Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/maxent.py +1569 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/svm.py +17 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/tadm.py +122 -0
- llmeval-env/lib/python3.10/site-packages/nltk/classify/weka.py +377 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/__init__.py +18 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/all.py +25 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/bleu.doctest +29 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/bnc.doctest +60 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/ccg.doctest +376 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/ccg_semantics.doctest +552 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/chat80.doctest +232 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/childes.doctest +190 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/childes_fixt.py +13 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/chunk.doctest +372 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/classify.doctest +202 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/classify_fixt.py +5 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/collections.doctest +31 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/concordance.doctest +75 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/corpus.doctest +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/crubadan.doctest +65 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/data.doctest +387 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/drt.doctest +515 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/featstruct.doctest +1229 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/framenet.doctest +288 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/generate.doctest +78 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/gensim.doctest +141 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics_malt.doctest +69 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/grammartestsuites.doctest +109 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/internals.doctest +161 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/lm.doctest +135 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/logic.doctest +1096 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/metrics.doctest +321 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/misc.doctest +118 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/portuguese_en_fixt.py +4 -0
- llmeval-env/lib/python3.10/site-packages/nltk/test/probability.doctest +306 -0
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc
ADDED
Binary file (4.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc
ADDED
Binary file (9.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc
ADDED
Binary file (46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc
ADDED
Binary file (5.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc
ADDED
Binary file (8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc
ADDED
Binary file (5.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc
ADDED
Binary file (5.56 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc
ADDED
Binary file (5.95 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc
ADDED
Binary file (5.64 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc
ADDED
Binary file (699 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc
ADDED
Binary file (4.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/maxent.py
ADDED
@@ -0,0 +1,1569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Maximum Entropy Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Dmitry Chichkov <[email protected]> (TypedMaxentFeatureEncoding)
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
A classifier model based on maximum entropy modeling framework. This
|
11 |
+
framework considers all of the probability distributions that are
|
12 |
+
empirically consistent with the training data; and chooses the
|
13 |
+
distribution with the highest entropy. A probability distribution is
|
14 |
+
"empirically consistent" with a set of training data if its estimated
|
15 |
+
frequency with which a class and a feature vector value co-occur is
|
16 |
+
equal to the actual frequency in the data.
|
17 |
+
|
18 |
+
Terminology: 'feature'
|
19 |
+
======================
|
20 |
+
The term *feature* is usually used to refer to some property of an
|
21 |
+
unlabeled token. For example, when performing word sense
|
22 |
+
disambiguation, we might define a ``'prevword'`` feature whose value is
|
23 |
+
the word preceding the target word. However, in the context of
|
24 |
+
maxent modeling, the term *feature* is typically used to refer to a
|
25 |
+
property of a "labeled" token. In order to prevent confusion, we
|
26 |
+
will introduce two distinct terms to disambiguate these two different
|
27 |
+
concepts:
|
28 |
+
|
29 |
+
- An "input-feature" is a property of an unlabeled token.
|
30 |
+
- A "joint-feature" is a property of a labeled token.
|
31 |
+
|
32 |
+
In the rest of the ``nltk.classify`` module, the term "features" is
|
33 |
+
used to refer to what we will call "input-features" in this module.
|
34 |
+
|
35 |
+
In literature that describes and discusses maximum entropy models,
|
36 |
+
input-features are typically called "contexts", and joint-features
|
37 |
+
are simply referred to as "features".
|
38 |
+
|
39 |
+
Converting Input-Features to Joint-Features
|
40 |
+
-------------------------------------------
|
41 |
+
In maximum entropy models, joint-features are required to have numeric
|
42 |
+
values. Typically, each input-feature ``input_feat`` is mapped to a
|
43 |
+
set of joint-features of the form:
|
44 |
+
|
45 |
+
| joint_feat(token, label) = { 1 if input_feat(token) == feat_val
|
46 |
+
| { and label == some_label
|
47 |
+
| {
|
48 |
+
| { 0 otherwise
|
49 |
+
|
50 |
+
For all values of ``feat_val`` and ``some_label``. This mapping is
|
51 |
+
performed by classes that implement the ``MaxentFeatureEncodingI``
|
52 |
+
interface.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
import numpy
|
56 |
+
except ImportError:
|
57 |
+
pass
|
58 |
+
|
59 |
+
import os
|
60 |
+
import tempfile
|
61 |
+
from collections import defaultdict
|
62 |
+
|
63 |
+
from nltk.classify.api import ClassifierI
|
64 |
+
from nltk.classify.megam import call_megam, parse_megam_weights, write_megam_file
|
65 |
+
from nltk.classify.tadm import call_tadm, parse_tadm_weights, write_tadm_file
|
66 |
+
from nltk.classify.util import CutoffChecker, accuracy, log_likelihood
|
67 |
+
from nltk.data import gzip_open_unicode
|
68 |
+
from nltk.probability import DictionaryProbDist
|
69 |
+
from nltk.util import OrderedDict
|
70 |
+
|
71 |
+
__docformat__ = "epytext en"
|
72 |
+
|
73 |
+
######################################################################
|
74 |
+
# { Classifier Model
|
75 |
+
######################################################################
|
76 |
+
|
77 |
+
|
78 |
+
class MaxentClassifier(ClassifierI):
|
79 |
+
"""
|
80 |
+
A maximum entropy classifier (also known as a "conditional
|
81 |
+
exponential classifier"). This classifier is parameterized by a
|
82 |
+
set of "weights", which are used to combine the joint-features
|
83 |
+
that are generated from a featureset by an "encoding". In
|
84 |
+
particular, the encoding maps each ``(featureset, label)`` pair to
|
85 |
+
a vector. The probability of each label is then computed using
|
86 |
+
the following equation::
|
87 |
+
|
88 |
+
dotprod(weights, encode(fs,label))
|
89 |
+
prob(fs|label) = ---------------------------------------------------
|
90 |
+
sum(dotprod(weights, encode(fs,l)) for l in labels)
|
91 |
+
|
92 |
+
Where ``dotprod`` is the dot product::
|
93 |
+
|
94 |
+
dotprod(a,b) = sum(x*y for (x,y) in zip(a,b))
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, encoding, weights, logarithmic=True):
|
98 |
+
"""
|
99 |
+
Construct a new maxent classifier model. Typically, new
|
100 |
+
classifier models are created using the ``train()`` method.
|
101 |
+
|
102 |
+
:type encoding: MaxentFeatureEncodingI
|
103 |
+
:param encoding: An encoding that is used to convert the
|
104 |
+
featuresets that are given to the ``classify`` method into
|
105 |
+
joint-feature vectors, which are used by the maxent
|
106 |
+
classifier model.
|
107 |
+
|
108 |
+
:type weights: list of float
|
109 |
+
:param weights: The feature weight vector for this classifier.
|
110 |
+
|
111 |
+
:type logarithmic: bool
|
112 |
+
:param logarithmic: If false, then use non-logarithmic weights.
|
113 |
+
"""
|
114 |
+
self._encoding = encoding
|
115 |
+
self._weights = weights
|
116 |
+
self._logarithmic = logarithmic
|
117 |
+
# self._logarithmic = False
|
118 |
+
assert encoding.length() == len(weights)
|
119 |
+
|
120 |
+
def labels(self):
|
121 |
+
return self._encoding.labels()
|
122 |
+
|
123 |
+
def set_weights(self, new_weights):
|
124 |
+
"""
|
125 |
+
Set the feature weight vector for this classifier.
|
126 |
+
:param new_weights: The new feature weight vector.
|
127 |
+
:type new_weights: list of float
|
128 |
+
"""
|
129 |
+
self._weights = new_weights
|
130 |
+
assert self._encoding.length() == len(new_weights)
|
131 |
+
|
132 |
+
def weights(self):
|
133 |
+
"""
|
134 |
+
:return: The feature weight vector for this classifier.
|
135 |
+
:rtype: list of float
|
136 |
+
"""
|
137 |
+
return self._weights
|
138 |
+
|
139 |
+
def classify(self, featureset):
|
140 |
+
return self.prob_classify(featureset).max()
|
141 |
+
|
142 |
+
def prob_classify(self, featureset):
|
143 |
+
prob_dict = {}
|
144 |
+
for label in self._encoding.labels():
|
145 |
+
feature_vector = self._encoding.encode(featureset, label)
|
146 |
+
|
147 |
+
if self._logarithmic:
|
148 |
+
total = 0.0
|
149 |
+
for (f_id, f_val) in feature_vector:
|
150 |
+
total += self._weights[f_id] * f_val
|
151 |
+
prob_dict[label] = total
|
152 |
+
|
153 |
+
else:
|
154 |
+
prod = 1.0
|
155 |
+
for (f_id, f_val) in feature_vector:
|
156 |
+
prod *= self._weights[f_id] ** f_val
|
157 |
+
prob_dict[label] = prod
|
158 |
+
|
159 |
+
# Normalize the dictionary to give a probability distribution
|
160 |
+
return DictionaryProbDist(prob_dict, log=self._logarithmic, normalize=True)
|
161 |
+
|
162 |
+
def explain(self, featureset, columns=4):
|
163 |
+
"""
|
164 |
+
Print a table showing the effect of each of the features in
|
165 |
+
the given feature set, and how they combine to determine the
|
166 |
+
probabilities of each label for that featureset.
|
167 |
+
"""
|
168 |
+
descr_width = 50
|
169 |
+
TEMPLATE = " %-" + str(descr_width - 2) + "s%s%8.3f"
|
170 |
+
|
171 |
+
pdist = self.prob_classify(featureset)
|
172 |
+
labels = sorted(pdist.samples(), key=pdist.prob, reverse=True)
|
173 |
+
labels = labels[:columns]
|
174 |
+
print(
|
175 |
+
" Feature".ljust(descr_width)
|
176 |
+
+ "".join("%8s" % (("%s" % l)[:7]) for l in labels)
|
177 |
+
)
|
178 |
+
print(" " + "-" * (descr_width - 2 + 8 * len(labels)))
|
179 |
+
sums = defaultdict(int)
|
180 |
+
for i, label in enumerate(labels):
|
181 |
+
feature_vector = self._encoding.encode(featureset, label)
|
182 |
+
feature_vector.sort(
|
183 |
+
key=lambda fid__: abs(self._weights[fid__[0]]), reverse=True
|
184 |
+
)
|
185 |
+
for (f_id, f_val) in feature_vector:
|
186 |
+
if self._logarithmic:
|
187 |
+
score = self._weights[f_id] * f_val
|
188 |
+
else:
|
189 |
+
score = self._weights[f_id] ** f_val
|
190 |
+
descr = self._encoding.describe(f_id)
|
191 |
+
descr = descr.split(" and label is ")[0] # hack
|
192 |
+
descr += " (%s)" % f_val # hack
|
193 |
+
if len(descr) > 47:
|
194 |
+
descr = descr[:44] + "..."
|
195 |
+
print(TEMPLATE % (descr, i * 8 * " ", score))
|
196 |
+
sums[label] += score
|
197 |
+
print(" " + "-" * (descr_width - 1 + 8 * len(labels)))
|
198 |
+
print(
|
199 |
+
" TOTAL:".ljust(descr_width) + "".join("%8.3f" % sums[l] for l in labels)
|
200 |
+
)
|
201 |
+
print(
|
202 |
+
" PROBS:".ljust(descr_width)
|
203 |
+
+ "".join("%8.3f" % pdist.prob(l) for l in labels)
|
204 |
+
)
|
205 |
+
|
206 |
+
def most_informative_features(self, n=10):
|
207 |
+
"""
|
208 |
+
Generates the ranked list of informative features from most to least.
|
209 |
+
"""
|
210 |
+
if hasattr(self, "_most_informative_features"):
|
211 |
+
return self._most_informative_features[:n]
|
212 |
+
else:
|
213 |
+
self._most_informative_features = sorted(
|
214 |
+
list(range(len(self._weights))),
|
215 |
+
key=lambda fid: abs(self._weights[fid]),
|
216 |
+
reverse=True,
|
217 |
+
)
|
218 |
+
return self._most_informative_features[:n]
|
219 |
+
|
220 |
+
def show_most_informative_features(self, n=10, show="all"):
|
221 |
+
"""
|
222 |
+
:param show: all, neg, or pos (for negative-only or positive-only)
|
223 |
+
:type show: str
|
224 |
+
:param n: The no. of top features
|
225 |
+
:type n: int
|
226 |
+
"""
|
227 |
+
# Use None the full list of ranked features.
|
228 |
+
fids = self.most_informative_features(None)
|
229 |
+
if show == "pos":
|
230 |
+
fids = [fid for fid in fids if self._weights[fid] > 0]
|
231 |
+
elif show == "neg":
|
232 |
+
fids = [fid for fid in fids if self._weights[fid] < 0]
|
233 |
+
for fid in fids[:n]:
|
234 |
+
print(f"{self._weights[fid]:8.3f} {self._encoding.describe(fid)}")
|
235 |
+
|
236 |
+
def __repr__(self):
|
237 |
+
return "<ConditionalExponentialClassifier: %d labels, %d features>" % (
|
238 |
+
len(self._encoding.labels()),
|
239 |
+
self._encoding.length(),
|
240 |
+
)
|
241 |
+
|
242 |
+
#: A list of the algorithm names that are accepted for the
|
243 |
+
#: ``train()`` method's ``algorithm`` parameter.
|
244 |
+
ALGORITHMS = ["GIS", "IIS", "MEGAM", "TADM"]
|
245 |
+
|
246 |
+
@classmethod
|
247 |
+
def train(
|
248 |
+
cls,
|
249 |
+
train_toks,
|
250 |
+
algorithm=None,
|
251 |
+
trace=3,
|
252 |
+
encoding=None,
|
253 |
+
labels=None,
|
254 |
+
gaussian_prior_sigma=0,
|
255 |
+
**cutoffs,
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
Train a new maxent classifier based on the given corpus of
|
259 |
+
training samples. This classifier will have its weights
|
260 |
+
chosen to maximize entropy while remaining empirically
|
261 |
+
consistent with the training corpus.
|
262 |
+
|
263 |
+
:rtype: MaxentClassifier
|
264 |
+
:return: The new maxent classifier
|
265 |
+
|
266 |
+
:type train_toks: list
|
267 |
+
:param train_toks: Training data, represented as a list of
|
268 |
+
pairs, the first member of which is a featureset,
|
269 |
+
and the second of which is a classification label.
|
270 |
+
|
271 |
+
:type algorithm: str
|
272 |
+
:param algorithm: A case-insensitive string, specifying which
|
273 |
+
algorithm should be used to train the classifier. The
|
274 |
+
following algorithms are currently available.
|
275 |
+
|
276 |
+
- Iterative Scaling Methods: Generalized Iterative Scaling (``'GIS'``),
|
277 |
+
Improved Iterative Scaling (``'IIS'``)
|
278 |
+
- External Libraries (requiring megam):
|
279 |
+
LM-BFGS algorithm, with training performed by Megam (``'megam'``)
|
280 |
+
|
281 |
+
The default algorithm is ``'IIS'``.
|
282 |
+
|
283 |
+
:type trace: int
|
284 |
+
:param trace: The level of diagnostic tracing output to produce.
|
285 |
+
Higher values produce more verbose output.
|
286 |
+
:type encoding: MaxentFeatureEncodingI
|
287 |
+
:param encoding: A feature encoding, used to convert featuresets
|
288 |
+
into feature vectors. If none is specified, then a
|
289 |
+
``BinaryMaxentFeatureEncoding`` will be built based on the
|
290 |
+
features that are attested in the training corpus.
|
291 |
+
:type labels: list(str)
|
292 |
+
:param labels: The set of possible labels. If none is given, then
|
293 |
+
the set of all labels attested in the training data will be
|
294 |
+
used instead.
|
295 |
+
:param gaussian_prior_sigma: The sigma value for a gaussian
|
296 |
+
prior on model weights. Currently, this is supported by
|
297 |
+
``megam``. For other algorithms, its value is ignored.
|
298 |
+
:param cutoffs: Arguments specifying various conditions under
|
299 |
+
which the training should be halted. (Some of the cutoff
|
300 |
+
conditions are not supported by some algorithms.)
|
301 |
+
|
302 |
+
- ``max_iter=v``: Terminate after ``v`` iterations.
|
303 |
+
- ``min_ll=v``: Terminate after the negative average
|
304 |
+
log-likelihood drops under ``v``.
|
305 |
+
- ``min_lldelta=v``: Terminate if a single iteration improves
|
306 |
+
log likelihood by less than ``v``.
|
307 |
+
"""
|
308 |
+
if algorithm is None:
|
309 |
+
algorithm = "iis"
|
310 |
+
for key in cutoffs:
|
311 |
+
if key not in (
|
312 |
+
"max_iter",
|
313 |
+
"min_ll",
|
314 |
+
"min_lldelta",
|
315 |
+
"max_acc",
|
316 |
+
"min_accdelta",
|
317 |
+
"count_cutoff",
|
318 |
+
"norm",
|
319 |
+
"explicit",
|
320 |
+
"bernoulli",
|
321 |
+
):
|
322 |
+
raise TypeError("Unexpected keyword arg %r" % key)
|
323 |
+
algorithm = algorithm.lower()
|
324 |
+
if algorithm == "iis":
|
325 |
+
return train_maxent_classifier_with_iis(
|
326 |
+
train_toks, trace, encoding, labels, **cutoffs
|
327 |
+
)
|
328 |
+
elif algorithm == "gis":
|
329 |
+
return train_maxent_classifier_with_gis(
|
330 |
+
train_toks, trace, encoding, labels, **cutoffs
|
331 |
+
)
|
332 |
+
elif algorithm == "megam":
|
333 |
+
return train_maxent_classifier_with_megam(
|
334 |
+
train_toks, trace, encoding, labels, gaussian_prior_sigma, **cutoffs
|
335 |
+
)
|
336 |
+
elif algorithm == "tadm":
|
337 |
+
kwargs = cutoffs
|
338 |
+
kwargs["trace"] = trace
|
339 |
+
kwargs["encoding"] = encoding
|
340 |
+
kwargs["labels"] = labels
|
341 |
+
kwargs["gaussian_prior_sigma"] = gaussian_prior_sigma
|
342 |
+
return TadmMaxentClassifier.train(train_toks, **kwargs)
|
343 |
+
else:
|
344 |
+
raise ValueError("Unknown algorithm %s" % algorithm)
|
345 |
+
|
346 |
+
|
347 |
+
#: Alias for MaxentClassifier.
|
348 |
+
ConditionalExponentialClassifier = MaxentClassifier
|
349 |
+
|
350 |
+
|
351 |
+
######################################################################
|
352 |
+
# { Feature Encodings
|
353 |
+
######################################################################
|
354 |
+
|
355 |
+
|
356 |
+
class MaxentFeatureEncodingI:
|
357 |
+
"""
|
358 |
+
A mapping that converts a set of input-feature values to a vector
|
359 |
+
of joint-feature values, given a label. This conversion is
|
360 |
+
necessary to translate featuresets into a format that can be used
|
361 |
+
by maximum entropy models.
|
362 |
+
|
363 |
+
The set of joint-features used by a given encoding is fixed, and
|
364 |
+
each index in the generated joint-feature vectors corresponds to a
|
365 |
+
single joint-feature. The length of the generated joint-feature
|
366 |
+
vectors is therefore constant (for a given encoding).
|
367 |
+
|
368 |
+
Because the joint-feature vectors generated by
|
369 |
+
``MaxentFeatureEncodingI`` are typically very sparse, they are
|
370 |
+
represented as a list of ``(index, value)`` tuples, specifying the
|
371 |
+
value of each non-zero joint-feature.
|
372 |
+
|
373 |
+
Feature encodings are generally created using the ``train()``
|
374 |
+
method, which generates an appropriate encoding based on the
|
375 |
+
input-feature values and labels that are present in a given
|
376 |
+
corpus.
|
377 |
+
"""
|
378 |
+
|
379 |
+
def encode(self, featureset, label):
|
380 |
+
"""
|
381 |
+
Given a (featureset, label) pair, return the corresponding
|
382 |
+
vector of joint-feature values. This vector is represented as
|
383 |
+
a list of ``(index, value)`` tuples, specifying the value of
|
384 |
+
each non-zero joint-feature.
|
385 |
+
|
386 |
+
:type featureset: dict
|
387 |
+
:rtype: list(tuple(int, int))
|
388 |
+
"""
|
389 |
+
raise NotImplementedError()
|
390 |
+
|
391 |
+
def length(self):
|
392 |
+
"""
|
393 |
+
:return: The size of the fixed-length joint-feature vectors
|
394 |
+
that are generated by this encoding.
|
395 |
+
:rtype: int
|
396 |
+
"""
|
397 |
+
raise NotImplementedError()
|
398 |
+
|
399 |
+
def labels(self):
|
400 |
+
"""
|
401 |
+
:return: A list of the \"known labels\" -- i.e., all labels
|
402 |
+
``l`` such that ``self.encode(fs,l)`` can be a nonzero
|
403 |
+
joint-feature vector for some value of ``fs``.
|
404 |
+
:rtype: list
|
405 |
+
"""
|
406 |
+
raise NotImplementedError()
|
407 |
+
|
408 |
+
def describe(self, fid):
|
409 |
+
"""
|
410 |
+
:return: A string describing the value of the joint-feature
|
411 |
+
whose index in the generated feature vectors is ``fid``.
|
412 |
+
:rtype: str
|
413 |
+
"""
|
414 |
+
raise NotImplementedError()
|
415 |
+
|
416 |
+
def train(cls, train_toks):
|
417 |
+
"""
|
418 |
+
Construct and return new feature encoding, based on a given
|
419 |
+
training corpus ``train_toks``.
|
420 |
+
|
421 |
+
:type train_toks: list(tuple(dict, str))
|
422 |
+
:param train_toks: Training data, represented as a list of
|
423 |
+
pairs, the first member of which is a feature dictionary,
|
424 |
+
and the second of which is a classification label.
|
425 |
+
"""
|
426 |
+
raise NotImplementedError()
|
427 |
+
|
428 |
+
|
429 |
+
class FunctionBackedMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
430 |
+
"""
|
431 |
+
A feature encoding that calls a user-supplied function to map a
|
432 |
+
given featureset/label pair to a sparse joint-feature vector.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(self, func, length, labels):
|
436 |
+
"""
|
437 |
+
Construct a new feature encoding based on the given function.
|
438 |
+
|
439 |
+
:type func: (callable)
|
440 |
+
:param func: A function that takes two arguments, a featureset
|
441 |
+
and a label, and returns the sparse joint feature vector
|
442 |
+
that encodes them::
|
443 |
+
|
444 |
+
func(featureset, label) -> feature_vector
|
445 |
+
|
446 |
+
This sparse joint feature vector (``feature_vector``) is a
|
447 |
+
list of ``(index,value)`` tuples.
|
448 |
+
|
449 |
+
:type length: int
|
450 |
+
:param length: The size of the fixed-length joint-feature
|
451 |
+
vectors that are generated by this encoding.
|
452 |
+
|
453 |
+
:type labels: list
|
454 |
+
:param labels: A list of the \"known labels\" for this
|
455 |
+
encoding -- i.e., all labels ``l`` such that
|
456 |
+
``self.encode(fs,l)`` can be a nonzero joint-feature vector
|
457 |
+
for some value of ``fs``.
|
458 |
+
"""
|
459 |
+
self._length = length
|
460 |
+
self._func = func
|
461 |
+
self._labels = labels
|
462 |
+
|
463 |
+
def encode(self, featureset, label):
|
464 |
+
return self._func(featureset, label)
|
465 |
+
|
466 |
+
def length(self):
|
467 |
+
return self._length
|
468 |
+
|
469 |
+
def labels(self):
|
470 |
+
return self._labels
|
471 |
+
|
472 |
+
def describe(self, fid):
|
473 |
+
return "no description available"
|
474 |
+
|
475 |
+
|
476 |
+
class BinaryMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
477 |
+
"""
|
478 |
+
A feature encoding that generates vectors containing a binary
|
479 |
+
joint-features of the form:
|
480 |
+
|
481 |
+
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
|
482 |
+
| {
|
483 |
+
| { 0 otherwise
|
484 |
+
|
485 |
+
Where ``fname`` is the name of an input-feature, ``fval`` is a value
|
486 |
+
for that input-feature, and ``label`` is a label.
|
487 |
+
|
488 |
+
Typically, these features are constructed based on a training
|
489 |
+
corpus, using the ``train()`` method. This method will create one
|
490 |
+
feature for each combination of ``fname``, ``fval``, and ``label``
|
491 |
+
that occurs at least once in the training corpus.
|
492 |
+
|
493 |
+
The ``unseen_features`` parameter can be used to add "unseen-value
|
494 |
+
features", which are used whenever an input feature has a value
|
495 |
+
that was not encountered in the training corpus. These features
|
496 |
+
have the form:
|
497 |
+
|
498 |
+
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
|
499 |
+
| { and l == label
|
500 |
+
| {
|
501 |
+
| { 0 otherwise
|
502 |
+
|
503 |
+
Where ``is_unseen(fname, fval)`` is true if the encoding does not
|
504 |
+
contain any joint features that are true when ``fs[fname]==fval``.
|
505 |
+
|
506 |
+
The ``alwayson_features`` parameter can be used to add "always-on
|
507 |
+
features", which have the form::
|
508 |
+
|
509 |
+
| joint_feat(fs, l) = { 1 if (l == label)
|
510 |
+
| {
|
511 |
+
| { 0 otherwise
|
512 |
+
|
513 |
+
These always-on features allow the maxent model to directly model
|
514 |
+
the prior probabilities of each label.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
518 |
+
"""
|
519 |
+
:param labels: A list of the \"known labels\" for this encoding.
|
520 |
+
|
521 |
+
:param mapping: A dictionary mapping from ``(fname,fval,label)``
|
522 |
+
tuples to corresponding joint-feature indexes. These
|
523 |
+
indexes must be the set of integers from 0...len(mapping).
|
524 |
+
If ``mapping[fname,fval,label]=id``, then
|
525 |
+
``self.encode(..., fname:fval, ..., label)[id]`` is 1;
|
526 |
+
otherwise, it is 0.
|
527 |
+
|
528 |
+
:param unseen_features: If true, then include unseen value
|
529 |
+
features in the generated joint-feature vectors.
|
530 |
+
|
531 |
+
:param alwayson_features: If true, then include always-on
|
532 |
+
features in the generated joint-feature vectors.
|
533 |
+
"""
|
534 |
+
if set(mapping.values()) != set(range(len(mapping))):
|
535 |
+
raise ValueError(
|
536 |
+
"Mapping values must be exactly the "
|
537 |
+
"set of integers from 0...len(mapping)"
|
538 |
+
)
|
539 |
+
|
540 |
+
self._labels = list(labels)
|
541 |
+
"""A list of attested labels."""
|
542 |
+
|
543 |
+
self._mapping = mapping
|
544 |
+
"""dict mapping from (fname,fval,label) -> fid"""
|
545 |
+
|
546 |
+
self._length = len(mapping)
|
547 |
+
"""The length of generated joint feature vectors."""
|
548 |
+
|
549 |
+
self._alwayson = None
|
550 |
+
"""dict mapping from label -> fid"""
|
551 |
+
|
552 |
+
self._unseen = None
|
553 |
+
"""dict mapping from fname -> fid"""
|
554 |
+
|
555 |
+
if alwayson_features:
|
556 |
+
self._alwayson = {
|
557 |
+
label: i + self._length for (i, label) in enumerate(labels)
|
558 |
+
}
|
559 |
+
self._length += len(self._alwayson)
|
560 |
+
|
561 |
+
if unseen_features:
|
562 |
+
fnames = {fname for (fname, fval, label) in mapping}
|
563 |
+
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
|
564 |
+
self._length += len(fnames)
|
565 |
+
|
566 |
+
def encode(self, featureset, label):
|
567 |
+
# Inherit docs.
|
568 |
+
encoding = []
|
569 |
+
|
570 |
+
# Convert input-features to joint-features:
|
571 |
+
for fname, fval in featureset.items():
|
572 |
+
# Known feature name & value:
|
573 |
+
if (fname, fval, label) in self._mapping:
|
574 |
+
encoding.append((self._mapping[fname, fval, label], 1))
|
575 |
+
|
576 |
+
# Otherwise, we might want to fire an "unseen-value feature".
|
577 |
+
elif self._unseen:
|
578 |
+
# Have we seen this fname/fval combination with any label?
|
579 |
+
for label2 in self._labels:
|
580 |
+
if (fname, fval, label2) in self._mapping:
|
581 |
+
break # we've seen this fname/fval combo
|
582 |
+
# We haven't -- fire the unseen-value feature
|
583 |
+
else:
|
584 |
+
if fname in self._unseen:
|
585 |
+
encoding.append((self._unseen[fname], 1))
|
586 |
+
|
587 |
+
# Add always-on features:
|
588 |
+
if self._alwayson and label in self._alwayson:
|
589 |
+
encoding.append((self._alwayson[label], 1))
|
590 |
+
|
591 |
+
return encoding
|
592 |
+
|
593 |
+
def describe(self, f_id):
|
594 |
+
# Inherit docs.
|
595 |
+
if not isinstance(f_id, int):
|
596 |
+
raise TypeError("describe() expected an int")
|
597 |
+
try:
|
598 |
+
self._inv_mapping
|
599 |
+
except AttributeError:
|
600 |
+
self._inv_mapping = [-1] * len(self._mapping)
|
601 |
+
for (info, i) in self._mapping.items():
|
602 |
+
self._inv_mapping[i] = info
|
603 |
+
|
604 |
+
if f_id < len(self._mapping):
|
605 |
+
(fname, fval, label) = self._inv_mapping[f_id]
|
606 |
+
return f"{fname}=={fval!r} and label is {label!r}"
|
607 |
+
elif self._alwayson and f_id in self._alwayson.values():
|
608 |
+
for (label, f_id2) in self._alwayson.items():
|
609 |
+
if f_id == f_id2:
|
610 |
+
return "label is %r" % label
|
611 |
+
elif self._unseen and f_id in self._unseen.values():
|
612 |
+
for (fname, f_id2) in self._unseen.items():
|
613 |
+
if f_id == f_id2:
|
614 |
+
return "%s is unseen" % fname
|
615 |
+
else:
|
616 |
+
raise ValueError("Bad feature id")
|
617 |
+
|
618 |
+
def labels(self):
|
619 |
+
# Inherit docs.
|
620 |
+
return self._labels
|
621 |
+
|
622 |
+
def length(self):
|
623 |
+
# Inherit docs.
|
624 |
+
return self._length
|
625 |
+
|
626 |
+
@classmethod
|
627 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
628 |
+
"""
|
629 |
+
Construct and return new feature encoding, based on a given
|
630 |
+
training corpus ``train_toks``. See the class description
|
631 |
+
``BinaryMaxentFeatureEncoding`` for a description of the
|
632 |
+
joint-features that will be included in this encoding.
|
633 |
+
|
634 |
+
:type train_toks: list(tuple(dict, str))
|
635 |
+
:param train_toks: Training data, represented as a list of
|
636 |
+
pairs, the first member of which is a feature dictionary,
|
637 |
+
and the second of which is a classification label.
|
638 |
+
|
639 |
+
:type count_cutoff: int
|
640 |
+
:param count_cutoff: A cutoff value that is used to discard
|
641 |
+
rare joint-features. If a joint-feature's value is 1
|
642 |
+
fewer than ``count_cutoff`` times in the training corpus,
|
643 |
+
then that joint-feature is not included in the generated
|
644 |
+
encoding.
|
645 |
+
|
646 |
+
:type labels: list
|
647 |
+
:param labels: A list of labels that should be used by the
|
648 |
+
classifier. If not specified, then the set of labels
|
649 |
+
attested in ``train_toks`` will be used.
|
650 |
+
|
651 |
+
:param options: Extra parameters for the constructor, such as
|
652 |
+
``unseen_features`` and ``alwayson_features``.
|
653 |
+
"""
|
654 |
+
mapping = {} # maps (fname, fval, label) -> fid
|
655 |
+
seen_labels = set() # The set of labels we've encountered
|
656 |
+
count = defaultdict(int) # maps (fname, fval) -> count
|
657 |
+
|
658 |
+
for (tok, label) in train_toks:
|
659 |
+
if labels and label not in labels:
|
660 |
+
raise ValueError("Unexpected label %s" % label)
|
661 |
+
seen_labels.add(label)
|
662 |
+
|
663 |
+
# Record each of the features.
|
664 |
+
for (fname, fval) in tok.items():
|
665 |
+
|
666 |
+
# If a count cutoff is given, then only add a joint
|
667 |
+
# feature once the corresponding (fname, fval, label)
|
668 |
+
# tuple exceeds that cutoff.
|
669 |
+
count[fname, fval] += 1
|
670 |
+
if count[fname, fval] >= count_cutoff:
|
671 |
+
if (fname, fval, label) not in mapping:
|
672 |
+
mapping[fname, fval, label] = len(mapping)
|
673 |
+
|
674 |
+
if labels is None:
|
675 |
+
labels = seen_labels
|
676 |
+
return cls(labels, mapping, **options)
|
677 |
+
|
678 |
+
|
679 |
+
class GISEncoding(BinaryMaxentFeatureEncoding):
|
680 |
+
"""
|
681 |
+
A binary feature encoding which adds one new joint-feature to the
|
682 |
+
joint-features defined by ``BinaryMaxentFeatureEncoding``: a
|
683 |
+
correction feature, whose value is chosen to ensure that the
|
684 |
+
sparse vector always sums to a constant non-negative number. This
|
685 |
+
new feature is used to ensure two preconditions for the GIS
|
686 |
+
training algorithm:
|
687 |
+
|
688 |
+
- At least one feature vector index must be nonzero for every
|
689 |
+
token.
|
690 |
+
- The feature vector must sum to a constant non-negative number
|
691 |
+
for every token.
|
692 |
+
"""
|
693 |
+
|
694 |
+
def __init__(
|
695 |
+
self, labels, mapping, unseen_features=False, alwayson_features=False, C=None
|
696 |
+
):
|
697 |
+
"""
|
698 |
+
:param C: The correction constant. The value of the correction
|
699 |
+
feature is based on this value. In particular, its value is
|
700 |
+
``C - sum([v for (f,v) in encoding])``.
|
701 |
+
:seealso: ``BinaryMaxentFeatureEncoding.__init__``
|
702 |
+
"""
|
703 |
+
BinaryMaxentFeatureEncoding.__init__(
|
704 |
+
self, labels, mapping, unseen_features, alwayson_features
|
705 |
+
)
|
706 |
+
if C is None:
|
707 |
+
C = len({fname for (fname, fval, label) in mapping}) + 1
|
708 |
+
self._C = C
|
709 |
+
|
710 |
+
@property
|
711 |
+
def C(self):
|
712 |
+
"""The non-negative constant that all encoded feature vectors
|
713 |
+
will sum to."""
|
714 |
+
return self._C
|
715 |
+
|
716 |
+
def encode(self, featureset, label):
|
717 |
+
# Get the basic encoding.
|
718 |
+
encoding = BinaryMaxentFeatureEncoding.encode(self, featureset, label)
|
719 |
+
base_length = BinaryMaxentFeatureEncoding.length(self)
|
720 |
+
|
721 |
+
# Add a correction feature.
|
722 |
+
total = sum(v for (f, v) in encoding)
|
723 |
+
if total >= self._C:
|
724 |
+
raise ValueError("Correction feature is not high enough!")
|
725 |
+
encoding.append((base_length, self._C - total))
|
726 |
+
|
727 |
+
# Return the result
|
728 |
+
return encoding
|
729 |
+
|
730 |
+
def length(self):
|
731 |
+
return BinaryMaxentFeatureEncoding.length(self) + 1
|
732 |
+
|
733 |
+
def describe(self, f_id):
|
734 |
+
if f_id == BinaryMaxentFeatureEncoding.length(self):
|
735 |
+
return "Correction feature (%s)" % self._C
|
736 |
+
else:
|
737 |
+
return BinaryMaxentFeatureEncoding.describe(self, f_id)
|
738 |
+
|
739 |
+
|
740 |
+
class TadmEventMaxentFeatureEncoding(BinaryMaxentFeatureEncoding):
|
741 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
742 |
+
self._mapping = OrderedDict(mapping)
|
743 |
+
self._label_mapping = OrderedDict()
|
744 |
+
BinaryMaxentFeatureEncoding.__init__(
|
745 |
+
self, labels, self._mapping, unseen_features, alwayson_features
|
746 |
+
)
|
747 |
+
|
748 |
+
def encode(self, featureset, label):
|
749 |
+
encoding = []
|
750 |
+
for feature, value in featureset.items():
|
751 |
+
if (feature, label) not in self._mapping:
|
752 |
+
self._mapping[(feature, label)] = len(self._mapping)
|
753 |
+
if value not in self._label_mapping:
|
754 |
+
if not isinstance(value, int):
|
755 |
+
self._label_mapping[value] = len(self._label_mapping)
|
756 |
+
else:
|
757 |
+
self._label_mapping[value] = value
|
758 |
+
encoding.append(
|
759 |
+
(self._mapping[(feature, label)], self._label_mapping[value])
|
760 |
+
)
|
761 |
+
return encoding
|
762 |
+
|
763 |
+
def labels(self):
|
764 |
+
return self._labels
|
765 |
+
|
766 |
+
def describe(self, fid):
|
767 |
+
for (feature, label) in self._mapping:
|
768 |
+
if self._mapping[(feature, label)] == fid:
|
769 |
+
return (feature, label)
|
770 |
+
|
771 |
+
def length(self):
|
772 |
+
return len(self._mapping)
|
773 |
+
|
774 |
+
@classmethod
|
775 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
776 |
+
mapping = OrderedDict()
|
777 |
+
if not labels:
|
778 |
+
labels = []
|
779 |
+
|
780 |
+
# This gets read twice, so compute the values in case it's lazy.
|
781 |
+
train_toks = list(train_toks)
|
782 |
+
|
783 |
+
for (featureset, label) in train_toks:
|
784 |
+
if label not in labels:
|
785 |
+
labels.append(label)
|
786 |
+
|
787 |
+
for (featureset, label) in train_toks:
|
788 |
+
for label in labels:
|
789 |
+
for feature in featureset:
|
790 |
+
if (feature, label) not in mapping:
|
791 |
+
mapping[(feature, label)] = len(mapping)
|
792 |
+
|
793 |
+
return cls(labels, mapping, **options)
|
794 |
+
|
795 |
+
|
796 |
+
class TypedMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
797 |
+
"""
|
798 |
+
A feature encoding that generates vectors containing integer,
|
799 |
+
float and binary joint-features of the form:
|
800 |
+
|
801 |
+
Binary (for string and boolean features):
|
802 |
+
|
803 |
+
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
|
804 |
+
| {
|
805 |
+
| { 0 otherwise
|
806 |
+
|
807 |
+
Value (for integer and float features):
|
808 |
+
|
809 |
+
| joint_feat(fs, l) = { fval if (fs[fname] == type(fval))
|
810 |
+
| { and (l == label)
|
811 |
+
| {
|
812 |
+
| { not encoded otherwise
|
813 |
+
|
814 |
+
Where ``fname`` is the name of an input-feature, ``fval`` is a value
|
815 |
+
for that input-feature, and ``label`` is a label.
|
816 |
+
|
817 |
+
Typically, these features are constructed based on a training
|
818 |
+
corpus, using the ``train()`` method.
|
819 |
+
|
820 |
+
For string and boolean features [type(fval) not in (int, float)]
|
821 |
+
this method will create one feature for each combination of
|
822 |
+
``fname``, ``fval``, and ``label`` that occurs at least once in the
|
823 |
+
training corpus.
|
824 |
+
|
825 |
+
For integer and float features [type(fval) in (int, float)] this
|
826 |
+
method will create one feature for each combination of ``fname``
|
827 |
+
and ``label`` that occurs at least once in the training corpus.
|
828 |
+
|
829 |
+
For binary features the ``unseen_features`` parameter can be used
|
830 |
+
to add "unseen-value features", which are used whenever an input
|
831 |
+
feature has a value that was not encountered in the training
|
832 |
+
corpus. These features have the form:
|
833 |
+
|
834 |
+
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
|
835 |
+
| { and l == label
|
836 |
+
| {
|
837 |
+
| { 0 otherwise
|
838 |
+
|
839 |
+
Where ``is_unseen(fname, fval)`` is true if the encoding does not
|
840 |
+
contain any joint features that are true when ``fs[fname]==fval``.
|
841 |
+
|
842 |
+
The ``alwayson_features`` parameter can be used to add "always-on
|
843 |
+
features", which have the form:
|
844 |
+
|
845 |
+
| joint_feat(fs, l) = { 1 if (l == label)
|
846 |
+
| {
|
847 |
+
| { 0 otherwise
|
848 |
+
|
849 |
+
These always-on features allow the maxent model to directly model
|
850 |
+
the prior probabilities of each label.
|
851 |
+
"""
|
852 |
+
|
853 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
854 |
+
"""
|
855 |
+
:param labels: A list of the \"known labels\" for this encoding.
|
856 |
+
|
857 |
+
:param mapping: A dictionary mapping from ``(fname,fval,label)``
|
858 |
+
tuples to corresponding joint-feature indexes. These
|
859 |
+
indexes must be the set of integers from 0...len(mapping).
|
860 |
+
If ``mapping[fname,fval,label]=id``, then
|
861 |
+
``self.encode({..., fname:fval, ...``, label)[id]} is 1;
|
862 |
+
otherwise, it is 0.
|
863 |
+
|
864 |
+
:param unseen_features: If true, then include unseen value
|
865 |
+
features in the generated joint-feature vectors.
|
866 |
+
|
867 |
+
:param alwayson_features: If true, then include always-on
|
868 |
+
features in the generated joint-feature vectors.
|
869 |
+
"""
|
870 |
+
if set(mapping.values()) != set(range(len(mapping))):
|
871 |
+
raise ValueError(
|
872 |
+
"Mapping values must be exactly the "
|
873 |
+
"set of integers from 0...len(mapping)"
|
874 |
+
)
|
875 |
+
|
876 |
+
self._labels = list(labels)
|
877 |
+
"""A list of attested labels."""
|
878 |
+
|
879 |
+
self._mapping = mapping
|
880 |
+
"""dict mapping from (fname,fval,label) -> fid"""
|
881 |
+
|
882 |
+
self._length = len(mapping)
|
883 |
+
"""The length of generated joint feature vectors."""
|
884 |
+
|
885 |
+
self._alwayson = None
|
886 |
+
"""dict mapping from label -> fid"""
|
887 |
+
|
888 |
+
self._unseen = None
|
889 |
+
"""dict mapping from fname -> fid"""
|
890 |
+
|
891 |
+
if alwayson_features:
|
892 |
+
self._alwayson = {
|
893 |
+
label: i + self._length for (i, label) in enumerate(labels)
|
894 |
+
}
|
895 |
+
self._length += len(self._alwayson)
|
896 |
+
|
897 |
+
if unseen_features:
|
898 |
+
fnames = {fname for (fname, fval, label) in mapping}
|
899 |
+
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
|
900 |
+
self._length += len(fnames)
|
901 |
+
|
902 |
+
def encode(self, featureset, label):
|
903 |
+
# Inherit docs.
|
904 |
+
encoding = []
|
905 |
+
|
906 |
+
# Convert input-features to joint-features:
|
907 |
+
for fname, fval in featureset.items():
|
908 |
+
if isinstance(fval, (int, float)):
|
909 |
+
# Known feature name & value:
|
910 |
+
if (fname, type(fval), label) in self._mapping:
|
911 |
+
encoding.append((self._mapping[fname, type(fval), label], fval))
|
912 |
+
else:
|
913 |
+
# Known feature name & value:
|
914 |
+
if (fname, fval, label) in self._mapping:
|
915 |
+
encoding.append((self._mapping[fname, fval, label], 1))
|
916 |
+
|
917 |
+
# Otherwise, we might want to fire an "unseen-value feature".
|
918 |
+
elif self._unseen:
|
919 |
+
# Have we seen this fname/fval combination with any label?
|
920 |
+
for label2 in self._labels:
|
921 |
+
if (fname, fval, label2) in self._mapping:
|
922 |
+
break # we've seen this fname/fval combo
|
923 |
+
# We haven't -- fire the unseen-value feature
|
924 |
+
else:
|
925 |
+
if fname in self._unseen:
|
926 |
+
encoding.append((self._unseen[fname], 1))
|
927 |
+
|
928 |
+
# Add always-on features:
|
929 |
+
if self._alwayson and label in self._alwayson:
|
930 |
+
encoding.append((self._alwayson[label], 1))
|
931 |
+
|
932 |
+
return encoding
|
933 |
+
|
934 |
+
def describe(self, f_id):
|
935 |
+
# Inherit docs.
|
936 |
+
if not isinstance(f_id, int):
|
937 |
+
raise TypeError("describe() expected an int")
|
938 |
+
try:
|
939 |
+
self._inv_mapping
|
940 |
+
except AttributeError:
|
941 |
+
self._inv_mapping = [-1] * len(self._mapping)
|
942 |
+
for (info, i) in self._mapping.items():
|
943 |
+
self._inv_mapping[i] = info
|
944 |
+
|
945 |
+
if f_id < len(self._mapping):
|
946 |
+
(fname, fval, label) = self._inv_mapping[f_id]
|
947 |
+
return f"{fname}=={fval!r} and label is {label!r}"
|
948 |
+
elif self._alwayson and f_id in self._alwayson.values():
|
949 |
+
for (label, f_id2) in self._alwayson.items():
|
950 |
+
if f_id == f_id2:
|
951 |
+
return "label is %r" % label
|
952 |
+
elif self._unseen and f_id in self._unseen.values():
|
953 |
+
for (fname, f_id2) in self._unseen.items():
|
954 |
+
if f_id == f_id2:
|
955 |
+
return "%s is unseen" % fname
|
956 |
+
else:
|
957 |
+
raise ValueError("Bad feature id")
|
958 |
+
|
959 |
+
def labels(self):
|
960 |
+
# Inherit docs.
|
961 |
+
return self._labels
|
962 |
+
|
963 |
+
def length(self):
|
964 |
+
# Inherit docs.
|
965 |
+
return self._length
|
966 |
+
|
967 |
+
@classmethod
|
968 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
969 |
+
"""
|
970 |
+
Construct and return new feature encoding, based on a given
|
971 |
+
training corpus ``train_toks``. See the class description
|
972 |
+
``TypedMaxentFeatureEncoding`` for a description of the
|
973 |
+
joint-features that will be included in this encoding.
|
974 |
+
|
975 |
+
Note: recognized feature values types are (int, float), over
|
976 |
+
types are interpreted as regular binary features.
|
977 |
+
|
978 |
+
:type train_toks: list(tuple(dict, str))
|
979 |
+
:param train_toks: Training data, represented as a list of
|
980 |
+
pairs, the first member of which is a feature dictionary,
|
981 |
+
and the second of which is a classification label.
|
982 |
+
|
983 |
+
:type count_cutoff: int
|
984 |
+
:param count_cutoff: A cutoff value that is used to discard
|
985 |
+
rare joint-features. If a joint-feature's value is 1
|
986 |
+
fewer than ``count_cutoff`` times in the training corpus,
|
987 |
+
then that joint-feature is not included in the generated
|
988 |
+
encoding.
|
989 |
+
|
990 |
+
:type labels: list
|
991 |
+
:param labels: A list of labels that should be used by the
|
992 |
+
classifier. If not specified, then the set of labels
|
993 |
+
attested in ``train_toks`` will be used.
|
994 |
+
|
995 |
+
:param options: Extra parameters for the constructor, such as
|
996 |
+
``unseen_features`` and ``alwayson_features``.
|
997 |
+
"""
|
998 |
+
mapping = {} # maps (fname, fval, label) -> fid
|
999 |
+
seen_labels = set() # The set of labels we've encountered
|
1000 |
+
count = defaultdict(int) # maps (fname, fval) -> count
|
1001 |
+
|
1002 |
+
for (tok, label) in train_toks:
|
1003 |
+
if labels and label not in labels:
|
1004 |
+
raise ValueError("Unexpected label %s" % label)
|
1005 |
+
seen_labels.add(label)
|
1006 |
+
|
1007 |
+
# Record each of the features.
|
1008 |
+
for (fname, fval) in tok.items():
|
1009 |
+
if type(fval) in (int, float):
|
1010 |
+
fval = type(fval)
|
1011 |
+
# If a count cutoff is given, then only add a joint
|
1012 |
+
# feature once the corresponding (fname, fval, label)
|
1013 |
+
# tuple exceeds that cutoff.
|
1014 |
+
count[fname, fval] += 1
|
1015 |
+
if count[fname, fval] >= count_cutoff:
|
1016 |
+
if (fname, fval, label) not in mapping:
|
1017 |
+
mapping[fname, fval, label] = len(mapping)
|
1018 |
+
|
1019 |
+
if labels is None:
|
1020 |
+
labels = seen_labels
|
1021 |
+
return cls(labels, mapping, **options)
|
1022 |
+
|
1023 |
+
|
1024 |
+
######################################################################
|
1025 |
+
# { Classifier Trainer: Generalized Iterative Scaling
|
1026 |
+
######################################################################
|
1027 |
+
|
1028 |
+
|
1029 |
+
def train_maxent_classifier_with_gis(
|
1030 |
+
train_toks, trace=3, encoding=None, labels=None, **cutoffs
|
1031 |
+
):
|
1032 |
+
"""
|
1033 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1034 |
+
training samples, using the Generalized Iterative Scaling
|
1035 |
+
algorithm. This ``ConditionalExponentialClassifier`` will encode
|
1036 |
+
the model that maximizes entropy from all the models that are
|
1037 |
+
empirically consistent with ``train_toks``.
|
1038 |
+
|
1039 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1040 |
+
"""
|
1041 |
+
cutoffs.setdefault("max_iter", 100)
|
1042 |
+
cutoffchecker = CutoffChecker(cutoffs)
|
1043 |
+
|
1044 |
+
# Construct an encoding from the training data.
|
1045 |
+
if encoding is None:
|
1046 |
+
encoding = GISEncoding.train(train_toks, labels=labels)
|
1047 |
+
|
1048 |
+
if not hasattr(encoding, "C"):
|
1049 |
+
raise TypeError(
|
1050 |
+
"The GIS algorithm requires an encoding that "
|
1051 |
+
"defines C (e.g., GISEncoding)."
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
# Cinv is the inverse of the sum of each joint feature vector.
|
1055 |
+
# This controls the learning rate: higher Cinv (or lower C) gives
|
1056 |
+
# faster learning.
|
1057 |
+
Cinv = 1.0 / encoding.C
|
1058 |
+
|
1059 |
+
# Count how many times each feature occurs in the training data.
|
1060 |
+
empirical_fcount = calculate_empirical_fcount(train_toks, encoding)
|
1061 |
+
|
1062 |
+
# Check for any features that are not attested in train_toks.
|
1063 |
+
unattested = set(numpy.nonzero(empirical_fcount == 0)[0])
|
1064 |
+
|
1065 |
+
# Build the classifier. Start with weight=0 for each attested
|
1066 |
+
# feature, and weight=-infinity for each unattested feature.
|
1067 |
+
weights = numpy.zeros(len(empirical_fcount), "d")
|
1068 |
+
for fid in unattested:
|
1069 |
+
weights[fid] = numpy.NINF
|
1070 |
+
classifier = ConditionalExponentialClassifier(encoding, weights)
|
1071 |
+
|
1072 |
+
# Take the log of the empirical fcount.
|
1073 |
+
log_empirical_fcount = numpy.log2(empirical_fcount)
|
1074 |
+
del empirical_fcount
|
1075 |
+
|
1076 |
+
if trace > 0:
|
1077 |
+
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
|
1078 |
+
if trace > 2:
|
1079 |
+
print()
|
1080 |
+
print(" Iteration Log Likelihood Accuracy")
|
1081 |
+
print(" ---------------------------------------")
|
1082 |
+
|
1083 |
+
# Train the classifier.
|
1084 |
+
try:
|
1085 |
+
while True:
|
1086 |
+
if trace > 2:
|
1087 |
+
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
|
1088 |
+
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
|
1089 |
+
iternum = cutoffchecker.iter
|
1090 |
+
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
|
1091 |
+
|
1092 |
+
# Use the model to estimate the number of times each
|
1093 |
+
# feature should occur in the training data.
|
1094 |
+
estimated_fcount = calculate_estimated_fcount(
|
1095 |
+
classifier, train_toks, encoding
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
# Take the log of estimated fcount (avoid taking log(0).)
|
1099 |
+
for fid in unattested:
|
1100 |
+
estimated_fcount[fid] += 1
|
1101 |
+
log_estimated_fcount = numpy.log2(estimated_fcount)
|
1102 |
+
del estimated_fcount
|
1103 |
+
|
1104 |
+
# Update the classifier weights
|
1105 |
+
weights = classifier.weights()
|
1106 |
+
weights += (log_empirical_fcount - log_estimated_fcount) * Cinv
|
1107 |
+
classifier.set_weights(weights)
|
1108 |
+
|
1109 |
+
# Check the log-likelihood & accuracy cutoffs.
|
1110 |
+
if cutoffchecker.check(classifier, train_toks):
|
1111 |
+
break
|
1112 |
+
|
1113 |
+
except KeyboardInterrupt:
|
1114 |
+
print(" Training stopped: keyboard interrupt")
|
1115 |
+
except:
|
1116 |
+
raise
|
1117 |
+
|
1118 |
+
if trace > 2:
|
1119 |
+
ll = log_likelihood(classifier, train_toks)
|
1120 |
+
acc = accuracy(classifier, train_toks)
|
1121 |
+
print(f" Final {ll:14.5f} {acc:9.3f}")
|
1122 |
+
|
1123 |
+
# Return the classifier.
|
1124 |
+
return classifier
|
1125 |
+
|
1126 |
+
|
1127 |
+
def calculate_empirical_fcount(train_toks, encoding):
|
1128 |
+
fcount = numpy.zeros(encoding.length(), "d")
|
1129 |
+
|
1130 |
+
for tok, label in train_toks:
|
1131 |
+
for (index, val) in encoding.encode(tok, label):
|
1132 |
+
fcount[index] += val
|
1133 |
+
|
1134 |
+
return fcount
|
1135 |
+
|
1136 |
+
|
1137 |
+
def calculate_estimated_fcount(classifier, train_toks, encoding):
|
1138 |
+
fcount = numpy.zeros(encoding.length(), "d")
|
1139 |
+
|
1140 |
+
for tok, label in train_toks:
|
1141 |
+
pdist = classifier.prob_classify(tok)
|
1142 |
+
for label in pdist.samples():
|
1143 |
+
prob = pdist.prob(label)
|
1144 |
+
for (fid, fval) in encoding.encode(tok, label):
|
1145 |
+
fcount[fid] += prob * fval
|
1146 |
+
|
1147 |
+
return fcount
|
1148 |
+
|
1149 |
+
|
1150 |
+
######################################################################
|
1151 |
+
# { Classifier Trainer: Improved Iterative Scaling
|
1152 |
+
######################################################################
|
1153 |
+
|
1154 |
+
|
1155 |
+
def train_maxent_classifier_with_iis(
|
1156 |
+
train_toks, trace=3, encoding=None, labels=None, **cutoffs
|
1157 |
+
):
|
1158 |
+
"""
|
1159 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1160 |
+
training samples, using the Improved Iterative Scaling algorithm.
|
1161 |
+
This ``ConditionalExponentialClassifier`` will encode the model
|
1162 |
+
that maximizes entropy from all the models that are empirically
|
1163 |
+
consistent with ``train_toks``.
|
1164 |
+
|
1165 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1166 |
+
"""
|
1167 |
+
cutoffs.setdefault("max_iter", 100)
|
1168 |
+
cutoffchecker = CutoffChecker(cutoffs)
|
1169 |
+
|
1170 |
+
# Construct an encoding from the training data.
|
1171 |
+
if encoding is None:
|
1172 |
+
encoding = BinaryMaxentFeatureEncoding.train(train_toks, labels=labels)
|
1173 |
+
|
1174 |
+
# Count how many times each feature occurs in the training data.
|
1175 |
+
empirical_ffreq = calculate_empirical_fcount(train_toks, encoding) / len(train_toks)
|
1176 |
+
|
1177 |
+
# Find the nf map, and related variables nfarray and nfident.
|
1178 |
+
# nf is the sum of the features for a given labeled text.
|
1179 |
+
# nfmap compresses this sparse set of values to a dense list.
|
1180 |
+
# nfarray performs the reverse operation. nfident is
|
1181 |
+
# nfarray multiplied by an identity matrix.
|
1182 |
+
nfmap = calculate_nfmap(train_toks, encoding)
|
1183 |
+
nfarray = numpy.array(sorted(nfmap, key=nfmap.__getitem__), "d")
|
1184 |
+
nftranspose = numpy.reshape(nfarray, (len(nfarray), 1))
|
1185 |
+
|
1186 |
+
# Check for any features that are not attested in train_toks.
|
1187 |
+
unattested = set(numpy.nonzero(empirical_ffreq == 0)[0])
|
1188 |
+
|
1189 |
+
# Build the classifier. Start with weight=0 for each attested
|
1190 |
+
# feature, and weight=-infinity for each unattested feature.
|
1191 |
+
weights = numpy.zeros(len(empirical_ffreq), "d")
|
1192 |
+
for fid in unattested:
|
1193 |
+
weights[fid] = numpy.NINF
|
1194 |
+
classifier = ConditionalExponentialClassifier(encoding, weights)
|
1195 |
+
|
1196 |
+
if trace > 0:
|
1197 |
+
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
|
1198 |
+
if trace > 2:
|
1199 |
+
print()
|
1200 |
+
print(" Iteration Log Likelihood Accuracy")
|
1201 |
+
print(" ---------------------------------------")
|
1202 |
+
|
1203 |
+
# Train the classifier.
|
1204 |
+
try:
|
1205 |
+
while True:
|
1206 |
+
if trace > 2:
|
1207 |
+
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
|
1208 |
+
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
|
1209 |
+
iternum = cutoffchecker.iter
|
1210 |
+
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
|
1211 |
+
|
1212 |
+
# Calculate the deltas for this iteration, using Newton's method.
|
1213 |
+
deltas = calculate_deltas(
|
1214 |
+
train_toks,
|
1215 |
+
classifier,
|
1216 |
+
unattested,
|
1217 |
+
empirical_ffreq,
|
1218 |
+
nfmap,
|
1219 |
+
nfarray,
|
1220 |
+
nftranspose,
|
1221 |
+
encoding,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
# Use the deltas to update our weights.
|
1225 |
+
weights = classifier.weights()
|
1226 |
+
weights += deltas
|
1227 |
+
classifier.set_weights(weights)
|
1228 |
+
|
1229 |
+
# Check the log-likelihood & accuracy cutoffs.
|
1230 |
+
if cutoffchecker.check(classifier, train_toks):
|
1231 |
+
break
|
1232 |
+
|
1233 |
+
except KeyboardInterrupt:
|
1234 |
+
print(" Training stopped: keyboard interrupt")
|
1235 |
+
except:
|
1236 |
+
raise
|
1237 |
+
|
1238 |
+
if trace > 2:
|
1239 |
+
ll = log_likelihood(classifier, train_toks)
|
1240 |
+
acc = accuracy(classifier, train_toks)
|
1241 |
+
print(f" Final {ll:14.5f} {acc:9.3f}")
|
1242 |
+
|
1243 |
+
# Return the classifier.
|
1244 |
+
return classifier
|
1245 |
+
|
1246 |
+
|
1247 |
+
def calculate_nfmap(train_toks, encoding):
|
1248 |
+
"""
|
1249 |
+
Construct a map that can be used to compress ``nf`` (which is
|
1250 |
+
typically sparse).
|
1251 |
+
|
1252 |
+
*nf(feature_vector)* is the sum of the feature values for
|
1253 |
+
*feature_vector*.
|
1254 |
+
|
1255 |
+
This represents the number of features that are active for a
|
1256 |
+
given labeled text. This method finds all values of *nf(t)*
|
1257 |
+
that are attested for at least one token in the given list of
|
1258 |
+
training tokens; and constructs a dictionary mapping these
|
1259 |
+
attested values to a continuous range *0...N*. For example,
|
1260 |
+
if the only values of *nf()* that were attested were 3, 5, and
|
1261 |
+
7, then ``_nfmap`` might return the dictionary ``{3:0, 5:1, 7:2}``.
|
1262 |
+
|
1263 |
+
:return: A map that can be used to compress ``nf`` to a dense
|
1264 |
+
vector.
|
1265 |
+
:rtype: dict(int -> int)
|
1266 |
+
"""
|
1267 |
+
# Map from nf to indices. This allows us to use smaller arrays.
|
1268 |
+
nfset = set()
|
1269 |
+
for tok, _ in train_toks:
|
1270 |
+
for label in encoding.labels():
|
1271 |
+
nfset.add(sum(val for (id, val) in encoding.encode(tok, label)))
|
1272 |
+
return {nf: i for (i, nf) in enumerate(nfset)}
|
1273 |
+
|
1274 |
+
|
1275 |
+
def calculate_deltas(
|
1276 |
+
train_toks,
|
1277 |
+
classifier,
|
1278 |
+
unattested,
|
1279 |
+
ffreq_empirical,
|
1280 |
+
nfmap,
|
1281 |
+
nfarray,
|
1282 |
+
nftranspose,
|
1283 |
+
encoding,
|
1284 |
+
):
|
1285 |
+
r"""
|
1286 |
+
Calculate the update values for the classifier weights for
|
1287 |
+
this iteration of IIS. These update weights are the value of
|
1288 |
+
``delta`` that solves the equation::
|
1289 |
+
|
1290 |
+
ffreq_empirical[i]
|
1291 |
+
=
|
1292 |
+
SUM[fs,l] (classifier.prob_classify(fs).prob(l) *
|
1293 |
+
feature_vector(fs,l)[i] *
|
1294 |
+
exp(delta[i] * nf(feature_vector(fs,l))))
|
1295 |
+
|
1296 |
+
Where:
|
1297 |
+
- *(fs,l)* is a (featureset, label) tuple from ``train_toks``
|
1298 |
+
- *feature_vector(fs,l)* = ``encoding.encode(fs,l)``
|
1299 |
+
- *nf(vector)* = ``sum([val for (id,val) in vector])``
|
1300 |
+
|
1301 |
+
This method uses Newton's method to solve this equation for
|
1302 |
+
*delta[i]*. In particular, it starts with a guess of
|
1303 |
+
``delta[i]`` = 1; and iteratively updates ``delta`` with:
|
1304 |
+
|
1305 |
+
| delta[i] -= (ffreq_empirical[i] - sum1[i])/(-sum2[i])
|
1306 |
+
|
1307 |
+
until convergence, where *sum1* and *sum2* are defined as:
|
1308 |
+
|
1309 |
+
| sum1[i](delta) = SUM[fs,l] f[i](fs,l,delta)
|
1310 |
+
| sum2[i](delta) = SUM[fs,l] (f[i](fs,l,delta).nf(feature_vector(fs,l)))
|
1311 |
+
| f[i](fs,l,delta) = (classifier.prob_classify(fs).prob(l) .
|
1312 |
+
| feature_vector(fs,l)[i] .
|
1313 |
+
| exp(delta[i] . nf(feature_vector(fs,l))))
|
1314 |
+
|
1315 |
+
Note that *sum1* and *sum2* depend on ``delta``; so they need
|
1316 |
+
to be re-computed each iteration.
|
1317 |
+
|
1318 |
+
The variables ``nfmap``, ``nfarray``, and ``nftranspose`` are
|
1319 |
+
used to generate a dense encoding for *nf(ltext)*. This
|
1320 |
+
allows ``_deltas`` to calculate *sum1* and *sum2* using
|
1321 |
+
matrices, which yields a significant performance improvement.
|
1322 |
+
|
1323 |
+
:param train_toks: The set of training tokens.
|
1324 |
+
:type train_toks: list(tuple(dict, str))
|
1325 |
+
:param classifier: The current classifier.
|
1326 |
+
:type classifier: ClassifierI
|
1327 |
+
:param ffreq_empirical: An array containing the empirical
|
1328 |
+
frequency for each feature. The *i*\ th element of this
|
1329 |
+
array is the empirical frequency for feature *i*.
|
1330 |
+
:type ffreq_empirical: sequence of float
|
1331 |
+
:param unattested: An array that is 1 for features that are
|
1332 |
+
not attested in the training data; and 0 for features that
|
1333 |
+
are attested. In other words, ``unattested[i]==0`` iff
|
1334 |
+
``ffreq_empirical[i]==0``.
|
1335 |
+
:type unattested: sequence of int
|
1336 |
+
:param nfmap: A map that can be used to compress ``nf`` to a dense
|
1337 |
+
vector.
|
1338 |
+
:type nfmap: dict(int -> int)
|
1339 |
+
:param nfarray: An array that can be used to uncompress ``nf``
|
1340 |
+
from a dense vector.
|
1341 |
+
:type nfarray: array(float)
|
1342 |
+
:param nftranspose: The transpose of ``nfarray``
|
1343 |
+
:type nftranspose: array(float)
|
1344 |
+
"""
|
1345 |
+
# These parameters control when we decide that we've
|
1346 |
+
# converged. It probably should be possible to set these
|
1347 |
+
# manually, via keyword arguments to train.
|
1348 |
+
NEWTON_CONVERGE = 1e-12
|
1349 |
+
MAX_NEWTON = 300
|
1350 |
+
|
1351 |
+
deltas = numpy.ones(encoding.length(), "d")
|
1352 |
+
|
1353 |
+
# Precompute the A matrix:
|
1354 |
+
# A[nf][id] = sum ( p(fs) * p(label|fs) * f(fs,label) )
|
1355 |
+
# over all label,fs s.t. num_features[label,fs]=nf
|
1356 |
+
A = numpy.zeros((len(nfmap), encoding.length()), "d")
|
1357 |
+
|
1358 |
+
for tok, label in train_toks:
|
1359 |
+
dist = classifier.prob_classify(tok)
|
1360 |
+
|
1361 |
+
for label in encoding.labels():
|
1362 |
+
# Generate the feature vector
|
1363 |
+
feature_vector = encoding.encode(tok, label)
|
1364 |
+
# Find the number of active features
|
1365 |
+
nf = sum(val for (id, val) in feature_vector)
|
1366 |
+
# Update the A matrix
|
1367 |
+
for (id, val) in feature_vector:
|
1368 |
+
A[nfmap[nf], id] += dist.prob(label) * val
|
1369 |
+
A /= len(train_toks)
|
1370 |
+
|
1371 |
+
# Iteratively solve for delta. Use the following variables:
|
1372 |
+
# - nf_delta[x][y] = nfarray[x] * delta[y]
|
1373 |
+
# - exp_nf_delta[x][y] = exp(nf[x] * delta[y])
|
1374 |
+
# - nf_exp_nf_delta[x][y] = nf[x] * exp(nf[x] * delta[y])
|
1375 |
+
# - sum1[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
|
1376 |
+
# exp(delta[i]nf)
|
1377 |
+
# - sum2[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
|
1378 |
+
# nf exp(delta[i]nf)
|
1379 |
+
for rangenum in range(MAX_NEWTON):
|
1380 |
+
nf_delta = numpy.outer(nfarray, deltas)
|
1381 |
+
exp_nf_delta = 2**nf_delta
|
1382 |
+
nf_exp_nf_delta = nftranspose * exp_nf_delta
|
1383 |
+
sum1 = numpy.sum(exp_nf_delta * A, axis=0)
|
1384 |
+
sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
|
1385 |
+
|
1386 |
+
# Avoid division by zero.
|
1387 |
+
for fid in unattested:
|
1388 |
+
sum2[fid] += 1
|
1389 |
+
|
1390 |
+
# Update the deltas.
|
1391 |
+
deltas -= (ffreq_empirical - sum1) / -sum2
|
1392 |
+
|
1393 |
+
# We can stop once we converge.
|
1394 |
+
n_error = numpy.sum(abs(ffreq_empirical - sum1)) / numpy.sum(abs(deltas))
|
1395 |
+
if n_error < NEWTON_CONVERGE:
|
1396 |
+
return deltas
|
1397 |
+
|
1398 |
+
return deltas
|
1399 |
+
|
1400 |
+
|
1401 |
+
######################################################################
|
1402 |
+
# { Classifier Trainer: megam
|
1403 |
+
######################################################################
|
1404 |
+
|
1405 |
+
# [xx] possible extension: add support for using implicit file format;
|
1406 |
+
# this would need to put requirements on what encoding is used. But
|
1407 |
+
# we may need this for other maxent classifier trainers that require
|
1408 |
+
# implicit formats anyway.
|
1409 |
+
def train_maxent_classifier_with_megam(
|
1410 |
+
train_toks, trace=3, encoding=None, labels=None, gaussian_prior_sigma=0, **kwargs
|
1411 |
+
):
|
1412 |
+
"""
|
1413 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1414 |
+
training samples, using the external ``megam`` library. This
|
1415 |
+
``ConditionalExponentialClassifier`` will encode the model that
|
1416 |
+
maximizes entropy from all the models that are empirically
|
1417 |
+
consistent with ``train_toks``.
|
1418 |
+
|
1419 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1420 |
+
:see: ``nltk.classify.megam``
|
1421 |
+
"""
|
1422 |
+
|
1423 |
+
explicit = True
|
1424 |
+
bernoulli = True
|
1425 |
+
if "explicit" in kwargs:
|
1426 |
+
explicit = kwargs["explicit"]
|
1427 |
+
if "bernoulli" in kwargs:
|
1428 |
+
bernoulli = kwargs["bernoulli"]
|
1429 |
+
|
1430 |
+
# Construct an encoding from the training data.
|
1431 |
+
if encoding is None:
|
1432 |
+
# Count cutoff can also be controlled by megam with the -minfc
|
1433 |
+
# option. Not sure where the best place for it is.
|
1434 |
+
count_cutoff = kwargs.get("count_cutoff", 0)
|
1435 |
+
encoding = BinaryMaxentFeatureEncoding.train(
|
1436 |
+
train_toks, count_cutoff, labels=labels, alwayson_features=True
|
1437 |
+
)
|
1438 |
+
elif labels is not None:
|
1439 |
+
raise ValueError("Specify encoding or labels, not both")
|
1440 |
+
|
1441 |
+
# Write a training file for megam.
|
1442 |
+
try:
|
1443 |
+
fd, trainfile_name = tempfile.mkstemp(prefix="nltk-")
|
1444 |
+
with open(trainfile_name, "w") as trainfile:
|
1445 |
+
write_megam_file(
|
1446 |
+
train_toks, encoding, trainfile, explicit=explicit, bernoulli=bernoulli
|
1447 |
+
)
|
1448 |
+
os.close(fd)
|
1449 |
+
except (OSError, ValueError) as e:
|
1450 |
+
raise ValueError("Error while creating megam training file: %s" % e) from e
|
1451 |
+
|
1452 |
+
# Run megam on the training file.
|
1453 |
+
options = []
|
1454 |
+
options += ["-nobias", "-repeat", "10"]
|
1455 |
+
if explicit:
|
1456 |
+
options += ["-explicit"]
|
1457 |
+
if not bernoulli:
|
1458 |
+
options += ["-fvals"]
|
1459 |
+
if gaussian_prior_sigma:
|
1460 |
+
# Lambda is just the precision of the Gaussian prior, i.e. it's the
|
1461 |
+
# inverse variance, so the parameter conversion is 1.0/sigma**2.
|
1462 |
+
# See https://users.umiacs.umd.edu/~hal/docs/daume04cg-bfgs.pdf
|
1463 |
+
inv_variance = 1.0 / gaussian_prior_sigma**2
|
1464 |
+
else:
|
1465 |
+
inv_variance = 0
|
1466 |
+
options += ["-lambda", "%.2f" % inv_variance, "-tune"]
|
1467 |
+
if trace < 3:
|
1468 |
+
options += ["-quiet"]
|
1469 |
+
if "max_iter" in kwargs:
|
1470 |
+
options += ["-maxi", "%s" % kwargs["max_iter"]]
|
1471 |
+
if "ll_delta" in kwargs:
|
1472 |
+
# [xx] this is actually a perplexity delta, not a log
|
1473 |
+
# likelihood delta
|
1474 |
+
options += ["-dpp", "%s" % abs(kwargs["ll_delta"])]
|
1475 |
+
if hasattr(encoding, "cost"):
|
1476 |
+
options += ["-multilabel"] # each possible la
|
1477 |
+
options += ["multiclass", trainfile_name]
|
1478 |
+
stdout = call_megam(options)
|
1479 |
+
# print('./megam_i686.opt ', ' '.join(options))
|
1480 |
+
# Delete the training file
|
1481 |
+
try:
|
1482 |
+
os.remove(trainfile_name)
|
1483 |
+
except OSError as e:
|
1484 |
+
print(f"Warning: unable to delete {trainfile_name}: {e}")
|
1485 |
+
|
1486 |
+
# Parse the generated weight vector.
|
1487 |
+
weights = parse_megam_weights(stdout, encoding.length(), explicit)
|
1488 |
+
|
1489 |
+
# Convert from base-e to base-2 weights.
|
1490 |
+
weights *= numpy.log2(numpy.e)
|
1491 |
+
|
1492 |
+
# Build the classifier
|
1493 |
+
return MaxentClassifier(encoding, weights)
|
1494 |
+
|
1495 |
+
|
1496 |
+
######################################################################
|
1497 |
+
# { Classifier Trainer: tadm
|
1498 |
+
######################################################################
|
1499 |
+
|
1500 |
+
|
1501 |
+
class TadmMaxentClassifier(MaxentClassifier):
|
1502 |
+
@classmethod
|
1503 |
+
def train(cls, train_toks, **kwargs):
|
1504 |
+
algorithm = kwargs.get("algorithm", "tao_lmvm")
|
1505 |
+
trace = kwargs.get("trace", 3)
|
1506 |
+
encoding = kwargs.get("encoding", None)
|
1507 |
+
labels = kwargs.get("labels", None)
|
1508 |
+
sigma = kwargs.get("gaussian_prior_sigma", 0)
|
1509 |
+
count_cutoff = kwargs.get("count_cutoff", 0)
|
1510 |
+
max_iter = kwargs.get("max_iter")
|
1511 |
+
ll_delta = kwargs.get("min_lldelta")
|
1512 |
+
|
1513 |
+
# Construct an encoding from the training data.
|
1514 |
+
if not encoding:
|
1515 |
+
encoding = TadmEventMaxentFeatureEncoding.train(
|
1516 |
+
train_toks, count_cutoff, labels=labels
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
trainfile_fd, trainfile_name = tempfile.mkstemp(
|
1520 |
+
prefix="nltk-tadm-events-", suffix=".gz"
|
1521 |
+
)
|
1522 |
+
weightfile_fd, weightfile_name = tempfile.mkstemp(prefix="nltk-tadm-weights-")
|
1523 |
+
|
1524 |
+
trainfile = gzip_open_unicode(trainfile_name, "w")
|
1525 |
+
write_tadm_file(train_toks, encoding, trainfile)
|
1526 |
+
trainfile.close()
|
1527 |
+
|
1528 |
+
options = []
|
1529 |
+
options.extend(["-monitor"])
|
1530 |
+
options.extend(["-method", algorithm])
|
1531 |
+
if sigma:
|
1532 |
+
options.extend(["-l2", "%.6f" % sigma**2])
|
1533 |
+
if max_iter:
|
1534 |
+
options.extend(["-max_it", "%d" % max_iter])
|
1535 |
+
if ll_delta:
|
1536 |
+
options.extend(["-fatol", "%.6f" % abs(ll_delta)])
|
1537 |
+
options.extend(["-events_in", trainfile_name])
|
1538 |
+
options.extend(["-params_out", weightfile_name])
|
1539 |
+
if trace < 3:
|
1540 |
+
options.extend(["2>&1"])
|
1541 |
+
else:
|
1542 |
+
options.extend(["-summary"])
|
1543 |
+
|
1544 |
+
call_tadm(options)
|
1545 |
+
|
1546 |
+
with open(weightfile_name) as weightfile:
|
1547 |
+
weights = parse_tadm_weights(weightfile)
|
1548 |
+
|
1549 |
+
os.remove(trainfile_name)
|
1550 |
+
os.remove(weightfile_name)
|
1551 |
+
|
1552 |
+
# Convert from base-e to base-2 weights.
|
1553 |
+
weights *= numpy.log2(numpy.e)
|
1554 |
+
|
1555 |
+
# Build the classifier
|
1556 |
+
return cls(encoding, weights)
|
1557 |
+
|
1558 |
+
|
1559 |
+
######################################################################
|
1560 |
+
# { Demo
|
1561 |
+
######################################################################
|
1562 |
+
def demo():
|
1563 |
+
from nltk.classify.util import names_demo
|
1564 |
+
|
1565 |
+
classifier = names_demo(MaxentClassifier.train)
|
1566 |
+
|
1567 |
+
|
1568 |
+
if __name__ == "__main__":
|
1569 |
+
demo()
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/svm.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: SVM-based classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Leon Derczynski <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
"""
|
9 |
+
nltk.classify.svm was deprecated. For classification based
|
10 |
+
on support vector machines SVMs use nltk.classify.scikitlearn
|
11 |
+
(or `scikit-learn <https://scikit-learn.org>`_ directly).
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
class SvmClassifier:
|
16 |
+
def __init__(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError(__doc__)
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/tadm.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to TADM Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Joseph Frazee <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from nltk.internals import find_binary
|
12 |
+
|
13 |
+
try:
|
14 |
+
import numpy
|
15 |
+
except ImportError:
|
16 |
+
pass
|
17 |
+
|
18 |
+
_tadm_bin = None
|
19 |
+
|
20 |
+
|
21 |
+
def config_tadm(bin=None):
|
22 |
+
global _tadm_bin
|
23 |
+
_tadm_bin = find_binary(
|
24 |
+
"tadm", bin, env_vars=["TADM"], binary_names=["tadm"], url="http://tadm.sf.net"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def write_tadm_file(train_toks, encoding, stream):
|
29 |
+
"""
|
30 |
+
Generate an input file for ``tadm`` based on the given corpus of
|
31 |
+
classified tokens.
|
32 |
+
|
33 |
+
:type train_toks: list(tuple(dict, str))
|
34 |
+
:param train_toks: Training data, represented as a list of
|
35 |
+
pairs, the first member of which is a feature dictionary,
|
36 |
+
and the second of which is a classification label.
|
37 |
+
:type encoding: TadmEventMaxentFeatureEncoding
|
38 |
+
:param encoding: A feature encoding, used to convert featuresets
|
39 |
+
into feature vectors.
|
40 |
+
:type stream: stream
|
41 |
+
:param stream: The stream to which the ``tadm`` input file should be
|
42 |
+
written.
|
43 |
+
"""
|
44 |
+
# See the following for a file format description:
|
45 |
+
#
|
46 |
+
# https://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054
|
47 |
+
# https://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054
|
48 |
+
labels = encoding.labels()
|
49 |
+
for featureset, label in train_toks:
|
50 |
+
length_line = "%d\n" % len(labels)
|
51 |
+
stream.write(length_line)
|
52 |
+
for known_label in labels:
|
53 |
+
v = encoding.encode(featureset, known_label)
|
54 |
+
line = "%d %d %s\n" % (
|
55 |
+
int(label == known_label),
|
56 |
+
len(v),
|
57 |
+
" ".join("%d %d" % u for u in v),
|
58 |
+
)
|
59 |
+
stream.write(line)
|
60 |
+
|
61 |
+
|
62 |
+
def parse_tadm_weights(paramfile):
|
63 |
+
"""
|
64 |
+
Given the stdout output generated by ``tadm`` when training a
|
65 |
+
model, return a ``numpy`` array containing the corresponding weight
|
66 |
+
vector.
|
67 |
+
"""
|
68 |
+
weights = []
|
69 |
+
for line in paramfile:
|
70 |
+
weights.append(float(line.strip()))
|
71 |
+
return numpy.array(weights, "d")
|
72 |
+
|
73 |
+
|
74 |
+
def call_tadm(args):
|
75 |
+
"""
|
76 |
+
Call the ``tadm`` binary with the given arguments.
|
77 |
+
"""
|
78 |
+
if isinstance(args, str):
|
79 |
+
raise TypeError("args should be a list of strings")
|
80 |
+
if _tadm_bin is None:
|
81 |
+
config_tadm()
|
82 |
+
|
83 |
+
# Call tadm via a subprocess
|
84 |
+
cmd = [_tadm_bin] + args
|
85 |
+
p = subprocess.Popen(cmd, stdout=sys.stdout)
|
86 |
+
(stdout, stderr) = p.communicate()
|
87 |
+
|
88 |
+
# Check the return code.
|
89 |
+
if p.returncode != 0:
|
90 |
+
print()
|
91 |
+
print(stderr)
|
92 |
+
raise OSError("tadm command failed!")
|
93 |
+
|
94 |
+
|
95 |
+
def names_demo():
|
96 |
+
from nltk.classify.maxent import TadmMaxentClassifier
|
97 |
+
from nltk.classify.util import names_demo
|
98 |
+
|
99 |
+
classifier = names_demo(TadmMaxentClassifier.train)
|
100 |
+
|
101 |
+
|
102 |
+
def encoding_demo():
|
103 |
+
import sys
|
104 |
+
|
105 |
+
from nltk.classify.maxent import TadmEventMaxentFeatureEncoding
|
106 |
+
|
107 |
+
tokens = [
|
108 |
+
({"f0": 1, "f1": 1, "f3": 1}, "A"),
|
109 |
+
({"f0": 1, "f2": 1, "f4": 1}, "B"),
|
110 |
+
({"f0": 2, "f2": 1, "f3": 1, "f4": 1}, "A"),
|
111 |
+
]
|
112 |
+
encoding = TadmEventMaxentFeatureEncoding.train(tokens)
|
113 |
+
write_tadm_file(tokens, encoding, sys.stdout)
|
114 |
+
print()
|
115 |
+
for i in range(encoding.length()):
|
116 |
+
print("%s --> %d" % (encoding.describe(i), i))
|
117 |
+
print()
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
encoding_demo()
|
122 |
+
names_demo()
|
llmeval-env/lib/python3.10/site-packages/nltk/classify/weka.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to Weka Classsifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Classifiers that make use of the external 'Weka' package.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import re
|
14 |
+
import subprocess
|
15 |
+
import tempfile
|
16 |
+
import time
|
17 |
+
import zipfile
|
18 |
+
from sys import stdin
|
19 |
+
|
20 |
+
from nltk.classify.api import ClassifierI
|
21 |
+
from nltk.internals import config_java, java
|
22 |
+
from nltk.probability import DictionaryProbDist
|
23 |
+
|
24 |
+
_weka_classpath = None
|
25 |
+
_weka_search = [
|
26 |
+
".",
|
27 |
+
"/usr/share/weka",
|
28 |
+
"/usr/local/share/weka",
|
29 |
+
"/usr/lib/weka",
|
30 |
+
"/usr/local/lib/weka",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def config_weka(classpath=None):
|
35 |
+
global _weka_classpath
|
36 |
+
|
37 |
+
# Make sure java's configured first.
|
38 |
+
config_java()
|
39 |
+
|
40 |
+
if classpath is not None:
|
41 |
+
_weka_classpath = classpath
|
42 |
+
|
43 |
+
if _weka_classpath is None:
|
44 |
+
searchpath = _weka_search
|
45 |
+
if "WEKAHOME" in os.environ:
|
46 |
+
searchpath.insert(0, os.environ["WEKAHOME"])
|
47 |
+
|
48 |
+
for path in searchpath:
|
49 |
+
if os.path.exists(os.path.join(path, "weka.jar")):
|
50 |
+
_weka_classpath = os.path.join(path, "weka.jar")
|
51 |
+
version = _check_weka_version(_weka_classpath)
|
52 |
+
if version:
|
53 |
+
print(f"[Found Weka: {_weka_classpath} (version {version})]")
|
54 |
+
else:
|
55 |
+
print("[Found Weka: %s]" % _weka_classpath)
|
56 |
+
_check_weka_version(_weka_classpath)
|
57 |
+
|
58 |
+
if _weka_classpath is None:
|
59 |
+
raise LookupError(
|
60 |
+
"Unable to find weka.jar! Use config_weka() "
|
61 |
+
"or set the WEKAHOME environment variable. "
|
62 |
+
"For more information about Weka, please see "
|
63 |
+
"https://www.cs.waikato.ac.nz/ml/weka/"
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
def _check_weka_version(jar):
|
68 |
+
try:
|
69 |
+
zf = zipfile.ZipFile(jar)
|
70 |
+
except (SystemExit, KeyboardInterrupt):
|
71 |
+
raise
|
72 |
+
except:
|
73 |
+
return None
|
74 |
+
try:
|
75 |
+
try:
|
76 |
+
return zf.read("weka/core/version.txt")
|
77 |
+
except KeyError:
|
78 |
+
return None
|
79 |
+
finally:
|
80 |
+
zf.close()
|
81 |
+
|
82 |
+
|
83 |
+
class WekaClassifier(ClassifierI):
|
84 |
+
def __init__(self, formatter, model_filename):
|
85 |
+
self._formatter = formatter
|
86 |
+
self._model = model_filename
|
87 |
+
|
88 |
+
def prob_classify_many(self, featuresets):
|
89 |
+
return self._classify_many(featuresets, ["-p", "0", "-distribution"])
|
90 |
+
|
91 |
+
def classify_many(self, featuresets):
|
92 |
+
return self._classify_many(featuresets, ["-p", "0"])
|
93 |
+
|
94 |
+
def _classify_many(self, featuresets, options):
|
95 |
+
# Make sure we can find java & weka.
|
96 |
+
config_weka()
|
97 |
+
|
98 |
+
temp_dir = tempfile.mkdtemp()
|
99 |
+
try:
|
100 |
+
# Write the test data file.
|
101 |
+
test_filename = os.path.join(temp_dir, "test.arff")
|
102 |
+
self._formatter.write(test_filename, featuresets)
|
103 |
+
|
104 |
+
# Call weka to classify the data.
|
105 |
+
cmd = [
|
106 |
+
"weka.classifiers.bayes.NaiveBayes",
|
107 |
+
"-l",
|
108 |
+
self._model,
|
109 |
+
"-T",
|
110 |
+
test_filename,
|
111 |
+
] + options
|
112 |
+
(stdout, stderr) = java(
|
113 |
+
cmd,
|
114 |
+
classpath=_weka_classpath,
|
115 |
+
stdout=subprocess.PIPE,
|
116 |
+
stderr=subprocess.PIPE,
|
117 |
+
)
|
118 |
+
|
119 |
+
# Check if something went wrong:
|
120 |
+
if stderr and not stdout:
|
121 |
+
if "Illegal options: -distribution" in stderr:
|
122 |
+
raise ValueError(
|
123 |
+
"The installed version of weka does "
|
124 |
+
"not support probability distribution "
|
125 |
+
"output."
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
raise ValueError("Weka failed to generate output:\n%s" % stderr)
|
129 |
+
|
130 |
+
# Parse weka's output.
|
131 |
+
return self.parse_weka_output(stdout.decode(stdin.encoding).split("\n"))
|
132 |
+
|
133 |
+
finally:
|
134 |
+
for f in os.listdir(temp_dir):
|
135 |
+
os.remove(os.path.join(temp_dir, f))
|
136 |
+
os.rmdir(temp_dir)
|
137 |
+
|
138 |
+
def parse_weka_distribution(self, s):
|
139 |
+
probs = [float(v) for v in re.split("[*,]+", s) if v.strip()]
|
140 |
+
probs = dict(zip(self._formatter.labels(), probs))
|
141 |
+
return DictionaryProbDist(probs)
|
142 |
+
|
143 |
+
def parse_weka_output(self, lines):
|
144 |
+
# Strip unwanted text from stdout
|
145 |
+
for i, line in enumerate(lines):
|
146 |
+
if line.strip().startswith("inst#"):
|
147 |
+
lines = lines[i:]
|
148 |
+
break
|
149 |
+
|
150 |
+
if lines[0].split() == ["inst#", "actual", "predicted", "error", "prediction"]:
|
151 |
+
return [line.split()[2].split(":")[1] for line in lines[1:] if line.strip()]
|
152 |
+
elif lines[0].split() == [
|
153 |
+
"inst#",
|
154 |
+
"actual",
|
155 |
+
"predicted",
|
156 |
+
"error",
|
157 |
+
"distribution",
|
158 |
+
]:
|
159 |
+
return [
|
160 |
+
self.parse_weka_distribution(line.split()[-1])
|
161 |
+
for line in lines[1:]
|
162 |
+
if line.strip()
|
163 |
+
]
|
164 |
+
|
165 |
+
# is this safe:?
|
166 |
+
elif re.match(r"^0 \w+ [01]\.[0-9]* \?\s*$", lines[0]):
|
167 |
+
return [line.split()[1] for line in lines if line.strip()]
|
168 |
+
|
169 |
+
else:
|
170 |
+
for line in lines[:10]:
|
171 |
+
print(line)
|
172 |
+
raise ValueError(
|
173 |
+
"Unhandled output format -- your version "
|
174 |
+
"of weka may not be supported.\n"
|
175 |
+
" Header: %s" % lines[0]
|
176 |
+
)
|
177 |
+
|
178 |
+
# [xx] full list of classifiers (some may be abstract?):
|
179 |
+
# ADTree, AODE, BayesNet, ComplementNaiveBayes, ConjunctiveRule,
|
180 |
+
# DecisionStump, DecisionTable, HyperPipes, IB1, IBk, Id3, J48,
|
181 |
+
# JRip, KStar, LBR, LeastMedSq, LinearRegression, LMT, Logistic,
|
182 |
+
# LogisticBase, M5Base, MultilayerPerceptron,
|
183 |
+
# MultipleClassifiersCombiner, NaiveBayes, NaiveBayesMultinomial,
|
184 |
+
# NaiveBayesSimple, NBTree, NNge, OneR, PaceRegression, PART,
|
185 |
+
# PreConstructedLinearModel, Prism, RandomForest,
|
186 |
+
# RandomizableClassifier, RandomTree, RBFNetwork, REPTree, Ridor,
|
187 |
+
# RuleNode, SimpleLinearRegression, SimpleLogistic,
|
188 |
+
# SingleClassifierEnhancer, SMO, SMOreg, UserClassifier, VFI,
|
189 |
+
# VotedPerceptron, Winnow, ZeroR
|
190 |
+
|
191 |
+
_CLASSIFIER_CLASS = {
|
192 |
+
"naivebayes": "weka.classifiers.bayes.NaiveBayes",
|
193 |
+
"C4.5": "weka.classifiers.trees.J48",
|
194 |
+
"log_regression": "weka.classifiers.functions.Logistic",
|
195 |
+
"svm": "weka.classifiers.functions.SMO",
|
196 |
+
"kstar": "weka.classifiers.lazy.KStar",
|
197 |
+
"ripper": "weka.classifiers.rules.JRip",
|
198 |
+
}
|
199 |
+
|
200 |
+
@classmethod
|
201 |
+
def train(
|
202 |
+
cls,
|
203 |
+
model_filename,
|
204 |
+
featuresets,
|
205 |
+
classifier="naivebayes",
|
206 |
+
options=[],
|
207 |
+
quiet=True,
|
208 |
+
):
|
209 |
+
# Make sure we can find java & weka.
|
210 |
+
config_weka()
|
211 |
+
|
212 |
+
# Build an ARFF formatter.
|
213 |
+
formatter = ARFF_Formatter.from_train(featuresets)
|
214 |
+
|
215 |
+
temp_dir = tempfile.mkdtemp()
|
216 |
+
try:
|
217 |
+
# Write the training data file.
|
218 |
+
train_filename = os.path.join(temp_dir, "train.arff")
|
219 |
+
formatter.write(train_filename, featuresets)
|
220 |
+
|
221 |
+
if classifier in cls._CLASSIFIER_CLASS:
|
222 |
+
javaclass = cls._CLASSIFIER_CLASS[classifier]
|
223 |
+
elif classifier in cls._CLASSIFIER_CLASS.values():
|
224 |
+
javaclass = classifier
|
225 |
+
else:
|
226 |
+
raise ValueError("Unknown classifier %s" % classifier)
|
227 |
+
|
228 |
+
# Train the weka model.
|
229 |
+
cmd = [javaclass, "-d", model_filename, "-t", train_filename]
|
230 |
+
cmd += list(options)
|
231 |
+
if quiet:
|
232 |
+
stdout = subprocess.PIPE
|
233 |
+
else:
|
234 |
+
stdout = None
|
235 |
+
java(cmd, classpath=_weka_classpath, stdout=stdout)
|
236 |
+
|
237 |
+
# Return the new classifier.
|
238 |
+
return WekaClassifier(formatter, model_filename)
|
239 |
+
|
240 |
+
finally:
|
241 |
+
for f in os.listdir(temp_dir):
|
242 |
+
os.remove(os.path.join(temp_dir, f))
|
243 |
+
os.rmdir(temp_dir)
|
244 |
+
|
245 |
+
|
246 |
+
class ARFF_Formatter:
|
247 |
+
"""
|
248 |
+
Converts featuresets and labeled featuresets to ARFF-formatted
|
249 |
+
strings, appropriate for input into Weka.
|
250 |
+
|
251 |
+
Features and classes can be specified manually in the constructor, or may
|
252 |
+
be determined from data using ``from_train``.
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self, labels, features):
|
256 |
+
"""
|
257 |
+
:param labels: A list of all class labels that can be generated.
|
258 |
+
:param features: A list of feature specifications, where
|
259 |
+
each feature specification is a tuple (fname, ftype);
|
260 |
+
and ftype is an ARFF type string such as NUMERIC or
|
261 |
+
STRING.
|
262 |
+
"""
|
263 |
+
self._labels = labels
|
264 |
+
self._features = features
|
265 |
+
|
266 |
+
def format(self, tokens):
|
267 |
+
"""Returns a string representation of ARFF output for the given data."""
|
268 |
+
return self.header_section() + self.data_section(tokens)
|
269 |
+
|
270 |
+
def labels(self):
|
271 |
+
"""Returns the list of classes."""
|
272 |
+
return list(self._labels)
|
273 |
+
|
274 |
+
def write(self, outfile, tokens):
|
275 |
+
"""Writes ARFF data to a file for the given data."""
|
276 |
+
if not hasattr(outfile, "write"):
|
277 |
+
outfile = open(outfile, "w")
|
278 |
+
outfile.write(self.format(tokens))
|
279 |
+
outfile.close()
|
280 |
+
|
281 |
+
@staticmethod
|
282 |
+
def from_train(tokens):
|
283 |
+
"""
|
284 |
+
Constructs an ARFF_Formatter instance with class labels and feature
|
285 |
+
types determined from the given data. Handles boolean, numeric and
|
286 |
+
string (note: not nominal) types.
|
287 |
+
"""
|
288 |
+
# Find the set of all attested labels.
|
289 |
+
labels = {label for (tok, label) in tokens}
|
290 |
+
|
291 |
+
# Determine the types of all features.
|
292 |
+
features = {}
|
293 |
+
for tok, label in tokens:
|
294 |
+
for (fname, fval) in tok.items():
|
295 |
+
if issubclass(type(fval), bool):
|
296 |
+
ftype = "{True, False}"
|
297 |
+
elif issubclass(type(fval), (int, float, bool)):
|
298 |
+
ftype = "NUMERIC"
|
299 |
+
elif issubclass(type(fval), str):
|
300 |
+
ftype = "STRING"
|
301 |
+
elif fval is None:
|
302 |
+
continue # can't tell the type.
|
303 |
+
else:
|
304 |
+
raise ValueError("Unsupported value type %r" % ftype)
|
305 |
+
|
306 |
+
if features.get(fname, ftype) != ftype:
|
307 |
+
raise ValueError("Inconsistent type for %s" % fname)
|
308 |
+
features[fname] = ftype
|
309 |
+
features = sorted(features.items())
|
310 |
+
|
311 |
+
return ARFF_Formatter(labels, features)
|
312 |
+
|
313 |
+
def header_section(self):
|
314 |
+
"""Returns an ARFF header as a string."""
|
315 |
+
# Header comment.
|
316 |
+
s = (
|
317 |
+
"% Weka ARFF file\n"
|
318 |
+
+ "% Generated automatically by NLTK\n"
|
319 |
+
+ "%% %s\n\n" % time.ctime()
|
320 |
+
)
|
321 |
+
|
322 |
+
# Relation name
|
323 |
+
s += "@RELATION rel\n\n"
|
324 |
+
|
325 |
+
# Input attribute specifications
|
326 |
+
for fname, ftype in self._features:
|
327 |
+
s += "@ATTRIBUTE %-30r %s\n" % (fname, ftype)
|
328 |
+
|
329 |
+
# Label attribute specification
|
330 |
+
s += "@ATTRIBUTE %-30r {%s}\n" % ("-label-", ",".join(self._labels))
|
331 |
+
|
332 |
+
return s
|
333 |
+
|
334 |
+
def data_section(self, tokens, labeled=None):
|
335 |
+
"""
|
336 |
+
Returns the ARFF data section for the given data.
|
337 |
+
|
338 |
+
:param tokens: a list of featuresets (dicts) or labelled featuresets
|
339 |
+
which are tuples (featureset, label).
|
340 |
+
:param labeled: Indicates whether the given tokens are labeled
|
341 |
+
or not. If None, then the tokens will be assumed to be
|
342 |
+
labeled if the first token's value is a tuple or list.
|
343 |
+
"""
|
344 |
+
# Check if the tokens are labeled or unlabeled. If unlabeled,
|
345 |
+
# then use 'None'
|
346 |
+
if labeled is None:
|
347 |
+
labeled = tokens and isinstance(tokens[0], (tuple, list))
|
348 |
+
if not labeled:
|
349 |
+
tokens = [(tok, None) for tok in tokens]
|
350 |
+
|
351 |
+
# Data section
|
352 |
+
s = "\n@DATA\n"
|
353 |
+
for (tok, label) in tokens:
|
354 |
+
for fname, ftype in self._features:
|
355 |
+
s += "%s," % self._fmt_arff_val(tok.get(fname))
|
356 |
+
s += "%s\n" % self._fmt_arff_val(label)
|
357 |
+
|
358 |
+
return s
|
359 |
+
|
360 |
+
def _fmt_arff_val(self, fval):
|
361 |
+
if fval is None:
|
362 |
+
return "?"
|
363 |
+
elif isinstance(fval, (bool, int)):
|
364 |
+
return "%s" % fval
|
365 |
+
elif isinstance(fval, float):
|
366 |
+
return "%r" % fval
|
367 |
+
else:
|
368 |
+
return "%r" % fval
|
369 |
+
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
from nltk.classify.util import binary_names_demo_features, names_demo
|
373 |
+
|
374 |
+
def make_classifier(featuresets):
|
375 |
+
return WekaClassifier.train("/tmp/name.model", featuresets, "C4.5")
|
376 |
+
|
377 |
+
classifier = names_demo(make_classifier, binary_names_demo_features)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Unit Tests
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Unit tests for the NLTK modules. These tests are intended to ensure
|
10 |
+
that source code changes don't accidentally introduce bugs.
|
11 |
+
For instructions, please see:
|
12 |
+
|
13 |
+
../../web/dev/local_testing.rst
|
14 |
+
|
15 |
+
https://github.com/nltk/nltk/blob/develop/web/dev/local_testing.rst
|
16 |
+
|
17 |
+
|
18 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/nltk/test/all.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test suite that runs all NLTK tests.
|
2 |
+
|
3 |
+
This module, `nltk.test.all`, is named as the NLTK ``test_suite`` in the
|
4 |
+
project's ``setup-eggs.py`` file. Here, we create a test suite that
|
5 |
+
runs all of our doctests, and return it for processing by the setuptools
|
6 |
+
test harness.
|
7 |
+
|
8 |
+
"""
|
9 |
+
import doctest
|
10 |
+
import os.path
|
11 |
+
import unittest
|
12 |
+
from glob import glob
|
13 |
+
|
14 |
+
|
15 |
+
def additional_tests():
|
16 |
+
# print("here-000000000000000")
|
17 |
+
# print("-----", glob(os.path.join(os.path.dirname(__file__), '*.doctest')))
|
18 |
+
dir = os.path.dirname(__file__)
|
19 |
+
paths = glob(os.path.join(dir, "*.doctest"))
|
20 |
+
files = [os.path.basename(path) for path in paths]
|
21 |
+
return unittest.TestSuite([doctest.DocFileSuite(file) for file in files])
|
22 |
+
|
23 |
+
|
24 |
+
# if os.path.split(path)[-1] != 'index.rst'
|
25 |
+
# skips time-dependent doctest in index.rst
|
llmeval-env/lib/python3.10/site-packages/nltk/test/bleu.doctest
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
==========
|
2 |
+
BLEU tests
|
3 |
+
==========
|
4 |
+
|
5 |
+
>>> from nltk.translate import bleu
|
6 |
+
|
7 |
+
If the candidate has no alignment to any of the references, the BLEU score is 0.
|
8 |
+
|
9 |
+
>>> bleu(
|
10 |
+
... ['The candidate has no alignment to any of the references'.split()],
|
11 |
+
... 'John loves Mary'.split(),
|
12 |
+
... (1,),
|
13 |
+
... )
|
14 |
+
0
|
15 |
+
|
16 |
+
This is an implementation of the smoothing techniques
|
17 |
+
for segment-level BLEU scores that was presented in
|
18 |
+
Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
|
19 |
+
Smoothing Techniques for Sentence-Level BLEU. In WMT14.
|
20 |
+
http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
|
21 |
+
>>> from nltk.translate.bleu_score import sentence_bleu,SmoothingFunction
|
22 |
+
|
23 |
+
|
24 |
+
>>> sentence_bleu(
|
25 |
+
... ['It is a place of quiet contemplation .'.split()],
|
26 |
+
... 'It is .'.split(),
|
27 |
+
... smoothing_function=SmoothingFunction().method4,
|
28 |
+
... )*100
|
29 |
+
4.4267...
|
llmeval-env/lib/python3.10/site-packages/nltk/test/bnc.doctest
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
>>> import os.path
|
5 |
+
|
6 |
+
>>> from nltk.corpus.reader import BNCCorpusReader
|
7 |
+
>>> import nltk.test
|
8 |
+
|
9 |
+
>>> root = os.path.dirname(nltk.test.__file__)
|
10 |
+
>>> bnc = BNCCorpusReader(root=root, fileids='FX8.xml')
|
11 |
+
|
12 |
+
Checking the word access.
|
13 |
+
-------------------------
|
14 |
+
|
15 |
+
>>> len(bnc.words())
|
16 |
+
151
|
17 |
+
|
18 |
+
>>> bnc.words()[:6]
|
19 |
+
['Ah', 'there', 'we', 'are', ',', '.']
|
20 |
+
>>> bnc.words(stem=True)[:6]
|
21 |
+
['ah', 'there', 'we', 'be', ',', '.']
|
22 |
+
|
23 |
+
>>> bnc.tagged_words()[:6]
|
24 |
+
[('Ah', 'INTERJ'), ('there', 'ADV'), ('we', 'PRON'), ('are', 'VERB'), (',', 'PUN'), ('.', 'PUN')]
|
25 |
+
|
26 |
+
>>> bnc.tagged_words(c5=True)[:6]
|
27 |
+
[('Ah', 'ITJ'), ('there', 'AV0'), ('we', 'PNP'), ('are', 'VBB'), (',', 'PUN'), ('.', 'PUN')]
|
28 |
+
|
29 |
+
Testing access to the sentences.
|
30 |
+
--------------------------------
|
31 |
+
|
32 |
+
>>> len(bnc.sents())
|
33 |
+
15
|
34 |
+
|
35 |
+
>>> bnc.sents()[0]
|
36 |
+
['Ah', 'there', 'we', 'are', ',', '.']
|
37 |
+
>>> bnc.sents(stem=True)[0]
|
38 |
+
['ah', 'there', 'we', 'be', ',', '.']
|
39 |
+
|
40 |
+
>>> bnc.tagged_sents()[0]
|
41 |
+
[('Ah', 'INTERJ'), ('there', 'ADV'), ('we', 'PRON'), ('are', 'VERB'), (',', 'PUN'), ('.', 'PUN')]
|
42 |
+
>>> bnc.tagged_sents(c5=True)[0]
|
43 |
+
[('Ah', 'ITJ'), ('there', 'AV0'), ('we', 'PNP'), ('are', 'VBB'), (',', 'PUN'), ('.', 'PUN')]
|
44 |
+
|
45 |
+
A not lazy loader.
|
46 |
+
------------------
|
47 |
+
|
48 |
+
>>> eager = BNCCorpusReader(root=root, fileids=r'FX8.xml', lazy=False)
|
49 |
+
|
50 |
+
>>> len(eager.words())
|
51 |
+
151
|
52 |
+
>>> eager.words(stem=True)[6:17]
|
53 |
+
['right', 'abdominal', 'wound', ',', 'she', 'be', 'a', 'wee', 'bit', 'confuse', '.']
|
54 |
+
|
55 |
+
>>> eager.tagged_words()[6:11]
|
56 |
+
[('Right', 'ADV'), ('abdominal', 'ADJ'), ('wound', 'SUBST'), (',', 'PUN'), ('she', 'PRON')]
|
57 |
+
>>> eager.tagged_words(c5=True)[6:17]
|
58 |
+
[('Right', 'AV0'), ('abdominal', 'AJ0'), ('wound', 'NN1'), (',', 'PUN'), ('she', 'PNP'), ("'s", 'VBZ'), ('a', 'AT0'), ('wee', 'AJ0-NN1'), ('bit', 'NN1'), ('confused', 'VVN-AJ0'), ('.', 'PUN')]
|
59 |
+
>>> len(eager.sents())
|
60 |
+
15
|
llmeval-env/lib/python3.10/site-packages/nltk/test/ccg.doctest
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==============================
|
5 |
+
Combinatory Categorial Grammar
|
6 |
+
==============================
|
7 |
+
|
8 |
+
Relative Clauses
|
9 |
+
----------------
|
10 |
+
|
11 |
+
>>> from nltk.ccg import chart, lexicon
|
12 |
+
|
13 |
+
Construct a lexicon:
|
14 |
+
|
15 |
+
>>> lex = lexicon.fromstring('''
|
16 |
+
... :- S, NP, N, VP
|
17 |
+
...
|
18 |
+
... Det :: NP/N
|
19 |
+
... Pro :: NP
|
20 |
+
... Modal :: S\\NP/VP
|
21 |
+
...
|
22 |
+
... TV :: VP/NP
|
23 |
+
... DTV :: TV/NP
|
24 |
+
...
|
25 |
+
... the => Det
|
26 |
+
...
|
27 |
+
... that => Det
|
28 |
+
... that => NP
|
29 |
+
...
|
30 |
+
... I => Pro
|
31 |
+
... you => Pro
|
32 |
+
... we => Pro
|
33 |
+
...
|
34 |
+
... chef => N
|
35 |
+
... cake => N
|
36 |
+
... children => N
|
37 |
+
... dough => N
|
38 |
+
...
|
39 |
+
... will => Modal
|
40 |
+
... should => Modal
|
41 |
+
... might => Modal
|
42 |
+
... must => Modal
|
43 |
+
...
|
44 |
+
... and => var\\.,var/.,var
|
45 |
+
...
|
46 |
+
... to => VP[to]/VP
|
47 |
+
...
|
48 |
+
... without => (VP\\VP)/VP[ing]
|
49 |
+
...
|
50 |
+
... be => TV
|
51 |
+
... cook => TV
|
52 |
+
... eat => TV
|
53 |
+
...
|
54 |
+
... cooking => VP[ing]/NP
|
55 |
+
...
|
56 |
+
... give => DTV
|
57 |
+
...
|
58 |
+
... is => (S\\NP)/NP
|
59 |
+
... prefer => (S\\NP)/NP
|
60 |
+
...
|
61 |
+
... which => (N\\N)/(S/NP)
|
62 |
+
...
|
63 |
+
... persuade => (VP/VP[to])/NP
|
64 |
+
... ''')
|
65 |
+
|
66 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
67 |
+
>>> for parse in parser.parse("you prefer that cake".split()):
|
68 |
+
... chart.printCCGDerivation(parse)
|
69 |
+
... break
|
70 |
+
...
|
71 |
+
you prefer that cake
|
72 |
+
NP ((S\NP)/NP) (NP/N) N
|
73 |
+
-------------->
|
74 |
+
NP
|
75 |
+
--------------------------->
|
76 |
+
(S\NP)
|
77 |
+
--------------------------------<
|
78 |
+
S
|
79 |
+
|
80 |
+
>>> for parse in parser.parse("that is the cake which you prefer".split()):
|
81 |
+
... chart.printCCGDerivation(parse)
|
82 |
+
... break
|
83 |
+
...
|
84 |
+
that is the cake which you prefer
|
85 |
+
NP ((S\NP)/NP) (NP/N) N ((N\N)/(S/NP)) NP ((S\NP)/NP)
|
86 |
+
----->T
|
87 |
+
(S/(S\NP))
|
88 |
+
------------------>B
|
89 |
+
(S/NP)
|
90 |
+
---------------------------------->
|
91 |
+
(N\N)
|
92 |
+
----------------------------------------<
|
93 |
+
N
|
94 |
+
------------------------------------------------>
|
95 |
+
NP
|
96 |
+
------------------------------------------------------------->
|
97 |
+
(S\NP)
|
98 |
+
-------------------------------------------------------------------<
|
99 |
+
S
|
100 |
+
|
101 |
+
|
102 |
+
Some other sentences to try:
|
103 |
+
"that is the cake which we will persuade the chef to cook"
|
104 |
+
"that is the cake which we will persuade the chef to give the children"
|
105 |
+
|
106 |
+
>>> sent = "that is the dough which you will eat without cooking".split()
|
107 |
+
>>> nosub_parser = chart.CCGChartParser(lex, chart.ApplicationRuleSet +
|
108 |
+
... chart.CompositionRuleSet + chart.TypeRaiseRuleSet)
|
109 |
+
|
110 |
+
Without Substitution (no output)
|
111 |
+
|
112 |
+
>>> for parse in nosub_parser.parse(sent):
|
113 |
+
... chart.printCCGDerivation(parse)
|
114 |
+
|
115 |
+
With Substitution:
|
116 |
+
|
117 |
+
>>> for parse in parser.parse(sent):
|
118 |
+
... chart.printCCGDerivation(parse)
|
119 |
+
... break
|
120 |
+
...
|
121 |
+
that is the dough which you will eat without cooking
|
122 |
+
NP ((S\NP)/NP) (NP/N) N ((N\N)/(S/NP)) NP ((S\NP)/VP) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
|
123 |
+
----->T
|
124 |
+
(S/(S\NP))
|
125 |
+
------------------------------------->B
|
126 |
+
((VP\VP)/NP)
|
127 |
+
----------------------------------------------<Sx
|
128 |
+
(VP/NP)
|
129 |
+
----------------------------------------------------------->B
|
130 |
+
((S\NP)/NP)
|
131 |
+
---------------------------------------------------------------->B
|
132 |
+
(S/NP)
|
133 |
+
-------------------------------------------------------------------------------->
|
134 |
+
(N\N)
|
135 |
+
---------------------------------------------------------------------------------------<
|
136 |
+
N
|
137 |
+
----------------------------------------------------------------------------------------------->
|
138 |
+
NP
|
139 |
+
------------------------------------------------------------------------------------------------------------>
|
140 |
+
(S\NP)
|
141 |
+
------------------------------------------------------------------------------------------------------------------<
|
142 |
+
S
|
143 |
+
|
144 |
+
|
145 |
+
Conjunction
|
146 |
+
-----------
|
147 |
+
|
148 |
+
>>> from nltk.ccg.chart import CCGChartParser, ApplicationRuleSet, CompositionRuleSet
|
149 |
+
>>> from nltk.ccg.chart import SubstitutionRuleSet, TypeRaiseRuleSet, printCCGDerivation
|
150 |
+
>>> from nltk.ccg import lexicon
|
151 |
+
|
152 |
+
Lexicons for the tests:
|
153 |
+
|
154 |
+
>>> test1_lex = '''
|
155 |
+
... :- S,N,NP,VP
|
156 |
+
... I => NP
|
157 |
+
... you => NP
|
158 |
+
... will => S\\NP/VP
|
159 |
+
... cook => VP/NP
|
160 |
+
... which => (N\\N)/(S/NP)
|
161 |
+
... and => var\\.,var/.,var
|
162 |
+
... might => S\\NP/VP
|
163 |
+
... eat => VP/NP
|
164 |
+
... the => NP/N
|
165 |
+
... mushrooms => N
|
166 |
+
... parsnips => N'''
|
167 |
+
>>> test2_lex = '''
|
168 |
+
... :- N, S, NP, VP
|
169 |
+
... articles => N
|
170 |
+
... the => NP/N
|
171 |
+
... and => var\\.,var/.,var
|
172 |
+
... which => (N\\N)/(S/NP)
|
173 |
+
... I => NP
|
174 |
+
... anyone => NP
|
175 |
+
... will => (S/VP)\\NP
|
176 |
+
... file => VP/NP
|
177 |
+
... without => (VP\\VP)/VP[ing]
|
178 |
+
... forget => VP/NP
|
179 |
+
... reading => VP[ing]/NP
|
180 |
+
... '''
|
181 |
+
|
182 |
+
Tests handling of conjunctions.
|
183 |
+
Note that while the two derivations are different, they are semantically equivalent.
|
184 |
+
|
185 |
+
>>> lex = lexicon.fromstring(test1_lex)
|
186 |
+
>>> parser = CCGChartParser(lex, ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet)
|
187 |
+
>>> for parse in parser.parse("I will cook and might eat the mushrooms and parsnips".split()):
|
188 |
+
... printCCGDerivation(parse)
|
189 |
+
I will cook and might eat the mushrooms and parsnips
|
190 |
+
NP ((S\NP)/VP) (VP/NP) ((_var0\.,_var0)/.,_var0) ((S\NP)/VP) (VP/NP) (NP/N) N ((_var0\.,_var0)/.,_var0) N
|
191 |
+
---------------------->B
|
192 |
+
((S\NP)/NP)
|
193 |
+
---------------------->B
|
194 |
+
((S\NP)/NP)
|
195 |
+
------------------------------------------------->
|
196 |
+
(((S\NP)/NP)\.,((S\NP)/NP))
|
197 |
+
-----------------------------------------------------------------------<
|
198 |
+
((S\NP)/NP)
|
199 |
+
------------------------------------->
|
200 |
+
(N\.,N)
|
201 |
+
------------------------------------------------<
|
202 |
+
N
|
203 |
+
-------------------------------------------------------->
|
204 |
+
NP
|
205 |
+
------------------------------------------------------------------------------------------------------------------------------->
|
206 |
+
(S\NP)
|
207 |
+
-----------------------------------------------------------------------------------------------------------------------------------<
|
208 |
+
S
|
209 |
+
I will cook and might eat the mushrooms and parsnips
|
210 |
+
NP ((S\NP)/VP) (VP/NP) ((_var0\.,_var0)/.,_var0) ((S\NP)/VP) (VP/NP) (NP/N) N ((_var0\.,_var0)/.,_var0) N
|
211 |
+
---------------------->B
|
212 |
+
((S\NP)/NP)
|
213 |
+
---------------------->B
|
214 |
+
((S\NP)/NP)
|
215 |
+
------------------------------------------------->
|
216 |
+
(((S\NP)/NP)\.,((S\NP)/NP))
|
217 |
+
-----------------------------------------------------------------------<
|
218 |
+
((S\NP)/NP)
|
219 |
+
------------------------------------------------------------------------------->B
|
220 |
+
((S\NP)/N)
|
221 |
+
------------------------------------->
|
222 |
+
(N\.,N)
|
223 |
+
------------------------------------------------<
|
224 |
+
N
|
225 |
+
------------------------------------------------------------------------------------------------------------------------------->
|
226 |
+
(S\NP)
|
227 |
+
-----------------------------------------------------------------------------------------------------------------------------------<
|
228 |
+
S
|
229 |
+
|
230 |
+
|
231 |
+
Tests handling subject extraction.
|
232 |
+
Interesting to point that the two parses are clearly semantically different.
|
233 |
+
|
234 |
+
>>> lex = lexicon.fromstring(test2_lex)
|
235 |
+
>>> parser = CCGChartParser(lex, ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet)
|
236 |
+
>>> for parse in parser.parse("articles which I will file and forget without reading".split()):
|
237 |
+
... printCCGDerivation(parse)
|
238 |
+
articles which I will file and forget without reading
|
239 |
+
N ((N\N)/(S/NP)) NP ((S/VP)\NP) (VP/NP) ((_var0\.,_var0)/.,_var0) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
|
240 |
+
-----------------<
|
241 |
+
(S/VP)
|
242 |
+
------------------------------------->B
|
243 |
+
((VP\VP)/NP)
|
244 |
+
----------------------------------------------<Sx
|
245 |
+
(VP/NP)
|
246 |
+
------------------------------------------------------------------------->
|
247 |
+
((VP/NP)\.,(VP/NP))
|
248 |
+
----------------------------------------------------------------------------------<
|
249 |
+
(VP/NP)
|
250 |
+
--------------------------------------------------------------------------------------------------->B
|
251 |
+
(S/NP)
|
252 |
+
------------------------------------------------------------------------------------------------------------------->
|
253 |
+
(N\N)
|
254 |
+
-----------------------------------------------------------------------------------------------------------------------------<
|
255 |
+
N
|
256 |
+
articles which I will file and forget without reading
|
257 |
+
N ((N\N)/(S/NP)) NP ((S/VP)\NP) (VP/NP) ((_var0\.,_var0)/.,_var0) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
|
258 |
+
-----------------<
|
259 |
+
(S/VP)
|
260 |
+
------------------------------------>
|
261 |
+
((VP/NP)\.,(VP/NP))
|
262 |
+
---------------------------------------------<
|
263 |
+
(VP/NP)
|
264 |
+
------------------------------------->B
|
265 |
+
((VP\VP)/NP)
|
266 |
+
----------------------------------------------------------------------------------<Sx
|
267 |
+
(VP/NP)
|
268 |
+
--------------------------------------------------------------------------------------------------->B
|
269 |
+
(S/NP)
|
270 |
+
------------------------------------------------------------------------------------------------------------------->
|
271 |
+
(N\N)
|
272 |
+
-----------------------------------------------------------------------------------------------------------------------------<
|
273 |
+
N
|
274 |
+
|
275 |
+
|
276 |
+
Unicode support
|
277 |
+
---------------
|
278 |
+
|
279 |
+
Unicode words are supported.
|
280 |
+
|
281 |
+
>>> from nltk.ccg import chart, lexicon
|
282 |
+
|
283 |
+
Lexicons for the tests:
|
284 |
+
|
285 |
+
>>> lex = lexicon.fromstring('''
|
286 |
+
... :- S, N, NP, PP
|
287 |
+
...
|
288 |
+
... AdjI :: N\\N
|
289 |
+
... AdjD :: N/N
|
290 |
+
... AdvD :: S/S
|
291 |
+
... AdvI :: S\\S
|
292 |
+
... Det :: NP/N
|
293 |
+
... PrepNPCompl :: PP/NP
|
294 |
+
... PrepNAdjN :: S\\S/N
|
295 |
+
... PrepNAdjNP :: S\\S/NP
|
296 |
+
... VPNP :: S\\NP/NP
|
297 |
+
... VPPP :: S\\NP/PP
|
298 |
+
... VPser :: S\\NP/AdjI
|
299 |
+
...
|
300 |
+
... auto => N
|
301 |
+
... bebidas => N
|
302 |
+
... cine => N
|
303 |
+
... ley => N
|
304 |
+
... libro => N
|
305 |
+
... ministro => N
|
306 |
+
... panadería => N
|
307 |
+
... presidente => N
|
308 |
+
... super => N
|
309 |
+
...
|
310 |
+
... el => Det
|
311 |
+
... la => Det
|
312 |
+
... las => Det
|
313 |
+
... un => Det
|
314 |
+
...
|
315 |
+
... Ana => NP
|
316 |
+
... Pablo => NP
|
317 |
+
...
|
318 |
+
... y => var\\.,var/.,var
|
319 |
+
...
|
320 |
+
... pero => (S/NP)\\(S/NP)/(S/NP)
|
321 |
+
...
|
322 |
+
... anunció => VPNP
|
323 |
+
... compró => VPNP
|
324 |
+
... cree => S\\NP/S[dep]
|
325 |
+
... desmintió => VPNP
|
326 |
+
... lee => VPNP
|
327 |
+
... fueron => VPPP
|
328 |
+
...
|
329 |
+
... es => VPser
|
330 |
+
...
|
331 |
+
... interesante => AdjD
|
332 |
+
... interesante => AdjI
|
333 |
+
... nueva => AdjD
|
334 |
+
... nueva => AdjI
|
335 |
+
...
|
336 |
+
... a => PrepNPCompl
|
337 |
+
... en => PrepNAdjN
|
338 |
+
... en => PrepNAdjNP
|
339 |
+
...
|
340 |
+
... ayer => AdvI
|
341 |
+
...
|
342 |
+
... que => (NP\\NP)/(S/NP)
|
343 |
+
... que => S[dep]/S
|
344 |
+
... ''')
|
345 |
+
|
346 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
347 |
+
>>> for parse in parser.parse(u"el ministro anunció pero el presidente desmintió la nueva ley".split()):
|
348 |
+
... printCCGDerivation(parse) # doctest: +SKIP
|
349 |
+
... # it fails on python2.7 because of the unicode problem explained in https://github.com/nltk/nltk/pull/1354
|
350 |
+
... break
|
351 |
+
el ministro anunció pero el presidente desmintió la nueva ley
|
352 |
+
(NP/N) N ((S\NP)/NP) (((S/NP)\(S/NP))/(S/NP)) (NP/N) N ((S\NP)/NP) (NP/N) (N/N) N
|
353 |
+
------------------>
|
354 |
+
NP
|
355 |
+
------------------>T
|
356 |
+
(S/(S\NP))
|
357 |
+
-------------------->
|
358 |
+
NP
|
359 |
+
-------------------->T
|
360 |
+
(S/(S\NP))
|
361 |
+
--------------------------------->B
|
362 |
+
(S/NP)
|
363 |
+
----------------------------------------------------------->
|
364 |
+
((S/NP)\(S/NP))
|
365 |
+
------------>
|
366 |
+
N
|
367 |
+
-------------------->
|
368 |
+
NP
|
369 |
+
--------------------<T
|
370 |
+
(S\(S/NP))
|
371 |
+
-------------------------------------------------------------------------------<B
|
372 |
+
(S\(S/NP))
|
373 |
+
--------------------------------------------------------------------------------------------<B
|
374 |
+
(S/NP)
|
375 |
+
-------------------------------------------------------------------------------------------------------------->
|
376 |
+
S
|
llmeval-env/lib/python3.10/site-packages/nltk/test/ccg_semantics.doctest
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==============================================
|
5 |
+
Combinatory Categorial Grammar with semantics
|
6 |
+
==============================================
|
7 |
+
|
8 |
+
-----
|
9 |
+
Chart
|
10 |
+
-----
|
11 |
+
|
12 |
+
|
13 |
+
>>> from nltk.ccg import chart, lexicon
|
14 |
+
>>> from nltk.ccg.chart import printCCGDerivation
|
15 |
+
|
16 |
+
No semantics
|
17 |
+
-------------------
|
18 |
+
|
19 |
+
>>> lex = lexicon.fromstring('''
|
20 |
+
... :- S, NP, N
|
21 |
+
... She => NP
|
22 |
+
... has => (S\\NP)/NP
|
23 |
+
... books => NP
|
24 |
+
... ''',
|
25 |
+
... False)
|
26 |
+
|
27 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
28 |
+
>>> parses = list(parser.parse("She has books".split()))
|
29 |
+
>>> print(str(len(parses)) + " parses")
|
30 |
+
3 parses
|
31 |
+
|
32 |
+
>>> printCCGDerivation(parses[0])
|
33 |
+
She has books
|
34 |
+
NP ((S\NP)/NP) NP
|
35 |
+
-------------------->
|
36 |
+
(S\NP)
|
37 |
+
-------------------------<
|
38 |
+
S
|
39 |
+
|
40 |
+
>>> printCCGDerivation(parses[1])
|
41 |
+
She has books
|
42 |
+
NP ((S\NP)/NP) NP
|
43 |
+
----->T
|
44 |
+
(S/(S\NP))
|
45 |
+
-------------------->
|
46 |
+
(S\NP)
|
47 |
+
------------------------->
|
48 |
+
S
|
49 |
+
|
50 |
+
|
51 |
+
>>> printCCGDerivation(parses[2])
|
52 |
+
She has books
|
53 |
+
NP ((S\NP)/NP) NP
|
54 |
+
----->T
|
55 |
+
(S/(S\NP))
|
56 |
+
------------------>B
|
57 |
+
(S/NP)
|
58 |
+
------------------------->
|
59 |
+
S
|
60 |
+
|
61 |
+
Simple semantics
|
62 |
+
-------------------
|
63 |
+
|
64 |
+
>>> lex = lexicon.fromstring('''
|
65 |
+
... :- S, NP, N
|
66 |
+
... She => NP {she}
|
67 |
+
... has => (S\\NP)/NP {\\x y.have(y, x)}
|
68 |
+
... a => NP/N {\\P.exists z.P(z)}
|
69 |
+
... book => N {book}
|
70 |
+
... ''',
|
71 |
+
... True)
|
72 |
+
|
73 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
74 |
+
>>> parses = list(parser.parse("She has a book".split()))
|
75 |
+
>>> print(str(len(parses)) + " parses")
|
76 |
+
7 parses
|
77 |
+
|
78 |
+
>>> printCCGDerivation(parses[0])
|
79 |
+
She has a book
|
80 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
81 |
+
------------------------------------->
|
82 |
+
NP {exists z.book(z)}
|
83 |
+
------------------------------------------------------------------->
|
84 |
+
(S\NP) {\y.have(y,exists z.book(z))}
|
85 |
+
-----------------------------------------------------------------------------<
|
86 |
+
S {have(she,exists z.book(z))}
|
87 |
+
|
88 |
+
>>> printCCGDerivation(parses[1])
|
89 |
+
She has a book
|
90 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
91 |
+
--------------------------------------------------------->B
|
92 |
+
((S\NP)/N) {\P y.have(y,exists z.P(z))}
|
93 |
+
------------------------------------------------------------------->
|
94 |
+
(S\NP) {\y.have(y,exists z.book(z))}
|
95 |
+
-----------------------------------------------------------------------------<
|
96 |
+
S {have(she,exists z.book(z))}
|
97 |
+
|
98 |
+
>>> printCCGDerivation(parses[2])
|
99 |
+
She has a book
|
100 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
101 |
+
---------->T
|
102 |
+
(S/(S\NP)) {\F.F(she)}
|
103 |
+
------------------------------------->
|
104 |
+
NP {exists z.book(z)}
|
105 |
+
------------------------------------------------------------------->
|
106 |
+
(S\NP) {\y.have(y,exists z.book(z))}
|
107 |
+
----------------------------------------------------------------------------->
|
108 |
+
S {have(she,exists z.book(z))}
|
109 |
+
|
110 |
+
>>> printCCGDerivation(parses[3])
|
111 |
+
She has a book
|
112 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
113 |
+
---------->T
|
114 |
+
(S/(S\NP)) {\F.F(she)}
|
115 |
+
--------------------------------------------------------->B
|
116 |
+
((S\NP)/N) {\P y.have(y,exists z.P(z))}
|
117 |
+
------------------------------------------------------------------->
|
118 |
+
(S\NP) {\y.have(y,exists z.book(z))}
|
119 |
+
----------------------------------------------------------------------------->
|
120 |
+
S {have(she,exists z.book(z))}
|
121 |
+
|
122 |
+
>>> printCCGDerivation(parses[4])
|
123 |
+
She has a book
|
124 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
125 |
+
---------->T
|
126 |
+
(S/(S\NP)) {\F.F(she)}
|
127 |
+
---------------------------------------->B
|
128 |
+
(S/NP) {\x.have(she,x)}
|
129 |
+
------------------------------------->
|
130 |
+
NP {exists z.book(z)}
|
131 |
+
----------------------------------------------------------------------------->
|
132 |
+
S {have(she,exists z.book(z))}
|
133 |
+
|
134 |
+
>>> printCCGDerivation(parses[5])
|
135 |
+
She has a book
|
136 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
137 |
+
---------->T
|
138 |
+
(S/(S\NP)) {\F.F(she)}
|
139 |
+
--------------------------------------------------------->B
|
140 |
+
((S\NP)/N) {\P y.have(y,exists z.P(z))}
|
141 |
+
------------------------------------------------------------------->B
|
142 |
+
(S/N) {\P.have(she,exists z.P(z))}
|
143 |
+
----------------------------------------------------------------------------->
|
144 |
+
S {have(she,exists z.book(z))}
|
145 |
+
|
146 |
+
>>> printCCGDerivation(parses[6])
|
147 |
+
She has a book
|
148 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
|
149 |
+
---------->T
|
150 |
+
(S/(S\NP)) {\F.F(she)}
|
151 |
+
---------------------------------------->B
|
152 |
+
(S/NP) {\x.have(she,x)}
|
153 |
+
------------------------------------------------------------------->B
|
154 |
+
(S/N) {\P.have(she,exists z.P(z))}
|
155 |
+
----------------------------------------------------------------------------->
|
156 |
+
S {have(she,exists z.book(z))}
|
157 |
+
|
158 |
+
Complex semantics
|
159 |
+
-------------------
|
160 |
+
|
161 |
+
>>> lex = lexicon.fromstring('''
|
162 |
+
... :- S, NP, N
|
163 |
+
... She => NP {she}
|
164 |
+
... has => (S\\NP)/NP {\\x y.have(y, x)}
|
165 |
+
... a => ((S\\NP)\\((S\\NP)/NP))/N {\\P R x.(exists z.P(z) & R(z,x))}
|
166 |
+
... book => N {book}
|
167 |
+
... ''',
|
168 |
+
... True)
|
169 |
+
|
170 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
171 |
+
>>> parses = list(parser.parse("She has a book".split()))
|
172 |
+
>>> print(str(len(parses)) + " parses")
|
173 |
+
2 parses
|
174 |
+
|
175 |
+
>>> printCCGDerivation(parses[0])
|
176 |
+
She has a book
|
177 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
|
178 |
+
---------------------------------------------------------------------->
|
179 |
+
((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
|
180 |
+
----------------------------------------------------------------------------------------------------<
|
181 |
+
(S\NP) {\x.(exists z.book(z) & have(x,z))}
|
182 |
+
--------------------------------------------------------------------------------------------------------------<
|
183 |
+
S {(exists z.book(z) & have(she,z))}
|
184 |
+
|
185 |
+
>>> printCCGDerivation(parses[1])
|
186 |
+
She has a book
|
187 |
+
NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
|
188 |
+
---------->T
|
189 |
+
(S/(S\NP)) {\F.F(she)}
|
190 |
+
---------------------------------------------------------------------->
|
191 |
+
((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
|
192 |
+
----------------------------------------------------------------------------------------------------<
|
193 |
+
(S\NP) {\x.(exists z.book(z) & have(x,z))}
|
194 |
+
-------------------------------------------------------------------------------------------------------------->
|
195 |
+
S {(exists z.book(z) & have(she,z))}
|
196 |
+
|
197 |
+
Using conjunctions
|
198 |
+
---------------------
|
199 |
+
|
200 |
+
# TODO: The semantics of "and" should have been more flexible
|
201 |
+
>>> lex = lexicon.fromstring('''
|
202 |
+
... :- S, NP, N
|
203 |
+
... I => NP {I}
|
204 |
+
... cook => (S\\NP)/NP {\\x y.cook(x,y)}
|
205 |
+
... and => var\\.,var/.,var {\\P Q x y.(P(x,y) & Q(x,y))}
|
206 |
+
... eat => (S\\NP)/NP {\\x y.eat(x,y)}
|
207 |
+
... the => NP/N {\\x.the(x)}
|
208 |
+
... bacon => N {bacon}
|
209 |
+
... ''',
|
210 |
+
... True)
|
211 |
+
|
212 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
213 |
+
>>> parses = list(parser.parse("I cook and eat the bacon".split()))
|
214 |
+
>>> print(str(len(parses)) + " parses")
|
215 |
+
7 parses
|
216 |
+
|
217 |
+
>>> printCCGDerivation(parses[0])
|
218 |
+
I cook and eat the bacon
|
219 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
220 |
+
------------------------------------------------------------------------------------->
|
221 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
222 |
+
-------------------------------------------------------------------------------------------------------------------<
|
223 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
224 |
+
------------------------------->
|
225 |
+
NP {the(bacon)}
|
226 |
+
-------------------------------------------------------------------------------------------------------------------------------------------------->
|
227 |
+
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
|
228 |
+
----------------------------------------------------------------------------------------------------------------------------------------------------------<
|
229 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
230 |
+
|
231 |
+
>>> printCCGDerivation(parses[1])
|
232 |
+
I cook and eat the bacon
|
233 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
234 |
+
------------------------------------------------------------------------------------->
|
235 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
236 |
+
-------------------------------------------------------------------------------------------------------------------<
|
237 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
238 |
+
--------------------------------------------------------------------------------------------------------------------------------------->B
|
239 |
+
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
|
240 |
+
-------------------------------------------------------------------------------------------------------------------------------------------------->
|
241 |
+
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
|
242 |
+
----------------------------------------------------------------------------------------------------------------------------------------------------------<
|
243 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
244 |
+
|
245 |
+
>>> printCCGDerivation(parses[2])
|
246 |
+
I cook and eat the bacon
|
247 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
248 |
+
-------->T
|
249 |
+
(S/(S\NP)) {\F.F(I)}
|
250 |
+
------------------------------------------------------------------------------------->
|
251 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
252 |
+
-------------------------------------------------------------------------------------------------------------------<
|
253 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
254 |
+
------------------------------->
|
255 |
+
NP {the(bacon)}
|
256 |
+
-------------------------------------------------------------------------------------------------------------------------------------------------->
|
257 |
+
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
|
258 |
+
---------------------------------------------------------------------------------------------------------------------------------------------------------->
|
259 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
260 |
+
|
261 |
+
>>> printCCGDerivation(parses[3])
|
262 |
+
I cook and eat the bacon
|
263 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
264 |
+
-------->T
|
265 |
+
(S/(S\NP)) {\F.F(I)}
|
266 |
+
------------------------------------------------------------------------------------->
|
267 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
268 |
+
-------------------------------------------------------------------------------------------------------------------<
|
269 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
270 |
+
--------------------------------------------------------------------------------------------------------------------------------------->B
|
271 |
+
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
|
272 |
+
-------------------------------------------------------------------------------------------------------------------------------------------------->
|
273 |
+
(S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
|
274 |
+
---------------------------------------------------------------------------------------------------------------------------------------------------------->
|
275 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
276 |
+
|
277 |
+
>>> printCCGDerivation(parses[4])
|
278 |
+
I cook and eat the bacon
|
279 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
280 |
+
-------->T
|
281 |
+
(S/(S\NP)) {\F.F(I)}
|
282 |
+
------------------------------------------------------------------------------------->
|
283 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
284 |
+
-------------------------------------------------------------------------------------------------------------------<
|
285 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
286 |
+
--------------------------------------------------------------------------------------------------------------------------->B
|
287 |
+
(S/NP) {\x.(eat(x,I) & cook(x,I))}
|
288 |
+
------------------------------->
|
289 |
+
NP {the(bacon)}
|
290 |
+
---------------------------------------------------------------------------------------------------------------------------------------------------------->
|
291 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
292 |
+
|
293 |
+
>>> printCCGDerivation(parses[5])
|
294 |
+
I cook and eat the bacon
|
295 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
296 |
+
-------->T
|
297 |
+
(S/(S\NP)) {\F.F(I)}
|
298 |
+
------------------------------------------------------------------------------------->
|
299 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
300 |
+
-------------------------------------------------------------------------------------------------------------------<
|
301 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
302 |
+
--------------------------------------------------------------------------------------------------------------------------------------->B
|
303 |
+
((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
|
304 |
+
----------------------------------------------------------------------------------------------------------------------------------------------->B
|
305 |
+
(S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
|
306 |
+
---------------------------------------------------------------------------------------------------------------------------------------------------------->
|
307 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
308 |
+
|
309 |
+
>>> printCCGDerivation(parses[6])
|
310 |
+
I cook and eat the bacon
|
311 |
+
NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
|
312 |
+
-------->T
|
313 |
+
(S/(S\NP)) {\F.F(I)}
|
314 |
+
------------------------------------------------------------------------------------->
|
315 |
+
(((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
|
316 |
+
-------------------------------------------------------------------------------------------------------------------<
|
317 |
+
((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
|
318 |
+
--------------------------------------------------------------------------------------------------------------------------->B
|
319 |
+
(S/NP) {\x.(eat(x,I) & cook(x,I))}
|
320 |
+
----------------------------------------------------------------------------------------------------------------------------------------------->B
|
321 |
+
(S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
|
322 |
+
---------------------------------------------------------------------------------------------------------------------------------------------------------->
|
323 |
+
S {(eat(the(bacon),I) & cook(the(bacon),I))}
|
324 |
+
|
325 |
+
Tests from published papers
|
326 |
+
------------------------------
|
327 |
+
|
328 |
+
An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
|
329 |
+
|
330 |
+
>>> lex = lexicon.fromstring('''
|
331 |
+
... :- S, NP
|
332 |
+
... I => NP {I}
|
333 |
+
... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
|
334 |
+
... them => NP {them}
|
335 |
+
... money => NP {money}
|
336 |
+
... ''',
|
337 |
+
... True)
|
338 |
+
|
339 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
340 |
+
>>> parses = list(parser.parse("I give them money".split()))
|
341 |
+
>>> print(str(len(parses)) + " parses")
|
342 |
+
3 parses
|
343 |
+
|
344 |
+
>>> printCCGDerivation(parses[0])
|
345 |
+
I give them money
|
346 |
+
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
|
347 |
+
-------------------------------------------------->
|
348 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
349 |
+
-------------------------------------------------------------->
|
350 |
+
(S\NP) {\z.give(money,them,z)}
|
351 |
+
----------------------------------------------------------------------<
|
352 |
+
S {give(money,them,I)}
|
353 |
+
|
354 |
+
>>> printCCGDerivation(parses[1])
|
355 |
+
I give them money
|
356 |
+
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
|
357 |
+
-------->T
|
358 |
+
(S/(S\NP)) {\F.F(I)}
|
359 |
+
-------------------------------------------------->
|
360 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
361 |
+
-------------------------------------------------------------->
|
362 |
+
(S\NP) {\z.give(money,them,z)}
|
363 |
+
---------------------------------------------------------------------->
|
364 |
+
S {give(money,them,I)}
|
365 |
+
|
366 |
+
|
367 |
+
>>> printCCGDerivation(parses[2])
|
368 |
+
I give them money
|
369 |
+
NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
|
370 |
+
-------->T
|
371 |
+
(S/(S\NP)) {\F.F(I)}
|
372 |
+
-------------------------------------------------->
|
373 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
374 |
+
---------------------------------------------------------->B
|
375 |
+
(S/NP) {\y.give(y,them,I)}
|
376 |
+
---------------------------------------------------------------------->
|
377 |
+
S {give(money,them,I)}
|
378 |
+
|
379 |
+
|
380 |
+
An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
|
381 |
+
|
382 |
+
>>> lex = lexicon.fromstring('''
|
383 |
+
... :- N, NP, S
|
384 |
+
... money => N {money}
|
385 |
+
... that => (N\\N)/(S/NP) {\\P Q x.(P(x) & Q(x))}
|
386 |
+
... I => NP {I}
|
387 |
+
... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
|
388 |
+
... them => NP {them}
|
389 |
+
... ''',
|
390 |
+
... True)
|
391 |
+
|
392 |
+
>>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
|
393 |
+
>>> parses = list(parser.parse("money that I give them".split()))
|
394 |
+
>>> print(str(len(parses)) + " parses")
|
395 |
+
3 parses
|
396 |
+
|
397 |
+
>>> printCCGDerivation(parses[0])
|
398 |
+
money that I give them
|
399 |
+
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
|
400 |
+
-------->T
|
401 |
+
(S/(S\NP)) {\F.F(I)}
|
402 |
+
-------------------------------------------------->
|
403 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
404 |
+
---------------------------------------------------------->B
|
405 |
+
(S/NP) {\y.give(y,them,I)}
|
406 |
+
------------------------------------------------------------------------------------------------->
|
407 |
+
(N\N) {\Q x.(give(x,them,I) & Q(x))}
|
408 |
+
------------------------------------------------------------------------------------------------------------<
|
409 |
+
N {\x.(give(x,them,I) & money(x))}
|
410 |
+
|
411 |
+
>>> printCCGDerivation(parses[1])
|
412 |
+
money that I give them
|
413 |
+
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
|
414 |
+
----------->T
|
415 |
+
(N/(N\N)) {\F.F(money)}
|
416 |
+
-------->T
|
417 |
+
(S/(S\NP)) {\F.F(I)}
|
418 |
+
-------------------------------------------------->
|
419 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
420 |
+
---------------------------------------------------------->B
|
421 |
+
(S/NP) {\y.give(y,them,I)}
|
422 |
+
------------------------------------------------------------------------------------------------->
|
423 |
+
(N\N) {\Q x.(give(x,them,I) & Q(x))}
|
424 |
+
------------------------------------------------------------------------------------------------------------>
|
425 |
+
N {\x.(give(x,them,I) & money(x))}
|
426 |
+
|
427 |
+
>>> printCCGDerivation(parses[2])
|
428 |
+
money that I give them
|
429 |
+
N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
|
430 |
+
----------->T
|
431 |
+
(N/(N\N)) {\F.F(money)}
|
432 |
+
-------------------------------------------------->B
|
433 |
+
(N/(S/NP)) {\P x.(P(x) & money(x))}
|
434 |
+
-------->T
|
435 |
+
(S/(S\NP)) {\F.F(I)}
|
436 |
+
-------------------------------------------------->
|
437 |
+
((S\NP)/NP) {\y z.give(y,them,z)}
|
438 |
+
---------------------------------------------------------->B
|
439 |
+
(S/NP) {\y.give(y,them,I)}
|
440 |
+
------------------------------------------------------------------------------------------------------------>
|
441 |
+
N {\x.(give(x,them,I) & money(x))}
|
442 |
+
|
443 |
+
|
444 |
+
-------
|
445 |
+
Lexicon
|
446 |
+
-------
|
447 |
+
|
448 |
+
>>> from nltk.ccg import lexicon
|
449 |
+
|
450 |
+
Parse lexicon with semantics
|
451 |
+
|
452 |
+
>>> print(str(lexicon.fromstring(
|
453 |
+
... '''
|
454 |
+
... :- S,NP
|
455 |
+
...
|
456 |
+
... IntransVsg :: S\\NP[sg]
|
457 |
+
...
|
458 |
+
... sleeps => IntransVsg {\\x.sleep(x)}
|
459 |
+
... eats => S\\NP[sg]/NP {\\x y.eat(x,y)}
|
460 |
+
...
|
461 |
+
... and => var\\var/var {\\x y.x & y}
|
462 |
+
... ''',
|
463 |
+
... True
|
464 |
+
... )))
|
465 |
+
and => ((_var0\_var0)/_var0) {(\x y.x & y)}
|
466 |
+
eats => ((S\NP['sg'])/NP) {\x y.eat(x,y)}
|
467 |
+
sleeps => (S\NP['sg']) {\x.sleep(x)}
|
468 |
+
|
469 |
+
Parse lexicon without semantics
|
470 |
+
|
471 |
+
>>> print(str(lexicon.fromstring(
|
472 |
+
... '''
|
473 |
+
... :- S,NP
|
474 |
+
...
|
475 |
+
... IntransVsg :: S\\NP[sg]
|
476 |
+
...
|
477 |
+
... sleeps => IntransVsg
|
478 |
+
... eats => S\\NP[sg]/NP {sem=\\x y.eat(x,y)}
|
479 |
+
...
|
480 |
+
... and => var\\var/var
|
481 |
+
... ''',
|
482 |
+
... False
|
483 |
+
... )))
|
484 |
+
and => ((_var0\_var0)/_var0)
|
485 |
+
eats => ((S\NP['sg'])/NP)
|
486 |
+
sleeps => (S\NP['sg'])
|
487 |
+
|
488 |
+
Semantics are missing
|
489 |
+
|
490 |
+
>>> print(str(lexicon.fromstring(
|
491 |
+
... '''
|
492 |
+
... :- S,NP
|
493 |
+
...
|
494 |
+
... eats => S\\NP[sg]/NP
|
495 |
+
... ''',
|
496 |
+
... True
|
497 |
+
... )))
|
498 |
+
Traceback (most recent call last):
|
499 |
+
...
|
500 |
+
AssertionError: eats => S\NP[sg]/NP must contain semantics because include_semantics is set to True
|
501 |
+
|
502 |
+
|
503 |
+
------------------------------------
|
504 |
+
CCG combinator semantics computation
|
505 |
+
------------------------------------
|
506 |
+
|
507 |
+
>>> from nltk.sem.logic import *
|
508 |
+
>>> from nltk.ccg.logic import *
|
509 |
+
|
510 |
+
>>> read_expr = Expression.fromstring
|
511 |
+
|
512 |
+
Compute semantics from function application
|
513 |
+
|
514 |
+
>>> print(str(compute_function_semantics(read_expr(r'\x.P(x)'), read_expr(r'book'))))
|
515 |
+
P(book)
|
516 |
+
|
517 |
+
>>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'read'))))
|
518 |
+
read(book)
|
519 |
+
|
520 |
+
>>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'\x.read(x)'))))
|
521 |
+
read(book)
|
522 |
+
|
523 |
+
Compute semantics from composition
|
524 |
+
|
525 |
+
>>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'\x.Q(x)'))))
|
526 |
+
\x.P(Q(x))
|
527 |
+
|
528 |
+
>>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
|
529 |
+
Traceback (most recent call last):
|
530 |
+
...
|
531 |
+
AssertionError: `read` must be a lambda expression
|
532 |
+
|
533 |
+
Compute semantics from substitution
|
534 |
+
|
535 |
+
>>> print(str(compute_substitution_semantics(read_expr(r'\x y.P(x,y)'), read_expr(r'\x.Q(x)'))))
|
536 |
+
\x.P(x,Q(x))
|
537 |
+
|
538 |
+
>>> print(str(compute_substitution_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
|
539 |
+
Traceback (most recent call last):
|
540 |
+
...
|
541 |
+
AssertionError: `\x.P(x)` must be a lambda expression with 2 arguments
|
542 |
+
|
543 |
+
Compute type-raise semantics
|
544 |
+
|
545 |
+
>>> print(str(compute_type_raised_semantics(read_expr(r'\x.P(x)'))))
|
546 |
+
\F x.F(P(x))
|
547 |
+
|
548 |
+
>>> print(str(compute_type_raised_semantics(read_expr(r'\x.F(x)'))))
|
549 |
+
\F1 x.F1(F(x))
|
550 |
+
|
551 |
+
>>> print(str(compute_type_raised_semantics(read_expr(r'\x y z.P(x,y,z)'))))
|
552 |
+
\F x y z.F(P(x,y,z))
|
llmeval-env/lib/python3.10/site-packages/nltk/test/chat80.doctest
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=======
|
5 |
+
Chat-80
|
6 |
+
=======
|
7 |
+
|
8 |
+
Chat-80 was a natural language system which allowed the user to
|
9 |
+
interrogate a Prolog knowledge base in the domain of world
|
10 |
+
geography. It was developed in the early '80s by Warren and Pereira; see
|
11 |
+
`<https://aclanthology.org/J82-3002.pdf>`_ for a description and
|
12 |
+
`<http://www.cis.upenn.edu/~pereira/oldies.html>`_ for the source
|
13 |
+
files.
|
14 |
+
|
15 |
+
The ``chat80`` module contains functions to extract data from the Chat-80
|
16 |
+
relation files ('the world database'), and convert then into a format
|
17 |
+
that can be incorporated in the FOL models of
|
18 |
+
``nltk.sem.evaluate``. The code assumes that the Prolog
|
19 |
+
input files are available in the NLTK corpora directory.
|
20 |
+
|
21 |
+
The Chat-80 World Database consists of the following files::
|
22 |
+
|
23 |
+
world0.pl
|
24 |
+
rivers.pl
|
25 |
+
cities.pl
|
26 |
+
countries.pl
|
27 |
+
contain.pl
|
28 |
+
borders.pl
|
29 |
+
|
30 |
+
This module uses a slightly modified version of ``world0.pl``, in which
|
31 |
+
a set of Prolog rules have been omitted. The modified file is named
|
32 |
+
``world1.pl``. Currently, the file ``rivers.pl`` is not read in, since
|
33 |
+
it uses a list rather than a string in the second field.
|
34 |
+
|
35 |
+
Reading Chat-80 Files
|
36 |
+
=====================
|
37 |
+
|
38 |
+
Chat-80 relations are like tables in a relational database. The
|
39 |
+
relation acts as the name of the table; the first argument acts as the
|
40 |
+
'primary key'; and subsequent arguments are further fields in the
|
41 |
+
table. In general, the name of the table provides a label for a unary
|
42 |
+
predicate whose extension is all the primary keys. For example,
|
43 |
+
relations in ``cities.pl`` are of the following form::
|
44 |
+
|
45 |
+
'city(athens,greece,1368).'
|
46 |
+
|
47 |
+
Here, ``'athens'`` is the key, and will be mapped to a member of the
|
48 |
+
unary predicate *city*.
|
49 |
+
|
50 |
+
By analogy with NLTK corpora, ``chat80`` defines a number of 'items'
|
51 |
+
which correspond to the relations.
|
52 |
+
|
53 |
+
>>> from nltk.sem import chat80
|
54 |
+
>>> print(chat80.items)
|
55 |
+
('borders', 'circle_of_lat', 'circle_of_long', 'city', ...)
|
56 |
+
|
57 |
+
The fields in the table are mapped to binary predicates. The first
|
58 |
+
argument of the predicate is the primary key, while the second
|
59 |
+
argument is the data in the relevant field. Thus, in the above
|
60 |
+
example, the third field is mapped to the binary predicate
|
61 |
+
*population_of*, whose extension is a set of pairs such as
|
62 |
+
``'(athens, 1368)'``.
|
63 |
+
|
64 |
+
An exception to this general framework is required by the relations in
|
65 |
+
the files ``borders.pl`` and ``contains.pl``. These contain facts of the
|
66 |
+
following form::
|
67 |
+
|
68 |
+
'borders(albania,greece).'
|
69 |
+
|
70 |
+
'contains0(africa,central_africa).'
|
71 |
+
|
72 |
+
We do not want to form a unary concept out the element in
|
73 |
+
the first field of these records, and we want the label of the binary
|
74 |
+
relation just to be ``'border'``/``'contain'`` respectively.
|
75 |
+
|
76 |
+
In order to drive the extraction process, we use 'relation metadata bundles'
|
77 |
+
which are Python dictionaries such as the following::
|
78 |
+
|
79 |
+
city = {'label': 'city',
|
80 |
+
'closures': [],
|
81 |
+
'schema': ['city', 'country', 'population'],
|
82 |
+
'filename': 'cities.pl'}
|
83 |
+
|
84 |
+
According to this, the file ``city['filename']`` contains a list of
|
85 |
+
relational tuples (or more accurately, the corresponding strings in
|
86 |
+
Prolog form) whose predicate symbol is ``city['label']`` and whose
|
87 |
+
relational schema is ``city['schema']``. The notion of a ``closure`` is
|
88 |
+
discussed in the next section.
|
89 |
+
|
90 |
+
Concepts
|
91 |
+
========
|
92 |
+
In order to encapsulate the results of the extraction, a class of
|
93 |
+
``Concept``\ s is introduced. A ``Concept`` object has a number of
|
94 |
+
attributes, in particular a ``prefLabel``, an arity and ``extension``.
|
95 |
+
|
96 |
+
>>> c1 = chat80.Concept('dog', arity=1, extension=set(['d1', 'd2']))
|
97 |
+
>>> print(c1)
|
98 |
+
Label = 'dog'
|
99 |
+
Arity = 1
|
100 |
+
Extension = ['d1', 'd2']
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
The ``extension`` attribute makes it easier to inspect the output of
|
105 |
+
the extraction.
|
106 |
+
|
107 |
+
>>> schema = ['city', 'country', 'population']
|
108 |
+
>>> concepts = chat80.clause2concepts('cities.pl', 'city', schema)
|
109 |
+
>>> concepts
|
110 |
+
[Concept('city'), Concept('country_of'), Concept('population_of')]
|
111 |
+
>>> for c in concepts:
|
112 |
+
... print("%s:\n\t%s" % (c.prefLabel, c.extension[:4]))
|
113 |
+
city:
|
114 |
+
['athens', 'bangkok', 'barcelona', 'berlin']
|
115 |
+
country_of:
|
116 |
+
[('athens', 'greece'), ('bangkok', 'thailand'), ('barcelona', 'spain'), ('berlin', 'east_germany')]
|
117 |
+
population_of:
|
118 |
+
[('athens', '1368'), ('bangkok', '1178'), ('barcelona', '1280'), ('berlin', '3481')]
|
119 |
+
|
120 |
+
In addition, the ``extension`` can be further
|
121 |
+
processed: in the case of the ``'border'`` relation, we check that the
|
122 |
+
relation is **symmetric**, and in the case of the ``'contain'``
|
123 |
+
relation, we carry out the **transitive closure**. The closure
|
124 |
+
properties associated with a concept is indicated in the relation
|
125 |
+
metadata, as indicated earlier.
|
126 |
+
|
127 |
+
>>> borders = set([('a1', 'a2'), ('a2', 'a3')])
|
128 |
+
>>> c2 = chat80.Concept('borders', arity=2, extension=borders)
|
129 |
+
>>> print(c2)
|
130 |
+
Label = 'borders'
|
131 |
+
Arity = 2
|
132 |
+
Extension = [('a1', 'a2'), ('a2', 'a3')]
|
133 |
+
>>> c3 = chat80.Concept('borders', arity=2, closures=['symmetric'], extension=borders)
|
134 |
+
>>> c3.close()
|
135 |
+
>>> print(c3)
|
136 |
+
Label = 'borders'
|
137 |
+
Arity = 2
|
138 |
+
Extension = [('a1', 'a2'), ('a2', 'a1'), ('a2', 'a3'), ('a3', 'a2')]
|
139 |
+
|
140 |
+
The ``extension`` of a ``Concept`` object is then incorporated into a
|
141 |
+
``Valuation`` object.
|
142 |
+
|
143 |
+
Persistence
|
144 |
+
===========
|
145 |
+
The functions ``val_dump`` and ``val_load`` are provided to allow a
|
146 |
+
valuation to be stored in a persistent database and re-loaded, rather
|
147 |
+
than having to be re-computed each time.
|
148 |
+
|
149 |
+
Individuals and Lexical Items
|
150 |
+
=============================
|
151 |
+
As well as deriving relations from the Chat-80 data, we also create a
|
152 |
+
set of individual constants, one for each entity in the domain. The
|
153 |
+
individual constants are string-identical to the entities. For
|
154 |
+
example, given a data item such as ``'zloty'``, we add to the valuation
|
155 |
+
a pair ``('zloty', 'zloty')``. In order to parse English sentences that
|
156 |
+
refer to these entities, we also create a lexical item such as the
|
157 |
+
following for each individual constant::
|
158 |
+
|
159 |
+
PropN[num=sg, sem=<\P.(P zloty)>] -> 'Zloty'
|
160 |
+
|
161 |
+
The set of rules is written to the file ``chat_pnames.fcfg`` in the
|
162 |
+
current directory.
|
163 |
+
|
164 |
+
SQL Query
|
165 |
+
=========
|
166 |
+
|
167 |
+
The ``city`` relation is also available in RDB form and can be queried
|
168 |
+
using SQL statements.
|
169 |
+
|
170 |
+
>>> import nltk
|
171 |
+
>>> q = "SELECT City, Population FROM city_table WHERE Country = 'china' and Population > 1000"
|
172 |
+
>>> for answer in chat80.sql_query('corpora/city_database/city.db', q):
|
173 |
+
... print("%-10s %4s" % answer)
|
174 |
+
canton 1496
|
175 |
+
chungking 1100
|
176 |
+
mukden 1551
|
177 |
+
peking 2031
|
178 |
+
shanghai 5407
|
179 |
+
tientsin 1795
|
180 |
+
|
181 |
+
The (deliberately naive) grammar ``sql.fcfg`` translates from English
|
182 |
+
to SQL:
|
183 |
+
|
184 |
+
>>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
|
185 |
+
% start S
|
186 |
+
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
|
187 |
+
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
|
188 |
+
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
|
189 |
+
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
|
190 |
+
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
|
191 |
+
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
|
192 |
+
NP[SEM='Country="greece"'] -> 'Greece'
|
193 |
+
NP[SEM='Country="china"'] -> 'China'
|
194 |
+
Det[SEM='SELECT'] -> 'Which' | 'What'
|
195 |
+
N[SEM='City FROM city_table'] -> 'cities'
|
196 |
+
IV[SEM=''] -> 'are'
|
197 |
+
A[SEM=''] -> 'located'
|
198 |
+
P[SEM=''] -> 'in'
|
199 |
+
|
200 |
+
Given this grammar, we can express, and then execute, queries in English.
|
201 |
+
|
202 |
+
>>> cp = nltk.parse.load_parser('grammars/book_grammars/sql0.fcfg')
|
203 |
+
>>> query = 'What cities are in China'
|
204 |
+
>>> for tree in cp.parse(query.split()):
|
205 |
+
... answer = tree.label()['SEM']
|
206 |
+
... q = " ".join(answer)
|
207 |
+
... print(q)
|
208 |
+
...
|
209 |
+
SELECT City FROM city_table WHERE Country="china"
|
210 |
+
|
211 |
+
>>> rows = chat80.sql_query('corpora/city_database/city.db', q)
|
212 |
+
>>> for r in rows: print("%s" % r, end=' ')
|
213 |
+
canton chungking dairen harbin kowloon mukden peking shanghai sian tientsin
|
214 |
+
|
215 |
+
|
216 |
+
Using Valuations
|
217 |
+
-----------------
|
218 |
+
|
219 |
+
In order to convert such an extension into a valuation, we use the
|
220 |
+
``make_valuation()`` method; setting ``read=True`` creates and returns
|
221 |
+
a new ``Valuation`` object which contains the results.
|
222 |
+
|
223 |
+
>>> val = chat80.make_valuation(concepts, read=True)
|
224 |
+
>>> 'calcutta' in val['city']
|
225 |
+
True
|
226 |
+
>>> [town for (town, country) in val['country_of'] if country == 'india']
|
227 |
+
['bombay', 'calcutta', 'delhi', 'hyderabad', 'madras']
|
228 |
+
>>> dom = val.domain
|
229 |
+
>>> g = nltk.sem.Assignment(dom)
|
230 |
+
>>> m = nltk.sem.Model(dom, val)
|
231 |
+
>>> m.evaluate(r'population_of(jakarta, 533)', g)
|
232 |
+
True
|
llmeval-env/lib/python3.10/site-packages/nltk/test/childes.doctest
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
=======================
|
2 |
+
CHILDES Corpus Readers
|
3 |
+
=======================
|
4 |
+
|
5 |
+
Read the XML version of the CHILDES corpus.
|
6 |
+
|
7 |
+
Setup
|
8 |
+
=====
|
9 |
+
|
10 |
+
>>> from nltk.test.childes_fixt import setup_module
|
11 |
+
>>> setup_module()
|
12 |
+
|
13 |
+
How to use CHILDESCorpusReader
|
14 |
+
==============================
|
15 |
+
|
16 |
+
Read the CHILDESCorpusReader class and read the CHILDES corpus saved in
|
17 |
+
the nltk_data directory.
|
18 |
+
|
19 |
+
>>> import nltk
|
20 |
+
>>> from nltk.corpus.reader import CHILDESCorpusReader
|
21 |
+
>>> corpus_root = nltk.data.find('corpora/childes/data-xml/Eng-USA-MOR/')
|
22 |
+
|
23 |
+
Reading files in the Valian corpus (Valian, 1991).
|
24 |
+
|
25 |
+
>>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
|
26 |
+
>>> valian.fileids()
|
27 |
+
['Valian/01a.xml', 'Valian/01b.xml', 'Valian/02a.xml', 'Valian/02b.xml',...
|
28 |
+
|
29 |
+
Count the number of files
|
30 |
+
|
31 |
+
>>> len(valian.fileids())
|
32 |
+
43
|
33 |
+
|
34 |
+
Printing properties of the corpus files.
|
35 |
+
|
36 |
+
>>> corpus_data = valian.corpus(valian.fileids())
|
37 |
+
>>> print(corpus_data[0]['Lang'])
|
38 |
+
eng
|
39 |
+
>>> for key in sorted(corpus_data[0].keys()):
|
40 |
+
... print(key, ": ", corpus_data[0][key])
|
41 |
+
Corpus : valian
|
42 |
+
Date : 1986-03-04
|
43 |
+
Id : 01a
|
44 |
+
Lang : eng
|
45 |
+
Version : 2.0.1
|
46 |
+
{http://www.w3.org/2001/XMLSchema-instance}schemaLocation : http://www.talkbank.org/ns/talkbank http://talkbank.org/software/talkbank.xsd
|
47 |
+
|
48 |
+
Printing information of participants of the corpus. The most common codes for
|
49 |
+
the participants are 'CHI' (target child), 'MOT' (mother), and 'INV' (investigator).
|
50 |
+
|
51 |
+
>>> corpus_participants = valian.participants(valian.fileids())
|
52 |
+
>>> for this_corpus_participants in corpus_participants[:2]:
|
53 |
+
... for key in sorted(this_corpus_participants.keys()):
|
54 |
+
... dct = this_corpus_participants[key]
|
55 |
+
... print(key, ": ", [(k, dct[k]) for k in sorted(dct.keys())])
|
56 |
+
CHI : [('age', 'P2Y1M3D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
|
57 |
+
INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
|
58 |
+
MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
|
59 |
+
CHI : [('age', 'P2Y1M12D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
|
60 |
+
INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
|
61 |
+
MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
|
62 |
+
|
63 |
+
printing words.
|
64 |
+
|
65 |
+
>>> valian.words('Valian/01a.xml')
|
66 |
+
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
|
67 |
+
|
68 |
+
printing sentences.
|
69 |
+
|
70 |
+
>>> valian.sents('Valian/01a.xml')
|
71 |
+
[['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname',
|
72 |
+
'and', 'it', 'is', 'March', 'fourth', 'I', 'believe', 'and', 'when',
|
73 |
+
'was', "Parent's", 'birthday'], ["Child's"], ['oh', "I'm", 'sorry'],
|
74 |
+
["that's", 'okay'], ...
|
75 |
+
|
76 |
+
You can specify the participants with the argument *speaker*.
|
77 |
+
|
78 |
+
>>> valian.words('Valian/01a.xml',speaker=['INV'])
|
79 |
+
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
|
80 |
+
>>> valian.words('Valian/01a.xml',speaker=['MOT'])
|
81 |
+
["Child's", "that's", 'okay', 'February', 'first', 'nineteen', ...
|
82 |
+
>>> valian.words('Valian/01a.xml',speaker=['CHI'])
|
83 |
+
['tape', 'it', 'up', 'and', 'two', 'tape', 'players', 'have',...
|
84 |
+
|
85 |
+
|
86 |
+
tagged_words() and tagged_sents() return the usual (word,pos) tuple lists.
|
87 |
+
POS tags in the CHILDES are automatically assigned by MOR and POST programs
|
88 |
+
(MacWhinney, 2000).
|
89 |
+
|
90 |
+
>>> valian.tagged_words('Valian/01a.xml')[:30]
|
91 |
+
[('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
|
92 |
+
('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
|
93 |
+
('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
|
94 |
+
('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
|
95 |
+
('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n'), ("Child's", 'n:prop'),
|
96 |
+
('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj'), ("that's", 'pro:dem'),
|
97 |
+
('okay', 'adj'), ('February', 'n:prop'), ('first', 'adj'),
|
98 |
+
('nineteen', 'det:num'), ('eighty', 'det:num'), ('four', 'det:num')]
|
99 |
+
|
100 |
+
>>> valian.tagged_sents('Valian/01a.xml')[:10]
|
101 |
+
[[('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
|
102 |
+
('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
|
103 |
+
('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
|
104 |
+
('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
|
105 |
+
('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n')],
|
106 |
+
[("Child's", 'n:prop')], [('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj')],
|
107 |
+
[("that's", 'pro:dem'), ('okay', 'adj')],
|
108 |
+
[('February', 'n:prop'), ('first', 'adj'), ('nineteen', 'det:num'),
|
109 |
+
('eighty', 'det:num'), ('four', 'det:num')],
|
110 |
+
[('great', 'adj')],
|
111 |
+
[('and', 'coord'), ("she's", 'pro:sub'), ('two', 'det:num'), ('years', 'n'), ('old', 'adj')],
|
112 |
+
[('correct', 'adj')],
|
113 |
+
[('okay', 'co')], [('she', 'pro:sub'), ('just', 'adv:int'), ('turned', 'part'), ('two', 'det:num'),
|
114 |
+
('a', 'det'), ('month', 'n'), ('ago', 'adv')]]
|
115 |
+
|
116 |
+
When the argument *stem* is true, the word stems (e.g., 'is' -> 'be-3PS') are
|
117 |
+
used instead of the original words.
|
118 |
+
|
119 |
+
>>> valian.words('Valian/01a.xml')[:30]
|
120 |
+
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'is', ...
|
121 |
+
>>> valian.words('Valian/01a.xml',stem=True)[:30]
|
122 |
+
['at', 'Parent', 'Lastname', 's', 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'be-3S', ...
|
123 |
+
|
124 |
+
When the argument *replace* is true, the replaced words are used instead of
|
125 |
+
the original words.
|
126 |
+
|
127 |
+
>>> valian.words('Valian/01a.xml',speaker='CHI')[247]
|
128 |
+
'tikteat'
|
129 |
+
>>> valian.words('Valian/01a.xml',speaker='CHI',replace=True)[247]
|
130 |
+
'trick'
|
131 |
+
|
132 |
+
When the argument *relation* is true, the relational relationships in the
|
133 |
+
sentence are returned. See Sagae et al. (2010) for details of the relational
|
134 |
+
structure adopted in the CHILDES.
|
135 |
+
|
136 |
+
>>> valian.words('Valian/01a.xml',relation=True)[:10]
|
137 |
+
[[('at', 'prep', '1|0|ROOT'), ('Parent', 'n', '2|5|VOC'), ('Lastname', 'n', '3|5|MOD'), ('s', 'poss', '4|5|MOD'), ('house', 'n', '5|1|POBJ'), ('with', 'prep', '6|1|JCT'), ('Child', 'n', '7|8|NAME'), ('Lastname', 'n', '8|6|POBJ'), ('and', 'coord', '9|8|COORD'), ('it', 'pro', '10|11|SUBJ'), ('be-3S', 'v', '11|9|COMP'), ('March', 'n', '12|11|PRED'), ('fourth', 'adj', '13|12|MOD'), ('I', 'pro', '15|16|SUBJ'), ('believe', 'v', '16|14|ROOT'), ('and', 'coord', '18|17|ROOT'), ('when', 'adv', '19|20|PRED'), ('be-PAST', 'v', '20|18|COMP'), ('Parent', 'n', '21|23|MOD'), ('s', 'poss', '22|23|MOD'), ('birth', 'n', '23|20|SUBJ')], [('Child', 'n', '1|2|MOD'), ('s', 'poss', '2|0|ROOT')], [('oh', 'co', '1|4|COM'), ('I', 'pro', '3|4|SUBJ'), ('be', 'v', '4|0|ROOT'), ('sorry', 'adj', '5|4|PRED')], [('that', 'pro', '1|2|SUBJ'), ('be', 'v', '2|0|ROOT'), ('okay', 'adj', '3|2|PRED')], [('February', 'n', '1|6|VOC'), ('first', 'adj', '2|6|ENUM'), ('nineteen', 'det', '4|6|ENUM'), ('eighty', 'det', '5|6|ENUM'), ('four', 'det', '6|0|ROOT')], [('great', 'adj', '1|0|ROOT')], [('and', 'coord', '1|0|ROOT'), ('she', 'pro', '2|1|ROOT'), ('be', 'aux', '3|5|AUX'), ('two', 'det', '4|5|QUANT'), ('year-PL', 'n', '5|2|ROOT'), ('old', 'adj', '6|5|MOD')], [('correct', 'adj', '1|0|ROOT')], [('okay', 'co', '1|0|ROOT')], [('she', 'pro', '1|0|ROOT'), ('just', 'adv', '2|3|JCT'), ('turn-PERF', 'part', '3|1|XCOMP'), ('two', 'det', '4|6|QUANT'), ('a', 'det', '5|6|DET'), ('month', 'n', '6|3|OBJ'), ('ago', 'adv', '7|3|JCT')]]
|
138 |
+
|
139 |
+
Printing age. When the argument *month* is true, the age information in
|
140 |
+
the CHILDES format is converted into the number of months.
|
141 |
+
|
142 |
+
>>> valian.age()
|
143 |
+
['P2Y1M3D', 'P2Y1M12D', 'P1Y9M21D', 'P1Y9M28D', 'P2Y1M23D', ...
|
144 |
+
>>> valian.age('Valian/01a.xml')
|
145 |
+
['P2Y1M3D']
|
146 |
+
>>> valian.age('Valian/01a.xml',month=True)
|
147 |
+
[25]
|
148 |
+
|
149 |
+
Printing MLU. The criteria for the MLU computation is broadly based on
|
150 |
+
Brown (1973).
|
151 |
+
|
152 |
+
>>> valian.MLU()
|
153 |
+
[2.3574660633484..., 2.292682926829..., 3.492857142857..., 2.961783439490...,
|
154 |
+
2.0842696629213..., 3.169811320754..., 3.137404580152..., 3.0578034682080...,
|
155 |
+
4.090163934426..., 3.488372093023..., 2.8773584905660..., 3.4792899408284...,
|
156 |
+
4.0111940298507..., 3.456790123456..., 4.487603305785..., 4.007936507936...,
|
157 |
+
5.25, 5.154696132596..., ...]
|
158 |
+
|
159 |
+
>>> valian.MLU('Valian/01a.xml')
|
160 |
+
[2.35746606334...]
|
161 |
+
|
162 |
+
|
163 |
+
Basic stuff
|
164 |
+
==============================
|
165 |
+
|
166 |
+
Count the number of words and sentences of each file.
|
167 |
+
|
168 |
+
>>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
|
169 |
+
>>> for this_file in valian.fileids()[:6]:
|
170 |
+
... print(valian.corpus(this_file)[0]['Corpus'], valian.corpus(this_file)[0]['Id'])
|
171 |
+
... print("num of words: %i" % len(valian.words(this_file)))
|
172 |
+
... print("num of sents: %i" % len(valian.sents(this_file)))
|
173 |
+
valian 01a
|
174 |
+
num of words: 3606
|
175 |
+
num of sents: 1027
|
176 |
+
valian 01b
|
177 |
+
num of words: 4376
|
178 |
+
num of sents: 1274
|
179 |
+
valian 02a
|
180 |
+
num of words: 2673
|
181 |
+
num of sents: 801
|
182 |
+
valian 02b
|
183 |
+
num of words: 5020
|
184 |
+
num of sents: 1583
|
185 |
+
valian 03a
|
186 |
+
num of words: 2743
|
187 |
+
num of sents: 988
|
188 |
+
valian 03b
|
189 |
+
num of words: 4409
|
190 |
+
num of sents: 1397
|
llmeval-env/lib/python3.10/site-packages/nltk/test/childes_fixt.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def setup_module():
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import nltk.data
|
5 |
+
|
6 |
+
try:
|
7 |
+
nltk.data.find("corpora/childes/data-xml/Eng-USA-MOR/")
|
8 |
+
except LookupError as e:
|
9 |
+
pytest.skip(
|
10 |
+
"The CHILDES corpus is not found. "
|
11 |
+
"It should be manually downloaded and saved/unpacked "
|
12 |
+
"to [NLTK_Data_Dir]/corpora/childes/"
|
13 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/test/chunk.doctest
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==========
|
5 |
+
Chunking
|
6 |
+
==========
|
7 |
+
|
8 |
+
>>> from nltk.chunk import *
|
9 |
+
>>> from nltk.chunk.util import *
|
10 |
+
>>> from nltk.chunk.regexp import *
|
11 |
+
>>> from nltk import Tree
|
12 |
+
|
13 |
+
>>> tagged_text = "[ The/DT cat/NN ] sat/VBD on/IN [ the/DT mat/NN ] [ the/DT dog/NN ] chewed/VBD ./."
|
14 |
+
>>> gold_chunked_text = tagstr2tree(tagged_text)
|
15 |
+
>>> unchunked_text = gold_chunked_text.flatten()
|
16 |
+
|
17 |
+
Chunking uses a special regexp syntax for rules that delimit the chunks. These
|
18 |
+
rules must be converted to 'regular' regular expressions before a sentence can
|
19 |
+
be chunked.
|
20 |
+
|
21 |
+
>>> tag_pattern = "<DT>?<JJ>*<NN.*>"
|
22 |
+
>>> regexp_pattern = tag_pattern2re_pattern(tag_pattern)
|
23 |
+
>>> regexp_pattern
|
24 |
+
'(<(DT)>)?(<(JJ)>)*(<(NN[^\\{\\}<>]*)>)'
|
25 |
+
|
26 |
+
Construct some new chunking rules.
|
27 |
+
|
28 |
+
>>> chunk_rule = ChunkRule(r"<.*>+", "Chunk everything")
|
29 |
+
>>> strip_rule = StripRule(r"<VBD|IN|\.>", "Strip on verbs/prepositions")
|
30 |
+
>>> split_rule = SplitRule("<DT><NN>", "<DT><NN>",
|
31 |
+
... "Split successive determiner/noun pairs")
|
32 |
+
|
33 |
+
|
34 |
+
Create and score a series of chunk parsers, successively more complex.
|
35 |
+
|
36 |
+
>>> chunk_parser = RegexpChunkParser([chunk_rule], chunk_label='NP')
|
37 |
+
>>> chunked_text = chunk_parser.parse(unchunked_text)
|
38 |
+
>>> print(chunked_text)
|
39 |
+
(S
|
40 |
+
(NP
|
41 |
+
The/DT
|
42 |
+
cat/NN
|
43 |
+
sat/VBD
|
44 |
+
on/IN
|
45 |
+
the/DT
|
46 |
+
mat/NN
|
47 |
+
the/DT
|
48 |
+
dog/NN
|
49 |
+
chewed/VBD
|
50 |
+
./.))
|
51 |
+
|
52 |
+
>>> chunkscore = ChunkScore()
|
53 |
+
>>> chunkscore.score(gold_chunked_text, chunked_text)
|
54 |
+
>>> print(chunkscore.precision())
|
55 |
+
0.0
|
56 |
+
|
57 |
+
>>> print(chunkscore.recall())
|
58 |
+
0.0
|
59 |
+
|
60 |
+
>>> print(chunkscore.f_measure())
|
61 |
+
0
|
62 |
+
|
63 |
+
>>> for chunk in sorted(chunkscore.missed()): print(chunk)
|
64 |
+
(NP The/DT cat/NN)
|
65 |
+
(NP the/DT dog/NN)
|
66 |
+
(NP the/DT mat/NN)
|
67 |
+
|
68 |
+
>>> for chunk in chunkscore.incorrect(): print(chunk)
|
69 |
+
(NP
|
70 |
+
The/DT
|
71 |
+
cat/NN
|
72 |
+
sat/VBD
|
73 |
+
on/IN
|
74 |
+
the/DT
|
75 |
+
mat/NN
|
76 |
+
the/DT
|
77 |
+
dog/NN
|
78 |
+
chewed/VBD
|
79 |
+
./.)
|
80 |
+
|
81 |
+
>>> chunk_parser = RegexpChunkParser([chunk_rule, strip_rule],
|
82 |
+
... chunk_label='NP')
|
83 |
+
>>> chunked_text = chunk_parser.parse(unchunked_text)
|
84 |
+
>>> print(chunked_text)
|
85 |
+
(S
|
86 |
+
(NP The/DT cat/NN)
|
87 |
+
sat/VBD
|
88 |
+
on/IN
|
89 |
+
(NP the/DT mat/NN the/DT dog/NN)
|
90 |
+
chewed/VBD
|
91 |
+
./.)
|
92 |
+
>>> assert chunked_text == chunk_parser.parse(list(unchunked_text))
|
93 |
+
|
94 |
+
>>> chunkscore = ChunkScore()
|
95 |
+
>>> chunkscore.score(gold_chunked_text, chunked_text)
|
96 |
+
>>> chunkscore.precision()
|
97 |
+
0.5
|
98 |
+
|
99 |
+
>>> print(chunkscore.recall())
|
100 |
+
0.33333333...
|
101 |
+
|
102 |
+
>>> print(chunkscore.f_measure())
|
103 |
+
0.4
|
104 |
+
|
105 |
+
>>> for chunk in sorted(chunkscore.missed()): print(chunk)
|
106 |
+
(NP the/DT dog/NN)
|
107 |
+
(NP the/DT mat/NN)
|
108 |
+
|
109 |
+
>>> for chunk in chunkscore.incorrect(): print(chunk)
|
110 |
+
(NP the/DT mat/NN the/DT dog/NN)
|
111 |
+
|
112 |
+
>>> chunk_parser = RegexpChunkParser([chunk_rule, strip_rule, split_rule],
|
113 |
+
... chunk_label='NP')
|
114 |
+
>>> chunked_text = chunk_parser.parse(unchunked_text, trace=True)
|
115 |
+
# Input:
|
116 |
+
<DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>
|
117 |
+
# Chunk everything:
|
118 |
+
{<DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>}
|
119 |
+
# Strip on verbs/prepositions:
|
120 |
+
{<DT> <NN>} <VBD> <IN> {<DT> <NN> <DT> <NN>} <VBD> <.>
|
121 |
+
# Split successive determiner/noun pairs:
|
122 |
+
{<DT> <NN>} <VBD> <IN> {<DT> <NN>}{<DT> <NN>} <VBD> <.>
|
123 |
+
>>> print(chunked_text)
|
124 |
+
(S
|
125 |
+
(NP The/DT cat/NN)
|
126 |
+
sat/VBD
|
127 |
+
on/IN
|
128 |
+
(NP the/DT mat/NN)
|
129 |
+
(NP the/DT dog/NN)
|
130 |
+
chewed/VBD
|
131 |
+
./.)
|
132 |
+
|
133 |
+
>>> chunkscore = ChunkScore()
|
134 |
+
>>> chunkscore.score(gold_chunked_text, chunked_text)
|
135 |
+
>>> chunkscore.precision()
|
136 |
+
1.0
|
137 |
+
|
138 |
+
>>> chunkscore.recall()
|
139 |
+
1.0
|
140 |
+
|
141 |
+
>>> chunkscore.f_measure()
|
142 |
+
1.0
|
143 |
+
|
144 |
+
>>> chunkscore.missed()
|
145 |
+
[]
|
146 |
+
|
147 |
+
>>> chunkscore.incorrect()
|
148 |
+
[]
|
149 |
+
|
150 |
+
>>> chunk_parser.rules()
|
151 |
+
[<ChunkRule: '<.*>+'>, <StripRule: '<VBD|IN|\\.>'>,
|
152 |
+
<SplitRule: '<DT><NN>', '<DT><NN>'>]
|
153 |
+
|
154 |
+
Printing parsers:
|
155 |
+
|
156 |
+
>>> print(repr(chunk_parser))
|
157 |
+
<RegexpChunkParser with 3 rules>
|
158 |
+
>>> print(chunk_parser)
|
159 |
+
RegexpChunkParser with 3 rules:
|
160 |
+
Chunk everything
|
161 |
+
<ChunkRule: '<.*>+'>
|
162 |
+
Strip on verbs/prepositions
|
163 |
+
<StripRule: '<VBD|IN|\\.>'>
|
164 |
+
Split successive determiner/noun pairs
|
165 |
+
<SplitRule: '<DT><NN>', '<DT><NN>'>
|
166 |
+
|
167 |
+
Regression Tests
|
168 |
+
~~~~~~~~~~~~~~~~
|
169 |
+
ChunkParserI
|
170 |
+
------------
|
171 |
+
`ChunkParserI` is an abstract interface -- it is not meant to be
|
172 |
+
instantiated directly.
|
173 |
+
|
174 |
+
>>> ChunkParserI().parse([])
|
175 |
+
Traceback (most recent call last):
|
176 |
+
. . .
|
177 |
+
NotImplementedError
|
178 |
+
|
179 |
+
|
180 |
+
ChunkString
|
181 |
+
-----------
|
182 |
+
ChunkString can be built from a tree of tagged tuples, a tree of
|
183 |
+
trees, or a mixed list of both:
|
184 |
+
|
185 |
+
>>> t1 = Tree('S', [('w%d' % i, 't%d' % i) for i in range(10)])
|
186 |
+
>>> t2 = Tree('S', [Tree('t0', []), Tree('t1', ['c1'])])
|
187 |
+
>>> t3 = Tree('S', [('w0', 't0'), Tree('t1', ['c1'])])
|
188 |
+
>>> ChunkString(t1)
|
189 |
+
<ChunkString: '<t0><t1><t2><t3><t4><t5><t6><t7><t8><t9>'>
|
190 |
+
>>> ChunkString(t2)
|
191 |
+
<ChunkString: '<t0><t1>'>
|
192 |
+
>>> ChunkString(t3)
|
193 |
+
<ChunkString: '<t0><t1>'>
|
194 |
+
|
195 |
+
Other values generate an error:
|
196 |
+
|
197 |
+
>>> ChunkString(Tree('S', ['x']))
|
198 |
+
Traceback (most recent call last):
|
199 |
+
. . .
|
200 |
+
ValueError: chunk structures must contain tagged tokens or trees
|
201 |
+
|
202 |
+
The `str()` for a chunk string adds spaces to it, which makes it line
|
203 |
+
up with `str()` output for other chunk strings over the same
|
204 |
+
underlying input.
|
205 |
+
|
206 |
+
>>> cs = ChunkString(t1)
|
207 |
+
>>> print(cs)
|
208 |
+
<t0> <t1> <t2> <t3> <t4> <t5> <t6> <t7> <t8> <t9>
|
209 |
+
>>> cs.xform('<t3>', '{<t3>}')
|
210 |
+
>>> print(cs)
|
211 |
+
<t0> <t1> <t2> {<t3>} <t4> <t5> <t6> <t7> <t8> <t9>
|
212 |
+
|
213 |
+
The `_verify()` method makes sure that our transforms don't corrupt
|
214 |
+
the chunk string. By setting debug_level=2, `_verify()` will be
|
215 |
+
called at the end of every call to `xform`.
|
216 |
+
|
217 |
+
>>> cs = ChunkString(t1, debug_level=3)
|
218 |
+
|
219 |
+
>>> # tag not marked with <...>:
|
220 |
+
>>> cs.xform('<t3>', 't3')
|
221 |
+
Traceback (most recent call last):
|
222 |
+
. . .
|
223 |
+
ValueError: Transformation generated invalid chunkstring:
|
224 |
+
<t0><t1><t2>t3<t4><t5><t6><t7><t8><t9>
|
225 |
+
|
226 |
+
>>> # brackets not balanced:
|
227 |
+
>>> cs.xform('<t3>', '{<t3>')
|
228 |
+
Traceback (most recent call last):
|
229 |
+
. . .
|
230 |
+
ValueError: Transformation generated invalid chunkstring:
|
231 |
+
<t0><t1><t2>{<t3><t4><t5><t6><t7><t8><t9>
|
232 |
+
|
233 |
+
>>> # nested brackets:
|
234 |
+
>>> cs.xform('<t3><t4><t5>', '{<t3>{<t4>}<t5>}')
|
235 |
+
Traceback (most recent call last):
|
236 |
+
. . .
|
237 |
+
ValueError: Transformation generated invalid chunkstring:
|
238 |
+
<t0><t1><t2>{<t3>{<t4>}<t5>}<t6><t7><t8><t9>
|
239 |
+
|
240 |
+
>>> # modified tags:
|
241 |
+
>>> cs.xform('<t3>', '<t9>')
|
242 |
+
Traceback (most recent call last):
|
243 |
+
. . .
|
244 |
+
ValueError: Transformation generated invalid chunkstring: tag changed
|
245 |
+
|
246 |
+
>>> # added tags:
|
247 |
+
>>> cs.xform('<t9>', '<t9><t10>')
|
248 |
+
Traceback (most recent call last):
|
249 |
+
. . .
|
250 |
+
ValueError: Transformation generated invalid chunkstring: tag changed
|
251 |
+
|
252 |
+
Chunking Rules
|
253 |
+
--------------
|
254 |
+
|
255 |
+
Test the different rule constructors & __repr__ methods:
|
256 |
+
|
257 |
+
>>> r1 = RegexpChunkRule('<a|b>'+ChunkString.IN_STRIP_PATTERN,
|
258 |
+
... '{<a|b>}', 'chunk <a> and <b>')
|
259 |
+
>>> r2 = RegexpChunkRule(re.compile('<a|b>'+ChunkString.IN_STRIP_PATTERN),
|
260 |
+
... '{<a|b>}', 'chunk <a> and <b>')
|
261 |
+
>>> r3 = ChunkRule('<a|b>', 'chunk <a> and <b>')
|
262 |
+
>>> r4 = StripRule('<a|b>', 'strip <a> and <b>')
|
263 |
+
>>> r5 = UnChunkRule('<a|b>', 'unchunk <a> and <b>')
|
264 |
+
>>> r6 = MergeRule('<a>', '<b>', 'merge <a> w/ <b>')
|
265 |
+
>>> r7 = SplitRule('<a>', '<b>', 'split <a> from <b>')
|
266 |
+
>>> r8 = ExpandLeftRule('<a>', '<b>', 'expand left <a> <b>')
|
267 |
+
>>> r9 = ExpandRightRule('<a>', '<b>', 'expand right <a> <b>')
|
268 |
+
>>> for rule in r1, r2, r3, r4, r5, r6, r7, r8, r9:
|
269 |
+
... print(rule)
|
270 |
+
<RegexpChunkRule: '<a|b>(?=[^\\}]*(\\{|$))'->'{<a|b>}'>
|
271 |
+
<RegexpChunkRule: '<a|b>(?=[^\\}]*(\\{|$))'->'{<a|b>}'>
|
272 |
+
<ChunkRule: '<a|b>'>
|
273 |
+
<StripRule: '<a|b>'>
|
274 |
+
<UnChunkRule: '<a|b>'>
|
275 |
+
<MergeRule: '<a>', '<b>'>
|
276 |
+
<SplitRule: '<a>', '<b>'>
|
277 |
+
<ExpandLeftRule: '<a>', '<b>'>
|
278 |
+
<ExpandRightRule: '<a>', '<b>'>
|
279 |
+
|
280 |
+
`tag_pattern2re_pattern()` complains if the tag pattern looks problematic:
|
281 |
+
|
282 |
+
>>> tag_pattern2re_pattern('{}')
|
283 |
+
Traceback (most recent call last):
|
284 |
+
. . .
|
285 |
+
ValueError: Bad tag pattern: '{}'
|
286 |
+
|
287 |
+
RegexpChunkParser
|
288 |
+
-----------------
|
289 |
+
|
290 |
+
A warning is printed when parsing an empty sentence:
|
291 |
+
|
292 |
+
>>> parser = RegexpChunkParser([ChunkRule('<a>', '')])
|
293 |
+
>>> parser.parse(Tree('S', []))
|
294 |
+
Warning: parsing empty text
|
295 |
+
Tree('S', [])
|
296 |
+
|
297 |
+
RegexpParser
|
298 |
+
------------
|
299 |
+
|
300 |
+
>>> parser = RegexpParser('''
|
301 |
+
... NP: {<DT>? <JJ>* <NN>*} # NP
|
302 |
+
... P: {<IN>} # Preposition
|
303 |
+
... V: {<V.*>} # Verb
|
304 |
+
... PP: {<P> <NP>} # PP -> P NP
|
305 |
+
... VP: {<V> <NP|PP>*} # VP -> V (NP|PP)*
|
306 |
+
... ''')
|
307 |
+
>>> print(repr(parser))
|
308 |
+
<chunk.RegexpParser with 5 stages>
|
309 |
+
>>> print(parser)
|
310 |
+
chunk.RegexpParser with 5 stages:
|
311 |
+
RegexpChunkParser with 1 rules:
|
312 |
+
NP <ChunkRule: '<DT>? <JJ>* <NN>*'>
|
313 |
+
RegexpChunkParser with 1 rules:
|
314 |
+
Preposition <ChunkRule: '<IN>'>
|
315 |
+
RegexpChunkParser with 1 rules:
|
316 |
+
Verb <ChunkRule: '<V.*>'>
|
317 |
+
RegexpChunkParser with 1 rules:
|
318 |
+
PP -> P NP <ChunkRule: '<P> <NP>'>
|
319 |
+
RegexpChunkParser with 1 rules:
|
320 |
+
VP -> V (NP|PP)* <ChunkRule: '<V> <NP|PP>*'>
|
321 |
+
>>> print(parser.parse(unchunked_text, trace=True))
|
322 |
+
# Input:
|
323 |
+
<DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>
|
324 |
+
# NP:
|
325 |
+
{<DT> <NN>} <VBD> <IN> {<DT> <NN>}{<DT> <NN>} <VBD> <.>
|
326 |
+
# Input:
|
327 |
+
<NP> <VBD> <IN> <NP> <NP> <VBD> <.>
|
328 |
+
# Preposition:
|
329 |
+
<NP> <VBD> {<IN>} <NP> <NP> <VBD> <.>
|
330 |
+
# Input:
|
331 |
+
<NP> <VBD> <P> <NP> <NP> <VBD> <.>
|
332 |
+
# Verb:
|
333 |
+
<NP> {<VBD>} <P> <NP> <NP> {<VBD>} <.>
|
334 |
+
# Input:
|
335 |
+
<NP> <V> <P> <NP> <NP> <V> <.>
|
336 |
+
# PP -> P NP:
|
337 |
+
<NP> <V> {<P> <NP>} <NP> <V> <.>
|
338 |
+
# Input:
|
339 |
+
<NP> <V> <PP> <NP> <V> <.>
|
340 |
+
# VP -> V (NP|PP)*:
|
341 |
+
<NP> {<V> <PP> <NP>}{<V>} <.>
|
342 |
+
(S
|
343 |
+
(NP The/DT cat/NN)
|
344 |
+
(VP
|
345 |
+
(V sat/VBD)
|
346 |
+
(PP (P on/IN) (NP the/DT mat/NN))
|
347 |
+
(NP the/DT dog/NN))
|
348 |
+
(VP (V chewed/VBD))
|
349 |
+
./.)
|
350 |
+
|
351 |
+
Test parsing of other rule types:
|
352 |
+
|
353 |
+
>>> print(RegexpParser('''
|
354 |
+
... X:
|
355 |
+
... }<a><b>{ # strip rule
|
356 |
+
... <a>}{<b> # split rule
|
357 |
+
... <a>{}<b> # merge rule
|
358 |
+
... <a>{<b>}<c> # chunk rule w/ context
|
359 |
+
... '''))
|
360 |
+
chunk.RegexpParser with 1 stages:
|
361 |
+
RegexpChunkParser with 4 rules:
|
362 |
+
strip rule <StripRule: '<a><b>'>
|
363 |
+
split rule <SplitRule: '<a>', '<b>'>
|
364 |
+
merge rule <MergeRule: '<a>', '<b>'>
|
365 |
+
chunk rule w/ context <ChunkRuleWithContext: '<a>', '<b>', '<c>'>
|
366 |
+
|
367 |
+
Illegal patterns give an error message:
|
368 |
+
|
369 |
+
>>> print(RegexpParser('X: {<foo>} {<bar>}'))
|
370 |
+
Traceback (most recent call last):
|
371 |
+
. . .
|
372 |
+
ValueError: Illegal chunk pattern: {<foo>} {<bar>}
|
llmeval-env/lib/python3.10/site-packages/nltk/test/classify.doctest
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=============
|
5 |
+
Classifiers
|
6 |
+
=============
|
7 |
+
|
8 |
+
>>> from nltk.test.classify_fixt import setup_module
|
9 |
+
>>> setup_module()
|
10 |
+
|
11 |
+
Classifiers label tokens with category labels (or *class labels*).
|
12 |
+
Typically, labels are represented with strings (such as ``"health"``
|
13 |
+
or ``"sports"``. In NLTK, classifiers are defined using classes that
|
14 |
+
implement the `ClassifierI` interface, which supports the following operations:
|
15 |
+
|
16 |
+
- self.classify(featureset)
|
17 |
+
- self.classify_many(featuresets)
|
18 |
+
- self.labels()
|
19 |
+
- self.prob_classify(featureset)
|
20 |
+
- self.prob_classify_many(featuresets)
|
21 |
+
|
22 |
+
NLTK defines several classifier classes:
|
23 |
+
|
24 |
+
- `ConditionalExponentialClassifier`
|
25 |
+
- `DecisionTreeClassifier`
|
26 |
+
- `MaxentClassifier`
|
27 |
+
- `NaiveBayesClassifier`
|
28 |
+
- `WekaClassifier`
|
29 |
+
|
30 |
+
Classifiers are typically created by training them on a training
|
31 |
+
corpus.
|
32 |
+
|
33 |
+
|
34 |
+
Regression Tests
|
35 |
+
~~~~~~~~~~~~~~~~
|
36 |
+
|
37 |
+
We define a very simple training corpus with 3 binary features: ['a',
|
38 |
+
'b', 'c'], and are two labels: ['x', 'y']. We use a simple feature set so
|
39 |
+
that the correct answers can be calculated analytically (although we
|
40 |
+
haven't done this yet for all tests).
|
41 |
+
|
42 |
+
>>> import nltk
|
43 |
+
>>> train = [
|
44 |
+
... (dict(a=1,b=1,c=1), 'y'),
|
45 |
+
... (dict(a=1,b=1,c=1), 'x'),
|
46 |
+
... (dict(a=1,b=1,c=0), 'y'),
|
47 |
+
... (dict(a=0,b=1,c=1), 'x'),
|
48 |
+
... (dict(a=0,b=1,c=1), 'y'),
|
49 |
+
... (dict(a=0,b=0,c=1), 'y'),
|
50 |
+
... (dict(a=0,b=1,c=0), 'x'),
|
51 |
+
... (dict(a=0,b=0,c=0), 'x'),
|
52 |
+
... (dict(a=0,b=1,c=1), 'y'),
|
53 |
+
... (dict(a=None,b=1,c=0), 'x'),
|
54 |
+
... ]
|
55 |
+
>>> test = [
|
56 |
+
... (dict(a=1,b=0,c=1)), # unseen
|
57 |
+
... (dict(a=1,b=0,c=0)), # unseen
|
58 |
+
... (dict(a=0,b=1,c=1)), # seen 3 times, labels=y,y,x
|
59 |
+
... (dict(a=0,b=1,c=0)), # seen 1 time, label=x
|
60 |
+
... ]
|
61 |
+
|
62 |
+
Test the Naive Bayes classifier:
|
63 |
+
|
64 |
+
>>> classifier = nltk.classify.NaiveBayesClassifier.train(train)
|
65 |
+
>>> sorted(classifier.labels())
|
66 |
+
['x', 'y']
|
67 |
+
>>> classifier.classify_many(test)
|
68 |
+
['y', 'x', 'y', 'x']
|
69 |
+
>>> for pdist in classifier.prob_classify_many(test):
|
70 |
+
... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')))
|
71 |
+
0.2500 0.7500
|
72 |
+
0.5833 0.4167
|
73 |
+
0.3571 0.6429
|
74 |
+
0.7000 0.3000
|
75 |
+
>>> classifier.show_most_informative_features()
|
76 |
+
Most Informative Features
|
77 |
+
c = 0 x : y = 2.3 : 1.0
|
78 |
+
c = 1 y : x = 1.8 : 1.0
|
79 |
+
a = 1 y : x = 1.7 : 1.0
|
80 |
+
a = 0 x : y = 1.0 : 1.0
|
81 |
+
b = 0 x : y = 1.0 : 1.0
|
82 |
+
b = 1 x : y = 1.0 : 1.0
|
83 |
+
|
84 |
+
Test the Decision Tree classifier (without None):
|
85 |
+
|
86 |
+
>>> classifier = nltk.classify.DecisionTreeClassifier.train(
|
87 |
+
... train[:-1], entropy_cutoff=0,
|
88 |
+
... support_cutoff=0)
|
89 |
+
>>> sorted(classifier.labels())
|
90 |
+
['x', 'y']
|
91 |
+
>>> print(classifier)
|
92 |
+
c=0? .................................................. x
|
93 |
+
a=0? ................................................ x
|
94 |
+
a=1? ................................................ y
|
95 |
+
c=1? .................................................. y
|
96 |
+
<BLANKLINE>
|
97 |
+
>>> classifier.classify_many(test)
|
98 |
+
['y', 'y', 'y', 'x']
|
99 |
+
>>> for pdist in classifier.prob_classify_many(test):
|
100 |
+
... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')))
|
101 |
+
Traceback (most recent call last):
|
102 |
+
. . .
|
103 |
+
NotImplementedError
|
104 |
+
|
105 |
+
|
106 |
+
Test the Decision Tree classifier (with None):
|
107 |
+
|
108 |
+
>>> classifier = nltk.classify.DecisionTreeClassifier.train(
|
109 |
+
... train, entropy_cutoff=0,
|
110 |
+
... support_cutoff=0)
|
111 |
+
>>> sorted(classifier.labels())
|
112 |
+
['x', 'y']
|
113 |
+
>>> print(classifier)
|
114 |
+
c=0? .................................................. x
|
115 |
+
a=0? ................................................ x
|
116 |
+
a=1? ................................................ y
|
117 |
+
a=None? ............................................. x
|
118 |
+
c=1? .................................................. y
|
119 |
+
<BLANKLINE>
|
120 |
+
|
121 |
+
|
122 |
+
Test SklearnClassifier, which requires the scikit-learn package.
|
123 |
+
|
124 |
+
>>> from nltk.classify import SklearnClassifier
|
125 |
+
>>> from sklearn.naive_bayes import BernoulliNB
|
126 |
+
>>> from sklearn.svm import SVC
|
127 |
+
>>> train_data = [({"a": 4, "b": 1, "c": 0}, "ham"),
|
128 |
+
... ({"a": 5, "b": 2, "c": 1}, "ham"),
|
129 |
+
... ({"a": 0, "b": 3, "c": 4}, "spam"),
|
130 |
+
... ({"a": 5, "b": 1, "c": 1}, "ham"),
|
131 |
+
... ({"a": 1, "b": 4, "c": 3}, "spam")]
|
132 |
+
>>> classif = SklearnClassifier(BernoulliNB()).train(train_data)
|
133 |
+
>>> test_data = [{"a": 3, "b": 2, "c": 1},
|
134 |
+
... {"a": 0, "b": 3, "c": 7}]
|
135 |
+
>>> classif.classify_many(test_data)
|
136 |
+
['ham', 'spam']
|
137 |
+
>>> classif = SklearnClassifier(SVC(), sparse=False).train(train_data)
|
138 |
+
>>> classif.classify_many(test_data)
|
139 |
+
['ham', 'spam']
|
140 |
+
|
141 |
+
Test the Maximum Entropy classifier training algorithms; they should all
|
142 |
+
generate the same results.
|
143 |
+
|
144 |
+
>>> def print_maxent_test_header():
|
145 |
+
... print(' '*11+''.join([' test[%s] ' % i
|
146 |
+
... for i in range(len(test))]))
|
147 |
+
... print(' '*11+' p(x) p(y)'*len(test))
|
148 |
+
... print('-'*(11+15*len(test)))
|
149 |
+
|
150 |
+
>>> def test_maxent(algorithm):
|
151 |
+
... print('%11s' % algorithm, end=' ')
|
152 |
+
... try:
|
153 |
+
... classifier = nltk.classify.MaxentClassifier.train(
|
154 |
+
... train, algorithm, trace=0, max_iter=1000)
|
155 |
+
... except Exception as e:
|
156 |
+
... print('Error: %r' % e)
|
157 |
+
... return
|
158 |
+
...
|
159 |
+
... for featureset in test:
|
160 |
+
... pdist = classifier.prob_classify(featureset)
|
161 |
+
... print('%8.2f%6.2f' % (pdist.prob('x'), pdist.prob('y')), end=' ')
|
162 |
+
... print()
|
163 |
+
|
164 |
+
>>> print_maxent_test_header(); test_maxent('GIS'); test_maxent('IIS')
|
165 |
+
test[0] test[1] test[2] test[3]
|
166 |
+
p(x) p(y) p(x) p(y) p(x) p(y) p(x) p(y)
|
167 |
+
-----------------------------------------------------------------------
|
168 |
+
GIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
|
169 |
+
IIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
|
170 |
+
|
171 |
+
>>> test_maxent('MEGAM'); test_maxent('TADM') # doctest: +SKIP
|
172 |
+
MEGAM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
|
173 |
+
TADM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
Regression tests for TypedMaxentFeatureEncoding
|
178 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
179 |
+
|
180 |
+
>>> from nltk.classify import maxent
|
181 |
+
>>> train = [
|
182 |
+
... ({'a': 1, 'b': 1, 'c': 1}, 'y'),
|
183 |
+
... ({'a': 5, 'b': 5, 'c': 5}, 'x'),
|
184 |
+
... ({'a': 0.9, 'b': 0.9, 'c': 0.9}, 'y'),
|
185 |
+
... ({'a': 5.5, 'b': 5.4, 'c': 5.3}, 'x'),
|
186 |
+
... ({'a': 0.8, 'b': 1.2, 'c': 1}, 'y'),
|
187 |
+
... ({'a': 5.1, 'b': 4.9, 'c': 5.2}, 'x')
|
188 |
+
... ]
|
189 |
+
|
190 |
+
>>> test = [
|
191 |
+
... {'a': 1, 'b': 0.8, 'c': 1.2},
|
192 |
+
... {'a': 5.2, 'b': 5.1, 'c': 5}
|
193 |
+
... ]
|
194 |
+
|
195 |
+
>>> encoding = maxent.TypedMaxentFeatureEncoding.train(
|
196 |
+
... train, count_cutoff=3, alwayson_features=True)
|
197 |
+
|
198 |
+
>>> classifier = maxent.MaxentClassifier.train(
|
199 |
+
... train, bernoulli=False, encoding=encoding, trace=0)
|
200 |
+
|
201 |
+
>>> classifier.classify_many(test)
|
202 |
+
['y', 'x']
|
llmeval-env/lib/python3.10/site-packages/nltk/test/classify_fixt.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# most of classify.doctest requires numpy
|
2 |
+
def setup_module():
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
pytest.importorskip("numpy")
|
llmeval-env/lib/python3.10/site-packages/nltk/test/collections.doctest
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
===========
|
5 |
+
Collections
|
6 |
+
===========
|
7 |
+
|
8 |
+
>>> import nltk
|
9 |
+
>>> from nltk.collections import *
|
10 |
+
|
11 |
+
Trie
|
12 |
+
----
|
13 |
+
|
14 |
+
Trie can be pickled:
|
15 |
+
|
16 |
+
>>> import pickle
|
17 |
+
>>> trie = nltk.collections.Trie(['a'])
|
18 |
+
>>> s = pickle.dumps(trie)
|
19 |
+
>>> pickle.loads(s)
|
20 |
+
{'a': {True: None}}
|
21 |
+
|
22 |
+
LazyIteratorList
|
23 |
+
----------------
|
24 |
+
|
25 |
+
Fetching the length of a LazyIteratorList object does not throw a StopIteration exception:
|
26 |
+
|
27 |
+
>>> lil = LazyIteratorList(i for i in range(1, 11))
|
28 |
+
>>> lil[-1]
|
29 |
+
10
|
30 |
+
>>> len(lil)
|
31 |
+
10
|
llmeval-env/lib/python3.10/site-packages/nltk/test/concordance.doctest
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2016 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==================================
|
5 |
+
Concordance Example
|
6 |
+
==================================
|
7 |
+
|
8 |
+
A concordance view shows us every occurrence of a given
|
9 |
+
word, together with some context. Here we look up the word monstrous
|
10 |
+
in Moby Dick by entering text1 followed by a period, then the term
|
11 |
+
concordance, and then placing "monstrous" in parentheses:
|
12 |
+
|
13 |
+
>>> from nltk.corpus import gutenberg
|
14 |
+
>>> from nltk.text import Text
|
15 |
+
>>> corpus = gutenberg.words('melville-moby_dick.txt')
|
16 |
+
>>> text = Text(corpus)
|
17 |
+
|
18 |
+
>>> text.concordance("monstrous")
|
19 |
+
Displaying 11 of 11 matches:
|
20 |
+
ong the former , one was of a most monstrous size . ... This came towards us ,
|
21 |
+
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
|
22 |
+
ll over with a heathenish array of monstrous clubs and spears . Some were thick
|
23 |
+
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
|
24 |
+
that has survived the flood ; most monstrous and most mountainous ! That Himmal
|
25 |
+
they might scout at Moby Dick as a monstrous fable , or still worse and more de
|
26 |
+
th of Radney .'" CHAPTER 55 Of the Monstrous Pictures of Whales . I shall ere l
|
27 |
+
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
|
28 |
+
ere to enter upon those still more monstrous stories of them which are to be fo
|
29 |
+
ght have been rummaged out of this monstrous cabinet there is no telling . But
|
30 |
+
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
|
31 |
+
|
32 |
+
>>> text.concordance("monstrous")
|
33 |
+
Displaying 11 of 11 matches:
|
34 |
+
ong the former , one was of a most monstrous size . ... This came towards us ,
|
35 |
+
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
|
36 |
+
ll over with a heathenish array of monstrous clubs and spears . Some were thick
|
37 |
+
...
|
38 |
+
|
39 |
+
We can also search for a multi-word phrase by passing a list of strings:
|
40 |
+
|
41 |
+
>>> text.concordance(["monstrous", "size"])
|
42 |
+
Displaying 2 of 2 matches:
|
43 |
+
the former , one was of a most monstrous size . ... This came towards us , op
|
44 |
+
Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead upo
|
45 |
+
|
46 |
+
=================================
|
47 |
+
Concordance List
|
48 |
+
=================================
|
49 |
+
|
50 |
+
Often we need to store the results of concordance for further usage.
|
51 |
+
To do so, call the concordance function with the stdout argument set
|
52 |
+
to false:
|
53 |
+
|
54 |
+
>>> from nltk.corpus import gutenberg
|
55 |
+
>>> from nltk.text import Text
|
56 |
+
>>> corpus = gutenberg.words('melville-moby_dick.txt')
|
57 |
+
>>> text = Text(corpus)
|
58 |
+
>>> con_list = text.concordance_list("monstrous")
|
59 |
+
>>> con_list[2].line
|
60 |
+
'll over with a heathenish array of monstrous clubs and spears . Some were thick'
|
61 |
+
>>> len(con_list)
|
62 |
+
11
|
63 |
+
|
64 |
+
=================================
|
65 |
+
Patching Issue #2088
|
66 |
+
=================================
|
67 |
+
|
68 |
+
Patching https://github.com/nltk/nltk/issues/2088
|
69 |
+
The left slice of the left context should be clip to 0 if the `i-context` < 0.
|
70 |
+
|
71 |
+
>>> from nltk import Text, word_tokenize
|
72 |
+
>>> jane_eyre = 'Chapter 1\nTHERE was no possibility of taking a walk that day. We had been wandering, indeed, in the leafless shrubbery an hour in the morning; but since dinner (Mrs. Reed, when there was no company, dined early) the cold winter wind had brought with it clouds so sombre, and a rain so penetrating, that further outdoor exercise was now out of the question.'
|
73 |
+
>>> text = Text(word_tokenize(jane_eyre))
|
74 |
+
>>> text.concordance_list('taking')[0].left
|
75 |
+
['Chapter', '1', 'THERE', 'was', 'no', 'possibility', 'of']
|
llmeval-env/lib/python3.10/site-packages/nltk/test/corpus.doctest
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/crubadan.doctest
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
Crubadan Corpus Reader
|
5 |
+
======================
|
6 |
+
|
7 |
+
Crubadan is an NLTK corpus reader for ngram files provided
|
8 |
+
by the Crubadan project. It supports several languages.
|
9 |
+
|
10 |
+
>>> from nltk.corpus import crubadan
|
11 |
+
>>> crubadan.langs()
|
12 |
+
['abk', 'abn',..., 'zpa', 'zul']
|
13 |
+
|
14 |
+
----------------------------------------
|
15 |
+
Language code mapping and helper methods
|
16 |
+
----------------------------------------
|
17 |
+
|
18 |
+
The web crawler that generates the 3-gram frequencies works at the
|
19 |
+
level of "writing systems" rather than languages. Writing systems
|
20 |
+
are assigned internal 2-3 letter codes that require mapping to the
|
21 |
+
standard ISO 639-3 codes. For more information, please refer to
|
22 |
+
the README in nltk_data/crubadan folder after installing it.
|
23 |
+
|
24 |
+
To translate ISO 639-3 codes to "Crubadan Code":
|
25 |
+
|
26 |
+
>>> crubadan.iso_to_crubadan('eng')
|
27 |
+
'en'
|
28 |
+
>>> crubadan.iso_to_crubadan('fra')
|
29 |
+
'fr'
|
30 |
+
>>> crubadan.iso_to_crubadan('aaa')
|
31 |
+
|
32 |
+
In reverse, print ISO 639-3 code if we have the Crubadan Code:
|
33 |
+
|
34 |
+
>>> crubadan.crubadan_to_iso('en')
|
35 |
+
'eng'
|
36 |
+
>>> crubadan.crubadan_to_iso('fr')
|
37 |
+
'fra'
|
38 |
+
>>> crubadan.crubadan_to_iso('aa')
|
39 |
+
|
40 |
+
---------------------------
|
41 |
+
Accessing ngram frequencies
|
42 |
+
---------------------------
|
43 |
+
|
44 |
+
On initialization the reader will create a dictionary of every
|
45 |
+
language supported by the Crubadan project, mapping the ISO 639-3
|
46 |
+
language code to its corresponding ngram frequency.
|
47 |
+
|
48 |
+
You can access individual language FreqDist and the ngrams within them as follows:
|
49 |
+
|
50 |
+
>>> english_fd = crubadan.lang_freq('eng')
|
51 |
+
>>> english_fd['the']
|
52 |
+
728135
|
53 |
+
|
54 |
+
Above accesses the FreqDist of English and returns the frequency of the ngram 'the'.
|
55 |
+
A ngram that isn't found within the language will return 0:
|
56 |
+
|
57 |
+
>>> english_fd['sometest']
|
58 |
+
0
|
59 |
+
|
60 |
+
A language that isn't supported will raise an exception:
|
61 |
+
|
62 |
+
>>> crubadan.lang_freq('elvish')
|
63 |
+
Traceback (most recent call last):
|
64 |
+
...
|
65 |
+
RuntimeError: Unsupported language.
|
llmeval-env/lib/python3.10/site-packages/nltk/test/data.doctest
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=========================================
|
5 |
+
Loading Resources From the Data Package
|
6 |
+
=========================================
|
7 |
+
|
8 |
+
>>> import nltk.data
|
9 |
+
|
10 |
+
Overview
|
11 |
+
~~~~~~~~
|
12 |
+
The `nltk.data` module contains functions that can be used to load
|
13 |
+
NLTK resource files, such as corpora, grammars, and saved processing
|
14 |
+
objects.
|
15 |
+
|
16 |
+
Loading Data Files
|
17 |
+
~~~~~~~~~~~~~~~~~~
|
18 |
+
Resources are loaded using the function `nltk.data.load()`, which
|
19 |
+
takes as its first argument a URL specifying what file should be
|
20 |
+
loaded. The ``nltk:`` protocol loads files from the NLTK data
|
21 |
+
distribution:
|
22 |
+
|
23 |
+
>>> tokenizer = nltk.data.load('nltk:tokenizers/punkt/english.pickle')
|
24 |
+
>>> tokenizer.tokenize('Hello. This is a test. It works!')
|
25 |
+
['Hello.', 'This is a test.', 'It works!']
|
26 |
+
|
27 |
+
It is important to note that there should be no space following the
|
28 |
+
colon (':') in the URL; 'nltk: tokenizers/punkt/english.pickle' will
|
29 |
+
not work!
|
30 |
+
|
31 |
+
The ``nltk:`` protocol is used by default if no protocol is specified:
|
32 |
+
|
33 |
+
>>> nltk.data.load('tokenizers/punkt/english.pickle')
|
34 |
+
<nltk.tokenize.punkt.PunktSentenceTokenizer object at ...>
|
35 |
+
|
36 |
+
But it is also possible to load resources from ``http:``, ``ftp:``,
|
37 |
+
and ``file:`` URLs:
|
38 |
+
|
39 |
+
>>> # Load a grammar from the NLTK webpage.
|
40 |
+
>>> cfg = nltk.data.load('https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg')
|
41 |
+
>>> print(cfg) # doctest: +ELLIPSIS
|
42 |
+
Grammar with 14 productions (start state = S)
|
43 |
+
S -> NP VP
|
44 |
+
PP -> P NP
|
45 |
+
...
|
46 |
+
P -> 'on'
|
47 |
+
P -> 'in'
|
48 |
+
|
49 |
+
>>> # Load a grammar using an absolute path.
|
50 |
+
>>> url = 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg')
|
51 |
+
>>> url.replace('\\', '/')
|
52 |
+
'file:...toy.cfg'
|
53 |
+
>>> print(nltk.data.load(url))
|
54 |
+
Grammar with 14 productions (start state = S)
|
55 |
+
S -> NP VP
|
56 |
+
PP -> P NP
|
57 |
+
...
|
58 |
+
P -> 'on'
|
59 |
+
P -> 'in'
|
60 |
+
|
61 |
+
The second argument to the `nltk.data.load()` function specifies the
|
62 |
+
file format, which determines how the file's contents are processed
|
63 |
+
before they are returned by ``load()``. The formats that are
|
64 |
+
currently supported by the data module are described by the dictionary
|
65 |
+
`nltk.data.FORMATS`:
|
66 |
+
|
67 |
+
>>> for format, descr in sorted(nltk.data.FORMATS.items()):
|
68 |
+
... print('{0:<7} {1:}'.format(format, descr))
|
69 |
+
cfg A context free grammar.
|
70 |
+
fcfg A feature CFG.
|
71 |
+
fol A list of first order logic expressions, parsed with
|
72 |
+
nltk.sem.logic.Expression.fromstring.
|
73 |
+
json A serialized python object, stored using the json module.
|
74 |
+
logic A list of first order logic expressions, parsed with
|
75 |
+
nltk.sem.logic.LogicParser. Requires an additional logic_parser
|
76 |
+
parameter
|
77 |
+
pcfg A probabilistic CFG.
|
78 |
+
pickle A serialized python object, stored using the pickle
|
79 |
+
module.
|
80 |
+
raw The raw (byte string) contents of a file.
|
81 |
+
text The raw (unicode string) contents of a file.
|
82 |
+
val A semantic valuation, parsed by
|
83 |
+
nltk.sem.Valuation.fromstring.
|
84 |
+
yaml A serialized python object, stored using the yaml module.
|
85 |
+
|
86 |
+
`nltk.data.load()` will raise a ValueError if a bad format name is
|
87 |
+
specified:
|
88 |
+
|
89 |
+
>>> nltk.data.load('grammars/sample_grammars/toy.cfg', 'bar')
|
90 |
+
Traceback (most recent call last):
|
91 |
+
. . .
|
92 |
+
ValueError: Unknown format type!
|
93 |
+
|
94 |
+
By default, the ``"auto"`` format is used, which chooses a format
|
95 |
+
based on the filename's extension. The mapping from file extensions
|
96 |
+
to format names is specified by `nltk.data.AUTO_FORMATS`:
|
97 |
+
|
98 |
+
>>> for ext, format in sorted(nltk.data.AUTO_FORMATS.items()):
|
99 |
+
... print('.%-7s -> %s' % (ext, format))
|
100 |
+
.cfg -> cfg
|
101 |
+
.fcfg -> fcfg
|
102 |
+
.fol -> fol
|
103 |
+
.json -> json
|
104 |
+
.logic -> logic
|
105 |
+
.pcfg -> pcfg
|
106 |
+
.pickle -> pickle
|
107 |
+
.text -> text
|
108 |
+
.txt -> text
|
109 |
+
.val -> val
|
110 |
+
.yaml -> yaml
|
111 |
+
|
112 |
+
If `nltk.data.load()` is unable to determine the format based on the
|
113 |
+
filename's extension, it will raise a ValueError:
|
114 |
+
|
115 |
+
>>> nltk.data.load('foo.bar')
|
116 |
+
Traceback (most recent call last):
|
117 |
+
. . .
|
118 |
+
ValueError: Could not determine format for foo.bar based on its file
|
119 |
+
extension; use the "format" argument to specify the format explicitly.
|
120 |
+
|
121 |
+
Note that by explicitly specifying the ``format`` argument, you can
|
122 |
+
override the load method's default processing behavior. For example,
|
123 |
+
to get the raw contents of any file, simply use ``format="raw"``:
|
124 |
+
|
125 |
+
>>> s = nltk.data.load('grammars/sample_grammars/toy.cfg', 'text')
|
126 |
+
>>> print(s)
|
127 |
+
S -> NP VP
|
128 |
+
PP -> P NP
|
129 |
+
NP -> Det N | NP PP
|
130 |
+
VP -> V NP | VP PP
|
131 |
+
...
|
132 |
+
|
133 |
+
Making Local Copies
|
134 |
+
~~~~~~~~~~~~~~~~~~~
|
135 |
+
.. This will not be visible in the html output: create a tempdir to
|
136 |
+
play in.
|
137 |
+
>>> import tempfile, os
|
138 |
+
>>> tempdir = tempfile.mkdtemp()
|
139 |
+
>>> old_dir = os.path.abspath('.')
|
140 |
+
>>> os.chdir(tempdir)
|
141 |
+
|
142 |
+
The function `nltk.data.retrieve()` copies a given resource to a local
|
143 |
+
file. This can be useful, for example, if you want to edit one of the
|
144 |
+
sample grammars.
|
145 |
+
|
146 |
+
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg')
|
147 |
+
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy.cfg'
|
148 |
+
|
149 |
+
>>> # Simulate editing the grammar.
|
150 |
+
>>> with open('toy.cfg') as inp:
|
151 |
+
... s = inp.read().replace('NP', 'DP')
|
152 |
+
>>> with open('toy.cfg', 'w') as out:
|
153 |
+
... _bytes_written = out.write(s)
|
154 |
+
|
155 |
+
>>> # Load the edited grammar, & display it.
|
156 |
+
>>> cfg = nltk.data.load('file:///' + os.path.abspath('toy.cfg'))
|
157 |
+
>>> print(cfg)
|
158 |
+
Grammar with 14 productions (start state = S)
|
159 |
+
S -> DP VP
|
160 |
+
PP -> P DP
|
161 |
+
...
|
162 |
+
P -> 'on'
|
163 |
+
P -> 'in'
|
164 |
+
|
165 |
+
The second argument to `nltk.data.retrieve()` specifies the filename
|
166 |
+
for the new copy of the file. By default, the source file's filename
|
167 |
+
is used.
|
168 |
+
|
169 |
+
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg', 'mytoy.cfg')
|
170 |
+
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'mytoy.cfg'
|
171 |
+
>>> os.path.isfile('./mytoy.cfg')
|
172 |
+
True
|
173 |
+
>>> nltk.data.retrieve('grammars/sample_grammars/np.fcfg')
|
174 |
+
Retrieving 'nltk:grammars/sample_grammars/np.fcfg', saving to 'np.fcfg'
|
175 |
+
>>> os.path.isfile('./np.fcfg')
|
176 |
+
True
|
177 |
+
|
178 |
+
If a file with the specified (or default) filename already exists in
|
179 |
+
the current directory, then `nltk.data.retrieve()` will raise a
|
180 |
+
ValueError exception. It will *not* overwrite the file:
|
181 |
+
|
182 |
+
>>> os.path.isfile('./toy.cfg')
|
183 |
+
True
|
184 |
+
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg')
|
185 |
+
Traceback (most recent call last):
|
186 |
+
. . .
|
187 |
+
ValueError: File '...toy.cfg' already exists!
|
188 |
+
|
189 |
+
.. This will not be visible in the html output: clean up the tempdir.
|
190 |
+
>>> os.chdir(old_dir)
|
191 |
+
>>> for f in os.listdir(tempdir):
|
192 |
+
... os.remove(os.path.join(tempdir, f))
|
193 |
+
>>> os.rmdir(tempdir)
|
194 |
+
|
195 |
+
Finding Files in the NLTK Data Package
|
196 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
197 |
+
The `nltk.data.find()` function searches the NLTK data package for a
|
198 |
+
given file, and returns a pointer to that file. This pointer can
|
199 |
+
either be a `FileSystemPathPointer` (whose `path` attribute gives the
|
200 |
+
absolute path of the file); or a `ZipFilePathPointer`, specifying a
|
201 |
+
zipfile and the name of an entry within that zipfile. Both pointer
|
202 |
+
types define the `open()` method, which can be used to read the string
|
203 |
+
contents of the file.
|
204 |
+
|
205 |
+
>>> path = nltk.data.find('corpora/abc/rural.txt')
|
206 |
+
>>> str(path)
|
207 |
+
'...rural.txt'
|
208 |
+
>>> print(path.open().read(60).decode())
|
209 |
+
PM denies knowledge of AWB kickbacks
|
210 |
+
The Prime Minister has
|
211 |
+
|
212 |
+
Alternatively, the `nltk.data.load()` function can be used with the
|
213 |
+
keyword argument ``format="raw"``:
|
214 |
+
|
215 |
+
>>> s = nltk.data.load('corpora/abc/rural.txt', format='raw')[:60]
|
216 |
+
>>> print(s.decode())
|
217 |
+
PM denies knowledge of AWB kickbacks
|
218 |
+
The Prime Minister has
|
219 |
+
|
220 |
+
Alternatively, you can use the keyword argument ``format="text"``:
|
221 |
+
|
222 |
+
>>> s = nltk.data.load('corpora/abc/rural.txt', format='text')[:60]
|
223 |
+
>>> print(s)
|
224 |
+
PM denies knowledge of AWB kickbacks
|
225 |
+
The Prime Minister has
|
226 |
+
|
227 |
+
Resource Caching
|
228 |
+
~~~~~~~~~~~~~~~~
|
229 |
+
|
230 |
+
NLTK uses a weakref dictionary to maintain a cache of resources that
|
231 |
+
have been loaded. If you load a resource that is already stored in
|
232 |
+
the cache, then the cached copy will be returned. This behavior can
|
233 |
+
be seen by the trace output generated when verbose=True:
|
234 |
+
|
235 |
+
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
|
236 |
+
<<Loading nltk:grammars/book_grammars/feat0.fcfg>>
|
237 |
+
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
|
238 |
+
<<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
|
239 |
+
|
240 |
+
If you wish to load a resource from its source, bypassing the cache,
|
241 |
+
use the ``cache=False`` argument to `nltk.data.load()`. This can be
|
242 |
+
useful, for example, if the resource is loaded from a local file, and
|
243 |
+
you are actively editing that file:
|
244 |
+
|
245 |
+
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',cache=False,verbose=True)
|
246 |
+
<<Loading nltk:grammars/book_grammars/feat0.fcfg>>
|
247 |
+
|
248 |
+
The cache *no longer* uses weak references. A resource will not be
|
249 |
+
automatically expunged from the cache when no more objects are using
|
250 |
+
it. In the following example, when we clear the variable ``feat0``,
|
251 |
+
the reference count for the feature grammar object drops to zero.
|
252 |
+
However, the object remains cached:
|
253 |
+
|
254 |
+
>>> del feat0
|
255 |
+
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',
|
256 |
+
... verbose=True)
|
257 |
+
<<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
|
258 |
+
|
259 |
+
You can clear the entire contents of the cache, using
|
260 |
+
`nltk.data.clear_cache()`:
|
261 |
+
|
262 |
+
>>> nltk.data.clear_cache()
|
263 |
+
|
264 |
+
Retrieving other Data Sources
|
265 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
266 |
+
>>> formulas = nltk.data.load('grammars/book_grammars/background.fol')
|
267 |
+
>>> for f in formulas: print(str(f))
|
268 |
+
all x.(boxerdog(x) -> dog(x))
|
269 |
+
all x.(boxer(x) -> person(x))
|
270 |
+
all x.-(dog(x) & person(x))
|
271 |
+
all x.(married(x) <-> exists y.marry(x,y))
|
272 |
+
all x.(bark(x) -> dog(x))
|
273 |
+
all x y.(marry(x,y) -> (person(x) & person(y)))
|
274 |
+
-(Vincent = Mia)
|
275 |
+
-(Vincent = Fido)
|
276 |
+
-(Mia = Fido)
|
277 |
+
|
278 |
+
Regression Tests
|
279 |
+
~~~~~~~~~~~~~~~~
|
280 |
+
Create a temp dir for tests that write files:
|
281 |
+
|
282 |
+
>>> import tempfile, os
|
283 |
+
>>> tempdir = tempfile.mkdtemp()
|
284 |
+
>>> old_dir = os.path.abspath('.')
|
285 |
+
>>> os.chdir(tempdir)
|
286 |
+
|
287 |
+
The `retrieve()` function accepts all url types:
|
288 |
+
|
289 |
+
>>> urls = ['https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg',
|
290 |
+
... 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg'),
|
291 |
+
... 'nltk:grammars/sample_grammars/toy.cfg',
|
292 |
+
... 'grammars/sample_grammars/toy.cfg']
|
293 |
+
>>> for i, url in enumerate(urls):
|
294 |
+
... nltk.data.retrieve(url, 'toy-%d.cfg' % i)
|
295 |
+
Retrieving 'https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg', saving to 'toy-0.cfg'
|
296 |
+
Retrieving 'file:...toy.cfg', saving to 'toy-1.cfg'
|
297 |
+
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-2.cfg'
|
298 |
+
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-3.cfg'
|
299 |
+
|
300 |
+
Clean up the temp dir:
|
301 |
+
|
302 |
+
>>> os.chdir(old_dir)
|
303 |
+
>>> for f in os.listdir(tempdir):
|
304 |
+
... os.remove(os.path.join(tempdir, f))
|
305 |
+
>>> os.rmdir(tempdir)
|
306 |
+
|
307 |
+
Lazy Loader
|
308 |
+
-----------
|
309 |
+
A lazy loader is a wrapper object that defers loading a resource until
|
310 |
+
it is accessed or used in any way. This is mainly intended for
|
311 |
+
internal use by NLTK's corpus readers.
|
312 |
+
|
313 |
+
>>> # Create a lazy loader for toy.cfg.
|
314 |
+
>>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
|
315 |
+
|
316 |
+
>>> # Show that it's not loaded yet:
|
317 |
+
>>> object.__repr__(ll)
|
318 |
+
'<nltk.data.LazyLoader object at ...>'
|
319 |
+
|
320 |
+
>>> # printing it is enough to cause it to be loaded:
|
321 |
+
>>> print(ll)
|
322 |
+
<Grammar with 14 productions>
|
323 |
+
|
324 |
+
>>> # Show that it's now been loaded:
|
325 |
+
>>> object.__repr__(ll)
|
326 |
+
'<nltk.grammar.CFG object at ...>'
|
327 |
+
|
328 |
+
|
329 |
+
>>> # Test that accessing an attribute also loads it:
|
330 |
+
>>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
|
331 |
+
>>> ll.start()
|
332 |
+
S
|
333 |
+
>>> object.__repr__(ll)
|
334 |
+
'<nltk.grammar.CFG object at ...>'
|
335 |
+
|
336 |
+
Buffered Gzip Reading and Writing
|
337 |
+
---------------------------------
|
338 |
+
Write performance to gzip-compressed is extremely poor when the files become large.
|
339 |
+
File creation can become a bottleneck in those cases.
|
340 |
+
|
341 |
+
Read performance from large gzipped pickle files was improved in data.py by
|
342 |
+
buffering the reads. A similar fix can be applied to writes by buffering
|
343 |
+
the writes to a StringIO object first.
|
344 |
+
|
345 |
+
This is mainly intended for internal use. The test simply tests that reading
|
346 |
+
and writing work as intended and does not test how much improvement buffering
|
347 |
+
provides.
|
348 |
+
|
349 |
+
>>> from io import StringIO
|
350 |
+
>>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'wb', size=2**10)
|
351 |
+
>>> ans = []
|
352 |
+
>>> for i in range(10000):
|
353 |
+
... ans.append(str(i).encode('ascii'))
|
354 |
+
... test.write(str(i).encode('ascii'))
|
355 |
+
>>> test.close()
|
356 |
+
>>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'rb')
|
357 |
+
>>> test.read() == b''.join(ans)
|
358 |
+
True
|
359 |
+
>>> test.close()
|
360 |
+
>>> import os
|
361 |
+
>>> os.unlink('testbuf.gz')
|
362 |
+
|
363 |
+
JSON Encoding and Decoding
|
364 |
+
--------------------------
|
365 |
+
JSON serialization is used instead of pickle for some classes.
|
366 |
+
|
367 |
+
>>> from nltk import jsontags
|
368 |
+
>>> from nltk.jsontags import JSONTaggedEncoder, JSONTaggedDecoder, register_tag
|
369 |
+
>>> @jsontags.register_tag
|
370 |
+
... class JSONSerializable:
|
371 |
+
... json_tag = 'JSONSerializable'
|
372 |
+
...
|
373 |
+
... def __init__(self, n):
|
374 |
+
... self.n = n
|
375 |
+
...
|
376 |
+
... def encode_json_obj(self):
|
377 |
+
... return self.n
|
378 |
+
...
|
379 |
+
... @classmethod
|
380 |
+
... def decode_json_obj(cls, obj):
|
381 |
+
... n = obj
|
382 |
+
... return cls(n)
|
383 |
+
...
|
384 |
+
>>> JSONTaggedEncoder().encode(JSONSerializable(1))
|
385 |
+
'{"!JSONSerializable": 1}'
|
386 |
+
>>> JSONTaggedDecoder().decode('{"!JSONSerializable": 1}').n
|
387 |
+
1
|
llmeval-env/lib/python3.10/site-packages/nltk/test/drt.doctest
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
================================
|
5 |
+
Discourse Representation Theory
|
6 |
+
================================
|
7 |
+
|
8 |
+
>>> from nltk.sem import logic
|
9 |
+
>>> from nltk.inference import TableauProver
|
10 |
+
|
11 |
+
Overview
|
12 |
+
========
|
13 |
+
|
14 |
+
A DRS can be created with the ``DRS()`` constructor. This takes two arguments: a list of
|
15 |
+
discourse referents and list of conditions. .
|
16 |
+
|
17 |
+
>>> from nltk.sem.drt import *
|
18 |
+
>>> dexpr = DrtExpression.fromstring
|
19 |
+
>>> man_x = dexpr('man(x)')
|
20 |
+
>>> walk_x = dexpr('walk(x)')
|
21 |
+
>>> x = dexpr('x')
|
22 |
+
>>> print(DRS([x], [man_x, walk_x]))
|
23 |
+
([x],[man(x), walk(x)])
|
24 |
+
|
25 |
+
The ``parse()`` method can also be applied directly to DRS
|
26 |
+
expressions, which allows them to be specified more
|
27 |
+
easily.
|
28 |
+
|
29 |
+
>>> drs1 = dexpr('([x],[man(x),walk(x)])')
|
30 |
+
>>> print(drs1)
|
31 |
+
([x],[man(x), walk(x)])
|
32 |
+
|
33 |
+
DRSs can be *merged* using the ``+`` operator.
|
34 |
+
|
35 |
+
>>> drs2 = dexpr('([y],[woman(y),stop(y)])')
|
36 |
+
>>> drs3 = drs1 + drs2
|
37 |
+
>>> print(drs3)
|
38 |
+
(([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)]))
|
39 |
+
>>> print(drs3.simplify())
|
40 |
+
([x,y],[man(x), walk(x), woman(y), stop(y)])
|
41 |
+
|
42 |
+
We can embed DRSs as components of an ``implies`` condition.
|
43 |
+
|
44 |
+
>>> s = '([], [(%s -> %s)])' % (drs1, drs2)
|
45 |
+
>>> print(dexpr(s))
|
46 |
+
([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))])
|
47 |
+
|
48 |
+
The ``fol()`` method converts DRSs into FOL formulae.
|
49 |
+
|
50 |
+
>>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
|
51 |
+
exists x.(man(x) & walks(x))
|
52 |
+
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
|
53 |
+
all x.(man(x) -> walks(x))
|
54 |
+
|
55 |
+
In order to visualize a DRS, the ``pretty_format()`` method can be used.
|
56 |
+
|
57 |
+
>>> print(drs3.pretty_format())
|
58 |
+
_________ __________
|
59 |
+
| x | | y |
|
60 |
+
(|---------| + |----------|)
|
61 |
+
| man(x) | | woman(y) |
|
62 |
+
| walk(x) | | stop(y) |
|
63 |
+
|_________| |__________|
|
64 |
+
|
65 |
+
|
66 |
+
Parse to semantics
|
67 |
+
------------------
|
68 |
+
|
69 |
+
..
|
70 |
+
>>> logic._counter._value = 0
|
71 |
+
|
72 |
+
DRSs can be used for building compositional semantics in a feature
|
73 |
+
based grammar. To specify that we want to use DRSs, the appropriate
|
74 |
+
logic parser needs be passed as a parameter to ``load_earley()``
|
75 |
+
|
76 |
+
>>> from nltk.parse import load_parser
|
77 |
+
>>> from nltk.sem.drt import DrtParser
|
78 |
+
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser())
|
79 |
+
>>> for tree in parser.parse('a dog barks'.split()):
|
80 |
+
... print(tree.label()['SEM'].simplify())
|
81 |
+
...
|
82 |
+
([x],[dog(x), bark(x)])
|
83 |
+
|
84 |
+
Alternatively, a ``FeatStructReader`` can be passed with the ``logic_parser`` set on it
|
85 |
+
|
86 |
+
>>> from nltk.featstruct import FeatStructReader
|
87 |
+
>>> from nltk.grammar import FeatStructNonterminal
|
88 |
+
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser()))
|
89 |
+
>>> for tree in parser.parse('every girl chases a dog'.split()):
|
90 |
+
... print(tree.label()['SEM'].simplify().normalize())
|
91 |
+
...
|
92 |
+
([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))])
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
Unit Tests
|
97 |
+
==========
|
98 |
+
|
99 |
+
Parser
|
100 |
+
------
|
101 |
+
|
102 |
+
>>> print(dexpr(r'([x,y],[sees(x,y)])'))
|
103 |
+
([x,y],[sees(x,y)])
|
104 |
+
>>> print(dexpr(r'([x],[man(x), walks(x)])'))
|
105 |
+
([x],[man(x), walks(x)])
|
106 |
+
>>> print(dexpr(r'\x.([],[man(x), walks(x)])'))
|
107 |
+
\x.([],[man(x), walks(x)])
|
108 |
+
>>> print(dexpr(r'\x.\y.([],[sees(x,y)])'))
|
109 |
+
\x y.([],[sees(x,y)])
|
110 |
+
|
111 |
+
>>> print(dexpr(r'([x,y],[(x = y)])'))
|
112 |
+
([x,y],[(x = y)])
|
113 |
+
>>> print(dexpr(r'([x,y],[(x != y)])'))
|
114 |
+
([x,y],[-(x = y)])
|
115 |
+
|
116 |
+
>>> print(dexpr(r'\x.([],[walks(x)])(john)'))
|
117 |
+
(\x.([],[walks(x)]))(john)
|
118 |
+
>>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))'))
|
119 |
+
(\R x.([],[big(x,R)]))(\y.([],[mouse(y)]))
|
120 |
+
|
121 |
+
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))'))
|
122 |
+
(([x],[walks(x)]) + ([y],[runs(y)]))
|
123 |
+
>>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))'))
|
124 |
+
(([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)]))
|
125 |
+
>>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))'))
|
126 |
+
(([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)]))
|
127 |
+
>>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))'))
|
128 |
+
(([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)]))
|
129 |
+
|
130 |
+
>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))'))
|
131 |
+
(([],[walks(x)]) -> ([],[runs(x)]))
|
132 |
+
|
133 |
+
>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])'))
|
134 |
+
([x],[PRO(x), sees(John,x)])
|
135 |
+
>>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])'))
|
136 |
+
([x],[man(x), -([],[walks(x)])])
|
137 |
+
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])'))
|
138 |
+
([],[(([x],[man(x)]) -> ([],[walks(x)]))])
|
139 |
+
|
140 |
+
>>> print(dexpr(r'DRS([x],[walk(x)])'))
|
141 |
+
([x],[walk(x)])
|
142 |
+
>>> print(dexpr(r'DRS([x][walk(x)])'))
|
143 |
+
([x],[walk(x)])
|
144 |
+
>>> print(dexpr(r'([x][walk(x)])'))
|
145 |
+
([x],[walk(x)])
|
146 |
+
|
147 |
+
``simplify()``
|
148 |
+
--------------
|
149 |
+
|
150 |
+
>>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify())
|
151 |
+
([],[man(john), walks(john)])
|
152 |
+
>>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify())
|
153 |
+
([z],[dog(z), sees(john,mary)])
|
154 |
+
>>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify())
|
155 |
+
\x.([],[big(x,\y.([],[mouse(y)]))])
|
156 |
+
|
157 |
+
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify())
|
158 |
+
([x,y],[walks(x), runs(y)])
|
159 |
+
>>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify())
|
160 |
+
([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)])
|
161 |
+
>>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify())
|
162 |
+
([],[walks(x), runs(x), threes(x), fours(x)])
|
163 |
+
>>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \
|
164 |
+
... dexpr(r'([x,z1],[man(x), walks(z1)])')
|
165 |
+
True
|
166 |
+
>>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \
|
167 |
+
... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])')
|
168 |
+
True
|
169 |
+
|
170 |
+
>>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \
|
171 |
+
... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])')
|
172 |
+
True
|
173 |
+
|
174 |
+
>>> logic._counter._value = 0
|
175 |
+
>>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize())
|
176 |
+
([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)])
|
177 |
+
|
178 |
+
``fol()``
|
179 |
+
-----------
|
180 |
+
|
181 |
+
>>> print(dexpr(r'([x,y],[sees(x,y)])').fol())
|
182 |
+
exists x y.sees(x,y)
|
183 |
+
>>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
|
184 |
+
exists x.(man(x) & walks(x))
|
185 |
+
>>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol())
|
186 |
+
\x.(man(x) & walks(x))
|
187 |
+
>>> print(dexpr(r'\x y.([],[sees(x,y)])').fol())
|
188 |
+
\x y.sees(x,y)
|
189 |
+
|
190 |
+
>>> print(dexpr(r'\x.([],[walks(x)])(john)').fol())
|
191 |
+
\x.walks(x)(john)
|
192 |
+
>>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol())
|
193 |
+
(\R x.big(x,R))(\y.mouse(y))
|
194 |
+
|
195 |
+
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol())
|
196 |
+
(exists x.walks(x) & exists y.runs(y))
|
197 |
+
|
198 |
+
>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol())
|
199 |
+
(walks(x) -> runs(x))
|
200 |
+
|
201 |
+
>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol())
|
202 |
+
exists x.(PRO(x) & sees(John,x))
|
203 |
+
>>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol())
|
204 |
+
exists x.(man(x) & -walks(x))
|
205 |
+
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
|
206 |
+
all x.(man(x) -> walks(x))
|
207 |
+
|
208 |
+
>>> print(dexpr(r'([x],[man(x) | walks(x)])').fol())
|
209 |
+
exists x.(man(x) | walks(x))
|
210 |
+
>>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol())
|
211 |
+
(P(x) & exists x.walks(x))
|
212 |
+
|
213 |
+
``resolve_anaphora()``
|
214 |
+
----------------------
|
215 |
+
|
216 |
+
>>> from nltk.sem.drt import AnaphoraResolutionException
|
217 |
+
|
218 |
+
>>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])')))
|
219 |
+
([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])])
|
220 |
+
>>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])')))
|
221 |
+
([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))])
|
222 |
+
>>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify())
|
223 |
+
([x,y],[(x = y)])
|
224 |
+
>>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])')))
|
225 |
+
... except AnaphoraResolutionException as e: print(e)
|
226 |
+
Variable 'x' does not resolve to anything.
|
227 |
+
>>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])')))
|
228 |
+
([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)])
|
229 |
+
|
230 |
+
``equiv()``:
|
231 |
+
----------------
|
232 |
+
|
233 |
+
>>> a = dexpr(r'([x],[man(x), walks(x)])')
|
234 |
+
>>> b = dexpr(r'([x],[walks(x), man(x)])')
|
235 |
+
>>> print(a.equiv(b, TableauProver()))
|
236 |
+
True
|
237 |
+
|
238 |
+
|
239 |
+
``replace()``:
|
240 |
+
--------------
|
241 |
+
|
242 |
+
>>> a = dexpr(r'a')
|
243 |
+
>>> w = dexpr(r'w')
|
244 |
+
>>> x = dexpr(r'x')
|
245 |
+
>>> y = dexpr(r'y')
|
246 |
+
>>> z = dexpr(r'z')
|
247 |
+
|
248 |
+
|
249 |
+
replace bound
|
250 |
+
-------------
|
251 |
+
|
252 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False))
|
253 |
+
([x],[give(x,y,z)])
|
254 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True))
|
255 |
+
([a],[give(a,y,z)])
|
256 |
+
|
257 |
+
replace unbound
|
258 |
+
---------------
|
259 |
+
|
260 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False))
|
261 |
+
([x],[give(x,a,z)])
|
262 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True))
|
263 |
+
([x],[give(x,a,z)])
|
264 |
+
|
265 |
+
replace unbound with bound
|
266 |
+
--------------------------
|
267 |
+
|
268 |
+
>>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \
|
269 |
+
... dexpr('([z1],[give(z1,x,z)])')
|
270 |
+
True
|
271 |
+
>>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \
|
272 |
+
... dexpr('([z1],[give(z1,x,z)])')
|
273 |
+
True
|
274 |
+
|
275 |
+
replace unbound with unbound
|
276 |
+
----------------------------
|
277 |
+
|
278 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False))
|
279 |
+
([x],[give(x,z,z)])
|
280 |
+
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True))
|
281 |
+
([x],[give(x,z,z)])
|
282 |
+
|
283 |
+
|
284 |
+
replace unbound
|
285 |
+
---------------
|
286 |
+
|
287 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
|
288 |
+
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
|
289 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
|
290 |
+
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
|
291 |
+
|
292 |
+
replace bound
|
293 |
+
-------------
|
294 |
+
|
295 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False))
|
296 |
+
(([x],[P(x,y,z)]) + ([y],[Q(x,y,z)]))
|
297 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True))
|
298 |
+
(([a],[P(a,y,z)]) + ([y],[Q(a,y,z)]))
|
299 |
+
|
300 |
+
replace unbound with unbound
|
301 |
+
----------------------------
|
302 |
+
|
303 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
|
304 |
+
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
|
305 |
+
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
|
306 |
+
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
|
307 |
+
|
308 |
+
replace unbound with bound on same side
|
309 |
+
---------------------------------------
|
310 |
+
|
311 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \
|
312 |
+
... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
|
313 |
+
True
|
314 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \
|
315 |
+
... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
|
316 |
+
True
|
317 |
+
|
318 |
+
replace unbound with bound on other side
|
319 |
+
----------------------------------------
|
320 |
+
|
321 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \
|
322 |
+
... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
|
323 |
+
True
|
324 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \
|
325 |
+
... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
|
326 |
+
True
|
327 |
+
|
328 |
+
replace unbound with double bound
|
329 |
+
---------------------------------
|
330 |
+
|
331 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \
|
332 |
+
... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
|
333 |
+
True
|
334 |
+
>>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \
|
335 |
+
... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
|
336 |
+
True
|
337 |
+
|
338 |
+
|
339 |
+
regression tests
|
340 |
+
----------------
|
341 |
+
|
342 |
+
>>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])')
|
343 |
+
>>> print(d)
|
344 |
+
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
|
345 |
+
>>> print(d.pretty_format())
|
346 |
+
____________________________________
|
347 |
+
| x |
|
348 |
+
|------------------------------------|
|
349 |
+
| A(c) |
|
350 |
+
| ____________ ____________ |
|
351 |
+
| | y | | z | |
|
352 |
+
| (|------------| -> |------------|) |
|
353 |
+
| | B(x,y,z,a) | | C(x,y,z,a) | |
|
354 |
+
| |____________| |____________| |
|
355 |
+
|____________________________________|
|
356 |
+
>>> print(str(d))
|
357 |
+
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
|
358 |
+
>>> print(d.fol())
|
359 |
+
exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a)))
|
360 |
+
>>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r'))))
|
361 |
+
([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))])
|
362 |
+
>>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r'))))
|
363 |
+
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
|
364 |
+
>>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r'))))
|
365 |
+
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
|
366 |
+
>>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r'))))
|
367 |
+
([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))])
|
368 |
+
>>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True))
|
369 |
+
([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))])
|
370 |
+
>>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True))
|
371 |
+
([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))])
|
372 |
+
>>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True))
|
373 |
+
([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))])
|
374 |
+
>>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])'))
|
375 |
+
True
|
376 |
+
>>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])')
|
377 |
+
>>> sorted(d.free())
|
378 |
+
[Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
|
379 |
+
>>> sorted(d.variables())
|
380 |
+
[Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
|
381 |
+
>>> sorted(d.get_refs(True))
|
382 |
+
[Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
|
383 |
+
>>> sorted(d.conds[0].get_refs(False))
|
384 |
+
[Variable('x'), Variable('y')]
|
385 |
+
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality())
|
386 |
+
([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))])
|
387 |
+
>>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality())
|
388 |
+
(([x],[A(x,x)]) -> ([],[B(x,x)]))
|
389 |
+
>>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality())
|
390 |
+
(([x,y],[A(x,y)]) -> ([],[B(x,x)]))
|
391 |
+
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality())
|
392 |
+
([x],[A(x,x), ([],[B(x,x)])])
|
393 |
+
>>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality())
|
394 |
+
([x,y],[A(x,y), ([],[B(x,x)])])
|
395 |
+
>>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality())
|
396 |
+
([z9],[A(z9), B(z9), C(z9), D(z9)])
|
397 |
+
|
398 |
+
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality())
|
399 |
+
([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])])
|
400 |
+
>>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality())
|
401 |
+
([x],[A(x,x), B(x,x), C(x,x)])
|
402 |
+
>>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
|
403 |
+
(([x,y],[B(x,y)]) + ([x,y],[C(x,y)]))
|
404 |
+
>>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
|
405 |
+
(([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)]))
|
406 |
+
>>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
|
407 |
+
(([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)]))
|
408 |
+
>>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize())
|
409 |
+
(([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)]))
|
410 |
+
|
411 |
+
|
412 |
+
Parse errors
|
413 |
+
============
|
414 |
+
|
415 |
+
>>> def parse_error(drtstring):
|
416 |
+
... try: dexpr(drtstring)
|
417 |
+
... except logic.LogicalExpressionException as e: print(e)
|
418 |
+
|
419 |
+
>>> parse_error(r'')
|
420 |
+
End of input found. Expression expected.
|
421 |
+
<BLANKLINE>
|
422 |
+
^
|
423 |
+
>>> parse_error(r'(')
|
424 |
+
End of input found. Expression expected.
|
425 |
+
(
|
426 |
+
^
|
427 |
+
>>> parse_error(r'()')
|
428 |
+
Unexpected token: ')'. Expression expected.
|
429 |
+
()
|
430 |
+
^
|
431 |
+
>>> parse_error(r'([')
|
432 |
+
End of input found. Expected token ']'.
|
433 |
+
([
|
434 |
+
^
|
435 |
+
>>> parse_error(r'([,')
|
436 |
+
',' is an illegal variable name. Constants may not be quantified.
|
437 |
+
([,
|
438 |
+
^
|
439 |
+
>>> parse_error(r'([x,')
|
440 |
+
End of input found. Variable expected.
|
441 |
+
([x,
|
442 |
+
^
|
443 |
+
>>> parse_error(r'([]')
|
444 |
+
End of input found. Expected token '['.
|
445 |
+
([]
|
446 |
+
^
|
447 |
+
>>> parse_error(r'([][')
|
448 |
+
End of input found. Expected token ']'.
|
449 |
+
([][
|
450 |
+
^
|
451 |
+
>>> parse_error(r'([][,')
|
452 |
+
Unexpected token: ','. Expression expected.
|
453 |
+
([][,
|
454 |
+
^
|
455 |
+
>>> parse_error(r'([][]')
|
456 |
+
End of input found. Expected token ')'.
|
457 |
+
([][]
|
458 |
+
^
|
459 |
+
>>> parse_error(r'([x][man(x)]) |')
|
460 |
+
End of input found. Expression expected.
|
461 |
+
([x][man(x)]) |
|
462 |
+
^
|
463 |
+
|
464 |
+
Pretty Printing
|
465 |
+
===============
|
466 |
+
|
467 |
+
>>> dexpr(r"([],[])").pretty_print()
|
468 |
+
__
|
469 |
+
| |
|
470 |
+
|--|
|
471 |
+
|__|
|
472 |
+
|
473 |
+
>>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print()
|
474 |
+
_____________________________
|
475 |
+
| |
|
476 |
+
|-----------------------------|
|
477 |
+
| ________ _________ |
|
478 |
+
| | x | | | |
|
479 |
+
| (|--------| -> |---------|) |
|
480 |
+
| | big(x) | | bark(x) | |
|
481 |
+
| | dog(x) | |_________| |
|
482 |
+
| |________| |
|
483 |
+
| _________ |
|
484 |
+
| | x | |
|
485 |
+
| __ |---------| |
|
486 |
+
| | | walk(x) | |
|
487 |
+
| |_________| |
|
488 |
+
|_____________________________|
|
489 |
+
|
490 |
+
>>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print()
|
491 |
+
_________ _________
|
492 |
+
| x y | | z |
|
493 |
+
(|---------| + |---------|)
|
494 |
+
| (x = y) | | dog(z) |
|
495 |
+
|_________| | walk(z) |
|
496 |
+
|_________|
|
497 |
+
|
498 |
+
>>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print()
|
499 |
+
_______________________________
|
500 |
+
| |
|
501 |
+
|-------------------------------|
|
502 |
+
| ___ ___ _________ |
|
503 |
+
| | x | | y | | z | |
|
504 |
+
| (|---| | |---| | |---------|) |
|
505 |
+
| |___| |___| | dog(z) | |
|
506 |
+
| | walk(z) | |
|
507 |
+
| |_________| |
|
508 |
+
|_______________________________|
|
509 |
+
|
510 |
+
>>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print()
|
511 |
+
___ ________
|
512 |
+
\ | x | \ | |
|
513 |
+
/\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|)
|
514 |
+
|___| | dog(x) |
|
515 |
+
|________|
|
llmeval-env/lib/python3.10/site-packages/nltk/test/featstruct.doctest
ADDED
@@ -0,0 +1,1229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==================================
|
5 |
+
Feature Structures & Unification
|
6 |
+
==================================
|
7 |
+
>>> from nltk.featstruct import FeatStruct
|
8 |
+
>>> from nltk.sem.logic import Variable, VariableExpression, Expression
|
9 |
+
|
10 |
+
.. note:: For now, featstruct uses the older lambdalogic semantics
|
11 |
+
module. Eventually, it should be updated to use the new first
|
12 |
+
order predicate logic module.
|
13 |
+
|
14 |
+
Overview
|
15 |
+
~~~~~~~~
|
16 |
+
A feature structure is a mapping from feature identifiers to feature
|
17 |
+
values, where feature values can be simple values (like strings or
|
18 |
+
ints), nested feature structures, or variables:
|
19 |
+
|
20 |
+
>>> fs1 = FeatStruct(number='singular', person=3)
|
21 |
+
>>> print(fs1)
|
22 |
+
[ number = 'singular' ]
|
23 |
+
[ person = 3 ]
|
24 |
+
|
25 |
+
Feature structure may be nested:
|
26 |
+
|
27 |
+
>>> fs2 = FeatStruct(type='NP', agr=fs1)
|
28 |
+
>>> print(fs2)
|
29 |
+
[ agr = [ number = 'singular' ] ]
|
30 |
+
[ [ person = 3 ] ]
|
31 |
+
[ ]
|
32 |
+
[ type = 'NP' ]
|
33 |
+
|
34 |
+
Variables are used to indicate that two features should be assigned
|
35 |
+
the same value. For example, the following feature structure requires
|
36 |
+
that the feature fs3['agr']['number'] be bound to the same value as the
|
37 |
+
feature fs3['subj']['number'].
|
38 |
+
|
39 |
+
>>> fs3 = FeatStruct(agr=FeatStruct(number=Variable('?n')),
|
40 |
+
... subj=FeatStruct(number=Variable('?n')))
|
41 |
+
>>> print(fs3)
|
42 |
+
[ agr = [ number = ?n ] ]
|
43 |
+
[ ]
|
44 |
+
[ subj = [ number = ?n ] ]
|
45 |
+
|
46 |
+
Feature structures are typically used to represent partial information
|
47 |
+
about objects. A feature name that is not mapped to a value stands
|
48 |
+
for a feature whose value is unknown (*not* a feature without a
|
49 |
+
value). Two feature structures that represent (potentially
|
50 |
+
overlapping) information about the same object can be combined by
|
51 |
+
*unification*.
|
52 |
+
|
53 |
+
>>> print(fs2.unify(fs3))
|
54 |
+
[ agr = [ number = 'singular' ] ]
|
55 |
+
[ [ person = 3 ] ]
|
56 |
+
[ ]
|
57 |
+
[ subj = [ number = 'singular' ] ]
|
58 |
+
[ ]
|
59 |
+
[ type = 'NP' ]
|
60 |
+
|
61 |
+
When two inconsistent feature structures are unified, the unification
|
62 |
+
fails and returns ``None``.
|
63 |
+
|
64 |
+
>>> fs4 = FeatStruct(agr=FeatStruct(person=1))
|
65 |
+
>>> print(fs4.unify(fs2))
|
66 |
+
None
|
67 |
+
>>> print(fs2.unify(fs4))
|
68 |
+
None
|
69 |
+
|
70 |
+
..
|
71 |
+
>>> del fs1, fs2, fs3, fs4 # clean-up
|
72 |
+
|
73 |
+
Feature Structure Types
|
74 |
+
-----------------------
|
75 |
+
There are actually two types of feature structure:
|
76 |
+
|
77 |
+
- *feature dictionaries*, implemented by `FeatDict`, act like
|
78 |
+
Python dictionaries. Feature identifiers may be strings or
|
79 |
+
instances of the `Feature` class.
|
80 |
+
- *feature lists*, implemented by `FeatList`, act like Python
|
81 |
+
lists. Feature identifiers are integers.
|
82 |
+
|
83 |
+
When you construct a feature structure using the `FeatStruct`
|
84 |
+
constructor, it will automatically decide which type is appropriate:
|
85 |
+
|
86 |
+
>>> type(FeatStruct(number='singular'))
|
87 |
+
<class 'nltk.featstruct.FeatDict'>
|
88 |
+
>>> type(FeatStruct([1,2,3]))
|
89 |
+
<class 'nltk.featstruct.FeatList'>
|
90 |
+
|
91 |
+
Usually, we will just use feature dictionaries; but sometimes feature
|
92 |
+
lists can be useful too. Two feature lists will unify with each other
|
93 |
+
only if they have equal lengths, and all of their feature values
|
94 |
+
match. If you wish to write a feature list that contains 'unknown'
|
95 |
+
values, you must use variables:
|
96 |
+
|
97 |
+
>>> fs1 = FeatStruct([1,2,Variable('?y')])
|
98 |
+
>>> fs2 = FeatStruct([1,Variable('?x'),3])
|
99 |
+
>>> fs1.unify(fs2)
|
100 |
+
[1, 2, 3]
|
101 |
+
|
102 |
+
..
|
103 |
+
>>> del fs1, fs2 # clean-up
|
104 |
+
|
105 |
+
Parsing Feature Structure Strings
|
106 |
+
---------------------------------
|
107 |
+
Feature structures can be constructed directly from strings. Often,
|
108 |
+
this is more convenient than constructing them directly. NLTK can
|
109 |
+
parse most feature strings to produce the corresponding feature
|
110 |
+
structures. (But you must restrict your base feature values to
|
111 |
+
strings, ints, logic expressions (`nltk.sem.logic.Expression`), and a
|
112 |
+
few other types discussed below).
|
113 |
+
|
114 |
+
Feature dictionaries are written like Python dictionaries, except that
|
115 |
+
keys are not put in quotes; and square brackets (``[]``) are used
|
116 |
+
instead of braces (``{}``):
|
117 |
+
|
118 |
+
>>> FeatStruct('[tense="past", agr=[number="sing", person=3]]')
|
119 |
+
[agr=[number='sing', person=3], tense='past']
|
120 |
+
|
121 |
+
If a feature value is a single alphanumeric word, then it does not
|
122 |
+
need to be quoted -- it will be automatically treated as a string:
|
123 |
+
|
124 |
+
>>> FeatStruct('[tense=past, agr=[number=sing, person=3]]')
|
125 |
+
[agr=[number='sing', person=3], tense='past']
|
126 |
+
|
127 |
+
Feature lists are written like python lists:
|
128 |
+
|
129 |
+
>>> FeatStruct('[1, 2, 3]')
|
130 |
+
[1, 2, 3]
|
131 |
+
|
132 |
+
The expression ``[]`` is treated as an empty feature dictionary, not
|
133 |
+
an empty feature list:
|
134 |
+
|
135 |
+
>>> type(FeatStruct('[]'))
|
136 |
+
<class 'nltk.featstruct.FeatDict'>
|
137 |
+
|
138 |
+
Feature Paths
|
139 |
+
-------------
|
140 |
+
Features can be specified using *feature paths*, or tuples of feature
|
141 |
+
identifiers that specify path through the nested feature structures to
|
142 |
+
a value.
|
143 |
+
|
144 |
+
>>> fs1 = FeatStruct('[x=1, y=[1,2,[z=3]]]')
|
145 |
+
>>> fs1['y']
|
146 |
+
[1, 2, [z=3]]
|
147 |
+
>>> fs1['y', 2]
|
148 |
+
[z=3]
|
149 |
+
>>> fs1['y', 2, 'z']
|
150 |
+
3
|
151 |
+
|
152 |
+
..
|
153 |
+
>>> del fs1 # clean-up
|
154 |
+
|
155 |
+
Reentrance
|
156 |
+
----------
|
157 |
+
Feature structures may contain reentrant feature values. A *reentrant
|
158 |
+
feature value* is a single feature structure that can be accessed via
|
159 |
+
multiple feature paths.
|
160 |
+
|
161 |
+
>>> fs1 = FeatStruct(x='val')
|
162 |
+
>>> fs2 = FeatStruct(a=fs1, b=fs1)
|
163 |
+
>>> print(fs2)
|
164 |
+
[ a = (1) [ x = 'val' ] ]
|
165 |
+
[ ]
|
166 |
+
[ b -> (1) ]
|
167 |
+
>>> fs2
|
168 |
+
[a=(1)[x='val'], b->(1)]
|
169 |
+
|
170 |
+
As you can see, reentrane is displayed by marking a feature structure
|
171 |
+
with a unique identifier, in this case ``(1)``, the first time it is
|
172 |
+
encountered; and then using the special form ``var -> id`` whenever it
|
173 |
+
is encountered again. You can use the same notation to directly
|
174 |
+
create reentrant feature structures from strings.
|
175 |
+
|
176 |
+
>>> FeatStruct('[a=(1)[], b->(1), c=[d->(1)]]')
|
177 |
+
[a=(1)[], b->(1), c=[d->(1)]]
|
178 |
+
|
179 |
+
Reentrant feature structures may contain cycles:
|
180 |
+
|
181 |
+
>>> fs3 = FeatStruct('(1)[a->(1)]')
|
182 |
+
>>> fs3['a', 'a', 'a', 'a']
|
183 |
+
(1)[a->(1)]
|
184 |
+
>>> fs3['a', 'a', 'a', 'a'] is fs3
|
185 |
+
True
|
186 |
+
|
187 |
+
Unification preserves the reentrance relations imposed by both of the
|
188 |
+
unified feature structures. In the feature structure resulting from
|
189 |
+
unification, any modifications to a reentrant feature value will be
|
190 |
+
visible using any of its feature paths.
|
191 |
+
|
192 |
+
>>> fs3.unify(FeatStruct('[a=[b=12], c=33]'))
|
193 |
+
(1)[a->(1), b=12, c=33]
|
194 |
+
|
195 |
+
..
|
196 |
+
>>> del fs1, fs2, fs3 # clean-up
|
197 |
+
|
198 |
+
Feature Structure Equality
|
199 |
+
--------------------------
|
200 |
+
Two feature structures are considered equal if they assign the same
|
201 |
+
values to all features, *and* they contain the same reentrances.
|
202 |
+
|
203 |
+
>>> fs1 = FeatStruct('[a=(1)[x=1], b->(1)]')
|
204 |
+
>>> fs2 = FeatStruct('[a=(1)[x=1], b->(1)]')
|
205 |
+
>>> fs3 = FeatStruct('[a=[x=1], b=[x=1]]')
|
206 |
+
>>> fs1 == fs1, fs1 is fs1
|
207 |
+
(True, True)
|
208 |
+
>>> fs1 == fs2, fs1 is fs2
|
209 |
+
(True, False)
|
210 |
+
>>> fs1 == fs3, fs1 is fs3
|
211 |
+
(False, False)
|
212 |
+
|
213 |
+
Note that this differs from how Python dictionaries and lists define
|
214 |
+
equality -- in particular, Python dictionaries and lists ignore
|
215 |
+
reentrance relations. To test two feature structures for equality
|
216 |
+
while ignoring reentrance relations, use the `equal_values()` method:
|
217 |
+
|
218 |
+
>>> fs1.equal_values(fs1)
|
219 |
+
True
|
220 |
+
>>> fs1.equal_values(fs2)
|
221 |
+
True
|
222 |
+
>>> fs1.equal_values(fs3)
|
223 |
+
True
|
224 |
+
|
225 |
+
..
|
226 |
+
>>> del fs1, fs2, fs3 # clean-up
|
227 |
+
|
228 |
+
Feature Value Sets & Feature Value Tuples
|
229 |
+
-----------------------------------------
|
230 |
+
`nltk.featstruct` defines two new data types that are intended to be
|
231 |
+
used as feature values: `FeatureValueTuple` and `FeatureValueSet`.
|
232 |
+
Both of these types are considered base values -- i.e., unification
|
233 |
+
does *not* apply to them. However, variable binding *does* apply to
|
234 |
+
any values that they contain.
|
235 |
+
|
236 |
+
Feature value tuples are written with parentheses:
|
237 |
+
|
238 |
+
>>> fs1 = FeatStruct('[x=(?x, ?y)]')
|
239 |
+
>>> fs1
|
240 |
+
[x=(?x, ?y)]
|
241 |
+
>>> fs1.substitute_bindings({Variable('?x'): 1, Variable('?y'): 2})
|
242 |
+
[x=(1, 2)]
|
243 |
+
|
244 |
+
Feature sets are written with braces:
|
245 |
+
|
246 |
+
>>> fs1 = FeatStruct('[x={?x, ?y}]')
|
247 |
+
>>> fs1
|
248 |
+
[x={?x, ?y}]
|
249 |
+
>>> fs1.substitute_bindings({Variable('?x'): 1, Variable('?y'): 2})
|
250 |
+
[x={1, 2}]
|
251 |
+
|
252 |
+
In addition to the basic feature value tuple & set classes, nltk
|
253 |
+
defines feature value unions (for sets) and feature value
|
254 |
+
concatenations (for tuples). These are written using '+', and can be
|
255 |
+
used to combine sets & tuples:
|
256 |
+
|
257 |
+
>>> fs1 = FeatStruct('[x=((1, 2)+?z), z=?z]')
|
258 |
+
>>> fs1
|
259 |
+
[x=((1, 2)+?z), z=?z]
|
260 |
+
>>> fs1.unify(FeatStruct('[z=(3, 4, 5)]'))
|
261 |
+
[x=(1, 2, 3, 4, 5), z=(3, 4, 5)]
|
262 |
+
|
263 |
+
Thus, feature value tuples and sets can be used to build up tuples
|
264 |
+
and sets of values over the course of unification. For example, when
|
265 |
+
parsing sentences using a semantic feature grammar, feature sets or
|
266 |
+
feature tuples can be used to build a list of semantic predicates as
|
267 |
+
the sentence is parsed.
|
268 |
+
|
269 |
+
As was mentioned above, unification does not apply to feature value
|
270 |
+
tuples and sets. One reason for this that it's impossible to define a
|
271 |
+
single correct answer for unification when concatenation is used.
|
272 |
+
Consider the following example:
|
273 |
+
|
274 |
+
>>> fs1 = FeatStruct('[x=(1, 2, 3, 4)]')
|
275 |
+
>>> fs2 = FeatStruct('[x=(?a+?b), a=?a, b=?b]')
|
276 |
+
|
277 |
+
If unification applied to feature tuples, then the unification
|
278 |
+
algorithm would have to arbitrarily choose how to divide the tuple
|
279 |
+
(1,2,3,4) into two parts. Instead, the unification algorithm refuses
|
280 |
+
to make this decision, and simply unifies based on value. Because
|
281 |
+
(1,2,3,4) is not equal to (?a+?b), fs1 and fs2 will not unify:
|
282 |
+
|
283 |
+
>>> print(fs1.unify(fs2))
|
284 |
+
None
|
285 |
+
|
286 |
+
If you need a list-like structure that unification does apply to, use
|
287 |
+
`FeatList`.
|
288 |
+
|
289 |
+
..
|
290 |
+
>>> del fs1, fs2 # clean-up
|
291 |
+
|
292 |
+
Light-weight Feature Structures
|
293 |
+
-------------------------------
|
294 |
+
Many of the functions defined by `nltk.featstruct` can be applied
|
295 |
+
directly to simple Python dictionaries and lists, rather than to
|
296 |
+
full-fledged `FeatDict` and `FeatList` objects. In other words,
|
297 |
+
Python ``dicts`` and ``lists`` can be used as "light-weight" feature
|
298 |
+
structures.
|
299 |
+
|
300 |
+
>>> # Note: pprint prints dicts sorted
|
301 |
+
>>> from pprint import pprint
|
302 |
+
>>> from nltk.featstruct import unify
|
303 |
+
>>> pprint(unify(dict(x=1, y=dict()), dict(a='a', y=dict(b='b'))))
|
304 |
+
{'a': 'a', 'x': 1, 'y': {'b': 'b'}}
|
305 |
+
|
306 |
+
However, you should keep in mind the following caveats:
|
307 |
+
|
308 |
+
- Python dictionaries & lists ignore reentrance when checking for
|
309 |
+
equality between values. But two FeatStructs with different
|
310 |
+
reentrances are considered nonequal, even if all their base
|
311 |
+
values are equal.
|
312 |
+
|
313 |
+
- FeatStructs can be easily frozen, allowing them to be used as
|
314 |
+
keys in hash tables. Python dictionaries and lists can not.
|
315 |
+
|
316 |
+
- FeatStructs display reentrance in their string representations;
|
317 |
+
Python dictionaries and lists do not.
|
318 |
+
|
319 |
+
- FeatStructs may *not* be mixed with Python dictionaries and lists
|
320 |
+
(e.g., when performing unification).
|
321 |
+
|
322 |
+
- FeatStructs provide a number of useful methods, such as `walk()`
|
323 |
+
and `cyclic()`, which are not available for Python dicts & lists.
|
324 |
+
|
325 |
+
In general, if your feature structures will contain any reentrances,
|
326 |
+
or if you plan to use them as dictionary keys, it is strongly
|
327 |
+
recommended that you use full-fledged `FeatStruct` objects.
|
328 |
+
|
329 |
+
Custom Feature Values
|
330 |
+
---------------------
|
331 |
+
The abstract base class `CustomFeatureValue` can be used to define new
|
332 |
+
base value types that have custom unification methods. For example,
|
333 |
+
the following feature value type encodes a range, and defines
|
334 |
+
unification as taking the intersection on the ranges:
|
335 |
+
|
336 |
+
>>> from functools import total_ordering
|
337 |
+
>>> from nltk.featstruct import CustomFeatureValue, UnificationFailure
|
338 |
+
>>> @total_ordering
|
339 |
+
... class Range(CustomFeatureValue):
|
340 |
+
... def __init__(self, low, high):
|
341 |
+
... assert low <= high
|
342 |
+
... self.low = low
|
343 |
+
... self.high = high
|
344 |
+
... def unify(self, other):
|
345 |
+
... if not isinstance(other, Range):
|
346 |
+
... return UnificationFailure
|
347 |
+
... low = max(self.low, other.low)
|
348 |
+
... high = min(self.high, other.high)
|
349 |
+
... if low <= high: return Range(low, high)
|
350 |
+
... else: return UnificationFailure
|
351 |
+
... def __repr__(self):
|
352 |
+
... return '(%s<x<%s)' % (self.low, self.high)
|
353 |
+
... def __eq__(self, other):
|
354 |
+
... if not isinstance(other, Range):
|
355 |
+
... return False
|
356 |
+
... return (self.low == other.low) and (self.high == other.high)
|
357 |
+
... def __lt__(self, other):
|
358 |
+
... if not isinstance(other, Range):
|
359 |
+
... return True
|
360 |
+
... return (self.low, self.high) < (other.low, other.high)
|
361 |
+
|
362 |
+
>>> fs1 = FeatStruct(x=Range(5,8), y=FeatStruct(z=Range(7,22)))
|
363 |
+
>>> print(fs1.unify(FeatStruct(x=Range(6, 22))))
|
364 |
+
[ x = (6<x<8) ]
|
365 |
+
[ ]
|
366 |
+
[ y = [ z = (7<x<22) ] ]
|
367 |
+
>>> print(fs1.unify(FeatStruct(x=Range(9, 12))))
|
368 |
+
None
|
369 |
+
>>> print(fs1.unify(FeatStruct(x=12)))
|
370 |
+
None
|
371 |
+
>>> print(fs1.unify(FeatStruct('[x=?x, y=[z=?x]]')))
|
372 |
+
[ x = (7<x<8) ]
|
373 |
+
[ ]
|
374 |
+
[ y = [ z = (7<x<8) ] ]
|
375 |
+
|
376 |
+
Regression Tests
|
377 |
+
~~~~~~~~~~~~~~~~
|
378 |
+
|
379 |
+
Dictionary access methods (non-mutating)
|
380 |
+
----------------------------------------
|
381 |
+
|
382 |
+
>>> fs1 = FeatStruct(a=1, b=2, c=3)
|
383 |
+
>>> fs2 = FeatStruct(x=fs1, y='x')
|
384 |
+
|
385 |
+
Feature structures support all dictionary methods (excluding the class
|
386 |
+
method `dict.fromkeys()`). Non-mutating methods:
|
387 |
+
|
388 |
+
>>> sorted(fs2.keys()) # keys()
|
389 |
+
['x', 'y']
|
390 |
+
>>> sorted(fs2.values()) # values()
|
391 |
+
[[a=1, b=2, c=3], 'x']
|
392 |
+
>>> sorted(fs2.items()) # items()
|
393 |
+
[('x', [a=1, b=2, c=3]), ('y', 'x')]
|
394 |
+
>>> sorted(fs2) # __iter__()
|
395 |
+
['x', 'y']
|
396 |
+
>>> 'a' in fs2, 'x' in fs2 # __contains__()
|
397 |
+
(False, True)
|
398 |
+
>>> fs2.has_key('a'), fs2.has_key('x') # has_key()
|
399 |
+
(False, True)
|
400 |
+
>>> fs2['x'], fs2['y'] # __getitem__()
|
401 |
+
([a=1, b=2, c=3], 'x')
|
402 |
+
>>> fs2['a'] # __getitem__()
|
403 |
+
Traceback (most recent call last):
|
404 |
+
. . .
|
405 |
+
KeyError: 'a'
|
406 |
+
>>> fs2.get('x'), fs2.get('y'), fs2.get('a') # get()
|
407 |
+
([a=1, b=2, c=3], 'x', None)
|
408 |
+
>>> fs2.get('x', 'hello'), fs2.get('a', 'hello') # get()
|
409 |
+
([a=1, b=2, c=3], 'hello')
|
410 |
+
>>> len(fs1), len(fs2) # __len__
|
411 |
+
(3, 2)
|
412 |
+
>>> fs2.copy() # copy()
|
413 |
+
[x=[a=1, b=2, c=3], y='x']
|
414 |
+
>>> fs2.copy() is fs2 # copy()
|
415 |
+
False
|
416 |
+
|
417 |
+
Note: by default, `FeatStruct.copy()` does a deep copy. Use
|
418 |
+
`FeatStruct.copy(deep=False)` for a shallow copy.
|
419 |
+
|
420 |
+
..
|
421 |
+
>>> del fs1, fs2 # clean-up.
|
422 |
+
|
423 |
+
Dictionary access methods (mutating)
|
424 |
+
------------------------------------
|
425 |
+
>>> fs1 = FeatStruct(a=1, b=2, c=3)
|
426 |
+
>>> fs2 = FeatStruct(x=fs1, y='x')
|
427 |
+
|
428 |
+
Setting features (`__setitem__()`)
|
429 |
+
|
430 |
+
>>> fs1['c'] = 5
|
431 |
+
>>> fs1
|
432 |
+
[a=1, b=2, c=5]
|
433 |
+
>>> fs1['x'] = 12
|
434 |
+
>>> fs1
|
435 |
+
[a=1, b=2, c=5, x=12]
|
436 |
+
>>> fs2['x', 'a'] = 2
|
437 |
+
>>> fs2
|
438 |
+
[x=[a=2, b=2, c=5, x=12], y='x']
|
439 |
+
>>> fs1
|
440 |
+
[a=2, b=2, c=5, x=12]
|
441 |
+
|
442 |
+
Deleting features (`__delitem__()`)
|
443 |
+
|
444 |
+
>>> del fs1['x']
|
445 |
+
>>> fs1
|
446 |
+
[a=2, b=2, c=5]
|
447 |
+
>>> del fs2['x', 'a']
|
448 |
+
>>> fs1
|
449 |
+
[b=2, c=5]
|
450 |
+
|
451 |
+
`setdefault()`:
|
452 |
+
|
453 |
+
>>> fs1.setdefault('b', 99)
|
454 |
+
2
|
455 |
+
>>> fs1
|
456 |
+
[b=2, c=5]
|
457 |
+
>>> fs1.setdefault('x', 99)
|
458 |
+
99
|
459 |
+
>>> fs1
|
460 |
+
[b=2, c=5, x=99]
|
461 |
+
|
462 |
+
`update()`:
|
463 |
+
|
464 |
+
>>> fs2.update({'a':'A', 'b':'B'}, c='C')
|
465 |
+
>>> fs2
|
466 |
+
[a='A', b='B', c='C', x=[b=2, c=5, x=99], y='x']
|
467 |
+
|
468 |
+
`pop()`:
|
469 |
+
|
470 |
+
>>> fs2.pop('a')
|
471 |
+
'A'
|
472 |
+
>>> fs2
|
473 |
+
[b='B', c='C', x=[b=2, c=5, x=99], y='x']
|
474 |
+
>>> fs2.pop('a')
|
475 |
+
Traceback (most recent call last):
|
476 |
+
. . .
|
477 |
+
KeyError: 'a'
|
478 |
+
>>> fs2.pop('a', 'foo')
|
479 |
+
'foo'
|
480 |
+
>>> fs2
|
481 |
+
[b='B', c='C', x=[b=2, c=5, x=99], y='x']
|
482 |
+
|
483 |
+
`clear()`:
|
484 |
+
|
485 |
+
>>> fs1.clear()
|
486 |
+
>>> fs1
|
487 |
+
[]
|
488 |
+
>>> fs2
|
489 |
+
[b='B', c='C', x=[], y='x']
|
490 |
+
|
491 |
+
`popitem()`:
|
492 |
+
|
493 |
+
>>> sorted([fs2.popitem() for i in range(len(fs2))])
|
494 |
+
[('b', 'B'), ('c', 'C'), ('x', []), ('y', 'x')]
|
495 |
+
>>> fs2
|
496 |
+
[]
|
497 |
+
|
498 |
+
Once a feature structure has been frozen, it may not be mutated.
|
499 |
+
|
500 |
+
>>> fs1 = FeatStruct('[x=1, y=2, z=[a=3]]')
|
501 |
+
>>> fs1.freeze()
|
502 |
+
>>> fs1.frozen()
|
503 |
+
True
|
504 |
+
>>> fs1['z'].frozen()
|
505 |
+
True
|
506 |
+
|
507 |
+
>>> fs1['x'] = 5
|
508 |
+
Traceback (most recent call last):
|
509 |
+
. . .
|
510 |
+
ValueError: Frozen FeatStructs may not be modified.
|
511 |
+
>>> del fs1['x']
|
512 |
+
Traceback (most recent call last):
|
513 |
+
. . .
|
514 |
+
ValueError: Frozen FeatStructs may not be modified.
|
515 |
+
>>> fs1.clear()
|
516 |
+
Traceback (most recent call last):
|
517 |
+
. . .
|
518 |
+
ValueError: Frozen FeatStructs may not be modified.
|
519 |
+
>>> fs1.pop('x')
|
520 |
+
Traceback (most recent call last):
|
521 |
+
. . .
|
522 |
+
ValueError: Frozen FeatStructs may not be modified.
|
523 |
+
>>> fs1.popitem()
|
524 |
+
Traceback (most recent call last):
|
525 |
+
. . .
|
526 |
+
ValueError: Frozen FeatStructs may not be modified.
|
527 |
+
>>> fs1.setdefault('x')
|
528 |
+
Traceback (most recent call last):
|
529 |
+
. . .
|
530 |
+
ValueError: Frozen FeatStructs may not be modified.
|
531 |
+
>>> fs1.update(z=22)
|
532 |
+
Traceback (most recent call last):
|
533 |
+
. . .
|
534 |
+
ValueError: Frozen FeatStructs may not be modified.
|
535 |
+
|
536 |
+
..
|
537 |
+
>>> del fs1, fs2 # clean-up.
|
538 |
+
|
539 |
+
Feature Paths
|
540 |
+
-------------
|
541 |
+
Make sure that __getitem__ with feature paths works as intended:
|
542 |
+
|
543 |
+
>>> fs1 = FeatStruct(a=1, b=2,
|
544 |
+
... c=FeatStruct(
|
545 |
+
... d=FeatStruct(e=12),
|
546 |
+
... f=FeatStruct(g=55, h='hello')))
|
547 |
+
>>> fs1[()]
|
548 |
+
[a=1, b=2, c=[d=[e=12], f=[g=55, h='hello']]]
|
549 |
+
>>> fs1['a'], fs1[('a',)]
|
550 |
+
(1, 1)
|
551 |
+
>>> fs1['c','d','e']
|
552 |
+
12
|
553 |
+
>>> fs1['c','f','g']
|
554 |
+
55
|
555 |
+
|
556 |
+
Feature paths that select unknown features raise KeyError:
|
557 |
+
|
558 |
+
>>> fs1['c', 'f', 'e']
|
559 |
+
Traceback (most recent call last):
|
560 |
+
. . .
|
561 |
+
KeyError: ('c', 'f', 'e')
|
562 |
+
>>> fs1['q', 'p']
|
563 |
+
Traceback (most recent call last):
|
564 |
+
. . .
|
565 |
+
KeyError: ('q', 'p')
|
566 |
+
|
567 |
+
Feature paths that try to go 'through' a feature that's not a feature
|
568 |
+
structure raise KeyError:
|
569 |
+
|
570 |
+
>>> fs1['a', 'b']
|
571 |
+
Traceback (most recent call last):
|
572 |
+
. . .
|
573 |
+
KeyError: ('a', 'b')
|
574 |
+
|
575 |
+
Feature paths can go through reentrant structures:
|
576 |
+
|
577 |
+
>>> fs2 = FeatStruct('(1)[a=[b=[c->(1), d=5], e=11]]')
|
578 |
+
>>> fs2['a', 'b', 'c', 'a', 'e']
|
579 |
+
11
|
580 |
+
>>> fs2['a', 'b', 'c', 'a', 'b', 'd']
|
581 |
+
5
|
582 |
+
>>> fs2[tuple('abcabcabcabcabcabcabcabcabcabca')]
|
583 |
+
(1)[b=[c=[a->(1)], d=5], e=11]
|
584 |
+
|
585 |
+
Indexing requires strings, `Feature`\s, or tuples; other types raise a
|
586 |
+
TypeError:
|
587 |
+
|
588 |
+
>>> fs2[12]
|
589 |
+
Traceback (most recent call last):
|
590 |
+
. . .
|
591 |
+
TypeError: Expected feature name or path. Got 12.
|
592 |
+
>>> fs2[list('abc')]
|
593 |
+
Traceback (most recent call last):
|
594 |
+
. . .
|
595 |
+
TypeError: Expected feature name or path. Got ['a', 'b', 'c'].
|
596 |
+
|
597 |
+
Feature paths can also be used with `get()`, `has_key()`, and
|
598 |
+
`__contains__()`.
|
599 |
+
|
600 |
+
>>> fpath1 = tuple('abcabc')
|
601 |
+
>>> fpath2 = tuple('abcabz')
|
602 |
+
>>> fs2.get(fpath1), fs2.get(fpath2)
|
603 |
+
((1)[a=[b=[c->(1), d=5], e=11]], None)
|
604 |
+
>>> fpath1 in fs2, fpath2 in fs2
|
605 |
+
(True, False)
|
606 |
+
>>> fs2.has_key(fpath1), fs2.has_key(fpath2)
|
607 |
+
(True, False)
|
608 |
+
|
609 |
+
..
|
610 |
+
>>> del fs1, fs2 # clean-up
|
611 |
+
|
612 |
+
Reading Feature Structures
|
613 |
+
--------------------------
|
614 |
+
|
615 |
+
Empty feature struct:
|
616 |
+
|
617 |
+
>>> FeatStruct('[]')
|
618 |
+
[]
|
619 |
+
|
620 |
+
Test features with integer values:
|
621 |
+
|
622 |
+
>>> FeatStruct('[a=12, b=-33, c=0]')
|
623 |
+
[a=12, b=-33, c=0]
|
624 |
+
|
625 |
+
Test features with string values. Either single or double quotes may
|
626 |
+
be used. Strings are evaluated just like python strings -- in
|
627 |
+
particular, you can use escape sequences and 'u' and 'r' prefixes, and
|
628 |
+
triple-quoted strings.
|
629 |
+
|
630 |
+
>>> FeatStruct('[a="", b="hello", c="\'", d=\'\', e=\'"\']')
|
631 |
+
[a='', b='hello', c="'", d='', e='"']
|
632 |
+
>>> FeatStruct(r'[a="\\", b="\"", c="\x6f\\y", d="12"]')
|
633 |
+
[a='\\', b='"', c='o\\y', d='12']
|
634 |
+
>>> FeatStruct(r'[b=r"a\b\c"]')
|
635 |
+
[b='a\\b\\c']
|
636 |
+
>>> FeatStruct('[x="""a"""]')
|
637 |
+
[x='a']
|
638 |
+
|
639 |
+
Test parsing of reentrant feature structures.
|
640 |
+
|
641 |
+
>>> FeatStruct('[a=(1)[], b->(1)]')
|
642 |
+
[a=(1)[], b->(1)]
|
643 |
+
>>> FeatStruct('[a=(1)[x=1, y=2], b->(1)]')
|
644 |
+
[a=(1)[x=1, y=2], b->(1)]
|
645 |
+
|
646 |
+
Test parsing of cyclic feature structures.
|
647 |
+
|
648 |
+
>>> FeatStruct('[a=(1)[b->(1)]]')
|
649 |
+
[a=(1)[b->(1)]]
|
650 |
+
>>> FeatStruct('(1)[a=[b=[c->(1)]]]')
|
651 |
+
(1)[a=[b=[c->(1)]]]
|
652 |
+
|
653 |
+
Strings of the form "+name" and "-name" may be used to specify boolean
|
654 |
+
values.
|
655 |
+
|
656 |
+
>>> FeatStruct('[-bar, +baz, +foo]')
|
657 |
+
[-bar, +baz, +foo]
|
658 |
+
|
659 |
+
None, True, and False are recognized as values:
|
660 |
+
|
661 |
+
>>> FeatStruct('[bar=True, baz=False, foo=None]')
|
662 |
+
[+bar, -baz, foo=None]
|
663 |
+
|
664 |
+
Special features:
|
665 |
+
|
666 |
+
>>> FeatStruct('NP/VP')
|
667 |
+
NP[]/VP[]
|
668 |
+
>>> FeatStruct('?x/?x')
|
669 |
+
?x[]/?x[]
|
670 |
+
>>> print(FeatStruct('VP[+fin, agr=?x, tense=past]/NP[+pl, agr=?x]'))
|
671 |
+
[ *type* = 'VP' ]
|
672 |
+
[ ]
|
673 |
+
[ [ *type* = 'NP' ] ]
|
674 |
+
[ *slash* = [ agr = ?x ] ]
|
675 |
+
[ [ pl = True ] ]
|
676 |
+
[ ]
|
677 |
+
[ agr = ?x ]
|
678 |
+
[ fin = True ]
|
679 |
+
[ tense = 'past' ]
|
680 |
+
|
681 |
+
Here the slash feature gets coerced:
|
682 |
+
|
683 |
+
>>> FeatStruct('[*slash*=a, x=b, *type*="NP"]')
|
684 |
+
NP[x='b']/a[]
|
685 |
+
|
686 |
+
>>> FeatStruct('NP[sem=<bob>]/NP')
|
687 |
+
NP[sem=<bob>]/NP[]
|
688 |
+
>>> FeatStruct('S[sem=<walk(bob)>]')
|
689 |
+
S[sem=<walk(bob)>]
|
690 |
+
>>> print(FeatStruct('NP[sem=<bob>]/NP'))
|
691 |
+
[ *type* = 'NP' ]
|
692 |
+
[ ]
|
693 |
+
[ *slash* = [ *type* = 'NP' ] ]
|
694 |
+
[ ]
|
695 |
+
[ sem = <bob> ]
|
696 |
+
|
697 |
+
Playing with ranges:
|
698 |
+
|
699 |
+
>>> from nltk.featstruct import RangeFeature, FeatStructReader
|
700 |
+
>>> width = RangeFeature('width')
|
701 |
+
>>> reader = FeatStructReader([width])
|
702 |
+
>>> fs1 = reader.fromstring('[*width*=-5:12]')
|
703 |
+
>>> fs2 = reader.fromstring('[*width*=2:123]')
|
704 |
+
>>> fs3 = reader.fromstring('[*width*=-7:-2]')
|
705 |
+
>>> fs1.unify(fs2)
|
706 |
+
[*width*=(2, 12)]
|
707 |
+
>>> fs1.unify(fs3)
|
708 |
+
[*width*=(-5, -2)]
|
709 |
+
>>> print(fs2.unify(fs3)) # no overlap in width.
|
710 |
+
None
|
711 |
+
|
712 |
+
The slash feature has a default value of 'False':
|
713 |
+
|
714 |
+
>>> print(FeatStruct('NP[]/VP').unify(FeatStruct('NP[]'), trace=1))
|
715 |
+
<BLANKLINE>
|
716 |
+
Unification trace:
|
717 |
+
/ NP[]/VP[]
|
718 |
+
|\ NP[]
|
719 |
+
|
|
720 |
+
| Unify feature: *type*
|
721 |
+
| / 'NP'
|
722 |
+
| |\ 'NP'
|
723 |
+
| |
|
724 |
+
| +-->'NP'
|
725 |
+
|
|
726 |
+
| Unify feature: *slash*
|
727 |
+
| / VP[]
|
728 |
+
| |\ False
|
729 |
+
| |
|
730 |
+
X X <-- FAIL
|
731 |
+
None
|
732 |
+
|
733 |
+
The demo structures from category.py. They all parse, but they don't
|
734 |
+
do quite the right thing, -- ?x vs x.
|
735 |
+
|
736 |
+
>>> FeatStruct(pos='n', agr=FeatStruct(number='pl', gender='f'))
|
737 |
+
[agr=[gender='f', number='pl'], pos='n']
|
738 |
+
>>> FeatStruct(r'NP[sem=<bob>]/NP')
|
739 |
+
NP[sem=<bob>]/NP[]
|
740 |
+
>>> FeatStruct(r'S[sem=<app(?x, ?y)>]')
|
741 |
+
S[sem=<?x(?y)>]
|
742 |
+
>>> FeatStruct('?x/?x')
|
743 |
+
?x[]/?x[]
|
744 |
+
>>> FeatStruct('VP[+fin, agr=?x, tense=past]/NP[+pl, agr=?x]')
|
745 |
+
VP[agr=?x, +fin, tense='past']/NP[agr=?x, +pl]
|
746 |
+
>>> FeatStruct('S[sem = <app(?subj, ?vp)>]')
|
747 |
+
S[sem=<?subj(?vp)>]
|
748 |
+
|
749 |
+
>>> FeatStruct('S')
|
750 |
+
S[]
|
751 |
+
|
752 |
+
The parser also includes support for reading sets and tuples.
|
753 |
+
|
754 |
+
>>> FeatStruct('[x={1,2,2,2}, y={/}]')
|
755 |
+
[x={1, 2}, y={/}]
|
756 |
+
>>> FeatStruct('[x=(1,2,2,2), y=()]')
|
757 |
+
[x=(1, 2, 2, 2), y=()]
|
758 |
+
>>> print(FeatStruct('[x=(1,[z=(1,2,?x)],?z,{/})]'))
|
759 |
+
[ x = (1, [ z = (1, 2, ?x) ], ?z, {/}) ]
|
760 |
+
|
761 |
+
Note that we can't put a featstruct inside a tuple, because doing so
|
762 |
+
would hash it, and it's not frozen yet:
|
763 |
+
|
764 |
+
>>> print(FeatStruct('[x={[]}]'))
|
765 |
+
Traceback (most recent call last):
|
766 |
+
. . .
|
767 |
+
TypeError: FeatStructs must be frozen before they can be hashed.
|
768 |
+
|
769 |
+
There's a special syntax for taking the union of sets: "{...+...}".
|
770 |
+
The elements should only be variables or sets.
|
771 |
+
|
772 |
+
>>> FeatStruct('[x={?a+?b+{1,2,3}}]')
|
773 |
+
[x={?a+?b+{1, 2, 3}}]
|
774 |
+
|
775 |
+
There's a special syntax for taking the concatenation of tuples:
|
776 |
+
"(...+...)". The elements should only be variables or tuples.
|
777 |
+
|
778 |
+
>>> FeatStruct('[x=(?a+?b+(1,2,3))]')
|
779 |
+
[x=(?a+?b+(1, 2, 3))]
|
780 |
+
|
781 |
+
Parsing gives helpful messages if your string contains an error.
|
782 |
+
|
783 |
+
>>> FeatStruct('[a=, b=5]]')
|
784 |
+
Traceback (most recent call last):
|
785 |
+
. . .
|
786 |
+
ValueError: Error parsing feature structure
|
787 |
+
[a=, b=5]]
|
788 |
+
^ Expected value
|
789 |
+
>>> FeatStruct('[a=12 22, b=33]')
|
790 |
+
Traceback (most recent call last):
|
791 |
+
. . .
|
792 |
+
ValueError: Error parsing feature structure
|
793 |
+
[a=12 22, b=33]
|
794 |
+
^ Expected comma
|
795 |
+
>>> FeatStruct('[a=5] [b=6]')
|
796 |
+
Traceback (most recent call last):
|
797 |
+
. . .
|
798 |
+
ValueError: Error parsing feature structure
|
799 |
+
[a=5] [b=6]
|
800 |
+
^ Expected end of string
|
801 |
+
>>> FeatStruct(' *++*')
|
802 |
+
Traceback (most recent call last):
|
803 |
+
. . .
|
804 |
+
ValueError: Error parsing feature structure
|
805 |
+
*++*
|
806 |
+
^ Expected open bracket or identifier
|
807 |
+
>>> FeatStruct('[x->(1)]')
|
808 |
+
Traceback (most recent call last):
|
809 |
+
. . .
|
810 |
+
ValueError: Error parsing feature structure
|
811 |
+
[x->(1)]
|
812 |
+
^ Expected bound identifier
|
813 |
+
>>> FeatStruct('[x->y]')
|
814 |
+
Traceback (most recent call last):
|
815 |
+
. . .
|
816 |
+
ValueError: Error parsing feature structure
|
817 |
+
[x->y]
|
818 |
+
^ Expected identifier
|
819 |
+
>>> FeatStruct('')
|
820 |
+
Traceback (most recent call last):
|
821 |
+
. . .
|
822 |
+
ValueError: Error parsing feature structure
|
823 |
+
<BLANKLINE>
|
824 |
+
^ Expected open bracket or identifier
|
825 |
+
|
826 |
+
|
827 |
+
Unification
|
828 |
+
-----------
|
829 |
+
Very simple unifications give the expected results:
|
830 |
+
|
831 |
+
>>> FeatStruct().unify(FeatStruct())
|
832 |
+
[]
|
833 |
+
>>> FeatStruct(number='singular').unify(FeatStruct())
|
834 |
+
[number='singular']
|
835 |
+
>>> FeatStruct().unify(FeatStruct(number='singular'))
|
836 |
+
[number='singular']
|
837 |
+
>>> FeatStruct(number='singular').unify(FeatStruct(person=3))
|
838 |
+
[number='singular', person=3]
|
839 |
+
|
840 |
+
Merging nested structures:
|
841 |
+
|
842 |
+
>>> fs1 = FeatStruct('[A=[B=b]]')
|
843 |
+
>>> fs2 = FeatStruct('[A=[C=c]]')
|
844 |
+
>>> fs1.unify(fs2)
|
845 |
+
[A=[B='b', C='c']]
|
846 |
+
>>> fs2.unify(fs1)
|
847 |
+
[A=[B='b', C='c']]
|
848 |
+
|
849 |
+
A basic case of reentrant unification
|
850 |
+
|
851 |
+
>>> fs4 = FeatStruct('[A=(1)[B=b], E=[F->(1)]]')
|
852 |
+
>>> fs5 = FeatStruct("[A=[C='c'], E=[F=[D='d']]]")
|
853 |
+
>>> fs4.unify(fs5)
|
854 |
+
[A=(1)[B='b', C='c', D='d'], E=[F->(1)]]
|
855 |
+
>>> fs5.unify(fs4)
|
856 |
+
[A=(1)[B='b', C='c', D='d'], E=[F->(1)]]
|
857 |
+
|
858 |
+
More than 2 paths to a value
|
859 |
+
|
860 |
+
>>> fs1 = FeatStruct("[a=[],b=[],c=[],d=[]]")
|
861 |
+
>>> fs2 = FeatStruct('[a=(1)[], b->(1), c->(1), d->(1)]')
|
862 |
+
>>> fs1.unify(fs2)
|
863 |
+
[a=(1)[], b->(1), c->(1), d->(1)]
|
864 |
+
|
865 |
+
fs1[a] gets unified with itself
|
866 |
+
|
867 |
+
>>> fs1 = FeatStruct('[x=(1)[], y->(1)]')
|
868 |
+
>>> fs2 = FeatStruct('[x=(1)[], y->(1)]')
|
869 |
+
>>> fs1.unify(fs2)
|
870 |
+
[x=(1)[], y->(1)]
|
871 |
+
|
872 |
+
Bound variables should get forwarded appropriately
|
873 |
+
|
874 |
+
>>> fs1 = FeatStruct('[A=(1)[X=x], B->(1), C=?cvar, D=?dvar]')
|
875 |
+
>>> fs2 = FeatStruct('[A=(1)[Y=y], B=(2)[Z=z], C->(1), D->(2)]')
|
876 |
+
>>> fs1.unify(fs2)
|
877 |
+
[A=(1)[X='x', Y='y', Z='z'], B->(1), C->(1), D->(1)]
|
878 |
+
>>> fs2.unify(fs1)
|
879 |
+
[A=(1)[X='x', Y='y', Z='z'], B->(1), C->(1), D->(1)]
|
880 |
+
|
881 |
+
Cyclic structure created by unification.
|
882 |
+
|
883 |
+
>>> fs1 = FeatStruct('[F=(1)[], G->(1)]')
|
884 |
+
>>> fs2 = FeatStruct('[F=[H=(2)[]], G->(2)]')
|
885 |
+
>>> fs3 = fs1.unify(fs2)
|
886 |
+
>>> fs3
|
887 |
+
[F=(1)[H->(1)], G->(1)]
|
888 |
+
>>> fs3['F'] is fs3['G']
|
889 |
+
True
|
890 |
+
>>> fs3['F'] is fs3['G']['H']
|
891 |
+
True
|
892 |
+
>>> fs3['F'] is fs3['G']['H']['H']
|
893 |
+
True
|
894 |
+
>>> fs3['F'] is fs3['F']['H']['H']['H']['H']['H']['H']['H']['H']
|
895 |
+
True
|
896 |
+
|
897 |
+
Cyclic structure created w/ variables.
|
898 |
+
|
899 |
+
>>> fs1 = FeatStruct('[F=[H=?x]]')
|
900 |
+
>>> fs2 = FeatStruct('[F=?x]')
|
901 |
+
>>> fs3 = fs1.unify(fs2, rename_vars=False)
|
902 |
+
>>> fs3
|
903 |
+
[F=(1)[H->(1)]]
|
904 |
+
>>> fs3['F'] is fs3['F']['H']
|
905 |
+
True
|
906 |
+
>>> fs3['F'] is fs3['F']['H']['H']
|
907 |
+
True
|
908 |
+
>>> fs3['F'] is fs3['F']['H']['H']['H']['H']['H']['H']['H']['H']
|
909 |
+
True
|
910 |
+
|
911 |
+
Unifying w/ a cyclic feature structure.
|
912 |
+
|
913 |
+
>>> fs4 = FeatStruct('[F=[H=[H=[H=(1)[]]]], K->(1)]')
|
914 |
+
>>> fs3.unify(fs4)
|
915 |
+
[F=(1)[H->(1)], K->(1)]
|
916 |
+
>>> fs4.unify(fs3)
|
917 |
+
[F=(1)[H->(1)], K->(1)]
|
918 |
+
|
919 |
+
Variable bindings should preserve reentrance.
|
920 |
+
|
921 |
+
>>> bindings = {}
|
922 |
+
>>> fs1 = FeatStruct("[a=?x]")
|
923 |
+
>>> fs2 = fs1.unify(FeatStruct("[a=[]]"), bindings)
|
924 |
+
>>> fs2['a'] is bindings[Variable('?x')]
|
925 |
+
True
|
926 |
+
>>> fs2.unify(FeatStruct("[b=?x]"), bindings)
|
927 |
+
[a=(1)[], b->(1)]
|
928 |
+
|
929 |
+
Aliased variable tests
|
930 |
+
|
931 |
+
>>> fs1 = FeatStruct("[a=?x, b=?x]")
|
932 |
+
>>> fs2 = FeatStruct("[b=?y, c=?y]")
|
933 |
+
>>> bindings = {}
|
934 |
+
>>> fs3 = fs1.unify(fs2, bindings)
|
935 |
+
>>> fs3
|
936 |
+
[a=?x, b=?x, c=?x]
|
937 |
+
>>> bindings
|
938 |
+
{Variable('?y'): Variable('?x')}
|
939 |
+
>>> fs3.unify(FeatStruct("[a=1]"))
|
940 |
+
[a=1, b=1, c=1]
|
941 |
+
|
942 |
+
If we keep track of the bindings, then we can use the same variable
|
943 |
+
over multiple calls to unify.
|
944 |
+
|
945 |
+
>>> bindings = {}
|
946 |
+
>>> fs1 = FeatStruct('[a=?x]')
|
947 |
+
>>> fs2 = fs1.unify(FeatStruct('[a=[]]'), bindings)
|
948 |
+
>>> fs2.unify(FeatStruct('[b=?x]'), bindings)
|
949 |
+
[a=(1)[], b->(1)]
|
950 |
+
>>> bindings
|
951 |
+
{Variable('?x'): []}
|
952 |
+
|
953 |
+
..
|
954 |
+
>>> del fs1, fs2, fs3, fs4, fs5 # clean-up
|
955 |
+
|
956 |
+
Unification Bindings
|
957 |
+
--------------------
|
958 |
+
|
959 |
+
>>> bindings = {}
|
960 |
+
>>> fs1 = FeatStruct('[a=?x]')
|
961 |
+
>>> fs2 = FeatStruct('[a=12]')
|
962 |
+
>>> fs3 = FeatStruct('[b=?x]')
|
963 |
+
>>> fs1.unify(fs2, bindings)
|
964 |
+
[a=12]
|
965 |
+
>>> bindings
|
966 |
+
{Variable('?x'): 12}
|
967 |
+
>>> fs3.substitute_bindings(bindings)
|
968 |
+
[b=12]
|
969 |
+
>>> fs3 # substitute_bindings didn't mutate fs3.
|
970 |
+
[b=?x]
|
971 |
+
>>> fs2.unify(fs3, bindings)
|
972 |
+
[a=12, b=12]
|
973 |
+
|
974 |
+
>>> bindings = {}
|
975 |
+
>>> fs1 = FeatStruct('[a=?x, b=1]')
|
976 |
+
>>> fs2 = FeatStruct('[a=5, b=?x]')
|
977 |
+
>>> fs1.unify(fs2, bindings)
|
978 |
+
[a=5, b=1]
|
979 |
+
>>> sorted(bindings.items())
|
980 |
+
[(Variable('?x'), 5), (Variable('?x2'), 1)]
|
981 |
+
|
982 |
+
..
|
983 |
+
>>> del fs1, fs2, fs3 # clean-up
|
984 |
+
|
985 |
+
Expressions
|
986 |
+
-----------
|
987 |
+
|
988 |
+
>>> e = Expression.fromstring('\\P y.P(z,y)')
|
989 |
+
>>> fs1 = FeatStruct(x=e, y=Variable('z'))
|
990 |
+
>>> fs2 = FeatStruct(y=VariableExpression(Variable('John')))
|
991 |
+
>>> fs1.unify(fs2)
|
992 |
+
[x=<\P y.P(John,y)>, y=<John>]
|
993 |
+
|
994 |
+
Remove Variables
|
995 |
+
----------------
|
996 |
+
|
997 |
+
>>> FeatStruct('[a=?x, b=12, c=[d=?y]]').remove_variables()
|
998 |
+
[b=12, c=[]]
|
999 |
+
>>> FeatStruct('(1)[a=[b=?x,c->(1)]]').remove_variables()
|
1000 |
+
(1)[a=[c->(1)]]
|
1001 |
+
|
1002 |
+
Equality & Hashing
|
1003 |
+
------------------
|
1004 |
+
The `equal_values` method checks whether two feature structures assign
|
1005 |
+
the same value to every feature. If the optional argument
|
1006 |
+
``check_reentrances`` is supplied, then it also returns false if there
|
1007 |
+
is any difference in the reentrances.
|
1008 |
+
|
1009 |
+
>>> a = FeatStruct('(1)[x->(1)]')
|
1010 |
+
>>> b = FeatStruct('(1)[x->(1)]')
|
1011 |
+
>>> c = FeatStruct('(1)[x=[x->(1)]]')
|
1012 |
+
>>> d = FeatStruct('[x=(1)[x->(1)]]')
|
1013 |
+
>>> e = FeatStruct('(1)[x=[x->(1), y=1], y=1]')
|
1014 |
+
>>> def compare(x,y):
|
1015 |
+
... assert x.equal_values(y, True) == y.equal_values(x, True)
|
1016 |
+
... assert x.equal_values(y, False) == y.equal_values(x, False)
|
1017 |
+
... if x.equal_values(y, True):
|
1018 |
+
... assert x.equal_values(y, False)
|
1019 |
+
... print('equal values, same reentrance')
|
1020 |
+
... elif x.equal_values(y, False):
|
1021 |
+
... print('equal values, different reentrance')
|
1022 |
+
... else:
|
1023 |
+
... print('different values')
|
1024 |
+
|
1025 |
+
>>> compare(a, a)
|
1026 |
+
equal values, same reentrance
|
1027 |
+
>>> compare(a, b)
|
1028 |
+
equal values, same reentrance
|
1029 |
+
>>> compare(a, c)
|
1030 |
+
equal values, different reentrance
|
1031 |
+
>>> compare(a, d)
|
1032 |
+
equal values, different reentrance
|
1033 |
+
>>> compare(c, d)
|
1034 |
+
equal values, different reentrance
|
1035 |
+
>>> compare(a, e)
|
1036 |
+
different values
|
1037 |
+
>>> compare(c, e)
|
1038 |
+
different values
|
1039 |
+
>>> compare(d, e)
|
1040 |
+
different values
|
1041 |
+
>>> compare(e, e)
|
1042 |
+
equal values, same reentrance
|
1043 |
+
|
1044 |
+
Feature structures may not be hashed until they are frozen:
|
1045 |
+
|
1046 |
+
>>> hash(a)
|
1047 |
+
Traceback (most recent call last):
|
1048 |
+
. . .
|
1049 |
+
TypeError: FeatStructs must be frozen before they can be hashed.
|
1050 |
+
>>> a.freeze()
|
1051 |
+
>>> v = hash(a)
|
1052 |
+
|
1053 |
+
Feature structures define hash consistently. The following example
|
1054 |
+
looks at the hash value for each (fs1,fs2) pair; if their hash values
|
1055 |
+
are not equal, then they must not be equal. If their hash values are
|
1056 |
+
equal, then display a message, and indicate whether their values are
|
1057 |
+
indeed equal. Note that c and d currently have the same hash value,
|
1058 |
+
even though they are not equal. That is not a bug, strictly speaking,
|
1059 |
+
but it wouldn't be a bad thing if it changed.
|
1060 |
+
|
1061 |
+
>>> for fstruct in (a, b, c, d, e):
|
1062 |
+
... fstruct.freeze()
|
1063 |
+
>>> for fs1_name in 'abcde':
|
1064 |
+
... for fs2_name in 'abcde':
|
1065 |
+
... fs1 = locals()[fs1_name]
|
1066 |
+
... fs2 = locals()[fs2_name]
|
1067 |
+
... if hash(fs1) != hash(fs2):
|
1068 |
+
... assert fs1 != fs2
|
1069 |
+
... else:
|
1070 |
+
... print('%s and %s have the same hash value,' %
|
1071 |
+
... (fs1_name, fs2_name))
|
1072 |
+
... if fs1 == fs2: print('and are equal')
|
1073 |
+
... else: print('and are not equal')
|
1074 |
+
a and a have the same hash value, and are equal
|
1075 |
+
a and b have the same hash value, and are equal
|
1076 |
+
b and a have the same hash value, and are equal
|
1077 |
+
b and b have the same hash value, and are equal
|
1078 |
+
c and c have the same hash value, and are equal
|
1079 |
+
c and d have the same hash value, and are not equal
|
1080 |
+
d and c have the same hash value, and are not equal
|
1081 |
+
d and d have the same hash value, and are equal
|
1082 |
+
e and e have the same hash value, and are equal
|
1083 |
+
|
1084 |
+
..
|
1085 |
+
>>> del a, b, c, d, e, v # clean-up
|
1086 |
+
|
1087 |
+
Tracing
|
1088 |
+
-------
|
1089 |
+
|
1090 |
+
>>> fs1 = FeatStruct('[a=[b=(1)[], c=?x], d->(1), e=[f=?x]]')
|
1091 |
+
>>> fs2 = FeatStruct('[a=(1)[c="C"], e=[g->(1)]]')
|
1092 |
+
>>> fs1.unify(fs2, trace=True)
|
1093 |
+
<BLANKLINE>
|
1094 |
+
Unification trace:
|
1095 |
+
/ [a=[b=(1)[], c=?x], d->(1), e=[f=?x]]
|
1096 |
+
|\ [a=(1)[c='C'], e=[g->(1)]]
|
1097 |
+
|
|
1098 |
+
| Unify feature: a
|
1099 |
+
| / [b=[], c=?x]
|
1100 |
+
| |\ [c='C']
|
1101 |
+
| |
|
1102 |
+
| | Unify feature: a.c
|
1103 |
+
| | / ?x
|
1104 |
+
| | |\ 'C'
|
1105 |
+
| | |
|
1106 |
+
| | +-->Variable('?x')
|
1107 |
+
| |
|
1108 |
+
| +-->[b=[], c=?x]
|
1109 |
+
| Bindings: {?x: 'C'}
|
1110 |
+
|
|
1111 |
+
| Unify feature: e
|
1112 |
+
| / [f=?x]
|
1113 |
+
| |\ [g=[c='C']]
|
1114 |
+
| |
|
1115 |
+
| +-->[f=?x, g=[b=[], c=?x]]
|
1116 |
+
| Bindings: {?x: 'C'}
|
1117 |
+
|
|
1118 |
+
+-->[a=(1)[b=(2)[], c='C'], d->(2), e=[f='C', g->(1)]]
|
1119 |
+
Bindings: {?x: 'C'}
|
1120 |
+
[a=(1)[b=(2)[], c='C'], d->(2), e=[f='C', g->(1)]]
|
1121 |
+
>>>
|
1122 |
+
>>> fs1 = FeatStruct('[a=?x, b=?z, c=?z]')
|
1123 |
+
>>> fs2 = FeatStruct('[a=?y, b=?y, c=?q]')
|
1124 |
+
>>> #fs1.unify(fs2, trace=True)
|
1125 |
+
>>>
|
1126 |
+
|
1127 |
+
..
|
1128 |
+
>>> del fs1, fs2 # clean-up
|
1129 |
+
|
1130 |
+
Unification on Dicts & Lists
|
1131 |
+
----------------------------
|
1132 |
+
It's possible to do unification on dictionaries:
|
1133 |
+
|
1134 |
+
>>> from nltk.featstruct import unify
|
1135 |
+
>>> pprint(unify(dict(x=1, y=dict(z=2)), dict(x=1, q=5)), width=1)
|
1136 |
+
{'q': 5, 'x': 1, 'y': {'z': 2}}
|
1137 |
+
|
1138 |
+
It's possible to do unification on lists as well:
|
1139 |
+
|
1140 |
+
>>> unify([1, 2, 3], [1, Variable('x'), 3])
|
1141 |
+
[1, 2, 3]
|
1142 |
+
|
1143 |
+
Mixing dicts and lists is fine:
|
1144 |
+
|
1145 |
+
>>> pprint(unify([dict(x=1, y=dict(z=2)),3], [dict(x=1, q=5),3]),
|
1146 |
+
... width=1)
|
1147 |
+
[{'q': 5, 'x': 1, 'y': {'z': 2}}, 3]
|
1148 |
+
|
1149 |
+
Mixing dicts and FeatStructs is discouraged:
|
1150 |
+
|
1151 |
+
>>> unify(dict(x=1), FeatStruct(x=1))
|
1152 |
+
Traceback (most recent call last):
|
1153 |
+
. . .
|
1154 |
+
ValueError: Mixing FeatStruct objects with Python dicts and lists is not supported.
|
1155 |
+
|
1156 |
+
But you can do it if you really want, by explicitly stating that both
|
1157 |
+
dictionaries and FeatStructs should be treated as feature structures:
|
1158 |
+
|
1159 |
+
>>> unify(dict(x=1), FeatStruct(x=1), fs_class=(dict, FeatStruct))
|
1160 |
+
{'x': 1}
|
1161 |
+
|
1162 |
+
Finding Conflicts
|
1163 |
+
-----------------
|
1164 |
+
|
1165 |
+
>>> from nltk.featstruct import conflicts
|
1166 |
+
>>> fs1 = FeatStruct('[a=[b=(1)[c=2], d->(1), e=[f->(1)]]]')
|
1167 |
+
>>> fs2 = FeatStruct('[a=[b=[c=[x=5]], d=[c=2], e=[f=[c=3]]]]')
|
1168 |
+
>>> for path in conflicts(fs1, fs2):
|
1169 |
+
... print('%-8s: %r vs %r' % ('.'.join(path), fs1[path], fs2[path]))
|
1170 |
+
a.b.c : 2 vs [x=5]
|
1171 |
+
a.e.f.c : 2 vs 3
|
1172 |
+
|
1173 |
+
..
|
1174 |
+
>>> del fs1, fs2 # clean-up
|
1175 |
+
|
1176 |
+
Retracting Bindings
|
1177 |
+
-------------------
|
1178 |
+
|
1179 |
+
>>> from nltk.featstruct import retract_bindings
|
1180 |
+
>>> bindings = {}
|
1181 |
+
>>> fs1 = FeatStruct('[a=?x, b=[c=?y]]')
|
1182 |
+
>>> fs2 = FeatStruct('[a=(1)[c=[d=1]], b->(1)]')
|
1183 |
+
>>> fs3 = fs1.unify(fs2, bindings)
|
1184 |
+
>>> print(fs3)
|
1185 |
+
[ a = (1) [ c = [ d = 1 ] ] ]
|
1186 |
+
[ ]
|
1187 |
+
[ b -> (1) ]
|
1188 |
+
>>> pprint(bindings)
|
1189 |
+
{Variable('?x'): [c=[d=1]], Variable('?y'): [d=1]}
|
1190 |
+
>>> retract_bindings(fs3, bindings)
|
1191 |
+
[a=?x, b=?x]
|
1192 |
+
>>> pprint(bindings)
|
1193 |
+
{Variable('?x'): [c=?y], Variable('?y'): [d=1]}
|
1194 |
+
|
1195 |
+
Squashed Bugs
|
1196 |
+
~~~~~~~~~~~~~
|
1197 |
+
In svn rev 5167, unifying two feature structures that used the same
|
1198 |
+
variable would cause those variables to become aliased in the output.
|
1199 |
+
|
1200 |
+
>>> fs1 = FeatStruct('[a=?x]')
|
1201 |
+
>>> fs2 = FeatStruct('[b=?x]')
|
1202 |
+
>>> fs1.unify(fs2)
|
1203 |
+
[a=?x, b=?x2]
|
1204 |
+
|
1205 |
+
There was a bug in svn revision 5172 that caused `rename_variables` to
|
1206 |
+
rename variables to names that are already used.
|
1207 |
+
|
1208 |
+
>>> FeatStruct('[a=?x, b=?x2]').rename_variables(
|
1209 |
+
... vars=[Variable('?x')])
|
1210 |
+
[a=?x3, b=?x2]
|
1211 |
+
>>> fs1 = FeatStruct('[a=?x]')
|
1212 |
+
>>> fs2 = FeatStruct('[a=?x, b=?x2]')
|
1213 |
+
>>> fs1.unify(fs2)
|
1214 |
+
[a=?x, b=?x2]
|
1215 |
+
|
1216 |
+
There was a bug in svn rev 5167 that caused us to get the following
|
1217 |
+
example wrong. Basically the problem was that we only followed
|
1218 |
+
'forward' pointers for other, not self, when unifying two feature
|
1219 |
+
structures. (nb: this test assumes that features are unified in
|
1220 |
+
alphabetical order -- if they are not, it might pass even if the bug
|
1221 |
+
is present.)
|
1222 |
+
|
1223 |
+
>>> fs1 = FeatStruct('[a=[x=1], b=?x, c=?x]')
|
1224 |
+
>>> fs2 = FeatStruct('[a=(1)[], b->(1), c=[x=2]]')
|
1225 |
+
>>> print(fs1.unify(fs2))
|
1226 |
+
None
|
1227 |
+
|
1228 |
+
..
|
1229 |
+
>>> del fs1, fs2 # clean-up
|
llmeval-env/lib/python3.10/site-packages/nltk/test/framenet.doctest
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
========
|
5 |
+
FrameNet
|
6 |
+
========
|
7 |
+
|
8 |
+
The FrameNet corpus is a lexical database of English that is both human-
|
9 |
+
and machine-readable, based on annotating examples of how words are used
|
10 |
+
in actual texts. FrameNet is based on a theory of meaning called Frame
|
11 |
+
Semantics, deriving from the work of Charles J. Fillmore and colleagues.
|
12 |
+
The basic idea is straightforward: that the meanings of most words can
|
13 |
+
best be understood on the basis of a semantic frame: a description of a
|
14 |
+
type of event, relation, or entity and the participants in it. For
|
15 |
+
example, the concept of cooking typically involves a person doing the
|
16 |
+
cooking (Cook), the food that is to be cooked (Food), something to hold
|
17 |
+
the food while cooking (Container) and a source of heat
|
18 |
+
(Heating_instrument). In the FrameNet project, this is represented as a
|
19 |
+
frame called Apply_heat, and the Cook, Food, Heating_instrument and
|
20 |
+
Container are called frame elements (FEs). Words that evoke this frame,
|
21 |
+
such as fry, bake, boil, and broil, are called lexical units (LUs) of
|
22 |
+
the Apply_heat frame. The job of FrameNet is to define the frames
|
23 |
+
and to annotate sentences to show how the FEs fit syntactically around
|
24 |
+
the word that evokes the frame.
|
25 |
+
|
26 |
+
------
|
27 |
+
Frames
|
28 |
+
------
|
29 |
+
|
30 |
+
A Frame is a script-like conceptual structure that describes a
|
31 |
+
particular type of situation, object, or event along with the
|
32 |
+
participants and props that are needed for that Frame. For
|
33 |
+
example, the "Apply_heat" frame describes a common situation
|
34 |
+
involving a Cook, some Food, and a Heating_Instrument, and is
|
35 |
+
evoked by words such as bake, blanch, boil, broil, brown,
|
36 |
+
simmer, steam, etc.
|
37 |
+
|
38 |
+
We call the roles of a Frame "frame elements" (FEs) and the
|
39 |
+
frame-evoking words are called "lexical units" (LUs).
|
40 |
+
|
41 |
+
FrameNet includes relations between Frames. Several types of
|
42 |
+
relations are defined, of which the most important are:
|
43 |
+
|
44 |
+
- Inheritance: An IS-A relation. The child frame is a subtype
|
45 |
+
of the parent frame, and each FE in the parent is bound to
|
46 |
+
a corresponding FE in the child. An example is the
|
47 |
+
"Revenge" frame which inherits from the
|
48 |
+
"Rewards_and_punishments" frame.
|
49 |
+
|
50 |
+
- Using: The child frame presupposes the parent frame as
|
51 |
+
background, e.g the "Speed" frame "uses" (or presupposes)
|
52 |
+
the "Motion" frame; however, not all parent FEs need to be
|
53 |
+
bound to child FEs.
|
54 |
+
|
55 |
+
- Subframe: The child frame is a subevent of a complex event
|
56 |
+
represented by the parent, e.g. the "Criminal_process" frame
|
57 |
+
has subframes of "Arrest", "Arraignment", "Trial", and
|
58 |
+
"Sentencing".
|
59 |
+
|
60 |
+
- Perspective_on: The child frame provides a particular
|
61 |
+
perspective on an un-perspectivized parent frame. A pair of
|
62 |
+
examples consists of the "Hiring" and "Get_a_job" frames,
|
63 |
+
which perspectivize the "Employment_start" frame from the
|
64 |
+
Employer's and the Employee's point of view, respectively.
|
65 |
+
|
66 |
+
To get a list of all of the Frames in FrameNet, you can use the
|
67 |
+
`frames()` function. If you supply a regular expression pattern to the
|
68 |
+
`frames()` function, you will get a list of all Frames whose names match
|
69 |
+
that pattern:
|
70 |
+
|
71 |
+
>>> from pprint import pprint
|
72 |
+
>>> from operator import itemgetter
|
73 |
+
>>> from nltk.corpus import framenet as fn
|
74 |
+
>>> from nltk.corpus.reader.framenet import PrettyList
|
75 |
+
>>> x = fn.frames(r'(?i)crim')
|
76 |
+
>>> x.sort(key=itemgetter('ID'))
|
77 |
+
>>> x
|
78 |
+
[<frame ID=200 name=Criminal_process>, <frame ID=500 name=Criminal_investigation>, ...]
|
79 |
+
>>> PrettyList(sorted(x, key=itemgetter('ID')))
|
80 |
+
[<frame ID=200 name=Criminal_process>, <frame ID=500 name=Criminal_investigation>, ...]
|
81 |
+
|
82 |
+
To get the details of a particular Frame, you can use the `frame()`
|
83 |
+
function passing in the frame number:
|
84 |
+
|
85 |
+
>>> from pprint import pprint
|
86 |
+
>>> from nltk.corpus import framenet as fn
|
87 |
+
>>> f = fn.frame(202)
|
88 |
+
>>> f.ID
|
89 |
+
202
|
90 |
+
>>> f.name
|
91 |
+
'Arrest'
|
92 |
+
>>> f.definition
|
93 |
+
"Authorities charge a Suspect, who is under suspicion of having committed a crime..."
|
94 |
+
>>> len(f.lexUnit)
|
95 |
+
11
|
96 |
+
>>> pprint(sorted([x for x in f.FE]))
|
97 |
+
['Authorities',
|
98 |
+
'Charges',
|
99 |
+
'Co-participant',
|
100 |
+
'Manner',
|
101 |
+
'Means',
|
102 |
+
'Offense',
|
103 |
+
'Place',
|
104 |
+
'Purpose',
|
105 |
+
'Source_of_legal_authority',
|
106 |
+
'Suspect',
|
107 |
+
'Time',
|
108 |
+
'Type']
|
109 |
+
>>> pprint(f.frameRelations)
|
110 |
+
[<Parent=Intentionally_affect -- Inheritance -> Child=Arrest>, <Complex=Criminal_process -- Subframe -> Component=Arrest>, ...]
|
111 |
+
|
112 |
+
The `frame()` function shown above returns a dict object containing
|
113 |
+
detailed information about the Frame. See the documentation on the
|
114 |
+
`frame()` function for the specifics.
|
115 |
+
|
116 |
+
You can also search for Frames by their Lexical Units (LUs). The
|
117 |
+
`frames_by_lemma()` function returns a list of all frames that contain
|
118 |
+
LUs in which the 'name' attribute of the LU matches the given regular
|
119 |
+
expression. Note that LU names are composed of "lemma.POS", where the
|
120 |
+
"lemma" part can be made up of either a single lexeme (e.g. 'run') or
|
121 |
+
multiple lexemes (e.g. 'a little') (see below).
|
122 |
+
|
123 |
+
>>> PrettyList(sorted(fn.frames_by_lemma(r'(?i)a little'), key=itemgetter('ID')))
|
124 |
+
[<frame ID=189 name=Quanti...>, <frame ID=2001 name=Degree>]
|
125 |
+
|
126 |
+
-------------
|
127 |
+
Lexical Units
|
128 |
+
-------------
|
129 |
+
|
130 |
+
A lexical unit (LU) is a pairing of a word with a meaning. For
|
131 |
+
example, the "Apply_heat" Frame describes a common situation
|
132 |
+
involving a Cook, some Food, and a Heating Instrument, and is
|
133 |
+
_evoked_ by words such as bake, blanch, boil, broil, brown,
|
134 |
+
simmer, steam, etc. These frame-evoking words are the LUs in the
|
135 |
+
Apply_heat frame. Each sense of a polysemous word is a different
|
136 |
+
LU.
|
137 |
+
|
138 |
+
We have used the word "word" in talking about LUs. The reality
|
139 |
+
is actually rather complex. When we say that the word "bake" is
|
140 |
+
polysemous, we mean that the lemma "bake.v" (which has the
|
141 |
+
word-forms "bake", "bakes", "baked", and "baking") is linked to
|
142 |
+
three different frames:
|
143 |
+
|
144 |
+
- Apply_heat: "Michelle baked the potatoes for 45 minutes."
|
145 |
+
|
146 |
+
- Cooking_creation: "Michelle baked her mother a cake for her birthday."
|
147 |
+
|
148 |
+
- Absorb_heat: "The potatoes have to bake for more than 30 minutes."
|
149 |
+
|
150 |
+
These constitute three different LUs, with different
|
151 |
+
definitions.
|
152 |
+
|
153 |
+
Multiword expressions such as "given name" and hyphenated words
|
154 |
+
like "shut-eye" can also be LUs. Idiomatic phrases such as
|
155 |
+
"middle of nowhere" and "give the slip (to)" are also defined as
|
156 |
+
LUs in the appropriate frames ("Isolated_places" and "Evading",
|
157 |
+
respectively), and their internal structure is not analyzed.
|
158 |
+
|
159 |
+
Framenet provides multiple annotated examples of each sense of a
|
160 |
+
word (i.e. each LU). Moreover, the set of examples
|
161 |
+
(approximately 20 per LU) illustrates all of the combinatorial
|
162 |
+
possibilities of the lexical unit.
|
163 |
+
|
164 |
+
Each LU is linked to a Frame, and hence to the other words which
|
165 |
+
evoke that Frame. This makes the FrameNet database similar to a
|
166 |
+
thesaurus, grouping together semantically similar words.
|
167 |
+
|
168 |
+
In the simplest case, frame-evoking words are verbs such as
|
169 |
+
"fried" in:
|
170 |
+
|
171 |
+
"Matilde fried the catfish in a heavy iron skillet."
|
172 |
+
|
173 |
+
Sometimes event nouns may evoke a Frame. For example,
|
174 |
+
"reduction" evokes "Cause_change_of_scalar_position" in:
|
175 |
+
|
176 |
+
"...the reduction of debt levels to $665 million from $2.6 billion."
|
177 |
+
|
178 |
+
Adjectives may also evoke a Frame. For example, "asleep" may
|
179 |
+
evoke the "Sleep" frame as in:
|
180 |
+
|
181 |
+
"They were asleep for hours."
|
182 |
+
|
183 |
+
Many common nouns, such as artifacts like "hat" or "tower",
|
184 |
+
typically serve as dependents rather than clearly evoking their
|
185 |
+
own frames.
|
186 |
+
|
187 |
+
Details for a specific lexical unit can be obtained using this class's
|
188 |
+
`lus()` function, which takes an optional regular expression
|
189 |
+
pattern that will be matched against the name of the lexical unit:
|
190 |
+
|
191 |
+
>>> from pprint import pprint
|
192 |
+
>>> PrettyList(sorted(fn.lus(r'(?i)a little'), key=itemgetter('ID')))
|
193 |
+
[<lu ID=14733 name=a little.n>, <lu ID=14743 name=a little.adv>, ...]
|
194 |
+
|
195 |
+
You can obtain detailed information on a particular LU by calling the
|
196 |
+
`lu()` function and passing in an LU's 'ID' number:
|
197 |
+
|
198 |
+
>>> from pprint import pprint
|
199 |
+
>>> from nltk.corpus import framenet as fn
|
200 |
+
>>> fn.lu(256).name
|
201 |
+
'foresee.v'
|
202 |
+
>>> fn.lu(256).definition
|
203 |
+
'COD: be aware of beforehand; predict.'
|
204 |
+
>>> fn.lu(256).frame.name
|
205 |
+
'Expectation'
|
206 |
+
>>> fn.lu(256).lexemes[0].name
|
207 |
+
'foresee'
|
208 |
+
|
209 |
+
Note that LU names take the form of a dotted string (e.g. "run.v" or "a
|
210 |
+
little.adv") in which a lemma precedes the "." and a part of speech
|
211 |
+
(POS) follows the dot. The lemma may be composed of a single lexeme
|
212 |
+
(e.g. "run") or of multiple lexemes (e.g. "a little"). The list of
|
213 |
+
POSs used in the LUs is:
|
214 |
+
|
215 |
+
v - verb
|
216 |
+
n - noun
|
217 |
+
a - adjective
|
218 |
+
adv - adverb
|
219 |
+
prep - preposition
|
220 |
+
num - numbers
|
221 |
+
intj - interjection
|
222 |
+
art - article
|
223 |
+
c - conjunction
|
224 |
+
scon - subordinating conjunction
|
225 |
+
|
226 |
+
For more detailed information about the info that is contained in the
|
227 |
+
dict that is returned by the `lu()` function, see the documentation on
|
228 |
+
the `lu()` function.
|
229 |
+
|
230 |
+
-------------------
|
231 |
+
Annotated Documents
|
232 |
+
-------------------
|
233 |
+
|
234 |
+
The FrameNet corpus contains a small set of annotated documents. A list
|
235 |
+
of these documents can be obtained by calling the `docs()` function:
|
236 |
+
|
237 |
+
>>> from pprint import pprint
|
238 |
+
>>> from nltk.corpus import framenet as fn
|
239 |
+
>>> d = fn.docs('BellRinging')[0]
|
240 |
+
>>> d.corpname
|
241 |
+
'PropBank'
|
242 |
+
>>> d.sentence[49]
|
243 |
+
full-text sentence (...) in BellRinging:
|
244 |
+
<BLANKLINE>
|
245 |
+
<BLANKLINE>
|
246 |
+
[POS] 17 tags
|
247 |
+
<BLANKLINE>
|
248 |
+
[POS_tagset] PENN
|
249 |
+
<BLANKLINE>
|
250 |
+
[text] + [annotationSet]
|
251 |
+
<BLANKLINE>
|
252 |
+
`` I live in hopes that the ringers themselves will be drawn into
|
253 |
+
***** ******* *****
|
254 |
+
Desir Cause_t Cause
|
255 |
+
[1] [3] [2]
|
256 |
+
<BLANKLINE>
|
257 |
+
that fuller life .
|
258 |
+
******
|
259 |
+
Comple
|
260 |
+
[4]
|
261 |
+
(Desir=Desiring, Cause_t=Cause_to_make_noise, Cause=Cause_motion, Comple=Completeness)
|
262 |
+
<BLANKLINE>
|
263 |
+
|
264 |
+
>>> d.sentence[49].annotationSet[1]
|
265 |
+
annotation set (...):
|
266 |
+
<BLANKLINE>
|
267 |
+
[status] MANUAL
|
268 |
+
<BLANKLINE>
|
269 |
+
[LU] (6605) hope.n in Desiring
|
270 |
+
<BLANKLINE>
|
271 |
+
[frame] (366) Desiring
|
272 |
+
<BLANKLINE>
|
273 |
+
[GF] 2 relations
|
274 |
+
<BLANKLINE>
|
275 |
+
[PT] 2 phrases
|
276 |
+
<BLANKLINE>
|
277 |
+
[text] + [Target] + [FE] + [Noun]
|
278 |
+
<BLANKLINE>
|
279 |
+
`` I live in hopes that the ringers themselves will be drawn into
|
280 |
+
- ^^^^ ^^ ***** ----------------------------------------------
|
281 |
+
E supp su Event
|
282 |
+
<BLANKLINE>
|
283 |
+
that fuller life .
|
284 |
+
-----------------
|
285 |
+
<BLANKLINE>
|
286 |
+
(E=Experiencer, su=supp)
|
287 |
+
<BLANKLINE>
|
288 |
+
<BLANKLINE>
|
llmeval-env/lib/python3.10/site-packages/nltk/test/generate.doctest
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
===============================================
|
5 |
+
Generating sentences from context-free grammars
|
6 |
+
===============================================
|
7 |
+
|
8 |
+
An example grammar:
|
9 |
+
|
10 |
+
>>> from nltk.parse.generate import generate, demo_grammar
|
11 |
+
>>> from nltk import CFG
|
12 |
+
>>> grammar = CFG.fromstring(demo_grammar)
|
13 |
+
>>> print(grammar)
|
14 |
+
Grammar with 13 productions (start state = S)
|
15 |
+
S -> NP VP
|
16 |
+
NP -> Det N
|
17 |
+
PP -> P NP
|
18 |
+
VP -> 'slept'
|
19 |
+
VP -> 'saw' NP
|
20 |
+
VP -> 'walked' PP
|
21 |
+
Det -> 'the'
|
22 |
+
Det -> 'a'
|
23 |
+
N -> 'man'
|
24 |
+
N -> 'park'
|
25 |
+
N -> 'dog'
|
26 |
+
P -> 'in'
|
27 |
+
P -> 'with'
|
28 |
+
|
29 |
+
The first 10 generated sentences:
|
30 |
+
|
31 |
+
>>> for sentence in generate(grammar, n=10):
|
32 |
+
... print(' '.join(sentence))
|
33 |
+
the man slept
|
34 |
+
the man saw the man
|
35 |
+
the man saw the park
|
36 |
+
the man saw the dog
|
37 |
+
the man saw a man
|
38 |
+
the man saw a park
|
39 |
+
the man saw a dog
|
40 |
+
the man walked in the man
|
41 |
+
the man walked in the park
|
42 |
+
the man walked in the dog
|
43 |
+
|
44 |
+
All sentences of max depth 4:
|
45 |
+
|
46 |
+
>>> for sentence in generate(grammar, depth=4):
|
47 |
+
... print(' '.join(sentence))
|
48 |
+
the man slept
|
49 |
+
the park slept
|
50 |
+
the dog slept
|
51 |
+
a man slept
|
52 |
+
a park slept
|
53 |
+
a dog slept
|
54 |
+
|
55 |
+
The number of sentences of different max depths:
|
56 |
+
|
57 |
+
>>> len(list(generate(grammar, depth=3)))
|
58 |
+
0
|
59 |
+
>>> len(list(generate(grammar, depth=4)))
|
60 |
+
6
|
61 |
+
>>> len(list(generate(grammar, depth=5)))
|
62 |
+
42
|
63 |
+
>>> len(list(generate(grammar, depth=6)))
|
64 |
+
114
|
65 |
+
>>> len(list(generate(grammar)))
|
66 |
+
114
|
67 |
+
|
68 |
+
Infinite grammars will throw a RecursionError when not bounded by some ``depth``:
|
69 |
+
|
70 |
+
>>> grammar = CFG.fromstring("""
|
71 |
+
... S -> A B
|
72 |
+
... A -> B
|
73 |
+
... B -> "b" | A
|
74 |
+
... """)
|
75 |
+
>>> list(generate(grammar))
|
76 |
+
Traceback (most recent call last):
|
77 |
+
...
|
78 |
+
RuntimeError: The grammar has rule(s) that yield infinite recursion!
|
llmeval-env/lib/python3.10/site-packages/nltk/test/gensim.doctest
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=======================================
|
5 |
+
Demonstrate word embedding using Gensim
|
6 |
+
=======================================
|
7 |
+
|
8 |
+
>>> from nltk.test.gensim_fixt import setup_module
|
9 |
+
>>> setup_module()
|
10 |
+
|
11 |
+
We demonstrate three functions:
|
12 |
+
- Train the word embeddings using brown corpus;
|
13 |
+
- Load the pre-trained model and perform simple tasks; and
|
14 |
+
- Pruning the pre-trained binary model.
|
15 |
+
|
16 |
+
>>> import gensim
|
17 |
+
|
18 |
+
---------------
|
19 |
+
Train the model
|
20 |
+
---------------
|
21 |
+
|
22 |
+
Here we train a word embedding using the Brown Corpus:
|
23 |
+
|
24 |
+
>>> from nltk.corpus import brown
|
25 |
+
>>> train_set = brown.sents()[:10000]
|
26 |
+
>>> model = gensim.models.Word2Vec(train_set)
|
27 |
+
|
28 |
+
It might take some time to train the model. So, after it is trained, it can be saved as follows:
|
29 |
+
|
30 |
+
>>> model.save('brown.embedding')
|
31 |
+
>>> new_model = gensim.models.Word2Vec.load('brown.embedding')
|
32 |
+
|
33 |
+
The model will be the list of words with their embedding. We can easily get the vector representation of a word.
|
34 |
+
|
35 |
+
>>> len(new_model.wv['university'])
|
36 |
+
100
|
37 |
+
|
38 |
+
There are some supporting functions already implemented in Gensim to manipulate with word embeddings.
|
39 |
+
For example, to compute the cosine similarity between 2 words:
|
40 |
+
|
41 |
+
>>> new_model.wv.similarity('university','school') > 0.3
|
42 |
+
True
|
43 |
+
|
44 |
+
---------------------------
|
45 |
+
Using the pre-trained model
|
46 |
+
---------------------------
|
47 |
+
|
48 |
+
NLTK includes a pre-trained model which is part of a model that is trained on 100 billion words from the Google News Dataset.
|
49 |
+
The full model is from https://code.google.com/p/word2vec/ (about 3 GB).
|
50 |
+
|
51 |
+
>>> from nltk.data import find
|
52 |
+
>>> word2vec_sample = str(find('models/word2vec_sample/pruned.word2vec.txt'))
|
53 |
+
>>> model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_sample, binary=False)
|
54 |
+
|
55 |
+
We pruned the model to only include the most common words (~44k words).
|
56 |
+
|
57 |
+
>>> len(model)
|
58 |
+
43981
|
59 |
+
|
60 |
+
Each word is represented in the space of 300 dimensions:
|
61 |
+
|
62 |
+
>>> len(model['university'])
|
63 |
+
300
|
64 |
+
|
65 |
+
Finding the top n words that are similar to a target word is simple. The result is the list of n words with the score.
|
66 |
+
|
67 |
+
>>> model.most_similar(positive=['university'], topn = 3)
|
68 |
+
[('universities', 0.70039...), ('faculty', 0.67809...), ('undergraduate', 0.65870...)]
|
69 |
+
|
70 |
+
Finding a word that is not in a list is also supported, although, implementing this by yourself is simple.
|
71 |
+
|
72 |
+
>>> model.doesnt_match('breakfast cereal dinner lunch'.split())
|
73 |
+
'cereal'
|
74 |
+
|
75 |
+
Mikolov et al. (2013) figured out that word embedding captures much of syntactic and semantic regularities. For example,
|
76 |
+
the vector 'King - Man + Woman' is close to 'Queen' and 'Germany - Berlin + Paris' is close to 'France'.
|
77 |
+
|
78 |
+
>>> model.most_similar(positive=['woman','king'], negative=['man'], topn = 1)
|
79 |
+
[('queen', 0.71181...)]
|
80 |
+
|
81 |
+
>>> model.most_similar(positive=['Paris','Germany'], negative=['Berlin'], topn = 1)
|
82 |
+
[('France', 0.78840...)]
|
83 |
+
|
84 |
+
We can visualize the word embeddings using t-SNE (https://lvdmaaten.github.io/tsne/). For this demonstration, we visualize the first 1000 words.
|
85 |
+
|
86 |
+
| import numpy as np
|
87 |
+
| labels = []
|
88 |
+
| count = 0
|
89 |
+
| max_count = 1000
|
90 |
+
| X = np.zeros(shape=(max_count,len(model['university'])))
|
91 |
+
|
|
92 |
+
| for term in model.index_to_key:
|
93 |
+
| X[count] = model[term]
|
94 |
+
| labels.append(term)
|
95 |
+
| count+= 1
|
96 |
+
| if count >= max_count: break
|
97 |
+
|
|
98 |
+
| # It is recommended to use PCA first to reduce to ~50 dimensions
|
99 |
+
| from sklearn.decomposition import PCA
|
100 |
+
| pca = PCA(n_components=50)
|
101 |
+
| X_50 = pca.fit_transform(X)
|
102 |
+
|
|
103 |
+
| # Using TSNE to further reduce to 2 dimensions
|
104 |
+
| from sklearn.manifold import TSNE
|
105 |
+
| model_tsne = TSNE(n_components=2, random_state=0)
|
106 |
+
| Y = model_tsne.fit_transform(X_50)
|
107 |
+
|
|
108 |
+
| # Show the scatter plot
|
109 |
+
| import matplotlib.pyplot as plt
|
110 |
+
| plt.scatter(Y[:,0], Y[:,1], 20)
|
111 |
+
|
|
112 |
+
| # Add labels
|
113 |
+
| for label, x, y in zip(labels, Y[:, 0], Y[:, 1]):
|
114 |
+
| plt.annotate(label, xy = (x,y), xytext = (0, 0), textcoords = 'offset points', size = 10)
|
115 |
+
|
|
116 |
+
| plt.show()
|
117 |
+
|
118 |
+
------------------------------
|
119 |
+
Prune the trained binary model
|
120 |
+
------------------------------
|
121 |
+
|
122 |
+
Here is the supporting code to extract part of the binary model (GoogleNews-vectors-negative300.bin.gz) from https://code.google.com/p/word2vec/
|
123 |
+
We use this code to get the `word2vec_sample` model.
|
124 |
+
|
125 |
+
| import gensim
|
126 |
+
| # Load the binary model
|
127 |
+
| model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary = True)
|
128 |
+
|
|
129 |
+
| # Only output word that appear in the Brown corpus
|
130 |
+
| from nltk.corpus import brown
|
131 |
+
| words = set(brown.words())
|
132 |
+
| print(len(words))
|
133 |
+
|
|
134 |
+
| # Output presented word to a temporary file
|
135 |
+
| out_file = 'pruned.word2vec.txt'
|
136 |
+
| with open(out_file,'w') as f:
|
137 |
+
| word_presented = words.intersection(model.index_to_key)
|
138 |
+
| f.write('{} {}\n'.format(len(word_presented),len(model['word'])))
|
139 |
+
|
|
140 |
+
| for word in word_presented:
|
141 |
+
| f.write('{} {}\n'.format(word, ' '.join(str(value) for value in model[word])))
|
llmeval-env/lib/python3.10/site-packages/nltk/test/gluesemantics_malt.doctest
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
.. see also: gluesemantics.doctest
|
5 |
+
|
6 |
+
==============================================================================
|
7 |
+
Glue Semantics
|
8 |
+
==============================================================================
|
9 |
+
|
10 |
+
>>> from nltk.test.gluesemantics_malt_fixt import setup_module
|
11 |
+
>>> setup_module()
|
12 |
+
|
13 |
+
>>> from nltk.sem.glue import *
|
14 |
+
>>> nltk.sem.logic._counter._value = 0
|
15 |
+
|
16 |
+
--------------------------------
|
17 |
+
Initialize the Dependency Parser
|
18 |
+
--------------------------------
|
19 |
+
>>> from nltk.parse.malt import MaltParser
|
20 |
+
|
21 |
+
>>> tagger = RegexpTagger(
|
22 |
+
... [('^(John|Mary)$', 'NNP'),
|
23 |
+
... ('^(sees|chases)$', 'VB'),
|
24 |
+
... ('^(a)$', 'ex_quant'),
|
25 |
+
... ('^(every)$', 'univ_quant'),
|
26 |
+
... ('^(girl|dog)$', 'NN')
|
27 |
+
... ]).tag
|
28 |
+
>>> depparser = MaltParser(tagger=tagger)
|
29 |
+
|
30 |
+
--------------------
|
31 |
+
Automated Derivation
|
32 |
+
--------------------
|
33 |
+
>>> glue = Glue(depparser=depparser)
|
34 |
+
>>> readings = glue.parse_to_meaning('every girl chases a dog'.split())
|
35 |
+
>>> for reading in sorted([r.simplify().normalize() for r in readings], key=str):
|
36 |
+
... print(reading.normalize())
|
37 |
+
all z1.(girl(z1) -> exists z2.(dog(z2) & chases(z1,z2)))
|
38 |
+
exists z1.(dog(z1) & all z2.(girl(z2) -> chases(z2,z1)))
|
39 |
+
|
40 |
+
>>> drtglue = DrtGlue(depparser=depparser)
|
41 |
+
>>> readings = drtglue.parse_to_meaning('every girl chases a dog'.split())
|
42 |
+
>>> for reading in sorted([r.simplify().normalize() for r in readings], key=str):
|
43 |
+
... print(reading)
|
44 |
+
([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chases(z1,z2)]))])
|
45 |
+
([z1],[dog(z1), (([z2],[girl(z2)]) -> ([],[chases(z2,z1)]))])
|
46 |
+
|
47 |
+
--------------
|
48 |
+
With inference
|
49 |
+
--------------
|
50 |
+
|
51 |
+
Checking for equality of two DRSs is very useful when generating readings of a sentence.
|
52 |
+
For example, the ``glue`` module generates two readings for the sentence
|
53 |
+
*John sees Mary*:
|
54 |
+
|
55 |
+
>>> from nltk.sem.glue import DrtGlue
|
56 |
+
>>> readings = drtglue.parse_to_meaning('John sees Mary'.split())
|
57 |
+
>>> for drs in sorted([r.simplify().normalize() for r in readings], key=str):
|
58 |
+
... print(drs)
|
59 |
+
([z1,z2],[John(z1), Mary(z2), sees(z1,z2)])
|
60 |
+
([z1,z2],[Mary(z1), John(z2), sees(z2,z1)])
|
61 |
+
|
62 |
+
However, it is easy to tell that these two readings are logically the
|
63 |
+
same, and therefore one of them is superfluous. We can use the theorem prover
|
64 |
+
to determine this equivalence, and then delete one of them. A particular
|
65 |
+
theorem prover may be specified, or the argument may be left off to use the
|
66 |
+
default.
|
67 |
+
|
68 |
+
>>> readings[0].equiv(readings[1])
|
69 |
+
True
|
llmeval-env/lib/python3.10/site-packages/nltk/test/grammartestsuites.doctest
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==========================
|
5 |
+
Test Suites for Grammars
|
6 |
+
==========================
|
7 |
+
|
8 |
+
Sentences in the test suite are divided into two classes:
|
9 |
+
|
10 |
+
- grammatical (*accept*) and
|
11 |
+
- ungrammatical (*reject*).
|
12 |
+
|
13 |
+
If a sentence should parse according to the grammar, the value of
|
14 |
+
``trees`` will be a non-empty list. If a sentence should be rejected
|
15 |
+
according to the grammar, then the value of ``trees`` will be ``None``.
|
16 |
+
|
17 |
+
>>> from nltk.parse import TestGrammar
|
18 |
+
>>> germantest1 = {}
|
19 |
+
>>> germantest1['doc'] = "Tests for person agreement"
|
20 |
+
>>> germantest1['accept'] = [
|
21 |
+
... 'ich komme',
|
22 |
+
... 'ich sehe mich',
|
23 |
+
... 'du kommst',
|
24 |
+
... 'du siehst mich',
|
25 |
+
... 'sie kommt',
|
26 |
+
... 'sie sieht mich',
|
27 |
+
... 'ihr kommt',
|
28 |
+
... 'wir kommen',
|
29 |
+
... 'sie kommen',
|
30 |
+
... 'du magst mich',
|
31 |
+
... 'er mag mich',
|
32 |
+
... 'du folgst mir',
|
33 |
+
... 'sie hilft mir',
|
34 |
+
... ]
|
35 |
+
>>> germantest1['reject'] = [
|
36 |
+
... 'ich kommt',
|
37 |
+
... 'ich kommst',
|
38 |
+
... 'ich siehst mich',
|
39 |
+
... 'du komme',
|
40 |
+
... 'du sehe mich',
|
41 |
+
... 'du kommt',
|
42 |
+
... 'er komme',
|
43 |
+
... 'er siehst mich',
|
44 |
+
... 'wir komme',
|
45 |
+
... 'wir kommst',
|
46 |
+
... 'die Katzen kommst',
|
47 |
+
... 'sie komme',
|
48 |
+
... 'sie kommst',
|
49 |
+
... 'du mag mich',
|
50 |
+
... 'er magst mich',
|
51 |
+
... 'du folgt mir',
|
52 |
+
... 'sie hilfst mir',
|
53 |
+
... ]
|
54 |
+
>>> germantest2 = {}
|
55 |
+
>>> germantest2['doc'] = "Tests for number agreement"
|
56 |
+
>>> germantest2['accept'] = [
|
57 |
+
... 'der Hund kommt',
|
58 |
+
... 'die Hunde kommen',
|
59 |
+
... 'ich komme',
|
60 |
+
... 'wir kommen',
|
61 |
+
... 'ich sehe die Katzen',
|
62 |
+
... 'ich folge den Katzen',
|
63 |
+
... 'ich sehe die Katzen',
|
64 |
+
... 'ich folge den Katzen',
|
65 |
+
... 'wir sehen die Katzen',
|
66 |
+
... 'wir folgen den Katzen'
|
67 |
+
... ]
|
68 |
+
>>> germantest2['reject'] = [
|
69 |
+
... 'ich kommen',
|
70 |
+
... 'wir komme',
|
71 |
+
... 'der Hunde kommt',
|
72 |
+
... 'der Hunde kommen',
|
73 |
+
... 'die Katzen kommt',
|
74 |
+
... 'ich sehe der Hunde',
|
75 |
+
... 'ich folge den Hund',
|
76 |
+
... 'ich sehen der Hunde',
|
77 |
+
... 'ich folgen den Hund',
|
78 |
+
... 'wir sehe die Katzen',
|
79 |
+
... 'wir folge den Katzen'
|
80 |
+
... ]
|
81 |
+
>>> germantest3 = {}
|
82 |
+
>>> germantest3['doc'] = "Tests for case government and subcategorization"
|
83 |
+
>>> germantest3['accept'] = [
|
84 |
+
... 'der Hund sieht mich',
|
85 |
+
... 'der Hund kommt',
|
86 |
+
... 'ich sehe den Hund',
|
87 |
+
... 'ich helfe dem Hund',
|
88 |
+
... ]
|
89 |
+
>>> germantest3['reject'] = [
|
90 |
+
... 'ich sehe',
|
91 |
+
... 'ich helfe',
|
92 |
+
... 'ich komme den Hund',
|
93 |
+
... 'ich sehe den Hund die Katzen',
|
94 |
+
... 'du hilfst mich',
|
95 |
+
... 'du siehst mir',
|
96 |
+
... 'du siehst ich',
|
97 |
+
... 'der Hunde kommt mich',
|
98 |
+
... 'die Hunde sehe die Hunde',
|
99 |
+
... 'der Hund sehe die Hunde',
|
100 |
+
... 'ich hilft den Hund',
|
101 |
+
... 'ich hilft der Hund',
|
102 |
+
... 'ich sehe dem Hund',
|
103 |
+
... ]
|
104 |
+
>>> germantestsuites = [germantest1, germantest2, germantest3]
|
105 |
+
>>> tester = TestGrammar('grammars/book_grammars/german.fcfg', germantestsuites)
|
106 |
+
>>> tester.run()
|
107 |
+
Tests for person agreement: All tests passed!
|
108 |
+
Tests for number agreement: All tests passed!
|
109 |
+
Tests for case government and subcategorization: All tests passed!
|
llmeval-env/lib/python3.10/site-packages/nltk/test/internals.doctest
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
==========================================
|
5 |
+
Unit tests for the nltk.utilities module
|
6 |
+
==========================================
|
7 |
+
|
8 |
+
overridden()
|
9 |
+
~~~~~~~~~~~~
|
10 |
+
>>> from nltk.internals import overridden
|
11 |
+
|
12 |
+
The typical use case is in defining methods for an interface or
|
13 |
+
abstract base class, in such a way that subclasses don't have to
|
14 |
+
implement all of the methods:
|
15 |
+
|
16 |
+
>>> class EaterI(object):
|
17 |
+
... '''Subclass must define eat() or batch_eat().'''
|
18 |
+
... def eat(self, food):
|
19 |
+
... if overridden(self.batch_eat):
|
20 |
+
... return self.batch_eat([food])[0]
|
21 |
+
... else:
|
22 |
+
... raise NotImplementedError()
|
23 |
+
... def batch_eat(self, foods):
|
24 |
+
... return [self.eat(food) for food in foods]
|
25 |
+
|
26 |
+
As long as a subclass implements one method, it will be used to
|
27 |
+
perform the other method:
|
28 |
+
|
29 |
+
>>> class GoodEater1(EaterI):
|
30 |
+
... def eat(self, food):
|
31 |
+
... return 'yum'
|
32 |
+
>>> GoodEater1().eat('steak')
|
33 |
+
'yum'
|
34 |
+
>>> GoodEater1().batch_eat(['steak', 'peas'])
|
35 |
+
['yum', 'yum']
|
36 |
+
|
37 |
+
>>> class GoodEater2(EaterI):
|
38 |
+
... def batch_eat(self, foods):
|
39 |
+
... return ['yum' for food in foods]
|
40 |
+
>>> GoodEater2().eat('steak')
|
41 |
+
'yum'
|
42 |
+
>>> GoodEater2().batch_eat(['steak', 'peas'])
|
43 |
+
['yum', 'yum']
|
44 |
+
|
45 |
+
But if a subclass doesn't implement either one, then they'll get an
|
46 |
+
error when they try to call them. (nb this is better than infinite
|
47 |
+
recursion):
|
48 |
+
|
49 |
+
>>> class BadEater1(EaterI):
|
50 |
+
... pass
|
51 |
+
>>> BadEater1().eat('steak')
|
52 |
+
Traceback (most recent call last):
|
53 |
+
. . .
|
54 |
+
NotImplementedError
|
55 |
+
>>> BadEater1().batch_eat(['steak', 'peas'])
|
56 |
+
Traceback (most recent call last):
|
57 |
+
. . .
|
58 |
+
NotImplementedError
|
59 |
+
|
60 |
+
Trying to use the abstract base class itself will also result in an
|
61 |
+
error:
|
62 |
+
|
63 |
+
>>> class EaterI(EaterI):
|
64 |
+
... pass
|
65 |
+
>>> EaterI().eat('steak')
|
66 |
+
Traceback (most recent call last):
|
67 |
+
. . .
|
68 |
+
NotImplementedError
|
69 |
+
>>> EaterI().batch_eat(['steak', 'peas'])
|
70 |
+
Traceback (most recent call last):
|
71 |
+
. . .
|
72 |
+
NotImplementedError
|
73 |
+
|
74 |
+
It's ok to use intermediate abstract classes:
|
75 |
+
|
76 |
+
>>> class AbstractEater(EaterI):
|
77 |
+
... pass
|
78 |
+
|
79 |
+
>>> class GoodEater3(AbstractEater):
|
80 |
+
... def eat(self, food):
|
81 |
+
... return 'yum'
|
82 |
+
...
|
83 |
+
>>> GoodEater3().eat('steak')
|
84 |
+
'yum'
|
85 |
+
>>> GoodEater3().batch_eat(['steak', 'peas'])
|
86 |
+
['yum', 'yum']
|
87 |
+
|
88 |
+
>>> class GoodEater4(AbstractEater):
|
89 |
+
... def batch_eat(self, foods):
|
90 |
+
... return ['yum' for food in foods]
|
91 |
+
>>> GoodEater4().eat('steak')
|
92 |
+
'yum'
|
93 |
+
>>> GoodEater4().batch_eat(['steak', 'peas'])
|
94 |
+
['yum', 'yum']
|
95 |
+
|
96 |
+
>>> class BadEater2(AbstractEater):
|
97 |
+
... pass
|
98 |
+
>>> BadEater2().eat('steak')
|
99 |
+
Traceback (most recent call last):
|
100 |
+
. . .
|
101 |
+
NotImplementedError
|
102 |
+
>>> BadEater2().batch_eat(['steak', 'peas'])
|
103 |
+
Traceback (most recent call last):
|
104 |
+
. . .
|
105 |
+
NotImplementedError
|
106 |
+
|
107 |
+
Here's some extra tests:
|
108 |
+
|
109 |
+
>>> class A(object):
|
110 |
+
... def f(x): pass
|
111 |
+
>>> class B(A):
|
112 |
+
... def f(x): pass
|
113 |
+
>>> class C(A): pass
|
114 |
+
>>> class D(B): pass
|
115 |
+
|
116 |
+
>>> overridden(A().f)
|
117 |
+
False
|
118 |
+
>>> overridden(B().f)
|
119 |
+
True
|
120 |
+
>>> overridden(C().f)
|
121 |
+
False
|
122 |
+
>>> overridden(D().f)
|
123 |
+
True
|
124 |
+
|
125 |
+
It works for classic classes, too:
|
126 |
+
|
127 |
+
>>> class A:
|
128 |
+
... def f(x): pass
|
129 |
+
>>> class B(A):
|
130 |
+
... def f(x): pass
|
131 |
+
>>> class C(A): pass
|
132 |
+
>>> class D(B): pass
|
133 |
+
>>> overridden(A().f)
|
134 |
+
False
|
135 |
+
>>> overridden(B().f)
|
136 |
+
True
|
137 |
+
>>> overridden(C().f)
|
138 |
+
False
|
139 |
+
>>> overridden(D().f)
|
140 |
+
True
|
141 |
+
|
142 |
+
|
143 |
+
read_str()
|
144 |
+
~~~~~~~~~~~~
|
145 |
+
>>> from nltk.internals import read_str
|
146 |
+
|
147 |
+
Test valid scenarios
|
148 |
+
|
149 |
+
>>> read_str("'valid string'", 0)
|
150 |
+
('valid string', 14)
|
151 |
+
|
152 |
+
Now test invalid scenarios
|
153 |
+
|
154 |
+
>>> read_str("should error", 0)
|
155 |
+
Traceback (most recent call last):
|
156 |
+
...
|
157 |
+
nltk.internals.ReadError: Expected open quote at 0
|
158 |
+
>>> read_str("'should error", 0)
|
159 |
+
Traceback (most recent call last):
|
160 |
+
...
|
161 |
+
nltk.internals.ReadError: Expected close quote at 1
|
llmeval-env/lib/python3.10/site-packages/nltk/test/lm.doctest
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
.. -*- coding: utf-8 -*-
|
5 |
+
|
6 |
+
|
7 |
+
Regression Tests
|
8 |
+
================
|
9 |
+
|
10 |
+
|
11 |
+
Issue 167
|
12 |
+
---------
|
13 |
+
https://github.com/nltk/nltk/issues/167
|
14 |
+
|
15 |
+
>>> from nltk.corpus import brown
|
16 |
+
>>> from nltk.lm.preprocessing import padded_everygram_pipeline
|
17 |
+
>>> ngram_order = 3
|
18 |
+
>>> train_data, vocab_data = padded_everygram_pipeline(
|
19 |
+
... ngram_order,
|
20 |
+
... brown.sents(categories="news")
|
21 |
+
... )
|
22 |
+
|
23 |
+
>>> from nltk.lm import WittenBellInterpolated
|
24 |
+
>>> lm = WittenBellInterpolated(ngram_order)
|
25 |
+
>>> lm.fit(train_data, vocab_data)
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
Sentence containing an unseen word should result in infinite entropy because
|
31 |
+
Witten-Bell is based ultimately on MLE, which cannot handle unseen ngrams.
|
32 |
+
Crucially, it shouldn't raise any exceptions for unseen words.
|
33 |
+
|
34 |
+
>>> from nltk.util import ngrams
|
35 |
+
>>> sent = ngrams("This is a sentence with the word aaddvark".split(), 3)
|
36 |
+
>>> lm.entropy(sent)
|
37 |
+
inf
|
38 |
+
|
39 |
+
If we remove all unseen ngrams from the sentence, we'll get a non-infinite value
|
40 |
+
for the entropy.
|
41 |
+
|
42 |
+
>>> sent = ngrams("This is a sentence".split(), 3)
|
43 |
+
>>> round(lm.entropy(sent), 14)
|
44 |
+
10.23701322869105
|
45 |
+
|
46 |
+
|
47 |
+
Issue 367
|
48 |
+
---------
|
49 |
+
https://github.com/nltk/nltk/issues/367
|
50 |
+
|
51 |
+
Reproducing Dan Blanchard's example:
|
52 |
+
https://github.com/nltk/nltk/issues/367#issuecomment-14646110
|
53 |
+
|
54 |
+
>>> from nltk.lm import Lidstone, Vocabulary
|
55 |
+
>>> word_seq = list('aaaababaaccbacb')
|
56 |
+
>>> ngram_order = 2
|
57 |
+
>>> from nltk.util import everygrams
|
58 |
+
>>> train_data = [everygrams(word_seq, max_len=ngram_order)]
|
59 |
+
>>> V = Vocabulary(['a', 'b', 'c', ''])
|
60 |
+
>>> lm = Lidstone(0.2, ngram_order, vocabulary=V)
|
61 |
+
>>> lm.fit(train_data)
|
62 |
+
|
63 |
+
For doctest to work we have to sort the vocabulary keys.
|
64 |
+
|
65 |
+
>>> V_keys = sorted(V)
|
66 |
+
>>> round(sum(lm.score(w, ("b",)) for w in V_keys), 6)
|
67 |
+
1.0
|
68 |
+
>>> round(sum(lm.score(w, ("a",)) for w in V_keys), 6)
|
69 |
+
1.0
|
70 |
+
|
71 |
+
>>> [lm.score(w, ("b",)) for w in V_keys]
|
72 |
+
[0.05, 0.05, 0.8, 0.05, 0.05]
|
73 |
+
>>> [round(lm.score(w, ("a",)), 4) for w in V_keys]
|
74 |
+
[0.0222, 0.0222, 0.4667, 0.2444, 0.2444]
|
75 |
+
|
76 |
+
|
77 |
+
Here's reproducing @afourney's comment:
|
78 |
+
https://github.com/nltk/nltk/issues/367#issuecomment-15686289
|
79 |
+
|
80 |
+
>>> sent = ['foo', 'foo', 'foo', 'foo', 'bar', 'baz']
|
81 |
+
>>> ngram_order = 3
|
82 |
+
>>> from nltk.lm.preprocessing import padded_everygram_pipeline
|
83 |
+
>>> train_data, vocab_data = padded_everygram_pipeline(ngram_order, [sent])
|
84 |
+
>>> from nltk.lm import Lidstone
|
85 |
+
>>> lm = Lidstone(0.2, ngram_order)
|
86 |
+
>>> lm.fit(train_data, vocab_data)
|
87 |
+
|
88 |
+
The vocabulary includes the "UNK" symbol as well as two padding symbols.
|
89 |
+
|
90 |
+
>>> len(lm.vocab)
|
91 |
+
6
|
92 |
+
>>> word = "foo"
|
93 |
+
>>> context = ("bar", "baz")
|
94 |
+
|
95 |
+
The raw counts.
|
96 |
+
|
97 |
+
>>> lm.context_counts(context)[word]
|
98 |
+
0
|
99 |
+
>>> lm.context_counts(context).N()
|
100 |
+
1
|
101 |
+
|
102 |
+
Counts with Lidstone smoothing.
|
103 |
+
|
104 |
+
>>> lm.context_counts(context)[word] + lm.gamma
|
105 |
+
0.2
|
106 |
+
>>> lm.context_counts(context).N() + len(lm.vocab) * lm.gamma
|
107 |
+
2.2
|
108 |
+
|
109 |
+
Without any backoff, just using Lidstone smoothing, P("foo" | "bar", "baz") should be:
|
110 |
+
0.2 / 2.2 ~= 0.090909
|
111 |
+
|
112 |
+
>>> round(lm.score(word, context), 6)
|
113 |
+
0.090909
|
114 |
+
|
115 |
+
|
116 |
+
Issue 380
|
117 |
+
---------
|
118 |
+
https://github.com/nltk/nltk/issues/380
|
119 |
+
|
120 |
+
Reproducing setup akin to this comment:
|
121 |
+
https://github.com/nltk/nltk/issues/380#issue-12879030
|
122 |
+
|
123 |
+
For speed take only the first 100 sentences of reuters. Shouldn't affect the test.
|
124 |
+
|
125 |
+
>>> from nltk.corpus import reuters
|
126 |
+
>>> sents = reuters.sents()[:100]
|
127 |
+
>>> ngram_order = 3
|
128 |
+
>>> from nltk.lm.preprocessing import padded_everygram_pipeline
|
129 |
+
>>> train_data, vocab_data = padded_everygram_pipeline(ngram_order, sents)
|
130 |
+
|
131 |
+
>>> from nltk.lm import Lidstone
|
132 |
+
>>> lm = Lidstone(0.2, ngram_order)
|
133 |
+
>>> lm.fit(train_data, vocab_data)
|
134 |
+
>>> lm.score("said", ("",)) < 1
|
135 |
+
True
|
llmeval-env/lib/python3.10/site-packages/nltk/test/logic.doctest
ADDED
@@ -0,0 +1,1096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=======================
|
5 |
+
Logic & Lambda Calculus
|
6 |
+
=======================
|
7 |
+
|
8 |
+
The `nltk.logic` package allows expressions of First-Order Logic (FOL) to be
|
9 |
+
parsed into ``Expression`` objects. In addition to FOL, the parser
|
10 |
+
handles lambda-abstraction with variables of higher order.
|
11 |
+
|
12 |
+
--------
|
13 |
+
Overview
|
14 |
+
--------
|
15 |
+
|
16 |
+
>>> from nltk.sem.logic import *
|
17 |
+
|
18 |
+
The default inventory of logical constants is the following:
|
19 |
+
|
20 |
+
>>> boolean_ops()
|
21 |
+
negation -
|
22 |
+
conjunction &
|
23 |
+
disjunction |
|
24 |
+
implication ->
|
25 |
+
equivalence <->
|
26 |
+
>>> equality_preds()
|
27 |
+
equality =
|
28 |
+
inequality !=
|
29 |
+
>>> binding_ops()
|
30 |
+
existential exists
|
31 |
+
universal all
|
32 |
+
lambda \
|
33 |
+
|
34 |
+
----------------
|
35 |
+
Regression Tests
|
36 |
+
----------------
|
37 |
+
|
38 |
+
|
39 |
+
Untyped Logic
|
40 |
+
+++++++++++++
|
41 |
+
|
42 |
+
Process logical expressions conveniently:
|
43 |
+
|
44 |
+
>>> read_expr = Expression.fromstring
|
45 |
+
|
46 |
+
Test for equality under alpha-conversion
|
47 |
+
========================================
|
48 |
+
|
49 |
+
>>> e1 = read_expr('exists x.P(x)')
|
50 |
+
>>> print(e1)
|
51 |
+
exists x.P(x)
|
52 |
+
>>> e2 = e1.alpha_convert(Variable('z'))
|
53 |
+
>>> print(e2)
|
54 |
+
exists z.P(z)
|
55 |
+
>>> e1 == e2
|
56 |
+
True
|
57 |
+
|
58 |
+
|
59 |
+
>>> l = read_expr(r'\X.\X.X(X)(1)').simplify()
|
60 |
+
>>> id = read_expr(r'\X.X(X)')
|
61 |
+
>>> l == id
|
62 |
+
True
|
63 |
+
|
64 |
+
Test numerals
|
65 |
+
=============
|
66 |
+
|
67 |
+
>>> zero = read_expr(r'\F x.x')
|
68 |
+
>>> one = read_expr(r'\F x.F(x)')
|
69 |
+
>>> two = read_expr(r'\F x.F(F(x))')
|
70 |
+
>>> three = read_expr(r'\F x.F(F(F(x)))')
|
71 |
+
>>> four = read_expr(r'\F x.F(F(F(F(x))))')
|
72 |
+
>>> succ = read_expr(r'\N F x.F(N(F,x))')
|
73 |
+
>>> plus = read_expr(r'\M N F x.M(F,N(F,x))')
|
74 |
+
>>> mult = read_expr(r'\M N F.M(N(F))')
|
75 |
+
>>> pred = read_expr(r'\N F x.(N(\G H.H(G(F)))(\u.x)(\u.u))')
|
76 |
+
>>> v1 = ApplicationExpression(succ, zero).simplify()
|
77 |
+
>>> v1 == one
|
78 |
+
True
|
79 |
+
>>> v2 = ApplicationExpression(succ, v1).simplify()
|
80 |
+
>>> v2 == two
|
81 |
+
True
|
82 |
+
>>> v3 = ApplicationExpression(ApplicationExpression(plus, v1), v2).simplify()
|
83 |
+
>>> v3 == three
|
84 |
+
True
|
85 |
+
>>> v4 = ApplicationExpression(ApplicationExpression(mult, v2), v2).simplify()
|
86 |
+
>>> v4 == four
|
87 |
+
True
|
88 |
+
>>> v5 = ApplicationExpression(pred, ApplicationExpression(pred, v4)).simplify()
|
89 |
+
>>> v5 == two
|
90 |
+
True
|
91 |
+
|
92 |
+
Overloaded operators also exist, for convenience.
|
93 |
+
|
94 |
+
>>> print(succ(zero).simplify() == one)
|
95 |
+
True
|
96 |
+
>>> print(plus(one,two).simplify() == three)
|
97 |
+
True
|
98 |
+
>>> print(mult(two,two).simplify() == four)
|
99 |
+
True
|
100 |
+
>>> print(pred(pred(four)).simplify() == two)
|
101 |
+
True
|
102 |
+
|
103 |
+
>>> john = read_expr(r'john')
|
104 |
+
>>> man = read_expr(r'\x.man(x)')
|
105 |
+
>>> walk = read_expr(r'\x.walk(x)')
|
106 |
+
>>> man(john).simplify()
|
107 |
+
<ApplicationExpression man(john)>
|
108 |
+
>>> print(-walk(john).simplify())
|
109 |
+
-walk(john)
|
110 |
+
>>> print((man(john) & walk(john)).simplify())
|
111 |
+
(man(john) & walk(john))
|
112 |
+
>>> print((man(john) | walk(john)).simplify())
|
113 |
+
(man(john) | walk(john))
|
114 |
+
>>> print((man(john) > walk(john)).simplify())
|
115 |
+
(man(john) -> walk(john))
|
116 |
+
>>> print((man(john) < walk(john)).simplify())
|
117 |
+
(man(john) <-> walk(john))
|
118 |
+
|
119 |
+
Python's built-in lambda operator can also be used with Expressions
|
120 |
+
|
121 |
+
>>> john = VariableExpression(Variable('john'))
|
122 |
+
>>> run_var = VariableExpression(Variable('run'))
|
123 |
+
>>> run = lambda x: run_var(x)
|
124 |
+
>>> run(john)
|
125 |
+
<ApplicationExpression run(john)>
|
126 |
+
|
127 |
+
|
128 |
+
``betaConversionTestSuite.pl``
|
129 |
+
------------------------------
|
130 |
+
|
131 |
+
Tests based on Blackburn & Bos' book, *Representation and Inference
|
132 |
+
for Natural Language*.
|
133 |
+
|
134 |
+
>>> x1 = read_expr(r'\P.P(mia)(\x.walk(x))').simplify()
|
135 |
+
>>> x2 = read_expr(r'walk(mia)').simplify()
|
136 |
+
>>> x1 == x2
|
137 |
+
True
|
138 |
+
|
139 |
+
>>> x1 = read_expr(r'exists x.(man(x) & ((\P.exists x.(woman(x) & P(x)))(\y.love(x,y))))').simplify()
|
140 |
+
>>> x2 = read_expr(r'exists x.(man(x) & exists y.(woman(y) & love(x,y)))').simplify()
|
141 |
+
>>> x1 == x2
|
142 |
+
True
|
143 |
+
>>> x1 = read_expr(r'\a.sleep(a)(mia)').simplify()
|
144 |
+
>>> x2 = read_expr(r'sleep(mia)').simplify()
|
145 |
+
>>> x1 == x2
|
146 |
+
True
|
147 |
+
>>> x1 = read_expr(r'\a.\b.like(b,a)(mia)').simplify()
|
148 |
+
>>> x2 = read_expr(r'\b.like(b,mia)').simplify()
|
149 |
+
>>> x1 == x2
|
150 |
+
True
|
151 |
+
>>> x1 = read_expr(r'\a.(\b.like(b,a)(vincent))').simplify()
|
152 |
+
>>> x2 = read_expr(r'\a.like(vincent,a)').simplify()
|
153 |
+
>>> x1 == x2
|
154 |
+
True
|
155 |
+
>>> x1 = read_expr(r'\a.((\b.like(b,a)(vincent)) & sleep(a))').simplify()
|
156 |
+
>>> x2 = read_expr(r'\a.(like(vincent,a) & sleep(a))').simplify()
|
157 |
+
>>> x1 == x2
|
158 |
+
True
|
159 |
+
|
160 |
+
>>> x1 = read_expr(r'(\a.\b.like(b,a)(mia)(vincent))').simplify()
|
161 |
+
>>> x2 = read_expr(r'like(vincent,mia)').simplify()
|
162 |
+
>>> x1 == x2
|
163 |
+
True
|
164 |
+
|
165 |
+
>>> x1 = read_expr(r'P((\a.sleep(a)(vincent)))').simplify()
|
166 |
+
>>> x2 = read_expr(r'P(sleep(vincent))').simplify()
|
167 |
+
>>> x1 == x2
|
168 |
+
True
|
169 |
+
|
170 |
+
>>> x1 = read_expr(r'\A.A((\b.sleep(b)(vincent)))').simplify()
|
171 |
+
>>> x2 = read_expr(r'\A.A(sleep(vincent))').simplify()
|
172 |
+
>>> x1 == x2
|
173 |
+
True
|
174 |
+
|
175 |
+
>>> x1 = read_expr(r'\A.A(sleep(vincent))').simplify()
|
176 |
+
>>> x2 = read_expr(r'\A.A(sleep(vincent))').simplify()
|
177 |
+
>>> x1 == x2
|
178 |
+
True
|
179 |
+
|
180 |
+
>>> x1 = read_expr(r'(\A.A(vincent)(\b.sleep(b)))').simplify()
|
181 |
+
>>> x2 = read_expr(r'sleep(vincent)').simplify()
|
182 |
+
>>> x1 == x2
|
183 |
+
True
|
184 |
+
|
185 |
+
>>> x1 = read_expr(r'\A.believe(mia,A(vincent))(\b.sleep(b))').simplify()
|
186 |
+
>>> x2 = read_expr(r'believe(mia,sleep(vincent))').simplify()
|
187 |
+
>>> x1 == x2
|
188 |
+
True
|
189 |
+
|
190 |
+
>>> x1 = read_expr(r'(\A.(A(vincent) & A(mia)))(\b.sleep(b))').simplify()
|
191 |
+
>>> x2 = read_expr(r'(sleep(vincent) & sleep(mia))').simplify()
|
192 |
+
>>> x1 == x2
|
193 |
+
True
|
194 |
+
|
195 |
+
>>> x1 = read_expr(r'\A.\B.(\C.C(A(vincent))(\d.probably(d)) & (\C.C(B(mia))(\d.improbably(d))))(\f.walk(f))(\f.talk(f))').simplify()
|
196 |
+
>>> x2 = read_expr(r'(probably(walk(vincent)) & improbably(talk(mia)))').simplify()
|
197 |
+
>>> x1 == x2
|
198 |
+
True
|
199 |
+
|
200 |
+
>>> x1 = read_expr(r'(\a.\b.(\C.C(a,b)(\d.\f.love(d,f))))(jules)(mia)').simplify()
|
201 |
+
>>> x2 = read_expr(r'love(jules,mia)').simplify()
|
202 |
+
>>> x1 == x2
|
203 |
+
True
|
204 |
+
|
205 |
+
>>> x1 = read_expr(r'(\A.\B.exists c.(A(c) & B(c)))(\d.boxer(d),\d.sleep(d))').simplify()
|
206 |
+
>>> x2 = read_expr(r'exists c.(boxer(c) & sleep(c))').simplify()
|
207 |
+
>>> x1 == x2
|
208 |
+
True
|
209 |
+
|
210 |
+
>>> x1 = read_expr(r'\A.Z(A)(\c.\a.like(a,c))').simplify()
|
211 |
+
>>> x2 = read_expr(r'Z(\c.\a.like(a,c))').simplify()
|
212 |
+
>>> x1 == x2
|
213 |
+
True
|
214 |
+
|
215 |
+
>>> x1 = read_expr(r'\A.\b.A(b)(\c.\b.like(b,c))').simplify()
|
216 |
+
>>> x2 = read_expr(r'\b.(\c.\b.like(b,c)(b))').simplify()
|
217 |
+
>>> x1 == x2
|
218 |
+
True
|
219 |
+
|
220 |
+
>>> x1 = read_expr(r'(\a.\b.(\C.C(a,b)(\b.\a.loves(b,a))))(jules)(mia)').simplify()
|
221 |
+
>>> x2 = read_expr(r'loves(jules,mia)').simplify()
|
222 |
+
>>> x1 == x2
|
223 |
+
True
|
224 |
+
|
225 |
+
>>> x1 = read_expr(r'(\A.\b.(exists b.A(b) & A(b)))(\c.boxer(c))(vincent)').simplify()
|
226 |
+
>>> x2 = read_expr(r'((exists b.boxer(b)) & boxer(vincent))').simplify()
|
227 |
+
>>> x1 == x2
|
228 |
+
True
|
229 |
+
|
230 |
+
Test Parser
|
231 |
+
===========
|
232 |
+
|
233 |
+
>>> print(read_expr(r'john'))
|
234 |
+
john
|
235 |
+
>>> print(read_expr(r'x'))
|
236 |
+
x
|
237 |
+
>>> print(read_expr(r'-man(x)'))
|
238 |
+
-man(x)
|
239 |
+
>>> print(read_expr(r'--man(x)'))
|
240 |
+
--man(x)
|
241 |
+
>>> print(read_expr(r'(man(x))'))
|
242 |
+
man(x)
|
243 |
+
>>> print(read_expr(r'((man(x)))'))
|
244 |
+
man(x)
|
245 |
+
>>> print(read_expr(r'man(x) <-> tall(x)'))
|
246 |
+
(man(x) <-> tall(x))
|
247 |
+
>>> print(read_expr(r'(man(x) <-> tall(x))'))
|
248 |
+
(man(x) <-> tall(x))
|
249 |
+
>>> print(read_expr(r'(man(x) & tall(x) & walks(x))'))
|
250 |
+
(man(x) & tall(x) & walks(x))
|
251 |
+
>>> print(read_expr(r'(man(x) & tall(x) & walks(x))').first)
|
252 |
+
(man(x) & tall(x))
|
253 |
+
>>> print(read_expr(r'man(x) | tall(x) & walks(x)'))
|
254 |
+
(man(x) | (tall(x) & walks(x)))
|
255 |
+
>>> print(read_expr(r'((man(x) & tall(x)) | walks(x))'))
|
256 |
+
((man(x) & tall(x)) | walks(x))
|
257 |
+
>>> print(read_expr(r'man(x) & (tall(x) | walks(x))'))
|
258 |
+
(man(x) & (tall(x) | walks(x)))
|
259 |
+
>>> print(read_expr(r'(man(x) & (tall(x) | walks(x)))'))
|
260 |
+
(man(x) & (tall(x) | walks(x)))
|
261 |
+
>>> print(read_expr(r'P(x) -> Q(x) <-> R(x) | S(x) & T(x)'))
|
262 |
+
((P(x) -> Q(x)) <-> (R(x) | (S(x) & T(x))))
|
263 |
+
>>> print(read_expr(r'exists x.man(x)'))
|
264 |
+
exists x.man(x)
|
265 |
+
>>> print(read_expr(r'exists x.(man(x) & tall(x))'))
|
266 |
+
exists x.(man(x) & tall(x))
|
267 |
+
>>> print(read_expr(r'exists x.(man(x) & tall(x) & walks(x))'))
|
268 |
+
exists x.(man(x) & tall(x) & walks(x))
|
269 |
+
>>> print(read_expr(r'-P(x) & Q(x)'))
|
270 |
+
(-P(x) & Q(x))
|
271 |
+
>>> read_expr(r'-P(x) & Q(x)') == read_expr(r'(-P(x)) & Q(x)')
|
272 |
+
True
|
273 |
+
>>> print(read_expr(r'\x.man(x)'))
|
274 |
+
\x.man(x)
|
275 |
+
>>> print(read_expr(r'\x.man(x)(john)'))
|
276 |
+
\x.man(x)(john)
|
277 |
+
>>> print(read_expr(r'\x.man(x)(john) & tall(x)'))
|
278 |
+
(\x.man(x)(john) & tall(x))
|
279 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)'))
|
280 |
+
\x y.sees(x,y)
|
281 |
+
>>> print(read_expr(r'\x y.sees(x,y)'))
|
282 |
+
\x y.sees(x,y)
|
283 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(a)'))
|
284 |
+
(\x y.sees(x,y))(a)
|
285 |
+
>>> print(read_expr(r'\x y.sees(x,y)(a)'))
|
286 |
+
(\x y.sees(x,y))(a)
|
287 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(a)(b)'))
|
288 |
+
((\x y.sees(x,y))(a))(b)
|
289 |
+
>>> print(read_expr(r'\x y.sees(x,y)(a)(b)'))
|
290 |
+
((\x y.sees(x,y))(a))(b)
|
291 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(a,b)'))
|
292 |
+
((\x y.sees(x,y))(a))(b)
|
293 |
+
>>> print(read_expr(r'\x y.sees(x,y)(a,b)'))
|
294 |
+
((\x y.sees(x,y))(a))(b)
|
295 |
+
>>> print(read_expr(r'((\x.\y.sees(x,y))(a))(b)'))
|
296 |
+
((\x y.sees(x,y))(a))(b)
|
297 |
+
>>> print(read_expr(r'P(x)(y)(z)'))
|
298 |
+
P(x,y,z)
|
299 |
+
>>> print(read_expr(r'P(Q)'))
|
300 |
+
P(Q)
|
301 |
+
>>> print(read_expr(r'P(Q(x))'))
|
302 |
+
P(Q(x))
|
303 |
+
>>> print(read_expr(r'(\x.exists y.walks(x,y))(x)'))
|
304 |
+
(\x.exists y.walks(x,y))(x)
|
305 |
+
>>> print(read_expr(r'exists x.(x = john)'))
|
306 |
+
exists x.(x = john)
|
307 |
+
>>> print(read_expr(r'((\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x)))(\x.bark(x))'))
|
308 |
+
((\P Q.exists x.(P(x) & Q(x)))(\x.dog(x)))(\x.bark(x))
|
309 |
+
>>> a = read_expr(r'exists c.exists b.A(b,c) & A(b,c)')
|
310 |
+
>>> b = read_expr(r'(exists c.(exists b.A(b,c))) & A(b,c)')
|
311 |
+
>>> print(a == b)
|
312 |
+
True
|
313 |
+
>>> a = read_expr(r'exists c.(exists b.A(b,c) & A(b,c))')
|
314 |
+
>>> b = read_expr(r'exists c.((exists b.A(b,c)) & A(b,c))')
|
315 |
+
>>> print(a == b)
|
316 |
+
True
|
317 |
+
>>> print(read_expr(r'exists x.x = y'))
|
318 |
+
exists x.(x = y)
|
319 |
+
>>> print(read_expr('A(B)(C)'))
|
320 |
+
A(B,C)
|
321 |
+
>>> print(read_expr('(A(B))(C)'))
|
322 |
+
A(B,C)
|
323 |
+
>>> print(read_expr('A((B)(C))'))
|
324 |
+
A(B(C))
|
325 |
+
>>> print(read_expr('A(B(C))'))
|
326 |
+
A(B(C))
|
327 |
+
>>> print(read_expr('(A)(B(C))'))
|
328 |
+
A(B(C))
|
329 |
+
>>> print(read_expr('(((A)))(((B))(((C))))'))
|
330 |
+
A(B(C))
|
331 |
+
>>> print(read_expr(r'A != B'))
|
332 |
+
-(A = B)
|
333 |
+
>>> print(read_expr('P(x) & x=y & P(y)'))
|
334 |
+
(P(x) & (x = y) & P(y))
|
335 |
+
>>> try: print(read_expr(r'\walk.walk(x)'))
|
336 |
+
... except LogicalExpressionException as e: print(e)
|
337 |
+
'walk' is an illegal variable name. Constants may not be abstracted.
|
338 |
+
\walk.walk(x)
|
339 |
+
^
|
340 |
+
>>> try: print(read_expr(r'all walk.walk(john)'))
|
341 |
+
... except LogicalExpressionException as e: print(e)
|
342 |
+
'walk' is an illegal variable name. Constants may not be quantified.
|
343 |
+
all walk.walk(john)
|
344 |
+
^
|
345 |
+
>>> try: print(read_expr(r'x(john)'))
|
346 |
+
... except LogicalExpressionException as e: print(e)
|
347 |
+
'x' is an illegal predicate name. Individual variables may not be used as predicates.
|
348 |
+
x(john)
|
349 |
+
^
|
350 |
+
|
351 |
+
>>> from nltk.sem.logic import LogicParser # hack to give access to custom quote chars
|
352 |
+
>>> lpq = LogicParser()
|
353 |
+
>>> lpq.quote_chars = [("'", "'", "\\", False)]
|
354 |
+
>>> print(lpq.parse(r"(man(x) & 'tall\'s,' (x) & walks (x) )"))
|
355 |
+
(man(x) & tall's,(x) & walks(x))
|
356 |
+
>>> lpq.quote_chars = [("'", "'", "\\", True)]
|
357 |
+
>>> print(lpq.parse(r"'tall\'s,'"))
|
358 |
+
'tall\'s,'
|
359 |
+
>>> print(lpq.parse(r"'spaced name(x)'"))
|
360 |
+
'spaced name(x)'
|
361 |
+
>>> print(lpq.parse(r"-'tall\'s,'(x)"))
|
362 |
+
-'tall\'s,'(x)
|
363 |
+
>>> print(lpq.parse(r"(man(x) & 'tall\'s,' (x) & walks (x) )"))
|
364 |
+
(man(x) & 'tall\'s,'(x) & walks(x))
|
365 |
+
|
366 |
+
|
367 |
+
Simplify
|
368 |
+
========
|
369 |
+
|
370 |
+
>>> print(read_expr(r'\x.man(x)(john)').simplify())
|
371 |
+
man(john)
|
372 |
+
>>> print(read_expr(r'\x.((man(x)))(john)').simplify())
|
373 |
+
man(john)
|
374 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(john, mary)').simplify())
|
375 |
+
sees(john,mary)
|
376 |
+
>>> print(read_expr(r'\x y.sees(x,y)(john, mary)').simplify())
|
377 |
+
sees(john,mary)
|
378 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(john)(mary)').simplify())
|
379 |
+
sees(john,mary)
|
380 |
+
>>> print(read_expr(r'\x y.sees(x,y)(john)(mary)').simplify())
|
381 |
+
sees(john,mary)
|
382 |
+
>>> print(read_expr(r'\x.\y.sees(x,y)(john)').simplify())
|
383 |
+
\y.sees(john,y)
|
384 |
+
>>> print(read_expr(r'\x y.sees(x,y)(john)').simplify())
|
385 |
+
\y.sees(john,y)
|
386 |
+
>>> print(read_expr(r'(\x.\y.sees(x,y)(john))(mary)').simplify())
|
387 |
+
sees(john,mary)
|
388 |
+
>>> print(read_expr(r'(\x y.sees(x,y)(john))(mary)').simplify())
|
389 |
+
sees(john,mary)
|
390 |
+
>>> print(read_expr(r'exists x.(man(x) & (\x.exists y.walks(x,y))(x))').simplify())
|
391 |
+
exists x.(man(x) & exists y.walks(x,y))
|
392 |
+
>>> e1 = read_expr(r'exists x.(man(x) & (\x.exists y.walks(x,y))(y))').simplify()
|
393 |
+
>>> e2 = read_expr(r'exists x.(man(x) & exists z1.walks(y,z1))')
|
394 |
+
>>> e1 == e2
|
395 |
+
True
|
396 |
+
>>> print(read_expr(r'(\P Q.exists x.(P(x) & Q(x)))(\x.dog(x))').simplify())
|
397 |
+
\Q.exists x.(dog(x) & Q(x))
|
398 |
+
>>> print(read_expr(r'((\P.\Q.exists x.(P(x) & Q(x)))(\x.dog(x)))(\x.bark(x))').simplify())
|
399 |
+
exists x.(dog(x) & bark(x))
|
400 |
+
>>> print(read_expr(r'\P.(P(x)(y))(\a b.Q(a,b))').simplify())
|
401 |
+
Q(x,y)
|
402 |
+
|
403 |
+
Replace
|
404 |
+
=======
|
405 |
+
|
406 |
+
>>> a = read_expr(r'a')
|
407 |
+
>>> x = read_expr(r'x')
|
408 |
+
>>> y = read_expr(r'y')
|
409 |
+
>>> z = read_expr(r'z')
|
410 |
+
|
411 |
+
>>> print(read_expr(r'man(x)').replace(x.variable, a, False))
|
412 |
+
man(a)
|
413 |
+
>>> print(read_expr(r'(man(x) & tall(x))').replace(x.variable, a, False))
|
414 |
+
(man(a) & tall(a))
|
415 |
+
>>> print(read_expr(r'exists x.man(x)').replace(x.variable, a, False))
|
416 |
+
exists x.man(x)
|
417 |
+
>>> print(read_expr(r'exists x.man(x)').replace(x.variable, a, True))
|
418 |
+
exists a.man(a)
|
419 |
+
>>> print(read_expr(r'exists x.give(x,y,z)').replace(y.variable, a, False))
|
420 |
+
exists x.give(x,a,z)
|
421 |
+
>>> print(read_expr(r'exists x.give(x,y,z)').replace(y.variable, a, True))
|
422 |
+
exists x.give(x,a,z)
|
423 |
+
>>> e1 = read_expr(r'exists x.give(x,y,z)').replace(y.variable, x, False)
|
424 |
+
>>> e2 = read_expr(r'exists z1.give(z1,x,z)')
|
425 |
+
>>> e1 == e2
|
426 |
+
True
|
427 |
+
>>> e1 = read_expr(r'exists x.give(x,y,z)').replace(y.variable, x, True)
|
428 |
+
>>> e2 = read_expr(r'exists z1.give(z1,x,z)')
|
429 |
+
>>> e1 == e2
|
430 |
+
True
|
431 |
+
>>> print(read_expr(r'\x y z.give(x,y,z)').replace(y.variable, a, False))
|
432 |
+
\x y z.give(x,y,z)
|
433 |
+
>>> print(read_expr(r'\x y z.give(x,y,z)').replace(y.variable, a, True))
|
434 |
+
\x a z.give(x,a,z)
|
435 |
+
>>> print(read_expr(r'\x.\y.give(x,y,z)').replace(z.variable, a, False))
|
436 |
+
\x y.give(x,y,a)
|
437 |
+
>>> print(read_expr(r'\x.\y.give(x,y,z)').replace(z.variable, a, True))
|
438 |
+
\x y.give(x,y,a)
|
439 |
+
>>> e1 = read_expr(r'\x.\y.give(x,y,z)').replace(z.variable, x, False)
|
440 |
+
>>> e2 = read_expr(r'\z1.\y.give(z1,y,x)')
|
441 |
+
>>> e1 == e2
|
442 |
+
True
|
443 |
+
>>> e1 = read_expr(r'\x.\y.give(x,y,z)').replace(z.variable, x, True)
|
444 |
+
>>> e2 = read_expr(r'\z1.\y.give(z1,y,x)')
|
445 |
+
>>> e1 == e2
|
446 |
+
True
|
447 |
+
>>> print(read_expr(r'\x.give(x,y,z)').replace(z.variable, y, False))
|
448 |
+
\x.give(x,y,y)
|
449 |
+
>>> print(read_expr(r'\x.give(x,y,z)').replace(z.variable, y, True))
|
450 |
+
\x.give(x,y,y)
|
451 |
+
|
452 |
+
>>> from nltk.sem import logic
|
453 |
+
>>> logic._counter._value = 0
|
454 |
+
>>> e1 = read_expr('e1')
|
455 |
+
>>> e2 = read_expr('e2')
|
456 |
+
>>> print(read_expr('exists e1 e2.(walk(e1) & talk(e2))').replace(e1.variable, e2, True))
|
457 |
+
exists e2 e01.(walk(e2) & talk(e01))
|
458 |
+
|
459 |
+
|
460 |
+
Variables / Free
|
461 |
+
================
|
462 |
+
|
463 |
+
>>> examples = [r'walk(john)',
|
464 |
+
... r'walk(x)',
|
465 |
+
... r'?vp(?np)',
|
466 |
+
... r'see(john,mary)',
|
467 |
+
... r'exists x.walk(x)',
|
468 |
+
... r'\x.see(john,x)',
|
469 |
+
... r'\x.see(john,x)(mary)',
|
470 |
+
... r'P(x)',
|
471 |
+
... r'\P.P(x)',
|
472 |
+
... r'aa(x,bb(y),cc(z),P(w),u)',
|
473 |
+
... r'bo(?det(?n),@x)']
|
474 |
+
>>> examples = [read_expr(e) for e in examples]
|
475 |
+
|
476 |
+
>>> for e in examples:
|
477 |
+
... print('%-25s' % e, sorted(e.free()))
|
478 |
+
walk(john) []
|
479 |
+
walk(x) [Variable('x')]
|
480 |
+
?vp(?np) []
|
481 |
+
see(john,mary) []
|
482 |
+
exists x.walk(x) []
|
483 |
+
\x.see(john,x) []
|
484 |
+
(\x.see(john,x))(mary) []
|
485 |
+
P(x) [Variable('P'), Variable('x')]
|
486 |
+
\P.P(x) [Variable('x')]
|
487 |
+
aa(x,bb(y),cc(z),P(w),u) [Variable('P'), Variable('u'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
|
488 |
+
bo(?det(?n),@x) []
|
489 |
+
|
490 |
+
>>> for e in examples:
|
491 |
+
... print('%-25s' % e, sorted(e.constants()))
|
492 |
+
walk(john) [Variable('john')]
|
493 |
+
walk(x) []
|
494 |
+
?vp(?np) [Variable('?np')]
|
495 |
+
see(john,mary) [Variable('john'), Variable('mary')]
|
496 |
+
exists x.walk(x) []
|
497 |
+
\x.see(john,x) [Variable('john')]
|
498 |
+
(\x.see(john,x))(mary) [Variable('john'), Variable('mary')]
|
499 |
+
P(x) []
|
500 |
+
\P.P(x) []
|
501 |
+
aa(x,bb(y),cc(z),P(w),u) []
|
502 |
+
bo(?det(?n),@x) [Variable('?n'), Variable('@x')]
|
503 |
+
|
504 |
+
>>> for e in examples:
|
505 |
+
... print('%-25s' % e, sorted(e.predicates()))
|
506 |
+
walk(john) [Variable('walk')]
|
507 |
+
walk(x) [Variable('walk')]
|
508 |
+
?vp(?np) [Variable('?vp')]
|
509 |
+
see(john,mary) [Variable('see')]
|
510 |
+
exists x.walk(x) [Variable('walk')]
|
511 |
+
\x.see(john,x) [Variable('see')]
|
512 |
+
(\x.see(john,x))(mary) [Variable('see')]
|
513 |
+
P(x) []
|
514 |
+
\P.P(x) []
|
515 |
+
aa(x,bb(y),cc(z),P(w),u) [Variable('aa'), Variable('bb'), Variable('cc')]
|
516 |
+
bo(?det(?n),@x) [Variable('?det'), Variable('bo')]
|
517 |
+
|
518 |
+
>>> for e in examples:
|
519 |
+
... print('%-25s' % e, sorted(e.variables()))
|
520 |
+
walk(john) []
|
521 |
+
walk(x) [Variable('x')]
|
522 |
+
?vp(?np) [Variable('?np'), Variable('?vp')]
|
523 |
+
see(john,mary) []
|
524 |
+
exists x.walk(x) []
|
525 |
+
\x.see(john,x) []
|
526 |
+
(\x.see(john,x))(mary) []
|
527 |
+
P(x) [Variable('P'), Variable('x')]
|
528 |
+
\P.P(x) [Variable('x')]
|
529 |
+
aa(x,bb(y),cc(z),P(w),u) [Variable('P'), Variable('u'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
|
530 |
+
bo(?det(?n),@x) [Variable('?det'), Variable('?n'), Variable('@x')]
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
`normalize`
|
535 |
+
>>> print(read_expr(r'\e083.(walk(e083, z472) & talk(e092, z938))').normalize())
|
536 |
+
\e01.(walk(e01,z3) & talk(e02,z4))
|
537 |
+
|
538 |
+
Typed Logic
|
539 |
+
+++++++++++
|
540 |
+
|
541 |
+
>>> from nltk.sem.logic import LogicParser
|
542 |
+
>>> tlp = LogicParser(True)
|
543 |
+
>>> print(tlp.parse(r'man(x)').type)
|
544 |
+
?
|
545 |
+
>>> print(tlp.parse(r'walk(angus)').type)
|
546 |
+
?
|
547 |
+
>>> print(tlp.parse(r'-man(x)').type)
|
548 |
+
t
|
549 |
+
>>> print(tlp.parse(r'(man(x) <-> tall(x))').type)
|
550 |
+
t
|
551 |
+
>>> print(tlp.parse(r'exists x.(man(x) & tall(x))').type)
|
552 |
+
t
|
553 |
+
>>> print(tlp.parse(r'\x.man(x)').type)
|
554 |
+
<e,?>
|
555 |
+
>>> print(tlp.parse(r'john').type)
|
556 |
+
e
|
557 |
+
>>> print(tlp.parse(r'\x y.sees(x,y)').type)
|
558 |
+
<e,<e,?>>
|
559 |
+
>>> print(tlp.parse(r'\x.man(x)(john)').type)
|
560 |
+
?
|
561 |
+
>>> print(tlp.parse(r'\x.\y.sees(x,y)(john)').type)
|
562 |
+
<e,?>
|
563 |
+
>>> print(tlp.parse(r'\x.\y.sees(x,y)(john)(mary)').type)
|
564 |
+
?
|
565 |
+
>>> print(tlp.parse(r'\P.\Q.exists x.(P(x) & Q(x))').type)
|
566 |
+
<<e,t>,<<e,t>,t>>
|
567 |
+
>>> print(tlp.parse(r'\x.y').type)
|
568 |
+
<?,e>
|
569 |
+
>>> print(tlp.parse(r'\P.P(x)').type)
|
570 |
+
<<e,?>,?>
|
571 |
+
|
572 |
+
>>> parsed = tlp.parse('see(john,mary)')
|
573 |
+
>>> print(parsed.type)
|
574 |
+
?
|
575 |
+
>>> print(parsed.function)
|
576 |
+
see(john)
|
577 |
+
>>> print(parsed.function.type)
|
578 |
+
<e,?>
|
579 |
+
>>> print(parsed.function.function)
|
580 |
+
see
|
581 |
+
>>> print(parsed.function.function.type)
|
582 |
+
<e,<e,?>>
|
583 |
+
|
584 |
+
>>> parsed = tlp.parse('P(x,y)')
|
585 |
+
>>> print(parsed)
|
586 |
+
P(x,y)
|
587 |
+
>>> print(parsed.type)
|
588 |
+
?
|
589 |
+
>>> print(parsed.function)
|
590 |
+
P(x)
|
591 |
+
>>> print(parsed.function.type)
|
592 |
+
<e,?>
|
593 |
+
>>> print(parsed.function.function)
|
594 |
+
P
|
595 |
+
>>> print(parsed.function.function.type)
|
596 |
+
<e,<e,?>>
|
597 |
+
|
598 |
+
>>> print(tlp.parse(r'P').type)
|
599 |
+
?
|
600 |
+
|
601 |
+
>>> print(tlp.parse(r'P', {'P': 't'}).type)
|
602 |
+
t
|
603 |
+
|
604 |
+
>>> a = tlp.parse(r'P(x)')
|
605 |
+
>>> print(a.type)
|
606 |
+
?
|
607 |
+
>>> print(a.function.type)
|
608 |
+
<e,?>
|
609 |
+
>>> print(a.argument.type)
|
610 |
+
e
|
611 |
+
|
612 |
+
>>> a = tlp.parse(r'-P(x)')
|
613 |
+
>>> print(a.type)
|
614 |
+
t
|
615 |
+
>>> print(a.term.type)
|
616 |
+
t
|
617 |
+
>>> print(a.term.function.type)
|
618 |
+
<e,t>
|
619 |
+
>>> print(a.term.argument.type)
|
620 |
+
e
|
621 |
+
|
622 |
+
>>> a = tlp.parse(r'P & Q')
|
623 |
+
>>> print(a.type)
|
624 |
+
t
|
625 |
+
>>> print(a.first.type)
|
626 |
+
t
|
627 |
+
>>> print(a.second.type)
|
628 |
+
t
|
629 |
+
|
630 |
+
>>> a = tlp.parse(r'(P(x) & Q(x))')
|
631 |
+
>>> print(a.type)
|
632 |
+
t
|
633 |
+
>>> print(a.first.type)
|
634 |
+
t
|
635 |
+
>>> print(a.first.function.type)
|
636 |
+
<e,t>
|
637 |
+
>>> print(a.first.argument.type)
|
638 |
+
e
|
639 |
+
>>> print(a.second.type)
|
640 |
+
t
|
641 |
+
>>> print(a.second.function.type)
|
642 |
+
<e,t>
|
643 |
+
>>> print(a.second.argument.type)
|
644 |
+
e
|
645 |
+
|
646 |
+
>>> a = tlp.parse(r'\x.P(x)')
|
647 |
+
>>> print(a.type)
|
648 |
+
<e,?>
|
649 |
+
>>> print(a.term.function.type)
|
650 |
+
<e,?>
|
651 |
+
>>> print(a.term.argument.type)
|
652 |
+
e
|
653 |
+
|
654 |
+
>>> a = tlp.parse(r'\P.P(x)')
|
655 |
+
>>> print(a.type)
|
656 |
+
<<e,?>,?>
|
657 |
+
>>> print(a.term.function.type)
|
658 |
+
<e,?>
|
659 |
+
>>> print(a.term.argument.type)
|
660 |
+
e
|
661 |
+
|
662 |
+
>>> a = tlp.parse(r'(\x.P(x)(john)) & Q(x)')
|
663 |
+
>>> print(a.type)
|
664 |
+
t
|
665 |
+
>>> print(a.first.type)
|
666 |
+
t
|
667 |
+
>>> print(a.first.function.type)
|
668 |
+
<e,t>
|
669 |
+
>>> print(a.first.function.term.function.type)
|
670 |
+
<e,t>
|
671 |
+
>>> print(a.first.function.term.argument.type)
|
672 |
+
e
|
673 |
+
>>> print(a.first.argument.type)
|
674 |
+
e
|
675 |
+
|
676 |
+
>>> a = tlp.parse(r'\x y.P(x,y)(john)(mary) & Q(x)')
|
677 |
+
>>> print(a.type)
|
678 |
+
t
|
679 |
+
>>> print(a.first.type)
|
680 |
+
t
|
681 |
+
>>> print(a.first.function.type)
|
682 |
+
<e,t>
|
683 |
+
>>> print(a.first.function.function.type)
|
684 |
+
<e,<e,t>>
|
685 |
+
|
686 |
+
>>> a = tlp.parse(r'--P')
|
687 |
+
>>> print(a.type)
|
688 |
+
t
|
689 |
+
>>> print(a.term.type)
|
690 |
+
t
|
691 |
+
>>> print(a.term.term.type)
|
692 |
+
t
|
693 |
+
|
694 |
+
>>> tlp.parse(r'\x y.P(x,y)').type
|
695 |
+
<e,<e,?>>
|
696 |
+
>>> tlp.parse(r'\x y.P(x,y)', {'P': '<e,<e,t>>'}).type
|
697 |
+
<e,<e,t>>
|
698 |
+
|
699 |
+
>>> a = tlp.parse(r'\P y.P(john,y)(\x y.see(x,y))')
|
700 |
+
>>> a.type
|
701 |
+
<e,?>
|
702 |
+
>>> a.function.type
|
703 |
+
<<e,<e,?>>,<e,?>>
|
704 |
+
>>> a.function.term.term.function.function.type
|
705 |
+
<e,<e,?>>
|
706 |
+
>>> a.argument.type
|
707 |
+
<e,<e,?>>
|
708 |
+
|
709 |
+
>>> a = tlp.parse(r'exists c f.(father(c) = f)')
|
710 |
+
>>> a.type
|
711 |
+
t
|
712 |
+
>>> a.term.term.type
|
713 |
+
t
|
714 |
+
>>> a.term.term.first.type
|
715 |
+
e
|
716 |
+
>>> a.term.term.first.function.type
|
717 |
+
<e,e>
|
718 |
+
>>> a.term.term.second.type
|
719 |
+
e
|
720 |
+
|
721 |
+
typecheck()
|
722 |
+
|
723 |
+
>>> a = tlp.parse('P(x)')
|
724 |
+
>>> b = tlp.parse('Q(x)')
|
725 |
+
>>> a.type
|
726 |
+
?
|
727 |
+
>>> c = a & b
|
728 |
+
>>> c.first.type
|
729 |
+
?
|
730 |
+
>>> c.typecheck()
|
731 |
+
{...}
|
732 |
+
>>> c.first.type
|
733 |
+
t
|
734 |
+
|
735 |
+
>>> a = tlp.parse('P(x)')
|
736 |
+
>>> b = tlp.parse('P(x) & Q(x)')
|
737 |
+
>>> a.type
|
738 |
+
?
|
739 |
+
>>> typecheck([a,b])
|
740 |
+
{...}
|
741 |
+
>>> a.type
|
742 |
+
t
|
743 |
+
|
744 |
+
>>> e = tlp.parse(r'man(x)')
|
745 |
+
>>> print(dict((k,str(v)) for k,v in e.typecheck().items()) == {'x': 'e', 'man': '<e,?>'})
|
746 |
+
True
|
747 |
+
>>> sig = {'man': '<e, t>'}
|
748 |
+
>>> e = tlp.parse(r'man(x)', sig)
|
749 |
+
>>> print(e.function.type)
|
750 |
+
<e,t>
|
751 |
+
>>> print(dict((k,str(v)) for k,v in e.typecheck().items()) == {'x': 'e', 'man': '<e,t>'})
|
752 |
+
True
|
753 |
+
>>> print(e.function.type)
|
754 |
+
<e,t>
|
755 |
+
>>> print(dict((k,str(v)) for k,v in e.typecheck(sig).items()) == {'x': 'e', 'man': '<e,t>'})
|
756 |
+
True
|
757 |
+
|
758 |
+
findtype()
|
759 |
+
|
760 |
+
>>> print(tlp.parse(r'man(x)').findtype(Variable('man')))
|
761 |
+
<e,?>
|
762 |
+
>>> print(tlp.parse(r'see(x,y)').findtype(Variable('see')))
|
763 |
+
<e,<e,?>>
|
764 |
+
>>> print(tlp.parse(r'P(Q(R(x)))').findtype(Variable('Q')))
|
765 |
+
?
|
766 |
+
|
767 |
+
reading types from strings
|
768 |
+
|
769 |
+
>>> Type.fromstring('e')
|
770 |
+
e
|
771 |
+
>>> Type.fromstring('<e,t>')
|
772 |
+
<e,t>
|
773 |
+
>>> Type.fromstring('<<e,t>,<e,t>>')
|
774 |
+
<<e,t>,<e,t>>
|
775 |
+
>>> Type.fromstring('<<e,?>,?>')
|
776 |
+
<<e,?>,?>
|
777 |
+
|
778 |
+
alternative type format
|
779 |
+
|
780 |
+
>>> Type.fromstring('e').str()
|
781 |
+
'IND'
|
782 |
+
>>> Type.fromstring('<e,?>').str()
|
783 |
+
'(IND -> ANY)'
|
784 |
+
>>> Type.fromstring('<<e,t>,t>').str()
|
785 |
+
'((IND -> BOOL) -> BOOL)'
|
786 |
+
|
787 |
+
Type.__eq__()
|
788 |
+
|
789 |
+
>>> from nltk.sem.logic import *
|
790 |
+
|
791 |
+
>>> e = ENTITY_TYPE
|
792 |
+
>>> t = TRUTH_TYPE
|
793 |
+
>>> a = ANY_TYPE
|
794 |
+
>>> et = ComplexType(e,t)
|
795 |
+
>>> eet = ComplexType(e,ComplexType(e,t))
|
796 |
+
>>> at = ComplexType(a,t)
|
797 |
+
>>> ea = ComplexType(e,a)
|
798 |
+
>>> aa = ComplexType(a,a)
|
799 |
+
|
800 |
+
>>> e == e
|
801 |
+
True
|
802 |
+
>>> t == t
|
803 |
+
True
|
804 |
+
>>> e == t
|
805 |
+
False
|
806 |
+
>>> a == t
|
807 |
+
False
|
808 |
+
>>> t == a
|
809 |
+
False
|
810 |
+
>>> a == a
|
811 |
+
True
|
812 |
+
>>> et == et
|
813 |
+
True
|
814 |
+
>>> a == et
|
815 |
+
False
|
816 |
+
>>> et == a
|
817 |
+
False
|
818 |
+
>>> a == ComplexType(a,aa)
|
819 |
+
True
|
820 |
+
>>> ComplexType(a,aa) == a
|
821 |
+
True
|
822 |
+
|
823 |
+
matches()
|
824 |
+
|
825 |
+
>>> e.matches(t)
|
826 |
+
False
|
827 |
+
>>> a.matches(t)
|
828 |
+
True
|
829 |
+
>>> t.matches(a)
|
830 |
+
True
|
831 |
+
>>> a.matches(et)
|
832 |
+
True
|
833 |
+
>>> et.matches(a)
|
834 |
+
True
|
835 |
+
>>> ea.matches(eet)
|
836 |
+
True
|
837 |
+
>>> eet.matches(ea)
|
838 |
+
True
|
839 |
+
>>> aa.matches(et)
|
840 |
+
True
|
841 |
+
>>> aa.matches(t)
|
842 |
+
True
|
843 |
+
|
844 |
+
Type error during parsing
|
845 |
+
=========================
|
846 |
+
|
847 |
+
>>> try: print(tlp.parse(r'exists x y.(P(x) & P(x,y))'))
|
848 |
+
... except InconsistentTypeHierarchyException as e: print(e)
|
849 |
+
The variable 'P' was found in multiple places with different types.
|
850 |
+
>>> try: tlp.parse(r'\x y.see(x,y)(\x.man(x))')
|
851 |
+
... except TypeException as e: print(e)
|
852 |
+
The function '\x y.see(x,y)' is of type '<e,<e,?>>' and cannot be applied to '\x.man(x)' of type '<e,?>'. Its argument must match type 'e'.
|
853 |
+
>>> try: tlp.parse(r'\P x y.-P(x,y)(\x.-man(x))')
|
854 |
+
... except TypeException as e: print(e)
|
855 |
+
The function '\P x y.-P(x,y)' is of type '<<e,<e,t>>,<e,<e,t>>>' and cannot be applied to '\x.-man(x)' of type '<e,t>'. Its argument must match type '<e,<e,t>>'.
|
856 |
+
|
857 |
+
>>> a = tlp.parse(r'-talk(x)')
|
858 |
+
>>> signature = a.typecheck()
|
859 |
+
>>> try: print(tlp.parse(r'-talk(x,y)', signature))
|
860 |
+
... except InconsistentTypeHierarchyException as e: print(e)
|
861 |
+
The variable 'talk' was found in multiple places with different types.
|
862 |
+
|
863 |
+
>>> a = tlp.parse(r'-P(x)')
|
864 |
+
>>> b = tlp.parse(r'-P(x,y)')
|
865 |
+
>>> a.typecheck()
|
866 |
+
{...}
|
867 |
+
>>> b.typecheck()
|
868 |
+
{...}
|
869 |
+
>>> try: typecheck([a,b])
|
870 |
+
... except InconsistentTypeHierarchyException as e: print(e)
|
871 |
+
The variable 'P' was found in multiple places with different types.
|
872 |
+
|
873 |
+
>>> a = tlp.parse(r'P(x)')
|
874 |
+
>>> b = tlp.parse(r'P(x,y)')
|
875 |
+
>>> signature = {'P': '<e,t>'}
|
876 |
+
>>> a.typecheck(signature)
|
877 |
+
{...}
|
878 |
+
>>> try: typecheck([a,b], signature)
|
879 |
+
... except InconsistentTypeHierarchyException as e: print(e)
|
880 |
+
The variable 'P' was found in multiple places with different types.
|
881 |
+
|
882 |
+
Parse errors
|
883 |
+
============
|
884 |
+
|
885 |
+
>>> try: read_expr(r'')
|
886 |
+
... except LogicalExpressionException as e: print(e)
|
887 |
+
End of input found. Expression expected.
|
888 |
+
<BLANKLINE>
|
889 |
+
^
|
890 |
+
>>> try: read_expr(r'(')
|
891 |
+
... except LogicalExpressionException as e: print(e)
|
892 |
+
End of input found. Expression expected.
|
893 |
+
(
|
894 |
+
^
|
895 |
+
>>> try: read_expr(r')')
|
896 |
+
... except LogicalExpressionException as e: print(e)
|
897 |
+
Unexpected token: ')'. Expression expected.
|
898 |
+
)
|
899 |
+
^
|
900 |
+
>>> try: read_expr(r'()')
|
901 |
+
... except LogicalExpressionException as e: print(e)
|
902 |
+
Unexpected token: ')'. Expression expected.
|
903 |
+
()
|
904 |
+
^
|
905 |
+
>>> try: read_expr(r'(P(x) & Q(x)')
|
906 |
+
... except LogicalExpressionException as e: print(e)
|
907 |
+
End of input found. Expected token ')'.
|
908 |
+
(P(x) & Q(x)
|
909 |
+
^
|
910 |
+
>>> try: read_expr(r'(P(x) &')
|
911 |
+
... except LogicalExpressionException as e: print(e)
|
912 |
+
End of input found. Expression expected.
|
913 |
+
(P(x) &
|
914 |
+
^
|
915 |
+
>>> try: read_expr(r'(P(x) | )')
|
916 |
+
... except LogicalExpressionException as e: print(e)
|
917 |
+
Unexpected token: ')'. Expression expected.
|
918 |
+
(P(x) | )
|
919 |
+
^
|
920 |
+
>>> try: read_expr(r'P(x) ->')
|
921 |
+
... except LogicalExpressionException as e: print(e)
|
922 |
+
End of input found. Expression expected.
|
923 |
+
P(x) ->
|
924 |
+
^
|
925 |
+
>>> try: read_expr(r'P(x')
|
926 |
+
... except LogicalExpressionException as e: print(e)
|
927 |
+
End of input found. Expected token ')'.
|
928 |
+
P(x
|
929 |
+
^
|
930 |
+
>>> try: read_expr(r'P(x,')
|
931 |
+
... except LogicalExpressionException as e: print(e)
|
932 |
+
End of input found. Expression expected.
|
933 |
+
P(x,
|
934 |
+
^
|
935 |
+
>>> try: read_expr(r'P(x,)')
|
936 |
+
... except LogicalExpressionException as e: print(e)
|
937 |
+
Unexpected token: ')'. Expression expected.
|
938 |
+
P(x,)
|
939 |
+
^
|
940 |
+
>>> try: read_expr(r'exists')
|
941 |
+
... except LogicalExpressionException as e: print(e)
|
942 |
+
End of input found. Variable and Expression expected following quantifier 'exists'.
|
943 |
+
exists
|
944 |
+
^
|
945 |
+
>>> try: read_expr(r'exists x')
|
946 |
+
... except LogicalExpressionException as e: print(e)
|
947 |
+
End of input found. Expression expected.
|
948 |
+
exists x
|
949 |
+
^
|
950 |
+
>>> try: read_expr(r'exists x.')
|
951 |
+
... except LogicalExpressionException as e: print(e)
|
952 |
+
End of input found. Expression expected.
|
953 |
+
exists x.
|
954 |
+
^
|
955 |
+
>>> try: read_expr(r'\ ')
|
956 |
+
... except LogicalExpressionException as e: print(e)
|
957 |
+
End of input found. Variable and Expression expected following lambda operator.
|
958 |
+
\
|
959 |
+
^
|
960 |
+
>>> try: read_expr(r'\ x')
|
961 |
+
... except LogicalExpressionException as e: print(e)
|
962 |
+
End of input found. Expression expected.
|
963 |
+
\ x
|
964 |
+
^
|
965 |
+
>>> try: read_expr(r'\ x y')
|
966 |
+
... except LogicalExpressionException as e: print(e)
|
967 |
+
End of input found. Expression expected.
|
968 |
+
\ x y
|
969 |
+
^
|
970 |
+
>>> try: read_expr(r'\ x.')
|
971 |
+
... except LogicalExpressionException as e: print(e)
|
972 |
+
End of input found. Expression expected.
|
973 |
+
\ x.
|
974 |
+
^
|
975 |
+
>>> try: read_expr(r'P(x)Q(x)')
|
976 |
+
... except LogicalExpressionException as e: print(e)
|
977 |
+
Unexpected token: 'Q'.
|
978 |
+
P(x)Q(x)
|
979 |
+
^
|
980 |
+
>>> try: read_expr(r'(P(x)Q(x)')
|
981 |
+
... except LogicalExpressionException as e: print(e)
|
982 |
+
Unexpected token: 'Q'. Expected token ')'.
|
983 |
+
(P(x)Q(x)
|
984 |
+
^
|
985 |
+
>>> try: read_expr(r'exists x y')
|
986 |
+
... except LogicalExpressionException as e: print(e)
|
987 |
+
End of input found. Expression expected.
|
988 |
+
exists x y
|
989 |
+
^
|
990 |
+
>>> try: read_expr(r'exists x y.')
|
991 |
+
... except LogicalExpressionException as e: print(e)
|
992 |
+
End of input found. Expression expected.
|
993 |
+
exists x y.
|
994 |
+
^
|
995 |
+
>>> try: read_expr(r'exists x -> y')
|
996 |
+
... except LogicalExpressionException as e: print(e)
|
997 |
+
Unexpected token: '->'. Expression expected.
|
998 |
+
exists x -> y
|
999 |
+
^
|
1000 |
+
|
1001 |
+
|
1002 |
+
>>> try: read_expr(r'A -> ((P(x) & Q(x)) -> Z')
|
1003 |
+
... except LogicalExpressionException as e: print(e)
|
1004 |
+
End of input found. Expected token ')'.
|
1005 |
+
A -> ((P(x) & Q(x)) -> Z
|
1006 |
+
^
|
1007 |
+
>>> try: read_expr(r'A -> ((P(x) &) -> Z')
|
1008 |
+
... except LogicalExpressionException as e: print(e)
|
1009 |
+
Unexpected token: ')'. Expression expected.
|
1010 |
+
A -> ((P(x) &) -> Z
|
1011 |
+
^
|
1012 |
+
>>> try: read_expr(r'A -> ((P(x) | )) -> Z')
|
1013 |
+
... except LogicalExpressionException as e: print(e)
|
1014 |
+
Unexpected token: ')'. Expression expected.
|
1015 |
+
A -> ((P(x) | )) -> Z
|
1016 |
+
^
|
1017 |
+
>>> try: read_expr(r'A -> (P(x) ->) -> Z')
|
1018 |
+
... except LogicalExpressionException as e: print(e)
|
1019 |
+
Unexpected token: ')'. Expression expected.
|
1020 |
+
A -> (P(x) ->) -> Z
|
1021 |
+
^
|
1022 |
+
>>> try: read_expr(r'A -> (P(x) -> Z')
|
1023 |
+
... except LogicalExpressionException as e: print(e)
|
1024 |
+
End of input found. Expected token ')'.
|
1025 |
+
A -> (P(x) -> Z
|
1026 |
+
^
|
1027 |
+
>>> try: read_expr(r'A -> (P(x,) -> Z')
|
1028 |
+
... except LogicalExpressionException as e: print(e)
|
1029 |
+
Unexpected token: ')'. Expression expected.
|
1030 |
+
A -> (P(x,) -> Z
|
1031 |
+
^
|
1032 |
+
>>> try: read_expr(r'A -> (P(x,)) -> Z')
|
1033 |
+
... except LogicalExpressionException as e: print(e)
|
1034 |
+
Unexpected token: ')'. Expression expected.
|
1035 |
+
A -> (P(x,)) -> Z
|
1036 |
+
^
|
1037 |
+
>>> try: read_expr(r'A -> (exists) -> Z')
|
1038 |
+
... except LogicalExpressionException as e: print(e)
|
1039 |
+
')' is an illegal variable name. Constants may not be quantified.
|
1040 |
+
A -> (exists) -> Z
|
1041 |
+
^
|
1042 |
+
>>> try: read_expr(r'A -> (exists x) -> Z')
|
1043 |
+
... except LogicalExpressionException as e: print(e)
|
1044 |
+
Unexpected token: ')'. Expression expected.
|
1045 |
+
A -> (exists x) -> Z
|
1046 |
+
^
|
1047 |
+
>>> try: read_expr(r'A -> (exists x.) -> Z')
|
1048 |
+
... except LogicalExpressionException as e: print(e)
|
1049 |
+
Unexpected token: ')'. Expression expected.
|
1050 |
+
A -> (exists x.) -> Z
|
1051 |
+
^
|
1052 |
+
>>> try: read_expr(r'A -> (\ ) -> Z')
|
1053 |
+
... except LogicalExpressionException as e: print(e)
|
1054 |
+
')' is an illegal variable name. Constants may not be abstracted.
|
1055 |
+
A -> (\ ) -> Z
|
1056 |
+
^
|
1057 |
+
>>> try: read_expr(r'A -> (\ x) -> Z')
|
1058 |
+
... except LogicalExpressionException as e: print(e)
|
1059 |
+
Unexpected token: ')'. Expression expected.
|
1060 |
+
A -> (\ x) -> Z
|
1061 |
+
^
|
1062 |
+
>>> try: read_expr(r'A -> (\ x y) -> Z')
|
1063 |
+
... except LogicalExpressionException as e: print(e)
|
1064 |
+
Unexpected token: ')'. Expression expected.
|
1065 |
+
A -> (\ x y) -> Z
|
1066 |
+
^
|
1067 |
+
>>> try: read_expr(r'A -> (\ x.) -> Z')
|
1068 |
+
... except LogicalExpressionException as e: print(e)
|
1069 |
+
Unexpected token: ')'. Expression expected.
|
1070 |
+
A -> (\ x.) -> Z
|
1071 |
+
^
|
1072 |
+
>>> try: read_expr(r'A -> (P(x)Q(x)) -> Z')
|
1073 |
+
... except LogicalExpressionException as e: print(e)
|
1074 |
+
Unexpected token: 'Q'. Expected token ')'.
|
1075 |
+
A -> (P(x)Q(x)) -> Z
|
1076 |
+
^
|
1077 |
+
>>> try: read_expr(r'A -> ((P(x)Q(x)) -> Z')
|
1078 |
+
... except LogicalExpressionException as e: print(e)
|
1079 |
+
Unexpected token: 'Q'. Expected token ')'.
|
1080 |
+
A -> ((P(x)Q(x)) -> Z
|
1081 |
+
^
|
1082 |
+
>>> try: read_expr(r'A -> (all x y) -> Z')
|
1083 |
+
... except LogicalExpressionException as e: print(e)
|
1084 |
+
Unexpected token: ')'. Expression expected.
|
1085 |
+
A -> (all x y) -> Z
|
1086 |
+
^
|
1087 |
+
>>> try: read_expr(r'A -> (exists x y.) -> Z')
|
1088 |
+
... except LogicalExpressionException as e: print(e)
|
1089 |
+
Unexpected token: ')'. Expression expected.
|
1090 |
+
A -> (exists x y.) -> Z
|
1091 |
+
^
|
1092 |
+
>>> try: read_expr(r'A -> (exists x -> y) -> Z')
|
1093 |
+
... except LogicalExpressionException as e: print(e)
|
1094 |
+
Unexpected token: '->'. Expression expected.
|
1095 |
+
A -> (exists x -> y) -> Z
|
1096 |
+
^
|
llmeval-env/lib/python3.10/site-packages/nltk/test/metrics.doctest
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
=======
|
5 |
+
Metrics
|
6 |
+
=======
|
7 |
+
|
8 |
+
-----
|
9 |
+
Setup
|
10 |
+
-----
|
11 |
+
|
12 |
+
>>> import pytest
|
13 |
+
>>> _ = pytest.importorskip("numpy")
|
14 |
+
|
15 |
+
|
16 |
+
The `nltk.metrics` package provides a variety of *evaluation measures*
|
17 |
+
which can be used for a wide variety of NLP tasks.
|
18 |
+
|
19 |
+
>>> from nltk.metrics import *
|
20 |
+
|
21 |
+
------------------
|
22 |
+
Standard IR Scores
|
23 |
+
------------------
|
24 |
+
|
25 |
+
We can use standard scores from information retrieval to test the
|
26 |
+
performance of taggers, chunkers, etc.
|
27 |
+
|
28 |
+
>>> reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
|
29 |
+
>>> test = 'DET VB VB DET NN NN NN IN DET NN'.split()
|
30 |
+
>>> print(accuracy(reference, test))
|
31 |
+
0.8
|
32 |
+
|
33 |
+
|
34 |
+
The following measures apply to sets:
|
35 |
+
|
36 |
+
>>> reference_set = set(reference)
|
37 |
+
>>> test_set = set(test)
|
38 |
+
>>> precision(reference_set, test_set)
|
39 |
+
1.0
|
40 |
+
>>> print(recall(reference_set, test_set))
|
41 |
+
0.8
|
42 |
+
>>> print(f_measure(reference_set, test_set))
|
43 |
+
0.88888888888...
|
44 |
+
|
45 |
+
Measuring the likelihood of the data, given probability distributions:
|
46 |
+
|
47 |
+
>>> from nltk import FreqDist, MLEProbDist
|
48 |
+
>>> pdist1 = MLEProbDist(FreqDist("aldjfalskfjaldsf"))
|
49 |
+
>>> pdist2 = MLEProbDist(FreqDist("aldjfalssjjlldss"))
|
50 |
+
>>> print(log_likelihood(['a', 'd'], [pdist1, pdist2]))
|
51 |
+
-2.7075187496...
|
52 |
+
|
53 |
+
|
54 |
+
----------------
|
55 |
+
Distance Metrics
|
56 |
+
----------------
|
57 |
+
|
58 |
+
String edit distance (Levenshtein):
|
59 |
+
|
60 |
+
>>> edit_distance("rain", "shine")
|
61 |
+
3
|
62 |
+
>>> edit_distance_align("shine", "shine")
|
63 |
+
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
|
64 |
+
>>> edit_distance_align("rain", "brainy")
|
65 |
+
[(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (4, 6)]
|
66 |
+
>>> edit_distance_align("", "brainy")
|
67 |
+
[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)]
|
68 |
+
>>> edit_distance_align("", "")
|
69 |
+
[(0, 0)]
|
70 |
+
|
71 |
+
Other distance measures:
|
72 |
+
|
73 |
+
>>> s1 = set([1,2,3,4])
|
74 |
+
>>> s2 = set([3,4,5])
|
75 |
+
>>> binary_distance(s1, s2)
|
76 |
+
1.0
|
77 |
+
>>> print(jaccard_distance(s1, s2))
|
78 |
+
0.6
|
79 |
+
>>> print(masi_distance(s1, s2))
|
80 |
+
0.868
|
81 |
+
|
82 |
+
----------------------
|
83 |
+
Miscellaneous Measures
|
84 |
+
----------------------
|
85 |
+
|
86 |
+
Rank Correlation works with two dictionaries mapping keys to ranks.
|
87 |
+
The dictionaries should have the same set of keys.
|
88 |
+
|
89 |
+
>>> spearman_correlation({'e':1, 't':2, 'a':3}, {'e':1, 'a':2, 't':3})
|
90 |
+
0.5
|
91 |
+
|
92 |
+
Windowdiff uses a sliding window in comparing two segmentations of the same input (e.g. tokenizations, chunkings).
|
93 |
+
Segmentations are represented using strings of zeros and ones.
|
94 |
+
|
95 |
+
>>> s1 = "000100000010"
|
96 |
+
>>> s2 = "000010000100"
|
97 |
+
>>> s3 = "100000010000"
|
98 |
+
>>> s4 = "000000000000"
|
99 |
+
>>> s5 = "111111111111"
|
100 |
+
>>> windowdiff(s1, s1, 3)
|
101 |
+
0.0
|
102 |
+
>>> abs(windowdiff(s1, s2, 3) - 0.3) < 1e-6 # windowdiff(s1, s2, 3) == 0.3
|
103 |
+
True
|
104 |
+
>>> abs(windowdiff(s2, s3, 3) - 0.8) < 1e-6 # windowdiff(s2, s3, 3) == 0.8
|
105 |
+
True
|
106 |
+
>>> windowdiff(s1, s4, 3)
|
107 |
+
0.5
|
108 |
+
>>> windowdiff(s1, s5, 3)
|
109 |
+
1.0
|
110 |
+
|
111 |
+
----------------
|
112 |
+
Confusion Matrix
|
113 |
+
----------------
|
114 |
+
|
115 |
+
>>> reference = 'This is the reference data. Testing 123. aoaeoeoe'
|
116 |
+
>>> test = 'Thos iz_the rifirenci data. Testeng 123. aoaeoeoe'
|
117 |
+
>>> print(ConfusionMatrix(reference, test))
|
118 |
+
| . 1 2 3 T _ a c d e f g h i n o r s t z |
|
119 |
+
--+-------------------------------------------+
|
120 |
+
|<8>. . . . . 1 . . . . . . . . . . . . . . |
|
121 |
+
. | .<2>. . . . . . . . . . . . . . . . . . . |
|
122 |
+
1 | . .<1>. . . . . . . . . . . . . . . . . . |
|
123 |
+
2 | . . .<1>. . . . . . . . . . . . . . . . . |
|
124 |
+
3 | . . . .<1>. . . . . . . . . . . . . . . . |
|
125 |
+
T | . . . . .<2>. . . . . . . . . . . . . . . |
|
126 |
+
_ | . . . . . .<.>. . . . . . . . . . . . . . |
|
127 |
+
a | . . . . . . .<4>. . . . . . . . . . . . . |
|
128 |
+
c | . . . . . . . .<1>. . . . . . . . . . . . |
|
129 |
+
d | . . . . . . . . .<1>. . . . . . . . . . . |
|
130 |
+
e | . . . . . . . . . .<6>. . . 3 . . . . . . |
|
131 |
+
f | . . . . . . . . . . .<1>. . . . . . . . . |
|
132 |
+
g | . . . . . . . . . . . .<1>. . . . . . . . |
|
133 |
+
h | . . . . . . . . . . . . .<2>. . . . . . . |
|
134 |
+
i | . . . . . . . . . . 1 . . .<1>. 1 . . . . |
|
135 |
+
n | . . . . . . . . . . . . . . .<2>. . . . . |
|
136 |
+
o | . . . . . . . . . . . . . . . .<3>. . . . |
|
137 |
+
r | . . . . . . . . . . . . . . . . .<2>. . . |
|
138 |
+
s | . . . . . . . . . . . . . . . . . .<2>. 1 |
|
139 |
+
t | . . . . . . . . . . . . . . . . . . .<3>. |
|
140 |
+
z | . . . . . . . . . . . . . . . . . . . .<.>|
|
141 |
+
--+-------------------------------------------+
|
142 |
+
(row = reference; col = test)
|
143 |
+
<BLANKLINE>
|
144 |
+
|
145 |
+
>>> cm = ConfusionMatrix(reference, test)
|
146 |
+
>>> print(cm.pretty_format(sort_by_count=True))
|
147 |
+
| e a i o s t . T h n r 1 2 3 c d f g _ z |
|
148 |
+
--+-------------------------------------------+
|
149 |
+
|<8>. . . . . . . . . . . . . . . . . . 1 . |
|
150 |
+
e | .<6>. 3 . . . . . . . . . . . . . . . . . |
|
151 |
+
a | . .<4>. . . . . . . . . . . . . . . . . . |
|
152 |
+
i | . 1 .<1>1 . . . . . . . . . . . . . . . . |
|
153 |
+
o | . . . .<3>. . . . . . . . . . . . . . . . |
|
154 |
+
s | . . . . .<2>. . . . . . . . . . . . . . 1 |
|
155 |
+
t | . . . . . .<3>. . . . . . . . . . . . . . |
|
156 |
+
. | . . . . . . .<2>. . . . . . . . . . . . . |
|
157 |
+
T | . . . . . . . .<2>. . . . . . . . . . . . |
|
158 |
+
h | . . . . . . . . .<2>. . . . . . . . . . . |
|
159 |
+
n | . . . . . . . . . .<2>. . . . . . . . . . |
|
160 |
+
r | . . . . . . . . . . .<2>. . . . . . . . . |
|
161 |
+
1 | . . . . . . . . . . . .<1>. . . . . . . . |
|
162 |
+
2 | . . . . . . . . . . . . .<1>. . . . . . . |
|
163 |
+
3 | . . . . . . . . . . . . . .<1>. . . . . . |
|
164 |
+
c | . . . . . . . . . . . . . . .<1>. . . . . |
|
165 |
+
d | . . . . . . . . . . . . . . . .<1>. . . . |
|
166 |
+
f | . . . . . . . . . . . . . . . . .<1>. . . |
|
167 |
+
g | . . . . . . . . . . . . . . . . . .<1>. . |
|
168 |
+
_ | . . . . . . . . . . . . . . . . . . .<.>. |
|
169 |
+
z | . . . . . . . . . . . . . . . . . . . .<.>|
|
170 |
+
--+-------------------------------------------+
|
171 |
+
(row = reference; col = test)
|
172 |
+
<BLANKLINE>
|
173 |
+
|
174 |
+
>>> print(cm.pretty_format(sort_by_count=True, truncate=10))
|
175 |
+
| e a i o s t . T h |
|
176 |
+
--+---------------------+
|
177 |
+
|<8>. . . . . . . . . |
|
178 |
+
e | .<6>. 3 . . . . . . |
|
179 |
+
a | . .<4>. . . . . . . |
|
180 |
+
i | . 1 .<1>1 . . . . . |
|
181 |
+
o | . . . .<3>. . . . . |
|
182 |
+
s | . . . . .<2>. . . . |
|
183 |
+
t | . . . . . .<3>. . . |
|
184 |
+
. | . . . . . . .<2>. . |
|
185 |
+
T | . . . . . . . .<2>. |
|
186 |
+
h | . . . . . . . . .<2>|
|
187 |
+
--+---------------------+
|
188 |
+
(row = reference; col = test)
|
189 |
+
<BLANKLINE>
|
190 |
+
|
191 |
+
>>> print(cm.pretty_format(sort_by_count=True, truncate=10, values_in_chart=False))
|
192 |
+
| 1 |
|
193 |
+
| 1 2 3 4 5 6 7 8 9 0 |
|
194 |
+
---+---------------------+
|
195 |
+
1 |<8>. . . . . . . . . |
|
196 |
+
2 | .<6>. 3 . . . . . . |
|
197 |
+
3 | . .<4>. . . . . . . |
|
198 |
+
4 | . 1 .<1>1 . . . . . |
|
199 |
+
5 | . . . .<3>. . . . . |
|
200 |
+
6 | . . . . .<2>. . . . |
|
201 |
+
7 | . . . . . .<3>. . . |
|
202 |
+
8 | . . . . . . .<2>. . |
|
203 |
+
9 | . . . . . . . .<2>. |
|
204 |
+
10 | . . . . . . . . .<2>|
|
205 |
+
---+---------------------+
|
206 |
+
(row = reference; col = test)
|
207 |
+
Value key:
|
208 |
+
1:
|
209 |
+
2: e
|
210 |
+
3: a
|
211 |
+
4: i
|
212 |
+
5: o
|
213 |
+
6: s
|
214 |
+
7: t
|
215 |
+
8: .
|
216 |
+
9: T
|
217 |
+
10: h
|
218 |
+
<BLANKLINE>
|
219 |
+
|
220 |
+
For "e", the number of true positives should be 6, while the number of false negatives is 3.
|
221 |
+
So, the recall ought to be 6 / (6 + 3):
|
222 |
+
|
223 |
+
>>> cm.recall("e") # doctest: +ELLIPSIS
|
224 |
+
0.666666...
|
225 |
+
|
226 |
+
For "e", the false positive is just 1, so the precision should be 6 / (6 + 1):
|
227 |
+
|
228 |
+
>>> cm.precision("e") # doctest: +ELLIPSIS
|
229 |
+
0.857142...
|
230 |
+
|
231 |
+
The f-measure with default value of ``alpha = 0.5`` should then be:
|
232 |
+
|
233 |
+
* *1/(alpha/p + (1-alpha)/r) =*
|
234 |
+
* *1/(0.5/p + 0.5/r) =*
|
235 |
+
* *2pr / (p + r) =*
|
236 |
+
* *2 * 0.857142... * 0.666666... / (0.857142... + 0.666666...) =*
|
237 |
+
* *0.749999...*
|
238 |
+
|
239 |
+
>>> cm.f_measure("e") # doctest: +ELLIPSIS
|
240 |
+
0.749999...
|
241 |
+
|
242 |
+
--------------------
|
243 |
+
Association measures
|
244 |
+
--------------------
|
245 |
+
|
246 |
+
These measures are useful to determine whether the coocurrence of two random
|
247 |
+
events is meaningful. They are used, for instance, to distinguish collocations
|
248 |
+
from other pairs of adjacent words.
|
249 |
+
|
250 |
+
We bring some examples of bigram association calculations from Manning and
|
251 |
+
Schutze's SNLP, 2nd Ed. chapter 5.
|
252 |
+
|
253 |
+
>>> n_new_companies, n_new, n_companies, N = 8, 15828, 4675, 14307668
|
254 |
+
>>> bam = BigramAssocMeasures
|
255 |
+
>>> bam.raw_freq(20, (42, 20), N) == 20. / N
|
256 |
+
True
|
257 |
+
>>> bam.student_t(n_new_companies, (n_new, n_companies), N)
|
258 |
+
0.999...
|
259 |
+
>>> bam.chi_sq(n_new_companies, (n_new, n_companies), N)
|
260 |
+
1.54...
|
261 |
+
>>> bam.likelihood_ratio(150, (12593, 932), N)
|
262 |
+
1291...
|
263 |
+
|
264 |
+
For other associations, we ensure the ordering of the measures:
|
265 |
+
|
266 |
+
>>> bam.mi_like(20, (42, 20), N) > bam.mi_like(20, (41, 27), N)
|
267 |
+
True
|
268 |
+
>>> bam.pmi(20, (42, 20), N) > bam.pmi(20, (41, 27), N)
|
269 |
+
True
|
270 |
+
>>> bam.phi_sq(20, (42, 20), N) > bam.phi_sq(20, (41, 27), N)
|
271 |
+
True
|
272 |
+
>>> bam.poisson_stirling(20, (42, 20), N) > bam.poisson_stirling(20, (41, 27), N)
|
273 |
+
True
|
274 |
+
>>> bam.jaccard(20, (42, 20), N) > bam.jaccard(20, (41, 27), N)
|
275 |
+
True
|
276 |
+
>>> bam.dice(20, (42, 20), N) > bam.dice(20, (41, 27), N)
|
277 |
+
True
|
278 |
+
>>> bam.fisher(20, (42, 20), N) > bam.fisher(20, (41, 27), N) # doctest: +SKIP
|
279 |
+
False
|
280 |
+
|
281 |
+
For trigrams, we have to provide more count information:
|
282 |
+
|
283 |
+
>>> n_w1_w2_w3 = 20
|
284 |
+
>>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40
|
285 |
+
>>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3)
|
286 |
+
>>> n_w1, n_w2, n_w3 = 100, 200, 300
|
287 |
+
>>> uni_counts = (n_w1, n_w2, n_w3)
|
288 |
+
>>> N = 14307668
|
289 |
+
>>> tam = TrigramAssocMeasures
|
290 |
+
>>> tam.raw_freq(n_w1_w2_w3, pair_counts, uni_counts, N) == 1. * n_w1_w2_w3 / N
|
291 |
+
True
|
292 |
+
>>> uni_counts2 = (n_w1, n_w2, 100)
|
293 |
+
>>> tam.student_t(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.student_t(n_w1_w2_w3, pair_counts, uni_counts, N)
|
294 |
+
True
|
295 |
+
>>> tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts, N)
|
296 |
+
True
|
297 |
+
>>> tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts, N)
|
298 |
+
True
|
299 |
+
>>> tam.pmi(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.pmi(n_w1_w2_w3, pair_counts, uni_counts, N)
|
300 |
+
True
|
301 |
+
>>> tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts, N)
|
302 |
+
True
|
303 |
+
>>> tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts, N)
|
304 |
+
True
|
305 |
+
>>> tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts, N)
|
306 |
+
True
|
307 |
+
|
308 |
+
|
309 |
+
For fourgrams, we have to provide more count information:
|
310 |
+
|
311 |
+
>>> n_w1_w2_w3_w4 = 5
|
312 |
+
>>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40
|
313 |
+
>>> n_w1_w2_w3, n_w2_w3_w4 = 20, 10
|
314 |
+
>>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3)
|
315 |
+
>>> triplet_counts = (n_w1_w2_w3, n_w2_w3_w4)
|
316 |
+
>>> n_w1, n_w2, n_w3, n_w4 = 100, 200, 300, 400
|
317 |
+
>>> uni_counts = (n_w1, n_w2, n_w3, n_w4)
|
318 |
+
>>> N = 14307668
|
319 |
+
>>> qam = QuadgramAssocMeasures
|
320 |
+
>>> qam.raw_freq(n_w1_w2_w3_w4, pair_counts, triplet_counts, uni_counts, N) == 1. * n_w1_w2_w3_w4 / N
|
321 |
+
True
|
llmeval-env/lib/python3.10/site-packages/nltk/test/misc.doctest
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
--------------------------------------------------------------------------------
|
5 |
+
Unit tests for the miscellaneous sort functions.
|
6 |
+
--------------------------------------------------------------------------------
|
7 |
+
|
8 |
+
>>> from copy import deepcopy
|
9 |
+
>>> from nltk.misc.sort import *
|
10 |
+
|
11 |
+
A (very) small list of unsorted integers.
|
12 |
+
|
13 |
+
>>> test_data = [12, 67, 7, 28, 92, 56, 53, 720, 91, 57, 20, 20]
|
14 |
+
|
15 |
+
Test each sorting method - each method returns the number of operations
|
16 |
+
required to sort the data, and sorts in-place (desctructively - hence the need
|
17 |
+
for multiple copies).
|
18 |
+
|
19 |
+
>>> sorted_data = deepcopy(test_data)
|
20 |
+
>>> selection(sorted_data)
|
21 |
+
66
|
22 |
+
|
23 |
+
>>> sorted_data
|
24 |
+
[7, 12, 20, 20, 28, 53, 56, 57, 67, 91, 92, 720]
|
25 |
+
|
26 |
+
>>> sorted_data = deepcopy(test_data)
|
27 |
+
>>> bubble(sorted_data)
|
28 |
+
30
|
29 |
+
|
30 |
+
>>> sorted_data
|
31 |
+
[7, 12, 20, 20, 28, 53, 56, 57, 67, 91, 92, 720]
|
32 |
+
|
33 |
+
>>> sorted_data = deepcopy(test_data)
|
34 |
+
>>> merge(sorted_data)
|
35 |
+
30
|
36 |
+
|
37 |
+
>>> sorted_data
|
38 |
+
[7, 12, 20, 20, 28, 53, 56, 57, 67, 91, 92, 720]
|
39 |
+
|
40 |
+
>>> sorted_data = deepcopy(test_data)
|
41 |
+
>>> quick(sorted_data)
|
42 |
+
13
|
43 |
+
|
44 |
+
>>> sorted_data
|
45 |
+
[7, 12, 20, 20, 28, 53, 56, 57, 67, 91, 92, 720]
|
46 |
+
|
47 |
+
--------------------------------------------------------------------------------
|
48 |
+
Unit tests for Wordfinder class
|
49 |
+
--------------------------------------------------------------------------------
|
50 |
+
|
51 |
+
>>> import random
|
52 |
+
|
53 |
+
>>> # The following is not enough for reproducibility under Python 2/3
|
54 |
+
>>> # (see https://bugs.python.org/issue9025) so this test is skipped.
|
55 |
+
>>> random.seed(12345)
|
56 |
+
|
57 |
+
>>> from nltk.misc import wordfinder
|
58 |
+
>>> wordfinder.word_finder() # doctest: +SKIP
|
59 |
+
Word Finder
|
60 |
+
<BLANKLINE>
|
61 |
+
J V L A I R O T A T I S I V O D E R E T
|
62 |
+
H U U B E A R O E P O C S O R E T N E P
|
63 |
+
A D A U Z E E S R A P P A L L M E N T R
|
64 |
+
C X A D Q S Z T P E O R S N G P J A D E
|
65 |
+
I G Y K K T I A A R G F I D T E L C N S
|
66 |
+
R E C N B H T R L T N N B W N T A O A I
|
67 |
+
A Y I L O E I A M E I A A Y U R P L L D
|
68 |
+
G L T V S T S F E A D I P H D O O H N I
|
69 |
+
R L S E C I N I L R N N M E C G R U E A
|
70 |
+
A A Y G I C E N L L E O I G Q R T A E L
|
71 |
+
M R C E T I S T A E T L L E U A E N R L
|
72 |
+
O U O T A S E E C S O O N H Y P A T G Y
|
73 |
+
E M H O M M D R E S F P U L T H C F N V
|
74 |
+
L A C A I M A M A N L B R U T E D O M I
|
75 |
+
O R I L N E E E E E U A R S C R Y L I P
|
76 |
+
H T R K E S N N M S I L A S R E V I N U
|
77 |
+
T X T A A O U T K S E T A R R E S I B J
|
78 |
+
A E D L E L J I F O O R P E L K N I R W
|
79 |
+
K H A I D E Q O P R I C K T I M B E R P
|
80 |
+
Z K D O O H G N I H T U R V E Y D R O P
|
81 |
+
<BLANKLINE>
|
82 |
+
1: INTERCHANGER
|
83 |
+
2: TEARLESSNESS
|
84 |
+
3: UNIVERSALISM
|
85 |
+
4: DESENSITIZER
|
86 |
+
5: INTERMENTION
|
87 |
+
6: TRICHOCYSTIC
|
88 |
+
7: EXTRAMURALLY
|
89 |
+
8: VEGETOALKALI
|
90 |
+
9: PALMELLACEAE
|
91 |
+
10: AESTHETICISM
|
92 |
+
11: PETROGRAPHER
|
93 |
+
12: VISITATORIAL
|
94 |
+
13: OLEOMARGARIC
|
95 |
+
14: WRINKLEPROOF
|
96 |
+
15: PRICKTIMBER
|
97 |
+
16: PRESIDIALLY
|
98 |
+
17: SCITAMINEAE
|
99 |
+
18: ENTEROSCOPE
|
100 |
+
19: APPALLMENT
|
101 |
+
20: TURVEYDROP
|
102 |
+
21: THINGHOOD
|
103 |
+
22: BISERRATE
|
104 |
+
23: GREENLAND
|
105 |
+
24: BRUTEDOM
|
106 |
+
25: POLONIAN
|
107 |
+
26: ACOLHUAN
|
108 |
+
27: LAPORTEA
|
109 |
+
28: TENDING
|
110 |
+
29: TEREDO
|
111 |
+
30: MESOLE
|
112 |
+
31: UNLIMP
|
113 |
+
32: OSTARA
|
114 |
+
33: PILY
|
115 |
+
34: DUNT
|
116 |
+
35: ONYX
|
117 |
+
36: KATH
|
118 |
+
37: JUNE
|
llmeval-env/lib/python3.10/site-packages/nltk/test/portuguese_en_fixt.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def setup_module():
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
pytest.skip("portuguese_en.doctest imports nltk.examples.pt which doesn't exist!")
|
llmeval-env/lib/python3.10/site-packages/nltk/test/probability.doctest
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. Copyright (C) 2001-2023 NLTK Project
|
2 |
+
.. For license information, see LICENSE.TXT
|
3 |
+
|
4 |
+
===========
|
5 |
+
Probability
|
6 |
+
===========
|
7 |
+
|
8 |
+
>>> from nltk.test.probability_fixt import setup_module
|
9 |
+
>>> setup_module()
|
10 |
+
|
11 |
+
>>> import nltk
|
12 |
+
>>> from nltk.probability import *
|
13 |
+
|
14 |
+
FreqDist
|
15 |
+
--------
|
16 |
+
|
17 |
+
>>> text1 = ['no', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '!']
|
18 |
+
>>> text2 = ['no', 'good', 'porpoise', 'likes', 'to', 'fish', 'fish', 'anywhere', '.']
|
19 |
+
|
20 |
+
>>> fd1 = nltk.FreqDist(text1)
|
21 |
+
>>> fd1 == nltk.FreqDist(text1)
|
22 |
+
True
|
23 |
+
|
24 |
+
Note that items are sorted in order of decreasing frequency; two items of the same frequency appear in indeterminate order.
|
25 |
+
|
26 |
+
>>> import itertools
|
27 |
+
>>> both = nltk.FreqDist(text1 + text2)
|
28 |
+
>>> both_most_common = both.most_common()
|
29 |
+
>>> list(itertools.chain(*(sorted(ys) for k, ys in itertools.groupby(both_most_common, key=lambda t: t[1]))))
|
30 |
+
[('fish', 3), ('anywhere', 2), ('good', 2), ('no', 2), ('porpoise', 2), ('!', 1), ('.', 1), ('a', 1), ('goes', 1), ('likes', 1), ('to', 1), ('without', 1)]
|
31 |
+
|
32 |
+
>>> both == fd1 + nltk.FreqDist(text2)
|
33 |
+
True
|
34 |
+
>>> fd1 == nltk.FreqDist(text1) # But fd1 is unchanged
|
35 |
+
True
|
36 |
+
|
37 |
+
>>> fd2 = nltk.FreqDist(text2)
|
38 |
+
>>> fd1.update(fd2)
|
39 |
+
>>> fd1 == both
|
40 |
+
True
|
41 |
+
|
42 |
+
>>> fd1 = nltk.FreqDist(text1)
|
43 |
+
>>> fd1.update(text2)
|
44 |
+
>>> fd1 == both
|
45 |
+
True
|
46 |
+
|
47 |
+
>>> fd1 = nltk.FreqDist(text1)
|
48 |
+
>>> fd2 = nltk.FreqDist(fd1)
|
49 |
+
>>> fd2 == fd1
|
50 |
+
True
|
51 |
+
|
52 |
+
``nltk.FreqDist`` can be pickled:
|
53 |
+
|
54 |
+
>>> import pickle
|
55 |
+
>>> fd1 = nltk.FreqDist(text1)
|
56 |
+
>>> pickled = pickle.dumps(fd1)
|
57 |
+
>>> fd1 == pickle.loads(pickled)
|
58 |
+
True
|
59 |
+
|
60 |
+
Mathematical operations:
|
61 |
+
|
62 |
+
>>> FreqDist('abbb') + FreqDist('bcc')
|
63 |
+
FreqDist({'b': 4, 'c': 2, 'a': 1})
|
64 |
+
>>> FreqDist('abbbc') - FreqDist('bccd')
|
65 |
+
FreqDist({'b': 2, 'a': 1})
|
66 |
+
>>> FreqDist('abbb') | FreqDist('bcc')
|
67 |
+
FreqDist({'b': 3, 'c': 2, 'a': 1})
|
68 |
+
>>> FreqDist('abbb') & FreqDist('bcc')
|
69 |
+
FreqDist({'b': 1})
|
70 |
+
|
71 |
+
ConditionalFreqDist
|
72 |
+
-------------------
|
73 |
+
|
74 |
+
>>> cfd1 = ConditionalFreqDist()
|
75 |
+
>>> cfd1[1] = FreqDist('abbbb')
|
76 |
+
>>> cfd1[2] = FreqDist('xxxxyy')
|
77 |
+
>>> cfd1
|
78 |
+
<ConditionalFreqDist with 2 conditions>
|
79 |
+
|
80 |
+
>>> cfd2 = ConditionalFreqDist()
|
81 |
+
>>> cfd2[1] = FreqDist('bbccc')
|
82 |
+
>>> cfd2[2] = FreqDist('xxxyyyzz')
|
83 |
+
>>> cfd2[3] = FreqDist('m')
|
84 |
+
>>> cfd2
|
85 |
+
<ConditionalFreqDist with 3 conditions>
|
86 |
+
|
87 |
+
>>> r = cfd1 + cfd2
|
88 |
+
>>> [(i,r[i]) for i in r.conditions()]
|
89 |
+
[(1, FreqDist({'b': 6, 'c': 3, 'a': 1})), (2, FreqDist({'x': 7, 'y': 5, 'z': 2})), (3, FreqDist({'m': 1}))]
|
90 |
+
|
91 |
+
>>> r = cfd1 - cfd2
|
92 |
+
>>> [(i,r[i]) for i in r.conditions()]
|
93 |
+
[(1, FreqDist({'b': 2, 'a': 1})), (2, FreqDist({'x': 1}))]
|
94 |
+
|
95 |
+
>>> r = cfd1 | cfd2
|
96 |
+
>>> [(i,r[i]) for i in r.conditions()]
|
97 |
+
[(1, FreqDist({'b': 4, 'c': 3, 'a': 1})), (2, FreqDist({'x': 4, 'y': 3, 'z': 2})), (3, FreqDist({'m': 1}))]
|
98 |
+
|
99 |
+
>>> r = cfd1 & cfd2
|
100 |
+
>>> [(i,r[i]) for i in r.conditions()]
|
101 |
+
[(1, FreqDist({'b': 2})), (2, FreqDist({'x': 3, 'y': 2}))]
|
102 |
+
|
103 |
+
Testing some HMM estimators
|
104 |
+
---------------------------
|
105 |
+
|
106 |
+
We extract a small part (500 sentences) of the Brown corpus
|
107 |
+
|
108 |
+
>>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')[:500]
|
109 |
+
>>> print(len(corpus))
|
110 |
+
500
|
111 |
+
|
112 |
+
We create a HMM trainer - note that we need the tags and symbols
|
113 |
+
from the whole corpus, not just the training corpus
|
114 |
+
|
115 |
+
>>> from nltk.util import unique_list
|
116 |
+
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
|
117 |
+
>>> print(len(tag_set))
|
118 |
+
92
|
119 |
+
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
|
120 |
+
>>> print(len(symbols))
|
121 |
+
1464
|
122 |
+
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
|
123 |
+
|
124 |
+
We divide the corpus into 90% training and 10% testing
|
125 |
+
|
126 |
+
>>> train_corpus = []
|
127 |
+
>>> test_corpus = []
|
128 |
+
>>> for i in range(len(corpus)):
|
129 |
+
... if i % 10:
|
130 |
+
... train_corpus += [corpus[i]]
|
131 |
+
... else:
|
132 |
+
... test_corpus += [corpus[i]]
|
133 |
+
>>> print(len(train_corpus))
|
134 |
+
450
|
135 |
+
>>> print(len(test_corpus))
|
136 |
+
50
|
137 |
+
|
138 |
+
And now we can test the estimators
|
139 |
+
|
140 |
+
>>> def train_and_test(est):
|
141 |
+
... hmm = trainer.train_supervised(train_corpus, estimator=est)
|
142 |
+
... print('%.2f%%' % (100 * hmm.accuracy(test_corpus)))
|
143 |
+
|
144 |
+
Maximum Likelihood Estimation
|
145 |
+
-----------------------------
|
146 |
+
- this resulted in an initialization error before r7209
|
147 |
+
|
148 |
+
>>> mle = lambda fd, bins: MLEProbDist(fd)
|
149 |
+
>>> train_and_test(mle)
|
150 |
+
22.75%
|
151 |
+
|
152 |
+
Laplace (= Lidstone with gamma==1)
|
153 |
+
|
154 |
+
>>> train_and_test(LaplaceProbDist)
|
155 |
+
66.04%
|
156 |
+
|
157 |
+
Expected Likelihood Estimation (= Lidstone with gamma==0.5)
|
158 |
+
|
159 |
+
>>> train_and_test(ELEProbDist)
|
160 |
+
73.01%
|
161 |
+
|
162 |
+
Lidstone Estimation, for gamma==0.1, 0.5 and 1
|
163 |
+
(the later two should be exactly equal to MLE and ELE above)
|
164 |
+
|
165 |
+
>>> def lidstone(gamma):
|
166 |
+
... return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)
|
167 |
+
>>> train_and_test(lidstone(0.1))
|
168 |
+
82.51%
|
169 |
+
>>> train_and_test(lidstone(0.5))
|
170 |
+
73.01%
|
171 |
+
>>> train_and_test(lidstone(1.0))
|
172 |
+
66.04%
|
173 |
+
|
174 |
+
Witten Bell Estimation
|
175 |
+
----------------------
|
176 |
+
- This resulted in ZeroDivisionError before r7209
|
177 |
+
|
178 |
+
>>> train_and_test(WittenBellProbDist)
|
179 |
+
88.12%
|
180 |
+
|
181 |
+
Good Turing Estimation
|
182 |
+
|
183 |
+
>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
|
184 |
+
>>> train_and_test(gt)
|
185 |
+
86.93%
|
186 |
+
|
187 |
+
Kneser Ney Estimation
|
188 |
+
---------------------
|
189 |
+
Since the Kneser-Ney distribution is best suited for trigrams, we must adjust
|
190 |
+
our testing accordingly.
|
191 |
+
|
192 |
+
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))
|
193 |
+
... for x, y, z in nltk.trigrams(sent)]
|
194 |
+
... for sent in corpus[:100]]
|
195 |
+
|
196 |
+
We will then need to redefine the rest of the training/testing variables
|
197 |
+
|
198 |
+
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
|
199 |
+
>>> len(tag_set)
|
200 |
+
906
|
201 |
+
|
202 |
+
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
|
203 |
+
>>> len(symbols)
|
204 |
+
1341
|
205 |
+
|
206 |
+
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
|
207 |
+
>>> train_corpus = []
|
208 |
+
>>> test_corpus = []
|
209 |
+
|
210 |
+
>>> for i in range(len(corpus)):
|
211 |
+
... if i % 10:
|
212 |
+
... train_corpus += [corpus[i]]
|
213 |
+
... else:
|
214 |
+
... test_corpus += [corpus[i]]
|
215 |
+
|
216 |
+
>>> len(train_corpus)
|
217 |
+
90
|
218 |
+
>>> len(test_corpus)
|
219 |
+
10
|
220 |
+
|
221 |
+
>>> kn = lambda fd, bins: KneserNeyProbDist(fd)
|
222 |
+
>>> train_and_test(kn)
|
223 |
+
0.86%
|
224 |
+
|
225 |
+
Remains to be added:
|
226 |
+
- Tests for HeldoutProbDist, CrossValidationProbDist and MutableProbDist
|
227 |
+
|
228 |
+
Squashed bugs
|
229 |
+
-------------
|
230 |
+
|
231 |
+
Issue 511: override pop and popitem to invalidate the cache
|
232 |
+
|
233 |
+
>>> fd = nltk.FreqDist('a')
|
234 |
+
>>> list(fd.keys())
|
235 |
+
['a']
|
236 |
+
>>> fd.pop('a')
|
237 |
+
1
|
238 |
+
>>> list(fd.keys())
|
239 |
+
[]
|
240 |
+
|
241 |
+
Issue 533: access cumulative frequencies with no arguments
|
242 |
+
|
243 |
+
>>> fd = nltk.FreqDist('aab')
|
244 |
+
>>> list(fd._cumulative_frequencies(['a']))
|
245 |
+
[2.0]
|
246 |
+
>>> list(fd._cumulative_frequencies(['a', 'b']))
|
247 |
+
[2.0, 3.0]
|
248 |
+
|
249 |
+
Issue 579: override clear to reset some variables
|
250 |
+
|
251 |
+
>>> fd = FreqDist('aab')
|
252 |
+
>>> fd.clear()
|
253 |
+
>>> fd.N()
|
254 |
+
0
|
255 |
+
|
256 |
+
Issue 351: fix fileids method of CategorizedCorpusReader to inadvertently
|
257 |
+
add errant categories
|
258 |
+
|
259 |
+
>>> from nltk.corpus import brown
|
260 |
+
>>> brown.fileids('blah')
|
261 |
+
Traceback (most recent call last):
|
262 |
+
...
|
263 |
+
ValueError: Category blah not found
|
264 |
+
>>> brown.categories()
|
265 |
+
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction']
|
266 |
+
|
267 |
+
Issue 175: add the unseen bin to SimpleGoodTuringProbDist by default
|
268 |
+
otherwise any unseen events get a probability of zero, i.e.,
|
269 |
+
they don't get smoothed
|
270 |
+
|
271 |
+
>>> from nltk import SimpleGoodTuringProbDist, FreqDist
|
272 |
+
>>> fd = FreqDist({'a':1, 'b':1, 'c': 2, 'd': 3, 'e': 4, 'f': 4, 'g': 4, 'h': 5, 'i': 5, 'j': 6, 'k': 6, 'l': 6, 'm': 7, 'n': 7, 'o': 8, 'p': 9, 'q': 10})
|
273 |
+
>>> p = SimpleGoodTuringProbDist(fd)
|
274 |
+
>>> p.prob('a')
|
275 |
+
0.017649766667026317...
|
276 |
+
>>> p.prob('o')
|
277 |
+
0.08433050215340411...
|
278 |
+
>>> p.prob('z')
|
279 |
+
0.022727272727272728...
|
280 |
+
>>> p.prob('foobar')
|
281 |
+
0.022727272727272728...
|
282 |
+
|
283 |
+
``MLEProbDist``, ``ConditionalProbDist'', ``DictionaryConditionalProbDist`` and
|
284 |
+
``ConditionalFreqDist`` can be pickled:
|
285 |
+
|
286 |
+
>>> import pickle
|
287 |
+
>>> pd = MLEProbDist(fd)
|
288 |
+
>>> sorted(pd.samples()) == sorted(pickle.loads(pickle.dumps(pd)).samples())
|
289 |
+
True
|
290 |
+
>>> dpd = DictionaryConditionalProbDist({'x': pd})
|
291 |
+
>>> unpickled = pickle.loads(pickle.dumps(dpd))
|
292 |
+
>>> dpd['x'].prob('a')
|
293 |
+
0.011363636...
|
294 |
+
>>> dpd['x'].prob('a') == unpickled['x'].prob('a')
|
295 |
+
True
|
296 |
+
>>> cfd = nltk.probability.ConditionalFreqDist()
|
297 |
+
>>> cfd['foo']['hello'] += 1
|
298 |
+
>>> cfd['foo']['hello'] += 1
|
299 |
+
>>> cfd['bar']['hello'] += 1
|
300 |
+
>>> cfd2 = pickle.loads(pickle.dumps(cfd))
|
301 |
+
>>> cfd2 == cfd
|
302 |
+
True
|
303 |
+
>>> cpd = ConditionalProbDist(cfd, SimpleGoodTuringProbDist)
|
304 |
+
>>> cpd2 = pickle.loads(pickle.dumps(cpd))
|
305 |
+
>>> cpd['foo'].prob('hello') == cpd2['foo'].prob('hello')
|
306 |
+
True
|