Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/__init__.py +3 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py +25 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py +73 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/dynkin_diagram.py +24 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/root_system.py +199 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py +10 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py +9 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py +18 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py +17 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py +17 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py +22 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py +19 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py +19 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py +24 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py +16 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py +35 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_a.py +166 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_b.py +172 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_c.py +171 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_d.py +175 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_e.py +287 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_f.py +162 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_g.py +111 -0
- llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/weyl_group.py +403 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__init__.py +47 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/basisdependent.py +365 -0
- llmeval-env/lib/python3.10/site-packages/sympy/vector/functions.py +517 -0
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
|
3 |
+
__all__ = ['CartanType']
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/cartan_matrix.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import CartanType
|
2 |
+
|
3 |
+
def CartanMatrix(ct):
|
4 |
+
"""Access the Cartan matrix of a specific Lie algebra
|
5 |
+
|
6 |
+
Examples
|
7 |
+
========
|
8 |
+
|
9 |
+
>>> from sympy.liealgebras.cartan_matrix import CartanMatrix
|
10 |
+
>>> CartanMatrix("A2")
|
11 |
+
Matrix([
|
12 |
+
[ 2, -1],
|
13 |
+
[-1, 2]])
|
14 |
+
|
15 |
+
>>> CartanMatrix(['C', 3])
|
16 |
+
Matrix([
|
17 |
+
[ 2, -1, 0],
|
18 |
+
[-1, 2, -1],
|
19 |
+
[ 0, -2, 2]])
|
20 |
+
|
21 |
+
This method works by returning the Cartan matrix
|
22 |
+
which corresponds to Cartan type t.
|
23 |
+
"""
|
24 |
+
|
25 |
+
return CartanType(ct).cartan_matrix()
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/cartan_type.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Atom, Basic
|
2 |
+
|
3 |
+
|
4 |
+
class CartanType_generator():
|
5 |
+
"""
|
6 |
+
Constructor for actually creating things
|
7 |
+
"""
|
8 |
+
def __call__(self, *args):
|
9 |
+
c = args[0]
|
10 |
+
if isinstance(c, list):
|
11 |
+
letter, n = c[0], int(c[1])
|
12 |
+
elif isinstance(c, str):
|
13 |
+
letter, n = c[0], int(c[1:])
|
14 |
+
else:
|
15 |
+
raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])")
|
16 |
+
|
17 |
+
if n < 0:
|
18 |
+
raise ValueError("Lie algebra rank cannot be negative")
|
19 |
+
if letter == "A":
|
20 |
+
from . import type_a
|
21 |
+
return type_a.TypeA(n)
|
22 |
+
if letter == "B":
|
23 |
+
from . import type_b
|
24 |
+
return type_b.TypeB(n)
|
25 |
+
|
26 |
+
if letter == "C":
|
27 |
+
from . import type_c
|
28 |
+
return type_c.TypeC(n)
|
29 |
+
|
30 |
+
if letter == "D":
|
31 |
+
from . import type_d
|
32 |
+
return type_d.TypeD(n)
|
33 |
+
|
34 |
+
if letter == "E":
|
35 |
+
if n >= 6 and n <= 8:
|
36 |
+
from . import type_e
|
37 |
+
return type_e.TypeE(n)
|
38 |
+
|
39 |
+
if letter == "F":
|
40 |
+
if n == 4:
|
41 |
+
from . import type_f
|
42 |
+
return type_f.TypeF(n)
|
43 |
+
|
44 |
+
if letter == "G":
|
45 |
+
if n == 2:
|
46 |
+
from . import type_g
|
47 |
+
return type_g.TypeG(n)
|
48 |
+
|
49 |
+
CartanType = CartanType_generator()
|
50 |
+
|
51 |
+
|
52 |
+
class Standard_Cartan(Atom):
|
53 |
+
"""
|
54 |
+
Concrete base class for Cartan types such as A4, etc
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __new__(cls, series, n):
|
58 |
+
obj = Basic.__new__(cls)
|
59 |
+
obj.n = n
|
60 |
+
obj.series = series
|
61 |
+
return obj
|
62 |
+
|
63 |
+
def rank(self):
|
64 |
+
"""
|
65 |
+
Returns the rank of the Lie algebra
|
66 |
+
"""
|
67 |
+
return self.n
|
68 |
+
|
69 |
+
def series(self):
|
70 |
+
"""
|
71 |
+
Returns the type of the Lie algebra
|
72 |
+
"""
|
73 |
+
return self.series
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/dynkin_diagram.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import CartanType
|
2 |
+
|
3 |
+
|
4 |
+
def DynkinDiagram(t):
|
5 |
+
"""Display the Dynkin diagram of a given Lie algebra
|
6 |
+
|
7 |
+
Works by generating the CartanType for the input, t, and then returning the
|
8 |
+
Dynkin diagram method from the individual classes.
|
9 |
+
|
10 |
+
Examples
|
11 |
+
========
|
12 |
+
|
13 |
+
>>> from sympy.liealgebras.dynkin_diagram import DynkinDiagram
|
14 |
+
>>> print(DynkinDiagram("A3"))
|
15 |
+
0---0---0
|
16 |
+
1 2 3
|
17 |
+
|
18 |
+
>>> print(DynkinDiagram("B4"))
|
19 |
+
0---0---0=>=0
|
20 |
+
1 2 3 4
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
return CartanType(t).dynkin_diagram()
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/root_system.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import CartanType
|
2 |
+
from sympy.core.basic import Atom
|
3 |
+
|
4 |
+
class RootSystem(Atom):
|
5 |
+
"""Represent the root system of a simple Lie algebra
|
6 |
+
|
7 |
+
Every simple Lie algebra has a unique root system. To find the root
|
8 |
+
system, we first consider the Cartan subalgebra of g, which is the maximal
|
9 |
+
abelian subalgebra, and consider the adjoint action of g on this
|
10 |
+
subalgebra. There is a root system associated with this action. Now, a
|
11 |
+
root system over a vector space V is a set of finite vectors Phi (called
|
12 |
+
roots), which satisfy:
|
13 |
+
|
14 |
+
1. The roots span V
|
15 |
+
2. The only scalar multiples of x in Phi are x and -x
|
16 |
+
3. For every x in Phi, the set Phi is closed under reflection
|
17 |
+
through the hyperplane perpendicular to x.
|
18 |
+
4. If x and y are roots in Phi, then the projection of y onto
|
19 |
+
the line through x is a half-integral multiple of x.
|
20 |
+
|
21 |
+
Now, there is a subset of Phi, which we will call Delta, such that:
|
22 |
+
1. Delta is a basis of V
|
23 |
+
2. Each root x in Phi can be written x = sum k_y y for y in Delta
|
24 |
+
|
25 |
+
The elements of Delta are called the simple roots.
|
26 |
+
Therefore, we see that the simple roots span the root space of a given
|
27 |
+
simple Lie algebra.
|
28 |
+
|
29 |
+
References
|
30 |
+
==========
|
31 |
+
|
32 |
+
.. [1] https://en.wikipedia.org/wiki/Root_system
|
33 |
+
.. [2] Lie Algebras and Representation Theory - Humphreys
|
34 |
+
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __new__(cls, cartantype):
|
38 |
+
"""Create a new RootSystem object
|
39 |
+
|
40 |
+
This method assigns an attribute called cartan_type to each instance of
|
41 |
+
a RootSystem object. When an instance of RootSystem is called, it
|
42 |
+
needs an argument, which should be an instance of a simple Lie algebra.
|
43 |
+
We then take the CartanType of this argument and set it as the
|
44 |
+
cartan_type attribute of the RootSystem instance.
|
45 |
+
|
46 |
+
"""
|
47 |
+
obj = Atom.__new__(cls)
|
48 |
+
obj.cartan_type = CartanType(cartantype)
|
49 |
+
return obj
|
50 |
+
|
51 |
+
def simple_roots(self):
|
52 |
+
"""Generate the simple roots of the Lie algebra
|
53 |
+
|
54 |
+
The rank of the Lie algebra determines the number of simple roots that
|
55 |
+
it has. This method obtains the rank of the Lie algebra, and then uses
|
56 |
+
the simple_root method from the Lie algebra classes to generate all the
|
57 |
+
simple roots.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
========
|
61 |
+
|
62 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
63 |
+
>>> c = RootSystem("A3")
|
64 |
+
>>> roots = c.simple_roots()
|
65 |
+
>>> roots
|
66 |
+
{1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
|
67 |
+
|
68 |
+
"""
|
69 |
+
n = self.cartan_type.rank()
|
70 |
+
roots = {}
|
71 |
+
for i in range(1, n+1):
|
72 |
+
root = self.cartan_type.simple_root(i)
|
73 |
+
roots[i] = root
|
74 |
+
return roots
|
75 |
+
|
76 |
+
|
77 |
+
def all_roots(self):
|
78 |
+
"""Generate all the roots of a given root system
|
79 |
+
|
80 |
+
The result is a dictionary where the keys are integer numbers. It
|
81 |
+
generates the roots by getting the dictionary of all positive roots
|
82 |
+
from the bases classes, and then taking each root, and multiplying it
|
83 |
+
by -1 and adding it to the dictionary. In this way all the negative
|
84 |
+
roots are generated.
|
85 |
+
|
86 |
+
"""
|
87 |
+
alpha = self.cartan_type.positive_roots()
|
88 |
+
keys = list(alpha.keys())
|
89 |
+
k = max(keys)
|
90 |
+
for val in keys:
|
91 |
+
k += 1
|
92 |
+
root = alpha[val]
|
93 |
+
newroot = [-x for x in root]
|
94 |
+
alpha[k] = newroot
|
95 |
+
return alpha
|
96 |
+
|
97 |
+
def root_space(self):
|
98 |
+
"""Return the span of the simple roots
|
99 |
+
|
100 |
+
The root space is the vector space spanned by the simple roots, i.e. it
|
101 |
+
is a vector space with a distinguished basis, the simple roots. This
|
102 |
+
method returns a string that represents the root space as the span of
|
103 |
+
the simple roots, alpha[1],...., alpha[n].
|
104 |
+
|
105 |
+
Examples
|
106 |
+
========
|
107 |
+
|
108 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
109 |
+
>>> c = RootSystem("A3")
|
110 |
+
>>> c.root_space()
|
111 |
+
'alpha[1] + alpha[2] + alpha[3]'
|
112 |
+
|
113 |
+
"""
|
114 |
+
n = self.cartan_type.rank()
|
115 |
+
rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1))
|
116 |
+
return rs
|
117 |
+
|
118 |
+
def add_simple_roots(self, root1, root2):
|
119 |
+
"""Add two simple roots together
|
120 |
+
|
121 |
+
The function takes as input two integers, root1 and root2. It then
|
122 |
+
uses these integers as keys in the dictionary of simple roots, and gets
|
123 |
+
the corresponding simple roots, and then adds them together.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
129 |
+
>>> c = RootSystem("A3")
|
130 |
+
>>> newroot = c.add_simple_roots(1, 2)
|
131 |
+
>>> newroot
|
132 |
+
[1, 0, -1, 0]
|
133 |
+
|
134 |
+
"""
|
135 |
+
|
136 |
+
alpha = self.simple_roots()
|
137 |
+
if root1 > len(alpha) or root2 > len(alpha):
|
138 |
+
raise ValueError("You've used a root that doesn't exist!")
|
139 |
+
a1 = alpha[root1]
|
140 |
+
a2 = alpha[root2]
|
141 |
+
newroot = [_a1 + _a2 for _a1, _a2 in zip(a1, a2)]
|
142 |
+
return newroot
|
143 |
+
|
144 |
+
def add_as_roots(self, root1, root2):
|
145 |
+
"""Add two roots together if and only if their sum is also a root
|
146 |
+
|
147 |
+
It takes as input two vectors which should be roots. It then computes
|
148 |
+
their sum and checks if it is in the list of all possible roots. If it
|
149 |
+
is, it returns the sum. Otherwise it returns a string saying that the
|
150 |
+
sum is not a root.
|
151 |
+
|
152 |
+
Examples
|
153 |
+
========
|
154 |
+
|
155 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
156 |
+
>>> c = RootSystem("A3")
|
157 |
+
>>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1])
|
158 |
+
[1, 0, 0, -1]
|
159 |
+
>>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1])
|
160 |
+
'The sum of these two roots is not a root'
|
161 |
+
|
162 |
+
"""
|
163 |
+
alpha = self.all_roots()
|
164 |
+
newroot = [r1 + r2 for r1, r2 in zip(root1, root2)]
|
165 |
+
if newroot in alpha.values():
|
166 |
+
return newroot
|
167 |
+
else:
|
168 |
+
return "The sum of these two roots is not a root"
|
169 |
+
|
170 |
+
|
171 |
+
def cartan_matrix(self):
|
172 |
+
"""Cartan matrix of Lie algebra associated with this root system
|
173 |
+
|
174 |
+
Examples
|
175 |
+
========
|
176 |
+
|
177 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
178 |
+
>>> c = RootSystem("A3")
|
179 |
+
>>> c.cartan_matrix()
|
180 |
+
Matrix([
|
181 |
+
[ 2, -1, 0],
|
182 |
+
[-1, 2, -1],
|
183 |
+
[ 0, -1, 2]])
|
184 |
+
"""
|
185 |
+
return self.cartan_type.cartan_matrix()
|
186 |
+
|
187 |
+
def dynkin_diagram(self):
|
188 |
+
"""Dynkin diagram of the Lie algebra associated with this root system
|
189 |
+
|
190 |
+
Examples
|
191 |
+
========
|
192 |
+
|
193 |
+
>>> from sympy.liealgebras.root_system import RootSystem
|
194 |
+
>>> c = RootSystem("A3")
|
195 |
+
>>> print(c.dynkin_diagram())
|
196 |
+
0---0---0
|
197 |
+
1 2 3
|
198 |
+
"""
|
199 |
+
return self.cartan_type.dynkin_diagram()
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc
ADDED
Binary file (598 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc
ADDED
Binary file (1.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc
ADDED
Binary file (921 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc
ADDED
Binary file (1.72 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_matrix.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_matrix import CartanMatrix
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_CartanMatrix():
|
5 |
+
c = CartanMatrix("A3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
|
7 |
+
assert c == m
|
8 |
+
a = CartanMatrix(["G",2])
|
9 |
+
mt = Matrix(2, 2, [2, -1, -3, 2])
|
10 |
+
assert a == mt
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_cartan_type.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType, Standard_Cartan
|
2 |
+
|
3 |
+
def test_Standard_Cartan():
|
4 |
+
c = CartanType("A4")
|
5 |
+
assert c.rank() == 4
|
6 |
+
assert c.series == "A"
|
7 |
+
m = Standard_Cartan("A", 2)
|
8 |
+
assert m.rank() == 2
|
9 |
+
assert m.series == "A"
|
10 |
+
b = CartanType("B12")
|
11 |
+
assert b.rank() == 12
|
12 |
+
assert b.series == "B"
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_dynkin_diagram.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.dynkin_diagram import DynkinDiagram
|
2 |
+
|
3 |
+
def test_DynkinDiagram():
|
4 |
+
c = DynkinDiagram("A3")
|
5 |
+
diag = "0---0---0\n1 2 3"
|
6 |
+
assert c == diag
|
7 |
+
ct = DynkinDiagram(["B", 3])
|
8 |
+
diag2 = "0---0=>=0\n1 2 3"
|
9 |
+
assert ct == diag2
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_root_system.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.root_system import RootSystem
|
2 |
+
from sympy.liealgebras.type_a import TypeA
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
|
5 |
+
def test_root_system():
|
6 |
+
c = RootSystem("A3")
|
7 |
+
assert c.cartan_type == TypeA(3)
|
8 |
+
assert c.simple_roots() == {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]}
|
9 |
+
assert c.root_space() == "alpha[1] + alpha[2] + alpha[3]"
|
10 |
+
assert c.cartan_matrix() == Matrix([[ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]])
|
11 |
+
assert c.dynkin_diagram() == "0---0---0\n1 2 3"
|
12 |
+
assert c.add_simple_roots(1, 2) == [1, 0, -1, 0]
|
13 |
+
assert c.all_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
|
14 |
+
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1],
|
15 |
+
6: [0, 0, 1, -1], 7: [-1, 1, 0, 0], 8: [-1, 0, 1, 0],
|
16 |
+
9: [-1, 0, 0, 1], 10: [0, -1, 1, 0],
|
17 |
+
11: [0, -1, 0, 1], 12: [0, 0, -1, 1]}
|
18 |
+
assert c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) == [1, 0, 0, -1]
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_A.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_A():
|
5 |
+
c = CartanType("A3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -1, 0, -1, 2])
|
7 |
+
assert m == c.cartan_matrix()
|
8 |
+
assert c.basis() == 8
|
9 |
+
assert c.roots() == 12
|
10 |
+
assert c.dimension() == 4
|
11 |
+
assert c.simple_root(1) == [1, -1, 0, 0]
|
12 |
+
assert c.highest_root() == [1, 0, 0, -1]
|
13 |
+
assert c.lie_algebra() == "su(4)"
|
14 |
+
diag = "0---0---0\n1 2 3"
|
15 |
+
assert c.dynkin_diagram() == diag
|
16 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 0, -1, 0],
|
17 |
+
3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_B.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_B():
|
5 |
+
c = CartanType("B3")
|
6 |
+
m = Matrix(3, 3, [2, -1, 0, -1, 2, -2, 0, -1, 2])
|
7 |
+
assert m == c.cartan_matrix()
|
8 |
+
assert c.dimension() == 3
|
9 |
+
assert c.roots() == 18
|
10 |
+
assert c.simple_root(3) == [0, 0, 1]
|
11 |
+
assert c.basis() == 3
|
12 |
+
assert c.lie_algebra() == "so(6)"
|
13 |
+
diag = "0---0=>=0\n1 2 3"
|
14 |
+
assert c.dynkin_diagram() == diag
|
15 |
+
assert c.positive_roots() == {1: [1, -1, 0], 2: [1, 1, 0], 3: [1, 0, -1],
|
16 |
+
4: [1, 0, 1], 5: [0, 1, -1], 6: [0, 1, 1], 7: [1, 0, 0],
|
17 |
+
8: [0, 1, 0], 9: [0, 0, 1]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_C.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_C():
|
5 |
+
c = CartanType("C4")
|
6 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -2, 2])
|
7 |
+
assert c.cartan_matrix() == m
|
8 |
+
assert c.dimension() == 4
|
9 |
+
assert c.simple_root(4) == [0, 0, 0, 2]
|
10 |
+
assert c.roots() == 32
|
11 |
+
assert c.basis() == 36
|
12 |
+
assert c.lie_algebra() == "sp(8)"
|
13 |
+
t = CartanType(['C', 3])
|
14 |
+
assert t.dimension() == 3
|
15 |
+
diag = "0---0---0=<=0\n1 2 3 4"
|
16 |
+
assert c.dynkin_diagram() == diag
|
17 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
|
18 |
+
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1],
|
19 |
+
6: [1, 0, 0, 1], 7: [0, 1, -1, 0], 8: [0, 1, 1, 0],
|
20 |
+
9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
|
21 |
+
12: [0, 0, 1, 1], 13: [2, 0, 0, 0], 14: [0, 2, 0, 0], 15: [0, 0, 2, 0],
|
22 |
+
16: [0, 0, 0, 2]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_D.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
def test_type_D():
|
7 |
+
c = CartanType("D4")
|
8 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -1, -1, 0, -1, 2, 0, 0, -1, 0, 2])
|
9 |
+
assert c.cartan_matrix() == m
|
10 |
+
assert c.basis() == 6
|
11 |
+
assert c.lie_algebra() == "so(8)"
|
12 |
+
assert c.roots() == 24
|
13 |
+
assert c.simple_root(3) == [0, 0, 1, -1]
|
14 |
+
diag = " 3\n 0\n |\n |\n0---0---0\n1 2 4"
|
15 |
+
assert diag == c.dynkin_diagram()
|
16 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0],
|
17 |
+
3: [1, 0, -1, 0], 4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1],
|
18 |
+
7: [0, 1, -1, 0], 8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1],
|
19 |
+
11: [0, 0, 1, -1], 12: [0, 0, 1, 1]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_E.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_type_E():
|
5 |
+
c = CartanType("E6")
|
6 |
+
m = Matrix(6, 6, [2, 0, -1, 0, 0, 0, 0, 2, 0, -1, 0, 0,
|
7 |
+
-1, 0, 2, -1, 0, 0, 0, -1, -1, 2, -1, 0, 0, 0, 0,
|
8 |
+
-1, 2, -1, 0, 0, 0, 0, -1, 2])
|
9 |
+
assert c.cartan_matrix() == m
|
10 |
+
assert c.dimension() == 8
|
11 |
+
assert c.simple_root(6) == [0, 0, 0, -1, 1, 0, 0, 0]
|
12 |
+
assert c.roots() == 72
|
13 |
+
assert c.basis() == 78
|
14 |
+
diag = " "*8 + "2\n" + " "*8 + "0\n" + " "*8 + "|\n" + " "*8 + "|\n"
|
15 |
+
diag += "---".join("0" for i in range(1, 6))+"\n"
|
16 |
+
diag += "1 " + " ".join(str(i) for i in range(3, 7))
|
17 |
+
assert c.dynkin_diagram() == diag
|
18 |
+
posroots = c.positive_roots()
|
19 |
+
assert posroots[8] == [1, 0, 0, 0, 1, 0, 0, 0]
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_F.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import CartanType
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
from sympy.core.backend import S
|
4 |
+
|
5 |
+
def test_type_F():
|
6 |
+
c = CartanType("F4")
|
7 |
+
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
|
8 |
+
assert c.cartan_matrix() == m
|
9 |
+
assert c.dimension() == 4
|
10 |
+
assert c.simple_root(1) == [1, -1, 0, 0]
|
11 |
+
assert c.simple_root(2) == [0, 1, -1, 0]
|
12 |
+
assert c.simple_root(3) == [0, 0, 0, 1]
|
13 |
+
assert c.simple_root(4) == [-S.Half, -S.Half, -S.Half, -S.Half]
|
14 |
+
assert c.roots() == 48
|
15 |
+
assert c.basis() == 52
|
16 |
+
diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
|
17 |
+
assert c.dynkin_diagram() == diag
|
18 |
+
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
|
19 |
+
4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
|
20 |
+
8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
|
21 |
+
12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
|
22 |
+
16: [0, 0, 0, 1], 17: [S.Half, S.Half, S.Half, S.Half], 18: [S.Half, -S.Half, S.Half, S.Half],
|
23 |
+
19: [S.Half, S.Half, -S.Half, S.Half], 20: [S.Half, S.Half, S.Half, -S.Half], 21: [S.Half, S.Half, -S.Half, -S.Half],
|
24 |
+
22: [S.Half, -S.Half, S.Half, -S.Half], 23: [S.Half, -S.Half, -S.Half, S.Half], 24: [S.Half, -S.Half, -S.Half, -S.Half]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_type_G.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
from sympy.liealgebras.cartan_type import CartanType
|
3 |
+
from sympy.matrices import Matrix
|
4 |
+
|
5 |
+
def test_type_G():
|
6 |
+
c = CartanType("G2")
|
7 |
+
m = Matrix(2, 2, [2, -1, -3, 2])
|
8 |
+
assert c.cartan_matrix() == m
|
9 |
+
assert c.simple_root(2) == [1, -2, 1]
|
10 |
+
assert c.basis() == 14
|
11 |
+
assert c.roots() == 12
|
12 |
+
assert c.dimension() == 3
|
13 |
+
diag = "0≡<≡0\n1 2"
|
14 |
+
assert diag == c.dynkin_diagram()
|
15 |
+
assert c.positive_roots() == {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0],
|
16 |
+
4: [1, 0, 1], 5: [1, 1, -2], 6: [2, -1, -1]}
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/tests/test_weyl_group.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.weyl_group import WeylGroup
|
2 |
+
from sympy.matrices import Matrix
|
3 |
+
|
4 |
+
def test_weyl_group():
|
5 |
+
c = WeylGroup("A3")
|
6 |
+
assert c.matrix_form('r1*r2') == Matrix([[0, 0, 1, 0], [1, 0, 0, 0],
|
7 |
+
[0, 1, 0, 0], [0, 0, 0, 1]])
|
8 |
+
assert c.generators() == ['r1', 'r2', 'r3']
|
9 |
+
assert c.group_order() == 24.0
|
10 |
+
assert c.group_name() == "S4: the symmetric group acting on 4 elements."
|
11 |
+
assert c.coxeter_diagram() == "0---0---0\n1 2 3"
|
12 |
+
assert c.element_order('r1*r2*r3') == 4
|
13 |
+
assert c.element_order('r1*r3*r2*r3') == 3
|
14 |
+
d = WeylGroup("B5")
|
15 |
+
assert d.group_order() == 3840
|
16 |
+
assert d.element_order('r1*r2*r4*r5') == 12
|
17 |
+
assert d.matrix_form('r2*r3') == Matrix([[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
|
18 |
+
[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
|
19 |
+
assert d.element_order('r1*r2*r1*r3*r5') == 6
|
20 |
+
e = WeylGroup("D5")
|
21 |
+
assert e.element_order('r2*r3*r5') == 4
|
22 |
+
assert e.matrix_form('r2*r3*r5') == Matrix([[1, 0, 0, 0, 0], [0, 0, 0, 0, -1],
|
23 |
+
[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, -1, 0]])
|
24 |
+
f = WeylGroup("G2")
|
25 |
+
assert f.element_order('r1*r2*r1*r2') == 3
|
26 |
+
assert f.element_order('r2*r1*r1*r2') == 1
|
27 |
+
|
28 |
+
assert f.matrix_form('r1*r2*r1*r2') == Matrix([[0, 1, 0], [0, 0, 1], [1, 0, 0]])
|
29 |
+
g = WeylGroup("F4")
|
30 |
+
assert g.matrix_form('r2*r3') == Matrix([[1, 0, 0, 0], [0, 1, 0, 0],
|
31 |
+
[0, 0, 0, -1], [0, 0, 1, 0]])
|
32 |
+
|
33 |
+
assert g.element_order('r2*r3') == 4
|
34 |
+
h = WeylGroup("E6")
|
35 |
+
assert h.group_order() == 51840
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_a.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.liealgebras.cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
|
5 |
+
class TypeA(Standard_Cartan):
|
6 |
+
"""
|
7 |
+
This class contains the information about
|
8 |
+
the A series of simple Lie algebras.
|
9 |
+
====
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __new__(cls, n):
|
13 |
+
if n < 1:
|
14 |
+
raise ValueError("n cannot be less than 1")
|
15 |
+
return Standard_Cartan.__new__(cls, "A", n)
|
16 |
+
|
17 |
+
|
18 |
+
def dimension(self):
|
19 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
25 |
+
>>> c = CartanType("A4")
|
26 |
+
>>> c.dimension()
|
27 |
+
5
|
28 |
+
"""
|
29 |
+
return self.n+1
|
30 |
+
|
31 |
+
|
32 |
+
def basic_root(self, i, j):
|
33 |
+
"""
|
34 |
+
This is a method just to generate roots
|
35 |
+
with a 1 iin the ith position and a -1
|
36 |
+
in the jth position.
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
n = self.n
|
41 |
+
root = [0]*(n+1)
|
42 |
+
root[i] = 1
|
43 |
+
root[j] = -1
|
44 |
+
return root
|
45 |
+
|
46 |
+
def simple_root(self, i):
|
47 |
+
"""
|
48 |
+
Every lie algebra has a unique root system.
|
49 |
+
Given a root system Q, there is a subset of the
|
50 |
+
roots such that an element of Q is called a
|
51 |
+
simple root if it cannot be written as the sum
|
52 |
+
of two elements in Q. If we let D denote the
|
53 |
+
set of simple roots, then it is clear that every
|
54 |
+
element of Q can be written as a linear combination
|
55 |
+
of elements of D with all coefficients non-negative.
|
56 |
+
|
57 |
+
In A_n the ith simple root is the root which has a 1
|
58 |
+
in the ith position, a -1 in the (i+1)th position,
|
59 |
+
and zeroes elsewhere.
|
60 |
+
|
61 |
+
This method returns the ith simple root for the A series.
|
62 |
+
|
63 |
+
Examples
|
64 |
+
========
|
65 |
+
|
66 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
67 |
+
>>> c = CartanType("A4")
|
68 |
+
>>> c.simple_root(1)
|
69 |
+
[1, -1, 0, 0, 0]
|
70 |
+
|
71 |
+
"""
|
72 |
+
|
73 |
+
return self.basic_root(i-1, i)
|
74 |
+
|
75 |
+
def positive_roots(self):
|
76 |
+
"""
|
77 |
+
This method generates all the positive roots of
|
78 |
+
A_n. This is half of all of the roots of A_n;
|
79 |
+
by multiplying all the positive roots by -1 we
|
80 |
+
get the negative roots.
|
81 |
+
|
82 |
+
Examples
|
83 |
+
========
|
84 |
+
|
85 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
86 |
+
>>> c = CartanType("A3")
|
87 |
+
>>> c.positive_roots()
|
88 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
89 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
90 |
+
"""
|
91 |
+
|
92 |
+
n = self.n
|
93 |
+
posroots = {}
|
94 |
+
k = 0
|
95 |
+
for i in range(0, n):
|
96 |
+
for j in range(i+1, n+1):
|
97 |
+
k += 1
|
98 |
+
posroots[k] = self.basic_root(i, j)
|
99 |
+
return posroots
|
100 |
+
|
101 |
+
def highest_root(self):
|
102 |
+
"""
|
103 |
+
Returns the highest weight root for A_n
|
104 |
+
"""
|
105 |
+
|
106 |
+
return self.basic_root(0, self.n)
|
107 |
+
|
108 |
+
def roots(self):
|
109 |
+
"""
|
110 |
+
Returns the total number of roots for A_n
|
111 |
+
"""
|
112 |
+
n = self.n
|
113 |
+
return n*(n+1)
|
114 |
+
|
115 |
+
def cartan_matrix(self):
|
116 |
+
"""
|
117 |
+
Returns the Cartan matrix for A_n.
|
118 |
+
The Cartan matrix matrix for a Lie algebra is
|
119 |
+
generated by assigning an ordering to the simple
|
120 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
121 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
122 |
+
|
123 |
+
Examples
|
124 |
+
========
|
125 |
+
|
126 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
127 |
+
>>> c = CartanType('A4')
|
128 |
+
>>> c.cartan_matrix()
|
129 |
+
Matrix([
|
130 |
+
[ 2, -1, 0, 0],
|
131 |
+
[-1, 2, -1, 0],
|
132 |
+
[ 0, -1, 2, -1],
|
133 |
+
[ 0, 0, -1, 2]])
|
134 |
+
|
135 |
+
"""
|
136 |
+
|
137 |
+
n = self.n
|
138 |
+
m = 2 * eye(n)
|
139 |
+
i = 1
|
140 |
+
while i < n-1:
|
141 |
+
m[i, i+1] = -1
|
142 |
+
m[i, i-1] = -1
|
143 |
+
i += 1
|
144 |
+
m[0,1] = -1
|
145 |
+
m[n-1, n-2] = -1
|
146 |
+
return m
|
147 |
+
|
148 |
+
def basis(self):
|
149 |
+
"""
|
150 |
+
Returns the number of independent generators of A_n
|
151 |
+
"""
|
152 |
+
n = self.n
|
153 |
+
return n**2 - 1
|
154 |
+
|
155 |
+
def lie_algebra(self):
|
156 |
+
"""
|
157 |
+
Returns the Lie algebra associated with A_n
|
158 |
+
"""
|
159 |
+
n = self.n
|
160 |
+
return "su(" + str(n + 1) + ")"
|
161 |
+
|
162 |
+
def dynkin_diagram(self):
|
163 |
+
n = self.n
|
164 |
+
diag = "---".join("0" for i in range(1, n+1)) + "\n"
|
165 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
166 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_b.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeB(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 2:
|
8 |
+
raise ValueError("n cannot be less than 2")
|
9 |
+
return Standard_Cartan.__new__(cls, "B", n)
|
10 |
+
|
11 |
+
def dimension(self):
|
12 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
13 |
+
|
14 |
+
Examples
|
15 |
+
========
|
16 |
+
|
17 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
18 |
+
>>> c = CartanType("B3")
|
19 |
+
>>> c.dimension()
|
20 |
+
3
|
21 |
+
"""
|
22 |
+
|
23 |
+
return self.n
|
24 |
+
|
25 |
+
def basic_root(self, i, j):
|
26 |
+
"""
|
27 |
+
This is a method just to generate roots
|
28 |
+
with a 1 iin the ith position and a -1
|
29 |
+
in the jth position.
|
30 |
+
|
31 |
+
"""
|
32 |
+
root = [0]*self.n
|
33 |
+
root[i] = 1
|
34 |
+
root[j] = -1
|
35 |
+
return root
|
36 |
+
|
37 |
+
def simple_root(self, i):
|
38 |
+
"""
|
39 |
+
Every lie algebra has a unique root system.
|
40 |
+
Given a root system Q, there is a subset of the
|
41 |
+
roots such that an element of Q is called a
|
42 |
+
simple root if it cannot be written as the sum
|
43 |
+
of two elements in Q. If we let D denote the
|
44 |
+
set of simple roots, then it is clear that every
|
45 |
+
element of Q can be written as a linear combination
|
46 |
+
of elements of D with all coefficients non-negative.
|
47 |
+
|
48 |
+
In B_n the first n-1 simple roots are the same as the
|
49 |
+
roots in A_(n-1) (a 1 in the ith position, a -1 in
|
50 |
+
the (i+1)th position, and zeroes elsewhere). The n-th
|
51 |
+
simple root is the root with a 1 in the nth position
|
52 |
+
and zeroes elsewhere.
|
53 |
+
|
54 |
+
This method returns the ith simple root for the B series.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
========
|
58 |
+
|
59 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
60 |
+
>>> c = CartanType("B3")
|
61 |
+
>>> c.simple_root(2)
|
62 |
+
[0, 1, -1]
|
63 |
+
|
64 |
+
"""
|
65 |
+
n = self.n
|
66 |
+
if i < n:
|
67 |
+
return self.basic_root(i-1, i)
|
68 |
+
else:
|
69 |
+
root = [0]*self.n
|
70 |
+
root[n-1] = 1
|
71 |
+
return root
|
72 |
+
|
73 |
+
def positive_roots(self):
|
74 |
+
"""
|
75 |
+
This method generates all the positive roots of
|
76 |
+
A_n. This is half of all of the roots of B_n;
|
77 |
+
by multiplying all the positive roots by -1 we
|
78 |
+
get the negative roots.
|
79 |
+
|
80 |
+
Examples
|
81 |
+
========
|
82 |
+
|
83 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
84 |
+
>>> c = CartanType("A3")
|
85 |
+
>>> c.positive_roots()
|
86 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
87 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
88 |
+
"""
|
89 |
+
|
90 |
+
n = self.n
|
91 |
+
posroots = {}
|
92 |
+
k = 0
|
93 |
+
for i in range(0, n-1):
|
94 |
+
for j in range(i+1, n):
|
95 |
+
k += 1
|
96 |
+
posroots[k] = self.basic_root(i, j)
|
97 |
+
k += 1
|
98 |
+
root = self.basic_root(i, j)
|
99 |
+
root[j] = 1
|
100 |
+
posroots[k] = root
|
101 |
+
|
102 |
+
for i in range(0, n):
|
103 |
+
k += 1
|
104 |
+
root = [0]*n
|
105 |
+
root[i] = 1
|
106 |
+
posroots[k] = root
|
107 |
+
|
108 |
+
return posroots
|
109 |
+
|
110 |
+
def roots(self):
|
111 |
+
"""
|
112 |
+
Returns the total number of roots for B_n"
|
113 |
+
"""
|
114 |
+
|
115 |
+
n = self.n
|
116 |
+
return 2*(n**2)
|
117 |
+
|
118 |
+
def cartan_matrix(self):
|
119 |
+
"""
|
120 |
+
Returns the Cartan matrix for B_n.
|
121 |
+
The Cartan matrix matrix for a Lie algebra is
|
122 |
+
generated by assigning an ordering to the simple
|
123 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
124 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
125 |
+
|
126 |
+
Examples
|
127 |
+
========
|
128 |
+
|
129 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
130 |
+
>>> c = CartanType('B4')
|
131 |
+
>>> c.cartan_matrix()
|
132 |
+
Matrix([
|
133 |
+
[ 2, -1, 0, 0],
|
134 |
+
[-1, 2, -1, 0],
|
135 |
+
[ 0, -1, 2, -2],
|
136 |
+
[ 0, 0, -1, 2]])
|
137 |
+
|
138 |
+
"""
|
139 |
+
|
140 |
+
n = self.n
|
141 |
+
m = 2* eye(n)
|
142 |
+
i = 1
|
143 |
+
while i < n-1:
|
144 |
+
m[i, i+1] = -1
|
145 |
+
m[i, i-1] = -1
|
146 |
+
i += 1
|
147 |
+
m[0, 1] = -1
|
148 |
+
m[n-2, n-1] = -2
|
149 |
+
m[n-1, n-2] = -1
|
150 |
+
return m
|
151 |
+
|
152 |
+
def basis(self):
|
153 |
+
"""
|
154 |
+
Returns the number of independent generators of B_n
|
155 |
+
"""
|
156 |
+
|
157 |
+
n = self.n
|
158 |
+
return (n**2 - n)/2
|
159 |
+
|
160 |
+
def lie_algebra(self):
|
161 |
+
"""
|
162 |
+
Returns the Lie algebra associated with B_n
|
163 |
+
"""
|
164 |
+
|
165 |
+
n = self.n
|
166 |
+
return "so(" + str(2*n) + ")"
|
167 |
+
|
168 |
+
def dynkin_diagram(self):
|
169 |
+
n = self.n
|
170 |
+
diag = "---".join("0" for i in range(1, n)) + "=>=0\n"
|
171 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
172 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_c.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeC(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 3:
|
8 |
+
raise ValueError("n cannot be less than 3")
|
9 |
+
return Standard_Cartan.__new__(cls, "C", n)
|
10 |
+
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("C3")
|
20 |
+
>>> c.dimension()
|
21 |
+
3
|
22 |
+
"""
|
23 |
+
n = self.n
|
24 |
+
return n
|
25 |
+
|
26 |
+
def basic_root(self, i, j):
|
27 |
+
"""Generate roots with 1 in ith position and a -1 in jth position
|
28 |
+
"""
|
29 |
+
n = self.n
|
30 |
+
root = [0]*n
|
31 |
+
root[i] = 1
|
32 |
+
root[j] = -1
|
33 |
+
return root
|
34 |
+
|
35 |
+
def simple_root(self, i):
|
36 |
+
"""The ith simple root for the C series
|
37 |
+
|
38 |
+
Every lie algebra has a unique root system.
|
39 |
+
Given a root system Q, there is a subset of the
|
40 |
+
roots such that an element of Q is called a
|
41 |
+
simple root if it cannot be written as the sum
|
42 |
+
of two elements in Q. If we let D denote the
|
43 |
+
set of simple roots, then it is clear that every
|
44 |
+
element of Q can be written as a linear combination
|
45 |
+
of elements of D with all coefficients non-negative.
|
46 |
+
|
47 |
+
In C_n, the first n-1 simple roots are the same as
|
48 |
+
the roots in A_(n-1) (a 1 in the ith position, a -1
|
49 |
+
in the (i+1)th position, and zeroes elsewhere). The
|
50 |
+
nth simple root is the root in which there is a 2 in
|
51 |
+
the nth position and zeroes elsewhere.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
57 |
+
>>> c = CartanType("C3")
|
58 |
+
>>> c.simple_root(2)
|
59 |
+
[0, 1, -1]
|
60 |
+
|
61 |
+
"""
|
62 |
+
|
63 |
+
n = self.n
|
64 |
+
if i < n:
|
65 |
+
return self.basic_root(i-1,i)
|
66 |
+
else:
|
67 |
+
root = [0]*self.n
|
68 |
+
root[n-1] = 2
|
69 |
+
return root
|
70 |
+
|
71 |
+
|
72 |
+
def positive_roots(self):
|
73 |
+
"""Generates all the positive roots of A_n
|
74 |
+
|
75 |
+
This is half of all of the roots of C_n; by multiplying all the
|
76 |
+
positive roots by -1 we get the negative roots.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
========
|
80 |
+
|
81 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
82 |
+
>>> c = CartanType("A3")
|
83 |
+
>>> c.positive_roots()
|
84 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
85 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
86 |
+
|
87 |
+
"""
|
88 |
+
|
89 |
+
n = self.n
|
90 |
+
posroots = {}
|
91 |
+
k = 0
|
92 |
+
for i in range(0, n-1):
|
93 |
+
for j in range(i+1, n):
|
94 |
+
k += 1
|
95 |
+
posroots[k] = self.basic_root(i, j)
|
96 |
+
k += 1
|
97 |
+
root = self.basic_root(i, j)
|
98 |
+
root[j] = 1
|
99 |
+
posroots[k] = root
|
100 |
+
|
101 |
+
for i in range(0, n):
|
102 |
+
k += 1
|
103 |
+
root = [0]*n
|
104 |
+
root[i] = 2
|
105 |
+
posroots[k] = root
|
106 |
+
|
107 |
+
return posroots
|
108 |
+
|
109 |
+
def roots(self):
|
110 |
+
"""
|
111 |
+
Returns the total number of roots for C_n"
|
112 |
+
"""
|
113 |
+
|
114 |
+
n = self.n
|
115 |
+
return 2*(n**2)
|
116 |
+
|
117 |
+
def cartan_matrix(self):
|
118 |
+
"""The Cartan matrix for C_n
|
119 |
+
|
120 |
+
The Cartan matrix matrix for a Lie algebra is
|
121 |
+
generated by assigning an ordering to the simple
|
122 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
123 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
129 |
+
>>> c = CartanType('C4')
|
130 |
+
>>> c.cartan_matrix()
|
131 |
+
Matrix([
|
132 |
+
[ 2, -1, 0, 0],
|
133 |
+
[-1, 2, -1, 0],
|
134 |
+
[ 0, -1, 2, -1],
|
135 |
+
[ 0, 0, -2, 2]])
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
n = self.n
|
140 |
+
m = 2 * eye(n)
|
141 |
+
i = 1
|
142 |
+
while i < n-1:
|
143 |
+
m[i, i+1] = -1
|
144 |
+
m[i, i-1] = -1
|
145 |
+
i += 1
|
146 |
+
m[0,1] = -1
|
147 |
+
m[n-1, n-2] = -2
|
148 |
+
return m
|
149 |
+
|
150 |
+
|
151 |
+
def basis(self):
|
152 |
+
"""
|
153 |
+
Returns the number of independent generators of C_n
|
154 |
+
"""
|
155 |
+
|
156 |
+
n = self.n
|
157 |
+
return n*(2*n + 1)
|
158 |
+
|
159 |
+
def lie_algebra(self):
|
160 |
+
"""
|
161 |
+
Returns the Lie algebra associated with C_n"
|
162 |
+
"""
|
163 |
+
|
164 |
+
n = self.n
|
165 |
+
return "sp(" + str(2*n) + ")"
|
166 |
+
|
167 |
+
def dynkin_diagram(self):
|
168 |
+
n = self.n
|
169 |
+
diag = "---".join("0" for i in range(1, n)) + "=<=0\n"
|
170 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
171 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_d.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye
|
3 |
+
|
4 |
+
class TypeD(Standard_Cartan):
|
5 |
+
|
6 |
+
def __new__(cls, n):
|
7 |
+
if n < 3:
|
8 |
+
raise ValueError("n cannot be less than 3")
|
9 |
+
return Standard_Cartan.__new__(cls, "D", n)
|
10 |
+
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dmension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("D4")
|
20 |
+
>>> c.dimension()
|
21 |
+
4
|
22 |
+
"""
|
23 |
+
|
24 |
+
return self.n
|
25 |
+
|
26 |
+
def basic_root(self, i, j):
|
27 |
+
"""
|
28 |
+
This is a method just to generate roots
|
29 |
+
with a 1 iin the ith position and a -1
|
30 |
+
in the jth position.
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
n = self.n
|
35 |
+
root = [0]*n
|
36 |
+
root[i] = 1
|
37 |
+
root[j] = -1
|
38 |
+
return root
|
39 |
+
|
40 |
+
def simple_root(self, i):
|
41 |
+
"""
|
42 |
+
Every lie algebra has a unique root system.
|
43 |
+
Given a root system Q, there is a subset of the
|
44 |
+
roots such that an element of Q is called a
|
45 |
+
simple root if it cannot be written as the sum
|
46 |
+
of two elements in Q. If we let D denote the
|
47 |
+
set of simple roots, then it is clear that every
|
48 |
+
element of Q can be written as a linear combination
|
49 |
+
of elements of D with all coefficients non-negative.
|
50 |
+
|
51 |
+
In D_n, the first n-1 simple roots are the same as
|
52 |
+
the roots in A_(n-1) (a 1 in the ith position, a -1
|
53 |
+
in the (i+1)th position, and zeroes elsewhere).
|
54 |
+
The nth simple root is the root in which there 1s in
|
55 |
+
the nth and (n-1)th positions, and zeroes elsewhere.
|
56 |
+
|
57 |
+
This method returns the ith simple root for the D series.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
========
|
61 |
+
|
62 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
63 |
+
>>> c = CartanType("D4")
|
64 |
+
>>> c.simple_root(2)
|
65 |
+
[0, 1, -1, 0]
|
66 |
+
|
67 |
+
"""
|
68 |
+
|
69 |
+
n = self.n
|
70 |
+
if i < n:
|
71 |
+
return self.basic_root(i-1, i)
|
72 |
+
else:
|
73 |
+
root = [0]*n
|
74 |
+
root[n-2] = 1
|
75 |
+
root[n-1] = 1
|
76 |
+
return root
|
77 |
+
|
78 |
+
|
79 |
+
def positive_roots(self):
|
80 |
+
"""
|
81 |
+
This method generates all the positive roots of
|
82 |
+
A_n. This is half of all of the roots of D_n
|
83 |
+
by multiplying all the positive roots by -1 we
|
84 |
+
get the negative roots.
|
85 |
+
|
86 |
+
Examples
|
87 |
+
========
|
88 |
+
|
89 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
90 |
+
>>> c = CartanType("A3")
|
91 |
+
>>> c.positive_roots()
|
92 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
93 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
94 |
+
"""
|
95 |
+
|
96 |
+
n = self.n
|
97 |
+
posroots = {}
|
98 |
+
k = 0
|
99 |
+
for i in range(0, n-1):
|
100 |
+
for j in range(i+1, n):
|
101 |
+
k += 1
|
102 |
+
posroots[k] = self.basic_root(i, j)
|
103 |
+
k += 1
|
104 |
+
root = self.basic_root(i, j)
|
105 |
+
root[j] = 1
|
106 |
+
posroots[k] = root
|
107 |
+
return posroots
|
108 |
+
|
109 |
+
def roots(self):
|
110 |
+
"""
|
111 |
+
Returns the total number of roots for D_n"
|
112 |
+
"""
|
113 |
+
|
114 |
+
n = self.n
|
115 |
+
return 2*n*(n-1)
|
116 |
+
|
117 |
+
def cartan_matrix(self):
|
118 |
+
"""
|
119 |
+
Returns the Cartan matrix for D_n.
|
120 |
+
The Cartan matrix matrix for a Lie algebra is
|
121 |
+
generated by assigning an ordering to the simple
|
122 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
123 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
129 |
+
>>> c = CartanType('D4')
|
130 |
+
>>> c.cartan_matrix()
|
131 |
+
Matrix([
|
132 |
+
[ 2, -1, 0, 0],
|
133 |
+
[-1, 2, -1, -1],
|
134 |
+
[ 0, -1, 2, 0],
|
135 |
+
[ 0, -1, 0, 2]])
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
n = self.n
|
140 |
+
m = 2*eye(n)
|
141 |
+
i = 1
|
142 |
+
while i < n-2:
|
143 |
+
m[i,i+1] = -1
|
144 |
+
m[i,i-1] = -1
|
145 |
+
i += 1
|
146 |
+
m[n-2, n-3] = -1
|
147 |
+
m[n-3, n-1] = -1
|
148 |
+
m[n-1, n-3] = -1
|
149 |
+
m[0, 1] = -1
|
150 |
+
return m
|
151 |
+
|
152 |
+
def basis(self):
|
153 |
+
"""
|
154 |
+
Returns the number of independent generators of D_n
|
155 |
+
"""
|
156 |
+
n = self.n
|
157 |
+
return n*(n-1)/2
|
158 |
+
|
159 |
+
def lie_algebra(self):
|
160 |
+
"""
|
161 |
+
Returns the Lie algebra associated with D_n"
|
162 |
+
"""
|
163 |
+
|
164 |
+
n = self.n
|
165 |
+
return "so(" + str(2*n) + ")"
|
166 |
+
|
167 |
+
def dynkin_diagram(self):
|
168 |
+
n = self.n
|
169 |
+
diag = " "*4*(n-3) + str(n-1) + "\n"
|
170 |
+
diag += " "*4*(n-3) + "0\n"
|
171 |
+
diag += " "*4*(n-3) +"|\n"
|
172 |
+
diag += " "*4*(n-3) + "|\n"
|
173 |
+
diag += "---".join("0" for i in range(1,n)) + "\n"
|
174 |
+
diag += " ".join(str(i) for i in range(1, n-1)) + " "+str(n)
|
175 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_e.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import eye, Rational
|
3 |
+
|
4 |
+
|
5 |
+
class TypeE(Standard_Cartan):
|
6 |
+
|
7 |
+
def __new__(cls, n):
|
8 |
+
if n < 6 or n > 8:
|
9 |
+
raise ValueError("Invalid value of n")
|
10 |
+
return Standard_Cartan.__new__(cls, "E", n)
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("E6")
|
20 |
+
>>> c.dimension()
|
21 |
+
8
|
22 |
+
"""
|
23 |
+
|
24 |
+
return 8
|
25 |
+
|
26 |
+
def basic_root(self, i, j):
|
27 |
+
"""
|
28 |
+
This is a method just to generate roots
|
29 |
+
with a -1 in the ith position and a 1
|
30 |
+
in the jth position.
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
root = [0]*8
|
35 |
+
root[i] = -1
|
36 |
+
root[j] = 1
|
37 |
+
return root
|
38 |
+
|
39 |
+
def simple_root(self, i):
|
40 |
+
"""
|
41 |
+
Every lie algebra has a unique root system.
|
42 |
+
Given a root system Q, there is a subset of the
|
43 |
+
roots such that an element of Q is called a
|
44 |
+
simple root if it cannot be written as the sum
|
45 |
+
of two elements in Q. If we let D denote the
|
46 |
+
set of simple roots, then it is clear that every
|
47 |
+
element of Q can be written as a linear combination
|
48 |
+
of elements of D with all coefficients non-negative.
|
49 |
+
|
50 |
+
This method returns the ith simple root for E_n.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
56 |
+
>>> c = CartanType("E6")
|
57 |
+
>>> c.simple_root(2)
|
58 |
+
[1, 1, 0, 0, 0, 0, 0, 0]
|
59 |
+
"""
|
60 |
+
n = self.n
|
61 |
+
if i == 1:
|
62 |
+
root = [-0.5]*8
|
63 |
+
root[0] = 0.5
|
64 |
+
root[7] = 0.5
|
65 |
+
return root
|
66 |
+
elif i == 2:
|
67 |
+
root = [0]*8
|
68 |
+
root[1] = 1
|
69 |
+
root[0] = 1
|
70 |
+
return root
|
71 |
+
else:
|
72 |
+
if i in (7, 8) and n == 6:
|
73 |
+
raise ValueError("E6 only has six simple roots!")
|
74 |
+
if i == 8 and n == 7:
|
75 |
+
raise ValueError("E7 has only 7 simple roots!")
|
76 |
+
|
77 |
+
return self.basic_root(i - 3, i - 2)
|
78 |
+
|
79 |
+
def positive_roots(self):
|
80 |
+
"""
|
81 |
+
This method generates all the positive roots of
|
82 |
+
A_n. This is half of all of the roots of E_n;
|
83 |
+
by multiplying all the positive roots by -1 we
|
84 |
+
get the negative roots.
|
85 |
+
|
86 |
+
Examples
|
87 |
+
========
|
88 |
+
|
89 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
90 |
+
>>> c = CartanType("A3")
|
91 |
+
>>> c.positive_roots()
|
92 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
93 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
94 |
+
"""
|
95 |
+
n = self.n
|
96 |
+
if n == 6:
|
97 |
+
posroots = {}
|
98 |
+
k = 0
|
99 |
+
for i in range(n-1):
|
100 |
+
for j in range(i+1, n-1):
|
101 |
+
k += 1
|
102 |
+
root = self.basic_root(i, j)
|
103 |
+
posroots[k] = root
|
104 |
+
k += 1
|
105 |
+
root = self.basic_root(i, j)
|
106 |
+
root[i] = 1
|
107 |
+
posroots[k] = root
|
108 |
+
|
109 |
+
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
|
110 |
+
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
|
111 |
+
for a in range(0, 2):
|
112 |
+
for b in range(0, 2):
|
113 |
+
for c in range(0, 2):
|
114 |
+
for d in range(0, 2):
|
115 |
+
for e in range(0, 2):
|
116 |
+
if (a + b + c + d + e)%2 == 0:
|
117 |
+
k += 1
|
118 |
+
if a == 1:
|
119 |
+
root[0] = Rational(-1, 2)
|
120 |
+
if b == 1:
|
121 |
+
root[1] = Rational(-1, 2)
|
122 |
+
if c == 1:
|
123 |
+
root[2] = Rational(-1, 2)
|
124 |
+
if d == 1:
|
125 |
+
root[3] = Rational(-1, 2)
|
126 |
+
if e == 1:
|
127 |
+
root[4] = Rational(-1, 2)
|
128 |
+
posroots[k] = root
|
129 |
+
|
130 |
+
return posroots
|
131 |
+
if n == 7:
|
132 |
+
posroots = {}
|
133 |
+
k = 0
|
134 |
+
for i in range(n-1):
|
135 |
+
for j in range(i+1, n-1):
|
136 |
+
k += 1
|
137 |
+
root = self.basic_root(i, j)
|
138 |
+
posroots[k] = root
|
139 |
+
k += 1
|
140 |
+
root = self.basic_root(i, j)
|
141 |
+
root[i] = 1
|
142 |
+
posroots[k] = root
|
143 |
+
|
144 |
+
k += 1
|
145 |
+
posroots[k] = [0, 0, 0, 0, 0, 1, 1, 0]
|
146 |
+
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
|
147 |
+
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
|
148 |
+
for a in range(0, 2):
|
149 |
+
for b in range(0, 2):
|
150 |
+
for c in range(0, 2):
|
151 |
+
for d in range(0, 2):
|
152 |
+
for e in range(0, 2):
|
153 |
+
for f in range(0, 2):
|
154 |
+
if (a + b + c + d + e + f)%2 == 0:
|
155 |
+
k += 1
|
156 |
+
if a == 1:
|
157 |
+
root[0] = Rational(-1, 2)
|
158 |
+
if b == 1:
|
159 |
+
root[1] = Rational(-1, 2)
|
160 |
+
if c == 1:
|
161 |
+
root[2] = Rational(-1, 2)
|
162 |
+
if d == 1:
|
163 |
+
root[3] = Rational(-1, 2)
|
164 |
+
if e == 1:
|
165 |
+
root[4] = Rational(-1, 2)
|
166 |
+
if f == 1:
|
167 |
+
root[5] = Rational(1, 2)
|
168 |
+
posroots[k] = root
|
169 |
+
|
170 |
+
return posroots
|
171 |
+
if n == 8:
|
172 |
+
posroots = {}
|
173 |
+
k = 0
|
174 |
+
for i in range(n):
|
175 |
+
for j in range(i+1, n):
|
176 |
+
k += 1
|
177 |
+
root = self.basic_root(i, j)
|
178 |
+
posroots[k] = root
|
179 |
+
k += 1
|
180 |
+
root = self.basic_root(i, j)
|
181 |
+
root[i] = 1
|
182 |
+
posroots[k] = root
|
183 |
+
|
184 |
+
root = [Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2),
|
185 |
+
Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
|
186 |
+
for a in range(0, 2):
|
187 |
+
for b in range(0, 2):
|
188 |
+
for c in range(0, 2):
|
189 |
+
for d in range(0, 2):
|
190 |
+
for e in range(0, 2):
|
191 |
+
for f in range(0, 2):
|
192 |
+
for g in range(0, 2):
|
193 |
+
if (a + b + c + d + e + f + g)%2 == 0:
|
194 |
+
k += 1
|
195 |
+
if a == 1:
|
196 |
+
root[0] = Rational(-1, 2)
|
197 |
+
if b == 1:
|
198 |
+
root[1] = Rational(-1, 2)
|
199 |
+
if c == 1:
|
200 |
+
root[2] = Rational(-1, 2)
|
201 |
+
if d == 1:
|
202 |
+
root[3] = Rational(-1, 2)
|
203 |
+
if e == 1:
|
204 |
+
root[4] = Rational(-1, 2)
|
205 |
+
if f == 1:
|
206 |
+
root[5] = Rational(1, 2)
|
207 |
+
if g == 1:
|
208 |
+
root[6] = Rational(1, 2)
|
209 |
+
posroots[k] = root
|
210 |
+
|
211 |
+
return posroots
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
def roots(self):
|
216 |
+
"""
|
217 |
+
Returns the total number of roots of E_n
|
218 |
+
"""
|
219 |
+
|
220 |
+
n = self.n
|
221 |
+
if n == 6:
|
222 |
+
return 72
|
223 |
+
if n == 7:
|
224 |
+
return 126
|
225 |
+
if n == 8:
|
226 |
+
return 240
|
227 |
+
|
228 |
+
|
229 |
+
def cartan_matrix(self):
|
230 |
+
"""
|
231 |
+
Returns the Cartan matrix for G_2
|
232 |
+
The Cartan matrix matrix for a Lie algebra is
|
233 |
+
generated by assigning an ordering to the simple
|
234 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
235 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
236 |
+
|
237 |
+
Examples
|
238 |
+
========
|
239 |
+
|
240 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
241 |
+
>>> c = CartanType('A4')
|
242 |
+
>>> c.cartan_matrix()
|
243 |
+
Matrix([
|
244 |
+
[ 2, -1, 0, 0],
|
245 |
+
[-1, 2, -1, 0],
|
246 |
+
[ 0, -1, 2, -1],
|
247 |
+
[ 0, 0, -1, 2]])
|
248 |
+
|
249 |
+
|
250 |
+
"""
|
251 |
+
|
252 |
+
n = self.n
|
253 |
+
m = 2*eye(n)
|
254 |
+
i = 3
|
255 |
+
while i < n-1:
|
256 |
+
m[i, i+1] = -1
|
257 |
+
m[i, i-1] = -1
|
258 |
+
i += 1
|
259 |
+
m[0, 2] = m[2, 0] = -1
|
260 |
+
m[1, 3] = m[3, 1] = -1
|
261 |
+
m[2, 3] = -1
|
262 |
+
m[n-1, n-2] = -1
|
263 |
+
return m
|
264 |
+
|
265 |
+
|
266 |
+
def basis(self):
|
267 |
+
"""
|
268 |
+
Returns the number of independent generators of E_n
|
269 |
+
"""
|
270 |
+
|
271 |
+
n = self.n
|
272 |
+
if n == 6:
|
273 |
+
return 78
|
274 |
+
if n == 7:
|
275 |
+
return 133
|
276 |
+
if n == 8:
|
277 |
+
return 248
|
278 |
+
|
279 |
+
def dynkin_diagram(self):
|
280 |
+
n = self.n
|
281 |
+
diag = " "*8 + str(2) + "\n"
|
282 |
+
diag += " "*8 + "0\n"
|
283 |
+
diag += " "*8 + "|\n"
|
284 |
+
diag += " "*8 + "|\n"
|
285 |
+
diag += "---".join("0" for i in range(1, n)) + "\n"
|
286 |
+
diag += "1 " + " ".join(str(i) for i in range(3, n+1))
|
287 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_f.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .cartan_type import Standard_Cartan
|
2 |
+
from sympy.core.backend import Matrix, Rational
|
3 |
+
|
4 |
+
|
5 |
+
class TypeF(Standard_Cartan):
|
6 |
+
|
7 |
+
def __new__(cls, n):
|
8 |
+
if n != 4:
|
9 |
+
raise ValueError("n should be 4")
|
10 |
+
return Standard_Cartan.__new__(cls, "F", 4)
|
11 |
+
|
12 |
+
def dimension(self):
|
13 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
14 |
+
|
15 |
+
Examples
|
16 |
+
========
|
17 |
+
|
18 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
19 |
+
>>> c = CartanType("F4")
|
20 |
+
>>> c.dimension()
|
21 |
+
4
|
22 |
+
"""
|
23 |
+
|
24 |
+
return 4
|
25 |
+
|
26 |
+
|
27 |
+
def basic_root(self, i, j):
|
28 |
+
"""Generate roots with 1 in ith position and -1 in jth position
|
29 |
+
|
30 |
+
"""
|
31 |
+
|
32 |
+
n = self.n
|
33 |
+
root = [0]*n
|
34 |
+
root[i] = 1
|
35 |
+
root[j] = -1
|
36 |
+
return root
|
37 |
+
|
38 |
+
def simple_root(self, i):
|
39 |
+
"""The ith simple root of F_4
|
40 |
+
|
41 |
+
Every lie algebra has a unique root system.
|
42 |
+
Given a root system Q, there is a subset of the
|
43 |
+
roots such that an element of Q is called a
|
44 |
+
simple root if it cannot be written as the sum
|
45 |
+
of two elements in Q. If we let D denote the
|
46 |
+
set of simple roots, then it is clear that every
|
47 |
+
element of Q can be written as a linear combination
|
48 |
+
of elements of D with all coefficients non-negative.
|
49 |
+
|
50 |
+
Examples
|
51 |
+
========
|
52 |
+
|
53 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
54 |
+
>>> c = CartanType("F4")
|
55 |
+
>>> c.simple_root(3)
|
56 |
+
[0, 0, 0, 1]
|
57 |
+
|
58 |
+
"""
|
59 |
+
|
60 |
+
if i < 3:
|
61 |
+
return self.basic_root(i-1, i)
|
62 |
+
if i == 3:
|
63 |
+
root = [0]*4
|
64 |
+
root[3] = 1
|
65 |
+
return root
|
66 |
+
if i == 4:
|
67 |
+
root = [Rational(-1, 2)]*4
|
68 |
+
return root
|
69 |
+
|
70 |
+
def positive_roots(self):
|
71 |
+
"""Generate all the positive roots of A_n
|
72 |
+
|
73 |
+
This is half of all of the roots of F_4; by multiplying all the
|
74 |
+
positive roots by -1 we get the negative roots.
|
75 |
+
|
76 |
+
Examples
|
77 |
+
========
|
78 |
+
|
79 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
80 |
+
>>> c = CartanType("A3")
|
81 |
+
>>> c.positive_roots()
|
82 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
83 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
84 |
+
|
85 |
+
"""
|
86 |
+
|
87 |
+
n = self.n
|
88 |
+
posroots = {}
|
89 |
+
k = 0
|
90 |
+
for i in range(0, n-1):
|
91 |
+
for j in range(i+1, n):
|
92 |
+
k += 1
|
93 |
+
posroots[k] = self.basic_root(i, j)
|
94 |
+
k += 1
|
95 |
+
root = self.basic_root(i, j)
|
96 |
+
root[j] = 1
|
97 |
+
posroots[k] = root
|
98 |
+
|
99 |
+
for i in range(0, n):
|
100 |
+
k += 1
|
101 |
+
root = [0]*n
|
102 |
+
root[i] = 1
|
103 |
+
posroots[k] = root
|
104 |
+
|
105 |
+
k += 1
|
106 |
+
root = [Rational(1, 2)]*n
|
107 |
+
posroots[k] = root
|
108 |
+
for i in range(1, 4):
|
109 |
+
k += 1
|
110 |
+
root = [Rational(1, 2)]*n
|
111 |
+
root[i] = Rational(-1, 2)
|
112 |
+
posroots[k] = root
|
113 |
+
|
114 |
+
posroots[k+1] = [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)]
|
115 |
+
posroots[k+2] = [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)]
|
116 |
+
posroots[k+3] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]
|
117 |
+
posroots[k+4] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(-1, 2)]
|
118 |
+
|
119 |
+
return posroots
|
120 |
+
|
121 |
+
|
122 |
+
def roots(self):
|
123 |
+
"""
|
124 |
+
Returns the total number of roots for F_4
|
125 |
+
"""
|
126 |
+
return 48
|
127 |
+
|
128 |
+
def cartan_matrix(self):
|
129 |
+
"""The Cartan matrix for F_4
|
130 |
+
|
131 |
+
The Cartan matrix matrix for a Lie algebra is
|
132 |
+
generated by assigning an ordering to the simple
|
133 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
134 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
135 |
+
|
136 |
+
Examples
|
137 |
+
========
|
138 |
+
|
139 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
140 |
+
>>> c = CartanType('A4')
|
141 |
+
>>> c.cartan_matrix()
|
142 |
+
Matrix([
|
143 |
+
[ 2, -1, 0, 0],
|
144 |
+
[-1, 2, -1, 0],
|
145 |
+
[ 0, -1, 2, -1],
|
146 |
+
[ 0, 0, -1, 2]])
|
147 |
+
"""
|
148 |
+
|
149 |
+
m = Matrix( 4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0,
|
150 |
+
-1, 2, -1, 0, 0, -1, 2])
|
151 |
+
return m
|
152 |
+
|
153 |
+
def basis(self):
|
154 |
+
"""
|
155 |
+
Returns the number of independent generators of F_4
|
156 |
+
"""
|
157 |
+
return 52
|
158 |
+
|
159 |
+
def dynkin_diagram(self):
|
160 |
+
diag = "0---0=>=0---0\n"
|
161 |
+
diag += " ".join(str(i) for i in range(1, 5))
|
162 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/type_g.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .cartan_type import Standard_Cartan
|
4 |
+
from sympy.core.backend import Matrix
|
5 |
+
|
6 |
+
class TypeG(Standard_Cartan):
|
7 |
+
|
8 |
+
def __new__(cls, n):
|
9 |
+
if n != 2:
|
10 |
+
raise ValueError("n should be 2")
|
11 |
+
return Standard_Cartan.__new__(cls, "G", 2)
|
12 |
+
|
13 |
+
|
14 |
+
def dimension(self):
|
15 |
+
"""Dimension of the vector space V underlying the Lie algebra
|
16 |
+
|
17 |
+
Examples
|
18 |
+
========
|
19 |
+
|
20 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
21 |
+
>>> c = CartanType("G2")
|
22 |
+
>>> c.dimension()
|
23 |
+
3
|
24 |
+
"""
|
25 |
+
return 3
|
26 |
+
|
27 |
+
def simple_root(self, i):
|
28 |
+
"""The ith simple root of G_2
|
29 |
+
|
30 |
+
Every lie algebra has a unique root system.
|
31 |
+
Given a root system Q, there is a subset of the
|
32 |
+
roots such that an element of Q is called a
|
33 |
+
simple root if it cannot be written as the sum
|
34 |
+
of two elements in Q. If we let D denote the
|
35 |
+
set of simple roots, then it is clear that every
|
36 |
+
element of Q can be written as a linear combination
|
37 |
+
of elements of D with all coefficients non-negative.
|
38 |
+
|
39 |
+
Examples
|
40 |
+
========
|
41 |
+
|
42 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
43 |
+
>>> c = CartanType("G2")
|
44 |
+
>>> c.simple_root(1)
|
45 |
+
[0, 1, -1]
|
46 |
+
|
47 |
+
"""
|
48 |
+
if i == 1:
|
49 |
+
return [0, 1, -1]
|
50 |
+
else:
|
51 |
+
return [1, -2, 1]
|
52 |
+
|
53 |
+
def positive_roots(self):
|
54 |
+
"""Generate all the positive roots of A_n
|
55 |
+
|
56 |
+
This is half of all of the roots of A_n; by multiplying all the
|
57 |
+
positive roots by -1 we get the negative roots.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
========
|
61 |
+
|
62 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
63 |
+
>>> c = CartanType("A3")
|
64 |
+
>>> c.positive_roots()
|
65 |
+
{1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0],
|
66 |
+
5: [0, 1, 0, -1], 6: [0, 0, 1, -1]}
|
67 |
+
|
68 |
+
"""
|
69 |
+
|
70 |
+
roots = {1: [0, 1, -1], 2: [1, -2, 1], 3: [1, -1, 0], 4: [1, 0, 1],
|
71 |
+
5: [1, 1, -2], 6: [2, -1, -1]}
|
72 |
+
return roots
|
73 |
+
|
74 |
+
def roots(self):
|
75 |
+
"""
|
76 |
+
Returns the total number of roots of G_2"
|
77 |
+
"""
|
78 |
+
return 12
|
79 |
+
|
80 |
+
def cartan_matrix(self):
|
81 |
+
"""The Cartan matrix for G_2
|
82 |
+
|
83 |
+
The Cartan matrix matrix for a Lie algebra is
|
84 |
+
generated by assigning an ordering to the simple
|
85 |
+
roots, (alpha[1], ...., alpha[l]). Then the ijth
|
86 |
+
entry of the Cartan matrix is (<alpha[i],alpha[j]>).
|
87 |
+
|
88 |
+
Examples
|
89 |
+
========
|
90 |
+
|
91 |
+
>>> from sympy.liealgebras.cartan_type import CartanType
|
92 |
+
>>> c = CartanType("G2")
|
93 |
+
>>> c.cartan_matrix()
|
94 |
+
Matrix([
|
95 |
+
[ 2, -1],
|
96 |
+
[-3, 2]])
|
97 |
+
|
98 |
+
"""
|
99 |
+
|
100 |
+
m = Matrix( 2, 2, [2, -1, -3, 2])
|
101 |
+
return m
|
102 |
+
|
103 |
+
def basis(self):
|
104 |
+
"""
|
105 |
+
Returns the number of independent generators of G_2
|
106 |
+
"""
|
107 |
+
return 14
|
108 |
+
|
109 |
+
def dynkin_diagram(self):
|
110 |
+
diag = "0≡<≡0\n1 2"
|
111 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/liealgebras/weyl_group.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .cartan_type import CartanType
|
4 |
+
from mpmath import fac
|
5 |
+
from sympy.core.backend import Matrix, eye, Rational, igcd
|
6 |
+
from sympy.core.basic import Atom
|
7 |
+
|
8 |
+
class WeylGroup(Atom):
|
9 |
+
|
10 |
+
"""
|
11 |
+
For each semisimple Lie group, we have a Weyl group. It is a subgroup of
|
12 |
+
the isometry group of the root system. Specifically, it's the subgroup
|
13 |
+
that is generated by reflections through the hyperplanes orthogonal to
|
14 |
+
the roots. Therefore, Weyl groups are reflection groups, and so a Weyl
|
15 |
+
group is a finite Coxeter group.
|
16 |
+
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __new__(cls, cartantype):
|
20 |
+
obj = Atom.__new__(cls)
|
21 |
+
obj.cartan_type = CartanType(cartantype)
|
22 |
+
return obj
|
23 |
+
|
24 |
+
def generators(self):
|
25 |
+
"""
|
26 |
+
This method creates the generating reflections of the Weyl group for
|
27 |
+
a given Lie algebra. For a Lie algebra of rank n, there are n
|
28 |
+
different generating reflections. This function returns them as
|
29 |
+
a list.
|
30 |
+
|
31 |
+
Examples
|
32 |
+
========
|
33 |
+
|
34 |
+
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
35 |
+
>>> c = WeylGroup("F4")
|
36 |
+
>>> c.generators()
|
37 |
+
['r1', 'r2', 'r3', 'r4']
|
38 |
+
"""
|
39 |
+
n = self.cartan_type.rank()
|
40 |
+
generators = []
|
41 |
+
for i in range(1, n+1):
|
42 |
+
reflection = "r"+str(i)
|
43 |
+
generators.append(reflection)
|
44 |
+
return generators
|
45 |
+
|
46 |
+
def group_order(self):
|
47 |
+
"""
|
48 |
+
This method returns the order of the Weyl group.
|
49 |
+
For types A, B, C, D, and E the order depends on
|
50 |
+
the rank of the Lie algebra. For types F and G,
|
51 |
+
the order is fixed.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
57 |
+
>>> c = WeylGroup("D4")
|
58 |
+
>>> c.group_order()
|
59 |
+
192.0
|
60 |
+
"""
|
61 |
+
n = self.cartan_type.rank()
|
62 |
+
if self.cartan_type.series == "A":
|
63 |
+
return fac(n+1)
|
64 |
+
|
65 |
+
if self.cartan_type.series in ("B", "C"):
|
66 |
+
return fac(n)*(2**n)
|
67 |
+
|
68 |
+
if self.cartan_type.series == "D":
|
69 |
+
return fac(n)*(2**(n-1))
|
70 |
+
|
71 |
+
if self.cartan_type.series == "E":
|
72 |
+
if n == 6:
|
73 |
+
return 51840
|
74 |
+
if n == 7:
|
75 |
+
return 2903040
|
76 |
+
if n == 8:
|
77 |
+
return 696729600
|
78 |
+
if self.cartan_type.series == "F":
|
79 |
+
return 1152
|
80 |
+
|
81 |
+
if self.cartan_type.series == "G":
|
82 |
+
return 12
|
83 |
+
|
84 |
+
def group_name(self):
|
85 |
+
"""
|
86 |
+
This method returns some general information about the Weyl group for
|
87 |
+
a given Lie algebra. It returns the name of the group and the elements
|
88 |
+
it acts on, if relevant.
|
89 |
+
"""
|
90 |
+
n = self.cartan_type.rank()
|
91 |
+
if self.cartan_type.series == "A":
|
92 |
+
return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements."
|
93 |
+
|
94 |
+
if self.cartan_type.series in ("B", "C"):
|
95 |
+
return "The hyperoctahedral group acting on " + str(2*n) + " elements."
|
96 |
+
|
97 |
+
if self.cartan_type.series == "D":
|
98 |
+
return "The symmetry group of the " + str(n) + "-dimensional demihypercube."
|
99 |
+
|
100 |
+
if self.cartan_type.series == "E":
|
101 |
+
if n == 6:
|
102 |
+
return "The symmetry group of the 6-polytope."
|
103 |
+
|
104 |
+
if n == 7:
|
105 |
+
return "The symmetry group of the 7-polytope."
|
106 |
+
|
107 |
+
if n == 8:
|
108 |
+
return "The symmetry group of the 8-polytope."
|
109 |
+
|
110 |
+
if self.cartan_type.series == "F":
|
111 |
+
return "The symmetry group of the 24-cell, or icositetrachoron."
|
112 |
+
|
113 |
+
if self.cartan_type.series == "G":
|
114 |
+
return "D6, the dihedral group of order 12, and symmetry group of the hexagon."
|
115 |
+
|
116 |
+
def element_order(self, weylelt):
|
117 |
+
"""
|
118 |
+
This method returns the order of a given Weyl group element, which should
|
119 |
+
be specified by the user in the form of products of the generating
|
120 |
+
reflections, i.e. of the form r1*r2 etc.
|
121 |
+
|
122 |
+
For types A-F, this method current works by taking the matrix form of
|
123 |
+
the specified element, and then finding what power of the matrix is the
|
124 |
+
identity. It then returns this power.
|
125 |
+
|
126 |
+
Examples
|
127 |
+
========
|
128 |
+
|
129 |
+
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
130 |
+
>>> b = WeylGroup("B4")
|
131 |
+
>>> b.element_order('r1*r4*r2')
|
132 |
+
4
|
133 |
+
"""
|
134 |
+
n = self.cartan_type.rank()
|
135 |
+
if self.cartan_type.series == "A":
|
136 |
+
a = self.matrix_form(weylelt)
|
137 |
+
order = 1
|
138 |
+
while a != eye(n+1):
|
139 |
+
a *= self.matrix_form(weylelt)
|
140 |
+
order += 1
|
141 |
+
return order
|
142 |
+
|
143 |
+
if self.cartan_type.series == "D":
|
144 |
+
a = self.matrix_form(weylelt)
|
145 |
+
order = 1
|
146 |
+
while a != eye(n):
|
147 |
+
a *= self.matrix_form(weylelt)
|
148 |
+
order += 1
|
149 |
+
return order
|
150 |
+
|
151 |
+
if self.cartan_type.series == "E":
|
152 |
+
a = self.matrix_form(weylelt)
|
153 |
+
order = 1
|
154 |
+
while a != eye(8):
|
155 |
+
a *= self.matrix_form(weylelt)
|
156 |
+
order += 1
|
157 |
+
return order
|
158 |
+
|
159 |
+
if self.cartan_type.series == "G":
|
160 |
+
elts = list(weylelt)
|
161 |
+
reflections = elts[1::3]
|
162 |
+
m = self.delete_doubles(reflections)
|
163 |
+
while self.delete_doubles(m) != m:
|
164 |
+
m = self.delete_doubles(m)
|
165 |
+
reflections = m
|
166 |
+
if len(reflections) % 2 == 1:
|
167 |
+
return 2
|
168 |
+
|
169 |
+
elif len(reflections) == 0:
|
170 |
+
return 1
|
171 |
+
|
172 |
+
else:
|
173 |
+
if len(reflections) == 1:
|
174 |
+
return 2
|
175 |
+
else:
|
176 |
+
m = len(reflections) // 2
|
177 |
+
lcm = (6 * m)/ igcd(m, 6)
|
178 |
+
order = lcm / m
|
179 |
+
return order
|
180 |
+
|
181 |
+
|
182 |
+
if self.cartan_type.series == 'F':
|
183 |
+
a = self.matrix_form(weylelt)
|
184 |
+
order = 1
|
185 |
+
while a != eye(4):
|
186 |
+
a *= self.matrix_form(weylelt)
|
187 |
+
order += 1
|
188 |
+
return order
|
189 |
+
|
190 |
+
|
191 |
+
if self.cartan_type.series in ("B", "C"):
|
192 |
+
a = self.matrix_form(weylelt)
|
193 |
+
order = 1
|
194 |
+
while a != eye(n):
|
195 |
+
a *= self.matrix_form(weylelt)
|
196 |
+
order += 1
|
197 |
+
return order
|
198 |
+
|
199 |
+
def delete_doubles(self, reflections):
|
200 |
+
"""
|
201 |
+
This is a helper method for determining the order of an element in the
|
202 |
+
Weyl group of G2. It takes a Weyl element and if repeated simple reflections
|
203 |
+
in it, it deletes them.
|
204 |
+
"""
|
205 |
+
counter = 0
|
206 |
+
copy = list(reflections)
|
207 |
+
for elt in copy:
|
208 |
+
if counter < len(copy)-1:
|
209 |
+
if copy[counter + 1] == elt:
|
210 |
+
del copy[counter]
|
211 |
+
del copy[counter]
|
212 |
+
counter += 1
|
213 |
+
|
214 |
+
|
215 |
+
return copy
|
216 |
+
|
217 |
+
|
218 |
+
def matrix_form(self, weylelt):
|
219 |
+
"""
|
220 |
+
This method takes input from the user in the form of products of the
|
221 |
+
generating reflections, and returns the matrix corresponding to the
|
222 |
+
element of the Weyl group. Since each element of the Weyl group is
|
223 |
+
a reflection of some type, there is a corresponding matrix representation.
|
224 |
+
This method uses the standard representation for all the generating
|
225 |
+
reflections.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
========
|
229 |
+
|
230 |
+
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
231 |
+
>>> f = WeylGroup("F4")
|
232 |
+
>>> f.matrix_form('r2*r3')
|
233 |
+
Matrix([
|
234 |
+
[1, 0, 0, 0],
|
235 |
+
[0, 1, 0, 0],
|
236 |
+
[0, 0, 0, -1],
|
237 |
+
[0, 0, 1, 0]])
|
238 |
+
|
239 |
+
"""
|
240 |
+
elts = list(weylelt)
|
241 |
+
reflections = elts[1::3]
|
242 |
+
n = self.cartan_type.rank()
|
243 |
+
if self.cartan_type.series == 'A':
|
244 |
+
matrixform = eye(n+1)
|
245 |
+
for elt in reflections:
|
246 |
+
a = int(elt)
|
247 |
+
mat = eye(n+1)
|
248 |
+
mat[a-1, a-1] = 0
|
249 |
+
mat[a-1, a] = 1
|
250 |
+
mat[a, a-1] = 1
|
251 |
+
mat[a, a] = 0
|
252 |
+
matrixform *= mat
|
253 |
+
return matrixform
|
254 |
+
|
255 |
+
if self.cartan_type.series == 'D':
|
256 |
+
matrixform = eye(n)
|
257 |
+
for elt in reflections:
|
258 |
+
a = int(elt)
|
259 |
+
mat = eye(n)
|
260 |
+
if a < n:
|
261 |
+
mat[a-1, a-1] = 0
|
262 |
+
mat[a-1, a] = 1
|
263 |
+
mat[a, a-1] = 1
|
264 |
+
mat[a, a] = 0
|
265 |
+
matrixform *= mat
|
266 |
+
else:
|
267 |
+
mat[n-2, n-1] = -1
|
268 |
+
mat[n-2, n-2] = 0
|
269 |
+
mat[n-1, n-2] = -1
|
270 |
+
mat[n-1, n-1] = 0
|
271 |
+
matrixform *= mat
|
272 |
+
return matrixform
|
273 |
+
|
274 |
+
if self.cartan_type.series == 'G':
|
275 |
+
matrixform = eye(3)
|
276 |
+
for elt in reflections:
|
277 |
+
a = int(elt)
|
278 |
+
if a == 1:
|
279 |
+
gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
|
280 |
+
matrixform *= gen1
|
281 |
+
else:
|
282 |
+
gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)],
|
283 |
+
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
|
284 |
+
[Rational(-1, 3), Rational(2, 3), Rational(2, 3)]])
|
285 |
+
matrixform *= gen2
|
286 |
+
return matrixform
|
287 |
+
|
288 |
+
if self.cartan_type.series == 'F':
|
289 |
+
matrixform = eye(4)
|
290 |
+
for elt in reflections:
|
291 |
+
a = int(elt)
|
292 |
+
if a == 1:
|
293 |
+
mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
294 |
+
matrixform *= mat
|
295 |
+
elif a == 2:
|
296 |
+
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
|
297 |
+
matrixform *= mat
|
298 |
+
elif a == 3:
|
299 |
+
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])
|
300 |
+
matrixform *= mat
|
301 |
+
else:
|
302 |
+
|
303 |
+
mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)],
|
304 |
+
[Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)],
|
305 |
+
[Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)],
|
306 |
+
[Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]])
|
307 |
+
matrixform *= mat
|
308 |
+
return matrixform
|
309 |
+
|
310 |
+
if self.cartan_type.series == 'E':
|
311 |
+
matrixform = eye(8)
|
312 |
+
for elt in reflections:
|
313 |
+
a = int(elt)
|
314 |
+
if a == 1:
|
315 |
+
mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4),
|
316 |
+
Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)],
|
317 |
+
[Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4),
|
318 |
+
Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)],
|
319 |
+
[Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4),
|
320 |
+
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
321 |
+
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4),
|
322 |
+
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
323 |
+
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
324 |
+
Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
325 |
+
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
326 |
+
Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)],
|
327 |
+
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
328 |
+
Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)],
|
329 |
+
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
330 |
+
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]])
|
331 |
+
matrixform *= mat
|
332 |
+
elif a == 2:
|
333 |
+
mat = eye(8)
|
334 |
+
mat[0, 0] = 0
|
335 |
+
mat[0, 1] = -1
|
336 |
+
mat[1, 0] = -1
|
337 |
+
mat[1, 1] = 0
|
338 |
+
matrixform *= mat
|
339 |
+
else:
|
340 |
+
mat = eye(8)
|
341 |
+
mat[a-3, a-3] = 0
|
342 |
+
mat[a-3, a-2] = 1
|
343 |
+
mat[a-2, a-3] = 1
|
344 |
+
mat[a-2, a-2] = 0
|
345 |
+
matrixform *= mat
|
346 |
+
return matrixform
|
347 |
+
|
348 |
+
|
349 |
+
if self.cartan_type.series in ("B", "C"):
|
350 |
+
matrixform = eye(n)
|
351 |
+
for elt in reflections:
|
352 |
+
a = int(elt)
|
353 |
+
mat = eye(n)
|
354 |
+
if a == 1:
|
355 |
+
mat[0, 0] = -1
|
356 |
+
matrixform *= mat
|
357 |
+
else:
|
358 |
+
mat[a - 2, a - 2] = 0
|
359 |
+
mat[a-2, a-1] = 1
|
360 |
+
mat[a - 1, a - 2] = 1
|
361 |
+
mat[a -1, a - 1] = 0
|
362 |
+
matrixform *= mat
|
363 |
+
return matrixform
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
def coxeter_diagram(self):
|
368 |
+
"""
|
369 |
+
This method returns the Coxeter diagram corresponding to a Weyl group.
|
370 |
+
The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram
|
371 |
+
by deleting all arrows; the Coxeter diagram is the undirected graph.
|
372 |
+
The vertices of the Coxeter diagram represent the generating reflections
|
373 |
+
of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order
|
374 |
+
$m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order
|
375 |
+
$m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there
|
376 |
+
are three edges, the order $m(i, j)$ is 6.
|
377 |
+
|
378 |
+
Examples
|
379 |
+
========
|
380 |
+
|
381 |
+
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
382 |
+
>>> c = WeylGroup("B3")
|
383 |
+
>>> print(c.coxeter_diagram())
|
384 |
+
0---0===0
|
385 |
+
1 2 3
|
386 |
+
"""
|
387 |
+
n = self.cartan_type.rank()
|
388 |
+
if self.cartan_type.series in ("A", "D", "E"):
|
389 |
+
return self.cartan_type.dynkin_diagram()
|
390 |
+
|
391 |
+
if self.cartan_type.series in ("B", "C"):
|
392 |
+
diag = "---".join("0" for i in range(1, n)) + "===0\n"
|
393 |
+
diag += " ".join(str(i) for i in range(1, n+1))
|
394 |
+
return diag
|
395 |
+
|
396 |
+
if self.cartan_type.series == "F":
|
397 |
+
diag = "0---0===0---0\n"
|
398 |
+
diag += " ".join(str(i) for i in range(1, 5))
|
399 |
+
return diag
|
400 |
+
|
401 |
+
if self.cartan_type.series == "G":
|
402 |
+
diag = "0≡≡≡0\n1 2"
|
403 |
+
return diag
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.vector.coordsysrect import CoordSys3D
|
2 |
+
from sympy.vector.vector import (Vector, VectorAdd, VectorMul,
|
3 |
+
BaseVector, VectorZero, Cross, Dot, cross, dot)
|
4 |
+
from sympy.vector.dyadic import (Dyadic, DyadicAdd, DyadicMul,
|
5 |
+
BaseDyadic, DyadicZero)
|
6 |
+
from sympy.vector.scalar import BaseScalar
|
7 |
+
from sympy.vector.deloperator import Del
|
8 |
+
from sympy.vector.functions import (express, matrix_to_vector,
|
9 |
+
laplacian, is_conservative,
|
10 |
+
is_solenoidal, scalar_potential,
|
11 |
+
directional_derivative,
|
12 |
+
scalar_potential_difference)
|
13 |
+
from sympy.vector.point import Point
|
14 |
+
from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
|
15 |
+
SpaceOrienter, QuaternionOrienter)
|
16 |
+
from sympy.vector.operators import Gradient, Divergence, Curl, Laplacian, gradient, curl, divergence
|
17 |
+
from sympy.vector.implicitregion import ImplicitRegion
|
18 |
+
from sympy.vector.parametricregion import (ParametricRegion, parametric_region_list)
|
19 |
+
from sympy.vector.integrals import (ParametricIntegral, vector_integrate)
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
'Vector', 'VectorAdd', 'VectorMul', 'BaseVector', 'VectorZero', 'Cross',
|
23 |
+
'Dot', 'cross', 'dot',
|
24 |
+
|
25 |
+
'Dyadic', 'DyadicAdd', 'DyadicMul', 'BaseDyadic', 'DyadicZero',
|
26 |
+
|
27 |
+
'BaseScalar',
|
28 |
+
|
29 |
+
'Del',
|
30 |
+
|
31 |
+
'CoordSys3D',
|
32 |
+
|
33 |
+
'express', 'matrix_to_vector', 'laplacian', 'is_conservative',
|
34 |
+
'is_solenoidal', 'scalar_potential', 'directional_derivative',
|
35 |
+
'scalar_potential_difference',
|
36 |
+
|
37 |
+
'Point',
|
38 |
+
|
39 |
+
'AxisOrienter', 'BodyOrienter', 'SpaceOrienter', 'QuaternionOrienter',
|
40 |
+
|
41 |
+
'Gradient', 'Divergence', 'Curl', 'Laplacian', 'gradient', 'curl',
|
42 |
+
'divergence',
|
43 |
+
|
44 |
+
'ParametricRegion', 'parametric_region_list', 'ImplicitRegion',
|
45 |
+
|
46 |
+
'ParametricIntegral', 'vector_integrate',
|
47 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/basisdependent.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/coordsysrect.cpython-310.pyc
ADDED
Binary file (31.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/deloperator.cpython-310.pyc
ADDED
Binary file (3.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/dyadic.cpython-310.pyc
ADDED
Binary file (8.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/implicitregion.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/integrals.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/operators.cpython-310.pyc
ADDED
Binary file (9.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/orienters.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/parametricregion.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/point.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/scalar.cpython-310.pyc
ADDED
Binary file (2.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/__pycache__/vector.cpython-310.pyc
ADDED
Binary file (18.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/basisdependent.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import TYPE_CHECKING
|
3 |
+
|
4 |
+
from sympy.simplify import simplify as simp, trigsimp as tsimp # type: ignore
|
5 |
+
from sympy.core.decorators import call_highest_priority, _sympifyit
|
6 |
+
from sympy.core.assumptions import StdFactKB
|
7 |
+
from sympy.core.function import diff as df
|
8 |
+
from sympy.integrals.integrals import Integral
|
9 |
+
from sympy.polys.polytools import factor as fctr
|
10 |
+
from sympy.core import S, Add, Mul
|
11 |
+
from sympy.core.expr import Expr
|
12 |
+
|
13 |
+
if TYPE_CHECKING:
|
14 |
+
from sympy.vector.vector import BaseVector
|
15 |
+
|
16 |
+
|
17 |
+
class BasisDependent(Expr):
|
18 |
+
"""
|
19 |
+
Super class containing functionality common to vectors and
|
20 |
+
dyadics.
|
21 |
+
Named so because the representation of these quantities in
|
22 |
+
sympy.vector is dependent on the basis they are expressed in.
|
23 |
+
"""
|
24 |
+
|
25 |
+
zero: BasisDependentZero
|
26 |
+
|
27 |
+
@call_highest_priority('__radd__')
|
28 |
+
def __add__(self, other):
|
29 |
+
return self._add_func(self, other)
|
30 |
+
|
31 |
+
@call_highest_priority('__add__')
|
32 |
+
def __radd__(self, other):
|
33 |
+
return self._add_func(other, self)
|
34 |
+
|
35 |
+
@call_highest_priority('__rsub__')
|
36 |
+
def __sub__(self, other):
|
37 |
+
return self._add_func(self, -other)
|
38 |
+
|
39 |
+
@call_highest_priority('__sub__')
|
40 |
+
def __rsub__(self, other):
|
41 |
+
return self._add_func(other, -self)
|
42 |
+
|
43 |
+
@_sympifyit('other', NotImplemented)
|
44 |
+
@call_highest_priority('__rmul__')
|
45 |
+
def __mul__(self, other):
|
46 |
+
return self._mul_func(self, other)
|
47 |
+
|
48 |
+
@_sympifyit('other', NotImplemented)
|
49 |
+
@call_highest_priority('__mul__')
|
50 |
+
def __rmul__(self, other):
|
51 |
+
return self._mul_func(other, self)
|
52 |
+
|
53 |
+
def __neg__(self):
|
54 |
+
return self._mul_func(S.NegativeOne, self)
|
55 |
+
|
56 |
+
@_sympifyit('other', NotImplemented)
|
57 |
+
@call_highest_priority('__rtruediv__')
|
58 |
+
def __truediv__(self, other):
|
59 |
+
return self._div_helper(other)
|
60 |
+
|
61 |
+
@call_highest_priority('__truediv__')
|
62 |
+
def __rtruediv__(self, other):
|
63 |
+
return TypeError("Invalid divisor for division")
|
64 |
+
|
65 |
+
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
|
66 |
+
"""
|
67 |
+
Implements the SymPy evalf routine for this quantity.
|
68 |
+
|
69 |
+
evalf's documentation
|
70 |
+
=====================
|
71 |
+
|
72 |
+
"""
|
73 |
+
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
|
74 |
+
'quad':quad, 'verbose':verbose}
|
75 |
+
vec = self.zero
|
76 |
+
for k, v in self.components.items():
|
77 |
+
vec += v.evalf(n, **options) * k
|
78 |
+
return vec
|
79 |
+
|
80 |
+
evalf.__doc__ += Expr.evalf.__doc__ # type: ignore
|
81 |
+
|
82 |
+
n = evalf
|
83 |
+
|
84 |
+
def simplify(self, **kwargs):
|
85 |
+
"""
|
86 |
+
Implements the SymPy simplify routine for this quantity.
|
87 |
+
|
88 |
+
simplify's documentation
|
89 |
+
========================
|
90 |
+
|
91 |
+
"""
|
92 |
+
simp_components = [simp(v, **kwargs) * k for
|
93 |
+
k, v in self.components.items()]
|
94 |
+
return self._add_func(*simp_components)
|
95 |
+
|
96 |
+
simplify.__doc__ += simp.__doc__ # type: ignore
|
97 |
+
|
98 |
+
def trigsimp(self, **opts):
|
99 |
+
"""
|
100 |
+
Implements the SymPy trigsimp routine, for this quantity.
|
101 |
+
|
102 |
+
trigsimp's documentation
|
103 |
+
========================
|
104 |
+
|
105 |
+
"""
|
106 |
+
trig_components = [tsimp(v, **opts) * k for
|
107 |
+
k, v in self.components.items()]
|
108 |
+
return self._add_func(*trig_components)
|
109 |
+
|
110 |
+
trigsimp.__doc__ += tsimp.__doc__ # type: ignore
|
111 |
+
|
112 |
+
def _eval_simplify(self, **kwargs):
|
113 |
+
return self.simplify(**kwargs)
|
114 |
+
|
115 |
+
def _eval_trigsimp(self, **opts):
|
116 |
+
return self.trigsimp(**opts)
|
117 |
+
|
118 |
+
def _eval_derivative(self, wrt):
|
119 |
+
return self.diff(wrt)
|
120 |
+
|
121 |
+
def _eval_Integral(self, *symbols, **assumptions):
|
122 |
+
integral_components = [Integral(v, *symbols, **assumptions) * k
|
123 |
+
for k, v in self.components.items()]
|
124 |
+
return self._add_func(*integral_components)
|
125 |
+
|
126 |
+
def as_numer_denom(self):
|
127 |
+
"""
|
128 |
+
Returns the expression as a tuple wrt the following
|
129 |
+
transformation -
|
130 |
+
|
131 |
+
expression -> a/b -> a, b
|
132 |
+
|
133 |
+
"""
|
134 |
+
return self, S.One
|
135 |
+
|
136 |
+
def factor(self, *args, **kwargs):
|
137 |
+
"""
|
138 |
+
Implements the SymPy factor routine, on the scalar parts
|
139 |
+
of a basis-dependent expression.
|
140 |
+
|
141 |
+
factor's documentation
|
142 |
+
========================
|
143 |
+
|
144 |
+
"""
|
145 |
+
fctr_components = [fctr(v, *args, **kwargs) * k for
|
146 |
+
k, v in self.components.items()]
|
147 |
+
return self._add_func(*fctr_components)
|
148 |
+
|
149 |
+
factor.__doc__ += fctr.__doc__ # type: ignore
|
150 |
+
|
151 |
+
def as_coeff_Mul(self, rational=False):
|
152 |
+
"""Efficiently extract the coefficient of a product."""
|
153 |
+
return (S.One, self)
|
154 |
+
|
155 |
+
def as_coeff_add(self, *deps):
|
156 |
+
"""Efficiently extract the coefficient of a summation."""
|
157 |
+
l = [x * self.components[x] for x in self.components]
|
158 |
+
return 0, tuple(l)
|
159 |
+
|
160 |
+
def diff(self, *args, **kwargs):
|
161 |
+
"""
|
162 |
+
Implements the SymPy diff routine, for vectors.
|
163 |
+
|
164 |
+
diff's documentation
|
165 |
+
========================
|
166 |
+
|
167 |
+
"""
|
168 |
+
for x in args:
|
169 |
+
if isinstance(x, BasisDependent):
|
170 |
+
raise TypeError("Invalid arg for differentiation")
|
171 |
+
diff_components = [df(v, *args, **kwargs) * k for
|
172 |
+
k, v in self.components.items()]
|
173 |
+
return self._add_func(*diff_components)
|
174 |
+
|
175 |
+
diff.__doc__ += df.__doc__ # type: ignore
|
176 |
+
|
177 |
+
def doit(self, **hints):
|
178 |
+
"""Calls .doit() on each term in the Dyadic"""
|
179 |
+
doit_components = [self.components[x].doit(**hints) * x
|
180 |
+
for x in self.components]
|
181 |
+
return self._add_func(*doit_components)
|
182 |
+
|
183 |
+
|
184 |
+
class BasisDependentAdd(BasisDependent, Add):
|
185 |
+
"""
|
186 |
+
Denotes sum of basis dependent quantities such that they cannot
|
187 |
+
be expressed as base or Mul instances.
|
188 |
+
"""
|
189 |
+
|
190 |
+
def __new__(cls, *args, **options):
|
191 |
+
components = {}
|
192 |
+
|
193 |
+
# Check each arg and simultaneously learn the components
|
194 |
+
for i, arg in enumerate(args):
|
195 |
+
if not isinstance(arg, cls._expr_type):
|
196 |
+
if isinstance(arg, Mul):
|
197 |
+
arg = cls._mul_func(*(arg.args))
|
198 |
+
elif isinstance(arg, Add):
|
199 |
+
arg = cls._add_func(*(arg.args))
|
200 |
+
else:
|
201 |
+
raise TypeError(str(arg) +
|
202 |
+
" cannot be interpreted correctly")
|
203 |
+
# If argument is zero, ignore
|
204 |
+
if arg == cls.zero:
|
205 |
+
continue
|
206 |
+
# Else, update components accordingly
|
207 |
+
if hasattr(arg, "components"):
|
208 |
+
for x in arg.components:
|
209 |
+
components[x] = components.get(x, 0) + arg.components[x]
|
210 |
+
|
211 |
+
temp = list(components.keys())
|
212 |
+
for x in temp:
|
213 |
+
if components[x] == 0:
|
214 |
+
del components[x]
|
215 |
+
|
216 |
+
# Handle case of zero vector
|
217 |
+
if len(components) == 0:
|
218 |
+
return cls.zero
|
219 |
+
|
220 |
+
# Build object
|
221 |
+
newargs = [x * components[x] for x in components]
|
222 |
+
obj = super().__new__(cls, *newargs, **options)
|
223 |
+
if isinstance(obj, Mul):
|
224 |
+
return cls._mul_func(*obj.args)
|
225 |
+
assumptions = {'commutative': True}
|
226 |
+
obj._assumptions = StdFactKB(assumptions)
|
227 |
+
obj._components = components
|
228 |
+
obj._sys = (list(components.keys()))[0]._sys
|
229 |
+
|
230 |
+
return obj
|
231 |
+
|
232 |
+
|
233 |
+
class BasisDependentMul(BasisDependent, Mul):
|
234 |
+
"""
|
235 |
+
Denotes product of base- basis dependent quantity with a scalar.
|
236 |
+
"""
|
237 |
+
|
238 |
+
def __new__(cls, *args, **options):
|
239 |
+
from sympy.vector import Cross, Dot, Curl, Gradient
|
240 |
+
count = 0
|
241 |
+
measure_number = S.One
|
242 |
+
zeroflag = False
|
243 |
+
extra_args = []
|
244 |
+
|
245 |
+
# Determine the component and check arguments
|
246 |
+
# Also keep a count to ensure two vectors aren't
|
247 |
+
# being multiplied
|
248 |
+
for arg in args:
|
249 |
+
if isinstance(arg, cls._zero_func):
|
250 |
+
count += 1
|
251 |
+
zeroflag = True
|
252 |
+
elif arg == S.Zero:
|
253 |
+
zeroflag = True
|
254 |
+
elif isinstance(arg, (cls._base_func, cls._mul_func)):
|
255 |
+
count += 1
|
256 |
+
expr = arg._base_instance
|
257 |
+
measure_number *= arg._measure_number
|
258 |
+
elif isinstance(arg, cls._add_func):
|
259 |
+
count += 1
|
260 |
+
expr = arg
|
261 |
+
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
|
262 |
+
extra_args.append(arg)
|
263 |
+
else:
|
264 |
+
measure_number *= arg
|
265 |
+
# Make sure incompatible types weren't multiplied
|
266 |
+
if count > 1:
|
267 |
+
raise ValueError("Invalid multiplication")
|
268 |
+
elif count == 0:
|
269 |
+
return Mul(*args, **options)
|
270 |
+
# Handle zero vector case
|
271 |
+
if zeroflag:
|
272 |
+
return cls.zero
|
273 |
+
|
274 |
+
# If one of the args was a VectorAdd, return an
|
275 |
+
# appropriate VectorAdd instance
|
276 |
+
if isinstance(expr, cls._add_func):
|
277 |
+
newargs = [cls._mul_func(measure_number, x) for
|
278 |
+
x in expr.args]
|
279 |
+
return cls._add_func(*newargs)
|
280 |
+
|
281 |
+
obj = super().__new__(cls, measure_number,
|
282 |
+
expr._base_instance,
|
283 |
+
*extra_args,
|
284 |
+
**options)
|
285 |
+
if isinstance(obj, Add):
|
286 |
+
return cls._add_func(*obj.args)
|
287 |
+
obj._base_instance = expr._base_instance
|
288 |
+
obj._measure_number = measure_number
|
289 |
+
assumptions = {'commutative': True}
|
290 |
+
obj._assumptions = StdFactKB(assumptions)
|
291 |
+
obj._components = {expr._base_instance: measure_number}
|
292 |
+
obj._sys = expr._base_instance._sys
|
293 |
+
|
294 |
+
return obj
|
295 |
+
|
296 |
+
def _sympystr(self, printer):
|
297 |
+
measure_str = printer._print(self._measure_number)
|
298 |
+
if ('(' in measure_str or '-' in measure_str or
|
299 |
+
'+' in measure_str):
|
300 |
+
measure_str = '(' + measure_str + ')'
|
301 |
+
return measure_str + '*' + printer._print(self._base_instance)
|
302 |
+
|
303 |
+
|
304 |
+
class BasisDependentZero(BasisDependent):
|
305 |
+
"""
|
306 |
+
Class to denote a zero basis dependent instance.
|
307 |
+
"""
|
308 |
+
components: dict['BaseVector', Expr] = {}
|
309 |
+
_latex_form: str
|
310 |
+
|
311 |
+
def __new__(cls):
|
312 |
+
obj = super().__new__(cls)
|
313 |
+
# Pre-compute a specific hash value for the zero vector
|
314 |
+
# Use the same one always
|
315 |
+
obj._hash = (S.Zero, cls).__hash__()
|
316 |
+
return obj
|
317 |
+
|
318 |
+
def __hash__(self):
|
319 |
+
return self._hash
|
320 |
+
|
321 |
+
@call_highest_priority('__req__')
|
322 |
+
def __eq__(self, other):
|
323 |
+
return isinstance(other, self._zero_func)
|
324 |
+
|
325 |
+
__req__ = __eq__
|
326 |
+
|
327 |
+
@call_highest_priority('__radd__')
|
328 |
+
def __add__(self, other):
|
329 |
+
if isinstance(other, self._expr_type):
|
330 |
+
return other
|
331 |
+
else:
|
332 |
+
raise TypeError("Invalid argument types for addition")
|
333 |
+
|
334 |
+
@call_highest_priority('__add__')
|
335 |
+
def __radd__(self, other):
|
336 |
+
if isinstance(other, self._expr_type):
|
337 |
+
return other
|
338 |
+
else:
|
339 |
+
raise TypeError("Invalid argument types for addition")
|
340 |
+
|
341 |
+
@call_highest_priority('__rsub__')
|
342 |
+
def __sub__(self, other):
|
343 |
+
if isinstance(other, self._expr_type):
|
344 |
+
return -other
|
345 |
+
else:
|
346 |
+
raise TypeError("Invalid argument types for subtraction")
|
347 |
+
|
348 |
+
@call_highest_priority('__sub__')
|
349 |
+
def __rsub__(self, other):
|
350 |
+
if isinstance(other, self._expr_type):
|
351 |
+
return other
|
352 |
+
else:
|
353 |
+
raise TypeError("Invalid argument types for subtraction")
|
354 |
+
|
355 |
+
def __neg__(self):
|
356 |
+
return self
|
357 |
+
|
358 |
+
def normalize(self):
|
359 |
+
"""
|
360 |
+
Returns the normalized version of this vector.
|
361 |
+
"""
|
362 |
+
return self
|
363 |
+
|
364 |
+
def _sympystr(self, printer):
|
365 |
+
return '0'
|
llmeval-env/lib/python3.10/site-packages/sympy/vector/functions.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.vector.coordsysrect import CoordSys3D
|
2 |
+
from sympy.vector.deloperator import Del
|
3 |
+
from sympy.vector.scalar import BaseScalar
|
4 |
+
from sympy.vector.vector import Vector, BaseVector
|
5 |
+
from sympy.vector.operators import gradient, curl, divergence
|
6 |
+
from sympy.core.function import diff
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.integrals.integrals import integrate
|
9 |
+
from sympy.simplify.simplify import simplify
|
10 |
+
from sympy.core import sympify
|
11 |
+
from sympy.vector.dyadic import Dyadic
|
12 |
+
|
13 |
+
|
14 |
+
def express(expr, system, system2=None, variables=False):
|
15 |
+
"""
|
16 |
+
Global function for 'express' functionality.
|
17 |
+
|
18 |
+
Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
|
19 |
+
coordinate system.
|
20 |
+
|
21 |
+
If 'variables' is True, then the coordinate variables (base scalars)
|
22 |
+
of other coordinate systems present in the vector/scalar field or
|
23 |
+
dyadic are also substituted in terms of the base scalars of the
|
24 |
+
given system.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
==========
|
28 |
+
|
29 |
+
expr : Vector/Dyadic/scalar(sympyfiable)
|
30 |
+
The expression to re-express in CoordSys3D 'system'
|
31 |
+
|
32 |
+
system: CoordSys3D
|
33 |
+
The coordinate system the expr is to be expressed in
|
34 |
+
|
35 |
+
system2: CoordSys3D
|
36 |
+
The other coordinate system required for re-expression
|
37 |
+
(only for a Dyadic Expr)
|
38 |
+
|
39 |
+
variables : boolean
|
40 |
+
Specifies whether to substitute the coordinate variables present
|
41 |
+
in expr, in terms of those of parameter system
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
>>> from sympy.vector import CoordSys3D
|
47 |
+
>>> from sympy import Symbol, cos, sin
|
48 |
+
>>> N = CoordSys3D('N')
|
49 |
+
>>> q = Symbol('q')
|
50 |
+
>>> B = N.orient_new_axis('B', q, N.k)
|
51 |
+
>>> from sympy.vector import express
|
52 |
+
>>> express(B.i, N)
|
53 |
+
(cos(q))*N.i + (sin(q))*N.j
|
54 |
+
>>> express(N.x, B, variables=True)
|
55 |
+
B.x*cos(q) - B.y*sin(q)
|
56 |
+
>>> d = N.i.outer(N.i)
|
57 |
+
>>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
|
58 |
+
True
|
59 |
+
|
60 |
+
"""
|
61 |
+
|
62 |
+
if expr in (0, Vector.zero):
|
63 |
+
return expr
|
64 |
+
|
65 |
+
if not isinstance(system, CoordSys3D):
|
66 |
+
raise TypeError("system should be a CoordSys3D \
|
67 |
+
instance")
|
68 |
+
|
69 |
+
if isinstance(expr, Vector):
|
70 |
+
if system2 is not None:
|
71 |
+
raise ValueError("system2 should not be provided for \
|
72 |
+
Vectors")
|
73 |
+
# Given expr is a Vector
|
74 |
+
if variables:
|
75 |
+
# If variables attribute is True, substitute
|
76 |
+
# the coordinate variables in the Vector
|
77 |
+
system_list = {x.system for x in expr.atoms(BaseScalar, BaseVector)} - {system}
|
78 |
+
subs_dict = {}
|
79 |
+
for f in system_list:
|
80 |
+
subs_dict.update(f.scalar_map(system))
|
81 |
+
expr = expr.subs(subs_dict)
|
82 |
+
# Re-express in this coordinate system
|
83 |
+
outvec = Vector.zero
|
84 |
+
parts = expr.separate()
|
85 |
+
for x in parts:
|
86 |
+
if x != system:
|
87 |
+
temp = system.rotation_matrix(x) * parts[x].to_matrix(x)
|
88 |
+
outvec += matrix_to_vector(temp, system)
|
89 |
+
else:
|
90 |
+
outvec += parts[x]
|
91 |
+
return outvec
|
92 |
+
|
93 |
+
elif isinstance(expr, Dyadic):
|
94 |
+
if system2 is None:
|
95 |
+
system2 = system
|
96 |
+
if not isinstance(system2, CoordSys3D):
|
97 |
+
raise TypeError("system2 should be a CoordSys3D \
|
98 |
+
instance")
|
99 |
+
outdyad = Dyadic.zero
|
100 |
+
var = variables
|
101 |
+
for k, v in expr.components.items():
|
102 |
+
outdyad += (express(v, system, variables=var) *
|
103 |
+
(express(k.args[0], system, variables=var) |
|
104 |
+
express(k.args[1], system2, variables=var)))
|
105 |
+
|
106 |
+
return outdyad
|
107 |
+
|
108 |
+
else:
|
109 |
+
if system2 is not None:
|
110 |
+
raise ValueError("system2 should not be provided for \
|
111 |
+
Vectors")
|
112 |
+
if variables:
|
113 |
+
# Given expr is a scalar field
|
114 |
+
system_set = set()
|
115 |
+
expr = sympify(expr)
|
116 |
+
# Substitute all the coordinate variables
|
117 |
+
for x in expr.atoms(BaseScalar):
|
118 |
+
if x.system != system:
|
119 |
+
system_set.add(x.system)
|
120 |
+
subs_dict = {}
|
121 |
+
for f in system_set:
|
122 |
+
subs_dict.update(f.scalar_map(system))
|
123 |
+
return expr.subs(subs_dict)
|
124 |
+
return expr
|
125 |
+
|
126 |
+
|
127 |
+
def directional_derivative(field, direction_vector):
|
128 |
+
"""
|
129 |
+
Returns the directional derivative of a scalar or vector field computed
|
130 |
+
along a given vector in coordinate system which parameters are expressed.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
==========
|
134 |
+
|
135 |
+
field : Vector or Scalar
|
136 |
+
The scalar or vector field to compute the directional derivative of
|
137 |
+
|
138 |
+
direction_vector : Vector
|
139 |
+
The vector to calculated directional derivative along them.
|
140 |
+
|
141 |
+
|
142 |
+
Examples
|
143 |
+
========
|
144 |
+
|
145 |
+
>>> from sympy.vector import CoordSys3D, directional_derivative
|
146 |
+
>>> R = CoordSys3D('R')
|
147 |
+
>>> f1 = R.x*R.y*R.z
|
148 |
+
>>> v1 = 3*R.i + 4*R.j + R.k
|
149 |
+
>>> directional_derivative(f1, v1)
|
150 |
+
R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
|
151 |
+
>>> f2 = 5*R.x**2*R.z
|
152 |
+
>>> directional_derivative(f2, v1)
|
153 |
+
5*R.x**2 + 30*R.x*R.z
|
154 |
+
|
155 |
+
"""
|
156 |
+
from sympy.vector.operators import _get_coord_systems
|
157 |
+
coord_sys = _get_coord_systems(field)
|
158 |
+
if len(coord_sys) > 0:
|
159 |
+
# TODO: This gets a random coordinate system in case of multiple ones:
|
160 |
+
coord_sys = next(iter(coord_sys))
|
161 |
+
field = express(field, coord_sys, variables=True)
|
162 |
+
i, j, k = coord_sys.base_vectors()
|
163 |
+
x, y, z = coord_sys.base_scalars()
|
164 |
+
out = Vector.dot(direction_vector, i) * diff(field, x)
|
165 |
+
out += Vector.dot(direction_vector, j) * diff(field, y)
|
166 |
+
out += Vector.dot(direction_vector, k) * diff(field, z)
|
167 |
+
if out == 0 and isinstance(field, Vector):
|
168 |
+
out = Vector.zero
|
169 |
+
return out
|
170 |
+
elif isinstance(field, Vector):
|
171 |
+
return Vector.zero
|
172 |
+
else:
|
173 |
+
return S.Zero
|
174 |
+
|
175 |
+
|
176 |
+
def laplacian(expr):
|
177 |
+
"""
|
178 |
+
Return the laplacian of the given field computed in terms of
|
179 |
+
the base scalars of the given coordinate system.
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
==========
|
183 |
+
|
184 |
+
expr : SymPy Expr or Vector
|
185 |
+
expr denotes a scalar or vector field.
|
186 |
+
|
187 |
+
Examples
|
188 |
+
========
|
189 |
+
|
190 |
+
>>> from sympy.vector import CoordSys3D, laplacian
|
191 |
+
>>> R = CoordSys3D('R')
|
192 |
+
>>> f = R.x**2*R.y**5*R.z
|
193 |
+
>>> laplacian(f)
|
194 |
+
20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
|
195 |
+
>>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
|
196 |
+
>>> laplacian(f)
|
197 |
+
2*R.i + 6*R.y*R.j + 12*R.z**2*R.k
|
198 |
+
|
199 |
+
"""
|
200 |
+
|
201 |
+
delop = Del()
|
202 |
+
if expr.is_Vector:
|
203 |
+
return (gradient(divergence(expr)) - curl(curl(expr))).doit()
|
204 |
+
return delop.dot(delop(expr)).doit()
|
205 |
+
|
206 |
+
|
207 |
+
def is_conservative(field):
|
208 |
+
"""
|
209 |
+
Checks if a field is conservative.
|
210 |
+
|
211 |
+
Parameters
|
212 |
+
==========
|
213 |
+
|
214 |
+
field : Vector
|
215 |
+
The field to check for conservative property
|
216 |
+
|
217 |
+
Examples
|
218 |
+
========
|
219 |
+
|
220 |
+
>>> from sympy.vector import CoordSys3D
|
221 |
+
>>> from sympy.vector import is_conservative
|
222 |
+
>>> R = CoordSys3D('R')
|
223 |
+
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
|
224 |
+
True
|
225 |
+
>>> is_conservative(R.z*R.j)
|
226 |
+
False
|
227 |
+
|
228 |
+
"""
|
229 |
+
|
230 |
+
# Field is conservative irrespective of system
|
231 |
+
# Take the first coordinate system in the result of the
|
232 |
+
# separate method of Vector
|
233 |
+
if not isinstance(field, Vector):
|
234 |
+
raise TypeError("field should be a Vector")
|
235 |
+
if field == Vector.zero:
|
236 |
+
return True
|
237 |
+
return curl(field).simplify() == Vector.zero
|
238 |
+
|
239 |
+
|
240 |
+
def is_solenoidal(field):
|
241 |
+
"""
|
242 |
+
Checks if a field is solenoidal.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
==========
|
246 |
+
|
247 |
+
field : Vector
|
248 |
+
The field to check for solenoidal property
|
249 |
+
|
250 |
+
Examples
|
251 |
+
========
|
252 |
+
|
253 |
+
>>> from sympy.vector import CoordSys3D
|
254 |
+
>>> from sympy.vector import is_solenoidal
|
255 |
+
>>> R = CoordSys3D('R')
|
256 |
+
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
|
257 |
+
True
|
258 |
+
>>> is_solenoidal(R.y * R.j)
|
259 |
+
False
|
260 |
+
|
261 |
+
"""
|
262 |
+
|
263 |
+
# Field is solenoidal irrespective of system
|
264 |
+
# Take the first coordinate system in the result of the
|
265 |
+
# separate method in Vector
|
266 |
+
if not isinstance(field, Vector):
|
267 |
+
raise TypeError("field should be a Vector")
|
268 |
+
if field == Vector.zero:
|
269 |
+
return True
|
270 |
+
return divergence(field).simplify() is S.Zero
|
271 |
+
|
272 |
+
|
273 |
+
def scalar_potential(field, coord_sys):
|
274 |
+
"""
|
275 |
+
Returns the scalar potential function of a field in a given
|
276 |
+
coordinate system (without the added integration constant).
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
==========
|
280 |
+
|
281 |
+
field : Vector
|
282 |
+
The vector field whose scalar potential function is to be
|
283 |
+
calculated
|
284 |
+
|
285 |
+
coord_sys : CoordSys3D
|
286 |
+
The coordinate system to do the calculation in
|
287 |
+
|
288 |
+
Examples
|
289 |
+
========
|
290 |
+
|
291 |
+
>>> from sympy.vector import CoordSys3D
|
292 |
+
>>> from sympy.vector import scalar_potential, gradient
|
293 |
+
>>> R = CoordSys3D('R')
|
294 |
+
>>> scalar_potential(R.k, R) == R.z
|
295 |
+
True
|
296 |
+
>>> scalar_field = 2*R.x**2*R.y*R.z
|
297 |
+
>>> grad_field = gradient(scalar_field)
|
298 |
+
>>> scalar_potential(grad_field, R)
|
299 |
+
2*R.x**2*R.y*R.z
|
300 |
+
|
301 |
+
"""
|
302 |
+
|
303 |
+
# Check whether field is conservative
|
304 |
+
if not is_conservative(field):
|
305 |
+
raise ValueError("Field is not conservative")
|
306 |
+
if field == Vector.zero:
|
307 |
+
return S.Zero
|
308 |
+
# Express the field exntirely in coord_sys
|
309 |
+
# Substitute coordinate variables also
|
310 |
+
if not isinstance(coord_sys, CoordSys3D):
|
311 |
+
raise TypeError("coord_sys must be a CoordSys3D")
|
312 |
+
field = express(field, coord_sys, variables=True)
|
313 |
+
dimensions = coord_sys.base_vectors()
|
314 |
+
scalars = coord_sys.base_scalars()
|
315 |
+
# Calculate scalar potential function
|
316 |
+
temp_function = integrate(field.dot(dimensions[0]), scalars[0])
|
317 |
+
for i, dim in enumerate(dimensions[1:]):
|
318 |
+
partial_diff = diff(temp_function, scalars[i + 1])
|
319 |
+
partial_diff = field.dot(dim) - partial_diff
|
320 |
+
temp_function += integrate(partial_diff, scalars[i + 1])
|
321 |
+
return temp_function
|
322 |
+
|
323 |
+
|
324 |
+
def scalar_potential_difference(field, coord_sys, point1, point2):
|
325 |
+
"""
|
326 |
+
Returns the scalar potential difference between two points in a
|
327 |
+
certain coordinate system, wrt a given field.
|
328 |
+
|
329 |
+
If a scalar field is provided, its values at the two points are
|
330 |
+
considered. If a conservative vector field is provided, the values
|
331 |
+
of its scalar potential function at the two points are used.
|
332 |
+
|
333 |
+
Returns (potential at point2) - (potential at point1)
|
334 |
+
|
335 |
+
The position vectors of the two Points are calculated wrt the
|
336 |
+
origin of the coordinate system provided.
|
337 |
+
|
338 |
+
Parameters
|
339 |
+
==========
|
340 |
+
|
341 |
+
field : Vector/Expr
|
342 |
+
The field to calculate wrt
|
343 |
+
|
344 |
+
coord_sys : CoordSys3D
|
345 |
+
The coordinate system to do the calculations in
|
346 |
+
|
347 |
+
point1 : Point
|
348 |
+
The initial Point in given coordinate system
|
349 |
+
|
350 |
+
position2 : Point
|
351 |
+
The second Point in the given coordinate system
|
352 |
+
|
353 |
+
Examples
|
354 |
+
========
|
355 |
+
|
356 |
+
>>> from sympy.vector import CoordSys3D
|
357 |
+
>>> from sympy.vector import scalar_potential_difference
|
358 |
+
>>> R = CoordSys3D('R')
|
359 |
+
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
|
360 |
+
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
|
361 |
+
>>> scalar_potential_difference(vectfield, R, R.origin, P)
|
362 |
+
2*R.x**2*R.y
|
363 |
+
>>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
|
364 |
+
>>> scalar_potential_difference(vectfield, R, P, Q)
|
365 |
+
-2*R.x**2*R.y + 18
|
366 |
+
|
367 |
+
"""
|
368 |
+
|
369 |
+
if not isinstance(coord_sys, CoordSys3D):
|
370 |
+
raise TypeError("coord_sys must be a CoordSys3D")
|
371 |
+
if isinstance(field, Vector):
|
372 |
+
# Get the scalar potential function
|
373 |
+
scalar_fn = scalar_potential(field, coord_sys)
|
374 |
+
else:
|
375 |
+
# Field is a scalar
|
376 |
+
scalar_fn = field
|
377 |
+
# Express positions in required coordinate system
|
378 |
+
origin = coord_sys.origin
|
379 |
+
position1 = express(point1.position_wrt(origin), coord_sys,
|
380 |
+
variables=True)
|
381 |
+
position2 = express(point2.position_wrt(origin), coord_sys,
|
382 |
+
variables=True)
|
383 |
+
# Get the two positions as substitution dicts for coordinate variables
|
384 |
+
subs_dict1 = {}
|
385 |
+
subs_dict2 = {}
|
386 |
+
scalars = coord_sys.base_scalars()
|
387 |
+
for i, x in enumerate(coord_sys.base_vectors()):
|
388 |
+
subs_dict1[scalars[i]] = x.dot(position1)
|
389 |
+
subs_dict2[scalars[i]] = x.dot(position2)
|
390 |
+
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
|
391 |
+
|
392 |
+
|
393 |
+
def matrix_to_vector(matrix, system):
|
394 |
+
"""
|
395 |
+
Converts a vector in matrix form to a Vector instance.
|
396 |
+
|
397 |
+
It is assumed that the elements of the Matrix represent the
|
398 |
+
measure numbers of the components of the vector along basis
|
399 |
+
vectors of 'system'.
|
400 |
+
|
401 |
+
Parameters
|
402 |
+
==========
|
403 |
+
|
404 |
+
matrix : SymPy Matrix, Dimensions: (3, 1)
|
405 |
+
The matrix to be converted to a vector
|
406 |
+
|
407 |
+
system : CoordSys3D
|
408 |
+
The coordinate system the vector is to be defined in
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy import ImmutableMatrix as Matrix
|
414 |
+
>>> m = Matrix([1, 2, 3])
|
415 |
+
>>> from sympy.vector import CoordSys3D, matrix_to_vector
|
416 |
+
>>> C = CoordSys3D('C')
|
417 |
+
>>> v = matrix_to_vector(m, C)
|
418 |
+
>>> v
|
419 |
+
C.i + 2*C.j + 3*C.k
|
420 |
+
>>> v.to_matrix(C) == m
|
421 |
+
True
|
422 |
+
|
423 |
+
"""
|
424 |
+
|
425 |
+
outvec = Vector.zero
|
426 |
+
vects = system.base_vectors()
|
427 |
+
for i, x in enumerate(matrix):
|
428 |
+
outvec += x * vects[i]
|
429 |
+
return outvec
|
430 |
+
|
431 |
+
|
432 |
+
def _path(from_object, to_object):
|
433 |
+
"""
|
434 |
+
Calculates the 'path' of objects starting from 'from_object'
|
435 |
+
to 'to_object', along with the index of the first common
|
436 |
+
ancestor in the tree.
|
437 |
+
|
438 |
+
Returns (index, list) tuple.
|
439 |
+
"""
|
440 |
+
|
441 |
+
if from_object._root != to_object._root:
|
442 |
+
raise ValueError("No connecting path found between " +
|
443 |
+
str(from_object) + " and " + str(to_object))
|
444 |
+
|
445 |
+
other_path = []
|
446 |
+
obj = to_object
|
447 |
+
while obj._parent is not None:
|
448 |
+
other_path.append(obj)
|
449 |
+
obj = obj._parent
|
450 |
+
other_path.append(obj)
|
451 |
+
object_set = set(other_path)
|
452 |
+
from_path = []
|
453 |
+
obj = from_object
|
454 |
+
while obj not in object_set:
|
455 |
+
from_path.append(obj)
|
456 |
+
obj = obj._parent
|
457 |
+
index = len(from_path)
|
458 |
+
i = other_path.index(obj)
|
459 |
+
while i >= 0:
|
460 |
+
from_path.append(other_path[i])
|
461 |
+
i -= 1
|
462 |
+
return index, from_path
|
463 |
+
|
464 |
+
|
465 |
+
def orthogonalize(*vlist, orthonormal=False):
|
466 |
+
"""
|
467 |
+
Takes a sequence of independent vectors and orthogonalizes them
|
468 |
+
using the Gram - Schmidt process. Returns a list of
|
469 |
+
orthogonal or orthonormal vectors.
|
470 |
+
|
471 |
+
Parameters
|
472 |
+
==========
|
473 |
+
|
474 |
+
vlist : sequence of independent vectors to be made orthogonal.
|
475 |
+
|
476 |
+
orthonormal : Optional parameter
|
477 |
+
Set to True if the vectors returned should be
|
478 |
+
orthonormal.
|
479 |
+
Default: False
|
480 |
+
|
481 |
+
Examples
|
482 |
+
========
|
483 |
+
|
484 |
+
>>> from sympy.vector.coordsysrect import CoordSys3D
|
485 |
+
>>> from sympy.vector.functions import orthogonalize
|
486 |
+
>>> C = CoordSys3D('C')
|
487 |
+
>>> i, j, k = C.base_vectors()
|
488 |
+
>>> v1 = i + 2*j
|
489 |
+
>>> v2 = 2*i + 3*j
|
490 |
+
>>> orthogonalize(v1, v2)
|
491 |
+
[C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]
|
492 |
+
|
493 |
+
References
|
494 |
+
==========
|
495 |
+
|
496 |
+
.. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process
|
497 |
+
|
498 |
+
"""
|
499 |
+
|
500 |
+
if not all(isinstance(vec, Vector) for vec in vlist):
|
501 |
+
raise TypeError('Each element must be of Type Vector')
|
502 |
+
|
503 |
+
ortho_vlist = []
|
504 |
+
for i, term in enumerate(vlist):
|
505 |
+
for j in range(i):
|
506 |
+
term -= ortho_vlist[j].projection(vlist[i])
|
507 |
+
# TODO : The following line introduces a performance issue
|
508 |
+
# and needs to be changed once a good solution for issue #10279 is
|
509 |
+
# found.
|
510 |
+
if simplify(term).equals(Vector.zero):
|
511 |
+
raise ValueError("Vector set not linearly independent")
|
512 |
+
ortho_vlist.append(term)
|
513 |
+
|
514 |
+
if orthonormal:
|
515 |
+
ortho_vlist = [vec.normalize() for vec in ortho_vlist]
|
516 |
+
|
517 |
+
return ortho_vlist
|