Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/__init__.py +142 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/autotune_process.py +616 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/bounds.py +122 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codecache.py +2492 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cuda_combined_scheduling.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/memory_planning.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/wrapper.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/interface.cpp +239 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/common.py +1295 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_prefix.h +410 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_kernel.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_template.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_epilogue_gen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/gemm_template.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_epilogue_gen.py +360 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/gemm_operation_extensions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/gemm_operation_extensions.py +186 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_utils.py +257 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/gemm_template.py +706 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda_combined_scheduling.py +75 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/memory_planning.py +799 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton_foreach.py +249 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton_utils.py +96 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/wrapper.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/comm_analysis.py +250 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/comms.py +365 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/compile_fx.py +1302 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/config.py +664 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/constant_folding.py +190 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/coordinate_descent_tuner.py +315 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py +2157 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/debug.py +561 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/decomposition.py +613 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/dependencies.py +444 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/exc.py +98 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/freezing.py +266 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_utils.py +178 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/graph.py +1133 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/hooks.py +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/index_propagation.py +262 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/inductor_prims.py +90 -0
- env-llmeval/lib/python3.10/site-packages/torch/_inductor/ir.py +0 -0
env-llmeval/lib/python3.10/site-packages/torch/_inductor/__init__.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional
|
2 |
+
|
3 |
+
import torch.fx
|
4 |
+
import torch.utils._pytree as pytree
|
5 |
+
|
6 |
+
__all__ = ["compile", "list_mode_options", "list_options", "cudagraph_mark_step_begin"]
|
7 |
+
|
8 |
+
|
9 |
+
def compile(
|
10 |
+
gm: torch.fx.GraphModule,
|
11 |
+
example_inputs: List[torch.Tensor],
|
12 |
+
options: Optional[Dict[str, Any]] = None,
|
13 |
+
):
|
14 |
+
"""
|
15 |
+
Compile a given FX graph with TorchInductor. This allows compiling
|
16 |
+
FX graphs captured without using TorchDynamo.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
gm: The FX graph to compile.
|
20 |
+
example_inputs: List of tensor inputs.
|
21 |
+
options: Optional dict of config options. See `torch._inductor.config`.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
Callable with same behavior as gm but faster.
|
25 |
+
"""
|
26 |
+
from .compile_fx import compile_fx
|
27 |
+
|
28 |
+
return compile_fx(gm, example_inputs, config_patches=options)
|
29 |
+
|
30 |
+
|
31 |
+
# TODO: aot_compile can only work with fx generated by export. Will remove this next
|
32 |
+
# to prevent people from calling it with arbitrary fx graph.
|
33 |
+
def aot_compile(
|
34 |
+
gm: torch.fx.GraphModule,
|
35 |
+
example_inputs: List[torch.Tensor],
|
36 |
+
options: Optional[Dict[str, Any]] = None,
|
37 |
+
) -> str:
|
38 |
+
"""
|
39 |
+
Ahead-of-time compile a given FX graph with TorchInductor into a shared library.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
gm: The FX graph to compile.
|
43 |
+
example_inputs: List of tensor inputs.
|
44 |
+
options: Optional dict of config options. See `torch._inductor.config`.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
Path to the generated shared library
|
48 |
+
"""
|
49 |
+
from .compile_fx import compile_fx_aot
|
50 |
+
|
51 |
+
# We will serialize the pytree info into the .so as constant strings
|
52 |
+
serialized_in_spec = ""
|
53 |
+
serialized_out_spec = ""
|
54 |
+
if isinstance(gm.graph._codegen, torch.fx.graph._PyTreeCodeGen):
|
55 |
+
codegen = gm.graph._codegen
|
56 |
+
gm.graph._codegen = torch.fx.graph.CodeGen()
|
57 |
+
gm.recompile()
|
58 |
+
|
59 |
+
if codegen.pytree_info.in_spec is not None:
|
60 |
+
serialized_in_spec = pytree.treespec_dumps(codegen.pytree_info.in_spec)
|
61 |
+
|
62 |
+
if codegen.pytree_info.out_spec is not None:
|
63 |
+
serialized_out_spec = pytree.treespec_dumps(codegen.pytree_info.out_spec)
|
64 |
+
|
65 |
+
options = (
|
66 |
+
{
|
67 |
+
"aot_inductor.serialized_in_spec": serialized_in_spec,
|
68 |
+
"aot_inductor.serialized_out_spec": serialized_out_spec,
|
69 |
+
}
|
70 |
+
if options is None
|
71 |
+
else {
|
72 |
+
**options,
|
73 |
+
"aot_inductor.serialized_in_spec": serialized_in_spec,
|
74 |
+
"aot_inductor.serialized_out_spec": serialized_out_spec,
|
75 |
+
}
|
76 |
+
)
|
77 |
+
|
78 |
+
return compile_fx_aot(
|
79 |
+
gm,
|
80 |
+
example_inputs,
|
81 |
+
config_patches=options,
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def list_mode_options(
|
86 |
+
mode: Optional[str] = None, dynamic: Optional[bool] = None
|
87 |
+
) -> Dict[str, Any]:
|
88 |
+
r"""Returns a dictionary describing the optimizations that each of the available
|
89 |
+
modes passed to `torch.compile()` performs.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
mode (str, optional): The mode to return the optimizations for.
|
93 |
+
If None, returns optimizations for all modes
|
94 |
+
dynamic (bool, optional): Whether dynamic shape is enabled.
|
95 |
+
|
96 |
+
Example::
|
97 |
+
>>> torch._inductor.list_mode_options()
|
98 |
+
"""
|
99 |
+
|
100 |
+
mode_options: Dict[str, Dict[str, bool]] = {
|
101 |
+
"default": {},
|
102 |
+
# enable cudagraphs
|
103 |
+
"reduce-overhead": {
|
104 |
+
"triton.cudagraphs": True,
|
105 |
+
},
|
106 |
+
# enable max-autotune
|
107 |
+
"max-autotune-no-cudagraphs": {
|
108 |
+
"max_autotune": True,
|
109 |
+
},
|
110 |
+
# enable max-autotune
|
111 |
+
# enable cudagraphs
|
112 |
+
"max-autotune": {
|
113 |
+
"max_autotune": True,
|
114 |
+
"triton.cudagraphs": True,
|
115 |
+
},
|
116 |
+
}
|
117 |
+
return mode_options[mode] if mode else mode_options # type: ignore[return-value]
|
118 |
+
|
119 |
+
|
120 |
+
def list_options() -> List[str]:
|
121 |
+
r"""Returns a dictionary describing the optimizations and debug configurations
|
122 |
+
that are available to `torch.compile()`.
|
123 |
+
|
124 |
+
The options are documented in `torch._inductor.config`.
|
125 |
+
|
126 |
+
Example::
|
127 |
+
|
128 |
+
>>> torch._inductor.list_options()
|
129 |
+
"""
|
130 |
+
|
131 |
+
from torch._inductor import config
|
132 |
+
|
133 |
+
current_config: Dict[str, Any] = config.shallow_copy_dict()
|
134 |
+
|
135 |
+
return list(current_config.keys())
|
136 |
+
|
137 |
+
|
138 |
+
def cudagraph_mark_step_begin():
|
139 |
+
"Indicates that a new iteration of inference or training is about to begin."
|
140 |
+
from .cudagraph_trees import mark_step_begin
|
141 |
+
|
142 |
+
mark_step_begin()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/autotune_process.py
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import dataclasses
|
5 |
+
import functools
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import queue
|
9 |
+
import time
|
10 |
+
import warnings
|
11 |
+
from concurrent.futures import ThreadPoolExecutor
|
12 |
+
from ctypes import byref, c_size_t, c_void_p
|
13 |
+
from multiprocessing.process import BaseProcess
|
14 |
+
from multiprocessing.queues import Queue
|
15 |
+
from typing import (
|
16 |
+
Any,
|
17 |
+
Callable,
|
18 |
+
Dict,
|
19 |
+
Iterable,
|
20 |
+
List,
|
21 |
+
Optional,
|
22 |
+
Sequence,
|
23 |
+
TYPE_CHECKING,
|
24 |
+
Union,
|
25 |
+
)
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from torch import multiprocessing
|
29 |
+
from torch._dynamo.testing import rand_strided
|
30 |
+
|
31 |
+
from torch._inductor import ir
|
32 |
+
from torch._inductor.codecache import CUDACodeCache, DLLWrapper, PyCodeCache
|
33 |
+
|
34 |
+
if TYPE_CHECKING:
|
35 |
+
from torch._inductor.select_algorithm import TritonTemplateCaller
|
36 |
+
|
37 |
+
from . import config
|
38 |
+
from .utils import do_bench
|
39 |
+
from .virtualized import V
|
40 |
+
|
41 |
+
CUDA_VISIBLE_DEVICES = "CUDA_VISIBLE_DEVICES"
|
42 |
+
EXIT_HANDLER_REGISTERED = False
|
43 |
+
|
44 |
+
log = logging.getLogger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
# Used to synchronize between parent and child processes
|
48 |
+
class Ping:
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
class Pong:
|
53 |
+
pass
|
54 |
+
|
55 |
+
|
56 |
+
@contextlib.contextmanager
|
57 |
+
def set_cuda_visible_device(device: Optional[int]):
|
58 |
+
"""
|
59 |
+
Context manager to set the CUDA_VISIBLE_DEVICES environment variable to the
|
60 |
+
specified single device. If device is None, don't manipulate the environment.
|
61 |
+
"""
|
62 |
+
if device is None:
|
63 |
+
yield
|
64 |
+
return
|
65 |
+
|
66 |
+
current = os.environ.get(CUDA_VISIBLE_DEVICES)
|
67 |
+
os.environ[CUDA_VISIBLE_DEVICES] = str(device)
|
68 |
+
try:
|
69 |
+
yield
|
70 |
+
finally:
|
71 |
+
if current is None:
|
72 |
+
del os.environ[CUDA_VISIBLE_DEVICES]
|
73 |
+
else:
|
74 |
+
os.environ[CUDA_VISIBLE_DEVICES] = current
|
75 |
+
|
76 |
+
|
77 |
+
@dataclasses.dataclass
|
78 |
+
class TuningProcess:
|
79 |
+
"""
|
80 |
+
Abstraction for launching a helper process to benchmark kernels. Spawns
|
81 |
+
the parent process and uses multiprocessing queues to send benchmark
|
82 |
+
requests and return results.
|
83 |
+
"""
|
84 |
+
|
85 |
+
device: Optional[int] = None
|
86 |
+
process: Optional[BaseProcess] = None
|
87 |
+
request_queue: Optional[Queue[Any]] = None
|
88 |
+
response_queue: Optional[Queue[Any]] = None
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def process_main(
|
92 |
+
request_queue: Queue[Any],
|
93 |
+
response_queue: Queue[Any],
|
94 |
+
) -> None:
|
95 |
+
"""
|
96 |
+
Entry point for the child process.
|
97 |
+
"""
|
98 |
+
log.debug(
|
99 |
+
"Entering TuningProcess child. Visible devices = %s",
|
100 |
+
os.environ.get(CUDA_VISIBLE_DEVICES),
|
101 |
+
)
|
102 |
+
try:
|
103 |
+
TuningProcess.workloop(request_queue, response_queue)
|
104 |
+
except Exception as ex:
|
105 |
+
log.exception("Exception in TuningProcess: %s", ex)
|
106 |
+
|
107 |
+
@staticmethod
|
108 |
+
def workloop(request_queue: Queue[Any], response_queue: Queue[Any]) -> None:
|
109 |
+
"""
|
110 |
+
Work loop for the benchmarking subprocess.
|
111 |
+
"""
|
112 |
+
while True:
|
113 |
+
obj = request_queue.get()
|
114 |
+
|
115 |
+
if obj is None:
|
116 |
+
break # None is a sentinel for the child to terminate
|
117 |
+
elif isinstance(obj, Ping):
|
118 |
+
response_queue.put(Pong())
|
119 |
+
elif isinstance(obj, BenchmarkRequest):
|
120 |
+
response_queue.put(obj.benchmark())
|
121 |
+
else:
|
122 |
+
raise RuntimeError(f"Invalid request type {type(obj)}")
|
123 |
+
|
124 |
+
def valid(self) -> bool:
|
125 |
+
"""
|
126 |
+
True if the sub-process has been initialized.
|
127 |
+
"""
|
128 |
+
return (
|
129 |
+
self.process is not None
|
130 |
+
and self.request_queue is not None
|
131 |
+
and self.response_queue is not None
|
132 |
+
)
|
133 |
+
|
134 |
+
def clear(self) -> None:
|
135 |
+
"""
|
136 |
+
Reset to an uninitialized state.
|
137 |
+
"""
|
138 |
+
self.process = self.request_queue = self.response_queue = None
|
139 |
+
|
140 |
+
def initialize(self) -> None:
|
141 |
+
"""
|
142 |
+
Create child process, request/response queues, and do the warm up.
|
143 |
+
Set the environment to make only the provided GPU device visible
|
144 |
+
to the process.
|
145 |
+
"""
|
146 |
+
if self.valid():
|
147 |
+
return
|
148 |
+
|
149 |
+
# cuda runtime does not work with "fork", use "spawn" to start processes.
|
150 |
+
ctx = multiprocessing.get_context("spawn")
|
151 |
+
self.request_queue = ctx.Queue()
|
152 |
+
self.response_queue = ctx.Queue()
|
153 |
+
|
154 |
+
self.process = ctx.Process(
|
155 |
+
target=self.process_main,
|
156 |
+
args=(
|
157 |
+
self.request_queue,
|
158 |
+
self.response_queue,
|
159 |
+
),
|
160 |
+
)
|
161 |
+
assert self.process is not None
|
162 |
+
with set_cuda_visible_device(self.device):
|
163 |
+
self.process.start()
|
164 |
+
|
165 |
+
def put(self, obj: Any) -> None:
|
166 |
+
"""
|
167 |
+
Push a work item to the child process.
|
168 |
+
"""
|
169 |
+
# In case of a prior crash, ensure the subprocess is running
|
170 |
+
self.initialize()
|
171 |
+
assert self.request_queue is not None
|
172 |
+
self.request_queue.put(obj)
|
173 |
+
|
174 |
+
def get(self) -> Any:
|
175 |
+
"""
|
176 |
+
Get a response from the child process.
|
177 |
+
"""
|
178 |
+
assert self.process is not None
|
179 |
+
assert self.response_queue is not None
|
180 |
+
while True:
|
181 |
+
try:
|
182 |
+
return self.response_queue.get(timeout=1.0)
|
183 |
+
except queue.Empty:
|
184 |
+
status = self.process.exitcode
|
185 |
+
if status is None:
|
186 |
+
# child process is still running
|
187 |
+
continue
|
188 |
+
# child process crashed
|
189 |
+
self.clear()
|
190 |
+
raise
|
191 |
+
|
192 |
+
def terminate(self) -> None:
|
193 |
+
"""
|
194 |
+
Signal the child process to terminate.
|
195 |
+
"""
|
196 |
+
if self.valid():
|
197 |
+
assert self.process is not None
|
198 |
+
assert self.request_queue is not None
|
199 |
+
self.request_queue.put(None)
|
200 |
+
|
201 |
+
def wait(self) -> None:
|
202 |
+
"""
|
203 |
+
Wait for the child process to exit.
|
204 |
+
"""
|
205 |
+
if self.process is not None:
|
206 |
+
self.process.join()
|
207 |
+
self.clear()
|
208 |
+
|
209 |
+
|
210 |
+
@dataclasses.dataclass
|
211 |
+
class TuningProcessPool:
|
212 |
+
"""
|
213 |
+
Maintains a pool of TuningProcesses to benchmark kernels in parallel
|
214 |
+
across devices. By default, we create one TuningProcess per device and
|
215 |
+
set the sub-process environment to make only that device visible.
|
216 |
+
"""
|
217 |
+
|
218 |
+
processes: Optional[queue.Queue[TuningProcess]] = None
|
219 |
+
executor: Optional[ThreadPoolExecutor] = None
|
220 |
+
|
221 |
+
def initialize(self) -> None:
|
222 |
+
"""
|
223 |
+
Start the child processes.
|
224 |
+
"""
|
225 |
+
assert (self.processes is None) == (self.executor is None)
|
226 |
+
if self.processes is not None:
|
227 |
+
return
|
228 |
+
|
229 |
+
devices = self.get_device_list()
|
230 |
+
log.debug("Sub-process autotune device list: %s", devices)
|
231 |
+
|
232 |
+
# Launch the child processes and push a msg to "warm up"
|
233 |
+
self.processes = queue.Queue()
|
234 |
+
for device in devices:
|
235 |
+
p = TuningProcess(device=device)
|
236 |
+
p.initialize()
|
237 |
+
p.put(Ping())
|
238 |
+
self.processes.put(p)
|
239 |
+
|
240 |
+
# Wait for the initialization to finish
|
241 |
+
for p in self.processes.queue:
|
242 |
+
assert isinstance(p.get(), Pong)
|
243 |
+
|
244 |
+
# Use a thread pool to manage distributing work to the subprocesses.
|
245 |
+
# Threads block on an available process, so it makes sense to match
|
246 |
+
# the number of threads with the number of devices.
|
247 |
+
self.executor = ThreadPoolExecutor(max_workers=len(devices))
|
248 |
+
|
249 |
+
# Register the exit handler for the parent process so it will terminate
|
250 |
+
# the child processes.
|
251 |
+
global EXIT_HANDLER_REGISTERED
|
252 |
+
if not EXIT_HANDLER_REGISTERED:
|
253 |
+
EXIT_HANDLER_REGISTERED = True
|
254 |
+
import atexit
|
255 |
+
|
256 |
+
atexit.register(self.terminate)
|
257 |
+
|
258 |
+
def get_device_list(self) -> Sequence[Optional[int]]:
|
259 |
+
"""
|
260 |
+
Gather the list of devices to be used in the pool.
|
261 |
+
"""
|
262 |
+
if not config.autotune_multi_device:
|
263 |
+
# Don't use multiple devices
|
264 |
+
return [None]
|
265 |
+
|
266 |
+
count = torch.cuda.device_count()
|
267 |
+
|
268 |
+
# If the user specified the visible devices in the env, use those.
|
269 |
+
if CUDA_VISIBLE_DEVICES in os.environ:
|
270 |
+
devices = [int(d) for d in os.environ[CUDA_VISIBLE_DEVICES].split(",")]
|
271 |
+
assert len(devices) <= count
|
272 |
+
return devices
|
273 |
+
|
274 |
+
return list(range(count))
|
275 |
+
|
276 |
+
def terminate(self) -> None:
|
277 |
+
"""
|
278 |
+
Signal all child processes to terminate.
|
279 |
+
"""
|
280 |
+
if self.executor is not None:
|
281 |
+
self.executor.shutdown()
|
282 |
+
self.executor = None
|
283 |
+
|
284 |
+
if self.processes is not None:
|
285 |
+
for p in self.processes.queue:
|
286 |
+
p.terminate()
|
287 |
+
for p in self.processes.queue:
|
288 |
+
p.wait()
|
289 |
+
self.processes = None
|
290 |
+
|
291 |
+
def target(self, choice: TritonTemplateCaller) -> float:
|
292 |
+
"""
|
293 |
+
Entry point for the thread-pool helper threads: Wait for an open TuningProcess,
|
294 |
+
remove it from the queue, execute the benchmark in that subprocess, and return
|
295 |
+
the TuningProcess to the queue.
|
296 |
+
"""
|
297 |
+
assert choice.bmreq is not None
|
298 |
+
assert self.processes is not None
|
299 |
+
|
300 |
+
process = self.processes.get()
|
301 |
+
process.put(choice.bmreq)
|
302 |
+
try:
|
303 |
+
return process.get()
|
304 |
+
except queue.Empty:
|
305 |
+
warnings.warn(
|
306 |
+
f"Failed to benchmark choice '{choice}'. It will be ignored. "
|
307 |
+
"Please debug the root cause in case the choice can bring perf gains."
|
308 |
+
)
|
309 |
+
# set to INF so this choice will be ignored
|
310 |
+
return float("inf")
|
311 |
+
finally:
|
312 |
+
self.processes.put(process)
|
313 |
+
|
314 |
+
def benchmark(
|
315 |
+
self,
|
316 |
+
choices: List[TritonTemplateCaller],
|
317 |
+
) -> Dict[TritonTemplateCaller, float]:
|
318 |
+
"""
|
319 |
+
Benchmark each choice in a separate process.
|
320 |
+
"""
|
321 |
+
assert self.processes is not None, "Tuning process pool is not initialized"
|
322 |
+
assert self.executor is not None
|
323 |
+
|
324 |
+
results = {}
|
325 |
+
|
326 |
+
# Use a ThreadExecutorPool to spread the work across the subprocesses and
|
327 |
+
# to grab subprocesses as soon as they're free.
|
328 |
+
for choice, result in zip(choices, self.executor.map(self.target, choices)):
|
329 |
+
results[choice] = result
|
330 |
+
|
331 |
+
return results
|
332 |
+
|
333 |
+
|
334 |
+
tuning_pool = TuningProcessPool()
|
335 |
+
|
336 |
+
|
337 |
+
LayoutOrBuffer = Union[ir.Layout, ir.Buffer]
|
338 |
+
|
339 |
+
|
340 |
+
@dataclasses.dataclass
|
341 |
+
class TensorMeta:
|
342 |
+
device: torch.device
|
343 |
+
dtype: torch.dtype
|
344 |
+
sizes: torch._prims_common.ShapeType
|
345 |
+
strides: torch._prims_common.StrideType
|
346 |
+
offset: int
|
347 |
+
|
348 |
+
@classmethod
|
349 |
+
def from_irnodes(
|
350 |
+
cls, irnodes: Union[LayoutOrBuffer, Sequence[LayoutOrBuffer]]
|
351 |
+
) -> Union[TensorMeta, List[TensorMeta]]:
|
352 |
+
if isinstance(irnodes, Sequence):
|
353 |
+
result: List[Any] = [cls.from_irnodes(x) for x in irnodes]
|
354 |
+
assert all(isinstance(x, TensorMeta) for x in result)
|
355 |
+
return result
|
356 |
+
|
357 |
+
node = irnodes
|
358 |
+
if isinstance(node, ir.Layout):
|
359 |
+
node = ir.Buffer("fake", node)
|
360 |
+
|
361 |
+
dtype = node.get_dtype()
|
362 |
+
assert dtype is not None
|
363 |
+
|
364 |
+
return TensorMeta(
|
365 |
+
device=node.get_device(),
|
366 |
+
dtype=dtype,
|
367 |
+
sizes=V.graph.sizevars.size_hints(
|
368 |
+
node.get_size(),
|
369 |
+
fallback=config.unbacked_symint_fallback,
|
370 |
+
),
|
371 |
+
strides=V.graph.sizevars.size_hints(
|
372 |
+
node.get_stride(),
|
373 |
+
fallback=config.unbacked_symint_fallback,
|
374 |
+
),
|
375 |
+
offset=V.graph.sizevars.size_hint(
|
376 |
+
node.get_layout().offset,
|
377 |
+
fallback=config.unbacked_symint_fallback,
|
378 |
+
),
|
379 |
+
)
|
380 |
+
|
381 |
+
def to_tensor(self) -> torch.Tensor:
|
382 |
+
return rand_strided(
|
383 |
+
self.sizes,
|
384 |
+
self.strides,
|
385 |
+
device=self.device,
|
386 |
+
dtype=self.dtype,
|
387 |
+
extra_size=self.offset,
|
388 |
+
)
|
389 |
+
|
390 |
+
|
391 |
+
@dataclasses.dataclass
|
392 |
+
class BenchmarkRequest:
|
393 |
+
"""
|
394 |
+
Only handle triton template benchmark for now. The extern kernel benchmark
|
395 |
+
can be done inside the same process since they usually don't cause crash.
|
396 |
+
"""
|
397 |
+
|
398 |
+
def __init__(
|
399 |
+
self,
|
400 |
+
kernel_name: str,
|
401 |
+
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
402 |
+
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
403 |
+
extra_args: Iterable[Any],
|
404 |
+
):
|
405 |
+
# the kernel name defined in the module
|
406 |
+
self.kernel_name = kernel_name
|
407 |
+
|
408 |
+
if isinstance(input_tensor_meta, TensorMeta):
|
409 |
+
input_tensor_meta = [input_tensor_meta]
|
410 |
+
self.input_tensor_meta = input_tensor_meta
|
411 |
+
|
412 |
+
if isinstance(output_tensor_meta, (tuple, list)):
|
413 |
+
assert len(output_tensor_meta) == 1
|
414 |
+
output_tensor_meta = output_tensor_meta[0]
|
415 |
+
self.output_tensor_meta = output_tensor_meta
|
416 |
+
|
417 |
+
self.extra_args = extra_args
|
418 |
+
|
419 |
+
def make_run_fn(
|
420 |
+
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
|
421 |
+
) -> Callable[[], None]:
|
422 |
+
raise NotImplementedError()
|
423 |
+
|
424 |
+
def cleanup_run_fn(self) -> None:
|
425 |
+
pass
|
426 |
+
|
427 |
+
def benchmark(
|
428 |
+
self,
|
429 |
+
*input_tensors: torch.Tensor,
|
430 |
+
output_tensor: Optional[torch.Tensor] = None,
|
431 |
+
) -> float:
|
432 |
+
debug = log.isEnabledFor(logging.DEBUG)
|
433 |
+
if debug:
|
434 |
+
start_ts = time.time()
|
435 |
+
|
436 |
+
# create args and out tensor
|
437 |
+
if output_tensor is None:
|
438 |
+
assert len(input_tensors) == 0
|
439 |
+
input_tensors = tuple(x.to_tensor() for x in self.input_tensor_meta)
|
440 |
+
output_tensor = self.output_tensor_meta.to_tensor()
|
441 |
+
|
442 |
+
if debug:
|
443 |
+
create_tensor_elapse = time.time() - start_ts
|
444 |
+
start_ts = time.time()
|
445 |
+
|
446 |
+
fn = self.make_run_fn(*input_tensors, output_tensor=output_tensor)
|
447 |
+
|
448 |
+
if debug:
|
449 |
+
load_elapse = time.time() - start_ts
|
450 |
+
start_ts = time.time()
|
451 |
+
|
452 |
+
out = do_bench(fn)
|
453 |
+
torch.cuda.synchronize() # shake out any CUDA errors
|
454 |
+
|
455 |
+
if debug:
|
456 |
+
bench_elapse = time.time() - start_ts
|
457 |
+
log.debug(
|
458 |
+
"InChildProcess %s: load %f, create tensor %f, bench %f",
|
459 |
+
str(self),
|
460 |
+
load_elapse,
|
461 |
+
create_tensor_elapse,
|
462 |
+
bench_elapse,
|
463 |
+
)
|
464 |
+
self.cleanup_run_fn()
|
465 |
+
return out
|
466 |
+
|
467 |
+
|
468 |
+
class TestBenchmarkRequest(BenchmarkRequest):
|
469 |
+
"""
|
470 |
+
Supports unit testing. Defined in this file so that the TuningProcess
|
471 |
+
sub-process knows how to unpickle these objects.
|
472 |
+
"""
|
473 |
+
|
474 |
+
def __init__(self, value: Optional[float] = None) -> None:
|
475 |
+
self.value = value
|
476 |
+
|
477 |
+
def benchmark(
|
478 |
+
self, *input_tensors: torch.Tensor, output_tensor: Optional[torch.Tensor] = None
|
479 |
+
) -> float:
|
480 |
+
if self.value is None:
|
481 |
+
raise Exception("Failed to run")
|
482 |
+
return self.value
|
483 |
+
|
484 |
+
|
485 |
+
class TritonBenchmarkRequest(BenchmarkRequest):
|
486 |
+
def __init__(
|
487 |
+
self,
|
488 |
+
kernel_name: str,
|
489 |
+
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
490 |
+
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
491 |
+
extra_args: Iterable[Any],
|
492 |
+
module_path: str, # the path of the module defining the triton kernel
|
493 |
+
module_cache_key: str,
|
494 |
+
grid: List[int],
|
495 |
+
num_stages: int,
|
496 |
+
num_warps: int,
|
497 |
+
):
|
498 |
+
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
|
499 |
+
self.module_path = module_path
|
500 |
+
self.module_cache_key = module_cache_key
|
501 |
+
self.grid = grid
|
502 |
+
self.num_stages = num_stages
|
503 |
+
self.num_warps = num_warps
|
504 |
+
|
505 |
+
def make_run_fn(
|
506 |
+
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
|
507 |
+
) -> Callable[[], None]:
|
508 |
+
mod = PyCodeCache.load_by_key_path(self.module_cache_key, self.module_path)
|
509 |
+
log.debug(
|
510 |
+
"benchmark module key: %s, path: %s",
|
511 |
+
self.module_cache_key,
|
512 |
+
self.module_path,
|
513 |
+
)
|
514 |
+
|
515 |
+
run_method = getattr(mod, self.kernel_name).run
|
516 |
+
|
517 |
+
return functools.partial(
|
518 |
+
run_method,
|
519 |
+
*input_tensors,
|
520 |
+
output_tensor,
|
521 |
+
*self.extra_args,
|
522 |
+
grid=self.grid,
|
523 |
+
num_stages=self.num_stages,
|
524 |
+
num_warps=self.num_warps,
|
525 |
+
stream=torch.cuda.current_stream().cuda_stream,
|
526 |
+
)
|
527 |
+
|
528 |
+
def __str__(self) -> str:
|
529 |
+
return f"{self.kernel_name=}, {self.module_path=}, {self.module_cache_key=}"
|
530 |
+
|
531 |
+
|
532 |
+
class CUDABenchmarkRequest(BenchmarkRequest):
|
533 |
+
def __init__(
|
534 |
+
self,
|
535 |
+
kernel_name: str,
|
536 |
+
input_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
537 |
+
output_tensor_meta: Union[TensorMeta, List[TensorMeta]],
|
538 |
+
extra_args: Iterable[Any],
|
539 |
+
source_code: str,
|
540 |
+
):
|
541 |
+
super().__init__(kernel_name, input_tensor_meta, output_tensor_meta, extra_args)
|
542 |
+
self.source_code = source_code
|
543 |
+
self.workspace_size: int = 0
|
544 |
+
self.workspace: Optional[torch.Tensor] = None
|
545 |
+
self.DLL: Optional[DLLWrapper] = None
|
546 |
+
self.hash_key: str = ""
|
547 |
+
self.source_file: str = ""
|
548 |
+
self.hash_key, self.source_file = CUDACodeCache.write(self.source_code, "so")
|
549 |
+
|
550 |
+
def make_run_fn(
|
551 |
+
self, *input_tensors: torch.Tensor, output_tensor: torch.Tensor
|
552 |
+
) -> Callable[[], None]:
|
553 |
+
self.DLL, self.hash_key, self.source_file = CUDACodeCache.load(
|
554 |
+
self.source_code, "so"
|
555 |
+
)
|
556 |
+
args = [
|
557 |
+
c_void_p(tensor.data_ptr())
|
558 |
+
for tensor in list(input_tensors) + [output_tensor]
|
559 |
+
]
|
560 |
+
log.debug(
|
561 |
+
"make_run_fn: self.kernel_name=%s, self.source_file=%s, self.hash_key=%s, self.DLL=%s, args=%s, self.extra_args=%s",
|
562 |
+
self.kernel_name,
|
563 |
+
self.source_file,
|
564 |
+
self.hash_key,
|
565 |
+
self.DLL,
|
566 |
+
args,
|
567 |
+
self.extra_args,
|
568 |
+
)
|
569 |
+
run_method = getattr(self.DLL, self.kernel_name)
|
570 |
+
stream_ptr = c_void_p(torch.cuda.current_stream().cuda_stream)
|
571 |
+
|
572 |
+
# Retrieve workspace_size and initialize workspace.
|
573 |
+
c_workspace_size = c_size_t()
|
574 |
+
run_method(
|
575 |
+
*args, # input ptrs and output ptrs
|
576 |
+
*self.extra_args,
|
577 |
+
byref(
|
578 |
+
c_workspace_size
|
579 |
+
), # set workspace size ptr to retrieve workspace size
|
580 |
+
None, # null workspace ptr
|
581 |
+
stream_ptr,
|
582 |
+
)
|
583 |
+
self.workspace_size = c_workspace_size.value
|
584 |
+
# TODO: Support non-zero workspace_size.
|
585 |
+
assert self.workspace_size == 0, (
|
586 |
+
"Things need to be fixed to support non-zero workspace_size: "
|
587 |
+
"1) max autotune cache needs to store workspace size; "
|
588 |
+
"2) memory allocation needs to allocate / deallocate workspace correctly; "
|
589 |
+
)
|
590 |
+
|
591 |
+
# Generate partial function.
|
592 |
+
return functools.partial(
|
593 |
+
run_method,
|
594 |
+
*args,
|
595 |
+
*self.extra_args,
|
596 |
+
None, # null workspace size ptr
|
597 |
+
None, # set workspace ptr, TODO: update it to a real ptr if workspace_size > 0
|
598 |
+
stream_ptr,
|
599 |
+
)
|
600 |
+
|
601 |
+
def cleanup_run_fn(self) -> None:
|
602 |
+
if self.DLL is not None:
|
603 |
+
self.DLL.close()
|
604 |
+
self.workspace = None
|
605 |
+
|
606 |
+
def __str__(self) -> str:
|
607 |
+
return f"{self.kernel_name=}, {self.source_file=}, {self.hash_key=}"
|
608 |
+
|
609 |
+
|
610 |
+
def benchmark_in_sub_process(
|
611 |
+
choices: List[TritonTemplateCaller],
|
612 |
+
) -> Dict[TritonTemplateCaller, float]:
|
613 |
+
"""
|
614 |
+
Do benchmarking in a subprocess and return the perf number (latency).
|
615 |
+
"""
|
616 |
+
return tuning_pool.benchmark(choices)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/bounds.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from functools import partial
|
3 |
+
from typing import Any, Callable, Dict
|
4 |
+
|
5 |
+
from sympy import Expr
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch.utils._sympy.value_ranges import bound_sympy, ValueRangeAnalysis, ValueRanges
|
9 |
+
from .ir import InterpreterShim, LoopBody, LoopBodyBlock
|
10 |
+
from .utils import cache_on_self, dominated_nodes
|
11 |
+
from .virtualized import V
|
12 |
+
|
13 |
+
|
14 |
+
class BoundVars:
|
15 |
+
"""
|
16 |
+
Performs Value Range Analysis on LoopBody's fx graph by calling BoundVars.run()
|
17 |
+
It exposes the ranges of the nodes in the `bounds` variable
|
18 |
+
|
19 |
+
Note. A current limitation of this analysis is that it just works on a per-loop basis.
|
20 |
+
We should be able to propagate the bounds between across the whole graph. This may benefit
|
21 |
+
the case a bounded variable is returned by a kernel and fed into another.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, loop_body: LoopBody) -> None:
|
25 |
+
self.loop_body = loop_body
|
26 |
+
self.replacement_vals = {
|
27 |
+
k: ValueRanges(0, v - 1)
|
28 |
+
if (isinstance(v, int) or v.is_number)
|
29 |
+
else bound_sympy(v)
|
30 |
+
for k, v in loop_body.var_ranges.items()
|
31 |
+
}
|
32 |
+
# avoid computing these values, pessimistically assume that they are unbounded
|
33 |
+
self.unbounded_vars = dominated_nodes(
|
34 |
+
node
|
35 |
+
for node in self.loop_body.get_nodes()
|
36 |
+
if node.target in ["load", "reduction", operator.getitem]
|
37 |
+
or "masked_subblock" in node.target
|
38 |
+
)
|
39 |
+
# To access this variable call `get_bounds()`
|
40 |
+
self._bounds: Dict[torch.fx.Node, ValueRanges] = {}
|
41 |
+
|
42 |
+
@cache_on_self
|
43 |
+
def get_bounds(self) -> Dict[torch.fx.Node, ValueRanges]:
|
44 |
+
submodules = self.swap_submodules(self.loop_body.submodules)
|
45 |
+
|
46 |
+
# Initialize the environment with the unbounded variables
|
47 |
+
for node in self.unbounded_vars:
|
48 |
+
# we need to evaluate masked_subblock to recurse, and we need to set indirect values
|
49 |
+
if not isinstance(node.target, str) or (
|
50 |
+
"masked_subblock" not in node.target
|
51 |
+
and "set_indirect" not in node.target
|
52 |
+
):
|
53 |
+
self._bounds[node] = ValueRanges.unknown()
|
54 |
+
|
55 |
+
with V.set_ops_handler(ValueRangeAnalysis()):
|
56 |
+
interpreter = InterpreterShim(self.loop_body.root_block.graph, submodules)
|
57 |
+
interpreter.run(V.get_ops_handler(), initial_env=self._bounds)
|
58 |
+
return self._bounds
|
59 |
+
|
60 |
+
def swap_submodules(
|
61 |
+
self, submodules: Dict[str, Callable[..., Any]]
|
62 |
+
) -> Dict[str, Callable[..., ValueRanges]]:
|
63 |
+
result: Dict[str, Callable[..., ValueRanges]] = {}
|
64 |
+
for key in submodules.keys():
|
65 |
+
if key == "get_index":
|
66 |
+
result[key] = self.get_index
|
67 |
+
elif "masked_subblock" in key:
|
68 |
+
subblock = self.loop_body.subblocks[key]
|
69 |
+
# The result within the lambda will reference to the final
|
70 |
+
# set of modules at the end of the for-loop as it stores a reference to it
|
71 |
+
|
72 |
+
# bind subblock in a function because python lambdas close over by reference
|
73 |
+
# moving the lambda out of make_fn would close over the reference to subblock,
|
74 |
+
# so all lambdas would have the same subblock reference that is the final
|
75 |
+
# subblock in the loop
|
76 |
+
def make_fn(subblock):
|
77 |
+
return lambda mask, value: self.masked_subblock(
|
78 |
+
subblock, self._bounds, mask, value, result
|
79 |
+
)
|
80 |
+
|
81 |
+
result[key] = make_fn(subblock)
|
82 |
+
|
83 |
+
else:
|
84 |
+
assert "set_indirect" in key
|
85 |
+
idx = int(key[len("set_indirect") :])
|
86 |
+
var = self.loop_body.indirect_vars[idx]
|
87 |
+
indirect = partial(self.set_indirect, var)
|
88 |
+
result[key] = indirect
|
89 |
+
|
90 |
+
return result
|
91 |
+
|
92 |
+
def masked_subblock(
|
93 |
+
self,
|
94 |
+
subblock: LoopBodyBlock,
|
95 |
+
env: Dict[torch.fx.Node, ValueRanges],
|
96 |
+
mask: Any,
|
97 |
+
value: Any,
|
98 |
+
submodules: Dict[str, Callable[..., Any]],
|
99 |
+
) -> ValueRanges:
|
100 |
+
interp = InterpreterShim(subblock.graph, submodules)
|
101 |
+
interp.run(V.get_ops_handler(), initial_env=env)
|
102 |
+
output = [node for node in subblock.graph.nodes if node.target == "output"]
|
103 |
+
assert len(output) == 1
|
104 |
+
# dont bother unioning with value since the load from buffer will be
|
105 |
+
# pessimistically assumed to be inf anyway
|
106 |
+
return interp.env[output[0]]
|
107 |
+
|
108 |
+
def set_indirect(self, old: Expr, new: ValueRanges) -> ValueRanges:
|
109 |
+
assert isinstance(new, ValueRanges)
|
110 |
+
self.replacement_vals[old] = new
|
111 |
+
return new
|
112 |
+
|
113 |
+
def get_index(self, name: Expr) -> ValueRanges:
|
114 |
+
expr = self.loop_body.indexing_exprs[name]
|
115 |
+
bound = self.replacement_vals.get(expr)
|
116 |
+
if bound is None:
|
117 |
+
bound = bound_sympy(expr, self.replacement_vals)
|
118 |
+
# The following assertion is true at the time of this writing
|
119 |
+
# We don't assert is as to not execute bound_sympy when bound is not None
|
120 |
+
# assert bound is None or bound == bound_sympy(expr, self.replacement_vals)
|
121 |
+
self.replacement_vals[name] = bound
|
122 |
+
return bound
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codecache.py
ADDED
@@ -0,0 +1,2492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import base64
|
4 |
+
import copyreg
|
5 |
+
import dataclasses
|
6 |
+
import functools
|
7 |
+
import hashlib
|
8 |
+
import importlib
|
9 |
+
import io
|
10 |
+
import json
|
11 |
+
import logging
|
12 |
+
import multiprocessing
|
13 |
+
import os
|
14 |
+
import pathlib
|
15 |
+
import pickle
|
16 |
+
import pkgutil
|
17 |
+
import platform
|
18 |
+
import re
|
19 |
+
import shlex
|
20 |
+
import shutil
|
21 |
+
import signal
|
22 |
+
import subprocess
|
23 |
+
import sys
|
24 |
+
import sysconfig
|
25 |
+
import tempfile
|
26 |
+
import threading
|
27 |
+
import warnings
|
28 |
+
import weakref
|
29 |
+
from bisect import bisect_right
|
30 |
+
from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor
|
31 |
+
from copy import copy
|
32 |
+
from ctypes import c_void_p, cdll, CDLL
|
33 |
+
from dataclasses import field
|
34 |
+
from functools import partial
|
35 |
+
from importlib import abc
|
36 |
+
from pathlib import Path
|
37 |
+
from threading import Thread
|
38 |
+
from time import sleep, time
|
39 |
+
from types import ModuleType
|
40 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union
|
41 |
+
|
42 |
+
import torch
|
43 |
+
|
44 |
+
from torch._dynamo.device_interface import (
|
45 |
+
get_interface_for_device,
|
46 |
+
get_registered_device_interfaces,
|
47 |
+
)
|
48 |
+
from torch._dynamo.utils import counters
|
49 |
+
from torch._inductor import config, exc
|
50 |
+
from torch._inductor.codegen.cuda import cuda_env
|
51 |
+
from torch._inductor.utils import cache_dir, developer_warning, is_linux
|
52 |
+
from torch._prims_common import suggest_memory_format
|
53 |
+
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
54 |
+
|
55 |
+
if TYPE_CHECKING:
|
56 |
+
from torch._inductor.graph import GraphLowering
|
57 |
+
from torch._inductor.select_algorithm import ChoiceCaller
|
58 |
+
|
59 |
+
from torch.hub import _Faketqdm, tqdm
|
60 |
+
|
61 |
+
_HERE = os.path.abspath(__file__)
|
62 |
+
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
63 |
+
|
64 |
+
if config.is_fbcode():
|
65 |
+
from triton.fb import build_paths
|
66 |
+
from triton.fb.build import _run_build_command
|
67 |
+
|
68 |
+
from torch._inductor.fb.utils import (
|
69 |
+
log_global_cache_errors,
|
70 |
+
log_global_cache_stats,
|
71 |
+
log_global_cache_vals,
|
72 |
+
use_global_cache,
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
|
76 |
+
def log_global_cache_errors(*args, **kwargs):
|
77 |
+
pass
|
78 |
+
|
79 |
+
def log_global_cache_stats(*args, **kwargs):
|
80 |
+
pass
|
81 |
+
|
82 |
+
def log_global_cache_vals(*args, **kwargs):
|
83 |
+
pass
|
84 |
+
|
85 |
+
def use_global_cache() -> bool:
|
86 |
+
return False
|
87 |
+
|
88 |
+
|
89 |
+
LOCK_TIMEOUT = 600
|
90 |
+
|
91 |
+
# timing metrics for time spent in the compilation
|
92 |
+
_cumulative_compile_time = 0.0
|
93 |
+
_t0 = None
|
94 |
+
|
95 |
+
|
96 |
+
def _compile_start() -> None:
|
97 |
+
global _t0
|
98 |
+
if _t0 is None:
|
99 |
+
_t0 = time()
|
100 |
+
|
101 |
+
|
102 |
+
def _compile_end() -> None:
|
103 |
+
global _cumulative_compile_time, _t0
|
104 |
+
if _t0 is not None:
|
105 |
+
t1 = time()
|
106 |
+
_cumulative_compile_time += t1 - _t0
|
107 |
+
_t0 = None
|
108 |
+
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
|
109 |
+
|
110 |
+
|
111 |
+
log = logging.getLogger(__name__)
|
112 |
+
|
113 |
+
|
114 |
+
def cpp_wrapper_cache_dir(name: str) -> str:
|
115 |
+
cu_str = (
|
116 |
+
"cpu"
|
117 |
+
if torch.version.cuda is None
|
118 |
+
else f'cu{torch.version.cuda.replace(".", "")}'
|
119 |
+
)
|
120 |
+
python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
|
121 |
+
build_folder = f"{python_version}_{cu_str}"
|
122 |
+
|
123 |
+
cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
|
124 |
+
cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
|
125 |
+
os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
|
126 |
+
return cpp_wrapper_build_directory
|
127 |
+
|
128 |
+
|
129 |
+
def get_cpp_wrapper_cubin_path_name():
|
130 |
+
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
131 |
+
|
132 |
+
|
133 |
+
class CacheBase:
|
134 |
+
@staticmethod
|
135 |
+
@functools.lru_cache(None)
|
136 |
+
def get_system() -> Dict[str, Any]:
|
137 |
+
try:
|
138 |
+
import triton
|
139 |
+
|
140 |
+
triton_version = triton.__version__
|
141 |
+
except ModuleNotFoundError:
|
142 |
+
triton_version = None
|
143 |
+
|
144 |
+
try:
|
145 |
+
system: Dict[str, Any] = {
|
146 |
+
"device": {
|
147 |
+
"name": torch.cuda.get_device_properties(
|
148 |
+
torch.cuda.current_device()
|
149 |
+
).name,
|
150 |
+
},
|
151 |
+
"version": {
|
152 |
+
"cuda": torch.version.cuda,
|
153 |
+
"triton": triton_version,
|
154 |
+
},
|
155 |
+
"other": {
|
156 |
+
"allow_tf32": torch.backends.cuda.matmul.allow_tf32,
|
157 |
+
},
|
158 |
+
}
|
159 |
+
except (AssertionError, RuntimeError):
|
160 |
+
# If cuda is not installed, none of the above config is relevant.
|
161 |
+
system = {}
|
162 |
+
|
163 |
+
system["hash"] = hashlib.sha256(
|
164 |
+
json.dumps(system, sort_keys=True).encode("utf-8")
|
165 |
+
).hexdigest()
|
166 |
+
|
167 |
+
return system
|
168 |
+
|
169 |
+
@staticmethod
|
170 |
+
@functools.lru_cache(None)
|
171 |
+
def get_local_cache_path() -> Path:
|
172 |
+
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
@functools.lru_cache(None)
|
176 |
+
def get_global_cache_path() -> Optional[Path]:
|
177 |
+
return (
|
178 |
+
Path(os.path.join(config.global_cache_dir, CacheBase.get_system()["hash"]))
|
179 |
+
if config.global_cache_dir is not None
|
180 |
+
else None
|
181 |
+
)
|
182 |
+
|
183 |
+
def __init__(self) -> None:
|
184 |
+
if not torch.cuda.is_available():
|
185 |
+
return
|
186 |
+
|
187 |
+
self.system = CacheBase.get_system()
|
188 |
+
|
189 |
+
self.local_cache_path = CacheBase.get_local_cache_path()
|
190 |
+
self.global_cache_path = CacheBase.get_global_cache_path()
|
191 |
+
|
192 |
+
def get_local_cache(self) -> Dict[str, Any]:
|
193 |
+
if not self.local_cache_path.is_file():
|
194 |
+
return {}
|
195 |
+
with open(self.local_cache_path) as local_cache_fp:
|
196 |
+
local_cache = json.load(local_cache_fp)
|
197 |
+
return local_cache["cache"]
|
198 |
+
|
199 |
+
def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
|
200 |
+
if not os.path.exists(self.local_cache_path.parent):
|
201 |
+
os.makedirs(self.local_cache_path.parent, exist_ok=True)
|
202 |
+
write_atomic(
|
203 |
+
str(self.local_cache_path),
|
204 |
+
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
205 |
+
)
|
206 |
+
|
207 |
+
|
208 |
+
class LocalCache(CacheBase):
|
209 |
+
def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
|
210 |
+
cache = self.get_local_cache()
|
211 |
+
|
212 |
+
sub_cache = cache
|
213 |
+
for key in keys:
|
214 |
+
if key in cache:
|
215 |
+
sub_cache = cache[key]
|
216 |
+
else:
|
217 |
+
return None
|
218 |
+
|
219 |
+
return sub_cache
|
220 |
+
|
221 |
+
def set_value(self, *keys: str, value: Any) -> None:
|
222 |
+
cache = self.get_local_cache()
|
223 |
+
|
224 |
+
sub_cache = cache
|
225 |
+
for key in keys[0:-1]:
|
226 |
+
sub_cache.setdefault(key, {})
|
227 |
+
sub_cache = sub_cache[key]
|
228 |
+
sub_cache[keys[-1]] = value
|
229 |
+
|
230 |
+
self.update_local_cache(cache)
|
231 |
+
|
232 |
+
|
233 |
+
class PersistentCache(CacheBase):
|
234 |
+
@functools.lru_cache(None)
|
235 |
+
def get_global_cache(self):
|
236 |
+
if self.global_cache_path is None or not self.global_cache_path.is_file():
|
237 |
+
return {}
|
238 |
+
with open(self.global_cache_path) as global_cache_fp:
|
239 |
+
global_cache = json.load(global_cache_fp)
|
240 |
+
return global_cache["cache"]
|
241 |
+
|
242 |
+
def lookup(
|
243 |
+
self,
|
244 |
+
choices: List[ChoiceCaller],
|
245 |
+
name: str,
|
246 |
+
inputs: str,
|
247 |
+
benchmark: Callable[[Any], Dict[ChoiceCaller, float]],
|
248 |
+
) -> Dict[ChoiceCaller, float]:
|
249 |
+
"""
|
250 |
+
Check to see if we have benchmarked the given choice callers. For each
|
251 |
+
choice caller:
|
252 |
+
|
253 |
+
1. Check global_cache[name][inputs][choice], return benchmark if cached.
|
254 |
+
2. Check local_cache[name][inputs][choice], return benchmark if cached.
|
255 |
+
3.
|
256 |
+
a. `max_autotune_gemm=True`: benchmark the choice, update
|
257 |
+
local_cache[name][inputs][choice], and return the benchmark.
|
258 |
+
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
259 |
+
"""
|
260 |
+
|
261 |
+
log_stats = partial(log_global_cache_stats, self.system, name, inputs)
|
262 |
+
log_vals = partial(log_global_cache_vals, self.system, name, inputs)
|
263 |
+
log_errors = partial(log_global_cache_errors, self.system, name, inputs)
|
264 |
+
timings = {}
|
265 |
+
|
266 |
+
def check_cache(cache, callback=None) -> bool:
|
267 |
+
"""Check if `cache` contains data for all the choices"""
|
268 |
+
hit = True
|
269 |
+
for choice in choices:
|
270 |
+
choice_hash = choice.hash_key()
|
271 |
+
if choice_hash in cache.get(name, {}).get(inputs, {}):
|
272 |
+
# cache hit
|
273 |
+
timings[choice] = cache[name][inputs][choice_hash]
|
274 |
+
else:
|
275 |
+
# cache miss
|
276 |
+
hit = False
|
277 |
+
break
|
278 |
+
if callback:
|
279 |
+
callback(cached=hit)
|
280 |
+
return hit
|
281 |
+
|
282 |
+
if config.max_autotune or config.max_autotune_gemm:
|
283 |
+
local_cache = self.get_local_cache()
|
284 |
+
# check local cache first since it is data specific to the current machine
|
285 |
+
if not check_cache(local_cache) and not (
|
286 |
+
use_global_cache()
|
287 |
+
and check_cache(self.get_global_cache(), callback=log_stats)
|
288 |
+
):
|
289 |
+
try:
|
290 |
+
# re-benchmark everything to try to get consistent numbers from the same machine
|
291 |
+
timings = benchmark(choices)
|
292 |
+
assert all(choice in timings for choice in choices)
|
293 |
+
|
294 |
+
local_cache.setdefault(name, {})
|
295 |
+
local_cache[name].setdefault(inputs, {})
|
296 |
+
for choice, timing in timings.items():
|
297 |
+
local_cache[name][inputs][choice.hash_key()] = timing
|
298 |
+
except RuntimeError as e:
|
299 |
+
# catch and log autotuning failures
|
300 |
+
log_errors(e)
|
301 |
+
raise e
|
302 |
+
|
303 |
+
self.update_local_cache(local_cache)
|
304 |
+
|
305 |
+
timings_to_log = {
|
306 |
+
choice.hash_key(): timings[choice] for choice in choices
|
307 |
+
}
|
308 |
+
log_vals(timings_to_log)
|
309 |
+
elif use_global_cache():
|
310 |
+
# only check global cache, not local one
|
311 |
+
check_cache(self.get_global_cache(), callback=log_stats)
|
312 |
+
# may have a partial cache hit, where not everything is benchmarked
|
313 |
+
|
314 |
+
return timings
|
315 |
+
|
316 |
+
|
317 |
+
def get_lock_dir() -> str:
|
318 |
+
lock_dir = os.path.join(cache_dir(), "locks")
|
319 |
+
if not os.path.exists(lock_dir):
|
320 |
+
os.makedirs(lock_dir, exist_ok=True)
|
321 |
+
return lock_dir
|
322 |
+
|
323 |
+
|
324 |
+
def sha256_hash(data: bytes) -> str:
|
325 |
+
# [:51] to strip off the "Q====" suffix common to every hash value.
|
326 |
+
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
327 |
+
|
328 |
+
|
329 |
+
def code_hash(code: Union[str, bytes], extra: str = ""):
|
330 |
+
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
331 |
+
if extra != "":
|
332 |
+
hashing_str = hashing_str + b"||" + extra.encode("utf-8")
|
333 |
+
return "c" + sha256_hash(hashing_str)
|
334 |
+
|
335 |
+
|
336 |
+
def get_path(
|
337 |
+
basename: str, extension: str, specified_dir: str = ""
|
338 |
+
) -> Tuple[str, str, str]:
|
339 |
+
if specified_dir:
|
340 |
+
if os.path.isabs(specified_dir):
|
341 |
+
subdir = specified_dir
|
342 |
+
else:
|
343 |
+
subdir = os.path.join(cache_dir(), specified_dir)
|
344 |
+
else:
|
345 |
+
subdir = os.path.join(cache_dir(), basename[1:3])
|
346 |
+
path = os.path.join(subdir, f"{basename}.{extension}")
|
347 |
+
return basename, subdir, path
|
348 |
+
|
349 |
+
|
350 |
+
def get_hash(content: Union[str, bytes], extra: str = "", hash_type: str = "code"):
|
351 |
+
if hash_type == "code":
|
352 |
+
return code_hash(content, extra)
|
353 |
+
if hash_type in ["cubin", "hsaco"]:
|
354 |
+
return code_hash(repr(content))
|
355 |
+
raise AssertionError(f"Unknown hash type {hash_type}")
|
356 |
+
|
357 |
+
|
358 |
+
def write(
|
359 |
+
content: Union[str, bytes],
|
360 |
+
extension: str,
|
361 |
+
extra: str = "",
|
362 |
+
hash_type: str = "code",
|
363 |
+
specified_dir: str = "",
|
364 |
+
) -> Tuple[str, str]:
|
365 |
+
# use striped content to compute hash so we don't end up with different
|
366 |
+
# hashes just because the content begins/ends with differnet number of
|
367 |
+
# spaces.
|
368 |
+
key: str = get_hash(content.strip(), extra, hash_type)
|
369 |
+
basename, subdir, path = get_path(key, extension, specified_dir)
|
370 |
+
if not os.path.exists(subdir):
|
371 |
+
os.makedirs(subdir, exist_ok=True)
|
372 |
+
if not os.path.exists(path):
|
373 |
+
write_atomic(path, content)
|
374 |
+
return basename, path
|
375 |
+
|
376 |
+
|
377 |
+
def write_atomic(path: str, content: Union[str, bytes]) -> None:
|
378 |
+
# Write into temporary file first to avoid conflicts between threads
|
379 |
+
# Avoid using a named temporary file, as those have restricted permissions
|
380 |
+
assert isinstance(
|
381 |
+
content, (str, bytes)
|
382 |
+
), "Only strings and byte arrays can be saved in the cache"
|
383 |
+
path = pathlib.Path(path)
|
384 |
+
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
385 |
+
write_mode = "w" if isinstance(content, str) else "wb"
|
386 |
+
with tmp_path.open(write_mode) as f:
|
387 |
+
f.write(content)
|
388 |
+
tmp_path.rename(path)
|
389 |
+
|
390 |
+
|
391 |
+
@dataclasses.dataclass
|
392 |
+
class TensorMetadata:
|
393 |
+
"""
|
394 |
+
The Tensor metadata relevant when hashing FxGraph cache keys.
|
395 |
+
"""
|
396 |
+
|
397 |
+
dtype: torch.dtype
|
398 |
+
shape: torch.Size
|
399 |
+
stride: Tuple[Any, ...]
|
400 |
+
device: torch.device
|
401 |
+
layout: torch.layout
|
402 |
+
memory_format: Optional[torch.memory_format]
|
403 |
+
storage_offset: int
|
404 |
+
requires_grad: bool
|
405 |
+
is_quantized: bool
|
406 |
+
is_conj: bool
|
407 |
+
is_neg: bool
|
408 |
+
is_coalesced: bool
|
409 |
+
dense_dim: int
|
410 |
+
sparse_dim: int
|
411 |
+
|
412 |
+
|
413 |
+
@dataclasses.dataclass
|
414 |
+
class TensorMetadataAndValues:
|
415 |
+
"""
|
416 |
+
TensorMetadata plus the elements as a list of raw values.
|
417 |
+
Used for hashing inlined constants.
|
418 |
+
"""
|
419 |
+
|
420 |
+
tensor_metadata: TensorMetadata
|
421 |
+
values: List[Any]
|
422 |
+
|
423 |
+
|
424 |
+
def extract_tensor_metadata(t: torch.Tensor) -> TensorMetadata:
|
425 |
+
"""
|
426 |
+
Extract the TensorMetadata of a tensor.
|
427 |
+
"""
|
428 |
+
memory_format: Optional[torch.memory_format] = suggest_memory_format(t)
|
429 |
+
if not t.is_contiguous(memory_format=memory_format):
|
430 |
+
memory_format = None
|
431 |
+
|
432 |
+
return TensorMetadata(
|
433 |
+
dtype=t.dtype,
|
434 |
+
shape=t.shape,
|
435 |
+
stride=t.stride() if t.layout == torch.strided else (),
|
436 |
+
device=t.device,
|
437 |
+
layout=t.layout,
|
438 |
+
memory_format=memory_format,
|
439 |
+
storage_offset=t.storage_offset(),
|
440 |
+
requires_grad=t.requires_grad,
|
441 |
+
is_quantized=t.is_quantized,
|
442 |
+
is_conj=t.is_conj(),
|
443 |
+
is_neg=t.is_neg(),
|
444 |
+
is_coalesced=t.is_coalesced() if t.is_sparse else False,
|
445 |
+
dense_dim=t.dense_dim() if t.is_sparse else False,
|
446 |
+
sparse_dim=t.sparse_dim() if t.is_sparse else False,
|
447 |
+
)
|
448 |
+
|
449 |
+
|
450 |
+
def _ident(x: Any) -> Any:
|
451 |
+
return x
|
452 |
+
|
453 |
+
|
454 |
+
def _reduce_fake_tensor(t):
|
455 |
+
"""
|
456 |
+
See FxGraphCachePickler. Custom reducer to pickle FakeTensors.
|
457 |
+
"""
|
458 |
+
metadata = extract_tensor_metadata(t)
|
459 |
+
return (_ident, (metadata,))
|
460 |
+
|
461 |
+
|
462 |
+
def _reduce_tensor(t):
|
463 |
+
"""
|
464 |
+
See FxGraphCachePickler. Custom reducer to pickle Tensors.
|
465 |
+
"""
|
466 |
+
# If we see tensors, we know they're contstants stored as attributes on
|
467 |
+
# the GraphModule. See tensor lowering; small constants are inlined. If
|
468 |
+
# we see a small tensor, therefore, no reference will ultimately remain
|
469 |
+
# in the generated code. So we need to include its value in the cache key.
|
470 |
+
# Large constannts are effectively treated as inputs and we consider only
|
471 |
+
# their metadata.
|
472 |
+
metadata = extract_tensor_metadata(t)
|
473 |
+
if len(t.shape) == 0 or torch._inductor.graph.GraphLowering.can_inline_constant(t):
|
474 |
+
return (_ident, (TensorMetadataAndValues(metadata, t.tolist()),))
|
475 |
+
else:
|
476 |
+
return (_ident, (metadata,))
|
477 |
+
|
478 |
+
|
479 |
+
def _reduce_symint(s):
|
480 |
+
"""
|
481 |
+
See FxGraphCachePickler. Custom reducer to pickle SymInts.
|
482 |
+
"""
|
483 |
+
# For hashing purposes, we only care about the name of the symbol and
|
484 |
+
# not the backed value. We evaluate guards stored with a cached graph
|
485 |
+
# to ensure a cached entity with SymInt args is safe to reuse.
|
486 |
+
return (_ident, (str(s),))
|
487 |
+
|
488 |
+
|
489 |
+
class FxGraphCachePickler(pickle.Pickler):
|
490 |
+
"""
|
491 |
+
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
492 |
+
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
493 |
+
objects that don't pickle and/or vary between runs, and we want to capture the
|
494 |
+
data that allow us to compute a stable, but safe hash.
|
495 |
+
"""
|
496 |
+
|
497 |
+
dispatch_table = copyreg.dispatch_table.copy()
|
498 |
+
dispatch_table[torch._subclasses.fake_tensor.FakeTensor] = _reduce_fake_tensor
|
499 |
+
dispatch_table[torch.Tensor] = _reduce_tensor
|
500 |
+
dispatch_table[torch.SymInt] = _reduce_symint
|
501 |
+
|
502 |
+
@staticmethod
|
503 |
+
def dumps(obj) -> bytes:
|
504 |
+
"""
|
505 |
+
Pickle an object using the FxGraphCachePickler.
|
506 |
+
"""
|
507 |
+
with io.BytesIO() as stream:
|
508 |
+
pickler = FxGraphCachePickler(stream)
|
509 |
+
pickler.dump(obj)
|
510 |
+
return stream.getvalue()
|
511 |
+
|
512 |
+
@staticmethod
|
513 |
+
def get_hash(obj: Any) -> str:
|
514 |
+
"""
|
515 |
+
Serialize an object using the FxGraphCachePickler and return a hash
|
516 |
+
of the pickled object.
|
517 |
+
"""
|
518 |
+
serialized_data = FxGraphCachePickler.dumps(obj)
|
519 |
+
return sha256_hash(serialized_data)
|
520 |
+
|
521 |
+
|
522 |
+
@functools.lru_cache(None)
|
523 |
+
def get_inductor_code_hash() -> bytes:
|
524 |
+
"""
|
525 |
+
Compute a hash of all inductor code modules. Used by the FxGraph cache
|
526 |
+
so any inductor code changes would result in new cache keys.
|
527 |
+
"""
|
528 |
+
inductor_root = os.path.dirname(__file__)
|
529 |
+
|
530 |
+
contents: Dict[str, bytes] = {}
|
531 |
+
for lib in pkgutil.iter_modules([inductor_root]):
|
532 |
+
spec = lib.module_finder.find_spec(lib.name, None)
|
533 |
+
assert spec is not None
|
534 |
+
module = spec.origin
|
535 |
+
assert module is not None
|
536 |
+
with open(module, "rb") as f:
|
537 |
+
contents[module] = f.read()
|
538 |
+
|
539 |
+
return hashlib.sha256(pickle.dumps(contents)).digest()
|
540 |
+
|
541 |
+
|
542 |
+
@dataclasses.dataclass
|
543 |
+
class OrderedSetHolder:
|
544 |
+
"""
|
545 |
+
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
546 |
+
of set kwargs.
|
547 |
+
"""
|
548 |
+
|
549 |
+
items: List[Any]
|
550 |
+
|
551 |
+
|
552 |
+
class FxGraphHashDetails:
|
553 |
+
"""
|
554 |
+
Object to capture all the details for a compiled FX graph relevant to computing
|
555 |
+
a safe and stable cache key.
|
556 |
+
"""
|
557 |
+
|
558 |
+
# Excluded kwargs param that are not stable between runs
|
559 |
+
EXCLUDED_KWARGS = ["graph_id"]
|
560 |
+
|
561 |
+
def __init__(
|
562 |
+
self,
|
563 |
+
gm: torch.fx.GraphModule,
|
564 |
+
example_inputs: List[torch.Tensor],
|
565 |
+
fx_kwargs: Dict[str, Any],
|
566 |
+
):
|
567 |
+
self.gm = gm
|
568 |
+
self.example_inputs = example_inputs
|
569 |
+
|
570 |
+
# Order kwargs so hashing is stable to changes in kwarg order.
|
571 |
+
self.fx_kwargs = {}
|
572 |
+
for k in sorted(fx_kwargs):
|
573 |
+
if k not in self.EXCLUDED_KWARGS:
|
574 |
+
if type(fx_kwargs[k]) is set:
|
575 |
+
# Special case to handle set params. Python sets can't be
|
576 |
+
# ordered, so sort the elements and store them in a proxy.
|
577 |
+
self.fx_kwargs[k] = OrderedSetHolder(sorted(fx_kwargs[k]))
|
578 |
+
else:
|
579 |
+
self.fx_kwargs[k] = fx_kwargs[k]
|
580 |
+
|
581 |
+
# Also hash on various system info (including the triton compiler version), as
|
582 |
+
# well as the inductor configuration and code.
|
583 |
+
self.torch_version = torch.__version__
|
584 |
+
self.system_info = CacheBase.get_system()
|
585 |
+
|
586 |
+
self.inductor_config = config.save_config()
|
587 |
+
self.inductor_code_hash = get_inductor_code_hash()
|
588 |
+
|
589 |
+
def debug_str(self) -> str:
|
590 |
+
"""
|
591 |
+
Get a printable string describing in more detail all the attributes
|
592 |
+
comprising this object. Useful for debugging when one graph hashes
|
593 |
+
to a different value than another.
|
594 |
+
"""
|
595 |
+
|
596 |
+
def get_str(obj) -> str:
|
597 |
+
if isinstance(obj, torch.Tensor):
|
598 |
+
return str(extract_tensor_metadata(obj))
|
599 |
+
elif isinstance(obj, bytes):
|
600 |
+
return "<bytes>"
|
601 |
+
else:
|
602 |
+
return str(obj)
|
603 |
+
|
604 |
+
lines = []
|
605 |
+
for attr, obj in vars(self).items():
|
606 |
+
if isinstance(obj, list):
|
607 |
+
for ii in range(len(obj)):
|
608 |
+
h = FxGraphCachePickler.get_hash(obj[ii])
|
609 |
+
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
610 |
+
elif isinstance(obj, dict):
|
611 |
+
for k, v in obj.items():
|
612 |
+
h = FxGraphCachePickler.get_hash(v)
|
613 |
+
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
614 |
+
else:
|
615 |
+
h = FxGraphCachePickler.get_hash(obj)
|
616 |
+
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
617 |
+
return "\n".join(lines)
|
618 |
+
|
619 |
+
|
620 |
+
def compiled_fx_graph_hash(
|
621 |
+
gm: torch.fx.GraphModule,
|
622 |
+
example_inputs: List[torch.Tensor],
|
623 |
+
fx_kwargs: Dict[str, Any],
|
624 |
+
) -> str:
|
625 |
+
"""
|
626 |
+
Generate a unique hash of the FX graph for caching.
|
627 |
+
"""
|
628 |
+
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs)
|
629 |
+
# The prefix distinguishes among the other kinds of objects we
|
630 |
+
# cache in this module.
|
631 |
+
key = "f" + FxGraphCachePickler.get_hash(details)
|
632 |
+
log.debug("FX graph cache hash details for key %s:\n%s", key, details.debug_str())
|
633 |
+
return key
|
634 |
+
|
635 |
+
|
636 |
+
class FxGraphCache:
|
637 |
+
"""
|
638 |
+
Supports caching and reusing compiled Fx graphs.
|
639 |
+
|
640 |
+
The overall strategy is as follows:
|
641 |
+
- This cache stores entries on disk. When saving an entry, we can't
|
642 |
+
serialize callables (that could be C++, Triton, etc.), so we serialize
|
643 |
+
their own disk cache location. We then recreate the compiled artifact
|
644 |
+
after fetching from disk.
|
645 |
+
- For indexing the cache, we gather the fields relevant to identifying an
|
646 |
+
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
647 |
+
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
648 |
+
See FxGraphCachePickler.
|
649 |
+
- Among the metadata we store, we also include a guards expression that's
|
650 |
+
appropriate for validating any symbols for Tensor arguments that have
|
651 |
+
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
652 |
+
current context to validate that a cached entry can be served.
|
653 |
+
- A given graph could have multiple compiled versions, corresponding to
|
654 |
+
different sets of guards. Therefore, we store cache entries in the form:
|
655 |
+
<temp dir>/<fx graph hash>/<serialized metatdata>
|
656 |
+
- On lookup, we compute the key from the graph details, iterate over all
|
657 |
+
leaf files in the corresponding subdirectory, deserialize the entry, and
|
658 |
+
evaluate its guards expression. If the evaluation succeeds, we have a
|
659 |
+
cache hit. If it fails, we compile the graph and store a new entry.
|
660 |
+
- Finally, on a cache hit, we need to make sure any guards that would
|
661 |
+
have been created during compilation are added to the current context.
|
662 |
+
"""
|
663 |
+
|
664 |
+
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
665 |
+
# in an in-memory cache after loading from disk.
|
666 |
+
@staticmethod
|
667 |
+
def _get_tmp_dir() -> str:
|
668 |
+
"""
|
669 |
+
Get the toplevel temporary directory for storing compiled graphs.
|
670 |
+
"""
|
671 |
+
return os.path.join(cache_dir(), "fxgraph")
|
672 |
+
|
673 |
+
@staticmethod
|
674 |
+
def _get_tmp_dir_for_key(key: str) -> str:
|
675 |
+
"""
|
676 |
+
Return the disk location for a given cache key.
|
677 |
+
"""
|
678 |
+
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
679 |
+
|
680 |
+
@staticmethod
|
681 |
+
def _filter_symints(inputs: List[Any]) -> List[torch.SymInt]:
|
682 |
+
"""
|
683 |
+
Get the SymInt objects from the input list.
|
684 |
+
"""
|
685 |
+
return [s for s in inputs if isinstance(s, torch.SymInt)]
|
686 |
+
|
687 |
+
@staticmethod
|
688 |
+
def _get_shape_env() -> ShapeEnv:
|
689 |
+
"""
|
690 |
+
Helper to get the shape env from the tracing context.
|
691 |
+
"""
|
692 |
+
return torch._guards.TracingContext.get().fake_mode.shape_env
|
693 |
+
|
694 |
+
@staticmethod
|
695 |
+
def _lookup_graph(
|
696 |
+
key: str,
|
697 |
+
example_inputs: List[torch.Tensor],
|
698 |
+
) -> Optional[CompiledFxGraph]:
|
699 |
+
"""
|
700 |
+
Lookup a compiled graph in the cache by key. On a hit, return the
|
701 |
+
deserialized CompiledFxGraph object. On a miss, return None.
|
702 |
+
"""
|
703 |
+
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
704 |
+
if not os.path.exists(subdir):
|
705 |
+
return None
|
706 |
+
|
707 |
+
# Iterate over any entries in the subdir for this key and evaluate
|
708 |
+
# their guards to determine whether there's a hit.
|
709 |
+
for path in sorted(os.listdir(subdir)):
|
710 |
+
with open(os.path.join(subdir, path), "rb") as f:
|
711 |
+
graph: CompiledFxGraph = pickle.load(f)
|
712 |
+
|
713 |
+
guards_expr = graph.guards_expr
|
714 |
+
if not guards_expr:
|
715 |
+
# No guards to evaluate
|
716 |
+
return graph
|
717 |
+
|
718 |
+
# Evaluate the guard expression in the current context.
|
719 |
+
shape_env = FxGraphCache._get_shape_env()
|
720 |
+
symints = FxGraphCache._filter_symints(example_inputs)
|
721 |
+
|
722 |
+
# If there's not a cache hit, we don't want the evaluation to
|
723 |
+
# affect the current env, e.g., cause the creation of new guards,
|
724 |
+
# so we evaluate with the hints instead of the symbols.
|
725 |
+
assert all(has_hint(s) for s in symints)
|
726 |
+
hints = [hint_int(s) for s in symints]
|
727 |
+
hit = bool(shape_env.evaluate_guards_expression(guards_expr, hints))
|
728 |
+
log.debug(
|
729 |
+
"fx graph cache key %s evaluating guards for %s with values %s => %s",
|
730 |
+
key,
|
731 |
+
guards_expr,
|
732 |
+
hints,
|
733 |
+
hit,
|
734 |
+
)
|
735 |
+
if hit:
|
736 |
+
# Now re-evaluate with the symints to add any guards to the current env.
|
737 |
+
check = bool(shape_env.evaluate_guards_expression(guards_expr, symints))
|
738 |
+
assert check is True
|
739 |
+
log.debug(
|
740 |
+
"fx graph cache key %s post-load guards: %s",
|
741 |
+
key,
|
742 |
+
shape_env.guards,
|
743 |
+
)
|
744 |
+
return graph
|
745 |
+
|
746 |
+
return None
|
747 |
+
|
748 |
+
@staticmethod
|
749 |
+
def _save_graph(
|
750 |
+
key: str, compiled_graph: CompiledFxGraph, example_inputs: List[torch.Tensor]
|
751 |
+
):
|
752 |
+
"""
|
753 |
+
Store a serialized CompiledFxGraph on disk.
|
754 |
+
"""
|
755 |
+
disk_compiled_graph = copy(compiled_graph)
|
756 |
+
# Important as compiled models are not pickleable:
|
757 |
+
disk_compiled_graph.compiled_artifact = None
|
758 |
+
|
759 |
+
# Before serializing, compute the guard expression that will be used to
|
760 |
+
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
761 |
+
# sufficient to consider only the SymInt args to the fx graph since the
|
762 |
+
# Tensor shapes are already captured in the hash for the cache key. Any
|
763 |
+
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
764 |
+
shape_env = FxGraphCache._get_shape_env()
|
765 |
+
symints = FxGraphCache._filter_symints(example_inputs)
|
766 |
+
disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(symints)
|
767 |
+
|
768 |
+
content = pickle.dumps(disk_compiled_graph)
|
769 |
+
|
770 |
+
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
771 |
+
if not os.path.exists(subdir):
|
772 |
+
os.makedirs(subdir, exist_ok=True)
|
773 |
+
|
774 |
+
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
775 |
+
# name. The specific name doesn't matter since a lookup involves
|
776 |
+
# iterating over all entries in the parent subdir.
|
777 |
+
path = os.path.join(subdir, sha256_hash(content))
|
778 |
+
write_atomic(path, content)
|
779 |
+
|
780 |
+
@staticmethod
|
781 |
+
def load(
|
782 |
+
compile_fx_fn: Callable[..., Any],
|
783 |
+
gm: torch.fx.GraphModule,
|
784 |
+
example_inputs: List[torch.Tensor],
|
785 |
+
fx_kwargs: Dict[str, Any],
|
786 |
+
):
|
787 |
+
"""
|
788 |
+
Load a compiled graph from the cache. If a cached entry does not exist,
|
789 |
+
compile the graph and save it to the cache.
|
790 |
+
"""
|
791 |
+
from filelock import FileLock
|
792 |
+
|
793 |
+
key = compiled_fx_graph_hash(gm, example_inputs, fx_kwargs)
|
794 |
+
|
795 |
+
lock_dir = get_lock_dir()
|
796 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
797 |
+
with lock:
|
798 |
+
compiled_graph = FxGraphCache._lookup_graph(key, example_inputs)
|
799 |
+
if compiled_graph is None:
|
800 |
+
log.debug("fx graph cache miss for key %s", key)
|
801 |
+
counters["inductor"]["fxgraph_cache_miss"] += 1
|
802 |
+
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
803 |
+
FxGraphCache._save_graph(key, compiled_graph, example_inputs)
|
804 |
+
else:
|
805 |
+
log.debug("fx graph cache hit for key %s", key)
|
806 |
+
counters["inductor"]["fxgraph_cache_hit"] += 1
|
807 |
+
|
808 |
+
return compiled_graph
|
809 |
+
|
810 |
+
@staticmethod
|
811 |
+
def clear():
|
812 |
+
"""
|
813 |
+
Clear out the on-disk cache.
|
814 |
+
"""
|
815 |
+
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
816 |
+
|
817 |
+
|
818 |
+
@dataclasses.dataclass
|
819 |
+
class CompiledFxGraph:
|
820 |
+
"""
|
821 |
+
Class holding a compiled FX graph. This is the object serialized on disk
|
822 |
+
to support FxGraph caching.
|
823 |
+
"""
|
824 |
+
|
825 |
+
compiled_artifact: Optional[Callable[..., Any]] = None
|
826 |
+
current_callable: Optional[Callable[..., Any]] = None
|
827 |
+
cache_key: Optional[str] = None
|
828 |
+
artifact_path: Optional[str] = None
|
829 |
+
cache_linemap: Optional[List[Tuple[int, str]]] = None
|
830 |
+
device_types: Set[str] = field(default_factory=set)
|
831 |
+
device_idxs: Set[int] = field(default_factory=set)
|
832 |
+
mutated_inputs: Set[str] = field(default_factory=set)
|
833 |
+
mutated_input_idxs: Set[int] = field(default_factory=set)
|
834 |
+
constants: Dict[str, torch.Tensor] = field(default_factory=dict)
|
835 |
+
output_strides: Optional[List[Optional[Tuple[int, ...]]]] = None
|
836 |
+
# This is a string representation of an expression we serialize
|
837 |
+
# with the object so the guards can be evaluated in a different
|
838 |
+
# context in order to verify the validity of serving a cached
|
839 |
+
# fx graph. The expression must be generated by:
|
840 |
+
# ShapeEnv.produce_guards_expression()
|
841 |
+
guards_expr: Optional[str] = None
|
842 |
+
|
843 |
+
_boxed_call: Optional[bool] = None
|
844 |
+
|
845 |
+
def __init__(
|
846 |
+
self,
|
847 |
+
compiled_artifact: Optional[Callable[..., Any]],
|
848 |
+
graph: GraphLowering,
|
849 |
+
output_strides: List[Optional[Tuple[int, ...]]],
|
850 |
+
):
|
851 |
+
self.compiled_artifact = compiled_artifact
|
852 |
+
self.cache_key = graph.cache_key
|
853 |
+
self.artifact_path = graph.cache_path
|
854 |
+
self.cache_linemap = graph.cache_linemap
|
855 |
+
self.device_types = graph.device_types
|
856 |
+
self.device_idxs = graph.device_idxs
|
857 |
+
self.mutated_inputs = graph.mutated_inputs
|
858 |
+
self.mutated_input_idxs = set(graph.mutated_input_idxs)
|
859 |
+
self.constants = graph.constants
|
860 |
+
self.output_strides = output_strides
|
861 |
+
self.guards_expr = None
|
862 |
+
|
863 |
+
def __call__(self, inputs: List[Any]) -> Any:
|
864 |
+
return self.get_current_callable()(inputs)
|
865 |
+
|
866 |
+
def get_current_callable(self) -> Callable[..., Any]:
|
867 |
+
if self.current_callable is None:
|
868 |
+
# This prevents a circular reference that makes CompiledFxGraph
|
869 |
+
# get stuck without getting garbage collected
|
870 |
+
return functools.partial(_run_from_cache, weakref.proxy(self))
|
871 |
+
else:
|
872 |
+
return self.current_callable
|
873 |
+
|
874 |
+
|
875 |
+
def _run_from_cache(compiled_graph: CompiledFxGraph, inputs: List[Any]) -> Any:
|
876 |
+
# We can't really serialize callables that may be C++/Triton/etc.,
|
877 |
+
# so we serialize their disk cache location instead
|
878 |
+
# TODO: When making an API that can save compiled models e2e to disk
|
879 |
+
# this will need to be better
|
880 |
+
if compiled_graph.compiled_artifact is None:
|
881 |
+
from .codecache import PyCodeCache
|
882 |
+
|
883 |
+
assert compiled_graph.cache_key
|
884 |
+
assert compiled_graph.artifact_path
|
885 |
+
compiled_graph.compiled_artifact = PyCodeCache.load_by_key_path(
|
886 |
+
compiled_graph.cache_key,
|
887 |
+
compiled_graph.artifact_path,
|
888 |
+
compiled_graph.cache_linemap,
|
889 |
+
compiled_graph.constants,
|
890 |
+
).call
|
891 |
+
|
892 |
+
return compiled_graph.compiled_artifact(inputs)
|
893 |
+
|
894 |
+
|
895 |
+
def cpp_compiler() -> str:
|
896 |
+
if config.is_fbcode():
|
897 |
+
return build_paths.cc()
|
898 |
+
if isinstance(config.cpp.cxx, (list, tuple)):
|
899 |
+
search = tuple(config.cpp.cxx)
|
900 |
+
else:
|
901 |
+
search = (config.cpp.cxx,)
|
902 |
+
return cpp_compiler_search(search)
|
903 |
+
|
904 |
+
|
905 |
+
@functools.lru_cache(1)
|
906 |
+
def cpp_compiler_search(search: str) -> str:
|
907 |
+
for cxx in search:
|
908 |
+
try:
|
909 |
+
if cxx is None:
|
910 |
+
# gxx package is only available for Linux
|
911 |
+
# according to https://anaconda.org/conda-forge/gxx/
|
912 |
+
if sys.platform != "linux":
|
913 |
+
continue
|
914 |
+
# Do not install GXX by default
|
915 |
+
if not os.getenv("TORCH_INDUCTOR_INSTALL_GXX"):
|
916 |
+
continue
|
917 |
+
from filelock import FileLock
|
918 |
+
|
919 |
+
lock_dir = get_lock_dir()
|
920 |
+
lock = FileLock(
|
921 |
+
os.path.join(lock_dir, "g++.lock"), timeout=LOCK_TIMEOUT
|
922 |
+
)
|
923 |
+
with lock:
|
924 |
+
cxx = install_gcc_via_conda()
|
925 |
+
subprocess.check_output([cxx, "--version"])
|
926 |
+
return cxx
|
927 |
+
except (subprocess.SubprocessError, FileNotFoundError, ImportError):
|
928 |
+
continue
|
929 |
+
raise exc.InvalidCxxCompiler()
|
930 |
+
|
931 |
+
|
932 |
+
def install_gcc_via_conda() -> str:
|
933 |
+
"""On older systems, this is a quick way to get a modern compiler"""
|
934 |
+
prefix = os.path.join(cache_dir(), "gcc")
|
935 |
+
cxx_path = os.path.join(prefix, "bin", "g++")
|
936 |
+
if not os.path.exists(cxx_path):
|
937 |
+
log.info("Downloading GCC via conda")
|
938 |
+
conda = os.environ.get("CONDA_EXE", "conda")
|
939 |
+
if conda is None:
|
940 |
+
conda = shutil.which("conda")
|
941 |
+
if conda is not None:
|
942 |
+
subprocess.check_call(
|
943 |
+
[
|
944 |
+
conda,
|
945 |
+
"create",
|
946 |
+
f"--prefix={prefix}",
|
947 |
+
"--channel=conda-forge",
|
948 |
+
"--quiet",
|
949 |
+
"-y",
|
950 |
+
"python=3.8",
|
951 |
+
"gxx",
|
952 |
+
],
|
953 |
+
stdout=subprocess.PIPE,
|
954 |
+
)
|
955 |
+
return cxx_path
|
956 |
+
|
957 |
+
|
958 |
+
def is_gcc() -> bool:
|
959 |
+
return bool(re.search(r"(gcc|g\+\+)", cpp_compiler()))
|
960 |
+
|
961 |
+
|
962 |
+
def is_clang() -> bool:
|
963 |
+
return bool(re.search(r"(clang|clang\+\+)", cpp_compiler()))
|
964 |
+
|
965 |
+
|
966 |
+
@functools.lru_cache(None)
|
967 |
+
def is_apple_clang() -> bool:
|
968 |
+
cxx = cpp_compiler()
|
969 |
+
version_string = subprocess.check_output([cxx, "--version"]).decode("utf8")
|
970 |
+
return "Apple" in version_string.splitlines()[0]
|
971 |
+
|
972 |
+
|
973 |
+
class VecISA:
|
974 |
+
_bit_width: int
|
975 |
+
_macro: str
|
976 |
+
_arch_flags: str
|
977 |
+
_dtype_nelements: Dict[torch.dtype, int]
|
978 |
+
|
979 |
+
# Note [Checking for Vectorized Support in Inductor]
|
980 |
+
# TorchInductor CPU vectorization reuses PyTorch vectorization utility functions
|
981 |
+
# Hence, TorchInductor would depend on Sleef* to accelerate mathematical functions
|
982 |
+
# like exp, pow, sin, cos and etc.
|
983 |
+
# But PyTorch and TorchInductor might use different compilers to build code. If
|
984 |
+
# PyTorch uses gcc-7/g++-7 to build the release package, the libtorch_cpu.so
|
985 |
+
# will not expose the Sleef* AVX512 symbols since gcc-7/g++-7 cannot pass
|
986 |
+
# avx512 check in CMake - FindAVX.cmake. But TorchInductor install the latest
|
987 |
+
# gcc/g++ compiler by default while it could support the AVX512 compilation.
|
988 |
+
# Therefore, there would be a conflict sleef version between PyTorch and
|
989 |
+
# TorchInductor. Hence, we dry-compile the following code to check whether current
|
990 |
+
# HW platform and PyTorch both could support AVX512 or AVX2. And suppose ARM
|
991 |
+
# also needs the logic
|
992 |
+
# In fbcode however, we are using the same compiler for pytorch and for inductor codegen,
|
993 |
+
# making the runtime check unnecessary.
|
994 |
+
_avx_code = """
|
995 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
996 |
+
#include <ATen/cpu/vec/functional.h>
|
997 |
+
#include <ATen/cpu/vec/vec.h>
|
998 |
+
#endif
|
999 |
+
|
1000 |
+
__attribute__((aligned(64))) float in_out_ptr0[16] = {0.0};
|
1001 |
+
|
1002 |
+
extern "C" void __avx_chk_kernel() {
|
1003 |
+
auto tmp0 = at::vec::Vectorized<float>(1);
|
1004 |
+
auto tmp1 = tmp0.exp();
|
1005 |
+
tmp1.store(in_out_ptr0);
|
1006 |
+
}
|
1007 |
+
"""
|
1008 |
+
|
1009 |
+
_avx_py_load = """
|
1010 |
+
import torch
|
1011 |
+
from ctypes import cdll
|
1012 |
+
cdll.LoadLibrary("__lib_path__")
|
1013 |
+
"""
|
1014 |
+
|
1015 |
+
def bit_width(self) -> int:
|
1016 |
+
return self._bit_width
|
1017 |
+
|
1018 |
+
def nelements(self, dtype: torch.dtype = torch.float) -> int:
|
1019 |
+
return self._dtype_nelements[dtype]
|
1020 |
+
|
1021 |
+
def build_macro(self) -> str:
|
1022 |
+
return self._macro
|
1023 |
+
|
1024 |
+
def build_arch_flags(self) -> str:
|
1025 |
+
return self._arch_flags
|
1026 |
+
|
1027 |
+
def __hash__(self) -> int:
|
1028 |
+
return hash(str(self))
|
1029 |
+
|
1030 |
+
@functools.lru_cache(None)
|
1031 |
+
def __bool__(self) -> bool:
|
1032 |
+
if config.cpp.vec_isa_ok is not None:
|
1033 |
+
return config.cpp.vec_isa_ok
|
1034 |
+
|
1035 |
+
if config.is_fbcode():
|
1036 |
+
return True
|
1037 |
+
|
1038 |
+
key, input_path = write(VecISA._avx_code, "cpp")
|
1039 |
+
from filelock import FileLock
|
1040 |
+
|
1041 |
+
lock_dir = get_lock_dir()
|
1042 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
1043 |
+
with lock:
|
1044 |
+
output_path = input_path[:-3] + "so"
|
1045 |
+
build_cmd = shlex.split(
|
1046 |
+
cpp_compile_command(
|
1047 |
+
input_path, output_path, warning_all=False, vec_isa=self
|
1048 |
+
)
|
1049 |
+
)
|
1050 |
+
try:
|
1051 |
+
# Check build result
|
1052 |
+
compile_file(input_path, output_path, build_cmd)
|
1053 |
+
subprocess.check_call(
|
1054 |
+
[
|
1055 |
+
sys.executable,
|
1056 |
+
"-c",
|
1057 |
+
VecISA._avx_py_load.replace("__lib_path__", output_path),
|
1058 |
+
],
|
1059 |
+
stderr=subprocess.DEVNULL,
|
1060 |
+
env={**os.environ, "PYTHONPATH": ":".join(sys.path)},
|
1061 |
+
)
|
1062 |
+
except Exception as e:
|
1063 |
+
return False
|
1064 |
+
|
1065 |
+
return True
|
1066 |
+
|
1067 |
+
|
1068 |
+
@dataclasses.dataclass
|
1069 |
+
class VecAVX512(VecISA):
|
1070 |
+
_bit_width = 512
|
1071 |
+
_macro = "-DCPU_CAPABILITY_AVX512"
|
1072 |
+
_arch_flags = "-mavx512f -mavx512dq -mavx512vl -mavx512bw -mfma"
|
1073 |
+
_dtype_nelements = {torch.float: 16, torch.bfloat16: 32, torch.float16: 32}
|
1074 |
+
|
1075 |
+
def __str__(self) -> str:
|
1076 |
+
return "avx512"
|
1077 |
+
|
1078 |
+
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
1079 |
+
|
1080 |
+
|
1081 |
+
@dataclasses.dataclass
|
1082 |
+
class VecAVX2(VecISA):
|
1083 |
+
_bit_width = 256
|
1084 |
+
_macro = "-DCPU_CAPABILITY_AVX2"
|
1085 |
+
_arch_flags = "-mavx2 -mfma"
|
1086 |
+
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
1087 |
+
|
1088 |
+
def __str__(self) -> str:
|
1089 |
+
return "avx2"
|
1090 |
+
|
1091 |
+
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
1092 |
+
|
1093 |
+
|
1094 |
+
@dataclasses.dataclass
|
1095 |
+
class VecZVECTOR(VecISA):
|
1096 |
+
_bit_width = 256
|
1097 |
+
_macro = "-DCPU_CAPABILITY_ZVECTOR -DCPU_CAPABILITY=ZVECTOR -DHAVE_ZVECTOR_CPU_DEFINITION"
|
1098 |
+
_arch_flags = "-mvx -mzvector"
|
1099 |
+
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
1100 |
+
|
1101 |
+
def __str__(self) -> str:
|
1102 |
+
return "zvector"
|
1103 |
+
|
1104 |
+
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
1105 |
+
|
1106 |
+
|
1107 |
+
class InvalidVecISA(VecISA):
|
1108 |
+
_bit_width = 0
|
1109 |
+
_macro = ""
|
1110 |
+
_arch_flags = ""
|
1111 |
+
_dtype_nelements = {}
|
1112 |
+
|
1113 |
+
def __str__(self) -> str:
|
1114 |
+
return "INVALID_VEC_ISA"
|
1115 |
+
|
1116 |
+
def __bool__(self) -> bool: # type: ignore[override]
|
1117 |
+
return False
|
1118 |
+
|
1119 |
+
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
1120 |
+
|
1121 |
+
|
1122 |
+
invalid_vec_isa = InvalidVecISA()
|
1123 |
+
supported_vec_isa_list = [VecAVX512(), VecAVX2()]
|
1124 |
+
|
1125 |
+
|
1126 |
+
# Cache the cpuinfo to avoid I/O overhead. Meanwhile, the cpuinfo content
|
1127 |
+
# might have too much redundant content that is useless for ISA check. Hence,
|
1128 |
+
# we only cache some key isa information.
|
1129 |
+
@functools.lru_cache(None)
|
1130 |
+
def valid_vec_isa_list() -> List[VecISA]:
|
1131 |
+
if sys.platform != "linux":
|
1132 |
+
return []
|
1133 |
+
|
1134 |
+
if platform.machine() == "s390x":
|
1135 |
+
return [VecZVECTOR()]
|
1136 |
+
|
1137 |
+
isa_list = []
|
1138 |
+
with open("/proc/cpuinfo") as _cpu_info:
|
1139 |
+
_cpu_info_content = _cpu_info.read()
|
1140 |
+
for isa in supported_vec_isa_list:
|
1141 |
+
if str(isa) in _cpu_info_content and isa:
|
1142 |
+
isa_list.append(isa)
|
1143 |
+
return isa_list
|
1144 |
+
|
1145 |
+
|
1146 |
+
def pick_vec_isa() -> VecISA:
|
1147 |
+
if config.is_fbcode():
|
1148 |
+
return VecAVX2()
|
1149 |
+
|
1150 |
+
_valid_vec_isa_list: List[VecISA] = valid_vec_isa_list()
|
1151 |
+
if not _valid_vec_isa_list:
|
1152 |
+
return invalid_vec_isa
|
1153 |
+
|
1154 |
+
# If the simdlen is None, it indicates determin the vectorization length automatically
|
1155 |
+
if config.cpp.simdlen is None:
|
1156 |
+
assert _valid_vec_isa_list
|
1157 |
+
return _valid_vec_isa_list[0]
|
1158 |
+
|
1159 |
+
for isa in _valid_vec_isa_list:
|
1160 |
+
if config.cpp.simdlen == isa.bit_width():
|
1161 |
+
return isa
|
1162 |
+
|
1163 |
+
return invalid_vec_isa
|
1164 |
+
|
1165 |
+
|
1166 |
+
def get_compile_only(compile_only: bool = True) -> str:
|
1167 |
+
return "-c" if compile_only else ""
|
1168 |
+
|
1169 |
+
|
1170 |
+
def get_shared(shared: bool = True) -> str:
|
1171 |
+
return "-shared -fPIC" if shared else ""
|
1172 |
+
|
1173 |
+
|
1174 |
+
def get_warning_all_flag(warning_all: bool = True) -> str:
|
1175 |
+
return "-Wall" if warning_all else ""
|
1176 |
+
|
1177 |
+
|
1178 |
+
def get_glibcxx_abi_build_flags() -> str:
|
1179 |
+
return "-D_GLIBCXX_USE_CXX11_ABI=" + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))
|
1180 |
+
|
1181 |
+
|
1182 |
+
def cpp_flags() -> str:
|
1183 |
+
flags = ["-std=c++17", "-Wno-unused-variable", "-Wno-unknown-pragmas"]
|
1184 |
+
if is_clang():
|
1185 |
+
flags.append("-Werror=ignored-optimization-argument")
|
1186 |
+
return " ".join(flags)
|
1187 |
+
|
1188 |
+
|
1189 |
+
def cpp_wrapper_flags() -> str:
|
1190 |
+
return "-DTORCH_INDUCTOR_CPP_WRAPPER"
|
1191 |
+
|
1192 |
+
|
1193 |
+
def optimization_flags() -> str:
|
1194 |
+
base_flags = "-O0 -g" if config.aot_inductor.debug_compile else "-O3 -DNDEBUG"
|
1195 |
+
base_flags += " -ffast-math -fno-finite-math-only"
|
1196 |
+
if not config.cpp.enable_unsafe_math_opt_flag:
|
1197 |
+
base_flags += " -fno-unsafe-math-optimizations"
|
1198 |
+
|
1199 |
+
if config.is_fbcode():
|
1200 |
+
# FIXME: passing `-fopenmp` adds libgomp.so to the generated shared library's dependencies.
|
1201 |
+
# This causes `ldopen` to fail in fbcode, because libgomp does not exist in the default paths.
|
1202 |
+
# We will fix it later by exposing the lib path.
|
1203 |
+
return base_flags
|
1204 |
+
|
1205 |
+
if sys.platform == "darwin":
|
1206 |
+
# Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang`
|
1207 |
+
# Also, `-march=native` is unrecognized option on M1
|
1208 |
+
base_flags += " -Xclang"
|
1209 |
+
else:
|
1210 |
+
if platform.machine() == "ppc64le":
|
1211 |
+
base_flags += " -mcpu=native"
|
1212 |
+
else:
|
1213 |
+
base_flags += " -march=native"
|
1214 |
+
|
1215 |
+
# Internal cannot find libgomp.so
|
1216 |
+
if not config.is_fbcode():
|
1217 |
+
base_flags += " -fopenmp"
|
1218 |
+
return base_flags
|
1219 |
+
|
1220 |
+
|
1221 |
+
def use_custom_generated_macros() -> str:
|
1222 |
+
return "-D C10_USING_CUSTOM_GENERATED_MACROS"
|
1223 |
+
|
1224 |
+
|
1225 |
+
def use_fb_internal_macros() -> str:
|
1226 |
+
if config.is_fbcode():
|
1227 |
+
openmp_lib = build_paths.openmp_lib()
|
1228 |
+
preprocessor_flags = " ".join(
|
1229 |
+
(
|
1230 |
+
"-D C10_USE_GLOG",
|
1231 |
+
"-D C10_USE_MINIMAL_GLOG",
|
1232 |
+
"-D C10_DISABLE_TENSORIMPL_EXTENSIBILITY",
|
1233 |
+
)
|
1234 |
+
)
|
1235 |
+
return f"-Wp,-fopenmp {openmp_lib} {preprocessor_flags}"
|
1236 |
+
else:
|
1237 |
+
return ""
|
1238 |
+
|
1239 |
+
|
1240 |
+
def use_standard_sys_dir_headers() -> str:
|
1241 |
+
if config.is_fbcode():
|
1242 |
+
return "-nostdinc"
|
1243 |
+
else:
|
1244 |
+
return ""
|
1245 |
+
|
1246 |
+
|
1247 |
+
@functools.lru_cache(None)
|
1248 |
+
def is_conda_llvm_openmp_installed() -> bool:
|
1249 |
+
try:
|
1250 |
+
command = "conda list llvm-openmp --json"
|
1251 |
+
output = subprocess.check_output(command.split()).decode("utf8")
|
1252 |
+
return len(json.loads(output)) > 0
|
1253 |
+
except subprocess.SubprocessError:
|
1254 |
+
return False
|
1255 |
+
|
1256 |
+
|
1257 |
+
@functools.lru_cache(None)
|
1258 |
+
def homebrew_libomp() -> Tuple[bool, str]:
|
1259 |
+
try:
|
1260 |
+
# check if `brew` is installed
|
1261 |
+
subprocess.check_output(["which", "brew"])
|
1262 |
+
# get the location of `libomp` if it is installed
|
1263 |
+
# this is the location that `libomp` **would** be installed
|
1264 |
+
# see https://github.com/Homebrew/brew/issues/10261#issuecomment-756563567 for details
|
1265 |
+
libomp_path = (
|
1266 |
+
subprocess.check_output(["brew", "--prefix", "libomp"])
|
1267 |
+
.decode("utf8")
|
1268 |
+
.strip()
|
1269 |
+
)
|
1270 |
+
# check if `libomp` is installed
|
1271 |
+
omp_available = os.path.exists(libomp_path)
|
1272 |
+
return omp_available, libomp_path
|
1273 |
+
except subprocess.SubprocessError:
|
1274 |
+
return False, ""
|
1275 |
+
|
1276 |
+
|
1277 |
+
def get_include_and_linking_paths(
|
1278 |
+
include_pytorch: bool = False,
|
1279 |
+
vec_isa: VecISA = invalid_vec_isa,
|
1280 |
+
cuda: bool = False,
|
1281 |
+
aot_mode: bool = False,
|
1282 |
+
) -> Tuple[List[str], str, str, str, str]:
|
1283 |
+
if (
|
1284 |
+
config.is_fbcode()
|
1285 |
+
and "CUDA_HOME" not in os.environ
|
1286 |
+
and "CUDA_PATH" not in os.environ
|
1287 |
+
):
|
1288 |
+
os.environ["CUDA_HOME"] = os.path.dirname(build_paths.cuda())
|
1289 |
+
from torch.utils import cpp_extension
|
1290 |
+
|
1291 |
+
macros = ""
|
1292 |
+
build_arch_flags = ""
|
1293 |
+
if sys.platform == "linux" and (
|
1294 |
+
include_pytorch
|
1295 |
+
or vec_isa != invalid_vec_isa
|
1296 |
+
or cuda
|
1297 |
+
or config.cpp.enable_kernel_profile
|
1298 |
+
):
|
1299 |
+
# Note - We include pytorch only on linux right now. There is more work
|
1300 |
+
# to do to enable OMP build on darwin where PyTorch is built with IOMP
|
1301 |
+
# and we need a way to link to what PyTorch links.
|
1302 |
+
ipaths = cpp_extension.include_paths(cuda) + [sysconfig.get_path("include")]
|
1303 |
+
lpaths = cpp_extension.library_paths(cuda) + [
|
1304 |
+
sysconfig.get_config_var("LIBDIR")
|
1305 |
+
]
|
1306 |
+
|
1307 |
+
libs = []
|
1308 |
+
|
1309 |
+
# No need to manually specify libraries in fbcode.
|
1310 |
+
if not config.is_fbcode():
|
1311 |
+
libs += ["torch", "torch_cpu"]
|
1312 |
+
libs += ["gomp"]
|
1313 |
+
if not aot_mode:
|
1314 |
+
libs += ["torch_python"]
|
1315 |
+
else:
|
1316 |
+
# internal remote execution is able to find omp, but not gomp
|
1317 |
+
libs += ["omp"]
|
1318 |
+
if aot_mode:
|
1319 |
+
ipaths += [os.path.dirname(cpp_prefix_path())]
|
1320 |
+
if cuda:
|
1321 |
+
# This is a special treatment for Meta internal cuda-12 where all libs
|
1322 |
+
# are in lib/cuda-12 and lib/cuda-12/stubs
|
1323 |
+
for i, path in enumerate(lpaths):
|
1324 |
+
if path.startswith(
|
1325 |
+
os.environ["CUDA_HOME"]
|
1326 |
+
) and not os.path.exists(f"{path}/libcudart_static.a"):
|
1327 |
+
for root, dirs, files in os.walk(path):
|
1328 |
+
if "libcudart_static.a" in files:
|
1329 |
+
lpaths[i] = os.path.join(path, root)
|
1330 |
+
lpaths.append(os.path.join(lpaths[i], "stubs"))
|
1331 |
+
break
|
1332 |
+
macros = vec_isa.build_macro()
|
1333 |
+
if macros:
|
1334 |
+
if config.is_fbcode() and vec_isa != invalid_vec_isa:
|
1335 |
+
cap = str(vec_isa).upper()
|
1336 |
+
macros = " ".join(
|
1337 |
+
[
|
1338 |
+
vec_isa.build_arch_flags(),
|
1339 |
+
f"-D CPU_CAPABILITY={cap}",
|
1340 |
+
f"-D CPU_CAPABILITY_{cap}",
|
1341 |
+
f"-D HAVE_{cap}_CPU_DEFINITION",
|
1342 |
+
]
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
if aot_mode and cuda:
|
1346 |
+
if macros is None:
|
1347 |
+
macros = ""
|
1348 |
+
macros += " -D USE_CUDA"
|
1349 |
+
|
1350 |
+
if cuda:
|
1351 |
+
if torch.version.hip is not None:
|
1352 |
+
libs += ["c10_hip", "torch_hip"]
|
1353 |
+
else:
|
1354 |
+
if config.is_fbcode():
|
1355 |
+
libs += ["cuda"]
|
1356 |
+
else:
|
1357 |
+
libs += ["c10_cuda", "cuda", "torch_cuda"]
|
1358 |
+
build_arch_flags = vec_isa.build_arch_flags()
|
1359 |
+
else:
|
1360 |
+
# Note - this is effectively a header only inclusion. Usage of some header files may result in
|
1361 |
+
# symbol not found, if those header files require a library.
|
1362 |
+
# For those cases, include the lpath and libs command as we do for pytorch above.
|
1363 |
+
# This approach allows us to only pay for what we use.
|
1364 |
+
ipaths = cpp_extension.include_paths(cuda) + [sysconfig.get_path("include")]
|
1365 |
+
if aot_mode:
|
1366 |
+
ipaths += [os.path.dirname(cpp_prefix_path())]
|
1367 |
+
lpaths = []
|
1368 |
+
if sys.platform == "darwin":
|
1369 |
+
# only Apple builtin compilers (Apple Clang++) require openmp
|
1370 |
+
omp_available = not is_apple_clang()
|
1371 |
+
|
1372 |
+
# check the `OMP_PREFIX` environment first
|
1373 |
+
if os.getenv("OMP_PREFIX") is not None:
|
1374 |
+
header_path = os.path.join(os.getenv("OMP_PREFIX"), "include", "omp.h")
|
1375 |
+
valid_env = os.path.exists(header_path)
|
1376 |
+
if valid_env:
|
1377 |
+
ipaths.append(os.path.join(os.getenv("OMP_PREFIX"), "include"))
|
1378 |
+
lpaths.append(os.path.join(os.getenv("OMP_PREFIX"), "lib"))
|
1379 |
+
else:
|
1380 |
+
warnings.warn("environment variable `OMP_PREFIX` is invalid.")
|
1381 |
+
omp_available = omp_available or valid_env
|
1382 |
+
|
1383 |
+
libs = [] if omp_available else ["omp"]
|
1384 |
+
|
1385 |
+
# prefer to use openmp from `conda install llvm-openmp`
|
1386 |
+
if not omp_available and os.getenv("CONDA_PREFIX") is not None:
|
1387 |
+
omp_available = is_conda_llvm_openmp_installed()
|
1388 |
+
if omp_available:
|
1389 |
+
conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib")
|
1390 |
+
ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include"))
|
1391 |
+
lpaths.append(conda_lib_path)
|
1392 |
+
# Prefer Intel OpenMP on x86 machine
|
1393 |
+
if os.uname().machine == "x86_64" and os.path.exists(
|
1394 |
+
os.path.join(conda_lib_path, "libiomp5.dylib")
|
1395 |
+
):
|
1396 |
+
libs = ["iomp5"]
|
1397 |
+
|
1398 |
+
# next, try to use openmp from `brew install libomp`
|
1399 |
+
if not omp_available:
|
1400 |
+
omp_available, libomp_path = homebrew_libomp()
|
1401 |
+
if omp_available:
|
1402 |
+
ipaths.append(os.path.join(libomp_path, "include"))
|
1403 |
+
lpaths.append(os.path.join(libomp_path, "lib"))
|
1404 |
+
|
1405 |
+
# if openmp is still not available, we let the compiler to have a try,
|
1406 |
+
# and raise error together with instructions at compilation error later
|
1407 |
+
else:
|
1408 |
+
libs = ["omp"] if config.is_fbcode() else ["gomp"]
|
1409 |
+
|
1410 |
+
# Unconditionally import c10 for non-abi-compatible mode to use TORCH_CHECK - See PyTorch #108690
|
1411 |
+
if not config.aot_inductor.abi_compatible:
|
1412 |
+
libs += ["c10"]
|
1413 |
+
lpaths += [cpp_extension.TORCH_LIB_PATH]
|
1414 |
+
|
1415 |
+
# third party libs
|
1416 |
+
if config.is_fbcode():
|
1417 |
+
ipaths.append(build_paths.sleef())
|
1418 |
+
ipaths.append(build_paths.openmp())
|
1419 |
+
ipaths.append(build_paths.cc_include())
|
1420 |
+
ipaths.append(build_paths.libgcc())
|
1421 |
+
ipaths.append(build_paths.libgcc_arch())
|
1422 |
+
ipaths.append(build_paths.libgcc_backward())
|
1423 |
+
ipaths.append(build_paths.glibc())
|
1424 |
+
ipaths.append(build_paths.linux_kernel())
|
1425 |
+
ipaths.append(build_paths.cuda())
|
1426 |
+
# We also need to bundle includes with absolute paths into a remote directory
|
1427 |
+
# (later on, we copy the include paths from cpp_extensions into our remote dir)
|
1428 |
+
ipaths.append("include")
|
1429 |
+
|
1430 |
+
static_link_libs = []
|
1431 |
+
if aot_mode and cuda and config.is_fbcode():
|
1432 |
+
# For Meta internal cuda-12, it is recommended to static link cudart
|
1433 |
+
static_link_libs = ["-Wl,-Bstatic", "-lcudart_static", "-Wl,-Bdynamic"]
|
1434 |
+
|
1435 |
+
lpaths_str = " ".join(["-L" + p for p in lpaths])
|
1436 |
+
libs_str = " ".join(static_link_libs + ["-l" + p for p in libs])
|
1437 |
+
return ipaths, lpaths_str, libs_str, macros, build_arch_flags
|
1438 |
+
|
1439 |
+
|
1440 |
+
def cpp_compile_command(
|
1441 |
+
input: Union[str, List[str]],
|
1442 |
+
output: str,
|
1443 |
+
warning_all: bool = True,
|
1444 |
+
shared: bool = True,
|
1445 |
+
include_pytorch: bool = False,
|
1446 |
+
vec_isa: VecISA = invalid_vec_isa,
|
1447 |
+
cuda: bool = False,
|
1448 |
+
aot_mode: bool = False,
|
1449 |
+
compile_only: bool = False,
|
1450 |
+
use_absolute_path: bool = False,
|
1451 |
+
) -> str:
|
1452 |
+
ipaths, lpaths, libs, macros, build_arch_flags = get_include_and_linking_paths(
|
1453 |
+
include_pytorch, vec_isa, cuda, aot_mode
|
1454 |
+
)
|
1455 |
+
if isinstance(input, str):
|
1456 |
+
input = [input]
|
1457 |
+
ipaths_str = " ".join(["-I" + p for p in ipaths])
|
1458 |
+
clang_flags = ""
|
1459 |
+
if config.is_fbcode():
|
1460 |
+
if aot_mode and not use_absolute_path:
|
1461 |
+
inp_name = input
|
1462 |
+
out_name = output
|
1463 |
+
else:
|
1464 |
+
# We need to copy any absolute-path torch includes
|
1465 |
+
inp_name = [os.path.basename(i) for i in input]
|
1466 |
+
out_name = os.path.basename(output)
|
1467 |
+
assert is_clang()
|
1468 |
+
# Use clang runtime instead of libgcc
|
1469 |
+
clang_flags += " --rtlib=compiler-rt"
|
1470 |
+
clang_flags += " -fuse-ld=lld"
|
1471 |
+
linker_paths = "-B" + build_paths.glibc_lib()
|
1472 |
+
linker_paths += " -L" + build_paths.glibc_lib()
|
1473 |
+
else:
|
1474 |
+
inp_name = input
|
1475 |
+
out_name = output
|
1476 |
+
linker_paths = "" # let the compiler pick
|
1477 |
+
inp_name_str = " ".join(inp_name)
|
1478 |
+
return re.sub(
|
1479 |
+
r"[ \n]+",
|
1480 |
+
" ",
|
1481 |
+
f"""
|
1482 |
+
{cpp_compiler()} {inp_name_str} {get_shared(shared)}
|
1483 |
+
{get_warning_all_flag(warning_all)} {cpp_flags()}
|
1484 |
+
{get_glibcxx_abi_build_flags()}
|
1485 |
+
{ipaths_str} {lpaths} {libs} {build_arch_flags}
|
1486 |
+
{macros} {linker_paths} {clang_flags}
|
1487 |
+
{optimization_flags()}
|
1488 |
+
{use_custom_generated_macros()}
|
1489 |
+
{use_fb_internal_macros()}
|
1490 |
+
{use_standard_sys_dir_headers()}
|
1491 |
+
{get_compile_only(compile_only)}
|
1492 |
+
-o {out_name}
|
1493 |
+
""",
|
1494 |
+
).strip()
|
1495 |
+
|
1496 |
+
|
1497 |
+
def run_command_and_check(cmd: str):
|
1498 |
+
cmd = shlex.split(cmd)
|
1499 |
+
try:
|
1500 |
+
subprocess.check_call(cmd)
|
1501 |
+
except subprocess.CalledProcessError as e:
|
1502 |
+
raise exc.CppCompileError(cmd, e.output) from e
|
1503 |
+
|
1504 |
+
|
1505 |
+
@functools.lru_cache(None)
|
1506 |
+
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
|
1507 |
+
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
1508 |
+
if path.endswith(".so"):
|
1509 |
+
return os.path.split(path)
|
1510 |
+
else:
|
1511 |
+
return path, ""
|
1512 |
+
|
1513 |
+
|
1514 |
+
class CudaKernelParamCache:
|
1515 |
+
cache: Dict[str, Dict[str, str]] = dict()
|
1516 |
+
clear = staticmethod(cache.clear)
|
1517 |
+
|
1518 |
+
@classmethod
|
1519 |
+
def set(cls, key: str, params: Dict[str, str], cubin: str) -> None:
|
1520 |
+
bin_type = "cubin" if torch.version.hip is None else "hsaco"
|
1521 |
+
_, path = write(
|
1522 |
+
cubin,
|
1523 |
+
bin_type,
|
1524 |
+
hash_type=bin_type,
|
1525 |
+
specified_dir=split_aot_inductor_output_path(
|
1526 |
+
config.aot_inductor.output_path
|
1527 |
+
)[0],
|
1528 |
+
)
|
1529 |
+
|
1530 |
+
params[get_cpp_wrapper_cubin_path_name()] = path
|
1531 |
+
|
1532 |
+
cls.cache[key] = params
|
1533 |
+
|
1534 |
+
@classmethod
|
1535 |
+
def get(cls, key: str) -> Optional[Dict[str, str]]:
|
1536 |
+
return cls.cache.get(key, None)
|
1537 |
+
|
1538 |
+
|
1539 |
+
class AotCodeCache:
|
1540 |
+
cache: Dict[str, str] = dict()
|
1541 |
+
clear = staticmethod(cache.clear)
|
1542 |
+
|
1543 |
+
@classmethod
|
1544 |
+
def compile(
|
1545 |
+
cls,
|
1546 |
+
graph: GraphLowering,
|
1547 |
+
source_code: str,
|
1548 |
+
serialized_extern_kernel_nodes: Optional[str],
|
1549 |
+
cuda: bool,
|
1550 |
+
) -> str:
|
1551 |
+
picked_vec_isa = pick_vec_isa()
|
1552 |
+
cpp_command = repr(
|
1553 |
+
cpp_compile_command(
|
1554 |
+
"i", "o", vec_isa=picked_vec_isa, cuda=cuda, aot_mode=graph.aot_mode
|
1555 |
+
)
|
1556 |
+
)
|
1557 |
+
fbcode_aot_cpu_re = False
|
1558 |
+
use_absolute_path = False
|
1559 |
+
if config.is_fbcode():
|
1560 |
+
ld_command = build_paths.ld()
|
1561 |
+
if not cuda and graph.aot_mode: # Meta internal AOTInductor CPU
|
1562 |
+
objcopy_command = build_paths.objcopy_fallback()
|
1563 |
+
fbcode_aot_cpu_re = True
|
1564 |
+
use_absolute_path = True
|
1565 |
+
else:
|
1566 |
+
objcopy_command = build_paths.objcopy()
|
1567 |
+
else:
|
1568 |
+
ld_command = "ld"
|
1569 |
+
objcopy_command = "objcopy"
|
1570 |
+
|
1571 |
+
(
|
1572 |
+
specified_output_path,
|
1573 |
+
specified_so_name,
|
1574 |
+
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
1575 |
+
key, input_path = write(
|
1576 |
+
source_code,
|
1577 |
+
"cpp",
|
1578 |
+
extra=cpp_command,
|
1579 |
+
specified_dir=specified_output_path,
|
1580 |
+
)
|
1581 |
+
|
1582 |
+
if key not in cls.cache or (
|
1583 |
+
specified_output_path
|
1584 |
+
and os.path.dirname(cls.cache[key]) != specified_output_path
|
1585 |
+
or specified_so_name
|
1586 |
+
and os.path.basename(cls.cache[key]) != specified_so_name
|
1587 |
+
):
|
1588 |
+
from filelock import FileLock
|
1589 |
+
|
1590 |
+
lock_dir = get_lock_dir()
|
1591 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
1592 |
+
with lock:
|
1593 |
+
# Currently, this only support serializing extern nodes in fbcode
|
1594 |
+
# Eventually, we should also have a serializer for OSS.
|
1595 |
+
if config.is_fbcode() and serialized_extern_kernel_nodes:
|
1596 |
+
output_json = os.path.splitext(input_path)[0] + ".json"
|
1597 |
+
with open(output_json, "w") as f:
|
1598 |
+
f.write(serialized_extern_kernel_nodes)
|
1599 |
+
|
1600 |
+
output_so = (
|
1601 |
+
config.aot_inductor.output_path
|
1602 |
+
if specified_so_name
|
1603 |
+
else os.path.splitext(input_path)[0] + ".so"
|
1604 |
+
)
|
1605 |
+
|
1606 |
+
if not os.path.exists(output_so):
|
1607 |
+
output_o = os.path.splitext(input_path)[0] + ".o"
|
1608 |
+
cmd = cpp_compile_command(
|
1609 |
+
input=input_path,
|
1610 |
+
output=output_o,
|
1611 |
+
vec_isa=picked_vec_isa,
|
1612 |
+
cuda=cuda,
|
1613 |
+
aot_mode=graph.aot_mode,
|
1614 |
+
compile_only=True,
|
1615 |
+
use_absolute_path=use_absolute_path,
|
1616 |
+
)
|
1617 |
+
log.debug("aot compilation command: %s", cmd)
|
1618 |
+
if fbcode_aot_cpu_re:
|
1619 |
+
compile_file(input_path, output_o, cmd.split())
|
1620 |
+
os.chmod(output_o, 0o644)
|
1621 |
+
else:
|
1622 |
+
run_command_and_check(cmd)
|
1623 |
+
|
1624 |
+
def _to_bytes(t: torch.Tensor) -> bytes:
|
1625 |
+
# This serializes the tensor's untyped_storage to bytes by accessing
|
1626 |
+
# the raw data of the underlying structure.
|
1627 |
+
import ctypes
|
1628 |
+
|
1629 |
+
if t.numel() == 0:
|
1630 |
+
return b""
|
1631 |
+
|
1632 |
+
t_cpu = t.untyped_storage().cpu()
|
1633 |
+
raw_array = ctypes.cast(
|
1634 |
+
t_cpu.data_ptr(),
|
1635 |
+
ctypes.POINTER(ctypes.c_ubyte * t_cpu.nbytes()),
|
1636 |
+
)
|
1637 |
+
|
1638 |
+
return bytes(raw_array.contents)
|
1639 |
+
|
1640 |
+
aot_constants = b"".join(
|
1641 |
+
_to_bytes(tensor) for tensor in graph.constants.values()
|
1642 |
+
)
|
1643 |
+
|
1644 |
+
consts_key, consts_path = write(
|
1645 |
+
aot_constants,
|
1646 |
+
"bin",
|
1647 |
+
specified_dir=specified_output_path,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
1651 |
+
if fbcode_aot_cpu_re:
|
1652 |
+
cmd = f"{ld_command} -r -b binary -o {os.path.basename(consts_o)} {os.path.basename(consts_path)}"
|
1653 |
+
compile_file(consts_path, consts_o, cmd.split())
|
1654 |
+
os.chmod(consts_o, 0o644)
|
1655 |
+
else:
|
1656 |
+
cmd = f"{ld_command} -r -b binary -o {consts_o} {consts_path}"
|
1657 |
+
run_command_and_check(cmd)
|
1658 |
+
log.debug("aot constant binary command: %s", cmd)
|
1659 |
+
|
1660 |
+
cmd = (
|
1661 |
+
f"{objcopy_command} --rename-section"
|
1662 |
+
" .data=.lrodata,alloc,load,readonly,data,contents"
|
1663 |
+
f" {consts_o} {consts_o}"
|
1664 |
+
)
|
1665 |
+
log.debug("aot constant obj command: %s", cmd)
|
1666 |
+
run_command_and_check(cmd)
|
1667 |
+
|
1668 |
+
cmd = f"rm {consts_path}"
|
1669 |
+
log.debug("aot constant bin removal command: %s", cmd)
|
1670 |
+
run_command_and_check(cmd)
|
1671 |
+
|
1672 |
+
if fbcode_aot_cpu_re:
|
1673 |
+
body = re.sub(r"[\W]", "_", os.path.basename(consts_path))
|
1674 |
+
else:
|
1675 |
+
body = re.sub(r"[\W]", "_", consts_path)
|
1676 |
+
|
1677 |
+
symbol_list = []
|
1678 |
+
symbol_list.append(
|
1679 |
+
f"{objcopy_command} --redefine-sym _binary_{body}_start=_binary_constants_bin_start {consts_o}"
|
1680 |
+
)
|
1681 |
+
symbol_list.append(
|
1682 |
+
f"{objcopy_command} --redefine-sym _binary_{body}_size=_binary_constants_bin_size {consts_o}"
|
1683 |
+
)
|
1684 |
+
symbol_list.append(
|
1685 |
+
f"{objcopy_command} --redefine-sym _binary_{body}_end=_binary_constants_bin_end {consts_o}"
|
1686 |
+
)
|
1687 |
+
log.debug(
|
1688 |
+
"aot constant binary redefine symbol: %s", " ".join(symbol_list)
|
1689 |
+
)
|
1690 |
+
for cmd in symbol_list:
|
1691 |
+
run_command_and_check(cmd)
|
1692 |
+
|
1693 |
+
cmd = cpp_compile_command(
|
1694 |
+
input=[output_o, consts_o],
|
1695 |
+
output=output_so,
|
1696 |
+
vec_isa=picked_vec_isa,
|
1697 |
+
cuda=cuda,
|
1698 |
+
aot_mode=graph.aot_mode,
|
1699 |
+
use_absolute_path=use_absolute_path,
|
1700 |
+
)
|
1701 |
+
log.debug("aot linkage command: %s", cmd)
|
1702 |
+
if fbcode_aot_cpu_re:
|
1703 |
+
compile_file([output_o, consts_o], output_so, cmd.split())
|
1704 |
+
os.chmod(output_so, 0o755)
|
1705 |
+
else:
|
1706 |
+
run_command_and_check(cmd)
|
1707 |
+
else:
|
1708 |
+
log.debug(
|
1709 |
+
"aot_inductor dynamic library already exist: %s", output_so
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
cls.cache[key] = output_so
|
1713 |
+
|
1714 |
+
return cls.cache[key]
|
1715 |
+
|
1716 |
+
|
1717 |
+
# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
|
1718 |
+
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
|
1719 |
+
# Cycle goes:
|
1720 |
+
# - CppCodeCache.load()
|
1721 |
+
# - pick_vec_isa()
|
1722 |
+
# - valid_vec_isa_list()
|
1723 |
+
# - VecISA.__bool__() <-- takes out a lock
|
1724 |
+
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
|
1725 |
+
@functools.lru_cache
|
1726 |
+
def cpp_prefix_path() -> str:
|
1727 |
+
path = Path(__file__).parent / "codegen/cpp_prefix.h"
|
1728 |
+
with path.open() as f:
|
1729 |
+
content = f.read()
|
1730 |
+
_, filename = write(
|
1731 |
+
content,
|
1732 |
+
"h",
|
1733 |
+
)
|
1734 |
+
return filename
|
1735 |
+
|
1736 |
+
|
1737 |
+
def cpp_prefix() -> str:
|
1738 |
+
filename = cpp_prefix_path()
|
1739 |
+
if config.is_fbcode():
|
1740 |
+
# We need relative paths, since we bundle up
|
1741 |
+
# everything that we compile into a folder for remote compilation.
|
1742 |
+
return f'#include "{os.path.basename(filename)}"'
|
1743 |
+
else:
|
1744 |
+
return f'#include "{filename}"'
|
1745 |
+
|
1746 |
+
|
1747 |
+
# Given a path to an input cpp file and an output path,
|
1748 |
+
# Attempts to compile the file, storing the output in "output_path"
|
1749 |
+
def compile_file(
|
1750 |
+
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
1751 |
+
) -> None:
|
1752 |
+
input_paths = [input_path] if isinstance(input_path, str) else input_path
|
1753 |
+
input_files = [
|
1754 |
+
os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
|
1755 |
+
]
|
1756 |
+
try:
|
1757 |
+
if config.is_fbcode():
|
1758 |
+
# Need to copy our header into the same folder as the sourcecode.
|
1759 |
+
header_path = cpp_prefix_path()
|
1760 |
+
header_name = os.path.basename(header_path)
|
1761 |
+
output_name = os.path.basename(output_path)
|
1762 |
+
# When we build remotely, we need to make sure to carefully copy any files
|
1763 |
+
# that are required during the compilation process into our build directly.
|
1764 |
+
# This is where all of the ATen/c10/Torch includes come from.
|
1765 |
+
torch_includes_path = os.path.join(
|
1766 |
+
torch.utils.cpp_extension._TORCH_PATH, "include"
|
1767 |
+
)
|
1768 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
1769 |
+
# Copy everything to tmp compilation folder
|
1770 |
+
shutil.copy(header_path, os.path.join(tmp_dir, header_name))
|
1771 |
+
for p, f in zip(input_paths, input_files):
|
1772 |
+
shutil.copy(p, os.path.join(tmp_dir, f))
|
1773 |
+
dest_include_path = os.path.join(tmp_dir, "include")
|
1774 |
+
shutil.copytree(torch_includes_path, dest_include_path)
|
1775 |
+
# Run the build
|
1776 |
+
output_file_path = _run_build_command(cmd, tmp_dir, output_name)
|
1777 |
+
# Copy output from the build
|
1778 |
+
if os.path.exists(output_path):
|
1779 |
+
os.remove(output_path)
|
1780 |
+
shutil.copy(output_file_path, output_path)
|
1781 |
+
else:
|
1782 |
+
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
1783 |
+
except subprocess.CalledProcessError as e:
|
1784 |
+
output = e.output.decode("utf-8")
|
1785 |
+
openmp_problem = "'omp.h' file not found" in output or "libomp" in output
|
1786 |
+
if openmp_problem and sys.platform == "darwin":
|
1787 |
+
instruction = (
|
1788 |
+
"\n\nOpenMP support not found. Please try one of the following solutions:\n"
|
1789 |
+
"(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
|
1790 |
+
"that has builtin OpenMP support;\n"
|
1791 |
+
"(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
|
1792 |
+
"(3) install libomp via brew: `brew install libomp`;\n"
|
1793 |
+
"(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
|
1794 |
+
" with `include/omp.h` under it."
|
1795 |
+
)
|
1796 |
+
output += instruction
|
1797 |
+
raise exc.CppCompileError(cmd, output) from e
|
1798 |
+
|
1799 |
+
|
1800 |
+
_libgomp: Optional[CDLL] = None
|
1801 |
+
|
1802 |
+
|
1803 |
+
class CppCodeCache:
|
1804 |
+
cache: Dict[str, CDLL] = dict()
|
1805 |
+
clear = staticmethod(cache.clear)
|
1806 |
+
|
1807 |
+
@staticmethod
|
1808 |
+
def _load_library(path: str) -> CDLL:
|
1809 |
+
try:
|
1810 |
+
return cdll.LoadLibrary(path)
|
1811 |
+
except OSError as e:
|
1812 |
+
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
1813 |
+
# hacky workaround for fbcode/buck
|
1814 |
+
global _libgomp
|
1815 |
+
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
1816 |
+
return cdll.LoadLibrary(path)
|
1817 |
+
if "failed to map segment from shared object" in str(e):
|
1818 |
+
raise OSError(
|
1819 |
+
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
1820 |
+
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
1821 |
+
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
1822 |
+
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
1823 |
+
) from e
|
1824 |
+
raise
|
1825 |
+
|
1826 |
+
@classmethod
|
1827 |
+
def load(cls, source_code: str) -> CDLL:
|
1828 |
+
picked_vec_isa = pick_vec_isa()
|
1829 |
+
cpp_command = repr(cpp_compile_command("i", "o", vec_isa=picked_vec_isa))
|
1830 |
+
key, input_path = write(source_code, "cpp", extra=cpp_command)
|
1831 |
+
if key not in cls.cache:
|
1832 |
+
from filelock import FileLock
|
1833 |
+
|
1834 |
+
lock_dir = get_lock_dir()
|
1835 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
1836 |
+
with lock:
|
1837 |
+
output_path = input_path[:-3] + "so"
|
1838 |
+
if not os.path.exists(output_path):
|
1839 |
+
cmd = shlex.split(
|
1840 |
+
cpp_compile_command(
|
1841 |
+
input=input_path, output=output_path, vec_isa=picked_vec_isa
|
1842 |
+
)
|
1843 |
+
)
|
1844 |
+
compile_file(input_path, output_path, cmd)
|
1845 |
+
cls.cache[key] = cls._load_library(output_path)
|
1846 |
+
cls.cache[key].key = key # type: ignore[attr-defined]
|
1847 |
+
|
1848 |
+
return cls.cache[key]
|
1849 |
+
|
1850 |
+
|
1851 |
+
class PyCodeCache:
|
1852 |
+
cache: Dict[str, ModuleType] = dict()
|
1853 |
+
linemaps: Dict[str, List[Tuple[Any, ...]]] = dict()
|
1854 |
+
clear = staticmethod(cache.clear)
|
1855 |
+
|
1856 |
+
@classmethod
|
1857 |
+
def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
|
1858 |
+
return write(source_code, "py", extra=extra)
|
1859 |
+
|
1860 |
+
@classmethod
|
1861 |
+
def load(
|
1862 |
+
cls,
|
1863 |
+
source_code: str,
|
1864 |
+
extra: str = "",
|
1865 |
+
linemap: Optional[List[Tuple[int, str]]] = None,
|
1866 |
+
attrs: Optional[Dict[str, Any]] = None,
|
1867 |
+
) -> ModuleType:
|
1868 |
+
key, path = write(source_code, "py", extra=extra)
|
1869 |
+
return cls.load_by_key_path(key, path, linemap, attrs)
|
1870 |
+
|
1871 |
+
@classmethod
|
1872 |
+
def load_by_key_path(
|
1873 |
+
cls,
|
1874 |
+
key: str,
|
1875 |
+
path: str,
|
1876 |
+
linemap: Optional[List[Tuple[int, str]]] = None,
|
1877 |
+
attrs: Optional[Dict[str, Any]] = None,
|
1878 |
+
) -> ModuleType:
|
1879 |
+
if linemap is None:
|
1880 |
+
linemap = []
|
1881 |
+
if key not in cls.cache:
|
1882 |
+
with open(path) as f:
|
1883 |
+
try:
|
1884 |
+
code = compile(f.read(), path, "exec")
|
1885 |
+
except Exception as e:
|
1886 |
+
raise RuntimeError(
|
1887 |
+
f"Failed to import {path}\n{type(e).__name__}: {e}"
|
1888 |
+
) from None
|
1889 |
+
mod = ModuleType(f"{__name__}.{key}")
|
1890 |
+
mod.__file__ = path
|
1891 |
+
mod.key = key # type: ignore[attr-defined]
|
1892 |
+
exec(code, mod.__dict__, mod.__dict__)
|
1893 |
+
sys.modules[mod.__name__] = mod
|
1894 |
+
# another thread might set this first
|
1895 |
+
cls.cache.setdefault(key, mod)
|
1896 |
+
# unzip into separate lines/nodes lists
|
1897 |
+
cls.linemaps[path] = list(zip(*linemap))
|
1898 |
+
|
1899 |
+
if attrs is not None:
|
1900 |
+
for k, v in attrs.items():
|
1901 |
+
setattr(mod, k, v)
|
1902 |
+
|
1903 |
+
return cls.cache[key]
|
1904 |
+
|
1905 |
+
@classmethod
|
1906 |
+
@functools.lru_cache(None)
|
1907 |
+
def stack_frames_for_code(
|
1908 |
+
cls, path: str, lineno: int
|
1909 |
+
) -> Optional[List[Dict[str, Any]]]:
|
1910 |
+
if path not in cls.linemaps:
|
1911 |
+
return None
|
1912 |
+
# [(starting_line, <fx node>), ...]
|
1913 |
+
lines, nodes = cls.linemaps[path]
|
1914 |
+
p = bisect_right(lines, lineno)
|
1915 |
+
if p == 0:
|
1916 |
+
return None
|
1917 |
+
entry = nodes[p - 1]
|
1918 |
+
if not entry:
|
1919 |
+
return None
|
1920 |
+
|
1921 |
+
def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
|
1922 |
+
# ideally fx stores stack traces as data rather than a string
|
1923 |
+
# but this is not along a performance critical path
|
1924 |
+
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
1925 |
+
matches = re.findall(regex, stack_trace)
|
1926 |
+
return [
|
1927 |
+
{"filename": f, "line": int(l), "name": n}
|
1928 |
+
for f, l, n in reversed(matches)
|
1929 |
+
]
|
1930 |
+
|
1931 |
+
return parse_stack_trace(entry)
|
1932 |
+
|
1933 |
+
|
1934 |
+
class CppWrapperCodeCache:
|
1935 |
+
cache: Dict[str, CDLL] = dict()
|
1936 |
+
clear = staticmethod(cache.clear)
|
1937 |
+
|
1938 |
+
@classmethod
|
1939 |
+
def load(cls, source_code: str, func_name: str, key: str, cuda: bool) -> CDLL:
|
1940 |
+
name = f"inline_extension_{key}"
|
1941 |
+
cpp_wrapper_dir = cpp_wrapper_cache_dir(name)
|
1942 |
+
if not os.path.exists(cpp_wrapper_dir):
|
1943 |
+
os.makedirs(cpp_wrapper_dir)
|
1944 |
+
|
1945 |
+
ext = "so"
|
1946 |
+
filepath = os.path.join(cpp_wrapper_dir, f"{name}.{ext}")
|
1947 |
+
log.debug("Cpp wrapper code path %s", filepath)
|
1948 |
+
|
1949 |
+
if key not in cls.cache:
|
1950 |
+
log.debug("Cpp wrapper cache miss for %s", filepath)
|
1951 |
+
from filelock import FileLock
|
1952 |
+
|
1953 |
+
lock_dir = get_lock_dir()
|
1954 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
1955 |
+
with lock:
|
1956 |
+
if not os.path.exists(filepath):
|
1957 |
+
log.debug("Cpp wrapper building %s", filepath)
|
1958 |
+
|
1959 |
+
_cpp_flags = cpp_flags()
|
1960 |
+
_opt_flags = optimization_flags()
|
1961 |
+
_shared = get_shared()
|
1962 |
+
_warning_all_flag = get_warning_all_flag()
|
1963 |
+
(
|
1964 |
+
_ipaths,
|
1965 |
+
_lpaths,
|
1966 |
+
_libs,
|
1967 |
+
_macros,
|
1968 |
+
_build_arch_flags,
|
1969 |
+
) = get_include_and_linking_paths(
|
1970 |
+
vec_isa=pick_vec_isa(),
|
1971 |
+
cuda=cuda,
|
1972 |
+
)
|
1973 |
+
_use_custom_generated_macros = use_custom_generated_macros()
|
1974 |
+
_cpp_wrapper_flags = cpp_wrapper_flags()
|
1975 |
+
|
1976 |
+
extra_cflags = f"{_cpp_flags} {_opt_flags} {_warning_all_flag} {_build_arch_flags} {_macros} \
|
1977 |
+
{_cpp_wrapper_flags} {_use_custom_generated_macros}"
|
1978 |
+
# For CPP wrapper, add -ffast-math during linking to make CPU flush denormals.
|
1979 |
+
# CPP wrapper leverages cpp_extension which will do the compilation and linking in two stages.
|
1980 |
+
# We need to explicitly add -ffast-math as a linking flag.
|
1981 |
+
# For the default python wrapper, the compilation and linking are done in one command thus -ffast-math
|
1982 |
+
# will take effect in both compilation and linking.
|
1983 |
+
extra_ldflags = f"{_shared} {_lpaths} {_libs} -ffast-math"
|
1984 |
+
|
1985 |
+
mod = torch.utils.cpp_extension.load_inline(
|
1986 |
+
name=name,
|
1987 |
+
build_directory=cpp_wrapper_dir,
|
1988 |
+
cpp_sources=[source_code],
|
1989 |
+
functions=[func_name],
|
1990 |
+
extra_cflags=[extra_cflags],
|
1991 |
+
extra_ldflags=[extra_ldflags],
|
1992 |
+
extra_include_paths=_ipaths,
|
1993 |
+
use_pch=True,
|
1994 |
+
)
|
1995 |
+
log.debug("Cpp wrapper done building %s", filepath)
|
1996 |
+
else:
|
1997 |
+
log.debug("Found target .so, cpp wrapper loading %s", filepath)
|
1998 |
+
spec = importlib.util.spec_from_file_location(name, filepath) # type: ignore[attr-defined]
|
1999 |
+
assert spec is not None
|
2000 |
+
mod = importlib.util.module_from_spec(spec) # type: ignore[attr-defined]
|
2001 |
+
assert isinstance(spec.loader, abc.Loader)
|
2002 |
+
spec.loader.exec_module(mod)
|
2003 |
+
log.debug("Cpp wrapper done loading %s", filepath)
|
2004 |
+
|
2005 |
+
cls.cache[key] = mod
|
2006 |
+
|
2007 |
+
return cls.cache[key]
|
2008 |
+
|
2009 |
+
|
2010 |
+
class TritonCodeCache:
|
2011 |
+
@classmethod
|
2012 |
+
def load(cls, kernel_name: str, source_code: str) -> ModuleType:
|
2013 |
+
mod = PyCodeCache.load(source_code)
|
2014 |
+
return getattr(mod, kernel_name)
|
2015 |
+
|
2016 |
+
|
2017 |
+
def _cuda_compiler() -> Optional[str]:
|
2018 |
+
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
2019 |
+
return config.cuda.cuda_cxx
|
2020 |
+
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
2021 |
+
return os.getenv("CUDACXX", "")
|
2022 |
+
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
2023 |
+
return os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc")
|
2024 |
+
return "nvcc"
|
2025 |
+
|
2026 |
+
|
2027 |
+
def _cutlass_include_paths() -> List[str]:
|
2028 |
+
cutlass_path = config.cuda.cutlass_dir
|
2029 |
+
return [
|
2030 |
+
os.path.join(cutlass_path, "include"),
|
2031 |
+
os.path.join(cutlass_path, "tools/library/include"),
|
2032 |
+
os.path.join(cutlass_path, "tools/library/src"),
|
2033 |
+
os.path.join(cutlass_path, "tools/util/include"),
|
2034 |
+
]
|
2035 |
+
|
2036 |
+
|
2037 |
+
def _cuda_lib_options() -> List[str]:
|
2038 |
+
from torch.utils import cpp_extension
|
2039 |
+
|
2040 |
+
extra_ldflags: List[str] = []
|
2041 |
+
if is_linux():
|
2042 |
+
extra_lib_dir = "lib64"
|
2043 |
+
if not os.path.exists(
|
2044 |
+
cpp_extension._join_cuda_home(extra_lib_dir)
|
2045 |
+
) and os.path.exists(cpp_extension._join_cuda_home("lib")):
|
2046 |
+
# 64-bit CUDA may be installed in "lib"
|
2047 |
+
# Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
|
2048 |
+
extra_lib_dir = "lib"
|
2049 |
+
extra_ldflags.append(f"-L{cpp_extension._join_cuda_home(extra_lib_dir)}")
|
2050 |
+
extra_ldflags.append(
|
2051 |
+
f'-L{cpp_extension._join_cuda_home(extra_lib_dir, "stubs")}'
|
2052 |
+
)
|
2053 |
+
extra_ldflags.append("-lcuda")
|
2054 |
+
extra_ldflags.append("-lcudart")
|
2055 |
+
else:
|
2056 |
+
raise NotImplementedError(
|
2057 |
+
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
2058 |
+
)
|
2059 |
+
return extra_ldflags
|
2060 |
+
|
2061 |
+
|
2062 |
+
def _nvcc_host_compiler_options() -> List[str]:
|
2063 |
+
return [
|
2064 |
+
"-fPIC",
|
2065 |
+
"-fno-strict-aliasing",
|
2066 |
+
"-fvisibility=hidden",
|
2067 |
+
"-Wconversion",
|
2068 |
+
]
|
2069 |
+
|
2070 |
+
|
2071 |
+
def _nvcc_compiler_options() -> List[str]:
|
2072 |
+
arch = cuda_env.get_cuda_arch()
|
2073 |
+
if arch == "90":
|
2074 |
+
# Required by cutlass compilation.
|
2075 |
+
arch = "90a"
|
2076 |
+
code = [f"sm_{arch}", f"compute_{arch}"]
|
2077 |
+
if config.cuda.enable_cuda_lto:
|
2078 |
+
code += [f"lto_{arch}"]
|
2079 |
+
options = [
|
2080 |
+
"-t=0",
|
2081 |
+
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
2082 |
+
"-w",
|
2083 |
+
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
2084 |
+
config.cuda.compile_opt_level,
|
2085 |
+
"-std=c++17",
|
2086 |
+
"--expt-relaxed-constexpr",
|
2087 |
+
]
|
2088 |
+
if config.cuda.enable_debug_info:
|
2089 |
+
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
2090 |
+
if config.cuda.enable_ptxas_info:
|
2091 |
+
options.extend(
|
2092 |
+
[
|
2093 |
+
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
2094 |
+
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
2095 |
+
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
2096 |
+
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
2097 |
+
"--source-in-ptx",
|
2098 |
+
]
|
2099 |
+
) # Annotate the ptx file with source information
|
2100 |
+
if config.cuda.use_fast_math:
|
2101 |
+
options.extend(
|
2102 |
+
[
|
2103 |
+
"--use_fast_math",
|
2104 |
+
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
2105 |
+
]
|
2106 |
+
)
|
2107 |
+
return options
|
2108 |
+
|
2109 |
+
|
2110 |
+
def cuda_compile_command(
|
2111 |
+
src_files: List[str],
|
2112 |
+
dst_file: str,
|
2113 |
+
dst_file_ext: str,
|
2114 |
+
) -> str:
|
2115 |
+
include_paths = _cutlass_include_paths()
|
2116 |
+
cuda_lib_options = _cuda_lib_options()
|
2117 |
+
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
2118 |
+
nvcc_compiler_options = _nvcc_compiler_options()
|
2119 |
+
options = (
|
2120 |
+
nvcc_compiler_options
|
2121 |
+
+ [
|
2122 |
+
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
2123 |
+
for opt in nvcc_host_compiler_options
|
2124 |
+
]
|
2125 |
+
+ ["-I" + path for path in include_paths]
|
2126 |
+
+ cuda_lib_options
|
2127 |
+
)
|
2128 |
+
src_file = " ".join(src_files)
|
2129 |
+
res = ""
|
2130 |
+
if dst_file_ext == "o":
|
2131 |
+
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
2132 |
+
elif dst_file_ext == "so":
|
2133 |
+
options.append("-shared")
|
2134 |
+
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
2135 |
+
else:
|
2136 |
+
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
2137 |
+
log.debug("CUDA command: %s", res)
|
2138 |
+
return res
|
2139 |
+
|
2140 |
+
|
2141 |
+
class DLLWrapper:
|
2142 |
+
"""A wrapper for a dynamic library."""
|
2143 |
+
|
2144 |
+
def __init__(
|
2145 |
+
self,
|
2146 |
+
lib_path: str,
|
2147 |
+
):
|
2148 |
+
self.lib_path = lib_path
|
2149 |
+
self.DLL = cdll.LoadLibrary(lib_path)
|
2150 |
+
self.is_open = True
|
2151 |
+
|
2152 |
+
def close(self):
|
2153 |
+
if self.is_open:
|
2154 |
+
self._dlclose()
|
2155 |
+
self.is_open = False
|
2156 |
+
|
2157 |
+
def _dlclose(self):
|
2158 |
+
f_dlclose = None
|
2159 |
+
|
2160 |
+
if is_linux():
|
2161 |
+
syms = CDLL(None)
|
2162 |
+
if not hasattr(syms, "dlclose"):
|
2163 |
+
# Apline Linux
|
2164 |
+
syms = CDLL("libc.so")
|
2165 |
+
|
2166 |
+
if hasattr(syms, "dlclose"):
|
2167 |
+
f_dlclose = syms.dlclose
|
2168 |
+
else:
|
2169 |
+
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
2170 |
+
|
2171 |
+
if f_dlclose is not None:
|
2172 |
+
f_dlclose.argtypes = [c_void_p]
|
2173 |
+
f_dlclose(self.DLL._handle)
|
2174 |
+
else:
|
2175 |
+
log.warning(
|
2176 |
+
"dll unloading function was not found, library may not be unloaded properly!"
|
2177 |
+
)
|
2178 |
+
|
2179 |
+
def __getattr__(self, name):
|
2180 |
+
if not self.is_open:
|
2181 |
+
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
2182 |
+
|
2183 |
+
method = getattr(self.DLL, name)
|
2184 |
+
|
2185 |
+
def _wrapped_func(*args):
|
2186 |
+
err = method(*args)
|
2187 |
+
if err:
|
2188 |
+
raise RuntimeError(f"Error in function: {method.__name__}")
|
2189 |
+
|
2190 |
+
return _wrapped_func
|
2191 |
+
|
2192 |
+
def __enter__(self):
|
2193 |
+
return self
|
2194 |
+
|
2195 |
+
def __exit__(self, *args):
|
2196 |
+
self.close()
|
2197 |
+
|
2198 |
+
def __del__(self):
|
2199 |
+
self.close()
|
2200 |
+
|
2201 |
+
|
2202 |
+
class CUDACodeCache:
|
2203 |
+
@dataclasses.dataclass
|
2204 |
+
class CacheEntry:
|
2205 |
+
input_path: str
|
2206 |
+
output_path: str
|
2207 |
+
|
2208 |
+
cache: Dict[str, CacheEntry] = dict()
|
2209 |
+
clear = staticmethod(cache.clear)
|
2210 |
+
_SOURCE_CODE_SUFFIX = "cu"
|
2211 |
+
|
2212 |
+
@classmethod
|
2213 |
+
def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
|
2214 |
+
"""
|
2215 |
+
Writes source code into a file with dst_file_ext as the file extension.
|
2216 |
+
Returns the hash key of source code, and the path to the file.
|
2217 |
+
"""
|
2218 |
+
|
2219 |
+
cuda_command = repr(
|
2220 |
+
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
2221 |
+
)
|
2222 |
+
key, input_path = write(
|
2223 |
+
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
2224 |
+
)
|
2225 |
+
return key, input_path
|
2226 |
+
|
2227 |
+
@classmethod
|
2228 |
+
def compile(cls, source_code, dst_file_ext) -> Tuple[str, str, str]:
|
2229 |
+
"""
|
2230 |
+
Compiles CUDA source_code into a file with dst_file_ext extension.
|
2231 |
+
Returns a tuple of dst_file_path, hash_key, source_code_path
|
2232 |
+
"""
|
2233 |
+
|
2234 |
+
key, input_path = cls.write(source_code, dst_file_ext)
|
2235 |
+
if key not in cls.cache:
|
2236 |
+
from filelock import FileLock
|
2237 |
+
|
2238 |
+
lock_dir = get_lock_dir()
|
2239 |
+
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
2240 |
+
with lock:
|
2241 |
+
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
2242 |
+
if not os.path.exists(output_path):
|
2243 |
+
cmd = cuda_compile_command(
|
2244 |
+
[input_path], output_path, dst_file_ext
|
2245 |
+
).split(" ")
|
2246 |
+
try:
|
2247 |
+
subprocess.check_output(
|
2248 |
+
cmd, stderr=subprocess.STDOUT, env=os.environ
|
2249 |
+
)
|
2250 |
+
except subprocess.CalledProcessError as error:
|
2251 |
+
raise exc.CUDACompileError(cmd, error.output) from error
|
2252 |
+
cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)
|
2253 |
+
|
2254 |
+
return (cls.cache[key].output_path, key, input_path)
|
2255 |
+
|
2256 |
+
@classmethod
|
2257 |
+
def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
|
2258 |
+
"""
|
2259 |
+
Compiles source code and loads the generated .so file.
|
2260 |
+
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
2261 |
+
"""
|
2262 |
+
|
2263 |
+
if dst_file_ext != "so":
|
2264 |
+
raise RuntimeError(
|
2265 |
+
f"Only support loading a .so file for now. "
|
2266 |
+
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
2267 |
+
)
|
2268 |
+
dst_file_path, hash_key, source_code_path = cls.compile(
|
2269 |
+
source_code, dst_file_ext
|
2270 |
+
)
|
2271 |
+
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
2272 |
+
|
2273 |
+
|
2274 |
+
def caching_device_properties():
|
2275 |
+
for _, device_interface in get_registered_device_interfaces():
|
2276 |
+
if device_interface.is_available():
|
2277 |
+
device_interface.Worker.get_device_properties()
|
2278 |
+
|
2279 |
+
|
2280 |
+
def _set_triton_ptxas_path() -> None:
|
2281 |
+
if os.environ.get("TRITON_PTXAS_PATH") is not None:
|
2282 |
+
return
|
2283 |
+
ptxas_path = os.path.abspath(
|
2284 |
+
os.path.join(os.path.dirname(__file__), "..", "bin", "ptxas")
|
2285 |
+
)
|
2286 |
+
if not os.path.exists(ptxas_path):
|
2287 |
+
return
|
2288 |
+
if os.path.isfile(ptxas_path) and os.access(ptxas_path, os.X_OK):
|
2289 |
+
os.environ["TRITON_PTXAS_PATH"] = ptxas_path
|
2290 |
+
else:
|
2291 |
+
warnings.warn(f"{ptxas_path} exists but is not an executable")
|
2292 |
+
|
2293 |
+
|
2294 |
+
def _worker_compile(
|
2295 |
+
kernel_name: str, source_code: str, cc: int, device: torch.device
|
2296 |
+
) -> None:
|
2297 |
+
device_interface = get_interface_for_device(device.type)
|
2298 |
+
device_interface.Worker.set_device(device.index)
|
2299 |
+
kernel = TritonCodeCache.load(kernel_name, source_code)
|
2300 |
+
kernel.precompile(warm_cache_only_with_cc=cc)
|
2301 |
+
|
2302 |
+
|
2303 |
+
def _load_kernel(kernel_name: str, source_code: str) -> ModuleType:
|
2304 |
+
_set_triton_ptxas_path()
|
2305 |
+
kernel = TritonCodeCache.load(kernel_name, source_code)
|
2306 |
+
kernel.precompile()
|
2307 |
+
return kernel
|
2308 |
+
|
2309 |
+
|
2310 |
+
class TritonFuture:
|
2311 |
+
kernel: ModuleType
|
2312 |
+
|
2313 |
+
def __init__(
|
2314 |
+
self,
|
2315 |
+
kernel_name: str,
|
2316 |
+
source_code: str,
|
2317 |
+
future: Future[Any],
|
2318 |
+
) -> None:
|
2319 |
+
self.kernel_name = kernel_name
|
2320 |
+
self.source_code = source_code
|
2321 |
+
self.future = future
|
2322 |
+
|
2323 |
+
# @dynamo_utils.dynamo_timed
|
2324 |
+
def result(self) -> ModuleType:
|
2325 |
+
t0 = time()
|
2326 |
+
if hasattr(self, "kernel"):
|
2327 |
+
return self.kernel
|
2328 |
+
# If the worker failed this will throw an exception.
|
2329 |
+
self.future.result()
|
2330 |
+
kernel = self.kernel = _load_kernel(self.kernel_name, self.source_code)
|
2331 |
+
latency = time() - t0
|
2332 |
+
if latency > 50:
|
2333 |
+
developer_warning(
|
2334 |
+
f"Detected long compilation time of {latency} seconds for kernel name {self.kernel_name}"
|
2335 |
+
)
|
2336 |
+
developer_warning(self.source_code)
|
2337 |
+
del self.kernel_name, self.source_code, self.future
|
2338 |
+
return kernel
|
2339 |
+
|
2340 |
+
|
2341 |
+
# If this process dies abnormally (e.g. segfault)
|
2342 |
+
# it will not shut down the workers. Instead
|
2343 |
+
# the workers will have their parent reassigned to the
|
2344 |
+
# init process. This launches a separate thread to
|
2345 |
+
# watch for the worker getting reassigned,
|
2346 |
+
# and cleans it up in this case.
|
2347 |
+
#
|
2348 |
+
# This function cannot be an inner function since otherwise mp_context="spawn" would
|
2349 |
+
# not work for ProcessPoolExecutor since inner functions cannot be pickled.
|
2350 |
+
def _async_compile_initializer(orig_ppid) -> None:
|
2351 |
+
def run() -> None:
|
2352 |
+
while True:
|
2353 |
+
sleep(1)
|
2354 |
+
if orig_ppid != os.getppid():
|
2355 |
+
os.kill(os.getpid(), signal.SIGKILL)
|
2356 |
+
|
2357 |
+
global _watchdog_thread
|
2358 |
+
_watchdog_thread = Thread(target=run, daemon=True)
|
2359 |
+
_watchdog_thread.start()
|
2360 |
+
|
2361 |
+
|
2362 |
+
_watchdog_thread: Optional[Thread] = None
|
2363 |
+
|
2364 |
+
|
2365 |
+
class AsyncCompile:
|
2366 |
+
def __init__(self) -> None:
|
2367 |
+
pass
|
2368 |
+
|
2369 |
+
@staticmethod
|
2370 |
+
@functools.lru_cache(1)
|
2371 |
+
def pool() -> ThreadPoolExecutor:
|
2372 |
+
assert config.compile_threads > 1
|
2373 |
+
return ThreadPoolExecutor(config.compile_threads)
|
2374 |
+
|
2375 |
+
@staticmethod
|
2376 |
+
@functools.lru_cache(1)
|
2377 |
+
def process_pool() -> ProcessPoolExecutor:
|
2378 |
+
# ensure properties have been calculated before processes
|
2379 |
+
# are forked
|
2380 |
+
caching_device_properties()
|
2381 |
+
assert config.compile_threads > 1
|
2382 |
+
orig_ppid = os.getpid()
|
2383 |
+
|
2384 |
+
ctx = multiprocessing.get_context(config.worker_start_method)
|
2385 |
+
pool = ProcessPoolExecutor(
|
2386 |
+
config.compile_threads,
|
2387 |
+
mp_context=ctx,
|
2388 |
+
initializer=partial(_async_compile_initializer, orig_ppid),
|
2389 |
+
)
|
2390 |
+
# when this pool is created in a subprocess object, the normal exit handler
|
2391 |
+
# doesn't run, and we need to register our own handler.
|
2392 |
+
# exitpriority has to be high, because another one of the finalizers will
|
2393 |
+
# kill the worker thread that sends the shutdown message to the workers...
|
2394 |
+
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
|
2395 |
+
return pool
|
2396 |
+
|
2397 |
+
@classmethod
|
2398 |
+
def warm_pool(cls) -> None:
|
2399 |
+
if config.compile_threads <= 1:
|
2400 |
+
return
|
2401 |
+
_compile_start()
|
2402 |
+
pool = cls.process_pool()
|
2403 |
+
|
2404 |
+
# We have to fork processes for compiler workers, but the more memory and other resources that are loaded, the
|
2405 |
+
# slower the os.fork time is, quite drastically. It also holds the GIL so we can't put it on another thread.
|
2406 |
+
|
2407 |
+
# Examples:
|
2408 |
+
# A simple x + x + x script: 10ms seconds in the middle of the program, 2ms at startup
|
2409 |
+
# tf_efficientnet_b0 benchmark: 50ms! in the middle of the program , 3ms at startup
|
2410 |
+
|
2411 |
+
# So we want to start the workers early when it is still cheap, and also to allow the workers to get
|
2412 |
+
# ready before we have work for them.
|
2413 |
+
|
2414 |
+
# ProcessPoolExecutor also does not launch the workers until it finds a point when all the workers are idle.
|
2415 |
+
# But if we waited until then fork time will be long and we will be waiting for the processes to initialize.
|
2416 |
+
|
2417 |
+
# We force them to start here with some YOLOing of the internal methods.
|
2418 |
+
if hasattr(pool, "_start_queue_management_thread"):
|
2419 |
+
pool._start_queue_management_thread()
|
2420 |
+
else:
|
2421 |
+
for _ in range(config.compile_threads):
|
2422 |
+
pool._adjust_process_count()
|
2423 |
+
if hasattr(pool, "_start_executor_manager_thread"):
|
2424 |
+
pool._start_executor_manager_thread()
|
2425 |
+
_compile_end()
|
2426 |
+
|
2427 |
+
@classmethod
|
2428 |
+
def submit(cls, task: Callable[..., Any]) -> Any:
|
2429 |
+
if config.compile_threads <= 1:
|
2430 |
+
return task()
|
2431 |
+
return cls.pool().submit(task)
|
2432 |
+
|
2433 |
+
@classmethod
|
2434 |
+
def map(cls, fn: Callable[..., Any], seq: List[Any]) -> List[Any]:
|
2435 |
+
if config.compile_threads <= 1 or len(seq) <= 1:
|
2436 |
+
return list(map(fn, seq))
|
2437 |
+
return [t.result() for t in [cls.pool().submit(fn, x) for x in seq]]
|
2438 |
+
|
2439 |
+
def triton(
|
2440 |
+
self, kernel_name: str, source_code: str, device_str: str = "cuda"
|
2441 |
+
) -> Union[TritonFuture, ModuleType]:
|
2442 |
+
_compile_start()
|
2443 |
+
|
2444 |
+
if config.compile_threads > 1:
|
2445 |
+
device_interface = get_interface_for_device(device_str)
|
2446 |
+
device = torch.device(device_str, device_interface.current_device())
|
2447 |
+
cc = device_interface.get_compute_capability(device)
|
2448 |
+
future = self.process_pool().submit(
|
2449 |
+
_worker_compile, kernel_name, source_code, cc, device
|
2450 |
+
)
|
2451 |
+
return TritonFuture(kernel_name, source_code, future)
|
2452 |
+
else:
|
2453 |
+
return _load_kernel(kernel_name, source_code)
|
2454 |
+
|
2455 |
+
def cpp(self, source_code: str) -> ModuleType:
|
2456 |
+
def task():
|
2457 |
+
return CppCodeCache.load(source_code).kernel
|
2458 |
+
|
2459 |
+
return self.submit(task)
|
2460 |
+
|
2461 |
+
def cuda(self, source_code, dst_file_ext):
|
2462 |
+
def task():
|
2463 |
+
return CUDACodeCache.load(source_code, dst_file_ext)[0]
|
2464 |
+
|
2465 |
+
return self.submit(task)
|
2466 |
+
|
2467 |
+
def wait(self, scope: Dict[str, Any]) -> None:
|
2468 |
+
num_kernels = len(
|
2469 |
+
[
|
2470 |
+
value
|
2471 |
+
for key, value in scope.items()
|
2472 |
+
if isinstance(value, (Future, TritonFuture))
|
2473 |
+
]
|
2474 |
+
)
|
2475 |
+
pbar = tqdm(
|
2476 |
+
total=num_kernels,
|
2477 |
+
desc="Inductor Compilation",
|
2478 |
+
disable=config.disable_progress,
|
2479 |
+
delay=0,
|
2480 |
+
)
|
2481 |
+
if config.compile_threads > 1:
|
2482 |
+
for key, result in scope.items():
|
2483 |
+
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
|
2484 |
+
pbar.set_postfix_str(key)
|
2485 |
+
if isinstance(result, (Future, TritonFuture)):
|
2486 |
+
scope[key] = result.result()
|
2487 |
+
pbar.update(1)
|
2488 |
+
|
2489 |
+
_compile_end()
|
2490 |
+
|
2491 |
+
|
2492 |
+
AsyncCompile.warm_pool()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cuda_combined_scheduling.cpython-310.pyc
ADDED
Binary file (3.36 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/memory_planning.cpython-310.pyc
ADDED
Binary file (26.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_utils.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/wrapper.cpython-310.pyc
ADDED
Binary file (83.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/interface.cpp
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/csrc/inductor/aoti_runtime/interface.h>
|
2 |
+
#include <torch/csrc/inductor/aoti_runtime/model_container.h>
|
3 |
+
|
4 |
+
#include <iostream>
|
5 |
+
#include <stdexcept>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
#define CONVERT_EXCEPTION_TO_ERROR_CODE(...) \
|
9 |
+
try { \
|
10 |
+
__VA_ARGS__ \
|
11 |
+
} catch (const std::exception& e) { \
|
12 |
+
std::cerr << "Error: " << e.what() << std::endl; \
|
13 |
+
return AOTI_RUNTIME_FAILURE; \
|
14 |
+
} catch (...) { \
|
15 |
+
std::cerr << "Unknown exception occurred." << std::endl; \
|
16 |
+
return AOTI_RUNTIME_FAILURE; \
|
17 |
+
} \
|
18 |
+
return AOTI_RUNTIME_SUCCESS;
|
19 |
+
|
20 |
+
#define AOTI_VECTOR_SIZE_CHECK(actual_size, expected_size, name) \
|
21 |
+
do { \
|
22 |
+
AOTI_RUNTIME_CHECK( \
|
23 |
+
actual_size == expected_size, \
|
24 |
+
"expected " + std::string(name) + " vector size to be " + \
|
25 |
+
std::to_string(expected_size) + ", but got " + \
|
26 |
+
std::to_string(actual_size)); \
|
27 |
+
} while (0)
|
28 |
+
|
29 |
+
// AOTInductor uses at::addmm_out, which doesn't supports
|
30 |
+
// arguments that requires gradient. For this reason, we
|
31 |
+
// enforce no_grad context for run APIs.
|
32 |
+
//
|
33 |
+
// A RAII, thread local (!) guard that enables or disables grad mode upon
|
34 |
+
// construction, and sets it back to the original value upon destruction.
|
35 |
+
struct AOTINoGradGuard {
|
36 |
+
AOTINoGradGuard() : prev_mode(aoti_torch_grad_mode_is_enabled()) {
|
37 |
+
aoti_torch_grad_mode_set_enabled(false);
|
38 |
+
}
|
39 |
+
~AOTINoGradGuard() {
|
40 |
+
aoti_torch_grad_mode_set_enabled(prev_mode);
|
41 |
+
}
|
42 |
+
bool prev_mode;
|
43 |
+
};
|
44 |
+
|
45 |
+
extern "C" {
|
46 |
+
|
47 |
+
AOTIRuntimeError AOTInductorModelContainerCreate(
|
48 |
+
AOTInductorModelContainerHandle* container_handle,
|
49 |
+
size_t num_models,
|
50 |
+
bool is_cpu,
|
51 |
+
const char* cubin_dir) {
|
52 |
+
if (num_models == 0) {
|
53 |
+
std::cerr << "Error: num_models must be positive, but got 0" << std::endl;
|
54 |
+
return AOTI_RUNTIME_FAILURE;
|
55 |
+
}
|
56 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
57 |
+
std::optional<std::string> cubin_dir_opt;
|
58 |
+
if (cubin_dir != nullptr) {
|
59 |
+
cubin_dir_opt.emplace(cubin_dir);
|
60 |
+
}
|
61 |
+
auto* container = new torch::aot_inductor::AOTInductorModelContainer(
|
62 |
+
num_models, is_cpu, cubin_dir_opt);
|
63 |
+
*container_handle =
|
64 |
+
reinterpret_cast<AOTInductorModelContainerHandle>(container);
|
65 |
+
})
|
66 |
+
}
|
67 |
+
|
68 |
+
AOTIRuntimeError AOTInductorModelContainerDelete(
|
69 |
+
AOTInductorModelContainerHandle container_handle) {
|
70 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
71 |
+
auto* container =
|
72 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
73 |
+
container_handle);
|
74 |
+
delete container;
|
75 |
+
});
|
76 |
+
}
|
77 |
+
|
78 |
+
AOTIRuntimeError AOTInductorModelContainerRun(
|
79 |
+
AOTInductorModelContainerHandle container_handle,
|
80 |
+
AtenTensorHandle* input_handles, // array of input AtenTensorHandle; handles
|
81 |
+
// are stolen; the array itself is borrowed
|
82 |
+
size_t num_inputs,
|
83 |
+
AtenTensorHandle*
|
84 |
+
output_handles, // array for writing output AtenTensorHandle; handles
|
85 |
+
// will be stolen by the caller; the array itself is
|
86 |
+
// borrowed
|
87 |
+
size_t num_outputs,
|
88 |
+
AOTInductorStreamHandle stream_handle,
|
89 |
+
AOTIProxyExecutorHandle proxy_executor_handle) {
|
90 |
+
auto* container =
|
91 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
92 |
+
container_handle);
|
93 |
+
AOTI_VECTOR_SIZE_CHECK(num_inputs, container->num_inputs(), "inputs");
|
94 |
+
AOTI_VECTOR_SIZE_CHECK(num_outputs, container->num_outputs(), "outputs");
|
95 |
+
|
96 |
+
auto stream = reinterpret_cast<torch::aot_inductor::DeviceStreamType>(stream_handle);
|
97 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
98 |
+
AOTINoGradGuard guard;
|
99 |
+
container->run(
|
100 |
+
input_handles,
|
101 |
+
output_handles,
|
102 |
+
stream,
|
103 |
+
proxy_executor_handle);
|
104 |
+
})
|
105 |
+
}
|
106 |
+
|
107 |
+
AOTIRuntimeError AOTInductorModelContainerGetNumInputs(
|
108 |
+
AOTInductorModelContainerHandle container_handle,
|
109 |
+
size_t* ret_num_inputs) {
|
110 |
+
auto* container =
|
111 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
112 |
+
container_handle);
|
113 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
114 |
+
{ *ret_num_inputs = container->num_inputs(); })
|
115 |
+
}
|
116 |
+
|
117 |
+
AOTIRuntimeError AOTInductorModelContainerGetInputName(
|
118 |
+
AOTInductorModelContainerHandle container_handle,
|
119 |
+
size_t input_idx,
|
120 |
+
const char** ret_input_names) {
|
121 |
+
auto* container =
|
122 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
123 |
+
container_handle);
|
124 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
125 |
+
{ *ret_input_names = container->input_name(input_idx); })
|
126 |
+
}
|
127 |
+
|
128 |
+
AOTIRuntimeError AOTInductorModelContainerGetNumOutputs(
|
129 |
+
AOTInductorModelContainerHandle container_handle,
|
130 |
+
size_t* ret_num_outputs) {
|
131 |
+
auto* container =
|
132 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
133 |
+
container_handle);
|
134 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
135 |
+
{ *ret_num_outputs = container->num_outputs(); })
|
136 |
+
}
|
137 |
+
|
138 |
+
AOTIRuntimeError AOTInductorModelContainerGetOutputName(
|
139 |
+
AOTInductorModelContainerHandle container_handle,
|
140 |
+
size_t output_idx,
|
141 |
+
const char** ret_output_names) {
|
142 |
+
auto* container =
|
143 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
144 |
+
container_handle);
|
145 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
146 |
+
{ *ret_output_names = container->output_name(output_idx); })
|
147 |
+
}
|
148 |
+
|
149 |
+
AOTIRuntimeError AOTInductorModelContainerGetCallSpec(
|
150 |
+
AOTInductorModelContainerHandle container_handle,
|
151 |
+
const char** in_spec,
|
152 |
+
const char** out_spec) {
|
153 |
+
auto* container =
|
154 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
155 |
+
container_handle);
|
156 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
157 |
+
*in_spec = container->get_in_spec();
|
158 |
+
*out_spec = container->get_out_spec();
|
159 |
+
})
|
160 |
+
}
|
161 |
+
|
162 |
+
AOTIRuntimeError AOTInductorModelCreate(
|
163 |
+
AOTInductorModelHandle* model_handle,
|
164 |
+
AOTInductorConstantMapHandle constant_map_handle) {
|
165 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
166 |
+
auto constant_map = std::make_shared<torch::aot_inductor::ConstantMap>();
|
167 |
+
auto input_map = reinterpret_cast<std::unordered_map<std::string, AtenTensorHandle>*>(constant_map_handle);
|
168 |
+
|
169 |
+
auto model = new torch::aot_inductor::AOTInductorModel(
|
170 |
+
constant_map,
|
171 |
+
""
|
172 |
+
);
|
173 |
+
|
174 |
+
if (input_map) {
|
175 |
+
for (auto const& kv : *input_map) {
|
176 |
+
constant_map->emplace(kv.first, kv.second);
|
177 |
+
}
|
178 |
+
} else {
|
179 |
+
model->load_constants(/*is_cpu*/true);
|
180 |
+
}
|
181 |
+
|
182 |
+
*model_handle = reinterpret_cast<AOTInductorModelHandle>(model);
|
183 |
+
})
|
184 |
+
}
|
185 |
+
|
186 |
+
AOTIRuntimeError AOTInductorModelRun(
|
187 |
+
AOTInductorModelHandle model_handle,
|
188 |
+
AtenTensorHandle* input_handles,
|
189 |
+
AtenTensorHandle* output_handles) {
|
190 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
191 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
192 |
+
AOTINoGradGuard guard;
|
193 |
+
model->run_impl(
|
194 |
+
input_handles,
|
195 |
+
output_handles,
|
196 |
+
(torch::aot_inductor::DeviceStreamType)nullptr,
|
197 |
+
nullptr);
|
198 |
+
})
|
199 |
+
}
|
200 |
+
|
201 |
+
|
202 |
+
AOTIRuntimeError AOTInductorModelDelete(
|
203 |
+
AOTInductorModelHandle model_handle
|
204 |
+
) {
|
205 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
206 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
207 |
+
delete model;
|
208 |
+
})
|
209 |
+
}
|
210 |
+
|
211 |
+
AOTIRuntimeError AOTInductorModelGetNumOutputs(
|
212 |
+
AOTInductorModelHandle model_handle,
|
213 |
+
size_t* ret_num_outputs) {
|
214 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
215 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
216 |
+
*ret_num_outputs = model->num_outputs();
|
217 |
+
})
|
218 |
+
}
|
219 |
+
|
220 |
+
AOTIRuntimeError AOTInductorModelUpdateConstantsMap(
|
221 |
+
AOTInductorModelHandle model_handle,
|
222 |
+
AOTInductorConstantMapHandle constant_map_handle) {
|
223 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
224 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
225 |
+
auto constant_map = std::make_shared<torch::aot_inductor::ConstantMap>();
|
226 |
+
auto input_map = reinterpret_cast<std::unordered_map<std::string, AtenTensorHandle>*>(constant_map_handle);
|
227 |
+
|
228 |
+
for (auto const& kv : *input_map) {
|
229 |
+
constant_map->emplace(kv.first, kv.second);
|
230 |
+
}
|
231 |
+
model->update_constants_map(std::move(constant_map));
|
232 |
+
})
|
233 |
+
}
|
234 |
+
|
235 |
+
#define CACHE_TORCH_DTYPE(typename) static auto cached_torch_dtype_##typename = aoti_torch_dtype_##typename()
|
236 |
+
|
237 |
+
static auto cached_torch_device_type_cpu = aoti_torch_device_type_cpu();
|
238 |
+
static auto cached_torch_device_type_cuda = aoti_torch_device_type_cuda();
|
239 |
+
} // extern "C"
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/common.py
ADDED
@@ -0,0 +1,1295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import dataclasses
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import logging
|
6 |
+
import operator
|
7 |
+
import re
|
8 |
+
from collections import namedtuple
|
9 |
+
from itertools import chain
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Callable,
|
13 |
+
ClassVar,
|
14 |
+
Dict,
|
15 |
+
List,
|
16 |
+
NamedTuple,
|
17 |
+
Optional,
|
18 |
+
Set,
|
19 |
+
Tuple,
|
20 |
+
Union,
|
21 |
+
)
|
22 |
+
|
23 |
+
import sympy
|
24 |
+
from sympy.printing.printer import Printer
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.fx
|
28 |
+
from torch.utils._sympy.value_ranges import ValueRanges
|
29 |
+
|
30 |
+
from .. import config, metrics
|
31 |
+
from ..utils import (
|
32 |
+
DeferredLineBase,
|
33 |
+
do_bench,
|
34 |
+
free_symbol_startswith,
|
35 |
+
IndentedBuffer,
|
36 |
+
sympy_dot,
|
37 |
+
sympy_subs,
|
38 |
+
sympy_symbol,
|
39 |
+
unique,
|
40 |
+
)
|
41 |
+
from ..virtualized import ops, OpsValue, V
|
42 |
+
|
43 |
+
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
|
44 |
+
|
45 |
+
|
46 |
+
def data_type_logger(msg):
|
47 |
+
if schedule_log.isEnabledFor(logging.DEBUG):
|
48 |
+
schedule_log.debug("Data type propagation: %s", msg)
|
49 |
+
|
50 |
+
|
51 |
+
TensorArg = namedtuple("TensorArg", ["name", "buffer", "dtype", "check_alignment"])
|
52 |
+
SizeArg = namedtuple("SizeArg", ["name", "expr"])
|
53 |
+
|
54 |
+
DeviceCodegen = namedtuple("DeviceCodegen", ["scheduling", "wrapper_codegen"])
|
55 |
+
device_codegens: Dict[str, DeviceCodegen] = {}
|
56 |
+
|
57 |
+
|
58 |
+
# The code generated by Inductor consists of two main parts: kernel code and wrapper code.
|
59 |
+
# For any new backend looking to integrate with Inductor, customization of these two main
|
60 |
+
# parts are necessary to generate its specific code.
|
61 |
+
#
|
62 |
+
# Kernel code generation is determined by different Scheduling. Consequently, a new
|
63 |
+
# backend needs to provide a custom Scheduling for its unique kernel code generation. Currently,
|
64 |
+
# CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively.
|
65 |
+
#
|
66 |
+
# For the Wrapper, Inductor provides a WrapperCodeGen class to generate the Python wrapper code
|
67 |
+
# that bridges kernels. This allows out-of-tree backends to inherit from WrapperCodeGen,
|
68 |
+
# and override specific member functions to create backend-specific Python wrapper code.
|
69 |
+
#
|
70 |
+
# Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part
|
71 |
+
# of the logic for either Scheduling or WrapperCodeGen. So the Scheduling and WrapperCodeGen interfaces
|
72 |
+
# provide flexibility to the backend. A backend can choose to implement these classes from scratch,
|
73 |
+
# or reuse them by extending and overriding as necessary. And Inductor provides the registration API,
|
74 |
+
# register_backend_for_device, to equip a new backend at runtime.
|
75 |
+
#
|
76 |
+
# Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces.
|
77 |
+
# This backend can be used as a reference:
|
78 |
+
# https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9
|
79 |
+
def register_backend_for_device(
|
80 |
+
device: str, device_scheduling: type, device_wrapper_codegen: type
|
81 |
+
):
|
82 |
+
device_codegens[device] = DeviceCodegen(device_scheduling, device_wrapper_codegen)
|
83 |
+
|
84 |
+
|
85 |
+
def get_scheduling_for_device(device: str):
|
86 |
+
return device_codegens[device].scheduling if device in device_codegens else None
|
87 |
+
|
88 |
+
|
89 |
+
def get_wrapper_codegen_for_device(device: str):
|
90 |
+
return (
|
91 |
+
device_codegens[device].wrapper_codegen if device in device_codegens else None
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
def index_prevent_reordering(index: List[sympy.Expr], index_vars, sizes):
|
96 |
+
from ..ir import FlexibleLayout
|
97 |
+
|
98 |
+
# added contiguous index prevents reordering
|
99 |
+
return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))]
|
100 |
+
|
101 |
+
|
102 |
+
@functools.lru_cache(None)
|
103 |
+
def boolean_ops():
|
104 |
+
return (
|
105 |
+
"is_inf",
|
106 |
+
"is_nan",
|
107 |
+
"bitwise_xor",
|
108 |
+
"logical_not",
|
109 |
+
"signbit",
|
110 |
+
"le",
|
111 |
+
"lt",
|
112 |
+
"ge",
|
113 |
+
"gt",
|
114 |
+
"eq",
|
115 |
+
"ne",
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
DTYPE_TO_COMPUTATION_DTYPE = {
|
120 |
+
torch.bfloat16: torch.float,
|
121 |
+
torch.float16: torch.float,
|
122 |
+
**{
|
123 |
+
dtype: dtype
|
124 |
+
for dtype in [
|
125 |
+
torch.bool,
|
126 |
+
torch.float32,
|
127 |
+
torch.float64,
|
128 |
+
torch.int8,
|
129 |
+
torch.int16,
|
130 |
+
torch.int32,
|
131 |
+
torch.int64,
|
132 |
+
torch.uint8,
|
133 |
+
]
|
134 |
+
},
|
135 |
+
}
|
136 |
+
|
137 |
+
|
138 |
+
class DataTypePropagation:
|
139 |
+
def __init__(self, body) -> None:
|
140 |
+
self.body = body
|
141 |
+
self.graphs: Dict[Union[Callable[..., Any], str], Any] = {
|
142 |
+
"root": body.root_block.graph
|
143 |
+
}
|
144 |
+
for k, v in body.subblocks.items():
|
145 |
+
self.graphs[k] = v.graph
|
146 |
+
|
147 |
+
def deduce_node_dtype_by_inputs(self, node: torch.fx.Node):
|
148 |
+
inputs = node.all_input_nodes
|
149 |
+
input_nodes = [
|
150 |
+
n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder"
|
151 |
+
]
|
152 |
+
if len(input_nodes) == 0:
|
153 |
+
return None
|
154 |
+
|
155 |
+
all_input_nodes_propogated = all(
|
156 |
+
OptimizationContext.key in n.meta
|
157 |
+
and n.meta[OptimizationContext.key].dtype is not None
|
158 |
+
for n in input_nodes
|
159 |
+
)
|
160 |
+
if not all_input_nodes_propogated:
|
161 |
+
return None
|
162 |
+
|
163 |
+
return functools.reduce(
|
164 |
+
torch.promote_types,
|
165 |
+
[n.meta[OptimizationContext.key].dtype for n in input_nodes],
|
166 |
+
)
|
167 |
+
|
168 |
+
def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node):
|
169 |
+
sub_graph = self.graphs[node.target]
|
170 |
+
dtype = self.propagate_graph(sub_graph)
|
171 |
+
assert dtype
|
172 |
+
return dtype
|
173 |
+
|
174 |
+
def deduce_node_dtype(self, node: torch.fx.Node):
|
175 |
+
if node.target in boolean_ops():
|
176 |
+
return torch.bool
|
177 |
+
|
178 |
+
if node.op == "placeholder":
|
179 |
+
return None
|
180 |
+
|
181 |
+
if node.target == "output":
|
182 |
+
# we can infer output node if it only have 1 arg
|
183 |
+
if len(node.args) != 1:
|
184 |
+
return None
|
185 |
+
|
186 |
+
if node.target in (
|
187 |
+
"to_dtype",
|
188 |
+
"index_expr",
|
189 |
+
):
|
190 |
+
return node.args[-1]
|
191 |
+
|
192 |
+
if node.target in (
|
193 |
+
"rand",
|
194 |
+
"randn",
|
195 |
+
):
|
196 |
+
return torch.float
|
197 |
+
|
198 |
+
if node.target in (
|
199 |
+
"get_index",
|
200 |
+
"index_expr",
|
201 |
+
):
|
202 |
+
return torch.int64
|
203 |
+
|
204 |
+
if node.target in (
|
205 |
+
"load",
|
206 |
+
"store",
|
207 |
+
"store_reduction",
|
208 |
+
):
|
209 |
+
buf_name = node.args[1]
|
210 |
+
return V.graph.get_dtype(buf_name)
|
211 |
+
|
212 |
+
if node.target == operator.getitem:
|
213 |
+
return self.deduce_node_dtype(node.args[0])
|
214 |
+
|
215 |
+
assert isinstance(node.target, str)
|
216 |
+
|
217 |
+
if node.target == "reduction":
|
218 |
+
return node.args[1]
|
219 |
+
|
220 |
+
if node.target == "constant":
|
221 |
+
return DTYPE_TO_COMPUTATION_DTYPE[node.args[-1]]
|
222 |
+
|
223 |
+
if node.target.startswith("masked_subblock"):
|
224 |
+
return self.deduce_node_dtype_by_subgraph(node)
|
225 |
+
|
226 |
+
return self.deduce_node_dtype_by_inputs(node)
|
227 |
+
|
228 |
+
def propagate_graph(self, graph: torch.fx.Graph):
|
229 |
+
assert graph.nodes
|
230 |
+
graph_dtype = None
|
231 |
+
# For masked_subblock, we use output's dtype to represent
|
232 |
+
# the dtype of this subgraph. For other cases, graph_dtype
|
233 |
+
# might be None
|
234 |
+
for node in graph.nodes:
|
235 |
+
if OptimizationContext.key in node.meta:
|
236 |
+
opt_ctx = node.meta[OptimizationContext.key]
|
237 |
+
else:
|
238 |
+
opt_ctx = OptimizationContext()
|
239 |
+
|
240 |
+
opt_ctx.dtype = self.deduce_node_dtype(node)
|
241 |
+
node.meta[OptimizationContext.key] = opt_ctx
|
242 |
+
if node.target == "output":
|
243 |
+
graph_dtype = opt_ctx.dtype
|
244 |
+
return graph_dtype
|
245 |
+
|
246 |
+
def propagate(self):
|
247 |
+
self.propagate_graph(self.graphs["root"])
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def propagate_loopbody(cls, body):
|
251 |
+
return cls(body).propagate()
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def propagate_scheduler_node(cls, node):
|
255 |
+
from ..ir import LoopBody
|
256 |
+
from ..scheduler import SchedulerNode
|
257 |
+
|
258 |
+
assert isinstance(node, SchedulerNode)
|
259 |
+
assert isinstance(node._body, LoopBody)
|
260 |
+
DataTypePropagation.propagate_loopbody(node._body)
|
261 |
+
|
262 |
+
|
263 |
+
class ExprPrinter(Printer):
|
264 |
+
@staticmethod
|
265 |
+
def paren(string):
|
266 |
+
def all_in_parens(string):
|
267 |
+
if string[0] != "(" or len(string) < 2:
|
268 |
+
return False
|
269 |
+
count = 1
|
270 |
+
for i, char in enumerate(string[1:]):
|
271 |
+
if char == "(":
|
272 |
+
count += 1
|
273 |
+
elif char == ")":
|
274 |
+
count -= 1
|
275 |
+
if count == 0 and i != len(string) - 2:
|
276 |
+
return False
|
277 |
+
assert count == 0
|
278 |
+
return True
|
279 |
+
|
280 |
+
if (
|
281 |
+
isinstance(string, CSEVariable)
|
282 |
+
or re.match(r"^[a-z0-9_.]+$", string, re.I)
|
283 |
+
or re.match(r"^\([^)]*\)$", string, re.I)
|
284 |
+
or string == ""
|
285 |
+
):
|
286 |
+
return string
|
287 |
+
# don't put extra parens for strings that are already wrapped in parens
|
288 |
+
if all_in_parens(string):
|
289 |
+
return string
|
290 |
+
return f"({string})"
|
291 |
+
|
292 |
+
def _print_Infinity(self, expr):
|
293 |
+
return "math.inf"
|
294 |
+
|
295 |
+
def _print_NegativeInfinity(self, expr):
|
296 |
+
return "-math.inf"
|
297 |
+
|
298 |
+
def _print_Relational(self, expr):
|
299 |
+
return f" {expr.rel_op} ".join(map(self.paren, map(self._print, expr.args)))
|
300 |
+
|
301 |
+
def _print_Mul(self, expr):
|
302 |
+
return "*".join(map(self.paren, map(self._print, expr.args)))
|
303 |
+
|
304 |
+
def _print_Add(self, expr):
|
305 |
+
return " + ".join(map(self.paren, map(self._print, expr.args)))
|
306 |
+
|
307 |
+
def _print_Mod(self, expr):
|
308 |
+
return " % ".join(map(self.paren, map(self._print, expr.args)))
|
309 |
+
|
310 |
+
def _print_FloorDiv(self, expr):
|
311 |
+
raise NotImplementedError(f"_print_FloorDiv not implemented for {type(self)}")
|
312 |
+
|
313 |
+
def _print_CleanDiv(self, expr):
|
314 |
+
return self._print_FloorDiv(expr)
|
315 |
+
|
316 |
+
def _print_GreaterThan(self, expr):
|
317 |
+
# GreaterThan: >=
|
318 |
+
# StrictlyGreaterThan: >
|
319 |
+
# Go figure...
|
320 |
+
return " >= ".join(map(self.paren, map(self._print, expr.args)))
|
321 |
+
|
322 |
+
def _print_align(self, expr):
|
323 |
+
assert len(expr.args) == 1
|
324 |
+
return f"align({self._print(expr.args[0])})"
|
325 |
+
|
326 |
+
|
327 |
+
class PythonPrinter(ExprPrinter):
|
328 |
+
def _print_ModularIndexing(self, expr):
|
329 |
+
x, div, mod = expr.args
|
330 |
+
x = self.paren(self.doprint(x))
|
331 |
+
div = self.paren(self.doprint(div))
|
332 |
+
mod = self.paren(self.doprint(mod))
|
333 |
+
if div != "1":
|
334 |
+
x = f"({x} // {div})"
|
335 |
+
return f"{x} % {mod}"
|
336 |
+
|
337 |
+
def _print_FloorDiv(self, expr):
|
338 |
+
x, div = expr.args
|
339 |
+
x = self.paren(self.doprint(x))
|
340 |
+
div = self.paren(self.doprint(div))
|
341 |
+
return f"({x} // {div})"
|
342 |
+
|
343 |
+
def _helper_sqrt(self, expr):
|
344 |
+
return f"math.sqrt({self._print(expr)})"
|
345 |
+
|
346 |
+
def _print_Pow(self, expr):
|
347 |
+
# Pow() confuses triton
|
348 |
+
base, exp = expr.args
|
349 |
+
# NB: Remember this is sizevar computation! You don't typically
|
350 |
+
# expect to have to do floating point computation including exponents
|
351 |
+
# in sizevar compute. Instead of adding support for floating
|
352 |
+
# point pow, you should make upstream retranslate the Sympy expression
|
353 |
+
# into Tensor expressions earlier and do that instead.
|
354 |
+
if exp == 0.5:
|
355 |
+
return self._helper_sqrt(base)
|
356 |
+
elif exp == -0.5:
|
357 |
+
return "1/" + self._helper_sqrt(base)
|
358 |
+
base = self._print(base)
|
359 |
+
assert exp == int(exp), exp
|
360 |
+
exp = int(exp)
|
361 |
+
if exp > 0:
|
362 |
+
return "*".join([self.paren(base)] * exp)
|
363 |
+
elif exp < 0:
|
364 |
+
return "1/" + self.paren("*".join([self.paren(base)] * abs(exp)))
|
365 |
+
else: # exp == 0
|
366 |
+
return "1"
|
367 |
+
|
368 |
+
def _print_floor(self, expr):
|
369 |
+
assert len(expr.args) == 1
|
370 |
+
return f"math.floor({self._print(expr.args[0])})"
|
371 |
+
|
372 |
+
def _print_ceiling(self, expr):
|
373 |
+
assert len(expr.args) == 1
|
374 |
+
return f"math.ceil({self._print(expr.args[0])})"
|
375 |
+
|
376 |
+
def _print_Abs(self, expr):
|
377 |
+
assert len(expr.args) == 1
|
378 |
+
return f"abs({self._print(expr.args[0])})"
|
379 |
+
|
380 |
+
def _print_Max(self, expr):
|
381 |
+
assert len(expr.args) >= 2
|
382 |
+
return f"max({', '.join(map(self._print, expr.args))})"
|
383 |
+
|
384 |
+
def _print_Min(self, expr):
|
385 |
+
assert len(expr.args) >= 2
|
386 |
+
return f"min({', '.join(map(self._print, expr.args))})"
|
387 |
+
|
388 |
+
|
389 |
+
class OpOverrides:
|
390 |
+
def __init__(self, parent):
|
391 |
+
super().__init__()
|
392 |
+
self._parent = parent
|
393 |
+
|
394 |
+
def __getattr__(self, item):
|
395 |
+
return getattr(self._parent, item)
|
396 |
+
|
397 |
+
@staticmethod
|
398 |
+
def identity(value):
|
399 |
+
# used to trigger cse
|
400 |
+
return value
|
401 |
+
|
402 |
+
@staticmethod
|
403 |
+
def constant(value, dtype):
|
404 |
+
return repr(value)
|
405 |
+
|
406 |
+
@staticmethod
|
407 |
+
def reciprocal(x):
|
408 |
+
return ops.truediv("1", x)
|
409 |
+
|
410 |
+
@staticmethod
|
411 |
+
def square(x):
|
412 |
+
return ops.mul(x, x)
|
413 |
+
|
414 |
+
@staticmethod
|
415 |
+
def bitwise_not(x):
|
416 |
+
return f"~{ExprPrinter.paren(x)}"
|
417 |
+
|
418 |
+
@staticmethod
|
419 |
+
def logical_not(a):
|
420 |
+
return f"{ExprPrinter.paren(a)} == 0"
|
421 |
+
|
422 |
+
@staticmethod
|
423 |
+
def bitwise_and(x, y):
|
424 |
+
return f"{ExprPrinter.paren(x)} & {ExprPrinter.paren(y)}"
|
425 |
+
|
426 |
+
@staticmethod
|
427 |
+
def bitwise_or(x, y):
|
428 |
+
return f"{ExprPrinter.paren(x)} | {ExprPrinter.paren(y)}"
|
429 |
+
|
430 |
+
@staticmethod
|
431 |
+
def bitwise_xor(x, y):
|
432 |
+
return f"{ExprPrinter.paren(x)} ^ {ExprPrinter.paren(y)}"
|
433 |
+
|
434 |
+
@staticmethod
|
435 |
+
def bitwise_left_shift(x, y):
|
436 |
+
return f"{ExprPrinter.paren(x)} << {ExprPrinter.paren(y)}"
|
437 |
+
|
438 |
+
# TODO(fdrocha): this is currently not being used anywhere,
|
439 |
+
# pending on moving triton pin past 972b761
|
440 |
+
@staticmethod
|
441 |
+
def bitwise_right_shift(x, y):
|
442 |
+
return f"{ExprPrinter.paren(x)} >> {ExprPrinter.paren(y)}"
|
443 |
+
|
444 |
+
@staticmethod
|
445 |
+
def remainder(a, b):
|
446 |
+
r = ops.mod(a, b)
|
447 |
+
return ops.where(f"(({r} != 0) & (({r} < 0) != ({b} < 0)))", ops.add(r, b), r)
|
448 |
+
|
449 |
+
@staticmethod
|
450 |
+
def load_seed(name, offset):
|
451 |
+
return ops.load(name, sympy.Integer(offset))
|
452 |
+
|
453 |
+
|
454 |
+
class DeferredLine(DeferredLineBase):
|
455 |
+
"""A line that can be 'unwritten' by adding name to V.graph.removed_buffers"""
|
456 |
+
|
457 |
+
def __init__(self, name, line):
|
458 |
+
super().__init__(line)
|
459 |
+
self.name = name
|
460 |
+
|
461 |
+
def __call__(self):
|
462 |
+
if all(
|
463 |
+
self.name not in x
|
464 |
+
for x in (
|
465 |
+
V.graph.removed_buffers,
|
466 |
+
V.kernel.removed_buffers,
|
467 |
+
V.graph.inplaced_to_remove,
|
468 |
+
V.kernel.inplaced_to_remove,
|
469 |
+
)
|
470 |
+
):
|
471 |
+
return self.line
|
472 |
+
return None
|
473 |
+
|
474 |
+
def _new_line(self, line):
|
475 |
+
return DeferredLine(self.name, line)
|
476 |
+
|
477 |
+
|
478 |
+
class BracesBuffer(IndentedBuffer):
|
479 |
+
def indent(self, offset=1):
|
480 |
+
@contextlib.contextmanager
|
481 |
+
def ctx():
|
482 |
+
for _ in range(offset):
|
483 |
+
self.writeline("{")
|
484 |
+
self._indent += 1
|
485 |
+
for _ in range(-offset):
|
486 |
+
self._indent -= 1
|
487 |
+
self.writeline("}")
|
488 |
+
yield
|
489 |
+
for _ in range(-offset):
|
490 |
+
self.writeline("{")
|
491 |
+
self._indent += 1
|
492 |
+
for _ in range(offset):
|
493 |
+
self._indent -= 1
|
494 |
+
self.writeline("}")
|
495 |
+
|
496 |
+
return ctx()
|
497 |
+
|
498 |
+
|
499 |
+
class InplacedBuffer(NamedTuple):
|
500 |
+
inner_name: str
|
501 |
+
other_names: List[str]
|
502 |
+
|
503 |
+
|
504 |
+
class KernelArgs:
|
505 |
+
@staticmethod
|
506 |
+
def _lookup(prefix, odict, name):
|
507 |
+
assert isinstance(name, (str, sympy.Symbol))
|
508 |
+
if name not in odict:
|
509 |
+
odict[name] = f"{prefix}{len(odict)}"
|
510 |
+
return odict[name]
|
511 |
+
|
512 |
+
def __init__(self, sizevars=None):
|
513 |
+
self.input_buffers = dict()
|
514 |
+
self.output_buffers = dict()
|
515 |
+
self.inplace_buffers = dict()
|
516 |
+
self.sizevars = sizevars or dict()
|
517 |
+
|
518 |
+
def __repr__(self):
|
519 |
+
return "KernelArgs({})".format(
|
520 |
+
", ".join(
|
521 |
+
map(
|
522 |
+
repr,
|
523 |
+
[
|
524 |
+
self.input_buffers,
|
525 |
+
self.output_buffers,
|
526 |
+
self.inplace_buffers,
|
527 |
+
self.sizevars,
|
528 |
+
],
|
529 |
+
)
|
530 |
+
)
|
531 |
+
)
|
532 |
+
|
533 |
+
def _buffer_is_marked_removed(self, name):
|
534 |
+
return isinstance(name, str) and name.startswith("REMOVED")
|
535 |
+
|
536 |
+
def input(self, name):
|
537 |
+
if V.graph.scheduler:
|
538 |
+
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
539 |
+
assert name not in V.graph.removed_buffers, name
|
540 |
+
if name in self.output_buffers:
|
541 |
+
return self.output_buffers[name]
|
542 |
+
if name in self.inplace_buffers:
|
543 |
+
return self.inplace_buffers[name].inner_name
|
544 |
+
if name.startswith("seed"):
|
545 |
+
return self._lookup("seed", self.input_buffers, name)
|
546 |
+
return self._lookup("in_ptr", self.input_buffers, name)
|
547 |
+
|
548 |
+
def output(self, name):
|
549 |
+
if V.graph.scheduler:
|
550 |
+
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
551 |
+
assert name not in V.graph.removed_buffers, name
|
552 |
+
if name in self.inplace_buffers:
|
553 |
+
return self.inplace_buffers[name].inner_name
|
554 |
+
return self._lookup("out_ptr", self.output_buffers, name)
|
555 |
+
|
556 |
+
def make_inplace(self, input_name, output_name):
|
557 |
+
assert output_name not in self.inplace_buffers
|
558 |
+
if input_name in self.inplace_buffers:
|
559 |
+
buf = self.inplace_buffers[input_name]
|
560 |
+
buf.other_names.append(output_name)
|
561 |
+
self.inplace_buffers[output_name] = buf
|
562 |
+
else:
|
563 |
+
buf = InplacedBuffer(
|
564 |
+
f"in_out_ptr{len(unique(self.inplace_buffers.values()))}",
|
565 |
+
[input_name, output_name],
|
566 |
+
)
|
567 |
+
self.inplace_buffers[input_name] = buf
|
568 |
+
self.inplace_buffers[output_name] = buf
|
569 |
+
|
570 |
+
def seed_offset(self, name, value):
|
571 |
+
if value in self.sizevars:
|
572 |
+
return self.sizevars[value]
|
573 |
+
if name in self.sizevars.values():
|
574 |
+
name = (
|
575 |
+
f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}"
|
576 |
+
)
|
577 |
+
self.sizevars[value] = name
|
578 |
+
return name
|
579 |
+
|
580 |
+
def size(self, name):
|
581 |
+
if str(name) == "seed":
|
582 |
+
self.sizevars["seed"] = "seed"
|
583 |
+
return "seed"
|
584 |
+
return self._lookup("ks", self.sizevars, name)
|
585 |
+
|
586 |
+
def call_names(self):
|
587 |
+
return chain(
|
588 |
+
self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys()
|
589 |
+
)
|
590 |
+
|
591 |
+
def wrap_ptr_arg(self, buf, dtype):
|
592 |
+
return f"c_void_p({buf}.data_ptr())"
|
593 |
+
|
594 |
+
def wrap_size_arg(self, size):
|
595 |
+
return f"c_long({size})"
|
596 |
+
|
597 |
+
def cpp_argdefs(self):
|
598 |
+
from .cpp import DTYPE_TO_CPP, INDEX_TYPE
|
599 |
+
|
600 |
+
call_args = []
|
601 |
+
arg_defs = []
|
602 |
+
arg_types = []
|
603 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
604 |
+
if self._buffer_is_marked_removed(inplaced):
|
605 |
+
continue
|
606 |
+
outer = inplaced.other_names[-1]
|
607 |
+
inner = inplaced.inner_name
|
608 |
+
dtype = V.graph.get_dtype(outer)
|
609 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
610 |
+
arg_defs.append(f"{cpp_dtype}* {inner}")
|
611 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
612 |
+
arg_types.append(f"{cpp_dtype}*")
|
613 |
+
for outer, inner in self.input_buffers.items():
|
614 |
+
if outer in self.inplace_buffers:
|
615 |
+
continue
|
616 |
+
dtype = V.graph.get_dtype(outer)
|
617 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
618 |
+
arg_defs.append(f"const {cpp_dtype}* {inner}")
|
619 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
620 |
+
arg_types.append(f"const {cpp_dtype}*")
|
621 |
+
for outer, inner in self.output_buffers.items():
|
622 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
623 |
+
continue
|
624 |
+
dtype = V.graph.get_dtype(outer)
|
625 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
626 |
+
arg_defs.append(f"{cpp_dtype}* {inner}")
|
627 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
628 |
+
arg_types.append(f"{cpp_dtype}*")
|
629 |
+
for outer, inner in self.sizevars.items():
|
630 |
+
arg_defs.append(f"const {INDEX_TYPE} {inner}")
|
631 |
+
call_args.append(self.wrap_size_arg(outer))
|
632 |
+
arg_types.append(f"const {INDEX_TYPE}")
|
633 |
+
return arg_defs, call_args, arg_types
|
634 |
+
|
635 |
+
def python_argdefs(self):
|
636 |
+
arg_defs = []
|
637 |
+
call_args = []
|
638 |
+
precompile_args: List[Union[TensorArg, SizeArg]] = []
|
639 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
640 |
+
if self._buffer_is_marked_removed(inplaced):
|
641 |
+
continue
|
642 |
+
arg_defs.append(inplaced.inner_name)
|
643 |
+
call_args.append(inplaced.other_names[-1])
|
644 |
+
precompile_args.append(
|
645 |
+
TensorArg(
|
646 |
+
inplaced.inner_name,
|
647 |
+
inplaced.other_names[-1],
|
648 |
+
V.graph.get_dtype(inplaced.other_names[-1]),
|
649 |
+
True,
|
650 |
+
)
|
651 |
+
)
|
652 |
+
for outer, inner in chain(
|
653 |
+
self.input_buffers.items(), self.output_buffers.items()
|
654 |
+
):
|
655 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
656 |
+
continue
|
657 |
+
arg_defs.append(inner)
|
658 |
+
call_args.append(outer)
|
659 |
+
precompile_args.append(
|
660 |
+
TensorArg(inner, outer, V.graph.get_dtype(outer), True)
|
661 |
+
)
|
662 |
+
for outer, inner in self.sizevars.items():
|
663 |
+
arg_defs.append(inner)
|
664 |
+
call_args.append(outer)
|
665 |
+
precompile_args.append(SizeArg(inner, outer))
|
666 |
+
|
667 |
+
return arg_defs, call_args, precompile_args
|
668 |
+
|
669 |
+
def aliases(self):
|
670 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
671 |
+
if self._buffer_is_marked_removed(inplaced):
|
672 |
+
continue
|
673 |
+
for other in inplaced.other_names:
|
674 |
+
if (
|
675 |
+
other in V.graph.inplaced_to_remove
|
676 |
+
or other in V.kernel.inplaced_to_remove
|
677 |
+
):
|
678 |
+
continue
|
679 |
+
if other in self.input_buffers:
|
680 |
+
yield self.input_buffers[other], inplaced.inner_name
|
681 |
+
if other in self.output_buffers:
|
682 |
+
yield self.output_buffers[other], inplaced.inner_name
|
683 |
+
|
684 |
+
def is_removed(self, name):
|
685 |
+
def _is_removed(name, buffers):
|
686 |
+
return name not in buffers or self._buffer_is_marked_removed(buffers[name])
|
687 |
+
|
688 |
+
return _is_removed(name, self.output_buffers) and _is_removed(
|
689 |
+
name, self.inplace_buffers
|
690 |
+
)
|
691 |
+
|
692 |
+
# Includes inplace buffers, excludes removed buffers. Essentially,
|
693 |
+
# after you do a call into this kernel, which buffers actually contain
|
694 |
+
# updated data? Modeled off of python_argdefs.
|
695 |
+
def live_output_buffers(self):
|
696 |
+
live_outs = set()
|
697 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
698 |
+
if self._buffer_is_marked_removed(inplaced):
|
699 |
+
continue
|
700 |
+
live_outs.add(inplaced.other_names[-1])
|
701 |
+
for outer, inner in self.output_buffers.items():
|
702 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
703 |
+
continue
|
704 |
+
live_outs.add(outer)
|
705 |
+
return live_outs
|
706 |
+
|
707 |
+
|
708 |
+
class CSEVariable:
|
709 |
+
"""A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis.
|
710 |
+
To do so, the backends can simply overload `Kernel.create_cse_var`
|
711 |
+
The "CSEVariable.update_on_args" method gives you a hook for annotations
|
712 |
+
See example of TritonCSEVariable in triton.py
|
713 |
+
"""
|
714 |
+
|
715 |
+
def __init__(self, name, bounds: ValueRanges):
|
716 |
+
assert isinstance(bounds, ValueRanges)
|
717 |
+
self.name = name
|
718 |
+
self.bounds = bounds
|
719 |
+
|
720 |
+
def __str__(self):
|
721 |
+
return self.name
|
722 |
+
|
723 |
+
def __hash__(self) -> int:
|
724 |
+
return hash(self.name)
|
725 |
+
|
726 |
+
def __eq__(self, other) -> bool:
|
727 |
+
return type(other) == type(self) and other.name == self.name
|
728 |
+
|
729 |
+
def update_on_args(self, name, args, kwargs):
|
730 |
+
pass
|
731 |
+
|
732 |
+
|
733 |
+
class CppWrapperKernelArgs(KernelArgs):
|
734 |
+
def wrap_ptr_arg(self, buf, dtype):
|
735 |
+
from .cpp import DTYPE_TO_CPP
|
736 |
+
|
737 |
+
if config.aot_inductor.abi_compatible:
|
738 |
+
# In the abi_compatible model, we just return the buf here.
|
739 |
+
# We will form correct call args later in wrapper.generate_kernel_all.
|
740 |
+
return buf
|
741 |
+
else:
|
742 |
+
return f"({DTYPE_TO_CPP[dtype]}*)({buf}.data_ptr())"
|
743 |
+
|
744 |
+
def wrap_size_arg(self, size):
|
745 |
+
return f"{size}"
|
746 |
+
|
747 |
+
|
748 |
+
class CSE:
|
749 |
+
"""Common subexpression elimination"""
|
750 |
+
|
751 |
+
def __init__(
|
752 |
+
self,
|
753 |
+
prefix="",
|
754 |
+
suffix="",
|
755 |
+
name_prefix="tmp",
|
756 |
+
iter_buffers=None,
|
757 |
+
store_cache=None,
|
758 |
+
reduction_cache=None,
|
759 |
+
varname_map=None,
|
760 |
+
):
|
761 |
+
self.prefix = prefix
|
762 |
+
self.suffix = suffix
|
763 |
+
self.cache = {}
|
764 |
+
self.name_prefix = name_prefix
|
765 |
+
self.store_cache = store_cache or {}
|
766 |
+
self.reduction_cache = reduction_cache or {}
|
767 |
+
self.iter_buffer_ids = iter_buffers or itertools.count()
|
768 |
+
self.invalidated_stores = set()
|
769 |
+
self.varname_map = varname_map or {}
|
770 |
+
|
771 |
+
def invalidate(self, keep_vars: Set[str]):
|
772 |
+
for name, tmp in list(self.store_cache.items()):
|
773 |
+
if tmp not in keep_vars:
|
774 |
+
del self.store_cache[name]
|
775 |
+
self.invalidated_stores.add(name)
|
776 |
+
self.cache = {k: v for k, v in self.cache.items() if v in keep_vars}
|
777 |
+
|
778 |
+
def clone(self):
|
779 |
+
# Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional
|
780 |
+
return CSE(
|
781 |
+
prefix=self.prefix,
|
782 |
+
suffix=self.suffix,
|
783 |
+
name_prefix=self.name_prefix,
|
784 |
+
iter_buffers=self.iter_buffer_ids,
|
785 |
+
store_cache=self.store_cache,
|
786 |
+
varname_map=self.varname_map,
|
787 |
+
)
|
788 |
+
|
789 |
+
def generate(
|
790 |
+
self,
|
791 |
+
buffer: IndentedBuffer,
|
792 |
+
expr: Union[str, CSEVariable, OpsValue],
|
793 |
+
*,
|
794 |
+
bounds: ValueRanges = ValueRanges.unknown(),
|
795 |
+
write=True,
|
796 |
+
assignment=True,
|
797 |
+
) -> CSEVariable:
|
798 |
+
if isinstance(expr, OpsValue):
|
799 |
+
expr = expr.value
|
800 |
+
|
801 |
+
assert isinstance(expr, (str, CSEVariable)), type(expr)
|
802 |
+
assert write or assignment
|
803 |
+
if isinstance(expr, CSEVariable):
|
804 |
+
# If the expressions were always created with all the information, we could
|
805 |
+
# assert expr.bounds == bounds, but sometimes the expression is created
|
806 |
+
# with the loose ValueRanges.unknown(), so we need to tighten the bounds
|
807 |
+
expr.bounds = expr.bounds.tighten(bounds)
|
808 |
+
return expr
|
809 |
+
cache_key = expr
|
810 |
+
var = self.cache.get(cache_key, None)
|
811 |
+
if not var:
|
812 |
+
var = self.newvar(bounds) if assignment else None
|
813 |
+
self.cache[cache_key] = var
|
814 |
+
if write:
|
815 |
+
if V.kernel.current_node:
|
816 |
+
V.kernel.current_node.codegen_originating_info(
|
817 |
+
buffer, only_once=True
|
818 |
+
)
|
819 |
+
if assignment:
|
820 |
+
line = f"{self.prefix}{var} = {expr}{self.suffix}"
|
821 |
+
else:
|
822 |
+
line = f"{expr}{self.suffix}"
|
823 |
+
buffer.writeline(line)
|
824 |
+
else:
|
825 |
+
var.bounds = var.bounds.tighten(bounds)
|
826 |
+
|
827 |
+
return var
|
828 |
+
|
829 |
+
def newvar(self, bounds: ValueRanges = ValueRanges.unknown()) -> CSEVariable:
|
830 |
+
var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}"
|
831 |
+
var = V.kernel.create_cse_var(var_name, bounds)
|
832 |
+
self.varname_map[var_name] = var
|
833 |
+
return var
|
834 |
+
|
835 |
+
|
836 |
+
class IndirectAssertLine(DeferredLineBase):
|
837 |
+
def __init__(self, line, assert_fn, var, mask, size_map):
|
838 |
+
self.var = var
|
839 |
+
self.mask = mask
|
840 |
+
self.line = line
|
841 |
+
self.assert_fn = assert_fn
|
842 |
+
self.size_map = size_map
|
843 |
+
|
844 |
+
def __call__(self):
|
845 |
+
size, size_str = self.size_map[(self.var, self.mask)]
|
846 |
+
|
847 |
+
# We assert if we've not been able to prove the bound
|
848 |
+
assert_min = (self.var.bounds.lower >= 0) != sympy.true
|
849 |
+
assert_max = (self.var.bounds.upper < size) != sympy.true
|
850 |
+
|
851 |
+
# FooBar interview question
|
852 |
+
if not (assert_min or assert_max):
|
853 |
+
return None
|
854 |
+
elif assert_min and assert_max:
|
855 |
+
# The conditions need to be in parens because of Python's operator precedence.
|
856 |
+
# It'd be less error-prone to use and/or/not, which is suported by triton
|
857 |
+
cond = f"(0 <= {self.var}) & ({self.var} < {size_str})"
|
858 |
+
cond_print = f"0 <= {self.var} < {size_str}"
|
859 |
+
elif assert_min:
|
860 |
+
cond = f"0 <= {self.var}"
|
861 |
+
cond_print = cond
|
862 |
+
else:
|
863 |
+
assert assert_max
|
864 |
+
cond = f"{self.var} < {size_str}"
|
865 |
+
cond_print = cond
|
866 |
+
|
867 |
+
if self.mask:
|
868 |
+
cond = f"({cond}) | ~{self.mask}"
|
869 |
+
return self.line.format(
|
870 |
+
assert_fn=self.assert_fn, cond=cond, cond_print=cond_print
|
871 |
+
)
|
872 |
+
|
873 |
+
def _new_line(self, line):
|
874 |
+
return IndirectAssertLine(
|
875 |
+
line, self.assert_fn, self.var, self.mask, self.size_map
|
876 |
+
)
|
877 |
+
|
878 |
+
|
879 |
+
class CodeGen:
|
880 |
+
def __init__(self):
|
881 |
+
super().__init__()
|
882 |
+
self.exit_stack = contextlib.ExitStack()
|
883 |
+
|
884 |
+
def __enter__(self):
|
885 |
+
self.exit_stack.__enter__()
|
886 |
+
return self
|
887 |
+
|
888 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
889 |
+
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
|
890 |
+
|
891 |
+
|
892 |
+
class Kernel(CodeGen):
|
893 |
+
newvar_prefix = ""
|
894 |
+
suffix = ""
|
895 |
+
overrides = None
|
896 |
+
load_format = None
|
897 |
+
store_format = None
|
898 |
+
|
899 |
+
def __init__(self, args=None, increase_kernel_count=True):
|
900 |
+
super().__init__()
|
901 |
+
if increase_kernel_count:
|
902 |
+
metrics.generated_kernel_count += 1
|
903 |
+
self.args = args or KernelArgs()
|
904 |
+
self.loads = IndentedBuffer()
|
905 |
+
self.compute = IndentedBuffer()
|
906 |
+
self.stores = IndentedBuffer()
|
907 |
+
self.cse: CSE = CSE(self.newvar_prefix, self.suffix)
|
908 |
+
self.must_keep_buffers = set()
|
909 |
+
self.store_buffer_names = set()
|
910 |
+
self._load_mask = None
|
911 |
+
# set in set_current_node
|
912 |
+
self.current_node = None
|
913 |
+
self.node_to_bounds: Optional[Dict[torch.fx.Node, ValueRanges]] = None
|
914 |
+
# Upper bounds for indirect_indexing and their str representation
|
915 |
+
self.indirect_max_sizes: Dict[Tuple[str, str], Tuple[sympy.Expr, str]] = {}
|
916 |
+
|
917 |
+
self.removed_buffers = set()
|
918 |
+
self.inplaced_to_remove = set()
|
919 |
+
|
920 |
+
# key: the buffer to write
|
921 |
+
# value: the buffer to read and whose memory can be reused for
|
922 |
+
# the buffer specified by key
|
923 |
+
self.inplace_update_buffers = dict()
|
924 |
+
# Set minimum number of elements processed per thread.
|
925 |
+
self.min_elem_per_thread = 1
|
926 |
+
|
927 |
+
@contextlib.contextmanager
|
928 |
+
def set_current_node(self, node):
|
929 |
+
prior = self.current_node
|
930 |
+
self.current_node = node
|
931 |
+
self.node_to_bounds = node._body.bounds().get_bounds()
|
932 |
+
try:
|
933 |
+
yield
|
934 |
+
finally:
|
935 |
+
self.current_node = prior
|
936 |
+
|
937 |
+
@contextlib.contextmanager
|
938 |
+
def swap_buffers(self, lb, cb=None, sb=None):
|
939 |
+
if cb is None:
|
940 |
+
cb = lb
|
941 |
+
loads = self.loads
|
942 |
+
compute = self.compute
|
943 |
+
stores = self.stores
|
944 |
+
cse = self.cse
|
945 |
+
self.loads = lb
|
946 |
+
self.compute = cb
|
947 |
+
self.stores = sb
|
948 |
+
self.cse = cse.clone()
|
949 |
+
try:
|
950 |
+
yield
|
951 |
+
finally:
|
952 |
+
self.loads = loads
|
953 |
+
self.compute = compute
|
954 |
+
self.stores = stores
|
955 |
+
self.cse = cse
|
956 |
+
|
957 |
+
def load(self, name: str, index: sympy.Expr):
|
958 |
+
raise NotImplementedError()
|
959 |
+
|
960 |
+
def indirect_load(self, name: str, index: sympy.Expr):
|
961 |
+
"""A load the depends on an index we have read"""
|
962 |
+
prior = self.loads
|
963 |
+
try:
|
964 |
+
# put the load in the compute section as it might have deps
|
965 |
+
self.loads = self.compute
|
966 |
+
return self.load(name, index)
|
967 |
+
finally:
|
968 |
+
self.loads = prior
|
969 |
+
|
970 |
+
def store_reduction(self, name, index, value):
|
971 |
+
raise NotImplementedError()
|
972 |
+
|
973 |
+
def store(self, name, index, value, mode=None):
|
974 |
+
raise NotImplementedError()
|
975 |
+
|
976 |
+
def reduction(self, dtype, src_dtype, reduction_type, value):
|
977 |
+
raise NotImplementedError()
|
978 |
+
|
979 |
+
def bucketize(
|
980 |
+
self,
|
981 |
+
values,
|
982 |
+
offsets_name: str,
|
983 |
+
offsets_size: sympy.Expr,
|
984 |
+
indexing_dtype: torch.dtype,
|
985 |
+
right: bool,
|
986 |
+
):
|
987 |
+
"""
|
988 |
+
See [Note: Inductor bucketize op]
|
989 |
+
"""
|
990 |
+
raise NotImplementedError()
|
991 |
+
|
992 |
+
@property
|
993 |
+
def assert_function(self) -> str:
|
994 |
+
raise NotImplementedError()
|
995 |
+
|
996 |
+
def index_to_str(self, index: sympy.Expr) -> str:
|
997 |
+
raise NotImplementedError()
|
998 |
+
|
999 |
+
def __enter__(self):
|
1000 |
+
class CSEProxy:
|
1001 |
+
self.name = "CSEProxy"
|
1002 |
+
|
1003 |
+
@staticmethod
|
1004 |
+
def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc]
|
1005 |
+
def inner(*args, **kwargs):
|
1006 |
+
# TritonTemplateKernel has no current_node
|
1007 |
+
buf_bounds = ValueRanges.unknown()
|
1008 |
+
if hasattr(V.interpreter, "current_node"):
|
1009 |
+
fx_node = V.interpreter.current_node
|
1010 |
+
assert isinstance(self.node_to_bounds, dict)
|
1011 |
+
buf_bounds = self.node_to_bounds.get(
|
1012 |
+
fx_node, ValueRanges.unknown()
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
csevar = self.cse.generate(
|
1016 |
+
self.compute,
|
1017 |
+
getattr(parent_handler, name)(*args, **kwargs), # type: ignore[has-type]
|
1018 |
+
bounds=buf_bounds,
|
1019 |
+
)
|
1020 |
+
csevar.update_on_args(name, args, kwargs)
|
1021 |
+
return csevar
|
1022 |
+
|
1023 |
+
return inner
|
1024 |
+
|
1025 |
+
@staticmethod
|
1026 |
+
def indirect_indexing(var, size, check=True):
|
1027 |
+
# Skip CSE since this doesn't return an expression
|
1028 |
+
|
1029 |
+
if var.bounds.lower < 0:
|
1030 |
+
new_bounds = ValueRanges.unknown()
|
1031 |
+
if var.bounds != ValueRanges.unknown() and isinstance(
|
1032 |
+
size, sympy.Number
|
1033 |
+
):
|
1034 |
+
# Take the negative part of the bound and add size to it
|
1035 |
+
# Then take union of that and the positive part
|
1036 |
+
# This is a tighter bound than that of a generic ops.where, as we have info on the cond
|
1037 |
+
neg = var.bounds & ValueRanges(-sympy.oo, -1)
|
1038 |
+
new_bounds = ValueRanges(neg.lower + size, neg.upper + size)
|
1039 |
+
# We don't have a good way of representing the empty range
|
1040 |
+
if var.bounds.upper >= 0:
|
1041 |
+
pos = var.bounds & ValueRanges(0, sympy.oo)
|
1042 |
+
new_bounds = new_bounds | pos
|
1043 |
+
|
1044 |
+
stm = ops.add(var, self.rename_indexing(size))
|
1045 |
+
# Mixed negative and non-negative
|
1046 |
+
if var.bounds.upper >= 0:
|
1047 |
+
lt = ops.lt(var, "0")
|
1048 |
+
stm = ops.where(lt, stm, var)
|
1049 |
+
new_var = self.cse.generate(self.compute, stm, bounds=new_bounds)
|
1050 |
+
|
1051 |
+
new_var.update_on_args("index_wrap", (var,), {})
|
1052 |
+
var = new_var
|
1053 |
+
|
1054 |
+
if self.generate_assert(check):
|
1055 |
+
mask = self.load_mask(var)
|
1056 |
+
|
1057 |
+
# An assertion line may have been written already, if so just
|
1058 |
+
# update the max size.
|
1059 |
+
map_key = (var, mask)
|
1060 |
+
existing_size, _ = self.indirect_max_sizes.get(
|
1061 |
+
map_key, (None, None)
|
1062 |
+
)
|
1063 |
+
if existing_size is not None:
|
1064 |
+
size = sympy.Min(size, existing_size)
|
1065 |
+
else:
|
1066 |
+
line = (
|
1067 |
+
'{assert_fn}({cond}, "index out of bounds: {cond_print}")'
|
1068 |
+
)
|
1069 |
+
self.compute.writeline(
|
1070 |
+
IndirectAssertLine(
|
1071 |
+
line,
|
1072 |
+
self.assert_function,
|
1073 |
+
var,
|
1074 |
+
mask,
|
1075 |
+
self.indirect_max_sizes,
|
1076 |
+
)
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
self.indirect_max_sizes[map_key] = (size, self.index_to_str(size))
|
1080 |
+
return sympy_symbol(str(var))
|
1081 |
+
|
1082 |
+
@staticmethod
|
1083 |
+
def load(name: str, index: sympy.Expr):
|
1084 |
+
if name in self.cse.invalidated_stores:
|
1085 |
+
# A load from an invalidated store requires us to
|
1086 |
+
# keep the actual buffer around
|
1087 |
+
V.kernel.must_keep_buffers.add(name)
|
1088 |
+
if free_symbol_startswith(index, "tmp"):
|
1089 |
+
return self.indirect_load(name, index)
|
1090 |
+
store_cache = self.cse.store_cache
|
1091 |
+
if name in store_cache:
|
1092 |
+
return store_cache[name]
|
1093 |
+
return self.load(name, index)
|
1094 |
+
|
1095 |
+
@staticmethod
|
1096 |
+
def store(name, index, value, mode=None):
|
1097 |
+
self.store_buffer_names.add(name)
|
1098 |
+
if mode is None:
|
1099 |
+
self.cse.store_cache[name] = value
|
1100 |
+
if self.current_node:
|
1101 |
+
for other_name in self.current_node.get_mutations():
|
1102 |
+
self.cse.store_cache[other_name] = value
|
1103 |
+
if name not in V.graph.removed_buffers:
|
1104 |
+
return self.store(name, index, value, mode=mode)
|
1105 |
+
|
1106 |
+
@staticmethod
|
1107 |
+
def store_reduction(name, index, value):
|
1108 |
+
self.store_buffer_names.add(name)
|
1109 |
+
self.cse.store_cache[name] = value
|
1110 |
+
if self.current_node:
|
1111 |
+
for other_name in self.current_node.get_mutations():
|
1112 |
+
self.cse.store_cache[other_name] = value
|
1113 |
+
|
1114 |
+
if name not in V.graph.removed_buffers:
|
1115 |
+
return self.store_reduction(name, index, value)
|
1116 |
+
|
1117 |
+
@staticmethod
|
1118 |
+
def reduction(dtype, src_dtype, reduction_type, value):
|
1119 |
+
return self.reduction(dtype, src_dtype, reduction_type, value)
|
1120 |
+
|
1121 |
+
@staticmethod
|
1122 |
+
def bucketize(
|
1123 |
+
values,
|
1124 |
+
offsets_name: str,
|
1125 |
+
offsets_size: sympy.Expr,
|
1126 |
+
indexing_dtype: torch.dtype,
|
1127 |
+
right: bool,
|
1128 |
+
):
|
1129 |
+
"""
|
1130 |
+
[Note: Inductor bucketize op]
|
1131 |
+
|
1132 |
+
Given values (tensor) and offsets_name (reference to the name of a 1D
|
1133 |
+
tensor), calculate the bucket that each value belongs to.
|
1134 |
+
|
1135 |
+
e.g. for values [-1, 0, 1, 2, 3, 4, 5, 9], offsets [0, 4, 4, 8], right=True
|
1136 |
+
return = [ 0, 1, 1, 1, 1, 3, 3, 4].
|
1137 |
+
|
1138 |
+
When right == False, bucket i refers to range (offsets[i], offsets[i+1]].
|
1139 |
+
When right == True, bucket i refers to range [offsets[i], offsets[i+1]).
|
1140 |
+
|
1141 |
+
Offsets must be non-decreasing or the result is undefined.
|
1142 |
+
"""
|
1143 |
+
return self.bucketize(
|
1144 |
+
values, offsets_name, offsets_size, indexing_dtype, right
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
super().__enter__()
|
1148 |
+
assert self.overrides
|
1149 |
+
parent_handler = self.overrides(V.get_ops_handler())
|
1150 |
+
self.exit_stack.enter_context(V.set_ops_handler(CSEProxy()))
|
1151 |
+
self.exit_stack.enter_context(V.set_kernel_handler(self))
|
1152 |
+
return self
|
1153 |
+
|
1154 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
1155 |
+
"""
|
1156 |
+
Note that V.graph.scheduler can be None when codegening triton template
|
1157 |
+
kernels.
|
1158 |
+
"""
|
1159 |
+
if V.graph.scheduler:
|
1160 |
+
V.graph.scheduler.remove_kernel_local_buffers()
|
1161 |
+
super().__exit__(exc_type, exc_val, exc_tb)
|
1162 |
+
|
1163 |
+
def generate_assert(self, check):
|
1164 |
+
return (check or config.debug_index_asserts) and config.assert_indirect_indexing
|
1165 |
+
|
1166 |
+
def load_mask(self, var):
|
1167 |
+
# only the triton kernel requires mask
|
1168 |
+
return ""
|
1169 |
+
|
1170 |
+
def rename_indexing(self, index) -> sympy.Expr:
|
1171 |
+
# adds the necessary kernel args for index expressions
|
1172 |
+
# and renames variables in index expressions to kernel arg names
|
1173 |
+
if isinstance(index, (list, tuple)):
|
1174 |
+
return [self.rename_indexing(x) for x in index]
|
1175 |
+
index = V.graph.sizevars.simplify(index)
|
1176 |
+
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name)
|
1177 |
+
replacements = {
|
1178 |
+
x: self.args.size(x)
|
1179 |
+
for x in sorted_symbols
|
1180 |
+
if x.name.startswith("s")
|
1181 |
+
or x.name.startswith("ps")
|
1182 |
+
or (x.name.startswith("i") and not x.name.startswith("idx"))
|
1183 |
+
}
|
1184 |
+
return sympy_subs(index, replacements)
|
1185 |
+
|
1186 |
+
def create_cse_var(self, *args, **kwargs):
|
1187 |
+
return CSEVariable(*args, **kwargs)
|
1188 |
+
|
1189 |
+
|
1190 |
+
@dataclasses.dataclass
|
1191 |
+
class OptimizationContext:
|
1192 |
+
key: ClassVar[str] = "opt_ctx"
|
1193 |
+
|
1194 |
+
# Load value as mask
|
1195 |
+
is_load_as_mask: bool = False
|
1196 |
+
|
1197 |
+
dtype: Optional[torch.dtype] = None
|
1198 |
+
ops_name: str = ""
|
1199 |
+
is_most_inner_loop_irrevelant: bool = False
|
1200 |
+
|
1201 |
+
# Load uint8 value as float32
|
1202 |
+
is_load_uint8_as_float: bool = False
|
1203 |
+
|
1204 |
+
|
1205 |
+
@functools.lru_cache(None)
|
1206 |
+
def jinja2_env():
|
1207 |
+
try:
|
1208 |
+
import jinja2
|
1209 |
+
|
1210 |
+
return jinja2.Environment(
|
1211 |
+
undefined=jinja2.StrictUndefined,
|
1212 |
+
)
|
1213 |
+
except ImportError:
|
1214 |
+
return None
|
1215 |
+
|
1216 |
+
|
1217 |
+
class ChoiceCaller:
|
1218 |
+
"""
|
1219 |
+
Represents a possible choice used in autotune_process.py.
|
1220 |
+
During autotuning, self.benchmark() is first called to get benchmark result,
|
1221 |
+
and if this choice is selected, self.output_node() is called to get the output_node.
|
1222 |
+
|
1223 |
+
Children classes: TritonTemplateCaller, CUDATemplateCaller.
|
1224 |
+
"""
|
1225 |
+
|
1226 |
+
def __init__(self, name, input_nodes, layout):
|
1227 |
+
super().__init__()
|
1228 |
+
self.name = name
|
1229 |
+
self.layout = layout
|
1230 |
+
self.input_nodes = input_nodes
|
1231 |
+
|
1232 |
+
def benchmark(self, *args, out) -> float:
|
1233 |
+
algo = self.to_callable()
|
1234 |
+
return do_bench(lambda: algo(*args, out=out))
|
1235 |
+
|
1236 |
+
def call_name(self) -> str:
|
1237 |
+
raise NotImplementedError()
|
1238 |
+
|
1239 |
+
def to_callable(self):
|
1240 |
+
raise NotImplementedError()
|
1241 |
+
|
1242 |
+
def hash_key(self) -> str:
|
1243 |
+
raise NotImplementedError()
|
1244 |
+
|
1245 |
+
def output_node(self) -> "TensorBox": # type: ignore[name-defined]
|
1246 |
+
raise NotImplementedError()
|
1247 |
+
|
1248 |
+
|
1249 |
+
class KernelTemplate:
|
1250 |
+
"""
|
1251 |
+
Base class for defining kernel templates.
|
1252 |
+
|
1253 |
+
Children classes: TritonTemplate, CUDATemplate
|
1254 |
+
"""
|
1255 |
+
|
1256 |
+
@staticmethod
|
1257 |
+
def _template_from_string(source):
|
1258 |
+
env = jinja2_env()
|
1259 |
+
if env is not None:
|
1260 |
+
return env.from_string(source)
|
1261 |
+
return None
|
1262 |
+
|
1263 |
+
@staticmethod
|
1264 |
+
def _fake_get_dtype(fake_out):
|
1265 |
+
_get_dtype_real = V.graph.get_dtype
|
1266 |
+
|
1267 |
+
def get_dtype(name):
|
1268 |
+
if name == fake_out.get_name():
|
1269 |
+
return fake_out.get_dtype()
|
1270 |
+
return _get_dtype_real(name)
|
1271 |
+
|
1272 |
+
return get_dtype
|
1273 |
+
|
1274 |
+
def __init__(self, name: str):
|
1275 |
+
self.name = name
|
1276 |
+
|
1277 |
+
def maybe_append_choice(self, choices, **kwargs):
|
1278 |
+
"""
|
1279 |
+
Maybe generates a new ChoiceCaller and appends it into existing choices.
|
1280 |
+
|
1281 |
+
choices: A list of ChoiceCallers.
|
1282 |
+
kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller.
|
1283 |
+
"""
|
1284 |
+
|
1285 |
+
try:
|
1286 |
+
choices.append(self.generate(**kwargs))
|
1287 |
+
except NotImplementedError:
|
1288 |
+
pass
|
1289 |
+
|
1290 |
+
def generate(self, **kwargs) -> ChoiceCaller:
|
1291 |
+
"""
|
1292 |
+
Generates a ChoiceCaller instance from the given arguments.
|
1293 |
+
"""
|
1294 |
+
|
1295 |
+
raise NotImplementedError()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_prefix.h
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <atomic>
|
5 |
+
#include <cmath>
|
6 |
+
#include <cstdlib>
|
7 |
+
#include <limits>
|
8 |
+
#include <omp.h>
|
9 |
+
|
10 |
+
#include <ATen/NumericUtils.h>
|
11 |
+
#include <ATen/core/PhiloxRNGEngine.h>
|
12 |
+
#include <ATen/native/Math.h>
|
13 |
+
|
14 |
+
#include <c10/util/BFloat16.h>
|
15 |
+
#include <c10/util/BFloat16-math.h>
|
16 |
+
#include <c10/util/generic_math.h>
|
17 |
+
#include <c10/util/Half.h>
|
18 |
+
#include <c10/util/TypeCast.h>
|
19 |
+
|
20 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
21 |
+
#define INDUCTOR_USE_VECTOR_TYPES() 1
|
22 |
+
#else
|
23 |
+
#define INDUCTOR_USE_VECTOR_TYPES() 0
|
24 |
+
#endif
|
25 |
+
|
26 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
27 |
+
#include <ATen/cpu/vec/functional.h>
|
28 |
+
#include <ATen/cpu/vec/vec.h>
|
29 |
+
#endif
|
30 |
+
|
31 |
+
typedef at::Half half;
|
32 |
+
typedef at::BFloat16 bfloat16;
|
33 |
+
|
34 |
+
template <typename T>
|
35 |
+
struct Welford {
|
36 |
+
T mean = T(0);
|
37 |
+
T m2 = T(0);
|
38 |
+
T weight = T(0);
|
39 |
+
};
|
40 |
+
|
41 |
+
|
42 |
+
template <typename T>
|
43 |
+
struct IsVecType: std::false_type {};
|
44 |
+
|
45 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
46 |
+
template <typename T>
|
47 |
+
struct IsVecType<at::vec::Vectorized<T>>: std::true_type {};
|
48 |
+
#endif
|
49 |
+
|
50 |
+
template <typename T>
|
51 |
+
Welford<T> welford_combine(const Welford<T> &a, const Welford<T> &b) {
|
52 |
+
if constexpr (!IsVecType<T>::value) {
|
53 |
+
if (a.weight == 0) {
|
54 |
+
return b;
|
55 |
+
}
|
56 |
+
if (b.weight == 0) {
|
57 |
+
return a;
|
58 |
+
}
|
59 |
+
}
|
60 |
+
auto delta = b.mean - a.mean;
|
61 |
+
auto new_weight = a.weight + b.weight;
|
62 |
+
auto wb_over_w = b.weight / new_weight;
|
63 |
+
if constexpr (IsVecType<T>::value) {
|
64 |
+
// Guard against division by zero
|
65 |
+
wb_over_w = T::blendv(wb_over_w, T(0), new_weight == T(0));
|
66 |
+
}
|
67 |
+
auto result = Welford<T>{
|
68 |
+
a.mean + delta * wb_over_w,
|
69 |
+
a.m2 + b.m2 + delta * delta * a.weight * wb_over_w,
|
70 |
+
new_weight
|
71 |
+
};
|
72 |
+
return result;
|
73 |
+
}
|
74 |
+
|
75 |
+
template <typename T>
|
76 |
+
Welford<T> welford_combine(const Welford<T> &acc, T data) {
|
77 |
+
// Add a single data point
|
78 |
+
auto delta = data - acc.mean;
|
79 |
+
auto new_weight = acc.weight + T(1);
|
80 |
+
auto new_mean = acc.mean + delta / new_weight;
|
81 |
+
auto new_delta = data - new_mean;
|
82 |
+
auto result = Welford<T>{
|
83 |
+
new_mean,
|
84 |
+
acc.m2 + delta * new_delta,
|
85 |
+
new_weight
|
86 |
+
};
|
87 |
+
return result;
|
88 |
+
}
|
89 |
+
|
90 |
+
|
91 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
92 |
+
template <typename scalar_t>
|
93 |
+
inline at::vec::Vectorized<scalar_t> vec_shuffle_down(at::vec::Vectorized<scalar_t> x, size_t n) {
|
94 |
+
using Vec = at::vec::Vectorized<scalar_t>;
|
95 |
+
alignas(alignof(Vec)) scalar_t array[Vec::size()];
|
96 |
+
x.store(array);
|
97 |
+
for (size_t i = 0; i + n < Vec::size(); i += 2 * n) {
|
98 |
+
array[i] = array[i + n];
|
99 |
+
}
|
100 |
+
return Vec::loadu(array);
|
101 |
+
}
|
102 |
+
|
103 |
+
#ifdef CPU_CAPABILITY_AVX2
|
104 |
+
inline at::vec::Vectorized<float> vec_shuffle_down(at::vec::Vectorized<float> x, size_t n) {
|
105 |
+
using vec_t = at::vec::Vectorized<float>;
|
106 |
+
#define SHUFFLE_MASK(z, y, x, w) ((z << 6) | (y << 4) | (x << 2) | w)
|
107 |
+
switch (n) {
|
108 |
+
case 1:
|
109 |
+
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(1, 1, 3, 3)));
|
110 |
+
case 2:
|
111 |
+
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(2, 2, 2, 2)));
|
112 |
+
case 4:
|
113 |
+
return vec_t(_mm256_permute2f128_ps(x, x, SHUFFLE_MASK(1, 1, 1, 1)));
|
114 |
+
}
|
115 |
+
TORCH_CHECK(false, "Unhandled vec_shuffle_down value ", n);
|
116 |
+
}
|
117 |
+
#endif
|
118 |
+
|
119 |
+
template <typename scalar_t>
|
120 |
+
Welford<scalar_t> welford_vec_reduce_all(Welford<at::vec::Vectorized<scalar_t>> acc) {
|
121 |
+
using Vec = at::vec::Vectorized<scalar_t>;
|
122 |
+
for (size_t n = 1; n < Vec::size(); n *= 2) {
|
123 |
+
auto shuffled = Welford<Vec>{
|
124 |
+
vec_shuffle_down(acc.mean, n),
|
125 |
+
vec_shuffle_down(acc.m2, n),
|
126 |
+
vec_shuffle_down(acc.weight, n)
|
127 |
+
};
|
128 |
+
acc = welford_combine(acc, shuffled);
|
129 |
+
}
|
130 |
+
|
131 |
+
Welford<scalar_t> result;
|
132 |
+
alignas(alignof(Vec)) scalar_t array[Vec::size()];
|
133 |
+
acc.mean.store(array);
|
134 |
+
result.mean = array[0];
|
135 |
+
|
136 |
+
acc.m2.store(array);
|
137 |
+
result.m2 = array[0];
|
138 |
+
|
139 |
+
acc.weight.store(array);
|
140 |
+
result.weight = array[0];
|
141 |
+
|
142 |
+
return result;
|
143 |
+
}
|
144 |
+
#endif
|
145 |
+
|
146 |
+
|
147 |
+
template <typename T> inline T mod(T a, T b) { return a % b; }
|
148 |
+
template <> inline float mod(float a, float b) { return std::fmod(a, b); }
|
149 |
+
template <> inline double mod(double a, double b) { return std::fmod(a, b); }
|
150 |
+
|
151 |
+
template <typename scalar_t>
|
152 |
+
inline scalar_t max_propagate_nan(scalar_t a, scalar_t b) {
|
153 |
+
if (at::_isnan(a)) {
|
154 |
+
return a;
|
155 |
+
}
|
156 |
+
return a > b ? a : b;
|
157 |
+
}
|
158 |
+
|
159 |
+
template <typename scalar_t>
|
160 |
+
inline scalar_t min_propagate_nan(scalar_t a, scalar_t b) {
|
161 |
+
if (at::_isnan(a)) {
|
162 |
+
return a;
|
163 |
+
}
|
164 |
+
return a < b ? a : b;
|
165 |
+
}
|
166 |
+
|
167 |
+
constexpr float uint32_to_uniform_float(uint32_t value) {
|
168 |
+
// maximum value such that `MAX_INT * scale < 1.0` (with float rounding)
|
169 |
+
constexpr float scale = 4.6566127342e-10;
|
170 |
+
return static_cast<float>(value & 0x7FFFFFFF) * scale;
|
171 |
+
}
|
172 |
+
|
173 |
+
float normalized_rand_cpu(uint32_t seed, uint32_t offset) {
|
174 |
+
return uint32_to_uniform_float(at::Philox4_32(seed, 0, offset)());
|
175 |
+
}
|
176 |
+
|
177 |
+
float randn_cpu(uint32_t seed, uint32_t offset) {
|
178 |
+
at::Philox4_32 engine(seed, 0, offset);
|
179 |
+
return engine.randn(10);
|
180 |
+
}
|
181 |
+
|
182 |
+
uint64_t randint64_cpu(uint32_t seed, uint32_t offset, int64_t low, int64_t high) {
|
183 |
+
auto gen = at::Philox4_32(seed, 0, offset);
|
184 |
+
uint64_t r0 = gen();
|
185 |
+
uint64_t r1 = gen();
|
186 |
+
uint64_t result = r0 | (r1 << 32);
|
187 |
+
return (result % static_cast<uint64_t>(high - low)) + low;
|
188 |
+
}
|
189 |
+
|
190 |
+
template <typename T> struct AsIntegerType { typedef T type; };
|
191 |
+
template <> struct AsIntegerType<float> { typedef uint32_t type; };
|
192 |
+
template <> struct AsIntegerType<double> { typedef uint64_t type; };
|
193 |
+
template <> struct AsIntegerType<bfloat16> { typedef uint16_t type; };
|
194 |
+
|
195 |
+
template <typename T>
|
196 |
+
typename std::enable_if<!std::is_reduced_floating_point<T>::value, T>::type
|
197 |
+
inline fetch_value(volatile T *addr) {
|
198 |
+
return *addr;
|
199 |
+
}
|
200 |
+
|
201 |
+
template <typename T>
|
202 |
+
typename std::enable_if<std::is_reduced_floating_point<T>::value, T>::type
|
203 |
+
inline fetch_value(volatile T *addr) {
|
204 |
+
return T(addr->x, T::from_bits());
|
205 |
+
}
|
206 |
+
|
207 |
+
template <typename T>
|
208 |
+
typename std::enable_if<!std::is_integral<T>::value>::type
|
209 |
+
atomic_add(volatile T *addr, T offset) {
|
210 |
+
typedef typename AsIntegerType<T>::type alt_type;
|
211 |
+
|
212 |
+
static_assert(sizeof(std::atomic<alt_type>) == sizeof(T),
|
213 |
+
"std::atomic issue");
|
214 |
+
|
215 |
+
alt_type expected;
|
216 |
+
|
217 |
+
alt_type desired;
|
218 |
+
|
219 |
+
std::atomic<alt_type> *atomic_addr = (std::atomic<alt_type> *)addr;
|
220 |
+
do {
|
221 |
+
T val = fetch_value(addr);
|
222 |
+
reinterpret_cast<T *>(&expected)[0] = val;
|
223 |
+
reinterpret_cast<T *>(&desired)[0] = val + offset;
|
224 |
+
} while (!atomic_addr->compare_exchange_weak(expected, desired,
|
225 |
+
std::memory_order_relaxed));
|
226 |
+
}
|
227 |
+
|
228 |
+
// Since C++20 float is supported by fetch_add, but the performance may not
|
229 |
+
// better than compare_exchange_weak, which can be checked by microbenchmark
|
230 |
+
// inductor_cpu_atomic.py
|
231 |
+
template <typename T>
|
232 |
+
typename std::enable_if<std::is_integral<T>::value>::type
|
233 |
+
atomic_add(volatile T *addr, T offset) {
|
234 |
+
static_assert(sizeof(std::atomic<T>) == sizeof(T),
|
235 |
+
"std::atomic issue");
|
236 |
+
std::atomic<T> *atomic_addr = (std::atomic<T> *)addr;
|
237 |
+
atomic_addr->fetch_add(offset, std::memory_order_relaxed);
|
238 |
+
}
|
239 |
+
|
240 |
+
// This function is used to convert bool or uint8 to float mask for
|
241 |
+
// vectorization. The caller needs to make sure the src represents TRUE/FALSE
|
242 |
+
// correctly.
|
243 |
+
template <typename T>
|
244 |
+
inline float flag_to_float_scalar(T src) {
|
245 |
+
float ret;
|
246 |
+
*(uint32_t*)(&ret) = src ? 0xFFFFFFFF : 0;
|
247 |
+
return ret;
|
248 |
+
}
|
249 |
+
|
250 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
251 |
+
|
252 |
+
inline at::vec::Vectorized<float> masked_load(const float* src, at::vec::Vectorized<float> mask) {
|
253 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
254 |
+
at::vec::Vectorized<float> zero_vec(0);
|
255 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
256 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
257 |
+
return _mm512_mask_loadu_ps(zero_vec, mmask, src);
|
258 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
259 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
260 |
+
auto mmask = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
261 |
+
return _mm256_maskload_ps(src, mmask);
|
262 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
263 |
+
auto result = at::vec::Vectorized<float>::loadu(src);
|
264 |
+
return (result & mask);
|
265 |
+
# else
|
266 |
+
# error Unsupported vectorization CPU capability
|
267 |
+
# endif
|
268 |
+
}
|
269 |
+
|
270 |
+
template <typename T>
|
271 |
+
typename std::enable_if<std::is_same<T, bfloat16>::value || std::is_same<T, half>::value, at::vec::Vectorized<T>>::type
|
272 |
+
inline masked_load(const T* src, at::vec::Vectorized<float> mask) {
|
273 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
274 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
275 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
276 |
+
auto zero = _mm256_set1_epi16(0);
|
277 |
+
auto temp = _mm256_mask_loadu_epi16(zero, mmask, src);
|
278 |
+
return _mm512_inserti32x8(_mm512_castsi256_si512(temp), zero, 1);
|
279 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
280 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
281 |
+
auto mmask_vec = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
282 |
+
__at_align__ uint32_t mmask[8];
|
283 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(mmask), mmask_vec);
|
284 |
+
__at_align__ uint16_t result[16];
|
285 |
+
for (auto i = 0; i < 8; i++) {
|
286 |
+
result[i] = mmask[i] == 0xFFFFFFFF ? src[i].x: uint16_t(0);
|
287 |
+
}
|
288 |
+
return at::vec::Vectorized<T>::loadu(result);
|
289 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
290 |
+
auto result = at::vec::Vectorized<T>::loadu(src, 8);
|
291 |
+
uint32_t maskdata[8] = { 0 };
|
292 |
+
uint16_t maskdata_dest[16] = { 0 };
|
293 |
+
mask.store(maskdata);
|
294 |
+
for (auto i = 0; i < 8; i++) {
|
295 |
+
maskdata_dest[i] = (maskdata[i] == 0xFFFFFFFF) ? 0xFFFF: 0;
|
296 |
+
}
|
297 |
+
auto maskvector = at::vec::Vectorized<T>::loadu(maskdata_dest);
|
298 |
+
return (result & maskvector);
|
299 |
+
# else
|
300 |
+
# error Unsupported vectorization CPU capability
|
301 |
+
# endif
|
302 |
+
}
|
303 |
+
|
304 |
+
inline at::vec::Vectorized<uint8_t> masked_load(const uint8_t* src, at::vec::Vectorized<float> mask) {
|
305 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
306 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
307 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
308 |
+
auto zero = _mm_set1_epi8(0);
|
309 |
+
auto temp = _mm_mask_loadu_epi8(zero, mmask, src);
|
310 |
+
return _mm512_inserti64x2(_mm512_set1_epi32(0), temp, 0);
|
311 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
312 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
313 |
+
auto mmask_vec = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
314 |
+
__at_align__ uint32_t mmask[8];
|
315 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(mmask), mmask_vec);
|
316 |
+
__at_align__ uint8_t result[32];
|
317 |
+
for (auto i = 0; i < 8; i++) {
|
318 |
+
result[i] = mmask[i] == 0xFFFFFFFF ? src[i]: uint8_t(0);
|
319 |
+
}
|
320 |
+
return at::vec::Vectorized<uint8_t>::loadu(result);
|
321 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
322 |
+
auto result = at::vec::Vectorized<uint8_t>::loadu(src, 8);
|
323 |
+
uint32_t maskdata[8];
|
324 |
+
uint8_t maskdata_dest[32] = { 0 };
|
325 |
+
mask.store(maskdata);
|
326 |
+
for (auto i = 0; i < 8; i++) {
|
327 |
+
maskdata_dest[i] = (maskdata[i] == 0xFFFFFFFF) ? 0xFF: 0;
|
328 |
+
}
|
329 |
+
auto maskvector = at::vec::Vectorized<uint8_t>::loadu(maskdata_dest);
|
330 |
+
return (result & maskvector);
|
331 |
+
# else
|
332 |
+
# error Unsupported vectorization CPU capability
|
333 |
+
# endif
|
334 |
+
}
|
335 |
+
|
336 |
+
template <typename T>
|
337 |
+
inline at::vec::Vectorized<float> flag_to_float_vec(const T* src) {
|
338 |
+
__at_align__ float dst_tmp[at::vec::Vectorized<float>::size()];
|
339 |
+
#pragma unroll
|
340 |
+
for (int64_t i = 0; i < at::vec::Vectorized<float>::size(); i++) {
|
341 |
+
dst_tmp[i] = flag_to_float_scalar(src[i]);
|
342 |
+
}
|
343 |
+
return at::vec::Vectorized<float>::loadu(dst_tmp);
|
344 |
+
}
|
345 |
+
|
346 |
+
template <typename scalar_t>
|
347 |
+
inline at::vec::Vectorized<float> cvt_lowp_fp_to_fp32(
|
348 |
+
at::vec::Vectorized<scalar_t> src) {
|
349 |
+
at::vec::Vectorized<float> res_vec1(0);
|
350 |
+
at::vec::Vectorized<float> res_vec2(0);
|
351 |
+
std::tie(res_vec1, res_vec2) = at::vec::convert_to_float<scalar_t>(src);
|
352 |
+
return res_vec1;
|
353 |
+
}
|
354 |
+
|
355 |
+
template <typename scalar_t>
|
356 |
+
inline at::vec::Vectorized<scalar_t> cvt_fp32_to_lowp_fp(
|
357 |
+
at::vec::Vectorized<float> src) {
|
358 |
+
return at::vec::convert_from_float<scalar_t>(src, src);
|
359 |
+
}
|
360 |
+
|
361 |
+
inline at::vec::Vectorized<float> mask_convert_to_float(at::vec::Vectorized<float> src) {
|
362 |
+
auto zeros = at::vec::Vectorized<float>(0);
|
363 |
+
auto ones = at::vec::Vectorized<float>(1);
|
364 |
+
return at::vec::Vectorized<float>::blendv(zeros, ones, src);
|
365 |
+
}
|
366 |
+
|
367 |
+
template <typename SRC>
|
368 |
+
inline at::vec::Vectorized<float> vec_convert_to_mask(at::vec::Vectorized<SRC> src) {
|
369 |
+
assert(
|
370 |
+
at::vec::Vectorized<float>::size() == at::vec::Vectorized<SRC>::size());
|
371 |
+
at::vec::Vectorized<float> res_vec(0);
|
372 |
+
__at_align__ float dst_tmp[at::vec::Vectorized<float>::size()];
|
373 |
+
__at_align__ SRC src_tmp[at::vec::Vectorized<SRC>::size()];
|
374 |
+
src.store(src_tmp);
|
375 |
+
|
376 |
+
#pragma unroll
|
377 |
+
for (int i = 0; i < at::vec::Vectorized<float>::size(); i++) {
|
378 |
+
*(uint32_t*)(dst_tmp + i) = src_tmp[i] ? 0xFFFFFFFF : 0;
|
379 |
+
}
|
380 |
+
|
381 |
+
return res_vec.loadu(dst_tmp);
|
382 |
+
}
|
383 |
+
|
384 |
+
template <typename SRC>
|
385 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<SRC> src) {
|
386 |
+
return vec_convert_to_mask(src);
|
387 |
+
}
|
388 |
+
|
389 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2)
|
390 |
+
template <>
|
391 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<int> src) {
|
392 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
393 |
+
return at::vec::Vectorized<float>(_mm256_castsi256_ps(src));
|
394 |
+
#else
|
395 |
+
return at::vec::Vectorized<float>(_mm512_castsi512_ps(src));
|
396 |
+
#endif
|
397 |
+
}
|
398 |
+
#endif
|
399 |
+
|
400 |
+
template <>
|
401 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<float> src) {
|
402 |
+
return src;
|
403 |
+
}
|
404 |
+
|
405 |
+
inline at::vec::Vectorized<float> to_float_mask(int src) {
|
406 |
+
float mask;
|
407 |
+
*(uint32_t*)&mask = src ? 0xFFFFFFFF : 0;
|
408 |
+
return at::vec::Vectorized<float>(mask);
|
409 |
+
}
|
410 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_kernel.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_template.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_epilogue_gen.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_utils.cpython-310.pyc
ADDED
Binary file (7.02 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/gemm_template.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_epilogue_gen.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
from unittest.mock import patch
|
3 |
+
|
4 |
+
import sympy
|
5 |
+
|
6 |
+
import torch._inductor.virtualized as virtualized
|
7 |
+
from torch._inductor.ir import ComputedBuffer, FlexibleLayout, IRNode, Pointwise
|
8 |
+
from torch._inductor.utils import IndentedBuffer, sympy_str
|
9 |
+
|
10 |
+
|
11 |
+
# Used as a magic string to indicate an unsupported sympy expression
|
12 |
+
# became part of generated C++ code.
|
13 |
+
_MAGIC_SYMPY_ERROR_STRING = "[!sympy: unsupported expr!]"
|
14 |
+
|
15 |
+
|
16 |
+
def _arg_str(a):
|
17 |
+
if isinstance(a, sympy.Expr):
|
18 |
+
# If this return value containting the _MAGIC_SYMPY_ERROR_STRING
|
19 |
+
# is used as part of the final generated C++ code,
|
20 |
+
# a CUTLASSEVTOpNotImplementedError is raised to indicate that
|
21 |
+
# the op could not be converted to a valid EVT expression.
|
22 |
+
return f"{_MAGIC_SYMPY_ERROR_STRING}('{sympy_str(a)}')"
|
23 |
+
return str(a)
|
24 |
+
|
25 |
+
|
26 |
+
class CUTLASSEVTOpNotImplementedError(NotImplementedError):
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
class CutlassEVTEpilogueTypeFormatter:
|
31 |
+
"""
|
32 |
+
Codegen class, which provides an entry point to generate
|
33 |
+
Cutlass "Epilogue Visitor Tree" (EVT) functor declarations.
|
34 |
+
|
35 |
+
See https://github.com/NVIDIA/cutlass/tree/main/examples/49_hopper_gemm_with_collective_builder
|
36 |
+
for more about EVTs and how they are declared and used to generate.
|
37 |
+
|
38 |
+
Notes:
|
39 |
+
* Used by CUTLASSGemmTemplate.
|
40 |
+
* This class should not be instantiated by users, it is intended to be used
|
41 |
+
by calling CutlassEVTEpilogueTypeFormatter.ir_to_evt_string(...)
|
42 |
+
which instantiates this class as an ops handler for virtualized.V.ops.[op-name]
|
43 |
+
* Extend this with more _op_<whatever> nodes to add support for new pointwise operations.
|
44 |
+
|
45 |
+
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, accumulator_node_name, evt_type_name):
|
49 |
+
"""
|
50 |
+
|
51 |
+
Initialize an instance of CutlassEVTEpilogueTypeFormatter.
|
52 |
+
|
53 |
+
Parameters:
|
54 |
+
- accumulator_node_name (str): The name of the output Buffer for the GEMM operation in the original (unfused)
|
55 |
+
IR graph.
|
56 |
+
- evt_type_name (str): The output name of the EVT type we are generating.
|
57 |
+
|
58 |
+
"""
|
59 |
+
self.accumulator_node_name = accumulator_node_name
|
60 |
+
self.output = IndentedBuffer(0)
|
61 |
+
self.var_counter = 0
|
62 |
+
self.evt_type_name = evt_type_name
|
63 |
+
self.aliases = dict()
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def ir_to_evt_string(
|
67 |
+
template_output_node_name: str,
|
68 |
+
evt_type_name: str,
|
69 |
+
epilogue_nodes: List[IRNode],
|
70 |
+
):
|
71 |
+
"""
|
72 |
+
Formats IR nodes into a string representation compatible with Cutlass EVT format.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
template_output_node_name (str): The name of the template output node.
|
76 |
+
evt_type_name (str): The name of the EVT type.
|
77 |
+
epilogue_nodes (List[IRNode]): A list of IR nodes representing the epilogue nodes. As of now, these must be
|
78 |
+
ComputedBuffer nodes wrapping Pointwise nodes.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
A string representation of the IR nodes formatted according to the Cutlass EVT format.
|
82 |
+
"""
|
83 |
+
formatter = CutlassEVTEpilogueTypeFormatter(
|
84 |
+
template_output_node_name, evt_type_name
|
85 |
+
)
|
86 |
+
|
87 |
+
with virtualized.V.set_ops_handler(formatter), patch.object(
|
88 |
+
FlexibleLayout, "allow_indexing", True
|
89 |
+
):
|
90 |
+
for node in epilogue_nodes:
|
91 |
+
if isinstance(node, ComputedBuffer):
|
92 |
+
pnode = node.data
|
93 |
+
else:
|
94 |
+
raise RuntimeError(
|
95 |
+
"Epilogue nodes must be Pointwise nodes, wrapped in a named ComputedBuffer"
|
96 |
+
)
|
97 |
+
assert isinstance(pnode, Pointwise)
|
98 |
+
index = pnode._index(pnode.ranges)
|
99 |
+
result = pnode.inner_fn(index)
|
100 |
+
# each epilogue node results in a single "using" statement and may refer to the previous steps by name
|
101 |
+
formatter.aliases[node.name] = result
|
102 |
+
res = formatter.getvalue(result)
|
103 |
+
if _MAGIC_SYMPY_ERROR_STRING in res:
|
104 |
+
raise CUTLASSEVTOpNotImplementedError(
|
105 |
+
"sympy / indexing expressions not yet supported in EVT fusion"
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
return res
|
109 |
+
|
110 |
+
def __getattr__(self, name):
|
111 |
+
"""
|
112 |
+
Resolve V.ops.<whatever> calls, after this instance has been installed as V.ops handler.
|
113 |
+
"""
|
114 |
+
|
115 |
+
def inner(*args, **kwargs):
|
116 |
+
fargs = [_arg_str(a) for a in args]
|
117 |
+
fkwargs = {key: _arg_str(a) for key, a in kwargs.items()}
|
118 |
+
fn = getattr(self, f"_op_{name}")
|
119 |
+
line = fn(*fargs, **fkwargs)
|
120 |
+
self.var_counter += 1
|
121 |
+
varname = f"EVT_expr_{self.var_counter}"
|
122 |
+
# replace line with a new variable name
|
123 |
+
self.output.writeline(f"using {varname} = {line};")
|
124 |
+
return varname
|
125 |
+
|
126 |
+
if name.startswith("_"):
|
127 |
+
raise CUTLASSEVTOpNotImplementedError(name)
|
128 |
+
if hasattr(self, f"_op_{name}"):
|
129 |
+
return inner
|
130 |
+
else:
|
131 |
+
raise CUTLASSEVTOpNotImplementedError(name)
|
132 |
+
|
133 |
+
def _op_load(self, name, index_expr):
|
134 |
+
# Load an input to an operation. Might be the output of the matmul, the result
|
135 |
+
# of a previous epilogue node, a constant or (TODO) an auxiliary input.
|
136 |
+
if name == self.accumulator_node_name:
|
137 |
+
return f"cutlass::epilogue::fusion::Sm90AccFetch /* :={name} (matmul output in accumulator) */"
|
138 |
+
elif name in self.aliases:
|
139 |
+
return self.aliases[name]
|
140 |
+
else:
|
141 |
+
# return f"cutlass::epilogue::fusion::Sm90SrcFetch /* :={name} */"
|
142 |
+
raise CUTLASSEVTOpNotImplementedError(
|
143 |
+
f"Operand {name} not found. Auxiliary inputs not supported yet."
|
144 |
+
)
|
145 |
+
|
146 |
+
def _op_constant(self, value, dtype):
|
147 |
+
# Load a constant
|
148 |
+
if str(dtype) in ("torch.float16", "torch.float32"):
|
149 |
+
return f"cutlass::epilogue::fusion::Sm90ScalarBroadcast<ElementAcc> /* value={value}, dtype={dtype} */"
|
150 |
+
else:
|
151 |
+
raise CUTLASSEVTOpNotImplementedError(
|
152 |
+
f"Unsupported dtype for constant: {dtype}"
|
153 |
+
)
|
154 |
+
|
155 |
+
def _cutlass_binary_functional_op(self, op, a, b):
|
156 |
+
# Perform a named operation on two inputs
|
157 |
+
# see https://github.com/NVIDIA/cutlass/blob/6407bcdf0a24097b7b016ee105937693c62f9923/include/cutlass/functional.h for ops
|
158 |
+
return f"cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90Compute<cutlass::{op}, ElementAcc, ElementAcc, RoundStyle>,{a},{b}>" # noqa: B950
|
159 |
+
|
160 |
+
def _convert_to_output_dtype(self, a):
|
161 |
+
# Convert the final output to the dtype of the output buffer
|
162 |
+
return f"cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90Compute<identity_op, ElementD, ElementAcc, RoundStyle>,{a}>" # noqa: B950
|
163 |
+
|
164 |
+
def _op_to_dtype(self, a, *args, **kwargs):
|
165 |
+
# no-op in our case, since we convert to the output dtype at the end and convert everything to the accumulator
|
166 |
+
# dtype.
|
167 |
+
# Is is asserted ( and ascertained during can_fuse decision ) that the dtype remains compatible
|
168 |
+
# throughout the fusion chain.
|
169 |
+
return a # noqa: B950
|
170 |
+
|
171 |
+
def _op_mul(self, a, b):
|
172 |
+
return self._cutlass_binary_functional_op("multiplies", a, b)
|
173 |
+
|
174 |
+
def _op_div(self, a, b):
|
175 |
+
return self._cutlass_binary_functional_op("divides", a, b)
|
176 |
+
|
177 |
+
def _op_truediv(self, a, b):
|
178 |
+
return self._cutlass_binary_functional_op("divides", a, b)
|
179 |
+
|
180 |
+
def _op_ge(self, a, b):
|
181 |
+
return self._cutlass_binary_functional_op("greater_equal", a, b)
|
182 |
+
|
183 |
+
def _op_add(self, a, b):
|
184 |
+
return self._cutlass_binary_functional_op("plus", a, b)
|
185 |
+
|
186 |
+
def _op_sub(self, a, b):
|
187 |
+
return self._cutlass_binary_functional_op("minus", a, b)
|
188 |
+
|
189 |
+
def _op_minimum(self, a, b):
|
190 |
+
return self._cutlass_binary_functional_op("minimum", a, b)
|
191 |
+
|
192 |
+
def _op_maximum(self, a, b):
|
193 |
+
return self._cutlass_binary_functional_op("maximum", a, b)
|
194 |
+
|
195 |
+
def _op_relu(self, a):
|
196 |
+
const_zero = self._op_constant(0.0, "torch.float32")
|
197 |
+
return f"cutlass::epilogue::fusion::Sm90EVT<cutlass::epilogue::fusion::Sm90Compute<cutlass::maximum, ElementAcc, ElementAcc, RoundStyle>,{a}, {const_zero}>" # noqa: B950
|
198 |
+
|
199 |
+
def reduction(self, dtype, src_dtype, reduction_type, value):
|
200 |
+
raise CUTLASSEVTOpNotImplementedError()
|
201 |
+
|
202 |
+
# Add more ops here...
|
203 |
+
def getvalue(self, result) -> str:
|
204 |
+
# Return final result
|
205 |
+
dtype_converted_expr = self._convert_to_output_dtype(
|
206 |
+
f"EVT_expr_{self.var_counter}"
|
207 |
+
)
|
208 |
+
self.output.writeline(f"using {self.evt_type_name} = {dtype_converted_expr};")
|
209 |
+
return self.output.getvalue()
|
210 |
+
|
211 |
+
|
212 |
+
class CutlassEVTEpilogueArgumentFormatter:
|
213 |
+
"""
|
214 |
+
Codegen class, which provides an entry point to generate
|
215 |
+
Cutlass "Epilogue Visitor Tree" (EVT) Argument initializers
|
216 |
+
|
217 |
+
See https://github.com/NVIDIA/cutlass/tree/main/examples/49_hopper_gemm_with_collective_builder
|
218 |
+
for more about EVTs and how they are declared and used to generate.
|
219 |
+
|
220 |
+
Notes:
|
221 |
+
* Used by CUTLASSGemmTemplate.
|
222 |
+
* This class should not be instantiated by users, it is intended to be used
|
223 |
+
by calling CutlassEVTEpilogueArgumentFormatter.ir_to_evt_argument_string(...)
|
224 |
+
which instantiates this class as an ops handler for virtualized.V.ops.[op-name]
|
225 |
+
* Extend this with more _op_<whatever> nodes to add support for new pointwise operations.
|
226 |
+
|
227 |
+
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, accumulator_node_name: str):
|
231 |
+
"""
|
232 |
+
|
233 |
+
Initializes a CutlassEVTEpilogueArgumentFormatter object. Do not instantiate directly.
|
234 |
+
Use the CutlassEVTEpilogueArgumentFormatter.ir_to_evt_argument_string static method.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
accumulator_node_name (str): The name of the accumulator node which should contain
|
238 |
+
the Matmul result before fusion according to the IR graph.
|
239 |
+
"""
|
240 |
+
self.accumulator_node_name: str = accumulator_node_name #
|
241 |
+
self.output: IndentedBuffer = IndentedBuffer(0) # The output buffer for codegen
|
242 |
+
self.var_counter: int = (
|
243 |
+
0 # used to generate variable names, incremented for each new variable
|
244 |
+
)
|
245 |
+
self.aliases: Dict[str, str] = dict() # Aliases for subexpression functors
|
246 |
+
|
247 |
+
@staticmethod
|
248 |
+
def ir_to_evt_argument_string(
|
249 |
+
template_output_node_name: str,
|
250 |
+
epilogue_nodes: List[IRNode],
|
251 |
+
) -> str:
|
252 |
+
formatter = CutlassEVTEpilogueArgumentFormatter(
|
253 |
+
template_output_node_name,
|
254 |
+
)
|
255 |
+
|
256 |
+
with virtualized.V.set_ops_handler(formatter), patch.object(
|
257 |
+
FlexibleLayout, "allow_indexing", True
|
258 |
+
):
|
259 |
+
for node in epilogue_nodes:
|
260 |
+
assert isinstance(node, ComputedBuffer)
|
261 |
+
pnode = node.data
|
262 |
+
assert isinstance(pnode, Pointwise)
|
263 |
+
index = pnode._index(pnode.ranges)
|
264 |
+
result = pnode.inner_fn(index)
|
265 |
+
# each epilogue node results in a single "using" statement and may refer to the previous steps by name
|
266 |
+
if node.name is not None:
|
267 |
+
formatter.aliases[node.name] = result
|
268 |
+
|
269 |
+
res: str = formatter.getvalue(result)
|
270 |
+
if _MAGIC_SYMPY_ERROR_STRING in res:
|
271 |
+
raise CUTLASSEVTOpNotImplementedError(
|
272 |
+
"sympy / indexing expressions not yet supported in EVT fusion"
|
273 |
+
)
|
274 |
+
else:
|
275 |
+
return res
|
276 |
+
|
277 |
+
def __getattr__(self, name):
|
278 |
+
def inner(*args, **kwargs):
|
279 |
+
fargs = [_arg_str(a) for a in args]
|
280 |
+
fkwargs = {key: _arg_str(a) for key, a in kwargs.items()}
|
281 |
+
fn = getattr(self, f"_op_{name}")
|
282 |
+
line = fn(*fargs, **fkwargs)
|
283 |
+
return line
|
284 |
+
|
285 |
+
if name.startswith("_"):
|
286 |
+
raise CUTLASSEVTOpNotImplementedError(name)
|
287 |
+
|
288 |
+
if hasattr(self, f"_op_{name}"):
|
289 |
+
return inner
|
290 |
+
else:
|
291 |
+
raise CUTLASSEVTOpNotImplementedError(name)
|
292 |
+
|
293 |
+
def _op_load(self, name, index_expr):
|
294 |
+
if name == self.accumulator_node_name:
|
295 |
+
return "{}"
|
296 |
+
elif name in self.aliases:
|
297 |
+
return self.aliases[name]
|
298 |
+
else:
|
299 |
+
raise CUTLASSEVTOpNotImplementedError(
|
300 |
+
f"Operand {name} not found. Auxiliary inputs not supported yet."
|
301 |
+
)
|
302 |
+
|
303 |
+
def _op_constant(self, value, dtype):
|
304 |
+
if str(dtype) in ("torch.float16", "torch.float32"):
|
305 |
+
return "{ static_cast<ElementAcc>(" + str(value) + ") }"
|
306 |
+
else:
|
307 |
+
raise CUTLASSEVTOpNotImplementedError(
|
308 |
+
f"Unsupported dtype for constant: {dtype}"
|
309 |
+
)
|
310 |
+
|
311 |
+
def _cutlass_binary_functional_op(self, op, a, b):
|
312 |
+
return f"{{ /*{op}: */ {a}, {b} }}"
|
313 |
+
|
314 |
+
def _op_mul(self, a, b):
|
315 |
+
return self._cutlass_binary_functional_op("multiplies", a, b)
|
316 |
+
|
317 |
+
def _op_div(self, a, b):
|
318 |
+
return self._cutlass_binary_functional_op("divides", a, b)
|
319 |
+
|
320 |
+
def _op_truediv(self, a, b):
|
321 |
+
return self._cutlass_binary_functional_op("divides", a, b)
|
322 |
+
|
323 |
+
def _op_ge(self, a, b):
|
324 |
+
return self._cutlass_binary_functional_op("greater_equal", a, b)
|
325 |
+
|
326 |
+
def _op_add(self, a, b):
|
327 |
+
return self._cutlass_binary_functional_op("plus", a, b)
|
328 |
+
|
329 |
+
def _op_sub(self, a, b):
|
330 |
+
return self._cutlass_binary_functional_op("minus", a, b)
|
331 |
+
|
332 |
+
def _op_minimum(self, a, b):
|
333 |
+
return self._cutlass_binary_functional_op("minimum", a, b)
|
334 |
+
|
335 |
+
def _op_maximum(self, a, b):
|
336 |
+
return self._cutlass_binary_functional_op("maximum", a, b)
|
337 |
+
|
338 |
+
def _op_relu(self, a):
|
339 |
+
const_zero = self._op_constant(0.0, "torch.float32")
|
340 |
+
return "{" + str(a) + ", " + const_zero + "}"
|
341 |
+
|
342 |
+
def _op_to_dtype(self, a, dtype, src_dtype=None):
|
343 |
+
# Is is asserted ( and ascertained during can_fuse decision ) that the dtype remains compatible
|
344 |
+
# throughout the fusion chain.
|
345 |
+
assert dtype in (
|
346 |
+
"torch.float32",
|
347 |
+
"torch.float16",
|
348 |
+
), f"Unsupported dtype: {dtype}"
|
349 |
+
assert src_dtype in (
|
350 |
+
None,
|
351 |
+
"torch.float32",
|
352 |
+
"torch.float16",
|
353 |
+
), f"Unsupported source dtype: {src_dtype}"
|
354 |
+
return a
|
355 |
+
|
356 |
+
def reduction(self, dtype, src_dtype, reduction_type, value):
|
357 |
+
raise CUTLASSEVTOpNotImplementedError()
|
358 |
+
|
359 |
+
def getvalue(self, result) -> str:
|
360 |
+
return "{" + str(result) + "}"
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (216 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/gemm_operation_extensions.cpython-310.pyc
ADDED
Binary file (6.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/gemm_operation_extensions.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..cutlass_utils import try_import_cutlass
|
2 |
+
|
3 |
+
if try_import_cutlass():
|
4 |
+
import enum
|
5 |
+
|
6 |
+
from cutlass_library.library import * # noqa: F401, F403
|
7 |
+
from cutlass_library.gemm_operation import * # noqa: F401, F403
|
8 |
+
|
9 |
+
# copied / modified from original at
|
10 |
+
# https://github.com/NVIDIA/cutlass/blob/8783c41851cd3582490e04e69e0cd756a8c1db7f/tools/library/scripts/gemm_operation.py#L658
|
11 |
+
# to support EVT similar to
|
12 |
+
# https://github.com/NVIDIA/cutlass/blob/8783c41851cd3582490e04e69e0cd756a8c1db7f/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu#L315C69-L315C69 # noqa: B950
|
13 |
+
class EmitGemmUniversal3xInstanceWithEVT:
|
14 |
+
"""Responsible for emitting a CUTLASS 3.x template definition"""
|
15 |
+
|
16 |
+
def __init__(self, operation_suffix=""):
|
17 |
+
self.operation_suffix = operation_suffix
|
18 |
+
self.includes = [
|
19 |
+
"cutlass/cutlass.h",
|
20 |
+
"cutlass/gemm/gemm.h",
|
21 |
+
"cutlass/numeric_types.h",
|
22 |
+
"cutlass/gemm/kernel/gemm_universal.hpp",
|
23 |
+
"cutlass/gemm/collective/collective_builder.hpp",
|
24 |
+
"cutlass/epilogue/collective/collective_builder.hpp",
|
25 |
+
]
|
26 |
+
self.builtin_epilogue_functor_template = """
|
27 |
+
${epilogue_functor}<
|
28 |
+
${element_c},
|
29 |
+
${epilogue_vector_length},
|
30 |
+
${element_accumulator},
|
31 |
+
${element_epilogue}
|
32 |
+
>
|
33 |
+
"""
|
34 |
+
self.gemm_template = """
|
35 |
+
using EpilogueScheduleType = ${epilogue_schedule};
|
36 |
+
static_assert(cute::is_same_v<EpilogueScheduleType, cutlass::epilogue::TmaWarpSpecialized> ||
|
37 |
+
cute::is_same_v<EpilogueScheduleType, cutlass::epilogue::TmaWarpSpecializedCooperative>,
|
38 |
+
"Epilogue visitor trees are currently only supported by the TMA warp-specialized epilogue");
|
39 |
+
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
|
40 |
+
using ElementAcc = ${element_accumulator};
|
41 |
+
using ElementD = ${element_d};
|
42 |
+
${epilogue_functor};
|
43 |
+
using ${operation_name}_epilogue =
|
44 |
+
typename cutlass::epilogue::collective::CollectiveBuilder<
|
45 |
+
${arch}, ${opcode_class},
|
46 |
+
cute::Shape<cute::_${tile_shape_m}, cute::_${tile_shape_n}, cute::_${tile_shape_k}>,
|
47 |
+
cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>,
|
48 |
+
cutlass::epilogue::collective::EpilogueTileAuto,
|
49 |
+
${element_accumulator}, ${element_epilogue},
|
50 |
+
${element_c}, ${layout_c}, ${align_c},
|
51 |
+
${element_d}, ${layout_d}, ${align_d},
|
52 |
+
EpilogueScheduleType,
|
53 |
+
${operation_name}_epilogue_functor
|
54 |
+
>::CollectiveOp;
|
55 |
+
|
56 |
+
using ${operation_name}_mainloop =
|
57 |
+
typename cutlass::gemm::collective::CollectiveBuilder<
|
58 |
+
${arch}, ${opcode_class},
|
59 |
+
${element_a}, ${layout_a}, ${align_a},
|
60 |
+
${element_b}, ${layout_b}, ${align_b},
|
61 |
+
${element_accumulator},
|
62 |
+
cute::Shape<cute::_${tile_shape_m}, cute::_${tile_shape_n}, cute::_${tile_shape_k}>,
|
63 |
+
cute::Shape<cute::_${cluster_m},cute::_${cluster_n},cute::_${cluster_k}>,
|
64 |
+
${stages},
|
65 |
+
${kernel_schedule}
|
66 |
+
>::CollectiveOp;
|
67 |
+
|
68 |
+
// Gemm operator ${operation_name}
|
69 |
+
using ${operation_name}_base = cutlass::gemm::kernel::GemmUniversal<
|
70 |
+
cute::Shape<int,int,int,int>,
|
71 |
+
${operation_name}_mainloop,
|
72 |
+
${operation_name}_epilogue,
|
73 |
+
${tile_scheduler}>;
|
74 |
+
|
75 |
+
// Define named type
|
76 |
+
struct ${operation_name} :
|
77 |
+
public ${operation_name}_base { };
|
78 |
+
|
79 |
+
"""
|
80 |
+
|
81 |
+
#
|
82 |
+
def instance_template(self):
|
83 |
+
return """
|
84 |
+
${compile_guard_start}
|
85 |
+
using GemmKernel = cutlass::gemm::device::GemmUniversalAdapter<${operation_name}>;
|
86 |
+
manifest.append(
|
87 |
+
new ${gemm_kind}<GemmKernel>("${operation_name}"));
|
88 |
+
${compile_guard_end}
|
89 |
+
"""
|
90 |
+
|
91 |
+
#
|
92 |
+
def emit(self, operation):
|
93 |
+
tile_shape = operation.tile_description.tile_shape
|
94 |
+
warp_count = operation.tile_description.warp_count
|
95 |
+
# stage count set to zero indicates builder automatic stage selection
|
96 |
+
if operation.tile_description.stages > 0:
|
97 |
+
stage_count_string = f"cutlass::gemm::collective::StageCount<{str(operation.tile_description.stages)}>"
|
98 |
+
else:
|
99 |
+
stage_count_string = f"cutlass::gemm::collective::StageCountAutoCarveout<sizeof(typename {str(operation.procedural_name())}_epilogue::SharedStorage)>" # noqa: B950
|
100 |
+
warp_shape = [tile_shape[idx] // warp_count[idx] for idx in range(3)]
|
101 |
+
|
102 |
+
(
|
103 |
+
instance_layout_A,
|
104 |
+
instance_layout_B,
|
105 |
+
instance_layout_C,
|
106 |
+
instance_layout_D,
|
107 |
+
) = (
|
108 |
+
operation.A.layout,
|
109 |
+
operation.B.layout,
|
110 |
+
operation.C.layout,
|
111 |
+
operation.D.layout,
|
112 |
+
)
|
113 |
+
|
114 |
+
# 3.0 profiler integration only supports trivial epilogues for now
|
115 |
+
epilogue_vector_length = 1
|
116 |
+
|
117 |
+
# Support built-in epilogue functors or user-defined functions
|
118 |
+
if isinstance(operation.epilogue_functor, enum.Enum):
|
119 |
+
values = {
|
120 |
+
"epilogue_vector_length": str(epilogue_vector_length),
|
121 |
+
"element_epilogue": str(DataTypeTag[operation.element_epilogue]), # type: ignore[name-defined]
|
122 |
+
"epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], # type: ignore[name-defined]
|
123 |
+
}
|
124 |
+
epilogue_functor = SubstituteTemplate( # type: ignore[name-defined]
|
125 |
+
self.builtin_epilogue_functor_template, values
|
126 |
+
)
|
127 |
+
|
128 |
+
elif callable(operation.epilogue_functor):
|
129 |
+
epilogue_functor = operation.epilogue_functor(
|
130 |
+
operation.procedural_name() + "_epilogue_functor"
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
epilogue_functor = str(operation.epilogue_functor)
|
134 |
+
#
|
135 |
+
|
136 |
+
values = {
|
137 |
+
"operation_name": operation.procedural_name(),
|
138 |
+
"operation_suffix": self.operation_suffix,
|
139 |
+
"element_a": DataTypeTag[operation.A.element], # type: ignore[name-defined]
|
140 |
+
"layout_a": LayoutTag[instance_layout_A], # type: ignore[name-defined]
|
141 |
+
"element_b": DataTypeTag[operation.B.element], # type: ignore[name-defined]
|
142 |
+
"layout_b": LayoutTag[instance_layout_B], # type: ignore[name-defined]
|
143 |
+
"element_c": DataTypeTag[operation.C.element], # type: ignore[name-defined]
|
144 |
+
"layout_c": LayoutTag[instance_layout_C], # type: ignore[name-defined]
|
145 |
+
"element_d": DataTypeTag[operation.D.element], # type: ignore[name-defined]
|
146 |
+
"layout_d": LayoutTag[instance_layout_D], # type: ignore[name-defined]
|
147 |
+
"element_accumulator": DataTypeTag[operation.accumulator_type()], # type: ignore[name-defined]
|
148 |
+
"opcode_class": OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], # type: ignore[name-defined] # noqa: B950
|
149 |
+
"arch": "cutlass::arch::Sm%d" % operation.arch,
|
150 |
+
"tile_shape_m": str(operation.tile_description.tile_shape[0]),
|
151 |
+
"tile_shape_n": str(operation.tile_description.tile_shape[1]),
|
152 |
+
"tile_shape_k": str(operation.tile_description.tile_shape[2]),
|
153 |
+
"cluster_m": str(operation.tile_description.cluster_shape[0]),
|
154 |
+
"cluster_n": str(operation.tile_description.cluster_shape[1]),
|
155 |
+
"cluster_k": str(operation.tile_description.cluster_shape[2]),
|
156 |
+
"warp_shape_m": str(warp_shape[0]),
|
157 |
+
"warp_shape_n": str(warp_shape[1]),
|
158 |
+
"warp_shape_k": str(warp_shape[2]),
|
159 |
+
"instruction_shape_m": str(
|
160 |
+
operation.tile_description.math_instruction.instruction_shape[0]
|
161 |
+
),
|
162 |
+
"instruction_shape_n": str(
|
163 |
+
operation.tile_description.math_instruction.instruction_shape[1]
|
164 |
+
),
|
165 |
+
"instruction_shape_k": str(
|
166 |
+
operation.tile_description.math_instruction.instruction_shape[2]
|
167 |
+
),
|
168 |
+
"kernel_schedule": str(KernelScheduleTag[operation.kernel_schedule]), # type: ignore[name-defined]
|
169 |
+
"epilogue_schedule": str(EpilogueScheduleTag[operation.epilogue_schedule]), # type: ignore[name-defined]
|
170 |
+
"epilogue_functor": epilogue_functor,
|
171 |
+
"stages": stage_count_string,
|
172 |
+
"align_a": str(operation.A.alignment),
|
173 |
+
"align_b": str(operation.B.alignment),
|
174 |
+
"align_c": str(operation.C.alignment),
|
175 |
+
"align_d": str(operation.C.alignment),
|
176 |
+
"transform_a": ComplexTransformTag[operation.A.complex_transform], # type: ignore[name-defined]
|
177 |
+
"transform_b": ComplexTransformTag[operation.B.complex_transform], # type: ignore[name-defined]
|
178 |
+
"math_operation": MathOperationTag[ # type: ignore[name-defined]
|
179 |
+
operation.tile_description.math_instruction.math_operation
|
180 |
+
],
|
181 |
+
"epilogue_vector_length": str(epilogue_vector_length),
|
182 |
+
"element_epilogue": str(DataTypeTag[operation.element_epilogue]), # type: ignore[name-defined]
|
183 |
+
"tile_scheduler": str(TileSchedulerTag[operation.tile_scheduler]), # type: ignore[name-defined]
|
184 |
+
}
|
185 |
+
|
186 |
+
return SubstituteTemplate(self.gemm_template, values) # type: ignore[name-defined]
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_utils.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, List, Optional
|
7 |
+
|
8 |
+
import sympy
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from ...codecache import cache_dir
|
13 |
+
from ...config import cuda as inductor_cuda_config
|
14 |
+
from ...ir import Layout
|
15 |
+
from .cuda_env import get_cuda_arch, get_cuda_version
|
16 |
+
|
17 |
+
log = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def _rename_cutlass_import(content: str, cutlass_modules: List[str]) -> str:
|
21 |
+
for cutlass_module in cutlass_modules:
|
22 |
+
content = content.replace(
|
23 |
+
f"from {cutlass_module} import ",
|
24 |
+
f"from cutlass_library.{cutlass_module} import ",
|
25 |
+
)
|
26 |
+
return content
|
27 |
+
|
28 |
+
|
29 |
+
def _gen_cutlass_file(
|
30 |
+
file_name: str, cutlass_modules: List[str], src_dir: str, dst_dir: str
|
31 |
+
) -> None:
|
32 |
+
orig_full_path = os.path.abspath(os.path.join(src_dir, file_name))
|
33 |
+
text = ""
|
34 |
+
with open(orig_full_path) as f:
|
35 |
+
text = f.read()
|
36 |
+
text = _rename_cutlass_import(text, cutlass_modules)
|
37 |
+
dst_full_path = os.path.abspath(
|
38 |
+
os.path.join(
|
39 |
+
dst_dir,
|
40 |
+
file_name,
|
41 |
+
)
|
42 |
+
)
|
43 |
+
with open(dst_full_path, "w") as f:
|
44 |
+
f.write(text)
|
45 |
+
|
46 |
+
|
47 |
+
@functools.lru_cache(None)
|
48 |
+
def try_import_cutlass() -> bool:
|
49 |
+
# Copy CUTLASS python scripts to a temp dir and add the temp dir to Python search path.
|
50 |
+
# This is a temporary hack to avoid CUTLASS module naming conflicts.
|
51 |
+
# TODO(ipiszy): remove this hack when CUTLASS solves Python scripts packaging structure issues.
|
52 |
+
|
53 |
+
cutlass_py_full_path = os.path.abspath(
|
54 |
+
os.path.join(inductor_cuda_config.cutlass_dir, "python/cutlass_library")
|
55 |
+
)
|
56 |
+
tmp_cutlass_py_full_path = os.path.abspath(
|
57 |
+
os.path.join(cache_dir(), "torch_cutlass_library")
|
58 |
+
)
|
59 |
+
dst_link = os.path.join(tmp_cutlass_py_full_path, "cutlass_library")
|
60 |
+
|
61 |
+
if os.path.isdir(cutlass_py_full_path):
|
62 |
+
if tmp_cutlass_py_full_path not in sys.path:
|
63 |
+
if os.path.exists(dst_link):
|
64 |
+
assert os.path.islink(
|
65 |
+
dst_link
|
66 |
+
), f"{dst_link} is not a symlink. Try to remove {dst_link} manually and try again."
|
67 |
+
assert os.path.realpath(os.readlink(dst_link)) == os.path.realpath(
|
68 |
+
cutlass_py_full_path
|
69 |
+
), f"Symlink at {dst_link} does not point to {cutlass_py_full_path}"
|
70 |
+
else:
|
71 |
+
os.makedirs(tmp_cutlass_py_full_path, exist_ok=True)
|
72 |
+
os.symlink(cutlass_py_full_path, dst_link)
|
73 |
+
sys.path.append(tmp_cutlass_py_full_path)
|
74 |
+
try:
|
75 |
+
import cutlass_library.generator # noqa: F401
|
76 |
+
import cutlass_library.library # noqa: F401
|
77 |
+
import cutlass_library.manifest # noqa: F401
|
78 |
+
|
79 |
+
return True
|
80 |
+
|
81 |
+
except ImportError as e:
|
82 |
+
log.debug(
|
83 |
+
"Failed to import CUTLASS packages: %s, ignoring the CUTLASS backend.",
|
84 |
+
str(e),
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
log.debug(
|
88 |
+
"Failed to import CUTLASS packages: CUTLASS repo does not exist: %s",
|
89 |
+
cutlass_py_full_path,
|
90 |
+
)
|
91 |
+
return False
|
92 |
+
|
93 |
+
|
94 |
+
def _normalize_cuda_arch(arch: str) -> str:
|
95 |
+
if int(arch) >= 90:
|
96 |
+
return "90"
|
97 |
+
elif int(arch) >= 80:
|
98 |
+
return "80"
|
99 |
+
elif int(arch) >= 75:
|
100 |
+
return "75"
|
101 |
+
elif int(arch) >= 70:
|
102 |
+
return "70"
|
103 |
+
else:
|
104 |
+
raise NotImplementedError(f"Unsupported cuda arch: {arch}")
|
105 |
+
|
106 |
+
|
107 |
+
@dataclass
|
108 |
+
class CUTLASSArgs:
|
109 |
+
"""
|
110 |
+
CUTLASS args used to initialize a CUTLASS Manifest.
|
111 |
+
"""
|
112 |
+
|
113 |
+
architectures: Optional[str] = None
|
114 |
+
cuda_version: Optional[str] = None
|
115 |
+
|
116 |
+
operations = "all"
|
117 |
+
build_dir = ""
|
118 |
+
curr_build_dir = ""
|
119 |
+
generator_target = ""
|
120 |
+
kernels = "all"
|
121 |
+
ignore_kernels = ""
|
122 |
+
kernel_filter_file = None
|
123 |
+
selected_kernel_list = None
|
124 |
+
interface_dir = None
|
125 |
+
filter_by_cc = True
|
126 |
+
disable_full_archs_compilation = False
|
127 |
+
|
128 |
+
def __post_init__(self):
|
129 |
+
if self.architectures is None or self.cuda_version is None:
|
130 |
+
raise RuntimeError(
|
131 |
+
f"{self.architectures=} or {self.cuda_version=} is None!"
|
132 |
+
)
|
133 |
+
self.architectures = _normalize_cuda_arch(self.architectures)
|
134 |
+
|
135 |
+
|
136 |
+
@functools.lru_cache(None)
|
137 |
+
def _gen_ops_cached(arch, version) -> List[Any]:
|
138 |
+
# Note: Cache needs to be specific for cuda architecture and version
|
139 |
+
|
140 |
+
# Import cutlass python scripts.
|
141 |
+
assert try_import_cutlass()
|
142 |
+
import cutlass_library.generator as cutlass_generator
|
143 |
+
import cutlass_library.manifest as cutlass_manifest
|
144 |
+
|
145 |
+
if arch is None or version is None:
|
146 |
+
log.error(
|
147 |
+
"Cannot detect cuda arch %s or cuda version %s. "
|
148 |
+
"Will discard all cutlass ops. "
|
149 |
+
"Please consider setting _inductor.cuda.arch and _inductor.cuda.version configs.",
|
150 |
+
arch,
|
151 |
+
version,
|
152 |
+
)
|
153 |
+
return list()
|
154 |
+
arch = _normalize_cuda_arch(arch)
|
155 |
+
args = CUTLASSArgs(architectures=arch, cuda_version=version)
|
156 |
+
manifest = cutlass_manifest.Manifest(args)
|
157 |
+
|
158 |
+
if arch == "90":
|
159 |
+
cutlass_generator.GenerateSM90(manifest, args.cuda_version)
|
160 |
+
cutlass_generator.GenerateSM80(manifest, args.cuda_version)
|
161 |
+
else:
|
162 |
+
try:
|
163 |
+
func = getattr(cutlass_generator, "GenerateSM" + arch)
|
164 |
+
func(manifest, args.cuda_version)
|
165 |
+
except AttributeError as e:
|
166 |
+
raise NotImplementedError(
|
167 |
+
"Arch " + arch + " is not supported by current cutlass lib."
|
168 |
+
) from e
|
169 |
+
return manifest.operations
|
170 |
+
|
171 |
+
|
172 |
+
def gen_ops() -> List[Any]:
|
173 |
+
"""
|
174 |
+
Generates all supported CUTLASS operations.
|
175 |
+
"""
|
176 |
+
arch = get_cuda_arch()
|
177 |
+
version = get_cuda_version()
|
178 |
+
return _gen_ops_cached(arch, version)
|
179 |
+
|
180 |
+
|
181 |
+
def dtype_match(
|
182 |
+
torch_dtype: Optional[torch.dtype],
|
183 |
+
cutlass_dtype: "cutlass_library.library.DataType", # type: ignore[name-defined]
|
184 |
+
) -> bool:
|
185 |
+
# Import cutlass python scripts.
|
186 |
+
assert try_import_cutlass()
|
187 |
+
import cutlass_library
|
188 |
+
|
189 |
+
if torch_dtype == torch.float:
|
190 |
+
return (
|
191 |
+
cutlass_dtype == cutlass_library.library.DataType.f32
|
192 |
+
or cutlass_dtype == cutlass_library.library.DataType.tf32
|
193 |
+
)
|
194 |
+
elif torch_dtype == torch.half:
|
195 |
+
return cutlass_dtype == cutlass_library.library.DataType.f16
|
196 |
+
elif torch_dtype == torch.bfloat16:
|
197 |
+
return cutlass_dtype == cutlass_library.library.DataType.bf16
|
198 |
+
else:
|
199 |
+
return False
|
200 |
+
|
201 |
+
|
202 |
+
def get_accumulator_dtype(
|
203 |
+
input_torch_dtypes: List[torch.dtype],
|
204 |
+
) -> Optional[torch.dtype]:
|
205 |
+
"""
|
206 |
+
Given a list of input torch dtypes, returns the inferred accumulator torch dtype.
|
207 |
+
"""
|
208 |
+
|
209 |
+
if len(input_torch_dtypes) == 0:
|
210 |
+
return None
|
211 |
+
torch_dtype = input_torch_dtypes[0]
|
212 |
+
for dtype in input_torch_dtypes[1:]:
|
213 |
+
if torch_dtype != dtype:
|
214 |
+
raise RuntimeError(f"Unmatched input dtypes: {torch_dtype=}, {dtype=}")
|
215 |
+
if torch_dtype == torch.half:
|
216 |
+
if torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction:
|
217 |
+
return torch_dtype
|
218 |
+
else:
|
219 |
+
return torch.float
|
220 |
+
if torch_dtype in {torch.bfloat16, torch.float}:
|
221 |
+
return torch.float
|
222 |
+
raise NotImplementedError(f"Unsupported data type: {input_torch_dtypes=}")
|
223 |
+
|
224 |
+
|
225 |
+
def get_alignments(torch_dtype: torch.dtype) -> List[int]:
|
226 |
+
"""
|
227 |
+
Returns all possible valid CUTLASS alignments in terms of the number of elements for a given dtype.
|
228 |
+
CUTLASS gemm / conv SM80 APIs support 16 bytes max alignment, and 2 bytes min alignment.
|
229 |
+
"""
|
230 |
+
|
231 |
+
if torch_dtype in (torch.half, torch.bfloat16):
|
232 |
+
return [8, 4, 2, 1]
|
233 |
+
elif torch_dtype == torch.float:
|
234 |
+
return [4, 2, 1]
|
235 |
+
else:
|
236 |
+
raise NotImplementedError(f"unsupported {torch_dtype=} for alignments")
|
237 |
+
|
238 |
+
|
239 |
+
def get_max_alignment(inductor_layout: Layout) -> int:
|
240 |
+
"""
|
241 |
+
Returns the max alignment (in terms of number of elements) for a given Inductor Layout.
|
242 |
+
"""
|
243 |
+
|
244 |
+
dtype = inductor_layout.dtype
|
245 |
+
size = inductor_layout.size
|
246 |
+
offset = inductor_layout.offset
|
247 |
+
|
248 |
+
def is_static_int(number):
|
249 |
+
return isinstance(number, (int, sympy.Integer))
|
250 |
+
|
251 |
+
if is_static_int(size[-1]) and is_static_int(offset):
|
252 |
+
alignments = get_alignments(dtype)
|
253 |
+
for alignment in alignments:
|
254 |
+
if int(size[-1]) % alignment == 0 and int(offset) % alignment == 0:
|
255 |
+
return alignment
|
256 |
+
|
257 |
+
return 1
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/gemm_template.py
ADDED
@@ -0,0 +1,706 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
from typing import cast, Dict, List, Optional, Tuple
|
5 |
+
|
6 |
+
from ...config import cuda as inductor_cuda_config
|
7 |
+
from ...ir import Buffer, CUDATemplateBuffer, FixedLayout, IRNode, Layout
|
8 |
+
from ..common import IndentedBuffer
|
9 |
+
|
10 |
+
from . import cutlass_utils
|
11 |
+
from .cuda_kernel import CUDATemplateKernel
|
12 |
+
from .cuda_template import CUTLASSTemplate
|
13 |
+
from .cutlass_epilogue_gen import (
|
14 |
+
CutlassEVTEpilogueArgumentFormatter,
|
15 |
+
CutlassEVTEpilogueTypeFormatter,
|
16 |
+
)
|
17 |
+
|
18 |
+
log = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
GEMM_TEMPLATE = r"""
|
21 |
+
{{template.header().getvalue()}}
|
22 |
+
{{template.globals().getvalue()}}
|
23 |
+
{{instance_definition}}
|
24 |
+
// When workspace_size is not a nullptr, populates requested workspace_size and returns.
|
25 |
+
// Otherwise, computes the Gemm kernel using the given workspace ptr.
|
26 |
+
extern "C" {
|
27 |
+
{{kernel.def_kernel(inputs=[X, W, Bias], outputs=[Y], names_str="X, W, Bias, Y", input_reorder=input_reorder)}} {
|
28 |
+
try {
|
29 |
+
{{kernel.check_not_null(X)}}
|
30 |
+
{{kernel.check_not_null(W)}}
|
31 |
+
{{kernel.check_not_null(Bias)}}
|
32 |
+
{{kernel.check_not_null(Y)}}
|
33 |
+
int64_t B = {{kernel.size(Y, 0, -3, default_value=1)}};
|
34 |
+
int64_t M = {{kernel.size(X, -2)}};
|
35 |
+
int64_t K = {{kernel.size(X, -1)}};
|
36 |
+
int64_t N = {{kernel.size(W, -1)}};
|
37 |
+
using ElementComputeEpilogue = {{instance_type}}::ElementAccumulator;
|
38 |
+
using coord_t = cutlass::gemm::GemmCoord::Index;
|
39 |
+
{{instance_type}}::Arguments arguments;
|
40 |
+
{{template.render_gemm_arguments(argument_template, epilogue_template, should_swap_xw,
|
41 |
+
X, W, Bias, Y, alpha, beta, kernel, epilogue_args)}}
|
42 |
+
{{instance_type}} gemm_op;
|
43 |
+
if (workspace_size) {
|
44 |
+
*workspace_size = gemm_op.get_workspace_size(arguments);
|
45 |
+
return 0;
|
46 |
+
}
|
47 |
+
{
|
48 |
+
auto status = gemm_op.can_implement(arguments);
|
49 |
+
CUTLASS_CHECK(status);
|
50 |
+
}
|
51 |
+
{
|
52 |
+
auto status = gemm_op.initialize(arguments, workspace, stream);
|
53 |
+
CUTLASS_CHECK(status);
|
54 |
+
}
|
55 |
+
{
|
56 |
+
auto status = gemm_op(stream);
|
57 |
+
CUTLASS_CHECK(status);
|
58 |
+
}
|
59 |
+
}
|
60 |
+
catch (std::exception& e) {
|
61 |
+
std::cerr << "Runtime error: " << e.what() << std::endl;
|
62 |
+
return -1;
|
63 |
+
}
|
64 |
+
catch (...) {
|
65 |
+
return -1;
|
66 |
+
}
|
67 |
+
return 0;
|
68 |
+
}
|
69 |
+
}
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
GEMM_ARGS_CUTLASS_2X = r"""
|
74 |
+
int64_t batch_stride_x = {{kernel.stride(X, -3)}};
|
75 |
+
int64_t row_stride_x = {{kernel.row_or_column_stride(X)}};
|
76 |
+
int64_t batch_stride_w = {{kernel.stride(W, -3)}};
|
77 |
+
int64_t row_stride_w = {{kernel.row_or_column_stride(W)}};
|
78 |
+
int64_t batch_stride_bias = {{kernel.stride(Bias, -3)}};
|
79 |
+
int64_t row_stride_bias = {{kernel.row_or_column_stride(Bias)}};
|
80 |
+
int64_t batch_stride_y = {{kernel.stride(Y, -3)}};
|
81 |
+
int64_t row_stride_y = {{kernel.row_or_column_stride(Y)}};
|
82 |
+
// Initialize GemmUniversalInstance arguments.
|
83 |
+
arguments = {
|
84 |
+
{{template.gemm_mode()}}, // GemmUniversalMode mode
|
85 |
+
{
|
86 |
+
static_cast<coord_t>(M),
|
87 |
+
static_cast<coord_t>(N),
|
88 |
+
static_cast<coord_t>(K)
|
89 |
+
}, // GemmCoord problem_size
|
90 |
+
{{split_k if split_k > 1 else 'B'}}, // int batch_count
|
91 |
+
{ElementComputeEpilogue({{alpha}}), ElementComputeEpilogue({{beta}})}, // typename EpilogueOutputOp::Params epilogue
|
92 |
+
{{template.cutlass_type_cast(X, kernel.ptr(X))}}, // void const * ptr_A
|
93 |
+
{{template.cutlass_type_cast(W, kernel.ptr(W))}}, // void const * ptr_B
|
94 |
+
{{template.cutlass_type_cast(Bias, kernel.ptr(Bias))}}, // void const * ptr_C
|
95 |
+
{{template.cutlass_type_cast(Y, kernel.ptr(Y))}}, // void * ptr_D
|
96 |
+
batch_stride_x, // int64_t batch_stride_A
|
97 |
+
batch_stride_w, // int64_t batch_stride_B
|
98 |
+
batch_stride_bias, // int64_t batch_stride_C
|
99 |
+
batch_stride_y, // int64_t batch_stride_D
|
100 |
+
row_stride_x, // typename LayoutA::Stride::LongIndex lda
|
101 |
+
row_stride_w, // typename LayoutB::Stride::LongIndex ldb
|
102 |
+
row_stride_bias, // typename LayoutC::Stride::LongIndex ldc
|
103 |
+
row_stride_y, // typename LayoutC::Stride::LongIndex ldd
|
104 |
+
};
|
105 |
+
"""
|
106 |
+
|
107 |
+
|
108 |
+
GEMM_ARGS_CUTLASS_3X = r"""
|
109 |
+
// Initialize GemmUniversal3xInstance arguments.
|
110 |
+
arguments = {
|
111 |
+
{{template.gemm_mode()}}, // GemmUniversalMode mode
|
112 |
+
{
|
113 |
+
static_cast<coord_t>({{M}}),
|
114 |
+
static_cast<coord_t>({{N}}),
|
115 |
+
static_cast<coord_t>(K),
|
116 |
+
static_cast<coord_t>(B)
|
117 |
+
}, // ProblemShape problem_shape
|
118 |
+
{
|
119 |
+
{{template.cutlass_type_cast(X, kernel.ptr(X))}}, // ElementA const* ptr_A
|
120 |
+
{
|
121 |
+
{{template.cute_int(kernel.stride(X, -2), "stride_x0")}},
|
122 |
+
{{template.cute_int(kernel.stride(X, -1), "stride_x1")}},
|
123 |
+
{{template.cute_int(kernel.stride(X, -3), "batch_stride_x")}}
|
124 |
+
}, // StrideA dA
|
125 |
+
{{template.cutlass_type_cast(W, kernel.ptr(W))}}, // ElementB const* ptr_B
|
126 |
+
{
|
127 |
+
{{template.cute_int(kernel.stride(W, -1), "stride_w1")}},
|
128 |
+
{{template.cute_int(kernel.stride(W, -2), "stride_w0")}},
|
129 |
+
{{template.cute_int(kernel.stride(W, -3), "batch_stride_w")}}
|
130 |
+
}, // StrideB dB
|
131 |
+
}, // MainloopArguments mainloop
|
132 |
+
{{epilogue_arguments}}
|
133 |
+
};
|
134 |
+
"""
|
135 |
+
|
136 |
+
GEMM_ARGS_CUTLASS_3X_EPILOGUE = r"""
|
137 |
+
// see https://tinyurl.com/4rk89z48
|
138 |
+
{
|
139 |
+
{{epilogue_args}}, // thread, typename FusionCallbacks::Arguments ( EVT ) or ThreadEpilogueOp::Params (non-EVT )
|
140 |
+
{{template.cutlass_type_cast(Bias, kernel.ptr(Bias))}}, // ElementC const* ptr_C
|
141 |
+
{
|
142 |
+
{{template.cute_int(kernel.stride(Bias, -2, 1), "stride_bias0")}},
|
143 |
+
{{template.cute_int(kernel.stride(Bias, -1, 1), "stride_bias1")}},
|
144 |
+
{{template.cute_int(kernel.stride(Bias, -3), "batch_stride_bias")}}
|
145 |
+
}, // StrideC dC
|
146 |
+
{{template.cutlass_type_cast(Y, kernel.ptr(Y))}}, // ElementD const* ptr_D
|
147 |
+
{
|
148 |
+
{{template.cute_int(kernel.stride(Y, -2), "stride_y0")}},
|
149 |
+
{{template.cute_int(kernel.stride(Y, -1), "stride_y1")}},
|
150 |
+
{{template.cute_int(kernel.stride(Y, -3), "batch_stride_y")}}
|
151 |
+
}, // StrideD dD
|
152 |
+
}, // EpilogueArguments epilogue
|
153 |
+
"""
|
154 |
+
|
155 |
+
|
156 |
+
class CUTLASSGemmTemplate(CUTLASSTemplate):
|
157 |
+
"""
|
158 |
+
CUTLASS GEMM template, which is used to generate CUTLASS GEMM kernels
|
159 |
+
including those which allow flexible fusions with epilogues.
|
160 |
+
"""
|
161 |
+
|
162 |
+
def __init__(
|
163 |
+
self,
|
164 |
+
input_nodes: List[Buffer],
|
165 |
+
layout: Layout,
|
166 |
+
alpha: float,
|
167 |
+
beta: float,
|
168 |
+
input_reorder: Optional[List[int]] = None,
|
169 |
+
can_fuse_epilogue: Optional[bool] = None,
|
170 |
+
):
|
171 |
+
"""
|
172 |
+
Args:
|
173 |
+
input_nodes: input nodes of the kernel
|
174 |
+
layout: layout of the output node
|
175 |
+
alpha: alpha value of the GEMM operation
|
176 |
+
beta: beta value of the GEMM operation
|
177 |
+
input_reorder: reorder of the input nodes
|
178 |
+
can_fuse_epilogue: If set to True, will only list and use operators capable of flexible epilogue fusions.
|
179 |
+
If False, it will not use those. If None, both may be listed, but it will not allow fusions.
|
180 |
+
Defaults to None
|
181 |
+
"""
|
182 |
+
super().__init__("cutlass_gemm", input_nodes, layout, input_reorder)
|
183 |
+
self.alpha = alpha
|
184 |
+
self.beta = beta
|
185 |
+
self.can_fuse_epilogue = can_fuse_epilogue
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def add_cutlass_gemm_choices(
|
189 |
+
choices,
|
190 |
+
layout,
|
191 |
+
input_nodes,
|
192 |
+
alpha=1,
|
193 |
+
beta=0,
|
194 |
+
input_reorder=None,
|
195 |
+
fuseable=True,
|
196 |
+
non_fuseable=True,
|
197 |
+
):
|
198 |
+
if non_fuseable:
|
199 |
+
if fuseable:
|
200 |
+
# list both fuseable and non-fuseable ops, and treat them all as non-fuseable
|
201 |
+
can_fuse_epilogue = False
|
202 |
+
else:
|
203 |
+
can_fuse_epilogue = None
|
204 |
+
|
205 |
+
cutlass_template = CUTLASSGemmTemplate(
|
206 |
+
input_nodes,
|
207 |
+
layout,
|
208 |
+
alpha=alpha,
|
209 |
+
beta=beta,
|
210 |
+
input_reorder=input_reorder,
|
211 |
+
can_fuse_epilogue=can_fuse_epilogue,
|
212 |
+
)
|
213 |
+
ops = cutlass_template.gen_ops()
|
214 |
+
for op in ops:
|
215 |
+
cutlass_template.maybe_append_choice(
|
216 |
+
choices,
|
217 |
+
op=op,
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
ops = []
|
221 |
+
if fuseable:
|
222 |
+
cutlass_template_evt = CUTLASSGemmTemplate(
|
223 |
+
input_nodes,
|
224 |
+
layout,
|
225 |
+
alpha=alpha,
|
226 |
+
beta=beta,
|
227 |
+
input_reorder=input_reorder,
|
228 |
+
can_fuse_epilogue=True,
|
229 |
+
)
|
230 |
+
# This will list only ops capable of EVT fusion
|
231 |
+
ops_evt = cutlass_template_evt.gen_ops()
|
232 |
+
for op in ops_evt:
|
233 |
+
cutlass_template_evt.maybe_append_choice(
|
234 |
+
choices,
|
235 |
+
op=op,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
ops_evt = []
|
239 |
+
log.debug(
|
240 |
+
"Added %d cutlass gemm configs and %d fuseable gemm configs.",
|
241 |
+
len(ops),
|
242 |
+
len(ops_evt),
|
243 |
+
)
|
244 |
+
|
245 |
+
def header(self) -> IndentedBuffer:
|
246 |
+
res = super().header()
|
247 |
+
res.splice(
|
248 |
+
"""
|
249 |
+
#include "cutlass/gemm/gemm.h"
|
250 |
+
#include "cutlass/gemm/device/gemm_universal.h"
|
251 |
+
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
252 |
+
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
253 |
+
#include "cutlass/gemm/collective/collective_builder.hpp"
|
254 |
+
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
255 |
+
#include "cutlass/epilogue/collective/default_epilogue.hpp"
|
256 |
+
#include "cutlass/epilogue/thread/linear_combination.h"
|
257 |
+
#include "cutlass/gemm/dispatch_policy.hpp"
|
258 |
+
#include "cutlass/gemm/kernel/tile_scheduler.hpp"
|
259 |
+
#include "cutlass/util/distribution.h"
|
260 |
+
#include "cutlass/util/packed_stride.hpp"
|
261 |
+
#include "cutlass/util/tensor_view_io.h"
|
262 |
+
"""
|
263 |
+
)
|
264 |
+
return res
|
265 |
+
|
266 |
+
@staticmethod
|
267 |
+
def cutlass_layout(torch_layout) -> "Optional[cutlass_lib.LayoutType]": # type: ignore[name-defined]
|
268 |
+
assert cutlass_utils.try_import_cutlass()
|
269 |
+
import cutlass_library.library as cutlass_lib
|
270 |
+
|
271 |
+
if torch_layout.stride[-1] == 1:
|
272 |
+
return cutlass_lib.LayoutType.RowMajor
|
273 |
+
elif torch_layout.stride[-2] == 1:
|
274 |
+
return cutlass_lib.LayoutType.ColumnMajor
|
275 |
+
else:
|
276 |
+
return None
|
277 |
+
|
278 |
+
@staticmethod
|
279 |
+
def flip_cutlass_layout(
|
280 |
+
cutlass_layout: "cutlass_lib.LayoutType", # type: ignore[name-defined]
|
281 |
+
) -> "cutlass_lib.LayoutType": # type: ignore[name-defined]
|
282 |
+
assert cutlass_utils.try_import_cutlass()
|
283 |
+
import cutlass_library.library as cutlass_lib
|
284 |
+
|
285 |
+
if cutlass_layout == cutlass_lib.LayoutType.RowMajor:
|
286 |
+
return cutlass_lib.LayoutType.ColumnMajor
|
287 |
+
else:
|
288 |
+
return cutlass_lib.LayoutType.RowMajor
|
289 |
+
|
290 |
+
@staticmethod
|
291 |
+
def layout_match(torch_layout, cutlass_layout) -> bool:
|
292 |
+
return CUTLASSGemmTemplate.cutlass_layout(torch_layout) == cutlass_layout
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def set_alignment(torch_layout, op_element) -> bool:
|
296 |
+
alignment = cutlass_utils.get_max_alignment(torch_layout)
|
297 |
+
if alignment < op_element.alignment:
|
298 |
+
return False
|
299 |
+
else:
|
300 |
+
op_element.alignment = alignment
|
301 |
+
return True
|
302 |
+
|
303 |
+
@staticmethod
|
304 |
+
def has_tma_epilogue(op) -> bool:
|
305 |
+
assert cutlass_utils.try_import_cutlass()
|
306 |
+
import cutlass_library.library as cutlass_lib
|
307 |
+
|
308 |
+
result = False
|
309 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
310 |
+
epilogue_schedule_str = str(op.epilogue_schedule).split(".")[-1]
|
311 |
+
result = epilogue_schedule_str.lower().startswith("tma")
|
312 |
+
return result
|
313 |
+
|
314 |
+
@staticmethod
|
315 |
+
def supports_evt(op: "cutlass_library.gemm_op.GemmOperation") -> bool: # type: ignore[name-defined]
|
316 |
+
"""
|
317 |
+
returns True if the op is capable of flexible epilogue fusions
|
318 |
+
using epilogue visitor trees.
|
319 |
+
|
320 |
+
See https://github.com/NVIDIA/cutlass/blob/e01b9b5029b7caca5a43c29f7d2714d7cf1dcae8/examples/49_hopper_gemm_with_collective_builder/49_collective_builder.cu#L283-L285 # noqa: B950
|
321 |
+
"""
|
322 |
+
assert cutlass_utils.try_import_cutlass()
|
323 |
+
import cutlass_library.library as cutlass_lib
|
324 |
+
|
325 |
+
if op.gemm_kind != cutlass_lib.GemmKind.Universal3x:
|
326 |
+
return False
|
327 |
+
if op.epilogue_schedule not in (
|
328 |
+
cutlass_lib.EpilogueScheduleType.TmaWarpSpecialized,
|
329 |
+
cutlass_lib.EpilogueScheduleType.TmaWarpSpecializedCooperative,
|
330 |
+
):
|
331 |
+
return False
|
332 |
+
|
333 |
+
return True
|
334 |
+
|
335 |
+
def render_evt_epilogue_declaration(
|
336 |
+
self,
|
337 |
+
template_output_node_name: str,
|
338 |
+
evt_type_name: str,
|
339 |
+
epilogue_nodes: List[IRNode],
|
340 |
+
) -> str:
|
341 |
+
"""Generates the epilogue for the EVT epilogue fusion"""
|
342 |
+
return CutlassEVTEpilogueTypeFormatter.ir_to_evt_string(
|
343 |
+
template_output_node_name, evt_type_name, epilogue_nodes
|
344 |
+
)
|
345 |
+
|
346 |
+
def define_gemm_instance(
|
347 |
+
self,
|
348 |
+
op: "cutlass_library.gemm_op.GemmOperation", # type: ignore[name-defined]
|
349 |
+
output_buffer_name: str,
|
350 |
+
epilogue_nodes: Optional[List[IRNode]] = None,
|
351 |
+
) -> Tuple[str, str]:
|
352 |
+
assert cutlass_utils.try_import_cutlass()
|
353 |
+
import cutlass_library.gemm_operation as cutlass_gemm_op
|
354 |
+
import cutlass_library.library as cutlass_lib
|
355 |
+
|
356 |
+
from torch._inductor.codegen.cuda.cutlass_lib_extensions.gemm_operation_extensions import (
|
357 |
+
EmitGemmUniversal3xInstanceWithEVT,
|
358 |
+
)
|
359 |
+
|
360 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
361 |
+
if epilogue_nodes is not None and len(epilogue_nodes) > 0:
|
362 |
+
emitter = EmitGemmUniversal3xInstanceWithEVT()
|
363 |
+
op.epilogue_functor = lambda epilogue_functor_type_name: self.render_evt_epilogue_declaration(
|
364 |
+
output_buffer_name, epilogue_functor_type_name, epilogue_nodes
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
emitter = cutlass_gemm_op.EmitGemmUniversal3xInstance()
|
368 |
+
op_def = emitter.emit(op)
|
369 |
+
pattern = re.compile(r"\s*struct\s(.*?)\s:")
|
370 |
+
decl = [line for line in op_def.split("\n") if "struct " in line][-1]
|
371 |
+
else:
|
372 |
+
if epilogue_nodes is not None and len(epilogue_nodes) > 0:
|
373 |
+
raise RuntimeError(
|
374 |
+
"EVT epilogue fusion is not supported for Cutlass 2.x ops."
|
375 |
+
)
|
376 |
+
emitter = cutlass_gemm_op.EmitGemmInstance()
|
377 |
+
op_def = emitter.emit(op)
|
378 |
+
op_def = op_def.replace(
|
379 |
+
"cutlass::gemm::device::Gemm", "cutlass::gemm::device::GemmUniversal"
|
380 |
+
)
|
381 |
+
op_def = op_def.replace("false,", "")
|
382 |
+
pattern = re.compile(r"\s*using\s(.*?)\s=")
|
383 |
+
decl = op_def.split("\n")[2]
|
384 |
+
match = pattern.match(decl)
|
385 |
+
if match is None:
|
386 |
+
raise RuntimeError("Invalid Gemm config: \n" + op_def)
|
387 |
+
op_type = match.groups()[0]
|
388 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
389 |
+
op_def += f"\n using {op_type}_device_type = cutlass::gemm::device::GemmUniversalAdapter<{op_type}>;\n"
|
390 |
+
op_type = f"{op_type}_device_type"
|
391 |
+
return op_def, op_type
|
392 |
+
|
393 |
+
@staticmethod
|
394 |
+
def should_swap_XW(
|
395 |
+
bias: IRNode,
|
396 |
+
beta: float,
|
397 |
+
) -> bool:
|
398 |
+
return True
|
399 |
+
|
400 |
+
# TODO(ipiszy): Check whether it's necessary to swap X/W.
|
401 |
+
# strides = bias.get_stride()
|
402 |
+
# if strides[-1] != 1:
|
403 |
+
# return True
|
404 |
+
# for stride in strides[:-1]:
|
405 |
+
# if stride != 0:
|
406 |
+
# return True
|
407 |
+
# return False
|
408 |
+
|
409 |
+
@staticmethod
|
410 |
+
def swap_XW(
|
411 |
+
op: "cutlass_library.gemm_op.GemmOperation", # type: ignore[name-defined]
|
412 |
+
) -> "cutlass_library.gemm_op.GemmOperation": # type: ignore[name-defined]
|
413 |
+
# Swap X and W in GemmOperation.
|
414 |
+
new_op = copy.deepcopy(op)
|
415 |
+
new_op.A.layout = CUTLASSGemmTemplate.flip_cutlass_layout(new_op.A.layout)
|
416 |
+
new_op.B.layout = CUTLASSGemmTemplate.flip_cutlass_layout(new_op.B.layout)
|
417 |
+
new_op.A, new_op.B = new_op.B, new_op.A
|
418 |
+
new_op.C.layout = CUTLASSGemmTemplate.flip_cutlass_layout(new_op.C.layout)
|
419 |
+
new_op.D.layout = CUTLASSGemmTemplate.flip_cutlass_layout(new_op.D.layout)
|
420 |
+
return new_op
|
421 |
+
|
422 |
+
def filter_op(
|
423 |
+
self,
|
424 |
+
op: "cutlass_library.gemm_op.GemmOperation", # type: ignore[name-defined]
|
425 |
+
) -> "cutlass_library.gemm_op.GemmOperation": # type: ignore[name-defined]
|
426 |
+
assert cutlass_utils.try_import_cutlass()
|
427 |
+
import cutlass_library.library as cutlass_lib
|
428 |
+
|
429 |
+
# Skip simt kernels
|
430 |
+
if (
|
431 |
+
op.tile_description.math_instruction.opcode_class
|
432 |
+
== cutlass_lib.OpcodeClass.Simt
|
433 |
+
):
|
434 |
+
return None
|
435 |
+
|
436 |
+
# Only keep GemmUniversal kernels
|
437 |
+
if op.gemm_kind not in {
|
438 |
+
cutlass_lib.GemmKind.Universal,
|
439 |
+
cutlass_lib.GemmKind.Universal3x,
|
440 |
+
}:
|
441 |
+
return None
|
442 |
+
# Filter ops by dtypes.
|
443 |
+
X = self.input_nodes[0]
|
444 |
+
W = self.input_nodes[1]
|
445 |
+
accumulator_torch_dtype = cutlass_utils.get_accumulator_dtype(
|
446 |
+
[X.get_dtype(), W.get_dtype()],
|
447 |
+
)
|
448 |
+
if not (
|
449 |
+
cutlass_utils.dtype_match(X.get_dtype(), op.A.element)
|
450 |
+
and cutlass_utils.dtype_match(W.get_dtype(), op.B.element)
|
451 |
+
and cutlass_utils.dtype_match(
|
452 |
+
self.output_node.get_layout().dtype, op.C.element
|
453 |
+
)
|
454 |
+
and cutlass_utils.dtype_match(
|
455 |
+
accumulator_torch_dtype, op.accumulator_type()
|
456 |
+
)
|
457 |
+
):
|
458 |
+
return None
|
459 |
+
|
460 |
+
# Filter ops by input layouts.
|
461 |
+
if not (
|
462 |
+
self.layout_match(X.get_layout(), op.A.layout)
|
463 |
+
and self.layout_match(W.get_layout(), op.B.layout)
|
464 |
+
):
|
465 |
+
return None
|
466 |
+
|
467 |
+
# Update op.
|
468 |
+
op = copy.deepcopy(op)
|
469 |
+
|
470 |
+
# Set output layout.
|
471 |
+
op.D.layout = CUTLASSGemmTemplate.cutlass_layout(self.output_node.get_layout())
|
472 |
+
|
473 |
+
# Filter ops by alignments and set alignments.
|
474 |
+
if not (
|
475 |
+
self.set_alignment(X.get_layout(), op.A)
|
476 |
+
and self.set_alignment(W.get_layout(), op.B)
|
477 |
+
and self.set_alignment(self.output_node.get_layout(), op.D)
|
478 |
+
):
|
479 |
+
return None
|
480 |
+
|
481 |
+
# Set epilogue.
|
482 |
+
# TODO: update epilogue functor according to epilogues.
|
483 |
+
op.element_epilogue = op.accumulator_type()
|
484 |
+
|
485 |
+
# Set bias layout and alignment.
|
486 |
+
if len(self.input_nodes) >= 3 and self.input_nodes[2] is not None:
|
487 |
+
Bias = self.input_nodes[2]
|
488 |
+
bias_layout = CUTLASSGemmTemplate.cutlass_layout(Bias.get_layout())
|
489 |
+
if op.gemm_kind != cutlass_lib.GemmKind.Universal3x:
|
490 |
+
if bias_layout != op.D.layout:
|
491 |
+
# For cutlass2, bias and output layout must match
|
492 |
+
return None
|
493 |
+
else:
|
494 |
+
op.C.layout = bias_layout
|
495 |
+
if not self.set_alignment(Bias.get_layout(), op.C):
|
496 |
+
return None
|
497 |
+
else:
|
498 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
499 |
+
op.C.element = cutlass_lib.DataType.void
|
500 |
+
else:
|
501 |
+
op.C.layout = op.D.layout
|
502 |
+
supports_evt: bool = self.supports_evt(op)
|
503 |
+
if (self.can_fuse_epilogue is not None) and (
|
504 |
+
self.can_fuse_epilogue != supports_evt
|
505 |
+
):
|
506 |
+
return None
|
507 |
+
if inductor_cuda_config.cutlass_only_evt_capable_ops and not supports_evt:
|
508 |
+
return None
|
509 |
+
return op
|
510 |
+
|
511 |
+
def gen_ops(self) -> "List[cutlass_gemm_op.GemmOperation]": # type: ignore[name-defined]
|
512 |
+
assert cutlass_utils.try_import_cutlass()
|
513 |
+
import cutlass_library.gemm_operation as cutlass_gemm_op
|
514 |
+
import cutlass_library.library as cutlass_lib
|
515 |
+
|
516 |
+
ops = cutlass_utils.gen_ops()[cutlass_lib.OperationKind.Gemm]
|
517 |
+
res: Dict[str, cutlass_gemm_op.GemmOperation] = dict()
|
518 |
+
num_3x_ops = 0
|
519 |
+
num_2x_ops = 0
|
520 |
+
for op_dict in ops.values():
|
521 |
+
for op_list in op_dict.values():
|
522 |
+
for op in op_list:
|
523 |
+
assert isinstance(op, cutlass_gemm_op.GemmOperation)
|
524 |
+
filter_res = self.filter_op(op)
|
525 |
+
if (
|
526 |
+
filter_res is not None
|
527 |
+
and res.get(filter_res.configuration_name(), None) is None
|
528 |
+
):
|
529 |
+
res[filter_res.configuration_name()] = filter_res
|
530 |
+
for op in res.values():
|
531 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
532 |
+
num_3x_ops += 1
|
533 |
+
else:
|
534 |
+
num_2x_ops += 1
|
535 |
+
log.debug(
|
536 |
+
"Got cutlass configs: total number of ops: %d, "
|
537 |
+
"total number of 3x ops: %d, total number of 2x ops: %d",
|
538 |
+
len(res),
|
539 |
+
num_3x_ops,
|
540 |
+
num_2x_ops,
|
541 |
+
)
|
542 |
+
return list(res.values())[: inductor_cuda_config.cutlass_max_profiling_configs]
|
543 |
+
|
544 |
+
def gemm_mode(self) -> str:
|
545 |
+
sizes = self.output_node.get_size()
|
546 |
+
if len(sizes) > 2:
|
547 |
+
return "cutlass::gemm::GemmUniversalMode::kBatched"
|
548 |
+
else:
|
549 |
+
return "cutlass::gemm::GemmUniversalMode::kGemm"
|
550 |
+
|
551 |
+
def render_gemm_arguments(
|
552 |
+
self,
|
553 |
+
argument_template: str,
|
554 |
+
epilogue_template: str,
|
555 |
+
should_swap_xw: bool,
|
556 |
+
X: IRNode,
|
557 |
+
W: IRNode,
|
558 |
+
Bias: IRNode,
|
559 |
+
Y: IRNode,
|
560 |
+
alpha: float,
|
561 |
+
beta: float,
|
562 |
+
kernel: CUDATemplateKernel,
|
563 |
+
epilogue_args,
|
564 |
+
) -> str:
|
565 |
+
options = dict(
|
566 |
+
alpha=self.alpha,
|
567 |
+
beta=self.beta,
|
568 |
+
X=X,
|
569 |
+
W=W,
|
570 |
+
Y=Y,
|
571 |
+
Bias=Bias,
|
572 |
+
template=self,
|
573 |
+
kernel=kernel,
|
574 |
+
M="M",
|
575 |
+
N="N",
|
576 |
+
epilogue_args=epilogue_args,
|
577 |
+
)
|
578 |
+
|
579 |
+
if epilogue_template is not None:
|
580 |
+
if should_swap_xw:
|
581 |
+
# Swap
|
582 |
+
def clone_with_transposed_stride(node: IRNode) -> IRNode:
|
583 |
+
old_layout = node.get_layout()
|
584 |
+
new_stride = list(old_layout.stride)
|
585 |
+
new_stride[-2], new_stride[-1] = new_stride[-1], new_stride[-2]
|
586 |
+
new_layout = FixedLayout(
|
587 |
+
old_layout.device,
|
588 |
+
old_layout.dtype,
|
589 |
+
list(old_layout.size),
|
590 |
+
new_stride,
|
591 |
+
old_layout.offset,
|
592 |
+
)
|
593 |
+
return Buffer(node.get_name(), new_layout)
|
594 |
+
|
595 |
+
new_X = clone_with_transposed_stride(X)
|
596 |
+
new_W = clone_with_transposed_stride(W)
|
597 |
+
new_Bias = clone_with_transposed_stride(Bias)
|
598 |
+
new_Y = clone_with_transposed_stride(Y)
|
599 |
+
options["X"], options["W"], options["Bias"], options["Y"] = (
|
600 |
+
new_W,
|
601 |
+
new_X,
|
602 |
+
new_Bias,
|
603 |
+
new_Y,
|
604 |
+
)
|
605 |
+
options["M"], options["N"] = "N", "M"
|
606 |
+
|
607 |
+
epilogue_arguments = self._template_from_string(epilogue_template).render(
|
608 |
+
**options
|
609 |
+
)
|
610 |
+
arguments = self._template_from_string(argument_template).render(
|
611 |
+
epilogue_arguments=epilogue_arguments, **options
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
arguments = self._template_from_string(GEMM_ARGS_CUTLASS_2X).render(
|
615 |
+
split_k=1, **options
|
616 |
+
)
|
617 |
+
return arguments
|
618 |
+
|
619 |
+
def render( # type: ignore[override]
|
620 |
+
self,
|
621 |
+
kernel: CUDATemplateKernel,
|
622 |
+
op: "cutlass_gemm_op.GemmOperation" = None, # type: ignore[name-defined]
|
623 |
+
template_buffer_node: Optional[CUDATemplateBuffer] = None,
|
624 |
+
epilogue_nodes: Optional[List[IRNode]] = None,
|
625 |
+
**kwargs,
|
626 |
+
) -> str:
|
627 |
+
if epilogue_nodes is not None and len(epilogue_nodes) > 0:
|
628 |
+
assert self.can_fuse_epilogue and CUTLASSGemmTemplate.supports_evt(
|
629 |
+
op
|
630 |
+
), "op does not support EVT epilogue fusion"
|
631 |
+
assert (
|
632 |
+
template_buffer_node is not None
|
633 |
+
), "Template node is required for epilogue fusion"
|
634 |
+
assert isinstance(
|
635 |
+
template_buffer_node, CUDATemplateBuffer
|
636 |
+
), f"Template node has to be a CUDATemplateBuffer, is type {type(template_buffer_node)}"
|
637 |
+
assert (
|
638 |
+
template_buffer_node.name is not None
|
639 |
+
), "Output node has to be a Buffer with a name"
|
640 |
+
# This is the name of the output of the Matmul, before epilogues are applied.
|
641 |
+
# it is not necessarily materialized in global memory if we have an epilogue
|
642 |
+
|
643 |
+
template_output_node_name = (
|
644 |
+
template_buffer_node.name if template_buffer_node is not None else None
|
645 |
+
)
|
646 |
+
|
647 |
+
assert cutlass_utils.try_import_cutlass()
|
648 |
+
import cutlass_library.gemm_operation as cutlass_gemm_op
|
649 |
+
import cutlass_library.library as cutlass_lib
|
650 |
+
|
651 |
+
assert isinstance(
|
652 |
+
op, cutlass_gemm_op.GemmOperation
|
653 |
+
), "op argument is required and has to be an instance of GemmOperation"
|
654 |
+
if template_buffer_node is not None:
|
655 |
+
self.output_node = template_buffer_node
|
656 |
+
if epilogue_nodes is not None and len(epilogue_nodes) > 0:
|
657 |
+
self.output_node = cast(Buffer, epilogue_nodes[-1])
|
658 |
+
|
659 |
+
assert len(self.input_nodes) >= 2 and self.output_node is not None
|
660 |
+
X, W = self.input_nodes[0], self.input_nodes[1]
|
661 |
+
Y = self.output_node
|
662 |
+
Bias = None if len(self.input_nodes) == 2 else self.input_nodes[2]
|
663 |
+
|
664 |
+
epilogue_template: Optional[str] = None
|
665 |
+
should_swap_xw: bool = False
|
666 |
+
epilogue_args = f"{{ElementComputeEpilogue({self.alpha}), ElementComputeEpilogue({self.beta})}}"
|
667 |
+
if op.gemm_kind == cutlass_lib.GemmKind.Universal3x:
|
668 |
+
if Bias is not None and self.has_tma_epilogue(op):
|
669 |
+
if self.should_swap_XW(Bias, self.beta):
|
670 |
+
# TMA epilogue requires bias vector in column major to get best perf.
|
671 |
+
op = self.swap_XW(op)
|
672 |
+
should_swap_xw = True
|
673 |
+
if epilogue_nodes is not None and len(epilogue_nodes) > 0:
|
674 |
+
epilogue_args = (
|
675 |
+
CutlassEVTEpilogueArgumentFormatter.ir_to_evt_argument_string(
|
676 |
+
cast(str, template_output_node_name), epilogue_nodes
|
677 |
+
)
|
678 |
+
)
|
679 |
+
epilogue_template = GEMM_ARGS_CUTLASS_3X_EPILOGUE
|
680 |
+
argument_template = GEMM_ARGS_CUTLASS_3X
|
681 |
+
else:
|
682 |
+
# TODO: Support split_k.
|
683 |
+
argument_template = GEMM_ARGS_CUTLASS_2X
|
684 |
+
|
685 |
+
instance_definition, instance_type = self.define_gemm_instance(
|
686 |
+
op, cast(str, template_output_node_name), epilogue_nodes
|
687 |
+
)
|
688 |
+
options = dict(
|
689 |
+
alpha=self.alpha,
|
690 |
+
beta=self.beta,
|
691 |
+
X=X,
|
692 |
+
W=W,
|
693 |
+
Y=Y,
|
694 |
+
Bias=Bias,
|
695 |
+
epilogue_template=epilogue_template,
|
696 |
+
argument_template=argument_template,
|
697 |
+
should_swap_xw=should_swap_xw,
|
698 |
+
template=self,
|
699 |
+
kernel=kernel,
|
700 |
+
instance_definition=instance_definition,
|
701 |
+
instance_type=instance_type,
|
702 |
+
input_reorder=self.input_reorder,
|
703 |
+
epilogue_args=epilogue_args,
|
704 |
+
)
|
705 |
+
res = self._template_from_string(GEMM_TEMPLATE).render(**options)
|
706 |
+
return res
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/cuda_combined_scheduling.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from ..scheduler import BaseSchedulerNode, BaseScheduling, Scheduler, SchedulerNode
|
4 |
+
from .cuda.cuda_cpp_scheduling import CUDACPPScheduling
|
5 |
+
|
6 |
+
from .triton import TritonScheduling
|
7 |
+
|
8 |
+
|
9 |
+
class CUDACombinedScheduling(BaseScheduling):
|
10 |
+
"""
|
11 |
+
Scheduler for CUDA Kernels, which delegates calls as appropriate
|
12 |
+
to the CUDA-C++ and Triton Schedulers, which both work for CUDA devices
|
13 |
+
and use a unified-wrapper for codegen.
|
14 |
+
|
15 |
+
If Scheduling code needs to be specialized for the case of mixed Triton / CUDA C++ code,
|
16 |
+
this would also be the place to do it.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, scheduler: Scheduler):
|
20 |
+
super().__init__()
|
21 |
+
self._scheduler = scheduler
|
22 |
+
self._triton_scheduling = TritonScheduling(scheduler)
|
23 |
+
self._cuda_cpp_scheduling = CUDACPPScheduling(scheduler)
|
24 |
+
|
25 |
+
def choose_node_backend(self, node: BaseSchedulerNode) -> BaseScheduling:
|
26 |
+
if self._cuda_cpp_scheduling.is_cuda_cpp_template(
|
27 |
+
node
|
28 |
+
) or self._cuda_cpp_scheduling.is_cuda_cpp_fused_template(node):
|
29 |
+
return self._cuda_cpp_scheduling
|
30 |
+
return self._triton_scheduling
|
31 |
+
|
32 |
+
def can_fuse_vertical(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
33 |
+
if self._cuda_cpp_scheduling.can_fuse_vertical(node1, node2):
|
34 |
+
return True
|
35 |
+
return self._triton_scheduling.can_fuse_vertical(node1, node2)
|
36 |
+
|
37 |
+
def can_fuse_horizontal(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
38 |
+
for node in (node1, node2):
|
39 |
+
if self._cuda_cpp_scheduling.is_cuda_cpp_template(
|
40 |
+
node
|
41 |
+
) or self._cuda_cpp_scheduling.is_cuda_cpp_fused_template(node):
|
42 |
+
return self._cuda_cpp_scheduling.can_fuse_horizontal(
|
43 |
+
node1, node2
|
44 |
+
) # always False at the moment
|
45 |
+
return self._triton_scheduling.can_fuse_horizontal(node1, node2)
|
46 |
+
|
47 |
+
def group_fn(self, sizes):
|
48 |
+
return self._triton_scheduling.group_fn(sizes)
|
49 |
+
|
50 |
+
def codegen_template(
|
51 |
+
self, template_node: SchedulerNode, epilogue_nodes: List[SchedulerNode]
|
52 |
+
):
|
53 |
+
if self._cuda_cpp_scheduling.is_cuda_cpp_template(template_node):
|
54 |
+
return self._cuda_cpp_scheduling.codegen_template(
|
55 |
+
template_node, epilogue_nodes
|
56 |
+
)
|
57 |
+
else:
|
58 |
+
return self._triton_scheduling.codegen_template(
|
59 |
+
template_node, epilogue_nodes
|
60 |
+
)
|
61 |
+
|
62 |
+
def codegen_nodes(self, nodes: List[BaseSchedulerNode]):
|
63 |
+
return self._triton_scheduling.codegen_nodes(nodes)
|
64 |
+
|
65 |
+
def codegen_sync(self):
|
66 |
+
return self._triton_scheduling.codegen_sync()
|
67 |
+
|
68 |
+
def flush(self):
|
69 |
+
return self._triton_scheduling.flush()
|
70 |
+
|
71 |
+
def codegen_foreach(self, *args, **kwargs):
|
72 |
+
return self._triton_scheduling.codegen_foreach(*args, **kwargs)
|
73 |
+
|
74 |
+
def benchmark_fused_nodes(self, nodes):
|
75 |
+
return self._triton_scheduling.benchmark_fused_nodes(nodes)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/memory_planning.py
ADDED
@@ -0,0 +1,799 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import collections
|
4 |
+
import dataclasses
|
5 |
+
import itertools
|
6 |
+
import pprint
|
7 |
+
from typing import Any, Dict, Iterable, List, Optional, Protocol
|
8 |
+
|
9 |
+
import sympy
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from .. import config, ir
|
13 |
+
from ..utils import cache_on_self, CachedMethod, IndentedBuffer
|
14 |
+
from ..virtualized import V
|
15 |
+
|
16 |
+
from .wrapper import (
|
17 |
+
AllocateLine,
|
18 |
+
FreeIfNotReusedLine,
|
19 |
+
MemoryPlanningLine,
|
20 |
+
NullLine,
|
21 |
+
ReuseLine,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
ALIGN_BYTES = 64
|
26 |
+
assert (ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0 and ALIGN_BYTES >= 8, "must be power of 2"
|
27 |
+
|
28 |
+
|
29 |
+
def _align(nbytes):
|
30 |
+
"""Round up to the nearest multiple of ALIGN_BYTES"""
|
31 |
+
return (nbytes + ALIGN_BYTES - 1) & -ALIGN_BYTES
|
32 |
+
|
33 |
+
|
34 |
+
def _is_aligned(v: sympy.Expr):
|
35 |
+
"""v can be statically proven to be a multiple of ALIGN_BYTES"""
|
36 |
+
if isinstance(v, (sympy.Add, sympy.Max)):
|
37 |
+
return all(map(_is_aligned, v.args))
|
38 |
+
return isinstance(v, align) or sympy.gcd(v, ALIGN_BYTES) == ALIGN_BYTES
|
39 |
+
|
40 |
+
|
41 |
+
class align(sympy.Function):
|
42 |
+
"""Symbolically round up to the nearest multiple of ALIGN_BYTES"""
|
43 |
+
|
44 |
+
nargs = (1,)
|
45 |
+
is_integer = True
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
def eval(cls, value):
|
49 |
+
if isinstance(value, (int, sympy.Integer)):
|
50 |
+
return _align(int(value))
|
51 |
+
if _is_aligned(value):
|
52 |
+
return value
|
53 |
+
|
54 |
+
|
55 |
+
@dataclasses.dataclass
|
56 |
+
class LiveRange:
|
57 |
+
"""
|
58 |
+
A range where a given tensor is live. Begin and end are both counters
|
59 |
+
representing points in the program of grouped memory operations.
|
60 |
+
Begin is inclusive, end is exclusive.
|
61 |
+
|
62 |
+
Invariant: begin <= end
|
63 |
+
"""
|
64 |
+
|
65 |
+
begin: float # int | ±inf
|
66 |
+
end: float # int | ±inf
|
67 |
+
|
68 |
+
def contains(self, other: LiveRange):
|
69 |
+
"""Is other entirely within self"""
|
70 |
+
return self.begin <= other.begin and other.end <= self.end
|
71 |
+
|
72 |
+
def join(self, other: LiveRange):
|
73 |
+
"""Combine two ranges using a union operation"""
|
74 |
+
return LiveRange(min(self.begin, other.begin), max(self.end, other.end))
|
75 |
+
|
76 |
+
def __len__(self):
|
77 |
+
return self.end - self.begin
|
78 |
+
|
79 |
+
|
80 |
+
class LiveRanges:
|
81 |
+
"""
|
82 |
+
A collection of LiveRange regions, allowing for non-contiguous
|
83 |
+
live regions.
|
84 |
+
|
85 |
+
Invariant: LiveRanges.ranges is in sorted order and non-overlapping
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(self, ranges: Iterable[LiveRange]):
|
89 |
+
ranges = [*sorted(ranges, key=lambda x: x.begin)]
|
90 |
+
self.ranges = ranges[:1]
|
91 |
+
for r in ranges[1:]:
|
92 |
+
assert self.ranges[-1].begin <= r.begin
|
93 |
+
if self.ranges[-1].end >= r.begin:
|
94 |
+
self.ranges[-1] = LiveRange.join(self.ranges[-1], r)
|
95 |
+
else:
|
96 |
+
self.ranges.append(r)
|
97 |
+
|
98 |
+
def overlaps(self, other: LiveRanges):
|
99 |
+
"""Check if any pair of ranges in self and other overlap"""
|
100 |
+
left = collections.deque(self.ranges)
|
101 |
+
right = collections.deque(other.ranges)
|
102 |
+
while left and right:
|
103 |
+
if left[0].begin > right[0].begin:
|
104 |
+
left, right = right, left
|
105 |
+
assert left[0].begin <= right[0].begin
|
106 |
+
if left[0].end > right[0].begin:
|
107 |
+
return True
|
108 |
+
left.popleft()
|
109 |
+
return False
|
110 |
+
|
111 |
+
@property
|
112 |
+
def begin(self):
|
113 |
+
return self.ranges[0].begin
|
114 |
+
|
115 |
+
@property
|
116 |
+
def end(self):
|
117 |
+
return self.ranges[-1].end
|
118 |
+
|
119 |
+
def __repr__(self):
|
120 |
+
return f"{self.__class__.__name__}([{', '.join(map(repr, self.ranges))}])"
|
121 |
+
|
122 |
+
|
123 |
+
class AllocationTreeNode:
|
124 |
+
"""
|
125 |
+
Abstract base class for nodes in allocation pool.
|
126 |
+
"""
|
127 |
+
|
128 |
+
def allocate(self, block: Allocation, is_last: bool) -> bool:
|
129 |
+
"""
|
130 |
+
Try to assign block to a memory location in this bool. Return True if
|
131 |
+
an assignment was made.
|
132 |
+
"""
|
133 |
+
return False
|
134 |
+
|
135 |
+
def get_live_ranges(self) -> LiveRanges:
|
136 |
+
"""Aggregate LiveRanges for all objects below this in tree"""
|
137 |
+
raise NotImplementedError()
|
138 |
+
|
139 |
+
def get_size_hint(self) -> int:
|
140 |
+
"""Number of bytes used for example inputs"""
|
141 |
+
raise NotImplementedError()
|
142 |
+
|
143 |
+
def get_symbolic_size(self) -> sympy.Expr:
|
144 |
+
"""Number of bytes needed at runtime"""
|
145 |
+
raise NotImplementedError()
|
146 |
+
|
147 |
+
def finalize(self, pool, offset) -> AllocationTreeNode:
|
148 |
+
"""Called after all allocations have been made"""
|
149 |
+
return self
|
150 |
+
|
151 |
+
def is_empty(self):
|
152 |
+
return False
|
153 |
+
|
154 |
+
|
155 |
+
@dataclasses.dataclass
|
156 |
+
class Allocation(AllocationTreeNode):
|
157 |
+
"""
|
158 |
+
Represents memory allocated to a given node in the allocation pool.
|
159 |
+
"""
|
160 |
+
|
161 |
+
node: ir.Buffer
|
162 |
+
live_range: LiveRange
|
163 |
+
size_hint: int
|
164 |
+
symbolic_size: sympy.Expr
|
165 |
+
allocated: bool = False
|
166 |
+
pool: Optional[AllocationPool] = None
|
167 |
+
offset: Optional[sympy.Expr] = None
|
168 |
+
|
169 |
+
@property
|
170 |
+
def device(self):
|
171 |
+
return self.node.get_device()
|
172 |
+
|
173 |
+
def get_live_ranges(self):
|
174 |
+
return LiveRanges([self.live_range])
|
175 |
+
|
176 |
+
def get_size_hint(self):
|
177 |
+
return self.size_hint
|
178 |
+
|
179 |
+
def get_symbolic_size(self):
|
180 |
+
return self.symbolic_size
|
181 |
+
|
182 |
+
def mark_allocated(self):
|
183 |
+
assert not self.allocated
|
184 |
+
self.allocated = True
|
185 |
+
|
186 |
+
def finalize(self, pool, offset):
|
187 |
+
assert self.pool is None and self.offset is None
|
188 |
+
self.pool = pool
|
189 |
+
self.offset = offset
|
190 |
+
return self
|
191 |
+
|
192 |
+
def codegen_alloc_from_pool(self, wrapper):
|
193 |
+
assert self.pool
|
194 |
+
node = self.node
|
195 |
+
shape = tuple(node.get_size())
|
196 |
+
stride = tuple(node.get_stride())
|
197 |
+
return wrapper.codegen_alloc_from_pool(
|
198 |
+
self.pool.name, self.offset, node.get_dtype(), shape, stride
|
199 |
+
)
|
200 |
+
|
201 |
+
def __repr__(self):
|
202 |
+
return (
|
203 |
+
f"{self.__class__.__name__}("
|
204 |
+
f"node={self.node.get_name()}, "
|
205 |
+
f"live_range={self.live_range}, "
|
206 |
+
f"size_hint={self.size_hint}, "
|
207 |
+
f"symbolic_size={self.symbolic_size}, "
|
208 |
+
f"pool={self.pool.name if self.pool else None}, "
|
209 |
+
f"offset={self.offset})"
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
@dataclasses.dataclass
|
214 |
+
class Empty(AllocationTreeNode):
|
215 |
+
"""
|
216 |
+
Placeholder to represent empty space in the allocation pool.
|
217 |
+
Only exists to get the size_hint correct in parent nodes.
|
218 |
+
"""
|
219 |
+
|
220 |
+
size_hint: int
|
221 |
+
|
222 |
+
def get_live_ranges(self):
|
223 |
+
return LiveRanges([])
|
224 |
+
|
225 |
+
def get_size_hint(self):
|
226 |
+
return self.size_hint
|
227 |
+
|
228 |
+
def get_symbolic_size(self):
|
229 |
+
return 0
|
230 |
+
|
231 |
+
def is_empty(self):
|
232 |
+
return True
|
233 |
+
|
234 |
+
|
235 |
+
class MemorySplitProtocol(Protocol):
|
236 |
+
get_live_ranges: CachedMethod[[], LiveRanges]
|
237 |
+
get_size_hint: CachedMethod[[], int]
|
238 |
+
get_symbolic_size: CachedMethod[[], sympy.Expr]
|
239 |
+
|
240 |
+
def _allocate(self, block: Allocation, is_last: bool) -> bool:
|
241 |
+
...
|
242 |
+
|
243 |
+
|
244 |
+
class ClearCacheOnAllocateMixin(MemorySplitProtocol):
|
245 |
+
"""
|
246 |
+
Helper to assist in caching get_live_ranges, get_size_hint, and
|
247 |
+
get_symbolic_size.
|
248 |
+
"""
|
249 |
+
|
250 |
+
def allocate(self, block: Allocation, is_last: bool):
|
251 |
+
is_allocated = self._allocate(block, is_last)
|
252 |
+
if is_allocated:
|
253 |
+
self.clear_cache()
|
254 |
+
return is_allocated
|
255 |
+
|
256 |
+
def clear_cache(self):
|
257 |
+
self.get_live_ranges.clear_cache(self)
|
258 |
+
self.get_size_hint.clear_cache(self)
|
259 |
+
self.get_symbolic_size.clear_cache(self)
|
260 |
+
|
261 |
+
|
262 |
+
@dataclasses.dataclass
|
263 |
+
class TemporalSplit(ClearCacheOnAllocateMixin, AllocationTreeNode):
|
264 |
+
"""
|
265 |
+
Contains a list of allocations not overlapping in LiveRanges.
|
266 |
+
|
267 |
+
Invariant: no pair (a,b) in self.allocations will have:
|
268 |
+
a.get_live_ranges().overlaps(b.get_live_ranges())
|
269 |
+
"""
|
270 |
+
|
271 |
+
allocations: List[AllocationTreeNode]
|
272 |
+
|
273 |
+
def _allocate(self, block: Allocation, is_last: bool):
|
274 |
+
slot_size = self.get_size_hint()
|
275 |
+
block_size = block.get_size_hint()
|
276 |
+
if not is_last and block_size > slot_size:
|
277 |
+
return False # doesn't fit
|
278 |
+
|
279 |
+
block_live = block.get_live_ranges()
|
280 |
+
overlapping = [
|
281 |
+
s for s in self.allocations if s.get_live_ranges().overlaps(block_live)
|
282 |
+
]
|
283 |
+
if len(overlapping) > 1:
|
284 |
+
# TODO(jansel): we could try harder here by merging overlapping in space
|
285 |
+
return False
|
286 |
+
elif len(overlapping) == 1:
|
287 |
+
return overlapping[0].allocate(block, is_last)
|
288 |
+
else:
|
289 |
+
block.mark_allocated()
|
290 |
+
|
291 |
+
if len(self.allocations) == 1 and isinstance(self.allocations[-1], Empty):
|
292 |
+
self.allocations.pop()
|
293 |
+
|
294 |
+
if slot_size == block_size:
|
295 |
+
# perfect fit
|
296 |
+
self.allocations.append(block)
|
297 |
+
elif slot_size > block_size:
|
298 |
+
self.allocations.append(
|
299 |
+
SpatialSplit.create(block, slot_size - block_size)
|
300 |
+
)
|
301 |
+
else: # grow this allocation
|
302 |
+
assert is_last
|
303 |
+
self.allocations = [
|
304 |
+
*(
|
305 |
+
SpatialSplit.create(a, block_size - slot_size)
|
306 |
+
for a in self.allocations
|
307 |
+
),
|
308 |
+
block,
|
309 |
+
]
|
310 |
+
return True
|
311 |
+
|
312 |
+
@cache_on_self
|
313 |
+
def get_live_ranges(self) -> LiveRanges:
|
314 |
+
return LiveRanges(
|
315 |
+
itertools.chain.from_iterable(
|
316 |
+
x.get_live_ranges().ranges for x in self.allocations
|
317 |
+
)
|
318 |
+
)
|
319 |
+
|
320 |
+
@cache_on_self
|
321 |
+
def get_size_hint(self) -> int:
|
322 |
+
if not self.allocations:
|
323 |
+
return 0
|
324 |
+
return max(x.get_size_hint() for x in self.allocations)
|
325 |
+
|
326 |
+
@cache_on_self
|
327 |
+
def get_symbolic_size(self) -> sympy.Expr:
|
328 |
+
if not self.allocations:
|
329 |
+
return 0
|
330 |
+
return sympy.Max(*[x.get_symbolic_size() for x in self.allocations])
|
331 |
+
|
332 |
+
def is_empty(self):
|
333 |
+
return len(self.allocations) == 1 and self.allocations[0].is_empty()
|
334 |
+
|
335 |
+
def finalize(self, pool, offset):
|
336 |
+
self.allocations = [block.finalize(pool, offset) for block in self.allocations]
|
337 |
+
self.clear_cache()
|
338 |
+
if len(self.allocations) == 1:
|
339 |
+
return self.allocations[0]
|
340 |
+
return self
|
341 |
+
|
342 |
+
|
343 |
+
@dataclasses.dataclass
|
344 |
+
class SpatialSplit(ClearCacheOnAllocateMixin, AllocationTreeNode):
|
345 |
+
"""
|
346 |
+
Contains two allocations, left and right, that do not overlap in space.
|
347 |
+
Right will be allocated immediately after left in memory.
|
348 |
+
"""
|
349 |
+
|
350 |
+
left: TemporalSplit
|
351 |
+
right: TemporalSplit
|
352 |
+
|
353 |
+
@staticmethod
|
354 |
+
def create(left, extra_space):
|
355 |
+
assert isinstance(left, AllocationTreeNode)
|
356 |
+
assert isinstance(extra_space, int) and extra_space >= 1
|
357 |
+
return SpatialSplit(TemporalSplit([left]), TemporalSplit([Empty(extra_space)]))
|
358 |
+
|
359 |
+
def _allocate(self, block: Allocation, is_last: bool):
|
360 |
+
return self.left.allocate(block, False) or self.right.allocate(block, is_last)
|
361 |
+
|
362 |
+
@cache_on_self
|
363 |
+
def get_live_ranges(self):
|
364 |
+
return LiveRanges(
|
365 |
+
itertools.chain(
|
366 |
+
self.left.get_live_ranges().ranges, self.right.get_live_ranges().ranges
|
367 |
+
)
|
368 |
+
)
|
369 |
+
|
370 |
+
@cache_on_self
|
371 |
+
def get_size_hint(self) -> int:
|
372 |
+
return _align(self.left.get_size_hint()) + self.right.get_size_hint()
|
373 |
+
|
374 |
+
@cache_on_self
|
375 |
+
def get_symbolic_size(self) -> sympy.Expr:
|
376 |
+
return align(self.left.get_symbolic_size()) + self.right.get_symbolic_size()
|
377 |
+
|
378 |
+
def finalize(self, pool, offset):
|
379 |
+
self.left = self.left.finalize(pool, offset)
|
380 |
+
self.right = self.right.finalize(
|
381 |
+
pool, offset + align(self.left.get_symbolic_size())
|
382 |
+
)
|
383 |
+
self.clear_cache()
|
384 |
+
if self.right.is_empty():
|
385 |
+
return self.left
|
386 |
+
return self
|
387 |
+
|
388 |
+
|
389 |
+
@dataclasses.dataclass
|
390 |
+
class AllocationPool:
|
391 |
+
"""
|
392 |
+
Represents a pool of allocations that will be generated by a single
|
393 |
+
call to torch.empty.
|
394 |
+
"""
|
395 |
+
|
396 |
+
device: torch.device
|
397 |
+
root: TemporalSplit
|
398 |
+
can_expand: bool = True
|
399 |
+
restrict_live_range: Optional[LiveRange] = None
|
400 |
+
name: Optional[str] = None
|
401 |
+
names_to_del: List[str] = dataclasses.field(default_factory=list)
|
402 |
+
creation_cache: Dict[str, str] = dataclasses.field(default_factory=dict)
|
403 |
+
|
404 |
+
def allocate(self, block: Allocation, is_last: bool):
|
405 |
+
if self.restrict_live_range and not self.restrict_live_range.contains(
|
406 |
+
block.live_range
|
407 |
+
):
|
408 |
+
return False
|
409 |
+
|
410 |
+
is_last = self.can_expand and is_last
|
411 |
+
if self.root.allocate(block, is_last):
|
412 |
+
return True
|
413 |
+
|
414 |
+
if is_last:
|
415 |
+
return self.allocate_at_end(block)
|
416 |
+
|
417 |
+
return False
|
418 |
+
|
419 |
+
def allocate_at_end(self, block):
|
420 |
+
block.mark_allocated()
|
421 |
+
self.root = TemporalSplit([SpatialSplit(self.root, TemporalSplit([block]))])
|
422 |
+
return True
|
423 |
+
|
424 |
+
def finalize(self, name):
|
425 |
+
assert not self.name
|
426 |
+
self.name = name
|
427 |
+
self.names_to_del.append(name)
|
428 |
+
self.root.finalize(self, 0)
|
429 |
+
|
430 |
+
def codegen_create(self, wrapper, code: IndentedBuffer):
|
431 |
+
assert self.name
|
432 |
+
nbytes = self.root.get_symbolic_size()
|
433 |
+
for block in self.root.allocations:
|
434 |
+
if isinstance(block, Allocation) and nbytes == block.get_symbolic_size():
|
435 |
+
# optimization: fuse first allocation and pool creation
|
436 |
+
node = block.node
|
437 |
+
code.writeline(
|
438 |
+
wrapper.make_allocation(
|
439 |
+
self.name,
|
440 |
+
device=self.device,
|
441 |
+
dtype=node.get_dtype(),
|
442 |
+
shape=tuple(node.get_size()),
|
443 |
+
stride=tuple(node.get_stride()),
|
444 |
+
)
|
445 |
+
)
|
446 |
+
self.creation_cache[block.codegen_alloc_from_pool(wrapper)] = self.name
|
447 |
+
return
|
448 |
+
else:
|
449 |
+
code.writeline(
|
450 |
+
wrapper.make_allocation(
|
451 |
+
self.name,
|
452 |
+
device=self.device,
|
453 |
+
dtype=torch.uint8,
|
454 |
+
shape=(nbytes,),
|
455 |
+
stride=(1,),
|
456 |
+
)
|
457 |
+
)
|
458 |
+
|
459 |
+
def codegen_destroy(self, wrapper, code: IndentedBuffer):
|
460 |
+
code.writeline(wrapper.make_free_by_names(self.names_to_del))
|
461 |
+
|
462 |
+
def __eq__(self, other):
|
463 |
+
return self is other
|
464 |
+
|
465 |
+
def __hash__(self):
|
466 |
+
return id(self)
|
467 |
+
|
468 |
+
|
469 |
+
@dataclasses.dataclass
|
470 |
+
class AllocationPools:
|
471 |
+
"""
|
472 |
+
Collection of many AllocationPool objects grouped by device.
|
473 |
+
"""
|
474 |
+
|
475 |
+
device_to_pools: Dict[torch.device, List[AllocationPool]] = dataclasses.field(
|
476 |
+
default_factory=dict
|
477 |
+
)
|
478 |
+
|
479 |
+
def get_pools(self, block):
|
480 |
+
if block.device not in self.device_to_pools:
|
481 |
+
self.device_to_pools[block.device] = []
|
482 |
+
return self.device_to_pools[block.device]
|
483 |
+
|
484 |
+
def allocate(self, block: Allocation):
|
485 |
+
pools = self.get_pools(block)
|
486 |
+
|
487 |
+
for pool in pools:
|
488 |
+
if pool.allocate(block, is_last=pool is pools[-1]):
|
489 |
+
return
|
490 |
+
|
491 |
+
# everything is full, make a new pool
|
492 |
+
pools.append(
|
493 |
+
AllocationPool(
|
494 |
+
block.device,
|
495 |
+
TemporalSplit([block]),
|
496 |
+
can_expand=config.memory_pool != "none",
|
497 |
+
)
|
498 |
+
)
|
499 |
+
block.mark_allocated()
|
500 |
+
|
501 |
+
def allocate_output(self, block: Allocation):
|
502 |
+
"""Outputs get different pools so memory gets freed properly"""
|
503 |
+
pools = self.get_pools(block)
|
504 |
+
if pools and config.memory_pool in ("outputs", "combined"):
|
505 |
+
pools[-1].allocate_at_end(block)
|
506 |
+
else:
|
507 |
+
# create a new pool
|
508 |
+
block.mark_allocated()
|
509 |
+
pools.append(
|
510 |
+
AllocationPool(
|
511 |
+
block.device,
|
512 |
+
TemporalSplit([block]),
|
513 |
+
can_expand=config.memory_pool == "combined",
|
514 |
+
)
|
515 |
+
)
|
516 |
+
|
517 |
+
def finalize(self):
|
518 |
+
"""Called at the end of allocation process"""
|
519 |
+
for i, pool in enumerate(
|
520 |
+
itertools.chain.from_iterable(self.device_to_pools.values())
|
521 |
+
):
|
522 |
+
pool.finalize(f"pool{i}")
|
523 |
+
|
524 |
+
def pprint(self):
|
525 |
+
for pool in itertools.chain.from_iterable(self.device_to_pools.values()):
|
526 |
+
print()
|
527 |
+
print(pool.name)
|
528 |
+
print(pool.root.get_live_ranges())
|
529 |
+
pprint.pprint(pool.root)
|
530 |
+
|
531 |
+
|
532 |
+
class BufferGroup:
|
533 |
+
"""
|
534 |
+
Due to inplace reuse an allocated buffer can have many names.
|
535 |
+
This tracks these collections of buffers sharing underlying memory.
|
536 |
+
"""
|
537 |
+
|
538 |
+
def __init__(self, node: ir.Buffer):
|
539 |
+
self.node = node
|
540 |
+
self.names = [node.get_name()]
|
541 |
+
self.is_output = False
|
542 |
+
self.allocation: Optional[Allocation] = None
|
543 |
+
self.live_range = LiveRange(float("inf"), -float("inf"))
|
544 |
+
|
545 |
+
def update_usage(self, timestep: int):
|
546 |
+
"""Expand self.live_range to include timestep"""
|
547 |
+
self.live_range = LiveRange(
|
548 |
+
min(timestep, self.live_range.begin),
|
549 |
+
max(timestep, self.live_range.end),
|
550 |
+
)
|
551 |
+
|
552 |
+
def sym_nbytes(self):
|
553 |
+
return self.node.get_layout().storage_size() * self.node.get_dtype().itemsize
|
554 |
+
|
555 |
+
def make_allocation(self):
|
556 |
+
assert not self.allocation, "multiple allocations"
|
557 |
+
assert isinstance(self.live_range.begin, int), "live ranges not computed"
|
558 |
+
nbytes = self.sym_nbytes()
|
559 |
+
# For now, fallback value will be used if we encounter an unbacked SymInt. The longer-term plan is to have
|
560 |
+
# size_hint() use better heuristics for unbackeds, at which point the fallback value will be ignored.
|
561 |
+
size_hint = V.graph.sizevars.size_hint(nbytes, fallback=64)
|
562 |
+
self.allocation = Allocation(
|
563 |
+
self.node,
|
564 |
+
self.live_range,
|
565 |
+
size_hint=size_hint,
|
566 |
+
symbolic_size=nbytes,
|
567 |
+
)
|
568 |
+
|
569 |
+
def __repr__(self):
|
570 |
+
return (
|
571 |
+
f"{self.__class__.__name__}({self.names!r}, is_output={self.is_output}, "
|
572 |
+
f"live_range={self.live_range}"
|
573 |
+
)
|
574 |
+
|
575 |
+
|
576 |
+
@dataclasses.dataclass
|
577 |
+
class PoolMemoryPlanningLine(MemoryPlanningLine):
|
578 |
+
"""Abstract base class for {Alloc,Dealloc}FromPoolLine"""
|
579 |
+
|
580 |
+
group: BufferGroup
|
581 |
+
timestep: Optional[int] = None
|
582 |
+
|
583 |
+
@property
|
584 |
+
def node(self):
|
585 |
+
return self.group.node
|
586 |
+
|
587 |
+
|
588 |
+
@dataclasses.dataclass
|
589 |
+
class AllocFromPoolLine(PoolMemoryPlanningLine):
|
590 |
+
"""Similar to AllocationLine, but takes memory from a pool"""
|
591 |
+
|
592 |
+
is_first_pool_usage: bool = False
|
593 |
+
|
594 |
+
def codegen(self, code: IndentedBuffer):
|
595 |
+
allocation = self.group.allocation
|
596 |
+
assert allocation and allocation.pool
|
597 |
+
pool = allocation.pool
|
598 |
+
name = self.node.get_name()
|
599 |
+
|
600 |
+
if self.is_first_pool_usage:
|
601 |
+
pool.codegen_create(self.wrapper, code)
|
602 |
+
|
603 |
+
pool.names_to_del.extend(self.group.names)
|
604 |
+
alloc_from_pool = allocation.codegen_alloc_from_pool(self.wrapper)
|
605 |
+
if alloc_from_pool in pool.creation_cache:
|
606 |
+
code.writeline(
|
607 |
+
self.wrapper.make_tensor_alias(
|
608 |
+
name, pool.creation_cache[alloc_from_pool], "alloc"
|
609 |
+
)
|
610 |
+
)
|
611 |
+
else:
|
612 |
+
pool.creation_cache[alloc_from_pool] = name
|
613 |
+
code.writeline(
|
614 |
+
f"{self.wrapper.declare}{name} = {alloc_from_pool}{self.wrapper.ending}"
|
615 |
+
)
|
616 |
+
|
617 |
+
|
618 |
+
@dataclasses.dataclass
|
619 |
+
class DeallocFromPoolLine(PoolMemoryPlanningLine):
|
620 |
+
"""Similar to FreeIfNotReusedLine, but takes memory from a pool"""
|
621 |
+
|
622 |
+
is_last_pool_usage: bool = False
|
623 |
+
|
624 |
+
def codegen(self, code: IndentedBuffer):
|
625 |
+
if self.is_last_pool_usage:
|
626 |
+
assert self.group.allocation and self.group.allocation.pool
|
627 |
+
self.group.allocation.pool.codegen_destroy(self.wrapper, code)
|
628 |
+
|
629 |
+
|
630 |
+
@dataclasses.dataclass
|
631 |
+
class MemoryPlanner:
|
632 |
+
"""
|
633 |
+
Coordination object to run memory planning passes during wrapper
|
634 |
+
codegen.
|
635 |
+
"""
|
636 |
+
|
637 |
+
wrapper: Any
|
638 |
+
pools: AllocationPools = dataclasses.field(default_factory=AllocationPools)
|
639 |
+
buffer_groups: Optional[List[BufferGroup]] = None
|
640 |
+
|
641 |
+
def plan(self, lines: List[Any]) -> List[Any]:
|
642 |
+
"""Call all the memory planning passes in sequence"""
|
643 |
+
lines = [*lines]
|
644 |
+
self.drop_removed_buffers(lines)
|
645 |
+
self.convert_to_pool_lines(lines)
|
646 |
+
self.compute_live_ranges(lines)
|
647 |
+
self.allocate_groups()
|
648 |
+
self.mark_first_last_usage(lines)
|
649 |
+
return lines
|
650 |
+
|
651 |
+
def drop_removed_buffers(self, lines):
|
652 |
+
"""
|
653 |
+
Replace any memory planning lines in V.graph.removed_buffers with NullLine
|
654 |
+
"""
|
655 |
+
# drop any removed buffers
|
656 |
+
for i, line in enumerate(lines):
|
657 |
+
if isinstance(line, (AllocateLine, FreeIfNotReusedLine, ReuseLine)):
|
658 |
+
if line.node.get_name() in V.graph.removed_buffers:
|
659 |
+
lines[i] = NullLine(self.wrapper)
|
660 |
+
|
661 |
+
def compute_buffer_groups(self, lines):
|
662 |
+
"""
|
663 |
+
Populates self.buffer_groups with BufferGroup objects that join
|
664 |
+
allocations with common storage (due to inplace reuse) into a
|
665 |
+
single object.
|
666 |
+
"""
|
667 |
+
name_to_group = {}
|
668 |
+
for line in lines:
|
669 |
+
if isinstance(line, AllocateLine):
|
670 |
+
name = line.node.get_name()
|
671 |
+
assert name not in name_to_group
|
672 |
+
name_to_group[name] = BufferGroup(line.node)
|
673 |
+
elif isinstance(line, ReuseLine):
|
674 |
+
old_name = line.node.get_name()
|
675 |
+
new_name = line.reused_as.get_name()
|
676 |
+
assert new_name not in name_to_group
|
677 |
+
# TODO(jansel): we should support reusing buffers created via ExternKernelAlloc
|
678 |
+
if old_name in name_to_group:
|
679 |
+
name_to_group[old_name].names.append(new_name)
|
680 |
+
name_to_group[new_name] = name_to_group[old_name]
|
681 |
+
|
682 |
+
outputs = set(V.graph.get_output_names())
|
683 |
+
unique_groups = [*{id(g): g for g in name_to_group.values()}.values()]
|
684 |
+
for group in unique_groups:
|
685 |
+
group.is_output = any(x in outputs for x in group.names)
|
686 |
+
|
687 |
+
assert self.buffer_groups is None
|
688 |
+
self.buffer_groups = unique_groups
|
689 |
+
return name_to_group
|
690 |
+
|
691 |
+
def convert_to_pool_lines(self, lines):
|
692 |
+
"""
|
693 |
+
Convert AllocateLine/FreeIfNotReusedLine/ReuseLine into their
|
694 |
+
pool-based counterparts.
|
695 |
+
"""
|
696 |
+
name_to_group = self.compute_buffer_groups(lines)
|
697 |
+
for i, line in enumerate(lines):
|
698 |
+
if isinstance(line, AllocateLine):
|
699 |
+
if line.node.get_name() in name_to_group:
|
700 |
+
lines[i] = AllocFromPoolLine(
|
701 |
+
self.wrapper, name_to_group[line.node.get_name()]
|
702 |
+
)
|
703 |
+
elif isinstance(line, FreeIfNotReusedLine):
|
704 |
+
assert not line.is_reused
|
705 |
+
if line.node.get_name() in name_to_group:
|
706 |
+
lines[i] = DeallocFromPoolLine(
|
707 |
+
self.wrapper, name_to_group[line.node.get_name()]
|
708 |
+
)
|
709 |
+
elif isinstance(line, ReuseLine):
|
710 |
+
if line.node.get_name() in name_to_group:
|
711 |
+
line.delete_old = False
|
712 |
+
|
713 |
+
def compute_live_ranges(self, lines):
|
714 |
+
"""Populate every BufferGroup.live_ranges field based on first/last usage"""
|
715 |
+
timestep = 0
|
716 |
+
worklist = collections.deque(lines)
|
717 |
+
while worklist:
|
718 |
+
if isinstance(worklist[0], MemoryPlanningLine):
|
719 |
+
timestep += 1
|
720 |
+
while worklist and isinstance(worklist[0], MemoryPlanningLine):
|
721 |
+
line = worklist.popleft()
|
722 |
+
if isinstance(line, PoolMemoryPlanningLine):
|
723 |
+
line.group.update_usage(timestep)
|
724 |
+
line.timestep = timestep
|
725 |
+
else:
|
726 |
+
worklist.popleft()
|
727 |
+
|
728 |
+
timestep += 1
|
729 |
+
assert self.buffer_groups is not None
|
730 |
+
for group in self.buffer_groups:
|
731 |
+
if group.is_output:
|
732 |
+
group.update_usage(timestep)
|
733 |
+
|
734 |
+
def allocate_groups(self):
|
735 |
+
"""
|
736 |
+
Assign every allocation to a specific location in a specific AllocationPool.
|
737 |
+
"""
|
738 |
+
assert config.memory_pool in ("none", "intermediates", "outputs", "combined")
|
739 |
+
assert self.buffer_groups is not None
|
740 |
+
|
741 |
+
for group in self.buffer_groups:
|
742 |
+
group.make_allocation()
|
743 |
+
|
744 |
+
outputs: List[Allocation] = []
|
745 |
+
intermediates: List[Allocation] = []
|
746 |
+
for group in self.buffer_groups:
|
747 |
+
assert group.allocation
|
748 |
+
if group.is_output and config.memory_pool != "combined":
|
749 |
+
outputs.append(group.allocation)
|
750 |
+
else:
|
751 |
+
intermediates.append(group.allocation)
|
752 |
+
|
753 |
+
for block in sorted(
|
754 |
+
outputs,
|
755 |
+
key=lambda x: (
|
756 |
+
x.size_hint,
|
757 |
+
-len(x.live_range),
|
758 |
+
),
|
759 |
+
):
|
760 |
+
self.pools.allocate_output(block)
|
761 |
+
|
762 |
+
for block in sorted(
|
763 |
+
intermediates,
|
764 |
+
key=lambda x: (
|
765 |
+
-x.size_hint,
|
766 |
+
-len(x.live_range),
|
767 |
+
),
|
768 |
+
):
|
769 |
+
self.pools.allocate(block)
|
770 |
+
|
771 |
+
self.pools.finalize()
|
772 |
+
|
773 |
+
def mark_first_last_usage(self, lines):
|
774 |
+
"""
|
775 |
+
Populate the AllocFromPoolLine.is_first_pool_usage and
|
776 |
+
DeallocFromPoolLine.is_last_pool_usage fields so that pools
|
777 |
+
are created/destroyed.
|
778 |
+
"""
|
779 |
+
seen = set()
|
780 |
+
for line in lines:
|
781 |
+
if isinstance(line, AllocFromPoolLine):
|
782 |
+
assert line.group.allocation
|
783 |
+
pool = line.group.allocation.pool
|
784 |
+
assert pool is not None
|
785 |
+
if pool not in seen:
|
786 |
+
line.is_first_pool_usage = True
|
787 |
+
seen.add(pool)
|
788 |
+
|
789 |
+
seen = set()
|
790 |
+
for line in reversed(lines):
|
791 |
+
if isinstance(line, DeallocFromPoolLine):
|
792 |
+
assert line.group.allocation
|
793 |
+
pool = line.group.allocation.pool
|
794 |
+
assert pool is not None
|
795 |
+
if pool not in seen:
|
796 |
+
line.is_last_pool_usage = (
|
797 |
+
pool.root.get_live_ranges().end <= line.timestep
|
798 |
+
)
|
799 |
+
seen.add(pool)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton_foreach.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from collections import defaultdict
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
from sympy import Integer
|
7 |
+
|
8 |
+
from .. import metrics
|
9 |
+
from ..scheduler import SchedulerNode
|
10 |
+
from ..utils import ceildiv, Placeholder
|
11 |
+
from ..virtualized import V
|
12 |
+
from .common import IndentedBuffer, Kernel
|
13 |
+
from .triton import TritonKernel
|
14 |
+
from .triton_utils import config_of, signature_to_meta
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class PartitionState:
|
19 |
+
partitions: List[
|
20 |
+
List[Tuple[List[SchedulerNode], Tuple[Integer, ...], Integer, Integer]]
|
21 |
+
]
|
22 |
+
cur_partition: List[
|
23 |
+
Tuple[List[SchedulerNode], Tuple[Integer, ...], Integer, Integer]
|
24 |
+
]
|
25 |
+
cur_count: int
|
26 |
+
|
27 |
+
def finalize(self):
|
28 |
+
if self.cur_partition:
|
29 |
+
self.partitions.append(self.cur_partition)
|
30 |
+
|
31 |
+
|
32 |
+
class ForeachKernel(Kernel):
|
33 |
+
MAX_NUM_ARGS = 250 # number where I would no longer get triton errors
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def _update_partition(partition_state, node_rw_count, node_info):
|
37 |
+
if partition_state.cur_count + node_rw_count > ForeachKernel.MAX_NUM_ARGS:
|
38 |
+
partition_state.partitions.append(partition_state.cur_partition)
|
39 |
+
partition_state.cur_partition = [node_info]
|
40 |
+
partition_state.cur_count = node_rw_count
|
41 |
+
else:
|
42 |
+
partition_state.cur_count += node_rw_count
|
43 |
+
partition_state.cur_partition.append(node_info)
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def horizontal_partition(subkernel_nodes, triton_scheduling):
|
47 |
+
"""Generates a list of lists of node info tuples which consist of (fused_nodes, tiling, numel, rnumel)
|
48 |
+
for each subkernel node where each sublist is guaranteed to not exceed CUDA limits for number of args
|
49 |
+
(read/writes) and to have the same 2D or 1D blocking strategy."""
|
50 |
+
assert len(subkernel_nodes) >= 1
|
51 |
+
|
52 |
+
partition_state_1d = PartitionState([], [], 0)
|
53 |
+
yelem_to_partition_state_2d: Dict[Integer, PartitionState] = defaultdict(
|
54 |
+
lambda: PartitionState([], [], 0)
|
55 |
+
)
|
56 |
+
|
57 |
+
for node in subkernel_nodes:
|
58 |
+
fused_nodes = node.get_nodes()
|
59 |
+
_, (numel, rnumel) = max(
|
60 |
+
fused_nodes, key=lambda x: int(x.is_reduction())
|
61 |
+
).group
|
62 |
+
tiled_groups = triton_scheduling.select_tiling(fused_nodes, numel, rnumel)
|
63 |
+
node_info = fused_nodes, tiled_groups, numel, rnumel
|
64 |
+
|
65 |
+
read_writes = node.read_writes
|
66 |
+
read_write_count = len(read_writes.reads) + len(read_writes.writes)
|
67 |
+
|
68 |
+
if tiled_groups[1] == 1:
|
69 |
+
ForeachKernel._update_partition(
|
70 |
+
partition_state_1d, read_write_count, node_info
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
y_elem = tiled_groups[0]
|
74 |
+
partition_state_2d = yelem_to_partition_state_2d[y_elem]
|
75 |
+
ForeachKernel._update_partition(
|
76 |
+
partition_state_2d, read_write_count, node_info
|
77 |
+
)
|
78 |
+
|
79 |
+
partition_state_1d.finalize()
|
80 |
+
all_partitions = partition_state_1d.partitions
|
81 |
+
for partition_state_2d in yelem_to_partition_state_2d.values():
|
82 |
+
partition_state_2d.finalize()
|
83 |
+
all_partitions.extend(partition_state_2d.partitions)
|
84 |
+
|
85 |
+
return all_partitions
|
86 |
+
|
87 |
+
def __init__(self):
|
88 |
+
super().__init__()
|
89 |
+
self.blocking_2d = False
|
90 |
+
self.block_size_1d = 1024 # Try tuning this value
|
91 |
+
self.block_size_2d = 32
|
92 |
+
self.num_warps = 8
|
93 |
+
self.sub_kernels = []
|
94 |
+
self.iter_vars_count = itertools.count()
|
95 |
+
self.x_block_count = 0
|
96 |
+
self.y_block_count = 0
|
97 |
+
|
98 |
+
def get_block_size(self):
|
99 |
+
if self.blocking_2d:
|
100 |
+
return self.block_size_2d
|
101 |
+
else:
|
102 |
+
return self.block_size_1d
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def codegen_pid_offsets(code, block_count, lower_bound, prefix):
|
106 |
+
if block_count == 0:
|
107 |
+
code.splice(f"{prefix}pid_offset = {prefix}pid")
|
108 |
+
else:
|
109 |
+
code.splice(f"{prefix}pid_offset = {prefix}pid - {lower_bound}")
|
110 |
+
|
111 |
+
def codegen_pid_range(self, code, x_elems):
|
112 |
+
num_x_blocks = ceildiv(x_elems, self.get_block_size())
|
113 |
+
upper_bound_x_pid = self.x_block_count + num_x_blocks
|
114 |
+
lower_bound_x_pid = self.x_block_count
|
115 |
+
|
116 |
+
if self.x_block_count == 0:
|
117 |
+
cond = "if"
|
118 |
+
else:
|
119 |
+
cond = "elif"
|
120 |
+
|
121 |
+
x_pid_bounds_check = (
|
122 |
+
f"xpid >= {lower_bound_x_pid} and xpid < {upper_bound_x_pid}"
|
123 |
+
)
|
124 |
+
code.splice(f"{cond} {x_pid_bounds_check}:")
|
125 |
+
|
126 |
+
with code.indent():
|
127 |
+
ForeachKernel.codegen_pid_offsets(
|
128 |
+
code, num_x_blocks, lower_bound_x_pid, "x"
|
129 |
+
)
|
130 |
+
self.x_block_count += num_x_blocks
|
131 |
+
|
132 |
+
def create_sub_kernel(self, *groups, index_dtype, mutations, reduction_hint):
|
133 |
+
sub_kernel = TritonKernel(
|
134 |
+
*groups,
|
135 |
+
index_dtype=index_dtype,
|
136 |
+
mutations=mutations,
|
137 |
+
pid_cache={
|
138 |
+
"tl.program_id(0)": "xpid_offset",
|
139 |
+
"tl.program_id(1)": "ypid",
|
140 |
+
},
|
141 |
+
reduction_hint=reduction_hint,
|
142 |
+
)
|
143 |
+
if self.blocking_2d:
|
144 |
+
assert len(groups) == 3
|
145 |
+
|
146 |
+
self.blocking_2d |= groups[1] != 1 and len(groups) == 3
|
147 |
+
metrics.generated_kernel_count -= 1
|
148 |
+
sub_kernel.args = self.args
|
149 |
+
sub_kernel.iter_vars_count = self.iter_vars_count
|
150 |
+
sub_kernel.cse.iter_buffer_ids = self.cse.iter_buffer_ids
|
151 |
+
self.sub_kernels.append(sub_kernel)
|
152 |
+
return sub_kernel
|
153 |
+
|
154 |
+
def jit_line(self):
|
155 |
+
can_use_32bit = all(k.index_dtype == "tl.int32" for k in self.sub_kernels)
|
156 |
+
size_dtype = "tl.int32" if can_use_32bit else "tl.int64"
|
157 |
+
_, _, signature = self.args.python_argdefs()
|
158 |
+
triton_meta = {
|
159 |
+
"signature": signature_to_meta(signature, size_dtype=size_dtype),
|
160 |
+
"device": V.graph.scheduler.current_device.index,
|
161 |
+
"device_type": V.graph.scheduler.current_device.type,
|
162 |
+
"constants": {},
|
163 |
+
}
|
164 |
+
triton_meta["configs"] = [config_of(signature)]
|
165 |
+
inductor_meta = {"kernel_name": str(Placeholder.DESCRIPTIVE_NAME)}
|
166 |
+
return (
|
167 |
+
f"@foreach(num_warps={self.num_warps}, triton_meta={triton_meta!r}, inductor_meta={inductor_meta!r})\n"
|
168 |
+
+ "@triton.jit"
|
169 |
+
)
|
170 |
+
|
171 |
+
def grid(self):
|
172 |
+
return (
|
173 |
+
self.x_block_count,
|
174 |
+
ceildiv(int(self.sub_kernels[0].numels[0]), self.block_size_2d)
|
175 |
+
if self.blocking_2d
|
176 |
+
else 1,
|
177 |
+
1,
|
178 |
+
)
|
179 |
+
|
180 |
+
def codegen_kernel(self, name=None):
|
181 |
+
code = IndentedBuffer()
|
182 |
+
|
183 |
+
code.splice(
|
184 |
+
"""
|
185 |
+
import triton
|
186 |
+
import triton.language as tl
|
187 |
+
from torch._inductor.triton_heuristics import foreach
|
188 |
+
from torch._inductor.utils import instance_descriptor
|
189 |
+
from torch._inductor import triton_helpers
|
190 |
+
"""
|
191 |
+
)
|
192 |
+
argdefs, _, _ = self.args.python_argdefs()
|
193 |
+
code.writeline(self.jit_line())
|
194 |
+
code.writeline(
|
195 |
+
f"def {name or str(Placeholder.KERNEL_NAME)}({', '.join(argdefs)}):"
|
196 |
+
)
|
197 |
+
|
198 |
+
with code.indent():
|
199 |
+
code.splice("xpid = tl.program_id(0)")
|
200 |
+
if self.blocking_2d:
|
201 |
+
code.splice("ypid = tl.program_id(1)")
|
202 |
+
code.splice(f"XBLOCK: tl.constexpr = {self.block_size_2d}")
|
203 |
+
code.splice(f"YBLOCK: tl.constexpr = {self.block_size_2d}")
|
204 |
+
else:
|
205 |
+
code.splice(f"XBLOCK: tl.constexpr = {self.block_size_1d}")
|
206 |
+
|
207 |
+
for sub_kernel in self.sub_kernels:
|
208 |
+
assert len(sub_kernel.numels) <= 3
|
209 |
+
# TODO mlazos: support dynamic shapes
|
210 |
+
numel_ind = 0 if not self.blocking_2d else 1
|
211 |
+
self.codegen_pid_range(code, int(sub_kernel.numels[numel_ind]))
|
212 |
+
with code.indent():
|
213 |
+
if self.blocking_2d:
|
214 |
+
code.splice(f"ynumel = {sub_kernel.numels[0]}")
|
215 |
+
code.splice(f"xnumel = {sub_kernel.numels[1]}")
|
216 |
+
else:
|
217 |
+
code.splice(f"xnumel = {sub_kernel.numels[0]}")
|
218 |
+
|
219 |
+
sub_kernel.codegen_body()
|
220 |
+
code.splice(sub_kernel.body)
|
221 |
+
|
222 |
+
code.splice("else:")
|
223 |
+
with code.indent():
|
224 |
+
code.splice("pass")
|
225 |
+
|
226 |
+
return code.getvalue()
|
227 |
+
|
228 |
+
def call_kernel(self, code, name: str):
|
229 |
+
_, call_args, _ = self.args.python_argdefs()
|
230 |
+
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
|
231 |
+
for i in range(len(call_args)):
|
232 |
+
if V.graph.is_unspec_arg(call_args[i]):
|
233 |
+
call_args[i] = call_args[i] + ".item()"
|
234 |
+
if V.graph.cpp_wrapper:
|
235 |
+
V.graph.wrapper_code.generate_kernel_call(
|
236 |
+
name,
|
237 |
+
call_args,
|
238 |
+
device_index=V.graph.scheduler.current_device.index,
|
239 |
+
grid=self.grid(),
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
# TODO: refactor generate_kernel_call
|
243 |
+
call_args_str = ", ".join(call_args)
|
244 |
+
stream_name = code.write_get_raw_stream(
|
245 |
+
V.graph.scheduler.current_device.index
|
246 |
+
)
|
247 |
+
code.writeline(
|
248 |
+
f"{name}.run({call_args_str}, grid=({self.grid()}), stream={stream_name})"
|
249 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/triton_utils.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .. import config
|
6 |
+
from ..utils import instance_descriptor
|
7 |
+
from ..virtualized import V
|
8 |
+
from .common import SizeArg, TensorArg
|
9 |
+
|
10 |
+
|
11 |
+
def signature_of(arg: Union[TensorArg, SizeArg], *, size_dtype: str) -> str:
|
12 |
+
from triton.runtime.jit import JITFunction
|
13 |
+
|
14 |
+
if isinstance(arg, TensorArg):
|
15 |
+
# TODO: Remove fp8 special handling when Triton supports PyTorch fp8 dtypes.
|
16 |
+
# Related PR: https://github.com/openai/triton/pull/2279/
|
17 |
+
if arg.dtype == torch.float8_e4m3fn:
|
18 |
+
tye = "*fp8e4nv"
|
19 |
+
elif arg.dtype == torch.float8_e5m2:
|
20 |
+
tye = "*fp8e5"
|
21 |
+
else:
|
22 |
+
tye = JITFunction._type_of(arg.dtype)
|
23 |
+
if V.graph.is_unspec_arg(arg.buffer):
|
24 |
+
# had unwrapped 0d tensor as scalar
|
25 |
+
new_tye = tye.lstrip("*")
|
26 |
+
if new_tye in ["fp16", "bf16"]:
|
27 |
+
return "fp32"
|
28 |
+
else:
|
29 |
+
return new_tye
|
30 |
+
else:
|
31 |
+
return tye
|
32 |
+
if isinstance(arg, SizeArg):
|
33 |
+
if arg.expr is None:
|
34 |
+
# From triton/runtime/jit.py
|
35 |
+
# `None` is nullptr. Implicitly convert to *i8.
|
36 |
+
return "*i8"
|
37 |
+
elif isinstance(arg.expr, float):
|
38 |
+
return "fp32"
|
39 |
+
if size_dtype == "tl.int32":
|
40 |
+
return "i32"
|
41 |
+
elif size_dtype == "tl.int64":
|
42 |
+
return "i64"
|
43 |
+
else:
|
44 |
+
raise NotImplementedError(f"unhandled size_dtype {size_dtype}")
|
45 |
+
raise NotImplementedError(f"unhandled {type(arg)}: {arg}")
|
46 |
+
|
47 |
+
|
48 |
+
def signature_to_meta(
|
49 |
+
signature: List[Union[TensorArg, SizeArg]], *, size_dtype: str
|
50 |
+
) -> Dict[int, str]:
|
51 |
+
return {
|
52 |
+
i: signature_of(arg, size_dtype=size_dtype) for i, arg in enumerate(signature)
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def config_of(args: List[Union[TensorArg, SizeArg]]) -> instance_descriptor:
|
57 |
+
def is_aligned(
|
58 |
+
x: Union[TensorArg, SizeArg], alignment: int, include_tensor: bool
|
59 |
+
) -> bool:
|
60 |
+
"""
|
61 |
+
Roughly follow triton code here:
|
62 |
+
https://github.com/openai/triton/blob/5282ed890d453e10b9ee30076ef89115dd197761/python/triton/runtime/jit.py#L208-L222
|
63 |
+
"""
|
64 |
+
if isinstance(x, TensorArg):
|
65 |
+
if not x.check_alignment:
|
66 |
+
return False
|
67 |
+
if include_tensor:
|
68 |
+
return not V.graph.scheduler.is_unaligned_buffer(x.buffer)
|
69 |
+
else:
|
70 |
+
return False
|
71 |
+
if isinstance(x, SizeArg):
|
72 |
+
# TODO(voz): These are kinda redundant, if we can solve out statically_known_multiple_of with
|
73 |
+
# _maybe_evaluate_static...
|
74 |
+
if x.name.startswith("load_seed_offset"):
|
75 |
+
return False
|
76 |
+
if x.expr is None:
|
77 |
+
return False
|
78 |
+
if isinstance(x.expr, float):
|
79 |
+
return False
|
80 |
+
return V.graph.sizevars.statically_known_multiple_of(x.expr, alignment)
|
81 |
+
raise NotImplementedError(f"unhandled {type(x)}: {x}")
|
82 |
+
|
83 |
+
if config.triton.divisible_by_16:
|
84 |
+
divisible_by_16 = tuple(
|
85 |
+
i
|
86 |
+
for i, arg in enumerate(args)
|
87 |
+
if is_aligned(arg, alignment=16, include_tensor=True)
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
divisible_by_16 = ()
|
91 |
+
divisible_by_8 = tuple(
|
92 |
+
i
|
93 |
+
for i, arg in enumerate(args)
|
94 |
+
if is_aligned(arg, alignment=8, include_tensor=False)
|
95 |
+
)
|
96 |
+
return instance_descriptor(divisible_by_16, (), (), divisible_by_8)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/codegen/wrapper.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/comm_analysis.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from enum import IntEnum
|
3 |
+
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from . import ir
|
8 |
+
|
9 |
+
from .utils import get_dtype_size, sympy_product
|
10 |
+
from .virtualized import V
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from torch._inductor.scheduler import BaseSchedulerNode
|
14 |
+
|
15 |
+
|
16 |
+
class NCCL_COLL(IntEnum):
|
17 |
+
ALL_REDUCE = 0
|
18 |
+
ALL_GATHER = 1
|
19 |
+
REDUCE_SCATTER = 2
|
20 |
+
|
21 |
+
|
22 |
+
class NVIDIA_GPU_TYPE(IntEnum):
|
23 |
+
VOLTA = 0
|
24 |
+
AMPERE = 1
|
25 |
+
HOPPER = 2
|
26 |
+
|
27 |
+
|
28 |
+
def get_gpu_type() -> NVIDIA_GPU_TYPE:
|
29 |
+
gpu_info = torch.utils.collect_env.get_gpu_info(torch.utils.collect_env.run)
|
30 |
+
if "V100" in gpu_info:
|
31 |
+
return NVIDIA_GPU_TYPE.VOLTA
|
32 |
+
elif "A100" in gpu_info:
|
33 |
+
return NVIDIA_GPU_TYPE.AMPERE
|
34 |
+
elif "H100" in gpu_info:
|
35 |
+
return NVIDIA_GPU_TYPE.HOPPER
|
36 |
+
else:
|
37 |
+
# for other gpu types, assume Ampere
|
38 |
+
return NVIDIA_GPU_TYPE.AMPERE
|
39 |
+
|
40 |
+
|
41 |
+
def get_collective_type(snode: "BaseSchedulerNode") -> NCCL_COLL:
|
42 |
+
if isinstance(snode.node, (ir.AllReduce, ir.AllReduceCoalesced)):
|
43 |
+
return NCCL_COLL.ALL_REDUCE
|
44 |
+
elif isinstance(
|
45 |
+
snode.node, (ir.AllGatherIntoTensor, ir.AllGatherIntoTensorCoalesced)
|
46 |
+
):
|
47 |
+
return NCCL_COLL.ALL_GATHER
|
48 |
+
elif isinstance(
|
49 |
+
snode.node, (ir.ReduceScatterTensor, ir.ReduceScatterTensorCoalesced)
|
50 |
+
):
|
51 |
+
return NCCL_COLL.REDUCE_SCATTER
|
52 |
+
else:
|
53 |
+
raise Exception(f"Unsupported collective type: {snode.node}")
|
54 |
+
|
55 |
+
|
56 |
+
####################################################################################################################
|
57 |
+
# The following code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
|
58 |
+
####################################################################################################################
|
59 |
+
|
60 |
+
|
61 |
+
class NCCL_HW(IntEnum):
|
62 |
+
NVLINK = 0
|
63 |
+
PCI = 1
|
64 |
+
NET = 2
|
65 |
+
|
66 |
+
|
67 |
+
class NCCL_ALGO(IntEnum):
|
68 |
+
TREE = 0
|
69 |
+
RING = 1
|
70 |
+
|
71 |
+
|
72 |
+
class NCCL_PROTO(IntEnum):
|
73 |
+
# The ordering and enum values here matches original in
|
74 |
+
# https://github.com/NVIDIA/nccl/blob/0b083e52096c387bad7a5c5c65b26a9dca54de8c/src/include/devcomm.h#L28
|
75 |
+
# For difference between these protocols, see https://github.com/NVIDIA/nccl/issues/281#issuecomment-571816990
|
76 |
+
LL = 0 # Low-latency
|
77 |
+
# LL128 = 1 # Low-latency 128-byte
|
78 |
+
# SIMPLE = 2
|
79 |
+
|
80 |
+
|
81 |
+
# Latencies in us
|
82 |
+
# len(NCCL_ALGO) x len(NCCL_PROTO)
|
83 |
+
baseLat = torch.tensor(
|
84 |
+
[
|
85 |
+
# Tree
|
86 |
+
[
|
87 |
+
6.8, # LL
|
88 |
+
],
|
89 |
+
# Ring
|
90 |
+
[
|
91 |
+
6.6, # LL
|
92 |
+
],
|
93 |
+
]
|
94 |
+
)
|
95 |
+
|
96 |
+
# Latencies in us
|
97 |
+
# len(NCCL_HW) x len(NCCL_ALGO) x len(NCCL_PROTO)
|
98 |
+
hwLat = torch.tensor(
|
99 |
+
[
|
100 |
+
# NVLINK
|
101 |
+
[
|
102 |
+
[0.6], # Tree (LL)
|
103 |
+
[0.6], # Ring (LL)
|
104 |
+
],
|
105 |
+
# PCI
|
106 |
+
[
|
107 |
+
[1.0], # Tree (LL)
|
108 |
+
[1.0], # Ring (LL)
|
109 |
+
],
|
110 |
+
# NET
|
111 |
+
[
|
112 |
+
[5.0], # Tree (LL)
|
113 |
+
[2.7], # Ring (LL)
|
114 |
+
],
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
# LL128 max BW per channel
|
120 |
+
llMaxBws = torch.tensor(
|
121 |
+
[
|
122 |
+
# Volta-N1/Intel-N2/Intel-N4
|
123 |
+
[
|
124 |
+
39.0,
|
125 |
+
39.0,
|
126 |
+
20.4,
|
127 |
+
],
|
128 |
+
# Ampere-N1/AMD-N2/AMD-N4
|
129 |
+
[
|
130 |
+
87.7,
|
131 |
+
22.5, # avg of ring & tree
|
132 |
+
19.0,
|
133 |
+
],
|
134 |
+
# Hopper-N1/AMD-N2/AMD-N4
|
135 |
+
[
|
136 |
+
87.7,
|
137 |
+
22.5, # avg of ring & tree
|
138 |
+
19.0,
|
139 |
+
],
|
140 |
+
]
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def estimate_nccl_collective_runtime(snode: "BaseSchedulerNode") -> float:
|
145 |
+
"""
|
146 |
+
Returns estimated NCCL collective runtime in nanoseconds (ns).
|
147 |
+
|
148 |
+
The following heuristics are copied from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc.
|
149 |
+
We aim to estimate the runtime as accurately as possible.
|
150 |
+
|
151 |
+
Assumptions:
|
152 |
+
- only ring algorithm (NCCL_ALGO_RING) is used
|
153 |
+
- only Low-Latency protocol (NCCL_PROTO_LL) is used, i.e. Simple or LL128 is not used
|
154 |
+
- 8 gpus per node # TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
|
155 |
+
- collective is one of: allreduce, reducescatter, allgather
|
156 |
+
"""
|
157 |
+
tensor_numel = V.graph.sizevars.size_hint(sympy_product(snode.node.layout.size))
|
158 |
+
tensor_dtype = snode.node.layout.dtype
|
159 |
+
tensor_storage_size_bytes = tensor_numel * get_dtype_size(tensor_dtype)
|
160 |
+
# Convert bytes to GB
|
161 |
+
tensor_storage_size_GB = tensor_storage_size_bytes / 1024 / 1024 / 1024
|
162 |
+
|
163 |
+
# Currently assumes each node has 8 gpus. And when >1 node is used, assumes each node uses all 8 gpus.
|
164 |
+
# TODO: Need to find a way to get accurate "gpus per node" and "# nodes" info.
|
165 |
+
num_gpus_per_node = 8
|
166 |
+
_, _, group_size = snode.node.constant_args # type: ignore[attr-defined]
|
167 |
+
nNodes = math.ceil(group_size / num_gpus_per_node)
|
168 |
+
nRanks = group_size # this is total # of gpus globally that participate in this collective op
|
169 |
+
|
170 |
+
if nRanks <= 1:
|
171 |
+
return 0
|
172 |
+
|
173 |
+
# Assumes ring algorithm
|
174 |
+
nccl_algo = NCCL_ALGO.RING
|
175 |
+
nccl_proto = NCCL_PROTO.LL
|
176 |
+
coll = get_collective_type(snode)
|
177 |
+
|
178 |
+
# =============== bandwidth computation ===============
|
179 |
+
# First compute bandwidth in GB/s; then at the end, convert it to GB/ns
|
180 |
+
|
181 |
+
bwIntra = torch._inductor.config.intra_node_bw
|
182 |
+
bwInter = torch._inductor.config.inter_node_bw
|
183 |
+
|
184 |
+
compCapIndex = get_gpu_type()
|
185 |
+
index2 = nNodes - 1 if nNodes <= 2 else 2
|
186 |
+
# LL: for single node, we look at GPU type; for multi-node, we look at CPU type
|
187 |
+
index1 = compCapIndex if nNodes == 1 else 0
|
188 |
+
llMaxBw = llMaxBws[index1][index2].item()
|
189 |
+
|
190 |
+
# NOTE: each step of ring algorithm is synchronized,
|
191 |
+
# and is bottlenecked by the slowest link which is the inter-node interconnect.
|
192 |
+
# hence when nNodes >= 2, bw is inter-node bandwidth.
|
193 |
+
# NOTE: the original code in https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc
|
194 |
+
# have this as `if nNodes <= 2` which seems wrong. Corrected it here.
|
195 |
+
bw = bwIntra if nNodes == 1 else bwInter
|
196 |
+
nChannels = 2 # Assume # channels is 2
|
197 |
+
busBw = nChannels * bw
|
198 |
+
|
199 |
+
# Various model refinements
|
200 |
+
busBw = min(
|
201 |
+
llMaxBw,
|
202 |
+
busBw
|
203 |
+
* (1.0 / 4.0 if (nNodes > 1 or coll == NCCL_COLL.ALL_REDUCE) else 1.0 / 3.0),
|
204 |
+
)
|
205 |
+
|
206 |
+
if coll == NCCL_COLL.ALL_REDUCE:
|
207 |
+
nsteps = 2 * (nRanks - 1)
|
208 |
+
elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
|
209 |
+
nsteps = nRanks - 1
|
210 |
+
|
211 |
+
# Convert bus BW to algorithm BW (tensor bytes / algoBW = actual execution time)
|
212 |
+
ratio = (1.0 * nRanks) / nsteps
|
213 |
+
bandwidth = busBw * ratio
|
214 |
+
# Convert GB/s to GB/ns
|
215 |
+
bandwidth_GB_per_ns = bandwidth / 1e9
|
216 |
+
|
217 |
+
# =============== latency computation ===============
|
218 |
+
intraHw = NCCL_HW.NVLINK
|
219 |
+
hw = intraHw if nNodes == 1 else NCCL_HW.NET
|
220 |
+
|
221 |
+
if coll == NCCL_COLL.ALL_REDUCE:
|
222 |
+
if nNodes > 1:
|
223 |
+
nInterSteps = 2 * nNodes
|
224 |
+
else:
|
225 |
+
nInterSteps = 0
|
226 |
+
elif coll in (NCCL_COLL.REDUCE_SCATTER, NCCL_COLL.ALL_GATHER):
|
227 |
+
nInterSteps = nNodes - 1
|
228 |
+
|
229 |
+
# First compute latency in us; then at the end, convert it to ns
|
230 |
+
latency = baseLat[nccl_algo][nccl_proto].item()
|
231 |
+
intraLat = hwLat[intraHw][nccl_algo][nccl_proto].item()
|
232 |
+
interLat = hwLat[NCCL_HW.NET][nccl_algo][nccl_proto].item()
|
233 |
+
|
234 |
+
# Inter-node rings still have to launch nsteps * net overhead.
|
235 |
+
netOverhead = 0.0
|
236 |
+
if nNodes > 1:
|
237 |
+
netOverhead = 1.0 # getNetOverhead(comm);
|
238 |
+
intraLat = max(intraLat, netOverhead)
|
239 |
+
latency += (nsteps - nInterSteps) * intraLat + nInterSteps * interLat
|
240 |
+
# Convert us to ns
|
241 |
+
latency_ns = latency * 1e3
|
242 |
+
|
243 |
+
# =============== final result ===============
|
244 |
+
transport_ns = tensor_storage_size_GB / bandwidth_GB_per_ns
|
245 |
+
return transport_ns + latency_ns
|
246 |
+
|
247 |
+
|
248 |
+
################################################################################################################
|
249 |
+
# The above code and constants are adapted from https://github.com/NVIDIA/nccl/blob/master/src/graph/tuning.cc #
|
250 |
+
################################################################################################################
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/comms.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pyre-strict
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from . import config, ir, scheduler
|
8 |
+
from .dependencies import WeakDep
|
9 |
+
from .utils import tuple_sorted
|
10 |
+
|
11 |
+
overlap_log = torch._logging.getArtifactLogger(__name__, "overlap")
|
12 |
+
|
13 |
+
|
14 |
+
def sink_waits(
|
15 |
+
snodes: List["scheduler.BaseSchedulerNode"],
|
16 |
+
) -> List["scheduler.BaseSchedulerNode"]:
|
17 |
+
"""
|
18 |
+
Greedily moves waits as late as possible (i.e. until we reach a use). Optimal in terms of
|
19 |
+
communication overlap.
|
20 |
+
"""
|
21 |
+
new_order = []
|
22 |
+
cur_waits = set()
|
23 |
+
for snode in snodes:
|
24 |
+
if isinstance(snode.node, ir.Wait):
|
25 |
+
cur_waits.add(snode)
|
26 |
+
else:
|
27 |
+
for wait in tuple_sorted(cur_waits):
|
28 |
+
if snode in wait.node_users:
|
29 |
+
new_order.append(wait)
|
30 |
+
cur_waits.remove(wait)
|
31 |
+
new_order.append(snode)
|
32 |
+
for snode in tuple_sorted(cur_waits):
|
33 |
+
new_order.append(snode)
|
34 |
+
return new_order
|
35 |
+
|
36 |
+
|
37 |
+
def raise_comms(
|
38 |
+
snodes: List["scheduler.BaseSchedulerNode"],
|
39 |
+
) -> List["scheduler.BaseSchedulerNode"]:
|
40 |
+
"""
|
41 |
+
Greedily moves comms as early as possible (i.e. until we reach an input).
|
42 |
+
Optimal in terms of communication overlap.
|
43 |
+
|
44 |
+
TODO: We might want to adjust this in the future to account for memory limitations.
|
45 |
+
e.g. when we are compiling FSDP, this heuristics will cause the all-gathers to be prefetched as soon as possible,
|
46 |
+
which is the beginning of the forwards pass. We'll have to either do a special pass for FSDP,
|
47 |
+
or we'll want to redo this pass with memory considerations so we handle the FSDP case in a general way.
|
48 |
+
"""
|
49 |
+
new_order_reversed: List["scheduler.BaseSchedulerNode"] = []
|
50 |
+
cur_comms: List["scheduler.BaseSchedulerNode"] = []
|
51 |
+
for snode in reversed(snodes):
|
52 |
+
if isinstance(snode.node, ir.CollectiveKernel):
|
53 |
+
cur_comms.append(snode)
|
54 |
+
else:
|
55 |
+
for comm in cur_comms:
|
56 |
+
assert len(comm.inverse_users) > 0
|
57 |
+
while len(cur_comms) > 0 and any(
|
58 |
+
snode in comm.inverse_users for comm in cur_comms
|
59 |
+
):
|
60 |
+
comm = cur_comms.pop(0)
|
61 |
+
new_order_reversed.append(comm)
|
62 |
+
new_order_reversed.append(snode)
|
63 |
+
assert len(cur_comms) <= 1
|
64 |
+
for snode in tuple_sorted(cur_comms):
|
65 |
+
new_order_reversed.append(snode)
|
66 |
+
return new_order_reversed[::-1]
|
67 |
+
|
68 |
+
|
69 |
+
def get_ancestors(node):
|
70 |
+
ancestors = set()
|
71 |
+
cur_nodes = [node]
|
72 |
+
while len(cur_nodes) > 0:
|
73 |
+
new_nodes = []
|
74 |
+
for node in cur_nodes:
|
75 |
+
for inp in node.inverse_users:
|
76 |
+
if inp not in ancestors:
|
77 |
+
ancestors.add(inp)
|
78 |
+
new_nodes.append(inp)
|
79 |
+
cur_nodes = new_nodes
|
80 |
+
return ancestors
|
81 |
+
|
82 |
+
|
83 |
+
def get_descendants(node):
|
84 |
+
descendants = set()
|
85 |
+
cur_nodes = [node]
|
86 |
+
while len(cur_nodes) > 0:
|
87 |
+
new_nodes = []
|
88 |
+
for node in cur_nodes:
|
89 |
+
for inp in node.node_users:
|
90 |
+
if inp not in descendants:
|
91 |
+
descendants.add(inp)
|
92 |
+
new_nodes.append(inp)
|
93 |
+
cur_nodes = new_nodes
|
94 |
+
return descendants
|
95 |
+
|
96 |
+
|
97 |
+
def decide_global_ordering_of_comms(nodes: List["scheduler.BaseSchedulerNode"]):
|
98 |
+
"""
|
99 |
+
Decide global ordering of comms, by just enforcing the ordering that's in the input graph
|
100 |
+
(might not be the same ordering as the eager mode program).
|
101 |
+
TODO: Come up with a better approach
|
102 |
+
"""
|
103 |
+
comm_nodes = [n for n in nodes if isinstance(n.node, ir.CollectiveKernel)]
|
104 |
+
for i in range(1, len(comm_nodes)):
|
105 |
+
# Enforce ordering by making previous comm a `WeakDep` dependency of the next comm
|
106 |
+
comm_nodes[i].add_fake_dep(WeakDep(comm_nodes[i - 1].get_name()))
|
107 |
+
|
108 |
+
|
109 |
+
def assert_no_comm_nodes(snodes: List["scheduler.BaseSchedulerNode"]) -> None:
|
110 |
+
assert not any(isinstance(snode.node, ir.CollectiveKernel) for snode in snodes)
|
111 |
+
|
112 |
+
|
113 |
+
def estimate_op_runtime(snode: "scheduler.BaseSchedulerNode") -> float:
|
114 |
+
"""
|
115 |
+
Returns estimated op runtime in nanoseconds (ns)
|
116 |
+
"""
|
117 |
+
if config.estimate_op_runtime == "default":
|
118 |
+
runtime = snode.get_estimated_runtime()
|
119 |
+
else:
|
120 |
+
assert callable(config.estimate_op_runtime)
|
121 |
+
runtime = config.estimate_op_runtime(snode)
|
122 |
+
return runtime
|
123 |
+
|
124 |
+
|
125 |
+
def reorder_compute_for_overlap(
|
126 |
+
snodes: List["scheduler.BaseSchedulerNode"],
|
127 |
+
) -> List["scheduler.BaseSchedulerNode"]:
|
128 |
+
"""
|
129 |
+
Decides a global ordering of all compute and communication nodes,
|
130 |
+
assuming that we already have a global ordering of communication nodes.
|
131 |
+
|
132 |
+
Overall scheduling procedure is:
|
133 |
+
Step 1: Given that we've currently scheduled comm N, we now schedule all compute nodes
|
134 |
+
that are required for comm N + 1 but do not depend on comm N, to run at the same time with comm N.
|
135 |
+
Step 2: If all those compute nodes are sufficient to overlap comm N, we're done.
|
136 |
+
Otherwise, we now need to look elsewhere to find compute that overlaps with comm N.
|
137 |
+
We prioritize compute nodes that are needed sooner.
|
138 |
+
Step 3: We schedule the compute nodes dependent on comm N and required for comm N + 1.
|
139 |
+
Step 4: We schedule comm N + 1.
|
140 |
+
Repeat this for subsequent comm nodes.
|
141 |
+
"""
|
142 |
+
final_order = []
|
143 |
+
|
144 |
+
comm_nodes = []
|
145 |
+
for snode in snodes:
|
146 |
+
if isinstance(snode.node, ir.CollectiveKernel):
|
147 |
+
comm_nodes.append(snode)
|
148 |
+
if len(comm_nodes) == 0:
|
149 |
+
# if there is no comm nodes, return the current order
|
150 |
+
return snodes
|
151 |
+
|
152 |
+
comm_ancestors = {node: get_ancestors(node) for node in comm_nodes}
|
153 |
+
comm_descendants = {node: get_descendants(node) for node in comm_nodes}
|
154 |
+
|
155 |
+
indeg = {k: 0 for k in snodes}
|
156 |
+
for snode in snodes:
|
157 |
+
for user in snode.node_users:
|
158 |
+
if user in indeg:
|
159 |
+
indeg[user] += 1
|
160 |
+
ready_to_schedule_nodes = {node for node in snodes if indeg[node] == 0}
|
161 |
+
|
162 |
+
unscheduled_nodes = set()
|
163 |
+
unscheduled_nodes = set(snodes)
|
164 |
+
|
165 |
+
def schedule_node(snode):
|
166 |
+
"""
|
167 |
+
Schedule a single node.
|
168 |
+
"""
|
169 |
+
assert snode in unscheduled_nodes
|
170 |
+
assert snode in ready_to_schedule_nodes
|
171 |
+
ready_to_schedule_nodes.remove(snode)
|
172 |
+
unscheduled_nodes.remove(snode)
|
173 |
+
final_order.append(snode)
|
174 |
+
for user in tuple_sorted(snode.node_users):
|
175 |
+
if user in indeg:
|
176 |
+
indeg[user] -= 1
|
177 |
+
if indeg[user] == 0:
|
178 |
+
ready_to_schedule_nodes.add(user)
|
179 |
+
|
180 |
+
def schedule_nodes(snodes):
|
181 |
+
"""
|
182 |
+
Schedules all nodes in `snodes` in an arbitrary topologically valid order.
|
183 |
+
"""
|
184 |
+
all_nodes = set(snodes)
|
185 |
+
assert all(node in unscheduled_nodes for node in all_nodes)
|
186 |
+
while len(all_nodes) > 0:
|
187 |
+
# NOTE: since model graph is always a DAG and does not have circular dependency inside,
|
188 |
+
# there should be at least one node that is a "free node" (i.e. indeg == 0),
|
189 |
+
# hence infinite loop is not possible. But we check here just to be safe.
|
190 |
+
progress = False
|
191 |
+
for node in tuple_sorted(all_nodes):
|
192 |
+
if node in ready_to_schedule_nodes:
|
193 |
+
schedule_node(node)
|
194 |
+
all_nodes.remove(node)
|
195 |
+
progress = True
|
196 |
+
if not progress:
|
197 |
+
raise Exception(
|
198 |
+
"Unable to find a free node (indeg == 0). This is an impossible state to reach. "
|
199 |
+
"Please report a bug to PyTorch."
|
200 |
+
)
|
201 |
+
|
202 |
+
# First, schedule all compute nodes that are required by first comm node,
|
203 |
+
# as well as the first comm node itself.
|
204 |
+
assert len(comm_nodes) > 0
|
205 |
+
schedule_nodes(
|
206 |
+
list(comm_ancestors[comm_nodes[0]]) + [comm_nodes[0]],
|
207 |
+
)
|
208 |
+
|
209 |
+
rolled_over_compute_cost = 0
|
210 |
+
for idx in range(1, len(comm_ancestors)):
|
211 |
+
# Step 1: Given that we've currently scheduled comm `idx-1`, we now schedule
|
212 |
+
# all compute nodes that are required for comm `idx` but do not depend on comm `idx-1`,
|
213 |
+
# to run at the same time with comm `idx-1`.
|
214 |
+
needed_by_next_comm_and_ready_compute_nodes = unscheduled_nodes & (
|
215 |
+
comm_ancestors[comm_nodes[idx]] - comm_descendants[comm_nodes[idx - 1]]
|
216 |
+
)
|
217 |
+
assert_no_comm_nodes(needed_by_next_comm_and_ready_compute_nodes)
|
218 |
+
|
219 |
+
total_compute_runtime_cost = rolled_over_compute_cost + sum(
|
220 |
+
[
|
221 |
+
estimate_op_runtime(node)
|
222 |
+
for node in needed_by_next_comm_and_ready_compute_nodes
|
223 |
+
]
|
224 |
+
)
|
225 |
+
prev_comm_runtime_cost = estimate_op_runtime(comm_nodes[idx - 1])
|
226 |
+
schedule_nodes(tuple_sorted(needed_by_next_comm_and_ready_compute_nodes))
|
227 |
+
|
228 |
+
# Step 2: If all those compute nodes are sufficient to overlap comm `idx-1`, we're done.
|
229 |
+
# Otherwise, we now need to look elsewhere to find compute that overlaps with comm `idx`.
|
230 |
+
# We prioritize compute nodes that are needed sooner.
|
231 |
+
step1_runtime_cost = total_compute_runtime_cost
|
232 |
+
if step1_runtime_cost >= prev_comm_runtime_cost:
|
233 |
+
pass
|
234 |
+
else:
|
235 |
+
# Find all ready to schedule compute nodes that do not depend on comm `idx-1`.
|
236 |
+
ready_to_schedule_compute_nodes = tuple_sorted(
|
237 |
+
ready_to_schedule_nodes - comm_descendants[comm_nodes[idx - 1]]
|
238 |
+
)
|
239 |
+
assert_no_comm_nodes(ready_to_schedule_compute_nodes)
|
240 |
+
|
241 |
+
def earliest_comm_descendant(node):
|
242 |
+
for idx in range(len(comm_nodes)):
|
243 |
+
if node in comm_ancestors[comm_nodes[idx]]:
|
244 |
+
return idx
|
245 |
+
return len(comm_nodes)
|
246 |
+
|
247 |
+
# Prioritize compute nodes that are needed sooner.
|
248 |
+
ready_to_schedule_compute_nodes = sorted(
|
249 |
+
ready_to_schedule_compute_nodes, key=earliest_comm_descendant
|
250 |
+
)
|
251 |
+
|
252 |
+
for snode in ready_to_schedule_compute_nodes:
|
253 |
+
if total_compute_runtime_cost >= prev_comm_runtime_cost:
|
254 |
+
# If accumulated compute runtime cost is greater than comm `idx-1` runtime cost,
|
255 |
+
# it means we have maximized overlap for comm `idx-1`, and hence we stop looking
|
256 |
+
# for more compute to schedule.
|
257 |
+
break
|
258 |
+
compute_runtime_cost = estimate_op_runtime(snode)
|
259 |
+
# If we're not able to leverage more than half of this
|
260 |
+
# node's compute to overlap, we skip it.
|
261 |
+
# TODO: Smarter heuristics here
|
262 |
+
if (
|
263 |
+
prev_comm_runtime_cost - total_compute_runtime_cost
|
264 |
+
) <= compute_runtime_cost / 2:
|
265 |
+
continue
|
266 |
+
schedule_node(snode)
|
267 |
+
total_compute_runtime_cost += compute_runtime_cost
|
268 |
+
rollable_compute_cost = total_compute_runtime_cost - step1_runtime_cost
|
269 |
+
|
270 |
+
# Step 3: We schedule the compute nodes dependent on comm `idx-1` and required for comm `idx`.
|
271 |
+
needed_by_next_comm_nodes = unscheduled_nodes & comm_ancestors[comm_nodes[idx]]
|
272 |
+
schedule_nodes(list(needed_by_next_comm_nodes))
|
273 |
+
|
274 |
+
# Step 4: We schedule comm `idx`.
|
275 |
+
schedule_nodes([comm_nodes[idx]])
|
276 |
+
|
277 |
+
is_prev_comm_blocking_next_comm = len(needed_by_next_comm_nodes) > 0
|
278 |
+
# The idea here is that if there are no compute nodes from Step 3
|
279 |
+
# (i.e. if prev comm is not blocking next comm), we can roll over the compute nodes
|
280 |
+
# in Step 2 to overlap with the next comm, since they're not required to finish
|
281 |
+
# before the next comm starts.
|
282 |
+
if is_prev_comm_blocking_next_comm:
|
283 |
+
rolled_over_compute_cost = 0
|
284 |
+
else:
|
285 |
+
rolled_over_compute_cost = rollable_compute_cost # type: ignore[assignment]
|
286 |
+
|
287 |
+
schedule_nodes(unscheduled_nodes)
|
288 |
+
return final_order
|
289 |
+
|
290 |
+
|
291 |
+
def node_summary(snode):
|
292 |
+
detail = ""
|
293 |
+
if isinstance(snode.node, ir.ExternKernelOut):
|
294 |
+
detail = f" ({snode.node.kernel})"
|
295 |
+
out_tensor_info = ""
|
296 |
+
if (
|
297 |
+
hasattr(snode.node, "layout")
|
298 |
+
and hasattr(snode.node.layout, "size")
|
299 |
+
and hasattr(snode.node.layout, "stride")
|
300 |
+
):
|
301 |
+
out_tensor_info = (
|
302 |
+
f" (size={snode.node.layout.size}, stride={snode.node.layout.stride})"
|
303 |
+
)
|
304 |
+
node_name = ""
|
305 |
+
if hasattr(snode.node, "name"):
|
306 |
+
node_name = snode.node.name
|
307 |
+
return f"{snode.node.__class__.__name__}{detail}{out_tensor_info} ({node_name})"
|
308 |
+
|
309 |
+
|
310 |
+
def visualize_overlap(order):
|
311 |
+
total_est_runtime: float = 0.0
|
312 |
+
cur_comm_node = None
|
313 |
+
for snode in order:
|
314 |
+
if cur_comm_node is None:
|
315 |
+
if isinstance(snode.node, ir.CollectiveKernel):
|
316 |
+
total_est_runtime += estimate_op_runtime(snode)
|
317 |
+
cur_comm_node = snode.node
|
318 |
+
elif isinstance(snode.node, ir.Wait):
|
319 |
+
raise Exception(
|
320 |
+
"Wait is not expected when there is no collective running"
|
321 |
+
)
|
322 |
+
else: # exposed compute op
|
323 |
+
total_est_runtime += estimate_op_runtime(snode)
|
324 |
+
overlap_log.debug(f"{node_summary(snode)}") # noqa: G004
|
325 |
+
else: # cur_comm_node is not None
|
326 |
+
if isinstance(snode.node, ir.CollectiveKernel):
|
327 |
+
raise Exception(
|
328 |
+
"Found two collectives running at the same time. "
|
329 |
+
"`visualize_overlap` needs to be updated to handle this case"
|
330 |
+
)
|
331 |
+
elif isinstance(snode.node, ir.Wait): # end of this comm op
|
332 |
+
overlap_log.debug(f"{node_summary(snode)}") # noqa: G004
|
333 |
+
cur_comm_node = None
|
334 |
+
else: # overlapped compute op
|
335 |
+
overlap_log.debug(f"| {node_summary(snode)}") # noqa: G004
|
336 |
+
overlap_log.debug(
|
337 |
+
f"Est. runtime (ms): {total_est_runtime / 1000 / 1000}" # noqa: G004
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
def reorder_compute_and_comm_for_overlap(
|
342 |
+
snodes: List["scheduler.BaseSchedulerNode"],
|
343 |
+
) -> List["scheduler.BaseSchedulerNode"]:
|
344 |
+
order = snodes
|
345 |
+
for p in config.reorder_for_compute_comm_overlap_passes:
|
346 |
+
if isinstance(p, str) and p in globals():
|
347 |
+
p = globals()[p] # it is a builtin pass
|
348 |
+
if torch.distributed.get_rank() == 0:
|
349 |
+
overlap_log.debug(
|
350 |
+
f"==== Visualize overlap before reordering pass {p} ====" # noqa: G004
|
351 |
+
)
|
352 |
+
try:
|
353 |
+
visualize_overlap(order)
|
354 |
+
except Exception as e:
|
355 |
+
overlap_log.debug(str(e))
|
356 |
+
order = p(order) # type: ignore[operator]
|
357 |
+
if torch.distributed.get_rank() == 0:
|
358 |
+
overlap_log.debug(
|
359 |
+
f"==== Visualize overlap after reordering pass {p} ====" # noqa: G004
|
360 |
+
)
|
361 |
+
try:
|
362 |
+
visualize_overlap(order)
|
363 |
+
except Exception as e:
|
364 |
+
overlap_log.debug(str(e))
|
365 |
+
return order
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/compile_fx.py
ADDED
@@ -0,0 +1,1302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import dataclasses
|
3 |
+
import functools
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
import warnings
|
9 |
+
from itertools import count
|
10 |
+
|
11 |
+
from typing import (
|
12 |
+
Any,
|
13 |
+
Callable,
|
14 |
+
Dict,
|
15 |
+
FrozenSet,
|
16 |
+
List,
|
17 |
+
Optional,
|
18 |
+
Sequence,
|
19 |
+
Tuple,
|
20 |
+
Union,
|
21 |
+
)
|
22 |
+
from unittest import mock
|
23 |
+
|
24 |
+
from functorch.compile import min_cut_rematerialization_partition
|
25 |
+
|
26 |
+
import torch._functorch.config as functorch_config
|
27 |
+
|
28 |
+
import torch.fx
|
29 |
+
import torch.utils._pytree as pytree
|
30 |
+
from torch._dynamo import (
|
31 |
+
compiled_autograd,
|
32 |
+
logging as dynamo_logging,
|
33 |
+
utils as dynamo_utils,
|
34 |
+
)
|
35 |
+
from torch._dynamo.utils import detect_fake_mode, lazy_format_graph_code
|
36 |
+
from torch._functorch.aot_autograd import aot_export_module, make_boxed_func
|
37 |
+
from torch._inductor.codecache import code_hash, CompiledFxGraph, FxGraphCache
|
38 |
+
|
39 |
+
from torch._inductor.debug import save_args_for_compile_fx_inner
|
40 |
+
from torch._ops import OpOverload
|
41 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
42 |
+
from torch.fx.passes.fake_tensor_prop import FakeTensorProp
|
43 |
+
|
44 |
+
from .._dynamo.backends.common import aot_autograd
|
45 |
+
from ..fx.graph import _PyTreeCodeGen
|
46 |
+
from . import config, metrics
|
47 |
+
from .debug import DebugContext
|
48 |
+
from .decomposition import select_decomp_table
|
49 |
+
from .fx_passes.joint_graph import joint_graph_passes
|
50 |
+
from .fx_passes.post_grad import post_grad_passes, view_to_reshape
|
51 |
+
from .fx_passes.pre_grad import pre_grad_passes
|
52 |
+
from .graph import GraphLowering
|
53 |
+
from .ir import ExternKernelNode
|
54 |
+
from .utils import get_dtype_size, has_incompatible_cudagraph_ops
|
55 |
+
from .virtualized import V
|
56 |
+
|
57 |
+
if config.is_fbcode():
|
58 |
+
from torch._inductor.fb.utils import time_and_log
|
59 |
+
else:
|
60 |
+
# no-op decorator
|
61 |
+
def time_and_log(attr: str):
|
62 |
+
return dynamo_utils.identity
|
63 |
+
|
64 |
+
|
65 |
+
log = logging.getLogger(__name__)
|
66 |
+
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
|
67 |
+
post_grad_graphs_log = torch._logging.getArtifactLogger(__name__, "post_grad_graphs")
|
68 |
+
ALIGNMENT = 16
|
69 |
+
|
70 |
+
|
71 |
+
@dataclasses.dataclass
|
72 |
+
class BoxedBool:
|
73 |
+
value: bool
|
74 |
+
|
75 |
+
def __bool__(self):
|
76 |
+
return self.value
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def disable(obj):
|
80 |
+
if isinstance(obj, BoxedBool):
|
81 |
+
obj.value = False
|
82 |
+
return obj
|
83 |
+
return False
|
84 |
+
|
85 |
+
|
86 |
+
@dataclasses.dataclass
|
87 |
+
class BoxedDeviceIndex:
|
88 |
+
value: Optional[int]
|
89 |
+
|
90 |
+
def set(self, device_idx):
|
91 |
+
assert device_idx is None or isinstance(device_idx, int)
|
92 |
+
self.value = device_idx
|
93 |
+
|
94 |
+
|
95 |
+
# copy_ fails when trying to write to tensors with memory overlap,
|
96 |
+
# for expanded dimensions (a dimension which used to have size 1 -> ?)
|
97 |
+
# we can select one element from that dimension and write to it
|
98 |
+
# to achieve writing to all values of that dimension of the input tensor
|
99 |
+
def get_expanded_dims(t):
|
100 |
+
if not isinstance(t, torch.Tensor):
|
101 |
+
return None
|
102 |
+
return [i for i in range(t.ndim) if t.stride(i) == 0 and t.size(i) != 1]
|
103 |
+
|
104 |
+
|
105 |
+
def index_expanded_dims(t: torch.Tensor, expanded_dims: List[int]) -> torch.Tensor:
|
106 |
+
for expanded_dim in expanded_dims:
|
107 |
+
t = torch.ops.aten.slice(t, expanded_dim, 0, 1)
|
108 |
+
return t
|
109 |
+
|
110 |
+
|
111 |
+
def complex_memory_overlap(t: torch.Tensor) -> bool:
|
112 |
+
# if torch._debug_has_internal_overlap thinks this tensor potentially has
|
113 |
+
# memory overlap internally, let's dig deeper to find out whether it's true.
|
114 |
+
t = index_expanded_dims(t, get_expanded_dims(t))
|
115 |
+
if torch._debug_has_internal_overlap(t) != 0:
|
116 |
+
strides = t.stride()
|
117 |
+
sizes = t.shape
|
118 |
+
indices = list(range(len(strides)))
|
119 |
+
indices = [x for _, x in sorted(zip(strides, indices))]
|
120 |
+
for i in range(len(strides)):
|
121 |
+
prev_stride = 1 if i == 0 else strides[indices[i - 1]]
|
122 |
+
prev_size = 1 if i == 0 else sizes[indices[i - 1]]
|
123 |
+
if strides[indices[i]] < prev_stride * prev_size:
|
124 |
+
return True
|
125 |
+
return False
|
126 |
+
|
127 |
+
|
128 |
+
@functools.lru_cache(None)
|
129 |
+
def _step_logger():
|
130 |
+
return dynamo_logging.get_step_logger(log)
|
131 |
+
|
132 |
+
|
133 |
+
@functools.lru_cache(None)
|
134 |
+
def _warn_tf32_disabled():
|
135 |
+
if (
|
136 |
+
torch.cuda.is_available()
|
137 |
+
and not torch.backends.cuda.matmul.allow_tf32
|
138 |
+
and torch.cuda.get_device_capability() >= (8, 0)
|
139 |
+
):
|
140 |
+
warnings.warn(
|
141 |
+
"TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. "
|
142 |
+
"Consider setting `torch.set_float32_matmul_precision('high')` for better performance."
|
143 |
+
)
|
144 |
+
|
145 |
+
|
146 |
+
def _unlift_graph(mod, gm, graph_signature):
|
147 |
+
state_dict = {}
|
148 |
+
for name, param in mod.named_parameters(remove_duplicate=False):
|
149 |
+
state_dict[name] = param
|
150 |
+
for name, param in mod.named_buffers(remove_duplicate=False):
|
151 |
+
state_dict[name] = param
|
152 |
+
|
153 |
+
from torch._export.exported_program import (
|
154 |
+
_construct_inp_pos_to_param_buffer_name,
|
155 |
+
_unlift,
|
156 |
+
)
|
157 |
+
|
158 |
+
inp_pos_to_param_buffer_name = _construct_inp_pos_to_param_buffer_name(
|
159 |
+
gm,
|
160 |
+
graph_signature,
|
161 |
+
state_dict,
|
162 |
+
{},
|
163 |
+
)
|
164 |
+
unlifted_gm = _unlift(
|
165 |
+
gm,
|
166 |
+
inp_pos_to_param_buffer_name,
|
167 |
+
pytree.LeafSpec(),
|
168 |
+
None,
|
169 |
+
state_dict,
|
170 |
+
{},
|
171 |
+
graph_signature.buffers_to_mutate,
|
172 |
+
)
|
173 |
+
return unlifted_gm
|
174 |
+
|
175 |
+
|
176 |
+
def is_tf32_warning_applicable(gm: torch.fx.GraphModule):
|
177 |
+
aten = torch.ops.aten
|
178 |
+
tf32_ops = {
|
179 |
+
aten.mm.default,
|
180 |
+
aten.addmm.default,
|
181 |
+
aten.bmm.default,
|
182 |
+
aten.baddbmm.default,
|
183 |
+
}
|
184 |
+
for node in gm.graph.nodes:
|
185 |
+
if (
|
186 |
+
node.op == "call_function"
|
187 |
+
and node.target in tf32_ops
|
188 |
+
and isinstance(node.meta.get("val", None), torch.Tensor)
|
189 |
+
and node.meta["val"].dtype == torch.float32
|
190 |
+
and node.meta["val"].device.type == "cuda"
|
191 |
+
):
|
192 |
+
return True
|
193 |
+
return False
|
194 |
+
|
195 |
+
|
196 |
+
@DebugContext.wrap
|
197 |
+
def count_bytes_inner(
|
198 |
+
gm: torch.fx.GraphModule,
|
199 |
+
example_inputs: List[torch.Tensor],
|
200 |
+
num_fixed: int = 0,
|
201 |
+
**kwargs,
|
202 |
+
):
|
203 |
+
shape_env = _shape_env_from_inputs(example_inputs)
|
204 |
+
fake_mode = fake_tensor_prop(gm, example_inputs)
|
205 |
+
|
206 |
+
with V.set_fake_mode(fake_mode):
|
207 |
+
post_grad_passes(gm, False)
|
208 |
+
|
209 |
+
graph = GraphLowering(gm, shape_env=shape_env, num_static_inputs=num_fixed)
|
210 |
+
with V.set_graph_handler(graph), V.set_real_inputs(example_inputs):
|
211 |
+
graph.run(*example_inputs)
|
212 |
+
num_bytes, nodes_num_elem, node_runtimes = graph.count_bytes()
|
213 |
+
metrics.num_bytes_accessed += num_bytes
|
214 |
+
metrics.nodes_num_elem += nodes_num_elem
|
215 |
+
metrics.node_runtimes += node_runtimes
|
216 |
+
return make_boxed_func(gm.forward)
|
217 |
+
|
218 |
+
|
219 |
+
def fake_tensor_prop(
|
220 |
+
gm: torch.fx.GraphModule,
|
221 |
+
example_inputs: List[torch.Tensor],
|
222 |
+
force_allow_non_fake_inputs: bool = False,
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
If we can not detect fake mode from the context of inputs, create one.
|
226 |
+
|
227 |
+
The created fake mode will be returned.
|
228 |
+
"""
|
229 |
+
fake_mode = detect_fake_mode(example_inputs)
|
230 |
+
if not fake_mode:
|
231 |
+
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
|
232 |
+
FakeTensorProp(gm, mode=fake_mode).propagate(*example_inputs)
|
233 |
+
else:
|
234 |
+
ctx = (
|
235 |
+
contextlib.nullcontext()
|
236 |
+
if not force_allow_non_fake_inputs
|
237 |
+
else mock.patch.object(fake_mode, "allow_non_fake_inputs", True)
|
238 |
+
)
|
239 |
+
with ctx: # type: ignore[attr-defined]
|
240 |
+
FakeTensorProp(gm, mode=fake_mode).propagate_dont_convert_inputs(
|
241 |
+
*example_inputs
|
242 |
+
)
|
243 |
+
|
244 |
+
return fake_mode
|
245 |
+
|
246 |
+
|
247 |
+
@DebugContext.wrap
|
248 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
249 |
+
@time_and_log(attr="compilation time (in seconds)")
|
250 |
+
def compile_fx_inner(
|
251 |
+
gm: torch.fx.GraphModule,
|
252 |
+
example_inputs: List[torch.Tensor],
|
253 |
+
cudagraphs: Optional[BoxedBool] = None,
|
254 |
+
num_fixed: int = 0,
|
255 |
+
is_backward: bool = False,
|
256 |
+
graph_id: Optional[int] = None,
|
257 |
+
cpp_wrapper: bool = False,
|
258 |
+
aot_mode: bool = False,
|
259 |
+
is_inference: bool = False,
|
260 |
+
boxed_forward_device_index: Optional[BoxedDeviceIndex] = None,
|
261 |
+
user_visible_outputs: FrozenSet[str] = frozenset(),
|
262 |
+
layout_opt: Optional[bool] = None,
|
263 |
+
extern_node_serializer: Optional[Callable[[List[ExternKernelNode]], Any]] = None,
|
264 |
+
) -> Union[CompiledFxGraph, str]:
|
265 |
+
"""
|
266 |
+
Inductor API that compiles a single graph.
|
267 |
+
|
268 |
+
If you change the argument list for this function, make sure you
|
269 |
+
also update the call to save_args_for_compile_fx_inner below accordingly.
|
270 |
+
"""
|
271 |
+
if dynamo_utils.count_calls(gm.graph) == 0 and not aot_mode:
|
272 |
+
return make_boxed_func(gm.forward)
|
273 |
+
|
274 |
+
assert isinstance(
|
275 |
+
next(iter(reversed(gm.graph.nodes))).args[0], (tuple, list)
|
276 |
+
), f"inductor can only compile FX graphs which return a tuple/list, but got {gm.graph}"
|
277 |
+
|
278 |
+
if config.save_args:
|
279 |
+
save_args_for_compile_fx_inner(
|
280 |
+
gm,
|
281 |
+
example_inputs,
|
282 |
+
cudagraphs=cudagraphs,
|
283 |
+
num_fixed=num_fixed,
|
284 |
+
is_backward=is_backward,
|
285 |
+
graph_id=graph_id,
|
286 |
+
cpp_wrapper=cpp_wrapper,
|
287 |
+
aot_mode=aot_mode,
|
288 |
+
is_inference=is_inference,
|
289 |
+
boxed_forward_device_index=boxed_forward_device_index,
|
290 |
+
user_visible_outputs=user_visible_outputs,
|
291 |
+
layout_opt=layout_opt,
|
292 |
+
)
|
293 |
+
|
294 |
+
if cudagraphs is None:
|
295 |
+
cudagraphs = BoxedBool(config.triton.cudagraphs)
|
296 |
+
|
297 |
+
# Inputs to fx_codegen_and_compile
|
298 |
+
# Anything that affects codegen should go here, so if the signature
|
299 |
+
# of fx_codegen_and_compile changes, the dict should be updated accordingly
|
300 |
+
graph_kwargs = {
|
301 |
+
"cudagraphs": cudagraphs,
|
302 |
+
"num_fixed": num_fixed,
|
303 |
+
"is_backward": is_backward,
|
304 |
+
"graph_id": graph_id,
|
305 |
+
"cpp_wrapper": cpp_wrapper,
|
306 |
+
"aot_mode": aot_mode,
|
307 |
+
"is_inference": is_inference,
|
308 |
+
"user_visible_outputs": user_visible_outputs,
|
309 |
+
"layout_opt": layout_opt,
|
310 |
+
"extern_node_serializer": extern_node_serializer,
|
311 |
+
}
|
312 |
+
|
313 |
+
start = time.time()
|
314 |
+
|
315 |
+
if config.fx_graph_cache and not aot_mode:
|
316 |
+
compiled_graph = FxGraphCache.load(
|
317 |
+
fx_codegen_and_compile, gm, example_inputs, graph_kwargs
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
compiled_graph = fx_codegen_and_compile(
|
321 |
+
gm, example_inputs, **graph_kwargs # type: ignore[arg-type]
|
322 |
+
)
|
323 |
+
|
324 |
+
log.debug("FX codegen and compilation took %.3fs", time.time() - start)
|
325 |
+
|
326 |
+
# Return the output strides to the caller via TracingContext
|
327 |
+
context = torch._guards.TracingContext.try_get()
|
328 |
+
if context is not None and context.output_strides is not None:
|
329 |
+
assert len(context.output_strides) == 0
|
330 |
+
context.output_strides.extend(compiled_graph.output_strides)
|
331 |
+
|
332 |
+
if aot_mode:
|
333 |
+
return compiled_graph
|
334 |
+
|
335 |
+
if cudagraphs:
|
336 |
+
# output args are tuple of first argument
|
337 |
+
output = list(gm.graph.nodes)[-1]
|
338 |
+
assert len(output.args) == 1
|
339 |
+
stack_traces = [
|
340 |
+
(arg.stack_trace if isinstance(arg, torch.fx.node.Node) else None)
|
341 |
+
for arg in output.args[0]
|
342 |
+
]
|
343 |
+
|
344 |
+
complex_memory_overlap_inputs = any(
|
345 |
+
complex_memory_overlap(t)
|
346 |
+
for t in example_inputs
|
347 |
+
if isinstance(t, torch.Tensor)
|
348 |
+
)
|
349 |
+
|
350 |
+
# doesnt work for non-trees because the warmup run would apply mutation twice
|
351 |
+
if config.triton.cudagraph_trees:
|
352 |
+
# checking if mutation is only on parameters/static inputs
|
353 |
+
has_mutation = not all(
|
354 |
+
idx < num_fixed for idx in compiled_graph.mutated_input_idxs
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
has_mutation = len(compiled_graph.mutated_inputs) != 0
|
358 |
+
|
359 |
+
cudagraph_tests = [
|
360 |
+
(set(compiled_graph.device_types) == {"cuda"}, "non-cuda device in graph"),
|
361 |
+
(not has_mutation, "mutated inputs"),
|
362 |
+
(not has_incompatible_cudagraph_ops(gm), "incompatible ops"),
|
363 |
+
(not complex_memory_overlap_inputs, "complex memory overlap"),
|
364 |
+
(
|
365 |
+
all(
|
366 |
+
isinstance(t, (torch.Tensor, torch.SymInt)) for t in example_inputs
|
367 |
+
),
|
368 |
+
"non-Tensor inputs",
|
369 |
+
),
|
370 |
+
(
|
371 |
+
(
|
372 |
+
len(compiled_graph.device_idxs) == 1
|
373 |
+
or not config.triton.cudagraph_trees
|
374 |
+
),
|
375 |
+
"multiple device indices without cudagraph_trees",
|
376 |
+
),
|
377 |
+
]
|
378 |
+
cudagraph_fail_reasons = [s for b, s in cudagraph_tests if not b]
|
379 |
+
|
380 |
+
if not cudagraph_fail_reasons:
|
381 |
+
if not config.triton.cudagraph_trees:
|
382 |
+
# Force specialize all inputs so that CUDA graphs will work
|
383 |
+
for t in example_inputs:
|
384 |
+
if isinstance(t, torch.SymInt):
|
385 |
+
int(t) # guard
|
386 |
+
|
387 |
+
if (
|
388 |
+
boxed_forward_device_index is not None
|
389 |
+
and not is_inference
|
390 |
+
and not is_backward
|
391 |
+
):
|
392 |
+
boxed_forward_device_index.set(next(iter(compiled_graph.device_idxs)))
|
393 |
+
|
394 |
+
compiled_graph.current_callable = cudagraphify(
|
395 |
+
compiled_graph.get_current_callable(),
|
396 |
+
example_inputs,
|
397 |
+
static_input_idxs=range(num_fixed),
|
398 |
+
device_index=next(iter(compiled_graph.device_idxs)),
|
399 |
+
stack_traces=stack_traces,
|
400 |
+
is_backward=is_backward,
|
401 |
+
is_inference=is_inference,
|
402 |
+
constants=tuple(compiled_graph.constants.values()),
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
BoxedBool.disable(cudagraphs)
|
406 |
+
|
407 |
+
# See [Backward Generation Handling]
|
408 |
+
# if cudagraph'd the forward and set the device, we need to let the cudagraph manager
|
409 |
+
# know we are we running the backward even if we will not run it in cudagraphs
|
410 |
+
if is_backward and config.triton.cudagraph_trees:
|
411 |
+
assert boxed_forward_device_index is not None
|
412 |
+
assert boxed_forward_device_index.value is not None
|
413 |
+
compiled_graph_callable = compiled_graph.get_current_callable()
|
414 |
+
|
415 |
+
manager = torch._inductor.cudagraph_trees.get_manager(
|
416 |
+
boxed_forward_device_index.value, create_if_none_exists=False
|
417 |
+
)
|
418 |
+
# should already exist from forward
|
419 |
+
assert manager is not None
|
420 |
+
|
421 |
+
def compiled_artifact(new_inputs):
|
422 |
+
manager.set_to_running_backward()
|
423 |
+
return compiled_graph_callable(new_inputs)
|
424 |
+
|
425 |
+
compiled_graph.current_callable = compiled_artifact
|
426 |
+
|
427 |
+
if "cuda" in compiled_graph.device_types:
|
428 |
+
perf_hint_log.warning(
|
429 |
+
"skipping cudagraphs due to %s", cudagraph_fail_reasons
|
430 |
+
)
|
431 |
+
|
432 |
+
# cudagraphs does its own aligning of inputs
|
433 |
+
if not cudagraphs:
|
434 |
+
new_callable = align_inputs(
|
435 |
+
compiled_graph.get_current_callable(), example_inputs, range(num_fixed)
|
436 |
+
)
|
437 |
+
if new_callable is not compiled_graph.get_current_callable():
|
438 |
+
compiled_graph.current_callable = new_callable
|
439 |
+
|
440 |
+
_step_logger()(
|
441 |
+
logging.INFO,
|
442 |
+
"torchinductor done compiling "
|
443 |
+
f"{'BACKWARDS' if is_backward else 'FORWARDS'} "
|
444 |
+
f"graph {graph_id}",
|
445 |
+
)
|
446 |
+
|
447 |
+
# aot autograd needs to know to pass in inputs as a list
|
448 |
+
compiled_graph._boxed_call = True
|
449 |
+
return compiled_graph
|
450 |
+
|
451 |
+
|
452 |
+
def fx_codegen_and_compile(
|
453 |
+
gm: torch.fx.GraphModule,
|
454 |
+
example_inputs: List[torch.Tensor],
|
455 |
+
cudagraphs: Optional[BoxedBool] = None,
|
456 |
+
num_fixed: int = 0,
|
457 |
+
is_backward: bool = False,
|
458 |
+
graph_id: Optional[int] = None,
|
459 |
+
cpp_wrapper: bool = False,
|
460 |
+
aot_mode: bool = False,
|
461 |
+
is_inference: bool = False,
|
462 |
+
user_visible_outputs: FrozenSet[str] = frozenset(),
|
463 |
+
layout_opt: Optional[bool] = None,
|
464 |
+
extern_node_serializer: Optional[Callable[[List[ExternKernelNode]], Any]] = None,
|
465 |
+
) -> Union[CompiledFxGraph, str]:
|
466 |
+
if is_tf32_warning_applicable(gm):
|
467 |
+
_warn_tf32_disabled()
|
468 |
+
|
469 |
+
# lift the maximum depth of the Python interpreter stack
|
470 |
+
# to adapt large/deep models
|
471 |
+
sys.setrecursionlimit(max(sys.getrecursionlimit(), 2000))
|
472 |
+
|
473 |
+
_step_logger()(
|
474 |
+
logging.INFO,
|
475 |
+
"torchinductor compiling "
|
476 |
+
f"{'BACKWARDS' if is_backward else 'FORWARDS'} "
|
477 |
+
f"graph {graph_id}",
|
478 |
+
)
|
479 |
+
V.debug.fx_graph(gm, example_inputs)
|
480 |
+
|
481 |
+
shape_env = _shape_env_from_inputs(example_inputs)
|
482 |
+
|
483 |
+
# Convert view to reshape in the graph. This is necessary primarily for
|
484 |
+
# layout optimization. Do it unconditionally for uniformity.
|
485 |
+
#
|
486 |
+
# It's needed because when we do layout optimization, an contiguous tensor
|
487 |
+
# in eager mode may becomes a channels last tensor. A view op previously
|
488 |
+
# can be applied to the contiguous tensor may not be able to be applied
|
489 |
+
# on the channels tensor any more. An error like
|
490 |
+
# RuntimeError: view size is not compatible with input tensor's size and stride
|
491 |
+
# (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
|
492 |
+
# will be printed.
|
493 |
+
#
|
494 |
+
# Replace view op to reshape op in this case.
|
495 |
+
# As an example, timm_resnest/botnet26t_256/convnext_base etc. will fail if we don't do this.
|
496 |
+
#
|
497 |
+
# Also this has to be done before FakeTensorProp below to avoid the failed
|
498 |
+
# .view() call.
|
499 |
+
view_to_reshape(gm)
|
500 |
+
|
501 |
+
# It is safe to run FakeTensorProp under no_grad because by the time
|
502 |
+
# we're in inductor, we assume that AOTAutograd has already "taken care"
|
503 |
+
# of autograd, so there should be no more autograd-related API's in the
|
504 |
+
# graph.
|
505 |
+
with torch.no_grad():
|
506 |
+
fake_mode = fake_tensor_prop(gm, example_inputs)
|
507 |
+
|
508 |
+
# pattern matcher passes might not preserve striding information
|
509 |
+
# on node.meta["val"]. if in the future we rely on these being
|
510 |
+
# correct we will need to fix.
|
511 |
+
|
512 |
+
with V.set_fake_mode(fake_mode):
|
513 |
+
# has some issues with memory in training
|
514 |
+
post_grad_passes(gm, is_inference=is_inference)
|
515 |
+
V.debug.fx_graph_transformed(gm, example_inputs)
|
516 |
+
post_grad_graphs_log.info("%s", lazy_format_graph_code("AFTER POST GRAD", gm))
|
517 |
+
|
518 |
+
with V.set_fake_mode(fake_mode):
|
519 |
+
graph = GraphLowering(
|
520 |
+
gm,
|
521 |
+
# example_inputs will be used by AOTInductor to dry-run the generated code for Triton kernel tuning.
|
522 |
+
# For the forward pass, we have the real inputs to be used as example_inputs. For the backward pass,
|
523 |
+
# we currently use fake tensors and defake them later.
|
524 |
+
example_inputs=V.real_inputs if is_inference else example_inputs,
|
525 |
+
shape_env=shape_env,
|
526 |
+
num_static_inputs=num_fixed,
|
527 |
+
graph_id=graph_id,
|
528 |
+
cpp_wrapper=cpp_wrapper,
|
529 |
+
aot_mode=aot_mode,
|
530 |
+
user_visible_outputs=user_visible_outputs,
|
531 |
+
extern_node_serializer=extern_node_serializer,
|
532 |
+
is_inference=is_inference,
|
533 |
+
)
|
534 |
+
with V.set_graph_handler(graph):
|
535 |
+
graph.run(*example_inputs)
|
536 |
+
output_strides: List[Optional[Tuple[int, ...]]] = []
|
537 |
+
if graph.graph_outputs is not None:
|
538 |
+
# We'll put the output strides in the compiled graph so we
|
539 |
+
# can later return them to the caller via TracingContext
|
540 |
+
for out in graph.graph_outputs:
|
541 |
+
if hasattr(out, "layout"):
|
542 |
+
output_strides.append(
|
543 |
+
tuple(
|
544 |
+
V.graph.sizevars.size_hint(s) for s in out.layout.stride
|
545 |
+
)
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
output_strides.append(None)
|
549 |
+
|
550 |
+
compiled_fn = graph.compile_to_fn()
|
551 |
+
|
552 |
+
if V.aot_compilation is True:
|
553 |
+
return compiled_fn
|
554 |
+
|
555 |
+
if graph.disable_cudagraphs:
|
556 |
+
perf_hint_log.warning(
|
557 |
+
"skipping cudagraphs due to %s", V.graph.disable_cudagraphs_reason
|
558 |
+
)
|
559 |
+
BoxedBool.disable(cudagraphs)
|
560 |
+
|
561 |
+
compiled_graph = CompiledFxGraph(compiled_fn, graph, output_strides)
|
562 |
+
|
563 |
+
return compiled_graph
|
564 |
+
|
565 |
+
|
566 |
+
def clone_preserve_strides(x: torch.Tensor):
|
567 |
+
needed_size = (
|
568 |
+
sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1
|
569 |
+
)
|
570 |
+
buffer = torch.as_strided(x, (needed_size,), (1,)).clone()
|
571 |
+
return torch.as_strided(buffer, x.size(), x.stride())
|
572 |
+
|
573 |
+
|
574 |
+
def copy_misaligned_inputs(
|
575 |
+
new_inputs: List[torch.Tensor], check_inputs_idxs: Sequence[int]
|
576 |
+
) -> None:
|
577 |
+
for i in check_inputs_idxs:
|
578 |
+
if new_inputs[i].data_ptr() % ALIGNMENT:
|
579 |
+
new_inputs[i] = clone_preserve_strides(new_inputs[i])
|
580 |
+
|
581 |
+
|
582 |
+
def get_input_idxs_to_check(
|
583 |
+
inputs: Union[List[torch.Tensor], Sequence[int]],
|
584 |
+
static_input_idxs: Sequence[int],
|
585 |
+
) -> Sequence[int]:
|
586 |
+
def is_aligned(storage_offset, dtype):
|
587 |
+
return (storage_offset * get_dtype_size(dtype)) % ALIGNMENT == 0
|
588 |
+
|
589 |
+
ids_to_check = []
|
590 |
+
for i, input in enumerate(inputs):
|
591 |
+
if (
|
592 |
+
isinstance(input, torch.Tensor)
|
593 |
+
and (
|
594 |
+
i not in static_input_idxs
|
595 |
+
or not is_aligned(input.storage_offset(), input.dtype)
|
596 |
+
)
|
597 |
+
and input.device.type == "cuda"
|
598 |
+
):
|
599 |
+
ids_to_check.append(i)
|
600 |
+
return ids_to_check
|
601 |
+
|
602 |
+
|
603 |
+
def align_inputs_from_check_idxs(
|
604 |
+
model: Callable[[List[torch.Tensor]], Any], inputs_to_check: Sequence[int]
|
605 |
+
):
|
606 |
+
if len(inputs_to_check) == 0:
|
607 |
+
return model
|
608 |
+
|
609 |
+
def run(new_inputs):
|
610 |
+
copy_misaligned_inputs(new_inputs, inputs_to_check)
|
611 |
+
return model(new_inputs)
|
612 |
+
|
613 |
+
return run
|
614 |
+
|
615 |
+
|
616 |
+
def align_inputs(
|
617 |
+
model: Callable[[List[torch.Tensor]], Any],
|
618 |
+
inputs: List[torch.Tensor],
|
619 |
+
static_input_idxs: Sequence[int] = (),
|
620 |
+
):
|
621 |
+
inputs_to_check = get_input_idxs_to_check(inputs, static_input_idxs)
|
622 |
+
return align_inputs_from_check_idxs(model, inputs_to_check)
|
623 |
+
|
624 |
+
|
625 |
+
@dynamo_utils.dynamo_timed
|
626 |
+
def cudagraphify(
|
627 |
+
model: torch.fx.GraphModule,
|
628 |
+
inputs: List[torch.Tensor],
|
629 |
+
static_input_idxs: Sequence[int] = (),
|
630 |
+
*,
|
631 |
+
device_index: int,
|
632 |
+
stack_traces: List[Optional[str]],
|
633 |
+
is_backward: bool,
|
634 |
+
is_inference: bool,
|
635 |
+
constants: Tuple[torch.Tensor, ...] = (),
|
636 |
+
):
|
637 |
+
from torch._inductor.cudagraph_trees import (
|
638 |
+
cudagraphify_impl as new_cudagraphify_impl,
|
639 |
+
)
|
640 |
+
|
641 |
+
cudagraphify_fn: Callable[..., Any]
|
642 |
+
if config.triton.cudagraph_trees:
|
643 |
+
cudagraphify_fn = functools.partial(
|
644 |
+
new_cudagraphify_impl,
|
645 |
+
device_index=device_index,
|
646 |
+
stack_traces=stack_traces,
|
647 |
+
is_backward=is_backward,
|
648 |
+
is_inference=is_inference,
|
649 |
+
constants=constants,
|
650 |
+
)
|
651 |
+
else:
|
652 |
+
cudagraphify_fn = cudagraphify_impl
|
653 |
+
|
654 |
+
# if using fake tensors, defer cudagraphs until we get real inputs at runtime
|
655 |
+
if not any(isinstance(inp, FakeTensor) for inp in inputs):
|
656 |
+
return cudagraphify_fn(model, inputs, static_input_idxs)
|
657 |
+
|
658 |
+
compiled_fn = None
|
659 |
+
|
660 |
+
def run(new_inputs):
|
661 |
+
nonlocal compiled_fn
|
662 |
+
if compiled_fn is None:
|
663 |
+
with dynamo_utils.preserve_rng_state():
|
664 |
+
compiled_fn = cudagraphify_fn(model, new_inputs, static_input_idxs)
|
665 |
+
return compiled_fn(new_inputs)
|
666 |
+
|
667 |
+
return run
|
668 |
+
|
669 |
+
|
670 |
+
def remove_unaligned_input_idxs(
|
671 |
+
inputs: Union[List[torch.Tensor], Sequence[int]],
|
672 |
+
static_input_idxs: Sequence[int],
|
673 |
+
):
|
674 |
+
"""
|
675 |
+
We require all inputs to be aligned, so introduce a copy for any
|
676 |
+
that aren't.
|
677 |
+
"""
|
678 |
+
aligned_static_input_idxs = []
|
679 |
+
for idx, input in zip(static_input_idxs, inputs):
|
680 |
+
if isinstance(input, torch.Tensor) and (input.data_ptr() % ALIGNMENT) == 0:
|
681 |
+
aligned_static_input_idxs.append(idx)
|
682 |
+
if len(aligned_static_input_idxs) != len(static_input_idxs):
|
683 |
+
return aligned_static_input_idxs
|
684 |
+
return static_input_idxs
|
685 |
+
|
686 |
+
|
687 |
+
def static_input(x: torch.Tensor):
|
688 |
+
"""
|
689 |
+
Copy and input while preserving strides
|
690 |
+
"""
|
691 |
+
# TODO(jansel): figure out why this version doesn't work:
|
692 |
+
# return torch.empty_strided(x.size(), x.stride(), dtype=x.dtype, device=x.device)
|
693 |
+
needed_size = (
|
694 |
+
sum((shape - 1) * stride for shape, stride in zip(x.size(), x.stride())) + 1
|
695 |
+
)
|
696 |
+
buffer = torch.empty(needed_size, dtype=x.dtype, device=x.device)
|
697 |
+
return torch.as_strided(buffer, x.size(), x.stride())
|
698 |
+
|
699 |
+
|
700 |
+
def index_expanded_dims_and_copy_(
|
701 |
+
dst: torch.Tensor,
|
702 |
+
src: torch.Tensor,
|
703 |
+
expanded_dims: List[int],
|
704 |
+
):
|
705 |
+
"Index into expanded dimensions of both dst and src then copy_"
|
706 |
+
dst = index_expanded_dims(dst, expanded_dims)
|
707 |
+
src = index_expanded_dims(src, expanded_dims)
|
708 |
+
dst.copy_(src)
|
709 |
+
|
710 |
+
|
711 |
+
def cudagraphify_impl(
|
712 |
+
model: torch.fx.GraphModule,
|
713 |
+
inputs: List[torch.Tensor],
|
714 |
+
static_input_idxs: Sequence[int] = (),
|
715 |
+
):
|
716 |
+
"""
|
717 |
+
Assumes inputs[static_input_idxs[i]] are always the same memory address
|
718 |
+
"""
|
719 |
+
check_input_idxs = get_input_idxs_to_check(inputs, static_input_idxs)
|
720 |
+
static_input_idxs = remove_unaligned_input_idxs(inputs, static_input_idxs)
|
721 |
+
copy_misaligned_inputs(inputs, check_input_idxs)
|
722 |
+
|
723 |
+
assert isinstance(inputs, list)
|
724 |
+
|
725 |
+
inps_expanded_dims = [
|
726 |
+
get_expanded_dims(x) if idx not in static_input_idxs else []
|
727 |
+
for idx, x in enumerate(inputs)
|
728 |
+
]
|
729 |
+
|
730 |
+
# allocate static tensor inputs
|
731 |
+
static_inputs = [
|
732 |
+
x
|
733 |
+
if not isinstance(x, torch.Tensor)
|
734 |
+
else static_input(x)
|
735 |
+
if idx not in static_input_idxs
|
736 |
+
else x.detach()
|
737 |
+
for idx, x in enumerate(inputs)
|
738 |
+
]
|
739 |
+
|
740 |
+
# copy over input values for fresh allocations
|
741 |
+
for idx, (x, expanded_dims) in enumerate(zip(inputs, inps_expanded_dims)):
|
742 |
+
if isinstance(x, torch.Tensor) and idx not in static_input_idxs:
|
743 |
+
index_expanded_dims_and_copy_(static_inputs[idx], x, expanded_dims)
|
744 |
+
|
745 |
+
# warmup
|
746 |
+
torch.cuda.synchronize()
|
747 |
+
stream = torch.cuda.Stream()
|
748 |
+
stream.wait_stream(torch.cuda.current_stream())
|
749 |
+
# copy static_inputs because it will be cleared in model
|
750 |
+
with torch.cuda.stream(stream):
|
751 |
+
model(list(static_inputs))
|
752 |
+
stream.synchronize()
|
753 |
+
torch.cuda.current_stream().wait_stream(stream)
|
754 |
+
torch.cuda.synchronize()
|
755 |
+
|
756 |
+
# record
|
757 |
+
graph = torch.cuda.CUDAGraph()
|
758 |
+
with torch.cuda.graph(graph, stream=stream, capture_error_mode="thread_local"):
|
759 |
+
static_outputs = model(list(static_inputs))
|
760 |
+
if not isinstance(static_outputs, (list, tuple)):
|
761 |
+
static_outputs = (static_outputs,)
|
762 |
+
|
763 |
+
if config.size_asserts:
|
764 |
+
|
765 |
+
def run(new_inputs):
|
766 |
+
assert len(static_inputs) == len(new_inputs)
|
767 |
+
for idx, (dst, src, expanded_dims) in enumerate(
|
768 |
+
zip(static_inputs, new_inputs, inps_expanded_dims)
|
769 |
+
):
|
770 |
+
if not isinstance(dst, torch.Tensor):
|
771 |
+
pass
|
772 |
+
elif idx in static_input_idxs:
|
773 |
+
assert dst.data_ptr() == src.data_ptr()
|
774 |
+
else:
|
775 |
+
# TODO - could make one single op of multiple slices
|
776 |
+
# and avoid dispatch.
|
777 |
+
# Could also pre-index the `dst` tensors
|
778 |
+
index_expanded_dims_and_copy_(dst, src, expanded_dims)
|
779 |
+
new_inputs.clear()
|
780 |
+
graph.replay()
|
781 |
+
return static_outputs
|
782 |
+
|
783 |
+
else:
|
784 |
+
copy_indices = [
|
785 |
+
idx for idx in range(len(static_inputs)) if idx not in static_input_idxs
|
786 |
+
]
|
787 |
+
|
788 |
+
def run(new_inputs):
|
789 |
+
for idx in copy_indices:
|
790 |
+
expanded_dims = inps_expanded_dims[idx]
|
791 |
+
index_expanded_dims_and_copy_(
|
792 |
+
static_inputs[idx], new_inputs[idx], expanded_dims
|
793 |
+
)
|
794 |
+
new_inputs.clear()
|
795 |
+
graph.replay()
|
796 |
+
return static_outputs
|
797 |
+
|
798 |
+
return align_inputs_from_check_idxs(run, check_input_idxs)
|
799 |
+
|
800 |
+
|
801 |
+
def count_tangents(fx_g: torch.fx.GraphModule):
|
802 |
+
"""
|
803 |
+
Infers which inputs are static for a backwards graph
|
804 |
+
"""
|
805 |
+
|
806 |
+
def is_saved_tensor(x):
|
807 |
+
return (
|
808 |
+
"tangents" not in x.name
|
809 |
+
and "bwd_seed" not in x.name
|
810 |
+
and "bwd_base_offset" not in x.name
|
811 |
+
)
|
812 |
+
|
813 |
+
arg_count = 0
|
814 |
+
static_arg_idxs = []
|
815 |
+
for n in fx_g.graph.nodes:
|
816 |
+
if n.op == "placeholder":
|
817 |
+
if is_saved_tensor(n):
|
818 |
+
static_arg_idxs.append(arg_count)
|
819 |
+
arg_count += 1
|
820 |
+
|
821 |
+
assert static_arg_idxs == list(range(len(static_arg_idxs)))
|
822 |
+
return len(static_arg_idxs)
|
823 |
+
|
824 |
+
|
825 |
+
def compile_fx_aot(
|
826 |
+
model_: torch.fx.GraphModule,
|
827 |
+
example_inputs_: List[torch.Tensor],
|
828 |
+
inner_compile: Callable[..., Any] = compile_fx_inner,
|
829 |
+
config_patches: Optional[Dict[str, Any]] = None,
|
830 |
+
):
|
831 |
+
config_patches: Dict[str, Any] = (
|
832 |
+
{"cpp_wrapper": True}
|
833 |
+
if config_patches is None
|
834 |
+
else {**config_patches, "cpp_wrapper": True}
|
835 |
+
)
|
836 |
+
if (
|
837 |
+
"aot_inductor.output_path" not in config_patches
|
838 |
+
and not config.aot_inductor.output_path
|
839 |
+
):
|
840 |
+
config_patches = {
|
841 |
+
**config_patches,
|
842 |
+
"aot_inductor.output_path": code_hash(model_.code),
|
843 |
+
}
|
844 |
+
|
845 |
+
extern_node_serializer = config_patches.pop("extern_node_serializer", None)
|
846 |
+
with V.set_aot_compilation(True):
|
847 |
+
compiled_lib_path = compile_fx(
|
848 |
+
model_,
|
849 |
+
example_inputs_,
|
850 |
+
inner_compile=functools.partial(
|
851 |
+
inner_compile,
|
852 |
+
aot_mode=True,
|
853 |
+
extern_node_serializer=extern_node_serializer,
|
854 |
+
),
|
855 |
+
config_patches=config_patches,
|
856 |
+
)
|
857 |
+
assert os.path.exists(
|
858 |
+
compiled_lib_path
|
859 |
+
), f"AOTInductor compiled library does not exist at {compiled_lib_path}"
|
860 |
+
return compiled_lib_path
|
861 |
+
|
862 |
+
|
863 |
+
_graph_counter = count(0)
|
864 |
+
|
865 |
+
|
866 |
+
def fw_compiler_freezing(
|
867 |
+
aot_autograd_model: torch.fx.GraphModule,
|
868 |
+
aot_example_inputs: List[torch.Tensor],
|
869 |
+
dynamo_model: torch.fx.GraphModule,
|
870 |
+
num_example_inputs: int,
|
871 |
+
inner_compile: Callable[..., Any],
|
872 |
+
cudagraphs: BoxedBool,
|
873 |
+
graph_id: int,
|
874 |
+
forward_device: BoxedDeviceIndex,
|
875 |
+
):
|
876 |
+
from torch._inductor.freezing import convert_conv_weights_to_channels_last, freeze
|
877 |
+
|
878 |
+
# partition_fn won't be called
|
879 |
+
joint_graph_passes(aot_autograd_model)
|
880 |
+
|
881 |
+
layout_opt = GraphLowering.decide_layout_opt(aot_autograd_model, is_inference=True)
|
882 |
+
if layout_opt:
|
883 |
+
# make sure meta['val'] is properly setup
|
884 |
+
fake_tensor_prop(aot_autograd_model, aot_example_inputs, True)
|
885 |
+
convert_conv_weights_to_channels_last(aot_autograd_model)
|
886 |
+
|
887 |
+
opt_model, preserved_arg_indices = freeze(
|
888 |
+
dynamo_model,
|
889 |
+
aot_autograd_model,
|
890 |
+
aot_example_inputs, # type: ignore[arg-type]
|
891 |
+
)
|
892 |
+
|
893 |
+
aot_example_inputs = [aot_example_inputs[ind] for ind in preserved_arg_indices]
|
894 |
+
num_fixed = len(preserved_arg_indices) - num_example_inputs
|
895 |
+
|
896 |
+
fake_mode = detect_fake_mode(aot_example_inputs)
|
897 |
+
|
898 |
+
# for freezing, all graph outputs should be user visible
|
899 |
+
*_, model_outputs_node = opt_model.graph.nodes
|
900 |
+
model_outputs = model_outputs_node.args[0]
|
901 |
+
user_visible_outputs = [
|
902 |
+
n.name for n in model_outputs if isinstance(n, torch.fx.Node)
|
903 |
+
]
|
904 |
+
|
905 |
+
# constant params will be real tensors, not fake
|
906 |
+
tracing_context = torch._guards.TracingContext.try_get()
|
907 |
+
if tracing_context is not None:
|
908 |
+
params_flat = tracing_context.params_flat
|
909 |
+
assert params_flat is not None
|
910 |
+
for i in range(len(params_flat)):
|
911 |
+
if i not in preserved_arg_indices:
|
912 |
+
params_flat[i] = None
|
913 |
+
|
914 |
+
with mock.patch.object(fake_mode, "allow_non_fake_inputs", True):
|
915 |
+
optimized_function = inner_compile(
|
916 |
+
opt_model,
|
917 |
+
aot_example_inputs,
|
918 |
+
num_fixed=num_fixed,
|
919 |
+
cudagraphs=cudagraphs,
|
920 |
+
graph_id=graph_id,
|
921 |
+
is_inference=True,
|
922 |
+
boxed_forward_device_index=forward_device,
|
923 |
+
layout_opt=layout_opt,
|
924 |
+
user_visible_outputs=user_visible_outputs,
|
925 |
+
)
|
926 |
+
|
927 |
+
# aot_inductor codegens a call that takes in just the inputs, so we don't return a wrapper
|
928 |
+
# that drops constant-ified params
|
929 |
+
if V.aot_compilation is True:
|
930 |
+
return optimized_function
|
931 |
+
|
932 |
+
def wrapper(args):
|
933 |
+
args_new = [args[i] for i in preserved_arg_indices]
|
934 |
+
args.clear()
|
935 |
+
return optimized_function(args_new)
|
936 |
+
|
937 |
+
wrapper._boxed_call = True # type: ignore[attr-defined]
|
938 |
+
|
939 |
+
return wrapper
|
940 |
+
|
941 |
+
|
942 |
+
def compile_fx(
|
943 |
+
model_: torch.fx.GraphModule,
|
944 |
+
example_inputs_: List[torch.Tensor],
|
945 |
+
inner_compile: Callable[..., Any] = compile_fx_inner,
|
946 |
+
config_patches: Optional[Dict[str, Any]] = None,
|
947 |
+
decompositions: Optional[Dict[OpOverload, Callable[..., Any]]] = None,
|
948 |
+
):
|
949 |
+
"""Main entrypoint to a compile given FX graph"""
|
950 |
+
if config_patches:
|
951 |
+
with config.patch(config_patches):
|
952 |
+
return compile_fx(
|
953 |
+
model_,
|
954 |
+
example_inputs_,
|
955 |
+
# need extra layer of patching as backwards is compiled out of scope
|
956 |
+
inner_compile=config.patch(config_patches)(inner_compile),
|
957 |
+
decompositions=decompositions,
|
958 |
+
)
|
959 |
+
|
960 |
+
if config.cpp_wrapper:
|
961 |
+
with config.patch(
|
962 |
+
{
|
963 |
+
"cpp_wrapper": False,
|
964 |
+
"triton.autotune_cublasLt": False,
|
965 |
+
"triton.cudagraphs": False,
|
966 |
+
"triton.store_cubin": True,
|
967 |
+
}
|
968 |
+
), V.set_real_inputs(example_inputs_):
|
969 |
+
inputs_ = example_inputs_
|
970 |
+
if isinstance(model_, torch.fx.GraphModule):
|
971 |
+
fake_inputs = [
|
972 |
+
node.meta.get("val")
|
973 |
+
for node in model_.graph.nodes
|
974 |
+
if node.op == "placeholder"
|
975 |
+
]
|
976 |
+
if all(v is not None for v in fake_inputs):
|
977 |
+
# Validate devices before switching to fake tensors.
|
978 |
+
for idx, fi, i in zip(count(), fake_inputs, inputs_):
|
979 |
+
if fi.device != i.device:
|
980 |
+
raise ValueError(
|
981 |
+
f"Device mismatch between fake input and example input at position #{idx}: "
|
982 |
+
f"{fi.device} vs {i.device}. If the model was exported via torch.export(), "
|
983 |
+
"make sure torch.export() and torch.aot_compile() run on the same device."
|
984 |
+
)
|
985 |
+
inputs_ = fake_inputs
|
986 |
+
return compile_fx(
|
987 |
+
model_,
|
988 |
+
inputs_,
|
989 |
+
inner_compile=functools.partial(inner_compile, cpp_wrapper=True),
|
990 |
+
decompositions=decompositions,
|
991 |
+
)
|
992 |
+
|
993 |
+
recursive_compile_fx = functools.partial(
|
994 |
+
compile_fx,
|
995 |
+
inner_compile=inner_compile,
|
996 |
+
decompositions=decompositions,
|
997 |
+
)
|
998 |
+
|
999 |
+
if not graph_returns_tuple(model_):
|
1000 |
+
return make_graph_return_tuple(
|
1001 |
+
model_,
|
1002 |
+
example_inputs_,
|
1003 |
+
recursive_compile_fx,
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
if isinstance(model_, torch.fx.GraphModule):
|
1007 |
+
if isinstance(model_.graph._codegen, _PyTreeCodeGen):
|
1008 |
+
# this graph is the result of dynamo.export()
|
1009 |
+
return handle_dynamo_export_graph(
|
1010 |
+
model_,
|
1011 |
+
example_inputs_,
|
1012 |
+
recursive_compile_fx,
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
model_ = pre_grad_passes(model_, example_inputs_)
|
1016 |
+
|
1017 |
+
if any(isinstance(x, (list, tuple, dict)) for x in example_inputs_):
|
1018 |
+
return flatten_graph_inputs(
|
1019 |
+
model_,
|
1020 |
+
example_inputs_,
|
1021 |
+
recursive_compile_fx,
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
assert not config._raise_error_for_testing
|
1025 |
+
num_example_inputs = len(example_inputs_)
|
1026 |
+
cudagraphs = BoxedBool(config.triton.cudagraphs)
|
1027 |
+
forward_device = BoxedDeviceIndex(None)
|
1028 |
+
|
1029 |
+
graph_id = next(_graph_counter)
|
1030 |
+
|
1031 |
+
decompositions = (
|
1032 |
+
decompositions if decompositions is not None else select_decomp_table()
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
@dynamo_utils.dynamo_timed
|
1036 |
+
def fw_compiler_base(
|
1037 |
+
model: torch.fx.GraphModule,
|
1038 |
+
example_inputs: List[torch.Tensor],
|
1039 |
+
is_inference: bool,
|
1040 |
+
):
|
1041 |
+
if is_inference:
|
1042 |
+
# partition_fn won't be called
|
1043 |
+
joint_graph_passes(model)
|
1044 |
+
|
1045 |
+
num_rng_seed_offset_inputs = 2 if functorch_config.functionalize_rng_ops else 0
|
1046 |
+
fixed = len(example_inputs) - num_example_inputs - num_rng_seed_offset_inputs
|
1047 |
+
user_visible_outputs = set()
|
1048 |
+
|
1049 |
+
if config.keep_output_stride:
|
1050 |
+
*_, model_outputs_node = model.graph.nodes
|
1051 |
+
assert model_outputs_node.op == "output"
|
1052 |
+
model_outputs = pytree.arg_tree_leaves(*model_outputs_node.args)
|
1053 |
+
num_model_outputs = len(model_outputs)
|
1054 |
+
|
1055 |
+
context = torch._guards.TracingContext.try_get()
|
1056 |
+
# See Note [User Outputs in the inductor graph]
|
1057 |
+
if context is not None and context.fw_metadata and not is_inference:
|
1058 |
+
original_output_start_index = (
|
1059 |
+
context.fw_metadata.num_mutated_inp_runtime_indices
|
1060 |
+
)
|
1061 |
+
else:
|
1062 |
+
original_output_start_index = 0
|
1063 |
+
|
1064 |
+
if isinstance(model_, torch.fx.GraphModule):
|
1065 |
+
*_, orig_model_outputs_node = model_.graph.nodes
|
1066 |
+
assert orig_model_outputs_node.op == "output"
|
1067 |
+
orig_model_outputs, _ = pytree.tree_flatten(
|
1068 |
+
orig_model_outputs_node.args
|
1069 |
+
)
|
1070 |
+
num_orig_model_outputs = len(orig_model_outputs)
|
1071 |
+
else:
|
1072 |
+
num_orig_model_outputs = num_model_outputs
|
1073 |
+
|
1074 |
+
assert num_orig_model_outputs <= num_model_outputs
|
1075 |
+
|
1076 |
+
# Note [User Outputs in the inductor graph]
|
1077 |
+
# We makes the following assumption
|
1078 |
+
# For inference
|
1079 |
+
# len(orig_model_outputs) == len(model_outputs)
|
1080 |
+
# For training
|
1081 |
+
# len(orig_model_outputs) <= len(model_outputs)
|
1082 |
+
# During training, most of the time the model_outputs starts with
|
1083 |
+
# original module's outputs followed by saved activations.
|
1084 |
+
# But this can be not true if the model have inplace updated tensors.
|
1085 |
+
# AOTAutograd will make those tensors being returned before the original
|
1086 |
+
# module's output.
|
1087 |
+
# To make things safe, we'll use original_output_start_index field
|
1088 |
+
# set by AOTAutograd to decide where the original module outputs start.
|
1089 |
+
orig_output_end_idx = original_output_start_index + num_orig_model_outputs
|
1090 |
+
# Sanity chec: we are about to splice out the "user" outputs from the full set
|
1091 |
+
# of "graph" outputs. Make sure we're within bounds.
|
1092 |
+
assert orig_output_end_idx <= num_model_outputs
|
1093 |
+
|
1094 |
+
user_visible_outputs = {
|
1095 |
+
n.name
|
1096 |
+
for n in model_outputs[original_output_start_index:orig_output_end_idx]
|
1097 |
+
if isinstance(n, torch.fx.Node)
|
1098 |
+
}
|
1099 |
+
|
1100 |
+
return inner_compile(
|
1101 |
+
model,
|
1102 |
+
example_inputs,
|
1103 |
+
num_fixed=fixed,
|
1104 |
+
cudagraphs=cudagraphs,
|
1105 |
+
graph_id=graph_id,
|
1106 |
+
is_inference=is_inference,
|
1107 |
+
boxed_forward_device_index=forward_device,
|
1108 |
+
user_visible_outputs=user_visible_outputs,
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
fw_compiler = functools.partial(fw_compiler_base, is_inference=False)
|
1112 |
+
|
1113 |
+
if config.freezing and not torch.is_grad_enabled():
|
1114 |
+
inference_compiler = functools.partial(
|
1115 |
+
fw_compiler_freezing,
|
1116 |
+
dynamo_model=model_,
|
1117 |
+
num_example_inputs=num_example_inputs,
|
1118 |
+
inner_compile=inner_compile,
|
1119 |
+
cudagraphs=cudagraphs,
|
1120 |
+
graph_id=graph_id,
|
1121 |
+
forward_device=forward_device,
|
1122 |
+
)
|
1123 |
+
else:
|
1124 |
+
inference_compiler = functools.partial(fw_compiler_base, is_inference=True)
|
1125 |
+
|
1126 |
+
def partition_fn(graph, joint_inputs, **kwargs):
|
1127 |
+
joint_graph_passes(graph)
|
1128 |
+
return min_cut_rematerialization_partition(
|
1129 |
+
graph, joint_inputs, **kwargs, compiler="inductor"
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
@dynamo_utils.dynamo_timed
|
1133 |
+
def bw_compiler(model: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
1134 |
+
fixed = count_tangents(model)
|
1135 |
+
return inner_compile(
|
1136 |
+
model,
|
1137 |
+
example_inputs,
|
1138 |
+
num_fixed=fixed,
|
1139 |
+
cudagraphs=cudagraphs,
|
1140 |
+
is_backward=True,
|
1141 |
+
graph_id=graph_id,
|
1142 |
+
boxed_forward_device_index=forward_device,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
# TODO: can add logging before/after the call to create_aot_dispatcher_function
|
1146 |
+
# in torch._functorch/aot_autograd.py::aot_module_simplified::aot_function_simplified::new_func
|
1147 |
+
# once torchdynamo is merged into pytorch
|
1148 |
+
|
1149 |
+
fake_mode = detect_fake_mode(example_inputs_) or torch._subclasses.FakeTensorMode(
|
1150 |
+
allow_non_fake_inputs=True
|
1151 |
+
)
|
1152 |
+
tracing_context = (
|
1153 |
+
torch._guards.TracingContext.try_get()
|
1154 |
+
or torch._guards.TracingContext(fake_mode)
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
if V.aot_compilation is True:
|
1158 |
+
gm, graph_signature = aot_export_module(
|
1159 |
+
model_, example_inputs_, trace_joint=False, decompositions=decompositions
|
1160 |
+
)
|
1161 |
+
unlifted_gm = _unlift_graph(model_, gm, graph_signature)
|
1162 |
+
with V.set_fake_mode(fake_mode), compiled_autograd.disable():
|
1163 |
+
return inference_compiler(unlifted_gm, example_inputs_)
|
1164 |
+
|
1165 |
+
with V.set_fake_mode(fake_mode), torch._guards.tracing(
|
1166 |
+
tracing_context
|
1167 |
+
), compiled_autograd.disable():
|
1168 |
+
return aot_autograd(
|
1169 |
+
fw_compiler=fw_compiler,
|
1170 |
+
bw_compiler=bw_compiler,
|
1171 |
+
inference_compiler=inference_compiler,
|
1172 |
+
decompositions=decompositions,
|
1173 |
+
partition_fn=partition_fn,
|
1174 |
+
keep_inference_input_mutations=True,
|
1175 |
+
)(model_, example_inputs_)
|
1176 |
+
|
1177 |
+
|
1178 |
+
# pass config dict back to user
|
1179 |
+
def get_patched_config_dict(config_patches=None):
|
1180 |
+
with config.patch(config_patches):
|
1181 |
+
return config.get_config_copy()
|
1182 |
+
|
1183 |
+
|
1184 |
+
def _shape_env_from_inputs(inputs: List[torch.Tensor]):
|
1185 |
+
shape_env = None
|
1186 |
+
fake_mode = detect_fake_mode(inputs)
|
1187 |
+
|
1188 |
+
# TODO(voz): It would be nice to enable this assert, but there are lots of tests that
|
1189 |
+
# pass in real inputs for now.
|
1190 |
+
# if len(inputs) > 0:
|
1191 |
+
# assert fake_mode is not None, breakpoint()
|
1192 |
+
|
1193 |
+
if fake_mode is not None:
|
1194 |
+
return fake_mode.shape_env
|
1195 |
+
|
1196 |
+
# When there are no tensor inputs, get shape_env from the first SymInt.
|
1197 |
+
for input in inputs:
|
1198 |
+
if isinstance(input, torch.SymInt):
|
1199 |
+
return input.node.shape_env
|
1200 |
+
|
1201 |
+
# TODO(voz): Should we always have one anyway?
|
1202 |
+
return None
|
1203 |
+
|
1204 |
+
|
1205 |
+
def output_node(gm: torch.fx.GraphModule):
|
1206 |
+
"""Get the output node from an FX graph"""
|
1207 |
+
last_node = next(iter(reversed(gm.graph.nodes)))
|
1208 |
+
assert last_node.op == "output"
|
1209 |
+
return last_node
|
1210 |
+
|
1211 |
+
|
1212 |
+
def graph_returns_tuple(gm: torch.fx.GraphModule):
|
1213 |
+
"""True if a FX graph returns a tuple"""
|
1214 |
+
if not isinstance(gm, torch.fx.GraphModule):
|
1215 |
+
return True # can't check this, assume true
|
1216 |
+
(rv,) = output_node(gm).args
|
1217 |
+
if isinstance(rv, (list, tuple)):
|
1218 |
+
return True
|
1219 |
+
if (
|
1220 |
+
isinstance(rv, torch.fx.node.Node)
|
1221 |
+
and hasattr(rv.target, "_schema")
|
1222 |
+
and len(rv.target._schema.returns) > 1
|
1223 |
+
and all(str(ret.type) == "Tensor" for ret in rv.target._schema.returns)
|
1224 |
+
):
|
1225 |
+
# for graphs whose result is one node with multiple outputs
|
1226 |
+
return True
|
1227 |
+
return False
|
1228 |
+
|
1229 |
+
|
1230 |
+
def make_graph_return_tuple(
|
1231 |
+
gm: torch.fx.GraphModule,
|
1232 |
+
inputs: List[torch.Tensor],
|
1233 |
+
compile_gm: Callable[..., Any],
|
1234 |
+
):
|
1235 |
+
"""
|
1236 |
+
Mutate gm so it returns a tuple. This is only needed for graphs
|
1237 |
+
not created by torchdynamo that return non-tuples.
|
1238 |
+
"""
|
1239 |
+
node = output_node(gm)
|
1240 |
+
(rv,) = node.args
|
1241 |
+
rv, spec = pytree.tree_flatten(rv)
|
1242 |
+
with gm.graph.inserting_before(node):
|
1243 |
+
gm.graph.output(rv)
|
1244 |
+
gm.graph.erase_node(node)
|
1245 |
+
assert graph_returns_tuple(gm)
|
1246 |
+
|
1247 |
+
compiled_fn = compile_gm(gm, inputs)
|
1248 |
+
|
1249 |
+
@functools.wraps(compiled_fn)
|
1250 |
+
def wrapper(*args, **kwargs):
|
1251 |
+
return pytree.tree_unflatten(compiled_fn(*args, **kwargs), spec)
|
1252 |
+
|
1253 |
+
return wrapper
|
1254 |
+
|
1255 |
+
|
1256 |
+
def flatten_graph_inputs(gm: torch.fx.GraphModule, inputs, compile_gm):
|
1257 |
+
"""
|
1258 |
+
Mutate inputs so that they are flat and wrap gm such that it
|
1259 |
+
accepts those inputs. This is only needed for graphs not created
|
1260 |
+
by torchdynamo that take bumpy inputs.
|
1261 |
+
"""
|
1262 |
+
inputs, spec = pytree.tree_flatten(inputs)
|
1263 |
+
|
1264 |
+
class GmWrapper(torch.nn.Module):
|
1265 |
+
def __init__(self):
|
1266 |
+
super().__init__()
|
1267 |
+
self.gm = gm
|
1268 |
+
|
1269 |
+
def forward(self, *args):
|
1270 |
+
args: List[Any] = list(args)
|
1271 |
+
return self.gm(*pytree.tree_unflatten(args, spec))
|
1272 |
+
|
1273 |
+
compiled_fn = compile_gm(GmWrapper(), inputs)
|
1274 |
+
|
1275 |
+
@functools.wraps(compiled_fn)
|
1276 |
+
def wrapper(*args):
|
1277 |
+
# note this doesn't check the spec, assuming it is the same
|
1278 |
+
return compiled_fn(*pytree.arg_tree_leaves(*args))
|
1279 |
+
|
1280 |
+
return wrapper
|
1281 |
+
|
1282 |
+
|
1283 |
+
def handle_dynamo_export_graph(
|
1284 |
+
gm: torch.fx.GraphModule,
|
1285 |
+
inputs: List[torch.Tensor],
|
1286 |
+
compile_gm: Callable[..., Any],
|
1287 |
+
):
|
1288 |
+
"""
|
1289 |
+
`torch._dynamo.export` embeds pytrees in the FX graph codegen object,
|
1290 |
+
convert that to a normal FX graph so inductor can compile it.
|
1291 |
+
"""
|
1292 |
+
codegen = gm.graph._codegen
|
1293 |
+
gm.graph._codegen = torch.fx.graph.CodeGen()
|
1294 |
+
gm.recompile()
|
1295 |
+
|
1296 |
+
compiled_fn = compile_gm(gm, codegen.process_inputs(*inputs))
|
1297 |
+
|
1298 |
+
@functools.wraps(compiled_fn)
|
1299 |
+
def wrapper(*args):
|
1300 |
+
return codegen.process_outputs(compiled_fn(*codegen.process_inputs(*args)))
|
1301 |
+
|
1302 |
+
return wrapper
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/config.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os # noqa: C101
|
2 |
+
import sys
|
3 |
+
from typing import Any, Dict, TYPE_CHECKING
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# add some debug printouts
|
8 |
+
debug = False
|
9 |
+
|
10 |
+
# add inf and NaN checkers
|
11 |
+
debug_check_inf_and_nan = False
|
12 |
+
|
13 |
+
# Whether to disable a progress bar for autotuning
|
14 |
+
disable_progress = True
|
15 |
+
|
16 |
+
# Whether to enable printing the source code for each future
|
17 |
+
verbose_progress = False
|
18 |
+
|
19 |
+
# use fx aot graph codegen cache
|
20 |
+
fx_graph_cache = os.environ.get("TORCHINDUCTOR_FX_GRAPH_CACHE") == "1"
|
21 |
+
|
22 |
+
# use cpp wrapper instead of python wrapper
|
23 |
+
cpp_wrapper = False
|
24 |
+
|
25 |
+
# dead code elimination
|
26 |
+
dce = False
|
27 |
+
|
28 |
+
# assume weight tensors are fixed size
|
29 |
+
static_weight_shapes = True
|
30 |
+
|
31 |
+
# put correctness assertions in generated code
|
32 |
+
size_asserts = os.environ.get("TORCHINDUCTOR_SIZE_ASSERTS", "1") == "1"
|
33 |
+
nan_asserts = os.environ.get("TORCHINDUCTOR_NAN_ASSERTS") == "1"
|
34 |
+
|
35 |
+
# enable loop reordering based on input orders
|
36 |
+
pick_loop_orders = True
|
37 |
+
|
38 |
+
# reuse a kernel input as the output
|
39 |
+
inplace_buffers = True
|
40 |
+
|
41 |
+
# reuse a buffer for an unrelated purpose
|
42 |
+
allow_buffer_reuse = True
|
43 |
+
|
44 |
+
# Enable pooled allocations for non-output tensors
|
45 |
+
memory_planning = os.environ.get("TORCHINDUCTOR_MEMORY_PLANNING", "0") == "1"
|
46 |
+
|
47 |
+
# How to organize memory under memory_planning=True:
|
48 |
+
# - "none": do not try to pool storage, just reuse
|
49 |
+
# - "intermediates": all non-outputs share storage, outputs each get unique storage
|
50 |
+
# - "outputs": two pools, one for intermediates (freed on return) and one for outputs
|
51 |
+
# - "combined": a single pool for both intermediates and outputs
|
52 |
+
memory_pool = os.environ.get("TORCHINDUCTOR_MEMORY_POOL", "intermediates")
|
53 |
+
|
54 |
+
# codegen benchmark harness
|
55 |
+
benchmark_harness = True
|
56 |
+
|
57 |
+
# fuse pointwise into templates
|
58 |
+
epilogue_fusion = True
|
59 |
+
|
60 |
+
# do epilogue fusions before other fusions
|
61 |
+
epilogue_fusion_first = False
|
62 |
+
|
63 |
+
# enable pattern match+replace optimizations
|
64 |
+
pattern_matcher = True
|
65 |
+
|
66 |
+
# register custom graph optimization pass hook. so far, pre/post passes are
|
67 |
+
# only applied before/after pattern_matcher in post_grad_passes.
|
68 |
+
#
|
69 |
+
# def my_custom_pre_pass(graph: torch.fx.graph.Graph):
|
70 |
+
# # my custom graph optimization pass
|
71 |
+
# ...
|
72 |
+
#
|
73 |
+
# def my_custom_post_pass(graph: torch.fx.graph.Graph):
|
74 |
+
# # my custom graph optimization pass
|
75 |
+
# ...
|
76 |
+
#
|
77 |
+
# torch._inductor.config.post_grad_custom_pre_pass = my_custom_pre_pass
|
78 |
+
# torch._inductor.config.post_grad_custom_post_pass = my_custom_post_pass
|
79 |
+
post_grad_custom_pre_pass = None
|
80 |
+
post_grad_custom_post_pass = None
|
81 |
+
|
82 |
+
# Registers a custom pregrad pass. Note that the pre-grad IR is 1.
|
83 |
+
# non-functional, 2. non-normalized, and 3. prone to change. Ideally we should
|
84 |
+
# use post-grad passes.
|
85 |
+
pre_grad_custom_pass = None
|
86 |
+
|
87 |
+
# Optimize away split cat patterns (Experimental)
|
88 |
+
split_cat_fx_passes = True
|
89 |
+
|
90 |
+
# Optimize conv-batchnorm if batchnorm is in eval mode. Slightly reduces numerical stability.
|
91 |
+
efficient_conv_bn_eval_fx_passes = False
|
92 |
+
|
93 |
+
# Deprecated
|
94 |
+
group_fusion = False
|
95 |
+
|
96 |
+
# Deprecated
|
97 |
+
batch_fusion = True
|
98 |
+
|
99 |
+
# Pre grad group/batch fusion and options in order, set to empty dict to disable fusion.
|
100 |
+
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions()` to see available fusions.
|
101 |
+
pre_grad_fusion_options: Dict[str, Dict[str, Any]] = {
|
102 |
+
"batch_linear": {},
|
103 |
+
"batch_linear_lhs": {},
|
104 |
+
"batch_layernorm": {},
|
105 |
+
"batch_tanh": {},
|
106 |
+
"batch_relu": {},
|
107 |
+
"batch_sigmoid": {},
|
108 |
+
}
|
109 |
+
|
110 |
+
# Post grad group/batch fusion and options, set to empty dict to disable fusion.
|
111 |
+
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions(False)` to see available fusions.
|
112 |
+
post_grad_fusion_options: Dict[str, Dict[str, Any]] = {}
|
113 |
+
|
114 |
+
# enable reordering pass for improving memory locality
|
115 |
+
reorder_for_locality = True
|
116 |
+
|
117 |
+
# Scale down RBLOCK for better occupancy
|
118 |
+
dynamic_scale_rblock = os.environ.get("TORCHINDUCTOR_DYNAMIC_SCALE_RBLOCK", "1") == "1"
|
119 |
+
|
120 |
+
# this forces fusion for int_mm with mul. Needed when you want to avoid realizing the int32
|
121 |
+
# but the mul gets fused with other pointwise ops instead.
|
122 |
+
force_fuse_int_mm_with_mul = False
|
123 |
+
|
124 |
+
# for pattern torch.mm(a, b.to(dtype)) with cuda tensors,
|
125 |
+
# enable torch._inductor.kernel.mm.tuned_mixed_mm fused kernel.
|
126 |
+
# Autotune will compare perf with normal cast->then->mm option
|
127 |
+
use_mixed_mm = False
|
128 |
+
|
129 |
+
# for pattern torch.mm(a, b.to(dtype)) with cuda tensors, always use
|
130 |
+
# torch._inductor.kernel.mm.tuned_mixed_mm's fused kernel.
|
131 |
+
# Autotune will not compare with normal cast->then->mm option.
|
132 |
+
# (if force_mixed_mm is true, the use_mixed_mm flag will be ignored)
|
133 |
+
force_mixed_mm = False
|
134 |
+
|
135 |
+
# enable reordering pass for increasing overlap between compute and communication
|
136 |
+
reorder_for_compute_comm_overlap = False
|
137 |
+
|
138 |
+
# passes (in execution order) for increasing overlap between compute and communication
|
139 |
+
# for built-in passes, use string name; for user-defined passes, pass in the function handle
|
140 |
+
reorder_for_compute_comm_overlap_passes = [
|
141 |
+
"reorder_compute_for_overlap",
|
142 |
+
"sink_waits",
|
143 |
+
"raise_comms",
|
144 |
+
]
|
145 |
+
|
146 |
+
# runtime estimation function for ops
|
147 |
+
# for built-in estimation function, pass in "default"; for user-defined estimation function, pass in the function handle
|
148 |
+
estimate_op_runtime = "default"
|
149 |
+
|
150 |
+
# unit: GB/s, uni-directional P2P bandwidth per card
|
151 |
+
# default value is NVLink
|
152 |
+
intra_node_bw = 300
|
153 |
+
|
154 |
+
# unit: GB/s, uni-directional P2P bandwidth per node
|
155 |
+
# default value is InfiniBand
|
156 |
+
inter_node_bw = 25
|
157 |
+
|
158 |
+
# enable slow autotuning passes to select algorithms
|
159 |
+
max_autotune = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE") == "1"
|
160 |
+
|
161 |
+
# enable slow autotuning passes to select pointwise/reductions algorithms
|
162 |
+
max_autotune_pointwise = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_POINTWISE") == "1"
|
163 |
+
|
164 |
+
# enable slow autotuning passes to select gemm algorithms
|
165 |
+
max_autotune_gemm = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_GEMM") == "1"
|
166 |
+
|
167 |
+
# Specify candidate backends for gemm autotune.
|
168 |
+
# Possible choices are combinations of: ATen, Triton, CUTLASS.
|
169 |
+
# ATen: default Pytorch ATen kernels.
|
170 |
+
# Triton: Triton templates defined in torch inductor.
|
171 |
+
# CUTLASS: Cutlass templates and kernels.
|
172 |
+
max_autotune_gemm_backends = os.environ.get(
|
173 |
+
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS", "ATEN,TRITON"
|
174 |
+
).upper()
|
175 |
+
|
176 |
+
# the value used as a fallback for the unbacked SymInts
|
177 |
+
# that can appear in the input shapes (e.g., in autotuning)
|
178 |
+
unbacked_symint_fallback = 8192
|
179 |
+
|
180 |
+
# enable searching global and local cache regardless of `max_autotune`
|
181 |
+
search_autotune_cache = os.environ.get("TORCHINDUCTOR_SEARCH_AUTOTUNE_CACHE") == "1"
|
182 |
+
|
183 |
+
save_args = os.environ.get("TORCHINDUCTOR_SAVE_ARGS") == "1"
|
184 |
+
|
185 |
+
# We will disable creating subprocess for autotuning if this is False
|
186 |
+
autotune_in_subproc = os.environ.get("TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC") == "1"
|
187 |
+
|
188 |
+
# If autotuning in subprocess, whether to use multiple devices
|
189 |
+
autotune_multi_device = os.environ.get("TORCHINDUCTOR_AUTOTUNE_MULTI_DEVICE") == "1"
|
190 |
+
|
191 |
+
coordinate_descent_tuning = (
|
192 |
+
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_TUNING") == "1"
|
193 |
+
)
|
194 |
+
coordinate_descent_check_all_directions = (
|
195 |
+
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_CHECK_ALL_DIRECTIONS") == "1"
|
196 |
+
)
|
197 |
+
coordinate_descent_search_radius = int(
|
198 |
+
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_RADIUS", "1")
|
199 |
+
)
|
200 |
+
|
201 |
+
layout_optimization = os.environ.get("TORCHINDUCTOR_LAYOUT_OPTIMIZATION", "1") == "1"
|
202 |
+
|
203 |
+
|
204 |
+
force_layout_optimization = os.environ.get("TORCHINDUCTOR_FORCE_LAYOUT_OPT", "0") == "1"
|
205 |
+
|
206 |
+
|
207 |
+
# Whether to keep the output strides the same as eager after layout optimization.
|
208 |
+
keep_output_stride = os.environ.get("TORCHINDUCTOR_KEEP_OUTPUT_STRIDE", "1") == "1"
|
209 |
+
|
210 |
+
# Enabling this will let compiler print warning messages if a generated triton
|
211 |
+
# kernel has inputs with mixed layouts. This is helpful for perf debugging
|
212 |
+
# since kernel with mixed layout inputs may run much slower then one whose inputs
|
213 |
+
# have uniform layouts.
|
214 |
+
warn_mix_layout = os.environ.get("TORCHINDUCTOR_WARN_MIX_LAYOUT") == "1"
|
215 |
+
|
216 |
+
# control store vs recompute heuristic
|
217 |
+
# For fanouts, rematerialization can lead to exponential blowup. So, have
|
218 |
+
# smaller threshold
|
219 |
+
realize_reads_threshold = 4
|
220 |
+
realize_bytes_threshold = 2000
|
221 |
+
|
222 |
+
# Threshold to prevent excessive accumulation of ops in one buffer during lowering
|
223 |
+
realize_acc_reads_threshold = 8
|
224 |
+
|
225 |
+
# fallback to eager for random/dropout, this is slow but useful for debugging
|
226 |
+
fallback_random = False
|
227 |
+
|
228 |
+
# automatically create fallbacks when encountering an unhandled op
|
229 |
+
implicit_fallbacks = True
|
230 |
+
|
231 |
+
# fuse even in cases without common reads
|
232 |
+
aggressive_fusion = False
|
233 |
+
|
234 |
+
# For each fused kernel in the wrapper, comment with the nodes that get fused.
|
235 |
+
# Useful for debugging fusion.
|
236 |
+
debug_fusion = os.environ.get("TORCHINDUCTOR_DEBUG_FUSION") == "1"
|
237 |
+
benchmark_fusion = os.environ.get("TORCHINDUCTOR_BENCHMARK_FUSION") == "1"
|
238 |
+
enabled_metric_tables = os.environ.get("TORCHINDUCTOR_ENABLED_METRIC_TABLES", "")
|
239 |
+
|
240 |
+
# how many nodes to allow into a single fusion
|
241 |
+
max_fusion_size = 64
|
242 |
+
|
243 |
+
# max number of inputs to generate cat as a pointwise op with masked laods
|
244 |
+
max_pointwise_cat_inputs = 4
|
245 |
+
|
246 |
+
# replace small reductions with pointwise, disable with `= 1`
|
247 |
+
unroll_reductions_threshold = 8
|
248 |
+
|
249 |
+
# Add extra comments to output code (causes compile cache misses)
|
250 |
+
comment_origin = False
|
251 |
+
|
252 |
+
# Convert 1x1 convs into matmuls
|
253 |
+
conv_1x1_as_mm = False
|
254 |
+
|
255 |
+
# Enable split reductions for better utilization when the dimension
|
256 |
+
# being reduced over is large (by splitting it)
|
257 |
+
split_reductions = True
|
258 |
+
|
259 |
+
benchmark_kernel = os.environ.get("TORCHINDUCTOR_BENCHMARK_KERNEL", "0") == "1"
|
260 |
+
|
261 |
+
# Enable constant and index_expr folding
|
262 |
+
constant_and_index_propagation = True
|
263 |
+
|
264 |
+
# we always add constants into graph.constants without
|
265 |
+
# performing any constant-inlining optimization
|
266 |
+
always_keep_tensor_constants = False
|
267 |
+
|
268 |
+
# assert that indirect indexing does not read / write out of bounds
|
269 |
+
assert_indirect_indexing = True
|
270 |
+
|
271 |
+
|
272 |
+
def is_fbcode():
|
273 |
+
return not hasattr(torch.version, "git_version")
|
274 |
+
|
275 |
+
|
276 |
+
# constant folding on the joint graph
|
277 |
+
joint_graph_constant_folding = True
|
278 |
+
|
279 |
+
# Enable indirect_indexing asserts for decompositions and lowerings
|
280 |
+
debug_index_asserts = False
|
281 |
+
|
282 |
+
# warnings intended for PyTorch developers, disable for point releases
|
283 |
+
is_nightly_or_source = "dev" in torch.__version__ or "git" in torch.__version__
|
284 |
+
developer_warnings = is_fbcode() or is_nightly_or_source
|
285 |
+
|
286 |
+
# The multiprocessing start method to use for inductor workers in the codecache.
|
287 |
+
# TODO: fork is not safe in a multithreaded environment, we should evaluate changing
|
288 |
+
# the default to spawn.
|
289 |
+
worker_start_method = "fork"
|
290 |
+
|
291 |
+
|
292 |
+
def decide_compile_threads():
|
293 |
+
"""
|
294 |
+
Here are the precedence to decide compile_threads
|
295 |
+
1. User can override it by TORCHINDUCTOR_COMPILE_THREADS. One may want to disable async compiling by
|
296 |
+
setting this to 1 to make pdb happy.
|
297 |
+
2. Set to 1 if it's win32 platform or it's a fbcode build
|
298 |
+
3. decide by the number of CPU cores
|
299 |
+
"""
|
300 |
+
if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ:
|
301 |
+
return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"])
|
302 |
+
elif sys.platform == "win32" or is_fbcode():
|
303 |
+
return 1
|
304 |
+
else:
|
305 |
+
cpu_count = (
|
306 |
+
len(os.sched_getaffinity(0))
|
307 |
+
if hasattr(os, "sched_getaffinity")
|
308 |
+
else os.cpu_count()
|
309 |
+
)
|
310 |
+
assert cpu_count
|
311 |
+
return min(32, cpu_count)
|
312 |
+
|
313 |
+
|
314 |
+
compile_threads = decide_compile_threads()
|
315 |
+
|
316 |
+
# gemm autotuning global cache dir
|
317 |
+
if is_fbcode():
|
318 |
+
from libfb.py import parutil
|
319 |
+
|
320 |
+
try:
|
321 |
+
if __package__:
|
322 |
+
global_cache_dir = parutil.get_dir_path(
|
323 |
+
os.path.join(__package__.replace(".", os.sep), "fb/cache")
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
global_cache_dir = parutil.get_dir_path("fb/cache")
|
327 |
+
except ValueError:
|
328 |
+
global_cache_dir = None
|
329 |
+
else:
|
330 |
+
global_cache_dir = None
|
331 |
+
|
332 |
+
# If kernel is fused, the name is generated from the origin node op names
|
333 |
+
# for larger kernels limit this
|
334 |
+
kernel_name_max_ops = 10
|
335 |
+
|
336 |
+
# Pad input tensors of matmul/bmm/addmm to leverage Tensor Cores in NVIDIA GPUs
|
337 |
+
shape_padding = os.environ.get("TORCHINDUCTOR_SHAPE_PADDING", "1") == "1"
|
338 |
+
|
339 |
+
# Fx-based linear/matmul/bmm + permute/transpose vertical fusion
|
340 |
+
permute_fusion = os.environ.get("TORCHINDUCTOR_PERMUTE_FUSION", "0") == "1"
|
341 |
+
|
342 |
+
# Mark the wrapper call in PyTorch profiler
|
343 |
+
profiler_mark_wrapper_call = False
|
344 |
+
|
345 |
+
# Generate hook calls to torch._inductor.hooks.run_intermediate_hooks for
|
346 |
+
# every intermediate for which we can correlate it with an intermediate
|
347 |
+
# from the original FX graph
|
348 |
+
generate_intermediate_hooks = False
|
349 |
+
|
350 |
+
# Populate traceback field on IRNode; good for debugging why origin_node is
|
351 |
+
# not populated, or finding out where an IRNode was constructed
|
352 |
+
debug_ir_traceback = False
|
353 |
+
|
354 |
+
# used for debugging to make sure config is properly set
|
355 |
+
_raise_error_for_testing = False
|
356 |
+
|
357 |
+
_profile_var = os.environ.get("TORCHINDUCTOR_PROFILE", "")
|
358 |
+
profile_bandwidth = _profile_var != ""
|
359 |
+
profile_bandwidth_regex = "" if _profile_var == "1" else _profile_var
|
360 |
+
# Specify a file where we print out the profiling results.
|
361 |
+
# None means we do not dump results to a file.
|
362 |
+
profile_bandwidth_output = os.environ.get("TORCHINDUCTOR_PROFILE_OUTPUT", None)
|
363 |
+
|
364 |
+
# TODO: remove later
|
365 |
+
disable_cpp_codegen = False
|
366 |
+
|
367 |
+
|
368 |
+
# Freezing will attempt to inline weights as constants in optimization
|
369 |
+
# and run constant folding and other optimizations on them. After freezing, weights
|
370 |
+
# can no longer be updated.
|
371 |
+
freezing: bool = os.environ.get("TORCHINDUCTOR_FREEZING", "0") == "1"
|
372 |
+
|
373 |
+
# Make freezing invalidate the eager Parameters of nn modules, to avoid memory overhead
|
374 |
+
# of potentially keeping multiple copies of weights.
|
375 |
+
freezing_discard_parameters: bool = False
|
376 |
+
|
377 |
+
|
378 |
+
# config specific to codegen/cpp.py
|
379 |
+
class cpp:
|
380 |
+
# set to torch.get_num_threads()
|
381 |
+
threads = -1
|
382 |
+
|
383 |
+
# Do not generate loops when the condition doesn't hold, like:
|
384 |
+
# for(long i0=4096; i0<4096; i0+=1)
|
385 |
+
no_redundant_loops = True
|
386 |
+
|
387 |
+
# Assume number of threads is dynamic, don't specialize thread number.
|
388 |
+
# Kernels don't recompile on thread number changes with this flag on.
|
389 |
+
# For single-threaded workload, turning it on would incur a slight
|
390 |
+
# performance degradation.
|
391 |
+
dynamic_threads = False
|
392 |
+
|
393 |
+
simdlen = None
|
394 |
+
min_chunk_size = 4096
|
395 |
+
cxx = (
|
396 |
+
None, # download gcc12 from conda-forge if conda is installed
|
397 |
+
# "g++-12",
|
398 |
+
# "g++-11",
|
399 |
+
# "g++-10",
|
400 |
+
# "clang++",
|
401 |
+
os.environ.get("CXX", "g++"),
|
402 |
+
# "g++.par",
|
403 |
+
)
|
404 |
+
# Allow kernel performance profiling via PyTorch profiler
|
405 |
+
enable_kernel_profile = False
|
406 |
+
|
407 |
+
# enable weight prepacking to get a better performance; may lead to large memory footprint
|
408 |
+
weight_prepack = True
|
409 |
+
|
410 |
+
# Inject a bug into our relu implementation; useful for testing our repro
|
411 |
+
# extraction and minification functionality.
|
412 |
+
# Valid values: "compile_error", "runtime_error", "accuracy"
|
413 |
+
inject_relu_bug_TESTING_ONLY = None
|
414 |
+
inject_log1p_bug_TESTING_ONLY = None
|
415 |
+
|
416 |
+
# If None, autodetect whether or not AVX512/AVX2 can be used. Otherwise,
|
417 |
+
# force usage as specified, without testing.
|
418 |
+
vec_isa_ok = None
|
419 |
+
|
420 |
+
# similar to config.triton.descriptive_names
|
421 |
+
descriptive_names = "original_aten"
|
422 |
+
|
423 |
+
# how many nodes to allow into a single horizontal fusion
|
424 |
+
max_horizontal_fusion_size = 16
|
425 |
+
|
426 |
+
# Make scatter_reduce fallback when reduce is sum to avoid performance regression
|
427 |
+
# using atomic_add.
|
428 |
+
fallback_scatter_reduce_sum = True
|
429 |
+
|
430 |
+
# Use funsafe-math-optimizations when compiling
|
431 |
+
enable_unsafe_math_opt_flag = False
|
432 |
+
|
433 |
+
|
434 |
+
# config specific to codegen/triton.py
|
435 |
+
class triton:
|
436 |
+
# Use cudagraphs on output code
|
437 |
+
cudagraphs = False
|
438 |
+
|
439 |
+
# Use cudagraph trees for memory pooling if `cudagraphs` is True
|
440 |
+
cudagraph_trees = True
|
441 |
+
|
442 |
+
# assertions not on the fast path, steady state
|
443 |
+
slow_path_cudagraph_asserts = True
|
444 |
+
|
445 |
+
# TODO - need to debug why this prevents cleanup
|
446 |
+
cudagraph_trees_history_recording = False
|
447 |
+
|
448 |
+
# assertions on the fast path
|
449 |
+
fast_path_cudagraph_asserts = False
|
450 |
+
|
451 |
+
# skip warmup for cudagraph trees
|
452 |
+
skip_cudagraph_warmup = False
|
453 |
+
|
454 |
+
# Synchronize before and after every compiled graph.
|
455 |
+
debug_sync_graph = False
|
456 |
+
|
457 |
+
# Synchronize after every kernel launch, to help pinpoint bugs
|
458 |
+
debug_sync_kernel = False
|
459 |
+
|
460 |
+
# Always load full blocks (rather than broadcasting inside the block)
|
461 |
+
dense_indexing = False
|
462 |
+
|
463 |
+
# limit tiling dimensions
|
464 |
+
max_tiles = 2
|
465 |
+
|
466 |
+
# use triton.autotune for pointwise ops with complex layouts
|
467 |
+
# this should only be disabled for debugging/testing
|
468 |
+
autotune_pointwise = True
|
469 |
+
|
470 |
+
# max autotune gemm with cublasLt
|
471 |
+
autotune_cublasLt = True
|
472 |
+
|
473 |
+
# should we stop a fusion to allow better tiling?
|
474 |
+
tiling_prevents_pointwise_fusion = True
|
475 |
+
tiling_prevents_reduction_fusion = True
|
476 |
+
|
477 |
+
# should we give different names to kernels
|
478 |
+
# Note: This is orthogonal to descriptive_names - this is deciding whether
|
479 |
+
# our triton kernel names should all be `triton_` (to maximize caching) or
|
480 |
+
# whether they should be unique.
|
481 |
+
unique_kernel_names = os.environ.get("TORCHINDUCTOR_UNIQUE_KERNEL_NAMES") == "1"
|
482 |
+
|
483 |
+
# should we put op names in kernel names
|
484 |
+
# False: No special names (just triton__1, triton__2, etc.)
|
485 |
+
# "torch": Maps to the fx op in the Dynamo graph (module name, method name, etc.)
|
486 |
+
# "original_aten": Maps to the highest-level aten op (i.e. pre-decompositions)
|
487 |
+
# "inductor_node": Maps to the node name in the FX graph passed to Inductor
|
488 |
+
descriptive_names = "original_aten"
|
489 |
+
|
490 |
+
# use alternate codegen for smaller reductions
|
491 |
+
persistent_reductions = (
|
492 |
+
os.environ.get("TORCHINDUCTOR_PERSISTENT_REDUCTIONS", "1") == "1"
|
493 |
+
)
|
494 |
+
|
495 |
+
# hint to Triton when arguments are divisible by 16
|
496 |
+
divisible_by_16 = True
|
497 |
+
|
498 |
+
# theses are not enforced, but they are used by asserts in triton_heuristics.py
|
499 |
+
# NOTE: mobilevit_s in timm_models required X to be set to the higher value 2048
|
500 |
+
max_block = {"X": 2048, "Y": 1024, "Z": 1024}
|
501 |
+
|
502 |
+
# Store the generated cubin files for cpp wrapper code to load
|
503 |
+
store_cubin = False
|
504 |
+
|
505 |
+
# the max number of spills we allow for the configs we benchmark.
|
506 |
+
# Setting this to 0 means we skip a config if it spills even a single
|
507 |
+
# register.
|
508 |
+
# Setting it to a larger value allows a config spilling a small amount
|
509 |
+
# of registers being benchmarked.
|
510 |
+
#
|
511 |
+
# NOTE: triton will always report >0 register spills for kernels using sin/cos.
|
512 |
+
# (check this issue https://github.com/openai/triton/issues/1756 )
|
513 |
+
# So far we see a fixed 8 spilled registers for kernels using sin/cos.
|
514 |
+
# Raise the threshold to 16 to be safe.
|
515 |
+
# We should revisit this once we understand more of the source of register spills.
|
516 |
+
spill_threshold: int = 16
|
517 |
+
|
518 |
+
# Inject a bug into our relu implementation; useful for testing our repro
|
519 |
+
# extraction and minification functionality.
|
520 |
+
# Valid values: "compile_error", "runtime_error", "accuracy"
|
521 |
+
inject_relu_bug_TESTING_ONLY = None
|
522 |
+
|
523 |
+
|
524 |
+
class aot_inductor:
|
525 |
+
# AOTInductor output path
|
526 |
+
# If an absolute path is specified, the generated lib files will be stored under the directory;
|
527 |
+
# If a relative path is specified, it will be used as a subdirectory under the default caching path;
|
528 |
+
# If not specified, a temp directory will be created under the default caching path.
|
529 |
+
# If the specified path contains something like "model.so", the sub-string will be used
|
530 |
+
# to name the generated library.
|
531 |
+
output_path = ""
|
532 |
+
|
533 |
+
debug_compile = os.environ.get("AOT_INDUCTOR_DEBUG_COMPILE", "0") == "1"
|
534 |
+
|
535 |
+
# Wether to codegen abi compatible model.so
|
536 |
+
abi_compatible = is_fbcode()
|
537 |
+
|
538 |
+
# Serialized tree spec for flattening inputs
|
539 |
+
serialized_in_spec = ""
|
540 |
+
|
541 |
+
# Serialized tree spec for flattening outputs
|
542 |
+
serialized_out_spec = ""
|
543 |
+
|
544 |
+
|
545 |
+
class cuda:
|
546 |
+
# CUDA arch to use for CUDA template kernel compilation.
|
547 |
+
# e.g. "70", "75", "80", "90", etc.
|
548 |
+
# When arch is None, Inductor uses torch.cuda.get_device_capability(0).
|
549 |
+
arch = None
|
550 |
+
|
551 |
+
# CUDA version to use for CUDA template kernel compilation.
|
552 |
+
# e.g. "11.4", "12.1", etc.
|
553 |
+
# When version is None, Inductor uses torch.version.cuda.
|
554 |
+
version = None
|
555 |
+
|
556 |
+
# Optimization level for the host compiler.
|
557 |
+
compile_opt_level = "-O1"
|
558 |
+
|
559 |
+
# Whether to enable device LTO (link-time-optimization).
|
560 |
+
enable_cuda_lto = False
|
561 |
+
|
562 |
+
# Whether to keep intermediate files dring compilation.
|
563 |
+
enable_ptxas_info = False
|
564 |
+
|
565 |
+
# Whether to enable debug info, e.g. line number, cutlass debug info.
|
566 |
+
enable_debug_info = False
|
567 |
+
|
568 |
+
# Whether to use fast math.
|
569 |
+
use_fast_math = False
|
570 |
+
|
571 |
+
# Path to the CUTLASS repo root directory.
|
572 |
+
# The default path only works under PyTorch local development environment.
|
573 |
+
cutlass_dir = os.environ.get(
|
574 |
+
"TORCHINDUCTOR_CUTLASS_DIR",
|
575 |
+
os.path.abspath(
|
576 |
+
os.path.join(os.path.dirname(torch.__file__), "../third_party/cutlass/")
|
577 |
+
),
|
578 |
+
)
|
579 |
+
|
580 |
+
# Configures the maximum number of CUTLASS configs to profile in max_autotune.
|
581 |
+
# By default it's None, so that all CUTLASS configs are tuned.
|
582 |
+
# This is mainly used to reduce test time in CI.
|
583 |
+
cutlass_max_profiling_configs = None
|
584 |
+
|
585 |
+
# Path to CUDA NVCC.
|
586 |
+
# NVCC search order:
|
587 |
+
# 1) cuda_cxx set in this config
|
588 |
+
# 2)CUDACXX environment variable
|
589 |
+
# 3)CUDA_HOME environment variable
|
590 |
+
# 4) default system search PATH.
|
591 |
+
cuda_cxx = None
|
592 |
+
|
593 |
+
# If set to True, it will ensure that only GEMM ops capable of
|
594 |
+
# epilogue fusion via CUTLASS Epilogue Visitor Trees ( EVT )
|
595 |
+
# are enabled for the CUTLASS backend.
|
596 |
+
cutlass_only_evt_capable_ops: bool = False
|
597 |
+
|
598 |
+
|
599 |
+
# create a directory containing lots of debug information
|
600 |
+
class trace:
|
601 |
+
# master switch for all debugging flags below
|
602 |
+
enabled = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
603 |
+
|
604 |
+
# Save debug information to a temporary directory
|
605 |
+
# If not specified, a temp directory will be created by system
|
606 |
+
debug_dir = None
|
607 |
+
|
608 |
+
# Save python logger call >=logging.DEBUG
|
609 |
+
debug_log = False
|
610 |
+
|
611 |
+
# Save python logger call >=logging.INFO
|
612 |
+
info_log = False
|
613 |
+
|
614 |
+
# Save input FX graph (post decomps, pre optimization)
|
615 |
+
fx_graph = True
|
616 |
+
|
617 |
+
# Save FX graph after transformations
|
618 |
+
fx_graph_transformed = True
|
619 |
+
|
620 |
+
# Save TorchInductor IR before fusion pass
|
621 |
+
ir_pre_fusion = True
|
622 |
+
|
623 |
+
# Save TorchInductor IR after fusion pass
|
624 |
+
ir_post_fusion = True
|
625 |
+
|
626 |
+
# Copy generated code to trace dir
|
627 |
+
output_code = True
|
628 |
+
|
629 |
+
# SVG figure showing post-fusion graph
|
630 |
+
graph_diagram = os.environ.get("INDUCTOR_POST_FUSION_SVG", "0") == "1"
|
631 |
+
|
632 |
+
# SVG figure showing fx with fusion
|
633 |
+
draw_orig_fx_graph = os.environ.get("INDUCTOR_ORIG_FX_SVG", "0") == "1"
|
634 |
+
|
635 |
+
# We draw our fx graphs with the "record" shape attribute by default.
|
636 |
+
# Sometimes, when the graph is very complex, we may hit dot errors like below:
|
637 |
+
# "flat edge between adjacent nodes one of which has a record shape -
|
638 |
+
# replace records with HTML-like labels"
|
639 |
+
# and thus fail to generate a graph. So, let's give the user an option
|
640 |
+
# to specify the shape attribute for the dot graph. For example, passing
|
641 |
+
# INDUCTOR_DOT_GRAPH_SHAPE_SVG = "none" would let us generate HTML-like lables
|
642 |
+
# to workaround the above failure.
|
643 |
+
dot_graph_shape = os.environ.get("INDUCTOR_DOT_GRAPH_SHAPE_SVG", None)
|
644 |
+
|
645 |
+
# Store cProfile (see snakeviz to view)
|
646 |
+
compile_profile = False
|
647 |
+
|
648 |
+
# Upload the .tar.gz file
|
649 |
+
# Needs to be overriden based on specific environment needs
|
650 |
+
upload_tar = None
|
651 |
+
|
652 |
+
|
653 |
+
_save_config_ignore = {
|
654 |
+
# workaround: "Can't pickle <function ...>"
|
655 |
+
"trace.upload_tar",
|
656 |
+
}
|
657 |
+
|
658 |
+
if TYPE_CHECKING:
|
659 |
+
from torch.utils._config_typing import * # noqa: F401, F403
|
660 |
+
|
661 |
+
from torch.utils._config_module import install_config_module
|
662 |
+
|
663 |
+
# adds patch, save_config, etc
|
664 |
+
install_config_module(sys.modules[__name__])
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/constant_folding.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
from typing import Any, Callable, Dict, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.utils._pytree as pytree
|
6 |
+
|
7 |
+
aten = torch.ops.aten
|
8 |
+
|
9 |
+
|
10 |
+
def replace_node_with_constant(gm, node, constant):
|
11 |
+
g = gm.graph
|
12 |
+
|
13 |
+
if not hasattr(gm, "_frozen_param_count"):
|
14 |
+
gm._frozen_param_count = 0
|
15 |
+
|
16 |
+
i = gm._frozen_param_count
|
17 |
+
|
18 |
+
while True:
|
19 |
+
qualname = f"_frozen_param{i}"
|
20 |
+
if not hasattr(gm, qualname):
|
21 |
+
break
|
22 |
+
i += 1
|
23 |
+
|
24 |
+
gm._frozen_param_count = i + 1
|
25 |
+
|
26 |
+
with g.inserting_before(node):
|
27 |
+
new_input_node = g.create_node("get_attr", qualname, (), {})
|
28 |
+
node.replace_all_uses_with(new_input_node)
|
29 |
+
new_input_node.meta.update(node.meta)
|
30 |
+
g.erase_node(node)
|
31 |
+
|
32 |
+
# needed to suppress `does not reference an nn.Module, nn.Parameter, or buffer` warning
|
33 |
+
gm.register_buffer(qualname, constant)
|
34 |
+
setattr(gm, qualname, constant)
|
35 |
+
|
36 |
+
|
37 |
+
class ConstantFolder(torch.fx.Interpreter):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
gm,
|
41 |
+
skip_constructors=False,
|
42 |
+
):
|
43 |
+
super().__init__(gm)
|
44 |
+
self.node_replacements: Dict[torch.fx.Node, Any] = {}
|
45 |
+
self.replaced_uses: Dict[torch.fx.Node, int] = collections.Counter()
|
46 |
+
self.unknown_value = object()
|
47 |
+
self.skip_constructors: bool = skip_constructors
|
48 |
+
|
49 |
+
# overwrite this to deallocate env values if their only remaining use
|
50 |
+
# is the output
|
51 |
+
self.user_to_last_uses = self.node_to_last_non_output_use()
|
52 |
+
|
53 |
+
def is_impure(self, node: torch.fx.node.Node):
|
54 |
+
if node.target in [
|
55 |
+
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
56 |
+
torch.ops.quantized_decomposed.dequantize_per_tensor.default,
|
57 |
+
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
58 |
+
]:
|
59 |
+
# For the pattern fp32_weight -> q -> dq
|
60 |
+
# We only folding fp32_weight -> q
|
61 |
+
# int8_weight and leave dq in graph to be fused
|
62 |
+
return True
|
63 |
+
return False
|
64 |
+
|
65 |
+
def node_to_last_non_output_use(self):
|
66 |
+
last_non_output_use = collections.defaultdict(list)
|
67 |
+
seen_uses = set()
|
68 |
+
output_node = next(iter(reversed(self.module.graph.nodes)))
|
69 |
+
|
70 |
+
for node in reversed(self.module.graph.nodes):
|
71 |
+
if node.target == "output":
|
72 |
+
continue
|
73 |
+
|
74 |
+
def add_use(inp):
|
75 |
+
if inp in seen_uses:
|
76 |
+
return
|
77 |
+
|
78 |
+
seen_uses.add(inp)
|
79 |
+
last_non_output_use[node].append(inp)
|
80 |
+
|
81 |
+
pytree.tree_map_only(torch.fx.Node, add_use, (node.args, node.kwargs))
|
82 |
+
|
83 |
+
# if this node is only used in output, we want to gc it right away
|
84 |
+
if len(node.users) == 1 and output_node in node.users:
|
85 |
+
last_non_output_use[node].append(node)
|
86 |
+
|
87 |
+
return last_non_output_use
|
88 |
+
|
89 |
+
def run_node(self, node):
|
90 |
+
if node.target == "output":
|
91 |
+
# because we remove nodes from env on last non output use,
|
92 |
+
# re-define them now or we'll get error in interpreter
|
93 |
+
def set_env(arg):
|
94 |
+
self.env[arg] = self.unknown_value
|
95 |
+
|
96 |
+
pytree.tree_map_only(torch.fx.Node, set_env, node.args)
|
97 |
+
return super().run_node(node)
|
98 |
+
|
99 |
+
args, kwargs = self.fetch_args_kwargs_from_env(node)
|
100 |
+
flattened_inputs = pytree.arg_tree_leaves(*args, **kwargs)
|
101 |
+
|
102 |
+
if self.unknown_value in flattened_inputs:
|
103 |
+
return self.unknown_value
|
104 |
+
|
105 |
+
# TODO - fix errors with this
|
106 |
+
if (
|
107 |
+
node.op == "call_function"
|
108 |
+
and node.target == aten._efficientzerotensor.default
|
109 |
+
):
|
110 |
+
return self.unknown_value
|
111 |
+
|
112 |
+
# skip constructors, since inductor generates optimal code for them already
|
113 |
+
# and turning into tensor would result in an additional global memory read
|
114 |
+
# TODO - more complicated strategy
|
115 |
+
if (
|
116 |
+
self.skip_constructors
|
117 |
+
and node.op != "get_attr"
|
118 |
+
and not any(isinstance(e, torch.Tensor) for e in flattened_inputs)
|
119 |
+
):
|
120 |
+
return self.unknown_value
|
121 |
+
|
122 |
+
# All mutations should either be removed or on inputs which we did not make constant
|
123 |
+
if (
|
124 |
+
isinstance(node.target, torch._ops.OpOverload)
|
125 |
+
and torch.Tag.nondeterministic_seeded in node.target.tags
|
126 |
+
):
|
127 |
+
return self.unknown_value
|
128 |
+
|
129 |
+
out = super().run_node(node)
|
130 |
+
|
131 |
+
if node.op != "get_attr" and isinstance(out, torch.Tensor):
|
132 |
+
if not self.insertable_tensor_check(out):
|
133 |
+
return out
|
134 |
+
|
135 |
+
if self.is_impure(node):
|
136 |
+
return self.unknown_value
|
137 |
+
|
138 |
+
self.add_node_replacement(node, out)
|
139 |
+
|
140 |
+
flattened_node_inps = pytree.arg_tree_leaves(*node.args, **node.kwargs)
|
141 |
+
|
142 |
+
for n in flattened_node_inps:
|
143 |
+
if not isinstance(n, torch.fx.Node):
|
144 |
+
continue
|
145 |
+
|
146 |
+
self.replaced_uses[n] += 1
|
147 |
+
|
148 |
+
for to_delete in self.user_to_last_uses.get(node, []):
|
149 |
+
if self.replaced_uses[to_delete] == len(to_delete.users):
|
150 |
+
self.node_replacements.pop(to_delete, None)
|
151 |
+
|
152 |
+
return out
|
153 |
+
|
154 |
+
def insertable_tensor_check(self, tensor: torch.Tensor) -> bool:
|
155 |
+
return True
|
156 |
+
|
157 |
+
def add_node_replacement(self, node: torch.fx.Node, tensor: torch.Tensor) -> None:
|
158 |
+
self.node_replacements[node] = tensor
|
159 |
+
|
160 |
+
def run(self):
|
161 |
+
env = {}
|
162 |
+
for n in self.module.graph.nodes:
|
163 |
+
if n.op == "placeholder":
|
164 |
+
env[n] = self.unknown_value
|
165 |
+
return super().run(initial_env=env)
|
166 |
+
|
167 |
+
|
168 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
169 |
+
def constant_fold(gm, constraint_fn: Optional[Callable[[torch.fx.Node], bool]] = None):
|
170 |
+
cf = ConstantFolder(gm, skip_constructors=True)
|
171 |
+
cf.run()
|
172 |
+
|
173 |
+
for node, constant in cf.node_replacements.items():
|
174 |
+
if constraint_fn is not None and not constraint_fn(node):
|
175 |
+
continue
|
176 |
+
replace_node_with_constant(gm, node, constant)
|
177 |
+
|
178 |
+
erased_params = []
|
179 |
+
for node in gm.graph.nodes:
|
180 |
+
if node.op == "get_attr" and len(node.users) == 0:
|
181 |
+
if hasattr(gm, node.target):
|
182 |
+
delattr(gm, node.target)
|
183 |
+
erased_params.append(node)
|
184 |
+
|
185 |
+
for node in erased_params:
|
186 |
+
gm.graph.erase_node(node)
|
187 |
+
|
188 |
+
gm.graph.eliminate_dead_code()
|
189 |
+
gm.graph.lint()
|
190 |
+
gm.recompile()
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/coordinate_descent_tuner.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import itertools
|
3 |
+
import logging
|
4 |
+
from typing import Callable, Optional
|
5 |
+
|
6 |
+
from torch.utils._triton import has_triton
|
7 |
+
from .utils import red_text, triton_config_to_hashable
|
8 |
+
|
9 |
+
if has_triton():
|
10 |
+
import triton
|
11 |
+
else:
|
12 |
+
triton = None
|
13 |
+
|
14 |
+
from . import config as inductor_config
|
15 |
+
|
16 |
+
log = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def get_field(config, name):
|
20 |
+
if name == "num_warps":
|
21 |
+
return config.num_warps
|
22 |
+
elif name == "num_stages":
|
23 |
+
return config.num_stages
|
24 |
+
else:
|
25 |
+
return config.kwargs.get(name, None)
|
26 |
+
|
27 |
+
|
28 |
+
def set_field(config, name, value):
|
29 |
+
if name == "num_warps":
|
30 |
+
config.num_warps = value
|
31 |
+
elif name == "num_stages":
|
32 |
+
config.num_stages = value
|
33 |
+
else:
|
34 |
+
config.kwargs[name] = value
|
35 |
+
|
36 |
+
|
37 |
+
class CoordescTuner:
|
38 |
+
"""
|
39 |
+
The coordinate descent tuner. Tune one field/coordinate at a time.
|
40 |
+
|
41 |
+
TODO will it be necessary to tune multiple fields simultaneously.
|
42 |
+
|
43 |
+
|
44 |
+
TODO: what if both increasing and decreasing a field can improve perf.
|
45 |
+
i.e., there are multiple local optima..
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, is_mm=False, name="unknown", size_hints=None):
|
49 |
+
self.is_mm = is_mm # we will tune num_stages for mm
|
50 |
+
self.cached_benchmark_results = {}
|
51 |
+
self.name = name
|
52 |
+
self.size_hints = size_hints
|
53 |
+
|
54 |
+
def get_xmax(self):
|
55 |
+
xmax = inductor_config.triton.max_block["X"]
|
56 |
+
if self.size_hints and len(self.size_hints) > 0:
|
57 |
+
xmax = min(xmax, self.size_hints[0])
|
58 |
+
return xmax
|
59 |
+
|
60 |
+
def get_ymax(self):
|
61 |
+
ymax = inductor_config.triton.max_block["Y"]
|
62 |
+
if self.size_hints and len(self.size_hints) > 1:
|
63 |
+
ymax = min(ymax, self.size_hints[1])
|
64 |
+
return ymax
|
65 |
+
|
66 |
+
def get_zmax(self):
|
67 |
+
zmax = inductor_config.triton.max_block["Z"]
|
68 |
+
if self.size_hints and len(self.size_hints) > 2:
|
69 |
+
zmax = min(zmax, self.size_hints[2])
|
70 |
+
return zmax
|
71 |
+
|
72 |
+
def get_rmax(self):
|
73 |
+
if self.size_hints and len(self.size_hints) > 0:
|
74 |
+
return self.size_hints[-1] # the last one is for reduction
|
75 |
+
else:
|
76 |
+
# large enough. We should not pick this large RBLOCK anyway
|
77 |
+
return 2**30
|
78 |
+
|
79 |
+
def get_warpsmax(self):
|
80 |
+
# Currently, CUDA has a maximum of 1024 threads, so 32 is the max
|
81 |
+
# number of warps.
|
82 |
+
return 1024 // 32
|
83 |
+
|
84 |
+
def cache_benchmark_result(self, config, timing):
|
85 |
+
self.cached_benchmark_results[triton_config_to_hashable(config)] = timing
|
86 |
+
|
87 |
+
def lookup_in_cache(self, config):
|
88 |
+
return self.cached_benchmark_results.get(triton_config_to_hashable(config))
|
89 |
+
|
90 |
+
def call_func(self, func, config):
|
91 |
+
found = self.lookup_in_cache(config)
|
92 |
+
if found is not None:
|
93 |
+
log.debug(" CACHED")
|
94 |
+
return found
|
95 |
+
timing = func(config)
|
96 |
+
self.cache_benchmark_result(config, timing)
|
97 |
+
return timing
|
98 |
+
|
99 |
+
@property
|
100 |
+
def tunable_fields(self):
|
101 |
+
out = [
|
102 |
+
"XBLOCK",
|
103 |
+
"YBLOCK",
|
104 |
+
"ZBLOCK",
|
105 |
+
# NOTE: we should not tune RBLOCK for persistent reduction.
|
106 |
+
# We rely on the fact that persistent reduction's triton.Config
|
107 |
+
# does not have the RBLOCK field to guarantee that.
|
108 |
+
"RBLOCK",
|
109 |
+
# the following 3 are for mm
|
110 |
+
"BLOCK_M",
|
111 |
+
"BLOCK_N",
|
112 |
+
"BLOCK_K",
|
113 |
+
"num_warps",
|
114 |
+
]
|
115 |
+
if self.is_mm:
|
116 |
+
out.append("num_stages")
|
117 |
+
|
118 |
+
return out
|
119 |
+
|
120 |
+
def value_too_large(self, name, val):
|
121 |
+
if name == "XBLOCK":
|
122 |
+
return val > self.get_xmax()
|
123 |
+
if name == "YBLOCK":
|
124 |
+
return val > self.get_ymax()
|
125 |
+
if name == "ZBLOCK":
|
126 |
+
return val > self.get_zmax()
|
127 |
+
if name == "RBLOCK":
|
128 |
+
return val > self.get_rmax()
|
129 |
+
if name == "num_warps":
|
130 |
+
return val > self.get_warpsmax()
|
131 |
+
|
132 |
+
return False
|
133 |
+
|
134 |
+
def get_neighbour_values(self, name, orig_val, radius=1, include_self=False):
|
135 |
+
"""
|
136 |
+
Get neighbour values in 'radius' steps. The original value is not
|
137 |
+
returned as it's own neighbour.
|
138 |
+
"""
|
139 |
+
assert radius >= 1
|
140 |
+
|
141 |
+
def update(cur_val, inc=True):
|
142 |
+
if name == "num_stages":
|
143 |
+
if inc:
|
144 |
+
return cur_val + 1
|
145 |
+
else:
|
146 |
+
return cur_val - 1
|
147 |
+
else:
|
148 |
+
if inc:
|
149 |
+
return cur_val * 2
|
150 |
+
else:
|
151 |
+
return cur_val // 2
|
152 |
+
|
153 |
+
out = []
|
154 |
+
# increment loop
|
155 |
+
cur_val = orig_val
|
156 |
+
for _ in range(radius):
|
157 |
+
cur_val = update(cur_val, True)
|
158 |
+
if self.value_too_large(name, cur_val):
|
159 |
+
break
|
160 |
+
out.append(cur_val)
|
161 |
+
|
162 |
+
# decrement loop
|
163 |
+
cur_val = orig_val
|
164 |
+
for _ in range(radius):
|
165 |
+
cur_val = update(cur_val, False)
|
166 |
+
if cur_val <= 0:
|
167 |
+
break
|
168 |
+
out.append(cur_val)
|
169 |
+
|
170 |
+
if include_self:
|
171 |
+
out.append(orig_val)
|
172 |
+
return out
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def has_improvement(baseline, test):
|
176 |
+
threshold = 0.001 # 0.1%
|
177 |
+
return test is not None and test < baseline * (1 - threshold)
|
178 |
+
|
179 |
+
def check_all_tuning_directions(
|
180 |
+
self,
|
181 |
+
func: Callable[["triton.Config"], float],
|
182 |
+
best_config,
|
183 |
+
best_timing,
|
184 |
+
):
|
185 |
+
"""
|
186 |
+
Check all directions. We only do this once the regular coordinate
|
187 |
+
descent tuning find no better choices any more.
|
188 |
+
We only have a few tunable fields, so this should be fine.
|
189 |
+
"""
|
190 |
+
candidate_values_list = []
|
191 |
+
effective_fields = []
|
192 |
+
for field in self.tunable_fields:
|
193 |
+
old_value = get_field(best_config, field)
|
194 |
+
if old_value is None:
|
195 |
+
continue
|
196 |
+
candidate_values = self.get_neighbour_values(
|
197 |
+
field,
|
198 |
+
old_value,
|
199 |
+
radius=inductor_config.coordinate_descent_search_radius,
|
200 |
+
include_self=True,
|
201 |
+
)
|
202 |
+
candidate_values_list.append(candidate_values)
|
203 |
+
effective_fields.append(field)
|
204 |
+
|
205 |
+
choices = itertools.product(*candidate_values_list)
|
206 |
+
improved = False
|
207 |
+
for choice in choices:
|
208 |
+
assert len(choice) == len(effective_fields)
|
209 |
+
candidate_config = copy.deepcopy(best_config)
|
210 |
+
for new_val, field in zip(choice, effective_fields):
|
211 |
+
set_field(candidate_config, field, new_val)
|
212 |
+
cmp_res, candidate_timing = self.compare_config(
|
213 |
+
func, candidate_config, best_config, best_timing
|
214 |
+
)
|
215 |
+
if cmp_res:
|
216 |
+
improved = True
|
217 |
+
best_config = candidate_config
|
218 |
+
best_timing = candidate_timing
|
219 |
+
|
220 |
+
return improved, best_config, best_timing
|
221 |
+
|
222 |
+
def compare_config(self, func, candidate_config, best_config, best_timing):
|
223 |
+
"""
|
224 |
+
Check if candidate_config is better than best_config.
|
225 |
+
|
226 |
+
Return a touple of (compare_result, candidate_timing).
|
227 |
+
compare_result is true iff candidate_config is better.
|
228 |
+
"""
|
229 |
+
log.debug("Try config %s", candidate_config)
|
230 |
+
try:
|
231 |
+
candidate_timing = self.call_func(func, candidate_config)
|
232 |
+
except Exception as e:
|
233 |
+
log.debug("Got exception %s", e)
|
234 |
+
return False, float("inf")
|
235 |
+
|
236 |
+
if self.has_improvement(best_timing, candidate_timing):
|
237 |
+
log.debug(
|
238 |
+
"Tune from %s %f -> %s %f",
|
239 |
+
best_config,
|
240 |
+
best_timing,
|
241 |
+
candidate_config,
|
242 |
+
candidate_timing,
|
243 |
+
)
|
244 |
+
|
245 |
+
return True, candidate_timing
|
246 |
+
return False, candidate_timing
|
247 |
+
|
248 |
+
def autotune(
|
249 |
+
self,
|
250 |
+
func: Callable[["triton.Config"], float],
|
251 |
+
baseline_config: "triton.Config",
|
252 |
+
baseline_timing: Optional[float] = None,
|
253 |
+
) -> "triton.Config":
|
254 |
+
if baseline_timing is None:
|
255 |
+
baseline_timing = self.call_func(func, baseline_config)
|
256 |
+
|
257 |
+
log.debug("= Do coordinate descent tuning for %s =", self.name)
|
258 |
+
log.debug(
|
259 |
+
"Baseline Config %s, baseline timing %f", baseline_config, baseline_timing
|
260 |
+
)
|
261 |
+
improved = True
|
262 |
+
best_config = baseline_config
|
263 |
+
best_timing = baseline_timing
|
264 |
+
tunable_fields = self.tunable_fields
|
265 |
+
|
266 |
+
while improved:
|
267 |
+
improved = False
|
268 |
+
|
269 |
+
for name in tunable_fields:
|
270 |
+
cur_val = get_field(best_config, name)
|
271 |
+
# some kernel don't have RBLOCK/YBLOCK/ZBLOCK. So cur_val may be None
|
272 |
+
if cur_val is None:
|
273 |
+
continue
|
274 |
+
|
275 |
+
# It's possible that candidate_values is empty.
|
276 |
+
# E.g., if XBLOCK is 1 initially and size_hint for x is also 1.
|
277 |
+
# We would not try either larger or smaller XBLOCK in this case.
|
278 |
+
candidate_values = self.get_neighbour_values(name, cur_val)
|
279 |
+
|
280 |
+
for next_val in candidate_values:
|
281 |
+
candidate_config = copy.deepcopy(best_config)
|
282 |
+
set_field(candidate_config, name, next_val)
|
283 |
+
|
284 |
+
cmp_res, candidate_timing = self.compare_config(
|
285 |
+
func, candidate_config, best_config, best_timing
|
286 |
+
)
|
287 |
+
if cmp_res:
|
288 |
+
improved = True
|
289 |
+
best_config, best_timing = candidate_config, candidate_timing
|
290 |
+
|
291 |
+
if not improved and inductor_config.coordinate_descent_check_all_directions:
|
292 |
+
old_best_timing = best_timing
|
293 |
+
improved, best_config, best_timing = self.check_all_tuning_directions(
|
294 |
+
func, best_config, best_timing
|
295 |
+
)
|
296 |
+
|
297 |
+
if improved:
|
298 |
+
msg = red_text(
|
299 |
+
"Coordinate descend tuning found improvement of %.3fx by looking in all directions."
|
300 |
+
)
|
301 |
+
log.debug(
|
302 |
+
msg,
|
303 |
+
old_best_timing / best_timing,
|
304 |
+
)
|
305 |
+
|
306 |
+
log.debug(
|
307 |
+
"Improve from %s %f -> %s %f, %.3fx",
|
308 |
+
baseline_config,
|
309 |
+
baseline_timing,
|
310 |
+
best_config,
|
311 |
+
best_timing,
|
312 |
+
baseline_timing / best_timing,
|
313 |
+
)
|
314 |
+
|
315 |
+
return best_config
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py
ADDED
@@ -0,0 +1,2157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
CUDA graph trees are a safety abstraction over CUDAGraphs, similar to make_graph_callables,
|
3 |
+
which share the same memory pool. Sharing a memory pool is an extremely
|
4 |
+
important optimization when chaining multiple CUDA graphs together, as it
|
5 |
+
prevents you from needing to copy intermediate tensors from one graph to the
|
6 |
+
next, and reduces overall memory usage by allowing dead memory from the first
|
7 |
+
pool to be reused in the second.
|
8 |
+
|
9 |
+
The standard graph/make_graph_callables support sharing memory pool, but
|
10 |
+
with a lot of caveats. CUDA graph trees remove these restrictions:
|
11 |
+
|
12 |
+
* Previously, if you recorded graphs A, B, you had to replay A, B in that
|
13 |
+
order. With CUDA graph trees, after replaying A, you can change your
|
14 |
+
mind and record/replay a different graph B'; we will support efficient
|
15 |
+
execution of both A, B and A, B', using only max(mem(A, B), mem(A, B')). In
|
16 |
+
other words: we support arbitrary trees of CUDA graph operations, not just
|
17 |
+
sequences (this is why this feature is called CUDA graph trees.)
|
18 |
+
|
19 |
+
* Previously, if you executed graph A, some non-CUDA graph code, and then
|
20 |
+
graph B, after executing graph B, it was not safe to retain any references
|
21 |
+
to intermediates produced by A. With CUDA graph trees, we track if any
|
22 |
+
outputs of graph A are still live by the time graph B is run, and make
|
23 |
+
sure graph B doesn't clobber there memory when reusing the CUDA graphs
|
24 |
+
pool. You'll get a separate recording of B depending on what tensors
|
25 |
+
stay live or dead.
|
26 |
+
|
27 |
+
CUDA graph trees are flexible enough to be used in Dynamo across graph breaks,
|
28 |
+
which is their primary use case.
|
29 |
+
|
30 |
+
The ability to switch from replay to record is fairly nontrivial: remember that
|
31 |
+
when you replay a CUDA graph, you only replay CUDA operations; no CPU side state
|
32 |
+
is updated. In particular, the CPU-side book-keeping for the allocator is not
|
33 |
+
reconstructed. However, to record a new child CUDA graph, we must restore this
|
34 |
+
book-keeping. This is what checkpoint pool state is used for.
|
35 |
+
"""
|
36 |
+
|
37 |
+
from __future__ import annotations
|
38 |
+
|
39 |
+
import contextlib
|
40 |
+
import dataclasses
|
41 |
+
import functools
|
42 |
+
import gc
|
43 |
+
import itertools
|
44 |
+
import logging
|
45 |
+
import operator
|
46 |
+
import sys
|
47 |
+
import threading
|
48 |
+
import traceback
|
49 |
+
import warnings
|
50 |
+
import weakref
|
51 |
+
from collections import defaultdict
|
52 |
+
|
53 |
+
from enum import auto, Enum
|
54 |
+
from typing import (
|
55 |
+
Any,
|
56 |
+
Callable,
|
57 |
+
cast,
|
58 |
+
Dict,
|
59 |
+
Iterator,
|
60 |
+
List,
|
61 |
+
Optional,
|
62 |
+
Sequence,
|
63 |
+
Set,
|
64 |
+
Tuple,
|
65 |
+
Union,
|
66 |
+
)
|
67 |
+
|
68 |
+
import torch.fx
|
69 |
+
from torch import Tensor
|
70 |
+
from torch._dynamo.mutation_guard import GenerationTracker
|
71 |
+
from torch._dynamo.utils import preserve_rng_state
|
72 |
+
from torch._inductor.compile_fx import (
|
73 |
+
align_inputs_from_check_idxs,
|
74 |
+
copy_misaligned_inputs,
|
75 |
+
get_expanded_dims,
|
76 |
+
get_input_idxs_to_check,
|
77 |
+
index_expanded_dims,
|
78 |
+
remove_unaligned_input_idxs,
|
79 |
+
static_input,
|
80 |
+
)
|
81 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
82 |
+
from torch.storage import UntypedStorage
|
83 |
+
from torch.types import _bool
|
84 |
+
from torch.utils import _pytree as pytree
|
85 |
+
from torch.utils.weak import TensorWeakRef
|
86 |
+
|
87 |
+
StorageWeakRefPointer = int
|
88 |
+
StorageDataPtr = int
|
89 |
+
NBytes = int
|
90 |
+
|
91 |
+
if torch.backends.cuda.is_built():
|
92 |
+
from torch._C import (
|
93 |
+
_cuda_CUDAAllocator_AllocatorState as AllocatorState,
|
94 |
+
_set_cached_tensors_enabled as _set_cached_tensors_enabled,
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
|
98 |
+
class AllocatorState: # type: ignore[no-redef]
|
99 |
+
pass
|
100 |
+
|
101 |
+
def _set_cached_tensors_enabled(enabled: _bool) -> None:
|
102 |
+
pass
|
103 |
+
|
104 |
+
|
105 |
+
log = logging.getLogger(__name__)
|
106 |
+
|
107 |
+
from . import config
|
108 |
+
|
109 |
+
|
110 |
+
@dataclasses.dataclass(frozen=True)
|
111 |
+
class GraphID:
|
112 |
+
"Unique counter of a cuda graph recording"
|
113 |
+
id: int
|
114 |
+
|
115 |
+
|
116 |
+
@dataclasses.dataclass(frozen=True)
|
117 |
+
class FunctionID:
|
118 |
+
"Unique counter of a function wrapped in cudagraphify_impl"
|
119 |
+
id: int
|
120 |
+
|
121 |
+
|
122 |
+
@dataclasses.dataclass(frozen=True)
|
123 |
+
class WrappedFunction:
|
124 |
+
"""
|
125 |
+
Represents a function that you want to record for CUDA graph replay,
|
126 |
+
with a little more metadata so we can identify if we have an applicable
|
127 |
+
CUDA graph in our CUDA graph tree for it.
|
128 |
+
"""
|
129 |
+
|
130 |
+
model: Callable[..., Any]
|
131 |
+
static_input_idxs: Sequence[int]
|
132 |
+
id: FunctionID
|
133 |
+
constants: Tuple[torch.Tensor, ...]
|
134 |
+
|
135 |
+
|
136 |
+
def clear_cublass_cache():
|
137 |
+
"""
|
138 |
+
Cublas keeps a persistent workspace allocation for running matmuls. This poses a problem for
|
139 |
+
doing warmup within a CUDAGraph private pool because we do not want persistent allocations from
|
140 |
+
one one run to the next. When we begin a new run of a cudagraphs path (generation), all tensors
|
141 |
+
from the previous generation are freed. This frees them the memory pool, but not elsewhere.
|
142 |
+
A tensor in the cublas workspace would continue to be in use the workspace but would also get allocated
|
143 |
+
in the next run. The memory would be in use in two places.
|
144 |
+
|
145 |
+
To solve this, we clear cublas caches before and after warming up or recording. If a workspace is required
|
146 |
+
it will be allocated to the cudagraph private pool and accounted for in the allocator for the duration of the
|
147 |
+
program. There is no overhead to this on replay since cudagraphs removes allocation overhead.
|
148 |
+
"""
|
149 |
+
torch._C._cuda_clearCublasWorkspaces()
|
150 |
+
|
151 |
+
|
152 |
+
@contextlib.contextmanager
|
153 |
+
def clear_cublas_manager():
|
154 |
+
"Context manager around clearing cublas caches that will clear on enter and exit"
|
155 |
+
clear_cublass_cache()
|
156 |
+
try:
|
157 |
+
yield
|
158 |
+
finally:
|
159 |
+
clear_cublass_cache()
|
160 |
+
|
161 |
+
|
162 |
+
@contextlib.contextmanager
|
163 |
+
def disable_conv_cache_emptying():
|
164 |
+
prev = torch._C._cuda_get_conv_benchmark_empty_cache()
|
165 |
+
torch._C._cudnn_set_conv_benchmark_empty_cache(False)
|
166 |
+
try:
|
167 |
+
yield
|
168 |
+
finally:
|
169 |
+
torch._C._cudnn_set_conv_benchmark_empty_cache(prev)
|
170 |
+
|
171 |
+
|
172 |
+
@contextlib.contextmanager
|
173 |
+
def enable_history_recording():
|
174 |
+
"Turns on history recording in the CUDA Caching Allocator"
|
175 |
+
enabled = torch._C._cuda_isHistoryEnabled()
|
176 |
+
try:
|
177 |
+
if not enabled:
|
178 |
+
torch.cuda.memory._record_memory_history()
|
179 |
+
yield
|
180 |
+
finally:
|
181 |
+
if not enabled:
|
182 |
+
torch.cuda.memory._record_memory_history(None)
|
183 |
+
|
184 |
+
|
185 |
+
def get_history_recording():
|
186 |
+
# TODO - remove, prevents cleanup
|
187 |
+
if not config.triton.cudagraph_trees_history_recording:
|
188 |
+
return contextlib.nullcontext()
|
189 |
+
return enable_history_recording()
|
190 |
+
|
191 |
+
|
192 |
+
class TreeManagerContainer:
|
193 |
+
"""
|
194 |
+
Manages the lifetime of the tree manager. Like `PrivatePool` in cuda caching allocator,
|
195 |
+
the tree and its corresponding memory pool should be kept alive as long as any outstanding
|
196 |
+
graph or tensor which is an output of a graph remains alive.
|
197 |
+
|
198 |
+
There is a single tree manager container per device.
|
199 |
+
|
200 |
+
The lifecycle of a tree_manager is:
|
201 |
+
- Is constructed, no graph, no fns, no tensors
|
202 |
+
- Tree manager is fetched, resulting in tree manager being allocated
|
203 |
+
- We generate a bunch of functions, calling add_strong_reference
|
204 |
+
- These functions die, calling finalize_reference
|
205 |
+
- When all the functions die, we finalize_tree_manager.
|
206 |
+
|
207 |
+
TODO: in the future, we would like to do the following once storage weak refs land
|
208 |
+
- We look for all the live storages and add references to THOSE
|
209 |
+
- We count as storages die
|
210 |
+
- All the storages are dead, we deallocate the tree manager
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self, device_index):
|
214 |
+
# This class keeps a strong reference to tree_manager,
|
215 |
+
# but upon all other strong references to the tree_manager will reset it to None.
|
216 |
+
# We need a strong reference so that we can still access its attributes upon cleanup.
|
217 |
+
self.tree_manager: Optional[CUDAGraphTreeManager] = None
|
218 |
+
|
219 |
+
# Number of outstanding references to the current tree manager
|
220 |
+
self.live_cudagraphify_fns = 0
|
221 |
+
|
222 |
+
self.device_index = device_index
|
223 |
+
|
224 |
+
# Following two objects are only set in the case that Tensor outputs outlive
|
225 |
+
# the cudagraphify_fns. Reference to the Graph is needed to keep the private pool from
|
226 |
+
# deallocation.
|
227 |
+
self.live_storages_count = 0
|
228 |
+
self.graph: Optional[torch.cuda.CUDAGraph] = None
|
229 |
+
|
230 |
+
self.lock = threading.Lock()
|
231 |
+
|
232 |
+
def _finalize_tensor(self):
|
233 |
+
with self.lock:
|
234 |
+
self.live_storages_count -= 1
|
235 |
+
if self.live_storages_count == 0:
|
236 |
+
self.graph = None
|
237 |
+
|
238 |
+
# manager was used again after existing cleanup,
|
239 |
+
# we shouldnt set it to None
|
240 |
+
if self.live_cudagraphify_fns == 0:
|
241 |
+
self.tree_manager = None
|
242 |
+
|
243 |
+
def finalize_cudagraphify_fn(self):
|
244 |
+
with self.lock:
|
245 |
+
self.live_cudagraphify_fns -= 1
|
246 |
+
if self.live_cudagraphify_fns == 0:
|
247 |
+
self._finalize_tree_manager()
|
248 |
+
|
249 |
+
def _finalize_tree_manager(self):
|
250 |
+
assert self.lock.locked()
|
251 |
+
self.tree_manager = None
|
252 |
+
|
253 |
+
# TODO - when issue #91395 is landed, we can set a weakref on
|
254 |
+
# storages and trigger a deallocation when all outputs of the
|
255 |
+
# cudagraph are dead.
|
256 |
+
|
257 |
+
# live_storages = list(
|
258 |
+
# tree_manager.live_cudagraph_pool_storages_in_curr_execution()
|
259 |
+
# )
|
260 |
+
|
261 |
+
# # Maintain reference to graph to keep tensors alive
|
262 |
+
# assert len(tree_manager.roots) > 0, "expected at least one use"
|
263 |
+
# root = next(tree_manager.get_roots())
|
264 |
+
# self.graph = root.graph
|
265 |
+
# seen_storages = set()
|
266 |
+
# for stor in live_storages:
|
267 |
+
# if stor in seen_storages:
|
268 |
+
# continue
|
269 |
+
# seen_storages.add(stor)
|
270 |
+
# self.live_storages_count += 1
|
271 |
+
# . weakref.finalize(stor, self._finalize_tensor)
|
272 |
+
|
273 |
+
def add_strong_reference(self, fn: Callable[..., Any]):
|
274 |
+
with self.lock:
|
275 |
+
self.live_cudagraphify_fns += 1
|
276 |
+
|
277 |
+
weakref.finalize(fn, self.finalize_cudagraphify_fn)
|
278 |
+
|
279 |
+
def get_tree_manager(self) -> CUDAGraphTreeManager:
|
280 |
+
with self.lock:
|
281 |
+
if self.tree_manager is None:
|
282 |
+
self.tree_manager = CUDAGraphTreeManager(self.device_index)
|
283 |
+
return self.tree_manager
|
284 |
+
|
285 |
+
|
286 |
+
local = threading.local()
|
287 |
+
|
288 |
+
# one tree manager per device
|
289 |
+
local.tree_manager_containers = {}
|
290 |
+
local.tree_manager_locks = defaultdict(threading.Lock)
|
291 |
+
|
292 |
+
|
293 |
+
# only incremented by user call of mark_step_begin
|
294 |
+
class MarkStepBox:
|
295 |
+
mark_step_counter = 0
|
296 |
+
|
297 |
+
|
298 |
+
# We need to register this as an object that will be copied over as TLS when new
|
299 |
+
# threads are created in autograd
|
300 |
+
torch._C._stash_obj_in_tls("tree_manager_containers", local.tree_manager_containers)
|
301 |
+
torch._C._stash_obj_in_tls("tree_manager_locks", local.tree_manager_locks)
|
302 |
+
|
303 |
+
|
304 |
+
def mark_step_begin():
|
305 |
+
"Indicates that a new iteration of inference or training is about to begin."
|
306 |
+
|
307 |
+
# iterate down to distinguish from GenerationTracking counter
|
308 |
+
MarkStepBox.mark_step_counter -= 1
|
309 |
+
|
310 |
+
|
311 |
+
def reset_cudagraph_trees():
|
312 |
+
"Clear all cudagraph trees"
|
313 |
+
# see shutdown below for why this is necessary
|
314 |
+
container_dict = get_obj(local, "tree_manager_containers")
|
315 |
+
locks_dict = get_obj(local, "tree_manager_locks")
|
316 |
+
for device, lock in locks_dict.items():
|
317 |
+
with lock:
|
318 |
+
container = container_dict.get(device)
|
319 |
+
if not container or not container.tree_manager:
|
320 |
+
continue
|
321 |
+
|
322 |
+
container.tree_manager.shutdown()
|
323 |
+
|
324 |
+
_set_cached_tensors_enabled(False)
|
325 |
+
container_dict.clear()
|
326 |
+
|
327 |
+
MarkStepBox.mark_step_counter = 0
|
328 |
+
|
329 |
+
|
330 |
+
def get_obj(local, attr_name):
|
331 |
+
if hasattr(local, attr_name):
|
332 |
+
return getattr(local, attr_name)
|
333 |
+
else:
|
334 |
+
assert torch._C._is_key_in_tls(attr_name)
|
335 |
+
return torch._C._get_obj_in_tls(attr_name)
|
336 |
+
|
337 |
+
|
338 |
+
def get_container(device_index: int):
|
339 |
+
container_dict = get_obj(local, "tree_manager_containers")
|
340 |
+
lock = get_obj(local, "tree_manager_locks")[device_index]
|
341 |
+
|
342 |
+
with lock:
|
343 |
+
if device_index not in container_dict:
|
344 |
+
container_dict[device_index] = TreeManagerContainer(device_index)
|
345 |
+
|
346 |
+
return container_dict[device_index]
|
347 |
+
|
348 |
+
|
349 |
+
def get_manager(
|
350 |
+
device_index: int, create_if_none_exists=True
|
351 |
+
) -> Optional[CUDAGraphTreeManager]:
|
352 |
+
if create_if_none_exists:
|
353 |
+
return get_container(device_index).get_tree_manager()
|
354 |
+
return get_container(device_index).tree_manager
|
355 |
+
|
356 |
+
|
357 |
+
def cudagraphify_impl(model, inputs, static_input_idxs, *args, **kwargs):
|
358 |
+
fn_cache: Dict[Tuple[int, ...], Callable[..., Any]] = {}
|
359 |
+
|
360 |
+
# Detect int inputs: we need to index on these
|
361 |
+
int_key = [i for i, v in enumerate(inputs) if isinstance(v, int)]
|
362 |
+
get_ints: Any = operator.itemgetter(*int_key) if int_key else lambda _: None
|
363 |
+
|
364 |
+
del inputs
|
365 |
+
|
366 |
+
def deferred_cudagraphify(inputs):
|
367 |
+
int_key = get_ints(inputs)
|
368 |
+
fn = fn_cache.get(int_key)
|
369 |
+
if fn is not None:
|
370 |
+
return fn(inputs)
|
371 |
+
|
372 |
+
log.info("recording cudagraph tree for %s", int_key)
|
373 |
+
|
374 |
+
# first get indices we need to check to align, then update our static inputs,
|
375 |
+
# and finally copy
|
376 |
+
check_input_idxs = get_input_idxs_to_check(inputs, static_input_idxs)
|
377 |
+
new_static_input_idxs = remove_unaligned_input_idxs(inputs, static_input_idxs)
|
378 |
+
copy_misaligned_inputs(inputs, check_input_idxs)
|
379 |
+
|
380 |
+
fn, out = cudagraphify(model, inputs, new_static_input_idxs, *args, **kwargs)
|
381 |
+
fn = align_inputs_from_check_idxs(fn, inputs_to_check=check_input_idxs)
|
382 |
+
fn_cache[int_key] = fn
|
383 |
+
|
384 |
+
return out
|
385 |
+
|
386 |
+
return deferred_cudagraphify
|
387 |
+
|
388 |
+
|
389 |
+
def cudagraphify(
|
390 |
+
model,
|
391 |
+
inputs,
|
392 |
+
static_input_idxs=(),
|
393 |
+
*,
|
394 |
+
device_index: int,
|
395 |
+
is_backward: bool,
|
396 |
+
is_inference: bool,
|
397 |
+
stack_traces: Optional[StackTraces] = None,
|
398 |
+
constants: Tuple[torch.Tensor, ...] = (),
|
399 |
+
):
|
400 |
+
manager = get_container(device_index).get_tree_manager()
|
401 |
+
assert not (is_backward and is_inference)
|
402 |
+
mode = (
|
403 |
+
CompilationMode.BACKWARD
|
404 |
+
if is_backward
|
405 |
+
else (CompilationMode.INFERENCE if is_inference else CompilationMode.FORWARD)
|
406 |
+
)
|
407 |
+
|
408 |
+
return manager.add_function(
|
409 |
+
model,
|
410 |
+
inputs,
|
411 |
+
static_input_idxs,
|
412 |
+
stack_traces,
|
413 |
+
mode,
|
414 |
+
constants,
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
+
class StorageWeakRefWrapper:
|
419 |
+
"""
|
420 |
+
Wrapper around a storage weak ref. Will deallocate it upon expiration if invoked.
|
421 |
+
"""
|
422 |
+
|
423 |
+
__slots__ = ["ref", "_data_ptr", "extra_ref_check"]
|
424 |
+
|
425 |
+
storage_ref: Optional[StorageWeakRef]
|
426 |
+
|
427 |
+
def __init__(
|
428 |
+
self,
|
429 |
+
inp: Union[Tensor, UntypedStorage],
|
430 |
+
extra_ref_check: Optional[Callable[[], None]] = None,
|
431 |
+
):
|
432 |
+
"""
|
433 |
+
extra_ref_check is an additional check we need to run to check if the
|
434 |
+
weak ref has expired. in checking storage use count we assume extra_ref_check
|
435 |
+
will hold an additional reference to the storage.
|
436 |
+
"""
|
437 |
+
if isinstance(inp, Tensor):
|
438 |
+
stor = inp.untyped_storage()
|
439 |
+
else:
|
440 |
+
assert isinstance(inp, UntypedStorage)
|
441 |
+
stor = inp
|
442 |
+
self.ref = StorageWeakRef(stor)
|
443 |
+
self._data_ptr = stor.data_ptr()
|
444 |
+
self.extra_ref_check = extra_ref_check
|
445 |
+
|
446 |
+
@classmethod
|
447 |
+
def from_weakref_and_data_ptr(cls, cdata, data_ptr, extra_ref_check=None):
|
448 |
+
instance = cls.__new__(cls)
|
449 |
+
instance._data_ptr = data_ptr
|
450 |
+
instance.ref = StorageWeakRef.from_weakref(cdata)
|
451 |
+
instance.extra_ref_check = extra_ref_check
|
452 |
+
return instance
|
453 |
+
|
454 |
+
def __call__(self) -> Optional[StorageWeakRefPointer]:
|
455 |
+
if self.expired():
|
456 |
+
return None
|
457 |
+
|
458 |
+
return self.ref.cdata
|
459 |
+
|
460 |
+
def swap_weakref(self, cdata):
|
461 |
+
self.ref.__del__()
|
462 |
+
self.ref.cdata = cdata
|
463 |
+
|
464 |
+
def data_ptr(self) -> int:
|
465 |
+
"NB: returns the data ptr even if the storage has expired"
|
466 |
+
return self._data_ptr
|
467 |
+
|
468 |
+
def remove_extra_reference(self):
|
469 |
+
self.extra_ref_check = None
|
470 |
+
|
471 |
+
def expired(self):
|
472 |
+
if self.extra_ref_check is not None and not self.extra_ref_check():
|
473 |
+
return False
|
474 |
+
|
475 |
+
# if extra_ref_check is not None we expect an additional reference
|
476 |
+
stor_count = torch._C._storage_Use_Count(self.ref.cdata)
|
477 |
+
return (stor_count - (self.extra_ref_check is not None)) == 0
|
478 |
+
|
479 |
+
def __repr__(self):
|
480 |
+
if self.ref is None or self.ref.expired():
|
481 |
+
return f"StorageWeakRefWrapper to {self.data_ptr()}; dead"
|
482 |
+
else:
|
483 |
+
return f"StorageWeakRefWrapper to {self.data_ptr()}; alive"
|
484 |
+
|
485 |
+
|
486 |
+
def is_live(weak_ref: Optional[StorageWeakRefWrapper]) -> bool:
|
487 |
+
return maybe_deref(weak_ref) is not None
|
488 |
+
|
489 |
+
|
490 |
+
def maybe_deref(
|
491 |
+
weak_ref: Optional[StorageWeakRefWrapper],
|
492 |
+
) -> Optional[Tuple[StorageWeakRefPointer, int]]:
|
493 |
+
if weak_ref is None:
|
494 |
+
return None
|
495 |
+
r = weak_ref()
|
496 |
+
if r is None:
|
497 |
+
return None
|
498 |
+
# NB: r.data_ptr() does not necessarily equal weak_ref.data_ptr()
|
499 |
+
return r, weak_ref.data_ptr()
|
500 |
+
|
501 |
+
|
502 |
+
@contextlib.contextmanager
|
503 |
+
def _use_cuda_memory_pool_manager(device, mem_pool, stream):
|
504 |
+
"""
|
505 |
+
Context manager to use cuda graph pool for new allocations. If you use this manager
|
506 |
+
all cudagraph tensors in use should be reflected in the allocator or they will be overwritten.
|
507 |
+
existing_graph should already have been used in a capture, and the mem_pool must already exist,
|
508 |
+
because this manager will not preserve a reference to the pool which keeps it alive.
|
509 |
+
"""
|
510 |
+
torch.cuda.synchronize()
|
511 |
+
stream.wait_stream(torch.cuda.current_stream())
|
512 |
+
|
513 |
+
with torch.cuda.stream(stream), torch.device(device):
|
514 |
+
torch._C._cuda_beginAllocateCurrentStreamToPool(device, mem_pool)
|
515 |
+
try:
|
516 |
+
yield
|
517 |
+
finally:
|
518 |
+
torch._C._cuda_endAllocateCurrentStreamToPool(device)
|
519 |
+
torch._C._cuda_releasePool(device, mem_pool)
|
520 |
+
|
521 |
+
|
522 |
+
def map_to_ref(t: Optional[Tensor]) -> Optional[StorageWeakRefWrapper]:
|
523 |
+
if not isinstance(t, torch.Tensor):
|
524 |
+
assert t is None
|
525 |
+
return None
|
526 |
+
return StorageWeakRefWrapper(t)
|
527 |
+
|
528 |
+
|
529 |
+
# A path index of (depth, offset) indices into a graph that is `depth`` number of nodes from the root
|
530 |
+
# at graph output offset
|
531 |
+
PathOutputIndex = Tuple[int, int]
|
532 |
+
|
533 |
+
# For each node in the path, for each output, is the output alive
|
534 |
+
PathLiveness = List[List[bool]]
|
535 |
+
|
536 |
+
StackTraces = List[Optional[str]]
|
537 |
+
|
538 |
+
|
539 |
+
class CUDAWarmupNode:
|
540 |
+
"""
|
541 |
+
Simplified Wrapper around A CUDA Model that wraps outputs in storage refs and exposes
|
542 |
+
apis to get the live storages in the current chain of warmup.
|
543 |
+
|
544 |
+
A CUDAWarmupNode may have either CUDAGraphNode or CUDAWarmupNode as a parent, but may only have
|
545 |
+
CUDAWarmupNode as children, because we cannot record or execute with tensors which do not have stable
|
546 |
+
memory addresses.
|
547 |
+
|
548 |
+
CUDAWarmupNode and CUDAGraphNode have a number of differences that make it easier to use separate classes.
|
549 |
+
- Much of the CUDAGraphNode logic & initialization is based on the tensor properties of first recording. In the
|
550 |
+
first instance of warmup, these are not finalized yet.
|
551 |
+
- All Inputs to the RecordedFunction must be copied over to the cuda graph memory pool, this is unnecessary in warmup.
|
552 |
+
- CUDAWarmup is only used once and so does not need to optimize as much bookkeeping. It is much simpler.
|
553 |
+
|
554 |
+
NB: this class and CUDAGraphNode need to expose `path_live_weakrefs`, `all_outputs_are_dead`, and
|
555 |
+
`self.outputs_weakrefs`, `stack_traces`, and `tensor_weakrefs` for compatibility.
|
556 |
+
"""
|
557 |
+
|
558 |
+
def __init__(
|
559 |
+
self,
|
560 |
+
wrapped_function: WrappedFunction,
|
561 |
+
parent,
|
562 |
+
cuda_graphs_pool: Tuple[int, int],
|
563 |
+
existing_cuda_graph: Optional[torch.cuda.CUDAGraph],
|
564 |
+
device_index: int,
|
565 |
+
stack_traces: Optional[StackTraces],
|
566 |
+
stream: torch.cuda.Stream,
|
567 |
+
already_warm: bool,
|
568 |
+
):
|
569 |
+
self.wrapped_function = wrapped_function
|
570 |
+
self.parent = parent
|
571 |
+
self.cuda_graphs_pool = cuda_graphs_pool
|
572 |
+
self.outputs_weakrefs: List[Optional[StorageWeakRefWrapper]] = []
|
573 |
+
self.tensor_weakrefs: List[Optional[TensorWeakRef]] = []
|
574 |
+
self.existing_cuda_graph = existing_cuda_graph
|
575 |
+
self.has_run = False
|
576 |
+
self.device_index = device_index
|
577 |
+
self.stack_traces = stack_traces
|
578 |
+
self.stream = stream
|
579 |
+
self.already_warm = already_warm
|
580 |
+
|
581 |
+
def run(self, new_inputs):
|
582 |
+
assert not self.has_run, "Wrapped function should never be run twice"
|
583 |
+
|
584 |
+
# See: output_is_alias_of_persistent_static_inputs below. We should only be returning freshly created
|
585 |
+
# storages in path_live_weakrefs.
|
586 |
+
existing_path_data_ptrs = {
|
587 |
+
t.data_ptr() for t in self.path_live_weakrefs() if t()
|
588 |
+
}
|
589 |
+
|
590 |
+
def get_non_cudagraph_inps():
|
591 |
+
non_cudagraph_inps = set()
|
592 |
+
for t in itertools.chain(new_inputs, self.wrapped_function.constants):
|
593 |
+
if (
|
594 |
+
isinstance(t, torch.Tensor)
|
595 |
+
and t.untyped_storage().data_ptr() not in existing_path_data_ptrs
|
596 |
+
):
|
597 |
+
non_cudagraph_inps.add(t.untyped_storage().data_ptr())
|
598 |
+
return non_cudagraph_inps
|
599 |
+
|
600 |
+
non_cudagraph_inps = get_non_cudagraph_inps()
|
601 |
+
|
602 |
+
if config.triton.slow_path_cudagraph_asserts and not self.already_warm:
|
603 |
+
refs = list(self.path_live_weakrefs())
|
604 |
+
check_memory_pool(self.device_index, self.cuda_graphs_pool, refs)
|
605 |
+
|
606 |
+
with torch.cuda.device(
|
607 |
+
self.device_index
|
608 |
+
), disable_conv_cache_emptying(), clear_cublas_manager(), _use_cuda_memory_pool_manager(
|
609 |
+
self.device_index, self.cuda_graphs_pool, self.stream
|
610 |
+
), get_history_recording():
|
611 |
+
out = self.wrapped_function.model(new_inputs)
|
612 |
+
|
613 |
+
# sync up stream used in `_use_cuda_memory_pool_manager` - TODO - wait stream instead ?
|
614 |
+
torch.cuda.synchronize()
|
615 |
+
|
616 |
+
assert len(new_inputs) == 0
|
617 |
+
|
618 |
+
# sdpa returns cpu tensors when not recording cuda graph
|
619 |
+
def add_ref(o):
|
620 |
+
return (
|
621 |
+
o is not None
|
622 |
+
and isinstance(o, torch.Tensor)
|
623 |
+
and o.is_cuda
|
624 |
+
and o.untyped_storage().data_ptr() not in non_cudagraph_inps
|
625 |
+
and o.untyped_storage().data_ptr() != 0
|
626 |
+
)
|
627 |
+
|
628 |
+
self.outputs_weakrefs.extend(
|
629 |
+
[map_to_ref(o) if add_ref(o) else None for o in out]
|
630 |
+
)
|
631 |
+
self.tensor_weakrefs.extend(
|
632 |
+
[TensorWeakRef(o) if add_ref(o) else None for o in out]
|
633 |
+
)
|
634 |
+
|
635 |
+
if config.triton.slow_path_cudagraph_asserts and not self.already_warm:
|
636 |
+
out_refs = self.path_live_weakrefs()
|
637 |
+
new_storages = [
|
638 |
+
t for t in out_refs if t.data_ptr() not in non_cudagraph_inps
|
639 |
+
]
|
640 |
+
check_memory_pool(self.device_index, self.cuda_graphs_pool, new_storages)
|
641 |
+
|
642 |
+
return out
|
643 |
+
|
644 |
+
@property
|
645 |
+
def _path_from_root(self):
|
646 |
+
nodes = []
|
647 |
+
node = self
|
648 |
+
while node:
|
649 |
+
nodes.append(node)
|
650 |
+
node = node.parent
|
651 |
+
|
652 |
+
yield from reversed(nodes)
|
653 |
+
|
654 |
+
def path_live_weakrefs(self) -> Iterator[StorageWeakRefWrapper]:
|
655 |
+
"Returns all live storages weakrefs that created by nodes in this path"
|
656 |
+
for node in self._path_from_root:
|
657 |
+
for output in node.outputs_weakrefs:
|
658 |
+
if is_live(output):
|
659 |
+
yield output
|
660 |
+
|
661 |
+
def all_outputs_are_dead(self):
|
662 |
+
return not list(self.path_live_weakrefs())
|
663 |
+
|
664 |
+
|
665 |
+
# Aliases for List that say what the indices denote
|
666 |
+
InputList = List # input indexes
|
667 |
+
OutputList = List # output indexes
|
668 |
+
LevelList = List # levels (distance from root of tree)
|
669 |
+
|
670 |
+
|
671 |
+
class OutputAliasInfo:
|
672 |
+
pass
|
673 |
+
|
674 |
+
|
675 |
+
class _UnaliasedStorage(OutputAliasInfo):
|
676 |
+
"Singleton to mark that the graph output constructs a new alias or is None"
|
677 |
+
pass
|
678 |
+
|
679 |
+
|
680 |
+
UnaliasedStorage = _UnaliasedStorage()
|
681 |
+
|
682 |
+
|
683 |
+
class AliasesPriorGraphOutput(OutputAliasInfo):
|
684 |
+
"Marks that the graph output aliases an output of a prior graph"
|
685 |
+
__slots__ = ["index"]
|
686 |
+
|
687 |
+
index: PathOutputIndex
|
688 |
+
|
689 |
+
def __init__(self, index: PathOutputIndex):
|
690 |
+
assert isinstance(index, tuple)
|
691 |
+
self.index = index
|
692 |
+
|
693 |
+
|
694 |
+
class AliasesNewOutput(OutputAliasInfo):
|
695 |
+
"Marks that the graph output aliases an index in the new, returned outputs"
|
696 |
+
|
697 |
+
__slots__ = ["index"]
|
698 |
+
|
699 |
+
index: int
|
700 |
+
|
701 |
+
def __init__(self, index):
|
702 |
+
assert isinstance(index, int)
|
703 |
+
self.index = index
|
704 |
+
|
705 |
+
|
706 |
+
class CUDAGraphNode:
|
707 |
+
"""
|
708 |
+
A single recording of a function into a CUDA Graph. Recordings of CUDA Graphs share a single memory pool
|
709 |
+
and are structured into a tree, where there is a single recording that can precede it (parent) and multiple
|
710 |
+
subsequent recordings that may follow (children). A node will have no parent if it is the first recording
|
711 |
+
in a tree; i.e., when it is first recorded, there are no live tensors from a previous recording which
|
712 |
+
would force a dependency.
|
713 |
+
|
714 |
+
On first recording, all of the live tensors in the current CUDA Graph Node path will be
|
715 |
+
reflected in the corresponding private pool. On subsequent executions, the caching allocator
|
716 |
+
is unaffected when the graph is replayed.
|
717 |
+
|
718 |
+
In order to support recording a subsequent cuda graph recording after execution of this graph,
|
719 |
+
we checkpoint the state of the memory pool so that it may later be resumed.
|
720 |
+
|
721 |
+
WrappedFunction should have already been warmed up prior to invocation.
|
722 |
+
|
723 |
+
See [setCheckpointPoolState] for further explanation, as well as
|
724 |
+
https://user-images.githubusercontent.com/13564/222815509-374f3400-f83d-4f7d-8fa6-4a092b3250bb.png
|
725 |
+
"""
|
726 |
+
|
727 |
+
def __init__(
|
728 |
+
self,
|
729 |
+
wrapped_function: WrappedFunction,
|
730 |
+
id: GraphID,
|
731 |
+
parent: Optional[CUDAGraphNode],
|
732 |
+
inputs: List[Tensor],
|
733 |
+
cuda_graphs_pool: Tuple[int, int],
|
734 |
+
device_index: int,
|
735 |
+
stack_traces: Optional[StackTraces],
|
736 |
+
stream: torch.cuda.Stream,
|
737 |
+
):
|
738 |
+
assert isinstance(inputs, (list, tuple))
|
739 |
+
|
740 |
+
self.wrapped_function = wrapped_function
|
741 |
+
self.id = id
|
742 |
+
self.device = device_index
|
743 |
+
self.stack_traces = stack_traces
|
744 |
+
self.stream = stream
|
745 |
+
|
746 |
+
# if this is a root parent will be None. use weakref to prevent reference cycle
|
747 |
+
self._parent = weakref.ref(parent) if parent is not None else None
|
748 |
+
# reference to the shared memory pool for the entire cuda graphs tree
|
749 |
+
self.cuda_graphs_pool = cuda_graphs_pool
|
750 |
+
|
751 |
+
# A single wrapped function may be recorded multiple times if memory patterns or
|
752 |
+
# invariants change from one execution to the next
|
753 |
+
self.children: Dict[FunctionID, List[CUDAGraphNode]] = defaultdict(list)
|
754 |
+
|
755 |
+
# StorageWeakRef maintains whether the Storage C++ object remains allocated,
|
756 |
+
# not whether the corresponding memory has been deallocated. In order
|
757 |
+
# to use them to track memory deallocations we must maintain a single StorageWeakRef
|
758 |
+
# for all Storages that reference that memory (even if we are constructing Storages
|
759 |
+
# that do not have a deallocator function). We maintain one single storage_cache
|
760 |
+
# as we execute any tree path. When we retrieve a storage from the cache we
|
761 |
+
# check that it is still alive, and we hash based on observed recording data ptr
|
762 |
+
# and storage cdata.
|
763 |
+
|
764 |
+
# we preserve a single reference to executed outputs that is then referenced
|
765 |
+
# in children to avoid children having to chase parent pointers in the hot path
|
766 |
+
# DO NOT reassign output_weakrefs, only call `clear()`
|
767 |
+
# Path is a series of nodes from root to the current node
|
768 |
+
self.outputs_weakrefs: OutputList[Optional[StorageWeakRefWrapper]] = []
|
769 |
+
self.path_weakrefs: LevelList[OutputList[Optional[StorageWeakRefWrapper]]] = [
|
770 |
+
node.outputs_weakrefs for node in self._path_from_root
|
771 |
+
]
|
772 |
+
self.path_stacktraces: LevelList[StackTraces] = [
|
773 |
+
node.stack_traces for node in self._path_from_root
|
774 |
+
]
|
775 |
+
self.tensor_weakrefs: OutputList[Optional[TensorWeakRef]] = []
|
776 |
+
|
777 |
+
# tensors which are outputs of previous graphs in the tree
|
778 |
+
self.cudagraph_managed_idxs: List[int] = [
|
779 |
+
idx
|
780 |
+
for idx, t in enumerate(inputs)
|
781 |
+
if isinstance(t, torch.Tensor) and self._is_cuda_graph_recorded_tensor(t)
|
782 |
+
]
|
783 |
+
|
784 |
+
self.static_input_idxs: List[int] = list(
|
785 |
+
set(wrapped_function.static_input_idxs) | set(self.cudagraph_managed_idxs)
|
786 |
+
)
|
787 |
+
|
788 |
+
self.static_input_data_ptrs: InputList[Optional[int]] = [
|
789 |
+
(
|
790 |
+
inputs[i].data_ptr()
|
791 |
+
if isinstance(inputs[i], torch.Tensor) and i in self.static_input_idxs
|
792 |
+
else None
|
793 |
+
)
|
794 |
+
for i in range(len(inputs))
|
795 |
+
]
|
796 |
+
|
797 |
+
# When we checkpoint, and free generations, we will be manually freeing the outputs
|
798 |
+
# of CUDAGraphNodes. We should not be freeing parameters, not do we need to account for
|
799 |
+
# their liveness (they are static), so we need to compute which outputs are aliases of
|
800 |
+
# parameters. Some static inputs are saved tensors from the forward that die in the backward.
|
801 |
+
# Their locations are static but lifetimes are not. We only include the persistent static
|
802 |
+
# data ptrs below because the non persistent data ptrs may be outputs of this record and
|
803 |
+
# fresh allocations.
|
804 |
+
|
805 |
+
# precompute expanded dims to avoid computing in the hot path
|
806 |
+
self.expanded_dims: List[List[int]] = [
|
807 |
+
get_expanded_dims(x)
|
808 |
+
if isinstance(x, torch.Tensor) and idx not in self.static_input_idxs
|
809 |
+
else []
|
810 |
+
for idx, x in enumerate(inputs)
|
811 |
+
]
|
812 |
+
|
813 |
+
# For each node in path, which outputs were observed to be live
|
814 |
+
# before invoking graph recording, and after graph recording
|
815 |
+
self.recorded_liveness_before_graph: LevelList[OutputList[bool]] = []
|
816 |
+
self.recorded_liveness_after_graph: LevelList[OutputList[bool]] = []
|
817 |
+
|
818 |
+
# List of Tuples of (depth, output_index) that index into node at depth
|
819 |
+
# number of nodes from root and output_index of outputs. Will index into
|
820 |
+
# path_weakrefs.
|
821 |
+
self.expected_dead_indices_before_graph: List[PathOutputIndex] = []
|
822 |
+
self.expected_dead_indices_after_graph: List[PathOutputIndex] = []
|
823 |
+
|
824 |
+
# all live indices after graph recording
|
825 |
+
self.live_indices_after_graph: List[PathOutputIndex] = []
|
826 |
+
|
827 |
+
if self.parent is not None:
|
828 |
+
previous_liveness = self.parent.recorded_liveness_after_graph
|
829 |
+
curr_liveness = self._get_liveness(self.path_weakrefs)
|
830 |
+
|
831 |
+
different_indices = self._get_different_indices(
|
832 |
+
previous_liveness, curr_liveness
|
833 |
+
)
|
834 |
+
|
835 |
+
self.recorded_liveness_before_graph = curr_liveness
|
836 |
+
self.expected_dead_indices_before_graph = different_indices
|
837 |
+
|
838 |
+
recording_inputs = self._allocate_and_copy_recording_inputs(inputs)
|
839 |
+
# recording inputs will copy over memory, so we can free non recording inputs
|
840 |
+
inputs.clear()
|
841 |
+
del inputs
|
842 |
+
|
843 |
+
# graph used for recording model invocation
|
844 |
+
self.graph: Optional[torch.cuda.CUDAGraph] = torch.cuda.CUDAGraph()
|
845 |
+
|
846 |
+
# we allocate non-static inputs within the same memory pool as the CUDAGraph
|
847 |
+
# which we will record the model with. For memory efficiency, it is important
|
848 |
+
# to reclaim the input memory when the inputs are no longer live. To accomplish this,
|
849 |
+
# we reconstruct tensors at the correct data pointers of our inputs which are
|
850 |
+
# non owning and do not prevent deallocation. On subsequent executions, input values
|
851 |
+
# will be copied over to these tensors.
|
852 |
+
self.reconstructed_inputs: InputList[Union[Tensor, int]] = [
|
853 |
+
self._reconstruct_from_tensor_metadata(self._tensor_metadata(x))
|
854 |
+
if isinstance(x, torch.Tensor)
|
855 |
+
else x
|
856 |
+
for x in recording_inputs
|
857 |
+
]
|
858 |
+
|
859 |
+
# DO THE RECORDING!!!
|
860 |
+
# We record the CUDA graph in the constructor of CUDAGraphNode, which
|
861 |
+
# gives you what the CPU side compute of the function would do. We
|
862 |
+
# don't throw the recording outputs away: their memory is
|
863 |
+
# correctly accounted for in the CUDAGraphs caching allocator. This
|
864 |
+
# means on the very FIRST run of the CUDA graph node, we can directly
|
865 |
+
# do more recording, because we have a valid caching allocator state.
|
866 |
+
# NB: This relies on run() being called immediately after the
|
867 |
+
# constructor, otherwise this optimization would not be valid.
|
868 |
+
|
869 |
+
# initialized below in _record
|
870 |
+
|
871 |
+
self.checkpointed_caching_state: Optional[AllocatorState] = None
|
872 |
+
|
873 |
+
# Output Storage Alias information, can be:
|
874 |
+
# - A new, unaliased storage, or the output is None
|
875 |
+
# - An alias of an output of a prior graph
|
876 |
+
# - An alias of an output already created in the reconstructed outputs
|
877 |
+
# This is None if the output in question is an int
|
878 |
+
self.output_storage_alias: OutputList[Optional[OutputAliasInfo]] = []
|
879 |
+
|
880 |
+
# is the output Storage unaliased in subsequent outputs, of all subsequent paths
|
881 |
+
# if it is, we cached the output tensor and adjust storage liveness tracking to also
|
882 |
+
# check if the output tensor does not have an additional python reference.
|
883 |
+
# If a descendent node discovers it has an alias of a prior output, then the output
|
884 |
+
# will no longer be cached in the ancestor.
|
885 |
+
# The large majority of tensors are unaliased, and preserving aliased output tensors would add
|
886 |
+
# significant additional complexity with marginal gains
|
887 |
+
# The cached tensor outputs are added on the first execution, and cleared whenever we need
|
888 |
+
# to do subsequent recording
|
889 |
+
self.unaliased_in_all_paths: OutputList[bool] = []
|
890 |
+
self.cached_tensor_outputs: OutputList[Optional[Tensor]] = []
|
891 |
+
|
892 |
+
# if an output aliases a static, persistent input then the corresponding Tensor will
|
893 |
+
# be set here. These are different than cached tensors, because they are tensors that
|
894 |
+
# are aliases of parameters that are always live.
|
895 |
+
self.static_output_tensors: OutputList[Optional[Tensor]] = []
|
896 |
+
|
897 |
+
# Cleared after recording
|
898 |
+
self.recording_outputs: Optional[
|
899 |
+
OutputList[Union[torch.Tensor, int]]
|
900 |
+
] = self._record(wrapped_function.model, recording_inputs)
|
901 |
+
self.outputs_metadata: OutputList[Union[Dict[str, Any], int, None]] = []
|
902 |
+
|
903 |
+
# As with inputs, we do not want to keep the outputs permanently alive because that would prevent
|
904 |
+
# their memory being reclaimed in subsequent cuda graph recordings. We record the tensor metadata
|
905 |
+
# needed to reconstruct instead.
|
906 |
+
assert self.recording_outputs is not None
|
907 |
+
for out in self.recording_outputs:
|
908 |
+
if isinstance(out, torch.Tensor):
|
909 |
+
self.outputs_metadata.append(
|
910 |
+
self._tensor_metadata(out, ignore_storage_offset=False)
|
911 |
+
)
|
912 |
+
else:
|
913 |
+
assert isinstance(out, (int, type(None))), type(out)
|
914 |
+
self.outputs_metadata.append(out)
|
915 |
+
|
916 |
+
self.graph.replay()
|
917 |
+
|
918 |
+
def _copy_input(self, idx, dst, src):
|
919 |
+
expanded_dims = self.expanded_dims[idx]
|
920 |
+
dst = index_expanded_dims(dst, expanded_dims)
|
921 |
+
src = index_expanded_dims(src, expanded_dims)
|
922 |
+
# TODO - one jit kernel across multiple inputs
|
923 |
+
dst.copy_(src)
|
924 |
+
|
925 |
+
def run_first_inputs(self, new_inputs):
|
926 |
+
if config.triton.fast_path_cudagraph_asserts:
|
927 |
+
self.debug_check_invariants_before_invocation()
|
928 |
+
|
929 |
+
# graph is already invoked in the __init__
|
930 |
+
# inputs are copied over in _allocate_recording_inputs and subsequently cleared
|
931 |
+
assert len(new_inputs) == 0
|
932 |
+
outputs = self.recording_outputs
|
933 |
+
self.recording_outputs = None
|
934 |
+
return outputs
|
935 |
+
|
936 |
+
def run(self, new_inputs):
|
937 |
+
if config.triton.fast_path_cudagraph_asserts:
|
938 |
+
self.debug_check_invariants_before_invocation()
|
939 |
+
|
940 |
+
assert len(self.static_input_data_ptrs) == len(new_inputs)
|
941 |
+
# NB: this ranges over non-static inputs too
|
942 |
+
for idx, data_ptr in enumerate(self.static_input_data_ptrs):
|
943 |
+
if idx in self.cudagraph_managed_idxs:
|
944 |
+
continue
|
945 |
+
if not isinstance(new_inputs[idx], torch.Tensor):
|
946 |
+
pass
|
947 |
+
elif data_ptr is not None:
|
948 |
+
# static input, e.g., parameter
|
949 |
+
assert data_ptr == new_inputs[idx].data_ptr()
|
950 |
+
else:
|
951 |
+
# non-static input, need to copy it into CUDA graph
|
952 |
+
dst = self.reconstructed_inputs[idx]
|
953 |
+
src = new_inputs[idx]
|
954 |
+
self._copy_input(idx, dst, src)
|
955 |
+
|
956 |
+
new_inputs.clear()
|
957 |
+
self.run_graph()
|
958 |
+
|
959 |
+
outputs = self.reconstruct_outputs()
|
960 |
+
self.debug_check_invariants_after_invocation()
|
961 |
+
|
962 |
+
return outputs
|
963 |
+
|
964 |
+
def reconstruct_outputs(self):
|
965 |
+
"Reconstruct output tensors according to their saved metadata and alias information"
|
966 |
+
|
967 |
+
# Cached tensors will not yet be set on the first execution
|
968 |
+
# They are also cleared in checkpointing, so if we checkpoint this node
|
969 |
+
# and then execute it again we will need to repopulate cached tensors
|
970 |
+
if not self.cached_tensor_outputs:
|
971 |
+
self._initialize_cached_tensors()
|
972 |
+
|
973 |
+
outputs: List[Optional[Union[int, torch.Tensor]]] = []
|
974 |
+
|
975 |
+
for i, (storage_info, metadata) in enumerate(
|
976 |
+
zip(self.output_storage_alias, self.outputs_metadata)
|
977 |
+
):
|
978 |
+
if not isinstance(metadata, dict): # tensor metadata
|
979 |
+
assert isinstance(metadata, (int, type(None)))
|
980 |
+
outputs.append(metadata)
|
981 |
+
continue
|
982 |
+
|
983 |
+
cached_t = self.cached_tensor_outputs[i]
|
984 |
+
if cached_t is not None:
|
985 |
+
# No need to update weakrefs, already correctly initialized
|
986 |
+
outputs.append(cached_t)
|
987 |
+
continue
|
988 |
+
|
989 |
+
static_t = self.static_output_tensors[i]
|
990 |
+
if static_t is not None:
|
991 |
+
assert self.outputs_weakrefs[i] is None
|
992 |
+
outputs.append(static_t)
|
993 |
+
continue
|
994 |
+
|
995 |
+
storage = self.prepare_alias_info_for_tensor_construction(
|
996 |
+
storage_info, metadata
|
997 |
+
)
|
998 |
+
|
999 |
+
if isinstance(storage, UntypedStorage) or storage is None:
|
1000 |
+
out = self._reconstruct_from_tensor_metadata(metadata, storage)
|
1001 |
+
else:
|
1002 |
+
assert isinstance(storage, int)
|
1003 |
+
out = self._reconstruct_from_tensor_metadata(
|
1004 |
+
metadata, cast(torch.Tensor, outputs[storage]).untyped_storage()
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
outputs.append(out)
|
1008 |
+
w = self.outputs_weakrefs[i]
|
1009 |
+
assert w is not None
|
1010 |
+
w.swap_weakref(out.untyped_storage()._weak_ref())
|
1011 |
+
|
1012 |
+
return outputs
|
1013 |
+
|
1014 |
+
def prepare_alias_info_for_tensor_construction(
|
1015 |
+
self,
|
1016 |
+
out_alias_info: Optional[OutputAliasInfo],
|
1017 |
+
metadata: Union[Dict[str, Any], int, None],
|
1018 |
+
) -> Union[UntypedStorage, None, int]:
|
1019 |
+
if (
|
1020 |
+
isinstance(metadata, (int, type(None)))
|
1021 |
+
or out_alias_info is UnaliasedStorage
|
1022 |
+
):
|
1023 |
+
return None
|
1024 |
+
|
1025 |
+
if isinstance(out_alias_info, AliasesPriorGraphOutput):
|
1026 |
+
depth, existing_output_index = out_alias_info.index
|
1027 |
+
ref = self.path_weakrefs[depth][existing_output_index]
|
1028 |
+
assert ref is not None
|
1029 |
+
return torch.UntypedStorage._new_with_weak_ptr(ref())
|
1030 |
+
|
1031 |
+
assert isinstance(out_alias_info, AliasesNewOutput)
|
1032 |
+
return out_alias_info.index
|
1033 |
+
|
1034 |
+
def prepare_storages_for_construction(
|
1035 |
+
self,
|
1036 |
+
) -> List[Union[UntypedStorage, None, int]]:
|
1037 |
+
output_storages = []
|
1038 |
+
for output_storage_alias, metadata in zip(
|
1039 |
+
self.output_storage_alias, self.outputs_metadata
|
1040 |
+
):
|
1041 |
+
output_storages.append(
|
1042 |
+
self.prepare_alias_info_for_tensor_construction(
|
1043 |
+
output_storage_alias, metadata
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
return output_storages
|
1048 |
+
|
1049 |
+
def run_graph(self):
|
1050 |
+
assert self.graph is not None
|
1051 |
+
self.graph.replay()
|
1052 |
+
|
1053 |
+
def all_outputs_are_dead(self):
|
1054 |
+
"All outputs of the path from this node to its root are dead"
|
1055 |
+
for depth, output_index in self.live_indices_after_graph:
|
1056 |
+
if is_live(self.path_weakrefs[depth][output_index]):
|
1057 |
+
return False
|
1058 |
+
return True
|
1059 |
+
|
1060 |
+
def _record(self, model, inputs):
|
1061 |
+
"Record the model"
|
1062 |
+
|
1063 |
+
def static_input_iter():
|
1064 |
+
for i in self.wrapped_function.static_input_idxs:
|
1065 |
+
if isinstance(
|
1066 |
+
inputs[i], torch.Tensor
|
1067 |
+
) and not self._is_cuda_graph_recorded_tensor(inputs[i]):
|
1068 |
+
yield inputs[i]
|
1069 |
+
|
1070 |
+
# see: output_is_alias_of_persistent_static_inputs above
|
1071 |
+
static_input_persistent_storage_ptrs: Dict[int, StorageWeakRefWrapper] = {
|
1072 |
+
inp.untyped_storage().data_ptr(): StorageWeakRefWrapper(inp)
|
1073 |
+
for inp in itertools.chain(
|
1074 |
+
static_input_iter(), self.wrapped_function.constants
|
1075 |
+
)
|
1076 |
+
}
|
1077 |
+
|
1078 |
+
if config.triton.slow_path_cudagraph_asserts:
|
1079 |
+
# need to use parent live weakrefs because live_indices isnt set yet
|
1080 |
+
memory = (
|
1081 |
+
[] if self.parent is None else list(self.parent.path_live_weakrefs())
|
1082 |
+
)
|
1083 |
+
memory += [
|
1084 |
+
StorageWeakRefWrapper(elem)
|
1085 |
+
for i, elem in enumerate(inputs)
|
1086 |
+
if isinstance(elem, torch.Tensor)
|
1087 |
+
and i not in self.wrapped_function.static_input_idxs
|
1088 |
+
and elem.untyped_storage().data_ptr() != 0
|
1089 |
+
]
|
1090 |
+
check_memory_pool(self.device, self.cuda_graphs_pool, memory)
|
1091 |
+
|
1092 |
+
with preserve_rng_state(), torch.cuda.device(
|
1093 |
+
self.device
|
1094 |
+
), clear_cublas_manager(), torch.cuda.graph(
|
1095 |
+
self.graph,
|
1096 |
+
stream=self.stream,
|
1097 |
+
pool=self.cuda_graphs_pool,
|
1098 |
+
capture_error_mode="thread_local",
|
1099 |
+
), get_history_recording():
|
1100 |
+
static_outputs = model(inputs)
|
1101 |
+
|
1102 |
+
# running model should reclaim memory
|
1103 |
+
assert len(inputs) == 0
|
1104 |
+
|
1105 |
+
if not isinstance(static_outputs, (list, tuple)):
|
1106 |
+
static_outputs = (static_outputs,)
|
1107 |
+
|
1108 |
+
self._add_first_outputs(static_outputs, static_input_persistent_storage_ptrs)
|
1109 |
+
|
1110 |
+
return static_outputs
|
1111 |
+
|
1112 |
+
def _add_first_outputs(
|
1113 |
+
self,
|
1114 |
+
outputs,
|
1115 |
+
static_input_persistent_storage_ptrs: Dict[int, StorageWeakRefWrapper],
|
1116 |
+
):
|
1117 |
+
"Add the outputs from the first invocation of the node and set up metadata"
|
1118 |
+
|
1119 |
+
# getting liveness before we have added the outputs to path, so the length
|
1120 |
+
# of the two lists is equal
|
1121 |
+
prev_liveness = self.recorded_liveness_before_graph
|
1122 |
+
curr_liveness = self._get_liveness(self.path_weakrefs)
|
1123 |
+
|
1124 |
+
delta = self._get_different_indices(prev_liveness, curr_liveness)
|
1125 |
+
self.expected_dead_indices_after_graph = delta
|
1126 |
+
|
1127 |
+
assert len(self.outputs_weakrefs) == 0
|
1128 |
+
# index from data pointer to index in outputs
|
1129 |
+
output_new_storages_index: Dict[StorageDataPtr, int] = {}
|
1130 |
+
|
1131 |
+
self.unaliased_in_all_paths = [False for _ in range(len(outputs))]
|
1132 |
+
self.static_output_tensors = [None for _ in range(len(outputs))]
|
1133 |
+
|
1134 |
+
for i, o in enumerate(outputs):
|
1135 |
+
if o is None or not isinstance(o, torch.Tensor):
|
1136 |
+
self.output_storage_alias.append(UnaliasedStorage)
|
1137 |
+
continue
|
1138 |
+
|
1139 |
+
torch._check(
|
1140 |
+
o.is_cuda or o.untyped_storage().data_ptr() == 0,
|
1141 |
+
lambda: (
|
1142 |
+
"Expected all cuda outputs in cuda graph recording. Non cuda output "
|
1143 |
+
f"from {self.stack_traces[i] if self.stack_traces else '(unknown)'}"
|
1144 |
+
),
|
1145 |
+
),
|
1146 |
+
|
1147 |
+
ref = static_input_persistent_storage_ptrs.get(
|
1148 |
+
o.untyped_storage().data_ptr(), None
|
1149 |
+
)
|
1150 |
+
# also treat empty storages as static outputs because we do not need to manage their lifetime
|
1151 |
+
# and they should not participate in checkpointing
|
1152 |
+
is_empty_storage = o.untyped_storage().data_ptr() == 0
|
1153 |
+
if (ref and ref() is not None) or is_empty_storage:
|
1154 |
+
self.output_storage_alias.append(None)
|
1155 |
+
self.static_output_tensors[i] = o
|
1156 |
+
continue
|
1157 |
+
|
1158 |
+
path_ref = self._is_alias_of_live_recorded_tensor(o)
|
1159 |
+
if path_ref is not None:
|
1160 |
+
self._mark_prior_graph_output_as_aliased(path_ref)
|
1161 |
+
self.output_storage_alias.append(AliasesPriorGraphOutput(path_ref))
|
1162 |
+
continue
|
1163 |
+
|
1164 |
+
if o.untyped_storage().data_ptr() in output_new_storages_index:
|
1165 |
+
index = output_new_storages_index[o.untyped_storage().data_ptr()]
|
1166 |
+
self.unaliased_in_all_paths[index] = False
|
1167 |
+
self.output_storage_alias.append(AliasesNewOutput(index))
|
1168 |
+
continue
|
1169 |
+
|
1170 |
+
output_new_storages_index[o.untyped_storage().data_ptr()] = i
|
1171 |
+
self.output_storage_alias.append(UnaliasedStorage)
|
1172 |
+
self.unaliased_in_all_paths[i] = True
|
1173 |
+
|
1174 |
+
if self.stack_traces is None:
|
1175 |
+
self.stack_traces = [None for _ in range(len(outputs))]
|
1176 |
+
else:
|
1177 |
+
assert len(self.stack_traces) == len(
|
1178 |
+
outputs
|
1179 |
+
), "Wrong number of stack traces passed in"
|
1180 |
+
|
1181 |
+
assert not self.outputs_weakrefs
|
1182 |
+
for out, static_output_tensor in zip(outputs, self.static_output_tensors):
|
1183 |
+
if not isinstance(out, torch.Tensor) or static_output_tensor is not None:
|
1184 |
+
self.outputs_weakrefs.append(None)
|
1185 |
+
self.tensor_weakrefs.append(None)
|
1186 |
+
else:
|
1187 |
+
self.outputs_weakrefs.append(StorageWeakRefWrapper(out))
|
1188 |
+
self.tensor_weakrefs.append(TensorWeakRef(out))
|
1189 |
+
|
1190 |
+
self.recorded_liveness_after_graph = self._get_liveness(self.path_weakrefs)
|
1191 |
+
self.checkpointed_caching_state = torch._C._cuda_getCheckpointState(
|
1192 |
+
self.device, self.cuda_graphs_pool
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
# now, get liveness with outputs added
|
1196 |
+
for depth in range(len(self.path_weakrefs)):
|
1197 |
+
for output_index in range(len(self.path_weakrefs[depth])):
|
1198 |
+
if is_live(self.path_weakrefs[depth][output_index]):
|
1199 |
+
self.live_indices_after_graph.append((depth, output_index))
|
1200 |
+
|
1201 |
+
self.debug_check_invariants_after_invocation()
|
1202 |
+
if config.triton.slow_path_cudagraph_asserts:
|
1203 |
+
check_memory_pool(
|
1204 |
+
self.device, self.cuda_graphs_pool, list(self.path_live_weakrefs())
|
1205 |
+
)
|
1206 |
+
|
1207 |
+
def _mark_prior_graph_output_as_aliased(self, index: PathOutputIndex):
|
1208 |
+
"Remove a graph output from the unaliased, cached tensors in an ancestor node"
|
1209 |
+
depth, output_index = index
|
1210 |
+
node = list(self._path_from_root)[depth]
|
1211 |
+
node.unaliased_in_all_paths[output_index] = False
|
1212 |
+
x = self.path_weakrefs[depth][output_index]
|
1213 |
+
assert x is not None
|
1214 |
+
x.remove_extra_reference()
|
1215 |
+
|
1216 |
+
def _initialize_cached_tensors(self):
|
1217 |
+
# we should not be clearing output_weakrefs, and they should be set in the first
|
1218 |
+
# record run
|
1219 |
+
assert len(self.outputs_weakrefs) == len(self.outputs_metadata)
|
1220 |
+
|
1221 |
+
for i, (storage_info, metadata, make_cached) in enumerate(
|
1222 |
+
zip(
|
1223 |
+
self.output_storage_alias,
|
1224 |
+
self.outputs_metadata,
|
1225 |
+
self.unaliased_in_all_paths,
|
1226 |
+
)
|
1227 |
+
):
|
1228 |
+
if not make_cached:
|
1229 |
+
self.cached_tensor_outputs.append(None)
|
1230 |
+
continue
|
1231 |
+
|
1232 |
+
assert storage_info is UnaliasedStorage
|
1233 |
+
assert isinstance(metadata, dict)
|
1234 |
+
s = self.create_storage(metadata)
|
1235 |
+
out = self._reconstruct_from_tensor_metadata(metadata, storage=s)
|
1236 |
+
|
1237 |
+
# XXX: let autograd know that there will be an additional reference to the tensor
|
1238 |
+
# that can be ignored when deciding whether to do gradient buffer inplacing.
|
1239 |
+
# Otherwise, inplacing could differ between tracing and subsequent execution.
|
1240 |
+
# For some models we tested this led to inputs no longer being in cudagraph pools,
|
1241 |
+
# leading to spurious re-recordings.
|
1242 |
+
# It also tells AMP cache that even though the tensor impls cannot be cached
|
1243 |
+
# in dtype conversions.
|
1244 |
+
|
1245 |
+
torch._C._add_cached_tensor(out)
|
1246 |
+
|
1247 |
+
self_ref = weakref.ref(self)
|
1248 |
+
|
1249 |
+
# one reference in our array, and calling sys.getrefcount bumps the refcount by one
|
1250 |
+
def check_refcount(i):
|
1251 |
+
self_loc = self_ref()
|
1252 |
+
if self_loc is None:
|
1253 |
+
return False
|
1254 |
+
return self_loc.get_output_refcount(i) == 2
|
1255 |
+
|
1256 |
+
check = functools.partial(check_refcount, i=i)
|
1257 |
+
|
1258 |
+
self.outputs_weakrefs[i] = StorageWeakRefWrapper(out, extra_ref_check=check)
|
1259 |
+
self.cached_tensor_outputs.append(out)
|
1260 |
+
|
1261 |
+
def get_output_refcount(self, index):
|
1262 |
+
return sys.getrefcount(self.cached_tensor_outputs[index])
|
1263 |
+
|
1264 |
+
@property
|
1265 |
+
def parent(self):
|
1266 |
+
"unwraps the weakref to _parent"
|
1267 |
+
return self._parent() if self._parent is not None else None
|
1268 |
+
|
1269 |
+
@property
|
1270 |
+
def _path_to_root(self):
|
1271 |
+
"Returns all nodes in the path starting at self and ending at root"
|
1272 |
+
node = self
|
1273 |
+
while node:
|
1274 |
+
yield node
|
1275 |
+
node = node.parent
|
1276 |
+
|
1277 |
+
@property
|
1278 |
+
def _path_from_root(self):
|
1279 |
+
"Returns all nodes in the path starting at the root and ending at self"
|
1280 |
+
nodes = reversed(list(self._path_to_root))
|
1281 |
+
yield from nodes
|
1282 |
+
|
1283 |
+
def _is_cuda_graph_recorded_tensor(self, t: torch.Tensor):
|
1284 |
+
"Is this tensor an output of a node in this path"
|
1285 |
+
for output_refs in self.path_weakrefs:
|
1286 |
+
for storage_weak_ref in output_refs:
|
1287 |
+
if storage_weak_ref is None:
|
1288 |
+
continue
|
1289 |
+
# don't need to check liveness of storage since the cuda graph managed
|
1290 |
+
# memory is never released.
|
1291 |
+
data_ptr = storage_weak_ref.data_ptr()
|
1292 |
+
if t.untyped_storage().data_ptr() == data_ptr:
|
1293 |
+
return True
|
1294 |
+
|
1295 |
+
return False
|
1296 |
+
|
1297 |
+
def _is_alias_of_live_recorded_tensor(
|
1298 |
+
self, t: torch.Tensor
|
1299 |
+
) -> Optional[PathOutputIndex]:
|
1300 |
+
for depth, output_refs in enumerate(self.path_weakrefs):
|
1301 |
+
for output_index, storage_ref in enumerate(output_refs):
|
1302 |
+
if (storage_and_ptr := maybe_deref(storage_ref)) is not None:
|
1303 |
+
storage, ptr = storage_and_ptr
|
1304 |
+
if ptr == t.untyped_storage().data_ptr():
|
1305 |
+
return (depth, output_index)
|
1306 |
+
|
1307 |
+
return None
|
1308 |
+
|
1309 |
+
@staticmethod
|
1310 |
+
def _check_liveness(
|
1311 |
+
indices: List[PathOutputIndex],
|
1312 |
+
output_refs: List[List[Optional[StorageWeakRefWrapper]]],
|
1313 |
+
):
|
1314 |
+
"Check that all of the indices specified are dead references"
|
1315 |
+
for depth, output_index in indices:
|
1316 |
+
w = output_refs[depth][output_index]
|
1317 |
+
assert w is not None
|
1318 |
+
if w() is not None:
|
1319 |
+
return False
|
1320 |
+
return True
|
1321 |
+
|
1322 |
+
def add_child(self, function_id: FunctionID, node: CUDAGraphNode):
|
1323 |
+
"Adds node as a a child of self"
|
1324 |
+
self.children[function_id].append(node)
|
1325 |
+
|
1326 |
+
@staticmethod
|
1327 |
+
def _get_different_indices(
|
1328 |
+
prev: List[List[bool]], curr: List[List[bool]]
|
1329 |
+
) -> List[PathOutputIndex]:
|
1330 |
+
"Find indices where the two lists differ."
|
1331 |
+
dead_indices = []
|
1332 |
+
assert len(prev) <= len(curr)
|
1333 |
+
for i, (outputs1, outputs2) in enumerate(zip(prev, curr)):
|
1334 |
+
assert len(outputs1) == len(outputs2)
|
1335 |
+
for j, (output1, output2) in enumerate(zip(outputs1, outputs2)):
|
1336 |
+
if output1 != output2:
|
1337 |
+
dead_indices.append((i, j))
|
1338 |
+
|
1339 |
+
return dead_indices
|
1340 |
+
|
1341 |
+
@staticmethod
|
1342 |
+
def _get_liveness(
|
1343 |
+
weakrefs: List[List[Optional[StorageWeakRefWrapper]]],
|
1344 |
+
) -> List[List[bool]]:
|
1345 |
+
"Maps weakrefs to true if the reference is alive and false otherwise"
|
1346 |
+
if len(weakrefs) == 0:
|
1347 |
+
return []
|
1348 |
+
|
1349 |
+
return [pytree.tree_map(is_live, outputs) for outputs in weakrefs]
|
1350 |
+
|
1351 |
+
def debug_assert_invariants(
|
1352 |
+
self, expected_liveness: List[List[bool]], newly_dead: List[PathOutputIndex]
|
1353 |
+
):
|
1354 |
+
if not config.triton.fast_path_cudagraph_asserts:
|
1355 |
+
return
|
1356 |
+
|
1357 |
+
for i, node in enumerate(self._path_from_root):
|
1358 |
+
assert self.path_weakrefs[i] is node.outputs_weakrefs
|
1359 |
+
|
1360 |
+
nodes = list(self._path_from_root)
|
1361 |
+
|
1362 |
+
live_blocks = get_block_addrs(self.cuda_graphs_pool)
|
1363 |
+
|
1364 |
+
live_storage_data_ptrs = set()
|
1365 |
+
live_storage_weak_ptrs = set()
|
1366 |
+
|
1367 |
+
for depth, outputs_liveness in enumerate(expected_liveness):
|
1368 |
+
for output_idx, output_liveness in enumerate(outputs_liveness):
|
1369 |
+
# tensor can die early, but it can't be alive when it should be dead
|
1370 |
+
w = self.path_weakrefs[depth][output_idx]
|
1371 |
+
if (stor_weak_ptr_and_data_ptr := maybe_deref(w)) is not None:
|
1372 |
+
assert output_liveness
|
1373 |
+
stor_weak_ptr, stor_data_ptr = stor_weak_ptr_and_data_ptr
|
1374 |
+
assert (stor_data_ptr in live_storage_data_ptrs) == (
|
1375 |
+
stor_weak_ptr in live_storage_weak_ptrs
|
1376 |
+
)
|
1377 |
+
live_storage_data_ptrs.add(stor_data_ptr)
|
1378 |
+
live_storage_weak_ptrs.add(stor_weak_ptr)
|
1379 |
+
|
1380 |
+
is_persistent_alias = (
|
1381 |
+
nodes[depth].static_output_tensors[output_idx] is not None
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
if is_persistent_alias:
|
1385 |
+
assert stor_data_ptr not in live_blocks
|
1386 |
+
|
1387 |
+
for depth, output_index in newly_dead:
|
1388 |
+
assert not is_live(self.path_weakrefs[depth][output_index])
|
1389 |
+
|
1390 |
+
def debug_check_invariants_before_invocation(self):
|
1391 |
+
self.debug_assert_invariants(
|
1392 |
+
self.recorded_liveness_before_graph, self.expected_dead_indices_before_graph
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
def debug_check_invariants_after_invocation(self):
|
1396 |
+
self.debug_assert_invariants(
|
1397 |
+
self.recorded_liveness_before_graph, self.expected_dead_indices_after_graph
|
1398 |
+
)
|
1399 |
+
|
1400 |
+
def data_ptrs_dead_since_invocation(self) -> List[int]:
|
1401 |
+
"""
|
1402 |
+
Since this node was invoked, return data ptrs of all tensor outputs that have died
|
1403 |
+
in the current executing tree path.
|
1404 |
+
"""
|
1405 |
+
curr_liveness = self._get_liveness(self.path_weakrefs)
|
1406 |
+
_get_different_indices = self._get_different_indices(
|
1407 |
+
self.recorded_liveness_after_graph, curr_liveness
|
1408 |
+
)
|
1409 |
+
|
1410 |
+
path = list(self._path_from_root)
|
1411 |
+
ptrs_to_deallocate = []
|
1412 |
+
for depth, output_index in _get_different_indices:
|
1413 |
+
ptrs_to_deallocate.append(
|
1414 |
+
path[depth].outputs_metadata[output_index]["data_ptr"]
|
1415 |
+
)
|
1416 |
+
|
1417 |
+
return ptrs_to_deallocate
|
1418 |
+
|
1419 |
+
def path_live_weakrefs(self) -> Iterator[StorageWeakRefWrapper]:
|
1420 |
+
for i, j in self.live_indices_after_graph:
|
1421 |
+
out = self.path_weakrefs[i][j]
|
1422 |
+
if out is not None and is_live(out):
|
1423 |
+
yield out
|
1424 |
+
|
1425 |
+
def remove_node_cached_tensors(self):
|
1426 |
+
for t in self.cached_tensor_outputs:
|
1427 |
+
if t is not None:
|
1428 |
+
torch._C._remove_cached_tensor(t)
|
1429 |
+
self.cached_tensor_outputs.clear()
|
1430 |
+
|
1431 |
+
for i, unaliased in enumerate(self.unaliased_in_all_paths):
|
1432 |
+
if unaliased:
|
1433 |
+
n = self.outputs_weakrefs[i]
|
1434 |
+
assert n is not None
|
1435 |
+
n.remove_extra_reference()
|
1436 |
+
|
1437 |
+
def remove_path_cached_tensors(self):
|
1438 |
+
for node in self._path_from_root:
|
1439 |
+
node.remove_node_cached_tensors()
|
1440 |
+
|
1441 |
+
def clear_path_state(self):
|
1442 |
+
"Clear the path state in this current executing node"
|
1443 |
+
# this doesnt actually do anything right now, leaving it as placeholder
|
1444 |
+
pass
|
1445 |
+
|
1446 |
+
@staticmethod
|
1447 |
+
def _tensor_metadata(x, ignore_storage_offset=True):
|
1448 |
+
assert isinstance(x, torch.Tensor)
|
1449 |
+
# We ignore the storage offset for inputs, but not for outputs
|
1450 |
+
# TODO: - should we make the storage resizable ?
|
1451 |
+
return {
|
1452 |
+
"nbytes": x.untyped_storage().nbytes(),
|
1453 |
+
"data_ptr": x.untyped_storage().data_ptr(),
|
1454 |
+
"size": x.shape,
|
1455 |
+
"stride": x.stride(),
|
1456 |
+
"dtype": x.dtype,
|
1457 |
+
"device": x.device,
|
1458 |
+
"storage_offset": x.storage_offset() if not ignore_storage_offset else 0,
|
1459 |
+
}
|
1460 |
+
|
1461 |
+
def _reconstruct_from_tensor_metadata(
|
1462 |
+
self, metadata: Dict[str, Any], storage=None
|
1463 |
+
) -> Tensor:
|
1464 |
+
s = self.create_storage(metadata) if storage is None else storage
|
1465 |
+
return torch._C._construct_CUDA_Tensor_From_Storage_And_Metadata(metadata, s)
|
1466 |
+
|
1467 |
+
def create_storage(self, metadata):
|
1468 |
+
return torch._C._construct_storage_from_data_pointer(
|
1469 |
+
metadata["data_ptr"], metadata["device"], metadata["nbytes"]
|
1470 |
+
)
|
1471 |
+
|
1472 |
+
def _allocate_and_copy_recording_inputs(
|
1473 |
+
self, inputs
|
1474 |
+
) -> List[Union[torch.Tensor, int]]:
|
1475 |
+
"""
|
1476 |
+
Allocate inputs for non static, non cudagraph managraphed managed tensors in the memory pool
|
1477 |
+
and copy over the tensor values.
|
1478 |
+
"""
|
1479 |
+
|
1480 |
+
torch.cuda.synchronize()
|
1481 |
+
self.stream.wait_stream(torch.cuda.current_stream())
|
1482 |
+
recording_inputs: List[Union[Tensor, int]] = []
|
1483 |
+
|
1484 |
+
with warnings.catch_warnings(record=True), torch.cuda.device(
|
1485 |
+
self.device
|
1486 |
+
), _use_cuda_memory_pool_manager(
|
1487 |
+
self.device,
|
1488 |
+
mem_pool=self.cuda_graphs_pool,
|
1489 |
+
stream=self.stream,
|
1490 |
+
):
|
1491 |
+
for i, inp in enumerate(inputs):
|
1492 |
+
if not isinstance(inp, torch.Tensor):
|
1493 |
+
assert isinstance(inp, int)
|
1494 |
+
recording_inputs.append(inp)
|
1495 |
+
elif i not in self.static_input_idxs:
|
1496 |
+
# static_input does an allocation!
|
1497 |
+
recording_inputs.append(static_input(inp))
|
1498 |
+
# copy over and clear non recording input
|
1499 |
+
self._copy_input(i, recording_inputs[-1], inp)
|
1500 |
+
inputs[i] = None
|
1501 |
+
del inp
|
1502 |
+
else:
|
1503 |
+
recording_inputs.append(inp)
|
1504 |
+
|
1505 |
+
return recording_inputs
|
1506 |
+
|
1507 |
+
def check_invariants(self, inputs: List[Tensor]) -> bool:
|
1508 |
+
"""
|
1509 |
+
Checks if this node can be run. The same pattern of tensor liveness and tensors
|
1510 |
+
managed in the cudagraph private pool must remain stable.
|
1511 |
+
"""
|
1512 |
+
|
1513 |
+
# previously managed data pointers remain stable
|
1514 |
+
for idx in self.cudagraph_managed_idxs:
|
1515 |
+
if inputs[idx].data_ptr() != self.static_input_data_ptrs[idx]:
|
1516 |
+
return False
|
1517 |
+
|
1518 |
+
if not self._check_liveness(
|
1519 |
+
self.expected_dead_indices_before_graph, self.path_weakrefs
|
1520 |
+
):
|
1521 |
+
return False
|
1522 |
+
|
1523 |
+
# the cudagraph managed tensors which died upon recording must also die upon
|
1524 |
+
# this invocation. it is too late to check after we've replayed the graph,
|
1525 |
+
# because we would have already written over their memory.
|
1526 |
+
for idx in self.cudagraph_managed_idxs:
|
1527 |
+
inputs[idx] = None # type: ignore[call-overload]
|
1528 |
+
|
1529 |
+
torch._check(
|
1530 |
+
self._check_liveness(
|
1531 |
+
self.expected_dead_indices_after_graph, self.path_weakrefs
|
1532 |
+
),
|
1533 |
+
lambda: "TODO: graph recording observed an input tensor deallocate during graph "
|
1534 |
+
" recording that did not occur during replay. Please file an issue.",
|
1535 |
+
)
|
1536 |
+
return True
|
1537 |
+
|
1538 |
+
def num_descendants(self) -> int:
|
1539 |
+
"Total number of descendents of this node"
|
1540 |
+
num_desc = 0
|
1541 |
+
for children in self.children.values():
|
1542 |
+
for child in children:
|
1543 |
+
num_desc += 1
|
1544 |
+
num_desc += child.num_descendants()
|
1545 |
+
return num_desc
|
1546 |
+
|
1547 |
+
|
1548 |
+
def get_cudagraph_segments(pool_id):
|
1549 |
+
segments = torch.cuda.memory_snapshot()
|
1550 |
+
return [segment for segment in segments if segment["segment_pool_id"] == pool_id]
|
1551 |
+
|
1552 |
+
|
1553 |
+
def get_block_addrs(pool_id, live_only=True):
|
1554 |
+
blocks = []
|
1555 |
+
|
1556 |
+
for segment in get_cudagraph_segments(pool_id):
|
1557 |
+
addr = segment["address"]
|
1558 |
+
for block in segment["blocks"]:
|
1559 |
+
if block["state"] == "active_allocated" or not live_only:
|
1560 |
+
blocks.append(addr)
|
1561 |
+
|
1562 |
+
addr += block["size"]
|
1563 |
+
|
1564 |
+
return blocks
|
1565 |
+
|
1566 |
+
|
1567 |
+
def format_tb(frames):
|
1568 |
+
formatted_traceback = []
|
1569 |
+
|
1570 |
+
for entry in frames:
|
1571 |
+
formatted_traceback.append(
|
1572 |
+
traceback.FrameSummary(entry["filename"], entry["line"], entry["name"])
|
1573 |
+
)
|
1574 |
+
|
1575 |
+
return "".join(traceback.format_list(formatted_traceback))
|
1576 |
+
|
1577 |
+
|
1578 |
+
def check_memory_pool(device, pool_id, live_storages_ptrs: List[StorageWeakRefWrapper]):
|
1579 |
+
assert all(
|
1580 |
+
isinstance(elem, StorageWeakRefWrapper) for elem in live_storages_ptrs
|
1581 |
+
) # noqa: C419
|
1582 |
+
unique_storages = {stor.data_ptr() for stor in live_storages_ptrs if stor()}
|
1583 |
+
|
1584 |
+
# check if there is a divergence first, then do the expensive snapshot call after
|
1585 |
+
# we know it will error
|
1586 |
+
if torch._C._cuda_checkPoolLiveAllocations(device, pool_id, unique_storages):
|
1587 |
+
return
|
1588 |
+
|
1589 |
+
# at this point we are past the fast-path. we have seen rare cases where a dead tensor is dead,
|
1590 |
+
# but hasn't been gc'd yet, and gives false positive for allocated_not_in_live_storages
|
1591 |
+
gc.collect()
|
1592 |
+
|
1593 |
+
segments = get_cudagraph_segments(pool_id)
|
1594 |
+
|
1595 |
+
allocated_not_in_live_storages = {}
|
1596 |
+
|
1597 |
+
for segment in segments:
|
1598 |
+
addr = segment["address"]
|
1599 |
+
for block in segment["blocks"]:
|
1600 |
+
if block["state"] == "active_allocated":
|
1601 |
+
if addr not in unique_storages:
|
1602 |
+
allocated_not_in_live_storages[addr] = block
|
1603 |
+
else:
|
1604 |
+
unique_storages.remove(addr)
|
1605 |
+
|
1606 |
+
addr += block["size"]
|
1607 |
+
|
1608 |
+
torch._check(
|
1609 |
+
len(unique_storages) == 0,
|
1610 |
+
lambda: f"These storage data ptrs are not allocated in pool {pool_id} but should be {unique_storages}",
|
1611 |
+
)
|
1612 |
+
|
1613 |
+
if allocated_not_in_live_storages != 0:
|
1614 |
+
formatted = []
|
1615 |
+
for dp, block in allocated_not_in_live_storages.items():
|
1616 |
+
trace = format_tb(block.get("frames", []))
|
1617 |
+
formatted.append(f"Data Pointer: {dp}, history: \n{trace}")
|
1618 |
+
formatted_s = "\n".join(formatted)
|
1619 |
+
msg = (
|
1620 |
+
f"These live storage data ptrs are in the cudagraph pool but not "
|
1621 |
+
f"accounted for as an output of cudagraph trees: \n\n{formatted_s}"
|
1622 |
+
)
|
1623 |
+
raise RuntimeError(msg)
|
1624 |
+
|
1625 |
+
|
1626 |
+
class ExecutionState(Enum):
|
1627 |
+
"""
|
1628 |
+
Represents the state of the CUDAGraph Tree. Will be None if there is no live current memory allocated
|
1629 |
+
in the cuda graph pool. Otherwise will reflect the state of the most recently executed node.
|
1630 |
+
"""
|
1631 |
+
|
1632 |
+
NONE = auto()
|
1633 |
+
WARMUP = auto()
|
1634 |
+
RECORDING = auto()
|
1635 |
+
EXECUTION = auto()
|
1636 |
+
|
1637 |
+
|
1638 |
+
class CompilationMode(Enum):
|
1639 |
+
FORWARD = auto()
|
1640 |
+
BACKWARD = auto()
|
1641 |
+
INFERENCE = auto()
|
1642 |
+
|
1643 |
+
|
1644 |
+
class CUDAGraphTreeManager:
|
1645 |
+
"""
|
1646 |
+
Groups individual recordings or executions of cuda graphs into a tree of recordings,
|
1647 |
+
and checks required invariants, and manages warmups of graphs.
|
1648 |
+
|
1649 |
+
When graphs are recorded in the same tree, it enforces subsequent execution
|
1650 |
+
to follow the same order and have the same output tensor livespans. To remove
|
1651 |
+
unnecessary coupling of cuda graphs (and additional imposed invariants),
|
1652 |
+
the tree manager will end a currently recording tree whenever it is valid - when
|
1653 |
+
the memory pool no longer has any live allocations.
|
1654 |
+
|
1655 |
+
We ignore outputs from a previous generation that correspond to prior model outputs.
|
1656 |
+
Currently this is hardcoded `GenerationTracker.generation` tracked in torch dynamo.
|
1657 |
+
# TODO: make generation increment configurable, warn on overwrite.
|
1658 |
+
|
1659 |
+
We run graph warmups in the cudagraph memory pool and return the result on the first invocation
|
1660 |
+
of a function. For many models it is important to reclaim activations as you run the backward.
|
1661 |
+
If we were to warm up the model and keep an extra copy of the inputs around to subsequently
|
1662 |
+
use for recording, we would incur a memory penalty. Additionally, if we are part way through training
|
1663 |
+
your model and need to recompile, memory will be allocated to the cuda graph pool, so we run this
|
1664 |
+
warmup run in the cuda graph memory pool. As for recording, warm up needs the state of live tensors
|
1665 |
+
to be accurately reflected so we checkpoint the allocator state if we need to warm up following graph
|
1666 |
+
replay.
|
1667 |
+
"""
|
1668 |
+
|
1669 |
+
def __init__(self, device_index: int):
|
1670 |
+
# roots are functions which have no dependencies on an other node. I.e.,
|
1671 |
+
# when they are first invoked, none of their inputs are outputs are outputs
|
1672 |
+
# of another node, nor are there any live outputs of another node whose
|
1673 |
+
# liveness would create a dependency.
|
1674 |
+
self.roots: Dict[FunctionID, List[CUDAGraphNode]] = defaultdict(list)
|
1675 |
+
|
1676 |
+
# mapping from function id to wrapped function
|
1677 |
+
self.ids_to_funcs: Dict[FunctionID, WrappedFunction] = {}
|
1678 |
+
|
1679 |
+
self.ids_to_stack_traces: Dict[FunctionID, StackTraces] = {}
|
1680 |
+
|
1681 |
+
self.warmed_up_functions: Set[FunctionID] = set()
|
1682 |
+
# if we fail to increment generation, and are stuck warming up,
|
1683 |
+
# only warn on each function once
|
1684 |
+
self.warned_functions: Set[FunctionID] = set()
|
1685 |
+
torch._C._set_cached_tensors_enabled(True)
|
1686 |
+
|
1687 |
+
# NB: cuda caching allocator will remember the stream a segment is allocated to
|
1688 |
+
# and only allocate that segment to the same stream. we need to use a single stream
|
1689 |
+
# for all allocations to the memory pool, otherwise the allocations to separate streams
|
1690 |
+
# will not be reused; separate recordings would have use the same memory pool, but not
|
1691 |
+
# the same memory.
|
1692 |
+
|
1693 |
+
with torch.cuda.device(device_index):
|
1694 |
+
torch.cuda.synchronize()
|
1695 |
+
self.stream = torch.cuda.Stream()
|
1696 |
+
self.stream.wait_stream(torch.cuda.current_stream())
|
1697 |
+
|
1698 |
+
# Keeps Memory Pool Alive
|
1699 |
+
self.graph: Optional[torch.cuda.CUDAGraph] = torch.cuda.CUDAGraph()
|
1700 |
+
self.cuda_graphs_thread_pool = torch.cuda.graph_pool_handle()
|
1701 |
+
|
1702 |
+
with warnings.catch_warnings(record=True), torch.cuda.graph(
|
1703 |
+
self.graph,
|
1704 |
+
pool=self.cuda_graphs_thread_pool,
|
1705 |
+
stream=self.stream,
|
1706 |
+
capture_error_mode="thread_local",
|
1707 |
+
):
|
1708 |
+
pass
|
1709 |
+
|
1710 |
+
self.graph_counter = itertools.count(0)
|
1711 |
+
self.func_counter = itertools.count(0)
|
1712 |
+
|
1713 |
+
# whether we the current node is in a state of warmup, recording, execution. If
|
1714 |
+
# there is no current node the state will be ExecutionState.None.
|
1715 |
+
self.path_state = ExecutionState.NONE
|
1716 |
+
self.device_index = device_index
|
1717 |
+
|
1718 |
+
# the most recently invoked cudagraph wrapping of a function. Will be None
|
1719 |
+
# when there is no output from a previous recording or execution whose memory
|
1720 |
+
# we need to respect in the cuda caching allocation. If you incremented generation,
|
1721 |
+
# this will also be none, as ignore those allocations.
|
1722 |
+
self.current_node: Optional[CUDAGraphNode] = None
|
1723 |
+
|
1724 |
+
# current generation of cudagraph invocations. when torch.compile is run
|
1725 |
+
# we increment the current generation. are willing to ignore live outputs
|
1726 |
+
# of a previous generation in checking liveness.
|
1727 |
+
self.current_gen: int = -1
|
1728 |
+
|
1729 |
+
# number of instances we are in execution and failed to match to an
|
1730 |
+
# existing child
|
1731 |
+
self.debug_fail_counter = 0
|
1732 |
+
# number of instances we had to checkpoint the function
|
1733 |
+
self.debug_checkpointing_counter = 0
|
1734 |
+
|
1735 |
+
self.id_to_mode: Dict[FunctionID, CompilationMode] = {}
|
1736 |
+
|
1737 |
+
# Note: [Backward Generation Handling]
|
1738 |
+
# We generally perform a sequence of forward executions followed by backward executions.
|
1739 |
+
# If multiple torch.compile wrapped forwards are executed with their backwards pending,
|
1740 |
+
# we should not disregard the outputs from a prior torch.compile since the entire training
|
1741 |
+
# loop hasn't completed. Occasionally, a backward pass corresponding to a forward pass may
|
1742 |
+
# not be executed, so we cannot wait for all pending forward pass backward completions, so
|
1743 |
+
# we cannot wait for all backwards to have been invoked. Instead we wait for a single backward
|
1744 |
+
# invocation. Triggering a backward pass typically doesn't lead to another torch.compile
|
1745 |
+
# invocation, making it less likely for the generation to increase between multiple
|
1746 |
+
# backward calls. The following use case is covered by this approach:
|
1747 |
+
# mod1 = torch.compile(...)
|
1748 |
+
# mod2 = torch.compile(...)
|
1749 |
+
# mod2(mod1(x)).sum().backward()
|
1750 |
+
|
1751 |
+
self.running_forwards_with_pending_backwards = False
|
1752 |
+
|
1753 |
+
def run(self, new_inputs: List[Tensor], function_id: FunctionID):
|
1754 |
+
assert self.graph is not None, "Running CUDAGraph after shutdown"
|
1755 |
+
out = self._run(new_inputs, function_id)
|
1756 |
+
|
1757 |
+
# The forwards are only pending following invocation, not before
|
1758 |
+
mode = self.id_to_mode[function_id]
|
1759 |
+
if mode == CompilationMode.FORWARD:
|
1760 |
+
self.running_forwards_with_pending_backwards = True
|
1761 |
+
elif mode == CompilationMode.BACKWARD:
|
1762 |
+
self.running_forwards_with_pending_backwards = False
|
1763 |
+
|
1764 |
+
return out
|
1765 |
+
|
1766 |
+
def set_to_running_backward(self):
|
1767 |
+
self.running_forwards_with_pending_backwards = False
|
1768 |
+
|
1769 |
+
def _run(self, new_inputs: List[Tensor], function_id: FunctionID):
|
1770 |
+
# we will try to end the current execution lazily, since
|
1771 |
+
# we dont want to do unnecessary checking of the existing outputs
|
1772 |
+
# on the hot path, but both recording and warmup only happen once
|
1773 |
+
# so we check up front
|
1774 |
+
if self.in_recording:
|
1775 |
+
self.try_end_curr_recording(function_id)
|
1776 |
+
|
1777 |
+
if self.in_warmup:
|
1778 |
+
self.try_end_curr_warmup(function_id)
|
1779 |
+
|
1780 |
+
# warming up a function and subsequentally recording may use different memory addresses
|
1781 |
+
# because both depend on the state of the caching allocator. if we warm up graph A,
|
1782 |
+
# then warm up graph B and make more allocations, the subsequent recording of A will not
|
1783 |
+
# necessarily use the same addresses as in the warm up. Thus any warm up of a node can only
|
1784 |
+
# be followed by warm up runs.
|
1785 |
+
if (
|
1786 |
+
not (
|
1787 |
+
function_id in self.warmed_up_functions
|
1788 |
+
or config.triton.skip_cudagraph_warmup
|
1789 |
+
)
|
1790 |
+
) or self.in_warmup:
|
1791 |
+
# If we are in the middle of executing cuda graphs, then we need to checkpoint memory state.
|
1792 |
+
# Both Recording and Warmup will be reflected in the allocator and dont need changes
|
1793 |
+
if self.path_state == ExecutionState.EXECUTION:
|
1794 |
+
self.apply_checkpoint_execution_state_in_allocator()
|
1795 |
+
|
1796 |
+
return self.run_eager(new_inputs, function_id)
|
1797 |
+
|
1798 |
+
child_nodes = (
|
1799 |
+
self.roots if self.current_node is None else self.current_node.children
|
1800 |
+
)
|
1801 |
+
|
1802 |
+
if not self.in_recording:
|
1803 |
+
for child in child_nodes[function_id]:
|
1804 |
+
# here we are checking memory consistency between recording and execution,
|
1805 |
+
# as well as things like stability of tensor locations, etc
|
1806 |
+
# and other
|
1807 |
+
if child.check_invariants(new_inputs):
|
1808 |
+
return self.execute_node(child, new_inputs)
|
1809 |
+
|
1810 |
+
# now that we know the new function can't be run as a child of the
|
1811 |
+
# current node, if it is a root, try to end the current execution.
|
1812 |
+
# as noted above, we want to do this lazily to avoid having to
|
1813 |
+
# check all existing outputs
|
1814 |
+
if self.current_node is not None and function_id in self.roots:
|
1815 |
+
self.try_end_curr_execution()
|
1816 |
+
|
1817 |
+
# run again to hit the root matching case which must succeed
|
1818 |
+
if self.current_node is None:
|
1819 |
+
return self.run(new_inputs, function_id)
|
1820 |
+
|
1821 |
+
# at this point, we necessarily will do a new recording
|
1822 |
+
self.debug_fail_counter += 1
|
1823 |
+
|
1824 |
+
self.try_end_curr_execution()
|
1825 |
+
if self.current_node is not None:
|
1826 |
+
self.apply_checkpoint_execution_state_in_allocator()
|
1827 |
+
|
1828 |
+
# now, we are in a recording state !
|
1829 |
+
return self.record_function(new_inputs, function_id)
|
1830 |
+
|
1831 |
+
def shutdown(self):
|
1832 |
+
"""
|
1833 |
+
Remove all cached tensors in all nodes. Because cached tensors can hold gradients which in turn
|
1834 |
+
might reference a backward which invokes a CUDA Graph Node, we have to manually clear them on shutdown
|
1835 |
+
to avoid a reference cycle.
|
1836 |
+
"""
|
1837 |
+
nodes = []
|
1838 |
+
for roots in self.roots.values():
|
1839 |
+
nodes.extend(roots)
|
1840 |
+
|
1841 |
+
while nodes:
|
1842 |
+
node = nodes.pop()
|
1843 |
+
for children in node.children.values():
|
1844 |
+
nodes.extend(children)
|
1845 |
+
node.remove_node_cached_tensors()
|
1846 |
+
node.graph = None
|
1847 |
+
|
1848 |
+
self.graph = None
|
1849 |
+
self.roots = None # type: ignore[assignment]
|
1850 |
+
self.current_node = None
|
1851 |
+
|
1852 |
+
def record_function(self, new_inputs, function_id) -> List[Optional[Tensor]]:
|
1853 |
+
graph_id = self.new_graph_id()
|
1854 |
+
log.debug(
|
1855 |
+
"Recording function %d of graph recording id %d",
|
1856 |
+
function_id.id,
|
1857 |
+
graph_id.id,
|
1858 |
+
)
|
1859 |
+
torch.cuda.synchronize()
|
1860 |
+
node = CUDAGraphNode(
|
1861 |
+
self.ids_to_funcs[function_id],
|
1862 |
+
graph_id,
|
1863 |
+
self.current_node,
|
1864 |
+
new_inputs,
|
1865 |
+
self.cuda_graphs_thread_pool,
|
1866 |
+
self.device_index,
|
1867 |
+
self.ids_to_stack_traces[function_id],
|
1868 |
+
self.stream,
|
1869 |
+
)
|
1870 |
+
if self.current_node is None:
|
1871 |
+
self.roots[function_id].append(node)
|
1872 |
+
else:
|
1873 |
+
self.current_node.add_child(function_id, node)
|
1874 |
+
self.current_node = node
|
1875 |
+
self.path_state = ExecutionState.RECORDING
|
1876 |
+
self.update_generation()
|
1877 |
+
torch.cuda.synchronize()
|
1878 |
+
return node.run_first_inputs(new_inputs)
|
1879 |
+
|
1880 |
+
def execute_node(self, node: CUDAGraphNode, new_inputs) -> List[Optional[Tensor]]:
|
1881 |
+
self.current_node = node
|
1882 |
+
self.path_state = ExecutionState.EXECUTION
|
1883 |
+
self.update_generation()
|
1884 |
+
return node.run(new_inputs)
|
1885 |
+
|
1886 |
+
def run_eager(self, new_inputs, function_id: FunctionID):
|
1887 |
+
# this is only stored on current node, because when we start a new path,
|
1888 |
+
# we will deallocate it
|
1889 |
+
already_warm = function_id in self.warmed_up_functions
|
1890 |
+
if not already_warm:
|
1891 |
+
log.debug("Running warmup of function %d", function_id.id)
|
1892 |
+
else:
|
1893 |
+
log.debug(
|
1894 |
+
"Running eager of function %d because ancestor needed to warm up",
|
1895 |
+
function_id.id,
|
1896 |
+
)
|
1897 |
+
self.warmed_up_functions.add(function_id)
|
1898 |
+
node = CUDAWarmupNode(
|
1899 |
+
self.ids_to_funcs[function_id],
|
1900 |
+
self.current_node,
|
1901 |
+
self.cuda_graphs_thread_pool,
|
1902 |
+
self.graph,
|
1903 |
+
self.device_index,
|
1904 |
+
self.ids_to_stack_traces[function_id],
|
1905 |
+
self.stream,
|
1906 |
+
already_warm,
|
1907 |
+
)
|
1908 |
+
self.current_node = node
|
1909 |
+
self.path_state = ExecutionState.WARMUP
|
1910 |
+
self.update_generation()
|
1911 |
+
return node.run(new_inputs)
|
1912 |
+
|
1913 |
+
def new_graph_id(self) -> GraphID:
|
1914 |
+
return GraphID(next(self.graph_counter))
|
1915 |
+
|
1916 |
+
def new_func_id(self) -> FunctionID:
|
1917 |
+
return FunctionID(next(self.func_counter))
|
1918 |
+
|
1919 |
+
def add_function(
|
1920 |
+
self,
|
1921 |
+
model,
|
1922 |
+
inputs,
|
1923 |
+
static_input_idxs,
|
1924 |
+
stack_traces,
|
1925 |
+
mode,
|
1926 |
+
constants,
|
1927 |
+
) -> Tuple[Callable[..., Any], List[Optional[Tensor]]]:
|
1928 |
+
id = self.new_func_id()
|
1929 |
+
self.ids_to_stack_traces[id] = stack_traces
|
1930 |
+
self.ids_to_funcs[id] = WrappedFunction(
|
1931 |
+
model,
|
1932 |
+
static_input_idxs,
|
1933 |
+
id,
|
1934 |
+
tuple(t for t in constants if isinstance(t, torch.Tensor) and t.is_cuda),
|
1935 |
+
)
|
1936 |
+
self.id_to_mode[id] = mode
|
1937 |
+
fn = functools.partial(self.run, function_id=id)
|
1938 |
+
|
1939 |
+
# container needs to set clean up when fn dies
|
1940 |
+
get_container(self.device_index).add_strong_reference(fn)
|
1941 |
+
return fn, fn(inputs)
|
1942 |
+
|
1943 |
+
@property
|
1944 |
+
def in_recording(self):
|
1945 |
+
return self.path_state == ExecutionState.RECORDING
|
1946 |
+
|
1947 |
+
@property
|
1948 |
+
def in_warmup(self):
|
1949 |
+
return self.path_state == ExecutionState.WARMUP
|
1950 |
+
|
1951 |
+
def get_roots(self) -> Iterator[CUDAGraphNode]:
|
1952 |
+
for nodes in self.roots.values():
|
1953 |
+
yield from nodes
|
1954 |
+
|
1955 |
+
@property
|
1956 |
+
def current_node(self):
|
1957 |
+
return self._current_node
|
1958 |
+
|
1959 |
+
@current_node.setter
|
1960 |
+
def current_node(self, value):
|
1961 |
+
self._current_node = value
|
1962 |
+
if value is None:
|
1963 |
+
self.path_state = ExecutionState.NONE
|
1964 |
+
|
1965 |
+
def update_generation(self):
|
1966 |
+
self.current_gen = self.get_curr_generation()
|
1967 |
+
|
1968 |
+
@staticmethod
|
1969 |
+
def get_curr_generation() -> int:
|
1970 |
+
if MarkStepBox.mark_step_counter != 0:
|
1971 |
+
return MarkStepBox.mark_step_counter
|
1972 |
+
|
1973 |
+
return GenerationTracker.generation
|
1974 |
+
|
1975 |
+
@staticmethod
|
1976 |
+
def user_invoked_mark_step():
|
1977 |
+
return MarkStepBox.mark_step_counter != 0
|
1978 |
+
|
1979 |
+
def can_start_new_generation(self) -> bool:
|
1980 |
+
if not self.in_new_torch_compile_invocation():
|
1981 |
+
return False
|
1982 |
+
|
1983 |
+
if self.user_invoked_mark_step():
|
1984 |
+
return True
|
1985 |
+
|
1986 |
+
return not self.running_forwards_with_pending_backwards
|
1987 |
+
|
1988 |
+
def in_new_torch_compile_invocation(self):
|
1989 |
+
return self.current_gen != self.get_curr_generation()
|
1990 |
+
|
1991 |
+
def try_end_curr_recording(self, function_id: FunctionID) -> None:
|
1992 |
+
"""
|
1993 |
+
Check if the current recording can be terminated, either because all outputs of the
|
1994 |
+
previously recorded node are dead or because it was executed in a different
|
1995 |
+
generation. Will set current_node to None and in_recording to False if successful.
|
1996 |
+
"""
|
1997 |
+
assert self.in_recording
|
1998 |
+
assert self.current_node is not None
|
1999 |
+
|
2000 |
+
# multiple invocations, allow overwriting the previous generation
|
2001 |
+
if self.can_start_new_generation():
|
2002 |
+
self.dealloc_current_path_weakrefs()
|
2003 |
+
self.clear_current_path_state_and_set_to_none()
|
2004 |
+
return
|
2005 |
+
|
2006 |
+
if self.current_node.all_outputs_are_dead():
|
2007 |
+
self.clear_current_path_state_and_set_to_none()
|
2008 |
+
return
|
2009 |
+
|
2010 |
+
self.check_warn_on_unable_to_start_executing(function_id)
|
2011 |
+
|
2012 |
+
def try_end_curr_execution(self) -> None:
|
2013 |
+
"""
|
2014 |
+
Check if the current executing node can be terminated, either because all outputs of the
|
2015 |
+
previously executed node are dead or because it was executed in a different generation.
|
2016 |
+
Will set current_node to None if successful.
|
2017 |
+
"""
|
2018 |
+
|
2019 |
+
assert not self.in_recording
|
2020 |
+
if self.current_node is None:
|
2021 |
+
return
|
2022 |
+
|
2023 |
+
if self.can_start_new_generation():
|
2024 |
+
self.clear_current_path_state_and_set_to_none()
|
2025 |
+
return
|
2026 |
+
|
2027 |
+
if self.current_node.all_outputs_are_dead():
|
2028 |
+
self.clear_current_path_state_and_set_to_none()
|
2029 |
+
|
2030 |
+
def try_end_curr_warmup(self, function_id: FunctionID):
|
2031 |
+
if self.can_start_new_generation():
|
2032 |
+
self.dealloc_current_path_weakrefs()
|
2033 |
+
self.current_node = None
|
2034 |
+
return
|
2035 |
+
|
2036 |
+
if self.current_node.all_outputs_are_dead():
|
2037 |
+
self.current_node = None
|
2038 |
+
return
|
2039 |
+
|
2040 |
+
self.check_warn_on_unable_to_start_executing(function_id)
|
2041 |
+
|
2042 |
+
def check_warn_on_unable_to_start_executing(self, function_id: FunctionID):
|
2043 |
+
"Warn if we in a potential loop where we are unable to hit fast path"
|
2044 |
+
if (
|
2045 |
+
function_id in self.warned_functions
|
2046 |
+
or not self.in_new_torch_compile_invocation()
|
2047 |
+
):
|
2048 |
+
return
|
2049 |
+
|
2050 |
+
existing_nodes = [
|
2051 |
+
node
|
2052 |
+
for node in self.current_node._path_from_root
|
2053 |
+
if node.wrapped_function.id == function_id
|
2054 |
+
]
|
2055 |
+
|
2056 |
+
if len(existing_nodes) <= 1:
|
2057 |
+
return
|
2058 |
+
|
2059 |
+
# repeated same pattern
|
2060 |
+
parents = {
|
2061 |
+
n.parent.wrapped_function.id
|
2062 |
+
for n in itertools.chain(existing_nodes, (self.current_node,))
|
2063 |
+
if n.parent is not None
|
2064 |
+
}
|
2065 |
+
if len(parents) == len(existing_nodes):
|
2066 |
+
return
|
2067 |
+
|
2068 |
+
self.warned_functions.add(function_id)
|
2069 |
+
warnings.warn(
|
2070 |
+
"Unable to hit fast path of CUDAGraphs because of pending, uninvoked backwards. "
|
2071 |
+
"Consider running with torch.no_grad() or using torch.compiler.cudagraph_mark_step_begin() "
|
2072 |
+
"before each model invocation"
|
2073 |
+
)
|
2074 |
+
|
2075 |
+
def dealloc_current_path_weakrefs(self):
|
2076 |
+
# TODO: we could also allow the these weak refs to continue to be allocated,
|
2077 |
+
# but that adds some complications.
|
2078 |
+
for node in self.current_node._path_from_root:
|
2079 |
+
assert len(node.tensor_weakrefs) == len(node.stack_traces)
|
2080 |
+
for t, stack_trace in zip(node.tensor_weakrefs, node.stack_traces):
|
2081 |
+
ten = None if t is None else t()
|
2082 |
+
if ten is None:
|
2083 |
+
continue
|
2084 |
+
|
2085 |
+
stack_trace = (
|
2086 |
+
stack_trace.strip()
|
2087 |
+
if stack_trace
|
2088 |
+
else "[Could not find stack trace]"
|
2089 |
+
)
|
2090 |
+
msg = (
|
2091 |
+
"Error: accessing tensor output of CUDAGraphs that has been overwritten by a subsequent run. "
|
2092 |
+
f"Stack trace: {stack_trace}. "
|
2093 |
+
"To prevent overwriting, clone the tensor outside of torch.compile() "
|
2094 |
+
"or call torch.compiler.cudagraph_mark_step_begin() before each model invocation."
|
2095 |
+
)
|
2096 |
+
torch._C._set_storage_access_error_msg(ten, msg)
|
2097 |
+
|
2098 |
+
deleted = set()
|
2099 |
+
for storage_ref in self.current_node.path_live_weakrefs():
|
2100 |
+
if storage_ref() and storage_ref.data_ptr() not in deleted:
|
2101 |
+
deleted.add(storage_ref.data_ptr())
|
2102 |
+
torch._C._free_And_Remove_DeleterFn(storage_ref())
|
2103 |
+
|
2104 |
+
def clear_current_path_state_and_set_to_none(self):
|
2105 |
+
self.current_node.clear_path_state()
|
2106 |
+
self.current_node = None
|
2107 |
+
|
2108 |
+
def apply_checkpoint_execution_state_in_allocator(self):
|
2109 |
+
"""
|
2110 |
+
Checkpoint the current execution state in the caching allocator so that
|
2111 |
+
additional cudagraph recordings can be made respecting existent live storages.
|
2112 |
+
"""
|
2113 |
+
self.debug_checkpointing_counter += 1
|
2114 |
+
log.debug(
|
2115 |
+
"Checkpointing cuda caching allocator state. Number of checkpoints %d",
|
2116 |
+
self.debug_checkpointing_counter,
|
2117 |
+
)
|
2118 |
+
|
2119 |
+
state = self.current_node.checkpointed_caching_state
|
2120 |
+
device = self.current_node.device
|
2121 |
+
assert state is not None and device is not None
|
2122 |
+
|
2123 |
+
# currently we deallocate on instead of allowing stale recordings
|
2124 |
+
stale_storages: List[int] = []
|
2125 |
+
|
2126 |
+
# remove cached tensors, otherwise they would prevent memory from being
|
2127 |
+
# reclaimed in subsequent recordings
|
2128 |
+
self.current_node.remove_path_cached_tensors()
|
2129 |
+
live_storages_wrappers = list(self.current_node.path_live_weakrefs())
|
2130 |
+
|
2131 |
+
live_storages_weak_refs = [t() for t in live_storages_wrappers]
|
2132 |
+
ptrs_to_deallocate = self.current_node.data_ptrs_dead_since_invocation()
|
2133 |
+
torch._C._cuda_setCheckpointPoolState(
|
2134 |
+
device, state, stale_storages, live_storages_weak_refs
|
2135 |
+
)
|
2136 |
+
|
2137 |
+
# NB: deduplicate aliased outputs
|
2138 |
+
for ptr in set(ptrs_to_deallocate):
|
2139 |
+
torch._C._cuda_cudaCachingAllocator_raw_delete(ptr)
|
2140 |
+
|
2141 |
+
# Now the live blocks should be exactly equal to the live storages in private pool
|
2142 |
+
if config.triton.slow_path_cudagraph_asserts:
|
2143 |
+
check_memory_pool(
|
2144 |
+
self.device_index, self.cuda_graphs_thread_pool, live_storages_wrappers
|
2145 |
+
)
|
2146 |
+
for wrapper in live_storages_wrappers:
|
2147 |
+
assert wrapper()
|
2148 |
+
assert torch._C._has_Standard_Deleter(wrapper())
|
2149 |
+
assert wrapper.data_ptr() not in ptrs_to_deallocate
|
2150 |
+
|
2151 |
+
def live_cudagraph_pool_storages_in_curr_execution(
|
2152 |
+
self,
|
2153 |
+
) -> List[StorageWeakRefPointer]:
|
2154 |
+
if self.current_node is None:
|
2155 |
+
return []
|
2156 |
+
# explicitly ignoring previous recorded outputs from past path
|
2157 |
+
return [t() for t in self.current_node.path_live_weakrefs()]
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/debug.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import contextlib
|
3 |
+
import cProfile
|
4 |
+
import dataclasses
|
5 |
+
import functools
|
6 |
+
import itertools
|
7 |
+
import logging
|
8 |
+
import os
|
9 |
+
import os.path
|
10 |
+
import pickle
|
11 |
+
import pstats
|
12 |
+
import shutil
|
13 |
+
import subprocess
|
14 |
+
from typing import Any, Dict, List, Optional
|
15 |
+
from unittest.mock import patch
|
16 |
+
|
17 |
+
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import fx as fx
|
21 |
+
|
22 |
+
from torch._dynamo.repro.after_aot import save_graph_repro, wrap_compiler_debug
|
23 |
+
from torch._dynamo.utils import get_debug_dir
|
24 |
+
from torch.fx.graph_module import GraphModule
|
25 |
+
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
|
26 |
+
from torch.fx.passes.tools_common import legalize_graph
|
27 |
+
from torch.utils._pytree import tree_map
|
28 |
+
|
29 |
+
from . import config, ir # noqa: F811, this is needed
|
30 |
+
from .scheduler import (
|
31 |
+
BaseSchedulerNode,
|
32 |
+
FusedSchedulerNode,
|
33 |
+
NopKernelSchedulerNode,
|
34 |
+
OutputNode,
|
35 |
+
SchedulerNode,
|
36 |
+
)
|
37 |
+
from .virtualized import V
|
38 |
+
|
39 |
+
log = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
SchedulerNodeList = List[Any]
|
42 |
+
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
|
43 |
+
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
|
44 |
+
|
45 |
+
|
46 |
+
@functools.lru_cache(None)
|
47 |
+
def has_dot() -> bool:
|
48 |
+
try:
|
49 |
+
subprocess.check_output(["which", "dot"], stderr=subprocess.PIPE)
|
50 |
+
return True
|
51 |
+
except subprocess.SubprocessError:
|
52 |
+
return False
|
53 |
+
|
54 |
+
|
55 |
+
def draw_buffers(nodes: List[BaseSchedulerNode], print_graph=False, fname=None):
|
56 |
+
"""
|
57 |
+
Draw a graph in fname.svg.
|
58 |
+
"""
|
59 |
+
if not has_dot():
|
60 |
+
log.warning("draw_buffers() requires `graphviz` package")
|
61 |
+
return
|
62 |
+
|
63 |
+
if fname is None:
|
64 |
+
fname = get_graph_being_compiled()
|
65 |
+
|
66 |
+
graph = create_fx_from_snodes(nodes)
|
67 |
+
|
68 |
+
for node in graph.nodes:
|
69 |
+
if "fusion_meta" not in node.meta:
|
70 |
+
continue
|
71 |
+
group = node.meta["fusion_meta"].group
|
72 |
+
if isinstance(group, tuple):
|
73 |
+
if isinstance(group[1], int):
|
74 |
+
group = (group[1],)
|
75 |
+
else:
|
76 |
+
group = group[1]
|
77 |
+
|
78 |
+
# gather meta data
|
79 |
+
dtype = None
|
80 |
+
if isinstance(node, ir.ComputedBuffer):
|
81 |
+
dtype = node.data.dtype
|
82 |
+
|
83 |
+
metadata = TensorMetadata(group, dtype, None, None, None, None, None)
|
84 |
+
node.meta["tensor_meta"] = metadata
|
85 |
+
|
86 |
+
if print_graph:
|
87 |
+
print(graph)
|
88 |
+
|
89 |
+
gm = GraphModule({}, graph)
|
90 |
+
legalize_graph(gm)
|
91 |
+
gm.graph.lint()
|
92 |
+
draw_graph(
|
93 |
+
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def create_fx_from_snodes(snodes: List[BaseSchedulerNode]) -> fx.Graph:
|
98 |
+
"""
|
99 |
+
Creates a FX Graph from a list of SchedulerNode objects.
|
100 |
+
"""
|
101 |
+
|
102 |
+
def get_fake_func(name):
|
103 |
+
def func1(*args):
|
104 |
+
return 0
|
105 |
+
|
106 |
+
func1.__name__ = name
|
107 |
+
return func1
|
108 |
+
|
109 |
+
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
|
110 |
+
|
111 |
+
buf_to_fx_node = {}
|
112 |
+
graph = torch.fx.Graph()
|
113 |
+
first_node = None
|
114 |
+
|
115 |
+
outputs = []
|
116 |
+
group: Any = None
|
117 |
+
# create call_function node for each Buffer and Kernel
|
118 |
+
for snode in snodes:
|
119 |
+
if snode.is_extern():
|
120 |
+
node_type = "extern"
|
121 |
+
group = node_type
|
122 |
+
elif snode.is_template():
|
123 |
+
node_type = "template"
|
124 |
+
group = node_type
|
125 |
+
elif isinstance(snode, NopKernelSchedulerNode):
|
126 |
+
node_type = "nop"
|
127 |
+
group = node_type
|
128 |
+
elif isinstance(snode, SchedulerNode):
|
129 |
+
node_type = "compute"
|
130 |
+
group = snode.group
|
131 |
+
elif isinstance(snode, FusedSchedulerNode):
|
132 |
+
node_type = "fused"
|
133 |
+
group = snode.group
|
134 |
+
else:
|
135 |
+
raise RuntimeError("Unknown node type")
|
136 |
+
|
137 |
+
fused_name = torch._inductor.utils.get_fused_kernel_name(
|
138 |
+
snode.get_nodes(), "original_aten"
|
139 |
+
)
|
140 |
+
func_name = f"{node_type}: {fused_name}"
|
141 |
+
node_func = get_fake_func(func_name)
|
142 |
+
kwargs = {}
|
143 |
+
if hasattr(snode, "get_device"):
|
144 |
+
kwargs = {"device": snode.get_device()}
|
145 |
+
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs)
|
146 |
+
|
147 |
+
def in_output(snode):
|
148 |
+
if isinstance(snode, FusedSchedulerNode):
|
149 |
+
return any(in_output(x) for x in snode.snodes)
|
150 |
+
return any(isinstance(user.node, OutputNode) for user in snode.users)
|
151 |
+
|
152 |
+
if in_output(snode):
|
153 |
+
outputs.append(fx_node)
|
154 |
+
name = snode.get_name()
|
155 |
+
fx_node.name = name
|
156 |
+
|
157 |
+
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
|
158 |
+
|
159 |
+
if isinstance(snode, FusedSchedulerNode):
|
160 |
+
for x in snode.snodes:
|
161 |
+
buf_to_fx_node[x.get_name()] = fx_node
|
162 |
+
buf_to_fx_node[name] = fx_node
|
163 |
+
|
164 |
+
if first_node is None:
|
165 |
+
first_node = fx_node
|
166 |
+
|
167 |
+
# create edges between nodes
|
168 |
+
for snode in snodes:
|
169 |
+
name = snode.get_name()
|
170 |
+
deps = snode.read_writes.reads
|
171 |
+
|
172 |
+
fx_node = buf_to_fx_node[name]
|
173 |
+
new_args = []
|
174 |
+
for dep in deps:
|
175 |
+
if dep.name in buf_to_fx_node:
|
176 |
+
dep_node = buf_to_fx_node[dep.name]
|
177 |
+
else:
|
178 |
+
with graph.inserting_before(first_node):
|
179 |
+
dep_node = graph.placeholder(dep.name)
|
180 |
+
buf_to_fx_node[dep.name] = dep_node
|
181 |
+
new_args.append(dep_node)
|
182 |
+
|
183 |
+
fx_node.args = tuple(new_args)
|
184 |
+
|
185 |
+
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
|
186 |
+
return graph
|
187 |
+
|
188 |
+
|
189 |
+
def update_orig_fx_node_name_to_buf_name(
|
190 |
+
nodes: SchedulerNodeList,
|
191 |
+
node_name_to_buf_name: Dict[str, str],
|
192 |
+
parent_buf_name: Optional[str] = None,
|
193 |
+
n_origins: int = 0,
|
194 |
+
):
|
195 |
+
if nodes is None:
|
196 |
+
return
|
197 |
+
for node in nodes:
|
198 |
+
# for FusedSchedulerNode, traverse recursively into get_nodes()
|
199 |
+
buf_name = node.get_name()
|
200 |
+
children_nodes = node.get_nodes()
|
201 |
+
if children_nodes is not None and len(children_nodes) > 1:
|
202 |
+
update_orig_fx_node_name_to_buf_name(
|
203 |
+
children_nodes,
|
204 |
+
node_name_to_buf_name,
|
205 |
+
buf_name if parent_buf_name is None else parent_buf_name,
|
206 |
+
)
|
207 |
+
continue
|
208 |
+
else:
|
209 |
+
assert len(children_nodes) == 1 and children_nodes[0] == node
|
210 |
+
|
211 |
+
ir_node = node.node
|
212 |
+
if ir_node is None or ir_node.origins is None:
|
213 |
+
continue
|
214 |
+
for origin in ir_node.origins:
|
215 |
+
node_name = origin.name
|
216 |
+
# when buf1 and buf2 both have origin=node1
|
217 |
+
# we draw node1 according to buf1
|
218 |
+
if node_name not in node_name_to_buf_name:
|
219 |
+
node_name_to_buf_name[node_name] = (
|
220 |
+
buf_name if parent_buf_name is None else parent_buf_name
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
def get_node_name_to_buf_meta(node_name_to_buf_name: Dict[str, str]):
|
225 |
+
buf_name_to_n_node = {}
|
226 |
+
for node_name, buf_name in node_name_to_buf_name.items():
|
227 |
+
if buf_name not in buf_name_to_n_node:
|
228 |
+
buf_name_to_n_node[buf_name] = {node_name}
|
229 |
+
else:
|
230 |
+
buf_name_to_n_node[buf_name].add(node_name)
|
231 |
+
|
232 |
+
node_name_to_buf_meta = {}
|
233 |
+
for node_name, buf_name in node_name_to_buf_name.items():
|
234 |
+
n_node = len(buf_name_to_n_node[buf_name])
|
235 |
+
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
|
236 |
+
return node_name_to_buf_meta
|
237 |
+
|
238 |
+
|
239 |
+
def annotate_orig_fx_with_snodes(
|
240 |
+
gm: torch.fx.GraphModule, snodes: SchedulerNodeList
|
241 |
+
) -> None:
|
242 |
+
"""
|
243 |
+
Creates a FX Graph from a list of SchedulerNode objects.
|
244 |
+
"""
|
245 |
+
node_name_to_buf_name: Dict[str, str] = {}
|
246 |
+
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
|
247 |
+
if node_name_to_buf_name is None:
|
248 |
+
return
|
249 |
+
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
|
250 |
+
for node in gm.graph.nodes:
|
251 |
+
if node.name in node_name_to_buf_meta:
|
252 |
+
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
|
253 |
+
|
254 |
+
|
255 |
+
@contextlib.contextmanager
|
256 |
+
def enable_aot_logging():
|
257 |
+
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
258 |
+
|
259 |
+
import torch._functorch.aot_autograd
|
260 |
+
|
261 |
+
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
|
262 |
+
|
263 |
+
stack = contextlib.ExitStack()
|
264 |
+
if not compile_debug:
|
265 |
+
try:
|
266 |
+
yield
|
267 |
+
finally:
|
268 |
+
stack.close()
|
269 |
+
return
|
270 |
+
|
271 |
+
# Enable all graphs to be logged to a file by setting the flags to True
|
272 |
+
# and the log level of the file logger to DEBUG
|
273 |
+
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
|
274 |
+
|
275 |
+
path = os.path.join(get_debug_dir(), "torchinductor")
|
276 |
+
if not os.path.exists(path):
|
277 |
+
os.makedirs(path)
|
278 |
+
|
279 |
+
fh = logging.FileHandler(
|
280 |
+
os.path.join(
|
281 |
+
path,
|
282 |
+
f"aot_{get_aot_graph_name()}_debug.log",
|
283 |
+
)
|
284 |
+
)
|
285 |
+
fh.setLevel(logging.DEBUG)
|
286 |
+
fh.setFormatter(
|
287 |
+
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
288 |
+
)
|
289 |
+
log.addHandler(fh)
|
290 |
+
try:
|
291 |
+
yield
|
292 |
+
finally:
|
293 |
+
log.removeHandler(fh)
|
294 |
+
stack.close()
|
295 |
+
|
296 |
+
|
297 |
+
class DebugContext:
|
298 |
+
_counter = itertools.count()
|
299 |
+
|
300 |
+
@staticmethod
|
301 |
+
def wrap(fn):
|
302 |
+
@functools.wraps(fn)
|
303 |
+
def inner(*args, **kwargs):
|
304 |
+
with DebugContext():
|
305 |
+
return fn(*args, **kwargs)
|
306 |
+
|
307 |
+
return wrap_compiler_debug(inner, compiler_name="inductor")
|
308 |
+
|
309 |
+
@staticmethod
|
310 |
+
def create_debug_dir(folder_name: str) -> Optional[str]:
|
311 |
+
debug_dir = config.trace.debug_dir or get_debug_dir()
|
312 |
+
for n in DebugContext._counter:
|
313 |
+
dirname = os.path.join(
|
314 |
+
debug_dir,
|
315 |
+
"torchinductor",
|
316 |
+
f"{folder_name}.{n}",
|
317 |
+
)
|
318 |
+
if not os.path.exists(dirname):
|
319 |
+
os.makedirs(dirname)
|
320 |
+
return dirname
|
321 |
+
return None
|
322 |
+
|
323 |
+
def __init__(self):
|
324 |
+
self._prof = None
|
325 |
+
self._path = None
|
326 |
+
self._stack = contextlib.ExitStack()
|
327 |
+
|
328 |
+
def copy(self, new_path: str):
|
329 |
+
if not self._path:
|
330 |
+
return
|
331 |
+
assert new_path.endswith(".debug"), new_path
|
332 |
+
if os.path.exists(new_path):
|
333 |
+
shutil.rmtree(new_path)
|
334 |
+
try:
|
335 |
+
shutil.copytree(self._path, new_path)
|
336 |
+
self._path = new_path
|
337 |
+
except OSError:
|
338 |
+
log.warning(
|
339 |
+
"Failed to copy debug files from %s to %s", self._path, new_path
|
340 |
+
)
|
341 |
+
pass
|
342 |
+
|
343 |
+
def fopen(self, filename: str):
|
344 |
+
assert self._path
|
345 |
+
return open(os.path.join(self._path, filename), "w")
|
346 |
+
|
347 |
+
def filename(self, suffix: str):
|
348 |
+
assert self._path
|
349 |
+
return os.path.join(self._path, suffix)
|
350 |
+
|
351 |
+
def upload_tar(self):
|
352 |
+
if config.trace.upload_tar is not None:
|
353 |
+
import tarfile
|
354 |
+
|
355 |
+
assert self._path
|
356 |
+
tar_file = os.path.join(
|
357 |
+
self._path, f"{os.path.basename(self._path)}.tar.gz"
|
358 |
+
)
|
359 |
+
with tarfile.open(tar_file, "w:gz") as tar:
|
360 |
+
tar.add(self._path, arcname=os.path.basename(self._path))
|
361 |
+
config.trace.upload_tar(tar_file)
|
362 |
+
|
363 |
+
def __enter__(self):
|
364 |
+
if config.debug:
|
365 |
+
log = logging.getLogger("torch._dynamo")
|
366 |
+
prev_level = log.level
|
367 |
+
log.setLevel(logging.DEBUG)
|
368 |
+
|
369 |
+
def reset_log_level(level):
|
370 |
+
log.setLevel(level)
|
371 |
+
|
372 |
+
self._stack.callback(reset_log_level, prev_level)
|
373 |
+
|
374 |
+
self._stack.enter_context(V.set_debug_handler(self))
|
375 |
+
|
376 |
+
if not config.trace.enabled:
|
377 |
+
return
|
378 |
+
|
379 |
+
self._path = self.create_debug_dir(get_aot_graph_name())
|
380 |
+
|
381 |
+
if config.trace.debug_log:
|
382 |
+
self._setup_log_capture("debug.log", logging.DEBUG)
|
383 |
+
if config.trace.info_log:
|
384 |
+
self._setup_log_capture("info.log", logging.INFO)
|
385 |
+
if config.trace.compile_profile:
|
386 |
+
self._prof = cProfile.Profile()
|
387 |
+
self._prof.enable()
|
388 |
+
|
389 |
+
def _setup_log_capture(self, filename: str, level: int):
|
390 |
+
log = logging.getLogger("torch._inductor")
|
391 |
+
fd = self._stack.enter_context(self.fopen(filename))
|
392 |
+
ch = logging.StreamHandler(fd)
|
393 |
+
ch.setLevel(level)
|
394 |
+
ch.setFormatter(
|
395 |
+
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
396 |
+
)
|
397 |
+
log.addHandler(ch)
|
398 |
+
log.setLevel(min(log.level, level))
|
399 |
+
self._stack.callback(log.removeHandler, ch)
|
400 |
+
|
401 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
402 |
+
if self._prof:
|
403 |
+
self._prof.disable()
|
404 |
+
self._save_profile_data()
|
405 |
+
|
406 |
+
if self._path:
|
407 |
+
self.upload_tar()
|
408 |
+
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
|
409 |
+
self._stack.close()
|
410 |
+
|
411 |
+
def _save_profile_data(self):
|
412 |
+
assert self._prof
|
413 |
+
self._prof.dump_stats(self.filename("compile.prof"))
|
414 |
+
with self.fopen("compile.stats") as fd:
|
415 |
+
stats = pstats.Stats(self._prof, stream=fd)
|
416 |
+
stats.strip_dirs()
|
417 |
+
stats.sort_stats("cumtime")
|
418 |
+
stats.print_stats(100)
|
419 |
+
stats.sort_stats("tottime")
|
420 |
+
stats.print_stats(100)
|
421 |
+
|
422 |
+
def __getattr__(self, name):
|
423 |
+
if config.trace.enabled and getattr(config.trace, name):
|
424 |
+
try:
|
425 |
+
return getattr(DebugFormatter(self), name)
|
426 |
+
except Exception:
|
427 |
+
log.warning("Ignoring exception in debug code", exc_info=True)
|
428 |
+
else:
|
429 |
+
|
430 |
+
def ignored(*args, **kwargs):
|
431 |
+
pass
|
432 |
+
|
433 |
+
return ignored
|
434 |
+
|
435 |
+
|
436 |
+
class DebugFormatter:
|
437 |
+
def __init__(self, handler):
|
438 |
+
self.fopen = handler.fopen
|
439 |
+
self.filename = handler.filename
|
440 |
+
self.handler = handler
|
441 |
+
|
442 |
+
def fx_graph(self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]):
|
443 |
+
with self.fopen("fx_graph_runnable.py") as fd:
|
444 |
+
save_graph_repro(fd, gm, inputs, "inductor")
|
445 |
+
|
446 |
+
with self.fopen("fx_graph_readable.py") as fd:
|
447 |
+
fd.write(gm.print_readable(print_output=False))
|
448 |
+
|
449 |
+
def fx_graph_transformed(
|
450 |
+
self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]
|
451 |
+
):
|
452 |
+
with self.fopen("fx_graph_transformed.py") as fd:
|
453 |
+
fd.write(gm.print_readable(print_output=False))
|
454 |
+
|
455 |
+
def ir_pre_fusion(self, nodes: SchedulerNodeList):
|
456 |
+
self._write_ir("ir_pre_fusion.txt", nodes)
|
457 |
+
|
458 |
+
def ir_post_fusion(self, nodes: SchedulerNodeList):
|
459 |
+
self._write_ir("ir_post_fusion.txt", nodes)
|
460 |
+
|
461 |
+
def _write_ir(self, filename: str, nodes: SchedulerNodeList):
|
462 |
+
with self.fopen(filename) as fd:
|
463 |
+
log.info("Writing debug ir to %s", fd.name)
|
464 |
+
for node in nodes:
|
465 |
+
fd.write(node.debug_str())
|
466 |
+
fd.write("\n\n\n")
|
467 |
+
|
468 |
+
def graph_diagram(self, nodes: SchedulerNodeList):
|
469 |
+
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
|
470 |
+
|
471 |
+
def draw_orig_fx_graph(self, gm: torch.fx.GraphModule, nodes: SchedulerNodeList):
|
472 |
+
annotate_orig_fx_with_snodes(gm, nodes)
|
473 |
+
draw_graph(
|
474 |
+
gm,
|
475 |
+
fname=self.filename("orig_fx_graph_diagram.svg"),
|
476 |
+
clear_meta=False,
|
477 |
+
prog=GRAPHVIZ_COMMAND_SCALABLE,
|
478 |
+
parse_stack_trace=True,
|
479 |
+
dot_graph_shape=config.trace.dot_graph_shape,
|
480 |
+
)
|
481 |
+
|
482 |
+
def output_code(self, filename):
|
483 |
+
shutil.copy(filename, self.filename("output_code.py"))
|
484 |
+
|
485 |
+
|
486 |
+
@dataclasses.dataclass
|
487 |
+
class TensorMetadataHolder:
|
488 |
+
tensor_metadata: TensorMetadata
|
489 |
+
device: torch.device
|
490 |
+
|
491 |
+
|
492 |
+
save_args_cnt = itertools.count()
|
493 |
+
|
494 |
+
|
495 |
+
def save_args_for_compile_fx_inner(*args, **kwargs):
|
496 |
+
"""
|
497 |
+
This function is used to save arguments for a compile_fx_inner function call
|
498 |
+
to the file system. Later on one can replay the compile_fx_inner call
|
499 |
+
with the saved arguments using load_args_and_run_compile_fx_inner.
|
500 |
+
"""
|
501 |
+
|
502 |
+
folder = "/tmp/inductor_saved_args"
|
503 |
+
if not os.path.exists(folder):
|
504 |
+
os.mkdir(folder)
|
505 |
+
|
506 |
+
def handle_tensor(x):
|
507 |
+
"""
|
508 |
+
Pickle FakeTensor will result in error:
|
509 |
+
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
|
510 |
+
|
511 |
+
Convert all Tensor to metadata. This may also makes pickle faster.
|
512 |
+
"""
|
513 |
+
if isinstance(x, torch.Tensor):
|
514 |
+
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
|
515 |
+
else:
|
516 |
+
return x
|
517 |
+
|
518 |
+
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
|
519 |
+
|
520 |
+
fn_name = "compile_fx_inner"
|
521 |
+
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
|
522 |
+
with open(path, "wb") as f:
|
523 |
+
pickle.dump((args_to_save, kwargs_to_save), f)
|
524 |
+
|
525 |
+
if log.isEnabledFor(logging.DEBUG):
|
526 |
+
message = f"""
|
527 |
+
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
|
528 |
+
run the following:
|
529 |
+
|
530 |
+
from torch._inductor.debug import load_args_and_run_compile_fx_inner
|
531 |
+
load_args_and_run_compile_fx_inner({path!r})
|
532 |
+
"""
|
533 |
+
# call print rather than log.debug. log.debug will print message
|
534 |
+
# prefix for each line which makes the code snippet harder to be
|
535 |
+
# copied.
|
536 |
+
# Not a big deal since the code is already been guarded by checking
|
537 |
+
# the log level.
|
538 |
+
print(message)
|
539 |
+
|
540 |
+
|
541 |
+
def load_args_and_run_compile_fx_inner(path: str):
|
542 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
543 |
+
|
544 |
+
with open(path, "rb") as f:
|
545 |
+
args, kwargs = pickle.load(f)
|
546 |
+
|
547 |
+
def handle_tensor(x):
|
548 |
+
if isinstance(x, TensorMetadataHolder):
|
549 |
+
return torch._dynamo.testing.rand_strided(
|
550 |
+
x.tensor_metadata.shape,
|
551 |
+
x.tensor_metadata.stride,
|
552 |
+
x.tensor_metadata.dtype,
|
553 |
+
x.device,
|
554 |
+
)
|
555 |
+
else:
|
556 |
+
return x
|
557 |
+
|
558 |
+
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
|
559 |
+
with fake_mode, config.patch("save_args", False):
|
560 |
+
args, kwargs = tree_map(handle_tensor, (args, kwargs))
|
561 |
+
return compile_fx_inner(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/decomposition.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import sys
|
5 |
+
import typing
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch._decomp as decomp
|
10 |
+
import torch._prims_common as utils
|
11 |
+
import torch.ao.quantization.fx._decomposed
|
12 |
+
from torch._decomp import (
|
13 |
+
core_aten_decompositions,
|
14 |
+
get_decompositions,
|
15 |
+
remove_decompositions,
|
16 |
+
)
|
17 |
+
from torch._decomp.decompositions import (
|
18 |
+
_grid_sampler_2d as decomp_grid_sampler_2d,
|
19 |
+
pw_cast_for_opmath,
|
20 |
+
)
|
21 |
+
from torch._decomp.decompositions_for_rng import extra_random_decomps
|
22 |
+
from torch._higher_order_ops.out_dtype import out_dtype
|
23 |
+
from torch._prims_common import type_to_dtype
|
24 |
+
|
25 |
+
from . import config, inductor_prims
|
26 |
+
|
27 |
+
log = logging.getLogger(__name__)
|
28 |
+
aten = torch.ops.aten
|
29 |
+
prims = torch.ops.prims
|
30 |
+
quantized_decomposed = torch.ops.quantized_decomposed
|
31 |
+
|
32 |
+
inductor_decompositions = get_decompositions(
|
33 |
+
[
|
34 |
+
aten._adaptive_avg_pool2d_backward,
|
35 |
+
aten.arange,
|
36 |
+
aten.bitwise_and_,
|
37 |
+
aten.bitwise_or_,
|
38 |
+
aten.clamp_min_,
|
39 |
+
aten.dist,
|
40 |
+
aten.empty_like,
|
41 |
+
aten.flip,
|
42 |
+
aten.gelu,
|
43 |
+
aten.hardtanh,
|
44 |
+
aten.index_select,
|
45 |
+
aten.lcm,
|
46 |
+
aten.leaky_relu,
|
47 |
+
aten.linalg_vector_norm,
|
48 |
+
aten._log_softmax,
|
49 |
+
aten.max_pool2d_with_indices_backward,
|
50 |
+
aten._native_batch_norm_legit,
|
51 |
+
aten._native_batch_norm_legit_functional,
|
52 |
+
aten._native_batch_norm_legit_no_training,
|
53 |
+
aten.native_batch_norm,
|
54 |
+
aten.native_group_norm,
|
55 |
+
aten.native_layer_norm,
|
56 |
+
aten._softmax,
|
57 |
+
aten.sin_,
|
58 |
+
aten.sqrt_,
|
59 |
+
out_dtype,
|
60 |
+
aten._to_copy,
|
61 |
+
aten.tril_indices,
|
62 |
+
aten.triu_indices,
|
63 |
+
aten.upsample_bilinear2d.vec,
|
64 |
+
]
|
65 |
+
)
|
66 |
+
decompositions = {**core_aten_decompositions(), **inductor_decompositions}
|
67 |
+
|
68 |
+
# Remove unwanted decompositions included via the core ATen decompositions from
|
69 |
+
# the Inductor decomp table.
|
70 |
+
decomps_to_exclude = [
|
71 |
+
aten._unsafe_index,
|
72 |
+
aten._scaled_dot_product_flash_attention.default, # See comments in torch/_decomp/decompositions.py
|
73 |
+
aten.clamp_max,
|
74 |
+
aten.clamp_min,
|
75 |
+
aten.glu, # inductor lowers this directly
|
76 |
+
aten.split.Tensor, # inductor lowers this directly
|
77 |
+
aten.squeeze, # inductor lowers this directly
|
78 |
+
aten.sum, # inductor lowers this directly
|
79 |
+
aten.unbind, # inductor lowers this directly
|
80 |
+
]
|
81 |
+
|
82 |
+
remove_decompositions(decompositions, decomps_to_exclude)
|
83 |
+
|
84 |
+
|
85 |
+
def register_decomposition(ops):
|
86 |
+
for op in [ops] if callable(ops) else ops:
|
87 |
+
if op in decompositions:
|
88 |
+
log.warning("duplicate decomp: %s", ops)
|
89 |
+
return decomp.register_decomposition(ops, decompositions)
|
90 |
+
|
91 |
+
|
92 |
+
# TODO: for now, inductor doesn't handle asserts
|
93 |
+
# because the condition is symbool -> tensor in the graph.
|
94 |
+
@register_decomposition([aten._assert_async.msg])
|
95 |
+
def assert_async_msg_decomp(tensor, msg):
|
96 |
+
return
|
97 |
+
|
98 |
+
|
99 |
+
# Following `assert_async_msg_decomp` and implement as non-op.
|
100 |
+
@register_decomposition([aten._functional_assert_async.msg])
|
101 |
+
def functional_assert_async_msg_decomp(tensor, msg):
|
102 |
+
return
|
103 |
+
|
104 |
+
|
105 |
+
@register_decomposition([aten.sym_constrain_range_for_size.default])
|
106 |
+
def sym_constrain_range_for_size(symbol, *, min=None, max=None):
|
107 |
+
return
|
108 |
+
|
109 |
+
|
110 |
+
@register_decomposition([aten.clamp])
|
111 |
+
@pw_cast_for_opmath
|
112 |
+
def clamp(x, min=None, max=None):
|
113 |
+
if min is not None:
|
114 |
+
x = x.clamp_min(min)
|
115 |
+
if max is not None:
|
116 |
+
x = x.clamp_max(max)
|
117 |
+
return x
|
118 |
+
|
119 |
+
|
120 |
+
@register_decomposition([aten.full])
|
121 |
+
def full(size, fill_value, **kwargs):
|
122 |
+
dtype = kwargs.get("dtype")
|
123 |
+
if dtype is None:
|
124 |
+
kwargs["dtype"] = type_to_dtype(type(fill_value))
|
125 |
+
return aten.full(size, fill_value, **kwargs)
|
126 |
+
return NotImplemented
|
127 |
+
|
128 |
+
|
129 |
+
# Not really sure how to put this into the main library. PrimTorch wants
|
130 |
+
# empty_permuted to go to the prim, and typically users don't really want
|
131 |
+
# to decompose to empty_strided (but inductor is OK with it, because we are
|
132 |
+
# cool with strides and everything goes to empty_strided)
|
133 |
+
@register_decomposition([aten.empty_permuted.default])
|
134 |
+
def empty_permuted(size, physical_layout, **kwargs):
|
135 |
+
perm = [0] * len(size)
|
136 |
+
for p, l in enumerate(physical_layout):
|
137 |
+
perm[l] = p
|
138 |
+
return torch.empty([size[l] for l in physical_layout], **kwargs).permute(perm)
|
139 |
+
|
140 |
+
|
141 |
+
@register_decomposition([aten.convolution_backward])
|
142 |
+
def convolution_backward(
|
143 |
+
grad_output,
|
144 |
+
input,
|
145 |
+
weight,
|
146 |
+
bias_sizes,
|
147 |
+
stride,
|
148 |
+
padding,
|
149 |
+
dilation,
|
150 |
+
transposed,
|
151 |
+
output_padding,
|
152 |
+
groups,
|
153 |
+
output_mask,
|
154 |
+
):
|
155 |
+
if not output_mask[2] or grad_output.device.type != "cuda":
|
156 |
+
return NotImplemented
|
157 |
+
grad_bias = aten.sum(grad_output, [0] + list(range(2, grad_output.dim())))
|
158 |
+
grad_inp, grad_weight, _ = aten.convolution_backward(
|
159 |
+
grad_output,
|
160 |
+
input,
|
161 |
+
weight,
|
162 |
+
bias_sizes,
|
163 |
+
stride,
|
164 |
+
padding,
|
165 |
+
dilation,
|
166 |
+
transposed,
|
167 |
+
output_padding,
|
168 |
+
groups,
|
169 |
+
[output_mask[0], output_mask[1], False],
|
170 |
+
)
|
171 |
+
return (grad_inp, grad_weight, grad_bias)
|
172 |
+
|
173 |
+
|
174 |
+
@register_decomposition([aten.log2])
|
175 |
+
def log2(x):
|
176 |
+
return torch.log(x) * (1.0 / math.log(2.0))
|
177 |
+
|
178 |
+
|
179 |
+
@register_decomposition([aten.round.decimals])
|
180 |
+
def round_dec(x, decimals=0):
|
181 |
+
ten_pow_decimals = 10.0**decimals
|
182 |
+
return aten.round(x * ten_pow_decimals) * (1.0 / ten_pow_decimals)
|
183 |
+
|
184 |
+
|
185 |
+
@register_decomposition([aten.bmm])
|
186 |
+
@pw_cast_for_opmath
|
187 |
+
def bmm(self, batch2):
|
188 |
+
if config.coordinate_descent_tuning:
|
189 |
+
if self.shape[1] == 1:
|
190 |
+
out = (self.unsqueeze(-1) * batch2.unsqueeze(1)).sum(dim=2)
|
191 |
+
return out
|
192 |
+
if self.device.type == "cpu":
|
193 |
+
if self.size(1) == 1 and batch2.size(-1) == 1:
|
194 |
+
return torch.sum(
|
195 |
+
self.squeeze(1) * batch2.squeeze(-1), dim=1, keepdim=True
|
196 |
+
).unsqueeze(1)
|
197 |
+
return NotImplemented
|
198 |
+
|
199 |
+
|
200 |
+
@register_decomposition([aten.addmm])
|
201 |
+
@pw_cast_for_opmath
|
202 |
+
def addmm(self, mat1, mat2, beta=1, alpha=1):
|
203 |
+
if self.device.type == "cpu":
|
204 |
+
if mat1.size(0) == 1 and mat2.size(-1) == 1:
|
205 |
+
out = torch.sum(
|
206 |
+
mat1.squeeze(0) * mat2.squeeze(-1), dim=0, keepdim=True
|
207 |
+
).unsqueeze(0)
|
208 |
+
return alpha * out + beta * self
|
209 |
+
if mat1.size(0) == 1 and mat2.size(0) <= 16 and mat2.size(1) <= 16:
|
210 |
+
out = (mat1.T * mat2).sum(dim=0, keepdim=True)
|
211 |
+
return alpha * out + beta * self
|
212 |
+
return NotImplemented
|
213 |
+
|
214 |
+
|
215 |
+
@register_decomposition([aten.mm])
|
216 |
+
@pw_cast_for_opmath
|
217 |
+
def mm(self, input2):
|
218 |
+
# Our matrix vector multiplies only achieve peak bandwidth with coordinate descent tuning.
|
219 |
+
# todo: Look into why and fix it (hopefully)
|
220 |
+
if config.coordinate_descent_tuning:
|
221 |
+
if self.shape[0] == 1 or input2.shape[1] == 1:
|
222 |
+
return (self.unsqueeze(2) * input2.unsqueeze(0)).sum(dim=1)
|
223 |
+
if self.device.type == "cpu":
|
224 |
+
if (
|
225 |
+
self.size(-1) == 1
|
226 |
+
and self.size(0) > 0
|
227 |
+
and input2.size(0) == 1
|
228 |
+
and (self.dtype == input2.dtype)
|
229 |
+
and ((torch.numel(self) + torch.numel(input2)) <= 32)
|
230 |
+
):
|
231 |
+
return torch.cat([self[i, :] * input2 for i in range(self.size(0))])
|
232 |
+
if self.size(0) == 1 and input2.size(-1) == 1:
|
233 |
+
return torch.sum(
|
234 |
+
self.squeeze(0) * input2.squeeze(-1), dim=0, keepdim=True
|
235 |
+
).unsqueeze(0)
|
236 |
+
return NotImplemented
|
237 |
+
|
238 |
+
|
239 |
+
@register_decomposition([aten.cat.default])
|
240 |
+
def cat(tensors, dim=0):
|
241 |
+
def non_empty_tensor(x):
|
242 |
+
# special case for cat'ing with an empty tensor -
|
243 |
+
# just drop the 'empty' inputs so they don't confuse the logic below.
|
244 |
+
return len(x.shape) > 1 or x.shape[0] > 0
|
245 |
+
|
246 |
+
filtered_tensors = list(filter(non_empty_tensor, tensors))
|
247 |
+
|
248 |
+
if len(filtered_tensors) == 1:
|
249 |
+
return filtered_tensors[0].clone()
|
250 |
+
elif 1 < len(filtered_tensors) < len(tensors):
|
251 |
+
# on the first call, when we remove empty tensors, we redispatch recursively
|
252 |
+
return aten.cat.default(filtered_tensors, dim)
|
253 |
+
# when no 'filtering' has occurred, we raise to prevent infinite recursion (no more decomposition needed)
|
254 |
+
return NotImplemented
|
255 |
+
|
256 |
+
|
257 |
+
@register_decomposition([aten.angle])
|
258 |
+
def angle(x):
|
259 |
+
if x.is_complex():
|
260 |
+
return torch.where(
|
261 |
+
torch.isnan(x.real), float("nan"), torch.atan2(x.imag, x.real)
|
262 |
+
)
|
263 |
+
else:
|
264 |
+
# when x is real number
|
265 |
+
# if x >= 0, return 0
|
266 |
+
# if x < 0, return pi
|
267 |
+
# if x is nan, return nan
|
268 |
+
ret = torch.where(x < 0, math.pi, 0.0)
|
269 |
+
nan = torch.where(torch.isnan(x), float("nan"), 0.0)
|
270 |
+
return ret + nan
|
271 |
+
|
272 |
+
|
273 |
+
@register_decomposition([aten.add])
|
274 |
+
def add(x, y, *, alpha=None):
|
275 |
+
x_is_complex_tensor = torch.is_tensor(x) and x.is_complex()
|
276 |
+
y_is_complex_tensor = torch.is_tensor(y) and y.is_complex()
|
277 |
+
if not x_is_complex_tensor or not y_is_complex_tensor:
|
278 |
+
return NotImplemented
|
279 |
+
z = y
|
280 |
+
if alpha is not None:
|
281 |
+
z = alpha * y
|
282 |
+
complex_type = torch.promote_types(x.dtype, y.dtype)
|
283 |
+
return (x.view(x.real.dtype) + z.view(y.real.dtype)).view(complex_type)
|
284 |
+
|
285 |
+
|
286 |
+
@register_decomposition([aten.conj_physical])
|
287 |
+
def conj_physical(self):
|
288 |
+
assert not self.is_complex(), "TODO: implement this"
|
289 |
+
return self
|
290 |
+
|
291 |
+
|
292 |
+
@register_decomposition([aten.lift, aten.detach_])
|
293 |
+
def lift(self):
|
294 |
+
return self
|
295 |
+
|
296 |
+
|
297 |
+
@register_decomposition([aten.bernoulli.default])
|
298 |
+
def bernoulli(self, *, generator=None):
|
299 |
+
assert generator is None
|
300 |
+
return torch.rand_like(self, dtype=torch.float32) < self
|
301 |
+
|
302 |
+
|
303 |
+
@register_decomposition([aten.fmin, prims.fmin])
|
304 |
+
def fmin(self, other):
|
305 |
+
return torch.where(torch.isnan(other) | (other > self), self, other)
|
306 |
+
|
307 |
+
|
308 |
+
@register_decomposition([aten.fmax, prims.fmax])
|
309 |
+
def fmax(self, other):
|
310 |
+
return torch.where(torch.isnan(other) | (other < self), self, other)
|
311 |
+
|
312 |
+
|
313 |
+
@register_decomposition(aten.amax)
|
314 |
+
def amax(self, dim=None, keepdim=False):
|
315 |
+
if self.dtype == torch.bool:
|
316 |
+
return torch.any(self, dim=dim, keepdim=keepdim)
|
317 |
+
return NotImplemented
|
318 |
+
|
319 |
+
|
320 |
+
@register_decomposition(aten.amin)
|
321 |
+
def amin(self, dim=None, keepdim=False):
|
322 |
+
if self.dtype == torch.bool:
|
323 |
+
return torch.all(self, dim=dim, keepdim=keepdim)
|
324 |
+
return NotImplemented
|
325 |
+
|
326 |
+
|
327 |
+
@register_decomposition([aten.narrow_copy])
|
328 |
+
def narrow_copy(self, dim, start, length):
|
329 |
+
return torch.narrow(self, dim, start, length).clone()
|
330 |
+
|
331 |
+
|
332 |
+
@register_decomposition([aten.expand_copy])
|
333 |
+
def expand_copy(self, size, *, implicit=False):
|
334 |
+
return aten.expand(self, size, implicit=implicit).clone()
|
335 |
+
|
336 |
+
|
337 |
+
@register_decomposition([aten.view_copy.default])
|
338 |
+
def view_copy_default(self, size):
|
339 |
+
return aten.view(self, size).clone()
|
340 |
+
|
341 |
+
|
342 |
+
@register_decomposition([aten.view_copy.dtype])
|
343 |
+
def view_copy_dtype(self, dtype):
|
344 |
+
return self.to(dtype).clone()
|
345 |
+
|
346 |
+
|
347 |
+
def get_like_layout(
|
348 |
+
tensor: torch.Tensor, memory_format: Optional[torch.memory_format]
|
349 |
+
) -> torch.memory_format:
|
350 |
+
# TODO: _to_copy tensor to stride permutation
|
351 |
+
if memory_format is torch.preserve_format or memory_format is None:
|
352 |
+
return utils.suggest_memory_format(tensor)
|
353 |
+
else:
|
354 |
+
return memory_format
|
355 |
+
|
356 |
+
|
357 |
+
@register_decomposition(aten.rand_like)
|
358 |
+
def rand_like(self, *, dtype=None, device=None, memory_format=None, **kwargs):
|
359 |
+
return torch.rand(
|
360 |
+
[*self.size()],
|
361 |
+
dtype=dtype or self.dtype,
|
362 |
+
device=device or self.device,
|
363 |
+
**kwargs,
|
364 |
+
).to(memory_format=get_like_layout(self, memory_format))
|
365 |
+
|
366 |
+
|
367 |
+
@register_decomposition(aten.randn_like)
|
368 |
+
def randn_like(self, *, dtype=None, device=None, memory_format=None, **kwargs):
|
369 |
+
return torch.randn(
|
370 |
+
[*self.size()],
|
371 |
+
dtype=dtype or self.dtype,
|
372 |
+
device=device or self.device,
|
373 |
+
**kwargs,
|
374 |
+
).to(memory_format=get_like_layout(self, memory_format))
|
375 |
+
|
376 |
+
|
377 |
+
@register_decomposition(aten.full_like)
|
378 |
+
def full_like(
|
379 |
+
self,
|
380 |
+
fill_value,
|
381 |
+
*,
|
382 |
+
dtype=None,
|
383 |
+
layout=None,
|
384 |
+
device=None,
|
385 |
+
pin_memory=False,
|
386 |
+
requires_grad=False,
|
387 |
+
memory_format=torch.preserve_format,
|
388 |
+
):
|
389 |
+
return torch.full(
|
390 |
+
[*self.size()],
|
391 |
+
fill_value,
|
392 |
+
dtype=dtype or self.dtype,
|
393 |
+
layout=layout or self.layout,
|
394 |
+
device=device or self.device,
|
395 |
+
requires_grad=requires_grad,
|
396 |
+
).to(memory_format=get_like_layout(self, memory_format))
|
397 |
+
|
398 |
+
|
399 |
+
@register_decomposition(aten.randint_like.default)
|
400 |
+
def randint_like(self, high, *, dtype=None, device=None, memory_format=None, **kwargs):
|
401 |
+
return aten.randint.low(
|
402 |
+
0,
|
403 |
+
high,
|
404 |
+
[*self.size()],
|
405 |
+
dtype=dtype or self.dtype,
|
406 |
+
device=device or self.device,
|
407 |
+
**kwargs,
|
408 |
+
).to(memory_format=get_like_layout(self, memory_format))
|
409 |
+
|
410 |
+
|
411 |
+
@register_decomposition(aten.randint_like.low_dtype)
|
412 |
+
def randint_like_low(
|
413 |
+
self, low, high, *, dtype=None, device=None, memory_format=None, **kwargs
|
414 |
+
):
|
415 |
+
return aten.randint.low(
|
416 |
+
low,
|
417 |
+
high,
|
418 |
+
[*self.size()],
|
419 |
+
dtype=dtype or self.dtype,
|
420 |
+
device=device or self.device,
|
421 |
+
**kwargs,
|
422 |
+
).to(memory_format=get_like_layout(self, memory_format))
|
423 |
+
|
424 |
+
|
425 |
+
@register_decomposition(aten.randint.default)
|
426 |
+
def randint(high, size, **kwargs):
|
427 |
+
return aten.randint.low(0, high, size, **kwargs)
|
428 |
+
|
429 |
+
|
430 |
+
# The difference between quantize_per_tensor.default and quantize_per_tensor.tensor is
|
431 |
+
# scale and zero_point is scalar or scalar tensor
|
432 |
+
@register_decomposition(quantized_decomposed.quantize_per_tensor.default)
|
433 |
+
def quantize_per_tensor_default_decomp_impl(
|
434 |
+
input: torch.Tensor,
|
435 |
+
scale: float,
|
436 |
+
zero_point: int,
|
437 |
+
quant_min: int,
|
438 |
+
quant_max: int,
|
439 |
+
dtype: torch.dtype,
|
440 |
+
) -> torch.Tensor:
|
441 |
+
if input.dtype == torch.bfloat16:
|
442 |
+
input = input.to(torch.float32)
|
443 |
+
inv_scale = 1.0 / scale
|
444 |
+
return torch.clamp(
|
445 |
+
torch.round(input * inv_scale) + zero_point, quant_min, quant_max
|
446 |
+
).to(dtype)
|
447 |
+
|
448 |
+
|
449 |
+
# The difference between dequantize_per_tensor.default and dequantize_per_tensor.tensor is
|
450 |
+
# scale and zero_point is scalar or scalar tensor
|
451 |
+
@register_decomposition(quantized_decomposed.dequantize_per_tensor.default)
|
452 |
+
def dequantize_per_tensor_default_decomp_impl(
|
453 |
+
input: torch.Tensor,
|
454 |
+
scale: float,
|
455 |
+
zero_point: int,
|
456 |
+
quant_min: int,
|
457 |
+
quant_max: int,
|
458 |
+
dtype: torch.dtype,
|
459 |
+
) -> torch.Tensor:
|
460 |
+
return (input.to(torch.float32) - zero_point) * scale
|
461 |
+
|
462 |
+
|
463 |
+
@register_decomposition(quantized_decomposed.quantize_per_tensor.tensor)
|
464 |
+
def quantize_per_tensor_tensor_decomp_impl(
|
465 |
+
input: torch.Tensor,
|
466 |
+
scale: torch.Tensor,
|
467 |
+
zero_point: torch.Tensor,
|
468 |
+
quant_min: int,
|
469 |
+
quant_max: int,
|
470 |
+
dtype: torch.dtype,
|
471 |
+
) -> torch.Tensor:
|
472 |
+
if input.dtype == torch.bfloat16:
|
473 |
+
input = input.to(torch.float32)
|
474 |
+
inv_scale = 1.0 / scale
|
475 |
+
return torch.clamp(
|
476 |
+
torch.round(input * inv_scale) + zero_point, quant_min, quant_max
|
477 |
+
).to(dtype)
|
478 |
+
|
479 |
+
|
480 |
+
@register_decomposition(quantized_decomposed.dequantize_per_tensor.tensor)
|
481 |
+
def dequantize_per_tensor_tensor_decomp_impl(
|
482 |
+
input: torch.Tensor,
|
483 |
+
scale: torch.Tensor,
|
484 |
+
zero_point: torch.Tensor,
|
485 |
+
quant_min: int,
|
486 |
+
quant_max: int,
|
487 |
+
dtype: torch.dtype,
|
488 |
+
) -> torch.Tensor:
|
489 |
+
return (input.to(torch.float32) - zero_point) * scale
|
490 |
+
|
491 |
+
|
492 |
+
@register_decomposition(torch.ops.quantized.embedding_bag_byte_unpack)
|
493 |
+
def q_embedding_bag_byte_unpack_decomp(packed):
|
494 |
+
def bitcast_u8_to_f32(u8):
|
495 |
+
x, y, z, w = (u8[..., n].to(torch.int32) for n in (0, 1, 2, 3))
|
496 |
+
if sys.byteorder == "little":
|
497 |
+
return (x + (y << 8) + (z << 16) + (w << 24)).view(torch.float32)[..., None]
|
498 |
+
else:
|
499 |
+
return ((x << 24) + (y << 16) + (z << 8) + w).view(torch.float32)[..., None]
|
500 |
+
|
501 |
+
scales = bitcast_u8_to_f32(packed[..., -8:-4])
|
502 |
+
offsets = bitcast_u8_to_f32(packed[..., -4:])
|
503 |
+
return packed[..., :-8].to(torch.float32) * scales + offsets
|
504 |
+
|
505 |
+
|
506 |
+
@register_decomposition([aten.grid_sampler_2d])
|
507 |
+
@pw_cast_for_opmath
|
508 |
+
def grid_sampler_2d(
|
509 |
+
a: torch.Tensor,
|
510 |
+
grid: torch.Tensor,
|
511 |
+
interpolation_mode: int = 0,
|
512 |
+
padding_mode: int = 0,
|
513 |
+
align_corners: bool = False,
|
514 |
+
) -> torch.Tensor:
|
515 |
+
# We do not expand the grid (_expand_grid=False) on cpu for performance reasons
|
516 |
+
# Experimenting locally it was found that compiled CUDA code is accelerated by ~5x
|
517 |
+
# and CPU code by ~2x on bicubic mode, if we expand the grid from (N, H, W, 2) into (N, C, H, W, 2)
|
518 |
+
# However, this leads to a slowdown around ~0.8x on CPU bilinear mode, channels first.
|
519 |
+
# Thus we apply this hack to not expand the grid for this case.
|
520 |
+
_expand_grid = not (
|
521 |
+
a.device == torch.device("cpu")
|
522 |
+
and interpolation_mode == 0
|
523 |
+
and a.is_contiguous(memory_format=torch.contiguous_format)
|
524 |
+
)
|
525 |
+
|
526 |
+
output = decomp_grid_sampler_2d(
|
527 |
+
a,
|
528 |
+
grid=grid,
|
529 |
+
interpolation_mode=interpolation_mode,
|
530 |
+
padding_mode=padding_mode,
|
531 |
+
align_corners=align_corners,
|
532 |
+
_expand_grid=_expand_grid,
|
533 |
+
)
|
534 |
+
return output
|
535 |
+
|
536 |
+
|
537 |
+
@register_decomposition(aten._foreach_addcmul.Scalar)
|
538 |
+
def _foreach_addcmul_scalar(self, left_tensors, right_tensors, scalar=1):
|
539 |
+
return aten._foreach_add.List(
|
540 |
+
self, aten._foreach_mul.List(left_tensors, right_tensors), alpha=scalar
|
541 |
+
)
|
542 |
+
|
543 |
+
|
544 |
+
@register_decomposition(aten._foreach_addcdiv.Scalar)
|
545 |
+
def _foreach_addcdiv_scalar(self, left_tensors, right_tensors, scalar=1):
|
546 |
+
return aten._foreach_add.List(
|
547 |
+
self, aten._foreach_div.List(left_tensors, right_tensors), alpha=scalar
|
548 |
+
)
|
549 |
+
|
550 |
+
|
551 |
+
@register_decomposition(aten._foreach_lerp.Scalar)
|
552 |
+
def _foreach_lerp_scalar(start_tensors, end_tensors, weight):
|
553 |
+
return aten._foreach_add.List(
|
554 |
+
start_tensors,
|
555 |
+
aten._foreach_mul.Scalar(
|
556 |
+
aten._foreach_sub.List(end_tensors, start_tensors), weight
|
557 |
+
),
|
558 |
+
)
|
559 |
+
|
560 |
+
|
561 |
+
@aten.miopen_batch_norm.default.py_impl(torch._C.DispatchKey.Autograd)
|
562 |
+
@register_decomposition(aten.miopen_batch_norm)
|
563 |
+
def miopen_batch_norm(
|
564 |
+
input: torch.Tensor,
|
565 |
+
weight: torch.Tensor,
|
566 |
+
bias: typing.Optional[torch.Tensor],
|
567 |
+
running_mean: typing.Optional[torch.Tensor],
|
568 |
+
running_var: typing.Optional[torch.Tensor],
|
569 |
+
training: bool,
|
570 |
+
exponential_average_factor: float,
|
571 |
+
epsilon: float,
|
572 |
+
):
|
573 |
+
a, b, c = aten.native_batch_norm(
|
574 |
+
input,
|
575 |
+
weight,
|
576 |
+
bias,
|
577 |
+
running_mean,
|
578 |
+
running_var,
|
579 |
+
training,
|
580 |
+
exponential_average_factor,
|
581 |
+
epsilon,
|
582 |
+
)
|
583 |
+
|
584 |
+
if training:
|
585 |
+
return (a, b, c)
|
586 |
+
return (
|
587 |
+
a,
|
588 |
+
weight.new_zeros((0,)),
|
589 |
+
weight.new_zeros((0,)),
|
590 |
+
)
|
591 |
+
|
592 |
+
|
593 |
+
@functools.lru_cache(None)
|
594 |
+
def fast_random_decomps():
|
595 |
+
return {**decompositions, **extra_random_decomps}
|
596 |
+
|
597 |
+
|
598 |
+
def select_decomp_table():
|
599 |
+
"""decomps can change based on config"""
|
600 |
+
if config.fallback_random:
|
601 |
+
return decompositions
|
602 |
+
return fast_random_decomps()
|
603 |
+
|
604 |
+
|
605 |
+
@register_decomposition(aten.masked_scatter)
|
606 |
+
def masked_scatter(self, mask, source):
|
607 |
+
if self.device.type == "cuda":
|
608 |
+
# This two-step algorithm is the same as eager CUDA, for eager CPU we
|
609 |
+
# use a 1-shot serial iteration.
|
610 |
+
self, mask = aten.broadcast_tensors([self, mask])
|
611 |
+
source_idx = mask.reshape(-1).cumsum(0) - 1
|
612 |
+
return inductor_prims.masked_scatter_with_index(self, mask, source_idx, source)
|
613 |
+
return NotImplemented
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/dependencies.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import dataclasses
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import re
|
6 |
+
import typing
|
7 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
8 |
+
|
9 |
+
import sympy
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
|
13 |
+
|
14 |
+
from .codegen.common import index_prevent_reordering
|
15 |
+
from .utils import get_dtype_size, sympy_str, sympy_subs, sympy_symbol, VarRanges
|
16 |
+
from .virtualized import V
|
17 |
+
|
18 |
+
log = logging.getLogger(__name__)
|
19 |
+
is_indirect = re.compile(r"indirect|tmp").search
|
20 |
+
Dep = Union["MemoryDep", "StarDep", "WeakDep"]
|
21 |
+
|
22 |
+
|
23 |
+
class MemoryDep(typing.NamedTuple):
|
24 |
+
name: str
|
25 |
+
index: sympy.Expr
|
26 |
+
var_names: Tuple[sympy.Symbol, ...]
|
27 |
+
size: Tuple[sympy.Expr, ...]
|
28 |
+
|
29 |
+
def __repr__(self):
|
30 |
+
return f"MemoryDep({self.name!r}, {self.index}, {self.ranges})"
|
31 |
+
|
32 |
+
@property
|
33 |
+
def ranges(self) -> Dict[sympy.Symbol, sympy.Expr]:
|
34 |
+
"""{c0: 128, c1: 512, ...}"""
|
35 |
+
return dict(zip(self.var_names, self.size))
|
36 |
+
|
37 |
+
def get_numel(self) -> sympy.Expr:
|
38 |
+
if self.is_indirect():
|
39 |
+
numel = V.graph.get_numel(self.name)
|
40 |
+
else:
|
41 |
+
vars = set(self.index.free_symbols)
|
42 |
+
numel = sympy.Integer(1)
|
43 |
+
for var, size in zip(self.var_names, self.size):
|
44 |
+
if var in vars:
|
45 |
+
numel = numel * size
|
46 |
+
return numel
|
47 |
+
|
48 |
+
def rename(self, renames: Dict[str, str]) -> "MemoryDep":
|
49 |
+
if self.name in renames:
|
50 |
+
return MemoryDep(
|
51 |
+
renames[self.name], self.index, var_names=self.var_names, size=self.size
|
52 |
+
)
|
53 |
+
return self
|
54 |
+
|
55 |
+
def numbytes_hint(self):
|
56 |
+
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
|
57 |
+
V.graph.get_dtype(self.name)
|
58 |
+
)
|
59 |
+
|
60 |
+
def has_unbacked_symbols(self):
|
61 |
+
return len(free_unbacked_symbols(self.get_numel())) > 0
|
62 |
+
|
63 |
+
def is_contiguous(self) -> bool:
|
64 |
+
return isinstance(self.index, sympy.Symbol) and self.index in self.var_names
|
65 |
+
|
66 |
+
def is_scalar(self) -> bool:
|
67 |
+
if isinstance(self.index, sympy.Symbol):
|
68 |
+
return self.index not in self.var_names and not self.is_indirect()
|
69 |
+
return isinstance(self.index, (int, sympy.Integer))
|
70 |
+
|
71 |
+
def is_indirect(self) -> bool:
|
72 |
+
return any(is_indirect(v.name) for v in self.index.free_symbols)
|
73 |
+
|
74 |
+
|
75 |
+
class StarDep(typing.NamedTuple):
|
76 |
+
# depends on the entire buffer
|
77 |
+
name: str
|
78 |
+
|
79 |
+
@property
|
80 |
+
def index(self):
|
81 |
+
raise NotImplementedError("StarDep does not have an index")
|
82 |
+
|
83 |
+
def get_numel(self) -> sympy.Expr:
|
84 |
+
return V.graph.get_numel(self.name)
|
85 |
+
|
86 |
+
def rename(self, renames: Dict[str, str]) -> "StarDep":
|
87 |
+
if self.name in renames:
|
88 |
+
return StarDep(renames[self.name])
|
89 |
+
return self
|
90 |
+
|
91 |
+
def numbytes_hint(self):
|
92 |
+
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
|
93 |
+
V.graph.get_dtype(self.name)
|
94 |
+
)
|
95 |
+
|
96 |
+
def has_unbacked_symbols(self):
|
97 |
+
return len(free_unbacked_symbols(self.get_numel())) > 0
|
98 |
+
|
99 |
+
def is_contiguous(self) -> bool:
|
100 |
+
return False
|
101 |
+
|
102 |
+
def is_scalar(self) -> bool:
|
103 |
+
return False
|
104 |
+
|
105 |
+
def is_indirect(self) -> bool:
|
106 |
+
return False
|
107 |
+
|
108 |
+
|
109 |
+
# Used for tracking mutation ordering
|
110 |
+
# if A reads a buffer and B mutates it
|
111 |
+
# B must be ordered after A
|
112 |
+
#
|
113 |
+
# It is weak because if it turns out A's read is never used, we can still
|
114 |
+
# eliminate it
|
115 |
+
class WeakDep(typing.NamedTuple):
|
116 |
+
name: str
|
117 |
+
|
118 |
+
@property
|
119 |
+
def index(self):
|
120 |
+
raise NotImplementedError("WeakDep does not have an index")
|
121 |
+
|
122 |
+
def get_numel(self) -> sympy.Expr:
|
123 |
+
return sympy.Integer(1)
|
124 |
+
|
125 |
+
def rename(self, renames: Dict[str, str]) -> "WeakDep":
|
126 |
+
if self.name in renames:
|
127 |
+
return WeakDep(renames[self.name])
|
128 |
+
return self
|
129 |
+
|
130 |
+
def numbytes_hint(self):
|
131 |
+
return 1 # Purely inserted for ordering, not an actual dep
|
132 |
+
|
133 |
+
def has_unbacked_symbols(self):
|
134 |
+
return False
|
135 |
+
|
136 |
+
def is_contiguous(self) -> bool:
|
137 |
+
return False
|
138 |
+
|
139 |
+
|
140 |
+
class IndexExprDep(typing.NamedTuple):
|
141 |
+
index: sympy.Expr
|
142 |
+
var_names: Tuple[sympy.Symbol, ...]
|
143 |
+
size: Tuple[sympy.Expr, ...]
|
144 |
+
|
145 |
+
|
146 |
+
@dataclasses.dataclass
|
147 |
+
class ReadWrites:
|
148 |
+
reads: Set[Dep]
|
149 |
+
writes: Set[Dep]
|
150 |
+
index_exprs: Set[IndexExprDep]
|
151 |
+
range_vars: Optional[List[sympy.Expr]] = None
|
152 |
+
var_ranges: Optional[VarRanges] = None
|
153 |
+
op_counts: typing.Counter[str] = dataclasses.field(
|
154 |
+
default_factory=collections.Counter
|
155 |
+
)
|
156 |
+
|
157 |
+
def rename(self, renames: typing.Dict[str, str]) -> "ReadWrites":
|
158 |
+
return ReadWrites(
|
159 |
+
{dep.rename(renames) for dep in self.reads},
|
160 |
+
{dep.rename(renames) for dep in self.writes},
|
161 |
+
self.index_exprs,
|
162 |
+
self.range_vars,
|
163 |
+
self.var_ranges,
|
164 |
+
op_counts=self.op_counts,
|
165 |
+
)
|
166 |
+
|
167 |
+
def with_read(self, dep: Dep) -> "ReadWrites":
|
168 |
+
assert isinstance(dep, (WeakDep, StarDep))
|
169 |
+
return ReadWrites(
|
170 |
+
set.union(self.reads, {dep}),
|
171 |
+
self.writes,
|
172 |
+
self.index_exprs,
|
173 |
+
self.range_vars,
|
174 |
+
self.var_ranges,
|
175 |
+
op_counts=self.op_counts,
|
176 |
+
)
|
177 |
+
|
178 |
+
def merge(self, other: "ReadWrites"):
|
179 |
+
reads = set.union(self.reads, other.reads)
|
180 |
+
writes = set.union(self.writes, other.writes)
|
181 |
+
index_exprs = set.union(self.index_exprs, other.index_exprs)
|
182 |
+
op_counts = collections.Counter(self.op_counts)
|
183 |
+
op_counts.update(other.op_counts)
|
184 |
+
return ReadWrites(reads - writes, writes, index_exprs, op_counts=op_counts)
|
185 |
+
|
186 |
+
@staticmethod
|
187 |
+
def merge_list(read_writes: List["ReadWrites"]):
|
188 |
+
all_writes = set.union(*[rw.writes for rw in read_writes])
|
189 |
+
all_reads = set.union(*[rw.reads for rw in read_writes]) - all_writes
|
190 |
+
all_index_exprs = set.union(*[rw.index_exprs for rw in read_writes])
|
191 |
+
|
192 |
+
op_counts: typing.Counter[Any] = collections.Counter()
|
193 |
+
for rw in read_writes:
|
194 |
+
op_counts.update(rw.op_counts)
|
195 |
+
|
196 |
+
return ReadWrites(all_reads, all_writes, all_index_exprs, op_counts=op_counts)
|
197 |
+
|
198 |
+
def remove_reads(self, rem_reads):
|
199 |
+
return ReadWrites(
|
200 |
+
self.reads - rem_reads,
|
201 |
+
self.writes,
|
202 |
+
self.index_exprs,
|
203 |
+
self.range_vars,
|
204 |
+
self.var_ranges,
|
205 |
+
op_counts=self.op_counts,
|
206 |
+
)
|
207 |
+
|
208 |
+
def reads_and_writes(self):
|
209 |
+
return itertools.chain(self.reads, self.writes)
|
210 |
+
|
211 |
+
|
212 |
+
class _RecordLoadStoreInner(V.MockHandler): # type: ignore[name-defined]
|
213 |
+
def __init__(self, var_ranges: VarRanges, normalize: bool):
|
214 |
+
super().__init__()
|
215 |
+
self._reads: Set[Dep] = set()
|
216 |
+
self._writes: Set[MemoryDep] = set()
|
217 |
+
self._index_exprs: Set[IndexExprDep] = set()
|
218 |
+
self._var_ranges: VarRanges = var_ranges
|
219 |
+
self._normalize: bool = normalize
|
220 |
+
|
221 |
+
def canonicalize(
|
222 |
+
self, index: sympy.Expr
|
223 |
+
) -> Tuple[sympy.Expr, Tuple[sympy.Symbol, ...], Tuple[sympy.Expr, ...]]:
|
224 |
+
if not self._normalize:
|
225 |
+
sizes = [V.graph.sizevars.simplify(x) for x in self._var_ranges.values()]
|
226 |
+
var_names = tuple(
|
227 |
+
k for k, v in zip(self._var_ranges.keys(), sizes) if v != 1
|
228 |
+
)
|
229 |
+
sizes = tuple(v for v in sizes if v != 1)
|
230 |
+
return index, var_names, sizes
|
231 |
+
|
232 |
+
# Try to further simplify the indexes even if simplify_loops didn't
|
233 |
+
# convert it to the simplest form because of the interference from
|
234 |
+
# different indexing formulas.
|
235 |
+
free_symbols = index.free_symbols
|
236 |
+
var_ranges = {
|
237 |
+
k: V.graph.sizevars.simplify(v)
|
238 |
+
for k, v in self._var_ranges.items()
|
239 |
+
# TODO(jansel): explore this further normalization
|
240 |
+
# if k in free_symbols
|
241 |
+
}
|
242 |
+
index_vars = [*var_ranges.keys()]
|
243 |
+
sizes = tuple(var_ranges.values())
|
244 |
+
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
|
245 |
+
index_vars,
|
246 |
+
sizes,
|
247 |
+
index_prevent_reordering([index], index_vars, sizes),
|
248 |
+
)
|
249 |
+
|
250 |
+
# assign new variables each dimension to deal with numbering mismatches
|
251 |
+
# d0, d1, d2 could become d0, d2 -- which won't match d0, d1
|
252 |
+
new_vars, add_var = var_builder(canonicalization_prefix())
|
253 |
+
replacement = dict(zip(index_vars, reindex([add_var(x) for x in new_sizes])))
|
254 |
+
index = sympy_subs(sympy.expand(index), replacement)
|
255 |
+
|
256 |
+
new_vars = [*new_vars.keys()]
|
257 |
+
new_sizes = [*new_sizes]
|
258 |
+
free_symbols = index.free_symbols
|
259 |
+
while new_vars and new_vars[-1] not in free_symbols:
|
260 |
+
# Reduction has last (reduced) dim in its sizes, but
|
261 |
+
# downstream users won't. Normalize this away.
|
262 |
+
new_vars.pop()
|
263 |
+
new_sizes.pop()
|
264 |
+
return index, tuple(new_vars), tuple(new_sizes)
|
265 |
+
|
266 |
+
def load(self, name: str, index: sympy.Expr) -> str:
|
267 |
+
self._reads.add(MemoryDep(name, *self.canonicalize(index)))
|
268 |
+
return f"load({name}, {sympy_str(index)})"
|
269 |
+
|
270 |
+
def load_seed(self, name: str, index: int):
|
271 |
+
assert isinstance(index, int)
|
272 |
+
return self.load(name, sympy.Integer(index))
|
273 |
+
|
274 |
+
def store(self, name: str, index: sympy.Expr, value: str, mode=None) -> str:
|
275 |
+
self._writes.add(MemoryDep(name, *self.canonicalize(index)))
|
276 |
+
return f"store({name}, {sympy_str(index)}, {value}, {mode})"
|
277 |
+
|
278 |
+
def store_reduction(self, name: str, index, value) -> str:
|
279 |
+
return self.store(name, index, f"store_reduction({value})")
|
280 |
+
|
281 |
+
def index_expr(self, index: sympy.Expr, dtype) -> str:
|
282 |
+
self._index_exprs.add(IndexExprDep(*self.canonicalize(index)))
|
283 |
+
return f"index_expr({sympy_str(index)}, {dtype})"
|
284 |
+
|
285 |
+
def bucketize(
|
286 |
+
self,
|
287 |
+
values,
|
288 |
+
offsets_name: str,
|
289 |
+
offsets_size: sympy.Expr,
|
290 |
+
indexing_dtype: torch.dtype,
|
291 |
+
right: bool,
|
292 |
+
):
|
293 |
+
self._reads.add(StarDep(offsets_name))
|
294 |
+
return f"bucketize({values}, {offsets_name}, {sympy_str(offsets_size)}, {indexing_dtype}, {right})"
|
295 |
+
|
296 |
+
|
297 |
+
class _OpCounter:
|
298 |
+
"""Shim to count how many times each op is used"""
|
299 |
+
|
300 |
+
def __init__(self, inner):
|
301 |
+
super().__init__()
|
302 |
+
self.parent_handler = inner
|
303 |
+
self._op_counts: typing.Counter[Any] = collections.Counter()
|
304 |
+
|
305 |
+
def __getattr__(self, name):
|
306 |
+
self._op_counts[name] += 1
|
307 |
+
return getattr(self.parent_handler, name)
|
308 |
+
|
309 |
+
|
310 |
+
class RecordLoadStore(V.KernelFormatterHandler): # type: ignore[name-defined]
|
311 |
+
def __init__(self, var_ranges: VarRanges, normalize: bool):
|
312 |
+
parent_handler = _RecordLoadStoreInner(
|
313 |
+
var_ranges=var_ranges, normalize=normalize
|
314 |
+
)
|
315 |
+
parent_handler = _OpCounter(parent_handler)
|
316 |
+
super().__init__(parent_handler=parent_handler)
|
317 |
+
|
318 |
+
|
319 |
+
def var_builder(prefix: str) -> Tuple[VarRanges, Callable[[sympy.Expr], sympy.Symbol]]:
|
320 |
+
cnt = itertools.count()
|
321 |
+
var_ranges: VarRanges = dict()
|
322 |
+
|
323 |
+
def add_var(length: sympy.Expr) -> sympy.Symbol:
|
324 |
+
v = sympy_symbol(f"{prefix}{next(cnt)}")
|
325 |
+
var_ranges[v] = length
|
326 |
+
return v
|
327 |
+
|
328 |
+
return var_ranges, add_var
|
329 |
+
|
330 |
+
|
331 |
+
def index_vars_no_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str):
|
332 |
+
var_ranges, add_var = var_builder(prefix)
|
333 |
+
args: List[List[sympy.Symbol]] = []
|
334 |
+
for size in argsizes:
|
335 |
+
args.append(list(map(add_var, size)))
|
336 |
+
return args, var_ranges
|
337 |
+
|
338 |
+
|
339 |
+
def index_vars_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str = "d"):
|
340 |
+
from .ir import SqueezeView
|
341 |
+
|
342 |
+
var_ranges, add_var = var_builder(prefix)
|
343 |
+
args: List[List[sympy.Expr]] = []
|
344 |
+
new_sizes: List[List[sympy.Expr]] = []
|
345 |
+
for size in argsizes:
|
346 |
+
new_size, reindex = SqueezeView.squeezer(size)
|
347 |
+
new_sizes.append(new_size)
|
348 |
+
args.append(reindex(list(map(add_var, new_size))))
|
349 |
+
return args, var_ranges
|
350 |
+
|
351 |
+
|
352 |
+
def extract_read_writes(
|
353 |
+
fn: Callable[..., Any],
|
354 |
+
*argsizes: Tuple[sympy.Expr, ...],
|
355 |
+
normalize: bool = False,
|
356 |
+
prefix: str = "d",
|
357 |
+
):
|
358 |
+
args, var_ranges = index_vars_squeeze(*argsizes, prefix=prefix)
|
359 |
+
rw = RecordLoadStore(var_ranges, normalize=normalize)
|
360 |
+
with V.set_ops_handler(rw):
|
361 |
+
fn(*args)
|
362 |
+
|
363 |
+
if normalize:
|
364 |
+
range_vars = [] # Number of vars could differ due to normalization
|
365 |
+
else:
|
366 |
+
range_vars = [*itertools.chain(*args)]
|
367 |
+
|
368 |
+
inner = rw.parent_handler.parent_handler
|
369 |
+
return ReadWrites(
|
370 |
+
set(inner._reads),
|
371 |
+
set(inner._writes),
|
372 |
+
inner._index_exprs,
|
373 |
+
range_vars,
|
374 |
+
var_ranges,
|
375 |
+
rw.parent_handler._op_counts,
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
def extract_input_node_reduction_ranges(
|
380 |
+
input_node: "torch._inductor.ir.TensorBox",
|
381 |
+
) -> Tuple[Optional[List[sympy.Expr]], Optional[List[sympy.Expr]]]:
|
382 |
+
"""
|
383 |
+
Returns the size and reduction size of all inputs, if the sizes and reduction_sizes (if exist) are all the same.
|
384 |
+
It's possible that a node has multiple inputs, some are Reduction nodes and others are Pointwise nodes.
|
385 |
+
In this case, reduction_sizes of the Reduction nodes need to be the same.
|
386 |
+
Otherwise returns (None, None).
|
387 |
+
"""
|
388 |
+
|
389 |
+
from .ir import ComputedBuffer, Loops
|
390 |
+
|
391 |
+
if isinstance(input_node.data, ComputedBuffer):
|
392 |
+
# Input node has already been realized. Return its size and reduction_size.
|
393 |
+
size = input_node.get_size()
|
394 |
+
reduction_size = input_node.get_reduction_size()
|
395 |
+
if len(reduction_size) > 0:
|
396 |
+
return (size, reduction_size)
|
397 |
+
else:
|
398 |
+
return (None, None)
|
399 |
+
|
400 |
+
if not isinstance(input_node.data.data, Loops): # type: ignore[attr-defined]
|
401 |
+
# Other IRNodes do not have reduction_ranges.
|
402 |
+
return (None, None)
|
403 |
+
|
404 |
+
# There is one issue: what if there are views / permutations between the input node and its dependent realized nodes?
|
405 |
+
# The current method still uses reduction ranges from the dependent realized node, which is not ideal.
|
406 |
+
# Is there a way to check whether there are permutations inbetween?
|
407 |
+
reads = input_node.get_reads()
|
408 |
+
reduction_size = None
|
409 |
+
size = None
|
410 |
+
while reduction_size is None and len(reads) > 0:
|
411 |
+
seen = set()
|
412 |
+
new_reads = []
|
413 |
+
for read in reads:
|
414 |
+
if not isinstance(read, MemoryDep):
|
415 |
+
continue
|
416 |
+
if read.name in seen:
|
417 |
+
continue
|
418 |
+
seen.add(read.name)
|
419 |
+
buffer = V.graph.get_buffer(read.name)
|
420 |
+
if buffer is None:
|
421 |
+
continue
|
422 |
+
if (
|
423 |
+
isinstance(buffer, ComputedBuffer)
|
424 |
+
and len(buffer.get_reduction_size()) > 0
|
425 |
+
):
|
426 |
+
if reduction_size is None:
|
427 |
+
reduction_size = buffer.get_reduction_size()
|
428 |
+
size = buffer.get_size()
|
429 |
+
elif (
|
430 |
+
reduction_size != buffer.get_reduction_size()
|
431 |
+
or size != buffer.get_size()
|
432 |
+
):
|
433 |
+
return (None, None)
|
434 |
+
else:
|
435 |
+
new_reads.extend(buffer.get_reads())
|
436 |
+
if reads == new_reads:
|
437 |
+
return (size, reduction_size)
|
438 |
+
else:
|
439 |
+
reads = new_reads
|
440 |
+
return (size, reduction_size)
|
441 |
+
|
442 |
+
|
443 |
+
def canonicalization_prefix():
|
444 |
+
return "c"
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/exc.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
import textwrap
|
6 |
+
from functools import lru_cache
|
7 |
+
|
8 |
+
if os.environ.get("TORCHINDUCTOR_WRITE_MISSING_OPS") == "1":
|
9 |
+
|
10 |
+
@lru_cache(None)
|
11 |
+
def _record_missing_op(target):
|
12 |
+
with open(f"{tempfile.gettempdir()}/missing_ops.txt", "a") as fd:
|
13 |
+
fd.write(str(target) + "\n")
|
14 |
+
|
15 |
+
else:
|
16 |
+
|
17 |
+
def _record_missing_op(target): # type: ignore[misc]
|
18 |
+
pass
|
19 |
+
|
20 |
+
|
21 |
+
class OperatorIssue(RuntimeError):
|
22 |
+
@staticmethod
|
23 |
+
def operator_str(target, args, kwargs):
|
24 |
+
lines = [f"target: {target}"] + [
|
25 |
+
f"args[{i}]: {arg}" for i, arg in enumerate(args)
|
26 |
+
]
|
27 |
+
if kwargs:
|
28 |
+
lines.append(f"kwargs: {kwargs}")
|
29 |
+
return textwrap.indent("\n".join(lines), " ")
|
30 |
+
|
31 |
+
|
32 |
+
class MissingOperatorWithoutDecomp(OperatorIssue):
|
33 |
+
def __init__(self, target, args, kwargs):
|
34 |
+
_record_missing_op(target)
|
35 |
+
super().__init__(f"missing lowering\n{self.operator_str(target, args, kwargs)}")
|
36 |
+
|
37 |
+
|
38 |
+
class MissingOperatorWithDecomp(OperatorIssue):
|
39 |
+
def __init__(self, target, args, kwargs):
|
40 |
+
_record_missing_op(target)
|
41 |
+
super().__init__(
|
42 |
+
f"missing decomposition\n{self.operator_str(target, args, kwargs)}"
|
43 |
+
+ textwrap.dedent(
|
44 |
+
f"""
|
45 |
+
|
46 |
+
There is a decomposition available for {target} in
|
47 |
+
torch._decomp.get_decompositions(). Please add this operator to the
|
48 |
+
`decompositions` list in torch._inductor.decompositions
|
49 |
+
"""
|
50 |
+
)
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
class LoweringException(OperatorIssue):
|
55 |
+
def __init__(self, exc: Exception, target, args, kwargs):
|
56 |
+
super().__init__(
|
57 |
+
f"{type(exc).__name__}: {exc}\n{self.operator_str(target, args, kwargs)}"
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
class InvalidCxxCompiler(RuntimeError):
|
62 |
+
def __init__(self):
|
63 |
+
from . import config
|
64 |
+
|
65 |
+
super().__init__(
|
66 |
+
f"No working C++ compiler found in {config.__name__}.cpp.cxx: {config.cpp.cxx}"
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
class CppWrapperCodeGenError(RuntimeError):
|
71 |
+
def __init__(self, msg: str):
|
72 |
+
super().__init__(f"C++ wrapper codegen error: {msg}")
|
73 |
+
|
74 |
+
|
75 |
+
class CppCompileError(RuntimeError):
|
76 |
+
def __init__(self, cmd: list[str], output: str):
|
77 |
+
if isinstance(output, bytes):
|
78 |
+
output = output.decode("utf-8")
|
79 |
+
|
80 |
+
super().__init__(
|
81 |
+
textwrap.dedent(
|
82 |
+
"""
|
83 |
+
C++ compile error
|
84 |
+
|
85 |
+
Command:
|
86 |
+
{cmd}
|
87 |
+
|
88 |
+
Output:
|
89 |
+
{output}
|
90 |
+
"""
|
91 |
+
)
|
92 |
+
.strip()
|
93 |
+
.format(cmd=" ".join(cmd), output=output)
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
class CUDACompileError(CppCompileError):
|
98 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/freezing.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
|
6 |
+
import weakref
|
7 |
+
from typing import Any, List, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils._pytree as pytree
|
11 |
+
from torch._dynamo.utils import dynamo_timed, lazy_format_graph_code
|
12 |
+
from torch._functorch.aot_autograd import MutationType
|
13 |
+
from torch._functorch.compile_utils import fx_graph_cse
|
14 |
+
from torch._inductor.constant_folding import constant_fold, replace_node_with_constant
|
15 |
+
|
16 |
+
from torch._inductor.fx_passes.freezing_patterns import freezing_passes
|
17 |
+
from torch._inductor.fx_passes.post_grad import view_to_reshape
|
18 |
+
|
19 |
+
from . import config
|
20 |
+
|
21 |
+
aten = torch.ops.aten
|
22 |
+
prims = torch.ops.prims
|
23 |
+
|
24 |
+
log = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def replace_params_with_constants(
|
28 |
+
gm: torch.fx.GraphModule,
|
29 |
+
flat_params: list[Any],
|
30 |
+
fw_metadata: torch._functorch.aot_autograd.ViewAndMutationMeta,
|
31 |
+
) -> List[int]:
|
32 |
+
"""
|
33 |
+
Replaces the parameters of a PyTorch GraphModule with constants wherever possible.
|
34 |
+
Returns a list of indices representing the input parameters that were not converted to constants.
|
35 |
+
"""
|
36 |
+
params = [node for node in gm.graph.nodes if node.op == "placeholder"]
|
37 |
+
fake_inp_nodes = params[: len(params)]
|
38 |
+
preserved_arg_indices = []
|
39 |
+
aliased_input_args = [
|
40 |
+
out_info.base_idx
|
41 |
+
for out_info in fw_metadata.output_info
|
42 |
+
if out_info.base_idx is not None
|
43 |
+
]
|
44 |
+
|
45 |
+
# TODO (tmanlaibaatar) figure out why this is different
|
46 |
+
# from mutated_inp_runtime_indices
|
47 |
+
mutated_inps = [
|
48 |
+
i
|
49 |
+
for i, m in enumerate(fw_metadata.input_info)
|
50 |
+
if m.mutation_type
|
51 |
+
in (MutationType.MUTATED_IN_GRAPH, MutationType.MUTATED_OUT_GRAPH)
|
52 |
+
]
|
53 |
+
|
54 |
+
for i, (real_input, node) in enumerate(zip(flat_params, fake_inp_nodes)):
|
55 |
+
if i in mutated_inps or i in aliased_input_args:
|
56 |
+
preserved_arg_indices.append(i)
|
57 |
+
continue
|
58 |
+
replace_node_with_constant(gm, node, real_input)
|
59 |
+
# add on non param inputs
|
60 |
+
preserved_arg_indices.extend(range(len(flat_params), len(params)))
|
61 |
+
# is this necessary ?
|
62 |
+
gm.recompile()
|
63 |
+
return preserved_arg_indices
|
64 |
+
|
65 |
+
|
66 |
+
def freeze(
|
67 |
+
dynamo_gm: torch.fx.GraphModule,
|
68 |
+
aot_autograd_gm: torch.fx.GraphModule,
|
69 |
+
example_inputs: List[torch._subclasses.FakeTensor],
|
70 |
+
) -> Tuple[torch.fx.GraphModule, List[int]]:
|
71 |
+
"""
|
72 |
+
Inlines parameters that are not mutated into constants and optimizes the graph through constant propagation
|
73 |
+
and other techniques. If enabled, the function also discards the original parameters of the module for memory efficiency.
|
74 |
+
|
75 |
+
Assumes that this function is run in dynamo tracing post aot_autograd.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
dynamo_gm (torch.fx.GraphModule): The Dynamo constructed GraphModule.
|
79 |
+
aot_autograd_gm (torch.fx.GraphModule): The aot_autograd constructed GraphModule to be frozen.
|
80 |
+
example_inputs (List[torch.Tensor]): A list of example input tensors to be used in the freezing process.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
Tuple[torch.fx.GraphModule, List[int]]: A tuple containing the frozen GraphModule and a list of indices
|
84 |
+
of the inputs that were preserved (not turned into constants).
|
85 |
+
"""
|
86 |
+
# We have convert conv's weight to channels last which may meet error for .view
|
87 |
+
# when doing fake_tensor_prop. So we need to convert view to reshape first.
|
88 |
+
# See the details in fx_codegen_and_compile of compile_fx.py.
|
89 |
+
view_to_reshape(aot_autograd_gm)
|
90 |
+
|
91 |
+
if tracing_context := torch._guards.TracingContext.try_get():
|
92 |
+
fw_metadata = tracing_context.fw_metadata
|
93 |
+
params_flat = tracing_context.params_flat
|
94 |
+
assert fw_metadata is not None and params_flat is not None
|
95 |
+
|
96 |
+
preserved_arg_indices = replace_params_with_constants(
|
97 |
+
aot_autograd_gm, params_flat, fw_metadata
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
inputs = [
|
101 |
+
node for node in aot_autograd_gm.graph.nodes if node.op == "placeholder"
|
102 |
+
]
|
103 |
+
preserved_arg_indices = list(range(len(inputs)))
|
104 |
+
|
105 |
+
# TODO - further restrict cse ? right now needed to dedup aliasing ops
|
106 |
+
cse_graph = fx_graph_cse(aot_autograd_gm.graph)
|
107 |
+
aot_autograd_gm.graph = cse_graph
|
108 |
+
aot_autograd_gm.recompile()
|
109 |
+
|
110 |
+
aot_example_inputs = [example_inputs[ind] for ind in preserved_arg_indices]
|
111 |
+
freezing_passes(aot_autograd_gm, aot_example_inputs)
|
112 |
+
|
113 |
+
constant_fold(aot_autograd_gm)
|
114 |
+
# invalidate nn Modules
|
115 |
+
if config.freezing_discard_parameters:
|
116 |
+
invalidate_eager_modules()
|
117 |
+
discard_traced_gm_params(dynamo_gm)
|
118 |
+
|
119 |
+
log.debug("%s", lazy_format_graph_code("FROZEN GRAPH", aot_autograd_gm))
|
120 |
+
|
121 |
+
return aot_autograd_gm, preserved_arg_indices
|
122 |
+
|
123 |
+
|
124 |
+
class ErasedTensor(torch.Tensor):
|
125 |
+
@staticmethod
|
126 |
+
def __new__(cls, elem, name, owning_mod):
|
127 |
+
return super().__new__(cls, elem.to(device="meta"))
|
128 |
+
|
129 |
+
def __init__(self, elem, name: Optional[str], mod):
|
130 |
+
self.erased_name = name
|
131 |
+
self.owning_mod_ref = weakref.ref(mod)
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
135 |
+
erased_tensors = [
|
136 |
+
e
|
137 |
+
for e in pytree.arg_tree_leaves(*args, **kwargs)
|
138 |
+
if isinstance(e, ErasedTensor)
|
139 |
+
]
|
140 |
+
assert len(erased_tensors) > 0
|
141 |
+
e = erased_tensors[0]
|
142 |
+
|
143 |
+
raise RuntimeError(
|
144 |
+
f"Trying to run Pytorch Eager Module after Dynamo Freezing. "
|
145 |
+
"The original parameters have been discarded for memory efficiency. "
|
146 |
+
f"Found in op {func} for erased parameter {e.erased_name} of {e.owning_mod_ref()}"
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
151 |
+
def invalidate_eager_modules():
|
152 |
+
for mod in torch._guards.TracingContext.get().module_context.nn_modules.values():
|
153 |
+
if not isinstance(mod, torch.nn.Module):
|
154 |
+
continue
|
155 |
+
|
156 |
+
for attr_name, tensor in list(
|
157 |
+
itertools.chain(
|
158 |
+
mod.named_parameters(recurse=False), mod.named_buffers(recurse=False)
|
159 |
+
)
|
160 |
+
):
|
161 |
+
with torch._dispatch.python.no_python_dispatcher():
|
162 |
+
e_t = ErasedTensor(tensor, attr_name, mod)
|
163 |
+
if isinstance(tensor, torch.nn.Parameter):
|
164 |
+
e_t.requires_grad_(True)
|
165 |
+
e_t._is_param = True # type: ignore[attr-defined]
|
166 |
+
setattr(mod, attr_name, e_t)
|
167 |
+
|
168 |
+
|
169 |
+
@torch.utils._python_dispatch._disable_current_modes()
|
170 |
+
def discard_traced_gm_params(mod: torch.fx.GraphModule):
|
171 |
+
for attr_name, tensor in list(
|
172 |
+
itertools.chain(
|
173 |
+
mod.named_parameters(recurse=False), mod.named_buffers(recurse=False)
|
174 |
+
)
|
175 |
+
):
|
176 |
+
with torch._dispatch.python.no_python_dispatcher():
|
177 |
+
e_t = ErasedTensor(tensor, attr_name, mod)
|
178 |
+
if isinstance(tensor, torch.nn.Parameter):
|
179 |
+
e_t.requires_grad_(True)
|
180 |
+
e_t._is_param = True # type: ignore[attr-defined]
|
181 |
+
setattr(mod, attr_name, e_t)
|
182 |
+
|
183 |
+
|
184 |
+
def enforce_output_layout(gm: torch.fx.GraphModule):
|
185 |
+
"""
|
186 |
+
Make sure the output node's layout does not change due to compiler optimizations
|
187 |
+
by adding aten.as_strided nodes with the expected strides.
|
188 |
+
|
189 |
+
Only used for inference so we can assume all graph outputs are model outputs.
|
190 |
+
"""
|
191 |
+
*_, output_node = gm.graph.nodes
|
192 |
+
out_list = output_node.args[0]
|
193 |
+
with gm.graph.inserting_before(output_node):
|
194 |
+
for n in out_list:
|
195 |
+
if not isinstance(
|
196 |
+
n.meta["val"], torch.Tensor
|
197 |
+
) or not torch._prims_common.is_non_overlapping_and_dense(n.meta["val"]):
|
198 |
+
continue
|
199 |
+
|
200 |
+
# add a node to enforce eager layout
|
201 |
+
ft = n.meta["val"]
|
202 |
+
new_node = gm.graph.call_function(
|
203 |
+
prims.inductor_force_stride_order.default, (n, ft.stride())
|
204 |
+
)
|
205 |
+
|
206 |
+
# can not call
|
207 |
+
# n.replace_all_uses_with(new_node)
|
208 |
+
# since it will replace the usage of n in new_node itself.
|
209 |
+
output_node.replace_input_with(n, new_node)
|
210 |
+
|
211 |
+
gm.graph.lint()
|
212 |
+
gm.recompile()
|
213 |
+
|
214 |
+
|
215 |
+
def enforce_as_strided_input_layout(gm: torch.fx.GraphModule):
|
216 |
+
"""
|
217 |
+
Make sure the as_strided node's input's layout does not change due to compiler
|
218 |
+
optimizations, because the as_strided strides info depends on input tensor stride info.
|
219 |
+
"""
|
220 |
+
|
221 |
+
as_strided_ops = [
|
222 |
+
torch.ops.aten.as_strided.default,
|
223 |
+
torch.ops.aten.as_strided_.default,
|
224 |
+
torch.ops.aten.as_strided_scatter.default,
|
225 |
+
]
|
226 |
+
strided_nodes = [n for n in gm.graph.nodes if n.target in as_strided_ops]
|
227 |
+
for n in strided_nodes:
|
228 |
+
with gm.graph.inserting_before(n):
|
229 |
+
# add a node to enforce eager layout
|
230 |
+
ft = n.args[0].meta["val"]
|
231 |
+
new_node = gm.graph.call_function(
|
232 |
+
prims.inductor_force_stride_order.default, (n.args[0], ft.stride())
|
233 |
+
)
|
234 |
+
n.replace_input_with(n.args[0], new_node)
|
235 |
+
|
236 |
+
gm.graph.lint()
|
237 |
+
gm.recompile()
|
238 |
+
|
239 |
+
|
240 |
+
@dynamo_timed
|
241 |
+
def convert_conv_weights_to_channels_last(gm: torch.fx.GraphModule):
|
242 |
+
"""
|
243 |
+
Convert 4d convolution weight tensor to channels last format.
|
244 |
+
|
245 |
+
This pass is performed before freezing so the added nodes can be constant
|
246 |
+
folded by freezing.
|
247 |
+
"""
|
248 |
+
convs = [n for n in gm.graph.nodes if n.target == aten.convolution.default]
|
249 |
+
for conv in convs:
|
250 |
+
weight_node = conv.args[1]
|
251 |
+
if len(weight_node.meta["val"].size()) != 4 or weight_node.meta[
|
252 |
+
"val"
|
253 |
+
].is_contiguous(memory_format=torch.channels_last):
|
254 |
+
# not a 4d tensor or already channels last, skip
|
255 |
+
continue
|
256 |
+
|
257 |
+
with gm.graph.inserting_before(conv):
|
258 |
+
new_node = gm.graph.call_function(
|
259 |
+
aten.clone.default,
|
260 |
+
(weight_node,),
|
261 |
+
{"memory_format": torch.channels_last},
|
262 |
+
)
|
263 |
+
conv.replace_input_with(weight_node, new_node)
|
264 |
+
|
265 |
+
enforce_as_strided_input_layout(gm)
|
266 |
+
enforce_output_layout(gm)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/fx_utils.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from typing import Any, Callable, DefaultDict, Dict, Optional, Tuple, Type
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.fx
|
6 |
+
from torch.utils import _pytree as pytree
|
7 |
+
from torch.utils._pytree import tree_map
|
8 |
+
from .virtualized import V
|
9 |
+
|
10 |
+
|
11 |
+
# Check the pattern: (nn.module, F.function/torch.Tensor.method) matched.
|
12 |
+
# Works for length 2 patterns with 1 module and 1 function/method.
|
13 |
+
def matches_module_function_pattern(
|
14 |
+
pattern: Tuple[Type[torch.nn.modules.Module], Callable[..., Any]],
|
15 |
+
node: torch.fx.node.Node,
|
16 |
+
modules: Dict[str, torch.nn.modules.Module],
|
17 |
+
) -> bool:
|
18 |
+
if len(node.args) == 0:
|
19 |
+
return False
|
20 |
+
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
|
21 |
+
node, torch.fx.Node
|
22 |
+
):
|
23 |
+
return False
|
24 |
+
# the first node is call_module
|
25 |
+
if node.args[0].op != "call_module":
|
26 |
+
return False
|
27 |
+
if not isinstance(node.args[0].target, str):
|
28 |
+
return False
|
29 |
+
if node.args[0].target not in modules:
|
30 |
+
return False
|
31 |
+
if type(modules[node.args[0].target]) is not pattern[0]:
|
32 |
+
return False
|
33 |
+
# the second node is call_function or call_method
|
34 |
+
if node.op != "call_function" and node.op != "call_method":
|
35 |
+
return False
|
36 |
+
if node.target != pattern[1]:
|
37 |
+
return False
|
38 |
+
# make sure node.args[0] output is only used by current node.
|
39 |
+
if len(node.args[0].users) > 1:
|
40 |
+
return False
|
41 |
+
return True
|
42 |
+
|
43 |
+
|
44 |
+
class FakeTensorUpdater:
|
45 |
+
"""
|
46 |
+
The main idea here is that it's difficult to maintain accurate fake
|
47 |
+
tensors (our primary form of metadata) for each node in our graph as we
|
48 |
+
transform it.
|
49 |
+
|
50 |
+
The most reliable way to obtain this information is by rerunning
|
51 |
+
faketensor propagation. However, in general, faketensor propagation is
|
52 |
+
fairly expensive. So, instead we'd like to only rerun faketensor
|
53 |
+
propagation on nodes that have changed.
|
54 |
+
|
55 |
+
In order to detect which nodes have changed, we first hash its node,
|
56 |
+
target, and argument lists (which are immutable in FX).
|
57 |
+
|
58 |
+
Then, whenever we call incremental_update, we check which FX nodes have a
|
59 |
+
new hash, and recompute the faketensor metadata for that node. Then, we
|
60 |
+
continue to recursively compute the faketensors for all users until the
|
61 |
+
fake tensors stop changing.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(self, graph: torch.fx.Graph):
|
65 |
+
self.processed_hashes = set()
|
66 |
+
self.graph = graph
|
67 |
+
|
68 |
+
for node in self.graph.nodes:
|
69 |
+
self.processed_hashes.add(self.hash_node(node))
|
70 |
+
|
71 |
+
def hash_node(self, node: torch.fx.Node):
|
72 |
+
# todo(chilli): Not a great hash function
|
73 |
+
return (node, node.target, id(node.args), id(node.kwargs))
|
74 |
+
|
75 |
+
def incremental_update(self):
|
76 |
+
processed = set()
|
77 |
+
existing_storages: DefaultDict[Optional[int], int] = defaultdict(int)
|
78 |
+
for node in self.graph.nodes:
|
79 |
+
existing_storages[get_node_storage(node)] += 1
|
80 |
+
|
81 |
+
def is_fake_tensor_same(new, old):
|
82 |
+
if type(new) != type(old):
|
83 |
+
return False
|
84 |
+
if isinstance(new, (list, tuple)):
|
85 |
+
if len(new) != len(old):
|
86 |
+
return False
|
87 |
+
return all(
|
88 |
+
is_fake_tensor_same(new_i, old_i) for new_i, old_i in zip(new, old)
|
89 |
+
)
|
90 |
+
assert isinstance(new, torch.Tensor)
|
91 |
+
if new.shape != old.shape or new.layout != old.layout:
|
92 |
+
return False
|
93 |
+
if new.layout == torch.strided and new.stride() != old.stride():
|
94 |
+
return False
|
95 |
+
if get_storage(new) == get_storage(old):
|
96 |
+
return True
|
97 |
+
|
98 |
+
# This is the case where it returns a completely fresh storage that's used nowhere else.
|
99 |
+
if (
|
100 |
+
existing_storages[get_storage(old)] == 1
|
101 |
+
and get_storage(new) not in existing_storages
|
102 |
+
):
|
103 |
+
return True
|
104 |
+
return False
|
105 |
+
|
106 |
+
for node in self.graph.nodes:
|
107 |
+
if self.hash_node(node) in self.processed_hashes:
|
108 |
+
continue
|
109 |
+
|
110 |
+
def is_aten_node(node):
|
111 |
+
return node.op == "call_function" and isinstance(
|
112 |
+
node.target, torch._ops.OpOverload
|
113 |
+
)
|
114 |
+
|
115 |
+
if not is_aten_node(node):
|
116 |
+
continue
|
117 |
+
|
118 |
+
processing = [node]
|
119 |
+
while len(processing) > 0:
|
120 |
+
updating_node = processing.pop()
|
121 |
+
if updating_node in processed:
|
122 |
+
continue
|
123 |
+
if is_aten_node(updating_node):
|
124 |
+
continue
|
125 |
+
|
126 |
+
is_valid, args, kwargs = get_fake_args_kwargs(updating_node)
|
127 |
+
if not is_valid:
|
128 |
+
continue
|
129 |
+
with V.fake_mode:
|
130 |
+
new_fake_tensor = updating_node.target(*args, **kwargs)
|
131 |
+
if "val" in updating_node.meta and is_fake_tensor_same(
|
132 |
+
new_fake_tensor, updating_node.meta["val"]
|
133 |
+
):
|
134 |
+
continue
|
135 |
+
updating_node.meta["val"] = new_fake_tensor
|
136 |
+
|
137 |
+
# todo(chilli): This code path is not exercised by our existing
|
138 |
+
# tests - add a test
|
139 |
+
existing_storages[get_node_storage(new_fake_tensor)] += 1
|
140 |
+
processed.add(updating_node)
|
141 |
+
for user in updating_node.users:
|
142 |
+
processing.append(user)
|
143 |
+
|
144 |
+
self.processed_hashes.add(self.hash_node(updating_node))
|
145 |
+
|
146 |
+
|
147 |
+
def get_storage(t: torch.Tensor) -> int:
|
148 |
+
return t.untyped_storage()._cdata
|
149 |
+
|
150 |
+
|
151 |
+
def get_node_storage(node: torch.fx.Node) -> Optional[int]:
|
152 |
+
if "val" not in node.meta:
|
153 |
+
return None
|
154 |
+
if not isinstance(node.meta["val"], torch.Tensor):
|
155 |
+
return None
|
156 |
+
if not torch._C._has_storage(node.meta["val"]):
|
157 |
+
return None
|
158 |
+
return get_storage(node.meta["val"])
|
159 |
+
|
160 |
+
|
161 |
+
def get_fake(x):
|
162 |
+
if isinstance(x, torch.fx.Node):
|
163 |
+
if "val" not in x.meta:
|
164 |
+
return x
|
165 |
+
return x.meta["val"]
|
166 |
+
return x
|
167 |
+
|
168 |
+
|
169 |
+
def get_fake_args_kwargs(x: torch.fx.Node) -> Tuple[bool, Tuple[Any], Dict[str, Any]]:
|
170 |
+
"""
|
171 |
+
First value returns a boolean if any of the input nodes don't have a faketensor.
|
172 |
+
"""
|
173 |
+
args, kwargs = tree_map(get_fake, (x.args, x.kwargs))
|
174 |
+
if any(
|
175 |
+
isinstance(a, torch.fx.Node) for a in pytree.arg_tree_leaves(*args, **kwargs)
|
176 |
+
):
|
177 |
+
return False, args, kwargs
|
178 |
+
return True, args, kwargs
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/graph.py
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import logging
|
3 |
+
import operator
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import sys
|
7 |
+
import time
|
8 |
+
from collections import defaultdict
|
9 |
+
from contextlib import contextmanager
|
10 |
+
from typing import Any, Callable, DefaultDict, Dict, List, Optional, Set, Tuple
|
11 |
+
|
12 |
+
import sympy
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch._logging
|
16 |
+
import torch.fx
|
17 |
+
from torch._decomp import get_decompositions
|
18 |
+
from torch._dynamo.utils import defake, dynamo_timed
|
19 |
+
from torch._logging import LazyString
|
20 |
+
from torch._subclasses.fake_tensor import FakeTensor
|
21 |
+
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
|
22 |
+
from torch.fx.experimental.symbolic_shapes import has_free_symbols, ShapeEnv, SymTypes
|
23 |
+
from torch.utils._mode_utils import no_dispatch
|
24 |
+
|
25 |
+
from . import config, ir
|
26 |
+
from .codegen.common import (
|
27 |
+
get_scheduling_for_device,
|
28 |
+
get_wrapper_codegen_for_device,
|
29 |
+
register_backend_for_device,
|
30 |
+
)
|
31 |
+
from .codegen.wrapper import CppWrapperCodeGen, CudaWrapperCodeGen, WrapperCodeGen
|
32 |
+
from .exc import (
|
33 |
+
CppWrapperCodeGenError,
|
34 |
+
LoweringException,
|
35 |
+
MissingOperatorWithDecomp,
|
36 |
+
MissingOperatorWithoutDecomp,
|
37 |
+
)
|
38 |
+
from .ir import (
|
39 |
+
Constant,
|
40 |
+
FixedLayout,
|
41 |
+
InputBuffer,
|
42 |
+
Pointwise,
|
43 |
+
Reduction,
|
44 |
+
StorageBox,
|
45 |
+
TensorBox,
|
46 |
+
)
|
47 |
+
from .lowering import (
|
48 |
+
FALLBACK_ALLOW_LIST,
|
49 |
+
fallback_handler,
|
50 |
+
fallback_node_due_to_unsupported_type,
|
51 |
+
layout_constraints,
|
52 |
+
lowerings,
|
53 |
+
make_fallback,
|
54 |
+
needs_realized_inputs,
|
55 |
+
unsupported_output_tensor,
|
56 |
+
)
|
57 |
+
from .sizevars import SizeVarAllocator
|
58 |
+
from .utils import convert_shape_to_inductor, gather_origins, get_sympy_Expr_dtype
|
59 |
+
from .virtualized import V
|
60 |
+
|
61 |
+
log = logging.getLogger(__name__)
|
62 |
+
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
|
63 |
+
output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")
|
64 |
+
|
65 |
+
|
66 |
+
def supported_dtype_of_cpp_wrapper(dtype, cuda):
|
67 |
+
supported_dtype = {
|
68 |
+
torch.float32,
|
69 |
+
torch.float64,
|
70 |
+
torch.int64,
|
71 |
+
torch.int32,
|
72 |
+
torch.int16,
|
73 |
+
torch.int8,
|
74 |
+
torch.uint8,
|
75 |
+
torch.bool,
|
76 |
+
torch.bfloat16,
|
77 |
+
torch.complex64,
|
78 |
+
# torch.float16, # TODO: implement this
|
79 |
+
}
|
80 |
+
if cuda:
|
81 |
+
supported_dtype.add(torch.float16)
|
82 |
+
supported_dtype.add(torch.float8_e4m3fn)
|
83 |
+
supported_dtype.add(torch.float8_e5m2)
|
84 |
+
|
85 |
+
return dtype in supported_dtype
|
86 |
+
|
87 |
+
|
88 |
+
def may_get_constant_buffer_dtype(constant_buffer):
|
89 |
+
assert isinstance(
|
90 |
+
constant_buffer, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
|
91 |
+
), "get_constant_buffer_dtype only supports input of sympy.Symbol, sympy.Expr or sympy.core.numbers.Integer"
|
92 |
+
if isinstance(constant_buffer, sympy.core.numbers.Integer):
|
93 |
+
return torch.int64
|
94 |
+
|
95 |
+
if isinstance(constant_buffer, sympy.Expr):
|
96 |
+
return get_sympy_Expr_dtype(constant_buffer)
|
97 |
+
|
98 |
+
if constant_buffer.is_integer:
|
99 |
+
return torch.int64
|
100 |
+
elif constant_buffer.is_float:
|
101 |
+
return torch.float32
|
102 |
+
else:
|
103 |
+
return None
|
104 |
+
|
105 |
+
|
106 |
+
def is_magic_method(op):
|
107 |
+
magic_ops = {method_to_operator(m) for m in magic_methods}
|
108 |
+
return op in magic_ops
|
109 |
+
|
110 |
+
|
111 |
+
class GraphLowering(torch.fx.Interpreter):
|
112 |
+
graph_outputs: List[ir.IRNode]
|
113 |
+
|
114 |
+
def symbolic_sizes_strides(self, ex: torch.Tensor):
|
115 |
+
"""
|
116 |
+
Support dynamic shapes and dynamic strides by assigning variables
|
117 |
+
to each dimension. We duck-shape tensors, so if two tensors
|
118 |
+
have the same size they get assigned the same symbolic variable.
|
119 |
+
"""
|
120 |
+
if self.reuse_shape_env:
|
121 |
+
return convert_shape_to_inductor(ex.size()), convert_shape_to_inductor(
|
122 |
+
ex.stride()
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
from torch._dynamo.source import ConstantSource
|
126 |
+
|
127 |
+
# TODO: this should not be needed once #93059 lands
|
128 |
+
# https://github.com/pytorch/pytorch/pull/94031#discussion_r1096044816
|
129 |
+
# TODO: make a dedicated UnknownSource for this?
|
130 |
+
# NB: This is using the legacy default behavior from
|
131 |
+
# create_symbolic_sizes_strides_storage_offset but we hope we can
|
132 |
+
# just delete this entirely
|
133 |
+
source = ConstantSource(
|
134 |
+
f"__inductor_unknown_tensor_{len(self._shape_env.var_to_val)}"
|
135 |
+
)
|
136 |
+
(
|
137 |
+
size,
|
138 |
+
stride,
|
139 |
+
_,
|
140 |
+
) = self._shape_env.create_symbolic_sizes_strides_storage_offset(
|
141 |
+
ex,
|
142 |
+
source,
|
143 |
+
)
|
144 |
+
|
145 |
+
size = [i.node.expr if isinstance(i, torch.SymInt) else i for i in size]
|
146 |
+
stride = [i.node.expr if isinstance(i, torch.SymInt) else i for i in stride]
|
147 |
+
return size, stride
|
148 |
+
|
149 |
+
def static_sizes_strides(self, ex: torch.Tensor):
|
150 |
+
"""
|
151 |
+
Primarily used to weights
|
152 |
+
"""
|
153 |
+
size = [sympy.Integer(i) for i in ex.size()]
|
154 |
+
stride = [sympy.Integer(i) for i in ex.stride()]
|
155 |
+
return size, stride
|
156 |
+
|
157 |
+
def init_backend_registration(self):
|
158 |
+
if get_scheduling_for_device("cpu") is None:
|
159 |
+
from .codegen.cpp import CppScheduling
|
160 |
+
|
161 |
+
register_backend_for_device("cpu", CppScheduling, WrapperCodeGen)
|
162 |
+
|
163 |
+
if get_scheduling_for_device("cuda") is None:
|
164 |
+
from .codegen.cuda_combined_scheduling import CUDACombinedScheduling
|
165 |
+
|
166 |
+
# CUDACombinedScheduling combines Triton and CUDA C++ scheduling for CUDA devices via delegation
|
167 |
+
register_backend_for_device("cuda", CUDACombinedScheduling, WrapperCodeGen)
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
gm: torch.fx.GraphModule,
|
172 |
+
example_inputs: Optional[List[torch.Tensor]] = None,
|
173 |
+
shape_env=None,
|
174 |
+
num_static_inputs=None,
|
175 |
+
graph_id=None,
|
176 |
+
cpp_wrapper=False,
|
177 |
+
aot_mode=False,
|
178 |
+
user_visible_outputs=frozenset(),
|
179 |
+
layout_opt=None,
|
180 |
+
extern_node_serializer=None,
|
181 |
+
is_inference=False,
|
182 |
+
):
|
183 |
+
super().__init__(gm)
|
184 |
+
|
185 |
+
self.example_inputs = example_inputs
|
186 |
+
self.layout_opt = (
|
187 |
+
layout_opt
|
188 |
+
if layout_opt is not None
|
189 |
+
else self.decide_layout_opt(gm, is_inference=is_inference)
|
190 |
+
)
|
191 |
+
self.num_channels_last_conv = 0
|
192 |
+
self.is_inference = is_inference
|
193 |
+
|
194 |
+
self.extra_traceback = False # we do our own error wrapping
|
195 |
+
if shape_env is None:
|
196 |
+
shape_env = ShapeEnv()
|
197 |
+
self.reuse_shape_env = False
|
198 |
+
else:
|
199 |
+
self._shape_env = shape_env
|
200 |
+
self.reuse_shape_env = True
|
201 |
+
self._shape_env = shape_env
|
202 |
+
self.sizevars = SizeVarAllocator(shape_env)
|
203 |
+
self.graph_inputs: Dict[str, TensorBox] = {}
|
204 |
+
self.graph_inputs_original: Dict[str, InputBuffer] = {}
|
205 |
+
self.device_types: Set[str] = set()
|
206 |
+
self.device_idxs: Set[int] = set()
|
207 |
+
self.cuda = False
|
208 |
+
self.buffers: List[ir.Buffer] = []
|
209 |
+
self.constants: Dict[str, torch.Tensor] = {}
|
210 |
+
self.constant_reprs: Dict[str, str] = {}
|
211 |
+
self.removed_buffers: Set[str] = set()
|
212 |
+
self.removed_inplace_buffers: Set[str] = set()
|
213 |
+
self.mutated_buffers: Set[str] = set()
|
214 |
+
self.never_reuse_buffers: Set[str] = set()
|
215 |
+
self.inplaced_to_remove: Set[str] = set()
|
216 |
+
self.wrapper_code: WrapperCodeGen = None # type: ignore[assignment]
|
217 |
+
# See `ProxyExecutor Design Note` in ir.py for more details
|
218 |
+
self.extern_kernel_nodes: List[ir.ExternKernelNode] = []
|
219 |
+
self.extern_node_serializer: Optional[
|
220 |
+
Callable[[List[ir.ExternKernelNode]], Any]
|
221 |
+
] = extern_node_serializer
|
222 |
+
self.current_node: torch.fx.Node = None # type: ignore[assignment]
|
223 |
+
self.num_static_inputs = num_static_inputs
|
224 |
+
self.lists: Dict[str, List[str]] = {}
|
225 |
+
self.mutated_inputs: Set[str] = set()
|
226 |
+
self.mutated_input_idxs: List[int] = []
|
227 |
+
self.name_to_buffer: Dict[str, ir.Buffer] = {}
|
228 |
+
self.name_to_users: DefaultDict[str, List[ir.IRNode]] = defaultdict(list)
|
229 |
+
self.creation_time = time.time()
|
230 |
+
self.name = "GraphLowering"
|
231 |
+
self.cpp_wrapper = cpp_wrapper
|
232 |
+
self.aot_mode = aot_mode
|
233 |
+
self.graph_id = graph_id
|
234 |
+
self.scheduler: "torch._inductor.scheduler.Scheduler" = None # type: ignore[assignment]
|
235 |
+
self.nodes_prefer_channels_last = (
|
236 |
+
self.find_nodes_prefer_channels_last() if self.layout_opt else set()
|
237 |
+
)
|
238 |
+
self._warned_fallback = {"aten.convolution_backward"}
|
239 |
+
self.user_visible_outputs = user_visible_outputs
|
240 |
+
self.cache_key: str = "" # This is the cache key for the compiled artifact
|
241 |
+
self.cache_path: str = "" # This is the path in the filesystem where the compiled artifact is stored
|
242 |
+
self.cache_linemap: List[
|
243 |
+
Tuple[int, str]
|
244 |
+
] = (
|
245 |
+
[]
|
246 |
+
) # This is the linemap used by the profiler to mark custom compiled kernels getting run
|
247 |
+
# Used if lowering encounters cases where cudagraphs are not supported
|
248 |
+
self.disable_cudagraphs = False
|
249 |
+
self.disable_cudagraphs_reason = ""
|
250 |
+
self.orig_gm: torch.fx.GraphModule = gm.__copy__()
|
251 |
+
self.init_backend_registration()
|
252 |
+
|
253 |
+
@staticmethod
|
254 |
+
def decide_layout_opt(gm, *, is_inference) -> bool:
|
255 |
+
"""
|
256 |
+
Decide if we should enable layout optimization for this graph based on
|
257 |
+
heuristics.
|
258 |
+
"""
|
259 |
+
if not config.layout_optimization:
|
260 |
+
return False
|
261 |
+
|
262 |
+
if config.force_layout_optimization:
|
263 |
+
return True
|
264 |
+
|
265 |
+
conv_nodes = [
|
266 |
+
n for n in gm.graph.nodes if n.target == torch.ops.aten.convolution.default
|
267 |
+
]
|
268 |
+
nconv = len(conv_nodes)
|
269 |
+
|
270 |
+
if nconv == 0:
|
271 |
+
return False
|
272 |
+
|
273 |
+
# NHWC perf issue on ROCm5.7 first noted here https://github.com/pytorch/pytorch/pull/110319
|
274 |
+
if torch.version.hip and torch.cuda.is_available():
|
275 |
+
return False
|
276 |
+
|
277 |
+
# For cpu backend and mkldnn enabled, we always using channels_last for a better performance.
|
278 |
+
if (
|
279 |
+
all(
|
280 |
+
n.args[idx].meta["val"].device == torch.device("cpu")
|
281 |
+
for n in conv_nodes
|
282 |
+
for idx in [0, 1]
|
283 |
+
)
|
284 |
+
and torch.backends.mkldnn.enabled
|
285 |
+
and torch.backends.mkldnn.is_available()
|
286 |
+
):
|
287 |
+
return True
|
288 |
+
|
289 |
+
# Followering models are skipped due to this:
|
290 |
+
# jx_nest_base
|
291 |
+
# volo_d1_224
|
292 |
+
if len(list(gm.graph.nodes)) >= 300 * nconv:
|
293 |
+
log.debug("Skipped layout opt because only a few conv")
|
294 |
+
return False
|
295 |
+
|
296 |
+
if any(
|
297 |
+
has_free_symbols(n.args[idx].meta["val"])
|
298 |
+
for n in conv_nodes
|
299 |
+
for idx in [0, 1]
|
300 |
+
):
|
301 |
+
log.debug(
|
302 |
+
"See perf regression with dynamic shape. Follow up in https://github.com/pytorch/pytorch/issues/102670"
|
303 |
+
)
|
304 |
+
return False
|
305 |
+
|
306 |
+
def is_grouped(n):
|
307 |
+
return n.args[-1] > 1 and n.args[1].meta["val"].size(1) > 1
|
308 |
+
|
309 |
+
def is_in_out_channel(n):
|
310 |
+
return (
|
311 |
+
n.args[1].meta["val"].size(0) * 2 <= n.args[1].meta["val"].size(1)
|
312 |
+
and n.args[1].meta["val"].size(2) > 1
|
313 |
+
)
|
314 |
+
|
315 |
+
def is_small_channel(n):
|
316 |
+
return (
|
317 |
+
n.args[1].meta["val"].size(0) <= 64
|
318 |
+
and n.args[1].meta["val"].size(1) <= 64
|
319 |
+
)
|
320 |
+
|
321 |
+
# only grouped convolutions benchmarked as slower in conv samples for inference only
|
322 |
+
if is_inference:
|
323 |
+
from torch.utils.flop_counter import FlopCounterMode
|
324 |
+
|
325 |
+
flop_counts: Dict[str, float] = defaultdict(float)
|
326 |
+
for node in conv_nodes:
|
327 |
+
success, args, kwargs = torch._inductor.fx_utils.get_fake_args_kwargs(
|
328 |
+
node
|
329 |
+
)
|
330 |
+
|
331 |
+
if success:
|
332 |
+
with FlopCounterMode(display=False) as flop_counter_mode:
|
333 |
+
with V.fake_mode:
|
334 |
+
node.target(*args, **kwargs)
|
335 |
+
|
336 |
+
counted_flops = flop_counter_mode.get_total_flops()
|
337 |
+
if is_grouped(node):
|
338 |
+
node_type = "grouped"
|
339 |
+
elif is_small_channel(node):
|
340 |
+
node_type = "small"
|
341 |
+
elif is_in_out_channel(node):
|
342 |
+
node_type = "in_out"
|
343 |
+
else:
|
344 |
+
node_type = "default"
|
345 |
+
|
346 |
+
flop_counts[node_type] += counted_flops
|
347 |
+
else:
|
348 |
+
log.debug("Conv inputs meta not found")
|
349 |
+
|
350 |
+
# average benchmarked channels last speedup / slowdown, < 1 is speedup.
|
351 |
+
# taken from the set of convolution inputs in benchmarks/dynamo/microbenchmarks/operator_inp_logs/torchbench_train/
|
352 |
+
# To regenerate these numbers follow https://gist.github.com/eellison/55d7a6ed6f39829d68ac56f95f4df5bb
|
353 |
+
GROUPED_MULTIPLIER = 1.358
|
354 |
+
DEFAULT_MULTIPLIER = 0.823
|
355 |
+
IN_OUT_MULTIPLIER = 0.725
|
356 |
+
SMALL_MULTIPLIER = 0.783
|
357 |
+
|
358 |
+
total_flops = sum(flop_counts.values())
|
359 |
+
# TODO - get different values per hardware
|
360 |
+
weighted_flops = (
|
361 |
+
flop_counts["grouped"] * GROUPED_MULTIPLIER
|
362 |
+
+ flop_counts["small"] * SMALL_MULTIPLIER
|
363 |
+
+ flop_counts["in_out"] * IN_OUT_MULTIPLIER
|
364 |
+
+ flop_counts["default"] * DEFAULT_MULTIPLIER
|
365 |
+
)
|
366 |
+
do_layout_opt = weighted_flops <= total_flops
|
367 |
+
if not do_layout_opt:
|
368 |
+
log.debug(
|
369 |
+
"Skipped layout opt in inference because weighted flops indicate slowdown, default: %d, channels last: %d",
|
370 |
+
total_flops,
|
371 |
+
weighted_flops,
|
372 |
+
)
|
373 |
+
return do_layout_opt
|
374 |
+
|
375 |
+
# Channels last layout can dramatically hurt grouped conv perf. E.g.
|
376 |
+
# Conv with arguments like
|
377 |
+
# {"input_shape": [32, 224, 112, 112], "weight_shape": [224, 112, 3, 3],
|
378 |
+
# "stride": [2, 2], "padding": [1, 1], "groups": 2}
|
379 |
+
# slows down 31x using channels last..
|
380 |
+
|
381 |
+
# But a lot of timm models use depthwise separable convolution which will
|
382 |
+
# result in grouped convolution with in-channel size == 1.
|
383 |
+
# For those grouped convolution, channels last still helps a lot.
|
384 |
+
# E.g.
|
385 |
+
# Conv with arguments
|
386 |
+
# {"input_shape": [128, 58, 56, 56], "weight_shape": [58, 1, 3, 3],
|
387 |
+
# "stride": [2, 2], "padding": [1, 1], "groups": 58}
|
388 |
+
# get 1.86x speedup with channels last layout.
|
389 |
+
#
|
390 |
+
# The following heuristics skip using channels-last if the model contains
|
391 |
+
# grouped convolution with in-channels > 1.
|
392 |
+
if any(is_grouped(n) for n in conv_nodes):
|
393 |
+
log.debug(
|
394 |
+
"Skip layout opt because found grouped convolution with >1 in_channels!"
|
395 |
+
)
|
396 |
+
return False
|
397 |
+
|
398 |
+
# For some models that contain convolution with larger in-channel than out-channel, applying
|
399 |
+
# channels last hurts performance.
|
400 |
+
# Following models are skipped due to this:
|
401 |
+
# - pytorch_unet
|
402 |
+
# - phlippe_densenet (slightly worse)
|
403 |
+
# - Background_Matting (1.22x -> 0.821x)
|
404 |
+
# - pytorch_CycleGAN_and_pix2pix (1.597x -> 1.294x)
|
405 |
+
if any(is_in_out_channel(n) for n in conv_nodes):
|
406 |
+
log.debug(
|
407 |
+
"Skip layout opt because some convolutions have smaller out_channel"
|
408 |
+
)
|
409 |
+
return False
|
410 |
+
|
411 |
+
# Following models are skipped due to this:
|
412 |
+
# - functorch_maml_omniglot
|
413 |
+
if all(is_small_channel(n) for n in conv_nodes):
|
414 |
+
log.debug("Skip layout opt because all convolution channels are too small")
|
415 |
+
return False
|
416 |
+
|
417 |
+
return True
|
418 |
+
|
419 |
+
def find_nodes_prefer_channels_last(self):
|
420 |
+
"""
|
421 |
+
The rule to decide if an node prefer channels last is simple.
|
422 |
+
1. if it's input/output of a convolution
|
423 |
+
2. if one of its user prefers channels last
|
424 |
+
|
425 |
+
We have rule 1 because cudnn runs a faster convolution kernel for channels last inputs;
|
426 |
+
Rule 2 is also important. It makes sure that indirect inputs to convolution also prefers
|
427 |
+
channels last.
|
428 |
+
|
429 |
+
Consider the scenario: conv -> batch-norm -> relu -> conv
|
430 |
+
Without rule 2, batch-norm output may use a contiguous layout. That will cause 2 extra copies:
|
431 |
+
1. the output of batch-norm should be channels last initially since its input is a conv's output.
|
432 |
+
Forcing the batch-norm's output to be contiguous results in the first copy
|
433 |
+
2. The second conv's input is initially contiguous. This layout is propagated from the batch-norm's output.
|
434 |
+
We need convert it to channels last layout which results in the second copy.
|
435 |
+
With rule 2, we makes sure all the tensors in the chain uses channels last layout. So both copies
|
436 |
+
can be saved.
|
437 |
+
"""
|
438 |
+
output_set = set()
|
439 |
+
for n in reversed(self.module.graph.nodes):
|
440 |
+
if n.target == torch.ops.aten.convolution.default:
|
441 |
+
output_set.add(n)
|
442 |
+
continue
|
443 |
+
|
444 |
+
for user in n.users:
|
445 |
+
if user in output_set:
|
446 |
+
output_set.add(n)
|
447 |
+
break
|
448 |
+
|
449 |
+
# need a second pass to add downstream nodes of those channel last nodes to the sets.
|
450 |
+
# This pass is especially needed to avoid mix-layout kernel inputs in backward pass.
|
451 |
+
#
|
452 |
+
# Let's say a conv-batchnorm 's output is passed to relu whose output is in turn returned
|
453 |
+
# from the fwd graph. Without this second pass, we will force relu's output to be contiguous.
|
454 |
+
# Then in the kernel in backward pass, the contiguous output of relu may be mix with other channels last
|
455 |
+
# tensors and passed to a kernel.
|
456 |
+
#
|
457 |
+
# This pass improve yolov3 training speedup from 1.116x (worse than disabling layout optimization speedup 1.196x) to 1.457x.
|
458 |
+
# It also improves dla102 training speedup from 1.240x (worse than disabling layout optimization speedup 1.523x) to 1.835x .
|
459 |
+
# This also helps the following models:
|
460 |
+
# - res2net101_26w_4s
|
461 |
+
# - res2net50_14w_8s
|
462 |
+
# - sebotnet33ts_256
|
463 |
+
for n in self.module.graph.nodes:
|
464 |
+
if n in output_set:
|
465 |
+
for child in n.users:
|
466 |
+
output_set.add(child)
|
467 |
+
|
468 |
+
return output_set
|
469 |
+
|
470 |
+
def warn_fallback(self, name):
|
471 |
+
if name not in self._warned_fallback:
|
472 |
+
self._warned_fallback.add(name)
|
473 |
+
perf_hint_log.info("Using FallbackKernel: %s", name)
|
474 |
+
|
475 |
+
def add_device_info(self, device: torch.device):
|
476 |
+
self.device_types.add(device.type)
|
477 |
+
if device.index is not None:
|
478 |
+
self.device_idxs.add(device.index)
|
479 |
+
|
480 |
+
@property
|
481 |
+
def fake_mode(self):
|
482 |
+
return V.fake_mode
|
483 |
+
|
484 |
+
def get_buffer(self, buffer_name: str):
|
485 |
+
if buffer_name in self.name_to_buffer:
|
486 |
+
return self.name_to_buffer[buffer_name]
|
487 |
+
if buffer_name in self.graph_inputs:
|
488 |
+
return self.graph_inputs[buffer_name]
|
489 |
+
return None
|
490 |
+
|
491 |
+
def get_dtype(self, buffer_name: str):
|
492 |
+
if buffer_name in self.constants:
|
493 |
+
return self.constants[buffer_name].dtype
|
494 |
+
if buffer_name in self.name_to_buffer:
|
495 |
+
return self.name_to_buffer[buffer_name].get_dtype()
|
496 |
+
if buffer_name in self.graph_inputs:
|
497 |
+
return self.graph_inputs[buffer_name].get_dtype()
|
498 |
+
m = re.match(r"(as_strided|reinterpret_tensor)\(([a-zA-Z0-9_]+),", buffer_name)
|
499 |
+
if m:
|
500 |
+
return self.get_dtype(m.group(1))
|
501 |
+
raise KeyError(f"could not find {buffer_name}")
|
502 |
+
|
503 |
+
def get_numel(self, buffer_name: str):
|
504 |
+
from .ir import MultiOutputLayout
|
505 |
+
|
506 |
+
if buffer_name in self.constants:
|
507 |
+
return self.constants[buffer_name].numel()
|
508 |
+
if buffer_name in self.name_to_buffer:
|
509 |
+
buf = self.name_to_buffer[buffer_name]
|
510 |
+
if isinstance(getattr(buf, "layout", None), MultiOutputLayout):
|
511 |
+
return 1
|
512 |
+
return buf.get_numel()
|
513 |
+
if buffer_name in self.graph_inputs:
|
514 |
+
return self.graph_inputs[buffer_name].get_numel()
|
515 |
+
raise KeyError(f"could not find {buffer_name}")
|
516 |
+
|
517 |
+
@dynamo_timed
|
518 |
+
def run(self, *args):
|
519 |
+
return super().run(*args)
|
520 |
+
|
521 |
+
def register_buffer(self, buffer: ir.Buffer):
|
522 |
+
name = f"buf{len(self.buffers)}"
|
523 |
+
self.buffers.append(buffer)
|
524 |
+
self.name_to_buffer[name] = buffer
|
525 |
+
# Skip empty CPU tensor so that CUDA graphs can succeed, see https://github.com/pytorch/pytorch/pull/114144
|
526 |
+
if not isinstance(buffer, ir.ComputedBuffer) or not buffer.is_zero_elements():
|
527 |
+
self.add_device_info(buffer.get_device())
|
528 |
+
return name
|
529 |
+
|
530 |
+
def register_list(self, buffer_names: List[str]):
|
531 |
+
name = "list_" + "_".join(buffer_names)
|
532 |
+
self.lists[name] = buffer_names
|
533 |
+
return name
|
534 |
+
|
535 |
+
def register_users_of(self, node_output):
|
536 |
+
def register(value):
|
537 |
+
if isinstance(value, (list, tuple)):
|
538 |
+
for x in value:
|
539 |
+
register(x)
|
540 |
+
if isinstance(value, ir.IRNode):
|
541 |
+
if (
|
542 |
+
not hasattr(value, "data")
|
543 |
+
or not isinstance(value.data, ir.IRNode)
|
544 |
+
or not (
|
545 |
+
hasattr(value.data, "data")
|
546 |
+
and isinstance(value.data.data, ir.IRNode)
|
547 |
+
)
|
548 |
+
):
|
549 |
+
return
|
550 |
+
|
551 |
+
for read_name in value.get_read_names():
|
552 |
+
self.name_to_users[read_name].append(value)
|
553 |
+
|
554 |
+
register(node_output)
|
555 |
+
|
556 |
+
def mark_buffer_mutated(self, name: str):
|
557 |
+
"""
|
558 |
+
When a buffer is mutated we need to make sure all the reads to
|
559 |
+
the old version are realized before the mutation happens.
|
560 |
+
"""
|
561 |
+
assert isinstance(name, str)
|
562 |
+
self.mutated_buffers.add(name)
|
563 |
+
|
564 |
+
if name not in self.name_to_users:
|
565 |
+
return
|
566 |
+
|
567 |
+
for user in self.name_to_users[name]:
|
568 |
+
user.realize()
|
569 |
+
|
570 |
+
def add_tensor_constant(self, data, name=None):
|
571 |
+
def allocate(name):
|
572 |
+
for constant_name, value in self.constants.items():
|
573 |
+
if (
|
574 |
+
not data.is_mkldnn
|
575 |
+
and data.size() == value.size()
|
576 |
+
and data.stride() == value.stride()
|
577 |
+
and data.dtype == value.dtype
|
578 |
+
and data.device == value.device
|
579 |
+
and torch.eq(data, value).all()
|
580 |
+
):
|
581 |
+
return constant_name
|
582 |
+
|
583 |
+
if name is None:
|
584 |
+
name = f"constant{len(self.constants)}"
|
585 |
+
if name[0].isdigit():
|
586 |
+
name = f"constant_{name}"
|
587 |
+
# We may generate a var name for each constant in the codegen.
|
588 |
+
# Let's only keep sane characters.
|
589 |
+
prefix = re.sub(r"[^a-zA-Z0-9_]", "_", name)
|
590 |
+
name = prefix
|
591 |
+
cnt = 0
|
592 |
+
while name in self.constants:
|
593 |
+
name = f"{prefix}_{cnt}"
|
594 |
+
cnt += 1
|
595 |
+
self.constants[name] = data
|
596 |
+
self.constant_reprs[name] = hashlib.sha256(
|
597 |
+
repr(data).encode("utf-8")
|
598 |
+
).hexdigest()
|
599 |
+
return name
|
600 |
+
|
601 |
+
name = allocate(name)
|
602 |
+
|
603 |
+
return TensorBox.create(
|
604 |
+
ir.ConstantBuffer(
|
605 |
+
name,
|
606 |
+
FixedLayout(data.device, data.dtype, *self.static_sizes_strides(data)),
|
607 |
+
)
|
608 |
+
)
|
609 |
+
|
610 |
+
def constant_name(self, name: str, device_override: Optional[torch.device]):
|
611 |
+
"""
|
612 |
+
We AOT copy constants to the devices they are needed on.
|
613 |
+
If device_override doesn't match the constant's device, then
|
614 |
+
copy it and return a different name.
|
615 |
+
"""
|
616 |
+
if self.constants[name].device == device_override or device_override is None:
|
617 |
+
return name
|
618 |
+
alt_name = f"{name}_{device_override.type}{device_override.index or 0}"
|
619 |
+
if alt_name not in self.constants:
|
620 |
+
self.constants[alt_name] = self.constants[name].to(device_override)
|
621 |
+
return alt_name
|
622 |
+
|
623 |
+
def placeholder(self, target: str, args, kwargs):
|
624 |
+
example = super().placeholder(target, args, kwargs)
|
625 |
+
if isinstance(example, SymTypes):
|
626 |
+
expr = example.node.expr
|
627 |
+
self.graph_inputs[target] = expr
|
628 |
+
return expr
|
629 |
+
elif isinstance(example, (int, bool, float)):
|
630 |
+
expr = sympy.sympify(example)
|
631 |
+
self.graph_inputs[target] = expr
|
632 |
+
return expr
|
633 |
+
assert isinstance(example, torch.Tensor), example
|
634 |
+
# todo(chilli): We can remove the last check once we turn buffers into
|
635 |
+
# static shape tensors. That's a hack to workaround Inductor believing
|
636 |
+
# the buffer should be static but us passing in a fake tensor with
|
637 |
+
# symbolic shapes.
|
638 |
+
if not example._has_symbolic_sizes_strides:
|
639 |
+
# the first N inputs are weights
|
640 |
+
sizes, strides = self.static_sizes_strides(example)
|
641 |
+
else:
|
642 |
+
sizes, strides = self.symbolic_sizes_strides(example)
|
643 |
+
# TODO(jansel): handle input aliasing
|
644 |
+
tensor = TensorBox.create(
|
645 |
+
InputBuffer(
|
646 |
+
target,
|
647 |
+
FixedLayout(example.device, example.dtype, sizes, strides),
|
648 |
+
)
|
649 |
+
)
|
650 |
+
self.graph_inputs[target] = tensor
|
651 |
+
self.graph_inputs_original[target] = tensor.data.data
|
652 |
+
self.add_device_info(example.device)
|
653 |
+
return tensor
|
654 |
+
|
655 |
+
def call_function(self, target, args, kwargs):
|
656 |
+
if target is operator.getitem and isinstance(args[0], (list, tuple, dict)):
|
657 |
+
return super().call_function(target, args, kwargs)
|
658 |
+
|
659 |
+
if hasattr(target, "_inductor_lowering_function"):
|
660 |
+
# passthrough lowerings from .pattern_matcher
|
661 |
+
return target(*args, **kwargs)
|
662 |
+
|
663 |
+
if target not in lowerings:
|
664 |
+
assert isinstance(
|
665 |
+
target, torch._ops.OpOverload
|
666 |
+
), f"{target} is not an OpOverload"
|
667 |
+
base_name = target.name().split(".")[0]
|
668 |
+
if base_name in FALLBACK_ALLOW_LIST:
|
669 |
+
make_fallback(target)
|
670 |
+
elif config.implicit_fallbacks:
|
671 |
+
error = (
|
672 |
+
MissingOperatorWithDecomp
|
673 |
+
if get_decompositions([target])
|
674 |
+
else MissingOperatorWithoutDecomp
|
675 |
+
)
|
676 |
+
log.info(
|
677 |
+
"Creating implicit fallback for:\n%s",
|
678 |
+
error.operator_str(target, args, kwargs),
|
679 |
+
)
|
680 |
+
make_fallback(target)
|
681 |
+
elif get_decompositions([target]):
|
682 |
+
# There isn't a good way to dynamically patch this in
|
683 |
+
# since AOT Autograd already ran. The error message tells
|
684 |
+
# the user how to fix it.
|
685 |
+
raise MissingOperatorWithDecomp(target, args, kwargs)
|
686 |
+
else:
|
687 |
+
raise MissingOperatorWithoutDecomp(target, args, kwargs)
|
688 |
+
|
689 |
+
try:
|
690 |
+
log.debug(" via %s", lowerings[target])
|
691 |
+
out = lowerings[target](*args, **kwargs)
|
692 |
+
return out
|
693 |
+
except Exception as e:
|
694 |
+
raise LoweringException(e, target, args, kwargs).with_traceback(
|
695 |
+
e.__traceback__
|
696 |
+
) from None
|
697 |
+
|
698 |
+
@staticmethod
|
699 |
+
def can_inline_constant(t: torch.Tensor) -> bool:
|
700 |
+
"""
|
701 |
+
True if this is a small constant attr that will be inlined.
|
702 |
+
"""
|
703 |
+
return len(t.shape) == 1 and t.shape[0] <= 8
|
704 |
+
|
705 |
+
def get_attr(self, target, args, kwargs):
|
706 |
+
# this is a constant
|
707 |
+
value = getattr(self.module, target)
|
708 |
+
|
709 |
+
if config.always_keep_tensor_constants or unsupported_output_tensor(value):
|
710 |
+
return self.add_tensor_constant(value, target)
|
711 |
+
|
712 |
+
with no_dispatch():
|
713 |
+
if value.shape == ():
|
714 |
+
return Constant(value.item(), value.dtype, value.device)
|
715 |
+
if self.can_inline_constant(value):
|
716 |
+
# tensor lowering has constant inlining logic
|
717 |
+
from .lowering import tensor
|
718 |
+
|
719 |
+
return tensor(value.tolist(), dtype=value.dtype, device=value.device)
|
720 |
+
|
721 |
+
return self.add_tensor_constant(value, target)
|
722 |
+
|
723 |
+
def call_module(self, target, args, kwargs):
|
724 |
+
raise AssertionError()
|
725 |
+
|
726 |
+
def call_method(self, target, args, kwargs):
|
727 |
+
raise AssertionError()
|
728 |
+
|
729 |
+
def output(self, target, args, kwargs):
|
730 |
+
result = super().output(target, args, kwargs)
|
731 |
+
assert isinstance(result, (tuple, list)), type(result)
|
732 |
+
assert all(
|
733 |
+
isinstance(
|
734 |
+
x,
|
735 |
+
(
|
736 |
+
TensorBox,
|
737 |
+
ir.Constant,
|
738 |
+
type(None),
|
739 |
+
ir.ConstantBuffer,
|
740 |
+
sympy.Expr,
|
741 |
+
sympy.logic.boolalg.Boolean,
|
742 |
+
int,
|
743 |
+
),
|
744 |
+
)
|
745 |
+
for x in result
|
746 |
+
), result
|
747 |
+
self.graph_outputs = [ir.ExternKernel.realize_input(x) for x in result]
|
748 |
+
value: ir.IRNode
|
749 |
+
for name, value in self.graph_inputs.items():
|
750 |
+
assert isinstance(
|
751 |
+
value, (TensorBox, sympy.Expr)
|
752 |
+
), f"Unsupported inductor graph input type: {type(value)}"
|
753 |
+
if not isinstance(value, TensorBox):
|
754 |
+
continue
|
755 |
+
value.realize()
|
756 |
+
assert isinstance(value, TensorBox)
|
757 |
+
value = value.data
|
758 |
+
assert isinstance(value, ir.StorageBox)
|
759 |
+
value_storage_box = value
|
760 |
+
value = value.data
|
761 |
+
if not isinstance(value, InputBuffer) or value.get_name() != name:
|
762 |
+
# one of our inputs was mutated, need to turn that into a copy
|
763 |
+
ir.MutationLayout.realize_into(value, self.graph_inputs_original[name])
|
764 |
+
# replace output with mutated input
|
765 |
+
try:
|
766 |
+
ind = self.graph_outputs.index(value_storage_box)
|
767 |
+
self.graph_outputs[ind] = self.graph_inputs_original[name]
|
768 |
+
except ValueError:
|
769 |
+
pass
|
770 |
+
|
771 |
+
self.finalize()
|
772 |
+
log.debug(
|
773 |
+
"Force channels last inputs for %d conv for the current graph with id %d",
|
774 |
+
self.num_channels_last_conv,
|
775 |
+
self.graph_id if self.graph_id is not None else -1,
|
776 |
+
)
|
777 |
+
|
778 |
+
def finalize(self):
|
779 |
+
for buf in self.buffers:
|
780 |
+
buf.decide_layout()
|
781 |
+
|
782 |
+
@contextmanager
|
783 |
+
def set_current_node(self, node: torch.fx.Node):
|
784 |
+
old = self.current_node
|
785 |
+
try:
|
786 |
+
self.current_node = node
|
787 |
+
yield
|
788 |
+
finally:
|
789 |
+
self.current_node = old
|
790 |
+
|
791 |
+
def run_node(self, n: torch.fx.Node):
|
792 |
+
def debug(msg):
|
793 |
+
log.debug("lowering %s %s", LazyString(n.format_node), msg)
|
794 |
+
|
795 |
+
origins = {n}
|
796 |
+
if n.op == "call_function":
|
797 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
798 |
+
origins |= gather_origins(args, kwargs)
|
799 |
+
with ir.IRNode.current_origins(origins), self.set_current_node(
|
800 |
+
n
|
801 |
+
), V.set_current_node(n):
|
802 |
+
if (
|
803 |
+
n.op == "call_function"
|
804 |
+
and n.target is not operator.getitem
|
805 |
+
and fallback_node_due_to_unsupported_type(n)
|
806 |
+
):
|
807 |
+
debug("fallback_handler")
|
808 |
+
result = fallback_handler(n.target, add_to_fallback_set=False)(
|
809 |
+
*args, **kwargs
|
810 |
+
)
|
811 |
+
elif n.op == "call_function" and n.target in layout_constraints:
|
812 |
+
debug("layout_constraints")
|
813 |
+
args, kwargs = layout_constraints[n.target](n, *args, **kwargs)
|
814 |
+
result = self.call_function(n.target, args, kwargs)
|
815 |
+
elif is_magic_method(n.target):
|
816 |
+
# TODO: this is sus, it probably should be handled in the
|
817 |
+
# lowerings themselves similarly to sym_size/sym-stride
|
818 |
+
debug("is_magic_method")
|
819 |
+
if isinstance(n.meta["val"], torch.SymInt):
|
820 |
+
result = n.meta["val"].node.expr
|
821 |
+
else:
|
822 |
+
result = super().run_node(n)
|
823 |
+
else:
|
824 |
+
debug("")
|
825 |
+
result = super().run_node(n)
|
826 |
+
|
827 |
+
# require the same stride order for dense outputs,
|
828 |
+
# 1. user-land view() will not throw because inductor
|
829 |
+
# output different strides than eager
|
830 |
+
# long term the solution is to make view() always succeed
|
831 |
+
# with infallible strides.
|
832 |
+
# 2: as_strided ops, we need make sure its input has same size/stride with
|
833 |
+
# eager model to align with eager behavior.
|
834 |
+
as_strided_ops = [
|
835 |
+
torch.ops.aten.as_strided.default,
|
836 |
+
torch.ops.aten.as_strided_.default,
|
837 |
+
torch.ops.aten.as_strided_scatter.default,
|
838 |
+
]
|
839 |
+
is_output = any(user.op == "output" for user in n.users)
|
840 |
+
is_input_for_as_strided = any(
|
841 |
+
user.target in as_strided_ops for user in n.users
|
842 |
+
)
|
843 |
+
if (is_output or is_input_for_as_strided) and isinstance(
|
844 |
+
n.meta["val"], torch.Tensor
|
845 |
+
):
|
846 |
+
strides = n.meta["val"].stride()
|
847 |
+
dense = torch._prims_common.is_non_overlapping_and_dense(n.meta["val"])
|
848 |
+
# requiring a stride order for a non-dense output wouldn't
|
849 |
+
# recreate the same strides, and would fail with view, defer for now.
|
850 |
+
if dense and len(strides):
|
851 |
+
stride_order = ir.get_stride_order(strides)
|
852 |
+
if (
|
853 |
+
len(result.get_size()) == 4
|
854 |
+
and n in self.nodes_prefer_channels_last
|
855 |
+
and n.name not in self.user_visible_outputs
|
856 |
+
and not is_input_for_as_strided
|
857 |
+
):
|
858 |
+
stride_order = ir.NHWC_STRIDE_ORDER
|
859 |
+
result = ir.ExternKernel.require_stride_order(result, stride_order)
|
860 |
+
|
861 |
+
# Realize if (1) any user need inputs realized, or (2) there is
|
862 |
+
# already too many reads and rematerializing can be bad.
|
863 |
+
num_users = len(set(n.users))
|
864 |
+
if num_users > 1 and isinstance(result, TensorBox):
|
865 |
+
for user in n.users:
|
866 |
+
if user.target in needs_realized_inputs:
|
867 |
+
result.realize_hint()
|
868 |
+
# This inclusion is somewhat controversial (from
|
869 |
+
# discussion between Horace, Natalia, and Elias).
|
870 |
+
# Currently, it's not very clear why this is helpful.
|
871 |
+
# The general idea here is that even though a node may
|
872 |
+
# have FlexibleLayout, we still often *treat* it as if
|
873 |
+
# it was contiguous. This appears to sometimes result in
|
874 |
+
# suboptimal behavior.
|
875 |
+
#
|
876 |
+
# When we do a better job selecting layout, we should
|
877 |
+
# revisit this.
|
878 |
+
need_fixed_layout = [
|
879 |
+
torch.ops.aten.convolution_backward.default,
|
880 |
+
torch.ops.aten.mm.default,
|
881 |
+
torch.ops.aten._int_mm.default,
|
882 |
+
]
|
883 |
+
if not self.layout_opt:
|
884 |
+
need_fixed_layout.append(torch.ops.aten.convolution.default)
|
885 |
+
if torch._C._has_mkldnn:
|
886 |
+
need_fixed_layout += [
|
887 |
+
torch.ops.mkldnn._convolution_pointwise.default,
|
888 |
+
torch.ops.mkldnn._convolution_pointwise.binary,
|
889 |
+
torch.ops.mkldnn._convolution_pointwise_.binary,
|
890 |
+
torch.ops.mkldnn._convolution_transpose_pointwise.default,
|
891 |
+
torch.ops.mkldnn._linear_pointwise.default,
|
892 |
+
torch.ops.mkldnn._linear_pointwise.binary,
|
893 |
+
torch.ops.aten.mkldnn_rnn_layer.default,
|
894 |
+
torch.ops.onednn.qconv2d_pointwise.default,
|
895 |
+
torch.ops.onednn.qconv2d_pointwise.binary,
|
896 |
+
torch.ops.onednn.qlinear_pointwise.default,
|
897 |
+
]
|
898 |
+
if torch._C.has_mkl:
|
899 |
+
need_fixed_layout += [torch.ops.mkl._mkl_linear.default]
|
900 |
+
if user.target in need_fixed_layout:
|
901 |
+
result = ir.ExternKernel.require_stride_order(
|
902 |
+
result, ir.get_stride_order(n.meta["val"].stride())
|
903 |
+
)
|
904 |
+
if user.op == "output":
|
905 |
+
if isinstance(result.data.data, (Pointwise, Reduction)):
|
906 |
+
result.realize()
|
907 |
+
|
908 |
+
# TODO(jansel): introduce a store vs inline choice
|
909 |
+
result.mark_reuse(len(n.users))
|
910 |
+
|
911 |
+
# Realize if the IRNode already has accumulated lots of reads
|
912 |
+
if isinstance(result, TensorBox) and result.has_exceeded_max_reads():
|
913 |
+
# Prevent excessive accumulation in a computed buffer, when
|
914 |
+
# there are multiple branches each with small number of memory
|
915 |
+
# reads, but they converge to a user.
|
916 |
+
result.realize_hint()
|
917 |
+
|
918 |
+
# Realize if a Pointwise has too much stuff to be inlined.
|
919 |
+
# As this may cause RecursionError during Inductor's evaluation.
|
920 |
+
if isinstance(result, TensorBox) and isinstance(result.data, StorageBox):
|
921 |
+
curr = result.data.data
|
922 |
+
if isinstance(curr, Pointwise):
|
923 |
+
# Use inner fn as a rough proxy. Good enough.
|
924 |
+
if curr.inner_fn_str_len() > config.realize_bytes_threshold:
|
925 |
+
result.realize()
|
926 |
+
|
927 |
+
# This is not complete, but it doesn't have to be: origin_node
|
928 |
+
# tracking is best effort. The logic here critically relies on direct
|
929 |
+
# TensorBox -> StorageBox denoting a non-view; we don't bother trying
|
930 |
+
# to get views to work. Feel free to add any extra cases as needed.
|
931 |
+
#
|
932 |
+
# Note: we can't YOLO tree_map over this result, because if there are
|
933 |
+
# buffers or a view involved, we might not be able to validly assign
|
934 |
+
# the origin_node here.
|
935 |
+
if isinstance(result, TensorBox) and isinstance(result.data, ir.StorageBox):
|
936 |
+
if isinstance(result.data.data, ir.Loops):
|
937 |
+
result.data.data.origin_node = n
|
938 |
+
elif isinstance(result.data.data, ir.Buffer):
|
939 |
+
result.data.data.origin_node = n
|
940 |
+
if isinstance(result.data.data, ir.ComputedBuffer) and isinstance(
|
941 |
+
result.data.data.data, ir.Loops
|
942 |
+
):
|
943 |
+
result.data.data.data.origin_node = n
|
944 |
+
# Not really multi-output, can straightforwardly recurse in
|
945 |
+
elif (
|
946 |
+
isinstance(result.data.data, ir.MultiOutput)
|
947 |
+
and not result.data.data.indices
|
948 |
+
):
|
949 |
+
if isinstance(result.data.data.inputs[0], ir.Buffer):
|
950 |
+
result.data.data.inputs[0].origin_node = n
|
951 |
+
|
952 |
+
self.register_users_of(result)
|
953 |
+
|
954 |
+
return result
|
955 |
+
|
956 |
+
def validate_can_generate_cpp_wrapper(self):
|
957 |
+
if config.disable_cpp_codegen:
|
958 |
+
raise CppWrapperCodeGenError("C++ codegen is disabled")
|
959 |
+
|
960 |
+
if sys.platform != "linux":
|
961 |
+
raise CppWrapperCodeGenError(f"Unsupported platform {sys.platform}")
|
962 |
+
|
963 |
+
for value in self.graph_inputs.values():
|
964 |
+
dtype = None
|
965 |
+
if isinstance(value, TensorBox):
|
966 |
+
dtype = value.get_dtype()
|
967 |
+
elif isinstance(
|
968 |
+
value, (sympy.Symbol, sympy.Expr, sympy.core.numbers.Integer)
|
969 |
+
):
|
970 |
+
dtype = may_get_constant_buffer_dtype(value)
|
971 |
+
|
972 |
+
if not supported_dtype_of_cpp_wrapper(dtype, self.cuda):
|
973 |
+
raise CppWrapperCodeGenError(f"Unsupported input dtype {dtype}")
|
974 |
+
|
975 |
+
def init_wrapper_code(self):
|
976 |
+
self.cuda = "cuda" in self.device_types
|
977 |
+
if self.cpp_wrapper:
|
978 |
+
self.validate_can_generate_cpp_wrapper()
|
979 |
+
self.wrapper_code = (
|
980 |
+
CudaWrapperCodeGen() if self.cuda else CppWrapperCodeGen()
|
981 |
+
)
|
982 |
+
return
|
983 |
+
|
984 |
+
device_types = self.device_types.copy()
|
985 |
+
device_types.discard("cpu")
|
986 |
+
# TODO(Eikan): Only support mixing cpu and other device now.
|
987 |
+
assert len(device_types) <= 1, "Does not support mixing {}".format(
|
988 |
+
"+".join(device_types)
|
989 |
+
)
|
990 |
+
only_cpu = len(device_types) == 0
|
991 |
+
device_type = "cpu" if only_cpu else device_types.pop()
|
992 |
+
wrapper_code_gen_cls = get_wrapper_codegen_for_device(device_type)
|
993 |
+
assert wrapper_code_gen_cls is not None, f"Device {device_type} not supported"
|
994 |
+
self.wrapper_code = wrapper_code_gen_cls()
|
995 |
+
|
996 |
+
def codegen_with_cpp_wrapper(self):
|
997 |
+
"""
|
998 |
+
For CPU, the cpp wrapper codegen is done in one pass.
|
999 |
+
For GPU, the cpp wrapper codegen is done in two steps: JIT-compile the model with python
|
1000 |
+
wrapper code and run it to generate autotuned kernel binaries in the first pass; and then
|
1001 |
+
generate cpp wrapper code and compile it to a dynamic library in the second pass.
|
1002 |
+
"""
|
1003 |
+
if "cuda" in self.device_types:
|
1004 |
+
# first pass
|
1005 |
+
self.cpp_wrapper = False
|
1006 |
+
compiled = self.compile_to_module().call
|
1007 |
+
|
1008 |
+
def materialize(x):
|
1009 |
+
if isinstance(x, (torch.SymInt, torch.SymFloat)):
|
1010 |
+
# Need concrete value to run dynamic shapes and tune the result
|
1011 |
+
return x.node.hint
|
1012 |
+
elif isinstance(x, FakeTensor):
|
1013 |
+
return defake(x)
|
1014 |
+
else:
|
1015 |
+
assert isinstance(
|
1016 |
+
x, torch.Tensor
|
1017 |
+
), "Unknown type when creating real inputs" + str(type(x))
|
1018 |
+
return x
|
1019 |
+
|
1020 |
+
with torch.utils._python_dispatch._disable_current_modes():
|
1021 |
+
assert self.example_inputs is not None
|
1022 |
+
real_inputs = [materialize(x) for x in self.example_inputs]
|
1023 |
+
compiled(real_inputs)
|
1024 |
+
del real_inputs
|
1025 |
+
|
1026 |
+
# second pass
|
1027 |
+
# TODO: reuse self.scheduler from the first pass to speed up the second pass
|
1028 |
+
self.cpp_wrapper = True
|
1029 |
+
self.removed_buffers.clear()
|
1030 |
+
self.inplaced_to_remove.clear()
|
1031 |
+
return self.codegen()
|
1032 |
+
else:
|
1033 |
+
# cpu
|
1034 |
+
return self.codegen()
|
1035 |
+
|
1036 |
+
def codegen(self):
|
1037 |
+
from .scheduler import Scheduler
|
1038 |
+
|
1039 |
+
self.init_wrapper_code()
|
1040 |
+
|
1041 |
+
self.scheduler = Scheduler(self.buffers)
|
1042 |
+
V.debug.draw_orig_fx_graph(self.orig_gm, self.scheduler.nodes)
|
1043 |
+
self.scheduler.codegen()
|
1044 |
+
return self.wrapper_code.generate(self.is_inference)
|
1045 |
+
|
1046 |
+
def count_bytes(self):
|
1047 |
+
from .scheduler import Scheduler
|
1048 |
+
|
1049 |
+
scheduler = Scheduler(self.buffers)
|
1050 |
+
|
1051 |
+
total_bytes = 0
|
1052 |
+
node_counts = []
|
1053 |
+
node_runtimes = []
|
1054 |
+
for node in scheduler.nodes:
|
1055 |
+
num_bytes = node.get_read_write_buffers_sizes()
|
1056 |
+
total_bytes += num_bytes
|
1057 |
+
node_counts.append((node, num_bytes // 4))
|
1058 |
+
node_runtimes.append((node, node.get_estimated_runtime()))
|
1059 |
+
return total_bytes, node_counts, node_runtimes
|
1060 |
+
|
1061 |
+
@dynamo_timed
|
1062 |
+
def compile_to_module(self):
|
1063 |
+
from .codecache import PyCodeCache
|
1064 |
+
|
1065 |
+
code, linemap = (
|
1066 |
+
self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
|
1067 |
+
)
|
1068 |
+
linemap = [(line_no, node.stack_trace) for line_no, node in linemap]
|
1069 |
+
key, path = PyCodeCache.write(code)
|
1070 |
+
mod = PyCodeCache.load_by_key_path(
|
1071 |
+
key, path, linemap=linemap, attrs=self.constants
|
1072 |
+
)
|
1073 |
+
self.cache_key = key
|
1074 |
+
self.cache_path = path
|
1075 |
+
self.cache_linemap = linemap
|
1076 |
+
|
1077 |
+
# Logged twice as per https://github.com/pytorch/pytorch/pull/99038#discussion_r1167826029
|
1078 |
+
# TODO. Revisit this once the logging API is more mature
|
1079 |
+
assert mod.__file__ is not None
|
1080 |
+
log.debug("Output code written to: %s", mod.__file__)
|
1081 |
+
output_code_log.debug("Output code: \n%s", code)
|
1082 |
+
output_code_log.info("Output code written to: %s", mod.__file__)
|
1083 |
+
if config.benchmark_kernel:
|
1084 |
+
print(f"Compiled module path: {mod.__file__}", file=sys.stderr)
|
1085 |
+
V.debug.output_code(mod.__file__)
|
1086 |
+
V.debug.copy(os.path.splitext(mod.__file__)[0] + ".debug")
|
1087 |
+
return mod
|
1088 |
+
|
1089 |
+
def compile_to_fn(self):
|
1090 |
+
if self.aot_mode:
|
1091 |
+
from .codecache import AotCodeCache
|
1092 |
+
|
1093 |
+
assert self.cpp_wrapper, "AOT mode only supports C++ wrapper"
|
1094 |
+
code, linemap = self.codegen_with_cpp_wrapper()
|
1095 |
+
output_code_log.debug("Output code: \n%s", code)
|
1096 |
+
|
1097 |
+
serialized_extern_kernel_nodes = None
|
1098 |
+
if (
|
1099 |
+
config.is_fbcode()
|
1100 |
+
and self.extern_kernel_nodes
|
1101 |
+
and self.extern_node_serializer
|
1102 |
+
):
|
1103 |
+
serialized_extern_kernel_nodes = self.extern_node_serializer(
|
1104 |
+
self.extern_kernel_nodes
|
1105 |
+
)
|
1106 |
+
output_code_log.debug(
|
1107 |
+
"Serialized Extern Kernel Nodes: \n%s",
|
1108 |
+
serialized_extern_kernel_nodes,
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
# Directly return the file path with the compiled code
|
1112 |
+
return AotCodeCache.compile(
|
1113 |
+
self, code, serialized_extern_kernel_nodes, cuda=self.cuda
|
1114 |
+
)
|
1115 |
+
else:
|
1116 |
+
return self.compile_to_module().call
|
1117 |
+
|
1118 |
+
def get_output_names(self):
|
1119 |
+
return [
|
1120 |
+
node.get_name()
|
1121 |
+
for node in self.graph_outputs
|
1122 |
+
if not isinstance(node, ir.NoneAsConstantBuffer)
|
1123 |
+
and not isinstance(node, ir.ShapeAsConstantBuffer)
|
1124 |
+
]
|
1125 |
+
|
1126 |
+
def is_unspec_arg(self, name: str):
|
1127 |
+
# dynamo wraps unspec variable as 0d CPU tensor,
|
1128 |
+
# need to convert to scalar during codegen (triton only)
|
1129 |
+
return (
|
1130 |
+
name in self.graph_inputs.keys()
|
1131 |
+
and self.graph_inputs[name].get_numel() == 1
|
1132 |
+
and self.graph_inputs[name].get_device().type == "cpu"
|
1133 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/hooks.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
|
3 |
+
# Executed in the order they're registered
|
4 |
+
INTERMEDIATE_HOOKS = []
|
5 |
+
|
6 |
+
|
7 |
+
@contextlib.contextmanager
|
8 |
+
def intermediate_hook(fn):
|
9 |
+
INTERMEDIATE_HOOKS.append(fn)
|
10 |
+
try:
|
11 |
+
yield
|
12 |
+
finally:
|
13 |
+
INTERMEDIATE_HOOKS.pop()
|
14 |
+
|
15 |
+
|
16 |
+
def run_intermediate_hooks(name, val):
|
17 |
+
global INTERMEDIATE_HOOKS
|
18 |
+
hooks = INTERMEDIATE_HOOKS
|
19 |
+
INTERMEDIATE_HOOKS = []
|
20 |
+
try:
|
21 |
+
for hook in hooks:
|
22 |
+
hook(name, val)
|
23 |
+
finally:
|
24 |
+
INTERMEDIATE_HOOKS = hooks
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/index_propagation.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This file implements the IndexPropagation ops handler, which wraps an
|
2 |
+
underlying handler to add a limited form of constant propagation, as well as
|
3 |
+
propagation of sympy expressions downstream of ops.index_expr calls.
|
4 |
+
|
5 |
+
For example, say we have the IR:
|
6 |
+
|
7 |
+
tmp0 = ops.index_expr(x, torch.int32)
|
8 |
+
tmp1 = ops.constant(2, torch.int32)
|
9 |
+
tmp2 = ops.mul(tmp0, tmp1)
|
10 |
+
tmp3 = ops.indirect_indexing(tmp2, x_size)
|
11 |
+
tmp4 = ops.load("buf0", tmp3)
|
12 |
+
|
13 |
+
The underlying handler would just see:
|
14 |
+
|
15 |
+
ops.load("buf0", x * 2)
|
16 |
+
|
17 |
+
This is limited by the set of operators handled in the sympy expression
|
18 |
+
printers. So simple operations like minimum and maximum cannot be translated to
|
19 |
+
SymPy expressions yet, despite sympy.Min and sympy.Max existing.
|
20 |
+
|
21 |
+
"""
|
22 |
+
import itertools
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from typing import Any, Callable, Dict, Literal, Optional, overload, Tuple, Union
|
25 |
+
|
26 |
+
import sympy
|
27 |
+
|
28 |
+
from typing_extensions import TypeAlias
|
29 |
+
|
30 |
+
import torch
|
31 |
+
from torch._prims_common import is_boolean_dtype, is_integer_dtype
|
32 |
+
from torch.utils._sympy.functions import FloorDiv, ModularIndexing, Where
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class TypedExpr:
|
37 |
+
"""A SymPy expression with associated type"""
|
38 |
+
|
39 |
+
expr: sympy.Expr
|
40 |
+
dtype: torch.dtype
|
41 |
+
|
42 |
+
|
43 |
+
class SymPyOps:
|
44 |
+
"""An ops handler where all IR values are SymPy expressions
|
45 |
+
|
46 |
+
When a value cannot be represented as a SymPy expression, the method is
|
47 |
+
either not defined, or returns NotImplemented
|
48 |
+
|
49 |
+
"""
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def identity(value: Any) -> Any:
|
53 |
+
return value
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def constant(value: Union[int, float, bool], dtype: torch.dtype) -> TypedExpr:
|
57 |
+
if is_boolean_dtype(dtype):
|
58 |
+
expr = sympy.Integer(bool(value))
|
59 |
+
elif is_integer_dtype(dtype):
|
60 |
+
expr = sympy.Integer(int(value))
|
61 |
+
else:
|
62 |
+
expr = sympy.Float(float(value))
|
63 |
+
return TypedExpr(expr, dtype)
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def index_expr(value: sympy.Expr, dtype: torch.dtype) -> Union[int, TypedExpr]:
|
67 |
+
if isinstance(value, int):
|
68 |
+
value = sympy.Integer(value)
|
69 |
+
return TypedExpr(value, dtype)
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def to_dtype(
|
73 |
+
value: Any, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None
|
74 |
+
) -> Union[int, TypedExpr]:
|
75 |
+
if isinstance(value.expr, (sympy.Integer, sympy.Float)):
|
76 |
+
return SymPyOps.constant(value.expr, dtype)
|
77 |
+
elif is_integer_dtype(dtype) and is_integer_dtype(value.dtype):
|
78 |
+
return SymPyOps.index_expr(value.expr, dtype)
|
79 |
+
else:
|
80 |
+
# TODO: Inductor doesn't handle floating point in sympy expressions well at the moment
|
81 |
+
return NotImplemented
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def square(x: TypedExpr) -> TypedExpr:
|
85 |
+
return TypedExpr(x.expr * x.expr, x.dtype)
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def add(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
89 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
90 |
+
return TypedExpr(x.expr + y.expr, result_type)
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def sub(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
94 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
95 |
+
return TypedExpr(x.expr - y.expr, result_type)
|
96 |
+
|
97 |
+
@staticmethod
|
98 |
+
def mul(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
99 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
100 |
+
return TypedExpr(x.expr * y.expr, result_type)
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def neg(x: TypedExpr) -> TypedExpr:
|
104 |
+
return TypedExpr(-x.expr, x.dtype)
|
105 |
+
|
106 |
+
@staticmethod
|
107 |
+
def floordiv(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
108 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
109 |
+
if not is_integer_dtype(result_type):
|
110 |
+
return NotImplemented
|
111 |
+
|
112 |
+
return TypedExpr(FloorDiv(x.expr, y.expr), result_type)
|
113 |
+
|
114 |
+
@staticmethod
|
115 |
+
def remainder(x: TypedExpr, y: TypedExpr) -> Optional[TypedExpr]:
|
116 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
117 |
+
if not is_integer_dtype(result_type):
|
118 |
+
return NotImplemented
|
119 |
+
|
120 |
+
result_expr = ModularIndexing(x.expr, sympy.Integer(1), y.expr)
|
121 |
+
return TypedExpr(result_expr, result_type)
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def minimum(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
125 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
126 |
+
return TypedExpr(sympy.Min(x.expr, y.expr), result_type)
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def maximum(x: TypedExpr, y: TypedExpr) -> TypedExpr:
|
130 |
+
result_type = torch.promote_types(x.dtype, y.dtype)
|
131 |
+
return TypedExpr(sympy.Max(x.expr, y.expr), result_type)
|
132 |
+
|
133 |
+
|
134 |
+
@dataclass
|
135 |
+
class IndexPropVar:
|
136 |
+
value: Any # Either an IR value, or TypedExpr if is_symbolic is true
|
137 |
+
is_symbolic: bool = False
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def new_symbolic(expr: TypedExpr) -> "IndexPropVar":
|
141 |
+
return IndexPropVar(expr, is_symbolic=True)
|
142 |
+
|
143 |
+
def __post_init__(self):
|
144 |
+
assert not self.is_symbolic or isinstance(
|
145 |
+
self.value, TypedExpr
|
146 |
+
), "Symbolic IndexPropVar must contain a TypedExpr"
|
147 |
+
|
148 |
+
|
149 |
+
IndexPropResult: TypeAlias = Union[IndexPropVar, Tuple["IndexPropResult", ...]]
|
150 |
+
|
151 |
+
|
152 |
+
class IndexPropagation:
|
153 |
+
"""Ops wrapper that tries to propagate constant and index_expr values through the computation.
|
154 |
+
|
155 |
+
This aims to maximize the compile time simplification possible, and convert
|
156 |
+
indirect indexing from arange into normal static indexing.
|
157 |
+
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, inner: Any):
|
161 |
+
self._inner = inner
|
162 |
+
|
163 |
+
def materialize_expr(self, expr: sympy.Expr, dtype: torch.dtype) -> Any:
|
164 |
+
# Construct a new constant/index_expr from the SymPy expression
|
165 |
+
if isinstance(expr, sympy.Integer):
|
166 |
+
return self._inner.constant(int(expr), dtype)
|
167 |
+
elif expr.is_number:
|
168 |
+
return self._inner.constant(float(expr), dtype)
|
169 |
+
return self._inner.index_expr(expr, dtype)
|
170 |
+
|
171 |
+
def unwrap(self, a: Union[Any, IndexPropVar]) -> Any:
|
172 |
+
if isinstance(a, (list, tuple)):
|
173 |
+
return tuple(self.unwrap(v) for v in a)
|
174 |
+
|
175 |
+
if not isinstance(a, IndexPropVar):
|
176 |
+
return a
|
177 |
+
|
178 |
+
# Prefer the sympy representation if possible
|
179 |
+
if a.is_symbolic:
|
180 |
+
return self.materialize_expr(a.value.expr, a.value.dtype)
|
181 |
+
|
182 |
+
return a.value
|
183 |
+
|
184 |
+
def wrap(self, a) -> IndexPropResult:
|
185 |
+
if isinstance(a, (list, tuple)):
|
186 |
+
return tuple(self.wrap(v) for v in a)
|
187 |
+
return IndexPropVar(a)
|
188 |
+
|
189 |
+
@overload
|
190 |
+
def fallback(
|
191 |
+
self,
|
192 |
+
name: Literal["indirect_indexing"],
|
193 |
+
args: Tuple[Any, ...],
|
194 |
+
kwargs: Dict[str, Any],
|
195 |
+
) -> IndexPropVar:
|
196 |
+
...
|
197 |
+
|
198 |
+
@overload
|
199 |
+
def fallback(
|
200 |
+
self, name: str, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
201 |
+
) -> IndexPropResult:
|
202 |
+
...
|
203 |
+
|
204 |
+
def fallback(
|
205 |
+
self, name: str, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
206 |
+
) -> IndexPropResult:
|
207 |
+
# Fallback to the wrapped handler
|
208 |
+
new_args = [self.unwrap(a) for a in args]
|
209 |
+
new_kwargs = {k: self.unwrap(v) for k, v in kwargs.items()}
|
210 |
+
return self.wrap(getattr(self._inner, name)(*new_args, **new_kwargs))
|
211 |
+
|
212 |
+
def propagate_sympy(
|
213 |
+
self, name: str, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
214 |
+
) -> IndexPropResult:
|
215 |
+
# Build a new SymPy expression from this ops call
|
216 |
+
def unwrap(a: Union[Any, IndexPropVar]) -> Any:
|
217 |
+
if not isinstance(a, IndexPropVar):
|
218 |
+
return a
|
219 |
+
return a.value
|
220 |
+
|
221 |
+
new_args = [unwrap(a) for a in args]
|
222 |
+
new_kwargs = {k: unwrap(v) for k, v in kwargs.items()}
|
223 |
+
new_expr = getattr(SymPyOps, name)(*new_args, **new_kwargs)
|
224 |
+
is_valid_expr = new_expr is not NotImplemented and (
|
225 |
+
# Inductor doesn't expect floating point in sympy expressions, but
|
226 |
+
# allow floating point constants to be propagated
|
227 |
+
isinstance(new_expr.expr, sympy.Number)
|
228 |
+
or new_expr.expr.is_integer
|
229 |
+
)
|
230 |
+
if not is_valid_expr:
|
231 |
+
return self.fallback(name, args, kwargs)
|
232 |
+
return IndexPropVar.new_symbolic(new_expr)
|
233 |
+
|
234 |
+
def __getattr__(self, name: str) -> Callable[..., IndexPropResult]:
|
235 |
+
def inner(*args: Any, **kwargs: Any) -> IndexPropResult:
|
236 |
+
if not hasattr(SymPyOps, name):
|
237 |
+
return self.fallback(name, args, kwargs)
|
238 |
+
|
239 |
+
var_arguments = [
|
240 |
+
a
|
241 |
+
for a in itertools.chain(args, kwargs.values())
|
242 |
+
if isinstance(a, IndexPropVar)
|
243 |
+
]
|
244 |
+
if not all(v.is_symbolic for v in var_arguments):
|
245 |
+
return self.fallback(name, args, kwargs)
|
246 |
+
|
247 |
+
return self.propagate_sympy(name, args, kwargs)
|
248 |
+
|
249 |
+
return inner
|
250 |
+
|
251 |
+
def indirect_indexing(
|
252 |
+
self, index: Union[Any, IndexPropVar], size: Any, check: bool = True
|
253 |
+
) -> Any:
|
254 |
+
# nb. We do index + Where(...) rather than Where(idx >= 0, idx, idx + sz) because we don't have CSE
|
255 |
+
# for SymPy expressions, so we don't want to repeat idx too much
|
256 |
+
|
257 |
+
# indirect_indexing returns a sympy value, so no need to wrap in IndexPropVar here
|
258 |
+
if isinstance(index, IndexPropVar) and index.is_symbolic:
|
259 |
+
# If we are turning a indirect indexing into direct, we need to wrap it.
|
260 |
+
index = index.value.expr
|
261 |
+
return index + Where(index >= 0, 0, size)
|
262 |
+
return self.fallback("indirect_indexing", (index, size, check), {}).value
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/inductor_prims.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
from typing import Optional, Sequence
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import _prims, Tensor
|
8 |
+
|
9 |
+
log = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
def make_prim(
|
13 |
+
schema: str,
|
14 |
+
impl_aten,
|
15 |
+
return_type=_prims.RETURN_TYPE.NEW,
|
16 |
+
doc: str = "",
|
17 |
+
tags: Optional[Sequence[torch.Tag]] = None,
|
18 |
+
):
|
19 |
+
def meta(*args, **kwargs):
|
20 |
+
return _prims.TensorMeta(impl_aten(*args, **kwargs))
|
21 |
+
|
22 |
+
return _prims._make_prim(
|
23 |
+
schema=schema,
|
24 |
+
return_type=return_type,
|
25 |
+
meta=meta,
|
26 |
+
impl_aten=impl_aten,
|
27 |
+
doc=doc,
|
28 |
+
tags=tags,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def eager_force_stride(input_tensor: Tensor, stride) -> Tensor:
|
33 |
+
if input_tensor.stride() == stride:
|
34 |
+
return input_tensor
|
35 |
+
new_tensor = input_tensor.clone().as_strided(
|
36 |
+
input_tensor.shape,
|
37 |
+
stride,
|
38 |
+
)
|
39 |
+
new_tensor.copy_(input_tensor)
|
40 |
+
return new_tensor
|
41 |
+
|
42 |
+
|
43 |
+
# Custom prims used for handling randomness
|
44 |
+
seed = make_prim(
|
45 |
+
"inductor_seed(Device device) -> Tensor",
|
46 |
+
lambda device: torch.randint(2**63 - 1, [], device=device),
|
47 |
+
doc="create a fresh seed (one per call) for use with inductor_rand",
|
48 |
+
tags=(torch.Tag.nondeterministic_seeded,),
|
49 |
+
)
|
50 |
+
seeds = make_prim(
|
51 |
+
"inductor_seeds(int count, Device device) -> Tensor",
|
52 |
+
lambda count, device: torch.randint(2**63 - 1, [count], device=device),
|
53 |
+
doc="Horizontal fusion of many inductor_seed() calls",
|
54 |
+
tags=(torch.Tag.nondeterministic_seeded,),
|
55 |
+
)
|
56 |
+
lookup_seed = make_prim(
|
57 |
+
# if inductor_lookup_seed changes, update partitioners.py
|
58 |
+
"inductor_lookup_seed(Tensor seeds, int index) -> Tensor",
|
59 |
+
lambda seeds, index: seeds[index],
|
60 |
+
doc="Extract a single seed from the result of inductor_seeds()",
|
61 |
+
)
|
62 |
+
random = make_prim(
|
63 |
+
"inductor_random(SymInt[] size, Tensor seed, str mode) -> Tensor",
|
64 |
+
lambda size, seed, mode: getattr(torch, mode)(size, device=seed.device),
|
65 |
+
doc="torch.rand()/torch.randn() using backend-specific RNG that can be fused",
|
66 |
+
)
|
67 |
+
randint = make_prim(
|
68 |
+
"inductor_randint(SymInt low, SymInt high, SymInt[] size, Tensor seed) -> Tensor",
|
69 |
+
lambda low, high, size, seed: torch.randint(low, high, size, device=seed.device),
|
70 |
+
doc="torch.randint() using backend-specific RNG that can be fused",
|
71 |
+
)
|
72 |
+
force_stride_order = make_prim(
|
73 |
+
"inductor_force_stride_order(Tensor input, SymInt[] stride) -> Tensor",
|
74 |
+
eager_force_stride,
|
75 |
+
doc="Force the stride order for input tensor. No-op if the input tensor already has the stride. Do a copy otherwise",
|
76 |
+
)
|
77 |
+
masked_scatter_with_index = make_prim(
|
78 |
+
"inductor_masked_scatter_with_index(Tensor input, Tensor mask, Tensor source_idx, Tensor source) -> Tensor",
|
79 |
+
lambda input_tensor, mask, index, source: torch.masked_scatter(
|
80 |
+
input_tensor, mask, source
|
81 |
+
),
|
82 |
+
doc="masked_scatter with precomputed indices",
|
83 |
+
)
|
84 |
+
_unsafe_index_put_ = make_prim(
|
85 |
+
"_unsafe_index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!)",
|
86 |
+
lambda self, indices, values, accumulate=False: torch.ops.aten.index_put_(
|
87 |
+
self, indices, values, accumulate
|
88 |
+
),
|
89 |
+
doc="Unsafe index_put_ (doesn't issue device asserts)",
|
90 |
+
)
|
env-llmeval/lib/python3.10/site-packages/torch/_inductor/ir.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|