Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/CUDAPluggableAllocator.h +142 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Event.h +18 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Stream.h +19 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/THCP.h +10 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/comm.h +52 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/device_set.h +10 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/memory_snapshot.h +26 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/nccl.h +218 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/python_comm.h +7 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/python_nccl.h +13 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/context/container.h +167 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/context/context.h +174 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/functions/recvrpc_backward.h +49 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/functions/sendrpc_backward.h +37 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.h +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.h +42 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h +98 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.h +62 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.h +59 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rref_backward_req.h +39 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rref_backward_resp.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Backend.hpp +383 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/FileStore.hpp +63 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GlooDeviceFactory.hpp +32 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GroupRegistry.hpp +14 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/HashStore.hpp +61 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/PrefixStore.hpp +64 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp +918 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupRoundRobin.hpp +113 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupUCC.hpp +353 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp +140 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/RankLocal.hpp +73 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStore.hpp +161 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStoreBackend.hpp +77 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TraceUtils.h +543 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/UCCTracing.hpp +58 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/UnixSockUtils.hpp +27 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Utils.hpp +729 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Work.hpp +161 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/c10d.h +13 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/comm.hpp +140 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/debug.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/default_comm_hooks.hpp +52 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/logger.hpp +104 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/logging.h +51 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/reducer.hpp +589 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/sequence_num.hpp +65 -0
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/CUDAPluggableAllocator.h
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/cuda/CUDAGraphsC10Utils.h>
|
5 |
+
#include <c10/cuda/CUDAMacros.h>
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
9 |
+
|
10 |
+
#include <array>
|
11 |
+
#include <mutex>
|
12 |
+
|
13 |
+
namespace torch::cuda::CUDAPluggableAllocator {
|
14 |
+
|
15 |
+
#if defined(TORCH_HIP_VERSION)
|
16 |
+
using streamType = c10::hip::HIPStream;
|
17 |
+
#else
|
18 |
+
using streamType = c10::cuda::CUDAStream;
|
19 |
+
#endif
|
20 |
+
|
21 |
+
std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>
|
22 |
+
getCurrentAllocator();
|
23 |
+
std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>
|
24 |
+
createCustomAllocator(
|
25 |
+
std::function<void*(size_t, int, cudaStream_t)> alloc_fn,
|
26 |
+
std::function<void(void*, size_t, int, cudaStream_t)> free_fn);
|
27 |
+
void changeCurrentAllocator(
|
28 |
+
const std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>&
|
29 |
+
allocator);
|
30 |
+
|
31 |
+
struct _AllocationMetadata {
|
32 |
+
_AllocationMetadata();
|
33 |
+
_AllocationMetadata(size_t size, int device_idx, cudaStream_t stream);
|
34 |
+
size_t size;
|
35 |
+
int device_idx;
|
36 |
+
cudaStream_t stream;
|
37 |
+
};
|
38 |
+
|
39 |
+
struct CUDAPluggableAllocator
|
40 |
+
: public c10::cuda::CUDACachingAllocator::CUDAAllocator {
|
41 |
+
CUDAPluggableAllocator(
|
42 |
+
std::function<void*(size_t, int, cudaStream_t)> alloc_fn,
|
43 |
+
std::function<void(void*, size_t, int, cudaStream_t)> free_fn);
|
44 |
+
|
45 |
+
CUDAPluggableAllocator(CUDAPluggableAllocator& other);
|
46 |
+
|
47 |
+
void set_init_fn(std::function<void(int)> init_fn);
|
48 |
+
|
49 |
+
void set_reset_fn(std::function<void()> reset_fn);
|
50 |
+
|
51 |
+
void set_memory_fraction_fn(
|
52 |
+
std::function<void(double, int)> memory_fraction_fn);
|
53 |
+
|
54 |
+
void set_base_alloc_fn(std::function<void*(void*, size_t*)> base_alloc_fn);
|
55 |
+
|
56 |
+
void set_record_stream_fn(
|
57 |
+
std::function<void(void* ptr, cudaStream_t stream)> record_stream_fn);
|
58 |
+
|
59 |
+
void set_begin_allocate_stream_to_pool(
|
60 |
+
std::function<void(int, cudaStream_t, c10::cuda::MempoolId_t)>
|
61 |
+
capture_begin_fn);
|
62 |
+
|
63 |
+
void set_end_allocate_stream_to_pool_fn(
|
64 |
+
std::function<void(int, cudaStream_t)> capture_about_to_end_fn);
|
65 |
+
|
66 |
+
void set_release_pool(
|
67 |
+
std::function<void(int, c10::cuda::MempoolId_t)> capture_destroy_fn);
|
68 |
+
|
69 |
+
void* malloc(size_t size, int device, cudaStream_t stream);
|
70 |
+
|
71 |
+
c10::DataPtr allocate(size_t size) const override;
|
72 |
+
c10::DeleterFnPtr raw_deleter() const override;
|
73 |
+
|
74 |
+
void* raw_alloc(size_t nbytes) override;
|
75 |
+
void* raw_alloc_with_stream(size_t nbytes, cudaStream_t stream) override;
|
76 |
+
void raw_delete(void* ptr) override;
|
77 |
+
void init(int device_count) override;
|
78 |
+
bool initialized() override;
|
79 |
+
void setMemoryFraction(double fraction, int device) override;
|
80 |
+
void emptyCache() override;
|
81 |
+
void cacheInfo(int dev_id, size_t* largestBlock) override;
|
82 |
+
void* getBaseAllocation(void* ptr, size_t* size) override;
|
83 |
+
|
84 |
+
void recordStream(const c10::DataPtr&, streamType stream) override;
|
85 |
+
|
86 |
+
c10::cuda::CUDACachingAllocator::DeviceStats getDeviceStats(
|
87 |
+
int device) override;
|
88 |
+
void resetAccumulatedStats(int device) override;
|
89 |
+
void resetPeakStats(int device) override;
|
90 |
+
c10::cuda::CUDACachingAllocator::SnapshotInfo snapshot() override;
|
91 |
+
void beginAllocateStreamToPool(
|
92 |
+
int device,
|
93 |
+
cudaStream_t stream,
|
94 |
+
c10::cuda::MempoolId_t mempool_id) override;
|
95 |
+
void endAllocateStreamToPool(int device, cudaStream_t stream) override;
|
96 |
+
void releasePool(int device, c10::cuda::MempoolId_t mempool_id) override;
|
97 |
+
std::shared_ptr<void> getIpcDevPtr(std::string handle) override;
|
98 |
+
void recordHistory(
|
99 |
+
bool enabled,
|
100 |
+
c10::cuda::CUDACachingAllocator::CreateContextFn context_recorder,
|
101 |
+
size_t alloc_trace_max_entries,
|
102 |
+
c10::cuda::CUDACachingAllocator::RecordContext when) override;
|
103 |
+
void attachOutOfMemoryObserver(
|
104 |
+
c10::cuda::CUDACachingAllocator::OutOfMemoryObserver observer) override;
|
105 |
+
void attachAllocatorTraceTracker(
|
106 |
+
c10::cuda::CUDACachingAllocator::AllocatorTraceTracker tracker) override;
|
107 |
+
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState>
|
108 |
+
getCheckpointState(int device, at::cuda::MempoolId_t id) override;
|
109 |
+
c10::cuda::CUDACachingAllocator::CheckpointDelta setCheckpointPoolState(
|
110 |
+
int device,
|
111 |
+
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> pps)
|
112 |
+
override;
|
113 |
+
void enablePeerAccess(int dev, int dev_to_access) override;
|
114 |
+
cudaError_t memcpyAsync(
|
115 |
+
void* dst,
|
116 |
+
int dstDevice,
|
117 |
+
const void* src,
|
118 |
+
int srcDevice,
|
119 |
+
size_t count,
|
120 |
+
cudaStream_t stream,
|
121 |
+
bool p2p_enabled) override;
|
122 |
+
std::string name() override;
|
123 |
+
|
124 |
+
protected:
|
125 |
+
std::function<void*(size_t, int, cudaStream_t)> alloc_fn_;
|
126 |
+
std::function<void(void*, size_t, int, cudaStream_t)> free_fn_;
|
127 |
+
std::function<void(int)> init_fn_;
|
128 |
+
std::function<void()> reset_fn_;
|
129 |
+
std::function<void(double, int)> memory_fraction_fn_;
|
130 |
+
std::function<void*(void*, size_t*)> base_alloc_fn_;
|
131 |
+
std::function<void(void* ptr, cudaStream_t stream)> record_stream_fn_;
|
132 |
+
std::function<void(int, cudaStream_t, c10::cuda::MempoolId_t)>
|
133 |
+
begin_allocate_stream_to_pool_fn_;
|
134 |
+
std::function<void(int, cudaStream_t)> end_allocate_stream_to_pool_fn_;
|
135 |
+
std::function<void(int, c10::cuda::MempoolId_t)> relase_pool_fn_;
|
136 |
+
std::mutex allocator_mutex_;
|
137 |
+
// We do the bookeeping here in order to simplify custom allocators
|
138 |
+
std::unordered_map<void*, _AllocationMetadata> allocation_metadata_;
|
139 |
+
|
140 |
+
bool initialized_ = false;
|
141 |
+
};
|
142 |
+
} // namespace torch::cuda::CUDAPluggableAllocator
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Event.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THCP_EVENT_INC
|
2 |
+
#define THCP_EVENT_INC
|
3 |
+
|
4 |
+
#include <ATen/cuda/CUDAEvent.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
struct THCPEvent {
|
8 |
+
PyObject_HEAD at::cuda::CUDAEvent cuda_event;
|
9 |
+
};
|
10 |
+
extern PyObject* THCPEventClass;
|
11 |
+
|
12 |
+
void THCPEvent_init(PyObject* module);
|
13 |
+
|
14 |
+
inline bool THCPEvent_Check(PyObject* obj) {
|
15 |
+
return THCPEventClass && PyObject_IsInstance(obj, THCPEventClass);
|
16 |
+
}
|
17 |
+
|
18 |
+
#endif // THCP_EVENT_INC
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Stream.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THCP_STREAM_INC
|
2 |
+
#define THCP_STREAM_INC
|
3 |
+
|
4 |
+
#include <c10/cuda/CUDAStream.h>
|
5 |
+
#include <torch/csrc/Stream.h>
|
6 |
+
#include <torch/csrc/python_headers.h>
|
7 |
+
|
8 |
+
struct THCPStream : THPStream {
|
9 |
+
at::cuda::CUDAStream cuda_stream;
|
10 |
+
};
|
11 |
+
extern PyObject* THCPStreamClass;
|
12 |
+
|
13 |
+
void THCPStream_init(PyObject* module);
|
14 |
+
|
15 |
+
inline bool THCPStream_Check(PyObject* obj) {
|
16 |
+
return THCPStreamClass && PyObject_IsInstance(obj, THCPStreamClass);
|
17 |
+
}
|
18 |
+
|
19 |
+
#endif // THCP_STREAM_INC
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/THCP.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THCP_H
|
2 |
+
#define THCP_H
|
3 |
+
|
4 |
+
#include <torch/csrc/THP.h>
|
5 |
+
#include <torch/csrc/cuda/Event.h>
|
6 |
+
#include <torch/csrc/cuda/Module.h>
|
7 |
+
#include <torch/csrc/cuda/Stream.h>
|
8 |
+
#include <torch/csrc/python_headers.h>
|
9 |
+
|
10 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/comm.h
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/cuda/ATenCUDAGeneral.h>
|
5 |
+
#include <ATen/cuda/CUDAContext.h>
|
6 |
+
#include <c10/util/Optional.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
|
9 |
+
#include <cstddef>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
namespace torch::cuda {
|
13 |
+
|
14 |
+
using tensor_list2d = std::vector<std::vector<at::Tensor>>;
|
15 |
+
|
16 |
+
TORCH_CUDA_CU_API std::vector<at::Tensor>& broadcast_out(
|
17 |
+
const at::Tensor& tensor,
|
18 |
+
std::vector<at::Tensor>& out_tensors);
|
19 |
+
TORCH_CUDA_CU_API std::vector<at::Tensor> broadcast(
|
20 |
+
const at::Tensor& tensor,
|
21 |
+
at::IntArrayRef devices);
|
22 |
+
TORCH_CUDA_CU_API tensor_list2d broadcast_coalesced(
|
23 |
+
at::TensorList tensors,
|
24 |
+
at::IntArrayRef devices,
|
25 |
+
size_t buffer_size);
|
26 |
+
|
27 |
+
TORCH_CUDA_CU_API std::vector<at::Tensor>& scatter_out(
|
28 |
+
const at::Tensor& tensor,
|
29 |
+
std::vector<at::Tensor>& out_tensors,
|
30 |
+
int64_t dim = 0,
|
31 |
+
const c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>>&
|
32 |
+
streams = c10::nullopt);
|
33 |
+
|
34 |
+
TORCH_CUDA_CU_API std::vector<at::Tensor> scatter(
|
35 |
+
const at::Tensor& tensor,
|
36 |
+
at::IntArrayRef devices,
|
37 |
+
const c10::optional<std::vector<int64_t>>& chunk_sizes = c10::nullopt,
|
38 |
+
int64_t dim = 0,
|
39 |
+
const c10::optional<std::vector<c10::optional<at::cuda::CUDAStream>>>&
|
40 |
+
streams = c10::nullopt);
|
41 |
+
|
42 |
+
TORCH_CUDA_CU_API at::Tensor& gather_out(
|
43 |
+
at::TensorList tensors,
|
44 |
+
at::Tensor& out_tensor,
|
45 |
+
int64_t dim);
|
46 |
+
|
47 |
+
TORCH_CUDA_CU_API at::Tensor gather(
|
48 |
+
at::TensorList tensors,
|
49 |
+
int64_t dim,
|
50 |
+
c10::optional<int32_t> destination_index);
|
51 |
+
|
52 |
+
} // namespace torch::cuda
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/device_set.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <bitset>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
|
7 |
+
static constexpr size_t MAX_CUDA_DEVICES = 64;
|
8 |
+
using device_set = std::bitset<MAX_CUDA_DEVICES>;
|
9 |
+
|
10 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/memory_snapshot.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/Optional.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
namespace torch::cuda {
|
8 |
+
|
9 |
+
// C++-only versions of these, for python use
|
10 |
+
// those defined in cuda/Module.cpp which also record python state.
|
11 |
+
TORCH_CUDA_CU_API void _record_memory_history(
|
12 |
+
bool enabled,
|
13 |
+
bool record_context = true,
|
14 |
+
int64_t trace_alloc_max_entries = 1,
|
15 |
+
bool trace_alloc_record_context = false,
|
16 |
+
bool record_cpp_context = false);
|
17 |
+
|
18 |
+
TORCH_CUDA_CU_API void _record_memory_history(
|
19 |
+
c10::optional<std::string> enabled = "all",
|
20 |
+
c10::optional<std::string> context = "all",
|
21 |
+
std::string stacks = "all",
|
22 |
+
size_t max_entries = UINT64_MAX);
|
23 |
+
|
24 |
+
TORCH_CUDA_CU_API std::string _memory_snapshot_pickled();
|
25 |
+
|
26 |
+
} // namespace torch::cuda
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/nccl.h
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/cuda/CUDAContext.h>
|
5 |
+
#include <c10/util/Optional.h>
|
6 |
+
|
7 |
+
#include <cstddef>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
// NCCL BFloat16 is enabled only for CUDA 11+ and NCCL versions 2.10+, or for
|
11 |
+
// HIP 3.1+
|
12 |
+
#if defined(__CUDA_BF16_TYPES_EXIST__)
|
13 |
+
#define HAS_NCCL_BF16_DATATYPE \
|
14 |
+
((NCCL_MAJOR > 2) || (NCCL_MAJOR == 2) && (NCCL_MINOR >= 10))
|
15 |
+
#elif defined(USE_ROCM) && (TORCH_HIP_VERSION >= 301)
|
16 |
+
#define HAS_NCCL_BF16_DATATYPE 1
|
17 |
+
#else
|
18 |
+
#define HAS_NCCL_BF16_DATATYPE 0
|
19 |
+
#endif
|
20 |
+
|
21 |
+
namespace torch::cuda::nccl {
|
22 |
+
|
23 |
+
/* The following are copied from <nccl.h> and redefined in torch::cuda::nccl
|
24 |
+
* namespace */
|
25 |
+
/* pytorch should only use the following definition within pytorch scope */
|
26 |
+
|
27 |
+
/* Opaque handle to communicator to ncclComm*, this will reinterpret as ncclComm
|
28 |
+
* in nccl.cpp */
|
29 |
+
typedef void* ncclComm_t;
|
30 |
+
|
31 |
+
/** redefine nccl unique ID in torch scope. this should be identical to native
|
32 |
+
* nccl impp. */
|
33 |
+
#define NCCL_UNIQUE_ID_BYTES 128
|
34 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
35 |
+
typedef struct {
|
36 |
+
char internal[NCCL_UNIQUE_ID_BYTES];
|
37 |
+
} ncclUniqueId;
|
38 |
+
|
39 |
+
/* Error type */
|
40 |
+
enum class ncclResult {
|
41 |
+
Success = 0,
|
42 |
+
UnhandledCudaError = 1,
|
43 |
+
SystemError = 2,
|
44 |
+
InternalError = 3,
|
45 |
+
InvalidArgument = 4,
|
46 |
+
InvalidUsage = 5,
|
47 |
+
NumResults = 6,
|
48 |
+
InProgress = 7
|
49 |
+
};
|
50 |
+
|
51 |
+
/* Reduction operation selector */
|
52 |
+
enum class ncclRedOp { Sum = 0, Prod = 1, Max = 2, Min = 3, NumOps = 4 };
|
53 |
+
|
54 |
+
/* Data types */
|
55 |
+
enum class ncclDataType {
|
56 |
+
Int8 = 0,
|
57 |
+
Char = 0,
|
58 |
+
Uint8 = 1,
|
59 |
+
Int32 = 2,
|
60 |
+
Int = 2,
|
61 |
+
Uint32 = 3,
|
62 |
+
Int64 = 4,
|
63 |
+
Uint64 = 5,
|
64 |
+
Float16 = 6,
|
65 |
+
Half = 6,
|
66 |
+
Float32 = 7,
|
67 |
+
Float = 7,
|
68 |
+
Float64 = 8,
|
69 |
+
Double = 8,
|
70 |
+
Bfloat16 = 9,
|
71 |
+
NumTypes = 10
|
72 |
+
};
|
73 |
+
|
74 |
+
// RAII helper class to manage NCCL group API and CUDA free mutex.
|
75 |
+
// The destructor is allowed to throw since this helper class only
|
76 |
+
// manages group and lock lifetimes.
|
77 |
+
struct AutoNcclGroup {
|
78 |
+
AutoNcclGroup();
|
79 |
+
AutoNcclGroup(std::vector<ncclComm_t>& comms, bool comm_nonblocking);
|
80 |
+
~AutoNcclGroup() noexcept(false);
|
81 |
+
std::vector<ncclComm_t> comms_;
|
82 |
+
bool comm_nonblocking_;
|
83 |
+
};
|
84 |
+
|
85 |
+
// NOTE: this is exposed only so that python_nccl.cpp can some of these helpers.
|
86 |
+
// Don't use them outside of these files.
|
87 |
+
namespace detail {
|
88 |
+
|
89 |
+
TORCH_CUDA_CPP_API void throw_nccl_error(ncclResult status);
|
90 |
+
|
91 |
+
static inline void NCCL_CHECK(ncclResult status) {
|
92 |
+
if (status != ncclResult::Success) {
|
93 |
+
throw_nccl_error(status);
|
94 |
+
}
|
95 |
+
}
|
96 |
+
|
97 |
+
TORCH_CUDA_CPP_API at::ArrayRef<ncclComm_t> get_communicators(
|
98 |
+
at::TensorList inputs);
|
99 |
+
TORCH_CUDA_CPP_API void check_inputs(
|
100 |
+
at::TensorList inputs,
|
101 |
+
at::TensorList outputs,
|
102 |
+
int input_multiplier,
|
103 |
+
int output_multiplier);
|
104 |
+
TORCH_CUDA_CPP_API void check_inputs(
|
105 |
+
at::TensorList inputs,
|
106 |
+
const at::Tensor& output,
|
107 |
+
int root,
|
108 |
+
int input_multiplier,
|
109 |
+
int output_multiplier);
|
110 |
+
|
111 |
+
} // namespace detail
|
112 |
+
|
113 |
+
using comm_list = std::vector<ncclComm_t>;
|
114 |
+
using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>;
|
115 |
+
|
116 |
+
TORCH_CUDA_CPP_API std::uint64_t version();
|
117 |
+
TORCH_CUDA_CPP_API const char* version_suffix();
|
118 |
+
|
119 |
+
bool is_available(at::TensorList tensors);
|
120 |
+
|
121 |
+
TORCH_CUDA_CPP_API void get_unique_id(ncclUniqueId& id);
|
122 |
+
TORCH_CUDA_CPP_API ncclComm_t
|
123 |
+
comm_init_rank(int nranks, const ncclUniqueId& comm_id, int rank);
|
124 |
+
TORCH_CUDA_CPP_API void comm_destroy(ncclComm_t comm);
|
125 |
+
|
126 |
+
TORCH_CUDA_CPP_API void broadcast(
|
127 |
+
at::TensorList tensors,
|
128 |
+
const stream_list& streams = {},
|
129 |
+
const comm_list& user_comms = {});
|
130 |
+
|
131 |
+
size_t get_max_count();
|
132 |
+
|
133 |
+
TORCH_CUDA_CPP_API void reduce(
|
134 |
+
const std::vector<at::Tensor>& inputs,
|
135 |
+
at::Tensor& output,
|
136 |
+
int32_t root = 0,
|
137 |
+
int32_t op = static_cast<int>(ncclRedOp::Sum),
|
138 |
+
const stream_list& streams = {},
|
139 |
+
const comm_list& user_comms = {});
|
140 |
+
|
141 |
+
TORCH_CUDA_CPP_API void reduce(
|
142 |
+
std::vector<at::Tensor>& inputs,
|
143 |
+
int32_t root = 0,
|
144 |
+
int32_t op = static_cast<int>(ncclRedOp::Sum),
|
145 |
+
const stream_list& streams = {},
|
146 |
+
const comm_list& user_comms = {});
|
147 |
+
|
148 |
+
TORCH_CUDA_CPP_API void all_reduce(
|
149 |
+
const std::vector<at::Tensor>& inputs,
|
150 |
+
std::vector<at::Tensor>& outputs,
|
151 |
+
int32_t op = static_cast<int>(ncclRedOp::Sum),
|
152 |
+
const stream_list& streams = {},
|
153 |
+
const comm_list& user_comms = {});
|
154 |
+
|
155 |
+
TORCH_CUDA_CPP_API void reduce_scatter(
|
156 |
+
const std::vector<at::Tensor>& inputs,
|
157 |
+
std::vector<at::Tensor>& outputs,
|
158 |
+
int32_t op = static_cast<int>(ncclRedOp::Sum),
|
159 |
+
const stream_list& streams = {},
|
160 |
+
const comm_list& user_comms = {});
|
161 |
+
|
162 |
+
TORCH_CUDA_CPP_API void scatter(
|
163 |
+
const std::vector<at::Tensor>& inputs,
|
164 |
+
at::Tensor& outputs,
|
165 |
+
ncclComm_t comm,
|
166 |
+
at::cuda::CUDAStream& stream,
|
167 |
+
int32_t root = 0);
|
168 |
+
|
169 |
+
TORCH_CUDA_CPP_API void all_gather(
|
170 |
+
const std::vector<at::Tensor>& inputs,
|
171 |
+
std::vector<at::Tensor>& outputs,
|
172 |
+
const stream_list& streams = {},
|
173 |
+
const comm_list& user_comms = {});
|
174 |
+
|
175 |
+
TORCH_CUDA_CPP_API void gather(
|
176 |
+
const at::Tensor& inputs,
|
177 |
+
std::vector<at::Tensor>& outputs,
|
178 |
+
ncclComm_t comm,
|
179 |
+
at::cuda::CUDAStream& stream,
|
180 |
+
int32_t root = 0);
|
181 |
+
|
182 |
+
TORCH_CUDA_CPP_API void all2all_single_equal_split(
|
183 |
+
at::Tensor& input,
|
184 |
+
at::Tensor& output,
|
185 |
+
int size,
|
186 |
+
ncclComm_t comm,
|
187 |
+
at::cuda::CUDAStream& stream);
|
188 |
+
|
189 |
+
TORCH_CUDA_CPP_API void all2all_single_unequal_split(
|
190 |
+
void* sendbuff,
|
191 |
+
const size_t* sendcounts,
|
192 |
+
const size_t* senddispls,
|
193 |
+
void* recvbuff,
|
194 |
+
const size_t* recvcounts,
|
195 |
+
const size_t* recvdispls,
|
196 |
+
size_t size,
|
197 |
+
c10::ScalarType type,
|
198 |
+
ncclComm_t comm,
|
199 |
+
at::cuda::CUDAStream& stream);
|
200 |
+
|
201 |
+
TORCH_CUDA_CPP_API void all2all(
|
202 |
+
std::vector<at::Tensor>& outputTensors,
|
203 |
+
std::vector<at::Tensor>& inputTensors,
|
204 |
+
ncclComm_t _comm,
|
205 |
+
at::cuda::CUDAStream& stream);
|
206 |
+
|
207 |
+
TORCH_CUDA_CPP_API void send(
|
208 |
+
const at::Tensor& input,
|
209 |
+
ncclComm_t comm,
|
210 |
+
at::cuda::CUDAStream stream,
|
211 |
+
int dst);
|
212 |
+
|
213 |
+
TORCH_CUDA_CPP_API void recv(
|
214 |
+
at::Tensor& output,
|
215 |
+
ncclComm_t comm,
|
216 |
+
at::cuda::CUDAStream stream,
|
217 |
+
int src);
|
218 |
+
} // namespace torch::cuda::nccl
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/python_comm.h
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace torch::cuda::python {
|
4 |
+
|
5 |
+
void initCommMethods(PyObject* module);
|
6 |
+
|
7 |
+
} // namespace torch::cuda::python
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/python_nccl.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
PyObject* THCPModule_nccl_version(PyObject* self, PyObject* args);
|
6 |
+
PyObject* THCPModule_nccl_version_suffix(PyObject* self, PyObject* args);
|
7 |
+
PyObject* THCPModule_nccl_unique_id(PyObject* self, PyObject* args);
|
8 |
+
PyObject* THCPModule_nccl_init_rank(PyObject* self, PyObject* args);
|
9 |
+
PyObject* THCPModule_nccl_reduce(PyObject* self, PyObject* args);
|
10 |
+
PyObject* THCPModule_nccl_all_reduce(PyObject* self, PyObject* args);
|
11 |
+
PyObject* THCPModule_nccl_broadcast(PyObject* self, PyObject* args);
|
12 |
+
PyObject* THCPModule_nccl_all_gather(PyObject* self, PyObject* args);
|
13 |
+
PyObject* THCPModule_nccl_reduce_scatter(PyObject* self, PyObject* args);
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/context/container.h
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <mutex>
|
4 |
+
#include <unordered_map>
|
5 |
+
|
6 |
+
#include <torch/csrc/distributed/autograd/context/context.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace distributed {
|
10 |
+
namespace autograd {
|
11 |
+
|
12 |
+
// Singleton class per worker which is responsible for storing the distributed
|
13 |
+
// autograd context for each autograd pass and also cleans up data for an
|
14 |
+
// autograd pass once its done.
|
15 |
+
//
|
16 |
+
// Each autograd pass is assigned a unique autograd_context_id and all data for
|
17 |
+
// that pass (DistAutogradContext) is stored in this container indexed by the
|
18 |
+
// autograd_context_id. The autograd_context_id itself is a 64 bit globally
|
19 |
+
// unique id. The first 16 bits is the worker_id and the next 48 bits is an
|
20 |
+
// auto-incrementing id for each worker.
|
21 |
+
//
|
22 |
+
// This container is also responsible for maintaining a globally unique message
|
23 |
+
// id, which is used to associate send/recv autograd function pairs. The format
|
24 |
+
// is similar to the autograd_context_id where we have a 64 bit integer with
|
25 |
+
// first 16 bits being the worker id and next 48 bits are auto-incrementing.
|
26 |
+
class TORCH_API DistAutogradContainer {
|
27 |
+
public:
|
28 |
+
explicit DistAutogradContainer(uint32_t num_shards);
|
29 |
+
|
30 |
+
// One time initialization of the container.
|
31 |
+
static DistAutogradContainer& init(int64_t worker_id);
|
32 |
+
|
33 |
+
// Retrieve the singleton instance of the container, ensures we have
|
34 |
+
// initialized the container.
|
35 |
+
static DistAutogradContainer& getInstance();
|
36 |
+
|
37 |
+
// Create a new context for a distributed autograd pass.
|
38 |
+
const ContextPtr newContext();
|
39 |
+
|
40 |
+
// Clean up resources for a given context_id once the autograd pass is done.
|
41 |
+
// Sends RPC to other workers this worker knows about, telling them to clean
|
42 |
+
// up their context as well. Throws an exception if the context_id does not
|
43 |
+
// exist.
|
44 |
+
void releaseContext(int64_t context_id);
|
45 |
+
|
46 |
+
// Releases an autograd context if it is present on this node. Also sends RPC
|
47 |
+
// to other workers this worker knows about, telling them to clean up their
|
48 |
+
// context. Does nothing if it is not present.
|
49 |
+
void releaseContextIfPresent(int64_t context_id);
|
50 |
+
|
51 |
+
// Checks if the passed in context_id is valid.
|
52 |
+
void isValidContext(int64_t context_id);
|
53 |
+
|
54 |
+
// Retrieve the autograd context for a given context_id.
|
55 |
+
ContextPtr retrieveContext(int64_t context_id);
|
56 |
+
|
57 |
+
// Retrieves the currently active autograd context for the current thread.
|
58 |
+
ContextPtr currentContext();
|
59 |
+
|
60 |
+
// Checks whether or not the current thread has a valid autograd context.
|
61 |
+
bool hasValidContext() const;
|
62 |
+
|
63 |
+
// Generate a new autograd_message_id for send/recv autograd functions.
|
64 |
+
int64_t newAutogradMessageId();
|
65 |
+
|
66 |
+
// Creates a new autograd context with the provided context_id. If a context
|
67 |
+
// already exists with the provided context_id, we just return it.
|
68 |
+
// This does not set the current context for the current thread.
|
69 |
+
ContextPtr getOrCreateContext(int64_t context_id);
|
70 |
+
|
71 |
+
// Retrieves the maximum possible autograd_context_id/autograd_message_id that
|
72 |
+
// can be generated by this worker.
|
73 |
+
int64_t getMaxId();
|
74 |
+
|
75 |
+
// Retrieves the worker ID for this node
|
76 |
+
rpc::worker_id_t getWorkerId() const;
|
77 |
+
|
78 |
+
// Can set current context id if there is no valid context yet
|
79 |
+
static void setCurrentContextId(int64_t contextId);
|
80 |
+
|
81 |
+
// Forcibly sets the thread local current context id. Should only be used in
|
82 |
+
// cases where you know what you're doing and need to override the thread
|
83 |
+
// local. Otherwise, use setCurrentContextId instead.
|
84 |
+
static void forceCurrentContextId(int64_t contextId);
|
85 |
+
|
86 |
+
// Clear current context id
|
87 |
+
void clearCurrentContext();
|
88 |
+
|
89 |
+
// Returns the number of autograd contexts in the container.
|
90 |
+
size_t numAutogradContexts() const;
|
91 |
+
|
92 |
+
// Returns the current thread local context id for this thread.
|
93 |
+
static int64_t currentContextId();
|
94 |
+
|
95 |
+
DistAutogradContainer(const DistAutogradContainer&) = delete;
|
96 |
+
DistAutogradContainer& operator=(const DistAutogradContainer&) = delete;
|
97 |
+
DistAutogradContainer(DistAutogradContainer&&) = delete;
|
98 |
+
DistAutogradContainer& operator=(DistAutogradContainer&&) = delete;
|
99 |
+
|
100 |
+
private:
|
101 |
+
// Number of shards for the map storing autograd contexts. We'd like this
|
102 |
+
// to be a power of 2 and we don't expect a value much higher than the
|
103 |
+
// number of cores would provide much benefit.
|
104 |
+
static constexpr uint32_t kNumDefaultShards = 128;
|
105 |
+
|
106 |
+
// Use cache line size for alignment.
|
107 |
+
static constexpr int kCacheLineSize = 64;
|
108 |
+
|
109 |
+
// Structure holding one shard of the sharded autograd context map with its
|
110 |
+
// associated lock. Align to cache line size to avoid contention between
|
111 |
+
// adjacent entries.
|
112 |
+
struct alignas(kCacheLineSize) ContextsShard {
|
113 |
+
// Lock for this shard.
|
114 |
+
mutable std::mutex lock;
|
115 |
+
|
116 |
+
// Map storing autograd contexts for this shard.
|
117 |
+
std::unordered_map<int64_t, ContextPtr> contexts;
|
118 |
+
};
|
119 |
+
|
120 |
+
DistAutogradContainer() = delete;
|
121 |
+
~DistAutogradContainer() = default;
|
122 |
+
|
123 |
+
static DistAutogradContainer& getInstanceInternal();
|
124 |
+
|
125 |
+
// Retrieve the shard for given context_id.
|
126 |
+
ContextsShard& getShard(int64_t context_id);
|
127 |
+
|
128 |
+
// Sends an RPC to the workers that have a context corresponding to passed in
|
129 |
+
// context_id. This function should be called with the lock.
|
130 |
+
void sendReleaseContextRpc(
|
131 |
+
const std::unordered_set<rpc::worker_id_t>& workerIds,
|
132 |
+
int64_t context_id);
|
133 |
+
|
134 |
+
// Erase context_id from the autograd context map, and reset the thread local
|
135 |
+
// current context id if it corresponds to the passed in context id. This
|
136 |
+
// function should be called with the lock.
|
137 |
+
void eraseContextIdAndReset(ContextsShard& shard, int64_t context_id);
|
138 |
+
|
139 |
+
// Compute the number of shards for the autograd_contexts_ map.
|
140 |
+
static uint32_t computeNumShards();
|
141 |
+
|
142 |
+
// Auto incrementing context id used to identify unique autograd passes.
|
143 |
+
// Initialized with the first 16 bits being the worker_id.
|
144 |
+
std::atomic<int64_t> next_context_id_;
|
145 |
+
|
146 |
+
// Unique id to identify a worker in the distributed setting.
|
147 |
+
int16_t worker_id_;
|
148 |
+
|
149 |
+
// Whether or not the container has been initialized appropriately.
|
150 |
+
bool initialized_;
|
151 |
+
|
152 |
+
// Sharded autograd context map.
|
153 |
+
std::vector<ContextsShard> autograd_contexts_;
|
154 |
+
|
155 |
+
// Number of shards for the sharded autograd_contexts_ map.
|
156 |
+
uint32_t num_shards_;
|
157 |
+
|
158 |
+
// Autograd message id to identify unique send/recv autograd function pairs.
|
159 |
+
std::atomic<int64_t> next_autograd_message_id_;
|
160 |
+
|
161 |
+
// Maximum allowed value for autograd_context_id or autograd_message_id.
|
162 |
+
int64_t max_id_;
|
163 |
+
};
|
164 |
+
|
165 |
+
} // namespace autograd
|
166 |
+
} // namespace distributed
|
167 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/context/context.h
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <functional>
|
5 |
+
|
6 |
+
#include <ATen/core/Dict.h>
|
7 |
+
#include <torch/csrc/autograd/engine.h>
|
8 |
+
#include <torch/csrc/distributed/autograd/functions/recvrpc_backward.h>
|
9 |
+
#include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h>
|
10 |
+
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
11 |
+
|
12 |
+
namespace torch {
|
13 |
+
namespace distributed {
|
14 |
+
namespace autograd {
|
15 |
+
|
16 |
+
class RecvRpcBackward;
|
17 |
+
|
18 |
+
// DistAutogradContext which stores information for a single distributed
|
19 |
+
// autograd pass on a worker.
|
20 |
+
class TORCH_API DistAutogradContext {
|
21 |
+
public:
|
22 |
+
using GradCallback = std::function<bool(torch::Tensor&)>;
|
23 |
+
|
24 |
+
explicit DistAutogradContext(int64_t contextId);
|
25 |
+
|
26 |
+
// Retrieves the autograd context id for this context.
|
27 |
+
int64_t contextId() const;
|
28 |
+
|
29 |
+
// Records a 'send' autograd function for this context with the provided
|
30 |
+
// message id.
|
31 |
+
void addSendFunction(
|
32 |
+
const std::shared_ptr<SendRpcBackward>& func,
|
33 |
+
int64_t autograd_message_id);
|
34 |
+
|
35 |
+
// Records a 'recv' autograd function for this context with the provided
|
36 |
+
// message id.
|
37 |
+
void addRecvFunction(
|
38 |
+
std::shared_ptr<RecvRpcBackward>& func,
|
39 |
+
int64_t autograd_message_id);
|
40 |
+
|
41 |
+
// Given an autograd_message_id, retrieve the appropriate send function.
|
42 |
+
std::shared_ptr<SendRpcBackward> retrieveSendFunction(
|
43 |
+
int64_t autograd_message_id);
|
44 |
+
|
45 |
+
// Return all send functions for this context.
|
46 |
+
std::unordered_map<int64_t, std::shared_ptr<SendRpcBackward>> sendFunctions()
|
47 |
+
const;
|
48 |
+
|
49 |
+
// Return all recv functions for this context.
|
50 |
+
std::unordered_map<int64_t, std::shared_ptr<RecvRpcBackward>> recvFunctions()
|
51 |
+
const;
|
52 |
+
|
53 |
+
// Adds a future message recording an outstanding RPC.
|
54 |
+
void addOutstandingRpc(const c10::intrusive_ptr<rpc::JitFuture>& jitFuture);
|
55 |
+
|
56 |
+
// Returns all gradients.
|
57 |
+
const c10::Dict<torch::Tensor, torch::Tensor> getGradients() const;
|
58 |
+
|
59 |
+
// This function gives a mutable grad reference to the callback.
|
60 |
+
// If the callback returns true, it means the grad in the context
|
61 |
+
// needs to be updated.
|
62 |
+
void runGradCallbackForVariable(
|
63 |
+
const torch::autograd::Variable& variable,
|
64 |
+
GradCallback&& cb);
|
65 |
+
|
66 |
+
DistAutogradContext(const DistAutogradContext&) = delete;
|
67 |
+
DistAutogradContext& operator=(const DistAutogradContext&) = delete;
|
68 |
+
DistAutogradContext(DistAutogradContext&&) = delete;
|
69 |
+
DistAutogradContext& operator=(DistAutogradContext&&) = delete;
|
70 |
+
|
71 |
+
// records the workerID of a node that we sent an RPC to.
|
72 |
+
// workerIDs are added here when we attach a send function to this autograd
|
73 |
+
// context
|
74 |
+
void addKnownWorkerId(const rpc::worker_id_t workerId);
|
75 |
+
|
76 |
+
// Retrieves a set containing the known workerIds for this context
|
77 |
+
// These are the different workers that this context has sent RPCs to.
|
78 |
+
std::unordered_set<rpc::worker_id_t> getKnownWorkerIds() const;
|
79 |
+
|
80 |
+
private:
|
81 |
+
friend class BackwardPassCleanupGuard;
|
82 |
+
friend class DistEngine;
|
83 |
+
friend class RecvRpcBackward;
|
84 |
+
friend class DistAccumulateGradCaptureHook;
|
85 |
+
|
86 |
+
// Record that we would like to accumulate the provided gradient on the given
|
87 |
+
// variable.
|
88 |
+
void accumulateGrad(
|
89 |
+
const torch::autograd::Variable& variable,
|
90 |
+
const torch::Tensor& grad,
|
91 |
+
size_t num_expected_refs);
|
92 |
+
|
93 |
+
// Retrieve the GraphTask.
|
94 |
+
std::shared_ptr<torch::autograd::GraphTask> retrieveGraphTask();
|
95 |
+
|
96 |
+
// Set the appropriate graph task for the backward pass. Can be called only
|
97 |
+
// once.
|
98 |
+
void setGraphTask(std::shared_ptr<torch::autograd::GraphTask> graphTask);
|
99 |
+
|
100 |
+
// Resets the graph task to ensure we can run another distributed backward
|
101 |
+
// pass for the same autograd context.
|
102 |
+
void resetGraphTask();
|
103 |
+
|
104 |
+
// Waits for all outstanding RPCs for this context to finish and clears all
|
105 |
+
// outstanding rpcs held in this context. This should be called only once.
|
106 |
+
c10::intrusive_ptr<c10::ivalue::Future> clearAndWaitForOutstandingRpcsAsync();
|
107 |
+
|
108 |
+
void clearOutstandingRpcs();
|
109 |
+
|
110 |
+
// Record an event to mark the completion of gradient computation. These
|
111 |
+
// events will later help to properly synchronize gradients consumptions
|
112 |
+
// in getGradients(). We need these events because backward and
|
113 |
+
// optimizer.step are separate RPC calls, and will occur on different CUDA
|
114 |
+
// streams. Without synchronization, it is possible that gradients are
|
115 |
+
// consumed before they are ready.
|
116 |
+
void recordGradEvent(c10::Device device);
|
117 |
+
|
118 |
+
const int64_t contextId_;
|
119 |
+
|
120 |
+
// Set containing known worker IDs, used in cleaning up autograd context.
|
121 |
+
// Whenever a sendRpcBackward is attached to the autograd graph for this
|
122 |
+
// context, the destination is added here.
|
123 |
+
std::unordered_set<rpc::worker_id_t> knownWorkerIds_;
|
124 |
+
|
125 |
+
// Map from autograd_message_id to appropriate 'send' autograd function.
|
126 |
+
std::unordered_map<int64_t, std::shared_ptr<SendRpcBackward>>
|
127 |
+
sendAutogradFunctions_;
|
128 |
+
|
129 |
+
// Map from autograd_message_id to appropriate 'recv' autograd function.
|
130 |
+
std::unordered_map<int64_t, std::shared_ptr<RecvRpcBackward>>
|
131 |
+
recvAutogradFunctions_;
|
132 |
+
|
133 |
+
// Gradients accumulated in this context so far. The key is the variable on
|
134 |
+
// which the gradient needs to be accumulated and the value is the gradient
|
135 |
+
// that needs to be accumulated on that variable..
|
136 |
+
c10::Dict<torch::Tensor, torch::Tensor> accumulatedGrads_;
|
137 |
+
|
138 |
+
// See comments for recordGradEvent(c10::Device device);
|
139 |
+
std::unordered_map<c10::Device, c10::Event> gradReadyEvents_;
|
140 |
+
const c10::impl::VirtualGuardImpl impl_;
|
141 |
+
|
142 |
+
// The autograd GraphTask for the backward pass on this node for this context.
|
143 |
+
std::shared_ptr<torch::autograd::GraphTask> graphTask_;
|
144 |
+
|
145 |
+
// List of futures for RPCs initiated by this node to propagate gradients to
|
146 |
+
// other nodes. The distributed autograd engine on this node can return
|
147 |
+
// successfully only if all these futures are done and are successful.
|
148 |
+
std::vector<c10::intrusive_ptr<rpc::JitFuture>> outStandingRpcs_;
|
149 |
+
|
150 |
+
// Lock to protect concurrent modification of the context.
|
151 |
+
mutable std::mutex lock_;
|
152 |
+
};
|
153 |
+
|
154 |
+
using ContextPtr = std::shared_ptr<DistAutogradContext>;
|
155 |
+
|
156 |
+
// This class stores a shared_ptr to a DistAutogradContext instance in a
|
157 |
+
// thread local variable. The instance is given by the call site. The class
|
158 |
+
// doesn't know the current context. It's just a util class.
|
159 |
+
class TORCH_API ThreadLocalDistAutogradContext {
|
160 |
+
public:
|
161 |
+
// Store 'new_context' to the thread local variable maintained by this class.
|
162 |
+
explicit ThreadLocalDistAutogradContext(ContextPtr&& new_context);
|
163 |
+
~ThreadLocalDistAutogradContext();
|
164 |
+
|
165 |
+
// Retrieve the stored DistAutogradContext instance.
|
166 |
+
static ContextPtr getContextPtr();
|
167 |
+
|
168 |
+
private:
|
169 |
+
ContextPtr prev_context_ptr_;
|
170 |
+
};
|
171 |
+
|
172 |
+
} // namespace autograd
|
173 |
+
} // namespace distributed
|
174 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/functions/recvrpc_backward.h
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/function.h>
|
4 |
+
#include <torch/csrc/distributed/autograd/context/context.h>
|
5 |
+
#include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h>
|
6 |
+
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace distributed {
|
10 |
+
namespace autograd {
|
11 |
+
|
12 |
+
// Forward declarations.
|
13 |
+
class DistAutogradContext;
|
14 |
+
|
15 |
+
// As part of our distributed autograd implementation, whenever we receive an
|
16 |
+
// RPC from a node, we add a 'RecvRpcBackward' autograd function to the
|
17 |
+
// autograd graph. This is more or less a placeholder function that is used to
|
18 |
+
// pass gradients to the remote host during the backward pass. The inputs to the
|
19 |
+
// RPC function are the inputs to this autograd function.
|
20 |
+
class TORCH_API RecvRpcBackward : public torch::autograd::Node {
|
21 |
+
public:
|
22 |
+
explicit RecvRpcBackward(
|
23 |
+
const AutogradMetadata& autogradMetadata,
|
24 |
+
std::shared_ptr<DistAutogradContext> autogradContext,
|
25 |
+
rpc::worker_id_t fromWorkerId,
|
26 |
+
rpc::DeviceMap deviceMap);
|
27 |
+
|
28 |
+
torch::autograd::variable_list apply(
|
29 |
+
torch::autograd::variable_list&& grads) override;
|
30 |
+
|
31 |
+
private:
|
32 |
+
const AutogradMetadata autogradMetadata_;
|
33 |
+
|
34 |
+
// Hold a weak reference to the autograd context to avoid circular
|
35 |
+
// dependencies with the context (since it holds a reference to
|
36 |
+
// RecvRpcBackward).
|
37 |
+
std::weak_ptr<DistAutogradContext> autogradContext_;
|
38 |
+
|
39 |
+
// The worker id from which the RPC was received. During the backward pass,
|
40 |
+
// we need to propagate the gradients to this workerId.
|
41 |
+
rpc::worker_id_t fromWorkerId_;
|
42 |
+
|
43 |
+
// Device mapping for tensors sent over RPC.
|
44 |
+
const rpc::DeviceMap deviceMap_;
|
45 |
+
};
|
46 |
+
|
47 |
+
} // namespace autograd
|
48 |
+
} // namespace distributed
|
49 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/functions/sendrpc_backward.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/function.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace distributed {
|
7 |
+
namespace autograd {
|
8 |
+
|
9 |
+
// As part of our distributed autograd implementation, whenever we send an RPC
|
10 |
+
// from one node to another, we add a 'SendRpcBackward' autograd function to the
|
11 |
+
// autograd graph. This is more or less a placeholder function that is used to
|
12 |
+
// kickoff the autograd engine on the current worker on the backward pass. The
|
13 |
+
// edges for this autograd function are the inputs to the RPC method.
|
14 |
+
//
|
15 |
+
// During the backward pass, this function is queued for execution in the
|
16 |
+
// autograd engine which eventually runs the rest of the autograd graph.
|
17 |
+
struct TORCH_API SendRpcBackward : public torch::autograd::Node {
|
18 |
+
public:
|
19 |
+
torch::autograd::variable_list apply(
|
20 |
+
torch::autograd::variable_list&& inputs) override;
|
21 |
+
|
22 |
+
// SendRpcBackward is actually the root of an autograd graph on the local
|
23 |
+
// node. As a result, it doesn't receive any 'inputs', but rather the RPC
|
24 |
+
// framework passes gradients over to this function to kickoff local autograd
|
25 |
+
// computation.
|
26 |
+
void setGrads(const torch::autograd::variable_list& grads);
|
27 |
+
|
28 |
+
// Retrieve the grads for the function.
|
29 |
+
const torch::autograd::variable_list& getGrads() const;
|
30 |
+
|
31 |
+
private:
|
32 |
+
torch::autograd::variable_list grads_;
|
33 |
+
};
|
34 |
+
|
35 |
+
} // namespace autograd
|
36 |
+
} // namespace distributed
|
37 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <cstdint>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace distributed {
|
8 |
+
namespace autograd {
|
9 |
+
|
10 |
+
// This structure represents autograd metadata that we need to pass across
|
11 |
+
// different nodes when we call an RPC which needs autograd computation.
|
12 |
+
struct TORCH_API AutogradMetadata {
|
13 |
+
AutogradMetadata(int64_t autogradContextId, int64_t autogradMessageId);
|
14 |
+
|
15 |
+
// autogradContextId_ is a globally unique integer that identifies a
|
16 |
+
// particular distributed autograd pass.
|
17 |
+
int64_t autogradContextId;
|
18 |
+
// autogradMessageId_ is a globally unique integer that identifies a pair
|
19 |
+
// of send/recv autograd functions.
|
20 |
+
int64_t autogradMessageId;
|
21 |
+
};
|
22 |
+
|
23 |
+
} // namespace autograd
|
24 |
+
} // namespace distributed
|
25 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace distributed {
|
9 |
+
namespace autograd {
|
10 |
+
|
11 |
+
// Used to request other workers to clean up their autograd context.
|
12 |
+
class TORCH_API CleanupAutogradContextReq : public rpc::RpcCommandBase {
|
13 |
+
public:
|
14 |
+
explicit CleanupAutogradContextReq(int64_t context_id);
|
15 |
+
// Serialization and deserialization methods.
|
16 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
17 |
+
static std::unique_ptr<CleanupAutogradContextReq> fromMessage(
|
18 |
+
const rpc::Message& message);
|
19 |
+
|
20 |
+
// Retrieve the context id we are cleaning up with this message.
|
21 |
+
int64_t getContextId();
|
22 |
+
|
23 |
+
private:
|
24 |
+
int64_t context_id_;
|
25 |
+
};
|
26 |
+
|
27 |
+
} // namespace autograd
|
28 |
+
} // namespace distributed
|
29 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace distributed {
|
8 |
+
namespace autograd {
|
9 |
+
|
10 |
+
// Empty response for CleanupAutogradContextReq. Send to acknowledge receipt of
|
11 |
+
// a CleanupAutogradContextReq.
|
12 |
+
class TORCH_API CleanupAutogradContextResp : public rpc::RpcCommandBase {
|
13 |
+
public:
|
14 |
+
CleanupAutogradContextResp() = default;
|
15 |
+
// Serialization and deserialization methods.
|
16 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
17 |
+
static std::unique_ptr<CleanupAutogradContextResp> fromMessage(
|
18 |
+
const rpc::Message& message);
|
19 |
+
};
|
20 |
+
|
21 |
+
} // namespace autograd
|
22 |
+
} // namespace distributed
|
23 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.h
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace distributed {
|
10 |
+
namespace autograd {
|
11 |
+
|
12 |
+
// Used to propagate gradients from one node to another during a distributed
|
13 |
+
// backwards pass. This RPC call is invoked when we hit a `recv` autograd
|
14 |
+
// function during backward pass execution.
|
15 |
+
class TORCH_API PropagateGradientsReq : public rpc::RpcCommandBase {
|
16 |
+
public:
|
17 |
+
PropagateGradientsReq(
|
18 |
+
const AutogradMetadata& autogradMetadata,
|
19 |
+
std::vector<torch::autograd::Variable> grads,
|
20 |
+
bool retainGraph = false);
|
21 |
+
|
22 |
+
const AutogradMetadata& getAutogradMetadata();
|
23 |
+
|
24 |
+
const std::vector<torch::autograd::Variable>& getGrads();
|
25 |
+
|
26 |
+
// Serialization and deserialization methods.
|
27 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
28 |
+
static std::unique_ptr<PropagateGradientsReq> fromMessage(
|
29 |
+
const rpc::Message& message);
|
30 |
+
|
31 |
+
// Whether or not to retain the autograd graph.
|
32 |
+
bool retainGraph();
|
33 |
+
|
34 |
+
private:
|
35 |
+
AutogradMetadata autogradMetadata_;
|
36 |
+
std::vector<torch::autograd::Variable> grads_;
|
37 |
+
bool retainGraph_;
|
38 |
+
};
|
39 |
+
|
40 |
+
} // namespace autograd
|
41 |
+
} // namespace distributed
|
42 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace distributed {
|
8 |
+
namespace autograd {
|
9 |
+
|
10 |
+
// Response for the PropagateGradients call. Currently, this class is mostly
|
11 |
+
// just a placeholder and sends an empty message over the wire. The purpose of
|
12 |
+
// this RPC command is to indicate whether or not the PropagateGradientsReq call
|
13 |
+
// was successfully or not.
|
14 |
+
class TORCH_API PropagateGradientsResp : public rpc::RpcCommandBase {
|
15 |
+
public:
|
16 |
+
PropagateGradientsResp() = default;
|
17 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
18 |
+
static std::unique_ptr<PropagateGradientsResp> fromMessage(
|
19 |
+
const rpc::Message& message);
|
20 |
+
};
|
21 |
+
|
22 |
+
} // namespace autograd
|
23 |
+
} // namespace distributed
|
24 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/autograd/rpc_messages/autograd_metadata.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace distributed {
|
9 |
+
namespace autograd {
|
10 |
+
|
11 |
+
// Represents an RPC that includes autograd information. This class basically
|
12 |
+
// wraps another `RpcCommandBase` object which represents the actual RPC and has
|
13 |
+
// additional autograd information associated with that RPC.
|
14 |
+
class TORCH_API RpcWithAutograd final : public rpc::RpcCommandBase {
|
15 |
+
public:
|
16 |
+
// Used when we are sending an RPC over the wire.
|
17 |
+
RpcWithAutograd(
|
18 |
+
rpc::worker_id_t fromWorkerId,
|
19 |
+
rpc::MessageType messageType,
|
20 |
+
const AutogradMetadata& autogradMetadata,
|
21 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage,
|
22 |
+
rpc::DeviceMap deviceMap = {});
|
23 |
+
|
24 |
+
// Used when receiving an RPC over the wire.
|
25 |
+
RpcWithAutograd(
|
26 |
+
rpc::worker_id_t fromWorkerId,
|
27 |
+
rpc::MessageType messageType,
|
28 |
+
const AutogradMetadata& autogradMetadata,
|
29 |
+
std::unique_ptr<rpc::RpcCommandBase> wrappedRpc,
|
30 |
+
rpc::MessageType wrappedMessageType,
|
31 |
+
std::vector<torch::Tensor> tensors,
|
32 |
+
rpc::DeviceMap deviceMap = {});
|
33 |
+
|
34 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
35 |
+
|
36 |
+
static std::unique_ptr<RpcWithAutograd> fromMessage(
|
37 |
+
const rpc::Message& message);
|
38 |
+
|
39 |
+
// Retrieves tensors as part of this RPC, which need to be considered for
|
40 |
+
// autograd computations.
|
41 |
+
std::vector<torch::Tensor>& tensors();
|
42 |
+
|
43 |
+
const AutogradMetadata& autogradMetadata() const;
|
44 |
+
|
45 |
+
RpcCommandBase& wrappedRpc();
|
46 |
+
|
47 |
+
void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc);
|
48 |
+
|
49 |
+
std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&;
|
50 |
+
|
51 |
+
// Message type of the wrapped RPC.
|
52 |
+
rpc::MessageType wrappedMessageType() const;
|
53 |
+
|
54 |
+
// Retrieve the worker id from which the RPC originated.
|
55 |
+
rpc::worker_id_t fromWorkerId() const;
|
56 |
+
|
57 |
+
// Retrieve the device map.
|
58 |
+
const rpc::DeviceMap& deviceMap();
|
59 |
+
|
60 |
+
private:
|
61 |
+
// WorkerId from which this RPC originated. This is necessary for knowing
|
62 |
+
// which worker we need to contact during the backward pass.
|
63 |
+
rpc::worker_id_t fromWorkerId_;
|
64 |
+
|
65 |
+
// Message type for this call.
|
66 |
+
rpc::MessageType messageType_;
|
67 |
+
|
68 |
+
AutogradMetadata autogradMetadata_;
|
69 |
+
|
70 |
+
// Since wrappedMessage_ is destructively constructed from wrappedRpc_,
|
71 |
+
// they are valid exclusively. They are used for different purpose.
|
72 |
+
// wrappedRpc_ is used while constructing receive rpcWithAutograd;
|
73 |
+
// wrappedMessage_ is used while constructing send rpcWithAutograd;
|
74 |
+
|
75 |
+
// When receive rpcWithAutograd is constructed fromMessage, it is valid;
|
76 |
+
// When send rpcWithAutograd is constructed before toMessage, it is nullptr;
|
77 |
+
std::unique_ptr<RpcCommandBase> wrappedRpc_;
|
78 |
+
|
79 |
+
// Serialized message representing wrappedRpc_. Used mostly as a cache to
|
80 |
+
// avoid serializing the request twice.
|
81 |
+
// When receive rpcWithAutograd is constructed fromMessage, it is nullptr;
|
82 |
+
// When send rpcWithAutograd is constructed before toMessage, it is valid;
|
83 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage_;
|
84 |
+
|
85 |
+
// message type of the wrappedMessage, this is stored separately since
|
86 |
+
// wrappedMessage_ is not always guaranteed to be populated.
|
87 |
+
rpc::MessageType wrappedMessageType_;
|
88 |
+
|
89 |
+
// Tensors part of the wrappedRpc that need to be considered for autograd.
|
90 |
+
std::vector<torch::Tensor> tensors_;
|
91 |
+
|
92 |
+
// Device mapping for tensors that are sent across an RPC to another node.
|
93 |
+
rpc::DeviceMap deviceMap_;
|
94 |
+
};
|
95 |
+
|
96 |
+
} // namespace autograd
|
97 |
+
} // namespace distributed
|
98 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.h
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/profiler.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
6 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
7 |
+
#include <torch/csrc/distributed/rpc/types.h>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace distributed {
|
11 |
+
namespace autograd {
|
12 |
+
|
13 |
+
class TORCH_API RpcWithProfilingReq : public rpc::RpcCommandBase {
|
14 |
+
public:
|
15 |
+
// For sending RPCs, invoked when client is creating this RPC command.
|
16 |
+
RpcWithProfilingReq(
|
17 |
+
rpc::MessageType messageType,
|
18 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage,
|
19 |
+
torch::autograd::profiler::ProfilerConfig&& profilerConfig,
|
20 |
+
rpc::ProfilingId profilingKeyId);
|
21 |
+
|
22 |
+
// For receiving an RPC
|
23 |
+
// Used in fromMessage.
|
24 |
+
RpcWithProfilingReq(
|
25 |
+
rpc::MessageType messageType,
|
26 |
+
std::unique_ptr<rpc::RpcCommandBase> wrappedRpc,
|
27 |
+
rpc::MessageType wrappedMessageType,
|
28 |
+
std::vector<torch::Tensor> tensors,
|
29 |
+
torch::autograd::profiler::ProfilerConfig&& profilerConfig,
|
30 |
+
rpc::ProfilingId profilingKeyId);
|
31 |
+
|
32 |
+
// Convert this RPC Command to a Message that can be sent over the wire.
|
33 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
34 |
+
static std::unique_ptr<RpcWithProfilingReq> fromMessage(
|
35 |
+
const rpc::Message& message);
|
36 |
+
|
37 |
+
// Retrieve the profiling data that is associated with this command.
|
38 |
+
torch::autograd::profiler::ProfilerConfig getProfilingConfig() const;
|
39 |
+
// Retrieve the globally unique profiling ID corresponding to this command.
|
40 |
+
const rpc::ProfilingId& getProfilingId() const;
|
41 |
+
// Retrieve the original RPC which this ProfilingRPC wraps.
|
42 |
+
RpcCommandBase& wrappedRpc();
|
43 |
+
// Destructively move the wrapped RPC.
|
44 |
+
std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&;
|
45 |
+
// Message type of the wrapped RPC
|
46 |
+
rpc::MessageType wrappedMessageType() const;
|
47 |
+
void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc);
|
48 |
+
|
49 |
+
private:
|
50 |
+
// message type
|
51 |
+
const rpc::MessageType messageType_;
|
52 |
+
// wrapped message
|
53 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage_;
|
54 |
+
std::unique_ptr<RpcCommandBase> wrappedRpc_;
|
55 |
+
rpc::MessageType wrappedMessageType_;
|
56 |
+
std::vector<torch::Tensor> tensors_;
|
57 |
+
const torch::autograd::profiler::ProfilerConfig profilerConfig_;
|
58 |
+
const rpc::ProfilingId profilingKeyId_;
|
59 |
+
};
|
60 |
+
} // namespace autograd
|
61 |
+
} // namespace distributed
|
62 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_resp.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/profiler.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
6 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
7 |
+
#include <torch/csrc/distributed/rpc/types.h>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace distributed {
|
11 |
+
namespace autograd {
|
12 |
+
class TORCH_API RpcWithProfilingResp : public rpc::RpcCommandBase {
|
13 |
+
public:
|
14 |
+
// For sending RPCs over the wire
|
15 |
+
RpcWithProfilingResp(
|
16 |
+
rpc::MessageType messageType,
|
17 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage,
|
18 |
+
std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents,
|
19 |
+
rpc::ProfilingId profilingId);
|
20 |
+
|
21 |
+
// For receiving RPCs. Used in from message when converting a message received
|
22 |
+
// over the wire.
|
23 |
+
RpcWithProfilingResp(
|
24 |
+
rpc::MessageType messageType,
|
25 |
+
std::unique_ptr<rpc::RpcCommandBase> wrappedRpc,
|
26 |
+
rpc::MessageType wrappedMessageType,
|
27 |
+
std::vector<torch::Tensor> tensors,
|
28 |
+
std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents,
|
29 |
+
rpc::ProfilingId profilingId);
|
30 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
31 |
+
static std::unique_ptr<RpcWithProfilingResp> fromMessage(
|
32 |
+
const rpc::Message& message);
|
33 |
+
// Retrieve remote Events
|
34 |
+
std::vector<torch::autograd::profiler::LegacyEvent> getProfiledEvents() const;
|
35 |
+
// Retrieve the globally unique profiling ID corresponding to this command.
|
36 |
+
const rpc::ProfilingId& getProfilingId() const;
|
37 |
+
// Retrieve the original RPC which this ProfilingRPC wraps.
|
38 |
+
RpcCommandBase& wrappedRpc();
|
39 |
+
// Destructively move the wrapped RPC.
|
40 |
+
std::unique_ptr<RpcCommandBase> moveWrappedRpc() &&;
|
41 |
+
// Message type of the wrapped RPC
|
42 |
+
rpc::MessageType wrappedMessageType() const;
|
43 |
+
// Set the wrapped RPC for this RPC.
|
44 |
+
void setWrappedRpc(std::unique_ptr<RpcCommandBase> wrappedRpc);
|
45 |
+
|
46 |
+
private:
|
47 |
+
// message type
|
48 |
+
const rpc::MessageType messageType_;
|
49 |
+
// wrapped message
|
50 |
+
c10::intrusive_ptr<rpc::Message> wrappedMessage_;
|
51 |
+
std::unique_ptr<RpcCommandBase> wrappedRpc_;
|
52 |
+
rpc::MessageType wrappedMessageType_;
|
53 |
+
std::vector<torch::Tensor> tensors_;
|
54 |
+
const std::vector<torch::autograd::profiler::LegacyEvent> profiledEvents_;
|
55 |
+
const rpc::ProfilingId profilingId_;
|
56 |
+
};
|
57 |
+
} // namespace autograd
|
58 |
+
} // namespace distributed
|
59 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rref_backward_req.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
5 |
+
#include <torch/csrc/distributed/rpc/types.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace distributed {
|
9 |
+
namespace autograd {
|
10 |
+
|
11 |
+
// Internal system RPC to invoke distributed backward pass on remote nodes when
|
12 |
+
// 'rref.backward()' is invoked.
|
13 |
+
class TORCH_API RRefBackwardReq : public rpc::RpcCommandBase {
|
14 |
+
public:
|
15 |
+
RRefBackwardReq(
|
16 |
+
const rpc::RRefId& rrefId,
|
17 |
+
int64_t autogradContextId,
|
18 |
+
bool retainGraph = false);
|
19 |
+
|
20 |
+
const rpc::RRefId& getRRefId() const;
|
21 |
+
|
22 |
+
int64_t getAutogradContextId() const;
|
23 |
+
|
24 |
+
bool retainGraph() const;
|
25 |
+
|
26 |
+
// Serialization and deserialization methods.
|
27 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
28 |
+
static std::unique_ptr<RRefBackwardReq> fromMessage(
|
29 |
+
const rpc::Message& message);
|
30 |
+
|
31 |
+
private:
|
32 |
+
const rpc::RRefId rrefId_;
|
33 |
+
const int64_t autogradContextId_;
|
34 |
+
const bool retainGraph_;
|
35 |
+
};
|
36 |
+
|
37 |
+
} // namespace autograd
|
38 |
+
} // namespace distributed
|
39 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/autograd/rpc_messages/rref_backward_resp.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/rpc/message.h>
|
4 |
+
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace distributed {
|
8 |
+
namespace autograd {
|
9 |
+
|
10 |
+
// Response for the RRefBackwardReq.
|
11 |
+
class TORCH_API RRefBackwardResp : public rpc::RpcCommandBase {
|
12 |
+
public:
|
13 |
+
RRefBackwardResp() = default;
|
14 |
+
c10::intrusive_ptr<rpc::Message> toMessageImpl() && override;
|
15 |
+
static std::unique_ptr<RRefBackwardResp> fromMessage(
|
16 |
+
const rpc::Message& message);
|
17 |
+
};
|
18 |
+
|
19 |
+
} // namespace autograd
|
20 |
+
} // namespace distributed
|
21 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Backend.hpp
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <condition_variable>
|
4 |
+
#include <memory>
|
5 |
+
#include <mutex>
|
6 |
+
#include <stdexcept>
|
7 |
+
#include <unordered_map>
|
8 |
+
#include <utility>
|
9 |
+
#include <vector>
|
10 |
+
|
11 |
+
#include <ATen/ATen.h>
|
12 |
+
#include <c10/macros/Macros.h>
|
13 |
+
|
14 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
15 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
16 |
+
#include <torch/csrc/distributed/c10d/Work.hpp>
|
17 |
+
#include <torch/csrc/distributed/c10d/debug.h>
|
18 |
+
|
19 |
+
constexpr auto kBackendDefaultTimeout =
|
20 |
+
std::chrono::milliseconds(30 * 60 * 1000);
|
21 |
+
|
22 |
+
namespace c10d {
|
23 |
+
|
24 |
+
class TORCH_API Backend : public torch::CustomClassHolder {
|
25 |
+
public:
|
26 |
+
// Backend Options is a base struct that defines the basic options
|
27 |
+
// when constructing a Backend. Each Backend subclass should
|
28 |
+
// extend this struct and define its options if it wants to provide more
|
29 |
+
// config options (beyond basic ones defined here) to end user.
|
30 |
+
struct TORCH_API Options : torch::CustomClassHolder {
|
31 |
+
explicit Options(
|
32 |
+
std::string backend,
|
33 |
+
std::chrono::milliseconds timeout = kBackendDefaultTimeout)
|
34 |
+
: timeout(timeout), backend(std::move(backend)) {}
|
35 |
+
~Options() override = default;
|
36 |
+
|
37 |
+
std::chrono::milliseconds timeout;
|
38 |
+
|
39 |
+
// backend name
|
40 |
+
const std::string backend;
|
41 |
+
};
|
42 |
+
|
43 |
+
explicit Backend(int rank, int size);
|
44 |
+
~Backend() override = 0;
|
45 |
+
|
46 |
+
int getRank() const {
|
47 |
+
return rank_;
|
48 |
+
}
|
49 |
+
|
50 |
+
int getSize() const {
|
51 |
+
return size_;
|
52 |
+
}
|
53 |
+
|
54 |
+
// Returns an unique opaque ID of this backend that can be used to correlate
|
55 |
+
// with its collectives.
|
56 |
+
int64_t getID() const {
|
57 |
+
return reinterpret_cast<std::intptr_t>(this);
|
58 |
+
}
|
59 |
+
|
60 |
+
virtual void startCoalescing() {
|
61 |
+
TORCH_CHECK(
|
62 |
+
false,
|
63 |
+
c10::str(
|
64 |
+
"Backend ",
|
65 |
+
getBackendName(),
|
66 |
+
" does not implement startCoalescing"));
|
67 |
+
}
|
68 |
+
|
69 |
+
virtual c10::intrusive_ptr<Work> endCoalescing() {
|
70 |
+
TORCH_CHECK(
|
71 |
+
false,
|
72 |
+
c10::str(
|
73 |
+
"Backend ", getBackendName(), " does not implement endCoalescing"));
|
74 |
+
}
|
75 |
+
|
76 |
+
// Subclasses must override this method to return the backend name
|
77 |
+
virtual const std::string getBackendName() const {
|
78 |
+
TORCH_INTERNAL_ASSERT(false, "getBackendName is not implemented.");
|
79 |
+
};
|
80 |
+
|
81 |
+
virtual c10::intrusive_ptr<Work> broadcast(
|
82 |
+
std::vector<at::Tensor>& /* tensors */,
|
83 |
+
const BroadcastOptions& /* opts */ = BroadcastOptions()) {
|
84 |
+
TORCH_CHECK(
|
85 |
+
false,
|
86 |
+
c10::str("Backend ", getBackendName(), " does not support broadcast"));
|
87 |
+
}
|
88 |
+
|
89 |
+
virtual c10::intrusive_ptr<Work> allreduce(
|
90 |
+
std::vector<at::Tensor>& /* tensors */,
|
91 |
+
const AllreduceOptions& /* opts */ = AllreduceOptions()) {
|
92 |
+
TORCH_CHECK(
|
93 |
+
false,
|
94 |
+
c10::str("Backend ", getBackendName(), " does not support allreduce"));
|
95 |
+
}
|
96 |
+
|
97 |
+
virtual c10::intrusive_ptr<Work> allreduce_sparse(
|
98 |
+
std::vector<at::Tensor>& /* tensors */,
|
99 |
+
const AllreduceOptions& /* opts */ = AllreduceOptions()) {
|
100 |
+
TORCH_CHECK(
|
101 |
+
false,
|
102 |
+
c10::str(
|
103 |
+
"Backend ",
|
104 |
+
getBackendName(),
|
105 |
+
" does not support allreduce sparse"));
|
106 |
+
}
|
107 |
+
|
108 |
+
virtual c10::intrusive_ptr<Work> allreduce_coalesced(
|
109 |
+
std::vector<at::Tensor>& /* tensors */,
|
110 |
+
const AllreduceCoalescedOptions& /* opts */ =
|
111 |
+
AllreduceCoalescedOptions()) {
|
112 |
+
TORCH_CHECK(
|
113 |
+
false,
|
114 |
+
c10::str(
|
115 |
+
"Backend ",
|
116 |
+
getBackendName(),
|
117 |
+
" does not support allreduce_coalesced"));
|
118 |
+
}
|
119 |
+
|
120 |
+
virtual c10::intrusive_ptr<Work> reduce(
|
121 |
+
std::vector<at::Tensor>& /* tensors */,
|
122 |
+
const ReduceOptions& /* opts */ = ReduceOptions()) {
|
123 |
+
TORCH_CHECK(
|
124 |
+
false,
|
125 |
+
c10::str("Backend ", getBackendName(), " does not support reduce"));
|
126 |
+
}
|
127 |
+
|
128 |
+
virtual c10::intrusive_ptr<Work> allgather(
|
129 |
+
std::vector<std::vector<at::Tensor>>& /* outputTensors */,
|
130 |
+
std::vector<at::Tensor>& /* inputTensors */,
|
131 |
+
const AllgatherOptions& /* opts */ = AllgatherOptions()) {
|
132 |
+
TORCH_CHECK(
|
133 |
+
false,
|
134 |
+
c10::str("Backend ", getBackendName(), " does not support allgather"));
|
135 |
+
}
|
136 |
+
|
137 |
+
// Gathers a single tensor inputBuffer into a single buffer outputBuffer that
|
138 |
+
// is interpreted as a contiguous collection of size inputBuffer * WORLD_SIZE.
|
139 |
+
// For implementers of ProcessGroup API and advanced users only.
|
140 |
+
// Note: this function will be deprecated in near future.
|
141 |
+
virtual c10::intrusive_ptr<Work> _allgather_base(
|
142 |
+
at::Tensor& /* outputBuffer */,
|
143 |
+
at::Tensor& /* inputBuffer */,
|
144 |
+
const AllgatherOptions& /* opts */ = AllgatherOptions()) {
|
145 |
+
TORCH_CHECK(
|
146 |
+
false,
|
147 |
+
c10::str(
|
148 |
+
"Backend ", getBackendName(), " does not support _allgather_base"));
|
149 |
+
}
|
150 |
+
|
151 |
+
// This function is deprecated and will be moved out of Backend to comms:
|
152 |
+
// * do not add dependencies on this function,
|
153 |
+
// * do not implement it in your Backend, implement _allgather_base
|
154 |
+
// instead.
|
155 |
+
virtual c10::intrusive_ptr<Work> allgather_coalesced(
|
156 |
+
std::vector<std::vector<at::Tensor>>& /* outputTensorLists */,
|
157 |
+
std::vector<at::Tensor>& /* inputTensors */,
|
158 |
+
const AllgatherOptions& /* opts */ = AllgatherOptions()) {
|
159 |
+
TORCH_CHECK(
|
160 |
+
false,
|
161 |
+
c10::str(
|
162 |
+
"Backend ",
|
163 |
+
getBackendName(),
|
164 |
+
" does not support allgather_coalesced"));
|
165 |
+
}
|
166 |
+
|
167 |
+
// This function is a coalesced version of `allgather_into_tensor` (currently
|
168 |
+
// still named as `_allgather_base`). Each tensor in the vector corresponds to
|
169 |
+
// an input/output of one `allgather_into_tensor` operation.
|
170 |
+
virtual c10::intrusive_ptr<Work> allgather_into_tensor_coalesced(
|
171 |
+
std::vector<at::Tensor>& /* outputs */,
|
172 |
+
std::vector<at::Tensor>& /* inputs */,
|
173 |
+
const AllgatherOptions& /* opts */ = AllgatherOptions()) {
|
174 |
+
TORCH_CHECK(
|
175 |
+
false,
|
176 |
+
c10::str(
|
177 |
+
"Backend ",
|
178 |
+
getBackendName(),
|
179 |
+
" does not support allgather_into_tensor_coalesced"));
|
180 |
+
}
|
181 |
+
|
182 |
+
virtual c10::intrusive_ptr<Work> gather(
|
183 |
+
std::vector<std::vector<at::Tensor>>& /* outputTensors */,
|
184 |
+
std::vector<at::Tensor>& /* inputTensors */,
|
185 |
+
const GatherOptions& /* opts */ = GatherOptions()) {
|
186 |
+
TORCH_CHECK(
|
187 |
+
false,
|
188 |
+
c10::str("Backend ", getBackendName(), " does not support gather"));
|
189 |
+
}
|
190 |
+
|
191 |
+
virtual c10::intrusive_ptr<Work> scatter(
|
192 |
+
std::vector<at::Tensor>& /* outputTensors */,
|
193 |
+
std::vector<std::vector<at::Tensor>>& /* inputTensors */,
|
194 |
+
const ScatterOptions& /* opts */ = ScatterOptions()) {
|
195 |
+
TORCH_CHECK(
|
196 |
+
false,
|
197 |
+
c10::str("Backend ", getBackendName(), " does not support scatter"));
|
198 |
+
}
|
199 |
+
|
200 |
+
virtual c10::intrusive_ptr<Work> reduce_scatter(
|
201 |
+
std::vector<at::Tensor>& /* outputTensors */,
|
202 |
+
std::vector<std::vector<at::Tensor>>& /* inputTensors */,
|
203 |
+
const ReduceScatterOptions& /* opts */ = ReduceScatterOptions()) {
|
204 |
+
TORCH_CHECK(
|
205 |
+
false,
|
206 |
+
c10::str(
|
207 |
+
"Backend ", getBackendName(), " does not support reduce_scatter"));
|
208 |
+
}
|
209 |
+
|
210 |
+
virtual c10::intrusive_ptr<Work> _reduce_scatter_base(
|
211 |
+
at::Tensor& /* outputBuffer */,
|
212 |
+
at::Tensor& /* inputBuffer */,
|
213 |
+
const ReduceScatterOptions& /* opts */ = ReduceScatterOptions()) {
|
214 |
+
TORCH_CHECK(
|
215 |
+
false,
|
216 |
+
c10::str(
|
217 |
+
"Backend ",
|
218 |
+
getBackendName(),
|
219 |
+
" does not support _reduce_scatter_base"));
|
220 |
+
}
|
221 |
+
|
222 |
+
// This function is a coalesced version of `reduce_scatter_tensor` (currently
|
223 |
+
// still named as `_reduce_scatter_base`). Each tensor in the vector
|
224 |
+
// corresponds to an input/output of one `reduce_scatter_tensor` operation.
|
225 |
+
virtual c10::intrusive_ptr<Work> reduce_scatter_tensor_coalesced(
|
226 |
+
std::vector<at::Tensor>& /* outputs */,
|
227 |
+
std::vector<at::Tensor>& /* inputs */,
|
228 |
+
const ReduceScatterOptions& /* opts */ = ReduceScatterOptions()) {
|
229 |
+
TORCH_CHECK(
|
230 |
+
false,
|
231 |
+
c10::str(
|
232 |
+
"Backend ",
|
233 |
+
getBackendName(),
|
234 |
+
" does not support reduce_scatter_tensor_coalesced"));
|
235 |
+
}
|
236 |
+
|
237 |
+
virtual c10::intrusive_ptr<Work> alltoall_base(
|
238 |
+
at::Tensor& /* outputBuffer */,
|
239 |
+
at::Tensor& /* inputBuffer */,
|
240 |
+
std::vector<int64_t>& /* outputSplitSizes */,
|
241 |
+
std::vector<int64_t>& /* inputSplitSizes */,
|
242 |
+
const AllToAllOptions& /* opts */ = AllToAllOptions()) {
|
243 |
+
TORCH_CHECK(
|
244 |
+
false,
|
245 |
+
c10::str(
|
246 |
+
"Backend ", getBackendName(), " does not support alltoall_base"));
|
247 |
+
}
|
248 |
+
|
249 |
+
virtual c10::intrusive_ptr<Work> alltoall(
|
250 |
+
std::vector<at::Tensor>& /* outputTensors */,
|
251 |
+
std::vector<at::Tensor>& /* inputTensors */,
|
252 |
+
const AllToAllOptions& opts = AllToAllOptions()) {
|
253 |
+
TORCH_CHECK(
|
254 |
+
false,
|
255 |
+
c10::str("Backend ", getBackendName(), " does not support alltoall"));
|
256 |
+
}
|
257 |
+
|
258 |
+
virtual void monitoredBarrier(
|
259 |
+
const BarrierOptions& /* unused */,
|
260 |
+
bool /* unused */ = false) {
|
261 |
+
auto backendName = getBackendName();
|
262 |
+
TORCH_CHECK(
|
263 |
+
false,
|
264 |
+
c10::str(
|
265 |
+
"Backend ",
|
266 |
+
backendName,
|
267 |
+
" does not support monitoredBarrier, only GLOO supports monitored barrier."));
|
268 |
+
}
|
269 |
+
|
270 |
+
// Agrees on an initial sequence number for the whole group by having rank 0
|
271 |
+
// create it and broadcast it to other ranks using the store. Only implemented
|
272 |
+
// for GLOO and NCCL backends currently.
|
273 |
+
virtual void setSequenceNumberForGroup() {
|
274 |
+
auto backendName = getBackendName();
|
275 |
+
TORCH_CHECK(
|
276 |
+
false,
|
277 |
+
c10::str(
|
278 |
+
"Backend ",
|
279 |
+
backendName,
|
280 |
+
" does not yet support sequence numbers."));
|
281 |
+
}
|
282 |
+
|
283 |
+
// Retrieves the current sequence number for the whole group, which should be
|
284 |
+
// in sync. If the returned number is not consistent across the group, it
|
285 |
+
// may indicate that there is some sort of collective desynchronization.
|
286 |
+
virtual uint64_t getSequenceNumberForGroup() {
|
287 |
+
auto backendName = getBackendName();
|
288 |
+
TORCH_CHECK(
|
289 |
+
false,
|
290 |
+
c10::str(
|
291 |
+
"Backend ",
|
292 |
+
backendName,
|
293 |
+
" does not yet support sequence numbers."));
|
294 |
+
}
|
295 |
+
|
296 |
+
virtual c10::intrusive_ptr<Work> send(
|
297 |
+
std::vector<at::Tensor>& /* tensors */,
|
298 |
+
int /* dstRank */,
|
299 |
+
int /* tag */) {
|
300 |
+
TORCH_CHECK(
|
301 |
+
false,
|
302 |
+
c10::str("Backend ", getBackendName(), " does not support send"));
|
303 |
+
}
|
304 |
+
|
305 |
+
virtual c10::intrusive_ptr<Work> recv(
|
306 |
+
std::vector<at::Tensor>& /* tensors */,
|
307 |
+
int /* srcRank */,
|
308 |
+
int /* tag */) {
|
309 |
+
TORCH_CHECK(
|
310 |
+
false,
|
311 |
+
c10::str("Backend ", getBackendName(), " does not support recv"));
|
312 |
+
}
|
313 |
+
|
314 |
+
virtual c10::intrusive_ptr<Work> recvAnysource(
|
315 |
+
std::vector<at::Tensor>& /* tensors */,
|
316 |
+
int /* tag */) {
|
317 |
+
TORCH_CHECK(
|
318 |
+
false,
|
319 |
+
c10::str(
|
320 |
+
"Backend ", getBackendName(), " does not support recvAnysource"));
|
321 |
+
}
|
322 |
+
|
323 |
+
virtual c10::intrusive_ptr<Work> barrier(
|
324 |
+
const BarrierOptions& /* opts */ = BarrierOptions()) {
|
325 |
+
TORCH_CHECK(
|
326 |
+
false,
|
327 |
+
c10::str("Backend ", getBackendName(), " does not support barrier"));
|
328 |
+
}
|
329 |
+
|
330 |
+
virtual void registerOnCompletionHook(
|
331 |
+
std::function<void(std::shared_ptr<WorkInfo>)>&& hook) {
|
332 |
+
TORCH_CHECK(
|
333 |
+
false,
|
334 |
+
"Only ProcessGrouppNCCL supports onCompletion hook, but got ",
|
335 |
+
getBackendName(),
|
336 |
+
" backend.");
|
337 |
+
}
|
338 |
+
|
339 |
+
virtual void waitForPendingWorks() {
|
340 |
+
TORCH_CHECK(
|
341 |
+
false,
|
342 |
+
"Only ProcessGrouppNCCL supports waitForPendingWorks, but got ",
|
343 |
+
getBackendName(),
|
344 |
+
" backend.");
|
345 |
+
}
|
346 |
+
|
347 |
+
virtual void enableCollectivesTiming() {
|
348 |
+
TORCH_CHECK(
|
349 |
+
false,
|
350 |
+
"Backend ",
|
351 |
+
getBackendName(),
|
352 |
+
" is missing implementation of enableCollectivesTiming.");
|
353 |
+
}
|
354 |
+
|
355 |
+
bool hasHooks() const {
|
356 |
+
return onCompletionHook_ != nullptr;
|
357 |
+
}
|
358 |
+
|
359 |
+
// Do not call this directly, use ProcessGroup::setGroupName instead.
|
360 |
+
void setGroupName(const std::string& name) {
|
361 |
+
pg_name_ = name;
|
362 |
+
}
|
363 |
+
|
364 |
+
const std::string& getGroupName() const {
|
365 |
+
return pg_name_;
|
366 |
+
}
|
367 |
+
|
368 |
+
protected:
|
369 |
+
// Implementations of this interface need to call this to setup
|
370 |
+
// appropriate logging etc.
|
371 |
+
void init();
|
372 |
+
|
373 |
+
const int rank_;
|
374 |
+
const int size_;
|
375 |
+
// Debug level setting. It is parsed once when ProcessGroup is constructed and
|
376 |
+
// remains the same across use of this process group.
|
377 |
+
DebugLevel dist_debug_level_;
|
378 |
+
std::string pg_name_;
|
379 |
+
|
380 |
+
std::function<void(std::shared_ptr<WorkInfo>)> onCompletionHook_;
|
381 |
+
};
|
382 |
+
|
383 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/FileStore.hpp
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <sys/types.h>
|
4 |
+
|
5 |
+
#include <mutex>
|
6 |
+
#include <unordered_map>
|
7 |
+
|
8 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
9 |
+
|
10 |
+
namespace c10d {
|
11 |
+
|
12 |
+
class TORCH_API FileStore : public Store {
|
13 |
+
public:
|
14 |
+
explicit FileStore(std::string path, int numWorkers);
|
15 |
+
|
16 |
+
~FileStore() override;
|
17 |
+
|
18 |
+
void set(const std::string& key, const std::vector<uint8_t>& value) override;
|
19 |
+
|
20 |
+
std::vector<uint8_t> compareSet(
|
21 |
+
const std::string& key,
|
22 |
+
const std::vector<uint8_t>& expectedValue,
|
23 |
+
const std::vector<uint8_t>& desiredValue) override;
|
24 |
+
|
25 |
+
std::vector<uint8_t> get(const std::string& key) override;
|
26 |
+
|
27 |
+
int64_t add(const std::string& key, int64_t value) override;
|
28 |
+
|
29 |
+
int64_t getNumKeys() override;
|
30 |
+
|
31 |
+
bool deleteKey(const std::string& key) override;
|
32 |
+
|
33 |
+
bool check(const std::vector<std::string>& keys) override;
|
34 |
+
|
35 |
+
void wait(const std::vector<std::string>& keys) override;
|
36 |
+
|
37 |
+
void wait(
|
38 |
+
const std::vector<std::string>& keys,
|
39 |
+
const std::chrono::milliseconds& timeout) override;
|
40 |
+
|
41 |
+
// Returns the path used by the FileStore.
|
42 |
+
const std::string& getPath() const noexcept {
|
43 |
+
return path_;
|
44 |
+
}
|
45 |
+
|
46 |
+
protected:
|
47 |
+
int64_t addHelper(const std::string& key, int64_t i);
|
48 |
+
|
49 |
+
std::string path_;
|
50 |
+
off_t pos_{0};
|
51 |
+
|
52 |
+
int numWorkers_;
|
53 |
+
const std::string cleanupKey_;
|
54 |
+
const std::string refCountKey_;
|
55 |
+
const std::string regularPrefix_;
|
56 |
+
const std::string deletePrefix_;
|
57 |
+
|
58 |
+
std::unordered_map<std::string, std::vector<uint8_t>> cache_;
|
59 |
+
|
60 |
+
std::mutex activeFileOpLock_;
|
61 |
+
};
|
62 |
+
|
63 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GlooDeviceFactory.hpp
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_GLOO
|
4 |
+
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
#include <c10/util/Registry.h>
|
8 |
+
#include <gloo/config.h>
|
9 |
+
#include <gloo/transport/device.h>
|
10 |
+
|
11 |
+
namespace c10d {
|
12 |
+
|
13 |
+
class TORCH_API GlooDeviceFactory {
|
14 |
+
public:
|
15 |
+
// Create new device instance for specific interface.
|
16 |
+
static std::shared_ptr<::gloo::transport::Device> makeDeviceForInterface(
|
17 |
+
const std::string& interface);
|
18 |
+
|
19 |
+
// Create new device instance for specific hostname or address.
|
20 |
+
static std::shared_ptr<::gloo::transport::Device> makeDeviceForHostname(
|
21 |
+
const std::string& hostname);
|
22 |
+
};
|
23 |
+
|
24 |
+
TORCH_DECLARE_SHARED_REGISTRY(
|
25 |
+
GlooDeviceRegistry,
|
26 |
+
::gloo::transport::Device,
|
27 |
+
const std::string&, /* interface */
|
28 |
+
const std::string& /* hostname */);
|
29 |
+
|
30 |
+
} // namespace c10d
|
31 |
+
|
32 |
+
#endif // USE_C10D_GLOO
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/GroupRegistry.hpp
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
4 |
+
|
5 |
+
namespace c10d {
|
6 |
+
|
7 |
+
C10_EXPORT void register_process_group(
|
8 |
+
const std::string& group_name,
|
9 |
+
c10::intrusive_ptr<c10d::ProcessGroup> group);
|
10 |
+
|
11 |
+
C10_EXPORT c10::intrusive_ptr<c10d::ProcessGroup> resolve_process_group(
|
12 |
+
const std::string& group_name);
|
13 |
+
|
14 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/HashStore.hpp
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <sys/types.h>
|
4 |
+
|
5 |
+
#include <condition_variable>
|
6 |
+
#include <mutex>
|
7 |
+
#include <unordered_map>
|
8 |
+
|
9 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
10 |
+
|
11 |
+
namespace c10d {
|
12 |
+
|
13 |
+
class TORCH_API HashStore : public Store {
|
14 |
+
public:
|
15 |
+
~HashStore() override = default;
|
16 |
+
|
17 |
+
void set(const std::string& key, const std::vector<uint8_t>& data) override;
|
18 |
+
|
19 |
+
std::vector<uint8_t> compareSet(
|
20 |
+
const std::string& key,
|
21 |
+
const std::vector<uint8_t>& expectedValue,
|
22 |
+
const std::vector<uint8_t>& desiredValue) override;
|
23 |
+
|
24 |
+
std::vector<uint8_t> get(const std::string& key) override;
|
25 |
+
|
26 |
+
void wait(const std::vector<std::string>& keys) override {
|
27 |
+
wait(keys, Store::kDefaultTimeout);
|
28 |
+
}
|
29 |
+
|
30 |
+
void wait(
|
31 |
+
const std::vector<std::string>& keys,
|
32 |
+
const std::chrono::milliseconds& timeout) override;
|
33 |
+
|
34 |
+
int64_t add(const std::string& key, int64_t value) override;
|
35 |
+
|
36 |
+
int64_t getNumKeys() override;
|
37 |
+
|
38 |
+
bool check(const std::vector<std::string>& keys) override;
|
39 |
+
|
40 |
+
bool deleteKey(const std::string& key) override;
|
41 |
+
|
42 |
+
void append(const std::string& key, const std::vector<uint8_t>& value)
|
43 |
+
override;
|
44 |
+
|
45 |
+
std::vector<std::vector<uint8_t>> multiGet(
|
46 |
+
const std::vector<std::string>& keys) override;
|
47 |
+
|
48 |
+
void multiSet(
|
49 |
+
const std::vector<std::string>& keys,
|
50 |
+
const std::vector<std::vector<uint8_t>>& values) override;
|
51 |
+
|
52 |
+
// Returns true if this store support append, multiGet and multiSet
|
53 |
+
bool hasExtendedApi() const override;
|
54 |
+
|
55 |
+
protected:
|
56 |
+
std::unordered_map<std::string, std::vector<uint8_t>> map_;
|
57 |
+
std::mutex m_;
|
58 |
+
std::condition_variable cv_;
|
59 |
+
};
|
60 |
+
|
61 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/PrefixStore.hpp
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
4 |
+
#include <memory>
|
5 |
+
|
6 |
+
namespace c10d {
|
7 |
+
|
8 |
+
class TORCH_API PrefixStore : public Store {
|
9 |
+
public:
|
10 |
+
explicit PrefixStore(std::string prefix, c10::intrusive_ptr<Store> store);
|
11 |
+
|
12 |
+
using Store::set;
|
13 |
+
void set(const std::string& key, const std::vector<uint8_t>& value) override;
|
14 |
+
|
15 |
+
using Store::compareSet;
|
16 |
+
std::vector<uint8_t> compareSet(
|
17 |
+
const std::string& key,
|
18 |
+
const std::vector<uint8_t>& expectedValue,
|
19 |
+
const std::vector<uint8_t>& desiredValue) override;
|
20 |
+
|
21 |
+
std::vector<uint8_t> get(const std::string& key) override;
|
22 |
+
|
23 |
+
int64_t add(const std::string& key, int64_t value) override;
|
24 |
+
|
25 |
+
bool deleteKey(const std::string& key) override;
|
26 |
+
|
27 |
+
int64_t getNumKeys() override;
|
28 |
+
|
29 |
+
bool check(const std::vector<std::string>& keys) override;
|
30 |
+
|
31 |
+
void wait(const std::vector<std::string>& keys) override;
|
32 |
+
|
33 |
+
void wait(
|
34 |
+
const std::vector<std::string>& keys,
|
35 |
+
const std::chrono::milliseconds& timeout) override;
|
36 |
+
|
37 |
+
const std::chrono::milliseconds& getTimeout() const noexcept override;
|
38 |
+
|
39 |
+
void setTimeout(const std::chrono::milliseconds& timeout) override;
|
40 |
+
|
41 |
+
void append(const std::string& key, const std::vector<uint8_t>& value)
|
42 |
+
override;
|
43 |
+
|
44 |
+
std::vector<std::vector<uint8_t>> multiGet(
|
45 |
+
const std::vector<std::string>& keys) override;
|
46 |
+
|
47 |
+
void multiSet(
|
48 |
+
const std::vector<std::string>& keys,
|
49 |
+
const std::vector<std::vector<uint8_t>>& values) override;
|
50 |
+
|
51 |
+
// Returns true if this store support append, multiGet and multiSet
|
52 |
+
bool hasExtendedApi() const override;
|
53 |
+
|
54 |
+
c10::intrusive_ptr<Store> getUnderlyingStore();
|
55 |
+
|
56 |
+
protected:
|
57 |
+
std::string prefix_;
|
58 |
+
c10::intrusive_ptr<Store> store_;
|
59 |
+
|
60 |
+
std::string joinKey(const std::string& key);
|
61 |
+
std::vector<std::string> joinKeys(const std::vector<std::string>& keys);
|
62 |
+
};
|
63 |
+
|
64 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp
ADDED
@@ -0,0 +1,918 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_NCCL
|
4 |
+
|
5 |
+
#include <chrono>
|
6 |
+
#include <iostream>
|
7 |
+
#include <list>
|
8 |
+
#include <mutex>
|
9 |
+
#include <thread>
|
10 |
+
#include <unordered_map>
|
11 |
+
|
12 |
+
#include <torch/csrc/distributed/c10d/Backend.hpp>
|
13 |
+
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
|
14 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
15 |
+
|
16 |
+
#include <ATen/DynamicLibrary.h>
|
17 |
+
#include <ATen/cuda/CUDAContext.h>
|
18 |
+
#include <ATen/cuda/CUDAEvent.h>
|
19 |
+
#include <c10/core/Stream.h>
|
20 |
+
#include <c10/core/StreamGuard.h>
|
21 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
22 |
+
#include <c10/cuda/CUDAGuard.h>
|
23 |
+
#include <c10/cuda/CUDAStream.h>
|
24 |
+
|
25 |
+
#include <torch/custom_class.h>
|
26 |
+
|
27 |
+
namespace c10d {
|
28 |
+
// Environment variable which controls whether we perform a NCCL healt check
|
29 |
+
// which ensures communicators are healthy at the beginning of init.
|
30 |
+
static std::vector<std::string> TORCH_ENABLE_NCCL_HEALTH_CHECK = {
|
31 |
+
"TORCH_ENABLE_NCCL_HEALTH_CHECK",
|
32 |
+
"ENABLE_NCCL_HEALTH_CHECK"};
|
33 |
+
|
34 |
+
// Environment variable which controls whether or not wait() is blocking or
|
35 |
+
// non-blocking.
|
36 |
+
static std::vector<std::string> TORCH_NCCL_BLOCKING_WAIT = {
|
37 |
+
"TORCH_NCCL_BLOCKING_WAIT",
|
38 |
+
"NCCL_BLOCKING_WAIT"};
|
39 |
+
|
40 |
+
// Environment variable which controls whether or not we perform Async Error
|
41 |
+
// Handling with NCCL.
|
42 |
+
static std::vector<std::string> TORCH_NCCL_ASYNC_ERROR_HANDLING = {
|
43 |
+
"TORCH_NCCL_ASYNC_ERROR_HANDLING",
|
44 |
+
"NCCL_ASYNC_ERROR_HANDLING"};
|
45 |
+
|
46 |
+
// Environment Variable to control whether dumping debug info on watchdog
|
47 |
+
// timeout is enabled. This variable must be set together with
|
48 |
+
// TORCH_NCCL_ENABLE_MONITORING=1 and TORCH_NCCL_TRACE_BUFFER_SIZE > 0.
|
49 |
+
static std::vector<std::string> TORCH_NCCL_DUMP_ON_TIMEOUT = {
|
50 |
+
"TORCH_NCCL_DUMP_ON_TIMEOUT"};
|
51 |
+
|
52 |
+
// Environment Variable to control whether Desync Debug is enabled.
|
53 |
+
// This variable must be set together with TORCH_NCCL_ASYNC_ERROR_HANDLING.
|
54 |
+
static std::vector<std::string> TORCH_NCCL_DESYNC_DEBUG = {
|
55 |
+
"TORCH_NCCL_DESYNC_DEBUG",
|
56 |
+
"NCCL_DESYNC_DEBUG"};
|
57 |
+
|
58 |
+
static std::vector<std::string> TORCH_NCCL_ENABLE_TIMING = {
|
59 |
+
"TORCH_NCCL_ENABLE_TIMING",
|
60 |
+
"NCCL_ENABLE_TIMING"};
|
61 |
+
|
62 |
+
static std::vector<std::string> TORCH_NCCL_ENABLE_MONITORING = {
|
63 |
+
"TORCH_NCCL_ENABLE_MONITORING"};
|
64 |
+
|
65 |
+
static std::vector<std::string> TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC = {
|
66 |
+
"TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"};
|
67 |
+
|
68 |
+
static std::vector<std::string> TORCH_NCCL_TRACE_BUFFER_SIZE = {
|
69 |
+
"TORCH_NCCL_TRACE_BUFFER_SIZE"};
|
70 |
+
|
71 |
+
constexpr const char* NCCL_BACKEND_NAME = "nccl";
|
72 |
+
|
73 |
+
constexpr auto kProcessGroupNCCLDefaultTimeout =
|
74 |
+
std::chrono::milliseconds(10 * 60 * 1000);
|
75 |
+
|
76 |
+
// NoHandling: do not handle asynchronous NCCL errors
|
77 |
+
// TearDown: tear down process upon error, see `WorkNCCL::handleException`
|
78 |
+
// CleanUpOnly: just clean up collectives and abort communicators without
|
79 |
+
// tearing down process SkipCleanUp: (this is a temporary option and can be
|
80 |
+
// removed in future) tear down process without cleaning up NCCL communicators.
|
81 |
+
// This should be used as a last resort in case `ncclCommAbort` itself is
|
82 |
+
// hanging
|
83 |
+
enum ErrorHandlingMode {
|
84 |
+
NoHandling = 0,
|
85 |
+
TearDown = 1,
|
86 |
+
CleanUpOnly = 2,
|
87 |
+
SkipCleanUp = 3
|
88 |
+
};
|
89 |
+
|
90 |
+
#define SHOULD_CLEAN_UP(a) (a != NoHandling && a != SkipCleanUp)
|
91 |
+
|
92 |
+
#define SHOULD_TEAR_DOWN(a) (a != NoHandling && a != CleanUpOnly)
|
93 |
+
|
94 |
+
// If set, ProcessGroupNCCL doesn't use recordStream calls to ensure
|
95 |
+
// caching allocator safety for tensors used on both user-facing and
|
96 |
+
// internal comm streams.
|
97 |
+
// Instead, it stashes live references to those tensors until after
|
98 |
+
// user-facing streams are synced with comm streams.
|
99 |
+
// See stashed_for_allocator_safety_ below.
|
100 |
+
static std::vector<std::string> TORCH_NCCL_AVOID_RECORD_STREAMS = {
|
101 |
+
"TORCH_NCCL_AVOID_RECORD_STREAMS"};
|
102 |
+
|
103 |
+
// If set, ProcessGroupNCCL registers postAlloc and preFree hooks to cuda cache
|
104 |
+
// allocator so that whenever a tensor is allocated or freed, ProcessGroupNCCL
|
105 |
+
// can register/deregister the tensor on all available NCCL communicators.
|
106 |
+
static std::vector<std::string> TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK =
|
107 |
+
{"TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK",
|
108 |
+
"NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"};
|
109 |
+
|
110 |
+
// ProcessGroupNCCL implements NCCL bindings for c10d.
|
111 |
+
//
|
112 |
+
// All functions of the class are expected to be called in the same order
|
113 |
+
// across all processes in the process group. This is the only way that we
|
114 |
+
// can guarantee to match up the same calls among all processes.
|
115 |
+
//
|
116 |
+
// All NCCL functions provided by this class are asynchronous functions. More
|
117 |
+
// specifically, each NCCL call is scheduled on a separate CUDA stream that is
|
118 |
+
// different from the current CUDA stream. This is for the purpose of
|
119 |
+
// achieving potentially concurrency and better performance. As a result,
|
120 |
+
// it is the callers' responsibility to make sure that the CUDA stream their
|
121 |
+
// code works on needs to wait for the NCCL operation from
|
122 |
+
// this class.
|
123 |
+
//
|
124 |
+
// This can be done by calling:
|
125 |
+
//
|
126 |
+
// either WorkNCCL::wait() or WorkNCCL::synchronize(), both achieves the same
|
127 |
+
// functionality and are synonyms.
|
128 |
+
//
|
129 |
+
// Also note that WorkNCCL::finishedGPUExecution() is a helper function only
|
130 |
+
// provided by ProcessGroupNCCL to check if the NCCL operation of WorkNCCL has
|
131 |
+
// finished execution on the GPU (not just scheduled).
|
132 |
+
//
|
133 |
+
// Example on using the NCCL process group
|
134 |
+
//
|
135 |
+
// ProcessGroupNCCL pg(store, rank, size);
|
136 |
+
// std::shared_ptr<WorkNCCL> work = pg.allreduce(tensors);
|
137 |
+
//
|
138 |
+
// // At this point, NCCL kernel has already by queued successfully
|
139 |
+
// // Now, let current stream wait for the NCCL to finish, this function is
|
140 |
+
// // async operation as well
|
141 |
+
//
|
142 |
+
// work->wait()
|
143 |
+
//
|
144 |
+
// // Now continue on other work in the current stream.
|
145 |
+
class TORCH_API ProcessGroupNCCL : public Backend {
|
146 |
+
public:
|
147 |
+
class WorkNCCL : public Work, public std::enable_shared_from_this<WorkNCCL> {
|
148 |
+
public:
|
149 |
+
friend struct WorkInfo;
|
150 |
+
|
151 |
+
// Constructor takes a list of CUDA devices
|
152 |
+
WorkNCCL(
|
153 |
+
const std::vector<at::Device>& devices,
|
154 |
+
int rank,
|
155 |
+
OpType opType,
|
156 |
+
uint64_t seq,
|
157 |
+
const char* profilingTitle = nullptr,
|
158 |
+
const c10::optional<std::vector<at::Tensor>>& inputs = c10::nullopt,
|
159 |
+
bool desyncDebug = false,
|
160 |
+
bool enableTiming = false);
|
161 |
+
// Copy constructor doing partial copy without outputs_. Cleanup thread
|
162 |
+
// monitors and removes finished works. However it will deadlock when
|
163 |
+
// destructs outputs_ tensors who are view tensors in autograd graph.
|
164 |
+
WorkNCCL(const WorkNCCL& w);
|
165 |
+
|
166 |
+
~WorkNCCL() override;
|
167 |
+
|
168 |
+
// Checks if the NCCL kernel has started to execute.
|
169 |
+
bool isStarted();
|
170 |
+
|
171 |
+
// Checks if request has completed. In this specific case of NCCL, it checks
|
172 |
+
// if the NCCL operation has completed on the GPU in its own NCCL stream.
|
173 |
+
// Non-blocking operation.
|
174 |
+
bool isCompleted() override;
|
175 |
+
|
176 |
+
bool isSuccess() const override;
|
177 |
+
|
178 |
+
// Same as calling synchronize() for NCCL work.
|
179 |
+
bool wait(std::chrono::milliseconds timeout = kNoTimeout) override;
|
180 |
+
|
181 |
+
void abort() override;
|
182 |
+
|
183 |
+
// Let current stream wait on the completing of the NCCL work
|
184 |
+
// Throws on exceptions. Blocking operation, which will wait for work
|
185 |
+
// completion.
|
186 |
+
void synchronize() override;
|
187 |
+
|
188 |
+
// Synchronize streams by blocking each on the NCCL stream
|
189 |
+
void synchronizeStreams();
|
190 |
+
|
191 |
+
// Helper function to handle exception (throw if needed).
|
192 |
+
void handleException(ErrorHandlingMode asyncErrorHandling);
|
193 |
+
|
194 |
+
// Helper function that checks if the NCCL kernels have finished
|
195 |
+
// execution on the GPUs
|
196 |
+
bool finishedGPUExecution();
|
197 |
+
|
198 |
+
// Get a Future object that will be marked as completed internally.
|
199 |
+
c10::intrusive_ptr<c10::ivalue::Future> getFuture() override;
|
200 |
+
|
201 |
+
float getDuration() const override;
|
202 |
+
|
203 |
+
uint64_t getSequencenumber() const override;
|
204 |
+
|
205 |
+
// Helper function that sets an exception_ptr on the WorkNCCL object.
|
206 |
+
void setException(std::exception_ptr exception_ptr);
|
207 |
+
|
208 |
+
// Helper function that returns True if the WorkNCCL object has timed out
|
209 |
+
// and False otherwise.
|
210 |
+
// In case of timeout, set exception on the WorkNCCL object.
|
211 |
+
bool checkTimeout(
|
212 |
+
c10::optional<std::chrono::milliseconds> timeout = c10::nullopt);
|
213 |
+
|
214 |
+
std::vector<at::Tensor> result() override;
|
215 |
+
|
216 |
+
protected:
|
217 |
+
// The cached list of CUDA devices to operate on
|
218 |
+
std::vector<at::Device> devices_;
|
219 |
+
|
220 |
+
// The start CUDA events of NCCL operator tracking this work item on
|
221 |
+
// multiple CUDA devices. These start CUDA events are needed by desync
|
222 |
+
// debugging if enabled.
|
223 |
+
std::shared_ptr<std::vector<at::cuda::CUDAEvent>> ncclStartEvents_;
|
224 |
+
|
225 |
+
// The end CUDA events of NCCL operator tracking this work item on
|
226 |
+
// multiple CUDA devices.
|
227 |
+
std::shared_ptr<std::vector<at::cuda::CUDAEvent>> ncclEndEvents_;
|
228 |
+
|
229 |
+
// The NCCL communicators used for this work item.
|
230 |
+
std::vector<std::shared_ptr<NCCLComm>> ncclComms_;
|
231 |
+
|
232 |
+
// Tensors used for barrier op
|
233 |
+
std::vector<at::Tensor> barrierTensors_;
|
234 |
+
|
235 |
+
// Clone of blockingWait_ from ProcessGroupNCCL.
|
236 |
+
bool blockingWait_ = false;
|
237 |
+
|
238 |
+
// Clone of avoidRecordStreams_ from ProcessGroupNCCL.
|
239 |
+
bool avoidRecordStreams_ = false;
|
240 |
+
|
241 |
+
// Clone of opTimeout_ from ProcessGroupNCCL.
|
242 |
+
std::chrono::milliseconds opTimeout_;
|
243 |
+
|
244 |
+
// Time point representing when the work started.
|
245 |
+
std::chrono::time_point<std::chrono::steady_clock> workStartTime_;
|
246 |
+
|
247 |
+
// Record the collective sequential number.
|
248 |
+
uint64_t seq_;
|
249 |
+
|
250 |
+
// Indicates if the nccl start event has been updated to the store trace.
|
251 |
+
// This will be used by desync debug.
|
252 |
+
bool startTraceUpdated_{false};
|
253 |
+
|
254 |
+
// Record collective sizes for debug. We only record the size on the first
|
255 |
+
// device as multi-device per process is deprecated
|
256 |
+
size_t numelIn_ = -1;
|
257 |
+
size_t numelOut_ = -1;
|
258 |
+
|
259 |
+
// Wrapper method for the static checkForNCCLErrors which can be overridden
|
260 |
+
// for tests.
|
261 |
+
virtual std::exception_ptr checkForNCCLErrors(
|
262 |
+
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms) const;
|
263 |
+
|
264 |
+
friend std::ostream& operator<<(
|
265 |
+
std::ostream& output,
|
266 |
+
const WorkNCCL& workNCCL);
|
267 |
+
|
268 |
+
private:
|
269 |
+
// Helper function for synchronize
|
270 |
+
void synchronizeInternal(std::chrono::milliseconds timeout);
|
271 |
+
|
272 |
+
// Checks for NCCL errors and sets an appropriate exception_ptr.
|
273 |
+
void checkAndSetException();
|
274 |
+
|
275 |
+
// Just checks whether GPU execution has started, without modifying
|
276 |
+
// exception_ptr.
|
277 |
+
bool startedGPUExecutionInternal() const;
|
278 |
+
|
279 |
+
// Just checks whether GPU execution has completed, without modifying
|
280 |
+
// exception_ptr.
|
281 |
+
bool finishedGPUExecutionInternal() const;
|
282 |
+
|
283 |
+
// Reference to the store so that we can write aborted communicators
|
284 |
+
// to the store.
|
285 |
+
c10::intrusive_ptr<Store> store_;
|
286 |
+
|
287 |
+
// Store a reference to NCCL collective's outputs, used by result and to
|
288 |
+
// give a more descriptive message when representing the Work as a string.
|
289 |
+
std::shared_ptr<std::vector<at::Tensor>> outputs_;
|
290 |
+
|
291 |
+
// TORCH_NCCL_AVOID_RECORD_STREAMS implementation helper.
|
292 |
+
// Stores references to participating non-output tensors (ie inputs,
|
293 |
+
// flattened intermediates).
|
294 |
+
// We'll clear this list in synchronizeStreams, just after user-facing
|
295 |
+
// stream(s) are synced with the nccl work stream(s).
|
296 |
+
// By keeping these refs (as well as outputs_) alive until after the
|
297 |
+
// collective's work rejoins the user-facing streams, we achieve
|
298 |
+
// caching allocator safety without any recordStream calls.
|
299 |
+
// For in-place collectives, some refs stashed here may alias outputs_,
|
300 |
+
// but that doesn't do any harm.
|
301 |
+
std::shared_ptr<std::vector<at::Tensor>> stashed_for_allocator_safety_;
|
302 |
+
|
303 |
+
// The future returned by getFuture.
|
304 |
+
c10::intrusive_ptr<at::ivalue::Future> future_;
|
305 |
+
|
306 |
+
bool timingEnabled_;
|
307 |
+
// unique id used to tell the trace buffer that this
|
308 |
+
// work has completed
|
309 |
+
c10::optional<uint64_t> trace_id_;
|
310 |
+
friend class ProcessGroupNCCL;
|
311 |
+
};
|
312 |
+
|
313 |
+
class CoalescedWorkNCCL
|
314 |
+
: public Work,
|
315 |
+
public std::enable_shared_from_this<CoalescedWorkNCCL> {
|
316 |
+
public:
|
317 |
+
// Constructor takes a list of WorkNCCL works
|
318 |
+
CoalescedWorkNCCL(
|
319 |
+
std::vector<ProcessGroupNCCL::WorkNCCL> works,
|
320 |
+
int rank,
|
321 |
+
OpType opType);
|
322 |
+
|
323 |
+
~CoalescedWorkNCCL() override;
|
324 |
+
|
325 |
+
// Same as calling synchronize() for NCCL work.
|
326 |
+
bool wait(std::chrono::milliseconds timeout = kNoTimeout) override;
|
327 |
+
|
328 |
+
protected:
|
329 |
+
// The cached list of CUDA devices to operate on
|
330 |
+
std::vector<ProcessGroupNCCL::WorkNCCL> works_;
|
331 |
+
|
332 |
+
friend class ProcessGroupNCCL;
|
333 |
+
};
|
334 |
+
|
335 |
+
struct Options : Backend::Options {
|
336 |
+
// NOTE: timeout in ProcessGroupNCCL::Options denote the timeout for
|
337 |
+
// operations. This is only used when blockingWait_ is enabled.
|
338 |
+
explicit Options(bool is_high_priority_stream = false);
|
339 |
+
|
340 |
+
// return intrusive_ptr of the object
|
341 |
+
static c10::intrusive_ptr<Options> create(
|
342 |
+
bool is_high_priority_stream = false) {
|
343 |
+
return c10::make_intrusive<Options>(is_high_priority_stream);
|
344 |
+
}
|
345 |
+
|
346 |
+
// Schedule NCCL operations on high priority CUDA streams
|
347 |
+
bool is_high_priority_stream;
|
348 |
+
|
349 |
+
#ifdef NCCL_HAS_COMM_NONBLOCKING
|
350 |
+
// Configure ranks
|
351 |
+
ncclConfig_t config = NCCL_CONFIG_INITIALIZER;
|
352 |
+
#endif
|
353 |
+
|
354 |
+
// Optional "parent" backend and color to create communicators from
|
355 |
+
// via `ncclCommSplit`
|
356 |
+
std::shared_ptr<ProcessGroupNCCL> split_from;
|
357 |
+
int64_t split_color{0};
|
358 |
+
};
|
359 |
+
|
360 |
+
// If you wish to create multiple process groups, each with a potentially
|
361 |
+
// different rank and size, you can do so by passing a new store instance
|
362 |
+
// to each one. If you have only a single store object, you can
|
363 |
+
// use the `c10d::PrefixStore` to derive scoped instances.
|
364 |
+
// This is also what the Python API in torch.distributed does.
|
365 |
+
//
|
366 |
+
// The process group instance keeps a reference to the store because
|
367 |
+
// it may be used long after the constructor runs. In fact, the constructor
|
368 |
+
// doesn't create any NCCL communicators. A single NCCL communicator can
|
369 |
+
// only be used on a specific set of devices, and are therefore created
|
370 |
+
// on-demand when a collective runs. If another collective is executed later,
|
371 |
+
// against a different set of devices, the process group creates another NCCL
|
372 |
+
// communicator. These NCCL communicators are cached and reused if possible.
|
373 |
+
//
|
374 |
+
ProcessGroupNCCL(
|
375 |
+
const c10::intrusive_ptr<Store>& store,
|
376 |
+
int rank,
|
377 |
+
int size,
|
378 |
+
c10::intrusive_ptr<Options> options = Options::create());
|
379 |
+
|
380 |
+
// This constructor includes the deprecated `groupName` argument.
|
381 |
+
// If you have existing code that uses the `groupName`, you can replace
|
382 |
+
// it by specifying a `c10d::PrefixStore(groupName, store)` for store.
|
383 |
+
C10_DEPRECATED ProcessGroupNCCL(
|
384 |
+
const c10::intrusive_ptr<Store>& store,
|
385 |
+
int rank,
|
386 |
+
int size,
|
387 |
+
const std::string& groupName,
|
388 |
+
c10::intrusive_ptr<Options> options = Options::create())
|
389 |
+
: ProcessGroupNCCL(store, rank, size, options) {}
|
390 |
+
|
391 |
+
~ProcessGroupNCCL() override;
|
392 |
+
|
393 |
+
c10::intrusive_ptr<Options> getOptions() {
|
394 |
+
return options_;
|
395 |
+
}
|
396 |
+
|
397 |
+
const std::string getBackendName() const override {
|
398 |
+
return std::string(NCCL_BACKEND_NAME);
|
399 |
+
}
|
400 |
+
|
401 |
+
void startCoalescing() override;
|
402 |
+
|
403 |
+
c10::intrusive_ptr<Work> endCoalescing() override;
|
404 |
+
|
405 |
+
c10::intrusive_ptr<Work> broadcast(
|
406 |
+
std::vector<at::Tensor>& tensors,
|
407 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
408 |
+
|
409 |
+
c10::intrusive_ptr<Work> _broadcast_oop(
|
410 |
+
std::vector<at::Tensor>& outputTensors,
|
411 |
+
std::vector<at::Tensor>& inputTensors,
|
412 |
+
const BroadcastOptions& opts = BroadcastOptions());
|
413 |
+
|
414 |
+
c10::intrusive_ptr<Work> allreduce_sparse(
|
415 |
+
std::vector<at::Tensor>& tensors,
|
416 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
417 |
+
|
418 |
+
c10::intrusive_ptr<Work> allreduce(
|
419 |
+
std::vector<at::Tensor>& tensors,
|
420 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
421 |
+
|
422 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
423 |
+
std::vector<at::Tensor>& tensors,
|
424 |
+
const AllreduceCoalescedOptions& opts =
|
425 |
+
AllreduceCoalescedOptions()) override;
|
426 |
+
|
427 |
+
c10::intrusive_ptr<Work> reduce(
|
428 |
+
std::vector<at::Tensor>& tensors,
|
429 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
430 |
+
|
431 |
+
c10::intrusive_ptr<Work> _reduce_oop(
|
432 |
+
std::vector<at::Tensor>& outputTensors,
|
433 |
+
std::vector<at::Tensor>& inputTensors,
|
434 |
+
const ReduceOptions& opts = ReduceOptions());
|
435 |
+
|
436 |
+
c10::intrusive_ptr<Work> allgather(
|
437 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
438 |
+
std::vector<at::Tensor>& inputTensors,
|
439 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
440 |
+
|
441 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
442 |
+
at::Tensor& outputbuffer,
|
443 |
+
at::Tensor& inputbuffer,
|
444 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
445 |
+
|
446 |
+
c10::intrusive_ptr<Work> allgather_coalesced(
|
447 |
+
std::vector<std::vector<at::Tensor>>& outputTensorLists,
|
448 |
+
std::vector<at::Tensor>& inputTensors,
|
449 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
450 |
+
|
451 |
+
c10::intrusive_ptr<Work> allgather_into_tensor_coalesced(
|
452 |
+
std::vector<at::Tensor>& outputs,
|
453 |
+
std::vector<at::Tensor>& inputs,
|
454 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
455 |
+
|
456 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
457 |
+
std::vector<at::Tensor>& outputTensors,
|
458 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
459 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
460 |
+
|
461 |
+
c10::intrusive_ptr<Work> _reduce_scatter_base(
|
462 |
+
at::Tensor& outputTensor,
|
463 |
+
at::Tensor& inputTensor,
|
464 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
465 |
+
|
466 |
+
c10::intrusive_ptr<Work> reduce_scatter_tensor_coalesced(
|
467 |
+
std::vector<at::Tensor>& outputs,
|
468 |
+
std::vector<at::Tensor>& inputs,
|
469 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
470 |
+
|
471 |
+
c10::intrusive_ptr<Work> barrier(
|
472 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
473 |
+
|
474 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
475 |
+
at::Tensor& outputTensor,
|
476 |
+
at::Tensor& inputTensor,
|
477 |
+
std::vector<int64_t>& outputSplitSizes,
|
478 |
+
std::vector<int64_t>& inputSplitSizes,
|
479 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
480 |
+
|
481 |
+
c10::intrusive_ptr<Work> alltoall(
|
482 |
+
std::vector<at::Tensor>& outputTensors,
|
483 |
+
std::vector<at::Tensor>& inputTensors,
|
484 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
485 |
+
|
486 |
+
c10::intrusive_ptr<Work> send(
|
487 |
+
std::vector<at::Tensor>& tensors,
|
488 |
+
int dstRank,
|
489 |
+
int tag) override;
|
490 |
+
|
491 |
+
c10::intrusive_ptr<Work> recv(
|
492 |
+
std::vector<at::Tensor>& tensors,
|
493 |
+
int srcRank,
|
494 |
+
int tag) override;
|
495 |
+
|
496 |
+
void groupStart();
|
497 |
+
|
498 |
+
void groupEnd();
|
499 |
+
|
500 |
+
void groupEndNonblocking(std::vector<std::shared_ptr<NCCLComm>> comms);
|
501 |
+
|
502 |
+
// Unsupported Ops
|
503 |
+
c10::intrusive_ptr<Work> gather(
|
504 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
505 |
+
std::vector<at::Tensor>& inputTensors,
|
506 |
+
const GatherOptions& opts = GatherOptions()) override;
|
507 |
+
|
508 |
+
c10::intrusive_ptr<Work> scatter(
|
509 |
+
std::vector<at::Tensor>& outputTensors,
|
510 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
511 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
512 |
+
|
513 |
+
c10::intrusive_ptr<Work> recvAnysource(
|
514 |
+
std::vector<at::Tensor>& tensors,
|
515 |
+
int tag) override;
|
516 |
+
|
517 |
+
// Agrees on an initial sequence number for the whole group by having rank 0
|
518 |
+
// create it and broadcast it to other ranks using the store.
|
519 |
+
void setSequenceNumberForGroup() override;
|
520 |
+
|
521 |
+
// Retrieves the current sequence number for the whole group, which should be
|
522 |
+
// in sync. If the returned number is not consistent across the group, it
|
523 |
+
// may indicate that there is some sort of collective desynchronization.
|
524 |
+
uint64_t getSequenceNumberForGroup() override;
|
525 |
+
|
526 |
+
// Return the total number of splits the communicators held by this process
|
527 |
+
// group have performed.
|
528 |
+
uint64_t getCommSplitCounter() const;
|
529 |
+
|
530 |
+
void registerOnCompletionHook(
|
531 |
+
std::function<void(std::shared_ptr<WorkInfo>)>&& hook) override;
|
532 |
+
void waitForPendingWorks() override;
|
533 |
+
|
534 |
+
void enableCollectivesTiming() override;
|
535 |
+
|
536 |
+
// Provide an API for users to define their own ways to store NCCL debug info.
|
537 |
+
void registerDebugInfoWriter(std::unique_ptr<DebugInfoWriter> writer);
|
538 |
+
|
539 |
+
// Provides an API to abort the ProcessGroup (similar to ncclCommAbort)
|
540 |
+
// instead of relying on ProcessGroupNCCL destructor.
|
541 |
+
void abort(c10::optional<std::string> abortReason = c10::nullopt);
|
542 |
+
|
543 |
+
void shutdown();
|
544 |
+
|
545 |
+
protected:
|
546 |
+
// Helper that broadcasts nccl unique ID to all ranks through the store
|
547 |
+
void broadcastUniqueNCCLID(
|
548 |
+
ncclUniqueId* ncclID,
|
549 |
+
bool isSingleP2POp,
|
550 |
+
const std::string& devicesKey,
|
551 |
+
int p2pRank);
|
552 |
+
|
553 |
+
// Helper that either looks up the cached NCCL communicators or creates
|
554 |
+
// a new set of NCCL communicators as a cache entry
|
555 |
+
std::vector<std::shared_ptr<NCCLComm>>& getNCCLComm(
|
556 |
+
const std::string& devicesKey,
|
557 |
+
const std::vector<at::Device>& devices,
|
558 |
+
OpType opType,
|
559 |
+
int p2pRank = 0,
|
560 |
+
bool isSendRecvSelf = false);
|
561 |
+
|
562 |
+
// Wrapper method which can be overridden for tests.
|
563 |
+
virtual std::exception_ptr checkForNCCLErrors(
|
564 |
+
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms);
|
565 |
+
|
566 |
+
virtual c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> initWork(
|
567 |
+
std::vector<at::Device> devices,
|
568 |
+
int rank,
|
569 |
+
OpType opType,
|
570 |
+
const char* profilingTitle = nullptr,
|
571 |
+
const std::vector<at::Tensor>& inputs = {},
|
572 |
+
const std::vector<at::Tensor>& outputs = {});
|
573 |
+
|
574 |
+
virtual c10::intrusive_ptr<ProcessGroupNCCL::CoalescedWorkNCCL>
|
575 |
+
initCoalescedWork(
|
576 |
+
const std::vector<c10::intrusive_ptr<Work>>& works,
|
577 |
+
int rank,
|
578 |
+
OpType opType);
|
579 |
+
|
580 |
+
private:
|
581 |
+
// Helper that encapsulates work shared across all collective communication
|
582 |
+
// primitives. The callbacks have the following signatures:
|
583 |
+
//
|
584 |
+
// ncclResult_t fn(at::Tensor& input, at::Tensor& output,
|
585 |
+
// ncclComm_t, at::cuda::CUDAStream&);
|
586 |
+
// void {pre,post}(std::vector<at::cuda::CUDAStream&>);
|
587 |
+
template <typename Fn>
|
588 |
+
c10::intrusive_ptr<Work> collective(
|
589 |
+
std::vector<at::Tensor>& input,
|
590 |
+
std::vector<at::Tensor>& output,
|
591 |
+
Fn fn,
|
592 |
+
OpType opType,
|
593 |
+
const char* profilingTitle = nullptr,
|
594 |
+
bool avoidRecordStreams = false);
|
595 |
+
|
596 |
+
template <typename Fn, typename PreProcess, typename PostProcess>
|
597 |
+
c10::intrusive_ptr<Work> collective(
|
598 |
+
std::vector<at::Tensor>& input,
|
599 |
+
std::vector<at::Tensor>& output,
|
600 |
+
Fn fn,
|
601 |
+
PreProcess pre,
|
602 |
+
PostProcess post,
|
603 |
+
OpType opType,
|
604 |
+
const char* profilingTitle = nullptr,
|
605 |
+
bool avoidRecordStreams = false);
|
606 |
+
|
607 |
+
// Helper that encapsulates work shared across point-to-point communication
|
608 |
+
// primitives. It is the same structure as the helper used for collective
|
609 |
+
// communication primitives.
|
610 |
+
template <typename Fn>
|
611 |
+
c10::intrusive_ptr<Work> pointToPoint(
|
612 |
+
std::vector<at::Tensor>& tensor,
|
613 |
+
Fn fn,
|
614 |
+
int peer,
|
615 |
+
OpType opType,
|
616 |
+
const char* profilingTitle = nullptr);
|
617 |
+
template <typename Fn, typename PreProcess, typename PostProcess>
|
618 |
+
c10::intrusive_ptr<Work> pointToPoint(
|
619 |
+
std::vector<at::Tensor>& tensor,
|
620 |
+
Fn fn,
|
621 |
+
int peer,
|
622 |
+
OpType opType,
|
623 |
+
PreProcess pre,
|
624 |
+
PostProcess post,
|
625 |
+
const char* profilingTitle);
|
626 |
+
|
627 |
+
c10::intrusive_ptr<Work> allreduce_impl(
|
628 |
+
std::vector<at::Tensor>& tensors,
|
629 |
+
const AllreduceOptions& opts = AllreduceOptions());
|
630 |
+
|
631 |
+
// Checks for NCCL errors on each of the communicators and returns an
|
632 |
+
// appropriate exception_ptr (nullptr if no errors).
|
633 |
+
static std::exception_ptr checkForNCCLErrorsInternal(
|
634 |
+
const std::vector<std::shared_ptr<NCCLComm>>& ncclComms);
|
635 |
+
|
636 |
+
// Function that runs as part of a separate thread and checks for errors on
|
637 |
+
// NCCL communicators. We need a separate thread to check for NCCL errors
|
638 |
+
// since we can't rely on the user calling certain methods like wait(),
|
639 |
+
// isCompleted() etc. to detect and remediate errors. In addition to this, we
|
640 |
+
// need a mechanism to safely abort and remove NCCL communicators from our
|
641 |
+
// cache. This can be done cleanly by having a thread for the ProcessGroupNCCL
|
642 |
+
// class. Attempting to modify the communicator cache from the WorkNCCL class
|
643 |
+
// might run into issues with object lifetime since the ProcessGroupNCCL
|
644 |
+
// object might get destroyed before the WorkNCCL object.
|
645 |
+
void ncclCommWatchdog();
|
646 |
+
|
647 |
+
// Performs a health check by initializing dummy NCCL communicators and then
|
648 |
+
// destroying them. This will help indicate and signal any NCCL-related issues
|
649 |
+
// prior to the first collective. The actual initialization and subsequent
|
650 |
+
// destruction is ran on a separate thread and the main thread is signalled
|
651 |
+
// about timeouts/errors to report to the application.
|
652 |
+
void runHealthCheck();
|
653 |
+
|
654 |
+
// Destroys initialized NCCL communicators in devNCCLComMap_ given by input
|
655 |
+
// key. Throws if there are no communicators to destroy. Also removes
|
656 |
+
// communicators from the cache and clears used device indices.
|
657 |
+
void destroyNCCLComms(const std::string& devNCCLCommMapKey);
|
658 |
+
|
659 |
+
// Watchdog's inside loop.
|
660 |
+
// Takes care of cleaning up completed work, and aborting upon failure or
|
661 |
+
// timeout.
|
662 |
+
void workCleanupLoop();
|
663 |
+
|
664 |
+
void runHookLoop();
|
665 |
+
|
666 |
+
// In the timeout case and we will dump debug info such as the NCCL flight
|
667 |
+
// recorder to storage. Down the road, if we have more complicated or blocking
|
668 |
+
// operations, we might need to use a side thread to do it.
|
669 |
+
void dumpDebuggingInfo();
|
670 |
+
|
671 |
+
// Desync debug helper
|
672 |
+
void logWorkStart(WorkNCCL& work);
|
673 |
+
|
674 |
+
// Desync debug helper
|
675 |
+
void logWorkEnd(WorkNCCL& work);
|
676 |
+
|
677 |
+
protected:
|
678 |
+
// Function that runs as part of a separate thread aside from watchdog
|
679 |
+
// thread because we need to check the heartbeat from watchdog thread
|
680 |
+
// so that when we get stuck in some NCCL/CUDA calls,
|
681 |
+
// we can dump the debugging information and abort the process.
|
682 |
+
virtual void heartbeatMonitor();
|
683 |
+
|
684 |
+
// Function that directly trigger std::abort so that the whole process
|
685 |
+
// gets terminated.
|
686 |
+
virtual void terminateProcess(std::string errMsg);
|
687 |
+
|
688 |
+
// Check the writeDebugInfo_ flag and if it is true, we do nothing.
|
689 |
+
// If not, we first set the flag to be true and return a thread which will
|
690 |
+
// get and write the debug info into storage.
|
691 |
+
c10::optional<std::thread> tryWriteDebugInfo();
|
692 |
+
|
693 |
+
// When watchdog timeout, this function will be called and return debug info
|
694 |
+
// for users. For now we only get information from retrieveDesyncReport.
|
695 |
+
// We are working on enabling more useful debug information for watchdog
|
696 |
+
// timeout.
|
697 |
+
virtual std::string getNCCLWatchdogDebugInfo();
|
698 |
+
|
699 |
+
static const int64_t kWatchdogThreadSleepMillis;
|
700 |
+
|
701 |
+
// The store is used to broadcast the NCCL unique ID of rank 0.
|
702 |
+
c10::intrusive_ptr<Store> store_;
|
703 |
+
|
704 |
+
bool storeError_{false};
|
705 |
+
|
706 |
+
const c10::intrusive_ptr<Options> options_;
|
707 |
+
|
708 |
+
// The number of NCCL communicators that have been created during
|
709 |
+
// the lifetime of this process group. This sequence number is
|
710 |
+
// used to scope keys used in the store.
|
711 |
+
uint64_t ncclCommCounter_{0};
|
712 |
+
|
713 |
+
// The store keys to trace the last NCCL collective kernel CUDA events - start
|
714 |
+
// event and end event respectively. These are used to do desync root cause
|
715 |
+
// analysis.
|
716 |
+
const std::string traceKeyStart_;
|
717 |
+
const std::string traceKeyEnd_;
|
718 |
+
|
719 |
+
// The NCCL communicator that the process group has cached.
|
720 |
+
//
|
721 |
+
// For collective operations:
|
722 |
+
// The key is a list of GPU devices that an operation is operating on
|
723 |
+
// The GPU devices are stored in a device sequence and the cache NCCL
|
724 |
+
// communicator is associated with this GPU device sequence
|
725 |
+
//
|
726 |
+
// e.g. If the process group op only uses device 0, then the value of
|
727 |
+
// the used device string stored (value of the hashmap) would be "0".
|
728 |
+
//
|
729 |
+
// If the process group op uses device 0 - 7 and the each tensor of the
|
730 |
+
// input tensor list is on device, 0, 1, 2, 3, 4, 5, 6, 7 separately,
|
731 |
+
// then the value of the used device string (key) stored would be
|
732 |
+
// "0,1,2,3,4,5,6,7"
|
733 |
+
//
|
734 |
+
// If the process group op uses device 0 - 7 and the each tensor of the
|
735 |
+
// input tensor list is on device, 0, 4, 5, 6, 7, 1, 2, 3 separately,
|
736 |
+
// then the value of the used device string stored would be
|
737 |
+
// "0,4,5,6,7,1,2,3"
|
738 |
+
//
|
739 |
+
// Note that the order of the device for the tensor list matters.
|
740 |
+
//
|
741 |
+
// For point-to-point operations:
|
742 |
+
// The key is a string of my current rank and the peer process rank.
|
743 |
+
// e.g. If process 1 and process 2 are involved in a point-to-point
|
744 |
+
// communication, the key will be "1:2" on both processes. Note: this is for
|
745 |
+
// the scenario where there is only 1 GPU per process. When it comes to
|
746 |
+
// multiple GPUs per process, this part may need to redesigned.
|
747 |
+
std::unordered_map<std::string, std::vector<std::shared_ptr<NCCLComm>>>
|
748 |
+
devNCCLCommMap_;
|
749 |
+
|
750 |
+
// The NCCL communicators currently in process of being initialized.
|
751 |
+
std::unordered_map<std::string, std::vector<std::shared_ptr<NCCLComm>>>
|
752 |
+
inInitializationCommMap_;
|
753 |
+
|
754 |
+
// Map from ncclUniqueId to appropriate communicator.
|
755 |
+
std::unordered_map<std::string, std::vector<std::shared_ptr<NCCLComm>>>
|
756 |
+
ncclIdToCommMap_;
|
757 |
+
|
758 |
+
// Mutex to guard maps like devNCCLCommMap_ and ncclIdToCommMap_.
|
759 |
+
std::mutex mutex_;
|
760 |
+
|
761 |
+
// Heartbeat of watchdog thread.
|
762 |
+
uint64_t heartbeat_;
|
763 |
+
|
764 |
+
// The time interval used for deciding whether there is no watchdog heartbeat.
|
765 |
+
int heartbeatTimeoutInSec_;
|
766 |
+
|
767 |
+
// Size of ring buffer where we store NCCL Traces for debugging.
|
768 |
+
int ncclTraceBufferSize_;
|
769 |
+
|
770 |
+
// We gate the heartbeat monitor thread so that we can roll it out gradually.
|
771 |
+
std::atomic<bool> monitorThreadEnabled_;
|
772 |
+
|
773 |
+
// Monitor thread which checks the heartbeat of Watchdog thread.
|
774 |
+
// If the monitor thread finds there is no heartbeat, it will dump debug info
|
775 |
+
// and then kill the watchdog thread to avoid hang.
|
776 |
+
std::thread ncclHeartbeatMonitorThread_;
|
777 |
+
|
778 |
+
// Watchdog thread which looks for errors on the cached NCCL communicators.
|
779 |
+
std::thread ncclCommWatchdogThread_;
|
780 |
+
|
781 |
+
std::thread onCompletionHookThread_;
|
782 |
+
|
783 |
+
// Whether or not we should terminate the watchdog and workCleanup threads.
|
784 |
+
std::atomic<bool> terminateProcessGroup_;
|
785 |
+
|
786 |
+
// Whether or not we should terminate the heartbeat monitoring threads.
|
787 |
+
std::atomic<bool> terminateHeartbeatMonitorThread_;
|
788 |
+
|
789 |
+
// Whether we are in the shutdown mode when we are trying to get debug info,
|
790 |
+
// such as desync report.
|
791 |
+
std::atomic<bool> collectiveDebugInfoMode_;
|
792 |
+
|
793 |
+
// Whether there are hooks pending to be fired
|
794 |
+
std::atomic<bool> hasPendingHooks_;
|
795 |
+
|
796 |
+
// Mutex to Guard workMetaList_
|
797 |
+
std::mutex workMetaListMutex_;
|
798 |
+
|
799 |
+
// Mutex to Guard monitorWakeUpCV_
|
800 |
+
std::mutex monitorMutex_;
|
801 |
+
|
802 |
+
bool writeDebugInfo_ = false;
|
803 |
+
|
804 |
+
// Mutex to Guard the check of writeDebugInfo_
|
805 |
+
std::mutex writeDebugInfoMutex_;
|
806 |
+
|
807 |
+
// Condition Variable for watchdog thread sleep
|
808 |
+
std::condition_variable workMetaListCV_;
|
809 |
+
|
810 |
+
// Condition Variable for monitor thread to wake up early
|
811 |
+
std::condition_variable monitorWakeUpCV_;
|
812 |
+
|
813 |
+
// Vector to Store WorkNCCL pointers
|
814 |
+
std::list<ProcessGroupNCCL::WorkNCCL> workMetaList_;
|
815 |
+
|
816 |
+
// Mutex to Guard workMetaList_
|
817 |
+
std::mutex completedWorkListMutex_;
|
818 |
+
|
819 |
+
// Condition Variable for watchdog thread sleep
|
820 |
+
std::condition_variable completedWorkListCV_;
|
821 |
+
|
822 |
+
std::list<ProcessGroupNCCL::WorkNCCL> completedWorkList_;
|
823 |
+
|
824 |
+
// Add Work Pointer to workVector
|
825 |
+
void workEnqueue(c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>);
|
826 |
+
|
827 |
+
// The CUDA streams used by NCCL kernels
|
828 |
+
std::unordered_map<std::string, std::vector<at::cuda::CUDAStream>>
|
829 |
+
ncclStreams_;
|
830 |
+
|
831 |
+
// The CUDA events used to sync NCCL streams
|
832 |
+
std::unordered_map<std::string, std::vector<at::cuda::CUDAEvent>> ncclEvents_;
|
833 |
+
|
834 |
+
// Device Indexes used for all collectives in this group
|
835 |
+
std::set<int> usedDeviceIdxs_;
|
836 |
+
|
837 |
+
// Flag to denote if a coalescing groupStart/groupEnd block is active
|
838 |
+
int coalescing_state_ = 0;
|
839 |
+
|
840 |
+
// Stores device indexes for all collectives run inside a coalescing block
|
841 |
+
std::vector<std::vector<at::Device>> coalescedDevices_;
|
842 |
+
|
843 |
+
// Stores communicators for all collectives run inside a coalescing block
|
844 |
+
std::vector<std::vector<std::shared_ptr<NCCLComm>>> coalescedComms_;
|
845 |
+
|
846 |
+
// map from the key: "group name + pg counter (ID)" to the
|
847 |
+
// unique NCCL ID count. This needs to be group and pg specific
|
848 |
+
//
|
849 |
+
// For each process group, we need a uniform unique NCCL ID counter to ensure
|
850 |
+
// that NCCL operation in this process group can be completed successfully.
|
851 |
+
// Since each process group ID belongs to a group name, the key to this map
|
852 |
+
// is a combination of group name and ProcessGroupNCCL ID.
|
853 |
+
static std::unordered_map<std::string, ssize_t> pgUniqueNCCLIDCnt_;
|
854 |
+
|
855 |
+
// map from group name to the pg counter (ID) within that group
|
856 |
+
//
|
857 |
+
// For each group with the "group name" (which is the key), we need to
|
858 |
+
// keep track of a unique process group ID when creating a new
|
859 |
+
// ProcessGroupNCCL for this "group name". Therefore, the value of this
|
860 |
+
// map keeps the unique ProcessGroupNCCL's ID for a specific group with
|
861 |
+
// the "group name". The reason we need a per-group process group ID counter
|
862 |
+
// is that different group can have different ranks and we need ensure that
|
863 |
+
// each group has its own uniform process group ID for all its ranks.
|
864 |
+
static std::unordered_map<std::string, ssize_t> processGroupCounterMap_;
|
865 |
+
|
866 |
+
// Whether or not wait() and synchronize() are blocking operations that wait
|
867 |
+
// for the operation to complete.
|
868 |
+
bool blockingWait_ = false;
|
869 |
+
|
870 |
+
// Whether or not to hook the cache allocator to register all allocated
|
871 |
+
// tensors
|
872 |
+
bool useTensorRegisterAllocatorHook_ = false;
|
873 |
+
|
874 |
+
// Whether or not the workCleanupThread is used to perform async error
|
875 |
+
// handling.
|
876 |
+
ErrorHandlingMode asyncErrorHandling_ = NoHandling;
|
877 |
+
|
878 |
+
// Whether or not to enable timeout root cause analysis.
|
879 |
+
bool desyncDebug_;
|
880 |
+
|
881 |
+
// Whether or not to dump debug info on timeout
|
882 |
+
bool dumpOnTimeout_;
|
883 |
+
|
884 |
+
// Whether or not to create start CUDAEvent and enable timing for start
|
885 |
+
// and end events. Note that enableTiming_ is always true if desyncDebug_
|
886 |
+
// is set to true.
|
887 |
+
std::atomic<bool> enableTiming_;
|
888 |
+
|
889 |
+
// Whether or not TORCH_NCCL_AVOID_RECORD_STREAMS was set
|
890 |
+
bool avoidRecordStreams_ = false;
|
891 |
+
|
892 |
+
// Set of communicators that this process group has aborted and their
|
893 |
+
// ncclUniqueId has been written to the store. We don't need a lock
|
894 |
+
// for this map since only the watchdog thread accesses this set. The
|
895 |
+
// set contains the string representation of ncclUniqueId.
|
896 |
+
std::unordered_set<std::string> abortedComms_;
|
897 |
+
|
898 |
+
// The number of active ncclGroupStart() calls. This counter will be increased
|
899 |
+
// by 1 when ncclGroupStart() is called and decreased by 1 when ncclGroupEnd()
|
900 |
+
// is called.
|
901 |
+
static thread_local uint64_t ncclActiveGroupCounter_;
|
902 |
+
|
903 |
+
// Counting for the sequential number of NCCL collective call.
|
904 |
+
uint64_t seq_{0};
|
905 |
+
|
906 |
+
std::exception_ptr watchDogException_ = nullptr;
|
907 |
+
|
908 |
+
// The callback function to store NCCL debug info.
|
909 |
+
std::unique_ptr<DebugInfoWriter> debugInfoWriter_ = nullptr;
|
910 |
+
|
911 |
+
size_t uid_;
|
912 |
+
};
|
913 |
+
|
914 |
+
TORCH_API std::string dump_nccl_trace();
|
915 |
+
|
916 |
+
} // namespace c10d
|
917 |
+
|
918 |
+
#endif // USE_C10D_NCCL
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupRoundRobin.hpp
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <vector>
|
4 |
+
|
5 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
6 |
+
|
7 |
+
namespace c10d {
|
8 |
+
|
9 |
+
constexpr const char* ROUND_ROBIN_BACKEND_NAME = "round_robin";
|
10 |
+
|
11 |
+
// ProcessGroupRoundRobin implements simple load balancing.
|
12 |
+
//
|
13 |
+
// It is constructed with multiple processes groups. Each call is dispatched to
|
14 |
+
// one of the specified process groups in a round robin fashion. Each process
|
15 |
+
// group instance must have the same rank and size.
|
16 |
+
//
|
17 |
+
// All functions of the class are expected to be called in the same order
|
18 |
+
// across all processes in the process group. This is the only way that we
|
19 |
+
// can guarantee to match up the same calls among all processes.
|
20 |
+
//
|
21 |
+
class TORCH_API ProcessGroupRoundRobin final : public ProcessGroup {
|
22 |
+
public:
|
23 |
+
explicit ProcessGroupRoundRobin(
|
24 |
+
int rank,
|
25 |
+
int size,
|
26 |
+
std::vector<c10::intrusive_ptr<ProcessGroup>> processGroups);
|
27 |
+
|
28 |
+
~ProcessGroupRoundRobin() override;
|
29 |
+
|
30 |
+
const std::string getBackendName() const override {
|
31 |
+
return std::string(ROUND_ROBIN_BACKEND_NAME);
|
32 |
+
}
|
33 |
+
|
34 |
+
c10::intrusive_ptr<Work> broadcast(
|
35 |
+
std::vector<at::Tensor>& tensors,
|
36 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
37 |
+
|
38 |
+
c10::intrusive_ptr<Work> allreduce(
|
39 |
+
std::vector<at::Tensor>& tensors,
|
40 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
41 |
+
|
42 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
43 |
+
std::vector<at::Tensor>& tensors,
|
44 |
+
const AllreduceCoalescedOptions& opts =
|
45 |
+
AllreduceCoalescedOptions()) override;
|
46 |
+
|
47 |
+
c10::intrusive_ptr<Work> reduce(
|
48 |
+
std::vector<at::Tensor>& tensors,
|
49 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
50 |
+
|
51 |
+
c10::intrusive_ptr<Work> allgather(
|
52 |
+
std::vector<std::vector<at::Tensor>>& outputs,
|
53 |
+
std::vector<at::Tensor>& inputs,
|
54 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
55 |
+
|
56 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
57 |
+
at::Tensor& outputBuffer,
|
58 |
+
at::Tensor& inputBuffer,
|
59 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
60 |
+
|
61 |
+
c10::intrusive_ptr<Work> allgather_coalesced(
|
62 |
+
std::vector<std::vector<at::Tensor>>& outputTensorLists,
|
63 |
+
std::vector<at::Tensor>& inputTensors,
|
64 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
65 |
+
|
66 |
+
c10::intrusive_ptr<Work> gather(
|
67 |
+
std::vector<std::vector<at::Tensor>>& outputs,
|
68 |
+
std::vector<at::Tensor>& inputs,
|
69 |
+
const GatherOptions& opts = GatherOptions()) override;
|
70 |
+
|
71 |
+
c10::intrusive_ptr<Work> scatter(
|
72 |
+
std::vector<at::Tensor>& outputs,
|
73 |
+
std::vector<std::vector<at::Tensor>>& inputs,
|
74 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
75 |
+
|
76 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
77 |
+
std::vector<at::Tensor>& outputs,
|
78 |
+
std::vector<std::vector<at::Tensor>>& inputs,
|
79 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
80 |
+
|
81 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
82 |
+
at::Tensor& outputTensor,
|
83 |
+
at::Tensor& inputTensor,
|
84 |
+
std::vector<int64_t>& outputSplitSizes,
|
85 |
+
std::vector<int64_t>& inputSplitSizes,
|
86 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
87 |
+
|
88 |
+
c10::intrusive_ptr<Work> send(
|
89 |
+
std::vector<at::Tensor>& tensors,
|
90 |
+
int dstRank,
|
91 |
+
int tag) override;
|
92 |
+
|
93 |
+
c10::intrusive_ptr<Work> recv(
|
94 |
+
std::vector<at::Tensor>& tensors,
|
95 |
+
int srcRank,
|
96 |
+
int tag) override;
|
97 |
+
|
98 |
+
c10::intrusive_ptr<Work> recvAnysource(
|
99 |
+
std::vector<at::Tensor>& tensors,
|
100 |
+
int tag) override;
|
101 |
+
|
102 |
+
c10::intrusive_ptr<Work> barrier(
|
103 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
104 |
+
|
105 |
+
private:
|
106 |
+
std::vector<c10::intrusive_ptr<ProcessGroup>> processGroups_;
|
107 |
+
std::vector<c10::intrusive_ptr<ProcessGroup>>::const_iterator iterator_;
|
108 |
+
|
109 |
+
// Returns the next ProcessGroup to use.
|
110 |
+
const c10::intrusive_ptr<ProcessGroup>& next();
|
111 |
+
};
|
112 |
+
|
113 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupUCC.hpp
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_UCC
|
4 |
+
|
5 |
+
#include <torch/csrc/distributed/c10d/UCCUtils.hpp>
|
6 |
+
|
7 |
+
#include <exception>
|
8 |
+
#include <memory>
|
9 |
+
#include <mutex>
|
10 |
+
#include <queue>
|
11 |
+
#include <thread>
|
12 |
+
#include <vector>
|
13 |
+
|
14 |
+
#include <torch/csrc/distributed/c10d/Backend.hpp>
|
15 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
16 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
17 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
18 |
+
#ifdef USE_CUDA
|
19 |
+
#include <ATen/cuda/CUDAEvent.h>
|
20 |
+
#include <c10/cuda/CUDAStream.h>
|
21 |
+
#endif
|
22 |
+
|
23 |
+
namespace c10d {
|
24 |
+
|
25 |
+
#define TORCH_UCC_DEVICE_NOT_SET -2
|
26 |
+
|
27 |
+
#ifdef USE_CUDA
|
28 |
+
#define SAVE_TENSORS(_TENSORS, _DATA) \
|
29 |
+
do { \
|
30 |
+
if ((_TENSORS)[0].device().is_cuda()) { \
|
31 |
+
for (const auto i : c10::irange((_TENSORS).size())) { \
|
32 |
+
c10::cuda::CUDACachingAllocator::recordStream( \
|
33 |
+
(_TENSORS)[i].storage().data_ptr(), (*stream)); \
|
34 |
+
} \
|
35 |
+
} else { \
|
36 |
+
(_DATA) = (_TENSORS); \
|
37 |
+
} \
|
38 |
+
} while (0)
|
39 |
+
|
40 |
+
#else
|
41 |
+
#define SAVE_TENSORS(_TENSORS, _DATA) (_DATA) = (_TENSORS);
|
42 |
+
#endif
|
43 |
+
|
44 |
+
constexpr const char* UCC_BACKEND_NAME = "ucc";
|
45 |
+
|
46 |
+
struct event_pool_t {
|
47 |
+
#ifdef USE_CUDA
|
48 |
+
std::queue<std::unique_ptr<at::cuda::CUDAEvent>> event_pool;
|
49 |
+
#endif
|
50 |
+
std::mutex event_pool_mutex;
|
51 |
+
};
|
52 |
+
|
53 |
+
class Comm;
|
54 |
+
|
55 |
+
// UCC does not support multiple CUDA devices per process.
|
56 |
+
class TORCH_API ProcessGroupUCC : public Backend {
|
57 |
+
private:
|
58 |
+
void set_timeout(ucc_coll_args_t& args);
|
59 |
+
|
60 |
+
public:
|
61 |
+
class WorkData {
|
62 |
+
public:
|
63 |
+
std::vector<at::Tensor> src;
|
64 |
+
std::vector<at::Tensor> dst;
|
65 |
+
std::vector<at::Tensor> flat;
|
66 |
+
WorkData() {}
|
67 |
+
virtual ~WorkData() = default;
|
68 |
+
};
|
69 |
+
class AlltoallWorkData : public WorkData {
|
70 |
+
public:
|
71 |
+
AlltoallWorkData(int size)
|
72 |
+
: send_lengths(size),
|
73 |
+
send_offsets(size),
|
74 |
+
recv_lengths(size),
|
75 |
+
recv_offsets(size) {}
|
76 |
+
std::vector<uint64_t> send_lengths;
|
77 |
+
std::vector<uint64_t> send_offsets;
|
78 |
+
std::vector<uint64_t> recv_lengths;
|
79 |
+
std::vector<uint64_t> recv_offsets;
|
80 |
+
};
|
81 |
+
|
82 |
+
class AllgathervWorkData : public WorkData {
|
83 |
+
public:
|
84 |
+
AllgathervWorkData(int size) : recv_lengths(size), recv_offsets(size) {}
|
85 |
+
std::vector<uint64_t> recv_lengths;
|
86 |
+
std::vector<uint64_t> recv_offsets;
|
87 |
+
};
|
88 |
+
|
89 |
+
class ScattervWorkData : public WorkData {
|
90 |
+
public:
|
91 |
+
ScattervWorkData(int size) : send_lengths(size), send_offsets(size) {}
|
92 |
+
std::vector<uint64_t> send_lengths;
|
93 |
+
std::vector<uint64_t> send_offsets;
|
94 |
+
};
|
95 |
+
|
96 |
+
class ProgressEntry {
|
97 |
+
friend class ProcessGroupUCC;
|
98 |
+
friend class Comm;
|
99 |
+
|
100 |
+
public:
|
101 |
+
ProgressEntry(CommBase* comm, ucc_coll_req_h request)
|
102 |
+
: status_(UCC_INPROGRESS), comm_(comm), request_(request) {}
|
103 |
+
// Finalizes UCC status or exception of collective request.
|
104 |
+
void finalize(std::exception_ptr eptr = nullptr);
|
105 |
+
ucc_status_t status_;
|
106 |
+
CommBase* comm_;
|
107 |
+
ucc_coll_req_h request_;
|
108 |
+
std::unique_ptr<WorkData> data;
|
109 |
+
c10::intrusive_ptr<c10::ivalue::Future> future_;
|
110 |
+
std::exception_ptr eptr_;
|
111 |
+
};
|
112 |
+
|
113 |
+
class WorkUCC : public Work {
|
114 |
+
friend class ProcessGroupUCC;
|
115 |
+
friend class Comm;
|
116 |
+
|
117 |
+
public:
|
118 |
+
WorkUCC(
|
119 |
+
OpType opType,
|
120 |
+
uint64_t seq,
|
121 |
+
const char* prof_title,
|
122 |
+
const c10::optional<std::vector<at::Tensor>>& inputs,
|
123 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger)
|
124 |
+
: Work(-1, opType, prof_title, inputs), logger_(logger), seq_(seq) {}
|
125 |
+
~WorkUCC();
|
126 |
+
void setException();
|
127 |
+
void setAndThrowException();
|
128 |
+
bool isCompleted() override;
|
129 |
+
bool isSuccess() const override;
|
130 |
+
bool wait(std::chrono::milliseconds timeout = kUnsetTimeout) override;
|
131 |
+
c10::intrusive_ptr<c10::ivalue::Future> getFuture() override;
|
132 |
+
std::vector<at::Tensor> result() override;
|
133 |
+
int sourceRank() const override;
|
134 |
+
#ifdef USE_CUDA
|
135 |
+
std::unique_ptr<at::cuda::CUDAEvent> fence = nullptr;
|
136 |
+
event_pool_t* ep = nullptr;
|
137 |
+
#endif
|
138 |
+
int sourceRank_;
|
139 |
+
|
140 |
+
protected:
|
141 |
+
std::shared_ptr<ProgressEntry> entry_;
|
142 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger_;
|
143 |
+
uint64_t seq_;
|
144 |
+
|
145 |
+
private:
|
146 |
+
// The future returned by getFuture.
|
147 |
+
c10::intrusive_ptr<at::ivalue::Future> future_;
|
148 |
+
// Store a reference to collective's outputs, used by result
|
149 |
+
std::shared_ptr<std::vector<at::Tensor>> outputs_;
|
150 |
+
};
|
151 |
+
|
152 |
+
explicit ProcessGroupUCC(
|
153 |
+
const c10::intrusive_ptr<Store>& store,
|
154 |
+
int rank = -1,
|
155 |
+
int size = -1,
|
156 |
+
std::chrono::duration<float> timeout = kBackendDefaultTimeout);
|
157 |
+
|
158 |
+
void initComm(c10::Device dev);
|
159 |
+
|
160 |
+
~ProcessGroupUCC() override;
|
161 |
+
|
162 |
+
const std::string getBackendName() const override {
|
163 |
+
return std::string(UCC_BACKEND_NAME);
|
164 |
+
}
|
165 |
+
|
166 |
+
#ifdef USE_CUDA
|
167 |
+
std::unique_ptr<at::cuda::CUDAEvent> getPooledEvent();
|
168 |
+
#endif
|
169 |
+
|
170 |
+
// Performs a health check by initializing dummy UCC & UCX communicators and
|
171 |
+
// then destroying them. This will help indicate and signal any
|
172 |
+
// UCC/UCX-related issues prior to the first collective. The actual
|
173 |
+
// initialization and subsequent destruction is ran on a separate thread and
|
174 |
+
// the main thread is signalled about timeouts/errors to report to the
|
175 |
+
// application.
|
176 |
+
void runHealthCheck();
|
177 |
+
|
178 |
+
template <typename PreProcess, typename PostProcess>
|
179 |
+
c10::intrusive_ptr<Work> collective_post(
|
180 |
+
OpType opType,
|
181 |
+
PreProcess preproc,
|
182 |
+
PostProcess postproc,
|
183 |
+
ucc_coll_args_t& coll,
|
184 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
185 |
+
c10::Device dev,
|
186 |
+
std::vector<at::Tensor>& inputTensors,
|
187 |
+
std::vector<at::Tensor>& outputTensors,
|
188 |
+
const char* prof_title);
|
189 |
+
|
190 |
+
c10::intrusive_ptr<Work> broadcast(
|
191 |
+
std::vector<at::Tensor>& data,
|
192 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
193 |
+
|
194 |
+
c10::intrusive_ptr<Work> allreduce(
|
195 |
+
std::vector<at::Tensor>& tensors,
|
196 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
197 |
+
|
198 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
199 |
+
std::vector<at::Tensor>& tensors,
|
200 |
+
const AllreduceCoalescedOptions& opts =
|
201 |
+
AllreduceCoalescedOptions()) override;
|
202 |
+
|
203 |
+
c10::intrusive_ptr<Work> reduce(
|
204 |
+
std::vector<at::Tensor>& tensors,
|
205 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
206 |
+
|
207 |
+
c10::intrusive_ptr<Work> allgather(
|
208 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
209 |
+
std::vector<at::Tensor>& inputTensors,
|
210 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
211 |
+
|
212 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
213 |
+
at::Tensor& outputBuffer,
|
214 |
+
at::Tensor& inputBuffer,
|
215 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
216 |
+
|
217 |
+
c10::intrusive_ptr<Work> barrier(
|
218 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
219 |
+
|
220 |
+
c10::intrusive_ptr<Work> gather(
|
221 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
222 |
+
std::vector<at::Tensor>& inputTensors,
|
223 |
+
const GatherOptions& opts = GatherOptions()) override;
|
224 |
+
|
225 |
+
c10::intrusive_ptr<Work> scatter(
|
226 |
+
std::vector<at::Tensor>& outputTensors,
|
227 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
228 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
229 |
+
|
230 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
231 |
+
std::vector<at::Tensor>& outputTensors,
|
232 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
233 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
234 |
+
|
235 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
236 |
+
at::Tensor& outputTensor,
|
237 |
+
at::Tensor& inputTensor,
|
238 |
+
std::vector<int64_t>& outputSplitSizes,
|
239 |
+
std::vector<int64_t>& inputSplitSizes,
|
240 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
241 |
+
|
242 |
+
c10::intrusive_ptr<Work> alltoall(
|
243 |
+
std::vector<at::Tensor>& outputTensors,
|
244 |
+
std::vector<at::Tensor>& inputTensors,
|
245 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
246 |
+
|
247 |
+
c10::intrusive_ptr<Work> send(
|
248 |
+
std::vector<at::Tensor>& tensors,
|
249 |
+
int dstRank,
|
250 |
+
int tag) override;
|
251 |
+
|
252 |
+
c10::intrusive_ptr<Work> recv(
|
253 |
+
std::vector<at::Tensor>& tensors,
|
254 |
+
int srcRank,
|
255 |
+
int tag) override;
|
256 |
+
|
257 |
+
// Counting for the sequential number of UCC collective_post call.
|
258 |
+
uint64_t seq_{0};
|
259 |
+
|
260 |
+
// Agrees on an initial sequence number for the whole group by having rank 0
|
261 |
+
// create it and broadcast it to other ranks using the store.
|
262 |
+
void setSequenceNumberForGroup() override;
|
263 |
+
|
264 |
+
// Retrieves the current sequence number for the whole group, which should be
|
265 |
+
// in sync. If the returned number is not consistent across the group, it
|
266 |
+
// may indicate that there is some sort of collective desynchronization.
|
267 |
+
uint64_t getSequenceNumberForGroup() override;
|
268 |
+
|
269 |
+
static c10::intrusive_ptr<Backend> createProcessGroupUCC(
|
270 |
+
const c10::intrusive_ptr<::c10d::Store>& store,
|
271 |
+
int rank,
|
272 |
+
int size,
|
273 |
+
const std::chrono::duration<float>& timeout);
|
274 |
+
|
275 |
+
protected:
|
276 |
+
const std::chrono::duration<float> timeout_;
|
277 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob;
|
278 |
+
std::shared_ptr<Comm> comm = {nullptr};
|
279 |
+
uint32_t comm_id;
|
280 |
+
ucc_team_h team{nullptr};
|
281 |
+
ucc_ee_h cuda_ee{nullptr};
|
282 |
+
ucc_ee_h cuda_ee_p2p[2]{nullptr, nullptr};
|
283 |
+
|
284 |
+
#ifdef USE_CUDA
|
285 |
+
std::unique_ptr<at::cuda::CUDAStream> stream = nullptr;
|
286 |
+
std::unique_ptr<at::cuda::CUDAStream> stream_p2p[2] = {nullptr, nullptr};
|
287 |
+
event_pool_t ep;
|
288 |
+
#endif
|
289 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger;
|
290 |
+
};
|
291 |
+
|
292 |
+
class Comm {
|
293 |
+
c10::intrusive_ptr<ProcessGroupUCCLogger> logger;
|
294 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob;
|
295 |
+
CommUCC ucc_comm;
|
296 |
+
std::mutex mutex;
|
297 |
+
std::thread progress_thread;
|
298 |
+
std::condition_variable queue_produce_cv;
|
299 |
+
std::condition_variable queue_consume_cv;
|
300 |
+
std::deque<std::shared_ptr<ProcessGroupUCC::ProgressEntry>> progress_queue;
|
301 |
+
bool stop_progress_loop;
|
302 |
+
bool collective_inprogress;
|
303 |
+
torch_ucc_phase_t finalize_phase;
|
304 |
+
|
305 |
+
public:
|
306 |
+
c10::DeviceIndex cuda_device_index;
|
307 |
+
Comm(
|
308 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger,
|
309 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob,
|
310 |
+
c10::Device dev,
|
311 |
+
bool is_health_check);
|
312 |
+
|
313 |
+
~Comm();
|
314 |
+
|
315 |
+
void ucc_create_team(
|
316 |
+
ucc_team_h& team,
|
317 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob);
|
318 |
+
|
319 |
+
void ucc_destroy_team(ucc_team_h& team);
|
320 |
+
|
321 |
+
c10::intrusive_ptr<Work> enqueue_p2p(
|
322 |
+
OpType opType,
|
323 |
+
ucc_coll_req_h request,
|
324 |
+
const char* prof_title);
|
325 |
+
|
326 |
+
#ifdef USE_CUDA
|
327 |
+
void enqueue_cuda_collective(
|
328 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
329 |
+
c10::intrusive_ptr<ProcessGroupUCC::WorkUCC> work,
|
330 |
+
ucc_coll_args_t& coll,
|
331 |
+
ucc_team_h team,
|
332 |
+
ucc_ee_h ee);
|
333 |
+
#endif
|
334 |
+
|
335 |
+
void enqueue_collective(
|
336 |
+
std::unique_ptr<ProcessGroupUCC::WorkData> data,
|
337 |
+
c10::intrusive_ptr<ProcessGroupUCC::WorkUCC> work,
|
338 |
+
ucc_coll_args_t& coll,
|
339 |
+
ucc_team_h team);
|
340 |
+
|
341 |
+
static std::shared_ptr<Comm> get_comm(
|
342 |
+
uint32_t& id,
|
343 |
+
c10::Device dev,
|
344 |
+
std::shared_ptr<torch_ucc_oob_coll_info_t> oob,
|
345 |
+
const c10::intrusive_ptr<ProcessGroupUCCLogger>& logger,
|
346 |
+
bool is_health_check = false);
|
347 |
+
|
348 |
+
void progress_loop();
|
349 |
+
};
|
350 |
+
|
351 |
+
} // namespace c10d
|
352 |
+
|
353 |
+
#endif // USE_C10D_UCC
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_GLOO
|
4 |
+
|
5 |
+
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
|
6 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
7 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
8 |
+
|
9 |
+
namespace c10d {
|
10 |
+
|
11 |
+
class TORCH_API ProcessGroupWrapper : public Backend {
|
12 |
+
public:
|
13 |
+
explicit ProcessGroupWrapper(
|
14 |
+
c10::intrusive_ptr<Backend> backend,
|
15 |
+
c10::intrusive_ptr<Backend> glooBackend);
|
16 |
+
|
17 |
+
const std::string getBackendName() const override;
|
18 |
+
|
19 |
+
c10::intrusive_ptr<Work> broadcast(
|
20 |
+
std::vector<at::Tensor>& data,
|
21 |
+
const BroadcastOptions& opts = BroadcastOptions()) override;
|
22 |
+
|
23 |
+
c10::intrusive_ptr<Work> allreduce(
|
24 |
+
std::vector<at::Tensor>& data,
|
25 |
+
const AllreduceOptions& opts = AllreduceOptions()) override;
|
26 |
+
|
27 |
+
c10::intrusive_ptr<Work> allreduce_coalesced(
|
28 |
+
std::vector<at::Tensor>& tensors,
|
29 |
+
const AllreduceCoalescedOptions& opts =
|
30 |
+
AllreduceCoalescedOptions()) override;
|
31 |
+
|
32 |
+
c10::intrusive_ptr<Work> reduce(
|
33 |
+
std::vector<at::Tensor>& tensors,
|
34 |
+
const ReduceOptions& opts = ReduceOptions()) override;
|
35 |
+
|
36 |
+
c10::intrusive_ptr<Work> allgather(
|
37 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
38 |
+
std::vector<at::Tensor>& inputTensors,
|
39 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
40 |
+
|
41 |
+
c10::intrusive_ptr<Work> _allgather_base(
|
42 |
+
at::Tensor& outputBuffer,
|
43 |
+
at::Tensor& inputBuffer,
|
44 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
45 |
+
|
46 |
+
// This function is deprecated and will be moved out of ProcessGroup to comms:
|
47 |
+
// * do not add dependencies on this function,
|
48 |
+
// * do not implement it in your ProcessGroup, implement _allgather_base
|
49 |
+
// instead.
|
50 |
+
c10::intrusive_ptr<Work> allgather_coalesced(
|
51 |
+
std::vector<std::vector<at::Tensor>>& outputTensorLists,
|
52 |
+
std::vector<at::Tensor>& inputTensors,
|
53 |
+
const AllgatherOptions& opts = AllgatherOptions()) override;
|
54 |
+
|
55 |
+
c10::intrusive_ptr<Work> gather(
|
56 |
+
std::vector<std::vector<at::Tensor>>& outputTensors,
|
57 |
+
std::vector<at::Tensor>& inputTensors,
|
58 |
+
const GatherOptions& opts = GatherOptions()) override;
|
59 |
+
|
60 |
+
c10::intrusive_ptr<Work> scatter(
|
61 |
+
std::vector<at::Tensor>& outputTensors,
|
62 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
63 |
+
const ScatterOptions& opts = ScatterOptions()) override;
|
64 |
+
|
65 |
+
c10::intrusive_ptr<Work> reduce_scatter(
|
66 |
+
std::vector<at::Tensor>& outputTensors,
|
67 |
+
std::vector<std::vector<at::Tensor>>& inputTensors,
|
68 |
+
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
|
69 |
+
|
70 |
+
c10::intrusive_ptr<Work> alltoall_base(
|
71 |
+
at::Tensor& outputTensor,
|
72 |
+
at::Tensor& inputTensor,
|
73 |
+
std::vector<int64_t>& outputSplitSizes,
|
74 |
+
std::vector<int64_t>& inputSplitSizes,
|
75 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
76 |
+
|
77 |
+
c10::intrusive_ptr<Work> alltoall(
|
78 |
+
std::vector<at::Tensor>& outputTensors,
|
79 |
+
std::vector<at::Tensor>& inputTensors,
|
80 |
+
const AllToAllOptions& opts = AllToAllOptions()) override;
|
81 |
+
|
82 |
+
void monitoredBarrier(const BarrierOptions& opts, bool waitAllRanks = false)
|
83 |
+
override;
|
84 |
+
|
85 |
+
// Agrees on an initial sequence number for the whole group by having rank 0
|
86 |
+
// create it and broadcast it to other ranks using the store. Only implemented
|
87 |
+
// for GLOO and NCCL backends currently.
|
88 |
+
// dont implement this
|
89 |
+
void setSequenceNumberForGroup() override;
|
90 |
+
|
91 |
+
// Retrieves the current sequence number for the whole group, which should be
|
92 |
+
// in sync. If the returned number is not consistent across the group, it
|
93 |
+
// may indicate that there is some sort of collective desynchronization.
|
94 |
+
uint64_t getSequenceNumberForGroup() override; // just call underlying
|
95 |
+
|
96 |
+
c10::intrusive_ptr<Work> send(
|
97 |
+
std::vector<at::Tensor>& tensors,
|
98 |
+
int dstRank,
|
99 |
+
int tag) override;
|
100 |
+
|
101 |
+
c10::intrusive_ptr<Work> recv(
|
102 |
+
std::vector<at::Tensor>& tensors,
|
103 |
+
int srcRank,
|
104 |
+
int tag) override;
|
105 |
+
|
106 |
+
c10::intrusive_ptr<Work> recvAnysource(
|
107 |
+
std::vector<at::Tensor>& tensors,
|
108 |
+
int tag) override;
|
109 |
+
|
110 |
+
c10::intrusive_ptr<Work> barrier(
|
111 |
+
const BarrierOptions& opts = BarrierOptions()) override;
|
112 |
+
|
113 |
+
c10::intrusive_ptr<Work> _reduce_scatter_base(
|
114 |
+
at::Tensor& outputBuffer,
|
115 |
+
at::Tensor& inputBuffer,
|
116 |
+
const ReduceScatterOptions& opts) override;
|
117 |
+
|
118 |
+
void startCoalescing() override;
|
119 |
+
|
120 |
+
c10::intrusive_ptr<Work> endCoalescing() override;
|
121 |
+
|
122 |
+
c10::intrusive_ptr<Backend> getWrappedPg() const;
|
123 |
+
|
124 |
+
private:
|
125 |
+
// Underlying process group that actual application collectives will be
|
126 |
+
// dispatched to
|
127 |
+
c10::intrusive_ptr<Backend> backend_;
|
128 |
+
// Gloo process group responsible for internal coordination such as monitored
|
129 |
+
// barrier, sequence number checking, collective fingerprint collecting.
|
130 |
+
c10::intrusive_ptr<Backend> glooBackend_;
|
131 |
+
// Conducts several checks to ensure that the underlying collective is well
|
132 |
+
// formed with the goal of notifying the user about incorrect collective use
|
133 |
+
// in the application.
|
134 |
+
void runCollectiveChecks(
|
135 |
+
OpType op_type,
|
136 |
+
const std::vector<at::Tensor>& tensors);
|
137 |
+
};
|
138 |
+
} // namespace c10d
|
139 |
+
|
140 |
+
#endif // USE_C10D_GLOO
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/RankLocal.hpp
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <shared_mutex>
|
5 |
+
|
6 |
+
#include <torch/csrc/autograd/function.h>
|
7 |
+
|
8 |
+
namespace c10d {
|
9 |
+
|
10 |
+
// `RankLocal` maintains a unique instance of T for each non-autograd thread.
|
11 |
+
// For non-autograd threads, `RankLocal<T>::get()` functions similar to
|
12 |
+
// thread_local. For autograd threads, `RankLocal<T>::get()` returns the
|
13 |
+
// instance of T corresponding to the enqueuing non-autograd thread. The
|
14 |
+
// mechanism allows for rank-specific context shared between forward and
|
15 |
+
// backward. It works for both the one-rank-per-process and one-rank-per-thread
|
16 |
+
// scenarios.
|
17 |
+
//
|
18 |
+
// NOTE: RankLocal doesn't make the underlying objects thread-safe.
|
19 |
+
template <typename T>
|
20 |
+
class RankLocal {
|
21 |
+
public:
|
22 |
+
RankLocal(const RankLocal&) = delete;
|
23 |
+
RankLocal& operator=(const RankLocal&) = delete;
|
24 |
+
|
25 |
+
static T& get() {
|
26 |
+
// Fast path: non-autograd threads can simply return
|
27 |
+
// the object reference cached in TLS.
|
28 |
+
if (cached_ != nullptr) {
|
29 |
+
return *cached_;
|
30 |
+
}
|
31 |
+
const auto node = torch::autograd::get_current_node();
|
32 |
+
auto fwd_thread_id = node == nullptr ? at::RecordFunction::currentThreadId()
|
33 |
+
: node->thread_id();
|
34 |
+
// Optimistically aquire the read lock first, since most likely we are in
|
35 |
+
// an autograd thread and the object has already been constructed.
|
36 |
+
{
|
37 |
+
std::shared_lock read_lock(lock_);
|
38 |
+
auto it = thread_id_to_rank_local_.find(fwd_thread_id);
|
39 |
+
if (it != thread_id_to_rank_local_.end()) {
|
40 |
+
// Cache for non-autograd threads
|
41 |
+
if (node == nullptr) {
|
42 |
+
cached_ = &it->second;
|
43 |
+
}
|
44 |
+
return it->second;
|
45 |
+
}
|
46 |
+
}
|
47 |
+
|
48 |
+
std::unique_lock write_lock(lock_);
|
49 |
+
auto [it, _] = thread_id_to_rank_local_.try_emplace(fwd_thread_id);
|
50 |
+
// Cache for non-autograd threads
|
51 |
+
if (node == nullptr) {
|
52 |
+
cached_ = &it->second;
|
53 |
+
}
|
54 |
+
return it->second;
|
55 |
+
}
|
56 |
+
|
57 |
+
private:
|
58 |
+
RankLocal(){};
|
59 |
+
thread_local static T* cached_;
|
60 |
+
static std::unordered_map<uint64_t, T> thread_id_to_rank_local_;
|
61 |
+
static std::shared_mutex lock_;
|
62 |
+
};
|
63 |
+
|
64 |
+
template <typename T>
|
65 |
+
thread_local T* RankLocal<T>::cached_ = nullptr;
|
66 |
+
|
67 |
+
template <typename T>
|
68 |
+
std::unordered_map<uint64_t, T> RankLocal<T>::thread_id_to_rank_local_;
|
69 |
+
|
70 |
+
template <typename T>
|
71 |
+
std::shared_mutex RankLocal<T>::lock_;
|
72 |
+
|
73 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStore.hpp
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstddef>
|
4 |
+
#include <cstdint>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
8 |
+
|
9 |
+
namespace c10d {
|
10 |
+
namespace detail {
|
11 |
+
|
12 |
+
class TCPServer;
|
13 |
+
|
14 |
+
class TCPClient;
|
15 |
+
|
16 |
+
struct SocketAddress {
|
17 |
+
std::string host{};
|
18 |
+
std::uint16_t port{};
|
19 |
+
};
|
20 |
+
|
21 |
+
class Counter {
|
22 |
+
public:
|
23 |
+
void update(double val);
|
24 |
+
std::unordered_map<std::string, double> observe() const;
|
25 |
+
|
26 |
+
double mean() const noexcept {
|
27 |
+
return mean_;
|
28 |
+
}
|
29 |
+
int64_t count() const noexcept {
|
30 |
+
return count_;
|
31 |
+
}
|
32 |
+
double variance() const noexcept {
|
33 |
+
return m2_ / count_;
|
34 |
+
}
|
35 |
+
double sample_variance() const noexcept {
|
36 |
+
return m2_ / (count_ - 1);
|
37 |
+
}
|
38 |
+
|
39 |
+
private:
|
40 |
+
int64_t count_ = 0;
|
41 |
+
double mean_ = 0;
|
42 |
+
double m2_ = 0;
|
43 |
+
};
|
44 |
+
|
45 |
+
} // namespace detail
|
46 |
+
|
47 |
+
struct TCPStoreOptions {
|
48 |
+
static constexpr std::uint16_t kDefaultPort = 29500;
|
49 |
+
|
50 |
+
std::uint16_t port = kDefaultPort;
|
51 |
+
bool isServer = false;
|
52 |
+
c10::optional<std::size_t> numWorkers = c10::nullopt;
|
53 |
+
bool waitWorkers = true;
|
54 |
+
std::chrono::milliseconds timeout = Store::kDefaultTimeout;
|
55 |
+
|
56 |
+
// A boolean value indicating whether multiple store instances can be
|
57 |
+
// initialized with the same host:port pair.
|
58 |
+
bool multiTenant = false;
|
59 |
+
|
60 |
+
// If specified, and if isServer is true, the underlying TCPServer will take
|
61 |
+
// over the bound socket associated to this fd. This option is useful to avoid
|
62 |
+
// port assignment races in certain scenarios.
|
63 |
+
c10::optional<int> masterListenFd = c10::nullopt;
|
64 |
+
|
65 |
+
// A boolean value indicating whether to use the experimental libUV backend.
|
66 |
+
bool useLibUV = false;
|
67 |
+
};
|
68 |
+
|
69 |
+
class TORCH_API TCPStore : public Store {
|
70 |
+
public:
|
71 |
+
explicit TCPStore(std::string host, const TCPStoreOptions& opts = {});
|
72 |
+
|
73 |
+
[[deprecated("Use TCPStore(host, opts) instead.")]] explicit TCPStore(
|
74 |
+
const std::string& masterAddr,
|
75 |
+
std::uint16_t masterPort,
|
76 |
+
c10::optional<int> numWorkers = c10::nullopt,
|
77 |
+
bool isServer = false,
|
78 |
+
const std::chrono::milliseconds& timeout = kDefaultTimeout,
|
79 |
+
bool waitWorkers = true);
|
80 |
+
|
81 |
+
~TCPStore() override;
|
82 |
+
|
83 |
+
void set(const std::string& key, const std::vector<uint8_t>& value) override;
|
84 |
+
|
85 |
+
std::vector<uint8_t> compareSet(
|
86 |
+
const std::string& key,
|
87 |
+
const std::vector<uint8_t>& expectedValue,
|
88 |
+
const std::vector<uint8_t>& desiredValue) override;
|
89 |
+
|
90 |
+
std::vector<uint8_t> get(const std::string& key) override;
|
91 |
+
|
92 |
+
int64_t add(const std::string& key, int64_t value) override;
|
93 |
+
|
94 |
+
bool deleteKey(const std::string& key) override;
|
95 |
+
|
96 |
+
bool check(const std::vector<std::string>& keys) override;
|
97 |
+
|
98 |
+
int64_t getNumKeys() override;
|
99 |
+
|
100 |
+
void wait(const std::vector<std::string>& keys) override;
|
101 |
+
|
102 |
+
void wait(
|
103 |
+
const std::vector<std::string>& keys,
|
104 |
+
const std::chrono::milliseconds& timeout) override;
|
105 |
+
|
106 |
+
void append(const std::string& key, const std::vector<uint8_t>& value)
|
107 |
+
override;
|
108 |
+
|
109 |
+
std::vector<std::vector<uint8_t>> multiGet(
|
110 |
+
const std::vector<std::string>& keys) override;
|
111 |
+
|
112 |
+
void multiSet(
|
113 |
+
const std::vector<std::string>& keys,
|
114 |
+
const std::vector<std::vector<uint8_t>>& values) override;
|
115 |
+
|
116 |
+
bool hasExtendedApi() const override;
|
117 |
+
|
118 |
+
// Waits for all workers to join.
|
119 |
+
void waitForWorkers();
|
120 |
+
|
121 |
+
// Returns the hostname used by the TCPStore.
|
122 |
+
const std::string& getHost() const noexcept {
|
123 |
+
return addr_.host;
|
124 |
+
}
|
125 |
+
|
126 |
+
// Returns the port used by the TCPStore.
|
127 |
+
std::uint16_t getPort() const noexcept {
|
128 |
+
return addr_.port;
|
129 |
+
}
|
130 |
+
|
131 |
+
std::unordered_map<std::string, std::unordered_map<std::string, double>>
|
132 |
+
collectClientCounters() const noexcept;
|
133 |
+
|
134 |
+
bool isLibUvBackend() const noexcept {
|
135 |
+
return usingLibUv_;
|
136 |
+
}
|
137 |
+
|
138 |
+
private:
|
139 |
+
int64_t incrementValueBy(const std::string& key, int64_t delta);
|
140 |
+
|
141 |
+
void validate(void);
|
142 |
+
|
143 |
+
std::vector<uint8_t> doGet(const std::string& key);
|
144 |
+
|
145 |
+
void doWait(
|
146 |
+
c10::ArrayRef<std::string> keys,
|
147 |
+
std::chrono::milliseconds timeout);
|
148 |
+
|
149 |
+
detail::SocketAddress addr_;
|
150 |
+
std::shared_ptr<detail::TCPServer> server_;
|
151 |
+
std::unique_ptr<detail::TCPClient> client_;
|
152 |
+
c10::optional<std::size_t> numWorkers_;
|
153 |
+
|
154 |
+
const std::string initKey_ = "init/";
|
155 |
+
const std::string keyPrefix_ = "/";
|
156 |
+
std::mutex activeOpLock_;
|
157 |
+
std::unordered_map<std::string, detail::Counter> clientCounters_;
|
158 |
+
bool usingLibUv_ = false;
|
159 |
+
};
|
160 |
+
|
161 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TCPStoreBackend.hpp
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <chrono>
|
4 |
+
#include <thread>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
#include <torch/csrc/distributed/c10d/TCPStore.hpp>
|
8 |
+
#include <torch/csrc/distributed/c10d/socket.h>
|
9 |
+
|
10 |
+
#ifdef _WIN32
|
11 |
+
#include <io.h>
|
12 |
+
#include <winsock2.h>
|
13 |
+
#else
|
14 |
+
#include <poll.h>
|
15 |
+
#include <unistd.h>
|
16 |
+
#endif
|
17 |
+
|
18 |
+
namespace c10d {
|
19 |
+
namespace detail {
|
20 |
+
|
21 |
+
// Magic number for client validation.
|
22 |
+
static const uint32_t validationMagicNumber = 0x3C85F7CE;
|
23 |
+
|
24 |
+
enum class QueryType : uint8_t {
|
25 |
+
VALIDATE,
|
26 |
+
SET,
|
27 |
+
COMPARE_SET,
|
28 |
+
GET,
|
29 |
+
ADD,
|
30 |
+
CHECK,
|
31 |
+
WAIT,
|
32 |
+
GETNUMKEYS,
|
33 |
+
DELETE_KEY,
|
34 |
+
APPEND,
|
35 |
+
MULTI_GET,
|
36 |
+
MULTI_SET,
|
37 |
+
CANCEL_WAIT,
|
38 |
+
};
|
39 |
+
|
40 |
+
enum class CheckResponseType : uint8_t { READY, NOT_READY };
|
41 |
+
|
42 |
+
enum class WaitResponseType : uint8_t { STOP_WAITING, WAIT_CANCELED };
|
43 |
+
|
44 |
+
// Abstract base class to handle thread state for TCPStoreMasterDaemon.
|
45 |
+
// Contains the windows/unix implementations to signal a
|
46 |
+
// shutdown sequence for the thread
|
47 |
+
class BackgroundThread {
|
48 |
+
public:
|
49 |
+
explicit BackgroundThread();
|
50 |
+
|
51 |
+
virtual ~BackgroundThread() = 0;
|
52 |
+
virtual std::uint16_t port() const = 0;
|
53 |
+
|
54 |
+
void start();
|
55 |
+
bool stop_requested();
|
56 |
+
|
57 |
+
protected:
|
58 |
+
void dispose();
|
59 |
+
virtual void run() = 0;
|
60 |
+
virtual void stop() = 0;
|
61 |
+
bool is_running() {
|
62 |
+
return is_running_.load();
|
63 |
+
}
|
64 |
+
|
65 |
+
private:
|
66 |
+
std::atomic<bool> is_running_;
|
67 |
+
std::thread daemonThread_{};
|
68 |
+
};
|
69 |
+
|
70 |
+
std::unique_ptr<BackgroundThread> create_tcpstore_backend(
|
71 |
+
const TCPStoreOptions& opts);
|
72 |
+
std::unique_ptr<BackgroundThread> create_libuv_tcpstore_backend(
|
73 |
+
const TCPStoreOptions& opts);
|
74 |
+
bool is_libuv_tcpstore_backend_available();
|
75 |
+
|
76 |
+
} // namespace detail
|
77 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/TraceUtils.h
ADDED
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/ApproximateClock.h>
|
4 |
+
#include <c10/util/irange.h>
|
5 |
+
#include <torch/csrc/distributed/c10d/Store.hpp>
|
6 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
7 |
+
#include <torch/csrc/jit/serialization/pickler.h>
|
8 |
+
#include <torch/csrc/profiler/combined_traceback.h>
|
9 |
+
|
10 |
+
#include <sys/types.h>
|
11 |
+
|
12 |
+
#include <cstdlib>
|
13 |
+
#include <string>
|
14 |
+
#include <system_error>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace c10d {
|
18 |
+
|
19 |
+
/* Trace Utils Related to TORCH_NCCL_DESYNC_DEBUG */
|
20 |
+
|
21 |
+
inline std::string getTraceStartKey(const std::string& pgName, int rank) {
|
22 |
+
return pgName + "_" + std::to_string(rank) + "_trace_start";
|
23 |
+
}
|
24 |
+
|
25 |
+
inline std::string getTraceEndKey(const std::string& pgName, int rank) {
|
26 |
+
return pgName + "_" + std::to_string(rank) + "_trace_end";
|
27 |
+
}
|
28 |
+
|
29 |
+
inline bool traceUpdate(
|
30 |
+
c10::intrusive_ptr<Store>& store,
|
31 |
+
const std::string& key,
|
32 |
+
uint64_t seq,
|
33 |
+
const std::string& col) {
|
34 |
+
std::vector<uint8_t> value(col.size() + sizeof(seq) + 1);
|
35 |
+
memcpy(value.data(), &seq, sizeof(seq));
|
36 |
+
memcpy(value.data() + sizeof(seq), col.data(), col.size());
|
37 |
+
try {
|
38 |
+
store->set(key, value);
|
39 |
+
return true;
|
40 |
+
} catch (...) {
|
41 |
+
LOG(ERROR) << "Store is down while updating #" << seq << " with key "
|
42 |
+
<< key;
|
43 |
+
return false;
|
44 |
+
}
|
45 |
+
return true;
|
46 |
+
}
|
47 |
+
|
48 |
+
enum TraceDebugEvent {
|
49 |
+
kEventStart,
|
50 |
+
kEventEnd,
|
51 |
+
};
|
52 |
+
// <seq, <rank, <col, start/end>>>
|
53 |
+
using TraceMap =
|
54 |
+
std::map<uint64_t, std::map<int, std::pair<std::string, TraceDebugEvent>>>;
|
55 |
+
|
56 |
+
inline std::string ranksToString(const std::vector<int>& ranks) {
|
57 |
+
std::string str;
|
58 |
+
for (int rank : ranks) {
|
59 |
+
if (str.empty()) {
|
60 |
+
str = std::to_string(rank);
|
61 |
+
} else {
|
62 |
+
str += ", " + std::to_string(rank);
|
63 |
+
}
|
64 |
+
}
|
65 |
+
return str;
|
66 |
+
}
|
67 |
+
|
68 |
+
inline std::string ranksFromTrace(
|
69 |
+
const std::vector<std::pair<int, std::string>>& items) {
|
70 |
+
std::string ranks;
|
71 |
+
for (auto& p : items) {
|
72 |
+
if (ranks.empty()) {
|
73 |
+
ranks = std::to_string(p.first);
|
74 |
+
} else {
|
75 |
+
ranks += ", " + std::to_string(p.first);
|
76 |
+
}
|
77 |
+
}
|
78 |
+
return ranks;
|
79 |
+
}
|
80 |
+
|
81 |
+
inline std::string analyzeMissingRanks(const std::vector<int>& missingRanks) {
|
82 |
+
return c10::str(
|
83 |
+
"\n\t - To our best knowledge, ranks [",
|
84 |
+
ranksToString(missingRanks),
|
85 |
+
"] are the lagging ranks that caused this timeout. "
|
86 |
+
"They never joined any collectives");
|
87 |
+
}
|
88 |
+
|
89 |
+
inline std::string analyzeLaggingRanks(const TraceMap& traceMap) {
|
90 |
+
uint64_t lagSeq = traceMap.begin()->first;
|
91 |
+
std::vector<int> startRanks;
|
92 |
+
std::vector<int> endRanks;
|
93 |
+
for (auto& p : traceMap.begin()->second) {
|
94 |
+
if (p.second.second == kEventStart) {
|
95 |
+
startRanks.push_back(p.first);
|
96 |
+
} else {
|
97 |
+
endRanks.push_back(p.first);
|
98 |
+
}
|
99 |
+
}
|
100 |
+
std::string report =
|
101 |
+
"\n\t - To our best knowledge, the lagging/dead/mismatched ranks "
|
102 |
+
"that caused the desync are:";
|
103 |
+
if (startRanks.size()) {
|
104 |
+
report += c10::str(
|
105 |
+
"\n\t - [",
|
106 |
+
ranksToString(startRanks),
|
107 |
+
"] joined but didn't finish collective #",
|
108 |
+
lagSeq,
|
109 |
+
" (count from 1)");
|
110 |
+
}
|
111 |
+
if (endRanks.size()) {
|
112 |
+
report += c10::str(
|
113 |
+
"\n\t [",
|
114 |
+
ranksToString(endRanks),
|
115 |
+
"] finished collective #",
|
116 |
+
lagSeq,
|
117 |
+
", but didn't join collective #",
|
118 |
+
lagSeq + 1,
|
119 |
+
" (count from 1)");
|
120 |
+
}
|
121 |
+
return report;
|
122 |
+
}
|
123 |
+
|
124 |
+
inline std::string dumpSnapshot(TraceMap& traceMap) {
|
125 |
+
std::string report = "\n\t - Snapshot of ranks' latest states:";
|
126 |
+
for (auto& tracePair : traceMap) {
|
127 |
+
uint64_t seq = tracePair.first;
|
128 |
+
std::map<int, std::pair<std::string, TraceDebugEvent>>& subMap =
|
129 |
+
tracePair.second;
|
130 |
+
|
131 |
+
std::unordered_map<std::string, std::vector<int>> collectivesStart;
|
132 |
+
std::unordered_map<std::string, std::vector<int>> collectivesEnd;
|
133 |
+
for (auto& p : subMap) {
|
134 |
+
int rank = p.first;
|
135 |
+
const std::string& col = p.second.first;
|
136 |
+
if (p.second.second == kEventStart) {
|
137 |
+
collectivesStart[col].push_back(rank);
|
138 |
+
} else {
|
139 |
+
collectivesEnd[col].push_back(rank);
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
if (collectivesStart.size()) {
|
144 |
+
report += c10::str("\n\t #", seq, " started ranks:");
|
145 |
+
for (auto& mapPair : collectivesStart) {
|
146 |
+
report += c10::str(
|
147 |
+
"\n\t [",
|
148 |
+
ranksToString(mapPair.second),
|
149 |
+
"] started ",
|
150 |
+
mapPair.first);
|
151 |
+
}
|
152 |
+
}
|
153 |
+
if (collectivesEnd.size()) {
|
154 |
+
report += c10::str("\n\t #", seq, " finished ranks:");
|
155 |
+
for (auto& mapPair : collectivesEnd) {
|
156 |
+
report += c10::str(
|
157 |
+
"\n\t [",
|
158 |
+
ranksToString(mapPair.second),
|
159 |
+
"] finished ",
|
160 |
+
mapPair.first);
|
161 |
+
}
|
162 |
+
}
|
163 |
+
}
|
164 |
+
return report;
|
165 |
+
}
|
166 |
+
|
167 |
+
inline bool parseTraceValue(
|
168 |
+
c10::intrusive_ptr<Store>& store,
|
169 |
+
const std::string& key,
|
170 |
+
uint64_t& seq,
|
171 |
+
std::string& col) {
|
172 |
+
try {
|
173 |
+
std::vector<uint8_t> traceValue = store->get(key);
|
174 |
+
memcpy(&seq, traceValue.data(), sizeof(seq));
|
175 |
+
std::string colName((char*)traceValue.data() + sizeof(seq));
|
176 |
+
col = colName;
|
177 |
+
return true;
|
178 |
+
} catch (...) {
|
179 |
+
LOG(ERROR) << "Store is down while getting key " << key;
|
180 |
+
return false;
|
181 |
+
}
|
182 |
+
return true;
|
183 |
+
}
|
184 |
+
|
185 |
+
inline std::string retrieveDesyncReport(
|
186 |
+
c10::intrusive_ptr<Store>& store,
|
187 |
+
const std::string& pgName,
|
188 |
+
int myRank,
|
189 |
+
int worldSize) {
|
190 |
+
std::string report;
|
191 |
+
|
192 |
+
uint64_t thisSeq;
|
193 |
+
std::string thisCol;
|
194 |
+
|
195 |
+
std::vector<int> missingRanks;
|
196 |
+
TraceMap traceMap;
|
197 |
+
|
198 |
+
for (const auto rank : c10::irange(worldSize)) {
|
199 |
+
// Build traceMapStart.
|
200 |
+
uint64_t seqStart;
|
201 |
+
{
|
202 |
+
std::string traceKeyStart = getTraceStartKey(pgName, rank);
|
203 |
+
if (!store->check({traceKeyStart})) {
|
204 |
+
missingRanks.push_back(rank);
|
205 |
+
continue;
|
206 |
+
}
|
207 |
+
std::string col;
|
208 |
+
if (!parseTraceValue(store, traceKeyStart, seqStart, col)) {
|
209 |
+
return report;
|
210 |
+
}
|
211 |
+
traceMap[seqStart].emplace(rank, std::make_pair(col, kEventStart));
|
212 |
+
if (rank == myRank) {
|
213 |
+
thisSeq = seqStart;
|
214 |
+
thisCol = std::move(col);
|
215 |
+
}
|
216 |
+
}
|
217 |
+
|
218 |
+
// Build traceMapEnd.
|
219 |
+
{
|
220 |
+
std::string traceKeyEnd = getTraceEndKey(pgName, rank);
|
221 |
+
if (!store->check({traceKeyEnd})) {
|
222 |
+
continue;
|
223 |
+
}
|
224 |
+
uint64_t seq;
|
225 |
+
std::string col;
|
226 |
+
if (!parseTraceValue(store, traceKeyEnd, seq, col)) {
|
227 |
+
return report;
|
228 |
+
}
|
229 |
+
if (seq == seqStart) {
|
230 |
+
traceMap[seq][rank].second = kEventEnd;
|
231 |
+
}
|
232 |
+
}
|
233 |
+
}
|
234 |
+
|
235 |
+
TORCH_INTERNAL_ASSERT(
|
236 |
+
!missingRanks.empty() || !traceMap.empty(),
|
237 |
+
"Trace shouldn't be empty while enabled GLOO_ASYNC_TIMEOUT_DEBUG");
|
238 |
+
TORCH_INTERNAL_ASSERT(
|
239 |
+
!thisCol.empty(),
|
240 |
+
"Timeout rank [",
|
241 |
+
myRank,
|
242 |
+
"] must have collective tracking iteam in c10::Store trace");
|
243 |
+
TORCH_INTERNAL_ASSERT(
|
244 |
+
traceMap[thisSeq][myRank].second == kEventStart,
|
245 |
+
"Timeout rank [",
|
246 |
+
myRank,
|
247 |
+
"] last trace item must be kEventStart. thisSeq = ",
|
248 |
+
thisSeq,
|
249 |
+
", col = ",
|
250 |
+
thisCol);
|
251 |
+
|
252 |
+
report += c10::str(
|
253 |
+
"\n\t - [", myRank, "] Timeout at collective: ", thisCol, ", #", thisSeq);
|
254 |
+
|
255 |
+
if (!missingRanks.empty()) {
|
256 |
+
report += analyzeMissingRanks(missingRanks);
|
257 |
+
} else {
|
258 |
+
report += analyzeLaggingRanks(traceMap);
|
259 |
+
report += dumpSnapshot(traceMap);
|
260 |
+
}
|
261 |
+
|
262 |
+
return report;
|
263 |
+
}
|
264 |
+
|
265 |
+
/* Trace Utils Related to Flight Recorder */
|
266 |
+
|
267 |
+
/* Note: this is only used by PGNCCL (could be generalized in an ideal world but
|
268 |
+
* wasn't done that way, so isn't expected to be fully general at the moment) */
|
269 |
+
|
270 |
+
#ifdef USE_C10D_NCCL
|
271 |
+
|
272 |
+
DebugInfoWriter::DebugInfoWriter(int rank) {
|
273 |
+
std::string fileName = getCvarString(
|
274 |
+
{"TORCH_NCCL_DEBUG_INFO_TEMP_FILE"}, "/tmp/nccl_trace_rank_");
|
275 |
+
filename_ = c10::str(fileName, rank);
|
276 |
+
}
|
277 |
+
|
278 |
+
DebugInfoWriter::~DebugInfoWriter() = default;
|
279 |
+
|
280 |
+
void DebugInfoWriter::write(const std::string& ncclTrace) {
|
281 |
+
// Open a file for writing. The ios::binary flag is used to write data as
|
282 |
+
// binary.
|
283 |
+
std::ofstream file(filename_, std::ios::binary);
|
284 |
+
|
285 |
+
// Check if the file was opened successfully.
|
286 |
+
if (!file.is_open()) {
|
287 |
+
LOG(ERROR) << "Error opening file for writing NCCLPG debug info: "
|
288 |
+
<< filename_;
|
289 |
+
return;
|
290 |
+
}
|
291 |
+
|
292 |
+
file.write(ncclTrace.data(), ncclTrace.size());
|
293 |
+
LOG(INFO) << "Finished writing NCCLPG debug info to " << filename_;
|
294 |
+
}
|
295 |
+
|
296 |
+
inline std::string pickle_str(const c10::IValue& v) {
|
297 |
+
std::vector<char> result;
|
298 |
+
{
|
299 |
+
auto writer = [&](const char* data, size_t size) {
|
300 |
+
result.insert(result.end(), data, data + size);
|
301 |
+
};
|
302 |
+
torch::jit::Pickler pickler(
|
303 |
+
writer, nullptr, nullptr, nullptr, nullptr, false);
|
304 |
+
pickler.protocol();
|
305 |
+
pickler.pushIValue(v);
|
306 |
+
pickler.stop();
|
307 |
+
}
|
308 |
+
return std::string(result.begin(), result.end());
|
309 |
+
}
|
310 |
+
|
311 |
+
inline c10::Dict<c10::IValue, c10::IValue> new_dict() {
|
312 |
+
return c10::Dict<c10::IValue, c10::IValue>(
|
313 |
+
c10::AnyType::get(), c10::AnyType::get());
|
314 |
+
}
|
315 |
+
|
316 |
+
inline c10::List<c10::IValue> new_list() {
|
317 |
+
return c10::List<c10::IValue>(c10::AnyType::get());
|
318 |
+
}
|
319 |
+
|
320 |
+
struct NCCLTraceBuffer {
|
321 |
+
static NCCLTraceBuffer* get() {
|
322 |
+
// intentionally leak on exit
|
323 |
+
// because this will hold python state that may get destructed
|
324 |
+
static NCCLTraceBuffer* instance = new NCCLTraceBuffer();
|
325 |
+
return instance;
|
326 |
+
}
|
327 |
+
NCCLTraceBuffer() {
|
328 |
+
max_entries_ = getCvarInt({"TORCH_NCCL_TRACE_BUFFER_SIZE"}, 0);
|
329 |
+
capture_cpp_stack_ = getCvarBool({"TORCH_NCCL_TRACE_CPP_STACK"}, false);
|
330 |
+
enabled_ = max_entries_ > 0;
|
331 |
+
}
|
332 |
+
using EventList = std::vector<at::cuda::CUDAEvent>;
|
333 |
+
struct Entry {
|
334 |
+
size_t id_; // incremented id in the trace buffer
|
335 |
+
// used to figure out where in the circular entries
|
336 |
+
// buffer this entry will be located to
|
337 |
+
// update state information
|
338 |
+
size_t pg_id_;
|
339 |
+
size_t seq_id_; // as tracked by the process group
|
340 |
+
const char* profiling_name_;
|
341 |
+
|
342 |
+
std::shared_ptr<torch::CapturedTraceback> traceback_;
|
343 |
+
// we borrow pointser to start_ and end_ so we can query the state
|
344 |
+
// on reporting. However, once the event is completed, the call
|
345 |
+
// to `complete` will clear these.
|
346 |
+
EventList *start_, *end_;
|
347 |
+
|
348 |
+
// timestamp when the entry was created, likely close to the time the work
|
349 |
+
// was 'enqueued'- not necessarily started
|
350 |
+
c10::time_t time_created_;
|
351 |
+
|
352 |
+
const char* state_ = "scheduled";
|
353 |
+
|
354 |
+
// size information for input/output tensors
|
355 |
+
c10::SmallVector<int, 4> input_dims_;
|
356 |
+
c10::SmallVector<int, 4> output_dims_;
|
357 |
+
c10::SmallVector<int64_t, 8> sizes_; // flattened from inputs, outputs
|
358 |
+
bool retired_ = false; // is this work entry no longer in the workMetaList_?
|
359 |
+
// a retired but not completed event has timed out
|
360 |
+
};
|
361 |
+
|
362 |
+
bool enabled_ = false;
|
363 |
+
bool capture_cpp_stack_ = false;
|
364 |
+
std::mutex mutex_;
|
365 |
+
std::vector<Entry> entries_;
|
366 |
+
size_t max_entries_ = 0;
|
367 |
+
size_t next_ = 0;
|
368 |
+
size_t id_ = 0;
|
369 |
+
|
370 |
+
c10::optional<size_t> record(
|
371 |
+
size_t pg_id,
|
372 |
+
size_t seq_id,
|
373 |
+
const char* profiling_name,
|
374 |
+
const std::vector<at::Tensor>& inputs,
|
375 |
+
const std::vector<at::Tensor>& outputs,
|
376 |
+
EventList* start,
|
377 |
+
EventList* end) {
|
378 |
+
if (!enabled_) {
|
379 |
+
return c10::nullopt;
|
380 |
+
}
|
381 |
+
auto traceback =
|
382 |
+
torch::CapturedTraceback::gather(true, true, capture_cpp_stack_);
|
383 |
+
std::lock_guard<std::mutex> guard(mutex_);
|
384 |
+
|
385 |
+
auto te = Entry{
|
386 |
+
id_,
|
387 |
+
pg_id,
|
388 |
+
seq_id,
|
389 |
+
profiling_name,
|
390 |
+
std::move(traceback),
|
391 |
+
std::move(start),
|
392 |
+
std::move(end),
|
393 |
+
c10::getTime()};
|
394 |
+
|
395 |
+
for (const auto& input : inputs) {
|
396 |
+
c10::IntArrayRef sizes = input.sizes();
|
397 |
+
te.input_dims_.push_back(sizes.size());
|
398 |
+
te.sizes_.insert(te.sizes_.end(), sizes.begin(), sizes.end());
|
399 |
+
}
|
400 |
+
|
401 |
+
for (const auto& output : outputs) {
|
402 |
+
c10::IntArrayRef sizes = output.sizes();
|
403 |
+
te.output_dims_.push_back(sizes.size());
|
404 |
+
te.sizes_.insert(te.sizes_.end(), sizes.begin(), sizes.end());
|
405 |
+
}
|
406 |
+
|
407 |
+
if (entries_.size() < max_entries_) {
|
408 |
+
entries_.emplace_back(std::move(te));
|
409 |
+
} else {
|
410 |
+
entries_[next_++] = std::move(te);
|
411 |
+
if (next_ == max_entries_) {
|
412 |
+
next_ = 0;
|
413 |
+
}
|
414 |
+
}
|
415 |
+
return id_++;
|
416 |
+
}
|
417 |
+
|
418 |
+
void update_state(Entry& r) {
|
419 |
+
if (r.start_ != nullptr) {
|
420 |
+
bool started = true;
|
421 |
+
for (auto& ev : *r.start_) {
|
422 |
+
if (!ev.query()) {
|
423 |
+
started = false;
|
424 |
+
break;
|
425 |
+
}
|
426 |
+
}
|
427 |
+
if (started) {
|
428 |
+
r.state_ = "started";
|
429 |
+
}
|
430 |
+
}
|
431 |
+
if (r.end_ != nullptr) {
|
432 |
+
bool completed = true;
|
433 |
+
for (auto& ev : *r.end_) {
|
434 |
+
if (!ev.query()) {
|
435 |
+
completed = false;
|
436 |
+
break;
|
437 |
+
}
|
438 |
+
}
|
439 |
+
if (completed) {
|
440 |
+
r.state_ = "completed";
|
441 |
+
}
|
442 |
+
}
|
443 |
+
}
|
444 |
+
|
445 |
+
std::vector<Entry> dump_entries() {
|
446 |
+
std::lock_guard<std::mutex> guard(mutex_);
|
447 |
+
std::vector<Entry> result;
|
448 |
+
result.reserve(entries_.size());
|
449 |
+
result.insert(result.end(), entries_.begin() + next_, entries_.end());
|
450 |
+
result.insert(result.end(), entries_.begin(), entries_.begin() + next_);
|
451 |
+
// query any remaining events
|
452 |
+
for (auto& r : result) {
|
453 |
+
update_state(r);
|
454 |
+
r.start_ = r.end_ = nullptr;
|
455 |
+
}
|
456 |
+
return result;
|
457 |
+
}
|
458 |
+
|
459 |
+
void retire_id(c10::optional<size_t> id) {
|
460 |
+
if (!enabled_ || !id) {
|
461 |
+
return;
|
462 |
+
}
|
463 |
+
std::lock_guard<std::mutex> guard(mutex_);
|
464 |
+
auto& entry = entries_.at(*id % max_entries_);
|
465 |
+
if (entry.id_ == *id) {
|
466 |
+
update_state(entry);
|
467 |
+
entry.retired_ = true;
|
468 |
+
entry.start_ = entry.end_ = nullptr;
|
469 |
+
}
|
470 |
+
}
|
471 |
+
|
472 |
+
std::string dump() {
|
473 |
+
auto result = dump_entries();
|
474 |
+
auto entries = new_list();
|
475 |
+
c10::IValue pg_id_s = "pg_id";
|
476 |
+
c10::IValue seq_id_s = "seq_id";
|
477 |
+
c10::IValue profiling_name_s = "profiling_name";
|
478 |
+
c10::IValue input_sizes_s = "input_sizes";
|
479 |
+
c10::IValue output_sizes_s = "output_sizes";
|
480 |
+
c10::IValue time_created_s = "time_created_us";
|
481 |
+
|
482 |
+
c10::IValue frames_s = "frames";
|
483 |
+
c10::IValue state_s = "state";
|
484 |
+
c10::IValue line_s = "line";
|
485 |
+
c10::IValue name_s = "name";
|
486 |
+
c10::IValue filename_s = "filename";
|
487 |
+
c10::IValue retired_s = "retired";
|
488 |
+
|
489 |
+
std::vector<torch::CapturedTraceback*> tracebacks;
|
490 |
+
for (auto& e : result) {
|
491 |
+
tracebacks.push_back(e.traceback_.get());
|
492 |
+
}
|
493 |
+
torch::SymbolizedTracebacks stracebacks = torch::symbolize(tracebacks);
|
494 |
+
std::vector<c10::IValue> all_frames;
|
495 |
+
for (const auto& f : stracebacks.all_frames) {
|
496 |
+
auto d = new_dict();
|
497 |
+
d.insert(name_s, f.funcname);
|
498 |
+
d.insert(filename_s, f.filename);
|
499 |
+
d.insert(line_s, int64_t(f.lineno));
|
500 |
+
all_frames.emplace_back(std::move(d));
|
501 |
+
}
|
502 |
+
|
503 |
+
for (auto i : c10::irange(result.size())) {
|
504 |
+
auto& e = result.at(i);
|
505 |
+
auto& tb = stracebacks.tracebacks.at(i);
|
506 |
+
auto dict = new_dict();
|
507 |
+
dict.insert(pg_id_s, int64_t(e.pg_id_));
|
508 |
+
dict.insert(seq_id_s, int64_t(e.seq_id_));
|
509 |
+
dict.insert(profiling_name_s, e.profiling_name_);
|
510 |
+
dict.insert(time_created_s, int64_t(e.time_created_ / 1000));
|
511 |
+
|
512 |
+
auto it = e.sizes_.begin();
|
513 |
+
auto read_sizes = [&](const c10::SmallVector<int, 4>& dims) {
|
514 |
+
auto sizes = new_list();
|
515 |
+
for (auto dim : dims) {
|
516 |
+
auto arg_sizes = new_list();
|
517 |
+
for (auto i : c10::irange(dim)) {
|
518 |
+
(void)i;
|
519 |
+
arg_sizes.push_back(*it++);
|
520 |
+
}
|
521 |
+
sizes.push_back(arg_sizes);
|
522 |
+
}
|
523 |
+
return sizes;
|
524 |
+
};
|
525 |
+
|
526 |
+
dict.insert(input_sizes_s, read_sizes(e.input_dims_));
|
527 |
+
dict.insert(output_sizes_s, read_sizes(e.output_dims_));
|
528 |
+
dict.insert(state_s, e.state_);
|
529 |
+
dict.insert(retired_s, e.retired_);
|
530 |
+
|
531 |
+
auto frames = new_list();
|
532 |
+
for (int64_t frame : tb) {
|
533 |
+
frames.push_back(all_frames.at(frame));
|
534 |
+
}
|
535 |
+
dict.insert(frames_s, frames);
|
536 |
+
entries.push_back(dict);
|
537 |
+
}
|
538 |
+
return pickle_str(entries);
|
539 |
+
}
|
540 |
+
};
|
541 |
+
|
542 |
+
#endif
|
543 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/UCCTracing.hpp
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#ifdef USE_C10D_UCC
|
4 |
+
|
5 |
+
#include <torch/csrc/distributed/c10d/UCCUtils.hpp>
|
6 |
+
|
7 |
+
namespace c10d {
|
8 |
+
|
9 |
+
#define RECORD_COMMS_TRACE( \
|
10 |
+
_comms_tracer, _work, _opType, _rank, _comm_size, _inTensors, _outTensors) \
|
11 |
+
do { \
|
12 |
+
if (torch_ucc_config.enable_comms_logger) { \
|
13 |
+
_comms_tracer->recordComms( \
|
14 |
+
opTypeToString(_opType), \
|
15 |
+
(uintptr_t)_work.get(), \
|
16 |
+
_rank, \
|
17 |
+
_comm_size, \
|
18 |
+
_inTensors, \
|
19 |
+
_outTensors); \
|
20 |
+
} \
|
21 |
+
} while (0)
|
22 |
+
|
23 |
+
// interfaces to collect communication traces
|
24 |
+
class TORCH_API CommTraceLogger : public torch::CustomClassHolder {
|
25 |
+
private:
|
26 |
+
std::vector<std::string> comms_trace_;
|
27 |
+
std::vector<std::string> curBlocks_; /* unused */
|
28 |
+
std::vector<int64_t> curOutSplitSizes_;
|
29 |
+
std::vector<int64_t> curInSplitSizes_;
|
30 |
+
int curRoot_ = -1;
|
31 |
+
unsigned long seqnum = 0;
|
32 |
+
|
33 |
+
public:
|
34 |
+
void setCurBlock(const std::string& name); /* unused */
|
35 |
+
void popBlock(); /* unused */
|
36 |
+
// record root info if applicable, e.g., broadcast, gather, scatter
|
37 |
+
void recordOptionalInfo(int root = -1);
|
38 |
+
// record input/output splits of Alltoallv
|
39 |
+
void recordOptionalInfo(
|
40 |
+
const std::vector<int64_t>& outputSplitSizes = {},
|
41 |
+
const std::vector<int64_t>& inputSplitSizes = {});
|
42 |
+
// record essential comms information
|
43 |
+
void recordComms(
|
44 |
+
const std::string& collName,
|
45 |
+
const uintptr_t workReq = 0,
|
46 |
+
const int rank = -1,
|
47 |
+
const int world_size = -1,
|
48 |
+
const std::vector<at::Tensor>& inputTensors = {},
|
49 |
+
const std::vector<at::Tensor>& outputTensor = {});
|
50 |
+
// return collected comms traces
|
51 |
+
std::vector<std::string>& getCommsTrace() {
|
52 |
+
return comms_trace_;
|
53 |
+
}
|
54 |
+
};
|
55 |
+
|
56 |
+
} // namespace c10d
|
57 |
+
|
58 |
+
#endif // USE_C10D_UCC
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/UnixSockUtils.hpp
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
4 |
+
|
5 |
+
namespace c10d {
|
6 |
+
namespace tcputil {
|
7 |
+
|
8 |
+
#define CONNECT_SOCKET_OFFSET 2
|
9 |
+
|
10 |
+
inline int poll(struct pollfd* fds, unsigned long nfds, int timeout) {
|
11 |
+
return ::poll(fds, nfds, timeout);
|
12 |
+
}
|
13 |
+
|
14 |
+
inline void addPollfd(
|
15 |
+
std::vector<struct pollfd>& fds,
|
16 |
+
int socket,
|
17 |
+
short events) {
|
18 |
+
fds.push_back({.fd = socket, .events = events});
|
19 |
+
}
|
20 |
+
|
21 |
+
inline struct ::pollfd getPollfd(int socket, short events) {
|
22 |
+
struct ::pollfd res = {.fd = socket, .events = events};
|
23 |
+
return res;
|
24 |
+
}
|
25 |
+
|
26 |
+
} // namespace tcputil
|
27 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Utils.hpp
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
#include <c10/util/accumulate.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
#include <torch/csrc/distributed/c10d/Types.hpp>
|
8 |
+
|
9 |
+
#ifdef _WIN32
|
10 |
+
#include <winsock2.h>
|
11 |
+
#include <ws2tcpip.h>
|
12 |
+
typedef SSIZE_T ssize_t;
|
13 |
+
#pragma comment(lib, "Ws2_32.lib")
|
14 |
+
#else
|
15 |
+
#include <fcntl.h>
|
16 |
+
#include <netdb.h>
|
17 |
+
#include <sys/poll.h>
|
18 |
+
#include <sys/socket.h>
|
19 |
+
#include <unistd.h>
|
20 |
+
#endif
|
21 |
+
|
22 |
+
#include <sys/types.h>
|
23 |
+
|
24 |
+
#include <chrono>
|
25 |
+
#include <cstdint>
|
26 |
+
#include <cstdlib>
|
27 |
+
#include <functional>
|
28 |
+
#include <limits>
|
29 |
+
#include <string>
|
30 |
+
#include <system_error>
|
31 |
+
#include <tuple>
|
32 |
+
#include <vector>
|
33 |
+
|
34 |
+
namespace c10d {
|
35 |
+
|
36 |
+
// Retrieve tensor shapes from a given tensor.
|
37 |
+
TORCH_API std::vector<at::Tensor> getTensorShapes(
|
38 |
+
const std::vector<at::Tensor>& tensors);
|
39 |
+
|
40 |
+
// Use -2 to represent unset state of env vars
|
41 |
+
#define C10D_ENV_NOT_SET -2
|
42 |
+
|
43 |
+
// Turns at::IntArrayRef into "(1, 2, 3, 4)".
|
44 |
+
inline std::string toString(at::IntArrayRef l) {
|
45 |
+
std::stringstream ss;
|
46 |
+
ss << "(";
|
47 |
+
for (const auto i : c10::irange(l.size())) {
|
48 |
+
if (i > 0) {
|
49 |
+
ss << ", ";
|
50 |
+
}
|
51 |
+
ss << l[i];
|
52 |
+
}
|
53 |
+
ss << ")";
|
54 |
+
return ss.str();
|
55 |
+
}
|
56 |
+
|
57 |
+
inline std::string toString(const c10::Layout& layout) {
|
58 |
+
std::stringstream ss;
|
59 |
+
ss << layout;
|
60 |
+
return ss.str();
|
61 |
+
}
|
62 |
+
|
63 |
+
inline void assertSameType(
|
64 |
+
const at::DeprecatedTypeProperties& type,
|
65 |
+
const std::vector<at::Tensor>& tensors) {
|
66 |
+
for (const auto i : c10::irange(tensors.size())) {
|
67 |
+
if (!tensors[i].options().type_equal(type.options())) {
|
68 |
+
const std::string expected = type.toString();
|
69 |
+
const std::string actual = tensors[i].toString();
|
70 |
+
throw std::invalid_argument(
|
71 |
+
"mixed types (" + expected + " and " + actual + ")");
|
72 |
+
}
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
inline std::vector<std::string> split(
|
77 |
+
char separator,
|
78 |
+
const std::string& string) {
|
79 |
+
std::vector<std::string> pieces;
|
80 |
+
std::stringstream ss(string);
|
81 |
+
std::string item;
|
82 |
+
while (std::getline(ss, item, separator)) {
|
83 |
+
pieces.push_back(std::move(item));
|
84 |
+
}
|
85 |
+
return pieces;
|
86 |
+
}
|
87 |
+
|
88 |
+
inline std::string getCvarString(
|
89 |
+
const std::vector<std::string>& env,
|
90 |
+
const char* def) {
|
91 |
+
const char* ret = def;
|
92 |
+
|
93 |
+
if (env.empty()) {
|
94 |
+
TORCH_CHECK(false, "No environment variables passed");
|
95 |
+
return ret;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* parse environment variable in reverse order, so the early
|
99 |
+
* versions of a variable get higher priority than the latter
|
100 |
+
* versions of the same variable */
|
101 |
+
for (int i = env.size() - 1; i >= 0; i--) {
|
102 |
+
const char* val = std::getenv(env[i].c_str());
|
103 |
+
if (val == nullptr) {
|
104 |
+
continue;
|
105 |
+
} else if (i) {
|
106 |
+
TORCH_WARN(
|
107 |
+
"Environment variable " + env[i] + " is deprecated; use " + env[0] +
|
108 |
+
" instead");
|
109 |
+
}
|
110 |
+
|
111 |
+
ret = val;
|
112 |
+
}
|
113 |
+
|
114 |
+
return ret;
|
115 |
+
}
|
116 |
+
|
117 |
+
inline int getCvarInt(const std::vector<std::string>& env, int def) {
|
118 |
+
int ret = def;
|
119 |
+
|
120 |
+
if (env.empty()) {
|
121 |
+
TORCH_CHECK(false, "No environment variables passed");
|
122 |
+
return ret;
|
123 |
+
}
|
124 |
+
|
125 |
+
/* parse environment variable in reverse order, so the early
|
126 |
+
* versions of a variable get higher priority than the latter
|
127 |
+
* versions of the same variable */
|
128 |
+
for (int i = env.size() - 1; i >= 0; i--) {
|
129 |
+
char* val = std::getenv(env[i].c_str());
|
130 |
+
if (val == nullptr) {
|
131 |
+
continue;
|
132 |
+
} else if (i) {
|
133 |
+
TORCH_WARN(
|
134 |
+
"Environment variable " + env[i] + " is deprecated; use " + env[0] +
|
135 |
+
" instead");
|
136 |
+
}
|
137 |
+
|
138 |
+
try {
|
139 |
+
ret = std::stoi(val);
|
140 |
+
} catch (std::exception& e) {
|
141 |
+
TORCH_CHECK(false, "Invalid value for environment variable: " + env[i]);
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
return ret;
|
146 |
+
}
|
147 |
+
|
148 |
+
inline bool getCvarBool(const std::vector<std::string>& env, bool def) {
|
149 |
+
bool ret = def;
|
150 |
+
|
151 |
+
if (env.empty()) {
|
152 |
+
TORCH_CHECK(false, "No environment variables passed");
|
153 |
+
return ret;
|
154 |
+
}
|
155 |
+
|
156 |
+
/* parse environment variable in reverse order, so the early
|
157 |
+
* versions of a variable get higher priority than the latter
|
158 |
+
* versions of the same variable */
|
159 |
+
for (int i = env.size() - 1; i >= 0; i--) {
|
160 |
+
char* val_ = std::getenv(env[i].c_str());
|
161 |
+
if (val_ == nullptr) {
|
162 |
+
continue;
|
163 |
+
} else if (i) {
|
164 |
+
TORCH_WARN(
|
165 |
+
"Environment variable " + env[i] + " is deprecated; use " + env[0] +
|
166 |
+
" instead");
|
167 |
+
}
|
168 |
+
|
169 |
+
std::string val = std::string(val_);
|
170 |
+
for (auto& x : val) {
|
171 |
+
x = std::tolower(x);
|
172 |
+
}
|
173 |
+
|
174 |
+
if (val == "y" || val == "yes" || val == "1" || val == "t" ||
|
175 |
+
val == "true") {
|
176 |
+
ret = true;
|
177 |
+
} else if (
|
178 |
+
val == "n" || val == "no" || val == "0" || val == "f" ||
|
179 |
+
val == "false") {
|
180 |
+
ret = false;
|
181 |
+
} else {
|
182 |
+
TORCH_CHECK(false, "Invalid value for environment variable: " + env[i]);
|
183 |
+
return ret;
|
184 |
+
}
|
185 |
+
}
|
186 |
+
|
187 |
+
return ret;
|
188 |
+
}
|
189 |
+
|
190 |
+
inline void assertSameSizes(
|
191 |
+
const at::IntArrayRef& sizes,
|
192 |
+
const std::vector<at::Tensor>& tensors) {
|
193 |
+
for (const auto i : c10::irange(tensors.size())) {
|
194 |
+
if (!tensors[i].sizes().equals(sizes)) {
|
195 |
+
const auto expected = toString(sizes);
|
196 |
+
const auto actual = toString(tensors[i].sizes());
|
197 |
+
throw std::invalid_argument(
|
198 |
+
"mixed sizes (" + expected + " and " + actual + ")");
|
199 |
+
}
|
200 |
+
}
|
201 |
+
}
|
202 |
+
|
203 |
+
inline void assertSameSizeAndType(const std::vector<at::Tensor>& tensors) {
|
204 |
+
// Ensure we have at least one tensor
|
205 |
+
if (tensors.empty()) {
|
206 |
+
throw std::invalid_argument("argument is empty");
|
207 |
+
}
|
208 |
+
|
209 |
+
// Ensure all tensors have identical type and shape
|
210 |
+
auto options = tensors[0].options();
|
211 |
+
auto sizes = tensors[0].sizes();
|
212 |
+
for (const auto i : c10::irange(1, tensors.size())) {
|
213 |
+
if (!tensors[i].options().type_equal(options)) {
|
214 |
+
const auto expected = toString(options);
|
215 |
+
const auto actual = toString(tensors[i].options());
|
216 |
+
throw std::invalid_argument(
|
217 |
+
"argument contains mixed types (" + expected + " and " + actual +
|
218 |
+
")");
|
219 |
+
}
|
220 |
+
if (!tensors[i].sizes().equals(sizes)) {
|
221 |
+
const auto expected = toString(sizes);
|
222 |
+
const auto actual = toString(tensors[i].sizes());
|
223 |
+
throw std::invalid_argument(
|
224 |
+
"argument contains mixed sizes (" + expected + " and " + actual +
|
225 |
+
")");
|
226 |
+
}
|
227 |
+
}
|
228 |
+
}
|
229 |
+
|
230 |
+
inline void assertTypeMatch(
|
231 |
+
std::function<void(const std::string&)> fn,
|
232 |
+
const at::DeprecatedTypeProperties& type,
|
233 |
+
const at::ArrayRef<at::Tensor> tensors,
|
234 |
+
size_t index) {
|
235 |
+
if (!tensors[index].options().type_equal(type.options())) {
|
236 |
+
fn("invalid tensor type at index " + std::to_string(index) + " (expected " +
|
237 |
+
type.toString() + ", got " + tensors[index].toString() + ")");
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
inline void assertTypeMatch(
|
242 |
+
std::function<void(const std::string&)> fn,
|
243 |
+
const at::TensorOptions& options,
|
244 |
+
const at::ArrayRef<at::Tensor> tensors,
|
245 |
+
size_t index) {
|
246 |
+
if (!tensors[index].options().type_equal(options)) {
|
247 |
+
fn("invalid tensor type at index " + std::to_string(index) + " (expected " +
|
248 |
+
toString(options) + ", got " + toString(tensors[index].options()) + ")");
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
inline void assertSizesMatch(
|
253 |
+
std::function<void(const std::string&)> fn,
|
254 |
+
const at::IntArrayRef& sizes,
|
255 |
+
const at::ArrayRef<at::Tensor> tensors,
|
256 |
+
size_t index) {
|
257 |
+
if (tensors[index].sizes() != sizes) {
|
258 |
+
fn("invalid tensor size at index " + std::to_string(index) + " (expected " +
|
259 |
+
toString(sizes) + ", got " + toString(tensors[index].sizes()) + ")");
|
260 |
+
}
|
261 |
+
}
|
262 |
+
|
263 |
+
inline void assertLayoutMatch(
|
264 |
+
std::function<void(const std::string&)> fn,
|
265 |
+
const c10::Layout& expected,
|
266 |
+
const at::ArrayRef<at::Tensor> tensors,
|
267 |
+
size_t index) {
|
268 |
+
const auto& actual = tensors[index].layout();
|
269 |
+
if (actual != expected) {
|
270 |
+
fn("invalid tensor layout at index " + std::to_string(index) +
|
271 |
+
" (expected " + toString(expected) + ", got " + toString(actual) + ")");
|
272 |
+
}
|
273 |
+
}
|
274 |
+
|
275 |
+
inline void assertLayoutMatch(
|
276 |
+
std::function<void(const std::string&)> fn,
|
277 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
278 |
+
const auto& layout = tensors[0].layout();
|
279 |
+
for (const auto i : c10::irange(1, tensors.size())) {
|
280 |
+
assertLayoutMatch(fn, layout, tensors, i);
|
281 |
+
}
|
282 |
+
}
|
283 |
+
|
284 |
+
inline void assertNonEmpty(
|
285 |
+
std::function<void(const std::string&)> fn,
|
286 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
287 |
+
if (tensors.empty()) {
|
288 |
+
fn("requires non-empty tensor list");
|
289 |
+
}
|
290 |
+
}
|
291 |
+
|
292 |
+
inline void assertSingleElement(
|
293 |
+
std::function<void(const std::string&)> fn,
|
294 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
295 |
+
if (tensors.size() != 1) {
|
296 |
+
fn("requires a single-element tensor list");
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
inline void assertSingleElementInput(
|
301 |
+
std::function<void(const std::string&)> fn,
|
302 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
303 |
+
if (tensors.size() != 1) {
|
304 |
+
fn("requires a single-element input tensor list");
|
305 |
+
}
|
306 |
+
}
|
307 |
+
|
308 |
+
inline void assertSingleElementOutput(
|
309 |
+
std::function<void(const std::string&)> fn,
|
310 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
311 |
+
if (tensors.size() != 1) {
|
312 |
+
fn("requires a single-element output tensor list");
|
313 |
+
}
|
314 |
+
}
|
315 |
+
|
316 |
+
inline void assertRootRank(
|
317 |
+
std::function<void(const std::string&)> fn,
|
318 |
+
int rank,
|
319 |
+
int size) {
|
320 |
+
if (rank < 0 || rank >= size) {
|
321 |
+
fn("invalid root rank: " + std::to_string(rank));
|
322 |
+
}
|
323 |
+
}
|
324 |
+
|
325 |
+
inline void assertRootTensor(
|
326 |
+
std::function<void(const std::string&)> fn,
|
327 |
+
int rank,
|
328 |
+
int size) {
|
329 |
+
if (rank < 0 || rank >= size) {
|
330 |
+
fn("invalid root tensor: " + std::to_string(rank));
|
331 |
+
}
|
332 |
+
}
|
333 |
+
|
334 |
+
inline void assertDense(
|
335 |
+
std::function<void(const std::string&)> fn,
|
336 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
337 |
+
const auto& layout = tensors[0].layout();
|
338 |
+
if (layout != at::kStrided) {
|
339 |
+
fn("only supports dense tensors");
|
340 |
+
}
|
341 |
+
}
|
342 |
+
|
343 |
+
inline void assertCPU(
|
344 |
+
std::function<void(const std::string&)> fn,
|
345 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
346 |
+
const auto& device = tensors[0].device();
|
347 |
+
if (device.type() != at::kCPU) {
|
348 |
+
fn("only supports CPU tensors");
|
349 |
+
}
|
350 |
+
}
|
351 |
+
|
352 |
+
inline void assertSameDevice(
|
353 |
+
std::function<void(const std::string&)> fn,
|
354 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
355 |
+
if (tensors.size() < 2) {
|
356 |
+
return;
|
357 |
+
}
|
358 |
+
const auto& device = tensors[0].device();
|
359 |
+
for (const auto i : c10::irange(1, tensors.size())) {
|
360 |
+
if (tensors[i].device() != device) {
|
361 |
+
fn("tensors should be on the same device");
|
362 |
+
}
|
363 |
+
}
|
364 |
+
}
|
365 |
+
|
366 |
+
inline void assertTypeAndSizesMatch(
|
367 |
+
std::function<void(const std::string&)> fn,
|
368 |
+
const at::ArrayRef<at::Tensor> tensors,
|
369 |
+
const at::DeprecatedTypeProperties& type,
|
370 |
+
const at::IntArrayRef& sizes) {
|
371 |
+
for (const auto i : c10::irange(tensors.size())) {
|
372 |
+
assertTypeMatch(fn, type, tensors, i);
|
373 |
+
assertSizesMatch(fn, sizes, tensors, i);
|
374 |
+
}
|
375 |
+
}
|
376 |
+
|
377 |
+
inline void assertTypeAndSizesMatch(
|
378 |
+
std::function<void(const std::string&)> fn,
|
379 |
+
const at::ArrayRef<at::Tensor> tensors,
|
380 |
+
const at::TensorOptions& options,
|
381 |
+
const at::IntArrayRef& sizes) {
|
382 |
+
for (const auto i : c10::irange(tensors.size())) {
|
383 |
+
assertTypeMatch(fn, options, tensors, i);
|
384 |
+
assertSizesMatch(fn, sizes, tensors, i);
|
385 |
+
}
|
386 |
+
}
|
387 |
+
|
388 |
+
inline void assertTypeAndSizesMatch(
|
389 |
+
std::function<void(const std::string&)> fn,
|
390 |
+
const at::ArrayRef<at::Tensor> tensors) {
|
391 |
+
const auto& options = tensors[0].options();
|
392 |
+
const auto sizes = tensors[0].sizes();
|
393 |
+
assertTypeAndSizesMatch(fn, tensors.slice(1), options, sizes);
|
394 |
+
}
|
395 |
+
|
396 |
+
// Copied from ATen/core/functional.h.
|
397 |
+
template <typename F, typename T>
|
398 |
+
inline auto fmap(T& inputs, const F& fn)
|
399 |
+
-> std::vector<decltype(fn(*inputs.begin()))> {
|
400 |
+
std::vector<decltype(fn(*inputs.begin()))> r;
|
401 |
+
r.reserve(inputs.size());
|
402 |
+
for (auto& input : inputs) {
|
403 |
+
r.push_back(fn(input));
|
404 |
+
}
|
405 |
+
return r;
|
406 |
+
}
|
407 |
+
|
408 |
+
// Copied from torch/csrc/utils/tensor_flatten.h.
|
409 |
+
inline at::Tensor flattenDenseTensors(at::TensorList tensors) {
|
410 |
+
static const auto flatten = [](const at::Tensor& t) {
|
411 |
+
return t.contiguous().view({-1});
|
412 |
+
};
|
413 |
+
if (tensors.size() == 1) {
|
414 |
+
return flatten(tensors[0]);
|
415 |
+
}
|
416 |
+
return at::cat(::c10d::fmap(tensors, flatten));
|
417 |
+
}
|
418 |
+
|
419 |
+
inline at::Tensor newLikeFlat(
|
420 |
+
std::vector<std::vector<at::Tensor>>& tensors,
|
421 |
+
size_t deviceIdx) {
|
422 |
+
if (tensors.empty() || tensors[0].empty()) {
|
423 |
+
TORCH_CHECK(false, "Received an empty list");
|
424 |
+
}
|
425 |
+
if (deviceIdx >= tensors.size()) {
|
426 |
+
TORCH_CHECK(false, "Invalid device index");
|
427 |
+
}
|
428 |
+
auto& t = tensors[deviceIdx][0];
|
429 |
+
auto device = t.device();
|
430 |
+
for (const auto i : c10::irange(1, tensors[deviceIdx].size())) {
|
431 |
+
if (tensors[deviceIdx][i].device() != device) {
|
432 |
+
TORCH_CHECK(false, "Expecting all tensors on the same device");
|
433 |
+
}
|
434 |
+
}
|
435 |
+
at::DeviceGuard gpuGuard(device);
|
436 |
+
std::vector<int64_t> sizes{static_cast<int64_t>(tensors[deviceIdx].size())};
|
437 |
+
std::vector<int64_t> strides{static_cast<int64_t>(t.numel())};
|
438 |
+
sizes.insert(sizes.end(), t.sizes().begin(), t.sizes().end());
|
439 |
+
strides.insert(strides.end(), t.strides().begin(), t.strides().end());
|
440 |
+
return at::empty_strided(
|
441 |
+
sizes, strides, t.options().memory_format(c10::nullopt));
|
442 |
+
}
|
443 |
+
|
444 |
+
inline at::Tensor newLikeFlat(std::vector<at::Tensor>& tensors) {
|
445 |
+
if (tensors.empty()) {
|
446 |
+
TORCH_CHECK(false, "Received an empty list");
|
447 |
+
}
|
448 |
+
auto& t = tensors[0];
|
449 |
+
at::DeviceGuard gpuGuard(t.device());
|
450 |
+
std::vector<int64_t> sizes{static_cast<int64_t>(tensors.size())};
|
451 |
+
sizes.insert(sizes.end(), t.sizes().begin(), t.sizes().end());
|
452 |
+
return at::empty(sizes, t.options());
|
453 |
+
}
|
454 |
+
|
455 |
+
inline std::vector<std::vector<int64_t>> getSizes(
|
456 |
+
const std::vector<at::Tensor>& tensors) {
|
457 |
+
std::vector<std::vector<int64_t>> sizes(tensors.size());
|
458 |
+
for (const auto i : c10::irange(tensors.size())) {
|
459 |
+
sizes[i] = tensors[i].sizes().vec();
|
460 |
+
}
|
461 |
+
return sizes;
|
462 |
+
}
|
463 |
+
|
464 |
+
inline std::vector<int> getDevices(const std::vector<at::Tensor>& tensors) {
|
465 |
+
std::vector<int> devices(tensors.size(), -1);
|
466 |
+
if (tensors[0].device().is_cuda()) {
|
467 |
+
for (const auto i : c10::irange(tensors.size())) {
|
468 |
+
devices[i] = tensors[i].storage().device().index();
|
469 |
+
}
|
470 |
+
}
|
471 |
+
return devices;
|
472 |
+
}
|
473 |
+
|
474 |
+
template <typename T>
|
475 |
+
inline T* getDataPointer(const at::Tensor& tensor) {
|
476 |
+
// This method is only used in ProcessGroupGloo for now. Call sites must make
|
477 |
+
// sure that the input tensor is contiguous. It is OK if the tensor does not
|
478 |
+
// start from the beginning of the storage. For example, it could come from
|
479 |
+
// chunk(..., dim=0)[1]. Hence, we need to use data_ptr() instead of
|
480 |
+
// tensor.storage().data()
|
481 |
+
// NB: not using tensor.data<T>() because tensor is not aware of gloo::TYPE
|
482 |
+
return static_cast<T*>(tensor.data_ptr());
|
483 |
+
}
|
484 |
+
|
485 |
+
template <typename T>
|
486 |
+
std::vector<T*> getDataPointers(const std::vector<at::Tensor>& tensors) {
|
487 |
+
std::vector<T*> ptrs(tensors.size());
|
488 |
+
for (const auto i : c10::irange(tensors.size())) {
|
489 |
+
ptrs[i] = getDataPointer<T>(tensors[i]);
|
490 |
+
}
|
491 |
+
return ptrs;
|
492 |
+
}
|
493 |
+
|
494 |
+
// For alltoall split size sanity check
|
495 |
+
inline void checkSplitSizes(
|
496 |
+
const std::vector<int64_t>& split_sizes,
|
497 |
+
const at::Tensor& tensor,
|
498 |
+
int group_size) {
|
499 |
+
if (split_sizes.empty()) {
|
500 |
+
TORCH_CHECK(
|
501 |
+
tensor.size(0) % group_size == 0,
|
502 |
+
"Tensor's dim 0 does not divide equally across group size");
|
503 |
+
} else {
|
504 |
+
TORCH_CHECK(
|
505 |
+
split_sizes.size() == static_cast<size_t>(group_size),
|
506 |
+
"Number of tensor splits not equal to group size");
|
507 |
+
const auto sum = c10::sum_integers(split_sizes);
|
508 |
+
TORCH_CHECK(
|
509 |
+
sum == tensor.size(0), "Split sizes doesn't match total dim 0 size");
|
510 |
+
}
|
511 |
+
}
|
512 |
+
|
513 |
+
// Compute alltoall lengths and offsets, handling multi-dimension tensors
|
514 |
+
template <typename T>
|
515 |
+
size_t computeLengthsAndOffsets(
|
516 |
+
const std::vector<int64_t>& split_sizes,
|
517 |
+
const at::Tensor& tensor,
|
518 |
+
std::vector<T>* lengths,
|
519 |
+
std::vector<T>* offsets) {
|
520 |
+
size_t group_size = lengths->size();
|
521 |
+
bool equal_splits = false;
|
522 |
+
size_t dim0_size = tensor.size(0);
|
523 |
+
size_t row_size = (dim0_size ? tensor.numel() / dim0_size : 1);
|
524 |
+
size_t split_size = 0;
|
525 |
+
size_t offset = 0;
|
526 |
+
|
527 |
+
if (split_sizes.empty()) {
|
528 |
+
equal_splits = true;
|
529 |
+
split_size = tensor.size(0) / group_size;
|
530 |
+
}
|
531 |
+
for (const auto i : c10::irange(group_size)) {
|
532 |
+
size_t length = row_size * (equal_splits ? split_size : split_sizes[i]);
|
533 |
+
(*lengths)[i] = length;
|
534 |
+
(*offsets)[i] = offset;
|
535 |
+
// TODO: see if we should add overflow protection for offset
|
536 |
+
offset += length;
|
537 |
+
}
|
538 |
+
return offset;
|
539 |
+
}
|
540 |
+
|
541 |
+
template <typename T>
|
542 |
+
size_t computeLengthsAndOffsets(
|
543 |
+
const std::vector<at::Tensor>& tensors,
|
544 |
+
std::vector<T>* lengths,
|
545 |
+
std::vector<T>* offsets) {
|
546 |
+
size_t group_size = lengths->size();
|
547 |
+
size_t offset = 0;
|
548 |
+
for (const auto i : c10::irange(group_size)) {
|
549 |
+
size_t length = tensors[i].numel();
|
550 |
+
(*lengths)[i] = length;
|
551 |
+
(*offsets)[i] = offset;
|
552 |
+
offset += length;
|
553 |
+
}
|
554 |
+
return offset;
|
555 |
+
}
|
556 |
+
|
557 |
+
using RankType = uint32_t;
|
558 |
+
using SizeType = uint64_t;
|
559 |
+
|
560 |
+
// `errno` is only meaningful when it fails. E.g., a successful `fork()` sets
|
561 |
+
// `errno` to `EINVAL` in child process on some macos
|
562 |
+
// (https://stackoverflow.com/a/20295079), and thus `errno` should really only
|
563 |
+
// be inspected if an error occurred.
|
564 |
+
//
|
565 |
+
// `success_cond` is an expression used to check if an error has happend. So for
|
566 |
+
// `fork()`, we can use `SYSCHECK(pid = fork(), pid != -1)`. The function output
|
567 |
+
// is stored in variable `__output` and may be used in `success_cond`.
|
568 |
+
#ifdef _WIN32
|
569 |
+
#define SYSCHECK(expr, success_cond) \
|
570 |
+
while (true) { \
|
571 |
+
auto __output = (expr); \
|
572 |
+
auto errno_local = WSAGetLastError(); \
|
573 |
+
(void)__output; \
|
574 |
+
if (!(success_cond)) { \
|
575 |
+
if (errno == EINTR) { \
|
576 |
+
continue; \
|
577 |
+
} else if ( \
|
578 |
+
errno_local == WSAETIMEDOUT || errno_local == WSAEWOULDBLOCK) { \
|
579 |
+
C10_THROW_ERROR(DistNetworkError, "Socket Timeout"); \
|
580 |
+
} else { \
|
581 |
+
C10_THROW_ERROR(DistNetworkError, std::strerror(errno_local)); \
|
582 |
+
} \
|
583 |
+
} else { \
|
584 |
+
break; \
|
585 |
+
} \
|
586 |
+
}
|
587 |
+
#else
|
588 |
+
#define SYSCHECK(expr, success_cond) \
|
589 |
+
while (true) { \
|
590 |
+
auto __output = (expr); \
|
591 |
+
(void)__output; \
|
592 |
+
if (!(success_cond)) { \
|
593 |
+
if (errno == EINTR) { \
|
594 |
+
continue; \
|
595 |
+
} else if (errno == EAGAIN || errno == EWOULDBLOCK) { \
|
596 |
+
C10_THROW_ERROR(DistNetworkError, "Socket Timeout"); \
|
597 |
+
} else { \
|
598 |
+
C10_THROW_ERROR(DistNetworkError, std::strerror(errno)); \
|
599 |
+
} \
|
600 |
+
} else { \
|
601 |
+
break; \
|
602 |
+
} \
|
603 |
+
}
|
604 |
+
#endif
|
605 |
+
|
606 |
+
// Most functions indicate error by returning `-1`. This is a helper macro for
|
607 |
+
// this common case with `SYSCHECK`.
|
608 |
+
// Since SOCKET_ERROR = -1 in MSVC, so also leverage SYSCHECK_ERR_RETURN_NEG1
|
609 |
+
#define SYSCHECK_ERR_RETURN_NEG1(expr) SYSCHECK(expr, __output != -1)
|
610 |
+
|
611 |
+
namespace tcputil {
|
612 |
+
|
613 |
+
// Send and receive
|
614 |
+
template <typename T>
|
615 |
+
void sendBytes(
|
616 |
+
int socket,
|
617 |
+
const T* buffer,
|
618 |
+
size_t length,
|
619 |
+
bool moreData = false) {
|
620 |
+
size_t bytesToSend = sizeof(T) * length;
|
621 |
+
if (bytesToSend == 0) {
|
622 |
+
return;
|
623 |
+
}
|
624 |
+
|
625 |
+
auto bytes = reinterpret_cast<const uint8_t*>(buffer);
|
626 |
+
uint8_t* currentBytes = const_cast<uint8_t*>(bytes);
|
627 |
+
|
628 |
+
int flags = 0;
|
629 |
+
|
630 |
+
#ifdef MSG_MORE
|
631 |
+
if (moreData) { // there is more data to send
|
632 |
+
flags |= MSG_MORE;
|
633 |
+
}
|
634 |
+
#endif
|
635 |
+
|
636 |
+
// Ignore SIGPIPE as the send() return value is always checked for error
|
637 |
+
#ifdef MSG_NOSIGNAL
|
638 |
+
flags |= MSG_NOSIGNAL;
|
639 |
+
#endif
|
640 |
+
|
641 |
+
while (bytesToSend > 0) {
|
642 |
+
ssize_t bytesSent;
|
643 |
+
SYSCHECK_ERR_RETURN_NEG1(
|
644 |
+
bytesSent =
|
645 |
+
::send(socket, (const char*)currentBytes, bytesToSend, flags))
|
646 |
+
if (bytesSent == 0) {
|
647 |
+
C10_THROW_ERROR(DistNetworkError, std::strerror(ECONNRESET));
|
648 |
+
}
|
649 |
+
|
650 |
+
bytesToSend -= bytesSent;
|
651 |
+
currentBytes += bytesSent;
|
652 |
+
}
|
653 |
+
}
|
654 |
+
|
655 |
+
template <typename T>
|
656 |
+
void recvBytes(int socket, T* buffer, size_t length) {
|
657 |
+
size_t bytesToReceive = sizeof(T) * length;
|
658 |
+
if (bytesToReceive == 0) {
|
659 |
+
return;
|
660 |
+
}
|
661 |
+
|
662 |
+
auto bytes = reinterpret_cast<uint8_t*>(buffer);
|
663 |
+
uint8_t* currentBytes = bytes;
|
664 |
+
|
665 |
+
while (bytesToReceive > 0) {
|
666 |
+
ssize_t bytesReceived;
|
667 |
+
SYSCHECK_ERR_RETURN_NEG1(
|
668 |
+
bytesReceived = recv(socket, (char*)currentBytes, bytesToReceive, 0))
|
669 |
+
if (bytesReceived == 0) {
|
670 |
+
C10_THROW_ERROR(DistNetworkError, std::strerror(ECONNRESET));
|
671 |
+
}
|
672 |
+
|
673 |
+
bytesToReceive -= bytesReceived;
|
674 |
+
currentBytes += bytesReceived;
|
675 |
+
}
|
676 |
+
}
|
677 |
+
|
678 |
+
// send a vector's length and data
|
679 |
+
template <typename T>
|
680 |
+
void sendVector(int socket, const std::vector<T>& vec, bool moreData = false) {
|
681 |
+
SizeType size = vec.size();
|
682 |
+
sendBytes<SizeType>(socket, &size, 1, true);
|
683 |
+
sendBytes<T>(socket, vec.data(), size, moreData);
|
684 |
+
}
|
685 |
+
|
686 |
+
// receive a vector as sent in sendVector
|
687 |
+
template <typename T>
|
688 |
+
std::vector<T> recvVector(int socket) {
|
689 |
+
SizeType valueSize;
|
690 |
+
recvBytes<SizeType>(socket, &valueSize, 1);
|
691 |
+
std::vector<T> value(valueSize);
|
692 |
+
recvBytes<T>(socket, value.data(), value.size());
|
693 |
+
return value;
|
694 |
+
}
|
695 |
+
|
696 |
+
// this is only for convenience when sending rvalues
|
697 |
+
template <typename T>
|
698 |
+
void sendValue(int socket, const T& value, bool moreData = false) {
|
699 |
+
sendBytes<T>(socket, &value, 1, moreData);
|
700 |
+
}
|
701 |
+
|
702 |
+
template <typename T>
|
703 |
+
T recvValue(int socket) {
|
704 |
+
T value;
|
705 |
+
recvBytes<T>(socket, &value, 1);
|
706 |
+
return value;
|
707 |
+
}
|
708 |
+
|
709 |
+
// send a string's length and data
|
710 |
+
inline void sendString(
|
711 |
+
int socket,
|
712 |
+
const std::string& str,
|
713 |
+
bool moreData = false) {
|
714 |
+
SizeType size = str.size();
|
715 |
+
sendBytes<SizeType>(socket, &size, 1, true);
|
716 |
+
sendBytes<char>(socket, str.data(), size, moreData);
|
717 |
+
}
|
718 |
+
|
719 |
+
// receive a string as sent in sendString
|
720 |
+
inline std::string recvString(int socket) {
|
721 |
+
SizeType valueSize;
|
722 |
+
recvBytes<SizeType>(socket, &valueSize, 1);
|
723 |
+
std::vector<char> value(valueSize);
|
724 |
+
recvBytes<char>(socket, value.data(), value.size());
|
725 |
+
return std::string(value.data(), value.size());
|
726 |
+
}
|
727 |
+
|
728 |
+
} // namespace tcputil
|
729 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/Work.hpp
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <stdexcept>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
constexpr auto kNoTimeout = std::chrono::milliseconds(0);
|
8 |
+
|
9 |
+
namespace c10d {
|
10 |
+
|
11 |
+
constexpr const char* const kSeqNumStoreKey = "SEQ_NUM_STORE_KEY";
|
12 |
+
|
13 |
+
enum class OpType : std::uint8_t {
|
14 |
+
BROADCAST = 0,
|
15 |
+
ALLREDUCE = 1,
|
16 |
+
ALLREDUCE_COALESCED = 2,
|
17 |
+
REDUCE = 3,
|
18 |
+
ALLGATHER = 4,
|
19 |
+
_ALLGATHER_BASE = 5,
|
20 |
+
ALLGATHER_COALESCED = 6,
|
21 |
+
GATHER = 7,
|
22 |
+
SCATTER = 8,
|
23 |
+
REDUCE_SCATTER = 9,
|
24 |
+
ALLTOALL_BASE = 10,
|
25 |
+
ALLTOALL = 11,
|
26 |
+
SEND = 12,
|
27 |
+
RECV = 13,
|
28 |
+
RECVANYSOURCE = 14,
|
29 |
+
BARRIER = 15,
|
30 |
+
_REDUCE_SCATTER_BASE = 16,
|
31 |
+
COALESCED = 17,
|
32 |
+
_ALLREDUCE_SPARSE = 18,
|
33 |
+
UNKNOWN = 100,
|
34 |
+
};
|
35 |
+
|
36 |
+
// Converts OpType to human readable string.
|
37 |
+
TORCH_API std::string opTypeToString(OpType opType);
|
38 |
+
|
39 |
+
// Whether or not an OP is an p2p op (SEND, RECV, RECVANYSOURCE)
|
40 |
+
TORCH_API bool isP2POp(OpType opType, bool batchP2P = false);
|
41 |
+
|
42 |
+
// Please do not use Work API, it is going away, to be
|
43 |
+
// replaced by ivalue::Future.
|
44 |
+
// Python binding for this class might change, please do not assume
|
45 |
+
// this will be bound using pybind.
|
46 |
+
class TORCH_API Work : public torch::CustomClassHolder {
|
47 |
+
public:
|
48 |
+
Work(
|
49 |
+
int rank = -1,
|
50 |
+
OpType opType = OpType::UNKNOWN,
|
51 |
+
const char* profilingTitle = nullptr,
|
52 |
+
const c10::optional<std::vector<at::Tensor>>& inputTensors =
|
53 |
+
c10::nullopt);
|
54 |
+
|
55 |
+
~Work() override;
|
56 |
+
|
57 |
+
// Checks if request has completed. Non-blocking operation.
|
58 |
+
virtual bool isCompleted();
|
59 |
+
|
60 |
+
// Returns if the work completed successfully.
|
61 |
+
// If false, the exception function can be called to get details.
|
62 |
+
virtual bool isSuccess() const;
|
63 |
+
|
64 |
+
// Returns exception if isSuccess() returned false.
|
65 |
+
virtual std::exception_ptr exception() const;
|
66 |
+
|
67 |
+
// Returns source rank if this objects represents a recv-from-any.
|
68 |
+
virtual int sourceRank() const;
|
69 |
+
|
70 |
+
// Returns result tensors, if applicable.
|
71 |
+
// If work is not supposed to have result, we return empty list.
|
72 |
+
virtual std::vector<at::Tensor> result();
|
73 |
+
|
74 |
+
// Ensures that operations on the output tensors that are invoked
|
75 |
+
// after this function returns are correctly sequenced after the
|
76 |
+
// asynchronous completion of this work.
|
77 |
+
//
|
78 |
+
// For CUDA tensors, it inserts stream synchronization such that
|
79 |
+
// the streams of the caller wait for completion of the
|
80 |
+
// asynchronous operations on the destination tensors.
|
81 |
+
//
|
82 |
+
// For CPU tensors, it is currently a nop.
|
83 |
+
//
|
84 |
+
// This function should only be used if the caller polls for
|
85 |
+
// completion through the `isCompleted` function, it has returned
|
86 |
+
// true, and the `isSuccess` function also has returned true.
|
87 |
+
//
|
88 |
+
virtual void synchronize();
|
89 |
+
|
90 |
+
// Waits until request completes. Blocking operation.
|
91 |
+
// Throws if the work completed with an exception.
|
92 |
+
// Returns false if the work is aborted.
|
93 |
+
// Otherwise, it always returns true, indicating the work is completed.
|
94 |
+
//
|
95 |
+
// Functionally equivalent to:
|
96 |
+
//
|
97 |
+
// while (!isCompleted()) { /* nop */ }
|
98 |
+
// auto success = isSuccess();
|
99 |
+
// if (!success) { std::rethrow_exception(exception()); }
|
100 |
+
// return success;
|
101 |
+
//
|
102 |
+
virtual bool wait(std::chrono::milliseconds timeout = kNoTimeout);
|
103 |
+
|
104 |
+
virtual void abort();
|
105 |
+
|
106 |
+
// Returns a Future object that will be associated with the completion of
|
107 |
+
// work. Only NCCL backend is currently supported.
|
108 |
+
virtual c10::intrusive_ptr<c10::ivalue::Future> getFuture();
|
109 |
+
|
110 |
+
virtual float getDuration() const;
|
111 |
+
|
112 |
+
virtual uint64_t getSequencenumber() const;
|
113 |
+
|
114 |
+
OpType retrieveOpType() const;
|
115 |
+
|
116 |
+
static c10::intrusive_ptr<Work> create_from_future(
|
117 |
+
const c10::intrusive_ptr<c10::ivalue::Future>&);
|
118 |
+
|
119 |
+
protected:
|
120 |
+
// Completes the work object and optionally sets the exception in a
|
121 |
+
// thread-safe manner. Notifies all waiting condition variables as well.
|
122 |
+
void finish(std::exception_ptr exception = nullptr);
|
123 |
+
|
124 |
+
// Similar to finish, but throws an exception if one is already set or
|
125 |
+
// provided by the user.
|
126 |
+
void finishAndThrow(std::exception_ptr exception);
|
127 |
+
|
128 |
+
mutable std::mutex mutex_;
|
129 |
+
std::condition_variable cv_;
|
130 |
+
bool completed_ = false;
|
131 |
+
std::exception_ptr exception_;
|
132 |
+
|
133 |
+
// Current rank of the node.
|
134 |
+
const int rank_;
|
135 |
+
|
136 |
+
// Operation type that this work object refers to.
|
137 |
+
OpType opType_;
|
138 |
+
|
139 |
+
// When profiling, the callback to record end of operation event. This
|
140 |
+
// callback needs to be called when collective operation is complete.
|
141 |
+
std::function<void()> recordFunctionEndCallback_;
|
142 |
+
};
|
143 |
+
|
144 |
+
struct TORCH_API WorkInfo {
|
145 |
+
WorkInfo(
|
146 |
+
const OpType& opType,
|
147 |
+
const std::chrono::time_point<std::chrono::system_clock>& timeStarted,
|
148 |
+
const std::chrono::time_point<std::chrono::system_clock>& timeFinished,
|
149 |
+
const std::chrono::duration<float>& activeDuration)
|
150 |
+
: opType(opType),
|
151 |
+
timeStarted(timeStarted),
|
152 |
+
timeFinished(timeFinished),
|
153 |
+
activeDuration(activeDuration) {}
|
154 |
+
|
155 |
+
OpType opType;
|
156 |
+
std::chrono::time_point<std::chrono::system_clock> timeStarted;
|
157 |
+
std::chrono::time_point<std::chrono::system_clock> timeFinished;
|
158 |
+
std::chrono::duration<float> activeDuration;
|
159 |
+
};
|
160 |
+
|
161 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/c10d.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace distributed {
|
7 |
+
namespace c10d {
|
8 |
+
|
9 |
+
PyMethodDef* python_functions();
|
10 |
+
|
11 |
+
} // namespace c10d
|
12 |
+
} // namespace distributed
|
13 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/comm.hpp
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <torch/csrc/Export.h>
|
6 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
7 |
+
#include <utility>
|
8 |
+
|
9 |
+
namespace c10d {
|
10 |
+
|
11 |
+
// Broadcast many tensors to all processes in the process group.
|
12 |
+
TORCH_API void broadcast_coalesced(
|
13 |
+
const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
|
14 |
+
at::TensorList tensors,
|
15 |
+
size_t buffer_size,
|
16 |
+
int rank = 0);
|
17 |
+
|
18 |
+
// This class passes bucket contents tensor to DDP communication hook.
|
19 |
+
class TORCH_API GradBucket {
|
20 |
+
public:
|
21 |
+
explicit GradBucket(
|
22 |
+
size_t index,
|
23 |
+
size_t bucket_count,
|
24 |
+
at::Tensor tensor,
|
25 |
+
std::vector<size_t> offsets,
|
26 |
+
std::vector<size_t> lengths,
|
27 |
+
std::vector<c10::IntArrayRef> sizes_vec,
|
28 |
+
std::vector<at::Tensor> parameters,
|
29 |
+
c10::optional<at::Tensor> sparse_grad_indices)
|
30 |
+
: index_(index),
|
31 |
+
bucket_count_(bucket_count),
|
32 |
+
buffer_(std::move(tensor)),
|
33 |
+
offsets_(std::move(offsets)),
|
34 |
+
lengths_(std::move(lengths)),
|
35 |
+
sizes_vec_(std::move(sizes_vec)),
|
36 |
+
parameters_(std::move(parameters)),
|
37 |
+
sparse_grad_indices_(std::move(sparse_grad_indices)) {}
|
38 |
+
|
39 |
+
// Returns the index of the bucket, which is unique across all the buckets.
|
40 |
+
size_t getIndex() const {
|
41 |
+
return index_;
|
42 |
+
}
|
43 |
+
|
44 |
+
const at::Tensor& getBuffer() const {
|
45 |
+
return buffer_;
|
46 |
+
}
|
47 |
+
|
48 |
+
// Returns a mutable buffer compared with the above method.
|
49 |
+
at::Tensor& getBufferRef() {
|
50 |
+
return buffer_;
|
51 |
+
}
|
52 |
+
|
53 |
+
// Overwrites the buffer at a specific index.
|
54 |
+
void setBuffer(at::Tensor& buffer) {
|
55 |
+
buffer_ = buffer;
|
56 |
+
}
|
57 |
+
|
58 |
+
// Each tensor in the list that getGradients corresponds to a
|
59 |
+
// parameter.
|
60 |
+
std::vector<at::Tensor> getGradients() const;
|
61 |
+
|
62 |
+
// Returns model parameters belonging to this bucket. They are returned in the
|
63 |
+
// same order as gradient tensors via getGradients(). For example,
|
64 |
+
// getParameters[i] will have its gradient stored in
|
65 |
+
// getGradients[i]
|
66 |
+
const std::vector<at::Tensor> getParameters() const {
|
67 |
+
return parameters_;
|
68 |
+
}
|
69 |
+
|
70 |
+
// Returns whther this bucket is the last bucket to allreduce in an iteration.
|
71 |
+
bool isLast() const {
|
72 |
+
return index_ == bucket_count_ - 1;
|
73 |
+
}
|
74 |
+
|
75 |
+
c10::optional<at::Tensor>& getSparseGradIndices() {
|
76 |
+
return sparse_grad_indices_;
|
77 |
+
}
|
78 |
+
|
79 |
+
private:
|
80 |
+
size_t index_;
|
81 |
+
size_t bucket_count_;
|
82 |
+
at::Tensor buffer_;
|
83 |
+
|
84 |
+
// Per-variable info in buffer_.
|
85 |
+
std::vector<size_t> offsets_;
|
86 |
+
std::vector<size_t> lengths_;
|
87 |
+
std::vector<c10::IntArrayRef> sizes_vec_;
|
88 |
+
|
89 |
+
// Model parameters for this bucket.
|
90 |
+
const std::vector<at::Tensor> parameters_;
|
91 |
+
|
92 |
+
// Predefined sparse indices for this bucket (only used for sparse tensors).
|
93 |
+
// The gradients will be updated to have indices with these tensor values
|
94 |
+
c10::optional<at::Tensor> sparse_grad_indices_;
|
95 |
+
};
|
96 |
+
|
97 |
+
// Base class of both `PythonCommHook` and `CppCommHook`.
|
98 |
+
// Requires implementing 1) `runHook` method that communicates gradients
|
99 |
+
// asynchronously, and 2) `parseHookResult` method that converts the hook
|
100 |
+
// result into a tensor.
|
101 |
+
class TORCH_API CommHookInterface {
|
102 |
+
public:
|
103 |
+
virtual ~CommHookInterface() = default;
|
104 |
+
|
105 |
+
// Passes the input grad bucket to the registered communication hook.
|
106 |
+
// Once the tensor in the bucket are ready, kicks off the hook asynchronously
|
107 |
+
// and returns a future that holds the communication results.
|
108 |
+
virtual c10::intrusive_ptr<c10::ivalue::Future> runHook(
|
109 |
+
GradBucket& bucket) = 0;
|
110 |
+
|
111 |
+
// Returns the resulting tensor once the communication hook result is
|
112 |
+
// ready. The resulting tensor will then be copied to the grads of
|
113 |
+
// individual parameters.
|
114 |
+
virtual at::Tensor parseHookResult(const c10::IValue& result) = 0;
|
115 |
+
};
|
116 |
+
|
117 |
+
namespace detail {
|
118 |
+
// This helper function is called both by CppCommHookInterface below and inside
|
119 |
+
// reducer.
|
120 |
+
TORCH_API at::Tensor parseCppCommHookResult(const c10::IValue& result);
|
121 |
+
} // namespace detail
|
122 |
+
|
123 |
+
// This CppCommHook interface only requires implementing runHook method that
|
124 |
+
// potentially uses a state.
|
125 |
+
template <typename T>
|
126 |
+
class CppCommHookInterface : public CommHookInterface {
|
127 |
+
public:
|
128 |
+
explicit CppCommHookInterface(T state) : state_(std::move(state)) {}
|
129 |
+
|
130 |
+
~CppCommHookInterface() override = default;
|
131 |
+
|
132 |
+
at::Tensor parseHookResult(const c10::IValue& result) override {
|
133 |
+
return detail::parseCppCommHookResult(result);
|
134 |
+
}
|
135 |
+
|
136 |
+
protected:
|
137 |
+
T state_;
|
138 |
+
};
|
139 |
+
|
140 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/debug.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Meta Platforms, Inc. and its affiliates.
|
2 |
+
// All rights reserved.
|
3 |
+
//
|
4 |
+
// This source code is licensed under the BSD-style license found in the
|
5 |
+
// LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
#pragma once
|
8 |
+
|
9 |
+
#include <c10/macros/Macros.h>
|
10 |
+
|
11 |
+
namespace c10d {
|
12 |
+
|
13 |
+
enum class DebugLevel { Off = 0, Info = 1, Detail = 2 };
|
14 |
+
|
15 |
+
TORCH_API void setDebugLevel(DebugLevel level);
|
16 |
+
|
17 |
+
// Sets the debug level based on the value of the `TORCH_DISTRIBUTED_DEBUG`
|
18 |
+
// environment variable.
|
19 |
+
TORCH_API void setDebugLevelFromEnvironment();
|
20 |
+
|
21 |
+
TORCH_API DebugLevel debug_level() noexcept;
|
22 |
+
|
23 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/default_comm_hooks.hpp
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
4 |
+
#include <torch/csrc/distributed/c10d/comm.hpp>
|
5 |
+
|
6 |
+
namespace c10d {
|
7 |
+
|
8 |
+
enum class BuiltinCommHookType {
|
9 |
+
ALLREDUCE = 1,
|
10 |
+
FP16_COMPRESS = 2,
|
11 |
+
};
|
12 |
+
|
13 |
+
class AllReduceCommHook
|
14 |
+
: public CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>> {
|
15 |
+
public:
|
16 |
+
explicit AllReduceCommHook(const c10::intrusive_ptr<ProcessGroup>& state)
|
17 |
+
: CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>>(state) {}
|
18 |
+
|
19 |
+
~AllReduceCommHook() override = default;
|
20 |
+
|
21 |
+
c10::intrusive_ptr<c10::ivalue::Future> runHook(GradBucket& bucket) override;
|
22 |
+
};
|
23 |
+
|
24 |
+
class FP16CompressCommHook
|
25 |
+
: public CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>> {
|
26 |
+
public:
|
27 |
+
explicit FP16CompressCommHook(const c10::intrusive_ptr<ProcessGroup>& state)
|
28 |
+
: CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>>(state) {}
|
29 |
+
|
30 |
+
~FP16CompressCommHook() override = default;
|
31 |
+
|
32 |
+
c10::intrusive_ptr<c10::ivalue::Future> runHook(GradBucket& bucket) override;
|
33 |
+
};
|
34 |
+
|
35 |
+
// Almost same as AllReduceCommHook, but without division inside the hook.
|
36 |
+
// This enables the optimization of fusing copy and division and saves one scan
|
37 |
+
// over all the input parameters, when no communication hook is provided by the
|
38 |
+
// user. Only used internally and not released as a public built-in
|
39 |
+
// communication hook.
|
40 |
+
class _AllReduceBySumCommHook
|
41 |
+
: public CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>> {
|
42 |
+
public:
|
43 |
+
explicit _AllReduceBySumCommHook(
|
44 |
+
const c10::intrusive_ptr<ProcessGroup>& state)
|
45 |
+
: CppCommHookInterface<c10::intrusive_ptr<ProcessGroup>>(state) {}
|
46 |
+
|
47 |
+
~_AllReduceBySumCommHook() override = default;
|
48 |
+
|
49 |
+
c10::intrusive_ptr<c10::ivalue::Future> runHook(GradBucket& bucket) override;
|
50 |
+
};
|
51 |
+
|
52 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/logger.hpp
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <c10/util/Logging.h>
|
2 |
+
#include <torch/csrc/distributed/c10d/reducer.hpp>
|
3 |
+
|
4 |
+
#include <mutex>
|
5 |
+
|
6 |
+
namespace c10d {
|
7 |
+
|
8 |
+
class TORCH_API Logger {
|
9 |
+
public:
|
10 |
+
explicit Logger(std::shared_ptr<c10d::Reducer> reducer);
|
11 |
+
// Set logging data that can be got during DistributedDataParallel
|
12 |
+
// construction time.
|
13 |
+
void set_construction_data_and_log(
|
14 |
+
const std::string& module_name,
|
15 |
+
const std::vector<int>& device_ids,
|
16 |
+
int output_device,
|
17 |
+
bool broadcast_buffers,
|
18 |
+
bool has_sync_bn,
|
19 |
+
bool static_graph);
|
20 |
+
|
21 |
+
void set_static_graph();
|
22 |
+
|
23 |
+
// An interface for users to get DDPLoggingData and log them
|
24 |
+
// in the applications. Explanation of logging fields are in
|
25 |
+
// "struct DDPLoggingData" of "torch/c10/util/Logging.h".
|
26 |
+
at::DDPLoggingData get_ddp_logging_data();
|
27 |
+
|
28 |
+
// Stream insertion operator for logging data to stream under
|
29 |
+
// TORCH_DISTRIBUTED_DEBUG.
|
30 |
+
friend std::ostream& operator<<(std::ostream& output, const Logger& logger);
|
31 |
+
|
32 |
+
~Logger() noexcept(false) {
|
33 |
+
// Log if DDP graph is static in Logger dtor instead of Reducer dtor since
|
34 |
+
// Logger is deleted before Reducer.
|
35 |
+
log_if_graph_static(reducer_->ddp_graph_static());
|
36 |
+
}
|
37 |
+
|
38 |
+
// Set environment variables.
|
39 |
+
void set_env_variables();
|
40 |
+
// Set parameters stats.
|
41 |
+
void set_parameter_stats();
|
42 |
+
// Get size of each bucket (Bytes).
|
43 |
+
std::vector<int64_t> get_bucket_sizes();
|
44 |
+
// Get variable indices for each bucket.
|
45 |
+
std::vector<std::vector<size_t>> get_per_bucket_variable_indices();
|
46 |
+
// Set comm. hook, if used
|
47 |
+
void set_comm_hook(const std::string& hook);
|
48 |
+
// Set running with uneven input detection (model.join() context manager)
|
49 |
+
void set_uneven_input_join();
|
50 |
+
|
51 |
+
// Reset performance stats at current iteration
|
52 |
+
void reset_performance_stats();
|
53 |
+
|
54 |
+
// Calculate avg stats using cpu timer and gpu timer
|
55 |
+
// that has been recorded in reducer.
|
56 |
+
void calculate_avg_time(
|
57 |
+
int64_t& avg_time,
|
58 |
+
int64_t& time_duration,
|
59 |
+
Timer& timer,
|
60 |
+
Timer::Event start_event,
|
61 |
+
Timer::Event end_event);
|
62 |
+
|
63 |
+
// Set the absolute time of the event that has been recorded in reducer.
|
64 |
+
void set_event_time(int64_t& event_time, Timer& timer, Timer::Event event);
|
65 |
+
// Set stats that can be collected only during
|
66 |
+
// training loop. It is called at the beginning of forward call
|
67 |
+
// to record the run time stats of sampled iterations that previously ran.
|
68 |
+
// GPU performance stats are collected only for single process
|
69 |
+
// single device program and single device module right now.
|
70 |
+
// TODO to support single process multiple devices and multi device modules,
|
71 |
+
// events need to be created and recorded on multiple devices.
|
72 |
+
void set_runtime_stats_and_log();
|
73 |
+
|
74 |
+
// Called when DDP/reducer is failing with an error. The
|
75 |
+
// logging data structure will have two fields filled: "has_error" indicating
|
76 |
+
// that this iteration encountered an error and other fields are not valid,
|
77 |
+
// and "error", a string which contains the error message that DDP failed
|
78 |
+
// with.
|
79 |
+
template <typename... Args>
|
80 |
+
void set_error_and_log(const std::string& ddp_error, const Args&... args) {
|
81 |
+
ddp_logging_data_->ints_map["has_error"] = 1;
|
82 |
+
auto err = c10::str(ddp_error, args...);
|
83 |
+
ddp_logging_data_->strs_map["error"] = err;
|
84 |
+
// Report the iteration we are erroring at so user knows how many examples
|
85 |
+
// successfully processed before this error was hit.
|
86 |
+
ddp_logging_data_->ints_map["iteration"] = reducer_->num_iterations_;
|
87 |
+
at::LogPyTorchDDPUsage(*ddp_logging_data_);
|
88 |
+
}
|
89 |
+
|
90 |
+
// When running without static graph, called when reducer is destroyed to log
|
91 |
+
// if graph was actually static and is a candidate for static graph
|
92 |
+
// optimization.
|
93 |
+
void log_if_graph_static(bool is_static);
|
94 |
+
|
95 |
+
private:
|
96 |
+
// ddp_logging_data_ is used to hold all the ddp related logging
|
97 |
+
// data fields.
|
98 |
+
std::unique_ptr<at::DDPLoggingData> ddp_logging_data_;
|
99 |
+
std::shared_ptr<c10d::Reducer> reducer_;
|
100 |
+
// track the number of iterations when runtime stats are collected so far.
|
101 |
+
long num_iterations_stats_recorded_ = 0;
|
102 |
+
};
|
103 |
+
|
104 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/logging.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Meta Platforms, Inc. and its affiliates.
|
2 |
+
// All rights reserved.
|
3 |
+
//
|
4 |
+
// This source code is licensed under the BSD-style license found in the
|
5 |
+
// LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
#pragma once
|
8 |
+
|
9 |
+
#include <string>
|
10 |
+
|
11 |
+
#include <c10/macros/Macros.h>
|
12 |
+
#include <c10/util/Logging.h>
|
13 |
+
#include <fmt/format.h>
|
14 |
+
|
15 |
+
namespace c10d {
|
16 |
+
namespace detail {
|
17 |
+
|
18 |
+
enum class LogLevel { Trace, Debug, Info, Warning, Error };
|
19 |
+
|
20 |
+
TORCH_API bool isLogLevelEnabled(LogLevel level) noexcept;
|
21 |
+
|
22 |
+
template <typename... T>
|
23 |
+
std::string formatLogMessage(fmt::string_view fmt, T&&... args) {
|
24 |
+
return fmt::vformat(fmt, fmt::make_format_args(args...));
|
25 |
+
}
|
26 |
+
|
27 |
+
} // namespace detail
|
28 |
+
} // namespace c10d
|
29 |
+
|
30 |
+
#define C10D_ERROR(...) \
|
31 |
+
LOG_IF( \
|
32 |
+
ERROR, c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Error)) \
|
33 |
+
<< "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__)
|
34 |
+
|
35 |
+
#define C10D_WARNING(...) \
|
36 |
+
LOG_IF( \
|
37 |
+
WARNING, \
|
38 |
+
c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Warning)) \
|
39 |
+
<< "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__)
|
40 |
+
|
41 |
+
#define C10D_INFO(...) \
|
42 |
+
LOG_IF(INFO, c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Info)) \
|
43 |
+
<< "[c10d] " << c10d::detail::formatLogMessage(__VA_ARGS__)
|
44 |
+
|
45 |
+
#define C10D_DEBUG(...) \
|
46 |
+
LOG_IF(INFO, c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Debug)) \
|
47 |
+
<< "[c10d - debug] " << c10d::detail::formatLogMessage(__VA_ARGS__)
|
48 |
+
|
49 |
+
#define C10D_TRACE(...) \
|
50 |
+
LOG_IF(INFO, c10d::detail::isLogLevelEnabled(c10d::detail::LogLevel::Trace)) \
|
51 |
+
<< "[c10d - trace] " << c10d::detail::formatLogMessage(__VA_ARGS__)
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/reducer.hpp
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/ScalarType.h>
|
4 |
+
#include <atomic>
|
5 |
+
#include <memory>
|
6 |
+
#include <mutex>
|
7 |
+
#include <tuple>
|
8 |
+
#include <unordered_map>
|
9 |
+
#include <vector>
|
10 |
+
|
11 |
+
#include <ATen/core/ivalue_inl.h>
|
12 |
+
#include <c10/macros/Macros.h>
|
13 |
+
#include <c10/util/intrusive_ptr.h>
|
14 |
+
#include <torch/csrc/autograd/function.h>
|
15 |
+
#include <torch/csrc/autograd/profiler.h>
|
16 |
+
#include <torch/csrc/autograd/variable.h>
|
17 |
+
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
|
18 |
+
#include <torch/csrc/distributed/c10d/Utils.hpp>
|
19 |
+
#include <torch/csrc/distributed/c10d/comm.hpp>
|
20 |
+
#include <torch/csrc/distributed/c10d/debug.h>
|
21 |
+
#include <torch/csrc/distributed/c10d/default_comm_hooks.hpp>
|
22 |
+
#include <torch/csrc/distributed/c10d/reducer_timer.hpp>
|
23 |
+
#ifndef _WIN32
|
24 |
+
#include <torch/csrc/distributed/autograd/context/context.h>
|
25 |
+
#endif
|
26 |
+
|
27 |
+
namespace c10d {
|
28 |
+
|
29 |
+
constexpr int kDefaultFirstBucketBytes = int(1024 * 1024);
|
30 |
+
constexpr int kDefaultBucketBytesCap = int(25 * 1024 * 1024);
|
31 |
+
// Collect runtime stats once for every kDDPRuntimeLoggingSampleRate iterations.
|
32 |
+
constexpr int kDDPRuntimeLoggingSampleRate = 100;
|
33 |
+
|
34 |
+
// Forward declaration
|
35 |
+
class Logger;
|
36 |
+
|
37 |
+
// Local accumulator type for a single bucket.
|
38 |
+
struct BucketAccumulator {
|
39 |
+
std::vector<size_t> indices;
|
40 |
+
size_t size = 0;
|
41 |
+
size_t size_limit = 0;
|
42 |
+
};
|
43 |
+
|
44 |
+
class TORCH_API Reducer {
|
45 |
+
public:
|
46 |
+
// The constructor takes a list of variables (i.e. parameters) for this
|
47 |
+
// process's single model replica (as DDP assumes single-process
|
48 |
+
// single-device). The bucket assignment for this reducer, `bucket_indices`,
|
49 |
+
// is specified as a list of buckets, each of which is specified as a list of
|
50 |
+
// indices into the bucket's `variables` list.
|
51 |
+
explicit Reducer(
|
52 |
+
std::vector<at::Tensor> params,
|
53 |
+
std::vector<std::vector<size_t>> bucket_indices,
|
54 |
+
std::vector<size_t> per_bucket_size_limits,
|
55 |
+
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
|
56 |
+
std::vector<bool> expect_sparse_gradients,
|
57 |
+
int64_t bucket_bytes_cap,
|
58 |
+
bool find_unused_parameters,
|
59 |
+
bool gradient_as_bucket_view,
|
60 |
+
std::unordered_map<size_t, std::string> param_names,
|
61 |
+
int64_t first_bucket_bytes_cap);
|
62 |
+
|
63 |
+
~Reducer() noexcept(false);
|
64 |
+
|
65 |
+
// To (re-)initialize bucket assignment, pass a list of buckets, each of
|
66 |
+
// which is specified by a list of indices in the bucket's `variables` list.
|
67 |
+
// This function performs validation that the variables within a bucket
|
68 |
+
// all live on the same device and have the same dimensionality.
|
69 |
+
void initialize_buckets(std::vector<std::vector<size_t>> bucket_indices);
|
70 |
+
|
71 |
+
void autograd_hook(size_t index);
|
72 |
+
|
73 |
+
// This function is called when the forward function has produced an output,
|
74 |
+
// and the user wishes to reduce gradients in the backwards pass.
|
75 |
+
// If they don't, and wish to accumulate gradients before reducing them,
|
76 |
+
// a call to this function can simply be omitted.
|
77 |
+
void prepare_for_backward(const std::vector<at::Tensor>& outputs);
|
78 |
+
|
79 |
+
// Called at the beginning of forward() inside DistributedDataParallel,
|
80 |
+
// right now it captures the starting time of forward in each iteration.
|
81 |
+
void prepare_for_forward();
|
82 |
+
|
83 |
+
// Returns the relative time in nanoseconds when gradients were ready,
|
84 |
+
// with respect to the time `prepare_for_backward` was called. The
|
85 |
+
// vector is for parameters for a single model replica.
|
86 |
+
std::vector<int64_t> get_backward_stats() const {
|
87 |
+
return backward_stats_;
|
88 |
+
}
|
89 |
+
|
90 |
+
// Registers a hook to the reducer. The hook is `CommHookInterface`
|
91 |
+
// type to allow both Python and CPP hooks. This function can only
|
92 |
+
// be called once before calling backward.
|
93 |
+
// Cannot combine with the call of `register_builtin_comm_hook`.
|
94 |
+
void register_comm_hook(std::unique_ptr<CommHookInterface> iface);
|
95 |
+
|
96 |
+
// Registers a built-in C++ comm hook to the reducer. This function can only
|
97 |
+
// be called once before calling backward.
|
98 |
+
// Cannot combine with the call of `register_comm_hook`.
|
99 |
+
void register_builtin_comm_hook(c10d::BuiltinCommHookType comm_hook_type);
|
100 |
+
|
101 |
+
// Informs reducer that optimizer is running in backward, so gradients
|
102 |
+
// don't need to be copied from buckets as the optimizer would've already
|
103 |
+
// been applied.
|
104 |
+
void set_optimizer_in_backward() {
|
105 |
+
optim_in_backward_ = true;
|
106 |
+
};
|
107 |
+
|
108 |
+
// Runs allreduce or installed communication hook given GradBucket instance.
|
109 |
+
c10::intrusive_ptr<c10::ivalue::Future> run_comm_hook(
|
110 |
+
GradBucket& grad_bucket);
|
111 |
+
|
112 |
+
// Runs default allreduce hook.
|
113 |
+
c10::intrusive_ptr<c10::ivalue::Future> run_allreduce_hook(
|
114 |
+
GradBucket& grad_bucket);
|
115 |
+
|
116 |
+
// Returns gradient buckets in sequential order of buckets_. This is the order
|
117 |
+
// in which buckets are reduced across processes. If return_zero_tensors=true,
|
118 |
+
// will return zero tensors of the same shape instead of the true tensors.
|
119 |
+
std::vector<c10d::GradBucket> get_grad_buckets(
|
120 |
+
bool return_zero_tensors = true) const;
|
121 |
+
|
122 |
+
// Rebuild buckets based on rebuilt_params_ and rebuilt_param_indices_
|
123 |
+
// according to when tensors received grads in the backward pass.
|
124 |
+
// TODO this function makes broadcast communication call and
|
125 |
+
// could be overlapped with next forward() call, thus
|
126 |
+
// it could be async. Will make it async when rebuilding buckets for
|
127 |
+
// find_unused_parameters = true case, as we could rebuild buckets more than
|
128 |
+
// once for find_unused_parameters = true case, where subgraphs are trained
|
129 |
+
// and parameter indices order may change more frequently.
|
130 |
+
// For find_unused_parameters = false case, buckets are only rebuilt once,
|
131 |
+
// the performance cost is negligible. Returns true if the buckets were
|
132 |
+
// rebuilt.
|
133 |
+
bool rebuild_buckets();
|
134 |
+
|
135 |
+
void setSparseMetadata(std::map<std::string, at::Tensor>& metadata);
|
136 |
+
|
137 |
+
// Install futures that should be awaited at end of backwards. Currently these
|
138 |
+
// are only used by user-defined custom buffer reduction hooks, but can be
|
139 |
+
// generalized to any user-originating futures that need to be awaited.
|
140 |
+
void install_futures(c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futs);
|
141 |
+
|
142 |
+
// Returns true if we should rebuild buckets, else false. We only rebuild
|
143 |
+
// buckets once after the first iteration and never rebuild them if
|
144 |
+
// find_unused_parameters_.
|
145 |
+
inline bool should_rebuild_buckets() const {
|
146 |
+
return (static_graph_ || !find_unused_parameters_) && !has_rebuilt_bucket_;
|
147 |
+
}
|
148 |
+
|
149 |
+
// Pushes all parameters to be rebuilt.
|
150 |
+
void push_rebuilt_params_for_all_indices();
|
151 |
+
|
152 |
+
// Creates and sets ForwardPassWorkHandle given a Work and the
|
153 |
+
// corresponding tensor being reduced.
|
154 |
+
void set_forward_pass_work_handle(
|
155 |
+
c10::intrusive_ptr<c10d::Work> forwardPassWorkHandle,
|
156 |
+
bool useStaticWorldSize);
|
157 |
+
|
158 |
+
// Retrieve on-device tensors used to track locally unused parameters. It is
|
159 |
+
// a tensor where index i = 1 if the Variable with that index has been used.
|
160 |
+
at::Tensor get_local_used_map_on_device() const;
|
161 |
+
|
162 |
+
// An function for users to set sample_rate of collecting
|
163 |
+
// runtime stats. The time stats will be recorded for the
|
164 |
+
// first 10 iterations, after 10 iterations time stats will be
|
165 |
+
// recorded once every "sample_rate" training iterations.
|
166 |
+
void set_ddp_runtime_logging_sample_rate(int sample_rate);
|
167 |
+
|
168 |
+
// Specify the training graph is static.
|
169 |
+
void set_static_graph();
|
170 |
+
|
171 |
+
// Delay all reduce to be after all gradients' calculation is complete.
|
172 |
+
void delay_all_reduce();
|
173 |
+
|
174 |
+
void set_mixed_precision_param_dtype(c10::ScalarType dtype);
|
175 |
+
|
176 |
+
// Weak reference to associated DDP logger. The reference is weak to avoid
|
177 |
+
// refcycle between reducer and logger.
|
178 |
+
void set_logger(std::weak_ptr<c10d::Logger> logger);
|
179 |
+
|
180 |
+
// When graph is not explicitly set by user as static and has unused
|
181 |
+
// parameters, this will return whether the graph has been static until the
|
182 |
+
// current iteration, which means unused params set has not changed.
|
183 |
+
bool ddp_graph_static();
|
184 |
+
|
185 |
+
// Removes autograd hooks registered by the Reducer on the model parameters.
|
186 |
+
void remove_autograd_hooks();
|
187 |
+
|
188 |
+
// Checks whether or not the reducer has finalized the current backward
|
189 |
+
// iteration.
|
190 |
+
void check_finalized();
|
191 |
+
|
192 |
+
// Updates the underlying process group used by DDP with the new process
|
193 |
+
// group.
|
194 |
+
void update_process_group(
|
195 |
+
c10::intrusive_ptr<c10d::ProcessGroup> new_process_group);
|
196 |
+
|
197 |
+
// Resets reducer state.
|
198 |
+
void reset_state();
|
199 |
+
|
200 |
+
protected:
|
201 |
+
// Forward declaration.
|
202 |
+
struct Bucket;
|
203 |
+
|
204 |
+
void push_rebuilt_params(const size_t& index);
|
205 |
+
|
206 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
207 |
+
mutable std::mutex mutex_;
|
208 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
209 |
+
const std::vector<at::Tensor> params_;
|
210 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
211 |
+
c10::intrusive_ptr<::c10d::ProcessGroup> process_group_;
|
212 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
213 |
+
std::vector<bool> expect_sparse_gradients_;
|
214 |
+
|
215 |
+
std::vector<std::shared_ptr<torch::autograd::Node>>
|
216 |
+
grad_accumulators_; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
|
217 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
218 |
+
std::unordered_map<torch::autograd::Node*, size_t> gradAccToVariableMap_;
|
219 |
+
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
|
220 |
+
hooks_; // NOLINT(cppcoreguidelines-non-private-member-variables-in-classes)
|
221 |
+
|
222 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
223 |
+
bool expect_autograd_hooks_;
|
224 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
225 |
+
bool require_finalize_;
|
226 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
227 |
+
size_t next_bucket_;
|
228 |
+
|
229 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
230 |
+
bool has_marked_unused_parameters_;
|
231 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
232 |
+
const bool find_unused_parameters_;
|
233 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
234 |
+
const bool gradient_as_bucket_view_;
|
235 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
236 |
+
std::vector<size_t> unused_parameters_;
|
237 |
+
// Previous iteration's unused params, used for checking if unused parameters
|
238 |
+
// change between iterations. Only filled during the first backwards call.
|
239 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
240 |
+
std::vector<size_t> prev_iteration_unused_parameters_;
|
241 |
+
// Whether graph is static or not. When user does not explicitly set static
|
242 |
+
// graph, the only possible dynamism is set of unused parameters changing
|
243 |
+
// between iterations which is tracked by this flag.
|
244 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
245 |
+
bool ddp_graph_static_{true};
|
246 |
+
// Locally used parameter maps indicating if parameters are used locally
|
247 |
+
// during the current iteration or no_sync session if no_sync is on.
|
248 |
+
// Each map is a one-dim int32 tensor of number of parameters. These tensors
|
249 |
+
// are marked in autograd_hook to indicate the corresponding param has been
|
250 |
+
// used, and get allreduced in the end of backward step of current iteration
|
251 |
+
// or no_sync session for figuring out the globally unused parameters.
|
252 |
+
//
|
253 |
+
// local_used_map_: CPU tensor for bookkeeping locally used params
|
254 |
+
// local_used_map_dev_: dev tensor for reducing globally unused params
|
255 |
+
at::Tensor local_used_map_;
|
256 |
+
at::Tensor local_used_map_dev_;
|
257 |
+
// Indicate that reduction is done and D2H copy is done as well.
|
258 |
+
bool local_used_map_reduced_;
|
259 |
+
|
260 |
+
// Weak pointer to associated DDP logger.
|
261 |
+
std::weak_ptr<c10d::Logger> logger_;
|
262 |
+
// List of futures installed by Reducer::install_futures that should be
|
263 |
+
// awaited at the end of backwards pass.
|
264 |
+
c10::optional<c10::List<c10::intrusive_ptr<c10::ivalue::Future>>>
|
265 |
+
installed_futures_{c10::nullopt};
|
266 |
+
// Mixed precision parameter dtype for bucket type checking.
|
267 |
+
c10::optional<c10::ScalarType> mixed_precision_param_dtype_{c10::nullopt};
|
268 |
+
|
269 |
+
// Work handle for allreduce on local_used_map_
|
270 |
+
c10::intrusive_ptr<c10d::Work> local_used_work_;
|
271 |
+
|
272 |
+
void mark_variable_ready_dense(size_t variable_index);
|
273 |
+
|
274 |
+
void mark_variable_ready_sparse(size_t variable_index);
|
275 |
+
|
276 |
+
void mark_variable_ready(size_t variable_index);
|
277 |
+
|
278 |
+
void mark_bucket_ready(size_t bucket_index);
|
279 |
+
|
280 |
+
void finalize_bucket_dense(Bucket& bucket);
|
281 |
+
|
282 |
+
void finalize_backward();
|
283 |
+
|
284 |
+
// Returns list of model parameters corresponding to the given bucket.
|
285 |
+
// bucket_index is a key to cache after buckets are rebuilt, after which this
|
286 |
+
// mapping never changes.
|
287 |
+
std::vector<at::Tensor> get_variables_for_bucket(
|
288 |
+
size_t bucket_index,
|
289 |
+
const Bucket& bucket) const;
|
290 |
+
|
291 |
+
// Asserts that the reduction for the previous iteration has finished before
|
292 |
+
// rebuilding buckets or kicking off the next one.
|
293 |
+
void ensure_prior_reduction_finished();
|
294 |
+
|
295 |
+
// Broadcast rebuilt buckets from rank 0 to other ranks before initializing
|
296 |
+
// the buckets
|
297 |
+
void sync_bucket_indices(std::vector<std::vector<size_t>>& bucket_indices);
|
298 |
+
|
299 |
+
// We'd like to use DistAutogradContext::GradCallback here but dist autograd
|
300 |
+
// doesn't exist under Windows. So we just directly use the concrete type but
|
301 |
+
// to preserve and enforce our original intent we do a static assert when dist
|
302 |
+
// autograd is available.
|
303 |
+
using GradCallback = std::function<bool(at::Tensor&)>;
|
304 |
+
#ifndef _WIN32
|
305 |
+
static_assert(
|
306 |
+
std::is_same<
|
307 |
+
GradCallback,
|
308 |
+
torch::distributed::autograd::DistAutogradContext::GradCallback>::
|
309 |
+
value,
|
310 |
+
"");
|
311 |
+
#endif
|
312 |
+
void runGradCallbackForVariable(at::Tensor& variable, GradCallback&& cb);
|
313 |
+
|
314 |
+
// This function is called inside `initialize_buckets()`. It initializes both
|
315 |
+
// `bucket_views_in` and `bucket_views_out` with views for each variable's
|
316 |
+
// gradient into the bucket's flattened `gradients` tensor. Views serve as
|
317 |
+
// entry points to `copy_()` each grad's data in/out of the flattened
|
318 |
+
// `gradients` tensor.
|
319 |
+
void initialize_bucket_views(Bucket& bucket);
|
320 |
+
|
321 |
+
// This function is called inside `finalize_backward`, it happens only if
|
322 |
+
// DDP communication hook was registered to recreate just bucket_views_out
|
323 |
+
// with the result of `future_work`.
|
324 |
+
void populate_bucket_views_out(Bucket& bucket, at::Tensor& tensor);
|
325 |
+
|
326 |
+
// If gradient_as_bucket_view_ is false, after allreduce buckets,
|
327 |
+
// copy bucket results back to grads.
|
328 |
+
void copy_bucket_to_grad(
|
329 |
+
at::Tensor& variable,
|
330 |
+
Reducer::Bucket& bucket,
|
331 |
+
size_t intra_bucket_index,
|
332 |
+
bool global_unused);
|
333 |
+
// Check layout of grad and bucket_view before copying the grad to bucket.
|
334 |
+
void check_grad_layout(const at::Tensor& grad, const at::Tensor& bucket_view);
|
335 |
+
|
336 |
+
// A bucket contains [1..N] gradients to be reduced, where the gradients
|
337 |
+
// have the same dtype and device.
|
338 |
+
// Coalescing gradients together before reducing can result in lower overhead
|
339 |
+
// and/or faster time to completion. Coalescing requires the constituent
|
340 |
+
// gradients to have the same dtype and device, and the resulting flattened
|
341 |
+
// tensor uses that common dtype and device. The flattened tensor is filled
|
342 |
+
// as the corresponding gradients are computed (triggered by autograd hooks),
|
343 |
+
// and the buckets are reduced in a predetermined order consistent across
|
344 |
+
// processes.
|
345 |
+
struct Bucket {
|
346 |
+
// Gradients of the bucket flattened into a 1-dimensional tensor
|
347 |
+
at::Tensor gradients;
|
348 |
+
|
349 |
+
// Views into the `gradients` tensor for each individual gradient
|
350 |
+
// Each view is created with layout (size and stride) matching the
|
351 |
+
// gradient's expected layout (see the "Gradient Layout Contract" in
|
352 |
+
// torch/csrc/autograd/functions/accumulate_grad.h).
|
353 |
+
// `bucket_views_in[i].copy_(grad)` and `grad.copy_(bucket_views_out[i])`
|
354 |
+
// provide convenient ways to copy gradient data in/out of `gradients`,
|
355 |
+
// respectively.
|
356 |
+
// We keep both `bucket_views_in` and `bucket_views_out` because
|
357 |
+
// registering a DDP communication hook may re-initialize
|
358 |
+
// `bucket_views_out` with the value of the hook's `future_work` but we
|
359 |
+
// still need separate views into the bucket's original flattened gradient
|
360 |
+
// to copy in gradient data.
|
361 |
+
std::vector<at::Tensor> bucket_views_in;
|
362 |
+
std::vector<at::Tensor> bucket_views_out;
|
363 |
+
|
364 |
+
// Variables whose gradients are held in this bucket
|
365 |
+
// We use refcounted tensors here so that we can easily unflatten the
|
366 |
+
// bucket's flattened `gradients` tensor into the participating variables
|
367 |
+
// after reduction has completed.
|
368 |
+
std::vector<at::Tensor> variables;
|
369 |
+
|
370 |
+
// Per-variable offset/length into the flattened `gradients` tensor and
|
371 |
+
// the corresponding `GradBucket` instance for communication hooks
|
372 |
+
std::vector<size_t> offsets;
|
373 |
+
std::vector<size_t> lengths;
|
374 |
+
|
375 |
+
// Per-variable sizes slicing into the bucket's `gradients` tensor
|
376 |
+
std::vector<c10::IntArrayRef> sizes_vec;
|
377 |
+
|
378 |
+
// Number of gradients left to be computed before the bucket is ready to
|
379 |
+
// be reduced
|
380 |
+
size_t pending;
|
381 |
+
|
382 |
+
// Global indices of participating variables in the bucket
|
383 |
+
std::vector<size_t> variable_indices;
|
384 |
+
|
385 |
+
// Future work handle for DDP communication hook
|
386 |
+
// If no hook is registered, a temporary vanilla allreduce hook is used.
|
387 |
+
c10::intrusive_ptr<at::ivalue::Future> future_work;
|
388 |
+
|
389 |
+
// If this bucket should expect a single sparse gradient
|
390 |
+
// If `true`, then this implies that `bucket.variables.size() == 1`.
|
391 |
+
bool expect_sparse_gradient = false;
|
392 |
+
|
393 |
+
// Sparse indices tensor
|
394 |
+
c10::optional<at::Tensor> sparse_tensor_indices = c10::nullopt;
|
395 |
+
|
396 |
+
// TODO(@pietern)
|
397 |
+
// Memory copies from gradient tensors into the bucket are potentially
|
398 |
+
// done on different CUDA streams. We record an event for every copy
|
399 |
+
// so that we can synchronize with them prior to kicking off the reduction.
|
400 |
+
// std::vector<at::cuda::CUDAEvent> events;
|
401 |
+
};
|
402 |
+
|
403 |
+
std::vector<Bucket> buckets_;
|
404 |
+
|
405 |
+
// A variable locator locates a particular variable in the reducer's buckets
|
406 |
+
struct VariableLocator {
|
407 |
+
// Index of the bucket containing the variable in the `buckets_` vector
|
408 |
+
size_t bucket_index;
|
409 |
+
// Index of the variable in the bucket, which may be used consistently
|
410 |
+
// across `bucket_views_in`, `bucket_views_out`, `variables`, `offsets`,
|
411 |
+
// `lengths`, `sizes_vec`, and `variable_indices` in `Bucket`
|
412 |
+
size_t intra_bucket_index;
|
413 |
+
|
414 |
+
VariableLocator() = default;
|
415 |
+
|
416 |
+
VariableLocator(size_t bucket_index_, size_t intra_bucket_index_)
|
417 |
+
: bucket_index(bucket_index_),
|
418 |
+
intra_bucket_index(intra_bucket_index_) {}
|
419 |
+
};
|
420 |
+
|
421 |
+
// Map the index of a variable to its location in the bucket structure.
|
422 |
+
std::vector<VariableLocator> variable_locators_;
|
423 |
+
|
424 |
+
// track the number of iterations to synchronize grads in training so far.
|
425 |
+
long num_iterations_;
|
426 |
+
// track distinct iteration of backward call. This is distinct from
|
427 |
+
// num_iterations_, for example in the case of multiple forward before
|
428 |
+
// backward.
|
429 |
+
long num_bwd_calls_;
|
430 |
+
// whether the first autograd hook for a distinct backward pass has been
|
431 |
+
// called.
|
432 |
+
bool first_autograd_hook_called_;
|
433 |
+
// track the number of buckets that have been ready for
|
434 |
+
// communication calls like allReduce or communication hooks.
|
435 |
+
int num_buckets_ready_;
|
436 |
+
|
437 |
+
// Timing information.
|
438 |
+
int64_t backward_compute_start_time_ = -1;
|
439 |
+
std::unique_ptr<Timer> timer_;
|
440 |
+
|
441 |
+
// We collect the relative timestamp of every gradient being ready
|
442 |
+
// when executing autograd. This can be used to derive a timeline of
|
443 |
+
// the point in time buckets were ready, or ideal bucket assignment/ordering.
|
444 |
+
std::vector<int64_t> backward_stats_;
|
445 |
+
|
446 |
+
bool should_collect_runtime_stats();
|
447 |
+
void record_forward_compute_start_time();
|
448 |
+
void record_backward_compute_start_time();
|
449 |
+
void record_backward_compute_end_time();
|
450 |
+
void record_backward_comm_start_time();
|
451 |
+
void record_backward_comm_end_time();
|
452 |
+
|
453 |
+
int get_ddp_runtime_logging_sample_rate();
|
454 |
+
int ddp_runtime_logging_sample_rate_ = kDDPRuntimeLoggingSampleRate;
|
455 |
+
|
456 |
+
bool is_multi_device_module_ = false;
|
457 |
+
|
458 |
+
// Following variables are to help build dynamic bucket order
|
459 |
+
bool has_rebuilt_bucket_;
|
460 |
+
std::vector<at::Tensor> rebuilt_params_;
|
461 |
+
std::vector<int64_t> rebuilt_param_indices_;
|
462 |
+
const int64_t bucket_bytes_cap_;
|
463 |
+
|
464 |
+
#ifndef _WIN32
|
465 |
+
struct RpcContext {
|
466 |
+
using ContextPtr = torch::distributed::autograd::ContextPtr;
|
467 |
+
// The shared_ptr is to hold the context instance.
|
468 |
+
ContextPtr context_ptr_holder;
|
469 |
+
std::atomic<ContextPtr::element_type*> context_ptr{nullptr};
|
470 |
+
|
471 |
+
void set(ContextPtr&& new_context_ptr);
|
472 |
+
};
|
473 |
+
RpcContext rpc_context_;
|
474 |
+
#endif
|
475 |
+
|
476 |
+
// A struct containing work handle and tensor for allreduce scheduled in
|
477 |
+
// forward pass, if applicable.
|
478 |
+
struct ForwardPassAllreduceWork {
|
479 |
+
c10::intrusive_ptr<c10d::Work> workHandle;
|
480 |
+
at::Tensor resultTensor;
|
481 |
+
// whether we should divide by the initial world_size or the no. of
|
482 |
+
// remaining DDP ranks.
|
483 |
+
bool useStaticWorldSize;
|
484 |
+
};
|
485 |
+
|
486 |
+
// Handle for the currently scheduled allreduce in the forward pass, if
|
487 |
+
// applicable.
|
488 |
+
ForwardPassAllreduceWork forwardPassWorkHandle_;
|
489 |
+
|
490 |
+
// Division factor for reduction of gradients.
|
491 |
+
// Equal to the process group size, with an exception of handling uneven
|
492 |
+
// input.
|
493 |
+
int div_factor_;
|
494 |
+
|
495 |
+
bool static_graph_;
|
496 |
+
|
497 |
+
// Key: size_t (index), Value: the number of times that a variable's
|
498 |
+
// autograd_hook() should be triggered before marking this variable's grad as
|
499 |
+
// ready for communication. Map will not change after 1st iteration.
|
500 |
+
std::unordered_map<size_t, int> numGradHooksTriggeredMap_;
|
501 |
+
// Key: size_t (index), Value: the number of times that a variable's
|
502 |
+
// autograd_hook() are left to be triggered before marking this variable's
|
503 |
+
// grad as ready for communication. Map will change after 1st iteration to
|
504 |
+
// track a grad is ready for communication or not.
|
505 |
+
std::unordered_map<size_t, int> numGradHooksTriggeredMapPerIteration_;
|
506 |
+
|
507 |
+
private:
|
508 |
+
// reset counting for buckets before backward starts
|
509 |
+
void reset_bucket_counting();
|
510 |
+
// search unused parameters beore backward starts
|
511 |
+
void search_unused_parameters(
|
512 |
+
const std::vector<torch::autograd::Variable>& outputs);
|
513 |
+
void set_divide_factor();
|
514 |
+
// kick off all reduce for the ready bucket
|
515 |
+
void all_reduce_bucket(Bucket& bucket);
|
516 |
+
// kick off all reduce to local used map, it can help find global unused
|
517 |
+
// parameters
|
518 |
+
void all_reduce_local_used_map();
|
519 |
+
// initialize locally used parameter maps
|
520 |
+
void initialize_local_used_map();
|
521 |
+
// get current cuda stream
|
522 |
+
const c10::Stream get_current_stream();
|
523 |
+
bool dynamic_graph_find_unused();
|
524 |
+
bool static_graph_first_iteration();
|
525 |
+
bool static_graph_after_first_iteration();
|
526 |
+
|
527 |
+
// comm_hook_ is used to access the DDP communication hook if registered.
|
528 |
+
std::unique_ptr<CommHookInterface> comm_hook_;
|
529 |
+
|
530 |
+
// Sparse metadata contains the indices that will be used
|
531 |
+
// when calling into sparse allreduce.
|
532 |
+
// This is only used in the sparse allreduce collective calls
|
533 |
+
std::unique_ptr<std::map<std::string, at::Tensor>> sparse_metadata_;
|
534 |
+
|
535 |
+
// Debug level setting. It is parsed once when Reducer is constructed, and
|
536 |
+
// remains the same across a single invocation of DDP training.
|
537 |
+
DebugLevel ddp_debug_level_;
|
538 |
+
// Mapping of variable index to fully qualified name of model to notify users
|
539 |
+
// about errors when certain parameters do not get gradient.
|
540 |
+
std::unordered_map<size_t, std::string> param_names_;
|
541 |
+
// Variable indices stored sequentially in order of when the gradient is ready
|
542 |
+
// for the current backwards pass.
|
543 |
+
std::vector<int> grad_ready_order_indices_;
|
544 |
+
// Bytes capacity of first bucket, can be configured by user
|
545 |
+
int64_t first_bucket_bytes_cap_;
|
546 |
+
// Per iteration set of parameter indices that have been marked ready.
|
547 |
+
std::unordered_set<size_t> perIterationReadyParams_;
|
548 |
+
// Retrieves parameter names that have not been marked as ready as part of
|
549 |
+
// previous iteration.
|
550 |
+
std::vector<std::string> getUnmarkedParamsForIteration();
|
551 |
+
// Retrieves parameter indices that have not been marked as ready as part of
|
552 |
+
// previous iteration.
|
553 |
+
std::vector<size_t> getUnmarkedParamIndicesForIteration();
|
554 |
+
// Raises appropriate error if mark_variable_ready is called on the same
|
555 |
+
// variable twice, which is unexpected.
|
556 |
+
void checkAndRaiseMarkedTwiceError(size_t curVariableIndex);
|
557 |
+
// Retrieves parameter corresponding to the given VariableIndex.
|
558 |
+
at::Tensor& get_param_from_index(size_t index);
|
559 |
+
|
560 |
+
// Cached bucket index to model parameter mapping. Populated after buckets
|
561 |
+
// are rebuilt after which this mapping is static.
|
562 |
+
mutable std::unordered_map<size_t, std::vector<at::Tensor>>
|
563 |
+
cached_variables_for_bucket_;
|
564 |
+
|
565 |
+
bool optim_in_backward_{false};
|
566 |
+
friend class Logger;
|
567 |
+
};
|
568 |
+
|
569 |
+
// This is equivalent to take_tensors but returns indices into the
|
570 |
+
// tensor list argument for bucket assignment. Also, it is aware
|
571 |
+
// of device placement and will not allow buckets to span devices.
|
572 |
+
// The index of tensors[i] assigned to bucket is tensor_indices[i],
|
573 |
+
// when tensor_indices is empty, the index of tensors[i] assigned to
|
574 |
+
// bucket is i.
|
575 |
+
TORCH_API std::tuple<std::vector<std::vector<size_t>>, std::vector<size_t>>
|
576 |
+
compute_bucket_assignment_by_size(
|
577 |
+
const std::vector<at::Tensor>& tensors,
|
578 |
+
const std::vector<size_t>& bucket_size,
|
579 |
+
const std::vector<bool>& expect_sparse_gradient = {},
|
580 |
+
const std::vector<int64_t>& tensor_indices = {},
|
581 |
+
const c10::optional<std::weak_ptr<c10d::Logger>>& logger = {});
|
582 |
+
|
583 |
+
// Verify models across all processes are the same as model on rank 0 with
|
584 |
+
// respect to no. of params and matching dtype/size/layout.
|
585 |
+
TORCH_API void verify_params_across_processes(
|
586 |
+
const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
|
587 |
+
const std::vector<at::Tensor>& params,
|
588 |
+
const c10::optional<std::weak_ptr<c10d::Logger>>& logger);
|
589 |
+
} // namespace c10d
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/distributed/c10d/sequence_num.hpp
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Macros.h>
|
4 |
+
#include <c10/util/Optional.h>
|
5 |
+
#include <c10/util/irange.h>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
namespace c10d {
|
9 |
+
const int kUnsetSeqNum = 0;
|
10 |
+
|
11 |
+
namespace {
|
12 |
+
constexpr int kByteOffset = 8;
|
13 |
+
}
|
14 |
+
|
15 |
+
// Converts from int to char vec to write in store
|
16 |
+
template <typename T>
|
17 |
+
inline std::vector<T> toVec(uint64_t num, int numBytes) {
|
18 |
+
std::vector<T> values;
|
19 |
+
// Read off bytes from right to left, pushing them into
|
20 |
+
// char array.
|
21 |
+
for (const auto i : c10::irange(numBytes)) {
|
22 |
+
uint8_t x = (num >> (kByteOffset * i)) & 0xff;
|
23 |
+
values.push_back(static_cast<T>(x));
|
24 |
+
}
|
25 |
+
return values;
|
26 |
+
}
|
27 |
+
|
28 |
+
// Converts from char vec (such as from store read) to int.
|
29 |
+
template <typename T>
|
30 |
+
inline uint64_t fromVec(const std::vector<T>& values) {
|
31 |
+
uint64_t num = 0;
|
32 |
+
// Set each byte at the correct location on num
|
33 |
+
for (const auto i : c10::irange(values.size())) {
|
34 |
+
uint8_t x = static_cast<uint8_t>(values[i]);
|
35 |
+
num |= (static_cast<int64_t>(x) << (kByteOffset * i));
|
36 |
+
}
|
37 |
+
return num;
|
38 |
+
}
|
39 |
+
|
40 |
+
class TORCH_API SequenceNum {
|
41 |
+
public:
|
42 |
+
SequenceNum();
|
43 |
+
explicit SequenceNum(const uint64_t num);
|
44 |
+
// Retrieve num_. Will throw if not set.
|
45 |
+
uint64_t get() const;
|
46 |
+
// Increment num_. Will throw if not set.
|
47 |
+
void increment();
|
48 |
+
// Increment num_ and return the old value. Will throw if not set.
|
49 |
+
uint64_t getAndIncrement();
|
50 |
+
// Sets num_
|
51 |
+
void set(const uint64_t num);
|
52 |
+
// Returns true if this SequenceNum is properly initialized with a value, else
|
53 |
+
// false.
|
54 |
+
bool isSet() const;
|
55 |
+
|
56 |
+
SequenceNum& operator=(const SequenceNum& other);
|
57 |
+
|
58 |
+
SequenceNum(const SequenceNum& other);
|
59 |
+
|
60 |
+
private:
|
61 |
+
c10::optional<uint64_t> num_;
|
62 |
+
mutable std::mutex lock_;
|
63 |
+
};
|
64 |
+
|
65 |
+
} // namespace c10d
|