for element-wise operations, such as
|
24 |
+
// arithmetic, comparisons, and trigonometric functions. It handles
|
25 |
+
// broadcasting and type conversions of operands.
|
26 |
+
//
|
27 |
+
// This is inspired by NumPy's Array Iterator API (NpyIter).
|
28 |
+
//
|
29 |
+
// The files Loops.h and Loops.cuh provide functions to build kernels that
|
30 |
+
// use TensorIterator.
|
31 |
+
//
|
32 |
+
// Example:
|
33 |
+
//
|
34 |
+
// auto iter = TensorIteratorConfig()
|
35 |
+
// .add_output(output)
|
36 |
+
// .add_input(input)
|
37 |
+
// .build()
|
38 |
+
//
|
39 |
+
// [MyKernel.cpp / MyKernel.cu]
|
40 |
+
// cpu_kernel(iter, [](float a, float b) {
|
41 |
+
// return a + b;
|
42 |
+
// });
|
43 |
+
//
|
44 |
+
// gpu_kernel(iter, []GPU_LAMBDA(float a, float b) -> float {
|
45 |
+
// return a + b;
|
46 |
+
// });
|
47 |
+
//
|
48 |
+
// Note [Order of Construction]
|
49 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
50 |
+
// When setting up the tensor iterator configuration, the output Tensors
|
51 |
+
// have to be added first via
|
52 |
+
// TensorIteratorConfig::add_owned_output(at::Tensor). After adding all outputs,
|
53 |
+
// the inputs can be added via
|
54 |
+
// TensorIteratorConfig::add_owned_input(at::Tensor).
|
55 |
+
// Adding another output after inputs have been added will rise an exception.
|
56 |
+
//
|
57 |
+
// Note [Common Dtype Computation]
|
58 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
59 |
+
// Some operations have a natural notion of a "common dtype" or
|
60 |
+
// "computation dtype" where all inputs are cast to one dtype, the
|
61 |
+
// operation is performed, and then the results are cast to all outputs.
|
62 |
+
//
|
63 |
+
// TensorIterator infers a common dtype if all inputs have the same dtype,
|
64 |
+
// and it computes one using type promotion rules on its inputs if
|
65 |
+
// promote_inputs_to_common_dtype_ is true. Attempting to query
|
66 |
+
// a common dtype otherwise will throw an exception.
|
67 |
+
//
|
68 |
+
// Note that the outputs are not considered when computing a common dtype.
|
69 |
+
|
70 |
+
namespace at {
|
71 |
+
|
72 |
+
namespace internal {
|
73 |
+
// This parameter is heuristically chosen to determine the minimum number of
|
74 |
+
// work that warrants parallelism. For example, when summing an array, it is
|
75 |
+
// deemed inefficient to parallelise over arrays shorter than 32768. Further,
|
76 |
+
// no parallel algorithm (such as parallel_reduce) should split work into
|
77 |
+
// smaller than GRAIN_SIZE chunks.
|
78 |
+
constexpr int64_t GRAIN_SIZE = 32768;
|
79 |
+
|
80 |
+
// Storage for a non-owning Tensor, without needing to include Tensor.h
|
81 |
+
class TORCH_API OpaqueOptionalTensorRef {
|
82 |
+
alignas(alignof(TensorBase)) std::array<char, sizeof(TensorBase)> data_;
|
83 |
+
|
84 |
+
public:
|
85 |
+
OpaqueOptionalTensorRef();
|
86 |
+
OpaqueOptionalTensorRef(const OpaqueOptionalTensorRef&) = default;
|
87 |
+
OpaqueOptionalTensorRef& operator=(const OpaqueOptionalTensorRef&) = default;
|
88 |
+
OpaqueOptionalTensorRef(OpaqueOptionalTensorRef&&) noexcept = default;
|
89 |
+
OpaqueOptionalTensorRef& operator=(OpaqueOptionalTensorRef&&) noexcept =
|
90 |
+
default;
|
91 |
+
~OpaqueOptionalTensorRef();
|
92 |
+
|
93 |
+
OptionalTensorRef* get() {
|
94 |
+
return reinterpret_cast<OptionalTensorRef*>(data_.data());
|
95 |
+
}
|
96 |
+
const OptionalTensorRef* get() const {
|
97 |
+
return reinterpret_cast<const OptionalTensorRef*>(data_.data());
|
98 |
+
}
|
99 |
+
|
100 |
+
OptionalTensorRef& operator*() {
|
101 |
+
return *get();
|
102 |
+
}
|
103 |
+
const OptionalTensorRef& operator*() const {
|
104 |
+
return *get();
|
105 |
+
}
|
106 |
+
OptionalTensorRef* operator->() {
|
107 |
+
return get();
|
108 |
+
}
|
109 |
+
const OptionalTensorRef* operator->() const {
|
110 |
+
return get();
|
111 |
+
}
|
112 |
+
|
113 |
+
const Tensor& getTensor() const;
|
114 |
+
};
|
115 |
+
} // namespace internal
|
116 |
+
|
117 |
+
struct TORCH_API OperandInfo {
|
118 |
+
using StrideVector = SmallVector<int64_t, 6>;
|
119 |
+
OperandInfo() = default;
|
120 |
+
C10_ALWAYS_INLINE explicit OperandInfo(c10::MaybeOwned<TensorBase>&& t) {
|
121 |
+
if (t->defined()) {
|
122 |
+
device = t->device();
|
123 |
+
target_dtype = t->scalar_type();
|
124 |
+
current_dtype = target_dtype;
|
125 |
+
}
|
126 |
+
tensor(std::move(t));
|
127 |
+
validate();
|
128 |
+
}
|
129 |
+
|
130 |
+
C10_ALWAYS_INLINE OperandInfo(const OperandInfo&) = default;
|
131 |
+
C10_ALWAYS_INLINE OperandInfo& operator=(const OperandInfo&) = default;
|
132 |
+
C10_ALWAYS_INLINE OperandInfo(OperandInfo&&) noexcept = default;
|
133 |
+
C10_ALWAYS_INLINE OperandInfo& operator=(OperandInfo&&) noexcept = default;
|
134 |
+
C10_ALWAYS_INLINE ~OperandInfo() = default;
|
135 |
+
|
136 |
+
/// The data pointer. This may be different from tensor->data_ptr() if the
|
137 |
+
/// iterator is split.
|
138 |
+
void* data = nullptr;
|
139 |
+
|
140 |
+
/// Stride after broadcasting. The stride is in bytes, not number of elements.
|
141 |
+
StrideVector stride_bytes;
|
142 |
+
|
143 |
+
/// The desired device and type for the operand. For inputs, this specifies
|
144 |
+
/// that the input should be converted to this type if necessary. For outputs,
|
145 |
+
/// this specifies which type to allocate. target_dtype and device are
|
146 |
+
/// initialized with the dtype and device of the tensor but during type
|
147 |
+
/// promotion target_dtype value can become different from tensor's dtype
|
148 |
+
/// also, during type promotion target_dtype and device can be set for an
|
149 |
+
/// undefined tensor so that tensor can be properly constructed later.
|
150 |
+
c10::optional<Device> device = c10::nullopt;
|
151 |
+
ScalarType target_dtype = ScalarType::Undefined;
|
152 |
+
// Caches dtype of the tensor, because scalar_type is an expensive operation
|
153 |
+
// If dtype of the tensor is changed (e.g. as a result of type promotion or in
|
154 |
+
// allocate_outputs), this
|
155 |
+
// value should be changed too.
|
156 |
+
ScalarType current_dtype = ScalarType::Undefined;
|
157 |
+
|
158 |
+
bool is_device_defined() const {
|
159 |
+
return device.has_value();
|
160 |
+
}
|
161 |
+
bool is_type_defined() const {
|
162 |
+
return target_dtype != ScalarType::Undefined;
|
163 |
+
}
|
164 |
+
TensorOptions options() const {
|
165 |
+
return TensorOptions(target_dtype).device(device);
|
166 |
+
}
|
167 |
+
|
168 |
+
bool is_output = false;
|
169 |
+
|
170 |
+
bool will_resize = false;
|
171 |
+
|
172 |
+
bool is_read_write = false;
|
173 |
+
|
174 |
+
void validate() {
|
175 |
+
TORCH_CHECK(
|
176 |
+
!tensor_base_->defined() || tensor_base_->layout() == kStrided,
|
177 |
+
"unsupported tensor layout: ",
|
178 |
+
tensor_base_->layout());
|
179 |
+
}
|
180 |
+
|
181 |
+
/// The tensor operand. Note that the strides, data pointer, and
|
182 |
+
/// other attributes may differ due to dimension reordering and
|
183 |
+
/// coalescing.
|
184 |
+
const Tensor& tensor() const {
|
185 |
+
return tensor_storage_.getTensor();
|
186 |
+
}
|
187 |
+
const TensorBase& tensor_base() const {
|
188 |
+
return *tensor_base_;
|
189 |
+
}
|
190 |
+
void tensor(c10::MaybeOwned<TensorBase>&& tensor);
|
191 |
+
|
192 |
+
// Save the original tensor operand in cases when an output is modified
|
193 |
+
// (e.g. if dtype is changed)
|
194 |
+
const Tensor& original_tensor() const {
|
195 |
+
return original_tensor_storage_.getTensor();
|
196 |
+
}
|
197 |
+
const TensorBase& original_tensor_base() const {
|
198 |
+
return *original_tensor_base_;
|
199 |
+
}
|
200 |
+
|
201 |
+
// Set tensor to a new value, and store the old tensor value in
|
202 |
+
// original_tensor Should only ever be called once for the lifetime of an
|
203 |
+
// operand
|
204 |
+
void exchange_tensor(c10::MaybeOwned<TensorBase>&& new_tensor);
|
205 |
+
|
206 |
+
// Move original_tensor back into tensor, exchange_tensor must have been
|
207 |
+
// called before
|
208 |
+
void restore_original_tensor();
|
209 |
+
|
210 |
+
private:
|
211 |
+
c10::MaybeOwned<TensorBase> tensor_base_;
|
212 |
+
c10::MaybeOwned<TensorBase> original_tensor_base_ =
|
213 |
+
c10::MaybeOwned<TensorBase>::owned(c10::in_place);
|
214 |
+
|
215 |
+
// We store TensorBase visibly in the header to allow inline access.
|
216 |
+
// However, we sometimes need a genuine `const Tensor &` for the
|
217 |
+
// TensorIterator API. So, we also store a non-owning `Tensor`
|
218 |
+
// object in these `_storage_` variables.
|
219 |
+
internal::OpaqueOptionalTensorRef tensor_storage_;
|
220 |
+
internal::OpaqueOptionalTensorRef original_tensor_storage_;
|
221 |
+
};
|
222 |
+
|
223 |
+
struct SplitUntil32Bit;
|
224 |
+
|
225 |
+
enum class FastSetupType : uint8_t {
|
226 |
+
NONE,
|
227 |
+
CONTIGUOUS,
|
228 |
+
CHANNELS_LAST,
|
229 |
+
NON_OVERLAPPING_DENSE
|
230 |
+
};
|
231 |
+
|
232 |
+
class TensorIteratorConfig;
|
233 |
+
struct TensorIterator;
|
234 |
+
|
235 |
+
struct TORCH_API TensorIteratorBase : public impl::MetaBase {
|
236 |
+
using DimMask = std::bitset<64>;
|
237 |
+
using PtrVector = SmallVector<char*, 4>;
|
238 |
+
using StrideVector = SmallVector<int64_t, 6>;
|
239 |
+
|
240 |
+
TensorIteratorBase();
|
241 |
+
void build(TensorIteratorConfig&);
|
242 |
+
|
243 |
+
// The inner-loop function operates on the fastest moving dimension. It
|
244 |
+
// implements element-wise operations in terms of 1-d strided tensors.
|
245 |
+
//
|
246 |
+
// Arguments:
|
247 |
+
// data: data pointers for each operand (length `ntensors`)
|
248 |
+
// strides: stride for each operand (length `ntensors`)
|
249 |
+
// size: size of inner loop
|
250 |
+
//
|
251 |
+
// The `size` often matches shape[0], but may be smaller due to
|
252 |
+
// parallelization of the inner loop.
|
253 |
+
using loop2d_t = c10::function_ref<
|
254 |
+
void(char** data, const int64_t* strides, int64_t size0, int64_t size1)>;
|
255 |
+
|
256 |
+
using loop_subiter_t = c10::function_ref<void(TensorIteratorBase& subiter)>;
|
257 |
+
|
258 |
+
void foreach_reduced_elt(loop_subiter_t loop, bool parallelize = true);
|
259 |
+
|
260 |
+
int ndim() const {
|
261 |
+
return static_cast<int>(shape_.size());
|
262 |
+
}
|
263 |
+
IntArrayRef shape() const {
|
264 |
+
return shape_;
|
265 |
+
}
|
266 |
+
int64_t numel() const;
|
267 |
+
int ntensors() const {
|
268 |
+
return static_cast<int>(operands_.size());
|
269 |
+
}
|
270 |
+
int noutputs() const {
|
271 |
+
return num_outputs_;
|
272 |
+
}
|
273 |
+
int ninputs() const {
|
274 |
+
return ntensors() - noutputs();
|
275 |
+
}
|
276 |
+
IntArrayRef view_offsets() const {
|
277 |
+
return view_offsets_;
|
278 |
+
}
|
279 |
+
|
280 |
+
/// number of elements in the output operand. this is the same as numel() for
|
281 |
+
/// operations that are not reductions.
|
282 |
+
int64_t num_output_elements() const;
|
283 |
+
|
284 |
+
/// number of reduced dimensions in a reduction operation
|
285 |
+
int num_reduce_dims() const;
|
286 |
+
|
287 |
+
/// 1-dimensional iteration and no buffering or type conversion
|
288 |
+
bool is_trivial_1d() const;
|
289 |
+
/// Reducible to 1-dimensional and all operands are contiguous
|
290 |
+
bool is_contiguous() const;
|
291 |
+
bool is_dim_reduced(int dim) const;
|
292 |
+
|
293 |
+
/// Accessors for each operand
|
294 |
+
IntArrayRef strides(int arg) const {
|
295 |
+
return operands_[arg].stride_bytes;
|
296 |
+
}
|
297 |
+
void* data_ptr(int arg) const;
|
298 |
+
ScalarType dtype(int arg = 0) const {
|
299 |
+
return operands_[arg].current_dtype;
|
300 |
+
}
|
301 |
+
ScalarType common_dtype() const {
|
302 |
+
TORCH_INTERNAL_ASSERT(
|
303 |
+
common_dtype_ != ScalarType::Undefined,
|
304 |
+
"Queried for invalid common dtype!");
|
305 |
+
return common_dtype_;
|
306 |
+
}
|
307 |
+
ScalarType input_dtype(int arg = 0) const {
|
308 |
+
return operands_[num_outputs_ + arg].current_dtype;
|
309 |
+
}
|
310 |
+
Device device(int arg = 0) const {
|
311 |
+
return operands_[arg].device.value();
|
312 |
+
}
|
313 |
+
c10::DeviceType device_type(int arg = 0) const {
|
314 |
+
return device(arg).type();
|
315 |
+
}
|
316 |
+
int64_t element_size(int arg) const {
|
317 |
+
return static_cast<int64_t>(elementSize(dtype(arg)));
|
318 |
+
}
|
319 |
+
bool is_scalar(int arg) const;
|
320 |
+
bool is_cpu_scalar(int arg) const;
|
321 |
+
|
322 |
+
const TensorBase& tensor_base(int arg) const {
|
323 |
+
return operands_[arg].tensor_base();
|
324 |
+
}
|
325 |
+
const Tensor& tensor(int arg) const {
|
326 |
+
return operands_[arg].tensor();
|
327 |
+
}
|
328 |
+
|
329 |
+
const TensorBase& output_base(int arg = 0) const {
|
330 |
+
AT_ASSERT(arg < num_outputs_);
|
331 |
+
return tensor_base(arg);
|
332 |
+
}
|
333 |
+
|
334 |
+
const Tensor& output(int arg = 0) const {
|
335 |
+
AT_ASSERT(arg < num_outputs_);
|
336 |
+
return tensor(arg);
|
337 |
+
}
|
338 |
+
|
339 |
+
const TensorBase& input_base(int arg = 0) const {
|
340 |
+
AT_ASSERT(arg >= 0 && arg < ntensors() - num_outputs_);
|
341 |
+
return tensor_base(num_outputs_ + arg);
|
342 |
+
}
|
343 |
+
const Tensor& input(int arg = 0) const {
|
344 |
+
AT_ASSERT(arg >= 0 && arg < ntensors() - num_outputs_);
|
345 |
+
return tensor(num_outputs_ + arg);
|
346 |
+
}
|
347 |
+
|
348 |
+
// Copies from temporary outputs back to the original outputs
|
349 |
+
// NOTE: only used on CPU
|
350 |
+
void cast_outputs();
|
351 |
+
|
352 |
+
/// Removes an operand from this iterator
|
353 |
+
void remove_operand(int arg);
|
354 |
+
/// Shrinks an iterated dimension
|
355 |
+
void narrow(int dim, int64_t start, int64_t size);
|
356 |
+
/// Narrows every dim after and including `start_dim` to size one.
|
357 |
+
void select_all_keeping_dim(int start_dim, IntArrayRef starts);
|
358 |
+
/// Replaces the data pointer for the operand at index `arg`.
|
359 |
+
/// The new pointer should have the same sizes, strides and dtype as the
|
360 |
+
/// original
|
361 |
+
void unsafe_replace_operand(int arg, void* data);
|
362 |
+
|
363 |
+
/// Splits this TensorIterator into two iterators. Together they iterate over
|
364 |
+
/// the entire operation. Used by `with_32bit_indexing()`.
|
365 |
+
std::unique_ptr<TensorIterator> split(int dim);
|
366 |
+
|
367 |
+
/// Returns the dimension with the largest extent: (size[dim]-1) * stride[dim]
|
368 |
+
int get_dim_to_split() const;
|
369 |
+
|
370 |
+
template <typename T>
|
371 |
+
T scalar_value(int arg) {
|
372 |
+
auto& op = operands_[arg];
|
373 |
+
return c10::fetch_and_cast<T>(op.tensor_base().scalar_type(), op.data);
|
374 |
+
}
|
375 |
+
|
376 |
+
/// Return scalar value from original_tensor_base if it is defined. When
|
377 |
+
/// common_dtype is Half, casting scalar input to common_dtype might overflow.
|
378 |
+
/// If the scalar is aleady given in the type of Half, then return scalar
|
379 |
+
/// value from tensor_base.
|
380 |
+
template <typename T>
|
381 |
+
T original_scalar_value(int arg) {
|
382 |
+
auto& original_tensor_base = operands_[arg].original_tensor_base();
|
383 |
+
if (original_tensor_base.defined()) {
|
384 |
+
TORCH_INTERNAL_ASSERT(
|
385 |
+
original_tensor_base.scalar_type() != common_dtype());
|
386 |
+
return c10::fetch_and_cast<T>(
|
387 |
+
original_tensor_base.scalar_type(), original_tensor_base.data_ptr());
|
388 |
+
} else {
|
389 |
+
return scalar_value<T>(arg);
|
390 |
+
}
|
391 |
+
}
|
392 |
+
|
393 |
+
private:
|
394 |
+
template <typename loop1d_t>
|
395 |
+
auto loop_2d_from_1d(const loop1d_t& loop) {
|
396 |
+
return
|
397 |
+
[loop, ntensor = ntensors()](
|
398 |
+
char** base, const int64_t* strides, int64_t size0, int64_t size1) {
|
399 |
+
PtrVector data(base, base + ntensor);
|
400 |
+
const int64_t* outer_strides = &strides[ntensor];
|
401 |
+
for (const auto i : c10::irange(size1)) {
|
402 |
+
if (i > 0) {
|
403 |
+
for (const auto arg : c10::irange(ntensor)) {
|
404 |
+
data[arg] += outer_strides[arg];
|
405 |
+
}
|
406 |
+
}
|
407 |
+
loop(data.data(), strides, size0);
|
408 |
+
}
|
409 |
+
};
|
410 |
+
}
|
411 |
+
|
412 |
+
public:
|
413 |
+
template <
|
414 |
+
typename loop1d_t,
|
415 |
+
std::enable_if_t<
|
416 |
+
std::is_convertible<
|
417 |
+
loop1d_t,
|
418 |
+
c10::function_ref<
|
419 |
+
void(char**, const int64_t* strides, int64_t size)>>::value,
|
420 |
+
int> = 0>
|
421 |
+
void for_each(loop1d_t loop, int64_t grain_size = at::internal::GRAIN_SIZE) {
|
422 |
+
for_each(loop_2d_from_1d(loop), grain_size);
|
423 |
+
}
|
424 |
+
|
425 |
+
void for_each(loop2d_t loop, int64_t grain_size = at::internal::GRAIN_SIZE);
|
426 |
+
|
427 |
+
void parallel_reduce(loop2d_t loop);
|
428 |
+
|
429 |
+
template <
|
430 |
+
typename loop1d_t,
|
431 |
+
std::enable_if_t<
|
432 |
+
std::is_convertible<
|
433 |
+
loop1d_t,
|
434 |
+
c10::function_ref<
|
435 |
+
void(char**, const int64_t* strides, int64_t size)>>::value,
|
436 |
+
int> = 0>
|
437 |
+
void serial_for_each(loop1d_t loop, Range range) {
|
438 |
+
serial_for_each(loop_2d_from_1d(loop), range);
|
439 |
+
}
|
440 |
+
|
441 |
+
void serial_for_each(loop2d_t loop, Range range) const;
|
442 |
+
|
443 |
+
/// Create a strides array for a Tensor with shape of this iterator. The
|
444 |
+
/// parameter `element_size` specifies the size of Tensor's data type in
|
445 |
+
/// bytes (e.g. `4` for `float`)
|
446 |
+
StrideVector compatible_stride(int element_size) const;
|
447 |
+
|
448 |
+
/// Inverts the re-ordering done by reorder_dimensions. This can only be
|
449 |
+
/// called *before* coalesce_dimensions() is called.
|
450 |
+
DimVector invert_perm(IntArrayRef input) const;
|
451 |
+
|
452 |
+
/// Reapply same re-ordering as it is done by reorder_dimensions. This can
|
453 |
+
/// only be called *before* coalesce_dimensions() is called.
|
454 |
+
DimVector apply_perm_and_mul(IntArrayRef input, int mul) const;
|
455 |
+
|
456 |
+
/// Helper functions for CPU iteration
|
457 |
+
StrideVector get_dim_strides(int dim) const;
|
458 |
+
StrideVector get_strides() const;
|
459 |
+
StrideVector get_inner_strides() const {
|
460 |
+
return get_dim_strides(0);
|
461 |
+
}
|
462 |
+
PtrVector get_base_ptrs() const;
|
463 |
+
|
464 |
+
// Helper functions for advanced stride manipulations (e.g. torch.flip)
|
465 |
+
void _unsafe_set_arg_strides(const int arg, IntArrayRef strides) {
|
466 |
+
operands_[arg].stride_bytes = strides;
|
467 |
+
}
|
468 |
+
void _unsafe_set_arg_data(const int arg, void* data) {
|
469 |
+
operands_[arg].data = data;
|
470 |
+
}
|
471 |
+
|
472 |
+
/// true if the stride computation can use 32-bit arithmetic. Used by GPU
|
473 |
+
/// kernels
|
474 |
+
bool can_use_32bit_indexing() const;
|
475 |
+
|
476 |
+
/// An "iteratable" object that recursively splits this iterator into
|
477 |
+
/// sub-iterators that can use 32-bit indexing.
|
478 |
+
SplitUntil32Bit with_32bit_indexing() const;
|
479 |
+
|
480 |
+
/// If the kernel should accumulate into the output. Only relevant for CUDA
|
481 |
+
/// reductions.
|
482 |
+
bool should_accumulate() const {
|
483 |
+
return accumulate_;
|
484 |
+
}
|
485 |
+
|
486 |
+
/// Whether this iterator produces the actual output,
|
487 |
+
/// as opposed to something that will be accumulated further. Only relevant
|
488 |
+
/// for CUDA reductions.
|
489 |
+
bool is_final_output() const {
|
490 |
+
return final_output_;
|
491 |
+
}
|
492 |
+
|
493 |
+
bool has_contiguous_first_dim() const {
|
494 |
+
if (ndim() == 0) {
|
495 |
+
return true;
|
496 |
+
}
|
497 |
+
|
498 |
+
int num_tensors = ntensors();
|
499 |
+
for (const auto i : c10::irange(num_tensors)) {
|
500 |
+
if (strides(i)[0] != element_size(i)) {
|
501 |
+
return false;
|
502 |
+
}
|
503 |
+
}
|
504 |
+
return true;
|
505 |
+
}
|
506 |
+
|
507 |
+
void set_output_raw_strided(
|
508 |
+
int64_t output_idx,
|
509 |
+
IntArrayRef sizes,
|
510 |
+
IntArrayRef strides,
|
511 |
+
TensorOptions options,
|
512 |
+
DimnameList names) override;
|
513 |
+
|
514 |
+
#define TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, maybestatic) \
|
515 |
+
maybestatic void methodname( \
|
516 |
+
TensorBase&& out, const TensorBase& a, const TensorBase& b) = delete; \
|
517 |
+
maybestatic void methodname( \
|
518 |
+
const TensorBase& out, TensorBase&& a, const TensorBase& b) = delete; \
|
519 |
+
maybestatic void methodname( \
|
520 |
+
const TensorBase& out, const TensorBase& a, TensorBase&& b) = delete; \
|
521 |
+
maybestatic void methodname( \
|
522 |
+
TensorBase&& out, TensorBase&& a, const TensorBase& b) = delete; \
|
523 |
+
maybestatic void methodname( \
|
524 |
+
TensorBase&& out, const TensorBase& a, TensorBase&& b) = delete; \
|
525 |
+
maybestatic void methodname( \
|
526 |
+
const TensorBase& out, TensorBase&& a, TensorBase&& b) = delete; \
|
527 |
+
maybestatic void methodname( \
|
528 |
+
TensorBase&& out, TensorBase&& a, TensorBase&& b) = delete;
|
529 |
+
|
530 |
+
#define TORCH_DISALLOW_TEMPORARIES(methodname) \
|
531 |
+
TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, )
|
532 |
+
|
533 |
+
void build_binary_float_op(
|
534 |
+
const TensorBase& out,
|
535 |
+
const TensorBase& a,
|
536 |
+
const TensorBase& b);
|
537 |
+
void build_borrowing_binary_float_op(
|
538 |
+
const TensorBase& out,
|
539 |
+
const TensorBase& a,
|
540 |
+
const TensorBase& b);
|
541 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_binary_float_op)
|
542 |
+
void build_binary_op(
|
543 |
+
const TensorBase& out,
|
544 |
+
const TensorBase& a,
|
545 |
+
const TensorBase& b);
|
546 |
+
void build_borrowing_binary_op(
|
547 |
+
const TensorBase& out,
|
548 |
+
const TensorBase& a,
|
549 |
+
const TensorBase& b);
|
550 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_binary_op)
|
551 |
+
void build_unary_float_op(const TensorBase& out, const TensorBase& a);
|
552 |
+
void build_borrowing_unary_float_op(
|
553 |
+
const TensorBase& out,
|
554 |
+
const TensorBase& a);
|
555 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_float_op)
|
556 |
+
void build_unary_op(const TensorBase& out, const TensorBase& a);
|
557 |
+
// Odd special case needed for pow. Has to borrow the output because
|
558 |
+
// it's a structured kernel, but the argument is potentially a copy.
|
559 |
+
void build_output_borrowing_argument_owning_unary_op(
|
560 |
+
const TensorBase& out,
|
561 |
+
const TensorBase& a);
|
562 |
+
void build_borrowing_unary_op(const TensorBase& out, const TensorBase& a);
|
563 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_op)
|
564 |
+
void build_borrowing_unary_force_boolean_op(
|
565 |
+
const TensorBase& out,
|
566 |
+
const TensorBase& a);
|
567 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_unary_force_boolean_op)
|
568 |
+
void build_comparison_op(
|
569 |
+
const TensorBase& out,
|
570 |
+
const TensorBase& a,
|
571 |
+
const TensorBase& b);
|
572 |
+
void build_borrowing_comparison_op(
|
573 |
+
const TensorBase& out,
|
574 |
+
const TensorBase& a,
|
575 |
+
const TensorBase& b);
|
576 |
+
TORCH_DISALLOW_TEMPORARIES(build_borrowing_comparison_op)
|
577 |
+
// Another special case: we need to own the second argument for comparison
|
578 |
+
// ops.
|
579 |
+
void build_borrowing_except_last_argument_comparison_op(
|
580 |
+
const TensorBase& out,
|
581 |
+
const TensorBase& a,
|
582 |
+
const TensorBase& b);
|
583 |
+
void build_ternary_op(
|
584 |
+
const TensorBase& out,
|
585 |
+
const TensorBase& a,
|
586 |
+
const TensorBase& b,
|
587 |
+
const TensorBase& c);
|
588 |
+
|
589 |
+
#undef TORCH_DISALLOW_TEMPORARIES
|
590 |
+
protected:
|
591 |
+
// Mutable reference as it moves tensors out of TensorIteratorConfig
|
592 |
+
void populate_operands(TensorIteratorConfig&);
|
593 |
+
void mark_outputs();
|
594 |
+
void mark_resize_outputs(const TensorIteratorConfig&);
|
595 |
+
void compute_mem_overlaps(const TensorIteratorConfig&);
|
596 |
+
void compute_shape(const TensorIteratorConfig&);
|
597 |
+
void compute_strides(const TensorIteratorConfig&);
|
598 |
+
void reorder_dimensions();
|
599 |
+
void permute_dimensions(IntArrayRef perm);
|
600 |
+
void compute_types(const TensorIteratorConfig&);
|
601 |
+
ScalarType compute_common_dtype();
|
602 |
+
void allocate_or_resize_outputs();
|
603 |
+
bool fast_set_up(const TensorIteratorConfig&);
|
604 |
+
FastSetupType compute_fast_setup_type(const TensorIteratorConfig&);
|
605 |
+
void compute_names(const TensorIteratorConfig&);
|
606 |
+
void propagate_names_to_outputs();
|
607 |
+
void coalesce_dimensions();
|
608 |
+
|
609 |
+
protected:
|
610 |
+
/// Records the "computation" shape of the output tensor. The computation
|
611 |
+
/// shape is different from the regular shape in a few ways:
|
612 |
+
///
|
613 |
+
/// - The shape may be permuted (via permute_dimensions) so that we
|
614 |
+
/// process the dimensions in the most computationally efficient order
|
615 |
+
/// (rather than the logical order given to us by the users.)
|
616 |
+
/// - The shape may have adjacent dimensions collapsed (via
|
617 |
+
/// coalesce_dimensions) so that we minimize the number of
|
618 |
+
/// dimensions we have to explicitly iterate over. For example,
|
619 |
+
/// a pointwise operation on a contiguous tensor "computationally"
|
620 |
+
/// consists of only a single dimension.
|
621 |
+
///
|
622 |
+
/// In other words, the computation shape is the output shape as it
|
623 |
+
/// actually matters for implementing the kernel, but not necessarily the
|
624 |
+
/// output shape that the user will see in the end.
|
625 |
+
///
|
626 |
+
/// The lifecycle of mutations to shape_ in TensorIterator:
|
627 |
+
/// - declare_static_shape() sets an initial shape explicitly
|
628 |
+
/// provided by user, otherwise
|
629 |
+
/// - compute_shape() computes the true (non-computational) shape
|
630 |
+
/// specified by the user.
|
631 |
+
/// - reorder_dimensions() reorders dimensions to improve coalescing.
|
632 |
+
/// - coalesce_dimensions() then coalesces adjacent dimensions when
|
633 |
+
/// possible.
|
634 |
+
///
|
635 |
+
/// The shape may also be further modified if we create sub-TensorIterators,
|
636 |
+
/// e.g., via narrow or select_all_keeping_dim.
|
637 |
+
DimVector shape_;
|
638 |
+
|
639 |
+
/// Temporarily records the permutation computed by reorder_dimensions.
|
640 |
+
/// This permutation maps the computation output dimension (dim) to
|
641 |
+
/// the original true output dimension (perm_[dim]). It is used by
|
642 |
+
/// invert_perm to undo the permutation. After coalesce_dimensions is
|
643 |
+
/// called, the permutation is no longer valid (as, in general, there
|
644 |
+
/// is no permutation that will make computation dimensions to
|
645 |
+
/// output dimensions); methods that manipulate perm_ are obligated
|
646 |
+
/// to test that !has_coalesced_dimensions
|
647 |
+
DimVector perm_;
|
648 |
+
|
649 |
+
/// Has coalesce_dimensions() (or any moral equivalent, e.g., fast_build())
|
650 |
+
/// been called? This is SOLELY used to check validity of perm_.
|
651 |
+
bool has_coalesced_dimensions_ = false;
|
652 |
+
|
653 |
+
/// Whether iteration must be fixed. This disables dimension permuting and
|
654 |
+
/// also changes how for_each divides work among threads.
|
655 |
+
bool enforce_linear_iteration_ = false;
|
656 |
+
|
657 |
+
/// The index offsets into the original tensors for each dimension.
|
658 |
+
/// This is only non-zero when you narrow() a TensorIterator (e.g.,
|
659 |
+
/// when you make sub-TensorIterators).
|
660 |
+
DimVector view_offsets_;
|
661 |
+
|
662 |
+
/// The computed names of the output tensor. Computed by compute_names()
|
663 |
+
NameVector names_;
|
664 |
+
|
665 |
+
/// The operands of the TensorIterator: both the inputs and outputs. The
|
666 |
+
/// outputs MUST come first in the operands_ list. There is always an
|
667 |
+
/// operand for each output of the TensorIterator, even if TensorIterator
|
668 |
+
/// will ultimately be responsible for allocating the output; in those
|
669 |
+
/// cases, tensor is simply undefined (and will be populated later
|
670 |
+
/// during build()).
|
671 |
+
///
|
672 |
+
/// This list is initially populated prior to build(), but build() mutates
|
673 |
+
/// OperandInfo to populate more information.
|
674 |
+
SmallVector<OperandInfo, 4> operands_;
|
675 |
+
|
676 |
+
/// Number of outputs in operands_ (the length of the outputs prefix
|
677 |
+
/// in operands_).
|
678 |
+
int num_outputs_ = 0;
|
679 |
+
|
680 |
+
/// Whether or not all operands have the same shape and are 1d+. Having all
|
681 |
+
/// the same shape affects whether or not the iterator is eligible for fast
|
682 |
+
/// setup.
|
683 |
+
bool all_ops_same_shape_ = false;
|
684 |
+
/// Whether or not all operands are 0d, this affects type promotion
|
685 |
+
bool all_ops_are_scalars_ = false;
|
686 |
+
|
687 |
+
/// The "computation" dtype of TensorIterator, specifying what the dtype
|
688 |
+
/// we will do the internal computation in TensorIterator. Typically,
|
689 |
+
/// this matches the dtype of the output tensors, but not always!
|
690 |
+
ScalarType common_dtype_ = ScalarType::Undefined;
|
691 |
+
|
692 |
+
/// This is currently defined as kCPU, or the device of the first non-CPU
|
693 |
+
/// tensor argument. See TensorIteratorBase::compute_types for details.
|
694 |
+
Device common_device_ = kCPU;
|
695 |
+
|
696 |
+
/// Set by split(), see should_accumulate() and is_final_output()
|
697 |
+
bool accumulate_ = false;
|
698 |
+
bool final_output_ = true;
|
699 |
+
|
700 |
+
// From TensorIteratorConfig
|
701 |
+
bool is_reduction_ = false;
|
702 |
+
|
703 |
+
/// Set by populate_operands(), says if we're handling meta tensors
|
704 |
+
bool is_meta_ = false;
|
705 |
+
};
|
706 |
+
|
707 |
+
struct TORCH_API TensorIterator final : public TensorIteratorBase {
|
708 |
+
TensorIterator() : TensorIteratorBase() {}
|
709 |
+
// Slicing is OK, TensorIterator guaranteed NOT to have any fields
|
710 |
+
TensorIterator(const TensorIteratorBase& iter) : TensorIteratorBase(iter) {}
|
711 |
+
|
712 |
+
#define TORCH_DISALLOW_TEMPORARIES(methodname) \
|
713 |
+
TORCH_DISALLOW_TEMPORARIES_IMPL(methodname, static)
|
714 |
+
|
715 |
+
static TensorIterator binary_float_op(
|
716 |
+
TensorBase& out,
|
717 |
+
const TensorBase& a,
|
718 |
+
const TensorBase& b);
|
719 |
+
static TensorIterator binary_op(
|
720 |
+
TensorBase& out,
|
721 |
+
const TensorBase& a,
|
722 |
+
const TensorBase& b);
|
723 |
+
static TensorIterator borrowing_binary_op(
|
724 |
+
const TensorBase& out,
|
725 |
+
const TensorBase& a,
|
726 |
+
const TensorBase& b);
|
727 |
+
TORCH_DISALLOW_TEMPORARIES(borrowing_binary_op)
|
728 |
+
static TensorIterator comparison_op(
|
729 |
+
TensorBase& out,
|
730 |
+
const TensorBase& a,
|
731 |
+
const TensorBase& b);
|
732 |
+
static TensorIterator unary_op(TensorBase& out, const TensorBase& a);
|
733 |
+
static TensorIterator unary_float_op(TensorBase& out, const TensorBase& a);
|
734 |
+
static TensorIterator nullary_op(TensorBase& out);
|
735 |
+
static TensorIterator borrowing_nullary_op(const TensorBase& out);
|
736 |
+
static TensorIterator borrowing_nullary_op(TensorBase&& out) = delete;
|
737 |
+
static TensorIterator reduce_op(TensorBase& out, const TensorBase& a);
|
738 |
+
static TensorIterator reduce_op(
|
739 |
+
TensorBase& out1,
|
740 |
+
TensorBase& out2,
|
741 |
+
const TensorBase& a);
|
742 |
+
#undef TORCH_DISALLOW_TEMPORARIES
|
743 |
+
#undef TORCH_DISALLOW_TEMPORARIES_IMPL
|
744 |
+
|
745 |
+
const Tensor& maybe_get_output(int64_t output_idx) override;
|
746 |
+
void set_output_raw_strided(
|
747 |
+
int64_t output_idx,
|
748 |
+
IntArrayRef sizes,
|
749 |
+
IntArrayRef strides,
|
750 |
+
TensorOptions options,
|
751 |
+
DimnameList names) override;
|
752 |
+
};
|
753 |
+
|
754 |
+
class TORCH_API TensorIteratorConfig final {
|
755 |
+
public:
|
756 |
+
friend struct TensorIteratorBase;
|
757 |
+
friend struct TensorIterator;
|
758 |
+
|
759 |
+
TensorIteratorConfig() = default;
|
760 |
+
|
761 |
+
C10_DISABLE_COPY_AND_ASSIGN(TensorIteratorConfig);
|
762 |
+
|
763 |
+
/// Construction
|
764 |
+
// Stores input/output Tensors without incrementing the reference count.
|
765 |
+
// Important: the outputs have to be added before the inputs.
|
766 |
+
TensorIteratorConfig& add_output(const TensorBase& output) {
|
767 |
+
return add_borrowed_output(output);
|
768 |
+
}
|
769 |
+
TensorIteratorConfig& add_input(const TensorBase& input) {
|
770 |
+
return add_borrowed_input(input);
|
771 |
+
}
|
772 |
+
|
773 |
+
// Borrowing from temporaries is unlikely to go well.
|
774 |
+
TensorIteratorConfig& add_output(TensorBase&& output) = delete;
|
775 |
+
TensorIteratorConfig& add_input(TensorBase&& input) = delete;
|
776 |
+
|
777 |
+
// Stores input/output Tensors while incrementing the reference count.
|
778 |
+
// Note that add_{in,out}put are nearly always what you
|
779 |
+
// want, and the exception (adding an unnamed temporary) won't
|
780 |
+
// compile.
|
781 |
+
TensorIteratorConfig& add_owned_output(const TensorBase& output);
|
782 |
+
TensorIteratorConfig& add_owned_input(const TensorBase& input);
|
783 |
+
|
784 |
+
// Advanced API: stores input/output Tensors without incrementing
|
785 |
+
// the reference count. The caller must ensure that these Tensors
|
786 |
+
// live at least as long as this TensorIteratorConfig and any
|
787 |
+
// TensorIteratorBase built from this TensorIteratorConfig.
|
788 |
+
// Important: the outputs have to be added before the inputs.
|
789 |
+
TensorIteratorConfig& add_borrowed_output(const TensorBase& output);
|
790 |
+
TensorIteratorConfig& add_borrowed_input(const TensorBase& input);
|
791 |
+
|
792 |
+
// Borrowing from temporaries is unlikely to go well.
|
793 |
+
TensorIteratorConfig& add_borrowed_output(TensorBase&& output) = delete;
|
794 |
+
TensorIteratorConfig& add_borrowed_input(TensorBase&& input) = delete;
|
795 |
+
|
796 |
+
// Sets the check_mem_overlap_ flag, which is true by default.
|
797 |
+
// If true, inputs are checked for partial overlap with the outputs and
|
798 |
+
// outputs are checked for internal overlap (e.g. broadcasted views). An error
|
799 |
+
// is raised if unacceptable overlap is detected.
|
800 |
+
// If you're migrating an existing operator to using TensorIterator, please
|
801 |
+
// consider if the previous implementation checked memory overlap. If it did
|
802 |
+
// not, and if the operator is idempotent (for example, Tensor.fill_(0)), then
|
803 |
+
// checking memory overlap is BC-breaking. Please don't check memory overlap
|
804 |
+
// in that case.
|
805 |
+
TensorIteratorConfig& set_check_mem_overlap(bool check_mem_overlap) {
|
806 |
+
check_mem_overlap_ = check_mem_overlap;
|
807 |
+
return *this;
|
808 |
+
}
|
809 |
+
|
810 |
+
// Sets the check_all_same_dtype_ flag, which is true by default
|
811 |
+
// If true, checks that all inputs and defined outputs have the same dtype
|
812 |
+
// Setting either of promote_inputs_to_common_dtype_
|
813 |
+
// or cast_common_dtype_to_outputs_ to true will set
|
814 |
+
// check_all_same_dtype_ to false.
|
815 |
+
TensorIteratorConfig& check_all_same_dtype(const bool _check_all_same_dtype) {
|
816 |
+
check_all_same_dtype_ = _check_all_same_dtype;
|
817 |
+
return *this;
|
818 |
+
}
|
819 |
+
|
820 |
+
// Sets the check_all_same_device_ flag, which is true by default
|
821 |
+
// If true, all operands must be on the same device, with the possible
|
822 |
+
// exception of CPU scalars, which can be passed to some CUDA kernels
|
823 |
+
// as kernel arguments.
|
824 |
+
TensorIteratorConfig& check_all_same_device(
|
825 |
+
const bool _check_all_same_device) {
|
826 |
+
check_all_same_device_ = _check_all_same_device;
|
827 |
+
return *this;
|
828 |
+
}
|
829 |
+
|
830 |
+
// Sets the enforce_safe_casting_to_output_ flag, which is false by default
|
831 |
+
// If true, the iterator's "common dtype" must be computable
|
832 |
+
// (see the [Common Dtype Computation] note) and
|
833 |
+
// canCast(common dtype, output dtype) must be true for all outputs.
|
834 |
+
TensorIteratorConfig& enforce_safe_casting_to_output(
|
835 |
+
const bool _enforce_safe_casting_to_output) {
|
836 |
+
enforce_safe_casting_to_output_ = _enforce_safe_casting_to_output;
|
837 |
+
return *this;
|
838 |
+
}
|
839 |
+
|
840 |
+
// Sets the enforce_linear_iteration_ flag, which is false by default.
|
841 |
+
// If true, iteration goes in the same order as a C-contiguous tensor
|
842 |
+
// is layed out in memory. i.e. last dimension iterates fastest.
|
843 |
+
//
|
844 |
+
// This iteration order can be less efficient and may even prevent
|
845 |
+
// vectorization. So only use if the correctness of your kernel depends on it.
|
846 |
+
TensorIteratorConfig& enforce_linear_iteration(
|
847 |
+
const bool _enforce_linear_iteration = true) {
|
848 |
+
enforce_linear_iteration_ = _enforce_linear_iteration;
|
849 |
+
return *this;
|
850 |
+
}
|
851 |
+
|
852 |
+
// Sets the promote_inputs_to_common_dtype_ flag, which is false by default
|
853 |
+
// If true, the iterator's "common dtype" is always computed (see the
|
854 |
+
// [Common Dtype Computation] note) and, on the CPU, temporary copies of
|
855 |
+
// the inputs in the common dtype are passed as the actual inputs to
|
856 |
+
// the operation.
|
857 |
+
// Setting this flag to true sets check_all_same_dtype_ to false.
|
858 |
+
TensorIteratorConfig& promote_inputs_to_common_dtype(
|
859 |
+
const bool _promote_inputs_to_common_dtype) {
|
860 |
+
promote_inputs_to_common_dtype_ = _promote_inputs_to_common_dtype;
|
861 |
+
if (_promote_inputs_to_common_dtype) {
|
862 |
+
check_all_same_dtype_ = false;
|
863 |
+
}
|
864 |
+
return *this;
|
865 |
+
}
|
866 |
+
|
867 |
+
// Sets the promote_integer_inputs_to_float_ flag, which is false by default
|
868 |
+
// NOTE: If set to true, the promote_inputs_to_common_dtype_ must also be
|
869 |
+
// true. If true, if the iterator's "common dtype" is an integral type
|
870 |
+
// (including bool)
|
871 |
+
// then it is changed to the default float scalar type.
|
872 |
+
TensorIteratorConfig& promote_integer_inputs_to_float(
|
873 |
+
const bool _promote_integer_inputs_to_float) {
|
874 |
+
promote_integer_inputs_to_float_ = _promote_integer_inputs_to_float;
|
875 |
+
TORCH_INTERNAL_ASSERT(
|
876 |
+
!promote_integer_inputs_to_float_ || promote_inputs_to_common_dtype_);
|
877 |
+
return *this;
|
878 |
+
}
|
879 |
+
|
880 |
+
TensorIteratorConfig& is_reduction(const bool _is_reduction) {
|
881 |
+
is_reduction_ = _is_reduction;
|
882 |
+
return *this;
|
883 |
+
}
|
884 |
+
|
885 |
+
TensorIteratorConfig& allow_cpu_scalars(const bool _allow_cpu_scalars) {
|
886 |
+
allow_cpu_scalars_ = _allow_cpu_scalars;
|
887 |
+
return *this;
|
888 |
+
}
|
889 |
+
|
890 |
+
// Sets the cast_common_dtype_to_outputs_ flag, which is false by default
|
891 |
+
// If true, the iterator's "common dtype" must be computatable
|
892 |
+
// (see the [Common Dtype Computation] note) and, on the CPU, temporary
|
893 |
+
// copies of the outputs are passed as the actual output to the operation.
|
894 |
+
// These temporaries are then copied to the original outputs after
|
895 |
+
// the operation is performed (see cast_outputs()).
|
896 |
+
// Setting this flag to true sets check_all_same_dtype_ to false.
|
897 |
+
TensorIteratorConfig& cast_common_dtype_to_outputs(
|
898 |
+
const bool _cast_common_dtype_to_outputs) {
|
899 |
+
cast_common_dtype_to_outputs_ = _cast_common_dtype_to_outputs;
|
900 |
+
if (_cast_common_dtype_to_outputs) {
|
901 |
+
check_all_same_dtype_ = false;
|
902 |
+
}
|
903 |
+
return *this;
|
904 |
+
}
|
905 |
+
|
906 |
+
TensorIteratorConfig& resize_outputs(bool resize_outputs) {
|
907 |
+
resize_outputs_ = resize_outputs;
|
908 |
+
return *this;
|
909 |
+
}
|
910 |
+
|
911 |
+
// Bypass output dtype/device computation and fix the dtype/device as
|
912 |
+
// specified here.
|
913 |
+
TensorIteratorConfig& declare_static_dtype_and_device(
|
914 |
+
ScalarType dtype,
|
915 |
+
Device device);
|
916 |
+
TensorIteratorConfig& declare_static_dtype(ScalarType dtype);
|
917 |
+
TensorIteratorConfig& declare_static_device(Device device);
|
918 |
+
TensorIteratorConfig& declare_static_shape(IntArrayRef shape);
|
919 |
+
TensorIteratorConfig& declare_static_shape(
|
920 |
+
IntArrayRef shape,
|
921 |
+
IntArrayRef squash_dims);
|
922 |
+
|
923 |
+
// It would be better if this was && qualified, but this would be at the cost
|
924 |
+
// of a lot of boilerplate above
|
925 |
+
TensorIterator build() {
|
926 |
+
TensorIterator iter;
|
927 |
+
iter.build(*this);
|
928 |
+
return iter;
|
929 |
+
}
|
930 |
+
|
931 |
+
private:
|
932 |
+
SmallVector<c10::MaybeOwned<TensorBase>, 4> tensors_;
|
933 |
+
int num_outputs_ = 0;
|
934 |
+
int num_inputs_ = 0;
|
935 |
+
|
936 |
+
c10::optional<DimVector> static_shape_ = c10::nullopt;
|
937 |
+
c10::optional<ScalarType> static_dtype_ = c10::nullopt;
|
938 |
+
c10::optional<Device> static_device_ = c10::nullopt;
|
939 |
+
bool check_mem_overlap_ = true;
|
940 |
+
bool allow_cpu_scalars_ = false;
|
941 |
+
bool is_reduction_ = false;
|
942 |
+
bool resize_outputs_ = true;
|
943 |
+
bool check_all_same_dtype_ = true;
|
944 |
+
bool check_all_same_device_ = true;
|
945 |
+
bool enforce_safe_casting_to_output_ = false;
|
946 |
+
bool enforce_linear_iteration_ = false;
|
947 |
+
bool promote_inputs_to_common_dtype_ = false;
|
948 |
+
bool promote_integer_inputs_to_float_ = false;
|
949 |
+
bool cast_common_dtype_to_outputs_ = false;
|
950 |
+
};
|
951 |
+
|
952 |
+
/// A container-like struct that acts as if it contains splits of a
|
953 |
+
/// TensorIterator that can use 32-bit indexing. Taken together the splits cover
|
954 |
+
/// the original TensorIterator.
|
955 |
+
struct TORCH_API SplitUntil32Bit {
|
956 |
+
struct TORCH_API iterator {
|
957 |
+
iterator() = default;
|
958 |
+
iterator(const TensorIteratorBase& iter);
|
959 |
+
iterator(iterator&&) = default;
|
960 |
+
|
961 |
+
// Guaranteed to be a TensorIterator proper!
|
962 |
+
TensorIterator& operator*() const;
|
963 |
+
iterator& operator++();
|
964 |
+
bool operator==(const iterator& other) const {
|
965 |
+
// two iterators are equal if they are the same object or they're both
|
966 |
+
// empty
|
967 |
+
return this == &other || (vec.empty() && other.vec.empty());
|
968 |
+
}
|
969 |
+
// needed for C++11 range-based for loop
|
970 |
+
bool operator!=(const iterator& other) const {
|
971 |
+
return !(*this == other);
|
972 |
+
}
|
973 |
+
|
974 |
+
/// stack of TensorIterators to be split
|
975 |
+
std::vector<std::unique_ptr<TensorIterator>> vec;
|
976 |
+
};
|
977 |
+
|
978 |
+
SplitUntil32Bit(const TensorIteratorBase& iter) : iter(iter) {}
|
979 |
+
|
980 |
+
iterator begin() const;
|
981 |
+
iterator end() const;
|
982 |
+
|
983 |
+
private:
|
984 |
+
const TensorIteratorBase& iter;
|
985 |
+
};
|
986 |
+
|
987 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorMeta.h
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/DimVector.h>
|
4 |
+
#include <ATen/core/Dimname.h>
|
5 |
+
#include <c10/core/TensorOptions.h>
|
6 |
+
#include <c10/util/strides.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
class Tensor;
|
11 |
+
|
12 |
+
namespace impl {
|
13 |
+
|
14 |
+
// Use this to define the prototype for a meta function. There are two
|
15 |
+
// versions; one that takes one argument (just the operator name), or FUNC2
|
16 |
+
// variant that takes two arguments (operator name and overload name).
|
17 |
+
//
|
18 |
+
// Example usage:
|
19 |
+
//
|
20 |
+
// TORCH_META_FUNC2(add, Tensor) (
|
21 |
+
// const Tensor& self, const Tensor& other
|
22 |
+
// ) {
|
23 |
+
// ... compute sizes and options ...
|
24 |
+
// set_output(sizes, options);
|
25 |
+
// }
|
26 |
+
//
|
27 |
+
#define TORCH_META_FUNC(name) void structured_##name::meta
|
28 |
+
#define TORCH_META_FUNC2(name, overload) \
|
29 |
+
void structured_##name##_##overload::meta
|
30 |
+
|
31 |
+
// These are versions of TORCH_META_FUNC(2) that include a precompute_out struct
|
32 |
+
// as a return value. They should be used when the kernel in question has
|
33 |
+
// precomputed values declared in native_functions.yaml and the corresponding
|
34 |
+
// implementation should return an instance of the aforementioned struct.
|
35 |
+
#define TORCH_PRECOMPUTE_META_FUNC(name) \
|
36 |
+
structured_##name::meta_return_ty structured_##name::meta
|
37 |
+
#define TORCH_PRECOMPUTE_META_FUNC2(name, overload) \
|
38 |
+
structured_##name##_##overload::meta_return_ty \
|
39 |
+
structured_##name##_##overload::meta
|
40 |
+
|
41 |
+
// Use this to create a precompute struct in a meta function.
|
42 |
+
#define TORCH_PRECOMPUTE_STRUCT(name) structured_##name::precompute_out<>
|
43 |
+
#define TORCH_PRECOMPUTE_STRUCT2(name, overload) \
|
44 |
+
structured_##name##_##overload::precompute_out<>
|
45 |
+
|
46 |
+
// Use this to define the prototype for an implementation. This takes only
|
47 |
+
// one argument, which is the name of the dispatch key entry you're
|
48 |
+
// implementing.
|
49 |
+
//
|
50 |
+
// Example usage:
|
51 |
+
//
|
52 |
+
// TORCH_IMPL_FUNC(add_cpu) (
|
53 |
+
// Tensor& result, const Tensor& self, const Tensor& other
|
54 |
+
// ) {
|
55 |
+
// ... do the actual implementation ...
|
56 |
+
// }
|
57 |
+
//
|
58 |
+
#define TORCH_IMPL_FUNC(name) void structured_##name::impl
|
59 |
+
|
60 |
+
// Base class for all structured kernel classes. The set_output virtual
|
61 |
+
// method is varied depending whether or not the operator is
|
62 |
+
// functional/out/inplace, and could also be specialized for CPU/CUDA/etc
|
63 |
+
// (although presently it isn't).
|
64 |
+
//
|
65 |
+
// A notable subclass of this interface is TensorIteratorBase.
|
66 |
+
struct TORCH_API MetaBase {
|
67 |
+
MetaBase() = default;
|
68 |
+
MetaBase(const MetaBase&) = default;
|
69 |
+
MetaBase& operator=(const MetaBase&) = default;
|
70 |
+
MetaBase(MetaBase&&) noexcept = default;
|
71 |
+
MetaBase& operator=(MetaBase&&) noexcept = default;
|
72 |
+
virtual const Tensor& maybe_get_output(int64_t output_idx) = 0;
|
73 |
+
|
74 |
+
// Note: [set_output_*]
|
75 |
+
// See: https://github.com/pytorch/pytorch/issues/69813
|
76 |
+
// Whenever defining the output properties in the META function of a
|
77 |
+
// structured kernel (what was usually done with `set_output`), use one of
|
78 |
+
// these 3 variants, instead. In order to decide which variant to use, check
|
79 |
+
// the following decision tree:
|
80 |
+
//
|
81 |
+
// - Can the kernel you are going to implement support output tensors
|
82 |
+
// with arbitrary strides?
|
83 |
+
// |
|
84 |
+
// -- YES: `set_output_raw_strided`
|
85 |
+
// |
|
86 |
+
// -- NO: Should the output tensor strides be contiguous?
|
87 |
+
// |
|
88 |
+
// -- YES: `set_output_contiguous`
|
89 |
+
// |
|
90 |
+
// -- NO: `set_output_strided`
|
91 |
+
//
|
92 |
+
// Use this function whenever the kernel requires specific strides for the
|
93 |
+
// output. If `strides` does not match the given output strides, proxy outputs
|
94 |
+
// will be created and passed to the IMPL function.
|
95 |
+
virtual void set_output_strided(
|
96 |
+
int64_t output_idx,
|
97 |
+
IntArrayRef sizes,
|
98 |
+
IntArrayRef strides,
|
99 |
+
TensorOptions options,
|
100 |
+
DimnameList names = {}) {
|
101 |
+
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
|
102 |
+
}
|
103 |
+
|
104 |
+
// Use this function whenever the kernel knows how to handle arbitrary strided
|
105 |
+
// outputs. This function has the same behavior as the old `set_output`: it
|
106 |
+
// will only re-stride if the given output was resized.
|
107 |
+
virtual void set_output_raw_strided(
|
108 |
+
int64_t output_idx,
|
109 |
+
IntArrayRef sizes,
|
110 |
+
IntArrayRef strides_hint,
|
111 |
+
TensorOptions options,
|
112 |
+
DimnameList names = {}) {
|
113 |
+
TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
|
114 |
+
}
|
115 |
+
|
116 |
+
// Use this function if the kernel requires contiguous strides.
|
117 |
+
// Alias for `set_output_strided`, but with contiguous strides.
|
118 |
+
void set_output_contiguous(
|
119 |
+
int64_t output_idx,
|
120 |
+
IntArrayRef sizes,
|
121 |
+
TensorOptions options,
|
122 |
+
DimnameList names = {}) {
|
123 |
+
auto strides = c10::contiguous_strides(sizes);
|
124 |
+
set_output_strided(output_idx, sizes, strides, options, names);
|
125 |
+
}
|
126 |
+
|
127 |
+
// Returns a reference to an undefined tensor if there is no presupplied
|
128 |
+
// output
|
129 |
+
const Tensor& maybe_get_output() {
|
130 |
+
return maybe_get_output(0);
|
131 |
+
}
|
132 |
+
virtual ~MetaBase() = default;
|
133 |
+
};
|
134 |
+
|
135 |
+
} // namespace impl
|
136 |
+
|
137 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorNames.h
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/WrapDimUtils.h>
|
4 |
+
|
5 |
+
namespace at::namedinference {
|
6 |
+
|
7 |
+
// TensorName and TensorNames are wrappers around Dimname and DimnameList
|
8 |
+
// that contain helper functions to make writing name inference rules easier.
|
9 |
+
//
|
10 |
+
// A TensorName represents a Dimname associated with some DimnameList (from a
|
11 |
+
// Tensor). This encapsulates all the information that is needed to check if
|
12 |
+
// names *match* and to *unify* names.
|
13 |
+
//
|
14 |
+
// Definition: Two names in two tensors *match* if they are equal, or if at
|
15 |
+
// least one of them is a wildcard that can be *refined* to the other name.
|
16 |
+
//
|
17 |
+
// Definition: unify(name, other) fails if the names do not match. Otherwise,
|
18 |
+
// it returns the most refined of name and other.
|
19 |
+
//
|
20 |
+
// Here is an example of checking if two names match.
|
21 |
+
// tensor: Tensor[A, None]
|
22 |
+
// other: Tensor[A]
|
23 |
+
//
|
24 |
+
// Let's say we wish to check if tensor.names[-1] matches other.names[-1].
|
25 |
+
// None (in tensor) cannot match A (in other) because if the None were refined
|
26 |
+
// to A, `tensor` would have duplicate names [A, A]. Therefore we need to check
|
27 |
+
// tensor.names [A, None] for the existence of A.
|
28 |
+
struct TORCH_API TensorName {
|
29 |
+
explicit TensorName(ArrayRef<Dimname> origin, int origin_idx)
|
30 |
+
: origin_(origin),
|
31 |
+
name_(origin[maybe_wrap_dim(
|
32 |
+
origin_idx,
|
33 |
+
static_cast<int64_t>(origin.size()))]),
|
34 |
+
origin_idx_(origin_idx) {}
|
35 |
+
|
36 |
+
// op_name is only used for error reporting.
|
37 |
+
const TensorName& unify(const TensorName& other, const char* op_name) const;
|
38 |
+
Dimname toDimname() const;
|
39 |
+
|
40 |
+
private:
|
41 |
+
ArrayRef<Dimname> origin_;
|
42 |
+
Dimname name_;
|
43 |
+
int origin_idx_; // A named tensor can have at most 64 dims.
|
44 |
+
|
45 |
+
TORCH_API friend std::ostream& operator<<(
|
46 |
+
std::ostream& out,
|
47 |
+
const TensorName& tensorname);
|
48 |
+
};
|
49 |
+
|
50 |
+
using TensorNameVec = SmallVector<TensorName, 10>;
|
51 |
+
|
52 |
+
struct TORCH_API TensorNames {
|
53 |
+
explicit TensorNames(ArrayRef<Dimname> names);
|
54 |
+
|
55 |
+
// Create TensorNames from names[start:end]. Each individual TensorName stores
|
56 |
+
// `names`, NOT names[start:end], because the original tensor's names are
|
57 |
+
// `names`.
|
58 |
+
explicit TensorNames(ArrayRef<Dimname> names, int64_t start, int64_t end);
|
59 |
+
|
60 |
+
// op_name is only used for error reporting.
|
61 |
+
TensorNames& unifyFromRightInplace(
|
62 |
+
const TensorNames& other,
|
63 |
+
const char* op_name = "unify");
|
64 |
+
void checkUnique(const char* op_name) const;
|
65 |
+
|
66 |
+
void append(TensorName&& name);
|
67 |
+
std::vector<Dimname> toDimnameVec() const;
|
68 |
+
|
69 |
+
private:
|
70 |
+
explicit TensorNames(TensorNameVec&& names) : names_(names){};
|
71 |
+
|
72 |
+
TensorNameVec names_;
|
73 |
+
};
|
74 |
+
|
75 |
+
} // namespace at::namedinference
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorOptions.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/TensorOptions.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorSubclassLikeUtils.h
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/List.h>
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
5 |
+
|
6 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
7 |
+
#include <ATen/Functions.h>
|
8 |
+
#else
|
9 |
+
#include <ATen/ops/equal.h>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
namespace at {
|
13 |
+
|
14 |
+
// Note [Tensor-subclass-like Tensors]
|
15 |
+
// Tensor-subclass-like is defined as:
|
16 |
+
// - a Tensor subclass (via __torch_dispatch__ in Python or extending
|
17 |
+
// TensorImpl in C++)
|
18 |
+
// - anything else that shares the same perils as Tensor subclasses.
|
19 |
+
// For example, many Tensor subclasses do not have storage and meta Tensors
|
20 |
+
// do not have storage either, so meta Tensors belong here.
|
21 |
+
//
|
22 |
+
// We should ensure that PyTorch internals supports Tensor-subclass-like
|
23 |
+
// objects. In particular, Tensor-subclass-like objects struggle with two
|
24 |
+
// classes of operations that are problematic for Tensor subclasses:
|
25 |
+
// 1. Because some Tensor subclasses do not have storage, .item() or
|
26 |
+
// .data_ptr() calls are not good.
|
27 |
+
// 2. Certain in-place operations can eliminate the typing of the Tensor
|
28 |
+
// subclass. For example:
|
29 |
+
// >>> torch.zeros(input.sizes(), grad.options()).diag().copy_(input)
|
30 |
+
// If input is a Tensor subclass, then the above ends up either erroring out
|
31 |
+
// or returning a regular non-Tensor-subclass Tensor!
|
32 |
+
|
33 |
+
constexpr auto kFunctorchWrappedTensors = DispatchKeySet(
|
34 |
+
{DispatchKey::FuncTorchGradWrapper,
|
35 |
+
DispatchKey::FuncTorchBatched,
|
36 |
+
DispatchKey::Functionalize});
|
37 |
+
|
38 |
+
constexpr auto kTensorSubclassLike =
|
39 |
+
kFunctorchWrappedTensors |
|
40 |
+
DispatchKeySet(
|
41 |
+
{// WARNING: DO NOT put combined backend component + functionality keys
|
42 |
+
// here, you will incorrectly always match on the functionality key
|
43 |
+
// no matter the backend component
|
44 |
+
DispatchKey::Batched,
|
45 |
+
DispatchKey::Sparse,
|
46 |
+
DispatchKey::SparseCsrCPU,
|
47 |
+
DispatchKey::SparseCsrCUDA,
|
48 |
+
DispatchKey::Python}) |
|
49 |
+
DispatchKeySet(BackendComponent::MetaBit);
|
50 |
+
|
51 |
+
inline bool isTensorSubclassLike(const Tensor& tensor) {
|
52 |
+
if (c10::impl::dispatch_mode_enabled())
|
53 |
+
return true;
|
54 |
+
auto key_set = tensor.unsafeGetTensorImpl()->key_set();
|
55 |
+
return !(key_set & kTensorSubclassLike).empty();
|
56 |
+
}
|
57 |
+
|
58 |
+
inline bool areAnyTensorSubclassLike(TensorList tensors) {
|
59 |
+
if (c10::impl::dispatch_mode_enabled())
|
60 |
+
return true;
|
61 |
+
return std::any_of(tensors.begin(), tensors.end(), isTensorSubclassLike);
|
62 |
+
}
|
63 |
+
|
64 |
+
inline bool areAnyOptionalTensorSubclassLike(
|
65 |
+
const c10::List<c10::optional<Tensor>>& tensors) {
|
66 |
+
if (c10::impl::dispatch_mode_enabled())
|
67 |
+
return true;
|
68 |
+
return std::any_of(
|
69 |
+
tensors.begin(), tensors.end(), [](const optional<Tensor>& opt_tensor) {
|
70 |
+
return (
|
71 |
+
opt_tensor.has_value() && isTensorSubclassLike(opt_tensor.value()));
|
72 |
+
});
|
73 |
+
}
|
74 |
+
|
75 |
+
// Helper function to deal testing truthfulness of a scalar tensor
|
76 |
+
// in a Composite Compliant manner.
|
77 |
+
// NOTE: This function expects a scalar tensor of boolean dtype.
|
78 |
+
// Eg.
|
79 |
+
// Non-Composite Compliant Pattern : (t == 0).all().item<bool>()
|
80 |
+
// Composite Compliant Patter : is_salar_tensor_true((t == 0).all())
|
81 |
+
inline bool is_scalar_tensor_true(const Tensor& t) {
|
82 |
+
TORCH_INTERNAL_ASSERT(t.dim() == 0)
|
83 |
+
TORCH_INTERNAL_ASSERT(t.scalar_type() == kBool)
|
84 |
+
return at::equal(t, t.new_ones({}, t.options()));
|
85 |
+
}
|
86 |
+
|
87 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TensorUtils.h
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/DimVector.h>
|
4 |
+
#include <ATen/EmptyTensor.h>
|
5 |
+
#include <ATen/Tensor.h>
|
6 |
+
#include <ATen/TensorGeometry.h>
|
7 |
+
#include <ATen/Utils.h>
|
8 |
+
|
9 |
+
#include <utility>
|
10 |
+
|
11 |
+
// These functions are NOT in Utils.h, because this file has a dep on Tensor.h
|
12 |
+
|
13 |
+
#define TORCH_CHECK_TENSOR_ALL(cond, ...) \
|
14 |
+
TORCH_CHECK((cond)._is_all_true().item<bool>(), __VA_ARGS__);
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
// The following are utility functions for checking that arguments
|
19 |
+
// make sense. These are particularly useful for native functions,
|
20 |
+
// which do NO argument checking by default.
|
21 |
+
|
22 |
+
struct TORCH_API TensorArg {
|
23 |
+
const Tensor& tensor;
|
24 |
+
const char* name;
|
25 |
+
int pos; // 1-indexed
|
26 |
+
TensorArg(const Tensor& tensor, const char* name, int pos)
|
27 |
+
: tensor(tensor), name(name), pos(pos) {}
|
28 |
+
// Try to mitigate any possibility of dangling reference to temporaries.
|
29 |
+
TensorArg(Tensor&& tensor, const char* name, int pos) = delete;
|
30 |
+
const Tensor* operator->() const {
|
31 |
+
return &tensor;
|
32 |
+
}
|
33 |
+
const Tensor& operator*() const {
|
34 |
+
return tensor;
|
35 |
+
}
|
36 |
+
};
|
37 |
+
|
38 |
+
struct TORCH_API TensorGeometryArg {
|
39 |
+
TensorGeometry tensor;
|
40 |
+
const char* name;
|
41 |
+
int pos; // 1-indexed
|
42 |
+
/* implicit */ TensorGeometryArg(TensorArg arg)
|
43 |
+
: tensor(TensorGeometry{arg.tensor}), name(arg.name), pos(arg.pos) {}
|
44 |
+
TensorGeometryArg(TensorGeometry tensor, const char* name, int pos)
|
45 |
+
: tensor(std::move(tensor)), name(name), pos(pos) {}
|
46 |
+
const TensorGeometry* operator->() const {
|
47 |
+
return &tensor;
|
48 |
+
}
|
49 |
+
const TensorGeometry& operator*() const {
|
50 |
+
return tensor;
|
51 |
+
}
|
52 |
+
};
|
53 |
+
|
54 |
+
// A string describing which function did checks on its input
|
55 |
+
// arguments.
|
56 |
+
// TODO: Consider generalizing this into a call stack.
|
57 |
+
using CheckedFrom = const char*;
|
58 |
+
|
59 |
+
// The undefined convention: singular operators assume their arguments
|
60 |
+
// are defined, but functions which take multiple tensors will
|
61 |
+
// implicitly filter out undefined tensors (to make it easier to perform
|
62 |
+
// tests which should apply if the tensor is defined, and should not
|
63 |
+
// otherwise.)
|
64 |
+
//
|
65 |
+
// NB: This means that the n-ary operators take lists of TensorArg,
|
66 |
+
// not TensorGeometryArg, because the Tensor to TensorGeometry
|
67 |
+
// conversion will blow up if you have undefined tensors.
|
68 |
+
|
69 |
+
TORCH_API std::ostream& operator<<(std::ostream& out, TensorGeometryArg t);
|
70 |
+
TORCH_API void checkDim(
|
71 |
+
CheckedFrom c,
|
72 |
+
const Tensor& tensor,
|
73 |
+
const char* name,
|
74 |
+
int pos, // 1-indexed
|
75 |
+
int64_t dim);
|
76 |
+
TORCH_API void checkDim(CheckedFrom c, const TensorGeometryArg& t, int64_t dim);
|
77 |
+
// NB: this is an inclusive-exclusive range
|
78 |
+
TORCH_API void checkDimRange(
|
79 |
+
CheckedFrom c,
|
80 |
+
const TensorGeometryArg& t,
|
81 |
+
int64_t dim_start,
|
82 |
+
int64_t dim_end);
|
83 |
+
TORCH_API void checkSameDim(
|
84 |
+
CheckedFrom c,
|
85 |
+
const TensorGeometryArg& t1,
|
86 |
+
const TensorGeometryArg& t2);
|
87 |
+
TORCH_API void checkContiguous(CheckedFrom c, const TensorGeometryArg& t);
|
88 |
+
TORCH_API void checkAllContiguous(CheckedFrom c, at::ArrayRef<TensorArg> ts);
|
89 |
+
TORCH_API void checkSize(
|
90 |
+
CheckedFrom c,
|
91 |
+
const TensorGeometryArg& t,
|
92 |
+
IntArrayRef sizes);
|
93 |
+
TORCH_API void checkSize_symint(
|
94 |
+
CheckedFrom c,
|
95 |
+
const TensorGeometryArg& t,
|
96 |
+
c10::SymIntArrayRef sizes);
|
97 |
+
TORCH_API void checkSize(
|
98 |
+
CheckedFrom c,
|
99 |
+
const TensorGeometryArg& t,
|
100 |
+
int64_t dim,
|
101 |
+
int64_t size);
|
102 |
+
TORCH_API void checkSize_symint(
|
103 |
+
CheckedFrom c,
|
104 |
+
const TensorGeometryArg& t,
|
105 |
+
int64_t dim,
|
106 |
+
c10::SymInt size);
|
107 |
+
TORCH_API void checkNumel(
|
108 |
+
CheckedFrom c,
|
109 |
+
const TensorGeometryArg& t,
|
110 |
+
int64_t numel);
|
111 |
+
TORCH_API void checkSameNumel(
|
112 |
+
CheckedFrom c,
|
113 |
+
const TensorArg& t1,
|
114 |
+
const TensorArg& t2);
|
115 |
+
TORCH_API void checkAllSameNumel(CheckedFrom c, ArrayRef<TensorArg> tensors);
|
116 |
+
TORCH_API void checkScalarType(CheckedFrom c, const TensorArg& t, ScalarType s);
|
117 |
+
TORCH_API void checkScalarTypes(
|
118 |
+
CheckedFrom c,
|
119 |
+
const TensorArg& t,
|
120 |
+
at::ArrayRef<ScalarType> l);
|
121 |
+
TORCH_API void checkSameGPU(
|
122 |
+
CheckedFrom c,
|
123 |
+
const TensorArg& t1,
|
124 |
+
const TensorArg& t2);
|
125 |
+
TORCH_API void checkAllSameGPU(CheckedFrom c, ArrayRef<TensorArg> tensors);
|
126 |
+
TORCH_API void checkSameType(
|
127 |
+
CheckedFrom c,
|
128 |
+
const TensorArg& t1,
|
129 |
+
const TensorArg& t2);
|
130 |
+
TORCH_API void checkAllSameType(CheckedFrom c, ArrayRef<TensorArg> tensors);
|
131 |
+
TORCH_API void checkSameSize(
|
132 |
+
CheckedFrom c,
|
133 |
+
const TensorArg& t1,
|
134 |
+
const TensorArg& t2);
|
135 |
+
TORCH_API void checkAllSameSize(CheckedFrom c, ArrayRef<TensorArg> tensors);
|
136 |
+
TORCH_API void checkDefined(CheckedFrom c, const TensorArg& t);
|
137 |
+
TORCH_API void checkAllDefined(CheckedFrom c, at::ArrayRef<TensorArg> t);
|
138 |
+
|
139 |
+
// FixMe: does TensorArg slow things down?
|
140 |
+
TORCH_API void checkBackend(
|
141 |
+
CheckedFrom c,
|
142 |
+
at::ArrayRef<Tensor> t,
|
143 |
+
at::Backend backend);
|
144 |
+
|
145 |
+
TORCH_API void checkDeviceType(
|
146 |
+
CheckedFrom c,
|
147 |
+
at::ArrayRef<Tensor> tensors,
|
148 |
+
at::DeviceType device_type);
|
149 |
+
|
150 |
+
TORCH_API void checkLayout(CheckedFrom c, const Tensor& t, Layout layout);
|
151 |
+
|
152 |
+
TORCH_API void checkLayout(
|
153 |
+
CheckedFrom c,
|
154 |
+
at::ArrayRef<Tensor> tensors,
|
155 |
+
at::Layout layout);
|
156 |
+
|
157 |
+
// Methods for getting data_ptr if tensor is defined
|
158 |
+
TORCH_API void* maybe_data_ptr(const Tensor& tensor);
|
159 |
+
TORCH_API void* maybe_data_ptr(const TensorArg& tensor);
|
160 |
+
|
161 |
+
TORCH_API void check_dim_size(
|
162 |
+
const Tensor& tensor,
|
163 |
+
int64_t dim,
|
164 |
+
int64_t dim_size,
|
165 |
+
int64_t size);
|
166 |
+
|
167 |
+
namespace detail {
|
168 |
+
TORCH_API std::vector<int64_t> defaultStrides(IntArrayRef sizes);
|
169 |
+
|
170 |
+
TORCH_API c10::optional<std::vector<int64_t>> computeStride(
|
171 |
+
IntArrayRef oldshape,
|
172 |
+
IntArrayRef oldstride,
|
173 |
+
IntArrayRef newshape);
|
174 |
+
|
175 |
+
TORCH_API c10::optional<SymDimVector> computeStride(
|
176 |
+
c10::SymIntArrayRef oldshape,
|
177 |
+
c10::SymIntArrayRef oldstride,
|
178 |
+
c10::SymIntArrayRef newshape);
|
179 |
+
|
180 |
+
TORCH_API c10::optional<DimVector> computeStride(
|
181 |
+
IntArrayRef oldshape,
|
182 |
+
IntArrayRef oldstride,
|
183 |
+
const DimVector& newshape);
|
184 |
+
|
185 |
+
} // namespace detail
|
186 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/ThreadLocalState.h
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <stack>
|
4 |
+
|
5 |
+
#include <c10/core/InferenceMode.h>
|
6 |
+
#include <c10/core/impl/LocalDispatchKeySet.h>
|
7 |
+
#include <c10/util/Exception.h>
|
8 |
+
#include <c10/util/ThreadLocalDebugInfo.h>
|
9 |
+
|
10 |
+
#include <ATen/FuncTorchTLS.h>
|
11 |
+
#include <ATen/PythonTorchFunctionTLS.h>
|
12 |
+
#include <ATen/SavedTensorHooks.h>
|
13 |
+
#include <ATen/ThreadLocalPythonObjects.h>
|
14 |
+
#include <ATen/record_function.h>
|
15 |
+
#include <c10/core/impl/PythonDispatcherTLS.h>
|
16 |
+
#include <c10/core/impl/TorchDispatchModeTLS.h>
|
17 |
+
|
18 |
+
namespace at {
|
19 |
+
|
20 |
+
// Thread local state contains values that are preserved across
|
21 |
+
// thread boundaries (e.g. at::launch/JIT fork, autograd).
|
22 |
+
// Note at::parallel_for doesn't preserve TLS across thread boundaries.
|
23 |
+
class TORCH_API ThreadLocalState {
|
24 |
+
public:
|
25 |
+
// Saves the thread local variables' values and
|
26 |
+
// returns them as a ThreadLocalState
|
27 |
+
ThreadLocalState();
|
28 |
+
|
29 |
+
// set_grad_mode - force the value of the grad mode TLS in
|
30 |
+
// the current state object. This is used for example in the
|
31 |
+
// autograd engine.
|
32 |
+
void set_grad_mode(bool enabled);
|
33 |
+
|
34 |
+
// set_multithreading_enabled - force the value of the multithreadinmaximum
|
35 |
+
// threads TLS in
|
36 |
+
// the current state object. This is used for example in the
|
37 |
+
// autograd engine.
|
38 |
+
void set_multithreading_enabled(bool enabled);
|
39 |
+
|
40 |
+
// Sets thread local variables in the current thread,
|
41 |
+
// according to the thread boundary specified
|
42 |
+
static void setThreadLocalState(const ThreadLocalState& state);
|
43 |
+
|
44 |
+
private:
|
45 |
+
c10::impl::LocalDispatchKeySet dispatch_key_;
|
46 |
+
|
47 |
+
// ThreadLocalDebugInfo does not change after being created
|
48 |
+
// with DebugInfoGuard
|
49 |
+
std::shared_ptr<c10::ThreadLocalDebugInfo> debug_info_;
|
50 |
+
|
51 |
+
// RecordFunction TLS
|
52 |
+
RecordFunctionTLS rf_tls_;
|
53 |
+
|
54 |
+
// TLS for out-of-tree functorch
|
55 |
+
// See NOTE [functorch TLS in pytorch/pytorch] for why this needs to be a
|
56 |
+
// pointer (spoiler alert: it's due to the indirection)
|
57 |
+
// This needs to be a shared_ptr instead of a unique_ptr because
|
58 |
+
// ThreadLocalState is copy-able and does indeed get copied. Maybe we can
|
59 |
+
// consider adding an explicit copy constructor for ThreadLocalState in the
|
60 |
+
// future but I didn't want to add one just for this.
|
61 |
+
std::shared_ptr<const functorch::FuncTorchTLSBase> functorch_tls_;
|
62 |
+
|
63 |
+
// TLS for AutogradModes
|
64 |
+
AutogradState autograd_tls_;
|
65 |
+
|
66 |
+
// TLS for enable_torch_dispatch_mode
|
67 |
+
c10::impl::TorchDispatchModeTLS torch_dispatch_mode_state_;
|
68 |
+
|
69 |
+
// TLS for enable_python_dispatcher
|
70 |
+
c10::impl::PyInterpreter* python_dispatcher_state_;
|
71 |
+
|
72 |
+
// TLS for __torch_function__ (mode and disable_torch_function)
|
73 |
+
at::impl::PythonTorchFunctionTLS python_torch_function_state_;
|
74 |
+
|
75 |
+
// TLS for saved tensors default hooks
|
76 |
+
at::impl::SavedTensorDefaultHooksTLS saved_tensors_default_hooks_state_;
|
77 |
+
|
78 |
+
bool functionalization_reapply_views_state_;
|
79 |
+
|
80 |
+
// TLS for arbitrary python objects that is registered via hooks
|
81 |
+
at::impl::ThreadLocalPythonObjects saved_objects_;
|
82 |
+
|
83 |
+
friend class ThreadLocalStateGuard;
|
84 |
+
};
|
85 |
+
|
86 |
+
// Guard to set and reset the thread local state
|
87 |
+
class TORCH_API ThreadLocalStateGuard {
|
88 |
+
public:
|
89 |
+
explicit ThreadLocalStateGuard(const ThreadLocalState& state)
|
90 |
+
: prev_state_(ThreadLocalState()) {
|
91 |
+
// set the given state across the thread boundary
|
92 |
+
ThreadLocalState::setThreadLocalState(state);
|
93 |
+
}
|
94 |
+
|
95 |
+
~ThreadLocalStateGuard() {
|
96 |
+
// restore previously set variables
|
97 |
+
ThreadLocalState::setThreadLocalState(prev_state_);
|
98 |
+
}
|
99 |
+
|
100 |
+
private:
|
101 |
+
const ThreadLocalState prev_state_;
|
102 |
+
};
|
103 |
+
|
104 |
+
template <typename T>
|
105 |
+
auto wrapPropagateTLSState(T callback) {
|
106 |
+
return [tls_state = ThreadLocalState(),
|
107 |
+
callback = std::move(callback)](auto&&... args) {
|
108 |
+
ThreadLocalStateGuard g(tls_state);
|
109 |
+
// Propagate value returned by callback().
|
110 |
+
return callback(std::forward<decltype(args)>(args)...);
|
111 |
+
};
|
112 |
+
}
|
113 |
+
|
114 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/TypeDefault.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Dimname.h>
|
4 |
+
#include <c10/core/MemoryFormat.h>
|
5 |
+
#include <c10/core/QScheme.h>
|
6 |
+
#include <c10/core/Scalar.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/macros/Export.h>
|
9 |
+
#include <c10/util/ArrayRef.h>
|
10 |
+
#include <c10/util/intrusive_ptr.h>
|
11 |
+
|
12 |
+
namespace c10 {
|
13 |
+
struct Storage;
|
14 |
+
}
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
class Tensor;
|
19 |
+
using TensorList = ArrayRef<Tensor>;
|
20 |
+
|
21 |
+
class Context;
|
22 |
+
struct Generator;
|
23 |
+
|
24 |
+
struct Quantizer;
|
25 |
+
// This is temporary typedef to enable Quantizer in aten native function API
|
26 |
+
// we'll remove them when we are actually exposing Quantizer class
|
27 |
+
// to frontend
|
28 |
+
using ConstQuantizerPtr = const c10::intrusive_ptr<Quantizer>&;
|
29 |
+
|
30 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/autocast_mode.h
ADDED
@@ -0,0 +1,647 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/NativeFunctions.h>
|
5 |
+
#include <ATen/Operators.h>
|
6 |
+
#include <torch/library.h>
|
7 |
+
|
8 |
+
#include <c10/core/impl/LocalDispatchKeySet.h>
|
9 |
+
#include <c10/util/intrusive_ptr.h>
|
10 |
+
|
11 |
+
namespace at::autocast {
|
12 |
+
|
13 |
+
TORCH_API bool is_enabled();
|
14 |
+
TORCH_API void set_enabled(bool enabled);
|
15 |
+
TORCH_API void clear_cache();
|
16 |
+
TORCH_API int increment_nesting();
|
17 |
+
TORCH_API int decrement_nesting();
|
18 |
+
TORCH_API bool is_cpu_enabled();
|
19 |
+
TORCH_API void set_cpu_enabled(bool enabled);
|
20 |
+
TORCH_API at::ScalarType get_autocast_gpu_dtype();
|
21 |
+
TORCH_API at::ScalarType get_autocast_cpu_dtype();
|
22 |
+
TORCH_API void set_autocast_gpu_dtype(at::ScalarType dtype);
|
23 |
+
TORCH_API void set_autocast_cpu_dtype(at::ScalarType dtype);
|
24 |
+
TORCH_API bool is_xpu_enabled();
|
25 |
+
TORCH_API void set_xpu_enabled(bool enabled);
|
26 |
+
TORCH_API at::ScalarType get_autocast_xpu_dtype();
|
27 |
+
TORCH_API void set_autocast_xpu_dtype(at::ScalarType dtype);
|
28 |
+
TORCH_API bool is_ipu_enabled();
|
29 |
+
TORCH_API void set_ipu_enabled(bool enabled);
|
30 |
+
TORCH_API at::ScalarType get_autocast_ipu_dtype();
|
31 |
+
TORCH_API void set_autocast_ipu_dtype(at::ScalarType dtype);
|
32 |
+
TORCH_API bool is_hpu_enabled();
|
33 |
+
TORCH_API void set_hpu_enabled(bool enabled);
|
34 |
+
TORCH_API at::ScalarType get_autocast_hpu_dtype();
|
35 |
+
TORCH_API void set_autocast_hpu_dtype(at::ScalarType dtype);
|
36 |
+
TORCH_API bool is_xla_enabled();
|
37 |
+
TORCH_API void set_xla_enabled(bool enabled);
|
38 |
+
TORCH_API at::ScalarType get_autocast_xla_dtype();
|
39 |
+
TORCH_API void set_autocast_xla_dtype(at::ScalarType dtype);
|
40 |
+
TORCH_API bool is_privateuseone_enabled();
|
41 |
+
TORCH_API void set_privateuseone_enabled(bool enabled);
|
42 |
+
TORCH_API at::ScalarType get_autocast_privateuseone_dtype();
|
43 |
+
TORCH_API void set_autocast_privateuseone_dtype(at::ScalarType dtype);
|
44 |
+
TORCH_API bool is_autocast_cache_enabled();
|
45 |
+
TORCH_API void set_autocast_cache_enabled(bool enabled);
|
46 |
+
|
47 |
+
namespace {
|
48 |
+
inline bool is_autocast_eligible(
|
49 |
+
const Tensor& tensor,
|
50 |
+
c10::DeviceType device_type) {
|
51 |
+
switch (device_type) {
|
52 |
+
case c10::DeviceType::CUDA:
|
53 |
+
return (tensor.is_cuda() || tensor.is_xla()) &&
|
54 |
+
tensor.is_floating_point();
|
55 |
+
case c10::DeviceType::CPU:
|
56 |
+
return (tensor.is_cpu() || tensor.is_mkldnn()) &&
|
57 |
+
tensor.is_floating_point();
|
58 |
+
case c10::DeviceType::XPU:
|
59 |
+
return tensor.is_xpu() && tensor.is_floating_point();
|
60 |
+
case c10::DeviceType::IPU:
|
61 |
+
return tensor.is_ipu() && tensor.is_floating_point();
|
62 |
+
case c10::DeviceType::HPU:
|
63 |
+
return tensor.is_hpu() && tensor.is_floating_point();
|
64 |
+
case c10::DeviceType::XLA:
|
65 |
+
return tensor.is_xla() && tensor.is_floating_point();
|
66 |
+
case c10::DeviceType::PrivateUse1:
|
67 |
+
return tensor.is_privateuseone() && tensor.is_floating_point();
|
68 |
+
default:
|
69 |
+
return false;
|
70 |
+
}
|
71 |
+
}
|
72 |
+
} // namespace
|
73 |
+
|
74 |
+
inline DispatchKey get_autocast_dispatch_key_from_device_type(
|
75 |
+
c10::DeviceType device_type) {
|
76 |
+
switch (device_type) {
|
77 |
+
case c10::DeviceType::CUDA:
|
78 |
+
return DispatchKey::Autocast;
|
79 |
+
case c10::DeviceType::CPU:
|
80 |
+
return DispatchKey::AutocastCPU;
|
81 |
+
case c10::DeviceType::XPU:
|
82 |
+
return DispatchKey::AutocastXPU;
|
83 |
+
case c10::DeviceType::IPU:
|
84 |
+
return DispatchKey::AutocastIPU;
|
85 |
+
case c10::DeviceType::HPU:
|
86 |
+
return DispatchKey::AutocastHPU;
|
87 |
+
case c10::DeviceType::XLA:
|
88 |
+
return DispatchKey::AutocastXLA;
|
89 |
+
case c10::DeviceType::PrivateUse1:
|
90 |
+
return DispatchKey::AutocastPrivateUse1;
|
91 |
+
default:
|
92 |
+
throw std::runtime_error(
|
93 |
+
"unknown device type for autocast in get_autocast_dispatch_key_from_device_type");
|
94 |
+
}
|
95 |
+
}
|
96 |
+
|
97 |
+
inline at::ScalarType get_lower_precision_fp_from_device_type(
|
98 |
+
c10::DeviceType device_type) {
|
99 |
+
switch (device_type) {
|
100 |
+
case c10::DeviceType::CUDA:
|
101 |
+
return get_autocast_gpu_dtype();
|
102 |
+
case c10::DeviceType::CPU:
|
103 |
+
return get_autocast_cpu_dtype();
|
104 |
+
case c10::DeviceType::XPU:
|
105 |
+
return get_autocast_xpu_dtype();
|
106 |
+
case c10::DeviceType::IPU:
|
107 |
+
return get_autocast_ipu_dtype();
|
108 |
+
case c10::DeviceType::HPU:
|
109 |
+
return get_autocast_hpu_dtype();
|
110 |
+
case c10::DeviceType::XLA:
|
111 |
+
return get_autocast_xla_dtype();
|
112 |
+
case c10::DeviceType::PrivateUse1:
|
113 |
+
return get_autocast_privateuseone_dtype();
|
114 |
+
default:
|
115 |
+
throw std::runtime_error(
|
116 |
+
"unknown device type for autocast in get_lower_precision_fp_from_device_type");
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
/********************************************************************
|
121 |
+
Logic to extract the promote type from any Tensor or TensorList args.
|
122 |
+
********************************************************************/
|
123 |
+
|
124 |
+
// Overload to catch Tensor args.
|
125 |
+
// If nextArg is floating-point, compare its scalar_type with our
|
126 |
+
// current best guess for the promote type, and update if necessary.
|
127 |
+
inline at::ScalarType prioritize(
|
128 |
+
at::ScalarType current,
|
129 |
+
const Tensor& nextArg,
|
130 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
131 |
+
if (current == at::kDouble) {
|
132 |
+
AT_ERROR("promote type is double in at::autocast::prioritize");
|
133 |
+
return current;
|
134 |
+
}
|
135 |
+
at::ScalarType lower_precision_fp =
|
136 |
+
get_lower_precision_fp_from_device_type(device_type);
|
137 |
+
if (is_autocast_eligible(nextArg, device_type)) {
|
138 |
+
auto next = nextArg.scalar_type();
|
139 |
+
if (next == at::kDouble) {
|
140 |
+
return current; // ignores double tensors
|
141 |
+
} else if (current == at::kFloat || next == at::kFloat) {
|
142 |
+
return at::kFloat; // prioritizes float over lower_precision_fp
|
143 |
+
} else if (current == lower_precision_fp && next == lower_precision_fp) {
|
144 |
+
return lower_precision_fp;
|
145 |
+
} else {
|
146 |
+
AT_ERROR("Unexpected floating ScalarType in at::autocast::prioritize");
|
147 |
+
return current;
|
148 |
+
}
|
149 |
+
} else {
|
150 |
+
return current;
|
151 |
+
}
|
152 |
+
}
|
153 |
+
|
154 |
+
// Overload to catch TensorList args (for e.g. cat, stack).
|
155 |
+
// Reuses the overload above to process each Tensor in the list.
|
156 |
+
inline at::ScalarType prioritize(
|
157 |
+
at::ScalarType current,
|
158 |
+
const TensorList& list,
|
159 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
160 |
+
for (const auto& tensor : list) {
|
161 |
+
current = prioritize(current, tensor, device_type);
|
162 |
+
}
|
163 |
+
return current;
|
164 |
+
}
|
165 |
+
|
166 |
+
inline at::ScalarType prioritize(
|
167 |
+
at::ScalarType current,
|
168 |
+
const ITensorListRef& list,
|
169 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
170 |
+
for (const auto& tensor : list) {
|
171 |
+
current = prioritize(current, tensor, device_type);
|
172 |
+
}
|
173 |
+
return current;
|
174 |
+
}
|
175 |
+
|
176 |
+
// Template to catch non-Tensor args (no-op that returns current best guess)
|
177 |
+
template <typename T>
|
178 |
+
inline at::ScalarType prioritize(
|
179 |
+
at::ScalarType current,
|
180 |
+
T nextArg,
|
181 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
182 |
+
return current;
|
183 |
+
}
|
184 |
+
|
185 |
+
// Overload for the tail case.
|
186 |
+
inline at::ScalarType promote_type(
|
187 |
+
at::ScalarType current,
|
188 |
+
c10::DeviceType device_type) {
|
189 |
+
return current;
|
190 |
+
}
|
191 |
+
|
192 |
+
// Unpack args and determine if incoming lower_precision_fp tensors need to be
|
193 |
+
// promoted to float32. Non-Tensor arguments are ignored.
|
194 |
+
template <typename Arg0, typename... Args>
|
195 |
+
inline at::ScalarType promote_type(
|
196 |
+
at::ScalarType current,
|
197 |
+
c10::DeviceType device_type,
|
198 |
+
Arg0 arg0,
|
199 |
+
Args... args) {
|
200 |
+
auto new_current = prioritize(current, arg0, device_type);
|
201 |
+
return promote_type(new_current, device_type, args...);
|
202 |
+
}
|
203 |
+
|
204 |
+
/****************************************************
|
205 |
+
Logic to apply cached casting to any Tensor argument.
|
206 |
+
****************************************************/
|
207 |
+
inline bool is_eligible(
|
208 |
+
const Tensor& arg,
|
209 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
210 |
+
return (
|
211 |
+
arg.defined() && is_autocast_eligible(arg, device_type) &&
|
212 |
+
(arg.scalar_type() != at::kDouble));
|
213 |
+
}
|
214 |
+
|
215 |
+
// Overload to catch Tensor args
|
216 |
+
TORCH_API Tensor cached_cast(
|
217 |
+
at::ScalarType to_type,
|
218 |
+
const Tensor& arg,
|
219 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA);
|
220 |
+
|
221 |
+
// Overload to process optional<Tensor>
|
222 |
+
inline c10::optional<Tensor> cached_cast(
|
223 |
+
at::ScalarType to_type,
|
224 |
+
const c10::optional<Tensor>& arg,
|
225 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
226 |
+
if (arg.has_value()) {
|
227 |
+
return cached_cast(to_type, *arg, device_type);
|
228 |
+
} else {
|
229 |
+
return c10::nullopt;
|
230 |
+
}
|
231 |
+
}
|
232 |
+
|
233 |
+
// Overload to process TensorLists
|
234 |
+
inline std::vector<Tensor> cached_cast(
|
235 |
+
at::ScalarType to_type,
|
236 |
+
const TensorList& arg,
|
237 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
238 |
+
std::vector<Tensor> vec;
|
239 |
+
vec.reserve(arg.size());
|
240 |
+
for (const auto& t : arg) {
|
241 |
+
vec.emplace_back(cached_cast(to_type, t, device_type));
|
242 |
+
}
|
243 |
+
return vec;
|
244 |
+
}
|
245 |
+
|
246 |
+
inline std::vector<Tensor> cached_cast(
|
247 |
+
at::ScalarType to_type,
|
248 |
+
const ITensorListRef& arg,
|
249 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
250 |
+
std::vector<Tensor> vec;
|
251 |
+
vec.reserve(arg.size());
|
252 |
+
for (const auto& t : arg) {
|
253 |
+
vec.emplace_back(cached_cast(to_type, t, device_type));
|
254 |
+
}
|
255 |
+
return vec;
|
256 |
+
}
|
257 |
+
|
258 |
+
// Template to catch non-Tensor args.
|
259 |
+
template <typename T>
|
260 |
+
inline T cached_cast(
|
261 |
+
at::ScalarType to_type,
|
262 |
+
T arg,
|
263 |
+
c10::DeviceType device_type = c10::DeviceType::CUDA) {
|
264 |
+
return arg;
|
265 |
+
}
|
266 |
+
|
267 |
+
/*******************************************************
|
268 |
+
Logic to flip an output dtype flag.
|
269 |
+
Keep it simple for now by assuming only one such flag is
|
270 |
+
present in the argument list. If I ever need a function
|
271 |
+
with more than flag I'll figure out something else.
|
272 |
+
The policy is:
|
273 |
+
If the user has explicity specified a dtype, respect it.
|
274 |
+
Otherwise, set it to the autocast type.
|
275 |
+
********************************************************/
|
276 |
+
|
277 |
+
// Overload to catch dtype flags
|
278 |
+
c10::optional<ScalarType> inline set_opt_dtype(
|
279 |
+
at::ScalarType to_type,
|
280 |
+
const c10::optional<ScalarType>& dtype) {
|
281 |
+
return dtype.has_value() ? dtype : to_type;
|
282 |
+
}
|
283 |
+
|
284 |
+
// Template to catch other args
|
285 |
+
template <typename T>
|
286 |
+
inline T set_opt_dtype(at::ScalarType to_type, T arg) {
|
287 |
+
return arg;
|
288 |
+
}
|
289 |
+
|
290 |
+
template <typename... Args>
|
291 |
+
inline bool firstarg_is_eligible(
|
292 |
+
c10::DeviceType device_type,
|
293 |
+
const Tensor& arg,
|
294 |
+
Args... args) {
|
295 |
+
return is_eligible(arg, device_type);
|
296 |
+
}
|
297 |
+
|
298 |
+
template <typename... Args>
|
299 |
+
inline at::ScalarType type_from_firstarg(
|
300 |
+
c10::DeviceType device_type,
|
301 |
+
at::ScalarType to_type,
|
302 |
+
const Tensor& arg,
|
303 |
+
Args... args) {
|
304 |
+
return (is_eligible(arg, device_type) ? to_type : arg.scalar_type());
|
305 |
+
}
|
306 |
+
|
307 |
+
// Policies correspond to op categories that need code-divergent handling.
|
308 |
+
// Wrapper templates below are specialized based on a policy template parameter.
|
309 |
+
enum class CastPolicy : uint8_t {
|
310 |
+
lower_precision_fp = 0, // Cast all inputs to lower_precision_fp before
|
311 |
+
// running the op. Currently, lower_precision_fp is
|
312 |
+
// fp16 for AutocastCUDA, and is defined by user
|
313 |
+
// (default bf16) for AutocastCPU or other device.
|
314 |
+
fp32, // Cast all inputs to at::kFloat before running the op.
|
315 |
+
fp32_set_opt_dtype, // Treats functions (like softmax) that
|
316 |
+
// 1. we'd like to run in fp32 and
|
317 |
+
// 2. have a c10::optional<ScalarType> arg that controls
|
318 |
+
// the output type.
|
319 |
+
// fp32_set_opt_dtype wrappers' policy is: if the output
|
320 |
+
// type is already set, don't touch it, otherwise, set
|
321 |
+
// it to at::kFloat.
|
322 |
+
fp32_append_dtype, // Treats functions (like norm) that
|
323 |
+
// 1. we'd like to run in fp32 and
|
324 |
+
// 2. have some overloads that accept an output type and
|
325 |
+
// other overloads that don't.
|
326 |
+
// fp32_append_dtype wrappers wrap the overloads that don't
|
327 |
+
// have an output dtype.
|
328 |
+
// The wrapper policy is: append at::kFloat to the args,
|
329 |
+
// and redispatch to the type-aware overload.
|
330 |
+
promote, // Run in the widest dtype among several args.
|
331 |
+
};
|
332 |
+
|
333 |
+
/********************************************************************************************************
|
334 |
+
Templates to provide wrapper functions
|
335 |
+
|
336 |
+
I'm copying the pattern used in core/boxing/impl/WrapFunctionIntoFunctor.h to
|
337 |
+
extract args and return type. (see also
|
338 |
+
https://stackoverflow.com/questions/46533698/how-to-deduce-argument-list-from-function-pointer)
|
339 |
+
|
340 |
+
This strategy uses an exterior "WrapFunction" that extracts arguments on behalf
|
341 |
+
of (in my case several specializations of) an interior "WrapFunction_".
|
342 |
+
Interior WrapFunction_ specializations are defined for each CastPolicy.
|
343 |
+
********************************************************************************************************/
|
344 |
+
|
345 |
+
// Base template for WrapFunction_, which is specialized to contain a "call"
|
346 |
+
// method each CastPolicy
|
347 |
+
template <
|
348 |
+
CastPolicy policy,
|
349 |
+
c10::DeviceType device_type,
|
350 |
+
class Redispatch,
|
351 |
+
Redispatch* F,
|
352 |
+
class Ret,
|
353 |
+
class ArgList>
|
354 |
+
struct WrapFunction_ {};
|
355 |
+
|
356 |
+
// CastPolicy::lower_precision_fp General_DeviceType
|
357 |
+
template <
|
358 |
+
c10::DeviceType device_type,
|
359 |
+
class Redispatch,
|
360 |
+
Redispatch* F,
|
361 |
+
class Ret,
|
362 |
+
class... Args>
|
363 |
+
struct WrapFunction_<
|
364 |
+
CastPolicy::lower_precision_fp,
|
365 |
+
device_type,
|
366 |
+
Redispatch,
|
367 |
+
F,
|
368 |
+
Ret,
|
369 |
+
guts::typelist::typelist<Args...>> {
|
370 |
+
static Ret call(Args... args) {
|
371 |
+
c10::impl::ExcludeDispatchKeyGuard no_autocast(
|
372 |
+
get_autocast_dispatch_key_from_device_type(device_type));
|
373 |
+
return (*F)(cached_cast(
|
374 |
+
get_lower_precision_fp_from_device_type(device_type),
|
375 |
+
args,
|
376 |
+
device_type)...);
|
377 |
+
}
|
378 |
+
};
|
379 |
+
|
380 |
+
// CastPolicy::fp32 General_DeviceType
|
381 |
+
template <
|
382 |
+
c10::DeviceType device_type,
|
383 |
+
class Redispatch,
|
384 |
+
Redispatch* F,
|
385 |
+
class Ret,
|
386 |
+
class... Args>
|
387 |
+
struct WrapFunction_<
|
388 |
+
CastPolicy::fp32,
|
389 |
+
device_type,
|
390 |
+
Redispatch,
|
391 |
+
F,
|
392 |
+
Ret,
|
393 |
+
guts::typelist::typelist<Args...>> {
|
394 |
+
static Ret call(Args... args) {
|
395 |
+
c10::impl::ExcludeDispatchKeyGuard no_autocast(
|
396 |
+
get_autocast_dispatch_key_from_device_type(device_type));
|
397 |
+
return (*F)(cached_cast(at::kFloat, args, device_type)...);
|
398 |
+
}
|
399 |
+
};
|
400 |
+
|
401 |
+
// CastPolicy::fp32_set_opt_dtype General_DeviceType
|
402 |
+
template <
|
403 |
+
c10::DeviceType device_type,
|
404 |
+
class Redispatch,
|
405 |
+
Redispatch* F,
|
406 |
+
class Ret,
|
407 |
+
class... Args>
|
408 |
+
struct WrapFunction_<
|
409 |
+
CastPolicy::fp32_set_opt_dtype,
|
410 |
+
device_type,
|
411 |
+
Redispatch,
|
412 |
+
F,
|
413 |
+
Ret,
|
414 |
+
guts::typelist::typelist<Args...>> {
|
415 |
+
static Ret call(Args... args) {
|
416 |
+
c10::impl::ExcludeDispatchKeyGuard no_autocast(
|
417 |
+
get_autocast_dispatch_key_from_device_type(device_type));
|
418 |
+
if (firstarg_is_eligible(device_type, args...)) {
|
419 |
+
return (*F)(set_opt_dtype(at::kFloat, args)...);
|
420 |
+
} else {
|
421 |
+
// If ineligible, calls F with unaltered args. Does not set opt dtype,
|
422 |
+
// because setting opt dtype explicitly may interfere with internal
|
423 |
+
// implicit promotion decisions.
|
424 |
+
return (*F)(args...);
|
425 |
+
}
|
426 |
+
}
|
427 |
+
};
|
428 |
+
|
429 |
+
// CastPolicy::fp32_append_dtype General_DeviceType
|
430 |
+
template <
|
431 |
+
c10::DeviceType device_type,
|
432 |
+
class Redispatch,
|
433 |
+
Redispatch* F,
|
434 |
+
class Ret,
|
435 |
+
class... Args>
|
436 |
+
struct WrapFunction_<
|
437 |
+
CastPolicy::fp32_append_dtype,
|
438 |
+
device_type,
|
439 |
+
Redispatch,
|
440 |
+
F,
|
441 |
+
Ret,
|
442 |
+
guts::typelist::typelist<Args...>> {
|
443 |
+
static Ret call(Args... args) {
|
444 |
+
c10::impl::ExcludeDispatchKeyGuard no_autocast(
|
445 |
+
get_autocast_dispatch_key_from_device_type(device_type));
|
446 |
+
at::ScalarType out_type =
|
447 |
+
type_from_firstarg(device_type, at::kFloat, args...);
|
448 |
+
return (*F)(args..., out_type);
|
449 |
+
}
|
450 |
+
};
|
451 |
+
|
452 |
+
// CastPolicy::promote General_DeviceType
|
453 |
+
template <
|
454 |
+
c10::DeviceType device_type,
|
455 |
+
class Redispatch,
|
456 |
+
Redispatch* F,
|
457 |
+
class Ret,
|
458 |
+
class... Args>
|
459 |
+
struct WrapFunction_<
|
460 |
+
CastPolicy::promote,
|
461 |
+
device_type,
|
462 |
+
Redispatch,
|
463 |
+
F,
|
464 |
+
Ret,
|
465 |
+
guts::typelist::typelist<Args...>> {
|
466 |
+
static Ret call(Args... args) {
|
467 |
+
c10::impl::ExcludeDispatchKeyGuard no_autocast(
|
468 |
+
get_autocast_dispatch_key_from_device_type(device_type));
|
469 |
+
auto to_type = promote_type(
|
470 |
+
get_lower_precision_fp_from_device_type(device_type),
|
471 |
+
device_type,
|
472 |
+
args...);
|
473 |
+
return (*F)(cached_cast(to_type, args, device_type)...);
|
474 |
+
}
|
475 |
+
};
|
476 |
+
|
477 |
+
// Wrapper to infer return_type and parameter_types for WrapFunction_ (imitating
|
478 |
+
// core/boxing/impl/WrapFunctionIntoFunctor.h)
|
479 |
+
template <
|
480 |
+
CastPolicy policy,
|
481 |
+
c10::DeviceType device_type,
|
482 |
+
class Registered, // The signature for which we're registering. The
|
483 |
+
// dispatcher's calling code invokes our registered
|
484 |
+
// functions with arguments matching Registered, so we
|
485 |
+
// register WrapFunction_::call methods with a matching
|
486 |
+
// signature to properly field those arguments.
|
487 |
+
// guts::function_traits below extracts return_type and
|
488 |
+
// parameter_types from Registered, which WrapFunction_
|
489 |
+
// templates above use to declare their call methods.
|
490 |
+
class Redispatch, // The signature for the function we're redispatching to.
|
491 |
+
// In most cases this is the same as Registered, but for
|
492 |
+
// some ops (for example, ops where we append a dtype)
|
493 |
+
// it's useful to redispatch to a function with a
|
494 |
+
// different signature.
|
495 |
+
Redispatch* F> // The actual function we're redispatching to.
|
496 |
+
struct WrapFunction final {
|
497 |
+
using type = WrapFunction_<
|
498 |
+
policy,
|
499 |
+
device_type,
|
500 |
+
Redispatch,
|
501 |
+
F,
|
502 |
+
typename guts::function_traits<Registered>::return_type,
|
503 |
+
typename guts::function_traits<Registered>::parameter_types>;
|
504 |
+
};
|
505 |
+
|
506 |
+
/*****************************************************************************************************************
|
507 |
+
This section performs load-time registration for autocast wrappers.
|
508 |
+
|
509 |
+
It's debatable at what level operations should be patched. We'd like casts to
|
510 |
+
be autograd-exposed and precede autograd history recording, so that for
|
511 |
+
lower_precision_fp ops, input tensors are saved for backward in
|
512 |
+
lower_precision_fp rather than fp32. Saving inputs in lower_precision_fp
|
513 |
+
can significantly reduce a model's memory footprint.
|
514 |
+
|
515 |
+
Option 1 (strawman): Patch only at the level of explicit calls into
|
516 |
+
cudnn/cublas (cudnn_convolution, etc), because those are the code paths that are
|
517 |
+
guaranteed to use Tensor Cores, therefore they're the ones that will benefit
|
518 |
+
most from lower_precision_fp. Potential pitfall: convolutions (and other ops)
|
519 |
+
are wrapped in several layers of at::* calls. If one of those happens to record
|
520 |
+
autograd history, then we've lost the opportunity to save inputs in
|
521 |
+
lower_precision_fp.
|
522 |
+
|
523 |
+
Option 2: Patch the Python-exposed surface of calls, to make 100% sure autograd
|
524 |
+
history recording can't sneak in ahead of autocast. This mirrors Apex most
|
525 |
+
closely.
|
526 |
+
|
527 |
+
I think Option 2 is the right answer for all ops, not just convolutions. Option
|
528 |
+
2 is what I implement here.
|
529 |
+
*****************************************************************************************************************/
|
530 |
+
|
531 |
+
/********************************************************************************************************************
|
532 |
+
Explicit registration for out-of-place ops
|
533 |
+
|
534 |
+
The stuff below could be codegenned. Ed said
|
535 |
+
> you are going to have to write the function definition at some point, I
|
536 |
+
wouldn't try to get clever about it Therefore, for the moment, this is all
|
537 |
+
copy pasted in from VariableTypeEverything.cpp with appropriate substitutions.
|
538 |
+
********************************************************************************************************************/
|
539 |
+
|
540 |
+
} // namespace at::autocast
|
541 |
+
|
542 |
+
#define ADD_NS(RAW_OP) at::RAW_OP
|
543 |
+
|
544 |
+
// Common cases where registration signature matches redispatch signature
|
545 |
+
// (that's why SIGNATURE is repeated in the WrapFunction instantiation)
|
546 |
+
#define KERNEL(DISPATCHKEY, OP, POLICY) \
|
547 |
+
m.impl( \
|
548 |
+
TORCH_SELECTIVE_NAME("aten::" #OP), \
|
549 |
+
&::at::autocast::WrapFunction< \
|
550 |
+
::at::autocast::CastPolicy::POLICY, \
|
551 |
+
DISPATCHKEY, \
|
552 |
+
decltype(ATEN_FN(OP)), \
|
553 |
+
decltype(ATEN_FN(OP)), \
|
554 |
+
&ATEN_FN(OP)>::type::call);
|
555 |
+
|
556 |
+
#define KERNEL2(DISPATCHKEY, OP, OVERLOAD, POLICY) \
|
557 |
+
m.impl( \
|
558 |
+
TORCH_SELECTIVE_NAME("aten::" #OP "." #OVERLOAD), \
|
559 |
+
&::at::autocast::WrapFunction< \
|
560 |
+
::at::autocast::CastPolicy::POLICY, \
|
561 |
+
DISPATCHKEY, \
|
562 |
+
decltype(ATEN_FN2(OP, OVERLOAD)), \
|
563 |
+
decltype(ATEN_FN2(OP, OVERLOAD)), \
|
564 |
+
&ATEN_FN2(OP, OVERLOAD)>::type::call);
|
565 |
+
|
566 |
+
// Less-common but still useful case: redispatching to a function
|
567 |
+
// with a new signature (e.g. appending a dtype)
|
568 |
+
#define KERNEL_DIFFERENT_REDISPATCH_SIGNATURE( \
|
569 |
+
DISPATCHKEY, \
|
570 |
+
REDISPATCH_FUNC, \
|
571 |
+
REGISTER_NAME, \
|
572 |
+
REGISTER_SIGNATURE, \
|
573 |
+
REDISPATCH_SIGNATURE, \
|
574 |
+
POLICY) \
|
575 |
+
m.impl( \
|
576 |
+
TORCH_SELECTIVE_NAME("aten::" REGISTER_NAME), \
|
577 |
+
&::at::autocast::WrapFunction< \
|
578 |
+
::at::autocast::CastPolicy::POLICY, \
|
579 |
+
DISPATCHKEY, \
|
580 |
+
REGISTER_SIGNATURE, \
|
581 |
+
REDISPATCH_SIGNATURE, \
|
582 |
+
&REDISPATCH_FUNC>::type::call);
|
583 |
+
|
584 |
+
// KERNEL_CPU/KERNEL_CPU2/KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_CPU
|
585 |
+
// registration for AutocastCPU
|
586 |
+
#define KERNEL_CPU(OP, POLICY) KERNEL(c10::DeviceType::CPU, OP, POLICY)
|
587 |
+
|
588 |
+
#define KERNEL_CPU2(OP, OVERLOAD, POLICY) \
|
589 |
+
KERNEL2(c10::DeviceType::CPU, OP, OVERLOAD, POLICY)
|
590 |
+
|
591 |
+
#define KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_CPU( \
|
592 |
+
REDISPATCH_FUNC, \
|
593 |
+
REGISTER_NAME, \
|
594 |
+
REGISTER_SIGNATURE, \
|
595 |
+
REDISPATCH_SIGNATURE, \
|
596 |
+
POLICY) \
|
597 |
+
KERNEL_DIFFERENT_REDISPATCH_SIGNATURE( \
|
598 |
+
c10::DeviceType::CPU, \
|
599 |
+
REDISPATCH_FUNC, \
|
600 |
+
REGISTER_NAME, \
|
601 |
+
REGISTER_SIGNATURE, \
|
602 |
+
REDISPATCH_SIGNATURE, \
|
603 |
+
POLICY)
|
604 |
+
|
605 |
+
// KERNEL_CUDA/KERNEL_CUDA2/KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_CUDA
|
606 |
+
// registration for AutocastCUDA
|
607 |
+
#define KERNEL_CUDA(OP, POLICY) KERNEL(c10::DeviceType::CUDA, OP, POLICY)
|
608 |
+
|
609 |
+
#define KERNEL_CUDA2(OP, OVERLOAD, POLICY) \
|
610 |
+
KERNEL2(c10::DeviceType::CUDA, OP, OVERLOAD, POLICY)
|
611 |
+
|
612 |
+
#define KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_CUDA( \
|
613 |
+
REDISPATCH_FUNC, \
|
614 |
+
REGISTER_NAME, \
|
615 |
+
REGISTER_SIGNATURE, \
|
616 |
+
REDISPATCH_SIGNATURE, \
|
617 |
+
POLICY) \
|
618 |
+
KERNEL_DIFFERENT_REDISPATCH_SIGNATURE( \
|
619 |
+
c10::DeviceType::CUDA, \
|
620 |
+
REDISPATCH_FUNC, \
|
621 |
+
REGISTER_NAME, \
|
622 |
+
REGISTER_SIGNATURE, \
|
623 |
+
REDISPATCH_SIGNATURE, \
|
624 |
+
POLICY)
|
625 |
+
|
626 |
+
// KERNEL_PRIVATEUSEONE/KERNEL_PRIVATEUSEONE2/
|
627 |
+
// KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_PRIVATEUSEONE
|
628 |
+
// registration for AutocastPrivateUse1
|
629 |
+
#define KERNEL_PRIVATEUSEONE(OP, POLICY) \
|
630 |
+
KERNEL(c10::DeviceType::PrivateUse1, OP, POLICY)
|
631 |
+
|
632 |
+
#define KERNEL_PRIVATEUSEONE2(OP, OVERLOAD, POLICY) \
|
633 |
+
KERNEL2(c10::DeviceType::PrivateUse1, OP, OVERLOAD, POLICY)
|
634 |
+
|
635 |
+
#define KERNEL_DIFFERENT_REDISPATCH_SIGNATURE_PRIVATEUSEONE( \
|
636 |
+
REDISPATCH_FUNC, \
|
637 |
+
REGISTER_NAME, \
|
638 |
+
REGISTER_SIGNATURE, \
|
639 |
+
REDISPATCH_SIGNATURE, \
|
640 |
+
POLICY) \
|
641 |
+
KERNEL_DIFFERENT_REDISPATCH_SIGNATURE( \
|
642 |
+
c10::DeviceType::PrivateUse1, \
|
643 |
+
REDISPATCH_FUNC, \
|
644 |
+
REGISTER_NAME, \
|
645 |
+
REGISTER_SIGNATURE, \
|
646 |
+
REDISPATCH_SIGNATURE, \
|
647 |
+
POLICY)
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/code_template.h
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
#include <sstream>
|
6 |
+
#include <string>
|
7 |
+
#include <unordered_map>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
namespace jit {
|
12 |
+
|
13 |
+
// A template environment is a mapping from template variable names, e.g.,
|
14 |
+
// identifier (corresponding to $identifier) to their expansions.
|
15 |
+
//
|
16 |
+
// This template environment supports storing strings, numbers and lists
|
17 |
+
// of strings, and can be chained together (so that lookup proceeds in
|
18 |
+
// in the top level environment, and then recurses into a parent
|
19 |
+
// environment if the key is not found.)
|
20 |
+
struct TemplateEnv {
|
21 |
+
TemplateEnv() = default;
|
22 |
+
TemplateEnv(TemplateEnv& parent) : parent(&parent) {}
|
23 |
+
|
24 |
+
using string_list = std::vector<std::string>;
|
25 |
+
|
26 |
+
// Add a string 'v' to the map at key 'k'.
|
27 |
+
void s(const std::string& k, const std::string& v) {
|
28 |
+
strings_[k] = v;
|
29 |
+
lists_.erase(k);
|
30 |
+
}
|
31 |
+
|
32 |
+
// Add a number 'v' to the map at key 'k'
|
33 |
+
template <typename T>
|
34 |
+
void d(const std::string& k, const T& v) {
|
35 |
+
strings_[k] = c10::to_string(v);
|
36 |
+
lists_.erase(k);
|
37 |
+
}
|
38 |
+
|
39 |
+
// Retrieve the string representation of the value stored at 'k' from the map.
|
40 |
+
// Raises an exception if the key is not found.
|
41 |
+
const std::string& s(const std::string& k) const {
|
42 |
+
if (strings_.count(k) == 0) {
|
43 |
+
if (parent) {
|
44 |
+
return parent->s(k);
|
45 |
+
}
|
46 |
+
notFound(k);
|
47 |
+
}
|
48 |
+
return strings_.at(k);
|
49 |
+
}
|
50 |
+
|
51 |
+
// Store a list of strings 'v' in the map at 'k'.
|
52 |
+
void v(const std::string& k, const string_list& v) {
|
53 |
+
lists_[k] = v;
|
54 |
+
strings_.erase(k);
|
55 |
+
}
|
56 |
+
|
57 |
+
// Retrieve a list of strings stored at 'k' from the map.
|
58 |
+
// Raises an exception if the key is not found.
|
59 |
+
const string_list& v(const std::string& k) const {
|
60 |
+
if (lists_.count(k) == 0) {
|
61 |
+
if (parent) {
|
62 |
+
return parent->v(k);
|
63 |
+
}
|
64 |
+
notFound(k);
|
65 |
+
}
|
66 |
+
return lists_.at(k);
|
67 |
+
}
|
68 |
+
|
69 |
+
// Test if a string 'k' is a string (as opposed to a list.)
|
70 |
+
bool keyIsString(const std::string& k) const {
|
71 |
+
if (strings_.count(k) > 0)
|
72 |
+
return true;
|
73 |
+
if (lists_.count(k) > 0)
|
74 |
+
return false;
|
75 |
+
if (parent)
|
76 |
+
return parent->keyIsString(k);
|
77 |
+
notFound(k);
|
78 |
+
}
|
79 |
+
|
80 |
+
private:
|
81 |
+
[[noreturn]] void notFound(const std::string& k) const {
|
82 |
+
std::stringstream ss;
|
83 |
+
ss << "key not found: " << k;
|
84 |
+
throw std::logic_error(ss.str());
|
85 |
+
}
|
86 |
+
|
87 |
+
std::unordered_map<std::string, std::string> strings_;
|
88 |
+
std::unordered_map<std::string, string_list> lists_;
|
89 |
+
TemplateEnv* parent{nullptr};
|
90 |
+
};
|
91 |
+
|
92 |
+
/*
|
93 |
+
# Match $identifier or ${identifier} and replace with the value in env.
|
94 |
+
# If this identifier is at the beginning of whitespace on a line
|
95 |
+
# and its value is a list then it is treated as
|
96 |
+
# block substitution by indenting all lines of all elements.
|
97 |
+
# If the identifier is on a line starting with non-whitespace and a list
|
98 |
+
# then it is comma separated. ${,foo} will insert a comma before the list
|
99 |
+
# if this list is not empty and ${foo,} will insert one after.
|
100 |
+
*/
|
101 |
+
struct CodeTemplate {
|
102 |
+
/* implicit */ CodeTemplate(std::string t) : template_text(std::move(t)) {}
|
103 |
+
|
104 |
+
std::string format(const TemplateEnv& env) const {
|
105 |
+
std::stringstream out;
|
106 |
+
size_t pos = 0;
|
107 |
+
size_t indent = 0;
|
108 |
+
bool all_whitespace = true;
|
109 |
+
while (pos < template_text.size()) {
|
110 |
+
char c = template_text[pos];
|
111 |
+
if (c == '$') {
|
112 |
+
std::stringstream kss;
|
113 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
114 |
+
bool comma_before;
|
115 |
+
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
116 |
+
bool comma_after;
|
117 |
+
size_t new_pos = parseKey(pos, kss, comma_before, comma_after);
|
118 |
+
std::string k = kss.str();
|
119 |
+
bool is_string = env.keyIsString(k);
|
120 |
+
if (all_whitespace) {
|
121 |
+
if (is_string)
|
122 |
+
emitStringWithIndents(out, indent, env.s(k));
|
123 |
+
else
|
124 |
+
emitLinesIndented(out, indent, env.v(k));
|
125 |
+
} else {
|
126 |
+
if (is_string)
|
127 |
+
out << env.s(k);
|
128 |
+
else
|
129 |
+
emitCommaSeparatedList(out, env.v(k), comma_before, comma_after);
|
130 |
+
}
|
131 |
+
all_whitespace = false;
|
132 |
+
pos = new_pos;
|
133 |
+
} else {
|
134 |
+
out << c;
|
135 |
+
if (!isspace(c))
|
136 |
+
all_whitespace = false;
|
137 |
+
indent++;
|
138 |
+
if (c == '\n') {
|
139 |
+
indent = 0;
|
140 |
+
all_whitespace = true;
|
141 |
+
}
|
142 |
+
pos++;
|
143 |
+
}
|
144 |
+
}
|
145 |
+
return out.str();
|
146 |
+
}
|
147 |
+
|
148 |
+
private:
|
149 |
+
using string_list = std::vector<std::string>;
|
150 |
+
char charAt(size_t p) const {
|
151 |
+
if (p >= template_text.size())
|
152 |
+
throw std::logic_error("EOS found in key");
|
153 |
+
return template_text[p];
|
154 |
+
}
|
155 |
+
size_t parseKey(
|
156 |
+
size_t pos,
|
157 |
+
std::ostream& k,
|
158 |
+
bool& comma_before,
|
159 |
+
bool& comma_after) const {
|
160 |
+
comma_before = false;
|
161 |
+
comma_after = false;
|
162 |
+
pos++;
|
163 |
+
if (charAt(pos) == '{') {
|
164 |
+
pos++;
|
165 |
+
if (charAt(pos) == ',') {
|
166 |
+
comma_before = true;
|
167 |
+
pos++;
|
168 |
+
}
|
169 |
+
pos = parseIdent(pos, k);
|
170 |
+
if (charAt(pos) == ',') {
|
171 |
+
comma_after = true;
|
172 |
+
pos++;
|
173 |
+
}
|
174 |
+
if (charAt(pos) != '}')
|
175 |
+
throw std::logic_error("missing terminating '}'");
|
176 |
+
pos++;
|
177 |
+
return pos;
|
178 |
+
} else {
|
179 |
+
return parseIdent(pos, k);
|
180 |
+
}
|
181 |
+
}
|
182 |
+
size_t parseIdent(size_t pos, std::ostream& k) const {
|
183 |
+
while (pos < template_text.size() &&
|
184 |
+
(isalnum(template_text[pos]) || template_text[pos] == '_')) {
|
185 |
+
k << template_text[pos];
|
186 |
+
pos++;
|
187 |
+
}
|
188 |
+
return pos;
|
189 |
+
}
|
190 |
+
void emitCommaSeparatedList(
|
191 |
+
std::ostream& out,
|
192 |
+
const string_list& strings,
|
193 |
+
bool comma_before,
|
194 |
+
bool comma_after) const {
|
195 |
+
if (comma_before && !strings.empty())
|
196 |
+
out << ", ";
|
197 |
+
for (const auto i : c10::irange(strings.size())) {
|
198 |
+
if (i > 0)
|
199 |
+
out << ", ";
|
200 |
+
out << strings[i];
|
201 |
+
}
|
202 |
+
if (comma_after && !strings.empty())
|
203 |
+
out << ", ";
|
204 |
+
}
|
205 |
+
// These indentation functions follow the convention that they never emit
|
206 |
+
// leading or trailing newlines when the input string does not have leading
|
207 |
+
// or trailing newlines. It's the responsibility of the calling function
|
208 |
+
// to indent correctly in the context.
|
209 |
+
void emitIndent(std::ostream& out, size_t indent) const {
|
210 |
+
for (C10_UNUSED const auto i : c10::irange(indent)) {
|
211 |
+
out << " ";
|
212 |
+
}
|
213 |
+
}
|
214 |
+
void emitStringWithIndents(
|
215 |
+
std::ostream& out,
|
216 |
+
size_t indent,
|
217 |
+
const std::string& str) const {
|
218 |
+
for (auto c : str) {
|
219 |
+
out << c;
|
220 |
+
if (c == '\n') {
|
221 |
+
emitIndent(out, indent);
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
225 |
+
void emitLinesIndented(
|
226 |
+
std::stringstream& out,
|
227 |
+
size_t indent,
|
228 |
+
const string_list& strings) const {
|
229 |
+
for (const auto i : c10::irange(strings.size())) {
|
230 |
+
if (i > 0)
|
231 |
+
emitIndent(out, indent);
|
232 |
+
emitStringWithIndents(out, indent, strings[i]);
|
233 |
+
if (i + 1 != strings.size())
|
234 |
+
out << "\n";
|
235 |
+
}
|
236 |
+
}
|
237 |
+
std::string template_text;
|
238 |
+
};
|
239 |
+
|
240 |
+
static inline std::string format(const std::string& fmt, TemplateEnv& env) {
|
241 |
+
return CodeTemplate(fmt).format(env);
|
242 |
+
}
|
243 |
+
|
244 |
+
} // namespace jit
|
245 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpp_custom_type_hack.h
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
2 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
3 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
4 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
5 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
6 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
7 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
8 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
9 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
10 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
11 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
12 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
13 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
14 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
15 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
16 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
17 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
18 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
19 |
+
|
20 |
+
// YOU ARE IN THE WRONG PLACE! TURN BACK NOW!
|
21 |
+
|
22 |
+
// This code was a temporary hack to enable embedding arbitrary C++ structures
|
23 |
+
// into Tensors. THIS IS UNSAFE AND IS NOT SUPPORTED. IF YOU USE THIS CODE,
|
24 |
+
// IT __WILL__ BREAK.
|
25 |
+
|
26 |
+
// This code has been superseded by custom classes:
|
27 |
+
// https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html
|
28 |
+
|
29 |
+
// Please use custom classes and **DO NOT ADD MORE CALLSITES TO THINGS DEFINED
|
30 |
+
// IN THIS FILE**.
|
31 |
+
|
32 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
33 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
34 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
35 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
36 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
37 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
38 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
39 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
40 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
41 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
42 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
43 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
44 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
45 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
46 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
47 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
48 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
49 |
+
// STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP
|
50 |
+
|
51 |
+
#include <ATen/TracerMode.h>
|
52 |
+
#include <ATen/core/Tensor.h>
|
53 |
+
|
54 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
55 |
+
#include <ATen/Functions.h>
|
56 |
+
#else
|
57 |
+
#include <ATen/ops/empty.h>
|
58 |
+
#endif
|
59 |
+
|
60 |
+
namespace at {
|
61 |
+
namespace cpp_custom_type_hack {
|
62 |
+
|
63 |
+
template <typename T>
|
64 |
+
[[deprecated(
|
65 |
+
"Use custom classes instead: "
|
66 |
+
"https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html")]] bool
|
67 |
+
isa(const Tensor& packed) {
|
68 |
+
return (packed.scalar_type() == kByte) &&
|
69 |
+
(packed.storage().data_ptr().get_deleter() ==
|
70 |
+
caffe2::TypeMeta::Make<T>().deleteFn());
|
71 |
+
}
|
72 |
+
|
73 |
+
template <typename T>
|
74 |
+
[[deprecated(
|
75 |
+
"Use custom classes instead: "
|
76 |
+
"https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html")]] T&
|
77 |
+
cast(const Tensor& packed) {
|
78 |
+
TORCH_CHECK(
|
79 |
+
packed.scalar_type() == kByte, "Expected temporary cpp type wrapper");
|
80 |
+
TORCH_CHECK(
|
81 |
+
packed.storage().data_ptr().get_deleter() ==
|
82 |
+
caffe2::TypeMeta::Make<T>().deleteFn(),
|
83 |
+
"Expected temporary cpp type wrapper of type ",
|
84 |
+
caffe2::TypeMeta::TypeName<T>());
|
85 |
+
return *reinterpret_cast<T*>(packed.storage().data_ptr().get());
|
86 |
+
}
|
87 |
+
|
88 |
+
template <typename T>
|
89 |
+
[[deprecated(
|
90 |
+
"Use custom classes instead: "
|
91 |
+
"https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html")]] Tensor
|
92 |
+
create(std::unique_ptr<T> ptr, TensorOptions options) {
|
93 |
+
// None of this should trace, so turn off Tracer dispatching
|
94 |
+
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
|
95 |
+
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
96 |
+
|
97 |
+
// We store this instance away in a Tensor and register a deleter function
|
98 |
+
// so that we do not leak memory. On the other side, we pull out the storage's
|
99 |
+
// data_ptr and get the right typed pointer.
|
100 |
+
void* raw_ptr = ptr.release();
|
101 |
+
at::DataPtr at_ptr(
|
102 |
+
raw_ptr, raw_ptr, caffe2::TypeMeta::Make<T>().deleteFn(), at::kCPU);
|
103 |
+
|
104 |
+
// size doesn't really matter, but we can align it to the actual size
|
105 |
+
// returning variables because one likely want to use this hack from python
|
106 |
+
auto retval = at::empty({sizeof(T)}, options.device(kCPU).dtype(at::kByte));
|
107 |
+
retval.storage().set_data_ptr_noswap(std::move(at_ptr));
|
108 |
+
return retval;
|
109 |
+
}
|
110 |
+
|
111 |
+
} // namespace cpp_custom_type_hack
|
112 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/jit_macros.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/cuda/CUDAConfig.h>
|
3 |
+
#include <string>
|
4 |
+
|
5 |
+
// AT_USE_JITERATOR(), controls whether we jit some elementwise kernels
|
6 |
+
#define AT_USE_JITERATOR() true
|
7 |
+
#define jiterator_stringify(...) std::string(#__VA_ARGS__);
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDAAlgorithm.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifdef THRUST_DEVICE_LOWER_BOUND_WORKS
|
2 |
+
#include <thrust/binary_search.h>
|
3 |
+
#include <thrust/device_vector.h>
|
4 |
+
#include <thrust/execution_policy.h>
|
5 |
+
#include <thrust/functional.h>
|
6 |
+
#endif
|
7 |
+
namespace c10 {
|
8 |
+
namespace cuda {
|
9 |
+
#ifdef THRUST_DEVICE_LOWER_BOUND_WORKS
|
10 |
+
template <typename Iter, typename Scalar>
|
11 |
+
__forceinline__ __device__ Iter
|
12 |
+
lower_bound(Iter start, Iter end, Scalar value) {
|
13 |
+
return thrust::lower_bound(thrust::device, start, end, value);
|
14 |
+
}
|
15 |
+
#else
|
16 |
+
// thrust::lower_bound is broken on device, see
|
17 |
+
// https://github.com/NVIDIA/thrust/issues/1734 Implementation inspired by
|
18 |
+
// https://github.com/pytorch/pytorch/blob/805120ab572efef66425c9f595d9c6c464383336/aten/src/ATen/native/cuda/Bucketization.cu#L28
|
19 |
+
template <typename Iter, typename Scalar>
|
20 |
+
__device__ Iter lower_bound(Iter start, Iter end, Scalar value) {
|
21 |
+
while (start < end) {
|
22 |
+
auto mid = start + ((end - start) >> 1);
|
23 |
+
if (*mid < value) {
|
24 |
+
start = mid + 1;
|
25 |
+
} else {
|
26 |
+
end = mid;
|
27 |
+
}
|
28 |
+
}
|
29 |
+
return end;
|
30 |
+
}
|
31 |
+
#endif // THRUST_DEVICE_LOWER_BOUND_WORKS
|
32 |
+
} // namespace cuda
|
33 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDAAllocatorConfig.h
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
4 |
+
#include <c10/cuda/CUDAException.h>
|
5 |
+
#include <c10/cuda/CUDAMacros.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <c10/util/llvmMathExtras.h>
|
8 |
+
#include <cuda_runtime_api.h>
|
9 |
+
|
10 |
+
#include <atomic>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace c10 {
|
14 |
+
namespace cuda {
|
15 |
+
namespace CUDACachingAllocator {
|
16 |
+
|
17 |
+
// Environment config parser
|
18 |
+
class C10_CUDA_API CUDAAllocatorConfig {
|
19 |
+
public:
|
20 |
+
static size_t max_split_size() {
|
21 |
+
return instance().m_max_split_size;
|
22 |
+
}
|
23 |
+
static double garbage_collection_threshold() {
|
24 |
+
return instance().m_garbage_collection_threshold;
|
25 |
+
}
|
26 |
+
|
27 |
+
static bool expandable_segments() {
|
28 |
+
#ifndef PYTORCH_C10_DRIVER_API_SUPPORTED
|
29 |
+
if (instance().m_expandable_segments) {
|
30 |
+
TORCH_WARN_ONCE("expandable_segments not supported on this platform")
|
31 |
+
}
|
32 |
+
return false;
|
33 |
+
#else
|
34 |
+
return instance().m_expandable_segments;
|
35 |
+
#endif
|
36 |
+
}
|
37 |
+
|
38 |
+
static bool release_lock_on_cudamalloc() {
|
39 |
+
return instance().m_release_lock_on_cudamalloc;
|
40 |
+
}
|
41 |
+
|
42 |
+
/** Pinned memory allocator settings */
|
43 |
+
static bool pinned_use_cuda_host_register() {
|
44 |
+
return instance().m_pinned_use_cuda_host_register;
|
45 |
+
}
|
46 |
+
|
47 |
+
static size_t pinned_num_register_threads() {
|
48 |
+
return instance().m_pinned_num_register_threads;
|
49 |
+
}
|
50 |
+
|
51 |
+
static size_t pinned_max_register_threads() {
|
52 |
+
// Based on the benchmark results, we see better allocation performance
|
53 |
+
// with 8 threads. However on future systems, we may need more threads
|
54 |
+
// and limiting this to 128 threads.
|
55 |
+
return 128;
|
56 |
+
}
|
57 |
+
|
58 |
+
// This is used to round-up allocation size to nearest power of 2 divisions.
|
59 |
+
// More description below in function roundup_power2_next_division
|
60 |
+
// As ane example, if we want 4 divisions between 2's power, this can be done
|
61 |
+
// using env variable: PYTORCH_CUDA_ALLOC_CONF=roundup_power2_divisions:4
|
62 |
+
static size_t roundup_power2_divisions(size_t size);
|
63 |
+
|
64 |
+
static CUDAAllocatorConfig& instance() {
|
65 |
+
static CUDAAllocatorConfig* s_instance = ([]() {
|
66 |
+
auto inst = new CUDAAllocatorConfig();
|
67 |
+
const char* env = getenv("PYTORCH_CUDA_ALLOC_CONF");
|
68 |
+
inst->parseArgs(env);
|
69 |
+
return inst;
|
70 |
+
})();
|
71 |
+
return *s_instance;
|
72 |
+
}
|
73 |
+
|
74 |
+
void parseArgs(const char* env);
|
75 |
+
|
76 |
+
private:
|
77 |
+
CUDAAllocatorConfig();
|
78 |
+
|
79 |
+
void lexArgs(const char* env, std::vector<std::string>& config);
|
80 |
+
void consumeToken(
|
81 |
+
const std::vector<std::string>& config,
|
82 |
+
size_t i,
|
83 |
+
const char c);
|
84 |
+
size_t parseMaxSplitSize(const std::vector<std::string>& config, size_t i);
|
85 |
+
size_t parseGarbageCollectionThreshold(
|
86 |
+
const std::vector<std::string>& config,
|
87 |
+
size_t i);
|
88 |
+
size_t parseRoundUpPower2Divisions(
|
89 |
+
const std::vector<std::string>& config,
|
90 |
+
size_t i);
|
91 |
+
size_t parseAllocatorConfig(
|
92 |
+
const std::vector<std::string>& config,
|
93 |
+
size_t i,
|
94 |
+
bool& used_cudaMallocAsync);
|
95 |
+
size_t parsePinnedUseCudaHostRegister(
|
96 |
+
const std::vector<std::string>& config,
|
97 |
+
size_t i);
|
98 |
+
size_t parsePinnedNumRegisterThreads(
|
99 |
+
const std::vector<std::string>& config,
|
100 |
+
size_t i);
|
101 |
+
|
102 |
+
std::atomic<size_t> m_max_split_size;
|
103 |
+
std::vector<size_t> m_roundup_power2_divisions;
|
104 |
+
std::atomic<double> m_garbage_collection_threshold;
|
105 |
+
std::atomic<size_t> m_pinned_num_register_threads;
|
106 |
+
std::atomic<bool> m_expandable_segments;
|
107 |
+
std::atomic<bool> m_release_lock_on_cudamalloc;
|
108 |
+
std::atomic<bool> m_pinned_use_cuda_host_register;
|
109 |
+
};
|
110 |
+
|
111 |
+
// General caching allocator utilities
|
112 |
+
C10_CUDA_API void setAllocatorSettings(const std::string& env);
|
113 |
+
|
114 |
+
} // namespace CUDACachingAllocator
|
115 |
+
} // namespace cuda
|
116 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDACachingAllocator.h
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/core/StorageImpl.h>
|
5 |
+
#include <c10/cuda/CUDAGraphsC10Utils.h>
|
6 |
+
#include <c10/cuda/CUDAMacros.h>
|
7 |
+
#include <c10/cuda/CUDAStream.h>
|
8 |
+
#include <c10/util/ApproximateClock.h>
|
9 |
+
#include <c10/util/Registry.h>
|
10 |
+
|
11 |
+
#include <array>
|
12 |
+
#include <mutex>
|
13 |
+
#include <set>
|
14 |
+
#include <unordered_set>
|
15 |
+
|
16 |
+
namespace c10 {
|
17 |
+
|
18 |
+
// Caching allocator will execute every registered callback if it unable to find
|
19 |
+
// block inside of already allocated area.
|
20 |
+
class C10_CUDA_API FreeMemoryCallback {
|
21 |
+
public:
|
22 |
+
virtual ~FreeMemoryCallback() = default;
|
23 |
+
virtual bool Execute() = 0;
|
24 |
+
};
|
25 |
+
|
26 |
+
C10_DECLARE_REGISTRY(FreeCudaMemoryCallbacksRegistry, FreeMemoryCallback);
|
27 |
+
#define REGISTER_FREE_MEMORY_CALLBACK(name, ...) \
|
28 |
+
C10_REGISTER_CLASS(FreeCudaMemoryCallbacksRegistry, name, __VA_ARGS__);
|
29 |
+
|
30 |
+
namespace cuda {
|
31 |
+
|
32 |
+
// TODO: Turn this into an honest to goodness class. I briefly attempted to do
|
33 |
+
// this, but it was a bit irritating to figure out how to also correctly
|
34 |
+
// apply pimpl pattern so I didn't have to leak any internal implementation
|
35 |
+
// details in the header (CUDACachingAllocator could be made a pimpl, but
|
36 |
+
// you also need to appropriately define a class which is a subclass
|
37 |
+
// of Allocator. Not impossible, but required a bit more surgery than
|
38 |
+
// I wanted to do at the time.)
|
39 |
+
//
|
40 |
+
// Why is this using a namespace rather than old-style THCCachingAllocator_
|
41 |
+
// prefix? Mostly because it made the HIPify rules easier to write; _ is
|
42 |
+
// not counted as a word boundary, so you would otherwise have to list each
|
43 |
+
// of these functions.
|
44 |
+
|
45 |
+
namespace CUDACachingAllocator {
|
46 |
+
|
47 |
+
extern const size_t kLargeBuffer;
|
48 |
+
|
49 |
+
struct Stat {
|
50 |
+
int64_t current = 0;
|
51 |
+
int64_t peak = 0;
|
52 |
+
int64_t allocated = 0;
|
53 |
+
int64_t freed = 0;
|
54 |
+
};
|
55 |
+
|
56 |
+
enum struct StatType : uint64_t {
|
57 |
+
AGGREGATE = 0,
|
58 |
+
SMALL_POOL = 1,
|
59 |
+
LARGE_POOL = 2,
|
60 |
+
NUM_TYPES = 3 // remember to update this whenever a new stat type is added
|
61 |
+
};
|
62 |
+
|
63 |
+
typedef std::array<Stat, static_cast<size_t>(StatType::NUM_TYPES)> StatArray;
|
64 |
+
|
65 |
+
// Struct containing memory allocator summary statistics for a device.
|
66 |
+
struct DeviceStats {
|
67 |
+
// COUNT: allocations requested by client code
|
68 |
+
StatArray allocation;
|
69 |
+
// COUNT: number of allocated segments from cudaMalloc().
|
70 |
+
StatArray segment;
|
71 |
+
// COUNT: number of active memory blocks (allocated or used by stream)
|
72 |
+
StatArray active;
|
73 |
+
// COUNT: number of inactive, split memory blocks (unallocated but can't be
|
74 |
+
// released via cudaFree)
|
75 |
+
StatArray inactive_split;
|
76 |
+
|
77 |
+
// SUM: bytes allocated by this memory alocator
|
78 |
+
StatArray allocated_bytes;
|
79 |
+
// SUM: bytes reserved by this memory allocator (both free and used)
|
80 |
+
StatArray reserved_bytes;
|
81 |
+
// SUM: bytes within active memory blocks
|
82 |
+
StatArray active_bytes;
|
83 |
+
// SUM: bytes within inactive, split memory blocks
|
84 |
+
StatArray inactive_split_bytes;
|
85 |
+
// SUM: bytes requested by client code
|
86 |
+
StatArray requested_bytes;
|
87 |
+
|
88 |
+
// COUNT: total number of failed calls to CUDA malloc necessitating cache
|
89 |
+
// flushes.
|
90 |
+
int64_t num_alloc_retries = 0;
|
91 |
+
|
92 |
+
// COUNT: total number of OOMs (i.e. failed calls to CUDA after cache flush)
|
93 |
+
int64_t num_ooms = 0;
|
94 |
+
|
95 |
+
// COUNT: total number of oversize blocks allocated from pool
|
96 |
+
Stat oversize_allocations;
|
97 |
+
|
98 |
+
// COUNT: total number of oversize blocks requiring malloc
|
99 |
+
Stat oversize_segments;
|
100 |
+
|
101 |
+
// SIZE: maximum block size that is allowed to be split.
|
102 |
+
int64_t max_split_size = 0;
|
103 |
+
};
|
104 |
+
|
105 |
+
typedef std::shared_ptr<GatheredContext> (*CreateContextFn)(void);
|
106 |
+
|
107 |
+
// Struct containing info of an allocation block (i.e. a fractional part of a
|
108 |
+
// cudaMalloc)..
|
109 |
+
struct BlockInfo {
|
110 |
+
int64_t size = 0;
|
111 |
+
int64_t requested_size = 0;
|
112 |
+
int32_t gc_counter = 0;
|
113 |
+
bool allocated = false;
|
114 |
+
bool active = false;
|
115 |
+
std::shared_ptr<GatheredContext>
|
116 |
+
context_when_allocated; // per-watcher context
|
117 |
+
};
|
118 |
+
|
119 |
+
// Struct containing info of a memory segment (i.e. one contiguous cudaMalloc).
|
120 |
+
struct SegmentInfo {
|
121 |
+
int64_t device = 0;
|
122 |
+
int64_t address = 0;
|
123 |
+
int64_t total_size = 0;
|
124 |
+
int64_t requested_size = 0; // unrounded, actually requested size
|
125 |
+
int64_t allocated_size = 0;
|
126 |
+
int64_t active_size = 0;
|
127 |
+
cudaStream_t stream = 0;
|
128 |
+
bool is_large = false;
|
129 |
+
bool is_expandable = false;
|
130 |
+
MempoolId_t owner_private_pool_id = {0, 0};
|
131 |
+
std::vector<BlockInfo> blocks;
|
132 |
+
std::shared_ptr<GatheredContext> context_when_allocated;
|
133 |
+
};
|
134 |
+
|
135 |
+
struct AllocatorState {
|
136 |
+
virtual ~AllocatorState() = default;
|
137 |
+
};
|
138 |
+
|
139 |
+
union trace_time_ {
|
140 |
+
time_t t_;
|
141 |
+
approx_time_t approx_t_;
|
142 |
+
};
|
143 |
+
|
144 |
+
struct TraceEntry {
|
145 |
+
enum Action {
|
146 |
+
ALLOC, // API made to the caching allocator for new memory
|
147 |
+
FREE_REQUESTED, // API call made to the caching allocator to free memory
|
148 |
+
FREE_COMPLETED, // The allocator might have to delay a free because
|
149 |
+
// it is still in use on another stream via record_stream
|
150 |
+
// This event is generated when a free actually completes.
|
151 |
+
SEGMENT_ALLOC, // a call to cudaMalloc to get more memory from the OS
|
152 |
+
SEGMENT_FREE, // a call to cudaFree to return memory to the OS (e.g. to
|
153 |
+
// defragment or empty_caches)
|
154 |
+
SEGMENT_MAP, // a call to cuMemMap (used with expandable_segments)
|
155 |
+
SEGMENT_UNMAP, // unmap part of a segment (used with expandable segments)
|
156 |
+
SNAPSHOT, // a call to snapshot, used to correlate memory snapshots to trace
|
157 |
+
// events
|
158 |
+
OOM // the allocator threw an OutOfMemoryError (addr_ is the amount of free
|
159 |
+
// bytes reported by cuda)
|
160 |
+
};
|
161 |
+
TraceEntry(
|
162 |
+
Action action,
|
163 |
+
int device,
|
164 |
+
int64_t addr,
|
165 |
+
size_t size,
|
166 |
+
cudaStream_t stream,
|
167 |
+
approx_time_t time,
|
168 |
+
std::shared_ptr<GatheredContext> context = nullptr)
|
169 |
+
: action_(action),
|
170 |
+
device_(device),
|
171 |
+
addr_(addr),
|
172 |
+
context_(std::move(context)),
|
173 |
+
stream_(stream),
|
174 |
+
size_(size) {
|
175 |
+
time_.approx_t_ = time;
|
176 |
+
}
|
177 |
+
Action action_;
|
178 |
+
int device_;
|
179 |
+
int64_t addr_; // for OOM, this is the amount of free bytes reported by cuda
|
180 |
+
std::shared_ptr<GatheredContext> context_;
|
181 |
+
cudaStream_t stream_;
|
182 |
+
int64_t size_;
|
183 |
+
trace_time_ time_;
|
184 |
+
};
|
185 |
+
|
186 |
+
struct SnapshotInfo {
|
187 |
+
std::vector<SegmentInfo> segments;
|
188 |
+
std::vector<std::vector<TraceEntry>> device_traces;
|
189 |
+
};
|
190 |
+
|
191 |
+
// returns the pointers freed in the pool
|
192 |
+
// and the pointers allocated. Note: a pointer
|
193 |
+
// may appear in both freed and allocated
|
194 |
+
struct CheckpointDelta {
|
195 |
+
std::vector<void*> ptrs_freed;
|
196 |
+
std::vector<at::DataPtr> dataptrs_allocd;
|
197 |
+
};
|
198 |
+
|
199 |
+
enum struct RecordContext {
|
200 |
+
NEVER = 0,
|
201 |
+
STATE = 1, // only keep stacks for active allocations
|
202 |
+
ALLOC = 2, // additionally keep stacks for allocations in the trace history
|
203 |
+
ALL = 3, // additionally record stacks for when something is freed
|
204 |
+
};
|
205 |
+
|
206 |
+
// Size pretty-printer
|
207 |
+
std::string format_size(uint64_t size);
|
208 |
+
|
209 |
+
using OutOfMemoryObserver = std::function<void(
|
210 |
+
int64_t device,
|
211 |
+
int64_t allocated,
|
212 |
+
int64_t device_total,
|
213 |
+
int64_t device_free)>;
|
214 |
+
|
215 |
+
using AllocatorTraceTracker = std::function<void(const TraceEntry&)>;
|
216 |
+
|
217 |
+
class CUDAAllocator : public Allocator {
|
218 |
+
public:
|
219 |
+
virtual void* raw_alloc(size_t nbytes) = 0;
|
220 |
+
virtual void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) = 0;
|
221 |
+
virtual void raw_delete(void* ptr) = 0;
|
222 |
+
virtual void init(int device_count) = 0;
|
223 |
+
virtual bool initialized() = 0;
|
224 |
+
virtual void setMemoryFraction(double fraction, int device) = 0;
|
225 |
+
virtual void emptyCache() = 0;
|
226 |
+
virtual void cacheInfo(int dev_id, size_t* largestBlock) = 0;
|
227 |
+
virtual void* getBaseAllocation(void* ptr, size_t* size) = 0;
|
228 |
+
virtual void recordStream(const DataPtr&, CUDAStream stream) = 0;
|
229 |
+
virtual DeviceStats getDeviceStats(int device) = 0;
|
230 |
+
virtual void resetAccumulatedStats(int device) = 0;
|
231 |
+
virtual void resetPeakStats(int device) = 0;
|
232 |
+
virtual SnapshotInfo snapshot() = 0;
|
233 |
+
virtual void beginAllocateStreamToPool(
|
234 |
+
int device,
|
235 |
+
cudaStream_t stream,
|
236 |
+
MempoolId_t mempool_id) = 0;
|
237 |
+
virtual void endAllocateStreamToPool(int device, cudaStream_t stream) = 0;
|
238 |
+
virtual void releasePool(int device, MempoolId_t mempool_id) = 0;
|
239 |
+
// returns true if the allocated blocks are equal to expected live allocations
|
240 |
+
virtual bool checkPoolLiveAllocations(
|
241 |
+
int device,
|
242 |
+
MempoolId_t mempool_id,
|
243 |
+
const std::unordered_set<void*>& expected_live_allocations) {
|
244 |
+
TORCH_CHECK(
|
245 |
+
false,
|
246 |
+
name(),
|
247 |
+
" does not yet support checkPoolLiveAllocations. "
|
248 |
+
"If you need it, please file an issue describing your use case.");
|
249 |
+
}
|
250 |
+
virtual std::shared_ptr<void> getIpcDevPtr(std::string handle) = 0;
|
251 |
+
virtual bool isHistoryEnabled() {
|
252 |
+
TORCH_CHECK(
|
253 |
+
false,
|
254 |
+
name(),
|
255 |
+
" does not yet support recordHistory. "
|
256 |
+
"If you need it, please file an issue describing your use case.");
|
257 |
+
}
|
258 |
+
virtual void recordHistory(
|
259 |
+
bool enabled,
|
260 |
+
CreateContextFn context_recorder,
|
261 |
+
size_t alloc_trace_max_entries,
|
262 |
+
RecordContext when) = 0;
|
263 |
+
virtual void attachOutOfMemoryObserver(OutOfMemoryObserver observer) = 0;
|
264 |
+
|
265 |
+
// Attached AllocatorTraceTracker callbacks will be called while the
|
266 |
+
// per-device allocator lock is held. Any additional locks taken from within
|
267 |
+
// the callback must be proven to always have the lock order that never
|
268 |
+
// triggers a deadlock. In particular, Python's GIL may be held when
|
269 |
+
// calling the allocator so it is unsafe to try to acquire the GIL in this
|
270 |
+
// callback.
|
271 |
+
virtual void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) = 0;
|
272 |
+
|
273 |
+
virtual void enablePeerAccess(int dev, int dev_to_access) = 0;
|
274 |
+
|
275 |
+
// memory not allocated from cudaMalloc cannot be copied
|
276 |
+
// across devices using cudaMemcpyAsync if peer to peer access is disabled.
|
277 |
+
// instead it requires cudaMemcpyAsyncPeer
|
278 |
+
// with P2P Enabled, all combinations work
|
279 |
+
// with P2P Disabled:
|
280 |
+
// cudaMalloc cudaMallocAsync/cuMemMap
|
281 |
+
// cudaMemcpyAsyncPeer works works
|
282 |
+
// cudaMemcpyAsync works error
|
283 |
+
|
284 |
+
// This function performs chooses to use the Peer version of
|
285 |
+
// memcpy if required based on where the allocated put dst/src.
|
286 |
+
virtual cudaError_t memcpyAsync(
|
287 |
+
void* dst,
|
288 |
+
int dstDevice,
|
289 |
+
const void* src,
|
290 |
+
int srcDevice,
|
291 |
+
size_t count,
|
292 |
+
cudaStream_t stream,
|
293 |
+
bool p2p_enabled) = 0;
|
294 |
+
virtual std::shared_ptr<AllocatorState> getCheckpointState(
|
295 |
+
int device,
|
296 |
+
MempoolId_t id) = 0;
|
297 |
+
virtual CheckpointDelta setCheckpointPoolState(
|
298 |
+
int device,
|
299 |
+
std::shared_ptr<AllocatorState> pps) = 0;
|
300 |
+
virtual std::string name() = 0;
|
301 |
+
};
|
302 |
+
|
303 |
+
// Allocator object, statically initialized
|
304 |
+
// See BackendInitializer in CUDACachingAllocator.cpp.
|
305 |
+
// Atomic loads on x86 are just normal loads,
|
306 |
+
// (atomic stores are different), so reading this value
|
307 |
+
// is no different than loading a pointer.
|
308 |
+
C10_CUDA_API extern std::atomic<CUDAAllocator*> allocator;
|
309 |
+
|
310 |
+
inline CUDAAllocator* get() {
|
311 |
+
return allocator.load();
|
312 |
+
}
|
313 |
+
|
314 |
+
// Called directly by clients.
|
315 |
+
inline void* raw_alloc(size_t nbytes) {
|
316 |
+
return get()->raw_alloc(nbytes);
|
317 |
+
}
|
318 |
+
|
319 |
+
inline void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) {
|
320 |
+
return get()->raw_alloc_with_stream(nbytes, stream);
|
321 |
+
}
|
322 |
+
|
323 |
+
inline void raw_delete(void* ptr) {
|
324 |
+
return get()->raw_delete(ptr);
|
325 |
+
}
|
326 |
+
|
327 |
+
inline void init(int device_count) {
|
328 |
+
return get()->init(device_count);
|
329 |
+
}
|
330 |
+
|
331 |
+
inline void setMemoryFraction(double fraction, int device) {
|
332 |
+
return get()->setMemoryFraction(fraction, device);
|
333 |
+
}
|
334 |
+
|
335 |
+
inline void emptyCache() {
|
336 |
+
return get()->emptyCache();
|
337 |
+
}
|
338 |
+
|
339 |
+
inline void cacheInfo(int dev_id, size_t* largestBlock) {
|
340 |
+
return get()->cacheInfo(dev_id, largestBlock);
|
341 |
+
}
|
342 |
+
|
343 |
+
inline void* getBaseAllocation(void* ptr, size_t* size) {
|
344 |
+
return get()->getBaseAllocation(ptr, size);
|
345 |
+
}
|
346 |
+
|
347 |
+
inline void recordStream(const DataPtr& dataPtr, CUDAStream stream) {
|
348 |
+
return get()->recordStream(dataPtr, stream);
|
349 |
+
}
|
350 |
+
|
351 |
+
inline DeviceStats getDeviceStats(int device) {
|
352 |
+
return get()->getDeviceStats(device);
|
353 |
+
}
|
354 |
+
|
355 |
+
inline void resetAccumulatedStats(int device) {
|
356 |
+
return get()->resetAccumulatedStats(device);
|
357 |
+
}
|
358 |
+
|
359 |
+
inline void resetPeakStats(int device) {
|
360 |
+
return get()->resetPeakStats(device);
|
361 |
+
}
|
362 |
+
|
363 |
+
inline SnapshotInfo snapshot() {
|
364 |
+
return get()->snapshot();
|
365 |
+
}
|
366 |
+
|
367 |
+
inline std::shared_ptr<AllocatorState> getCheckpointState(
|
368 |
+
int device,
|
369 |
+
MempoolId_t id) {
|
370 |
+
return get()->getCheckpointState(device, id);
|
371 |
+
}
|
372 |
+
|
373 |
+
inline CheckpointDelta setCheckpointPoolState(
|
374 |
+
int device,
|
375 |
+
std::shared_ptr<AllocatorState> pps) {
|
376 |
+
return get()->setCheckpointPoolState(device, pps);
|
377 |
+
}
|
378 |
+
|
379 |
+
// CUDAGraph interactions
|
380 |
+
inline void beginAllocateStreamToPool(
|
381 |
+
int device,
|
382 |
+
cudaStream_t stream,
|
383 |
+
MempoolId_t mempool_id) {
|
384 |
+
return get()->beginAllocateStreamToPool(device, stream, mempool_id);
|
385 |
+
}
|
386 |
+
|
387 |
+
inline void endAllocateStreamToPool(int device, cudaStream_t stream) {
|
388 |
+
return get()->endAllocateStreamToPool(device, stream);
|
389 |
+
}
|
390 |
+
|
391 |
+
inline void recordHistory(
|
392 |
+
bool enabled,
|
393 |
+
CreateContextFn context_recorder,
|
394 |
+
size_t alloc_trace_max_entries,
|
395 |
+
RecordContext when) {
|
396 |
+
return get()->recordHistory(
|
397 |
+
enabled, context_recorder, alloc_trace_max_entries, when);
|
398 |
+
}
|
399 |
+
|
400 |
+
inline bool isHistoryEnabled() {
|
401 |
+
return get()->isHistoryEnabled();
|
402 |
+
}
|
403 |
+
|
404 |
+
inline bool checkPoolLiveAllocations(
|
405 |
+
int device,
|
406 |
+
MempoolId_t mempool_id,
|
407 |
+
const std::unordered_set<void*>& expected_live_allocations) {
|
408 |
+
return get()->checkPoolLiveAllocations(
|
409 |
+
device, mempool_id, expected_live_allocations);
|
410 |
+
}
|
411 |
+
|
412 |
+
inline void attachOutOfMemoryObserver(OutOfMemoryObserver observer) {
|
413 |
+
return get()->attachOutOfMemoryObserver(observer);
|
414 |
+
}
|
415 |
+
|
416 |
+
inline void attachAllocatorTraceTracker(AllocatorTraceTracker tracker) {
|
417 |
+
return get()->attachAllocatorTraceTracker(tracker);
|
418 |
+
}
|
419 |
+
|
420 |
+
inline void releasePool(int device, MempoolId_t mempool_id) {
|
421 |
+
return get()->releasePool(device, mempool_id);
|
422 |
+
}
|
423 |
+
// Not part of CUDA_ALLOCATOR_BACKEND_INTERFACE
|
424 |
+
inline std::shared_ptr<void> getIpcDevPtr(std::string handle) {
|
425 |
+
return get()->getIpcDevPtr(handle);
|
426 |
+
}
|
427 |
+
|
428 |
+
inline std::string name() {
|
429 |
+
return get()->name();
|
430 |
+
}
|
431 |
+
|
432 |
+
inline cudaError_t memcpyAsync(
|
433 |
+
void* dst,
|
434 |
+
int dstDevice,
|
435 |
+
const void* src,
|
436 |
+
int srcDevice,
|
437 |
+
size_t count,
|
438 |
+
cudaStream_t stream,
|
439 |
+
bool p2p_enabled) {
|
440 |
+
return get()->memcpyAsync(
|
441 |
+
dst, dstDevice, src, srcDevice, count, stream, p2p_enabled);
|
442 |
+
}
|
443 |
+
|
444 |
+
inline void enablePeerAccess(int dev, int dev_to_access) {
|
445 |
+
return get()->enablePeerAccess(dev, dev_to_access);
|
446 |
+
}
|
447 |
+
|
448 |
+
} // namespace CUDACachingAllocator
|
449 |
+
} // namespace cuda
|
450 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDADeviceAssertion.h
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/cuda/CUDAException.h>
|
4 |
+
#include <c10/macros/Macros.h>
|
5 |
+
|
6 |
+
namespace c10 {
|
7 |
+
namespace cuda {
|
8 |
+
|
9 |
+
#ifdef TORCH_USE_CUDA_DSA
|
10 |
+
// Copy string from `src` to `dst`
|
11 |
+
static __device__ void dstrcpy(char* dst, const char* src) {
|
12 |
+
int i = 0;
|
13 |
+
// Copy string from source to destination, ensuring that it
|
14 |
+
// isn't longer than `C10_CUDA_DSA_MAX_STR_LEN-1`
|
15 |
+
while (*src != '\0' && i++ < C10_CUDA_DSA_MAX_STR_LEN - 1) {
|
16 |
+
*dst++ = *src++;
|
17 |
+
}
|
18 |
+
*dst = '\0';
|
19 |
+
}
|
20 |
+
|
21 |
+
static __device__ void dsa_add_new_assertion_failure(
|
22 |
+
DeviceAssertionsData* assertions_data,
|
23 |
+
const char* assertion_msg,
|
24 |
+
const char* filename,
|
25 |
+
const char* function_name,
|
26 |
+
const int line_number,
|
27 |
+
const uint32_t caller,
|
28 |
+
const dim3 block_id,
|
29 |
+
const dim3 thread_id) {
|
30 |
+
// `assertions_data` may be nullptr if device-side assertion checking
|
31 |
+
// is disabled at run-time. If it is disabled at compile time this
|
32 |
+
// function will never be called
|
33 |
+
if (!assertions_data) {
|
34 |
+
return;
|
35 |
+
}
|
36 |
+
|
37 |
+
// Atomically increment so other threads can fail at the same time
|
38 |
+
// Note that incrementing this means that the CPU can observe that
|
39 |
+
// a failure has happened and can begin to respond before we've
|
40 |
+
// written information about that failure out to the buffer.
|
41 |
+
const auto nid = atomicAdd(&(assertions_data->assertion_count), 1);
|
42 |
+
|
43 |
+
if (nid >= C10_CUDA_DSA_ASSERTION_COUNT) {
|
44 |
+
// At this point we're ran out of assertion buffer space.
|
45 |
+
// We could print a message about this, but that'd get
|
46 |
+
// spammy if a lot of threads did it, so we just silently
|
47 |
+
// ignore any other assertion failures. In most cases the
|
48 |
+
// failures will all probably be analogous anyway.
|
49 |
+
return;
|
50 |
+
}
|
51 |
+
|
52 |
+
// Write information about the assertion failure to memory.
|
53 |
+
// Note that this occurs only after the `assertion_count`
|
54 |
+
// increment broadcasts that there's been a problem.
|
55 |
+
auto& self = assertions_data->assertions[nid];
|
56 |
+
dstrcpy(self.assertion_msg, assertion_msg);
|
57 |
+
dstrcpy(self.filename, filename);
|
58 |
+
dstrcpy(self.function_name, function_name);
|
59 |
+
self.line_number = line_number;
|
60 |
+
self.caller = caller;
|
61 |
+
self.block_id[0] = block_id.x;
|
62 |
+
self.block_id[1] = block_id.y;
|
63 |
+
self.block_id[2] = block_id.z;
|
64 |
+
self.thread_id[0] = thread_id.x;
|
65 |
+
self.thread_id[1] = thread_id.y;
|
66 |
+
self.thread_id[2] = thread_id.z;
|
67 |
+
}
|
68 |
+
|
69 |
+
// Emulates a kernel assertion. The assertion won't stop the kernel's progress,
|
70 |
+
// so you should assume everything the kernel produces is garbage if there's an
|
71 |
+
// assertion failure.
|
72 |
+
// NOTE: This assumes that `assertions_data` and `assertion_caller_id` are
|
73 |
+
// arguments of the kernel and therefore accessible.
|
74 |
+
#define CUDA_KERNEL_ASSERT2(condition) \
|
75 |
+
do { \
|
76 |
+
if (C10_UNLIKELY(!(condition))) { \
|
77 |
+
/* Has an atomic element so threads can fail at the same time */ \
|
78 |
+
c10::cuda::dsa_add_new_assertion_failure( \
|
79 |
+
assertions_data, \
|
80 |
+
C10_STRINGIZE(condition), \
|
81 |
+
__FILE__, \
|
82 |
+
__FUNCTION__, \
|
83 |
+
__LINE__, \
|
84 |
+
assertion_caller_id, \
|
85 |
+
blockIdx, \
|
86 |
+
threadIdx); \
|
87 |
+
/* Now that the kernel has failed we early exit the kernel, but */ \
|
88 |
+
/* otherwise keep going and rely on the host to check UVM and */ \
|
89 |
+
/* determine we've had a problem */ \
|
90 |
+
return; \
|
91 |
+
} \
|
92 |
+
} while (false)
|
93 |
+
#else
|
94 |
+
#define CUDA_KERNEL_ASSERT2(condition) assert(condition)
|
95 |
+
#endif
|
96 |
+
|
97 |
+
} // namespace cuda
|
98 |
+
} // namespace c10
|
env-llmeval/lib/python3.10/site-packages/torch/include/c10/cuda/CUDADeviceAssertionHost.h
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/cuda/CUDAMacros.h>
|
4 |
+
|
5 |
+
#include <memory>
|
6 |
+
#include <mutex>
|
7 |
+
#include <string>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#ifdef USE_CUDA
|
11 |
+
#define TORCH_USE_CUDA_DSA
|
12 |
+
#endif
|
13 |
+
|
14 |
+
/// Number of assertion failure messages we can store. If this is too small
|
15 |
+
/// threads will fail silently.
|
16 |
+
constexpr int C10_CUDA_DSA_ASSERTION_COUNT = 10;
|
17 |
+
constexpr int C10_CUDA_DSA_MAX_STR_LEN = 512;
|
18 |
+
|
19 |
+
namespace c10 {
|
20 |
+
namespace cuda {
|
21 |
+
|
22 |
+
/// Holds information about any device-side assertions that fail.
|
23 |
+
/// Held in managed memory and access by both the CPU and the GPU.
|
24 |
+
struct DeviceAssertionData {
|
25 |
+
/// Stringification of the assertion
|
26 |
+
char assertion_msg[C10_CUDA_DSA_MAX_STR_LEN];
|
27 |
+
/// File the assertion was in
|
28 |
+
char filename[C10_CUDA_DSA_MAX_STR_LEN];
|
29 |
+
/// Name of the function the assertion was in
|
30 |
+
char function_name[C10_CUDA_DSA_MAX_STR_LEN];
|
31 |
+
/// Line number the assertion was at
|
32 |
+
int line_number;
|
33 |
+
/// Number uniquely identifying the kernel launch that triggered the assertion
|
34 |
+
uint32_t caller;
|
35 |
+
/// block_id of the thread that failed the assertion
|
36 |
+
int32_t block_id[3];
|
37 |
+
/// third_id of the thread that failed the assertion
|
38 |
+
int32_t thread_id[3];
|
39 |
+
};
|
40 |
+
|
41 |
+
/// Used to hold assertions generated by the device
|
42 |
+
/// Held in managed memory and access by both the CPU and the GPU.
|
43 |
+
struct DeviceAssertionsData {
|
44 |
+
/// Total number of assertions found; a subset of thse will be recorded
|
45 |
+
/// in `assertions`
|
46 |
+
int32_t assertion_count;
|
47 |
+
/// An array of assertions that will be written to in a race-free manner
|
48 |
+
DeviceAssertionData assertions[C10_CUDA_DSA_ASSERTION_COUNT];
|
49 |
+
};
|
50 |
+
|
51 |
+
/// Use to hold info about kernel launches so that we can run kernels
|
52 |
+
/// asynchronously and still associate launches with device-side
|
53 |
+
/// assertion failures
|
54 |
+
struct CUDAKernelLaunchInfo {
|
55 |
+
/// Filename of the code where the kernel was launched from
|
56 |
+
const char* launch_filename;
|
57 |
+
/// Function from which the kernel was launched
|
58 |
+
const char* launch_function;
|
59 |
+
/// Line number of where the code was launched from
|
60 |
+
uint32_t launch_linenum;
|
61 |
+
/// Backtrace of where the kernel was launched from, only populated if
|
62 |
+
/// CUDAKernelLaunchRegistry::gather_launch_stacktrace is True
|
63 |
+
std::string launch_stacktrace;
|
64 |
+
/// Kernel that was launched
|
65 |
+
const char* kernel_name;
|
66 |
+
/// Device the kernel was launched on
|
67 |
+
int device;
|
68 |
+
/// Stream the kernel was launched on
|
69 |
+
int32_t stream;
|
70 |
+
/// A number that uniquely identifies the kernel launch
|
71 |
+
uint64_t generation_number;
|
72 |
+
};
|
73 |
+
|
74 |
+
/// Circular buffer used to hold information about kernel launches
|
75 |
+
/// this is later used to reconstruct how a device-side kernel assertion failure
|
76 |
+
/// occurred CUDAKernelLaunchRegistry is used as a singleton
|
77 |
+
class C10_CUDA_API CUDAKernelLaunchRegistry {
|
78 |
+
private:
|
79 |
+
/// Assume that this is the max number of kernel launches that might ever be
|
80 |
+
/// enqueued across all streams on a single device
|
81 |
+
static constexpr int max_kernel_launches = 1024;
|
82 |
+
/// How many kernel launch infos we've inserted. Used to ensure that circular
|
83 |
+
/// queue doesn't provide false information by always increasing, but also to
|
84 |
+
/// mark where we are inserting into the queue
|
85 |
+
#ifdef TORCH_USE_CUDA_DSA
|
86 |
+
uint64_t generation_number = 0;
|
87 |
+
#endif
|
88 |
+
/// Shared mutex between writer and accessor to ensure multi-threaded safety.
|
89 |
+
mutable std::mutex read_write_mutex;
|
90 |
+
/// Used to ensure prevent race conditions in GPU memory allocation
|
91 |
+
mutable std::mutex gpu_alloc_mutex;
|
92 |
+
/// Pointer to managed memory keeping track of device-side assertions. There
|
93 |
+
/// is one entry for each possible device the process might work with. Unused
|
94 |
+
/// entries are nullptrs. We could also use an unordered_set here, but this
|
95 |
+
/// vector design will be faster and the wasted memory is small since we
|
96 |
+
/// expect the number of GPUs per node will always be small
|
97 |
+
std::vector<
|
98 |
+
std::unique_ptr<DeviceAssertionsData, void (*)(DeviceAssertionsData*)>>
|
99 |
+
uvm_assertions;
|
100 |
+
/// A single circular buffer holds information about every kernel launch the
|
101 |
+
/// process makes across all devices.
|
102 |
+
std::vector<CUDAKernelLaunchInfo> kernel_launches;
|
103 |
+
bool check_env_for_enable_launch_stacktracing() const;
|
104 |
+
bool check_env_for_dsa_enabled() const;
|
105 |
+
|
106 |
+
public:
|
107 |
+
CUDAKernelLaunchRegistry();
|
108 |
+
/// Register a new kernel launch and obtain a generation number back to be
|
109 |
+
/// passed to the kernel
|
110 |
+
uint32_t insert(
|
111 |
+
const char* launch_filename,
|
112 |
+
const char* launch_function,
|
113 |
+
const uint32_t launch_linenum,
|
114 |
+
const char* kernel_name,
|
115 |
+
const int32_t stream_id);
|
116 |
+
/// Get copies of the kernel launch registry and each device's assertion
|
117 |
+
/// failure buffer so they can be inspected without raising race conditions
|
118 |
+
std::
|
119 |
+
pair<std::vector<DeviceAssertionsData>, std::vector<CUDAKernelLaunchInfo>>
|
120 |
+
snapshot() const;
|
121 |
+
/// Get a pointer to the current device's assertion failure buffer. If no such
|
122 |
+
/// buffer exists then one is created. This means that the first kernel launch
|
123 |
+
/// made on each device will be slightly slower because memory allocations are
|
124 |
+
/// required
|
125 |
+
DeviceAssertionsData* get_uvm_assertions_ptr_for_current_device();
|
126 |
+
/// Gets the global singleton of the registry
|
127 |
+
static CUDAKernelLaunchRegistry& get_singleton_ref();
|
128 |
+
/// If not all devices support DSA, we disable it
|
129 |
+
const bool do_all_devices_support_managed_memory = false;
|
130 |
+
/// Whether or not to gather stack traces when launching kernels
|
131 |
+
bool gather_launch_stacktrace = false;
|
132 |
+
/// Whether or not host-side DSA is enabled or disabled at run-time
|
133 |
+
/// Note: Device-side code cannot be enabled/disabled at run-time
|
134 |
+
bool enabled_at_runtime = false;
|
135 |
+
/// Whether or not a device has indicated a failure
|
136 |
+
bool has_failed() const;
|
137 |
+
#ifdef TORCH_USE_CUDA_DSA
|
138 |
+
const bool enabled_at_compile_time = true;
|
139 |
+
#else
|
140 |
+
const bool enabled_at_compile_time = false;
|
141 |
+
#endif
|
142 |
+
};
|
143 |
+
|
144 |
+
std::string c10_retrieve_device_side_assertion_info();
|
145 |
+
|
146 |
+
} // namespace cuda
|
147 |
+
} // namespace c10
|
148 |
+
|
149 |
+
// Each kernel launched with TORCH_DSA_KERNEL_LAUNCH
|
150 |
+
// requires the same input arguments. We introduce the following macro to
|
151 |
+
// standardize these.
|
152 |
+
#define TORCH_DSA_KERNEL_ARGS \
|
153 |
+
[[maybe_unused]] c10::cuda::DeviceAssertionsData *const assertions_data, \
|
154 |
+
[[maybe_unused]] uint32_t assertion_caller_id
|
155 |
+
|
156 |
+
// This macro can be used to pass the DSA arguments onward to another
|
157 |
+
// function
|
158 |
+
#define TORCH_DSA_KERNEL_ARGS_PASS assertions_data, assertion_caller_id
|