Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/boston_house_prices.csv +508 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/breast_cancer.csv +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/iris.csv +151 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_exercise.csv +21 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/wine_data.csv +179 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdf-1119.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/data-v1-dl-54002.arff.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40589/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jd-40945.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdq-40945.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/data-v1-dl-16826755.arff.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jd-42585.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdf-42585.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdq-42585.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/data-v1-dl-21854866.arff.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jd-61.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdf-61.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdq-61.json.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/data-v1-dl-61.arff.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_62/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_62/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__init__.py +21 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_isomap.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_locally_linear.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_mds.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_spectral_embedding.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_t_sne.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_barnes_hut_tsne.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_isomap.py +438 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_locally_linear.py +841 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_mds.py +653 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_spectral_embedding.py +749 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py +1174 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_utils.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_isomap.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_locally_linear.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_mds.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_spectral_embedding.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_t_sne.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/test_isomap.py +348 -0
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/boston_house_prices.csv
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
506,13,,,,,,,,,,,,
|
2 |
+
"CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","DIS","RAD","TAX","PTRATIO","B","LSTAT","MEDV"
|
3 |
+
0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
|
4 |
+
0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
|
5 |
+
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
|
6 |
+
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
|
7 |
+
0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
|
8 |
+
0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
|
9 |
+
0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
|
10 |
+
0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
|
11 |
+
0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
|
12 |
+
0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
|
13 |
+
0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
|
14 |
+
0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
|
15 |
+
0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
|
16 |
+
0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
|
17 |
+
0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
|
18 |
+
0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
|
19 |
+
1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
|
20 |
+
0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
|
21 |
+
0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
|
22 |
+
0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
|
23 |
+
1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
|
24 |
+
0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
|
25 |
+
1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
|
26 |
+
0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
|
27 |
+
0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
|
28 |
+
0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
|
29 |
+
0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
|
30 |
+
0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
|
31 |
+
0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
|
32 |
+
1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
|
33 |
+
1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
|
34 |
+
1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
|
35 |
+
1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
|
36 |
+
1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
|
37 |
+
1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
|
38 |
+
0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
|
39 |
+
0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
|
40 |
+
0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
|
41 |
+
0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
|
42 |
+
0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
|
43 |
+
0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
|
44 |
+
0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
|
45 |
+
0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
|
46 |
+
0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
|
47 |
+
0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
|
48 |
+
0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
|
49 |
+
0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
|
50 |
+
0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
|
51 |
+
0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
|
52 |
+
0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
|
53 |
+
0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
|
54 |
+
0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
|
55 |
+
0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
|
56 |
+
0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
|
57 |
+
0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
|
58 |
+
0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
|
59 |
+
0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
|
60 |
+
0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
|
61 |
+
0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
|
62 |
+
0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
|
63 |
+
0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
|
64 |
+
0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
|
65 |
+
0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
|
66 |
+
0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
|
67 |
+
0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
|
68 |
+
0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
|
69 |
+
0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
|
70 |
+
0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
|
71 |
+
0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
|
72 |
+
0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
|
73 |
+
0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
|
74 |
+
0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
|
75 |
+
0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
|
76 |
+
0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
|
77 |
+
0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
|
78 |
+
0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
|
79 |
+
0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
|
80 |
+
0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
|
81 |
+
0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
|
82 |
+
0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
|
83 |
+
0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
|
84 |
+
0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
|
85 |
+
0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
|
86 |
+
0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
|
87 |
+
0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
|
88 |
+
0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
|
89 |
+
0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
|
90 |
+
0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
|
91 |
+
0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
|
92 |
+
0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
|
93 |
+
0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
|
94 |
+
0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
|
95 |
+
0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
|
96 |
+
0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
|
97 |
+
0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
|
98 |
+
0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
|
99 |
+
0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
|
100 |
+
0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
|
101 |
+
0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
|
102 |
+
0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
|
103 |
+
0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
|
104 |
+
0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
|
105 |
+
0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
|
106 |
+
0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
|
107 |
+
0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
|
108 |
+
0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
|
109 |
+
0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
|
110 |
+
0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
|
111 |
+
0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
|
112 |
+
0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
|
113 |
+
0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
|
114 |
+
0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
|
115 |
+
0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
|
116 |
+
0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
|
117 |
+
0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
|
118 |
+
0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
|
119 |
+
0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
|
120 |
+
0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
|
121 |
+
0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
|
122 |
+
0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
|
123 |
+
0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
|
124 |
+
0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
|
125 |
+
0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
|
126 |
+
0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
|
127 |
+
0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
|
128 |
+
0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
|
129 |
+
0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
|
130 |
+
0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
|
131 |
+
0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
|
132 |
+
0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
|
133 |
+
0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
|
134 |
+
1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
|
135 |
+
0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
|
136 |
+
0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
|
137 |
+
0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
|
138 |
+
0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
|
139 |
+
0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
|
140 |
+
0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
|
141 |
+
0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
|
142 |
+
0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
|
143 |
+
0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
|
144 |
+
1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
|
145 |
+
3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
|
146 |
+
4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
|
147 |
+
2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
|
148 |
+
2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
|
149 |
+
2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
|
150 |
+
2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
|
151 |
+
2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
|
152 |
+
2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
|
153 |
+
1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
|
154 |
+
1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
|
155 |
+
1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
|
156 |
+
2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
|
157 |
+
1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
|
158 |
+
3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
|
159 |
+
2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
|
160 |
+
1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
|
161 |
+
1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
|
162 |
+
1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
|
163 |
+
1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
|
164 |
+
1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
|
165 |
+
1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
|
166 |
+
1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
|
167 |
+
2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
|
168 |
+
2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
|
169 |
+
2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
|
170 |
+
1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
|
171 |
+
2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
|
172 |
+
2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
|
173 |
+
1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
|
174 |
+
2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
|
175 |
+
0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
|
176 |
+
0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
|
177 |
+
0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
|
178 |
+
0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
|
179 |
+
0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
|
180 |
+
0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
|
181 |
+
0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
|
182 |
+
0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
|
183 |
+
0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
|
184 |
+
0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
|
185 |
+
0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
|
186 |
+
0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
|
187 |
+
0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
|
188 |
+
0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
|
189 |
+
0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
|
190 |
+
0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
|
191 |
+
0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
|
192 |
+
0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
|
193 |
+
0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
|
194 |
+
0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
|
195 |
+
0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
|
196 |
+
0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
|
197 |
+
0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
|
198 |
+
0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
|
199 |
+
0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
|
200 |
+
0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
|
201 |
+
0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
|
202 |
+
0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
|
203 |
+
0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
|
204 |
+
0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
|
205 |
+
0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
|
206 |
+
0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
|
207 |
+
0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
|
208 |
+
0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
|
209 |
+
0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
|
210 |
+
0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
|
211 |
+
0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
|
212 |
+
0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
|
213 |
+
0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
|
214 |
+
0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
|
215 |
+
0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
|
216 |
+
0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
|
217 |
+
0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
|
218 |
+
0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
|
219 |
+
0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
|
220 |
+
0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
|
221 |
+
0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
|
222 |
+
0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
|
223 |
+
0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
|
224 |
+
0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
|
225 |
+
0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
|
226 |
+
0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
|
227 |
+
0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
|
228 |
+
0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
|
229 |
+
0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
|
230 |
+
0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
|
231 |
+
0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
|
232 |
+
0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
|
233 |
+
0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
|
234 |
+
0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
|
235 |
+
0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
|
236 |
+
0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
|
237 |
+
0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
|
238 |
+
0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
|
239 |
+
0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
|
240 |
+
0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
|
241 |
+
0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
|
242 |
+
0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
|
243 |
+
0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
|
244 |
+
0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
|
245 |
+
0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
|
246 |
+
0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
|
247 |
+
0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
|
248 |
+
0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
|
249 |
+
0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
|
250 |
+
0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
|
251 |
+
0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
|
252 |
+
0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
|
253 |
+
0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
|
254 |
+
0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
|
255 |
+
0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
|
256 |
+
0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
|
257 |
+
0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
|
258 |
+
0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
|
259 |
+
0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
|
260 |
+
0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
|
261 |
+
0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
|
262 |
+
0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
|
263 |
+
0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
|
264 |
+
0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
|
265 |
+
0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
|
266 |
+
0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
|
267 |
+
0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
|
268 |
+
0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
|
269 |
+
0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
|
270 |
+
0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
|
271 |
+
0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
|
272 |
+
0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
|
273 |
+
0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
|
274 |
+
0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
|
275 |
+
0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
|
276 |
+
0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
|
277 |
+
0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
|
278 |
+
0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
|
279 |
+
0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
|
280 |
+
0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
|
281 |
+
0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
|
282 |
+
0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
|
283 |
+
0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
|
284 |
+
0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
|
285 |
+
0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
|
286 |
+
0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
|
287 |
+
0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
|
288 |
+
0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
|
289 |
+
0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
|
290 |
+
0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
|
291 |
+
0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
|
292 |
+
0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
|
293 |
+
0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
|
294 |
+
0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
|
295 |
+
0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
|
296 |
+
0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
|
297 |
+
0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
|
298 |
+
0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
|
299 |
+
0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
|
300 |
+
0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
|
301 |
+
0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
|
302 |
+
0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
|
303 |
+
0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
|
304 |
+
0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
|
305 |
+
0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
|
306 |
+
0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
|
307 |
+
0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
|
308 |
+
0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
|
309 |
+
0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
|
310 |
+
0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
|
311 |
+
0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
|
312 |
+
0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
|
313 |
+
2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
|
314 |
+
0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
|
315 |
+
0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
|
316 |
+
0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
|
317 |
+
0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
|
318 |
+
0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
|
319 |
+
0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
|
320 |
+
0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
|
321 |
+
0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
|
322 |
+
0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
|
323 |
+
0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
|
324 |
+
0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
|
325 |
+
0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
|
326 |
+
0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
|
327 |
+
0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
|
328 |
+
0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
|
329 |
+
0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
|
330 |
+
0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
|
331 |
+
0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
|
332 |
+
0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
|
333 |
+
0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
|
334 |
+
0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
|
335 |
+
0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
|
336 |
+
0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
|
337 |
+
0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
|
338 |
+
0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
|
339 |
+
0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
|
340 |
+
0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
|
341 |
+
0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
|
342 |
+
0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
|
343 |
+
0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
|
344 |
+
0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
|
345 |
+
0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
|
346 |
+
0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
|
347 |
+
0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
|
348 |
+
0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
|
349 |
+
0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
|
350 |
+
0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
|
351 |
+
0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
|
352 |
+
0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
|
353 |
+
0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
|
354 |
+
0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
|
355 |
+
0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
|
356 |
+
0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
|
357 |
+
0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
|
358 |
+
0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
|
359 |
+
8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
|
360 |
+
3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
|
361 |
+
5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
|
362 |
+
4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
|
363 |
+
4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
|
364 |
+
3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
|
365 |
+
3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
|
366 |
+
4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
|
367 |
+
3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
|
368 |
+
4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
|
369 |
+
3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
|
370 |
+
13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
|
371 |
+
4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
|
372 |
+
5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
|
373 |
+
6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
|
374 |
+
9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
|
375 |
+
8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
|
376 |
+
11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
|
377 |
+
18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
|
378 |
+
19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
|
379 |
+
15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
|
380 |
+
9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
|
381 |
+
23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
|
382 |
+
17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
|
383 |
+
88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
|
384 |
+
15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
|
385 |
+
9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
|
386 |
+
7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
|
387 |
+
20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
|
388 |
+
16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
|
389 |
+
24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
|
390 |
+
22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
|
391 |
+
14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
|
392 |
+
8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
|
393 |
+
6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
|
394 |
+
5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
|
395 |
+
11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
|
396 |
+
8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
|
397 |
+
13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
|
398 |
+
8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
|
399 |
+
5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
|
400 |
+
7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
|
401 |
+
38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
|
402 |
+
9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
|
403 |
+
25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
|
404 |
+
14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
|
405 |
+
9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
|
406 |
+
24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
|
407 |
+
41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
|
408 |
+
67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
|
409 |
+
20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
|
410 |
+
11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
|
411 |
+
7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
|
412 |
+
14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
|
413 |
+
51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
|
414 |
+
14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
|
415 |
+
18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
|
416 |
+
28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
|
417 |
+
45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
|
418 |
+
18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
|
419 |
+
10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
|
420 |
+
25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
|
421 |
+
73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
|
422 |
+
11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
|
423 |
+
11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
|
424 |
+
7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
|
425 |
+
12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
|
426 |
+
7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
|
427 |
+
8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
|
428 |
+
15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
|
429 |
+
12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
|
430 |
+
37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
|
431 |
+
7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
|
432 |
+
9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
|
433 |
+
8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
|
434 |
+
10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
|
435 |
+
6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
|
436 |
+
5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
|
437 |
+
13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
|
438 |
+
11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
|
439 |
+
14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
|
440 |
+
15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
|
441 |
+
13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
|
442 |
+
9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
|
443 |
+
22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
|
444 |
+
9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
|
445 |
+
5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
|
446 |
+
9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
|
447 |
+
12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
|
448 |
+
10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
|
449 |
+
6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
|
450 |
+
9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
|
451 |
+
9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
|
452 |
+
7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
|
453 |
+
6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
|
454 |
+
5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
|
455 |
+
5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
|
456 |
+
8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
|
457 |
+
9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
|
458 |
+
4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
|
459 |
+
4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
|
460 |
+
8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
|
461 |
+
7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
|
462 |
+
6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
|
463 |
+
4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
|
464 |
+
3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
|
465 |
+
6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
|
466 |
+
5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
|
467 |
+
7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
|
468 |
+
3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
|
469 |
+
3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
|
470 |
+
4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
|
471 |
+
15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
|
472 |
+
13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
|
473 |
+
4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
|
474 |
+
4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
|
475 |
+
3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
|
476 |
+
4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
|
477 |
+
8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
|
478 |
+
6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
|
479 |
+
4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
|
480 |
+
15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
|
481 |
+
10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
|
482 |
+
14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
|
483 |
+
5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
|
484 |
+
5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
|
485 |
+
5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
|
486 |
+
2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
|
487 |
+
2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
|
488 |
+
3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
|
489 |
+
5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
|
490 |
+
4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
|
491 |
+
0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
|
492 |
+
0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
|
493 |
+
0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
|
494 |
+
0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
|
495 |
+
0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
|
496 |
+
0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
|
497 |
+
0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
|
498 |
+
0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
|
499 |
+
0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
|
500 |
+
0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
|
501 |
+
0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
|
502 |
+
0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
|
503 |
+
0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
|
504 |
+
0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
|
505 |
+
0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
|
506 |
+
0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
|
507 |
+
0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
|
508 |
+
0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/breast_cancer.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/iris.csv
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
150,4,setosa,versicolor,virginica
|
2 |
+
5.1,3.5,1.4,0.2,0
|
3 |
+
4.9,3.0,1.4,0.2,0
|
4 |
+
4.7,3.2,1.3,0.2,0
|
5 |
+
4.6,3.1,1.5,0.2,0
|
6 |
+
5.0,3.6,1.4,0.2,0
|
7 |
+
5.4,3.9,1.7,0.4,0
|
8 |
+
4.6,3.4,1.4,0.3,0
|
9 |
+
5.0,3.4,1.5,0.2,0
|
10 |
+
4.4,2.9,1.4,0.2,0
|
11 |
+
4.9,3.1,1.5,0.1,0
|
12 |
+
5.4,3.7,1.5,0.2,0
|
13 |
+
4.8,3.4,1.6,0.2,0
|
14 |
+
4.8,3.0,1.4,0.1,0
|
15 |
+
4.3,3.0,1.1,0.1,0
|
16 |
+
5.8,4.0,1.2,0.2,0
|
17 |
+
5.7,4.4,1.5,0.4,0
|
18 |
+
5.4,3.9,1.3,0.4,0
|
19 |
+
5.1,3.5,1.4,0.3,0
|
20 |
+
5.7,3.8,1.7,0.3,0
|
21 |
+
5.1,3.8,1.5,0.3,0
|
22 |
+
5.4,3.4,1.7,0.2,0
|
23 |
+
5.1,3.7,1.5,0.4,0
|
24 |
+
4.6,3.6,1.0,0.2,0
|
25 |
+
5.1,3.3,1.7,0.5,0
|
26 |
+
4.8,3.4,1.9,0.2,0
|
27 |
+
5.0,3.0,1.6,0.2,0
|
28 |
+
5.0,3.4,1.6,0.4,0
|
29 |
+
5.2,3.5,1.5,0.2,0
|
30 |
+
5.2,3.4,1.4,0.2,0
|
31 |
+
4.7,3.2,1.6,0.2,0
|
32 |
+
4.8,3.1,1.6,0.2,0
|
33 |
+
5.4,3.4,1.5,0.4,0
|
34 |
+
5.2,4.1,1.5,0.1,0
|
35 |
+
5.5,4.2,1.4,0.2,0
|
36 |
+
4.9,3.1,1.5,0.2,0
|
37 |
+
5.0,3.2,1.2,0.2,0
|
38 |
+
5.5,3.5,1.3,0.2,0
|
39 |
+
4.9,3.6,1.4,0.1,0
|
40 |
+
4.4,3.0,1.3,0.2,0
|
41 |
+
5.1,3.4,1.5,0.2,0
|
42 |
+
5.0,3.5,1.3,0.3,0
|
43 |
+
4.5,2.3,1.3,0.3,0
|
44 |
+
4.4,3.2,1.3,0.2,0
|
45 |
+
5.0,3.5,1.6,0.6,0
|
46 |
+
5.1,3.8,1.9,0.4,0
|
47 |
+
4.8,3.0,1.4,0.3,0
|
48 |
+
5.1,3.8,1.6,0.2,0
|
49 |
+
4.6,3.2,1.4,0.2,0
|
50 |
+
5.3,3.7,1.5,0.2,0
|
51 |
+
5.0,3.3,1.4,0.2,0
|
52 |
+
7.0,3.2,4.7,1.4,1
|
53 |
+
6.4,3.2,4.5,1.5,1
|
54 |
+
6.9,3.1,4.9,1.5,1
|
55 |
+
5.5,2.3,4.0,1.3,1
|
56 |
+
6.5,2.8,4.6,1.5,1
|
57 |
+
5.7,2.8,4.5,1.3,1
|
58 |
+
6.3,3.3,4.7,1.6,1
|
59 |
+
4.9,2.4,3.3,1.0,1
|
60 |
+
6.6,2.9,4.6,1.3,1
|
61 |
+
5.2,2.7,3.9,1.4,1
|
62 |
+
5.0,2.0,3.5,1.0,1
|
63 |
+
5.9,3.0,4.2,1.5,1
|
64 |
+
6.0,2.2,4.0,1.0,1
|
65 |
+
6.1,2.9,4.7,1.4,1
|
66 |
+
5.6,2.9,3.6,1.3,1
|
67 |
+
6.7,3.1,4.4,1.4,1
|
68 |
+
5.6,3.0,4.5,1.5,1
|
69 |
+
5.8,2.7,4.1,1.0,1
|
70 |
+
6.2,2.2,4.5,1.5,1
|
71 |
+
5.6,2.5,3.9,1.1,1
|
72 |
+
5.9,3.2,4.8,1.8,1
|
73 |
+
6.1,2.8,4.0,1.3,1
|
74 |
+
6.3,2.5,4.9,1.5,1
|
75 |
+
6.1,2.8,4.7,1.2,1
|
76 |
+
6.4,2.9,4.3,1.3,1
|
77 |
+
6.6,3.0,4.4,1.4,1
|
78 |
+
6.8,2.8,4.8,1.4,1
|
79 |
+
6.7,3.0,5.0,1.7,1
|
80 |
+
6.0,2.9,4.5,1.5,1
|
81 |
+
5.7,2.6,3.5,1.0,1
|
82 |
+
5.5,2.4,3.8,1.1,1
|
83 |
+
5.5,2.4,3.7,1.0,1
|
84 |
+
5.8,2.7,3.9,1.2,1
|
85 |
+
6.0,2.7,5.1,1.6,1
|
86 |
+
5.4,3.0,4.5,1.5,1
|
87 |
+
6.0,3.4,4.5,1.6,1
|
88 |
+
6.7,3.1,4.7,1.5,1
|
89 |
+
6.3,2.3,4.4,1.3,1
|
90 |
+
5.6,3.0,4.1,1.3,1
|
91 |
+
5.5,2.5,4.0,1.3,1
|
92 |
+
5.5,2.6,4.4,1.2,1
|
93 |
+
6.1,3.0,4.6,1.4,1
|
94 |
+
5.8,2.6,4.0,1.2,1
|
95 |
+
5.0,2.3,3.3,1.0,1
|
96 |
+
5.6,2.7,4.2,1.3,1
|
97 |
+
5.7,3.0,4.2,1.2,1
|
98 |
+
5.7,2.9,4.2,1.3,1
|
99 |
+
6.2,2.9,4.3,1.3,1
|
100 |
+
5.1,2.5,3.0,1.1,1
|
101 |
+
5.7,2.8,4.1,1.3,1
|
102 |
+
6.3,3.3,6.0,2.5,2
|
103 |
+
5.8,2.7,5.1,1.9,2
|
104 |
+
7.1,3.0,5.9,2.1,2
|
105 |
+
6.3,2.9,5.6,1.8,2
|
106 |
+
6.5,3.0,5.8,2.2,2
|
107 |
+
7.6,3.0,6.6,2.1,2
|
108 |
+
4.9,2.5,4.5,1.7,2
|
109 |
+
7.3,2.9,6.3,1.8,2
|
110 |
+
6.7,2.5,5.8,1.8,2
|
111 |
+
7.2,3.6,6.1,2.5,2
|
112 |
+
6.5,3.2,5.1,2.0,2
|
113 |
+
6.4,2.7,5.3,1.9,2
|
114 |
+
6.8,3.0,5.5,2.1,2
|
115 |
+
5.7,2.5,5.0,2.0,2
|
116 |
+
5.8,2.8,5.1,2.4,2
|
117 |
+
6.4,3.2,5.3,2.3,2
|
118 |
+
6.5,3.0,5.5,1.8,2
|
119 |
+
7.7,3.8,6.7,2.2,2
|
120 |
+
7.7,2.6,6.9,2.3,2
|
121 |
+
6.0,2.2,5.0,1.5,2
|
122 |
+
6.9,3.2,5.7,2.3,2
|
123 |
+
5.6,2.8,4.9,2.0,2
|
124 |
+
7.7,2.8,6.7,2.0,2
|
125 |
+
6.3,2.7,4.9,1.8,2
|
126 |
+
6.7,3.3,5.7,2.1,2
|
127 |
+
7.2,3.2,6.0,1.8,2
|
128 |
+
6.2,2.8,4.8,1.8,2
|
129 |
+
6.1,3.0,4.9,1.8,2
|
130 |
+
6.4,2.8,5.6,2.1,2
|
131 |
+
7.2,3.0,5.8,1.6,2
|
132 |
+
7.4,2.8,6.1,1.9,2
|
133 |
+
7.9,3.8,6.4,2.0,2
|
134 |
+
6.4,2.8,5.6,2.2,2
|
135 |
+
6.3,2.8,5.1,1.5,2
|
136 |
+
6.1,2.6,5.6,1.4,2
|
137 |
+
7.7,3.0,6.1,2.3,2
|
138 |
+
6.3,3.4,5.6,2.4,2
|
139 |
+
6.4,3.1,5.5,1.8,2
|
140 |
+
6.0,3.0,4.8,1.8,2
|
141 |
+
6.9,3.1,5.4,2.1,2
|
142 |
+
6.7,3.1,5.6,2.4,2
|
143 |
+
6.9,3.1,5.1,2.3,2
|
144 |
+
5.8,2.7,5.1,1.9,2
|
145 |
+
6.8,3.2,5.9,2.3,2
|
146 |
+
6.7,3.3,5.7,2.5,2
|
147 |
+
6.7,3.0,5.2,2.3,2
|
148 |
+
6.3,2.5,5.0,1.9,2
|
149 |
+
6.5,3.0,5.2,2.0,2
|
150 |
+
6.2,3.4,5.4,2.3,2
|
151 |
+
5.9,3.0,5.1,1.8,2
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/linnerud_exercise.csv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chins Situps Jumps
|
2 |
+
5 162 60
|
3 |
+
2 110 60
|
4 |
+
12 101 101
|
5 |
+
12 105 37
|
6 |
+
13 155 58
|
7 |
+
4 101 42
|
8 |
+
8 101 38
|
9 |
+
6 125 40
|
10 |
+
15 200 40
|
11 |
+
17 251 250
|
12 |
+
17 120 38
|
13 |
+
13 210 115
|
14 |
+
14 215 105
|
15 |
+
1 50 50
|
16 |
+
6 70 31
|
17 |
+
12 210 120
|
18 |
+
4 60 25
|
19 |
+
11 230 80
|
20 |
+
15 225 73
|
21 |
+
2 110 43
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/data/wine_data.csv
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
178,13,class_0,class_1,class_2
|
2 |
+
14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065,0
|
3 |
+
13.2,1.78,2.14,11.2,100,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050,0
|
4 |
+
13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185,0
|
5 |
+
14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480,0
|
6 |
+
13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735,0
|
7 |
+
14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450,0
|
8 |
+
14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290,0
|
9 |
+
14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295,0
|
10 |
+
14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045,0
|
11 |
+
13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045,0
|
12 |
+
14.1,2.16,2.3,18,105,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510,0
|
13 |
+
14.12,1.48,2.32,16.8,95,2.2,2.43,0.26,1.57,5,1.17,2.82,1280,0
|
14 |
+
13.75,1.73,2.41,16,89,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320,0
|
15 |
+
14.75,1.73,2.39,11.4,91,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150,0
|
16 |
+
14.38,1.87,2.38,12,102,3.3,3.64,0.29,2.96,7.5,1.2,3,1547,0
|
17 |
+
13.63,1.81,2.7,17.2,112,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310,0
|
18 |
+
14.3,1.92,2.72,20,120,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280,0
|
19 |
+
13.83,1.57,2.62,20,115,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130,0
|
20 |
+
14.19,1.59,2.48,16.5,108,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680,0
|
21 |
+
13.64,3.1,2.56,15.2,116,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845,0
|
22 |
+
14.06,1.63,2.28,16,126,3,3.17,0.24,2.1,5.65,1.09,3.71,780,0
|
23 |
+
12.93,3.8,2.65,18.6,102,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770,0
|
24 |
+
13.71,1.86,2.36,16.6,101,2.61,2.88,0.27,1.69,3.8,1.11,4,1035,0
|
25 |
+
12.85,1.6,2.52,17.8,95,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015,0
|
26 |
+
13.5,1.81,2.61,20,96,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845,0
|
27 |
+
13.05,2.05,3.22,25,124,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830,0
|
28 |
+
13.39,1.77,2.62,16.1,93,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195,0
|
29 |
+
13.3,1.72,2.14,17,94,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285,0
|
30 |
+
13.87,1.9,2.8,19.4,107,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915,0
|
31 |
+
14.02,1.68,2.21,16,96,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035,0
|
32 |
+
13.73,1.5,2.7,22.5,101,3,3.25,0.29,2.38,5.7,1.19,2.71,1285,0
|
33 |
+
13.58,1.66,2.36,19.1,106,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515,0
|
34 |
+
13.68,1.83,2.36,17.2,104,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990,0
|
35 |
+
13.76,1.53,2.7,19.5,132,2.95,2.74,0.5,1.35,5.4,1.25,3,1235,0
|
36 |
+
13.51,1.8,2.65,19,110,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095,0
|
37 |
+
13.48,1.81,2.41,20.5,100,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920,0
|
38 |
+
13.28,1.64,2.84,15.5,110,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880,0
|
39 |
+
13.05,1.65,2.55,18,98,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105,0
|
40 |
+
13.07,1.5,2.1,15.5,98,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020,0
|
41 |
+
14.22,3.99,2.51,13.2,128,3,3.04,0.2,2.08,5.1,0.89,3.53,760,0
|
42 |
+
13.56,1.71,2.31,16.2,117,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795,0
|
43 |
+
13.41,3.84,2.12,18.8,90,2.45,2.68,0.27,1.48,4.28,0.91,3,1035,0
|
44 |
+
13.88,1.89,2.59,15,101,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095,0
|
45 |
+
13.24,3.98,2.29,17.5,103,2.64,2.63,0.32,1.66,4.36,0.82,3,680,0
|
46 |
+
13.05,1.77,2.1,17,107,3,3,0.28,2.03,5.04,0.88,3.35,885,0
|
47 |
+
14.21,4.04,2.44,18.9,111,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080,0
|
48 |
+
14.38,3.59,2.28,16,102,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065,0
|
49 |
+
13.9,1.68,2.12,16,101,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985,0
|
50 |
+
14.1,2.02,2.4,18.8,103,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060,0
|
51 |
+
13.94,1.73,2.27,17.4,108,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260,0
|
52 |
+
13.05,1.73,2.04,12.4,92,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150,0
|
53 |
+
13.83,1.65,2.6,17.2,94,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265,0
|
54 |
+
13.82,1.75,2.42,14,111,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190,0
|
55 |
+
13.77,1.9,2.68,17.1,115,3,2.79,0.39,1.68,6.3,1.13,2.93,1375,0
|
56 |
+
13.74,1.67,2.25,16.4,118,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060,0
|
57 |
+
13.56,1.73,2.46,20.5,116,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120,0
|
58 |
+
14.22,1.7,2.3,16.3,118,3.2,3,0.26,2.03,6.38,0.94,3.31,970,0
|
59 |
+
13.29,1.97,2.68,16.8,102,3,3.23,0.31,1.66,6,1.07,2.84,1270,0
|
60 |
+
13.72,1.43,2.5,16.7,108,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285,0
|
61 |
+
12.37,0.94,1.36,10.6,88,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520,1
|
62 |
+
12.33,1.1,2.28,16,101,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680,1
|
63 |
+
12.64,1.36,2.02,16.8,100,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450,1
|
64 |
+
13.67,1.25,1.92,18,94,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630,1
|
65 |
+
12.37,1.13,2.16,19,87,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420,1
|
66 |
+
12.17,1.45,2.53,19,104,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355,1
|
67 |
+
12.37,1.21,2.56,18.1,98,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678,1
|
68 |
+
13.11,1.01,1.7,15,78,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502,1
|
69 |
+
12.37,1.17,1.92,19.6,78,2.11,2,0.27,1.04,4.68,1.12,3.48,510,1
|
70 |
+
13.34,0.94,2.36,17,110,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750,1
|
71 |
+
12.21,1.19,1.75,16.8,151,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718,1
|
72 |
+
12.29,1.61,2.21,20.4,103,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870,1
|
73 |
+
13.86,1.51,2.67,25,86,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410,1
|
74 |
+
13.49,1.66,2.24,24,87,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472,1
|
75 |
+
12.99,1.67,2.6,30,139,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985,1
|
76 |
+
11.96,1.09,2.3,21,101,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886,1
|
77 |
+
11.66,1.88,1.92,16,97,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428,1
|
78 |
+
13.03,0.9,1.71,16,86,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392,1
|
79 |
+
11.84,2.89,2.23,18,112,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500,1
|
80 |
+
12.33,0.99,1.95,14.8,136,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750,1
|
81 |
+
12.7,3.87,2.4,23,101,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463,1
|
82 |
+
12,0.92,2,19,86,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278,1
|
83 |
+
12.72,1.81,2.2,18.8,86,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714,1
|
84 |
+
12.08,1.13,2.51,24,78,2,1.58,0.4,1.4,2.2,1.31,2.72,630,1
|
85 |
+
13.05,3.86,2.32,22.5,85,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515,1
|
86 |
+
11.84,0.89,2.58,18,94,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520,1
|
87 |
+
12.67,0.98,2.24,18,99,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450,1
|
88 |
+
12.16,1.61,2.31,22.8,90,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495,1
|
89 |
+
11.65,1.67,2.62,26,88,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562,1
|
90 |
+
11.64,2.06,2.46,21.6,84,1.95,1.69,0.48,1.35,2.8,1,2.75,680,1
|
91 |
+
12.08,1.33,2.3,23.6,70,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625,1
|
92 |
+
12.08,1.83,2.32,18.5,81,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480,1
|
93 |
+
12,1.51,2.42,22,86,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450,1
|
94 |
+
12.69,1.53,2.26,20.7,80,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495,1
|
95 |
+
12.29,2.83,2.22,18,88,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290,1
|
96 |
+
11.62,1.99,2.28,18,98,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345,1
|
97 |
+
12.47,1.52,2.2,19,162,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937,1
|
98 |
+
11.81,2.12,2.74,21.5,134,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625,1
|
99 |
+
12.29,1.41,1.98,16,85,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428,1
|
100 |
+
12.37,1.07,2.1,18.5,88,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660,1
|
101 |
+
12.29,3.17,2.21,18,88,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406,1
|
102 |
+
12.08,2.08,1.7,17.5,97,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710,1
|
103 |
+
12.6,1.34,1.9,18.5,88,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562,1
|
104 |
+
12.34,2.45,2.46,21,98,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438,1
|
105 |
+
11.82,1.72,1.88,19.5,86,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415,1
|
106 |
+
12.51,1.73,1.98,20.5,85,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672,1
|
107 |
+
12.42,2.55,2.27,22,90,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315,1
|
108 |
+
12.25,1.73,2.12,19,80,1.65,2.03,0.37,1.63,3.4,1,3.17,510,1
|
109 |
+
12.72,1.75,2.28,22.5,84,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488,1
|
110 |
+
12.22,1.29,1.94,19,92,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312,1
|
111 |
+
11.61,1.35,2.7,20,94,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680,1
|
112 |
+
11.46,3.74,1.82,19.5,107,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562,1
|
113 |
+
12.52,2.43,2.17,21,88,2.55,2.27,0.26,1.22,2,0.9,2.78,325,1
|
114 |
+
11.76,2.68,2.92,20,103,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607,1
|
115 |
+
11.41,0.74,2.5,21,88,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434,1
|
116 |
+
12.08,1.39,2.5,22.5,84,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385,1
|
117 |
+
11.03,1.51,2.2,21.5,85,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407,1
|
118 |
+
11.82,1.47,1.99,20.8,86,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495,1
|
119 |
+
12.42,1.61,2.19,22.5,108,2,2.09,0.34,1.61,2.06,1.06,2.96,345,1
|
120 |
+
12.77,3.43,1.98,16,80,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372,1
|
121 |
+
12,3.43,2,19,87,2,1.64,0.37,1.87,1.28,0.93,3.05,564,1
|
122 |
+
11.45,2.4,2.42,20,96,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625,1
|
123 |
+
11.56,2.05,3.23,28.5,119,3.18,5.08,0.47,1.87,6,0.93,3.69,465,1
|
124 |
+
12.42,4.43,2.73,26.5,102,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365,1
|
125 |
+
13.05,5.8,2.13,21.5,86,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380,1
|
126 |
+
11.87,4.31,2.39,21,82,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380,1
|
127 |
+
12.07,2.16,2.17,21,85,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378,1
|
128 |
+
12.43,1.53,2.29,21.5,86,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352,1
|
129 |
+
11.79,2.13,2.78,28.5,92,2.13,2.24,0.58,1.76,3,0.97,2.44,466,1
|
130 |
+
12.37,1.63,2.3,24.5,88,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342,1
|
131 |
+
12.04,4.3,2.38,22,80,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580,1
|
132 |
+
12.86,1.35,2.32,18,122,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630,2
|
133 |
+
12.88,2.99,2.4,20,104,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530,2
|
134 |
+
12.81,2.31,2.4,24,98,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560,2
|
135 |
+
12.7,3.55,2.36,21.5,106,1.7,1.2,0.17,0.84,5,0.78,1.29,600,2
|
136 |
+
12.51,1.24,2.25,17.5,85,2,0.58,0.6,1.25,5.45,0.75,1.51,650,2
|
137 |
+
12.6,2.46,2.2,18.5,94,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695,2
|
138 |
+
12.25,4.72,2.54,21,89,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720,2
|
139 |
+
12.53,5.51,2.64,25,96,1.79,0.6,0.63,1.1,5,0.82,1.69,515,2
|
140 |
+
13.49,3.59,2.19,19.5,88,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580,2
|
141 |
+
12.84,2.96,2.61,24,101,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590,2
|
142 |
+
12.93,2.81,2.7,21,96,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600,2
|
143 |
+
13.36,2.56,2.35,20,89,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780,2
|
144 |
+
13.52,3.17,2.72,23.5,97,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520,2
|
145 |
+
13.62,4.95,2.35,20,92,2,0.8,0.47,1.02,4.4,0.91,2.05,550,2
|
146 |
+
12.25,3.88,2.2,18.5,112,1.38,0.78,0.29,1.14,8.21,0.65,2,855,2
|
147 |
+
13.16,3.57,2.15,21,102,1.5,0.55,0.43,1.3,4,0.6,1.68,830,2
|
148 |
+
13.88,5.04,2.23,20,80,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415,2
|
149 |
+
12.87,4.61,2.48,21.5,86,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625,2
|
150 |
+
13.32,3.24,2.38,21.5,92,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650,2
|
151 |
+
13.08,3.9,2.36,21.5,113,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550,2
|
152 |
+
13.5,3.12,2.62,24,123,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500,2
|
153 |
+
12.79,2.67,2.48,22,112,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480,2
|
154 |
+
13.11,1.9,2.75,25.5,116,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425,2
|
155 |
+
13.23,3.3,2.28,18.5,98,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675,2
|
156 |
+
12.58,1.29,2.1,20,103,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640,2
|
157 |
+
13.17,5.19,2.32,22,93,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725,2
|
158 |
+
13.84,4.12,2.38,19.5,89,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480,2
|
159 |
+
12.45,3.03,2.64,27,97,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880,2
|
160 |
+
14.34,1.68,2.7,25,98,2.8,1.31,0.53,2.7,13,0.57,1.96,660,2
|
161 |
+
13.48,1.67,2.64,22.5,89,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620,2
|
162 |
+
12.36,3.83,2.38,21,88,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520,2
|
163 |
+
13.69,3.26,2.54,20,107,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680,2
|
164 |
+
12.85,3.27,2.58,22,106,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570,2
|
165 |
+
12.96,3.45,2.35,18.5,106,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675,2
|
166 |
+
13.78,2.76,2.3,22,90,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615,2
|
167 |
+
13.73,4.36,2.26,22.5,88,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520,2
|
168 |
+
13.45,3.7,2.6,23,111,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695,2
|
169 |
+
12.82,3.37,2.3,19.5,88,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685,2
|
170 |
+
13.58,2.58,2.69,24.5,105,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750,2
|
171 |
+
13.4,4.6,2.86,25,112,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630,2
|
172 |
+
12.2,3.03,2.32,19,96,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510,2
|
173 |
+
12.77,2.39,2.28,19.5,86,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470,2
|
174 |
+
14.16,2.51,2.48,20,91,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660,2
|
175 |
+
13.71,5.65,2.45,20.5,95,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740,2
|
176 |
+
13.4,3.91,2.48,23,102,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750,2
|
177 |
+
13.27,4.28,2.26,20,120,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835,2
|
178 |
+
13.17,2.59,2.37,20,120,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840,2
|
179 |
+
14.13,4.1,2.74,24.5,96,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560,2
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/api-v1-jdf-1119.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82f899edc59cb41fdd671b256a228e5e06dfc5e24c92712e75005b251b000865
|
3 |
+
size 1108
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/data-v1-dl-54002.arff.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6931af256195fcdd2e47dd8b0f9edf16fbf03b198e77b70e3dfd9877cdf09515
|
3 |
+
size 1190
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40589/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (208 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (208 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jd-40945.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02882c6b02c4e068ef2b16f37f33ae3d5e9dd17ca29d01662c6924e16427eb5d
|
3 |
+
size 437
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/api-v1-jdq-40945.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c7e5a46554ab6a8121832dc0cd9f7a60f5034cef1a5a7d61346bbd912516b54
|
3 |
+
size 1042
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_40945/data-v1-dl-16826755.arff.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:516e961f519876e5f89b339a0364a08dd64160ac3a4d76d5ec62955bfd6d6ce5
|
3 |
+
size 32243
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42074/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (208 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jd-42585.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ccbf138e0663895f9cf511136bc6395c153f6238af2eacb6a367e86e15d1a71
|
3 |
+
size 1492
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdf-42585.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0985045a454c8186b4e690ebefb6cea1ef7c13292c98d50abda470a0ff3ad425
|
3 |
+
size 312
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/api-v1-jdq-42585.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3736e7feb7ad30c68675c2c4e48a9fb262e80308c9083b100ddd0339da1fc282
|
3 |
+
size 348
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_42585/data-v1-dl-21854866.arff.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d00c6690576a9ec39e1cb77054e13296be0fdebab0fb35a64a0e8627b6e6f3
|
3 |
+
size 4519
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jd-61.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c7e79aa41ef580838fb9fc1906280f076c47be1741fddd5004ddb500eb57fe
|
3 |
+
size 898
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdf-61.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33cbd6ae945ba04969370ab35604e9363c87256393493382b5118a89d59386d6
|
3 |
+
size 268
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-dv-1.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bce20aae7fd903796d96d5b3a3677b7058fbc5f3fe0996ee9d491e4ee23d132
|
3 |
+
size 293
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdl-dn-iris-l-2-s-act-.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9f4b9317997df63ed8d2bb073a3906344c0e0be017fd384eaec36ced8b94bae
|
3 |
+
size 330
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/api-v1-jdq-61.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:424cd47c12a51c7bb8d8169fac80fb5601f152bd78468b241d4b115bf7d22f20
|
3 |
+
size 1121
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_61/data-v1-dl-61.arff.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afe4736924606638984e573235191025d419c545d31dc8874c96b72f5ec5db73
|
3 |
+
size 2342
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_62/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_62/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (205 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.manifold` module implements data embedding techniques.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from ._isomap import Isomap
|
6 |
+
from ._locally_linear import LocallyLinearEmbedding, locally_linear_embedding
|
7 |
+
from ._mds import MDS, smacof
|
8 |
+
from ._spectral_embedding import SpectralEmbedding, spectral_embedding
|
9 |
+
from ._t_sne import TSNE, trustworthiness
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"locally_linear_embedding",
|
13 |
+
"LocallyLinearEmbedding",
|
14 |
+
"Isomap",
|
15 |
+
"MDS",
|
16 |
+
"smacof",
|
17 |
+
"SpectralEmbedding",
|
18 |
+
"spectral_embedding",
|
19 |
+
"TSNE",
|
20 |
+
"trustworthiness",
|
21 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (673 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_isomap.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_locally_linear.cpython-310.pyc
ADDED
Binary file (23.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_mds.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_spectral_embedding.cpython-310.pyc
ADDED
Binary file (20.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/__pycache__/_t_sne.cpython-310.pyc
ADDED
Binary file (33.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_barnes_hut_tsne.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (250 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_isomap.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Isomap for manifold learning"""
|
2 |
+
|
3 |
+
# Author: Jake Vanderplas -- <[email protected]>
|
4 |
+
# License: BSD 3 clause (C) 2011
|
5 |
+
import warnings
|
6 |
+
from numbers import Integral, Real
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from scipy.sparse import issparse
|
10 |
+
from scipy.sparse.csgraph import connected_components, shortest_path
|
11 |
+
|
12 |
+
from ..base import (
|
13 |
+
BaseEstimator,
|
14 |
+
ClassNamePrefixFeaturesOutMixin,
|
15 |
+
TransformerMixin,
|
16 |
+
_fit_context,
|
17 |
+
)
|
18 |
+
from ..decomposition import KernelPCA
|
19 |
+
from ..metrics.pairwise import _VALID_METRICS
|
20 |
+
from ..neighbors import NearestNeighbors, kneighbors_graph, radius_neighbors_graph
|
21 |
+
from ..preprocessing import KernelCenterer
|
22 |
+
from ..utils._param_validation import Interval, StrOptions
|
23 |
+
from ..utils.graph import _fix_connected_components
|
24 |
+
from ..utils.validation import check_is_fitted
|
25 |
+
|
26 |
+
|
27 |
+
class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
28 |
+
"""Isomap Embedding.
|
29 |
+
|
30 |
+
Non-linear dimensionality reduction through Isometric Mapping
|
31 |
+
|
32 |
+
Read more in the :ref:`User Guide <isomap>`.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
n_neighbors : int or None, default=5
|
37 |
+
Number of neighbors to consider for each point. If `n_neighbors` is an int,
|
38 |
+
then `radius` must be `None`.
|
39 |
+
|
40 |
+
radius : float or None, default=None
|
41 |
+
Limiting distance of neighbors to return. If `radius` is a float,
|
42 |
+
then `n_neighbors` must be set to `None`.
|
43 |
+
|
44 |
+
.. versionadded:: 1.1
|
45 |
+
|
46 |
+
n_components : int, default=2
|
47 |
+
Number of coordinates for the manifold.
|
48 |
+
|
49 |
+
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
|
50 |
+
'auto' : Attempt to choose the most efficient solver
|
51 |
+
for the given problem.
|
52 |
+
|
53 |
+
'arpack' : Use Arnoldi decomposition to find the eigenvalues
|
54 |
+
and eigenvectors.
|
55 |
+
|
56 |
+
'dense' : Use a direct solver (i.e. LAPACK)
|
57 |
+
for the eigenvalue decomposition.
|
58 |
+
|
59 |
+
tol : float, default=0
|
60 |
+
Convergence tolerance passed to arpack or lobpcg.
|
61 |
+
not used if eigen_solver == 'dense'.
|
62 |
+
|
63 |
+
max_iter : int, default=None
|
64 |
+
Maximum number of iterations for the arpack solver.
|
65 |
+
not used if eigen_solver == 'dense'.
|
66 |
+
|
67 |
+
path_method : {'auto', 'FW', 'D'}, default='auto'
|
68 |
+
Method to use in finding shortest path.
|
69 |
+
|
70 |
+
'auto' : attempt to choose the best algorithm automatically.
|
71 |
+
|
72 |
+
'FW' : Floyd-Warshall algorithm.
|
73 |
+
|
74 |
+
'D' : Dijkstra's algorithm.
|
75 |
+
|
76 |
+
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \
|
77 |
+
default='auto'
|
78 |
+
Algorithm to use for nearest neighbors search,
|
79 |
+
passed to neighbors.NearestNeighbors instance.
|
80 |
+
|
81 |
+
n_jobs : int or None, default=None
|
82 |
+
The number of parallel jobs to run.
|
83 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
84 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
85 |
+
for more details.
|
86 |
+
|
87 |
+
metric : str, or callable, default="minkowski"
|
88 |
+
The metric to use when calculating distance between instances in a
|
89 |
+
feature array. If metric is a string or callable, it must be one of
|
90 |
+
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
|
91 |
+
its metric parameter.
|
92 |
+
If metric is "precomputed", X is assumed to be a distance matrix and
|
93 |
+
must be square. X may be a :term:`Glossary <sparse graph>`.
|
94 |
+
|
95 |
+
.. versionadded:: 0.22
|
96 |
+
|
97 |
+
p : float, default=2
|
98 |
+
Parameter for the Minkowski metric from
|
99 |
+
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
|
100 |
+
equivalent to using manhattan_distance (l1), and euclidean_distance
|
101 |
+
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
|
102 |
+
|
103 |
+
.. versionadded:: 0.22
|
104 |
+
|
105 |
+
metric_params : dict, default=None
|
106 |
+
Additional keyword arguments for the metric function.
|
107 |
+
|
108 |
+
.. versionadded:: 0.22
|
109 |
+
|
110 |
+
Attributes
|
111 |
+
----------
|
112 |
+
embedding_ : array-like, shape (n_samples, n_components)
|
113 |
+
Stores the embedding vectors.
|
114 |
+
|
115 |
+
kernel_pca_ : object
|
116 |
+
:class:`~sklearn.decomposition.KernelPCA` object used to implement the
|
117 |
+
embedding.
|
118 |
+
|
119 |
+
nbrs_ : sklearn.neighbors.NearestNeighbors instance
|
120 |
+
Stores nearest neighbors instance, including BallTree or KDtree
|
121 |
+
if applicable.
|
122 |
+
|
123 |
+
dist_matrix_ : array-like, shape (n_samples, n_samples)
|
124 |
+
Stores the geodesic distance matrix of training data.
|
125 |
+
|
126 |
+
n_features_in_ : int
|
127 |
+
Number of features seen during :term:`fit`.
|
128 |
+
|
129 |
+
.. versionadded:: 0.24
|
130 |
+
|
131 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
132 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
133 |
+
has feature names that are all strings.
|
134 |
+
|
135 |
+
.. versionadded:: 1.0
|
136 |
+
|
137 |
+
See Also
|
138 |
+
--------
|
139 |
+
sklearn.decomposition.PCA : Principal component analysis that is a linear
|
140 |
+
dimensionality reduction method.
|
141 |
+
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
|
142 |
+
kernels and PCA.
|
143 |
+
MDS : Manifold learning using multidimensional scaling.
|
144 |
+
TSNE : T-distributed Stochastic Neighbor Embedding.
|
145 |
+
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
|
146 |
+
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
|
147 |
+
|
148 |
+
References
|
149 |
+
----------
|
150 |
+
|
151 |
+
.. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
|
152 |
+
framework for nonlinear dimensionality reduction. Science 290 (5500)
|
153 |
+
|
154 |
+
Examples
|
155 |
+
--------
|
156 |
+
>>> from sklearn.datasets import load_digits
|
157 |
+
>>> from sklearn.manifold import Isomap
|
158 |
+
>>> X, _ = load_digits(return_X_y=True)
|
159 |
+
>>> X.shape
|
160 |
+
(1797, 64)
|
161 |
+
>>> embedding = Isomap(n_components=2)
|
162 |
+
>>> X_transformed = embedding.fit_transform(X[:100])
|
163 |
+
>>> X_transformed.shape
|
164 |
+
(100, 2)
|
165 |
+
"""
|
166 |
+
|
167 |
+
_parameter_constraints: dict = {
|
168 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
|
169 |
+
"radius": [Interval(Real, 0, None, closed="both"), None],
|
170 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
171 |
+
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})],
|
172 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
173 |
+
"max_iter": [Interval(Integral, 1, None, closed="left"), None],
|
174 |
+
"path_method": [StrOptions({"auto", "FW", "D"})],
|
175 |
+
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})],
|
176 |
+
"n_jobs": [Integral, None],
|
177 |
+
"p": [Interval(Real, 1, None, closed="left")],
|
178 |
+
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
179 |
+
"metric_params": [dict, None],
|
180 |
+
}
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
*,
|
185 |
+
n_neighbors=5,
|
186 |
+
radius=None,
|
187 |
+
n_components=2,
|
188 |
+
eigen_solver="auto",
|
189 |
+
tol=0,
|
190 |
+
max_iter=None,
|
191 |
+
path_method="auto",
|
192 |
+
neighbors_algorithm="auto",
|
193 |
+
n_jobs=None,
|
194 |
+
metric="minkowski",
|
195 |
+
p=2,
|
196 |
+
metric_params=None,
|
197 |
+
):
|
198 |
+
self.n_neighbors = n_neighbors
|
199 |
+
self.radius = radius
|
200 |
+
self.n_components = n_components
|
201 |
+
self.eigen_solver = eigen_solver
|
202 |
+
self.tol = tol
|
203 |
+
self.max_iter = max_iter
|
204 |
+
self.path_method = path_method
|
205 |
+
self.neighbors_algorithm = neighbors_algorithm
|
206 |
+
self.n_jobs = n_jobs
|
207 |
+
self.metric = metric
|
208 |
+
self.p = p
|
209 |
+
self.metric_params = metric_params
|
210 |
+
|
211 |
+
def _fit_transform(self, X):
|
212 |
+
if self.n_neighbors is not None and self.radius is not None:
|
213 |
+
raise ValueError(
|
214 |
+
"Both n_neighbors and radius are provided. Use"
|
215 |
+
f" Isomap(radius={self.radius}, n_neighbors=None) if intended to use"
|
216 |
+
" radius-based neighbors"
|
217 |
+
)
|
218 |
+
|
219 |
+
self.nbrs_ = NearestNeighbors(
|
220 |
+
n_neighbors=self.n_neighbors,
|
221 |
+
radius=self.radius,
|
222 |
+
algorithm=self.neighbors_algorithm,
|
223 |
+
metric=self.metric,
|
224 |
+
p=self.p,
|
225 |
+
metric_params=self.metric_params,
|
226 |
+
n_jobs=self.n_jobs,
|
227 |
+
)
|
228 |
+
self.nbrs_.fit(X)
|
229 |
+
self.n_features_in_ = self.nbrs_.n_features_in_
|
230 |
+
if hasattr(self.nbrs_, "feature_names_in_"):
|
231 |
+
self.feature_names_in_ = self.nbrs_.feature_names_in_
|
232 |
+
|
233 |
+
self.kernel_pca_ = KernelPCA(
|
234 |
+
n_components=self.n_components,
|
235 |
+
kernel="precomputed",
|
236 |
+
eigen_solver=self.eigen_solver,
|
237 |
+
tol=self.tol,
|
238 |
+
max_iter=self.max_iter,
|
239 |
+
n_jobs=self.n_jobs,
|
240 |
+
).set_output(transform="default")
|
241 |
+
|
242 |
+
if self.n_neighbors is not None:
|
243 |
+
nbg = kneighbors_graph(
|
244 |
+
self.nbrs_,
|
245 |
+
self.n_neighbors,
|
246 |
+
metric=self.metric,
|
247 |
+
p=self.p,
|
248 |
+
metric_params=self.metric_params,
|
249 |
+
mode="distance",
|
250 |
+
n_jobs=self.n_jobs,
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
nbg = radius_neighbors_graph(
|
254 |
+
self.nbrs_,
|
255 |
+
radius=self.radius,
|
256 |
+
metric=self.metric,
|
257 |
+
p=self.p,
|
258 |
+
metric_params=self.metric_params,
|
259 |
+
mode="distance",
|
260 |
+
n_jobs=self.n_jobs,
|
261 |
+
)
|
262 |
+
|
263 |
+
# Compute the number of connected components, and connect the different
|
264 |
+
# components to be able to compute a shortest path between all pairs
|
265 |
+
# of samples in the graph.
|
266 |
+
# Similar fix to cluster._agglomerative._fix_connectivity.
|
267 |
+
n_connected_components, labels = connected_components(nbg)
|
268 |
+
if n_connected_components > 1:
|
269 |
+
if self.metric == "precomputed" and issparse(X):
|
270 |
+
raise RuntimeError(
|
271 |
+
"The number of connected components of the neighbors graph"
|
272 |
+
f" is {n_connected_components} > 1. The graph cannot be "
|
273 |
+
"completed with metric='precomputed', and Isomap cannot be"
|
274 |
+
"fitted. Increase the number of neighbors to avoid this "
|
275 |
+
"issue, or precompute the full distance matrix instead "
|
276 |
+
"of passing a sparse neighbors graph."
|
277 |
+
)
|
278 |
+
warnings.warn(
|
279 |
+
(
|
280 |
+
"The number of connected components of the neighbors graph "
|
281 |
+
f"is {n_connected_components} > 1. Completing the graph to fit"
|
282 |
+
" Isomap might be slow. Increase the number of neighbors to "
|
283 |
+
"avoid this issue."
|
284 |
+
),
|
285 |
+
stacklevel=2,
|
286 |
+
)
|
287 |
+
|
288 |
+
# use array validated by NearestNeighbors
|
289 |
+
nbg = _fix_connected_components(
|
290 |
+
X=self.nbrs_._fit_X,
|
291 |
+
graph=nbg,
|
292 |
+
n_connected_components=n_connected_components,
|
293 |
+
component_labels=labels,
|
294 |
+
mode="distance",
|
295 |
+
metric=self.nbrs_.effective_metric_,
|
296 |
+
**self.nbrs_.effective_metric_params_,
|
297 |
+
)
|
298 |
+
|
299 |
+
self.dist_matrix_ = shortest_path(nbg, method=self.path_method, directed=False)
|
300 |
+
|
301 |
+
if self.nbrs_._fit_X.dtype == np.float32:
|
302 |
+
self.dist_matrix_ = self.dist_matrix_.astype(
|
303 |
+
self.nbrs_._fit_X.dtype, copy=False
|
304 |
+
)
|
305 |
+
|
306 |
+
G = self.dist_matrix_**2
|
307 |
+
G *= -0.5
|
308 |
+
|
309 |
+
self.embedding_ = self.kernel_pca_.fit_transform(G)
|
310 |
+
self._n_features_out = self.embedding_.shape[1]
|
311 |
+
|
312 |
+
def reconstruction_error(self):
|
313 |
+
"""Compute the reconstruction error for the embedding.
|
314 |
+
|
315 |
+
Returns
|
316 |
+
-------
|
317 |
+
reconstruction_error : float
|
318 |
+
Reconstruction error.
|
319 |
+
|
320 |
+
Notes
|
321 |
+
-----
|
322 |
+
The cost function of an isomap embedding is
|
323 |
+
|
324 |
+
``E = frobenius_norm[K(D) - K(D_fit)] / n_samples``
|
325 |
+
|
326 |
+
Where D is the matrix of distances for the input data X,
|
327 |
+
D_fit is the matrix of distances for the output embedding X_fit,
|
328 |
+
and K is the isomap kernel:
|
329 |
+
|
330 |
+
``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)``
|
331 |
+
"""
|
332 |
+
G = -0.5 * self.dist_matrix_**2
|
333 |
+
G_center = KernelCenterer().fit_transform(G)
|
334 |
+
evals = self.kernel_pca_.eigenvalues_
|
335 |
+
return np.sqrt(np.sum(G_center**2) - np.sum(evals**2)) / G.shape[0]
|
336 |
+
|
337 |
+
@_fit_context(
|
338 |
+
# Isomap.metric is not validated yet
|
339 |
+
prefer_skip_nested_validation=False
|
340 |
+
)
|
341 |
+
def fit(self, X, y=None):
|
342 |
+
"""Compute the embedding vectors for data X.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
|
347 |
+
Sample data, shape = (n_samples, n_features), in the form of a
|
348 |
+
numpy array, sparse matrix, precomputed tree, or NearestNeighbors
|
349 |
+
object.
|
350 |
+
|
351 |
+
y : Ignored
|
352 |
+
Not used, present for API consistency by convention.
|
353 |
+
|
354 |
+
Returns
|
355 |
+
-------
|
356 |
+
self : object
|
357 |
+
Returns a fitted instance of self.
|
358 |
+
"""
|
359 |
+
self._fit_transform(X)
|
360 |
+
return self
|
361 |
+
|
362 |
+
@_fit_context(
|
363 |
+
# Isomap.metric is not validated yet
|
364 |
+
prefer_skip_nested_validation=False
|
365 |
+
)
|
366 |
+
def fit_transform(self, X, y=None):
|
367 |
+
"""Fit the model from data in X and transform X.
|
368 |
+
|
369 |
+
Parameters
|
370 |
+
----------
|
371 |
+
X : {array-like, sparse matrix, BallTree, KDTree}
|
372 |
+
Training vector, where `n_samples` is the number of samples
|
373 |
+
and `n_features` is the number of features.
|
374 |
+
|
375 |
+
y : Ignored
|
376 |
+
Not used, present for API consistency by convention.
|
377 |
+
|
378 |
+
Returns
|
379 |
+
-------
|
380 |
+
X_new : array-like, shape (n_samples, n_components)
|
381 |
+
X transformed in the new space.
|
382 |
+
"""
|
383 |
+
self._fit_transform(X)
|
384 |
+
return self.embedding_
|
385 |
+
|
386 |
+
def transform(self, X):
|
387 |
+
"""Transform X.
|
388 |
+
|
389 |
+
This is implemented by linking the points X into the graph of geodesic
|
390 |
+
distances of the training data. First the `n_neighbors` nearest
|
391 |
+
neighbors of X are found in the training data, and from these the
|
392 |
+
shortest geodesic distances from each point in X to each point in
|
393 |
+
the training data are computed in order to construct the kernel.
|
394 |
+
The embedding of X is the projection of this kernel onto the
|
395 |
+
embedding vectors of the training set.
|
396 |
+
|
397 |
+
Parameters
|
398 |
+
----------
|
399 |
+
X : {array-like, sparse matrix}, shape (n_queries, n_features)
|
400 |
+
If neighbors_algorithm='precomputed', X is assumed to be a
|
401 |
+
distance matrix or a sparse graph of shape
|
402 |
+
(n_queries, n_samples_fit).
|
403 |
+
|
404 |
+
Returns
|
405 |
+
-------
|
406 |
+
X_new : array-like, shape (n_queries, n_components)
|
407 |
+
X transformed in the new space.
|
408 |
+
"""
|
409 |
+
check_is_fitted(self)
|
410 |
+
if self.n_neighbors is not None:
|
411 |
+
distances, indices = self.nbrs_.kneighbors(X, return_distance=True)
|
412 |
+
else:
|
413 |
+
distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True)
|
414 |
+
|
415 |
+
# Create the graph of shortest distances from X to
|
416 |
+
# training data via the nearest neighbors of X.
|
417 |
+
# This can be done as a single array operation, but it potentially
|
418 |
+
# takes a lot of memory. To avoid that, use a loop:
|
419 |
+
|
420 |
+
n_samples_fit = self.nbrs_.n_samples_fit_
|
421 |
+
n_queries = distances.shape[0]
|
422 |
+
|
423 |
+
if hasattr(X, "dtype") and X.dtype == np.float32:
|
424 |
+
dtype = np.float32
|
425 |
+
else:
|
426 |
+
dtype = np.float64
|
427 |
+
|
428 |
+
G_X = np.zeros((n_queries, n_samples_fit), dtype)
|
429 |
+
for i in range(n_queries):
|
430 |
+
G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0)
|
431 |
+
|
432 |
+
G_X **= 2
|
433 |
+
G_X *= -0.5
|
434 |
+
|
435 |
+
return self.kernel_pca_.transform(G_X)
|
436 |
+
|
437 |
+
def _more_tags(self):
|
438 |
+
return {"preserves_dtype": [np.float64, np.float32]}
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_locally_linear.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Locally Linear Embedding"""
|
2 |
+
|
3 |
+
# Author: Fabian Pedregosa -- <[email protected]>
|
4 |
+
# Jake Vanderplas -- <[email protected]>
|
5 |
+
# License: BSD 3 clause (C) INRIA 2011
|
6 |
+
|
7 |
+
from numbers import Integral, Real
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from scipy.linalg import eigh, qr, solve, svd
|
11 |
+
from scipy.sparse import csr_matrix, eye
|
12 |
+
from scipy.sparse.linalg import eigsh
|
13 |
+
|
14 |
+
from ..base import (
|
15 |
+
BaseEstimator,
|
16 |
+
ClassNamePrefixFeaturesOutMixin,
|
17 |
+
TransformerMixin,
|
18 |
+
_fit_context,
|
19 |
+
_UnstableArchMixin,
|
20 |
+
)
|
21 |
+
from ..neighbors import NearestNeighbors
|
22 |
+
from ..utils import check_array, check_random_state
|
23 |
+
from ..utils._arpack import _init_arpack_v0
|
24 |
+
from ..utils._param_validation import Interval, StrOptions
|
25 |
+
from ..utils.extmath import stable_cumsum
|
26 |
+
from ..utils.validation import FLOAT_DTYPES, check_is_fitted
|
27 |
+
|
28 |
+
|
29 |
+
def barycenter_weights(X, Y, indices, reg=1e-3):
|
30 |
+
"""Compute barycenter weights of X from Y along the first axis
|
31 |
+
|
32 |
+
We estimate the weights to assign to each point in Y[indices] to recover
|
33 |
+
the point X[i]. The barycenter weights sum to 1.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
X : array-like, shape (n_samples, n_dim)
|
38 |
+
|
39 |
+
Y : array-like, shape (n_samples, n_dim)
|
40 |
+
|
41 |
+
indices : array-like, shape (n_samples, n_dim)
|
42 |
+
Indices of the points in Y used to compute the barycenter
|
43 |
+
|
44 |
+
reg : float, default=1e-3
|
45 |
+
Amount of regularization to add for the problem to be
|
46 |
+
well-posed in the case of n_neighbors > n_dim
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
B : array-like, shape (n_samples, n_neighbors)
|
51 |
+
|
52 |
+
Notes
|
53 |
+
-----
|
54 |
+
See developers note for more information.
|
55 |
+
"""
|
56 |
+
X = check_array(X, dtype=FLOAT_DTYPES)
|
57 |
+
Y = check_array(Y, dtype=FLOAT_DTYPES)
|
58 |
+
indices = check_array(indices, dtype=int)
|
59 |
+
|
60 |
+
n_samples, n_neighbors = indices.shape
|
61 |
+
assert X.shape[0] == n_samples
|
62 |
+
|
63 |
+
B = np.empty((n_samples, n_neighbors), dtype=X.dtype)
|
64 |
+
v = np.ones(n_neighbors, dtype=X.dtype)
|
65 |
+
|
66 |
+
# this might raise a LinalgError if G is singular and has trace
|
67 |
+
# zero
|
68 |
+
for i, ind in enumerate(indices):
|
69 |
+
A = Y[ind]
|
70 |
+
C = A - X[i] # broadcasting
|
71 |
+
G = np.dot(C, C.T)
|
72 |
+
trace = np.trace(G)
|
73 |
+
if trace > 0:
|
74 |
+
R = reg * trace
|
75 |
+
else:
|
76 |
+
R = reg
|
77 |
+
G.flat[:: n_neighbors + 1] += R
|
78 |
+
w = solve(G, v, assume_a="pos")
|
79 |
+
B[i, :] = w / np.sum(w)
|
80 |
+
return B
|
81 |
+
|
82 |
+
|
83 |
+
def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=None):
|
84 |
+
"""Computes the barycenter weighted graph of k-Neighbors for points in X
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
----------
|
88 |
+
X : {array-like, NearestNeighbors}
|
89 |
+
Sample data, shape = (n_samples, n_features), in the form of a
|
90 |
+
numpy array or a NearestNeighbors object.
|
91 |
+
|
92 |
+
n_neighbors : int
|
93 |
+
Number of neighbors for each sample.
|
94 |
+
|
95 |
+
reg : float, default=1e-3
|
96 |
+
Amount of regularization when solving the least-squares
|
97 |
+
problem. Only relevant if mode='barycenter'. If None, use the
|
98 |
+
default.
|
99 |
+
|
100 |
+
n_jobs : int or None, default=None
|
101 |
+
The number of parallel jobs to run for neighbors search.
|
102 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
103 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
104 |
+
for more details.
|
105 |
+
|
106 |
+
Returns
|
107 |
+
-------
|
108 |
+
A : sparse matrix in CSR format, shape = [n_samples, n_samples]
|
109 |
+
A[i, j] is assigned the weight of edge that connects i to j.
|
110 |
+
|
111 |
+
See Also
|
112 |
+
--------
|
113 |
+
sklearn.neighbors.kneighbors_graph
|
114 |
+
sklearn.neighbors.radius_neighbors_graph
|
115 |
+
"""
|
116 |
+
knn = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs).fit(X)
|
117 |
+
X = knn._fit_X
|
118 |
+
n_samples = knn.n_samples_fit_
|
119 |
+
ind = knn.kneighbors(X, return_distance=False)[:, 1:]
|
120 |
+
data = barycenter_weights(X, X, ind, reg=reg)
|
121 |
+
indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors)
|
122 |
+
return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples))
|
123 |
+
|
124 |
+
|
125 |
+
def null_space(
|
126 |
+
M, k, k_skip=1, eigen_solver="arpack", tol=1e-6, max_iter=100, random_state=None
|
127 |
+
):
|
128 |
+
"""
|
129 |
+
Find the null space of a matrix M.
|
130 |
+
|
131 |
+
Parameters
|
132 |
+
----------
|
133 |
+
M : {array, matrix, sparse matrix, LinearOperator}
|
134 |
+
Input covariance matrix: should be symmetric positive semi-definite
|
135 |
+
|
136 |
+
k : int
|
137 |
+
Number of eigenvalues/vectors to return
|
138 |
+
|
139 |
+
k_skip : int, default=1
|
140 |
+
Number of low eigenvalues to skip.
|
141 |
+
|
142 |
+
eigen_solver : {'auto', 'arpack', 'dense'}, default='arpack'
|
143 |
+
auto : algorithm will attempt to choose the best method for input data
|
144 |
+
arpack : use arnoldi iteration in shift-invert mode.
|
145 |
+
For this method, M may be a dense matrix, sparse matrix,
|
146 |
+
or general linear operator.
|
147 |
+
Warning: ARPACK can be unstable for some problems. It is
|
148 |
+
best to try several random seeds in order to check results.
|
149 |
+
dense : use standard dense matrix operations for the eigenvalue
|
150 |
+
decomposition. For this method, M must be an array
|
151 |
+
or matrix type. This method should be avoided for
|
152 |
+
large problems.
|
153 |
+
|
154 |
+
tol : float, default=1e-6
|
155 |
+
Tolerance for 'arpack' method.
|
156 |
+
Not used if eigen_solver=='dense'.
|
157 |
+
|
158 |
+
max_iter : int, default=100
|
159 |
+
Maximum number of iterations for 'arpack' method.
|
160 |
+
Not used if eigen_solver=='dense'
|
161 |
+
|
162 |
+
random_state : int, RandomState instance, default=None
|
163 |
+
Determines the random number generator when ``solver`` == 'arpack'.
|
164 |
+
Pass an int for reproducible results across multiple function calls.
|
165 |
+
See :term:`Glossary <random_state>`.
|
166 |
+
"""
|
167 |
+
if eigen_solver == "auto":
|
168 |
+
if M.shape[0] > 200 and k + k_skip < 10:
|
169 |
+
eigen_solver = "arpack"
|
170 |
+
else:
|
171 |
+
eigen_solver = "dense"
|
172 |
+
|
173 |
+
if eigen_solver == "arpack":
|
174 |
+
v0 = _init_arpack_v0(M.shape[0], random_state)
|
175 |
+
try:
|
176 |
+
eigen_values, eigen_vectors = eigsh(
|
177 |
+
M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0
|
178 |
+
)
|
179 |
+
except RuntimeError as e:
|
180 |
+
raise ValueError(
|
181 |
+
"Error in determining null-space with ARPACK. Error message: "
|
182 |
+
"'%s'. Note that eigen_solver='arpack' can fail when the "
|
183 |
+
"weight matrix is singular or otherwise ill-behaved. In that "
|
184 |
+
"case, eigen_solver='dense' is recommended. See online "
|
185 |
+
"documentation for more information." % e
|
186 |
+
) from e
|
187 |
+
|
188 |
+
return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:])
|
189 |
+
elif eigen_solver == "dense":
|
190 |
+
if hasattr(M, "toarray"):
|
191 |
+
M = M.toarray()
|
192 |
+
eigen_values, eigen_vectors = eigh(
|
193 |
+
M, subset_by_index=(k_skip, k + k_skip - 1), overwrite_a=True
|
194 |
+
)
|
195 |
+
index = np.argsort(np.abs(eigen_values))
|
196 |
+
return eigen_vectors[:, index], np.sum(eigen_values)
|
197 |
+
else:
|
198 |
+
raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver)
|
199 |
+
|
200 |
+
|
201 |
+
def locally_linear_embedding(
|
202 |
+
X,
|
203 |
+
*,
|
204 |
+
n_neighbors,
|
205 |
+
n_components,
|
206 |
+
reg=1e-3,
|
207 |
+
eigen_solver="auto",
|
208 |
+
tol=1e-6,
|
209 |
+
max_iter=100,
|
210 |
+
method="standard",
|
211 |
+
hessian_tol=1e-4,
|
212 |
+
modified_tol=1e-12,
|
213 |
+
random_state=None,
|
214 |
+
n_jobs=None,
|
215 |
+
):
|
216 |
+
"""Perform a Locally Linear Embedding analysis on the data.
|
217 |
+
|
218 |
+
Read more in the :ref:`User Guide <locally_linear_embedding>`.
|
219 |
+
|
220 |
+
Parameters
|
221 |
+
----------
|
222 |
+
X : {array-like, NearestNeighbors}
|
223 |
+
Sample data, shape = (n_samples, n_features), in the form of a
|
224 |
+
numpy array or a NearestNeighbors object.
|
225 |
+
|
226 |
+
n_neighbors : int
|
227 |
+
Number of neighbors to consider for each point.
|
228 |
+
|
229 |
+
n_components : int
|
230 |
+
Number of coordinates for the manifold.
|
231 |
+
|
232 |
+
reg : float, default=1e-3
|
233 |
+
Regularization constant, multiplies the trace of the local covariance
|
234 |
+
matrix of the distances.
|
235 |
+
|
236 |
+
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
|
237 |
+
auto : algorithm will attempt to choose the best method for input data
|
238 |
+
|
239 |
+
arpack : use arnoldi iteration in shift-invert mode.
|
240 |
+
For this method, M may be a dense matrix, sparse matrix,
|
241 |
+
or general linear operator.
|
242 |
+
Warning: ARPACK can be unstable for some problems. It is
|
243 |
+
best to try several random seeds in order to check results.
|
244 |
+
|
245 |
+
dense : use standard dense matrix operations for the eigenvalue
|
246 |
+
decomposition. For this method, M must be an array
|
247 |
+
or matrix type. This method should be avoided for
|
248 |
+
large problems.
|
249 |
+
|
250 |
+
tol : float, default=1e-6
|
251 |
+
Tolerance for 'arpack' method
|
252 |
+
Not used if eigen_solver=='dense'.
|
253 |
+
|
254 |
+
max_iter : int, default=100
|
255 |
+
Maximum number of iterations for the arpack solver.
|
256 |
+
|
257 |
+
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard'
|
258 |
+
standard : use the standard locally linear embedding algorithm.
|
259 |
+
see reference [1]_
|
260 |
+
hessian : use the Hessian eigenmap method. This method requires
|
261 |
+
n_neighbors > n_components * (1 + (n_components + 1) / 2.
|
262 |
+
see reference [2]_
|
263 |
+
modified : use the modified locally linear embedding algorithm.
|
264 |
+
see reference [3]_
|
265 |
+
ltsa : use local tangent space alignment algorithm
|
266 |
+
see reference [4]_
|
267 |
+
|
268 |
+
hessian_tol : float, default=1e-4
|
269 |
+
Tolerance for Hessian eigenmapping method.
|
270 |
+
Only used if method == 'hessian'.
|
271 |
+
|
272 |
+
modified_tol : float, default=1e-12
|
273 |
+
Tolerance for modified LLE method.
|
274 |
+
Only used if method == 'modified'.
|
275 |
+
|
276 |
+
random_state : int, RandomState instance, default=None
|
277 |
+
Determines the random number generator when ``solver`` == 'arpack'.
|
278 |
+
Pass an int for reproducible results across multiple function calls.
|
279 |
+
See :term:`Glossary <random_state>`.
|
280 |
+
|
281 |
+
n_jobs : int or None, default=None
|
282 |
+
The number of parallel jobs to run for neighbors search.
|
283 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
284 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
285 |
+
for more details.
|
286 |
+
|
287 |
+
Returns
|
288 |
+
-------
|
289 |
+
Y : array-like, shape [n_samples, n_components]
|
290 |
+
Embedding vectors.
|
291 |
+
|
292 |
+
squared_error : float
|
293 |
+
Reconstruction error for the embedding vectors. Equivalent to
|
294 |
+
``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights.
|
295 |
+
|
296 |
+
References
|
297 |
+
----------
|
298 |
+
|
299 |
+
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction
|
300 |
+
by locally linear embedding. Science 290:2323 (2000).
|
301 |
+
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
|
302 |
+
linear embedding techniques for high-dimensional data.
|
303 |
+
Proc Natl Acad Sci U S A. 100:5591 (2003).
|
304 |
+
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
|
305 |
+
Embedding Using Multiple Weights.
|
306 |
+
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_
|
307 |
+
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear
|
308 |
+
dimensionality reduction via tangent space alignment.
|
309 |
+
Journal of Shanghai Univ. 8:406 (2004)
|
310 |
+
|
311 |
+
Examples
|
312 |
+
--------
|
313 |
+
>>> from sklearn.datasets import load_digits
|
314 |
+
>>> from sklearn.manifold import locally_linear_embedding
|
315 |
+
>>> X, _ = load_digits(return_X_y=True)
|
316 |
+
>>> X.shape
|
317 |
+
(1797, 64)
|
318 |
+
>>> embedding, _ = locally_linear_embedding(X[:100],n_neighbors=5, n_components=2)
|
319 |
+
>>> embedding.shape
|
320 |
+
(100, 2)
|
321 |
+
"""
|
322 |
+
if eigen_solver not in ("auto", "arpack", "dense"):
|
323 |
+
raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver)
|
324 |
+
|
325 |
+
if method not in ("standard", "hessian", "modified", "ltsa"):
|
326 |
+
raise ValueError("unrecognized method '%s'" % method)
|
327 |
+
|
328 |
+
nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs)
|
329 |
+
nbrs.fit(X)
|
330 |
+
X = nbrs._fit_X
|
331 |
+
|
332 |
+
N, d_in = X.shape
|
333 |
+
|
334 |
+
if n_components > d_in:
|
335 |
+
raise ValueError(
|
336 |
+
"output dimension must be less than or equal to input dimension"
|
337 |
+
)
|
338 |
+
if n_neighbors >= N:
|
339 |
+
raise ValueError(
|
340 |
+
"Expected n_neighbors <= n_samples, but n_samples = %d, n_neighbors = %d"
|
341 |
+
% (N, n_neighbors)
|
342 |
+
)
|
343 |
+
|
344 |
+
if n_neighbors <= 0:
|
345 |
+
raise ValueError("n_neighbors must be positive")
|
346 |
+
|
347 |
+
M_sparse = eigen_solver != "dense"
|
348 |
+
|
349 |
+
if method == "standard":
|
350 |
+
W = barycenter_kneighbors_graph(
|
351 |
+
nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs
|
352 |
+
)
|
353 |
+
|
354 |
+
# we'll compute M = (I-W)'(I-W)
|
355 |
+
# depending on the solver, we'll do this differently
|
356 |
+
if M_sparse:
|
357 |
+
M = eye(*W.shape, format=W.format) - W
|
358 |
+
M = (M.T * M).tocsr()
|
359 |
+
else:
|
360 |
+
M = (W.T * W - W.T - W).toarray()
|
361 |
+
M.flat[:: M.shape[0] + 1] += 1 # W = W - I = W - I
|
362 |
+
|
363 |
+
elif method == "hessian":
|
364 |
+
dp = n_components * (n_components + 1) // 2
|
365 |
+
|
366 |
+
if n_neighbors <= n_components + dp:
|
367 |
+
raise ValueError(
|
368 |
+
"for method='hessian', n_neighbors must be "
|
369 |
+
"greater than "
|
370 |
+
"[n_components * (n_components + 3) / 2]"
|
371 |
+
)
|
372 |
+
|
373 |
+
neighbors = nbrs.kneighbors(
|
374 |
+
X, n_neighbors=n_neighbors + 1, return_distance=False
|
375 |
+
)
|
376 |
+
neighbors = neighbors[:, 1:]
|
377 |
+
|
378 |
+
Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64)
|
379 |
+
Yi[:, 0] = 1
|
380 |
+
|
381 |
+
M = np.zeros((N, N), dtype=np.float64)
|
382 |
+
|
383 |
+
use_svd = n_neighbors > d_in
|
384 |
+
|
385 |
+
for i in range(N):
|
386 |
+
Gi = X[neighbors[i]]
|
387 |
+
Gi -= Gi.mean(0)
|
388 |
+
|
389 |
+
# build Hessian estimator
|
390 |
+
if use_svd:
|
391 |
+
U = svd(Gi, full_matrices=0)[0]
|
392 |
+
else:
|
393 |
+
Ci = np.dot(Gi, Gi.T)
|
394 |
+
U = eigh(Ci)[1][:, ::-1]
|
395 |
+
|
396 |
+
Yi[:, 1 : 1 + n_components] = U[:, :n_components]
|
397 |
+
|
398 |
+
j = 1 + n_components
|
399 |
+
for k in range(n_components):
|
400 |
+
Yi[:, j : j + n_components - k] = U[:, k : k + 1] * U[:, k:n_components]
|
401 |
+
j += n_components - k
|
402 |
+
|
403 |
+
Q, R = qr(Yi)
|
404 |
+
|
405 |
+
w = Q[:, n_components + 1 :]
|
406 |
+
S = w.sum(0)
|
407 |
+
|
408 |
+
S[np.where(abs(S) < hessian_tol)] = 1
|
409 |
+
w /= S
|
410 |
+
|
411 |
+
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
|
412 |
+
M[nbrs_x, nbrs_y] += np.dot(w, w.T)
|
413 |
+
|
414 |
+
if M_sparse:
|
415 |
+
M = csr_matrix(M)
|
416 |
+
|
417 |
+
elif method == "modified":
|
418 |
+
if n_neighbors < n_components:
|
419 |
+
raise ValueError("modified LLE requires n_neighbors >= n_components")
|
420 |
+
|
421 |
+
neighbors = nbrs.kneighbors(
|
422 |
+
X, n_neighbors=n_neighbors + 1, return_distance=False
|
423 |
+
)
|
424 |
+
neighbors = neighbors[:, 1:]
|
425 |
+
|
426 |
+
# find the eigenvectors and eigenvalues of each local covariance
|
427 |
+
# matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix,
|
428 |
+
# where the columns are eigenvectors
|
429 |
+
V = np.zeros((N, n_neighbors, n_neighbors))
|
430 |
+
nev = min(d_in, n_neighbors)
|
431 |
+
evals = np.zeros([N, nev])
|
432 |
+
|
433 |
+
# choose the most efficient way to find the eigenvectors
|
434 |
+
use_svd = n_neighbors > d_in
|
435 |
+
|
436 |
+
if use_svd:
|
437 |
+
for i in range(N):
|
438 |
+
X_nbrs = X[neighbors[i]] - X[i]
|
439 |
+
V[i], evals[i], _ = svd(X_nbrs, full_matrices=True)
|
440 |
+
evals **= 2
|
441 |
+
else:
|
442 |
+
for i in range(N):
|
443 |
+
X_nbrs = X[neighbors[i]] - X[i]
|
444 |
+
C_nbrs = np.dot(X_nbrs, X_nbrs.T)
|
445 |
+
evi, vi = eigh(C_nbrs)
|
446 |
+
evals[i] = evi[::-1]
|
447 |
+
V[i] = vi[:, ::-1]
|
448 |
+
|
449 |
+
# find regularized weights: this is like normal LLE.
|
450 |
+
# because we've already computed the SVD of each covariance matrix,
|
451 |
+
# it's faster to use this rather than np.linalg.solve
|
452 |
+
reg = 1e-3 * evals.sum(1)
|
453 |
+
|
454 |
+
tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors))
|
455 |
+
tmp[:, :nev] /= evals + reg[:, None]
|
456 |
+
tmp[:, nev:] /= reg[:, None]
|
457 |
+
|
458 |
+
w_reg = np.zeros((N, n_neighbors))
|
459 |
+
for i in range(N):
|
460 |
+
w_reg[i] = np.dot(V[i], tmp[i])
|
461 |
+
w_reg /= w_reg.sum(1)[:, None]
|
462 |
+
|
463 |
+
# calculate eta: the median of the ratio of small to large eigenvalues
|
464 |
+
# across the points. This is used to determine s_i, below
|
465 |
+
rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1)
|
466 |
+
eta = np.median(rho)
|
467 |
+
|
468 |
+
# find s_i, the size of the "almost null space" for each point:
|
469 |
+
# this is the size of the largest set of eigenvalues
|
470 |
+
# such that Sum[v; v in set]/Sum[v; v not in set] < eta
|
471 |
+
s_range = np.zeros(N, dtype=int)
|
472 |
+
evals_cumsum = stable_cumsum(evals, 1)
|
473 |
+
eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1
|
474 |
+
for i in range(N):
|
475 |
+
s_range[i] = np.searchsorted(eta_range[i, ::-1], eta)
|
476 |
+
s_range += n_neighbors - nev # number of zero eigenvalues
|
477 |
+
|
478 |
+
# Now calculate M.
|
479 |
+
# This is the [N x N] matrix whose null space is the desired embedding
|
480 |
+
M = np.zeros((N, N), dtype=np.float64)
|
481 |
+
for i in range(N):
|
482 |
+
s_i = s_range[i]
|
483 |
+
|
484 |
+
# select bottom s_i eigenvectors and calculate alpha
|
485 |
+
Vi = V[i, :, n_neighbors - s_i :]
|
486 |
+
alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i)
|
487 |
+
|
488 |
+
# compute Householder matrix which satisfies
|
489 |
+
# Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s)
|
490 |
+
# using prescription from paper
|
491 |
+
h = np.full(s_i, alpha_i) - np.dot(Vi.T, np.ones(n_neighbors))
|
492 |
+
|
493 |
+
norm_h = np.linalg.norm(h)
|
494 |
+
if norm_h < modified_tol:
|
495 |
+
h *= 0
|
496 |
+
else:
|
497 |
+
h /= norm_h
|
498 |
+
|
499 |
+
# Householder matrix is
|
500 |
+
# >> Hi = np.identity(s_i) - 2*np.outer(h,h)
|
501 |
+
# Then the weight matrix is
|
502 |
+
# >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None]
|
503 |
+
# We do this much more efficiently:
|
504 |
+
Wi = Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]
|
505 |
+
|
506 |
+
# Update M as follows:
|
507 |
+
# >> W_hat = np.zeros( (N,s_i) )
|
508 |
+
# >> W_hat[neighbors[i],:] = Wi
|
509 |
+
# >> W_hat[i] -= 1
|
510 |
+
# >> M += np.dot(W_hat,W_hat.T)
|
511 |
+
# We can do this much more efficiently:
|
512 |
+
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
|
513 |
+
M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T)
|
514 |
+
Wi_sum1 = Wi.sum(1)
|
515 |
+
M[i, neighbors[i]] -= Wi_sum1
|
516 |
+
M[neighbors[i], i] -= Wi_sum1
|
517 |
+
M[i, i] += s_i
|
518 |
+
|
519 |
+
if M_sparse:
|
520 |
+
M = csr_matrix(M)
|
521 |
+
|
522 |
+
elif method == "ltsa":
|
523 |
+
neighbors = nbrs.kneighbors(
|
524 |
+
X, n_neighbors=n_neighbors + 1, return_distance=False
|
525 |
+
)
|
526 |
+
neighbors = neighbors[:, 1:]
|
527 |
+
|
528 |
+
M = np.zeros((N, N))
|
529 |
+
|
530 |
+
use_svd = n_neighbors > d_in
|
531 |
+
|
532 |
+
for i in range(N):
|
533 |
+
Xi = X[neighbors[i]]
|
534 |
+
Xi -= Xi.mean(0)
|
535 |
+
|
536 |
+
# compute n_components largest eigenvalues of Xi * Xi^T
|
537 |
+
if use_svd:
|
538 |
+
v = svd(Xi, full_matrices=True)[0]
|
539 |
+
else:
|
540 |
+
Ci = np.dot(Xi, Xi.T)
|
541 |
+
v = eigh(Ci)[1][:, ::-1]
|
542 |
+
|
543 |
+
Gi = np.zeros((n_neighbors, n_components + 1))
|
544 |
+
Gi[:, 1:] = v[:, :n_components]
|
545 |
+
Gi[:, 0] = 1.0 / np.sqrt(n_neighbors)
|
546 |
+
|
547 |
+
GiGiT = np.dot(Gi, Gi.T)
|
548 |
+
|
549 |
+
nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i])
|
550 |
+
M[nbrs_x, nbrs_y] -= GiGiT
|
551 |
+
M[neighbors[i], neighbors[i]] += 1
|
552 |
+
|
553 |
+
return null_space(
|
554 |
+
M,
|
555 |
+
n_components,
|
556 |
+
k_skip=1,
|
557 |
+
eigen_solver=eigen_solver,
|
558 |
+
tol=tol,
|
559 |
+
max_iter=max_iter,
|
560 |
+
random_state=random_state,
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
class LocallyLinearEmbedding(
|
565 |
+
ClassNamePrefixFeaturesOutMixin,
|
566 |
+
TransformerMixin,
|
567 |
+
_UnstableArchMixin,
|
568 |
+
BaseEstimator,
|
569 |
+
):
|
570 |
+
"""Locally Linear Embedding.
|
571 |
+
|
572 |
+
Read more in the :ref:`User Guide <locally_linear_embedding>`.
|
573 |
+
|
574 |
+
Parameters
|
575 |
+
----------
|
576 |
+
n_neighbors : int, default=5
|
577 |
+
Number of neighbors to consider for each point.
|
578 |
+
|
579 |
+
n_components : int, default=2
|
580 |
+
Number of coordinates for the manifold.
|
581 |
+
|
582 |
+
reg : float, default=1e-3
|
583 |
+
Regularization constant, multiplies the trace of the local covariance
|
584 |
+
matrix of the distances.
|
585 |
+
|
586 |
+
eigen_solver : {'auto', 'arpack', 'dense'}, default='auto'
|
587 |
+
The solver used to compute the eigenvectors. The available options are:
|
588 |
+
|
589 |
+
- `'auto'` : algorithm will attempt to choose the best method for input
|
590 |
+
data.
|
591 |
+
- `'arpack'` : use arnoldi iteration in shift-invert mode. For this
|
592 |
+
method, M may be a dense matrix, sparse matrix, or general linear
|
593 |
+
operator.
|
594 |
+
- `'dense'` : use standard dense matrix operations for the eigenvalue
|
595 |
+
decomposition. For this method, M must be an array or matrix type.
|
596 |
+
This method should be avoided for large problems.
|
597 |
+
|
598 |
+
.. warning::
|
599 |
+
ARPACK can be unstable for some problems. It is best to try several
|
600 |
+
random seeds in order to check results.
|
601 |
+
|
602 |
+
tol : float, default=1e-6
|
603 |
+
Tolerance for 'arpack' method
|
604 |
+
Not used if eigen_solver=='dense'.
|
605 |
+
|
606 |
+
max_iter : int, default=100
|
607 |
+
Maximum number of iterations for the arpack solver.
|
608 |
+
Not used if eigen_solver=='dense'.
|
609 |
+
|
610 |
+
method : {'standard', 'hessian', 'modified', 'ltsa'}, default='standard'
|
611 |
+
- `standard`: use the standard locally linear embedding algorithm. see
|
612 |
+
reference [1]_
|
613 |
+
- `hessian`: use the Hessian eigenmap method. This method requires
|
614 |
+
``n_neighbors > n_components * (1 + (n_components + 1) / 2``. see
|
615 |
+
reference [2]_
|
616 |
+
- `modified`: use the modified locally linear embedding algorithm.
|
617 |
+
see reference [3]_
|
618 |
+
- `ltsa`: use local tangent space alignment algorithm. see
|
619 |
+
reference [4]_
|
620 |
+
|
621 |
+
hessian_tol : float, default=1e-4
|
622 |
+
Tolerance for Hessian eigenmapping method.
|
623 |
+
Only used if ``method == 'hessian'``.
|
624 |
+
|
625 |
+
modified_tol : float, default=1e-12
|
626 |
+
Tolerance for modified LLE method.
|
627 |
+
Only used if ``method == 'modified'``.
|
628 |
+
|
629 |
+
neighbors_algorithm : {'auto', 'brute', 'kd_tree', 'ball_tree'}, \
|
630 |
+
default='auto'
|
631 |
+
Algorithm to use for nearest neighbors search, passed to
|
632 |
+
:class:`~sklearn.neighbors.NearestNeighbors` instance.
|
633 |
+
|
634 |
+
random_state : int, RandomState instance, default=None
|
635 |
+
Determines the random number generator when
|
636 |
+
``eigen_solver`` == 'arpack'. Pass an int for reproducible results
|
637 |
+
across multiple function calls. See :term:`Glossary <random_state>`.
|
638 |
+
|
639 |
+
n_jobs : int or None, default=None
|
640 |
+
The number of parallel jobs to run.
|
641 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
642 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
643 |
+
for more details.
|
644 |
+
|
645 |
+
Attributes
|
646 |
+
----------
|
647 |
+
embedding_ : array-like, shape [n_samples, n_components]
|
648 |
+
Stores the embedding vectors
|
649 |
+
|
650 |
+
reconstruction_error_ : float
|
651 |
+
Reconstruction error associated with `embedding_`
|
652 |
+
|
653 |
+
n_features_in_ : int
|
654 |
+
Number of features seen during :term:`fit`.
|
655 |
+
|
656 |
+
.. versionadded:: 0.24
|
657 |
+
|
658 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
659 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
660 |
+
has feature names that are all strings.
|
661 |
+
|
662 |
+
.. versionadded:: 1.0
|
663 |
+
|
664 |
+
nbrs_ : NearestNeighbors object
|
665 |
+
Stores nearest neighbors instance, including BallTree or KDtree
|
666 |
+
if applicable.
|
667 |
+
|
668 |
+
See Also
|
669 |
+
--------
|
670 |
+
SpectralEmbedding : Spectral embedding for non-linear dimensionality
|
671 |
+
reduction.
|
672 |
+
TSNE : Distributed Stochastic Neighbor Embedding.
|
673 |
+
|
674 |
+
References
|
675 |
+
----------
|
676 |
+
|
677 |
+
.. [1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction
|
678 |
+
by locally linear embedding. Science 290:2323 (2000).
|
679 |
+
.. [2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally
|
680 |
+
linear embedding techniques for high-dimensional data.
|
681 |
+
Proc Natl Acad Sci U S A. 100:5591 (2003).
|
682 |
+
.. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear
|
683 |
+
Embedding Using Multiple Weights.
|
684 |
+
<https://citeseerx.ist.psu.edu/doc_view/pid/0b060fdbd92cbcc66b383bcaa9ba5e5e624d7ee3>`_
|
685 |
+
.. [4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear
|
686 |
+
dimensionality reduction via tangent space alignment.
|
687 |
+
Journal of Shanghai Univ. 8:406 (2004)
|
688 |
+
|
689 |
+
Examples
|
690 |
+
--------
|
691 |
+
>>> from sklearn.datasets import load_digits
|
692 |
+
>>> from sklearn.manifold import LocallyLinearEmbedding
|
693 |
+
>>> X, _ = load_digits(return_X_y=True)
|
694 |
+
>>> X.shape
|
695 |
+
(1797, 64)
|
696 |
+
>>> embedding = LocallyLinearEmbedding(n_components=2)
|
697 |
+
>>> X_transformed = embedding.fit_transform(X[:100])
|
698 |
+
>>> X_transformed.shape
|
699 |
+
(100, 2)
|
700 |
+
"""
|
701 |
+
|
702 |
+
_parameter_constraints: dict = {
|
703 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
704 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
705 |
+
"reg": [Interval(Real, 0, None, closed="left")],
|
706 |
+
"eigen_solver": [StrOptions({"auto", "arpack", "dense"})],
|
707 |
+
"tol": [Interval(Real, 0, None, closed="left")],
|
708 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
709 |
+
"method": [StrOptions({"standard", "hessian", "modified", "ltsa"})],
|
710 |
+
"hessian_tol": [Interval(Real, 0, None, closed="left")],
|
711 |
+
"modified_tol": [Interval(Real, 0, None, closed="left")],
|
712 |
+
"neighbors_algorithm": [StrOptions({"auto", "brute", "kd_tree", "ball_tree"})],
|
713 |
+
"random_state": ["random_state"],
|
714 |
+
"n_jobs": [None, Integral],
|
715 |
+
}
|
716 |
+
|
717 |
+
def __init__(
|
718 |
+
self,
|
719 |
+
*,
|
720 |
+
n_neighbors=5,
|
721 |
+
n_components=2,
|
722 |
+
reg=1e-3,
|
723 |
+
eigen_solver="auto",
|
724 |
+
tol=1e-6,
|
725 |
+
max_iter=100,
|
726 |
+
method="standard",
|
727 |
+
hessian_tol=1e-4,
|
728 |
+
modified_tol=1e-12,
|
729 |
+
neighbors_algorithm="auto",
|
730 |
+
random_state=None,
|
731 |
+
n_jobs=None,
|
732 |
+
):
|
733 |
+
self.n_neighbors = n_neighbors
|
734 |
+
self.n_components = n_components
|
735 |
+
self.reg = reg
|
736 |
+
self.eigen_solver = eigen_solver
|
737 |
+
self.tol = tol
|
738 |
+
self.max_iter = max_iter
|
739 |
+
self.method = method
|
740 |
+
self.hessian_tol = hessian_tol
|
741 |
+
self.modified_tol = modified_tol
|
742 |
+
self.random_state = random_state
|
743 |
+
self.neighbors_algorithm = neighbors_algorithm
|
744 |
+
self.n_jobs = n_jobs
|
745 |
+
|
746 |
+
def _fit_transform(self, X):
|
747 |
+
self.nbrs_ = NearestNeighbors(
|
748 |
+
n_neighbors=self.n_neighbors,
|
749 |
+
algorithm=self.neighbors_algorithm,
|
750 |
+
n_jobs=self.n_jobs,
|
751 |
+
)
|
752 |
+
|
753 |
+
random_state = check_random_state(self.random_state)
|
754 |
+
X = self._validate_data(X, dtype=float)
|
755 |
+
self.nbrs_.fit(X)
|
756 |
+
self.embedding_, self.reconstruction_error_ = locally_linear_embedding(
|
757 |
+
X=self.nbrs_,
|
758 |
+
n_neighbors=self.n_neighbors,
|
759 |
+
n_components=self.n_components,
|
760 |
+
eigen_solver=self.eigen_solver,
|
761 |
+
tol=self.tol,
|
762 |
+
max_iter=self.max_iter,
|
763 |
+
method=self.method,
|
764 |
+
hessian_tol=self.hessian_tol,
|
765 |
+
modified_tol=self.modified_tol,
|
766 |
+
random_state=random_state,
|
767 |
+
reg=self.reg,
|
768 |
+
n_jobs=self.n_jobs,
|
769 |
+
)
|
770 |
+
self._n_features_out = self.embedding_.shape[1]
|
771 |
+
|
772 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
773 |
+
def fit(self, X, y=None):
|
774 |
+
"""Compute the embedding vectors for data X.
|
775 |
+
|
776 |
+
Parameters
|
777 |
+
----------
|
778 |
+
X : array-like of shape (n_samples, n_features)
|
779 |
+
Training set.
|
780 |
+
|
781 |
+
y : Ignored
|
782 |
+
Not used, present here for API consistency by convention.
|
783 |
+
|
784 |
+
Returns
|
785 |
+
-------
|
786 |
+
self : object
|
787 |
+
Fitted `LocallyLinearEmbedding` class instance.
|
788 |
+
"""
|
789 |
+
self._fit_transform(X)
|
790 |
+
return self
|
791 |
+
|
792 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
793 |
+
def fit_transform(self, X, y=None):
|
794 |
+
"""Compute the embedding vectors for data X and transform X.
|
795 |
+
|
796 |
+
Parameters
|
797 |
+
----------
|
798 |
+
X : array-like of shape (n_samples, n_features)
|
799 |
+
Training set.
|
800 |
+
|
801 |
+
y : Ignored
|
802 |
+
Not used, present here for API consistency by convention.
|
803 |
+
|
804 |
+
Returns
|
805 |
+
-------
|
806 |
+
X_new : array-like, shape (n_samples, n_components)
|
807 |
+
Returns the instance itself.
|
808 |
+
"""
|
809 |
+
self._fit_transform(X)
|
810 |
+
return self.embedding_
|
811 |
+
|
812 |
+
def transform(self, X):
|
813 |
+
"""
|
814 |
+
Transform new points into embedding space.
|
815 |
+
|
816 |
+
Parameters
|
817 |
+
----------
|
818 |
+
X : array-like of shape (n_samples, n_features)
|
819 |
+
Training set.
|
820 |
+
|
821 |
+
Returns
|
822 |
+
-------
|
823 |
+
X_new : ndarray of shape (n_samples, n_components)
|
824 |
+
Returns the instance itself.
|
825 |
+
|
826 |
+
Notes
|
827 |
+
-----
|
828 |
+
Because of scaling performed by this method, it is discouraged to use
|
829 |
+
it together with methods that are not scale-invariant (like SVMs).
|
830 |
+
"""
|
831 |
+
check_is_fitted(self)
|
832 |
+
|
833 |
+
X = self._validate_data(X, reset=False)
|
834 |
+
ind = self.nbrs_.kneighbors(
|
835 |
+
X, n_neighbors=self.n_neighbors, return_distance=False
|
836 |
+
)
|
837 |
+
weights = barycenter_weights(X, self.nbrs_._fit_X, ind, reg=self.reg)
|
838 |
+
X_new = np.empty((X.shape[0], self.n_components))
|
839 |
+
for i in range(X.shape[0]):
|
840 |
+
X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i])
|
841 |
+
return X_new
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_mds.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Multi-dimensional Scaling (MDS).
|
3 |
+
"""
|
4 |
+
|
5 |
+
# author: Nelle Varoquaux <[email protected]>
|
6 |
+
# License: BSD
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from joblib import effective_n_jobs
|
13 |
+
|
14 |
+
from ..base import BaseEstimator, _fit_context
|
15 |
+
from ..isotonic import IsotonicRegression
|
16 |
+
from ..metrics import euclidean_distances
|
17 |
+
from ..utils import check_array, check_random_state, check_symmetric
|
18 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
19 |
+
from ..utils.parallel import Parallel, delayed
|
20 |
+
|
21 |
+
|
22 |
+
def _smacof_single(
|
23 |
+
dissimilarities,
|
24 |
+
metric=True,
|
25 |
+
n_components=2,
|
26 |
+
init=None,
|
27 |
+
max_iter=300,
|
28 |
+
verbose=0,
|
29 |
+
eps=1e-3,
|
30 |
+
random_state=None,
|
31 |
+
normalized_stress=False,
|
32 |
+
):
|
33 |
+
"""Computes multidimensional scaling using SMACOF algorithm.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
dissimilarities : ndarray of shape (n_samples, n_samples)
|
38 |
+
Pairwise dissimilarities between the points. Must be symmetric.
|
39 |
+
|
40 |
+
metric : bool, default=True
|
41 |
+
Compute metric or nonmetric SMACOF algorithm.
|
42 |
+
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
|
43 |
+
missing values.
|
44 |
+
|
45 |
+
n_components : int, default=2
|
46 |
+
Number of dimensions in which to immerse the dissimilarities. If an
|
47 |
+
``init`` array is provided, this option is overridden and the shape of
|
48 |
+
``init`` is used to determine the dimensionality of the embedding
|
49 |
+
space.
|
50 |
+
|
51 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
52 |
+
Starting configuration of the embedding to initialize the algorithm. By
|
53 |
+
default, the algorithm is initialized with a randomly chosen array.
|
54 |
+
|
55 |
+
max_iter : int, default=300
|
56 |
+
Maximum number of iterations of the SMACOF algorithm for a single run.
|
57 |
+
|
58 |
+
verbose : int, default=0
|
59 |
+
Level of verbosity.
|
60 |
+
|
61 |
+
eps : float, default=1e-3
|
62 |
+
Relative tolerance with respect to stress at which to declare
|
63 |
+
convergence. The value of `eps` should be tuned separately depending
|
64 |
+
on whether or not `normalized_stress` is being used.
|
65 |
+
|
66 |
+
random_state : int, RandomState instance or None, default=None
|
67 |
+
Determines the random number generator used to initialize the centers.
|
68 |
+
Pass an int for reproducible results across multiple function calls.
|
69 |
+
See :term:`Glossary <random_state>`.
|
70 |
+
|
71 |
+
normalized_stress : bool, default=False
|
72 |
+
Whether use and return normed stress value (Stress-1) instead of raw
|
73 |
+
stress calculated by default. Only supported in non-metric MDS. The
|
74 |
+
caller must ensure that if `normalized_stress=True` then `metric=False`
|
75 |
+
|
76 |
+
.. versionadded:: 1.2
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
X : ndarray of shape (n_samples, n_components)
|
81 |
+
Coordinates of the points in a ``n_components``-space.
|
82 |
+
|
83 |
+
stress : float
|
84 |
+
The final value of the stress (sum of squared distance of the
|
85 |
+
disparities and the distances for all constrained points).
|
86 |
+
If `normalized_stress=True`, and `metric=False` returns Stress-1.
|
87 |
+
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
|
88 |
+
0.1 fair, and 0.2 poor [1]_.
|
89 |
+
|
90 |
+
n_iter : int
|
91 |
+
The number of iterations corresponding to the best stress.
|
92 |
+
|
93 |
+
References
|
94 |
+
----------
|
95 |
+
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
|
96 |
+
Psychometrika, 29 (1964)
|
97 |
+
|
98 |
+
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
|
99 |
+
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
|
100 |
+
|
101 |
+
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
|
102 |
+
Groenen P. Springer Series in Statistics (1997)
|
103 |
+
"""
|
104 |
+
dissimilarities = check_symmetric(dissimilarities, raise_exception=True)
|
105 |
+
|
106 |
+
n_samples = dissimilarities.shape[0]
|
107 |
+
random_state = check_random_state(random_state)
|
108 |
+
|
109 |
+
sim_flat = ((1 - np.tri(n_samples)) * dissimilarities).ravel()
|
110 |
+
sim_flat_w = sim_flat[sim_flat != 0]
|
111 |
+
if init is None:
|
112 |
+
# Randomly choose initial configuration
|
113 |
+
X = random_state.uniform(size=n_samples * n_components)
|
114 |
+
X = X.reshape((n_samples, n_components))
|
115 |
+
else:
|
116 |
+
# overrides the parameter p
|
117 |
+
n_components = init.shape[1]
|
118 |
+
if n_samples != init.shape[0]:
|
119 |
+
raise ValueError(
|
120 |
+
"init matrix should be of shape (%d, %d)" % (n_samples, n_components)
|
121 |
+
)
|
122 |
+
X = init
|
123 |
+
|
124 |
+
old_stress = None
|
125 |
+
ir = IsotonicRegression()
|
126 |
+
for it in range(max_iter):
|
127 |
+
# Compute distance and monotonic regression
|
128 |
+
dis = euclidean_distances(X)
|
129 |
+
|
130 |
+
if metric:
|
131 |
+
disparities = dissimilarities
|
132 |
+
else:
|
133 |
+
dis_flat = dis.ravel()
|
134 |
+
# dissimilarities with 0 are considered as missing values
|
135 |
+
dis_flat_w = dis_flat[sim_flat != 0]
|
136 |
+
|
137 |
+
# Compute the disparities using a monotonic regression
|
138 |
+
disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w)
|
139 |
+
disparities = dis_flat.copy()
|
140 |
+
disparities[sim_flat != 0] = disparities_flat
|
141 |
+
disparities = disparities.reshape((n_samples, n_samples))
|
142 |
+
disparities *= np.sqrt(
|
143 |
+
(n_samples * (n_samples - 1) / 2) / (disparities**2).sum()
|
144 |
+
)
|
145 |
+
|
146 |
+
# Compute stress
|
147 |
+
stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2
|
148 |
+
if normalized_stress:
|
149 |
+
stress = np.sqrt(stress / ((disparities.ravel() ** 2).sum() / 2))
|
150 |
+
# Update X using the Guttman transform
|
151 |
+
dis[dis == 0] = 1e-5
|
152 |
+
ratio = disparities / dis
|
153 |
+
B = -ratio
|
154 |
+
B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1)
|
155 |
+
X = 1.0 / n_samples * np.dot(B, X)
|
156 |
+
|
157 |
+
dis = np.sqrt((X**2).sum(axis=1)).sum()
|
158 |
+
if verbose >= 2:
|
159 |
+
print("it: %d, stress %s" % (it, stress))
|
160 |
+
if old_stress is not None:
|
161 |
+
if (old_stress - stress / dis) < eps:
|
162 |
+
if verbose:
|
163 |
+
print("breaking at iteration %d with stress %s" % (it, stress))
|
164 |
+
break
|
165 |
+
old_stress = stress / dis
|
166 |
+
|
167 |
+
return X, stress, it + 1
|
168 |
+
|
169 |
+
|
170 |
+
@validate_params(
|
171 |
+
{
|
172 |
+
"dissimilarities": ["array-like"],
|
173 |
+
"metric": ["boolean"],
|
174 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
175 |
+
"init": ["array-like", None],
|
176 |
+
"n_init": [Interval(Integral, 1, None, closed="left")],
|
177 |
+
"n_jobs": [Integral, None],
|
178 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
179 |
+
"verbose": ["verbose"],
|
180 |
+
"eps": [Interval(Real, 0, None, closed="left")],
|
181 |
+
"random_state": ["random_state"],
|
182 |
+
"return_n_iter": ["boolean"],
|
183 |
+
"normalized_stress": ["boolean", StrOptions({"auto"})],
|
184 |
+
},
|
185 |
+
prefer_skip_nested_validation=True,
|
186 |
+
)
|
187 |
+
def smacof(
|
188 |
+
dissimilarities,
|
189 |
+
*,
|
190 |
+
metric=True,
|
191 |
+
n_components=2,
|
192 |
+
init=None,
|
193 |
+
n_init=8,
|
194 |
+
n_jobs=None,
|
195 |
+
max_iter=300,
|
196 |
+
verbose=0,
|
197 |
+
eps=1e-3,
|
198 |
+
random_state=None,
|
199 |
+
return_n_iter=False,
|
200 |
+
normalized_stress="auto",
|
201 |
+
):
|
202 |
+
"""Compute multidimensional scaling using the SMACOF algorithm.
|
203 |
+
|
204 |
+
The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a
|
205 |
+
multidimensional scaling algorithm which minimizes an objective function
|
206 |
+
(the *stress*) using a majorization technique. Stress majorization, also
|
207 |
+
known as the Guttman Transform, guarantees a monotone convergence of
|
208 |
+
stress, and is more powerful than traditional techniques such as gradient
|
209 |
+
descent.
|
210 |
+
|
211 |
+
The SMACOF algorithm for metric MDS can be summarized by the following
|
212 |
+
steps:
|
213 |
+
|
214 |
+
1. Set an initial start configuration, randomly or not.
|
215 |
+
2. Compute the stress
|
216 |
+
3. Compute the Guttman Transform
|
217 |
+
4. Iterate 2 and 3 until convergence.
|
218 |
+
|
219 |
+
The nonmetric algorithm adds a monotonic regression step before computing
|
220 |
+
the stress.
|
221 |
+
|
222 |
+
Parameters
|
223 |
+
----------
|
224 |
+
dissimilarities : array-like of shape (n_samples, n_samples)
|
225 |
+
Pairwise dissimilarities between the points. Must be symmetric.
|
226 |
+
|
227 |
+
metric : bool, default=True
|
228 |
+
Compute metric or nonmetric SMACOF algorithm.
|
229 |
+
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
|
230 |
+
missing values.
|
231 |
+
|
232 |
+
n_components : int, default=2
|
233 |
+
Number of dimensions in which to immerse the dissimilarities. If an
|
234 |
+
``init`` array is provided, this option is overridden and the shape of
|
235 |
+
``init`` is used to determine the dimensionality of the embedding
|
236 |
+
space.
|
237 |
+
|
238 |
+
init : array-like of shape (n_samples, n_components), default=None
|
239 |
+
Starting configuration of the embedding to initialize the algorithm. By
|
240 |
+
default, the algorithm is initialized with a randomly chosen array.
|
241 |
+
|
242 |
+
n_init : int, default=8
|
243 |
+
Number of times the SMACOF algorithm will be run with different
|
244 |
+
initializations. The final results will be the best output of the runs,
|
245 |
+
determined by the run with the smallest final stress. If ``init`` is
|
246 |
+
provided, this option is overridden and a single run is performed.
|
247 |
+
|
248 |
+
n_jobs : int, default=None
|
249 |
+
The number of jobs to use for the computation. If multiple
|
250 |
+
initializations are used (``n_init``), each run of the algorithm is
|
251 |
+
computed in parallel.
|
252 |
+
|
253 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
254 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
255 |
+
for more details.
|
256 |
+
|
257 |
+
max_iter : int, default=300
|
258 |
+
Maximum number of iterations of the SMACOF algorithm for a single run.
|
259 |
+
|
260 |
+
verbose : int, default=0
|
261 |
+
Level of verbosity.
|
262 |
+
|
263 |
+
eps : float, default=1e-3
|
264 |
+
Relative tolerance with respect to stress at which to declare
|
265 |
+
convergence. The value of `eps` should be tuned separately depending
|
266 |
+
on whether or not `normalized_stress` is being used.
|
267 |
+
|
268 |
+
random_state : int, RandomState instance or None, default=None
|
269 |
+
Determines the random number generator used to initialize the centers.
|
270 |
+
Pass an int for reproducible results across multiple function calls.
|
271 |
+
See :term:`Glossary <random_state>`.
|
272 |
+
|
273 |
+
return_n_iter : bool, default=False
|
274 |
+
Whether or not to return the number of iterations.
|
275 |
+
|
276 |
+
normalized_stress : bool or "auto" default="auto"
|
277 |
+
Whether use and return normed stress value (Stress-1) instead of raw
|
278 |
+
stress calculated by default. Only supported in non-metric MDS.
|
279 |
+
|
280 |
+
.. versionadded:: 1.2
|
281 |
+
|
282 |
+
.. versionchanged:: 1.4
|
283 |
+
The default value changed from `False` to `"auto"` in version 1.4.
|
284 |
+
|
285 |
+
Returns
|
286 |
+
-------
|
287 |
+
X : ndarray of shape (n_samples, n_components)
|
288 |
+
Coordinates of the points in a ``n_components``-space.
|
289 |
+
|
290 |
+
stress : float
|
291 |
+
The final value of the stress (sum of squared distance of the
|
292 |
+
disparities and the distances for all constrained points).
|
293 |
+
If `normalized_stress=True`, and `metric=False` returns Stress-1.
|
294 |
+
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
|
295 |
+
0.1 fair, and 0.2 poor [1]_.
|
296 |
+
|
297 |
+
n_iter : int
|
298 |
+
The number of iterations corresponding to the best stress. Returned
|
299 |
+
only if ``return_n_iter`` is set to ``True``.
|
300 |
+
|
301 |
+
References
|
302 |
+
----------
|
303 |
+
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
|
304 |
+
Psychometrika, 29 (1964)
|
305 |
+
|
306 |
+
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
|
307 |
+
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
|
308 |
+
|
309 |
+
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
|
310 |
+
Groenen P. Springer Series in Statistics (1997)
|
311 |
+
|
312 |
+
Examples
|
313 |
+
--------
|
314 |
+
>>> import numpy as np
|
315 |
+
>>> from sklearn.manifold import smacof
|
316 |
+
>>> from sklearn.metrics import euclidean_distances
|
317 |
+
>>> X = np.array([[0, 1, 2], [1, 0, 3],[2, 3, 0]])
|
318 |
+
>>> dissimilarities = euclidean_distances(X)
|
319 |
+
>>> mds_result, stress = smacof(dissimilarities, n_components=2, random_state=42)
|
320 |
+
>>> mds_result
|
321 |
+
array([[ 0.05... -1.07... ],
|
322 |
+
[ 1.74..., -0.75...],
|
323 |
+
[-1.79..., 1.83...]])
|
324 |
+
>>> stress
|
325 |
+
0.0012...
|
326 |
+
"""
|
327 |
+
|
328 |
+
dissimilarities = check_array(dissimilarities)
|
329 |
+
random_state = check_random_state(random_state)
|
330 |
+
|
331 |
+
if normalized_stress == "auto":
|
332 |
+
normalized_stress = not metric
|
333 |
+
|
334 |
+
if normalized_stress and metric:
|
335 |
+
raise ValueError(
|
336 |
+
"Normalized stress is not supported for metric MDS. Either set"
|
337 |
+
" `normalized_stress=False` or use `metric=False`."
|
338 |
+
)
|
339 |
+
if hasattr(init, "__array__"):
|
340 |
+
init = np.asarray(init).copy()
|
341 |
+
if not n_init == 1:
|
342 |
+
warnings.warn(
|
343 |
+
"Explicit initial positions passed: "
|
344 |
+
"performing only one init of the MDS instead of %d" % n_init
|
345 |
+
)
|
346 |
+
n_init = 1
|
347 |
+
|
348 |
+
best_pos, best_stress = None, None
|
349 |
+
|
350 |
+
if effective_n_jobs(n_jobs) == 1:
|
351 |
+
for it in range(n_init):
|
352 |
+
pos, stress, n_iter_ = _smacof_single(
|
353 |
+
dissimilarities,
|
354 |
+
metric=metric,
|
355 |
+
n_components=n_components,
|
356 |
+
init=init,
|
357 |
+
max_iter=max_iter,
|
358 |
+
verbose=verbose,
|
359 |
+
eps=eps,
|
360 |
+
random_state=random_state,
|
361 |
+
normalized_stress=normalized_stress,
|
362 |
+
)
|
363 |
+
if best_stress is None or stress < best_stress:
|
364 |
+
best_stress = stress
|
365 |
+
best_pos = pos.copy()
|
366 |
+
best_iter = n_iter_
|
367 |
+
else:
|
368 |
+
seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
|
369 |
+
results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))(
|
370 |
+
delayed(_smacof_single)(
|
371 |
+
dissimilarities,
|
372 |
+
metric=metric,
|
373 |
+
n_components=n_components,
|
374 |
+
init=init,
|
375 |
+
max_iter=max_iter,
|
376 |
+
verbose=verbose,
|
377 |
+
eps=eps,
|
378 |
+
random_state=seed,
|
379 |
+
normalized_stress=normalized_stress,
|
380 |
+
)
|
381 |
+
for seed in seeds
|
382 |
+
)
|
383 |
+
positions, stress, n_iters = zip(*results)
|
384 |
+
best = np.argmin(stress)
|
385 |
+
best_stress = stress[best]
|
386 |
+
best_pos = positions[best]
|
387 |
+
best_iter = n_iters[best]
|
388 |
+
|
389 |
+
if return_n_iter:
|
390 |
+
return best_pos, best_stress, best_iter
|
391 |
+
else:
|
392 |
+
return best_pos, best_stress
|
393 |
+
|
394 |
+
|
395 |
+
class MDS(BaseEstimator):
|
396 |
+
"""Multidimensional scaling.
|
397 |
+
|
398 |
+
Read more in the :ref:`User Guide <multidimensional_scaling>`.
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
----------
|
402 |
+
n_components : int, default=2
|
403 |
+
Number of dimensions in which to immerse the dissimilarities.
|
404 |
+
|
405 |
+
metric : bool, default=True
|
406 |
+
If ``True``, perform metric MDS; otherwise, perform nonmetric MDS.
|
407 |
+
When ``False`` (i.e. non-metric MDS), dissimilarities with 0 are considered as
|
408 |
+
missing values.
|
409 |
+
|
410 |
+
n_init : int, default=4
|
411 |
+
Number of times the SMACOF algorithm will be run with different
|
412 |
+
initializations. The final results will be the best output of the runs,
|
413 |
+
determined by the run with the smallest final stress.
|
414 |
+
|
415 |
+
max_iter : int, default=300
|
416 |
+
Maximum number of iterations of the SMACOF algorithm for a single run.
|
417 |
+
|
418 |
+
verbose : int, default=0
|
419 |
+
Level of verbosity.
|
420 |
+
|
421 |
+
eps : float, default=1e-3
|
422 |
+
Relative tolerance with respect to stress at which to declare
|
423 |
+
convergence. The value of `eps` should be tuned separately depending
|
424 |
+
on whether or not `normalized_stress` is being used.
|
425 |
+
|
426 |
+
n_jobs : int, default=None
|
427 |
+
The number of jobs to use for the computation. If multiple
|
428 |
+
initializations are used (``n_init``), each run of the algorithm is
|
429 |
+
computed in parallel.
|
430 |
+
|
431 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
432 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
433 |
+
for more details.
|
434 |
+
|
435 |
+
random_state : int, RandomState instance or None, default=None
|
436 |
+
Determines the random number generator used to initialize the centers.
|
437 |
+
Pass an int for reproducible results across multiple function calls.
|
438 |
+
See :term:`Glossary <random_state>`.
|
439 |
+
|
440 |
+
dissimilarity : {'euclidean', 'precomputed'}, default='euclidean'
|
441 |
+
Dissimilarity measure to use:
|
442 |
+
|
443 |
+
- 'euclidean':
|
444 |
+
Pairwise Euclidean distances between points in the dataset.
|
445 |
+
|
446 |
+
- 'precomputed':
|
447 |
+
Pre-computed dissimilarities are passed directly to ``fit`` and
|
448 |
+
``fit_transform``.
|
449 |
+
|
450 |
+
normalized_stress : bool or "auto" default="auto"
|
451 |
+
Whether use and return normed stress value (Stress-1) instead of raw
|
452 |
+
stress calculated by default. Only supported in non-metric MDS.
|
453 |
+
|
454 |
+
.. versionadded:: 1.2
|
455 |
+
|
456 |
+
.. versionchanged:: 1.4
|
457 |
+
The default value changed from `False` to `"auto"` in version 1.4.
|
458 |
+
|
459 |
+
Attributes
|
460 |
+
----------
|
461 |
+
embedding_ : ndarray of shape (n_samples, n_components)
|
462 |
+
Stores the position of the dataset in the embedding space.
|
463 |
+
|
464 |
+
stress_ : float
|
465 |
+
The final value of the stress (sum of squared distance of the
|
466 |
+
disparities and the distances for all constrained points).
|
467 |
+
If `normalized_stress=True`, and `metric=False` returns Stress-1.
|
468 |
+
A value of 0 indicates "perfect" fit, 0.025 excellent, 0.05 good,
|
469 |
+
0.1 fair, and 0.2 poor [1]_.
|
470 |
+
|
471 |
+
dissimilarity_matrix_ : ndarray of shape (n_samples, n_samples)
|
472 |
+
Pairwise dissimilarities between the points. Symmetric matrix that:
|
473 |
+
|
474 |
+
- either uses a custom dissimilarity matrix by setting `dissimilarity`
|
475 |
+
to 'precomputed';
|
476 |
+
- or constructs a dissimilarity matrix from data using
|
477 |
+
Euclidean distances.
|
478 |
+
|
479 |
+
n_features_in_ : int
|
480 |
+
Number of features seen during :term:`fit`.
|
481 |
+
|
482 |
+
.. versionadded:: 0.24
|
483 |
+
|
484 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
485 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
486 |
+
has feature names that are all strings.
|
487 |
+
|
488 |
+
.. versionadded:: 1.0
|
489 |
+
|
490 |
+
n_iter_ : int
|
491 |
+
The number of iterations corresponding to the best stress.
|
492 |
+
|
493 |
+
See Also
|
494 |
+
--------
|
495 |
+
sklearn.decomposition.PCA : Principal component analysis that is a linear
|
496 |
+
dimensionality reduction method.
|
497 |
+
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
|
498 |
+
kernels and PCA.
|
499 |
+
TSNE : T-distributed Stochastic Neighbor Embedding.
|
500 |
+
Isomap : Manifold learning based on Isometric Mapping.
|
501 |
+
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
|
502 |
+
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
|
503 |
+
|
504 |
+
References
|
505 |
+
----------
|
506 |
+
.. [1] "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
|
507 |
+
Psychometrika, 29 (1964)
|
508 |
+
|
509 |
+
.. [2] "Multidimensional scaling by optimizing goodness of fit to a nonmetric
|
510 |
+
hypothesis" Kruskal, J. Psychometrika, 29, (1964)
|
511 |
+
|
512 |
+
.. [3] "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
|
513 |
+
Groenen P. Springer Series in Statistics (1997)
|
514 |
+
|
515 |
+
Examples
|
516 |
+
--------
|
517 |
+
>>> from sklearn.datasets import load_digits
|
518 |
+
>>> from sklearn.manifold import MDS
|
519 |
+
>>> X, _ = load_digits(return_X_y=True)
|
520 |
+
>>> X.shape
|
521 |
+
(1797, 64)
|
522 |
+
>>> embedding = MDS(n_components=2, normalized_stress='auto')
|
523 |
+
>>> X_transformed = embedding.fit_transform(X[:100])
|
524 |
+
>>> X_transformed.shape
|
525 |
+
(100, 2)
|
526 |
+
|
527 |
+
For a more detailed example of usage, see:
|
528 |
+
:ref:`sphx_glr_auto_examples_manifold_plot_mds.py`
|
529 |
+
"""
|
530 |
+
|
531 |
+
_parameter_constraints: dict = {
|
532 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
533 |
+
"metric": ["boolean"],
|
534 |
+
"n_init": [Interval(Integral, 1, None, closed="left")],
|
535 |
+
"max_iter": [Interval(Integral, 1, None, closed="left")],
|
536 |
+
"verbose": ["verbose"],
|
537 |
+
"eps": [Interval(Real, 0.0, None, closed="left")],
|
538 |
+
"n_jobs": [None, Integral],
|
539 |
+
"random_state": ["random_state"],
|
540 |
+
"dissimilarity": [StrOptions({"euclidean", "precomputed"})],
|
541 |
+
"normalized_stress": ["boolean", StrOptions({"auto"})],
|
542 |
+
}
|
543 |
+
|
544 |
+
def __init__(
|
545 |
+
self,
|
546 |
+
n_components=2,
|
547 |
+
*,
|
548 |
+
metric=True,
|
549 |
+
n_init=4,
|
550 |
+
max_iter=300,
|
551 |
+
verbose=0,
|
552 |
+
eps=1e-3,
|
553 |
+
n_jobs=None,
|
554 |
+
random_state=None,
|
555 |
+
dissimilarity="euclidean",
|
556 |
+
normalized_stress="auto",
|
557 |
+
):
|
558 |
+
self.n_components = n_components
|
559 |
+
self.dissimilarity = dissimilarity
|
560 |
+
self.metric = metric
|
561 |
+
self.n_init = n_init
|
562 |
+
self.max_iter = max_iter
|
563 |
+
self.eps = eps
|
564 |
+
self.verbose = verbose
|
565 |
+
self.n_jobs = n_jobs
|
566 |
+
self.random_state = random_state
|
567 |
+
self.normalized_stress = normalized_stress
|
568 |
+
|
569 |
+
def _more_tags(self):
|
570 |
+
return {"pairwise": self.dissimilarity == "precomputed"}
|
571 |
+
|
572 |
+
def fit(self, X, y=None, init=None):
|
573 |
+
"""
|
574 |
+
Compute the position of the points in the embedding space.
|
575 |
+
|
576 |
+
Parameters
|
577 |
+
----------
|
578 |
+
X : array-like of shape (n_samples, n_features) or \
|
579 |
+
(n_samples, n_samples)
|
580 |
+
Input data. If ``dissimilarity=='precomputed'``, the input should
|
581 |
+
be the dissimilarity matrix.
|
582 |
+
|
583 |
+
y : Ignored
|
584 |
+
Not used, present for API consistency by convention.
|
585 |
+
|
586 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
587 |
+
Starting configuration of the embedding to initialize the SMACOF
|
588 |
+
algorithm. By default, the algorithm is initialized with a randomly
|
589 |
+
chosen array.
|
590 |
+
|
591 |
+
Returns
|
592 |
+
-------
|
593 |
+
self : object
|
594 |
+
Fitted estimator.
|
595 |
+
"""
|
596 |
+
self.fit_transform(X, init=init)
|
597 |
+
return self
|
598 |
+
|
599 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
600 |
+
def fit_transform(self, X, y=None, init=None):
|
601 |
+
"""
|
602 |
+
Fit the data from `X`, and returns the embedded coordinates.
|
603 |
+
|
604 |
+
Parameters
|
605 |
+
----------
|
606 |
+
X : array-like of shape (n_samples, n_features) or \
|
607 |
+
(n_samples, n_samples)
|
608 |
+
Input data. If ``dissimilarity=='precomputed'``, the input should
|
609 |
+
be the dissimilarity matrix.
|
610 |
+
|
611 |
+
y : Ignored
|
612 |
+
Not used, present for API consistency by convention.
|
613 |
+
|
614 |
+
init : ndarray of shape (n_samples, n_components), default=None
|
615 |
+
Starting configuration of the embedding to initialize the SMACOF
|
616 |
+
algorithm. By default, the algorithm is initialized with a randomly
|
617 |
+
chosen array.
|
618 |
+
|
619 |
+
Returns
|
620 |
+
-------
|
621 |
+
X_new : ndarray of shape (n_samples, n_components)
|
622 |
+
X transformed in the new space.
|
623 |
+
"""
|
624 |
+
X = self._validate_data(X)
|
625 |
+
if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed":
|
626 |
+
warnings.warn(
|
627 |
+
"The MDS API has changed. ``fit`` now constructs an"
|
628 |
+
" dissimilarity matrix from data. To use a custom "
|
629 |
+
"dissimilarity matrix, set "
|
630 |
+
"``dissimilarity='precomputed'``."
|
631 |
+
)
|
632 |
+
|
633 |
+
if self.dissimilarity == "precomputed":
|
634 |
+
self.dissimilarity_matrix_ = X
|
635 |
+
elif self.dissimilarity == "euclidean":
|
636 |
+
self.dissimilarity_matrix_ = euclidean_distances(X)
|
637 |
+
|
638 |
+
self.embedding_, self.stress_, self.n_iter_ = smacof(
|
639 |
+
self.dissimilarity_matrix_,
|
640 |
+
metric=self.metric,
|
641 |
+
n_components=self.n_components,
|
642 |
+
init=init,
|
643 |
+
n_init=self.n_init,
|
644 |
+
n_jobs=self.n_jobs,
|
645 |
+
max_iter=self.max_iter,
|
646 |
+
verbose=self.verbose,
|
647 |
+
eps=self.eps,
|
648 |
+
random_state=self.random_state,
|
649 |
+
return_n_iter=True,
|
650 |
+
normalized_stress=self.normalized_stress,
|
651 |
+
)
|
652 |
+
|
653 |
+
return self.embedding_
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_spectral_embedding.py
ADDED
@@ -0,0 +1,749 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Spectral Embedding."""
|
2 |
+
|
3 |
+
# Author: Gael Varoquaux <[email protected]>
|
4 |
+
# Wei LI <[email protected]>
|
5 |
+
# License: BSD 3 clause
|
6 |
+
|
7 |
+
|
8 |
+
import warnings
|
9 |
+
from numbers import Integral, Real
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from scipy import sparse
|
13 |
+
from scipy.linalg import eigh
|
14 |
+
from scipy.sparse.csgraph import connected_components
|
15 |
+
from scipy.sparse.linalg import eigsh, lobpcg
|
16 |
+
|
17 |
+
from ..base import BaseEstimator, _fit_context
|
18 |
+
from ..metrics.pairwise import rbf_kernel
|
19 |
+
from ..neighbors import NearestNeighbors, kneighbors_graph
|
20 |
+
from ..utils import (
|
21 |
+
check_array,
|
22 |
+
check_random_state,
|
23 |
+
check_symmetric,
|
24 |
+
)
|
25 |
+
from ..utils._arpack import _init_arpack_v0
|
26 |
+
from ..utils._param_validation import Interval, StrOptions
|
27 |
+
from ..utils.extmath import _deterministic_vector_sign_flip
|
28 |
+
from ..utils.fixes import laplacian as csgraph_laplacian
|
29 |
+
from ..utils.fixes import parse_version, sp_version
|
30 |
+
|
31 |
+
|
32 |
+
def _graph_connected_component(graph, node_id):
|
33 |
+
"""Find the largest graph connected components that contains one
|
34 |
+
given node.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
graph : array-like of shape (n_samples, n_samples)
|
39 |
+
Adjacency matrix of the graph, non-zero weight means an edge
|
40 |
+
between the nodes.
|
41 |
+
|
42 |
+
node_id : int
|
43 |
+
The index of the query node of the graph.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
connected_components_matrix : array-like of shape (n_samples,)
|
48 |
+
An array of bool value indicating the indexes of the nodes
|
49 |
+
belonging to the largest connected components of the given query
|
50 |
+
node.
|
51 |
+
"""
|
52 |
+
n_node = graph.shape[0]
|
53 |
+
if sparse.issparse(graph):
|
54 |
+
# speed up row-wise access to boolean connection mask
|
55 |
+
graph = graph.tocsr()
|
56 |
+
connected_nodes = np.zeros(n_node, dtype=bool)
|
57 |
+
nodes_to_explore = np.zeros(n_node, dtype=bool)
|
58 |
+
nodes_to_explore[node_id] = True
|
59 |
+
for _ in range(n_node):
|
60 |
+
last_num_component = connected_nodes.sum()
|
61 |
+
np.logical_or(connected_nodes, nodes_to_explore, out=connected_nodes)
|
62 |
+
if last_num_component >= connected_nodes.sum():
|
63 |
+
break
|
64 |
+
indices = np.where(nodes_to_explore)[0]
|
65 |
+
nodes_to_explore.fill(False)
|
66 |
+
for i in indices:
|
67 |
+
if sparse.issparse(graph):
|
68 |
+
# scipy not yet implemented 1D sparse slices; can be changed back to
|
69 |
+
# `neighbors = graph[i].toarray().ravel()` once implemented
|
70 |
+
neighbors = graph[[i], :].toarray().ravel()
|
71 |
+
else:
|
72 |
+
neighbors = graph[i]
|
73 |
+
np.logical_or(nodes_to_explore, neighbors, out=nodes_to_explore)
|
74 |
+
return connected_nodes
|
75 |
+
|
76 |
+
|
77 |
+
def _graph_is_connected(graph):
|
78 |
+
"""Return whether the graph is connected (True) or Not (False).
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
graph : {array-like, sparse matrix} of shape (n_samples, n_samples)
|
83 |
+
Adjacency matrix of the graph, non-zero weight means an edge
|
84 |
+
between the nodes.
|
85 |
+
|
86 |
+
Returns
|
87 |
+
-------
|
88 |
+
is_connected : bool
|
89 |
+
True means the graph is fully connected and False means not.
|
90 |
+
"""
|
91 |
+
if sparse.issparse(graph):
|
92 |
+
# Before Scipy 1.11.3, `connected_components` only supports 32-bit indices.
|
93 |
+
# PR: https://github.com/scipy/scipy/pull/18913
|
94 |
+
# First integration in 1.11.3: https://github.com/scipy/scipy/pull/19279
|
95 |
+
# TODO(jjerphan): Once SciPy 1.11.3 is the minimum supported version, use
|
96 |
+
# `accept_large_sparse=True`.
|
97 |
+
accept_large_sparse = sp_version >= parse_version("1.11.3")
|
98 |
+
graph = check_array(
|
99 |
+
graph, accept_sparse=True, accept_large_sparse=accept_large_sparse
|
100 |
+
)
|
101 |
+
# sparse graph, find all the connected components
|
102 |
+
n_connected_components, _ = connected_components(graph)
|
103 |
+
return n_connected_components == 1
|
104 |
+
else:
|
105 |
+
# dense graph, find all connected components start from node 0
|
106 |
+
return _graph_connected_component(graph, 0).sum() == graph.shape[0]
|
107 |
+
|
108 |
+
|
109 |
+
def _set_diag(laplacian, value, norm_laplacian):
|
110 |
+
"""Set the diagonal of the laplacian matrix and convert it to a
|
111 |
+
sparse format well suited for eigenvalue decomposition.
|
112 |
+
|
113 |
+
Parameters
|
114 |
+
----------
|
115 |
+
laplacian : {ndarray, sparse matrix}
|
116 |
+
The graph laplacian.
|
117 |
+
|
118 |
+
value : float
|
119 |
+
The value of the diagonal.
|
120 |
+
|
121 |
+
norm_laplacian : bool
|
122 |
+
Whether the value of the diagonal should be changed or not.
|
123 |
+
|
124 |
+
Returns
|
125 |
+
-------
|
126 |
+
laplacian : {array, sparse matrix}
|
127 |
+
An array of matrix in a form that is well suited to fast
|
128 |
+
eigenvalue decomposition, depending on the band width of the
|
129 |
+
matrix.
|
130 |
+
"""
|
131 |
+
n_nodes = laplacian.shape[0]
|
132 |
+
# We need all entries in the diagonal to values
|
133 |
+
if not sparse.issparse(laplacian):
|
134 |
+
if norm_laplacian:
|
135 |
+
laplacian.flat[:: n_nodes + 1] = value
|
136 |
+
else:
|
137 |
+
laplacian = laplacian.tocoo()
|
138 |
+
if norm_laplacian:
|
139 |
+
diag_idx = laplacian.row == laplacian.col
|
140 |
+
laplacian.data[diag_idx] = value
|
141 |
+
# If the matrix has a small number of diagonals (as in the
|
142 |
+
# case of structured matrices coming from images), the
|
143 |
+
# dia format might be best suited for matvec products:
|
144 |
+
n_diags = np.unique(laplacian.row - laplacian.col).size
|
145 |
+
if n_diags <= 7:
|
146 |
+
# 3 or less outer diagonals on each side
|
147 |
+
laplacian = laplacian.todia()
|
148 |
+
else:
|
149 |
+
# csr has the fastest matvec and is thus best suited to
|
150 |
+
# arpack
|
151 |
+
laplacian = laplacian.tocsr()
|
152 |
+
return laplacian
|
153 |
+
|
154 |
+
|
155 |
+
def spectral_embedding(
|
156 |
+
adjacency,
|
157 |
+
*,
|
158 |
+
n_components=8,
|
159 |
+
eigen_solver=None,
|
160 |
+
random_state=None,
|
161 |
+
eigen_tol="auto",
|
162 |
+
norm_laplacian=True,
|
163 |
+
drop_first=True,
|
164 |
+
):
|
165 |
+
"""Project the sample on the first eigenvectors of the graph Laplacian.
|
166 |
+
|
167 |
+
The adjacency matrix is used to compute a normalized graph Laplacian
|
168 |
+
whose spectrum (especially the eigenvectors associated to the
|
169 |
+
smallest eigenvalues) has an interpretation in terms of minimal
|
170 |
+
number of cuts necessary to split the graph into comparably sized
|
171 |
+
components.
|
172 |
+
|
173 |
+
This embedding can also 'work' even if the ``adjacency`` variable is
|
174 |
+
not strictly the adjacency matrix of a graph but more generally
|
175 |
+
an affinity or similarity matrix between samples (for instance the
|
176 |
+
heat kernel of a euclidean distance matrix or a k-NN matrix).
|
177 |
+
|
178 |
+
However care must taken to always make the affinity matrix symmetric
|
179 |
+
so that the eigenvector decomposition works as expected.
|
180 |
+
|
181 |
+
Note : Laplacian Eigenmaps is the actual algorithm implemented here.
|
182 |
+
|
183 |
+
Read more in the :ref:`User Guide <spectral_embedding>`.
|
184 |
+
|
185 |
+
Parameters
|
186 |
+
----------
|
187 |
+
adjacency : {array-like, sparse graph} of shape (n_samples, n_samples)
|
188 |
+
The adjacency matrix of the graph to embed.
|
189 |
+
|
190 |
+
n_components : int, default=8
|
191 |
+
The dimension of the projection subspace.
|
192 |
+
|
193 |
+
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
|
194 |
+
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
195 |
+
to be installed. It can be faster on very large, sparse problems,
|
196 |
+
but may also lead to instabilities. If None, then ``'arpack'`` is
|
197 |
+
used.
|
198 |
+
|
199 |
+
random_state : int, RandomState instance or None, default=None
|
200 |
+
A pseudo random number generator used for the initialization
|
201 |
+
of the lobpcg eigen vectors decomposition when `eigen_solver ==
|
202 |
+
'amg'`, and for the K-Means initialization. Use an int to make
|
203 |
+
the results deterministic across calls (See
|
204 |
+
:term:`Glossary <random_state>`).
|
205 |
+
|
206 |
+
.. note::
|
207 |
+
When using `eigen_solver == 'amg'`,
|
208 |
+
it is necessary to also fix the global numpy seed with
|
209 |
+
`np.random.seed(int)` to get deterministic results. See
|
210 |
+
https://github.com/pyamg/pyamg/issues/139 for further
|
211 |
+
information.
|
212 |
+
|
213 |
+
eigen_tol : float, default="auto"
|
214 |
+
Stopping criterion for eigendecomposition of the Laplacian matrix.
|
215 |
+
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
216 |
+
`eigen_solver`:
|
217 |
+
|
218 |
+
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
219 |
+
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
220 |
+
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
221 |
+
automatically resolve the value according to their heuristics. See,
|
222 |
+
:func:`scipy.sparse.linalg.lobpcg` for details.
|
223 |
+
|
224 |
+
Note that when using `eigen_solver="amg"` values of `tol<1e-5` may lead
|
225 |
+
to convergence issues and should be avoided.
|
226 |
+
|
227 |
+
.. versionadded:: 1.2
|
228 |
+
Added 'auto' option.
|
229 |
+
|
230 |
+
norm_laplacian : bool, default=True
|
231 |
+
If True, then compute symmetric normalized Laplacian.
|
232 |
+
|
233 |
+
drop_first : bool, default=True
|
234 |
+
Whether to drop the first eigenvector. For spectral embedding, this
|
235 |
+
should be True as the first eigenvector should be constant vector for
|
236 |
+
connected graph, but for spectral clustering, this should be kept as
|
237 |
+
False to retain the first eigenvector.
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
embedding : ndarray of shape (n_samples, n_components)
|
242 |
+
The reduced samples.
|
243 |
+
|
244 |
+
Notes
|
245 |
+
-----
|
246 |
+
Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph
|
247 |
+
has one connected component. If there graph has many components, the first
|
248 |
+
few eigenvectors will simply uncover the connected components of the graph.
|
249 |
+
|
250 |
+
References
|
251 |
+
----------
|
252 |
+
* https://en.wikipedia.org/wiki/LOBPCG
|
253 |
+
|
254 |
+
* :doi:`"Toward the Optimal Preconditioned Eigensolver: Locally Optimal
|
255 |
+
Block Preconditioned Conjugate Gradient Method",
|
256 |
+
Andrew V. Knyazev
|
257 |
+
<10.1137/S1064827500366124>`
|
258 |
+
|
259 |
+
Examples
|
260 |
+
--------
|
261 |
+
>>> from sklearn.datasets import load_digits
|
262 |
+
>>> from sklearn.neighbors import kneighbors_graph
|
263 |
+
>>> from sklearn.manifold import spectral_embedding
|
264 |
+
>>> X, _ = load_digits(return_X_y=True)
|
265 |
+
>>> X = X[:100]
|
266 |
+
>>> affinity_matrix = kneighbors_graph(
|
267 |
+
... X, n_neighbors=int(X.shape[0] / 10), include_self=True
|
268 |
+
... )
|
269 |
+
>>> # make the matrix symmetric
|
270 |
+
>>> affinity_matrix = 0.5 * (affinity_matrix + affinity_matrix.T)
|
271 |
+
>>> embedding = spectral_embedding(affinity_matrix, n_components=2, random_state=42)
|
272 |
+
>>> embedding.shape
|
273 |
+
(100, 2)
|
274 |
+
"""
|
275 |
+
adjacency = check_symmetric(adjacency)
|
276 |
+
|
277 |
+
if eigen_solver == "amg":
|
278 |
+
try:
|
279 |
+
from pyamg import smoothed_aggregation_solver
|
280 |
+
except ImportError as e:
|
281 |
+
raise ValueError(
|
282 |
+
"The eigen_solver was set to 'amg', but pyamg is not available."
|
283 |
+
) from e
|
284 |
+
|
285 |
+
if eigen_solver is None:
|
286 |
+
eigen_solver = "arpack"
|
287 |
+
elif eigen_solver not in ("arpack", "lobpcg", "amg"):
|
288 |
+
raise ValueError(
|
289 |
+
"Unknown value for eigen_solver: '%s'."
|
290 |
+
"Should be 'amg', 'arpack', or 'lobpcg'" % eigen_solver
|
291 |
+
)
|
292 |
+
|
293 |
+
random_state = check_random_state(random_state)
|
294 |
+
|
295 |
+
n_nodes = adjacency.shape[0]
|
296 |
+
# Whether to drop the first eigenvector
|
297 |
+
if drop_first:
|
298 |
+
n_components = n_components + 1
|
299 |
+
|
300 |
+
if not _graph_is_connected(adjacency):
|
301 |
+
warnings.warn(
|
302 |
+
"Graph is not fully connected, spectral embedding may not work as expected."
|
303 |
+
)
|
304 |
+
|
305 |
+
laplacian, dd = csgraph_laplacian(
|
306 |
+
adjacency, normed=norm_laplacian, return_diag=True
|
307 |
+
)
|
308 |
+
if (
|
309 |
+
eigen_solver == "arpack"
|
310 |
+
or eigen_solver != "lobpcg"
|
311 |
+
and (not sparse.issparse(laplacian) or n_nodes < 5 * n_components)
|
312 |
+
):
|
313 |
+
# lobpcg used with eigen_solver='amg' has bugs for low number of nodes
|
314 |
+
# for details see the source code in scipy:
|
315 |
+
# https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen
|
316 |
+
# /lobpcg/lobpcg.py#L237
|
317 |
+
# or matlab:
|
318 |
+
# https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m
|
319 |
+
laplacian = _set_diag(laplacian, 1, norm_laplacian)
|
320 |
+
|
321 |
+
# Here we'll use shift-invert mode for fast eigenvalues
|
322 |
+
# (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html
|
323 |
+
# for a short explanation of what this means)
|
324 |
+
# Because the normalized Laplacian has eigenvalues between 0 and 2,
|
325 |
+
# I - L has eigenvalues between -1 and 1. ARPACK is most efficient
|
326 |
+
# when finding eigenvalues of largest magnitude (keyword which='LM')
|
327 |
+
# and when these eigenvalues are very large compared to the rest.
|
328 |
+
# For very large, very sparse graphs, I - L can have many, many
|
329 |
+
# eigenvalues very near 1.0. This leads to slow convergence. So
|
330 |
+
# instead, we'll use ARPACK's shift-invert mode, asking for the
|
331 |
+
# eigenvalues near 1.0. This effectively spreads-out the spectrum
|
332 |
+
# near 1.0 and leads to much faster convergence: potentially an
|
333 |
+
# orders-of-magnitude speedup over simply using keyword which='LA'
|
334 |
+
# in standard mode.
|
335 |
+
try:
|
336 |
+
# We are computing the opposite of the laplacian inplace so as
|
337 |
+
# to spare a memory allocation of a possibly very large array
|
338 |
+
tol = 0 if eigen_tol == "auto" else eigen_tol
|
339 |
+
laplacian *= -1
|
340 |
+
v0 = _init_arpack_v0(laplacian.shape[0], random_state)
|
341 |
+
laplacian = check_array(
|
342 |
+
laplacian, accept_sparse="csr", accept_large_sparse=False
|
343 |
+
)
|
344 |
+
_, diffusion_map = eigsh(
|
345 |
+
laplacian, k=n_components, sigma=1.0, which="LM", tol=tol, v0=v0
|
346 |
+
)
|
347 |
+
embedding = diffusion_map.T[n_components::-1]
|
348 |
+
if norm_laplacian:
|
349 |
+
# recover u = D^-1/2 x from the eigenvector output x
|
350 |
+
embedding = embedding / dd
|
351 |
+
except RuntimeError:
|
352 |
+
# When submatrices are exactly singular, an LU decomposition
|
353 |
+
# in arpack fails. We fallback to lobpcg
|
354 |
+
eigen_solver = "lobpcg"
|
355 |
+
# Revert the laplacian to its opposite to have lobpcg work
|
356 |
+
laplacian *= -1
|
357 |
+
|
358 |
+
elif eigen_solver == "amg":
|
359 |
+
# Use AMG to get a preconditioner and speed up the eigenvalue
|
360 |
+
# problem.
|
361 |
+
if not sparse.issparse(laplacian):
|
362 |
+
warnings.warn("AMG works better for sparse matrices")
|
363 |
+
laplacian = check_array(
|
364 |
+
laplacian, dtype=[np.float64, np.float32], accept_sparse=True
|
365 |
+
)
|
366 |
+
laplacian = _set_diag(laplacian, 1, norm_laplacian)
|
367 |
+
|
368 |
+
# The Laplacian matrix is always singular, having at least one zero
|
369 |
+
# eigenvalue, corresponding to the trivial eigenvector, which is a
|
370 |
+
# constant. Using a singular matrix for preconditioning may result in
|
371 |
+
# random failures in LOBPCG and is not supported by the existing
|
372 |
+
# theory:
|
373 |
+
# see https://doi.org/10.1007/s10208-015-9297-1
|
374 |
+
# Shift the Laplacian so its diagononal is not all ones. The shift
|
375 |
+
# does change the eigenpairs however, so we'll feed the shifted
|
376 |
+
# matrix to the solver and afterward set it back to the original.
|
377 |
+
diag_shift = 1e-5 * sparse.eye(laplacian.shape[0])
|
378 |
+
laplacian += diag_shift
|
379 |
+
if hasattr(sparse, "csr_array") and isinstance(laplacian, sparse.csr_array):
|
380 |
+
# `pyamg` does not work with `csr_array` and we need to convert it to a
|
381 |
+
# `csr_matrix` object.
|
382 |
+
laplacian = sparse.csr_matrix(laplacian)
|
383 |
+
ml = smoothed_aggregation_solver(check_array(laplacian, accept_sparse="csr"))
|
384 |
+
laplacian -= diag_shift
|
385 |
+
|
386 |
+
M = ml.aspreconditioner()
|
387 |
+
# Create initial approximation X to eigenvectors
|
388 |
+
X = random_state.standard_normal(size=(laplacian.shape[0], n_components + 1))
|
389 |
+
X[:, 0] = dd.ravel()
|
390 |
+
X = X.astype(laplacian.dtype)
|
391 |
+
|
392 |
+
tol = None if eigen_tol == "auto" else eigen_tol
|
393 |
+
_, diffusion_map = lobpcg(laplacian, X, M=M, tol=tol, largest=False)
|
394 |
+
embedding = diffusion_map.T
|
395 |
+
if norm_laplacian:
|
396 |
+
# recover u = D^-1/2 x from the eigenvector output x
|
397 |
+
embedding = embedding / dd
|
398 |
+
if embedding.shape[0] == 1:
|
399 |
+
raise ValueError
|
400 |
+
|
401 |
+
if eigen_solver == "lobpcg":
|
402 |
+
laplacian = check_array(
|
403 |
+
laplacian, dtype=[np.float64, np.float32], accept_sparse=True
|
404 |
+
)
|
405 |
+
if n_nodes < 5 * n_components + 1:
|
406 |
+
# see note above under arpack why lobpcg has problems with small
|
407 |
+
# number of nodes
|
408 |
+
# lobpcg will fallback to eigh, so we short circuit it
|
409 |
+
if sparse.issparse(laplacian):
|
410 |
+
laplacian = laplacian.toarray()
|
411 |
+
_, diffusion_map = eigh(laplacian, check_finite=False)
|
412 |
+
embedding = diffusion_map.T[:n_components]
|
413 |
+
if norm_laplacian:
|
414 |
+
# recover u = D^-1/2 x from the eigenvector output x
|
415 |
+
embedding = embedding / dd
|
416 |
+
else:
|
417 |
+
laplacian = _set_diag(laplacian, 1, norm_laplacian)
|
418 |
+
# We increase the number of eigenvectors requested, as lobpcg
|
419 |
+
# doesn't behave well in low dimension and create initial
|
420 |
+
# approximation X to eigenvectors
|
421 |
+
X = random_state.standard_normal(
|
422 |
+
size=(laplacian.shape[0], n_components + 1)
|
423 |
+
)
|
424 |
+
X[:, 0] = dd.ravel()
|
425 |
+
X = X.astype(laplacian.dtype)
|
426 |
+
tol = None if eigen_tol == "auto" else eigen_tol
|
427 |
+
_, diffusion_map = lobpcg(
|
428 |
+
laplacian, X, tol=tol, largest=False, maxiter=2000
|
429 |
+
)
|
430 |
+
embedding = diffusion_map.T[:n_components]
|
431 |
+
if norm_laplacian:
|
432 |
+
# recover u = D^-1/2 x from the eigenvector output x
|
433 |
+
embedding = embedding / dd
|
434 |
+
if embedding.shape[0] == 1:
|
435 |
+
raise ValueError
|
436 |
+
|
437 |
+
embedding = _deterministic_vector_sign_flip(embedding)
|
438 |
+
if drop_first:
|
439 |
+
return embedding[1:n_components].T
|
440 |
+
else:
|
441 |
+
return embedding[:n_components].T
|
442 |
+
|
443 |
+
|
444 |
+
class SpectralEmbedding(BaseEstimator):
|
445 |
+
"""Spectral embedding for non-linear dimensionality reduction.
|
446 |
+
|
447 |
+
Forms an affinity matrix given by the specified function and
|
448 |
+
applies spectral decomposition to the corresponding graph laplacian.
|
449 |
+
The resulting transformation is given by the value of the
|
450 |
+
eigenvectors for each data point.
|
451 |
+
|
452 |
+
Note : Laplacian Eigenmaps is the actual algorithm implemented here.
|
453 |
+
|
454 |
+
Read more in the :ref:`User Guide <spectral_embedding>`.
|
455 |
+
|
456 |
+
Parameters
|
457 |
+
----------
|
458 |
+
n_components : int, default=2
|
459 |
+
The dimension of the projected subspace.
|
460 |
+
|
461 |
+
affinity : {'nearest_neighbors', 'rbf', 'precomputed', \
|
462 |
+
'precomputed_nearest_neighbors'} or callable, \
|
463 |
+
default='nearest_neighbors'
|
464 |
+
How to construct the affinity matrix.
|
465 |
+
- 'nearest_neighbors' : construct the affinity matrix by computing a
|
466 |
+
graph of nearest neighbors.
|
467 |
+
- 'rbf' : construct the affinity matrix by computing a radial basis
|
468 |
+
function (RBF) kernel.
|
469 |
+
- 'precomputed' : interpret ``X`` as a precomputed affinity matrix.
|
470 |
+
- 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph
|
471 |
+
of precomputed nearest neighbors, and constructs the affinity matrix
|
472 |
+
by selecting the ``n_neighbors`` nearest neighbors.
|
473 |
+
- callable : use passed in function as affinity
|
474 |
+
the function takes in data matrix (n_samples, n_features)
|
475 |
+
and return affinity matrix (n_samples, n_samples).
|
476 |
+
|
477 |
+
gamma : float, default=None
|
478 |
+
Kernel coefficient for rbf kernel. If None, gamma will be set to
|
479 |
+
1/n_features.
|
480 |
+
|
481 |
+
random_state : int, RandomState instance or None, default=None
|
482 |
+
A pseudo random number generator used for the initialization
|
483 |
+
of the lobpcg eigen vectors decomposition when `eigen_solver ==
|
484 |
+
'amg'`, and for the K-Means initialization. Use an int to make
|
485 |
+
the results deterministic across calls (See
|
486 |
+
:term:`Glossary <random_state>`).
|
487 |
+
|
488 |
+
.. note::
|
489 |
+
When using `eigen_solver == 'amg'`,
|
490 |
+
it is necessary to also fix the global numpy seed with
|
491 |
+
`np.random.seed(int)` to get deterministic results. See
|
492 |
+
https://github.com/pyamg/pyamg/issues/139 for further
|
493 |
+
information.
|
494 |
+
|
495 |
+
eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None
|
496 |
+
The eigenvalue decomposition strategy to use. AMG requires pyamg
|
497 |
+
to be installed. It can be faster on very large, sparse problems.
|
498 |
+
If None, then ``'arpack'`` is used.
|
499 |
+
|
500 |
+
eigen_tol : float, default="auto"
|
501 |
+
Stopping criterion for eigendecomposition of the Laplacian matrix.
|
502 |
+
If `eigen_tol="auto"` then the passed tolerance will depend on the
|
503 |
+
`eigen_solver`:
|
504 |
+
|
505 |
+
- If `eigen_solver="arpack"`, then `eigen_tol=0.0`;
|
506 |
+
- If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then
|
507 |
+
`eigen_tol=None` which configures the underlying `lobpcg` solver to
|
508 |
+
automatically resolve the value according to their heuristics. See,
|
509 |
+
:func:`scipy.sparse.linalg.lobpcg` for details.
|
510 |
+
|
511 |
+
Note that when using `eigen_solver="lobpcg"` or `eigen_solver="amg"`
|
512 |
+
values of `tol<1e-5` may lead to convergence issues and should be
|
513 |
+
avoided.
|
514 |
+
|
515 |
+
.. versionadded:: 1.2
|
516 |
+
|
517 |
+
n_neighbors : int, default=None
|
518 |
+
Number of nearest neighbors for nearest_neighbors graph building.
|
519 |
+
If None, n_neighbors will be set to max(n_samples/10, 1).
|
520 |
+
|
521 |
+
n_jobs : int, default=None
|
522 |
+
The number of parallel jobs to run.
|
523 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
524 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
525 |
+
for more details.
|
526 |
+
|
527 |
+
Attributes
|
528 |
+
----------
|
529 |
+
embedding_ : ndarray of shape (n_samples, n_components)
|
530 |
+
Spectral embedding of the training matrix.
|
531 |
+
|
532 |
+
affinity_matrix_ : ndarray of shape (n_samples, n_samples)
|
533 |
+
Affinity_matrix constructed from samples or precomputed.
|
534 |
+
|
535 |
+
n_features_in_ : int
|
536 |
+
Number of features seen during :term:`fit`.
|
537 |
+
|
538 |
+
.. versionadded:: 0.24
|
539 |
+
|
540 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
541 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
542 |
+
has feature names that are all strings.
|
543 |
+
|
544 |
+
.. versionadded:: 1.0
|
545 |
+
|
546 |
+
n_neighbors_ : int
|
547 |
+
Number of nearest neighbors effectively used.
|
548 |
+
|
549 |
+
See Also
|
550 |
+
--------
|
551 |
+
Isomap : Non-linear dimensionality reduction through Isometric Mapping.
|
552 |
+
|
553 |
+
References
|
554 |
+
----------
|
555 |
+
|
556 |
+
- :doi:`A Tutorial on Spectral Clustering, 2007
|
557 |
+
Ulrike von Luxburg
|
558 |
+
<10.1007/s11222-007-9033-z>`
|
559 |
+
|
560 |
+
- `On Spectral Clustering: Analysis and an algorithm, 2001
|
561 |
+
Andrew Y. Ng, Michael I. Jordan, Yair Weiss
|
562 |
+
<https://citeseerx.ist.psu.edu/doc_view/pid/796c5d6336fc52aa84db575fb821c78918b65f58>`_
|
563 |
+
|
564 |
+
- :doi:`Normalized cuts and image segmentation, 2000
|
565 |
+
Jianbo Shi, Jitendra Malik
|
566 |
+
<10.1109/34.868688>`
|
567 |
+
|
568 |
+
Examples
|
569 |
+
--------
|
570 |
+
>>> from sklearn.datasets import load_digits
|
571 |
+
>>> from sklearn.manifold import SpectralEmbedding
|
572 |
+
>>> X, _ = load_digits(return_X_y=True)
|
573 |
+
>>> X.shape
|
574 |
+
(1797, 64)
|
575 |
+
>>> embedding = SpectralEmbedding(n_components=2)
|
576 |
+
>>> X_transformed = embedding.fit_transform(X[:100])
|
577 |
+
>>> X_transformed.shape
|
578 |
+
(100, 2)
|
579 |
+
"""
|
580 |
+
|
581 |
+
_parameter_constraints: dict = {
|
582 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
583 |
+
"affinity": [
|
584 |
+
StrOptions(
|
585 |
+
{
|
586 |
+
"nearest_neighbors",
|
587 |
+
"rbf",
|
588 |
+
"precomputed",
|
589 |
+
"precomputed_nearest_neighbors",
|
590 |
+
},
|
591 |
+
),
|
592 |
+
callable,
|
593 |
+
],
|
594 |
+
"gamma": [Interval(Real, 0, None, closed="left"), None],
|
595 |
+
"random_state": ["random_state"],
|
596 |
+
"eigen_solver": [StrOptions({"arpack", "lobpcg", "amg"}), None],
|
597 |
+
"eigen_tol": [Interval(Real, 0, None, closed="left"), StrOptions({"auto"})],
|
598 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left"), None],
|
599 |
+
"n_jobs": [None, Integral],
|
600 |
+
}
|
601 |
+
|
602 |
+
def __init__(
|
603 |
+
self,
|
604 |
+
n_components=2,
|
605 |
+
*,
|
606 |
+
affinity="nearest_neighbors",
|
607 |
+
gamma=None,
|
608 |
+
random_state=None,
|
609 |
+
eigen_solver=None,
|
610 |
+
eigen_tol="auto",
|
611 |
+
n_neighbors=None,
|
612 |
+
n_jobs=None,
|
613 |
+
):
|
614 |
+
self.n_components = n_components
|
615 |
+
self.affinity = affinity
|
616 |
+
self.gamma = gamma
|
617 |
+
self.random_state = random_state
|
618 |
+
self.eigen_solver = eigen_solver
|
619 |
+
self.eigen_tol = eigen_tol
|
620 |
+
self.n_neighbors = n_neighbors
|
621 |
+
self.n_jobs = n_jobs
|
622 |
+
|
623 |
+
def _more_tags(self):
|
624 |
+
return {
|
625 |
+
"pairwise": self.affinity in [
|
626 |
+
"precomputed",
|
627 |
+
"precomputed_nearest_neighbors",
|
628 |
+
]
|
629 |
+
}
|
630 |
+
|
631 |
+
def _get_affinity_matrix(self, X, Y=None):
|
632 |
+
"""Calculate the affinity matrix from data
|
633 |
+
Parameters
|
634 |
+
----------
|
635 |
+
X : array-like of shape (n_samples, n_features)
|
636 |
+
Training vector, where `n_samples` is the number of samples
|
637 |
+
and `n_features` is the number of features.
|
638 |
+
|
639 |
+
If affinity is "precomputed"
|
640 |
+
X : array-like of shape (n_samples, n_samples),
|
641 |
+
Interpret X as precomputed adjacency graph computed from
|
642 |
+
samples.
|
643 |
+
|
644 |
+
Y: Ignored
|
645 |
+
|
646 |
+
Returns
|
647 |
+
-------
|
648 |
+
affinity_matrix of shape (n_samples, n_samples)
|
649 |
+
"""
|
650 |
+
if self.affinity == "precomputed":
|
651 |
+
self.affinity_matrix_ = X
|
652 |
+
return self.affinity_matrix_
|
653 |
+
if self.affinity == "precomputed_nearest_neighbors":
|
654 |
+
estimator = NearestNeighbors(
|
655 |
+
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs, metric="precomputed"
|
656 |
+
).fit(X)
|
657 |
+
connectivity = estimator.kneighbors_graph(X=X, mode="connectivity")
|
658 |
+
self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
|
659 |
+
return self.affinity_matrix_
|
660 |
+
if self.affinity == "nearest_neighbors":
|
661 |
+
if sparse.issparse(X):
|
662 |
+
warnings.warn(
|
663 |
+
"Nearest neighbors affinity currently does "
|
664 |
+
"not support sparse input, falling back to "
|
665 |
+
"rbf affinity"
|
666 |
+
)
|
667 |
+
self.affinity = "rbf"
|
668 |
+
else:
|
669 |
+
self.n_neighbors_ = (
|
670 |
+
self.n_neighbors
|
671 |
+
if self.n_neighbors is not None
|
672 |
+
else max(int(X.shape[0] / 10), 1)
|
673 |
+
)
|
674 |
+
self.affinity_matrix_ = kneighbors_graph(
|
675 |
+
X, self.n_neighbors_, include_self=True, n_jobs=self.n_jobs
|
676 |
+
)
|
677 |
+
# currently only symmetric affinity_matrix supported
|
678 |
+
self.affinity_matrix_ = 0.5 * (
|
679 |
+
self.affinity_matrix_ + self.affinity_matrix_.T
|
680 |
+
)
|
681 |
+
return self.affinity_matrix_
|
682 |
+
if self.affinity == "rbf":
|
683 |
+
self.gamma_ = self.gamma if self.gamma is not None else 1.0 / X.shape[1]
|
684 |
+
self.affinity_matrix_ = rbf_kernel(X, gamma=self.gamma_)
|
685 |
+
return self.affinity_matrix_
|
686 |
+
self.affinity_matrix_ = self.affinity(X)
|
687 |
+
return self.affinity_matrix_
|
688 |
+
|
689 |
+
@_fit_context(prefer_skip_nested_validation=True)
|
690 |
+
def fit(self, X, y=None):
|
691 |
+
"""Fit the model from data in X.
|
692 |
+
|
693 |
+
Parameters
|
694 |
+
----------
|
695 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
696 |
+
Training vector, where `n_samples` is the number of samples
|
697 |
+
and `n_features` is the number of features.
|
698 |
+
|
699 |
+
If affinity is "precomputed"
|
700 |
+
X : {array-like, sparse matrix}, shape (n_samples, n_samples),
|
701 |
+
Interpret X as precomputed adjacency graph computed from
|
702 |
+
samples.
|
703 |
+
|
704 |
+
y : Ignored
|
705 |
+
Not used, present for API consistency by convention.
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
self : object
|
710 |
+
Returns the instance itself.
|
711 |
+
"""
|
712 |
+
X = self._validate_data(X, accept_sparse="csr", ensure_min_samples=2)
|
713 |
+
|
714 |
+
random_state = check_random_state(self.random_state)
|
715 |
+
|
716 |
+
affinity_matrix = self._get_affinity_matrix(X)
|
717 |
+
self.embedding_ = spectral_embedding(
|
718 |
+
affinity_matrix,
|
719 |
+
n_components=self.n_components,
|
720 |
+
eigen_solver=self.eigen_solver,
|
721 |
+
eigen_tol=self.eigen_tol,
|
722 |
+
random_state=random_state,
|
723 |
+
)
|
724 |
+
return self
|
725 |
+
|
726 |
+
def fit_transform(self, X, y=None):
|
727 |
+
"""Fit the model from data in X and transform X.
|
728 |
+
|
729 |
+
Parameters
|
730 |
+
----------
|
731 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
732 |
+
Training vector, where `n_samples` is the number of samples
|
733 |
+
and `n_features` is the number of features.
|
734 |
+
|
735 |
+
If affinity is "precomputed"
|
736 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_samples),
|
737 |
+
Interpret X as precomputed adjacency graph computed from
|
738 |
+
samples.
|
739 |
+
|
740 |
+
y : Ignored
|
741 |
+
Not used, present for API consistency by convention.
|
742 |
+
|
743 |
+
Returns
|
744 |
+
-------
|
745 |
+
X_new : array-like of shape (n_samples, n_components)
|
746 |
+
Spectral embedding of the training matrix.
|
747 |
+
"""
|
748 |
+
self.fit(X)
|
749 |
+
return self.embedding_
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_t_sne.py
ADDED
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Alexander Fabisch -- <[email protected]>
|
2 |
+
# Author: Christopher Moody <[email protected]>
|
3 |
+
# Author: Nick Travers <[email protected]>
|
4 |
+
# License: BSD 3 clause (C) 2014
|
5 |
+
|
6 |
+
# This is the exact and Barnes-Hut t-SNE implementation. There are other
|
7 |
+
# modifications of the algorithm:
|
8 |
+
# * Fast Optimization for t-SNE:
|
9 |
+
# https://cseweb.ucsd.edu/~lvdmaaten/workshops/nips2010/papers/vandermaaten.pdf
|
10 |
+
|
11 |
+
from numbers import Integral, Real
|
12 |
+
from time import time
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
from scipy import linalg
|
16 |
+
from scipy.sparse import csr_matrix, issparse
|
17 |
+
from scipy.spatial.distance import pdist, squareform
|
18 |
+
|
19 |
+
from ..base import (
|
20 |
+
BaseEstimator,
|
21 |
+
ClassNamePrefixFeaturesOutMixin,
|
22 |
+
TransformerMixin,
|
23 |
+
_fit_context,
|
24 |
+
)
|
25 |
+
from ..decomposition import PCA
|
26 |
+
from ..metrics.pairwise import _VALID_METRICS, pairwise_distances
|
27 |
+
from ..neighbors import NearestNeighbors
|
28 |
+
from ..utils import check_random_state
|
29 |
+
from ..utils._openmp_helpers import _openmp_effective_n_threads
|
30 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
31 |
+
from ..utils.validation import _num_samples, check_non_negative
|
32 |
+
|
33 |
+
# mypy error: Module 'sklearn.manifold' has no attribute '_utils'
|
34 |
+
# mypy error: Module 'sklearn.manifold' has no attribute '_barnes_hut_tsne'
|
35 |
+
from . import _barnes_hut_tsne, _utils # type: ignore
|
36 |
+
|
37 |
+
MACHINE_EPSILON = np.finfo(np.double).eps
|
38 |
+
|
39 |
+
|
40 |
+
def _joint_probabilities(distances, desired_perplexity, verbose):
|
41 |
+
"""Compute joint probabilities p_ij from distances.
|
42 |
+
|
43 |
+
Parameters
|
44 |
+
----------
|
45 |
+
distances : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
46 |
+
Distances of samples are stored as condensed matrices, i.e.
|
47 |
+
we omit the diagonal and duplicate entries and store everything
|
48 |
+
in a one-dimensional array.
|
49 |
+
|
50 |
+
desired_perplexity : float
|
51 |
+
Desired perplexity of the joint probability distributions.
|
52 |
+
|
53 |
+
verbose : int
|
54 |
+
Verbosity level.
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
P : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
59 |
+
Condensed joint probability matrix.
|
60 |
+
"""
|
61 |
+
# Compute conditional probabilities such that they approximately match
|
62 |
+
# the desired perplexity
|
63 |
+
distances = distances.astype(np.float32, copy=False)
|
64 |
+
conditional_P = _utils._binary_search_perplexity(
|
65 |
+
distances, desired_perplexity, verbose
|
66 |
+
)
|
67 |
+
P = conditional_P + conditional_P.T
|
68 |
+
sum_P = np.maximum(np.sum(P), MACHINE_EPSILON)
|
69 |
+
P = np.maximum(squareform(P) / sum_P, MACHINE_EPSILON)
|
70 |
+
return P
|
71 |
+
|
72 |
+
|
73 |
+
def _joint_probabilities_nn(distances, desired_perplexity, verbose):
|
74 |
+
"""Compute joint probabilities p_ij from distances using just nearest
|
75 |
+
neighbors.
|
76 |
+
|
77 |
+
This method is approximately equal to _joint_probabilities. The latter
|
78 |
+
is O(N), but limiting the joint probability to nearest neighbors improves
|
79 |
+
this substantially to O(uN).
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
distances : sparse matrix of shape (n_samples, n_samples)
|
84 |
+
Distances of samples to its n_neighbors nearest neighbors. All other
|
85 |
+
distances are left to zero (and are not materialized in memory).
|
86 |
+
Matrix should be of CSR format.
|
87 |
+
|
88 |
+
desired_perplexity : float
|
89 |
+
Desired perplexity of the joint probability distributions.
|
90 |
+
|
91 |
+
verbose : int
|
92 |
+
Verbosity level.
|
93 |
+
|
94 |
+
Returns
|
95 |
+
-------
|
96 |
+
P : sparse matrix of shape (n_samples, n_samples)
|
97 |
+
Condensed joint probability matrix with only nearest neighbors. Matrix
|
98 |
+
will be of CSR format.
|
99 |
+
"""
|
100 |
+
t0 = time()
|
101 |
+
# Compute conditional probabilities such that they approximately match
|
102 |
+
# the desired perplexity
|
103 |
+
distances.sort_indices()
|
104 |
+
n_samples = distances.shape[0]
|
105 |
+
distances_data = distances.data.reshape(n_samples, -1)
|
106 |
+
distances_data = distances_data.astype(np.float32, copy=False)
|
107 |
+
conditional_P = _utils._binary_search_perplexity(
|
108 |
+
distances_data, desired_perplexity, verbose
|
109 |
+
)
|
110 |
+
assert np.all(np.isfinite(conditional_P)), "All probabilities should be finite"
|
111 |
+
|
112 |
+
# Symmetrize the joint probability distribution using sparse operations
|
113 |
+
P = csr_matrix(
|
114 |
+
(conditional_P.ravel(), distances.indices, distances.indptr),
|
115 |
+
shape=(n_samples, n_samples),
|
116 |
+
)
|
117 |
+
P = P + P.T
|
118 |
+
|
119 |
+
# Normalize the joint probability distribution
|
120 |
+
sum_P = np.maximum(P.sum(), MACHINE_EPSILON)
|
121 |
+
P /= sum_P
|
122 |
+
|
123 |
+
assert np.all(np.abs(P.data) <= 1.0)
|
124 |
+
if verbose >= 2:
|
125 |
+
duration = time() - t0
|
126 |
+
print("[t-SNE] Computed conditional probabilities in {:.3f}s".format(duration))
|
127 |
+
return P
|
128 |
+
|
129 |
+
|
130 |
+
def _kl_divergence(
|
131 |
+
params,
|
132 |
+
P,
|
133 |
+
degrees_of_freedom,
|
134 |
+
n_samples,
|
135 |
+
n_components,
|
136 |
+
skip_num_points=0,
|
137 |
+
compute_error=True,
|
138 |
+
):
|
139 |
+
"""t-SNE objective function: gradient of the KL divergence
|
140 |
+
of p_ijs and q_ijs and the absolute error.
|
141 |
+
|
142 |
+
Parameters
|
143 |
+
----------
|
144 |
+
params : ndarray of shape (n_params,)
|
145 |
+
Unraveled embedding.
|
146 |
+
|
147 |
+
P : ndarray of shape (n_samples * (n_samples-1) / 2,)
|
148 |
+
Condensed joint probability matrix.
|
149 |
+
|
150 |
+
degrees_of_freedom : int
|
151 |
+
Degrees of freedom of the Student's-t distribution.
|
152 |
+
|
153 |
+
n_samples : int
|
154 |
+
Number of samples.
|
155 |
+
|
156 |
+
n_components : int
|
157 |
+
Dimension of the embedded space.
|
158 |
+
|
159 |
+
skip_num_points : int, default=0
|
160 |
+
This does not compute the gradient for points with indices below
|
161 |
+
`skip_num_points`. This is useful when computing transforms of new
|
162 |
+
data where you'd like to keep the old data fixed.
|
163 |
+
|
164 |
+
compute_error: bool, default=True
|
165 |
+
If False, the kl_divergence is not computed and returns NaN.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
kl_divergence : float
|
170 |
+
Kullback-Leibler divergence of p_ij and q_ij.
|
171 |
+
|
172 |
+
grad : ndarray of shape (n_params,)
|
173 |
+
Unraveled gradient of the Kullback-Leibler divergence with respect to
|
174 |
+
the embedding.
|
175 |
+
"""
|
176 |
+
X_embedded = params.reshape(n_samples, n_components)
|
177 |
+
|
178 |
+
# Q is a heavy-tailed distribution: Student's t-distribution
|
179 |
+
dist = pdist(X_embedded, "sqeuclidean")
|
180 |
+
dist /= degrees_of_freedom
|
181 |
+
dist += 1.0
|
182 |
+
dist **= (degrees_of_freedom + 1.0) / -2.0
|
183 |
+
Q = np.maximum(dist / (2.0 * np.sum(dist)), MACHINE_EPSILON)
|
184 |
+
|
185 |
+
# Optimization trick below: np.dot(x, y) is faster than
|
186 |
+
# np.sum(x * y) because it calls BLAS
|
187 |
+
|
188 |
+
# Objective: C (Kullback-Leibler divergence of P and Q)
|
189 |
+
if compute_error:
|
190 |
+
kl_divergence = 2.0 * np.dot(P, np.log(np.maximum(P, MACHINE_EPSILON) / Q))
|
191 |
+
else:
|
192 |
+
kl_divergence = np.nan
|
193 |
+
|
194 |
+
# Gradient: dC/dY
|
195 |
+
# pdist always returns double precision distances. Thus we need to take
|
196 |
+
grad = np.ndarray((n_samples, n_components), dtype=params.dtype)
|
197 |
+
PQd = squareform((P - Q) * dist)
|
198 |
+
for i in range(skip_num_points, n_samples):
|
199 |
+
grad[i] = np.dot(np.ravel(PQd[i], order="K"), X_embedded[i] - X_embedded)
|
200 |
+
grad = grad.ravel()
|
201 |
+
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
|
202 |
+
grad *= c
|
203 |
+
|
204 |
+
return kl_divergence, grad
|
205 |
+
|
206 |
+
|
207 |
+
def _kl_divergence_bh(
|
208 |
+
params,
|
209 |
+
P,
|
210 |
+
degrees_of_freedom,
|
211 |
+
n_samples,
|
212 |
+
n_components,
|
213 |
+
angle=0.5,
|
214 |
+
skip_num_points=0,
|
215 |
+
verbose=False,
|
216 |
+
compute_error=True,
|
217 |
+
num_threads=1,
|
218 |
+
):
|
219 |
+
"""t-SNE objective function: KL divergence of p_ijs and q_ijs.
|
220 |
+
|
221 |
+
Uses Barnes-Hut tree methods to calculate the gradient that
|
222 |
+
runs in O(NlogN) instead of O(N^2).
|
223 |
+
|
224 |
+
Parameters
|
225 |
+
----------
|
226 |
+
params : ndarray of shape (n_params,)
|
227 |
+
Unraveled embedding.
|
228 |
+
|
229 |
+
P : sparse matrix of shape (n_samples, n_sample)
|
230 |
+
Sparse approximate joint probability matrix, computed only for the
|
231 |
+
k nearest-neighbors and symmetrized. Matrix should be of CSR format.
|
232 |
+
|
233 |
+
degrees_of_freedom : int
|
234 |
+
Degrees of freedom of the Student's-t distribution.
|
235 |
+
|
236 |
+
n_samples : int
|
237 |
+
Number of samples.
|
238 |
+
|
239 |
+
n_components : int
|
240 |
+
Dimension of the embedded space.
|
241 |
+
|
242 |
+
angle : float, default=0.5
|
243 |
+
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
|
244 |
+
'angle' is the angular size (referred to as theta in [3]) of a distant
|
245 |
+
node as measured from a point. If this size is below 'angle' then it is
|
246 |
+
used as a summary node of all points contained within it.
|
247 |
+
This method is not very sensitive to changes in this parameter
|
248 |
+
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
|
249 |
+
computation time and angle greater 0.8 has quickly increasing error.
|
250 |
+
|
251 |
+
skip_num_points : int, default=0
|
252 |
+
This does not compute the gradient for points with indices below
|
253 |
+
`skip_num_points`. This is useful when computing transforms of new
|
254 |
+
data where you'd like to keep the old data fixed.
|
255 |
+
|
256 |
+
verbose : int, default=False
|
257 |
+
Verbosity level.
|
258 |
+
|
259 |
+
compute_error: bool, default=True
|
260 |
+
If False, the kl_divergence is not computed and returns NaN.
|
261 |
+
|
262 |
+
num_threads : int, default=1
|
263 |
+
Number of threads used to compute the gradient. This is set here to
|
264 |
+
avoid calling _openmp_effective_n_threads for each gradient step.
|
265 |
+
|
266 |
+
Returns
|
267 |
+
-------
|
268 |
+
kl_divergence : float
|
269 |
+
Kullback-Leibler divergence of p_ij and q_ij.
|
270 |
+
|
271 |
+
grad : ndarray of shape (n_params,)
|
272 |
+
Unraveled gradient of the Kullback-Leibler divergence with respect to
|
273 |
+
the embedding.
|
274 |
+
"""
|
275 |
+
params = params.astype(np.float32, copy=False)
|
276 |
+
X_embedded = params.reshape(n_samples, n_components)
|
277 |
+
|
278 |
+
val_P = P.data.astype(np.float32, copy=False)
|
279 |
+
neighbors = P.indices.astype(np.int64, copy=False)
|
280 |
+
indptr = P.indptr.astype(np.int64, copy=False)
|
281 |
+
|
282 |
+
grad = np.zeros(X_embedded.shape, dtype=np.float32)
|
283 |
+
error = _barnes_hut_tsne.gradient(
|
284 |
+
val_P,
|
285 |
+
X_embedded,
|
286 |
+
neighbors,
|
287 |
+
indptr,
|
288 |
+
grad,
|
289 |
+
angle,
|
290 |
+
n_components,
|
291 |
+
verbose,
|
292 |
+
dof=degrees_of_freedom,
|
293 |
+
compute_error=compute_error,
|
294 |
+
num_threads=num_threads,
|
295 |
+
)
|
296 |
+
c = 2.0 * (degrees_of_freedom + 1.0) / degrees_of_freedom
|
297 |
+
grad = grad.ravel()
|
298 |
+
grad *= c
|
299 |
+
|
300 |
+
return error, grad
|
301 |
+
|
302 |
+
|
303 |
+
def _gradient_descent(
|
304 |
+
objective,
|
305 |
+
p0,
|
306 |
+
it,
|
307 |
+
n_iter,
|
308 |
+
n_iter_check=1,
|
309 |
+
n_iter_without_progress=300,
|
310 |
+
momentum=0.8,
|
311 |
+
learning_rate=200.0,
|
312 |
+
min_gain=0.01,
|
313 |
+
min_grad_norm=1e-7,
|
314 |
+
verbose=0,
|
315 |
+
args=None,
|
316 |
+
kwargs=None,
|
317 |
+
):
|
318 |
+
"""Batch gradient descent with momentum and individual gains.
|
319 |
+
|
320 |
+
Parameters
|
321 |
+
----------
|
322 |
+
objective : callable
|
323 |
+
Should return a tuple of cost and gradient for a given parameter
|
324 |
+
vector. When expensive to compute, the cost can optionally
|
325 |
+
be None and can be computed every n_iter_check steps using
|
326 |
+
the objective_error function.
|
327 |
+
|
328 |
+
p0 : array-like of shape (n_params,)
|
329 |
+
Initial parameter vector.
|
330 |
+
|
331 |
+
it : int
|
332 |
+
Current number of iterations (this function will be called more than
|
333 |
+
once during the optimization).
|
334 |
+
|
335 |
+
n_iter : int
|
336 |
+
Maximum number of gradient descent iterations.
|
337 |
+
|
338 |
+
n_iter_check : int, default=1
|
339 |
+
Number of iterations before evaluating the global error. If the error
|
340 |
+
is sufficiently low, we abort the optimization.
|
341 |
+
|
342 |
+
n_iter_without_progress : int, default=300
|
343 |
+
Maximum number of iterations without progress before we abort the
|
344 |
+
optimization.
|
345 |
+
|
346 |
+
momentum : float within (0.0, 1.0), default=0.8
|
347 |
+
The momentum generates a weight for previous gradients that decays
|
348 |
+
exponentially.
|
349 |
+
|
350 |
+
learning_rate : float, default=200.0
|
351 |
+
The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If
|
352 |
+
the learning rate is too high, the data may look like a 'ball' with any
|
353 |
+
point approximately equidistant from its nearest neighbours. If the
|
354 |
+
learning rate is too low, most points may look compressed in a dense
|
355 |
+
cloud with few outliers.
|
356 |
+
|
357 |
+
min_gain : float, default=0.01
|
358 |
+
Minimum individual gain for each parameter.
|
359 |
+
|
360 |
+
min_grad_norm : float, default=1e-7
|
361 |
+
If the gradient norm is below this threshold, the optimization will
|
362 |
+
be aborted.
|
363 |
+
|
364 |
+
verbose : int, default=0
|
365 |
+
Verbosity level.
|
366 |
+
|
367 |
+
args : sequence, default=None
|
368 |
+
Arguments to pass to objective function.
|
369 |
+
|
370 |
+
kwargs : dict, default=None
|
371 |
+
Keyword arguments to pass to objective function.
|
372 |
+
|
373 |
+
Returns
|
374 |
+
-------
|
375 |
+
p : ndarray of shape (n_params,)
|
376 |
+
Optimum parameters.
|
377 |
+
|
378 |
+
error : float
|
379 |
+
Optimum.
|
380 |
+
|
381 |
+
i : int
|
382 |
+
Last iteration.
|
383 |
+
"""
|
384 |
+
if args is None:
|
385 |
+
args = []
|
386 |
+
if kwargs is None:
|
387 |
+
kwargs = {}
|
388 |
+
|
389 |
+
p = p0.copy().ravel()
|
390 |
+
update = np.zeros_like(p)
|
391 |
+
gains = np.ones_like(p)
|
392 |
+
error = np.finfo(float).max
|
393 |
+
best_error = np.finfo(float).max
|
394 |
+
best_iter = i = it
|
395 |
+
|
396 |
+
tic = time()
|
397 |
+
for i in range(it, n_iter):
|
398 |
+
check_convergence = (i + 1) % n_iter_check == 0
|
399 |
+
# only compute the error when needed
|
400 |
+
kwargs["compute_error"] = check_convergence or i == n_iter - 1
|
401 |
+
|
402 |
+
error, grad = objective(p, *args, **kwargs)
|
403 |
+
|
404 |
+
inc = update * grad < 0.0
|
405 |
+
dec = np.invert(inc)
|
406 |
+
gains[inc] += 0.2
|
407 |
+
gains[dec] *= 0.8
|
408 |
+
np.clip(gains, min_gain, np.inf, out=gains)
|
409 |
+
grad *= gains
|
410 |
+
update = momentum * update - learning_rate * grad
|
411 |
+
p += update
|
412 |
+
|
413 |
+
if check_convergence:
|
414 |
+
toc = time()
|
415 |
+
duration = toc - tic
|
416 |
+
tic = toc
|
417 |
+
grad_norm = linalg.norm(grad)
|
418 |
+
|
419 |
+
if verbose >= 2:
|
420 |
+
print(
|
421 |
+
"[t-SNE] Iteration %d: error = %.7f,"
|
422 |
+
" gradient norm = %.7f"
|
423 |
+
" (%s iterations in %0.3fs)"
|
424 |
+
% (i + 1, error, grad_norm, n_iter_check, duration)
|
425 |
+
)
|
426 |
+
|
427 |
+
if error < best_error:
|
428 |
+
best_error = error
|
429 |
+
best_iter = i
|
430 |
+
elif i - best_iter > n_iter_without_progress:
|
431 |
+
if verbose >= 2:
|
432 |
+
print(
|
433 |
+
"[t-SNE] Iteration %d: did not make any progress "
|
434 |
+
"during the last %d episodes. Finished."
|
435 |
+
% (i + 1, n_iter_without_progress)
|
436 |
+
)
|
437 |
+
break
|
438 |
+
if grad_norm <= min_grad_norm:
|
439 |
+
if verbose >= 2:
|
440 |
+
print(
|
441 |
+
"[t-SNE] Iteration %d: gradient norm %f. Finished."
|
442 |
+
% (i + 1, grad_norm)
|
443 |
+
)
|
444 |
+
break
|
445 |
+
|
446 |
+
return p, error, i
|
447 |
+
|
448 |
+
|
449 |
+
@validate_params(
|
450 |
+
{
|
451 |
+
"X": ["array-like", "sparse matrix"],
|
452 |
+
"X_embedded": ["array-like", "sparse matrix"],
|
453 |
+
"n_neighbors": [Interval(Integral, 1, None, closed="left")],
|
454 |
+
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
455 |
+
},
|
456 |
+
prefer_skip_nested_validation=True,
|
457 |
+
)
|
458 |
+
def trustworthiness(X, X_embedded, *, n_neighbors=5, metric="euclidean"):
|
459 |
+
r"""Indicate to what extent the local structure is retained.
|
460 |
+
|
461 |
+
The trustworthiness is within [0, 1]. It is defined as
|
462 |
+
|
463 |
+
.. math::
|
464 |
+
|
465 |
+
T(k) = 1 - \frac{2}{nk (2n - 3k - 1)} \sum^n_{i=1}
|
466 |
+
\sum_{j \in \mathcal{N}_{i}^{k}} \max(0, (r(i, j) - k))
|
467 |
+
|
468 |
+
where for each sample i, :math:`\mathcal{N}_{i}^{k}` are its k nearest
|
469 |
+
neighbors in the output space, and every sample j is its :math:`r(i, j)`-th
|
470 |
+
nearest neighbor in the input space. In other words, any unexpected nearest
|
471 |
+
neighbors in the output space are penalised in proportion to their rank in
|
472 |
+
the input space.
|
473 |
+
|
474 |
+
Parameters
|
475 |
+
----------
|
476 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
477 |
+
(n_samples, n_samples)
|
478 |
+
If the metric is 'precomputed' X must be a square distance
|
479 |
+
matrix. Otherwise it contains a sample per row.
|
480 |
+
|
481 |
+
X_embedded : {array-like, sparse matrix} of shape (n_samples, n_components)
|
482 |
+
Embedding of the training data in low-dimensional space.
|
483 |
+
|
484 |
+
n_neighbors : int, default=5
|
485 |
+
The number of neighbors that will be considered. Should be fewer than
|
486 |
+
`n_samples / 2` to ensure the trustworthiness to lies within [0, 1], as
|
487 |
+
mentioned in [1]_. An error will be raised otherwise.
|
488 |
+
|
489 |
+
metric : str or callable, default='euclidean'
|
490 |
+
Which metric to use for computing pairwise distances between samples
|
491 |
+
from the original input space. If metric is 'precomputed', X must be a
|
492 |
+
matrix of pairwise distances or squared distances. Otherwise, for a list
|
493 |
+
of available metrics, see the documentation of argument metric in
|
494 |
+
`sklearn.pairwise.pairwise_distances` and metrics listed in
|
495 |
+
`sklearn.metrics.pairwise.PAIRWISE_DISTANCE_FUNCTIONS`. Note that the
|
496 |
+
"cosine" metric uses :func:`~sklearn.metrics.pairwise.cosine_distances`.
|
497 |
+
|
498 |
+
.. versionadded:: 0.20
|
499 |
+
|
500 |
+
Returns
|
501 |
+
-------
|
502 |
+
trustworthiness : float
|
503 |
+
Trustworthiness of the low-dimensional embedding.
|
504 |
+
|
505 |
+
References
|
506 |
+
----------
|
507 |
+
.. [1] Jarkko Venna and Samuel Kaski. 2001. Neighborhood
|
508 |
+
Preservation in Nonlinear Projection Methods: An Experimental Study.
|
509 |
+
In Proceedings of the International Conference on Artificial Neural Networks
|
510 |
+
(ICANN '01). Springer-Verlag, Berlin, Heidelberg, 485-491.
|
511 |
+
|
512 |
+
.. [2] Laurens van der Maaten. Learning a Parametric Embedding by Preserving
|
513 |
+
Local Structure. Proceedings of the Twelfth International Conference on
|
514 |
+
Artificial Intelligence and Statistics, PMLR 5:384-391, 2009.
|
515 |
+
|
516 |
+
Examples
|
517 |
+
--------
|
518 |
+
>>> from sklearn.datasets import make_blobs
|
519 |
+
>>> from sklearn.decomposition import PCA
|
520 |
+
>>> from sklearn.manifold import trustworthiness
|
521 |
+
>>> X, _ = make_blobs(n_samples=100, n_features=10, centers=3, random_state=42)
|
522 |
+
>>> X_embedded = PCA(n_components=2).fit_transform(X)
|
523 |
+
>>> print(f"{trustworthiness(X, X_embedded, n_neighbors=5):.2f}")
|
524 |
+
0.92
|
525 |
+
"""
|
526 |
+
n_samples = _num_samples(X)
|
527 |
+
if n_neighbors >= n_samples / 2:
|
528 |
+
raise ValueError(
|
529 |
+
f"n_neighbors ({n_neighbors}) should be less than n_samples / 2"
|
530 |
+
f" ({n_samples / 2})"
|
531 |
+
)
|
532 |
+
dist_X = pairwise_distances(X, metric=metric)
|
533 |
+
if metric == "precomputed":
|
534 |
+
dist_X = dist_X.copy()
|
535 |
+
# we set the diagonal to np.inf to exclude the points themselves from
|
536 |
+
# their own neighborhood
|
537 |
+
np.fill_diagonal(dist_X, np.inf)
|
538 |
+
ind_X = np.argsort(dist_X, axis=1)
|
539 |
+
# `ind_X[i]` is the index of sorted distances between i and other samples
|
540 |
+
ind_X_embedded = (
|
541 |
+
NearestNeighbors(n_neighbors=n_neighbors)
|
542 |
+
.fit(X_embedded)
|
543 |
+
.kneighbors(return_distance=False)
|
544 |
+
)
|
545 |
+
|
546 |
+
# We build an inverted index of neighbors in the input space: For sample i,
|
547 |
+
# we define `inverted_index[i]` as the inverted index of sorted distances:
|
548 |
+
# inverted_index[i][ind_X[i]] = np.arange(1, n_sample + 1)
|
549 |
+
inverted_index = np.zeros((n_samples, n_samples), dtype=int)
|
550 |
+
ordered_indices = np.arange(n_samples + 1)
|
551 |
+
inverted_index[ordered_indices[:-1, np.newaxis], ind_X] = ordered_indices[1:]
|
552 |
+
ranks = (
|
553 |
+
inverted_index[ordered_indices[:-1, np.newaxis], ind_X_embedded] - n_neighbors
|
554 |
+
)
|
555 |
+
t = np.sum(ranks[ranks > 0])
|
556 |
+
t = 1.0 - t * (
|
557 |
+
2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))
|
558 |
+
)
|
559 |
+
return t
|
560 |
+
|
561 |
+
|
562 |
+
class TSNE(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
563 |
+
"""T-distributed Stochastic Neighbor Embedding.
|
564 |
+
|
565 |
+
t-SNE [1] is a tool to visualize high-dimensional data. It converts
|
566 |
+
similarities between data points to joint probabilities and tries
|
567 |
+
to minimize the Kullback-Leibler divergence between the joint
|
568 |
+
probabilities of the low-dimensional embedding and the
|
569 |
+
high-dimensional data. t-SNE has a cost function that is not convex,
|
570 |
+
i.e. with different initializations we can get different results.
|
571 |
+
|
572 |
+
It is highly recommended to use another dimensionality reduction
|
573 |
+
method (e.g. PCA for dense data or TruncatedSVD for sparse data)
|
574 |
+
to reduce the number of dimensions to a reasonable amount (e.g. 50)
|
575 |
+
if the number of features is very high. This will suppress some
|
576 |
+
noise and speed up the computation of pairwise distances between
|
577 |
+
samples. For more tips see Laurens van der Maaten's FAQ [2].
|
578 |
+
|
579 |
+
Read more in the :ref:`User Guide <t_sne>`.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
----------
|
583 |
+
n_components : int, default=2
|
584 |
+
Dimension of the embedded space.
|
585 |
+
|
586 |
+
perplexity : float, default=30.0
|
587 |
+
The perplexity is related to the number of nearest neighbors that
|
588 |
+
is used in other manifold learning algorithms. Larger datasets
|
589 |
+
usually require a larger perplexity. Consider selecting a value
|
590 |
+
between 5 and 50. Different values can result in significantly
|
591 |
+
different results. The perplexity must be less than the number
|
592 |
+
of samples.
|
593 |
+
|
594 |
+
early_exaggeration : float, default=12.0
|
595 |
+
Controls how tight natural clusters in the original space are in
|
596 |
+
the embedded space and how much space will be between them. For
|
597 |
+
larger values, the space between natural clusters will be larger
|
598 |
+
in the embedded space. Again, the choice of this parameter is not
|
599 |
+
very critical. If the cost function increases during initial
|
600 |
+
optimization, the early exaggeration factor or the learning rate
|
601 |
+
might be too high.
|
602 |
+
|
603 |
+
learning_rate : float or "auto", default="auto"
|
604 |
+
The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If
|
605 |
+
the learning rate is too high, the data may look like a 'ball' with any
|
606 |
+
point approximately equidistant from its nearest neighbours. If the
|
607 |
+
learning rate is too low, most points may look compressed in a dense
|
608 |
+
cloud with few outliers. If the cost function gets stuck in a bad local
|
609 |
+
minimum increasing the learning rate may help.
|
610 |
+
Note that many other t-SNE implementations (bhtsne, FIt-SNE, openTSNE,
|
611 |
+
etc.) use a definition of learning_rate that is 4 times smaller than
|
612 |
+
ours. So our learning_rate=200 corresponds to learning_rate=800 in
|
613 |
+
those other implementations. The 'auto' option sets the learning_rate
|
614 |
+
to `max(N / early_exaggeration / 4, 50)` where N is the sample size,
|
615 |
+
following [4] and [5].
|
616 |
+
|
617 |
+
.. versionchanged:: 1.2
|
618 |
+
The default value changed to `"auto"`.
|
619 |
+
|
620 |
+
n_iter : int, default=1000
|
621 |
+
Maximum number of iterations for the optimization. Should be at
|
622 |
+
least 250.
|
623 |
+
|
624 |
+
n_iter_without_progress : int, default=300
|
625 |
+
Maximum number of iterations without progress before we abort the
|
626 |
+
optimization, used after 250 initial iterations with early
|
627 |
+
exaggeration. Note that progress is only checked every 50 iterations so
|
628 |
+
this value is rounded to the next multiple of 50.
|
629 |
+
|
630 |
+
.. versionadded:: 0.17
|
631 |
+
parameter *n_iter_without_progress* to control stopping criteria.
|
632 |
+
|
633 |
+
min_grad_norm : float, default=1e-7
|
634 |
+
If the gradient norm is below this threshold, the optimization will
|
635 |
+
be stopped.
|
636 |
+
|
637 |
+
metric : str or callable, default='euclidean'
|
638 |
+
The metric to use when calculating distance between instances in a
|
639 |
+
feature array. If metric is a string, it must be one of the options
|
640 |
+
allowed by scipy.spatial.distance.pdist for its metric parameter, or
|
641 |
+
a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS.
|
642 |
+
If metric is "precomputed", X is assumed to be a distance matrix.
|
643 |
+
Alternatively, if metric is a callable function, it is called on each
|
644 |
+
pair of instances (rows) and the resulting value recorded. The callable
|
645 |
+
should take two arrays from X as input and return a value indicating
|
646 |
+
the distance between them. The default is "euclidean" which is
|
647 |
+
interpreted as squared euclidean distance.
|
648 |
+
|
649 |
+
metric_params : dict, default=None
|
650 |
+
Additional keyword arguments for the metric function.
|
651 |
+
|
652 |
+
.. versionadded:: 1.1
|
653 |
+
|
654 |
+
init : {"random", "pca"} or ndarray of shape (n_samples, n_components), \
|
655 |
+
default="pca"
|
656 |
+
Initialization of embedding.
|
657 |
+
PCA initialization cannot be used with precomputed distances and is
|
658 |
+
usually more globally stable than random initialization.
|
659 |
+
|
660 |
+
.. versionchanged:: 1.2
|
661 |
+
The default value changed to `"pca"`.
|
662 |
+
|
663 |
+
verbose : int, default=0
|
664 |
+
Verbosity level.
|
665 |
+
|
666 |
+
random_state : int, RandomState instance or None, default=None
|
667 |
+
Determines the random number generator. Pass an int for reproducible
|
668 |
+
results across multiple function calls. Note that different
|
669 |
+
initializations might result in different local minima of the cost
|
670 |
+
function. See :term:`Glossary <random_state>`.
|
671 |
+
|
672 |
+
method : {'barnes_hut', 'exact'}, default='barnes_hut'
|
673 |
+
By default the gradient calculation algorithm uses Barnes-Hut
|
674 |
+
approximation running in O(NlogN) time. method='exact'
|
675 |
+
will run on the slower, but exact, algorithm in O(N^2) time. The
|
676 |
+
exact algorithm should be used when nearest-neighbor errors need
|
677 |
+
to be better than 3%. However, the exact method cannot scale to
|
678 |
+
millions of examples.
|
679 |
+
|
680 |
+
.. versionadded:: 0.17
|
681 |
+
Approximate optimization *method* via the Barnes-Hut.
|
682 |
+
|
683 |
+
angle : float, default=0.5
|
684 |
+
Only used if method='barnes_hut'
|
685 |
+
This is the trade-off between speed and accuracy for Barnes-Hut T-SNE.
|
686 |
+
'angle' is the angular size (referred to as theta in [3]) of a distant
|
687 |
+
node as measured from a point. If this size is below 'angle' then it is
|
688 |
+
used as a summary node of all points contained within it.
|
689 |
+
This method is not very sensitive to changes in this parameter
|
690 |
+
in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
|
691 |
+
computation time and angle greater 0.8 has quickly increasing error.
|
692 |
+
|
693 |
+
n_jobs : int, default=None
|
694 |
+
The number of parallel jobs to run for neighbors search. This parameter
|
695 |
+
has no impact when ``metric="precomputed"`` or
|
696 |
+
(``metric="euclidean"`` and ``method="exact"``).
|
697 |
+
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
698 |
+
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
699 |
+
for more details.
|
700 |
+
|
701 |
+
.. versionadded:: 0.22
|
702 |
+
|
703 |
+
Attributes
|
704 |
+
----------
|
705 |
+
embedding_ : array-like of shape (n_samples, n_components)
|
706 |
+
Stores the embedding vectors.
|
707 |
+
|
708 |
+
kl_divergence_ : float
|
709 |
+
Kullback-Leibler divergence after optimization.
|
710 |
+
|
711 |
+
n_features_in_ : int
|
712 |
+
Number of features seen during :term:`fit`.
|
713 |
+
|
714 |
+
.. versionadded:: 0.24
|
715 |
+
|
716 |
+
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
717 |
+
Names of features seen during :term:`fit`. Defined only when `X`
|
718 |
+
has feature names that are all strings.
|
719 |
+
|
720 |
+
.. versionadded:: 1.0
|
721 |
+
|
722 |
+
learning_rate_ : float
|
723 |
+
Effective learning rate.
|
724 |
+
|
725 |
+
.. versionadded:: 1.2
|
726 |
+
|
727 |
+
n_iter_ : int
|
728 |
+
Number of iterations run.
|
729 |
+
|
730 |
+
See Also
|
731 |
+
--------
|
732 |
+
sklearn.decomposition.PCA : Principal component analysis that is a linear
|
733 |
+
dimensionality reduction method.
|
734 |
+
sklearn.decomposition.KernelPCA : Non-linear dimensionality reduction using
|
735 |
+
kernels and PCA.
|
736 |
+
MDS : Manifold learning using multidimensional scaling.
|
737 |
+
Isomap : Manifold learning based on Isometric Mapping.
|
738 |
+
LocallyLinearEmbedding : Manifold learning using Locally Linear Embedding.
|
739 |
+
SpectralEmbedding : Spectral embedding for non-linear dimensionality.
|
740 |
+
|
741 |
+
Notes
|
742 |
+
-----
|
743 |
+
For an example of using :class:`~sklearn.manifold.TSNE` in combination with
|
744 |
+
:class:`~sklearn.neighbors.KNeighborsTransformer` see
|
745 |
+
:ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py`.
|
746 |
+
|
747 |
+
References
|
748 |
+
----------
|
749 |
+
|
750 |
+
[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data
|
751 |
+
Using t-SNE. Journal of Machine Learning Research 9:2579-2605, 2008.
|
752 |
+
|
753 |
+
[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding
|
754 |
+
https://lvdmaaten.github.io/tsne/
|
755 |
+
|
756 |
+
[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms.
|
757 |
+
Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
|
758 |
+
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
|
759 |
+
|
760 |
+
[4] Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J.,
|
761 |
+
& Snyder-Cappione, J. E. (2019). Automated optimized parameters for
|
762 |
+
T-distributed stochastic neighbor embedding improve visualization
|
763 |
+
and analysis of large datasets. Nature Communications, 10(1), 1-12.
|
764 |
+
|
765 |
+
[5] Kobak, D., & Berens, P. (2019). The art of using t-SNE for single-cell
|
766 |
+
transcriptomics. Nature Communications, 10(1), 1-14.
|
767 |
+
|
768 |
+
Examples
|
769 |
+
--------
|
770 |
+
>>> import numpy as np
|
771 |
+
>>> from sklearn.manifold import TSNE
|
772 |
+
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
|
773 |
+
>>> X_embedded = TSNE(n_components=2, learning_rate='auto',
|
774 |
+
... init='random', perplexity=3).fit_transform(X)
|
775 |
+
>>> X_embedded.shape
|
776 |
+
(4, 2)
|
777 |
+
"""
|
778 |
+
|
779 |
+
_parameter_constraints: dict = {
|
780 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
781 |
+
"perplexity": [Interval(Real, 0, None, closed="neither")],
|
782 |
+
"early_exaggeration": [Interval(Real, 1, None, closed="left")],
|
783 |
+
"learning_rate": [
|
784 |
+
StrOptions({"auto"}),
|
785 |
+
Interval(Real, 0, None, closed="neither"),
|
786 |
+
],
|
787 |
+
"n_iter": [Interval(Integral, 250, None, closed="left")],
|
788 |
+
"n_iter_without_progress": [Interval(Integral, -1, None, closed="left")],
|
789 |
+
"min_grad_norm": [Interval(Real, 0, None, closed="left")],
|
790 |
+
"metric": [StrOptions(set(_VALID_METRICS) | {"precomputed"}), callable],
|
791 |
+
"metric_params": [dict, None],
|
792 |
+
"init": [
|
793 |
+
StrOptions({"pca", "random"}),
|
794 |
+
np.ndarray,
|
795 |
+
],
|
796 |
+
"verbose": ["verbose"],
|
797 |
+
"random_state": ["random_state"],
|
798 |
+
"method": [StrOptions({"barnes_hut", "exact"})],
|
799 |
+
"angle": [Interval(Real, 0, 1, closed="both")],
|
800 |
+
"n_jobs": [None, Integral],
|
801 |
+
}
|
802 |
+
|
803 |
+
# Control the number of exploration iterations with early_exaggeration on
|
804 |
+
_EXPLORATION_N_ITER = 250
|
805 |
+
|
806 |
+
# Control the number of iterations between progress checks
|
807 |
+
_N_ITER_CHECK = 50
|
808 |
+
|
809 |
+
def __init__(
|
810 |
+
self,
|
811 |
+
n_components=2,
|
812 |
+
*,
|
813 |
+
perplexity=30.0,
|
814 |
+
early_exaggeration=12.0,
|
815 |
+
learning_rate="auto",
|
816 |
+
n_iter=1000,
|
817 |
+
n_iter_without_progress=300,
|
818 |
+
min_grad_norm=1e-7,
|
819 |
+
metric="euclidean",
|
820 |
+
metric_params=None,
|
821 |
+
init="pca",
|
822 |
+
verbose=0,
|
823 |
+
random_state=None,
|
824 |
+
method="barnes_hut",
|
825 |
+
angle=0.5,
|
826 |
+
n_jobs=None,
|
827 |
+
):
|
828 |
+
self.n_components = n_components
|
829 |
+
self.perplexity = perplexity
|
830 |
+
self.early_exaggeration = early_exaggeration
|
831 |
+
self.learning_rate = learning_rate
|
832 |
+
self.n_iter = n_iter
|
833 |
+
self.n_iter_without_progress = n_iter_without_progress
|
834 |
+
self.min_grad_norm = min_grad_norm
|
835 |
+
self.metric = metric
|
836 |
+
self.metric_params = metric_params
|
837 |
+
self.init = init
|
838 |
+
self.verbose = verbose
|
839 |
+
self.random_state = random_state
|
840 |
+
self.method = method
|
841 |
+
self.angle = angle
|
842 |
+
self.n_jobs = n_jobs
|
843 |
+
|
844 |
+
def _check_params_vs_input(self, X):
|
845 |
+
if self.perplexity >= X.shape[0]:
|
846 |
+
raise ValueError("perplexity must be less than n_samples")
|
847 |
+
|
848 |
+
def _fit(self, X, skip_num_points=0):
|
849 |
+
"""Private function to fit the model using X as training data."""
|
850 |
+
|
851 |
+
if isinstance(self.init, str) and self.init == "pca" and issparse(X):
|
852 |
+
raise TypeError(
|
853 |
+
"PCA initialization is currently not supported "
|
854 |
+
"with the sparse input matrix. Use "
|
855 |
+
'init="random" instead.'
|
856 |
+
)
|
857 |
+
|
858 |
+
if self.learning_rate == "auto":
|
859 |
+
# See issue #18018
|
860 |
+
self.learning_rate_ = X.shape[0] / self.early_exaggeration / 4
|
861 |
+
self.learning_rate_ = np.maximum(self.learning_rate_, 50)
|
862 |
+
else:
|
863 |
+
self.learning_rate_ = self.learning_rate
|
864 |
+
|
865 |
+
if self.method == "barnes_hut":
|
866 |
+
X = self._validate_data(
|
867 |
+
X,
|
868 |
+
accept_sparse=["csr"],
|
869 |
+
ensure_min_samples=2,
|
870 |
+
dtype=[np.float32, np.float64],
|
871 |
+
)
|
872 |
+
else:
|
873 |
+
X = self._validate_data(
|
874 |
+
X, accept_sparse=["csr", "csc", "coo"], dtype=[np.float32, np.float64]
|
875 |
+
)
|
876 |
+
if self.metric == "precomputed":
|
877 |
+
if isinstance(self.init, str) and self.init == "pca":
|
878 |
+
raise ValueError(
|
879 |
+
'The parameter init="pca" cannot be used with metric="precomputed".'
|
880 |
+
)
|
881 |
+
if X.shape[0] != X.shape[1]:
|
882 |
+
raise ValueError("X should be a square distance matrix")
|
883 |
+
|
884 |
+
check_non_negative(
|
885 |
+
X,
|
886 |
+
(
|
887 |
+
"TSNE.fit(). With metric='precomputed', X "
|
888 |
+
"should contain positive distances."
|
889 |
+
),
|
890 |
+
)
|
891 |
+
|
892 |
+
if self.method == "exact" and issparse(X):
|
893 |
+
raise TypeError(
|
894 |
+
'TSNE with method="exact" does not accept sparse '
|
895 |
+
'precomputed distance matrix. Use method="barnes_hut" '
|
896 |
+
"or provide the dense distance matrix."
|
897 |
+
)
|
898 |
+
|
899 |
+
if self.method == "barnes_hut" and self.n_components > 3:
|
900 |
+
raise ValueError(
|
901 |
+
"'n_components' should be inferior to 4 for the "
|
902 |
+
"barnes_hut algorithm as it relies on "
|
903 |
+
"quad-tree or oct-tree."
|
904 |
+
)
|
905 |
+
random_state = check_random_state(self.random_state)
|
906 |
+
|
907 |
+
n_samples = X.shape[0]
|
908 |
+
|
909 |
+
neighbors_nn = None
|
910 |
+
if self.method == "exact":
|
911 |
+
# Retrieve the distance matrix, either using the precomputed one or
|
912 |
+
# computing it.
|
913 |
+
if self.metric == "precomputed":
|
914 |
+
distances = X
|
915 |
+
else:
|
916 |
+
if self.verbose:
|
917 |
+
print("[t-SNE] Computing pairwise distances...")
|
918 |
+
|
919 |
+
if self.metric == "euclidean":
|
920 |
+
# Euclidean is squared here, rather than using **= 2,
|
921 |
+
# because euclidean_distances already calculates
|
922 |
+
# squared distances, and returns np.sqrt(dist) for
|
923 |
+
# squared=False.
|
924 |
+
# Also, Euclidean is slower for n_jobs>1, so don't set here
|
925 |
+
distances = pairwise_distances(X, metric=self.metric, squared=True)
|
926 |
+
else:
|
927 |
+
metric_params_ = self.metric_params or {}
|
928 |
+
distances = pairwise_distances(
|
929 |
+
X, metric=self.metric, n_jobs=self.n_jobs, **metric_params_
|
930 |
+
)
|
931 |
+
|
932 |
+
if np.any(distances < 0):
|
933 |
+
raise ValueError(
|
934 |
+
"All distances should be positive, the metric given is not correct"
|
935 |
+
)
|
936 |
+
|
937 |
+
if self.metric != "euclidean":
|
938 |
+
distances **= 2
|
939 |
+
|
940 |
+
# compute the joint probability distribution for the input space
|
941 |
+
P = _joint_probabilities(distances, self.perplexity, self.verbose)
|
942 |
+
assert np.all(np.isfinite(P)), "All probabilities should be finite"
|
943 |
+
assert np.all(P >= 0), "All probabilities should be non-negative"
|
944 |
+
assert np.all(
|
945 |
+
P <= 1
|
946 |
+
), "All probabilities should be less or then equal to one"
|
947 |
+
|
948 |
+
else:
|
949 |
+
# Compute the number of nearest neighbors to find.
|
950 |
+
# LvdM uses 3 * perplexity as the number of neighbors.
|
951 |
+
# In the event that we have very small # of points
|
952 |
+
# set the neighbors to n - 1.
|
953 |
+
n_neighbors = min(n_samples - 1, int(3.0 * self.perplexity + 1))
|
954 |
+
|
955 |
+
if self.verbose:
|
956 |
+
print("[t-SNE] Computing {} nearest neighbors...".format(n_neighbors))
|
957 |
+
|
958 |
+
# Find the nearest neighbors for every point
|
959 |
+
knn = NearestNeighbors(
|
960 |
+
algorithm="auto",
|
961 |
+
n_jobs=self.n_jobs,
|
962 |
+
n_neighbors=n_neighbors,
|
963 |
+
metric=self.metric,
|
964 |
+
metric_params=self.metric_params,
|
965 |
+
)
|
966 |
+
t0 = time()
|
967 |
+
knn.fit(X)
|
968 |
+
duration = time() - t0
|
969 |
+
if self.verbose:
|
970 |
+
print(
|
971 |
+
"[t-SNE] Indexed {} samples in {:.3f}s...".format(
|
972 |
+
n_samples, duration
|
973 |
+
)
|
974 |
+
)
|
975 |
+
|
976 |
+
t0 = time()
|
977 |
+
distances_nn = knn.kneighbors_graph(mode="distance")
|
978 |
+
duration = time() - t0
|
979 |
+
if self.verbose:
|
980 |
+
print(
|
981 |
+
"[t-SNE] Computed neighbors for {} samples in {:.3f}s...".format(
|
982 |
+
n_samples, duration
|
983 |
+
)
|
984 |
+
)
|
985 |
+
|
986 |
+
# Free the memory used by the ball_tree
|
987 |
+
del knn
|
988 |
+
|
989 |
+
# knn return the euclidean distance but we need it squared
|
990 |
+
# to be consistent with the 'exact' method. Note that the
|
991 |
+
# the method was derived using the euclidean method as in the
|
992 |
+
# input space. Not sure of the implication of using a different
|
993 |
+
# metric.
|
994 |
+
distances_nn.data **= 2
|
995 |
+
|
996 |
+
# compute the joint probability distribution for the input space
|
997 |
+
P = _joint_probabilities_nn(distances_nn, self.perplexity, self.verbose)
|
998 |
+
|
999 |
+
if isinstance(self.init, np.ndarray):
|
1000 |
+
X_embedded = self.init
|
1001 |
+
elif self.init == "pca":
|
1002 |
+
pca = PCA(
|
1003 |
+
n_components=self.n_components,
|
1004 |
+
svd_solver="randomized",
|
1005 |
+
random_state=random_state,
|
1006 |
+
)
|
1007 |
+
# Always output a numpy array, no matter what is configured globally
|
1008 |
+
pca.set_output(transform="default")
|
1009 |
+
X_embedded = pca.fit_transform(X).astype(np.float32, copy=False)
|
1010 |
+
# PCA is rescaled so that PC1 has standard deviation 1e-4 which is
|
1011 |
+
# the default value for random initialization. See issue #18018.
|
1012 |
+
X_embedded = X_embedded / np.std(X_embedded[:, 0]) * 1e-4
|
1013 |
+
elif self.init == "random":
|
1014 |
+
# The embedding is initialized with iid samples from Gaussians with
|
1015 |
+
# standard deviation 1e-4.
|
1016 |
+
X_embedded = 1e-4 * random_state.standard_normal(
|
1017 |
+
size=(n_samples, self.n_components)
|
1018 |
+
).astype(np.float32)
|
1019 |
+
|
1020 |
+
# Degrees of freedom of the Student's t-distribution. The suggestion
|
1021 |
+
# degrees_of_freedom = n_components - 1 comes from
|
1022 |
+
# "Learning a Parametric Embedding by Preserving Local Structure"
|
1023 |
+
# Laurens van der Maaten, 2009.
|
1024 |
+
degrees_of_freedom = max(self.n_components - 1, 1)
|
1025 |
+
|
1026 |
+
return self._tsne(
|
1027 |
+
P,
|
1028 |
+
degrees_of_freedom,
|
1029 |
+
n_samples,
|
1030 |
+
X_embedded=X_embedded,
|
1031 |
+
neighbors=neighbors_nn,
|
1032 |
+
skip_num_points=skip_num_points,
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
def _tsne(
|
1036 |
+
self,
|
1037 |
+
P,
|
1038 |
+
degrees_of_freedom,
|
1039 |
+
n_samples,
|
1040 |
+
X_embedded,
|
1041 |
+
neighbors=None,
|
1042 |
+
skip_num_points=0,
|
1043 |
+
):
|
1044 |
+
"""Runs t-SNE."""
|
1045 |
+
# t-SNE minimizes the Kullback-Leiber divergence of the Gaussians P
|
1046 |
+
# and the Student's t-distributions Q. The optimization algorithm that
|
1047 |
+
# we use is batch gradient descent with two stages:
|
1048 |
+
# * initial optimization with early exaggeration and momentum at 0.5
|
1049 |
+
# * final optimization with momentum at 0.8
|
1050 |
+
params = X_embedded.ravel()
|
1051 |
+
|
1052 |
+
opt_args = {
|
1053 |
+
"it": 0,
|
1054 |
+
"n_iter_check": self._N_ITER_CHECK,
|
1055 |
+
"min_grad_norm": self.min_grad_norm,
|
1056 |
+
"learning_rate": self.learning_rate_,
|
1057 |
+
"verbose": self.verbose,
|
1058 |
+
"kwargs": dict(skip_num_points=skip_num_points),
|
1059 |
+
"args": [P, degrees_of_freedom, n_samples, self.n_components],
|
1060 |
+
"n_iter_without_progress": self._EXPLORATION_N_ITER,
|
1061 |
+
"n_iter": self._EXPLORATION_N_ITER,
|
1062 |
+
"momentum": 0.5,
|
1063 |
+
}
|
1064 |
+
if self.method == "barnes_hut":
|
1065 |
+
obj_func = _kl_divergence_bh
|
1066 |
+
opt_args["kwargs"]["angle"] = self.angle
|
1067 |
+
# Repeat verbose argument for _kl_divergence_bh
|
1068 |
+
opt_args["kwargs"]["verbose"] = self.verbose
|
1069 |
+
# Get the number of threads for gradient computation here to
|
1070 |
+
# avoid recomputing it at each iteration.
|
1071 |
+
opt_args["kwargs"]["num_threads"] = _openmp_effective_n_threads()
|
1072 |
+
else:
|
1073 |
+
obj_func = _kl_divergence
|
1074 |
+
|
1075 |
+
# Learning schedule (part 1): do 250 iteration with lower momentum but
|
1076 |
+
# higher learning rate controlled via the early exaggeration parameter
|
1077 |
+
P *= self.early_exaggeration
|
1078 |
+
params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)
|
1079 |
+
if self.verbose:
|
1080 |
+
print(
|
1081 |
+
"[t-SNE] KL divergence after %d iterations with early exaggeration: %f"
|
1082 |
+
% (it + 1, kl_divergence)
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# Learning schedule (part 2): disable early exaggeration and finish
|
1086 |
+
# optimization with a higher momentum at 0.8
|
1087 |
+
P /= self.early_exaggeration
|
1088 |
+
remaining = self.n_iter - self._EXPLORATION_N_ITER
|
1089 |
+
if it < self._EXPLORATION_N_ITER or remaining > 0:
|
1090 |
+
opt_args["n_iter"] = self.n_iter
|
1091 |
+
opt_args["it"] = it + 1
|
1092 |
+
opt_args["momentum"] = 0.8
|
1093 |
+
opt_args["n_iter_without_progress"] = self.n_iter_without_progress
|
1094 |
+
params, kl_divergence, it = _gradient_descent(obj_func, params, **opt_args)
|
1095 |
+
|
1096 |
+
# Save the final number of iterations
|
1097 |
+
self.n_iter_ = it
|
1098 |
+
|
1099 |
+
if self.verbose:
|
1100 |
+
print(
|
1101 |
+
"[t-SNE] KL divergence after %d iterations: %f"
|
1102 |
+
% (it + 1, kl_divergence)
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
X_embedded = params.reshape(n_samples, self.n_components)
|
1106 |
+
self.kl_divergence_ = kl_divergence
|
1107 |
+
|
1108 |
+
return X_embedded
|
1109 |
+
|
1110 |
+
@_fit_context(
|
1111 |
+
# TSNE.metric is not validated yet
|
1112 |
+
prefer_skip_nested_validation=False
|
1113 |
+
)
|
1114 |
+
def fit_transform(self, X, y=None):
|
1115 |
+
"""Fit X into an embedded space and return that transformed output.
|
1116 |
+
|
1117 |
+
Parameters
|
1118 |
+
----------
|
1119 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
1120 |
+
(n_samples, n_samples)
|
1121 |
+
If the metric is 'precomputed' X must be a square distance
|
1122 |
+
matrix. Otherwise it contains a sample per row. If the method
|
1123 |
+
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
|
1124 |
+
or 'coo'. If the method is 'barnes_hut' and the metric is
|
1125 |
+
'precomputed', X may be a precomputed sparse graph.
|
1126 |
+
|
1127 |
+
y : None
|
1128 |
+
Ignored.
|
1129 |
+
|
1130 |
+
Returns
|
1131 |
+
-------
|
1132 |
+
X_new : ndarray of shape (n_samples, n_components)
|
1133 |
+
Embedding of the training data in low-dimensional space.
|
1134 |
+
"""
|
1135 |
+
self._check_params_vs_input(X)
|
1136 |
+
embedding = self._fit(X)
|
1137 |
+
self.embedding_ = embedding
|
1138 |
+
return self.embedding_
|
1139 |
+
|
1140 |
+
@_fit_context(
|
1141 |
+
# TSNE.metric is not validated yet
|
1142 |
+
prefer_skip_nested_validation=False
|
1143 |
+
)
|
1144 |
+
def fit(self, X, y=None):
|
1145 |
+
"""Fit X into an embedded space.
|
1146 |
+
|
1147 |
+
Parameters
|
1148 |
+
----------
|
1149 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
|
1150 |
+
(n_samples, n_samples)
|
1151 |
+
If the metric is 'precomputed' X must be a square distance
|
1152 |
+
matrix. Otherwise it contains a sample per row. If the method
|
1153 |
+
is 'exact', X may be a sparse matrix of type 'csr', 'csc'
|
1154 |
+
or 'coo'. If the method is 'barnes_hut' and the metric is
|
1155 |
+
'precomputed', X may be a precomputed sparse graph.
|
1156 |
+
|
1157 |
+
y : None
|
1158 |
+
Ignored.
|
1159 |
+
|
1160 |
+
Returns
|
1161 |
+
-------
|
1162 |
+
self : object
|
1163 |
+
Fitted estimator.
|
1164 |
+
"""
|
1165 |
+
self.fit_transform(X)
|
1166 |
+
return self
|
1167 |
+
|
1168 |
+
@property
|
1169 |
+
def _n_features_out(self):
|
1170 |
+
"""Number of transformed output features."""
|
1171 |
+
return self.embedding_.shape[1]
|
1172 |
+
|
1173 |
+
def _more_tags(self):
|
1174 |
+
return {"pairwise": self.metric == "precomputed"}
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/_utils.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (225 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_isomap.cpython-310.pyc
ADDED
Binary file (9.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_locally_linear.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_mds.cpython-310.pyc
ADDED
Binary file (3.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_spectral_embedding.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/__pycache__/test_t_sne.cpython-310.pyc
ADDED
Binary file (27.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/manifold/tests/test_isomap.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from itertools import product
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
from scipy.sparse import rand as sparse_rand
|
7 |
+
|
8 |
+
from sklearn import clone, datasets, manifold, neighbors, pipeline, preprocessing
|
9 |
+
from sklearn.datasets import make_blobs
|
10 |
+
from sklearn.metrics.pairwise import pairwise_distances
|
11 |
+
from sklearn.utils._testing import (
|
12 |
+
assert_allclose,
|
13 |
+
assert_allclose_dense_sparse,
|
14 |
+
assert_array_equal,
|
15 |
+
)
|
16 |
+
from sklearn.utils.fixes import CSR_CONTAINERS
|
17 |
+
|
18 |
+
eigen_solvers = ["auto", "dense", "arpack"]
|
19 |
+
path_methods = ["auto", "FW", "D"]
|
20 |
+
|
21 |
+
|
22 |
+
def create_sample_data(dtype, n_pts=25, add_noise=False):
|
23 |
+
# grid of equidistant points in 2D, n_components = n_dim
|
24 |
+
n_per_side = int(math.sqrt(n_pts))
|
25 |
+
X = np.array(list(product(range(n_per_side), repeat=2))).astype(dtype, copy=False)
|
26 |
+
if add_noise:
|
27 |
+
# add noise in a third dimension
|
28 |
+
rng = np.random.RandomState(0)
|
29 |
+
noise = 0.1 * rng.randn(n_pts, 1).astype(dtype, copy=False)
|
30 |
+
X = np.concatenate((X, noise), 1)
|
31 |
+
return X
|
32 |
+
|
33 |
+
|
34 |
+
@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
|
35 |
+
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
36 |
+
@pytest.mark.parametrize("path_method", path_methods)
|
37 |
+
def test_isomap_simple_grid(
|
38 |
+
global_dtype, n_neighbors, radius, eigen_solver, path_method
|
39 |
+
):
|
40 |
+
# Isomap should preserve distances when all neighbors are used
|
41 |
+
n_pts = 25
|
42 |
+
X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=False)
|
43 |
+
|
44 |
+
# distances from each point to all others
|
45 |
+
if n_neighbors is not None:
|
46 |
+
G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance")
|
47 |
+
else:
|
48 |
+
G = neighbors.radius_neighbors_graph(X, radius, mode="distance")
|
49 |
+
|
50 |
+
clf = manifold.Isomap(
|
51 |
+
n_neighbors=n_neighbors,
|
52 |
+
radius=radius,
|
53 |
+
n_components=2,
|
54 |
+
eigen_solver=eigen_solver,
|
55 |
+
path_method=path_method,
|
56 |
+
)
|
57 |
+
clf.fit(X)
|
58 |
+
|
59 |
+
if n_neighbors is not None:
|
60 |
+
G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
|
61 |
+
else:
|
62 |
+
G_iso = neighbors.radius_neighbors_graph(
|
63 |
+
clf.embedding_, radius, mode="distance"
|
64 |
+
)
|
65 |
+
atol = 1e-5 if global_dtype == np.float32 else 0
|
66 |
+
assert_allclose_dense_sparse(G, G_iso, atol=atol)
|
67 |
+
|
68 |
+
|
69 |
+
@pytest.mark.parametrize("n_neighbors, radius", [(24, None), (None, np.inf)])
|
70 |
+
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
71 |
+
@pytest.mark.parametrize("path_method", path_methods)
|
72 |
+
def test_isomap_reconstruction_error(
|
73 |
+
global_dtype, n_neighbors, radius, eigen_solver, path_method
|
74 |
+
):
|
75 |
+
if global_dtype is np.float32:
|
76 |
+
pytest.skip(
|
77 |
+
"Skipping test due to numerical instabilities on float32 data"
|
78 |
+
"from KernelCenterer used in the reconstruction_error method"
|
79 |
+
)
|
80 |
+
|
81 |
+
# Same setup as in test_isomap_simple_grid, with an added dimension
|
82 |
+
n_pts = 25
|
83 |
+
X = create_sample_data(global_dtype, n_pts=n_pts, add_noise=True)
|
84 |
+
|
85 |
+
# compute input kernel
|
86 |
+
if n_neighbors is not None:
|
87 |
+
G = neighbors.kneighbors_graph(X, n_neighbors, mode="distance").toarray()
|
88 |
+
else:
|
89 |
+
G = neighbors.radius_neighbors_graph(X, radius, mode="distance").toarray()
|
90 |
+
centerer = preprocessing.KernelCenterer()
|
91 |
+
K = centerer.fit_transform(-0.5 * G**2)
|
92 |
+
|
93 |
+
clf = manifold.Isomap(
|
94 |
+
n_neighbors=n_neighbors,
|
95 |
+
radius=radius,
|
96 |
+
n_components=2,
|
97 |
+
eigen_solver=eigen_solver,
|
98 |
+
path_method=path_method,
|
99 |
+
)
|
100 |
+
clf.fit(X)
|
101 |
+
|
102 |
+
# compute output kernel
|
103 |
+
if n_neighbors is not None:
|
104 |
+
G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode="distance")
|
105 |
+
else:
|
106 |
+
G_iso = neighbors.radius_neighbors_graph(
|
107 |
+
clf.embedding_, radius, mode="distance"
|
108 |
+
)
|
109 |
+
G_iso = G_iso.toarray()
|
110 |
+
K_iso = centerer.fit_transform(-0.5 * G_iso**2)
|
111 |
+
|
112 |
+
# make sure error agrees
|
113 |
+
reconstruction_error = np.linalg.norm(K - K_iso) / n_pts
|
114 |
+
atol = 1e-5 if global_dtype == np.float32 else 0
|
115 |
+
assert_allclose(reconstruction_error, clf.reconstruction_error(), atol=atol)
|
116 |
+
|
117 |
+
|
118 |
+
@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 0.5)])
|
119 |
+
def test_transform(global_dtype, n_neighbors, radius):
|
120 |
+
n_samples = 200
|
121 |
+
n_components = 10
|
122 |
+
noise_scale = 0.01
|
123 |
+
|
124 |
+
# Create S-curve dataset
|
125 |
+
X, y = datasets.make_s_curve(n_samples, random_state=0)
|
126 |
+
|
127 |
+
X = X.astype(global_dtype, copy=False)
|
128 |
+
|
129 |
+
# Compute isomap embedding
|
130 |
+
iso = manifold.Isomap(
|
131 |
+
n_components=n_components, n_neighbors=n_neighbors, radius=radius
|
132 |
+
)
|
133 |
+
X_iso = iso.fit_transform(X)
|
134 |
+
|
135 |
+
# Re-embed a noisy version of the points
|
136 |
+
rng = np.random.RandomState(0)
|
137 |
+
noise = noise_scale * rng.randn(*X.shape)
|
138 |
+
X_iso2 = iso.transform(X + noise)
|
139 |
+
|
140 |
+
# Make sure the rms error on re-embedding is comparable to noise_scale
|
141 |
+
assert np.sqrt(np.mean((X_iso - X_iso2) ** 2)) < 2 * noise_scale
|
142 |
+
|
143 |
+
|
144 |
+
@pytest.mark.parametrize("n_neighbors, radius", [(2, None), (None, 10.0)])
|
145 |
+
def test_pipeline(n_neighbors, radius, global_dtype):
|
146 |
+
# check that Isomap works fine as a transformer in a Pipeline
|
147 |
+
# only checks that no error is raised.
|
148 |
+
# TODO check that it actually does something useful
|
149 |
+
X, y = datasets.make_blobs(random_state=0)
|
150 |
+
X = X.astype(global_dtype, copy=False)
|
151 |
+
clf = pipeline.Pipeline(
|
152 |
+
[
|
153 |
+
("isomap", manifold.Isomap(n_neighbors=n_neighbors, radius=radius)),
|
154 |
+
("clf", neighbors.KNeighborsClassifier()),
|
155 |
+
]
|
156 |
+
)
|
157 |
+
clf.fit(X, y)
|
158 |
+
assert 0.9 < clf.score(X, y)
|
159 |
+
|
160 |
+
|
161 |
+
def test_pipeline_with_nearest_neighbors_transformer(global_dtype):
|
162 |
+
# Test chaining NearestNeighborsTransformer and Isomap with
|
163 |
+
# neighbors_algorithm='precomputed'
|
164 |
+
algorithm = "auto"
|
165 |
+
n_neighbors = 10
|
166 |
+
|
167 |
+
X, _ = datasets.make_blobs(random_state=0)
|
168 |
+
X2, _ = datasets.make_blobs(random_state=1)
|
169 |
+
|
170 |
+
X = X.astype(global_dtype, copy=False)
|
171 |
+
X2 = X2.astype(global_dtype, copy=False)
|
172 |
+
|
173 |
+
# compare the chained version and the compact version
|
174 |
+
est_chain = pipeline.make_pipeline(
|
175 |
+
neighbors.KNeighborsTransformer(
|
176 |
+
n_neighbors=n_neighbors, algorithm=algorithm, mode="distance"
|
177 |
+
),
|
178 |
+
manifold.Isomap(n_neighbors=n_neighbors, metric="precomputed"),
|
179 |
+
)
|
180 |
+
est_compact = manifold.Isomap(
|
181 |
+
n_neighbors=n_neighbors, neighbors_algorithm=algorithm
|
182 |
+
)
|
183 |
+
|
184 |
+
Xt_chain = est_chain.fit_transform(X)
|
185 |
+
Xt_compact = est_compact.fit_transform(X)
|
186 |
+
assert_allclose(Xt_chain, Xt_compact)
|
187 |
+
|
188 |
+
Xt_chain = est_chain.transform(X2)
|
189 |
+
Xt_compact = est_compact.transform(X2)
|
190 |
+
assert_allclose(Xt_chain, Xt_compact)
|
191 |
+
|
192 |
+
|
193 |
+
@pytest.mark.parametrize(
|
194 |
+
"metric, p, is_euclidean",
|
195 |
+
[
|
196 |
+
("euclidean", 2, True),
|
197 |
+
("manhattan", 1, False),
|
198 |
+
("minkowski", 1, False),
|
199 |
+
("minkowski", 2, True),
|
200 |
+
(lambda x1, x2: np.sqrt(np.sum(x1**2 + x2**2)), 2, False),
|
201 |
+
],
|
202 |
+
)
|
203 |
+
def test_different_metric(global_dtype, metric, p, is_euclidean):
|
204 |
+
# Isomap must work on various metric parameters work correctly
|
205 |
+
# and must default to euclidean.
|
206 |
+
X, _ = datasets.make_blobs(random_state=0)
|
207 |
+
X = X.astype(global_dtype, copy=False)
|
208 |
+
|
209 |
+
reference = manifold.Isomap().fit_transform(X)
|
210 |
+
embedding = manifold.Isomap(metric=metric, p=p).fit_transform(X)
|
211 |
+
|
212 |
+
if is_euclidean:
|
213 |
+
assert_allclose(embedding, reference)
|
214 |
+
else:
|
215 |
+
with pytest.raises(AssertionError, match="Not equal to tolerance"):
|
216 |
+
assert_allclose(embedding, reference)
|
217 |
+
|
218 |
+
|
219 |
+
def test_isomap_clone_bug():
|
220 |
+
# regression test for bug reported in #6062
|
221 |
+
model = manifold.Isomap()
|
222 |
+
for n_neighbors in [10, 15, 20]:
|
223 |
+
model.set_params(n_neighbors=n_neighbors)
|
224 |
+
model.fit(np.random.rand(50, 2))
|
225 |
+
assert model.nbrs_.n_neighbors == n_neighbors
|
226 |
+
|
227 |
+
|
228 |
+
@pytest.mark.parametrize("eigen_solver", eigen_solvers)
|
229 |
+
@pytest.mark.parametrize("path_method", path_methods)
|
230 |
+
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
|
231 |
+
def test_sparse_input(
|
232 |
+
global_dtype, eigen_solver, path_method, global_random_seed, csr_container
|
233 |
+
):
|
234 |
+
# TODO: compare results on dense and sparse data as proposed in:
|
235 |
+
# https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186
|
236 |
+
X = csr_container(
|
237 |
+
sparse_rand(
|
238 |
+
100,
|
239 |
+
3,
|
240 |
+
density=0.1,
|
241 |
+
format="csr",
|
242 |
+
dtype=global_dtype,
|
243 |
+
random_state=global_random_seed,
|
244 |
+
)
|
245 |
+
)
|
246 |
+
|
247 |
+
iso_dense = manifold.Isomap(
|
248 |
+
n_components=2,
|
249 |
+
eigen_solver=eigen_solver,
|
250 |
+
path_method=path_method,
|
251 |
+
n_neighbors=8,
|
252 |
+
)
|
253 |
+
iso_sparse = clone(iso_dense)
|
254 |
+
|
255 |
+
X_trans_dense = iso_dense.fit_transform(X.toarray())
|
256 |
+
X_trans_sparse = iso_sparse.fit_transform(X)
|
257 |
+
|
258 |
+
assert_allclose(X_trans_sparse, X_trans_dense, rtol=1e-4, atol=1e-4)
|
259 |
+
|
260 |
+
|
261 |
+
def test_isomap_fit_precomputed_radius_graph(global_dtype):
|
262 |
+
# Isomap.fit_transform must yield similar result when using
|
263 |
+
# a precomputed distance matrix.
|
264 |
+
|
265 |
+
X, y = datasets.make_s_curve(200, random_state=0)
|
266 |
+
X = X.astype(global_dtype, copy=False)
|
267 |
+
radius = 10
|
268 |
+
|
269 |
+
g = neighbors.radius_neighbors_graph(X, radius=radius, mode="distance")
|
270 |
+
isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="precomputed")
|
271 |
+
isomap.fit(g)
|
272 |
+
precomputed_result = isomap.embedding_
|
273 |
+
|
274 |
+
isomap = manifold.Isomap(n_neighbors=None, radius=radius, metric="minkowski")
|
275 |
+
result = isomap.fit_transform(X)
|
276 |
+
atol = 1e-5 if global_dtype == np.float32 else 0
|
277 |
+
assert_allclose(precomputed_result, result, atol=atol)
|
278 |
+
|
279 |
+
|
280 |
+
def test_isomap_fitted_attributes_dtype(global_dtype):
|
281 |
+
"""Check that the fitted attributes are stored accordingly to the
|
282 |
+
data type of X."""
|
283 |
+
iso = manifold.Isomap(n_neighbors=2)
|
284 |
+
|
285 |
+
X = np.array([[1, 2], [3, 4], [5, 6]], dtype=global_dtype)
|
286 |
+
|
287 |
+
iso.fit(X)
|
288 |
+
|
289 |
+
assert iso.dist_matrix_.dtype == global_dtype
|
290 |
+
assert iso.embedding_.dtype == global_dtype
|
291 |
+
|
292 |
+
|
293 |
+
def test_isomap_dtype_equivalence():
|
294 |
+
"""Check the equivalence of the results with 32 and 64 bits input."""
|
295 |
+
iso_32 = manifold.Isomap(n_neighbors=2)
|
296 |
+
X_32 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float32)
|
297 |
+
iso_32.fit(X_32)
|
298 |
+
|
299 |
+
iso_64 = manifold.Isomap(n_neighbors=2)
|
300 |
+
X_64 = np.array([[1, 2], [3, 4], [5, 6]], dtype=np.float64)
|
301 |
+
iso_64.fit(X_64)
|
302 |
+
|
303 |
+
assert_allclose(iso_32.dist_matrix_, iso_64.dist_matrix_)
|
304 |
+
|
305 |
+
|
306 |
+
def test_isomap_raise_error_when_neighbor_and_radius_both_set():
|
307 |
+
# Isomap.fit_transform must raise a ValueError if
|
308 |
+
# radius and n_neighbors are provided.
|
309 |
+
|
310 |
+
X, _ = datasets.load_digits(return_X_y=True)
|
311 |
+
isomap = manifold.Isomap(n_neighbors=3, radius=5.5)
|
312 |
+
msg = "Both n_neighbors and radius are provided"
|
313 |
+
with pytest.raises(ValueError, match=msg):
|
314 |
+
isomap.fit_transform(X)
|
315 |
+
|
316 |
+
|
317 |
+
def test_multiple_connected_components():
|
318 |
+
# Test that a warning is raised when the graph has multiple components
|
319 |
+
X = np.array([0, 1, 2, 5, 6, 7])[:, None]
|
320 |
+
with pytest.warns(UserWarning, match="number of connected components"):
|
321 |
+
manifold.Isomap(n_neighbors=2).fit(X)
|
322 |
+
|
323 |
+
|
324 |
+
def test_multiple_connected_components_metric_precomputed(global_dtype):
|
325 |
+
# Test that an error is raised when the graph has multiple components
|
326 |
+
# and when X is a precomputed neighbors graph.
|
327 |
+
X = np.array([0, 1, 2, 5, 6, 7])[:, None].astype(global_dtype, copy=False)
|
328 |
+
|
329 |
+
# works with a precomputed distance matrix (dense)
|
330 |
+
X_distances = pairwise_distances(X)
|
331 |
+
with pytest.warns(UserWarning, match="number of connected components"):
|
332 |
+
manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_distances)
|
333 |
+
|
334 |
+
# does not work with a precomputed neighbors graph (sparse)
|
335 |
+
X_graph = neighbors.kneighbors_graph(X, n_neighbors=2, mode="distance")
|
336 |
+
with pytest.raises(RuntimeError, match="number of connected components"):
|
337 |
+
manifold.Isomap(n_neighbors=1, metric="precomputed").fit(X_graph)
|
338 |
+
|
339 |
+
|
340 |
+
def test_get_feature_names_out():
|
341 |
+
"""Check get_feature_names_out for Isomap."""
|
342 |
+
X, y = make_blobs(random_state=0, n_features=4)
|
343 |
+
n_components = 2
|
344 |
+
|
345 |
+
iso = manifold.Isomap(n_components=n_components)
|
346 |
+
iso.fit_transform(X)
|
347 |
+
names = iso.get_feature_names_out()
|
348 |
+
assert_array_equal([f"isomap{i}" for i in range(n_components)], names)
|