Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h +14 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h +10 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h +4 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h +329 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h +549 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h +43 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h +47 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h +452 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h +8 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h +307 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h +442 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h +636 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h +892 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h +1586 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h +1335 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h +1108 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h +50 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_n.h +344 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vml.h +171 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Descriptors.h +391 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Exceptions.h +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handle.h +9 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handles.h +2 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Types.h +14 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Utils.h +21 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/cudnn-wrapper.h +15 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/EmptyTensor.h +29 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/IndexKernels.h +630 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSAllocator.h +401 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSAllocatorInterface.h +61 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSDevice.h +85 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSEvent.h +100 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSGeneratorImpl.h +52 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSGuardImpl.h +174 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSHooks.h +57 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSProfiler.h +393 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSStream.h +133 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ChannelShuffleKernel.h +14 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h +369 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IndexKernelUtils.h +88 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h +238 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/int_mm_kernel.h +16 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h +41 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/moments_utils.h +206 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Activation.h +20 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CUDAJitLoops.cuh +296 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CUDALoops.cuh +348 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CompositeRandomAccessor.h +35 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTPlanCache.h +494 -0
- llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTUtils.h +73 -0
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/// Flush-To-Zero and Denormals-Are-Zero mode
|
2 |
+
///
|
3 |
+
/// Flush-To-Zero (FTZ) and Denormals-Are-Zero (DAZ) are modes that bypass
|
4 |
+
/// IEEE 754 methods of dealing with denormal floating-point numbers on x86-64
|
5 |
+
/// and some x86 CPUs. They result in reduced precision for values near zero,
|
6 |
+
/// but increased performance.
|
7 |
+
///
|
8 |
+
/// See https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz
|
9 |
+
|
10 |
+
namespace at::cpu {
|
11 |
+
|
12 |
+
bool set_flush_denormal(bool on);
|
13 |
+
|
14 |
+
} // namespace at::cpu
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
namespace at::cpu {
|
6 |
+
|
7 |
+
// Detect if CPU support Vector Neural Network Instruction.
|
8 |
+
TORCH_API bool is_cpu_support_vnni();
|
9 |
+
|
10 |
+
} // namespace at::cpu
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/functional_base.h>
|
4 |
+
#include <ATen/cpu/vec/functional_bfloat16.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
|
11 |
+
// slow path
|
12 |
+
template <typename scalar_t, typename Op>
|
13 |
+
inline scalar_t vec_reduce_all(
|
14 |
+
const Op& vec_fun,
|
15 |
+
vec::Vectorized<scalar_t> acc_vec,
|
16 |
+
int64_t size) {
|
17 |
+
using Vec = vec::Vectorized<scalar_t>;
|
18 |
+
scalar_t acc_arr[Vec::size()];
|
19 |
+
acc_vec.store(acc_arr);
|
20 |
+
for (const auto i : c10::irange(1, size)) {
|
21 |
+
std::array<scalar_t, Vec::size()> acc_arr_next = {0};
|
22 |
+
acc_arr_next[0] = acc_arr[i];
|
23 |
+
Vec acc_vec_next = Vec::loadu(acc_arr_next.data());
|
24 |
+
acc_vec = vec_fun(acc_vec, acc_vec_next);
|
25 |
+
}
|
26 |
+
acc_vec.store(acc_arr);
|
27 |
+
return acc_arr[0];
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename scalar_t, typename Op>
|
31 |
+
struct VecReduceAllSIMD {
|
32 |
+
static inline scalar_t apply(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
33 |
+
return vec_reduce_all(vec_fun, acc_vec, Vectorized<scalar_t>::size());
|
34 |
+
}
|
35 |
+
};
|
36 |
+
|
37 |
+
#if defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
38 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
39 |
+
template <typename Op>
|
40 |
+
struct VecReduceAllSIMD<float, Op> {
|
41 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
42 |
+
using Vec = Vectorized<float>;
|
43 |
+
Vec v = acc_vec;
|
44 |
+
// 128-bit shuffle
|
45 |
+
Vec v1 = _mm256_permute2f128_ps(v, v, 0x1);
|
46 |
+
v = vec_fun(v, v1);
|
47 |
+
// 64-bit shuffle
|
48 |
+
v1 = _mm256_shuffle_ps(v, v, 0x4E);
|
49 |
+
v = vec_fun(v, v1);
|
50 |
+
// 32-bit shuffle
|
51 |
+
v1 = _mm256_shuffle_ps(v, v, 0xB1);
|
52 |
+
v = vec_fun(v, v1);
|
53 |
+
return _mm256_cvtss_f32(v);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
#endif // defined(CPU_CAPABILITY_AVX2)
|
57 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
58 |
+
template <typename Op>
|
59 |
+
struct VecReduceAllSIMD<float, Op> {
|
60 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
61 |
+
using Vec = Vectorized<float>;
|
62 |
+
Vec v = acc_vec;
|
63 |
+
// 256-bit shuffle
|
64 |
+
Vec v1 = _mm512_shuffle_f32x4(v, v, 0x4E);
|
65 |
+
v = vec_fun(v, v1);
|
66 |
+
// 128-bit shuffle
|
67 |
+
v1 = _mm512_shuffle_f32x4(v, v, 0xB1);
|
68 |
+
v = vec_fun(v, v1);
|
69 |
+
// 64-bit shuffle
|
70 |
+
v1 = _mm512_shuffle_ps(v, v, 0x4E);
|
71 |
+
v = vec_fun(v, v1);
|
72 |
+
// 32-bit shuffle
|
73 |
+
v1 = _mm512_shuffle_ps(v, v, 0xB1);
|
74 |
+
v = vec_fun(v, v1);
|
75 |
+
return _mm512_cvtss_f32(v);
|
76 |
+
}
|
77 |
+
};
|
78 |
+
#endif // defined(CPU_CAPABILITY_AVX512)
|
79 |
+
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
80 |
+
|
81 |
+
template <typename scalar_t, typename Op>
|
82 |
+
inline scalar_t vec_reduce_all(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
83 |
+
return VecReduceAllSIMD<scalar_t, Op>::apply(vec_fun, acc_vec);
|
84 |
+
}
|
85 |
+
|
86 |
+
template <typename scalar_t, typename Op,
|
87 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
88 |
+
inline scalar_t reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
89 |
+
using Vec = vec::Vectorized<scalar_t>;
|
90 |
+
if (size < Vec::size())
|
91 |
+
return vec_reduce_all(vec_fun, Vec::loadu(data, size), size);
|
92 |
+
int64_t d = Vec::size();
|
93 |
+
Vec acc_vec = Vec::loadu(data);
|
94 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
95 |
+
Vec data_vec = Vec::loadu(data + d);
|
96 |
+
acc_vec = vec_fun(acc_vec, data_vec);
|
97 |
+
}
|
98 |
+
if (size - d > 0) {
|
99 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
100 |
+
acc_vec = Vec::set(acc_vec, vec_fun(acc_vec, data_vec), size - d);
|
101 |
+
}
|
102 |
+
return vec_reduce_all(vec_fun, acc_vec);
|
103 |
+
}
|
104 |
+
|
105 |
+
// similar to reduce_all, but reduces into two outputs
|
106 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
107 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
108 |
+
inline std::pair<scalar_t, scalar_t> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
109 |
+
const scalar_t* data, int64_t size) {
|
110 |
+
using Vec = vec::Vectorized<scalar_t>;
|
111 |
+
if (size < Vec::size()) {
|
112 |
+
auto loaded_data = Vec::loadu(data, size);
|
113 |
+
return std::pair<scalar_t, scalar_t>(
|
114 |
+
vec_reduce_all(vec_fun1, loaded_data, size),
|
115 |
+
vec_reduce_all(vec_fun2, loaded_data, size));
|
116 |
+
}
|
117 |
+
int64_t d = Vec::size();
|
118 |
+
Vec acc_vec1 = Vec::loadu(data);
|
119 |
+
Vec acc_vec2 = Vec::loadu(data);
|
120 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
121 |
+
Vec data_vec = Vec::loadu(data + d);
|
122 |
+
acc_vec1 = vec_fun1(acc_vec1, data_vec);
|
123 |
+
acc_vec2 = vec_fun2(acc_vec2, data_vec);
|
124 |
+
}
|
125 |
+
if (size - d > 0) {
|
126 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
127 |
+
acc_vec1 = Vec::set(acc_vec1, vec_fun1(acc_vec1, data_vec), size - d);
|
128 |
+
acc_vec2 = Vec::set(acc_vec2, vec_fun2(acc_vec2, data_vec), size - d);
|
129 |
+
}
|
130 |
+
return std::pair<scalar_t, scalar_t>(
|
131 |
+
vec_reduce_all(vec_fun1, acc_vec1),
|
132 |
+
vec_reduce_all(vec_fun2, acc_vec2));
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
136 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
137 |
+
inline scalar_t map_reduce_all(
|
138 |
+
const MapOp& map_fun,
|
139 |
+
const ReduceOp& red_fun,
|
140 |
+
const scalar_t* data,
|
141 |
+
int64_t size) {
|
142 |
+
using Vec = vec::Vectorized<scalar_t>;
|
143 |
+
if (size < Vec::size())
|
144 |
+
return vec_reduce_all(red_fun, map_fun(Vec::loadu(data, size)), size);
|
145 |
+
int64_t d = Vec::size();
|
146 |
+
Vec acc_vec = map_fun(Vec::loadu(data));
|
147 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
148 |
+
Vec data_vec = Vec::loadu(data + d);
|
149 |
+
data_vec = map_fun(data_vec);
|
150 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
151 |
+
}
|
152 |
+
if (size - d > 0) {
|
153 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
154 |
+
data_vec = map_fun(data_vec);
|
155 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
156 |
+
}
|
157 |
+
return vec_reduce_all(red_fun, acc_vec);
|
158 |
+
}
|
159 |
+
|
160 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
161 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
162 |
+
inline scalar_t map2_reduce_all(
|
163 |
+
const MapOp& map_fun,
|
164 |
+
const ReduceOp& red_fun,
|
165 |
+
const scalar_t* data,
|
166 |
+
const scalar_t* data2,
|
167 |
+
int64_t size) {
|
168 |
+
using Vec = vec::Vectorized<scalar_t>;
|
169 |
+
if (size < Vec::size()) {
|
170 |
+
Vec data_vec = Vec::loadu(data, size);
|
171 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
172 |
+
data_vec = map_fun(data_vec, data2_vec);
|
173 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
174 |
+
}
|
175 |
+
int64_t d = Vec::size();
|
176 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2));
|
177 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
178 |
+
Vec data_vec = Vec::loadu(data + d);
|
179 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
180 |
+
data_vec = map_fun(data_vec, data2_vec);
|
181 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
182 |
+
}
|
183 |
+
if (size - d > 0) {
|
184 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
185 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
186 |
+
data_vec = map_fun(data_vec, data2_vec);
|
187 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
188 |
+
}
|
189 |
+
return vec_reduce_all(red_fun, acc_vec);
|
190 |
+
}
|
191 |
+
|
192 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
193 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
194 |
+
inline scalar_t map3_reduce_all(
|
195 |
+
const MapOp& map_fun,
|
196 |
+
const ReduceOp& red_fun,
|
197 |
+
const scalar_t* data,
|
198 |
+
const scalar_t* data2,
|
199 |
+
const scalar_t* data3,
|
200 |
+
int64_t size) {
|
201 |
+
using Vec = vec::Vectorized<scalar_t>;
|
202 |
+
if (size < Vec::size()) {
|
203 |
+
Vec data_vec = Vec::loadu(data, size);
|
204 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
205 |
+
Vec data3_vec = Vec::loadu(data3, size);
|
206 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
207 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
208 |
+
}
|
209 |
+
|
210 |
+
int64_t d = Vec::size();
|
211 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2), Vec::loadu(data3));
|
212 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
213 |
+
Vec data_vec = Vec::loadu(data + d);
|
214 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
215 |
+
Vec data3_vec = Vec::loadu(data3 + d);
|
216 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
217 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
218 |
+
}
|
219 |
+
if (size - d > 0) {
|
220 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
221 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
222 |
+
Vec data3_vec = Vec::loadu(data3 + d, size - d);
|
223 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
224 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
225 |
+
}
|
226 |
+
return vec_reduce_all(red_fun, acc_vec);
|
227 |
+
}
|
228 |
+
|
229 |
+
template <typename scalar_t, typename Op,
|
230 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
231 |
+
inline void map(
|
232 |
+
const Op& vec_fun,
|
233 |
+
scalar_t* output_data,
|
234 |
+
const scalar_t* input_data,
|
235 |
+
int64_t size) {
|
236 |
+
using Vec = vec::Vectorized<scalar_t>;
|
237 |
+
int64_t d = 0;
|
238 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
239 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d));
|
240 |
+
output_vec.store(output_data + d);
|
241 |
+
}
|
242 |
+
if (size - d > 0) {
|
243 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d, size - d));
|
244 |
+
output_vec.store(output_data + d, size - d);
|
245 |
+
}
|
246 |
+
}
|
247 |
+
|
248 |
+
template <typename scalar_t, typename Op,
|
249 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
250 |
+
inline void map2(
|
251 |
+
const Op& vec_fun,
|
252 |
+
scalar_t* output_data,
|
253 |
+
const scalar_t* input_data,
|
254 |
+
const scalar_t* input_data2,
|
255 |
+
int64_t size) {
|
256 |
+
using Vec = vec::Vectorized<scalar_t>;
|
257 |
+
int64_t d = 0;
|
258 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
259 |
+
Vec data_vec = Vec::loadu(input_data + d);
|
260 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
261 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
262 |
+
output_vec.store(output_data + d);
|
263 |
+
}
|
264 |
+
if (size - d > 0) {
|
265 |
+
Vec data_vec = Vec::loadu(input_data + d, size - d);
|
266 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
267 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
268 |
+
output_vec.store(output_data + d, size - d);
|
269 |
+
}
|
270 |
+
}
|
271 |
+
|
272 |
+
template <typename scalar_t, typename Op,
|
273 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
274 |
+
inline void map3(
|
275 |
+
const Op& vec_fun,
|
276 |
+
scalar_t* output_data,
|
277 |
+
const scalar_t* input_data1,
|
278 |
+
const scalar_t* input_data2,
|
279 |
+
const scalar_t* input_data3,
|
280 |
+
int64_t size) {
|
281 |
+
using Vec = vec::Vectorized<scalar_t>;
|
282 |
+
int64_t d = 0;
|
283 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
284 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
285 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
286 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
287 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
288 |
+
output_vec.store(output_data + d);
|
289 |
+
}
|
290 |
+
if (size - d > 0) {
|
291 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
292 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
293 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
294 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
295 |
+
output_vec.store(output_data + d, size - d);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
template <typename scalar_t, typename Op,
|
300 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
301 |
+
inline void map4(
|
302 |
+
const Op& vec_fun,
|
303 |
+
scalar_t* output_data,
|
304 |
+
const scalar_t* input_data1,
|
305 |
+
const scalar_t* input_data2,
|
306 |
+
const scalar_t* input_data3,
|
307 |
+
const scalar_t* input_data4,
|
308 |
+
int64_t size) {
|
309 |
+
using Vec = vec::Vectorized<scalar_t>;
|
310 |
+
int64_t d = 0;
|
311 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
312 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
313 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
314 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
315 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d);
|
316 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
317 |
+
output_vec.store(output_data + d);
|
318 |
+
}
|
319 |
+
if (size - d > 0) {
|
320 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
321 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
322 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
323 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d, size - d);
|
324 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
325 |
+
output_vec.store(output_data + d, size - d);
|
326 |
+
}
|
327 |
+
}
|
328 |
+
|
329 |
+
} // namespace at::vec
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
|
8 |
+
namespace at::vec {
|
9 |
+
|
10 |
+
// BFloat16 specification
|
11 |
+
template <typename scalar_t> struct VecScalarType { using type = scalar_t; };
|
12 |
+
template <> struct VecScalarType<BFloat16> { using type = float; };
|
13 |
+
template <> struct VecScalarType<Half> { using type = float; };
|
14 |
+
|
15 |
+
// This is different from at::acc_type since we only need to specialize BFloat16
|
16 |
+
template <typename scalar_t>
|
17 |
+
using vec_scalar_t = typename VecScalarType<scalar_t>::type;
|
18 |
+
|
19 |
+
// Vector conversion between float and bfloat16/half
|
20 |
+
template <typename scalar_t,
|
21 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
22 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float(const Vectorized<scalar_t>&);
|
23 |
+
|
24 |
+
template <>
|
25 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<BFloat16> (const Vectorized<BFloat16>& a) {
|
26 |
+
return convert_bfloat16_float(a);
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<Half> (const Vectorized<Half>& a) {
|
31 |
+
return convert_half_float(a);
|
32 |
+
}
|
33 |
+
|
34 |
+
template <typename scalar_t,
|
35 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
36 |
+
inline Vectorized<scalar_t> convert_from_float(const Vectorized<float>&, const Vectorized<float>&);
|
37 |
+
|
38 |
+
template <>
|
39 |
+
inline Vectorized<BFloat16> convert_from_float<BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
40 |
+
return convert_float_bfloat16(a, b);
|
41 |
+
}
|
42 |
+
|
43 |
+
template <>
|
44 |
+
inline Vectorized<Half> convert_from_float<Half>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
45 |
+
return convert_float_half(a, b);
|
46 |
+
}
|
47 |
+
|
48 |
+
template <typename scalar_t,
|
49 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
50 |
+
inline void load_to_float(const scalar_t *data, Vectorized<float> &out1, Vectorized<float> &out2);
|
51 |
+
|
52 |
+
template <>
|
53 |
+
inline void load_to_float<BFloat16> (const BFloat16 *data, Vectorized<float> &out1, Vectorized<float> &out2) {
|
54 |
+
load_fp32_from_bf16(data, out1, out2);
|
55 |
+
}
|
56 |
+
|
57 |
+
template <>
|
58 |
+
inline void load_to_float<Half> (const Half *data, Vectorized<float> &out1, Vectorized<float> &out2) {
|
59 |
+
load_fp32_from_fp16(data, out1, out2);
|
60 |
+
}
|
61 |
+
|
62 |
+
template <typename scalar_t,
|
63 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
64 |
+
inline void load_to_float(const scalar_t *data, Vectorized<float> &out);
|
65 |
+
|
66 |
+
template <>
|
67 |
+
inline void load_to_float<BFloat16> (const BFloat16 *data, Vectorized<float> &out) {
|
68 |
+
load_fp32_from_bf16(data, out);
|
69 |
+
}
|
70 |
+
|
71 |
+
template <>
|
72 |
+
inline void load_to_float<Half> (const Half *data, Vectorized<float> &out) {
|
73 |
+
load_fp32_from_fp16(data, out);
|
74 |
+
}
|
75 |
+
|
76 |
+
// Note that we already have specialized member of Vectorized<scalar_t> for BFloat16
|
77 |
+
// so the following functions would run smoothly:
|
78 |
+
// using Vec = Vectorized<BFloat16>;
|
79 |
+
// Vec one = Vec(BFloat16(1));
|
80 |
+
// vec::map([](Vec x) { return one / (one + x.exp()); }, y_ptr, x_ptr, N);
|
81 |
+
//
|
82 |
+
// Then why we still need to specialize "functional"?
|
83 |
+
// If we do specialization at Vectorized<> level, the above example would need 3 pairs of
|
84 |
+
// conversion of bf16->fp32/fp32->bf16, each for ".exp()", "+" and "/".
|
85 |
+
// If we do specialization at vec::map<>() level, we have only 1 pair of conversion
|
86 |
+
// of bf16->fp32/fp32->bf16, for the input and output BFloat16 vector only.
|
87 |
+
//
|
88 |
+
// The following BFloat16 functionality will only do data type conversion for input
|
89 |
+
// and output vector (reduce functionality will only convert the final scalar back to bf16).
|
90 |
+
// Compared to Vectorized<> specialization,
|
91 |
+
// 1. better performance since we have less data type conversion;
|
92 |
+
// 2. less rounding error since immediate results are kept in fp32;
|
93 |
+
// 3. accumulation done on data type of fp32.
|
94 |
+
//
|
95 |
+
// If you plan to extend this file, please ensure adding unit tests at
|
96 |
+
// aten/src/ATen/test/vec_test_all_types.cpp
|
97 |
+
//
|
98 |
+
template <typename scalar_t, typename Op,
|
99 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
100 |
+
inline float reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
101 |
+
using bVec = vec::Vectorized<scalar_t>;
|
102 |
+
using fVec = vec::Vectorized<float>;
|
103 |
+
if (size < bVec::size()) {
|
104 |
+
bVec data_bvec = bVec::loadu(data, size);
|
105 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
106 |
+
if (size > fVec::size()) {
|
107 |
+
data_fvec0 = fVec::set(data_fvec0, vec_fun(data_fvec0, data_fvec1), size - fVec::size());
|
108 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, fVec::size());
|
109 |
+
} else {
|
110 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, size);
|
111 |
+
}
|
112 |
+
}
|
113 |
+
int64_t d = bVec::size();
|
114 |
+
bVec acc_bvec = bVec::loadu(data);
|
115 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
116 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
117 |
+
bVec data_bvec = bVec::loadu(data + d);
|
118 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
119 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
120 |
+
acc_fvec1 = vec_fun(acc_fvec1, data_fvec1);
|
121 |
+
}
|
122 |
+
if (size - d > 0) {
|
123 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
124 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
125 |
+
if (size - d > fVec::size()) {
|
126 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
127 |
+
acc_fvec1 = fVec::set(acc_fvec1, vec_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
128 |
+
} else {
|
129 |
+
acc_fvec0 = fVec::set(acc_fvec0, vec_fun(acc_fvec0, data_fvec0), size - d);
|
130 |
+
}
|
131 |
+
}
|
132 |
+
acc_fvec0 = vec_fun(acc_fvec0, acc_fvec1);
|
133 |
+
return vec_reduce_all<float>(vec_fun, acc_fvec0);
|
134 |
+
}
|
135 |
+
|
136 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
137 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
138 |
+
inline std::pair<float, float> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
139 |
+
const scalar_t* data, int64_t size) {
|
140 |
+
using bVec = vec::Vectorized<scalar_t>;
|
141 |
+
using fVec = vec::Vectorized<float>;
|
142 |
+
if (size < bVec::size()) {
|
143 |
+
bVec data_bvec = bVec::loadu(data, size);
|
144 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
145 |
+
if (size > fVec::size()) {
|
146 |
+
fVec acc1_fvec = fVec::set(data_fvec0, vec_fun1(data_fvec0, data_fvec1), size - fVec::size());
|
147 |
+
fVec acc2_fvec = fVec::set(data_fvec0, vec_fun2(data_fvec0, data_fvec1), size - fVec::size());
|
148 |
+
return std::pair<scalar_t, scalar_t>(
|
149 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec, fVec::size()),
|
150 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec, fVec::size()));
|
151 |
+
} else {
|
152 |
+
return std::pair<scalar_t, scalar_t>(
|
153 |
+
vec_reduce_all<float>(vec_fun1, data_fvec0, size),
|
154 |
+
vec_reduce_all<float>(vec_fun2, data_fvec0, size));
|
155 |
+
}
|
156 |
+
}
|
157 |
+
int64_t d = bVec::size();
|
158 |
+
bVec acc_bvec = bVec::loadu(data);
|
159 |
+
auto [acc1_fvec0, acc1_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
160 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
161 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
162 |
+
bVec data_bvec = bVec::loadu(data + d);
|
163 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
164 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
165 |
+
acc1_fvec1 = vec_fun1(acc1_fvec1, data_fvec1);
|
166 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
167 |
+
acc2_fvec1 = vec_fun2(acc2_fvec1, data_fvec1);
|
168 |
+
}
|
169 |
+
if (size - d > 0) {
|
170 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
171 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
172 |
+
if (size - d > fVec::size()) {
|
173 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
174 |
+
acc1_fvec1 = fVec::set(acc1_fvec1, vec_fun1(acc1_fvec1, data_fvec1), size - d - fVec::size());
|
175 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
176 |
+
acc2_fvec1 = fVec::set(acc2_fvec1, vec_fun2(acc2_fvec1, data_fvec1), size - d - fVec::size());
|
177 |
+
} else {
|
178 |
+
acc1_fvec0 = fVec::set(acc1_fvec0, vec_fun1(acc1_fvec0, data_fvec0), size - d);
|
179 |
+
acc2_fvec0 = fVec::set(acc2_fvec0, vec_fun2(acc2_fvec0, data_fvec0), size - d);
|
180 |
+
}
|
181 |
+
}
|
182 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, acc1_fvec1);
|
183 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, acc2_fvec1);
|
184 |
+
return std::pair<scalar_t, scalar_t>(
|
185 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec0),
|
186 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec0));
|
187 |
+
}
|
188 |
+
|
189 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
190 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
191 |
+
inline float map_reduce_all(
|
192 |
+
const MapOp& map_fun,
|
193 |
+
const ReduceOp& red_fun,
|
194 |
+
const scalar_t* data,
|
195 |
+
int64_t size) {
|
196 |
+
using bVec = vec::Vectorized<scalar_t>;
|
197 |
+
using fVec = vec::Vectorized<float>;
|
198 |
+
if (size < bVec::size()) {
|
199 |
+
bVec data_bvec = bVec::loadu(data, size);
|
200 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
201 |
+
if (size > fVec::size()) {
|
202 |
+
data_fvec0 = map_fun(data_fvec0);
|
203 |
+
data_fvec1 = map_fun(data_fvec1);
|
204 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
205 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
206 |
+
} else {
|
207 |
+
data_fvec0 = map_fun(data_fvec0);
|
208 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
209 |
+
}
|
210 |
+
}
|
211 |
+
int64_t d = bVec::size();
|
212 |
+
bVec acc_bvec = bVec::loadu(data);
|
213 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
214 |
+
acc_fvec0 = map_fun(acc_fvec0);
|
215 |
+
acc_fvec1 = map_fun(acc_fvec1);
|
216 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
217 |
+
bVec data_bvec = bVec::loadu(data + d);
|
218 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
219 |
+
data_fvec0 = map_fun(data_fvec0);
|
220 |
+
data_fvec1 = map_fun(data_fvec1);
|
221 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
222 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
223 |
+
}
|
224 |
+
if (size - d > 0) {
|
225 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
226 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
227 |
+
if (size - d > fVec::size()) {
|
228 |
+
data_fvec0 = map_fun(data_fvec0);
|
229 |
+
data_fvec1 = map_fun(data_fvec1);
|
230 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
231 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
232 |
+
} else {
|
233 |
+
data_fvec0 = map_fun(data_fvec0);
|
234 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
238 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
239 |
+
}
|
240 |
+
|
241 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
242 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
243 |
+
inline float map2_reduce_all(
|
244 |
+
const MapOp& map_fun,
|
245 |
+
const ReduceOp& red_fun,
|
246 |
+
const scalar_t* data,
|
247 |
+
const scalar_t* data2,
|
248 |
+
int64_t size) {
|
249 |
+
using bVec = vec::Vectorized<scalar_t>;
|
250 |
+
using fVec = vec::Vectorized<float>;
|
251 |
+
if (size < bVec::size()) {
|
252 |
+
bVec data_bvec = bVec::loadu(data, size);
|
253 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
254 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
255 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
256 |
+
if (size > fVec::size()) {
|
257 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
258 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
259 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
260 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
261 |
+
} else {
|
262 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
263 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
264 |
+
}
|
265 |
+
}
|
266 |
+
int64_t d = bVec::size();
|
267 |
+
bVec acc_bvec = bVec::loadu(data);
|
268 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
269 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
270 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc2_bvec);
|
271 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0);
|
272 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1);
|
273 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
274 |
+
bVec data_bvec = bVec::loadu(data + d);
|
275 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
276 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
277 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
278 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
279 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
280 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
281 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
282 |
+
}
|
283 |
+
if (size - d > 0) {
|
284 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
285 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
286 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
287 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
288 |
+
if (size - d > fVec::size()) {
|
289 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
290 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
291 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
292 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
293 |
+
} else {
|
294 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
295 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
299 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
300 |
+
}
|
301 |
+
|
302 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
303 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
304 |
+
inline float map3_reduce_all(
|
305 |
+
const MapOp& map_fun,
|
306 |
+
const ReduceOp& red_fun,
|
307 |
+
const scalar_t* data,
|
308 |
+
const scalar_t* data2,
|
309 |
+
const scalar_t* data3,
|
310 |
+
int64_t size) {
|
311 |
+
using bVec = vec::Vectorized<scalar_t>;
|
312 |
+
using fVec = vec::Vectorized<float>;
|
313 |
+
if (size < bVec::size()) {
|
314 |
+
bVec data_bvec = bVec::loadu(data, size);
|
315 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
316 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
317 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
318 |
+
bVec data3_bvec = bVec::loadu(data3, size);
|
319 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
320 |
+
if (size > fVec::size()) {
|
321 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
322 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
323 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
324 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
325 |
+
} else {
|
326 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
327 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
328 |
+
}
|
329 |
+
}
|
330 |
+
int64_t d = bVec::size();
|
331 |
+
bVec acc_bvec = bVec::loadu(data);
|
332 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
333 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
334 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc2_bvec);
|
335 |
+
bVec acc3_bvec = bVec::loadu(data3);
|
336 |
+
auto [acc3_fvec0, acc3_fvec1] = convert_to_float<scalar_t>(acc3_bvec);
|
337 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0, acc3_fvec0);
|
338 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1, acc3_fvec1);
|
339 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
340 |
+
bVec data_bvec = bVec::loadu(data + d);
|
341 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
342 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
343 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
344 |
+
bVec data3_bvec = bVec::loadu(data3 + d);
|
345 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
346 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
347 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
348 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
349 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
350 |
+
}
|
351 |
+
if (size - d > 0) {
|
352 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
353 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
354 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
355 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
356 |
+
bVec data3_bvec = bVec::loadu(data3 + d, size - d);
|
357 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
358 |
+
if (size - d > fVec::size()) {
|
359 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
360 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
361 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
362 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
363 |
+
} else {
|
364 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
365 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
366 |
+
}
|
367 |
+
}
|
368 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
369 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
370 |
+
}
|
371 |
+
|
372 |
+
template <typename scalar_t, typename Op,
|
373 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
374 |
+
inline void map(
|
375 |
+
const Op& vec_fun,
|
376 |
+
scalar_t* output_data,
|
377 |
+
const scalar_t* input_data,
|
378 |
+
int64_t size) {
|
379 |
+
using bVec = vec::Vectorized<scalar_t>;
|
380 |
+
using fVec = vec::Vectorized<float>;
|
381 |
+
int64_t d = 0;
|
382 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
383 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
384 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
385 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
386 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
387 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
388 |
+
output_bvec.store(output_data + d);
|
389 |
+
}
|
390 |
+
if (size - d > 0) {
|
391 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
392 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
393 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
394 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
395 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
396 |
+
output_bvec.store(output_data + d, size - d);
|
397 |
+
}
|
398 |
+
}
|
399 |
+
|
400 |
+
template <typename scalar_t, typename Op,
|
401 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
402 |
+
inline void map(
|
403 |
+
const Op& vec_fun,
|
404 |
+
scalar_t* output_data,
|
405 |
+
const float* input_data,
|
406 |
+
int64_t size) {
|
407 |
+
using bVec = vec::Vectorized<scalar_t>;
|
408 |
+
using fVec = vec::Vectorized<float>;
|
409 |
+
int64_t d = 0;
|
410 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
411 |
+
fVec data_fvec0 = fVec::loadu(input_data + d);
|
412 |
+
fVec data_fvec1 = fVec::loadu(input_data + d + fVec::size());
|
413 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
414 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
415 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
416 |
+
output_bvec.store(output_data + d);
|
417 |
+
}
|
418 |
+
if (size - d > 0) {
|
419 |
+
fVec data_fvec0, data_fvec1;
|
420 |
+
if (size - d > fVec::size()) {
|
421 |
+
data_fvec0 = fVec::loadu(input_data + d);
|
422 |
+
data_fvec1 = fVec::loadu(input_data + d + fVec::size(), size - d - fVec::size());
|
423 |
+
} else {
|
424 |
+
// choose to align with behaviour of bVec::loadu(ptr, size),
|
425 |
+
// which leaves data_fvec1 uninitialized
|
426 |
+
data_fvec0 = fVec::loadu(input_data + d, size - d);
|
427 |
+
}
|
428 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
429 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
430 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
431 |
+
output_bvec.store(output_data + d, size - d);
|
432 |
+
}
|
433 |
+
}
|
434 |
+
|
435 |
+
template <typename scalar_t, typename Op,
|
436 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
437 |
+
inline void map2(
|
438 |
+
const Op& vec_fun,
|
439 |
+
scalar_t* output_data,
|
440 |
+
const scalar_t* input_data,
|
441 |
+
const scalar_t* input_data2,
|
442 |
+
int64_t size) {
|
443 |
+
using bVec = vec::Vectorized<scalar_t>;
|
444 |
+
using fVec = vec::Vectorized<float>;
|
445 |
+
int64_t d = 0;
|
446 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
447 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
448 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
449 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
450 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
451 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
452 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
453 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
454 |
+
output_bvec.store(output_data + d);
|
455 |
+
}
|
456 |
+
if (size - d > 0) {
|
457 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
458 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
459 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
460 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
461 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
462 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
463 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
464 |
+
output_bvec.store(output_data + d, size - d);
|
465 |
+
}
|
466 |
+
}
|
467 |
+
|
468 |
+
template <typename scalar_t, typename Op,
|
469 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
470 |
+
inline void map3(
|
471 |
+
const Op& vec_fun,
|
472 |
+
scalar_t* output_data,
|
473 |
+
const scalar_t* input_data1,
|
474 |
+
const scalar_t* input_data2,
|
475 |
+
const scalar_t* input_data3,
|
476 |
+
int64_t size) {
|
477 |
+
using bVec = vec::Vectorized<scalar_t>;
|
478 |
+
using fVec = vec::Vectorized<float>;
|
479 |
+
int64_t d = 0;
|
480 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
481 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
482 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
483 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
484 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
485 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
486 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
487 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
488 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
489 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
490 |
+
output_bvec.store(output_data + d);
|
491 |
+
}
|
492 |
+
if (size - d > 0) {
|
493 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
494 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
495 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
496 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
497 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
498 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
499 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
500 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
501 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
502 |
+
output_bvec.store(output_data + d, size - d);
|
503 |
+
}
|
504 |
+
}
|
505 |
+
|
506 |
+
template <typename scalar_t, typename Op,
|
507 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
508 |
+
inline void map4(
|
509 |
+
const Op& vec_fun,
|
510 |
+
scalar_t* output_data,
|
511 |
+
const scalar_t* input_data1,
|
512 |
+
const scalar_t* input_data2,
|
513 |
+
const scalar_t* input_data3,
|
514 |
+
const scalar_t* input_data4,
|
515 |
+
int64_t size) {
|
516 |
+
using bVec = vec::Vectorized<scalar_t>;
|
517 |
+
using fVec = vec::Vectorized<float>;
|
518 |
+
int64_t d = 0;
|
519 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
520 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
521 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
522 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
523 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
524 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
525 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
526 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d);
|
527 |
+
auto [data4_fvec0, data4_fvec1] = convert_to_float<scalar_t>(data4_bvec);
|
528 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
529 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
530 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
531 |
+
output_bvec.store(output_data + d);
|
532 |
+
}
|
533 |
+
if (size - d > 0) {
|
534 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
535 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
536 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
537 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
538 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
539 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
540 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d, size - d);
|
541 |
+
auto [data4_fvec0, data4_fvec1] = convert_to_float<scalar_t>(data4_bvec);
|
542 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
543 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
544 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
545 |
+
output_bvec.store(output_data + d, size - d);
|
546 |
+
}
|
547 |
+
}
|
548 |
+
|
549 |
+
} // namespace at::vec
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
|
3 |
+
/* GCC or clang-compatible compiler, targeting x86/x86-64 */
|
4 |
+
#include <x86intrin.h>
|
5 |
+
#elif defined(__clang__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
6 |
+
/* Clang-compatible compiler, targeting arm neon */
|
7 |
+
#include <arm_neon.h>
|
8 |
+
#elif defined(_MSC_VER)
|
9 |
+
/* Microsoft C/C++-compatible compiler */
|
10 |
+
#include <intrin.h>
|
11 |
+
#if _MSC_VER <= 1900
|
12 |
+
#define _mm256_extract_epi64(X, Y) (_mm_extract_epi64(_mm256_extractf128_si256(X, Y >> 1), Y % 2))
|
13 |
+
#define _mm256_extract_epi32(X, Y) (_mm_extract_epi32(_mm256_extractf128_si256(X, Y >> 2), Y % 4))
|
14 |
+
#define _mm256_extract_epi16(X, Y) (_mm_extract_epi16(_mm256_extractf128_si256(X, Y >> 3), Y % 8))
|
15 |
+
#define _mm256_extract_epi8(X, Y) (_mm_extract_epi8(_mm256_extractf128_si256(X, Y >> 4), Y % 16))
|
16 |
+
#endif
|
17 |
+
#elif defined(__GNUC__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
18 |
+
/* GCC-compatible compiler, targeting ARM with NEON */
|
19 |
+
#include <arm_neon.h>
|
20 |
+
#if defined (MISSING_ARM_VLD1)
|
21 |
+
#include <ATen/cpu/vec/vec256/missing_vld1_neon.h>
|
22 |
+
#elif defined (MISSING_ARM_VST1)
|
23 |
+
#include <ATen/cpu/vec/vec256/missing_vst1_neon.h>
|
24 |
+
#endif
|
25 |
+
#elif defined(__GNUC__) && defined(__IWMMXT__)
|
26 |
+
/* GCC-compatible compiler, targeting ARM with WMMX */
|
27 |
+
#include <mmintrin.h>
|
28 |
+
#elif defined(__s390x__)
|
29 |
+
// targets Z/architecture
|
30 |
+
// we will include vecintrin later
|
31 |
+
#elif (defined(__GNUC__) || defined(__xlC__)) && \
|
32 |
+
(defined(__VEC__) || defined(__ALTIVEC__))
|
33 |
+
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
|
34 |
+
#include <altivec.h>
|
35 |
+
/* We need to undef those tokens defined by <altivec.h> to avoid conflicts
|
36 |
+
with the C++ types. => Can still use __bool/__vector */
|
37 |
+
#undef bool
|
38 |
+
#undef vector
|
39 |
+
#undef pixel
|
40 |
+
#elif defined(__GNUC__) && defined(__SPE__)
|
41 |
+
/* GCC-compatible compiler, targeting PowerPC with SPE */
|
42 |
+
#include <spe.h>
|
43 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
4 |
+
#include <ATen/cpu/vec/vec512/vec512.h>
|
5 |
+
#else
|
6 |
+
#include <ATen/cpu/vec/vec256/vec256.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
14 |
+
__at_align__ bool buffer[x.size()];
|
15 |
+
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
16 |
+
|
17 |
+
Vectorized<bool> ret;
|
18 |
+
static_assert(x.size() == ret.size(), "");
|
19 |
+
std::memcpy(ret, buffer, ret.size() * sizeof(bool));
|
20 |
+
return ret;
|
21 |
+
}
|
22 |
+
|
23 |
+
template <>
|
24 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr) {
|
25 |
+
// See NOTE [Loading boolean values]
|
26 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr));
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr, int64_t count) {
|
31 |
+
// See NOTE [Loading boolean values]
|
32 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr, count));
|
33 |
+
}
|
34 |
+
|
35 |
+
template <typename VT>
|
36 |
+
struct VecHoldType { using hold_type = typename VT::value_type; };
|
37 |
+
|
38 |
+
template <>
|
39 |
+
struct VecHoldType<Vectorized<BFloat16>> { using hold_type = BFloat16; };
|
40 |
+
|
41 |
+
template <>
|
42 |
+
struct VecHoldType<Vectorized<Half>> {using hold_type = Half; };
|
43 |
+
|
44 |
+
template <typename VT>
|
45 |
+
using vechold_type = typename VecHoldType<VT>::hold_type;
|
46 |
+
|
47 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vld1_*_x2 and vst1_*_x2 intrinsics in gcc-7. */
|
2 |
+
|
3 |
+
__extension__ extern __inline uint8x8x2_t
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vld1_u8_x2 (const uint8_t *__a)
|
6 |
+
{
|
7 |
+
uint8x8x2_t ret;
|
8 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
9 |
+
return ret;
|
10 |
+
}
|
11 |
+
|
12 |
+
__extension__ extern __inline int8x8x2_t
|
13 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
14 |
+
vld1_s8_x2 (const int8_t *__a)
|
15 |
+
{
|
16 |
+
int8x8x2_t ret;
|
17 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
18 |
+
return ret;
|
19 |
+
}
|
20 |
+
|
21 |
+
__extension__ extern __inline uint16x4x2_t
|
22 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
23 |
+
vld1_u16_x2 (const uint16_t *__a)
|
24 |
+
{
|
25 |
+
uint16x4x2_t ret;
|
26 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
27 |
+
return ret;
|
28 |
+
}
|
29 |
+
|
30 |
+
__extension__ extern __inline int16x4x2_t
|
31 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
32 |
+
vld1_s16_x2 (const int16_t *__a)
|
33 |
+
{
|
34 |
+
int16x4x2_t ret;
|
35 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
36 |
+
return ret;
|
37 |
+
}
|
38 |
+
|
39 |
+
__extension__ extern __inline uint32x2x2_t
|
40 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
41 |
+
vld1_u32_x2 (const uint32_t *__a)
|
42 |
+
{
|
43 |
+
uint32x2x2_t ret;
|
44 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
45 |
+
return ret;
|
46 |
+
}
|
47 |
+
|
48 |
+
__extension__ extern __inline int32x2x2_t
|
49 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
50 |
+
vld1_s32_x2 (const int32_t *__a)
|
51 |
+
{
|
52 |
+
int32x2x2_t ret;
|
53 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
54 |
+
return ret;
|
55 |
+
}
|
56 |
+
|
57 |
+
__extension__ extern __inline uint64x1x2_t
|
58 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
59 |
+
vld1_u64_x2 (const uint64_t *__a)
|
60 |
+
{
|
61 |
+
uint64x1x2_t ret;
|
62 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
63 |
+
return ret;
|
64 |
+
}
|
65 |
+
|
66 |
+
__extension__ extern __inline int64x1x2_t
|
67 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
68 |
+
vld1_s64_x2 (const int64_t *__a)
|
69 |
+
{
|
70 |
+
int64x1x2_t ret;
|
71 |
+
__builtin_aarch64_simd_oi __o;
|
72 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
73 |
+
return ret;
|
74 |
+
}
|
75 |
+
|
76 |
+
__extension__ extern __inline float16x4x2_t
|
77 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
78 |
+
vld1_f16_x2 (const float16_t *__a)
|
79 |
+
{
|
80 |
+
float16x4x2_t ret;
|
81 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
82 |
+
return ret;
|
83 |
+
}
|
84 |
+
|
85 |
+
__extension__ extern __inline float32x2x2_t
|
86 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
87 |
+
vld1_f32_x2 (const float32_t *__a)
|
88 |
+
{
|
89 |
+
float32x2x2_t ret;
|
90 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
91 |
+
return ret;
|
92 |
+
}
|
93 |
+
|
94 |
+
__extension__ extern __inline float64x1x2_t
|
95 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
96 |
+
vld1_f64_x2 (const float64_t *__a)
|
97 |
+
{
|
98 |
+
float64x1x2_t ret;
|
99 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
|
103 |
+
__extension__ extern __inline poly8x8x2_t
|
104 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
105 |
+
vld1_p8_x2 (const poly8_t *__a)
|
106 |
+
{
|
107 |
+
poly8x8x2_t ret;
|
108 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
109 |
+
return ret;
|
110 |
+
}
|
111 |
+
|
112 |
+
__extension__ extern __inline poly16x4x2_t
|
113 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
114 |
+
vld1_p16_x2 (const poly16_t *__a)
|
115 |
+
{
|
116 |
+
poly16x4x2_t ret;
|
117 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
118 |
+
return ret;
|
119 |
+
}
|
120 |
+
|
121 |
+
__extension__ extern __inline poly64x1x2_t
|
122 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
123 |
+
vld1_p64_x2 (const poly64_t *__a)
|
124 |
+
{
|
125 |
+
poly64x1x2_t ret;
|
126 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
127 |
+
return ret;
|
128 |
+
}
|
129 |
+
|
130 |
+
__extension__ extern __inline uint8x16x2_t
|
131 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
132 |
+
vld1q_u8_x2 (const uint8_t *__a)
|
133 |
+
{
|
134 |
+
uint8x16x2_t ret;
|
135 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
136 |
+
return ret;
|
137 |
+
}
|
138 |
+
|
139 |
+
__extension__ extern __inline int8x16x2_t
|
140 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
141 |
+
vld1q_s8_x2 (const int8_t *__a)
|
142 |
+
{
|
143 |
+
int8x16x2_t ret;
|
144 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
145 |
+
return ret;
|
146 |
+
}
|
147 |
+
|
148 |
+
__extension__ extern __inline uint16x8x2_t
|
149 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
150 |
+
vld1q_u16_x2 (const uint16_t *__a)
|
151 |
+
{
|
152 |
+
uint16x8x2_t ret;
|
153 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
154 |
+
return ret;
|
155 |
+
}
|
156 |
+
|
157 |
+
__extension__ extern __inline int16x8x2_t
|
158 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
159 |
+
vld1q_s16_x2 (const int16_t *__a)
|
160 |
+
{
|
161 |
+
int16x8x2_t ret;
|
162 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
163 |
+
return ret;
|
164 |
+
}
|
165 |
+
|
166 |
+
__extension__ extern __inline uint32x4x2_t
|
167 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
168 |
+
vld1q_u32_x2 (const uint32_t *__a)
|
169 |
+
{
|
170 |
+
uint32x4x2_t ret;
|
171 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
172 |
+
return ret;
|
173 |
+
}
|
174 |
+
|
175 |
+
__extension__ extern __inline int32x4x2_t
|
176 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
177 |
+
vld1q_s32_x2 (const int32_t *__a)
|
178 |
+
{
|
179 |
+
int32x4x2_t ret;
|
180 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
181 |
+
return ret;
|
182 |
+
}
|
183 |
+
|
184 |
+
__extension__ extern __inline uint64x2x2_t
|
185 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
186 |
+
vld1q_u64_x2 (const uint64_t *__a)
|
187 |
+
{
|
188 |
+
uint64x2x2_t ret;
|
189 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
190 |
+
return ret;
|
191 |
+
}
|
192 |
+
|
193 |
+
__extension__ extern __inline int64x2x2_t
|
194 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
195 |
+
vld1q_s64_x2 (const int64_t *__a)
|
196 |
+
{
|
197 |
+
int64x2x2_t ret;
|
198 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
199 |
+
return ret;
|
200 |
+
}
|
201 |
+
|
202 |
+
__extension__ extern __inline float16x8x2_t
|
203 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
204 |
+
vld1q_f16_x2 (const float16_t *__a)
|
205 |
+
{
|
206 |
+
float16x8x2_t ret;
|
207 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
208 |
+
return ret;
|
209 |
+
}
|
210 |
+
|
211 |
+
__extension__ extern __inline float32x4x2_t
|
212 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
213 |
+
vld1q_f32_x2 (const float32_t *__a)
|
214 |
+
{
|
215 |
+
float32x4x2_t ret;
|
216 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
217 |
+
return ret;
|
218 |
+
}
|
219 |
+
|
220 |
+
__extension__ extern __inline float64x2x2_t
|
221 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
222 |
+
vld1q_f64_x2 (const float64_t *__a)
|
223 |
+
{
|
224 |
+
float64x2x2_t ret;
|
225 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
226 |
+
return ret;
|
227 |
+
}
|
228 |
+
|
229 |
+
__extension__ extern __inline poly8x16x2_t
|
230 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
231 |
+
vld1q_p8_x2 (const poly8_t *__a)
|
232 |
+
{
|
233 |
+
poly8x16x2_t ret;
|
234 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
235 |
+
return ret;
|
236 |
+
}
|
237 |
+
|
238 |
+
__extension__ extern __inline poly16x8x2_t
|
239 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
240 |
+
vld1q_p16_x2 (const poly16_t *__a)
|
241 |
+
{
|
242 |
+
poly16x8x2_t ret;
|
243 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
244 |
+
return ret;
|
245 |
+
}
|
246 |
+
|
247 |
+
__extension__ extern __inline poly64x2x2_t
|
248 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
249 |
+
vld1q_p64_x2 (const poly64_t *__a)
|
250 |
+
{
|
251 |
+
poly64x2x2_t ret;
|
252 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
253 |
+
return ret;
|
254 |
+
}
|
255 |
+
|
256 |
+
/* vst1x2 */
|
257 |
+
|
258 |
+
__extension__ extern __inline void
|
259 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
260 |
+
vst1_s64_x2 (int64_t * __a, int64x1x2_t val)
|
261 |
+
{
|
262 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
263 |
+
}
|
264 |
+
|
265 |
+
__extension__ extern __inline void
|
266 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
267 |
+
vst1_u64_x2 (uint64_t * __a, uint64x1x2_t val)
|
268 |
+
{
|
269 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
270 |
+
}
|
271 |
+
|
272 |
+
__extension__ extern __inline void
|
273 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
274 |
+
vst1_f64_x2 (float64_t * __a, float64x1x2_t val)
|
275 |
+
{
|
276 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
277 |
+
}
|
278 |
+
|
279 |
+
__extension__ extern __inline void
|
280 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
281 |
+
vst1_s8_x2 (int8_t * __a, int8x8x2_t val)
|
282 |
+
{
|
283 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
284 |
+
}
|
285 |
+
|
286 |
+
__extension__ extern __inline void
|
287 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
288 |
+
vst1_p8_x2 (poly8_t * __a, poly8x8x2_t val)
|
289 |
+
{
|
290 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
291 |
+
}
|
292 |
+
|
293 |
+
__extension__ extern __inline void
|
294 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
295 |
+
vst1_s16_x2 (int16_t * __a, int16x4x2_t val)
|
296 |
+
{
|
297 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
298 |
+
}
|
299 |
+
|
300 |
+
__extension__ extern __inline void
|
301 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
302 |
+
vst1_p16_x2 (poly16_t * __a, poly16x4x2_t val)
|
303 |
+
{
|
304 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
305 |
+
}
|
306 |
+
|
307 |
+
__extension__ extern __inline void
|
308 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
309 |
+
vst1_s32_x2 (int32_t * __a, int32x2x2_t val)
|
310 |
+
{
|
311 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
312 |
+
}
|
313 |
+
|
314 |
+
__extension__ extern __inline void
|
315 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
316 |
+
vst1_u8_x2 (uint8_t * __a, uint8x8x2_t val)
|
317 |
+
{
|
318 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
319 |
+
}
|
320 |
+
|
321 |
+
__extension__ extern __inline void
|
322 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
323 |
+
vst1_u16_x2 (uint16_t * __a, uint16x4x2_t val)
|
324 |
+
{
|
325 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
326 |
+
}
|
327 |
+
|
328 |
+
__extension__ extern __inline void
|
329 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
330 |
+
vst1_u32_x2 (uint32_t * __a, uint32x2x2_t val)
|
331 |
+
{
|
332 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
333 |
+
}
|
334 |
+
|
335 |
+
__extension__ extern __inline void
|
336 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
337 |
+
vst1_f16_x2 (float16_t * __a, float16x4x2_t val)
|
338 |
+
{
|
339 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
340 |
+
}
|
341 |
+
|
342 |
+
__extension__ extern __inline void
|
343 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
344 |
+
vst1_f32_x2 (float32_t * __a, float32x2x2_t val)
|
345 |
+
{
|
346 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
347 |
+
}
|
348 |
+
|
349 |
+
__extension__ extern __inline void
|
350 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
351 |
+
vst1_p64_x2 (poly64_t * __a, poly64x1x2_t val)
|
352 |
+
{
|
353 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
354 |
+
}
|
355 |
+
|
356 |
+
__extension__ extern __inline void
|
357 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
358 |
+
vst1q_s8_x2 (int8_t * __a, int8x16x2_t val)
|
359 |
+
{
|
360 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
361 |
+
}
|
362 |
+
|
363 |
+
__extension__ extern __inline void
|
364 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
365 |
+
vst1q_p8_x2 (poly8_t * __a, poly8x16x2_t val)
|
366 |
+
{
|
367 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
368 |
+
}
|
369 |
+
|
370 |
+
__extension__ extern __inline void
|
371 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
372 |
+
vst1q_s16_x2 (int16_t * __a, int16x8x2_t val)
|
373 |
+
{
|
374 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
375 |
+
}
|
376 |
+
|
377 |
+
__extension__ extern __inline void
|
378 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
379 |
+
vst1q_p16_x2 (poly16_t * __a, poly16x8x2_t val)
|
380 |
+
{
|
381 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
382 |
+
}
|
383 |
+
|
384 |
+
__extension__ extern __inline void
|
385 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
386 |
+
vst1q_s32_x2 (int32_t * __a, int32x4x2_t val)
|
387 |
+
{
|
388 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
389 |
+
}
|
390 |
+
|
391 |
+
__extension__ extern __inline void
|
392 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
393 |
+
vst1q_s64_x2 (int64_t * __a, int64x2x2_t val)
|
394 |
+
{
|
395 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
396 |
+
}
|
397 |
+
|
398 |
+
__extension__ extern __inline void
|
399 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
400 |
+
vst1q_u8_x2 (uint8_t * __a, uint8x16x2_t val)
|
401 |
+
{
|
402 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
403 |
+
}
|
404 |
+
|
405 |
+
__extension__ extern __inline void
|
406 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
407 |
+
vst1q_u16_x2 (uint16_t * __a, uint16x8x2_t val)
|
408 |
+
{
|
409 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
410 |
+
}
|
411 |
+
|
412 |
+
__extension__ extern __inline void
|
413 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
414 |
+
vst1q_u32_x2 (uint32_t * __a, uint32x4x2_t val)
|
415 |
+
{
|
416 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
417 |
+
}
|
418 |
+
|
419 |
+
__extension__ extern __inline void
|
420 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
421 |
+
vst1q_u64_x2 (uint64_t * __a, uint64x2x2_t val)
|
422 |
+
{
|
423 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
424 |
+
}
|
425 |
+
|
426 |
+
__extension__ extern __inline void
|
427 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
428 |
+
vst1q_f16_x2 (float16_t * __a, float16x8x2_t val)
|
429 |
+
{
|
430 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
431 |
+
}
|
432 |
+
|
433 |
+
__extension__ extern __inline void
|
434 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
435 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
436 |
+
{
|
437 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
438 |
+
}
|
439 |
+
|
440 |
+
__extension__ extern __inline void
|
441 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
442 |
+
vst1q_f64_x2 (float64_t * __a, float64x2x2_t val)
|
443 |
+
{
|
444 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
445 |
+
}
|
446 |
+
|
447 |
+
__extension__ extern __inline void
|
448 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
449 |
+
vst1q_p64_x2 (poly64_t * __a, poly64x2x2_t val)
|
450 |
+
{
|
451 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
452 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vst1q_f32_x2 in gcc-8. */
|
2 |
+
|
3 |
+
__extension__ extern __inline void
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
6 |
+
{
|
7 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
8 |
+
}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
|
8 |
+
#include <ATen/cpu/vec/vec_base.h>
|
9 |
+
#if !(defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || defined(CPU_CAPABILITY_ZVECTOR))
|
10 |
+
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
11 |
+
#include <ATen/cpu/vec/vec256/vec256_float_neon.h>
|
12 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
13 |
+
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
14 |
+
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
15 |
+
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
16 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
17 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
18 |
+
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
19 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
20 |
+
#else
|
21 |
+
#include <ATen/cpu/vec/vec256/zarch/vec256_zarch.h>
|
22 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#include <algorithm>
|
26 |
+
#include <cstddef>
|
27 |
+
#include <cstdint>
|
28 |
+
#include <cstring>
|
29 |
+
#include <ostream>
|
30 |
+
|
31 |
+
namespace at::vec {
|
32 |
+
|
33 |
+
// Note [CPU_CAPABILITY namespace]
|
34 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
35 |
+
// This header, and all of its subheaders, will be compiled with
|
36 |
+
// different architecture flags for each supported set of vector
|
37 |
+
// intrinsics. So we need to make sure they aren't inadvertently
|
38 |
+
// linked together. We do this by declaring objects in an `inline
|
39 |
+
// namespace` which changes the name mangling, but can still be
|
40 |
+
// accessed as `at::vec`.
|
41 |
+
inline namespace CPU_CAPABILITY {
|
42 |
+
|
43 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
44 |
+
stream << val.val_;
|
45 |
+
return stream;
|
46 |
+
}
|
47 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
48 |
+
stream << static_cast<int>(val.val_);
|
49 |
+
return stream;
|
50 |
+
}
|
51 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
52 |
+
stream << static_cast<unsigned int>(val.val_);
|
53 |
+
return stream;
|
54 |
+
}
|
55 |
+
|
56 |
+
template <typename T>
|
57 |
+
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
58 |
+
T buf[Vectorized<T>::size()];
|
59 |
+
vec.store(buf);
|
60 |
+
stream << "vec[";
|
61 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
62 |
+
if (i != 0) {
|
63 |
+
stream << ", ";
|
64 |
+
}
|
65 |
+
stream << buf[i];
|
66 |
+
}
|
67 |
+
stream << "]";
|
68 |
+
return stream;
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
73 |
+
|
74 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
75 |
+
|
76 |
+
template<>
|
77 |
+
inline Vectorized<float> cast<float, double>(const Vectorized<double>& src) {
|
78 |
+
return _mm256_castpd_ps(src);
|
79 |
+
}
|
80 |
+
|
81 |
+
template<>
|
82 |
+
inline Vectorized<double> cast<double, float>(const Vectorized<float>& src) {
|
83 |
+
return _mm256_castps_pd(src);
|
84 |
+
}
|
85 |
+
|
86 |
+
template<>
|
87 |
+
inline Vectorized<float> cast<float, int32_t>(const Vectorized<int32_t>& src) {
|
88 |
+
return _mm256_castsi256_ps(src);
|
89 |
+
}
|
90 |
+
|
91 |
+
template<>
|
92 |
+
inline Vectorized<double> cast<double, int64_t>(const Vectorized<int64_t>& src) {
|
93 |
+
return _mm256_castsi256_pd(src);
|
94 |
+
}
|
95 |
+
|
96 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
97 |
+
|
98 |
+
template<int64_t scale = 1>
|
99 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
100 |
+
inline gather(const double* base_addr, const Vectorized<int64_t>& vindex) {
|
101 |
+
return _mm256_i64gather_pd(base_addr, vindex, scale);
|
102 |
+
}
|
103 |
+
|
104 |
+
template<int64_t scale = 1>
|
105 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
106 |
+
inline gather(const float* base_addr, const Vectorized<int32_t>& vindex) {
|
107 |
+
return _mm256_i32gather_ps(base_addr, vindex, scale);
|
108 |
+
}
|
109 |
+
|
110 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MASK GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
111 |
+
|
112 |
+
template<int64_t scale = 1>
|
113 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
114 |
+
inline mask_gather(const Vectorized<double>& src, const double* base_addr,
|
115 |
+
const Vectorized<int64_t>& vindex, Vectorized<double>& mask) {
|
116 |
+
return _mm256_mask_i64gather_pd(src, base_addr, vindex, mask, scale);
|
117 |
+
}
|
118 |
+
|
119 |
+
template<int64_t scale = 1>
|
120 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
121 |
+
inline mask_gather(const Vectorized<float>& src, const float* base_addr,
|
122 |
+
const Vectorized<int32_t>& vindex, Vectorized<float>& mask) {
|
123 |
+
return _mm256_mask_i32gather_ps(src, base_addr, vindex, mask, scale);
|
124 |
+
}
|
125 |
+
|
126 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CONVERT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
127 |
+
|
128 |
+
// Only works for inputs in the range: [-2^51, 2^51]
|
129 |
+
// From: https://stackoverflow.com/a/41148578
|
130 |
+
template<>
|
131 |
+
Vectorized<int64_t>
|
132 |
+
inline convert_to_int_of_same_size<double>(const Vectorized<double> &src) {
|
133 |
+
auto x = _mm256_add_pd(src, _mm256_set1_pd(0x0018000000000000));
|
134 |
+
return _mm256_sub_epi64(
|
135 |
+
_mm256_castpd_si256(x),
|
136 |
+
_mm256_castpd_si256(_mm256_set1_pd(0x0018000000000000))
|
137 |
+
);
|
138 |
+
}
|
139 |
+
|
140 |
+
template<>
|
141 |
+
Vectorized<int32_t>
|
142 |
+
inline convert_to_int_of_same_size<float>(const Vectorized<float> &src) {
|
143 |
+
return _mm256_cvttps_epi32(src);
|
144 |
+
}
|
145 |
+
|
146 |
+
// Only works for inputs in the range: [-2^51, 2^51]
|
147 |
+
// From: https://stackoverflow.com/a/41148578
|
148 |
+
template<>
|
149 |
+
Vectorized<double>
|
150 |
+
inline convert_to_fp_of_same_size<double>(const Vectorized<int64_t> &src) {
|
151 |
+
auto x = _mm256_add_epi64(src, _mm256_castpd_si256(_mm256_set1_pd(0x0018000000000000)));
|
152 |
+
return _mm256_sub_pd(
|
153 |
+
_mm256_castsi256_pd(x),
|
154 |
+
_mm256_set1_pd(0x0018000000000000)
|
155 |
+
);
|
156 |
+
}
|
157 |
+
|
158 |
+
template<>
|
159 |
+
Vectorized<float>
|
160 |
+
inline convert_to_fp_of_same_size<float>(const Vectorized<int32_t> &src) {
|
161 |
+
return _mm256_cvtepi32_ps(src);
|
162 |
+
}
|
163 |
+
|
164 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
165 |
+
|
166 |
+
template <>
|
167 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
168 |
+
inline interleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
169 |
+
// inputs:
|
170 |
+
// a = {a0, a1, a3, a3}
|
171 |
+
// b = {b0, b1, b2, b3}
|
172 |
+
|
173 |
+
// swap lanes:
|
174 |
+
// a_swapped = {a0, a1, b0, b1}
|
175 |
+
// b_swapped = {a2, a3, b2, b3}
|
176 |
+
auto a_swapped = _mm256_permute2f128_pd(a, b, 0b0100000); // 0, 2. 4 bits apart
|
177 |
+
auto b_swapped = _mm256_permute2f128_pd(a, b, 0b0110001); // 1, 3. 4 bits apart
|
178 |
+
|
179 |
+
// group cols crossing lanes:
|
180 |
+
// return {a0, b0, a1, b1}
|
181 |
+
// {a2, b2, a3, b3}
|
182 |
+
return std::make_pair(_mm256_permute4x64_pd(a_swapped, 0b11011000), // 0, 2, 1, 3
|
183 |
+
_mm256_permute4x64_pd(b_swapped, 0b11011000)); // 0, 2, 1, 3
|
184 |
+
}
|
185 |
+
|
186 |
+
template <>
|
187 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
188 |
+
inline interleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
189 |
+
// inputs:
|
190 |
+
// a = {a0, a1, a2, a3, a4, a5, a6, a7}
|
191 |
+
// b = {b0, b1, b2, b3, b4, b5, b6, b7}
|
192 |
+
|
193 |
+
// swap lanes:
|
194 |
+
// a_swapped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
195 |
+
// b_swapped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
196 |
+
// TODO: can we support caching this?
|
197 |
+
auto a_swapped = _mm256_permute2f128_ps(a, b, 0b0100000); // 0, 2. 4 bits apart
|
198 |
+
auto b_swapped = _mm256_permute2f128_ps(a, b, 0b0110001); // 1, 3. 4 bits apart
|
199 |
+
|
200 |
+
// group cols crossing lanes:
|
201 |
+
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
202 |
+
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
203 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7);
|
204 |
+
return std::make_pair(_mm256_permutevar8x32_ps(a_swapped, group_ctrl),
|
205 |
+
_mm256_permutevar8x32_ps(b_swapped, group_ctrl));
|
206 |
+
}
|
207 |
+
|
208 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEINTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
209 |
+
|
210 |
+
template <>
|
211 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
212 |
+
inline deinterleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
213 |
+
// inputs:
|
214 |
+
// a = {a0, b0, a1, b1}
|
215 |
+
// b = {a2, b2, a3, b3}
|
216 |
+
|
217 |
+
// group cols crossing lanes:
|
218 |
+
// a_grouped = {a0, a1, b0, b1}
|
219 |
+
// b_grouped = {a2, a3, b2, b3}
|
220 |
+
auto a_grouped = _mm256_permute4x64_pd(a, 0b11011000); // 0, 2, 1, 3
|
221 |
+
auto b_grouped = _mm256_permute4x64_pd(b, 0b11011000); // 0, 2, 1, 3
|
222 |
+
|
223 |
+
// swap lanes:
|
224 |
+
// return {a0, a1, a2, a3}
|
225 |
+
// {b0, b1, b2, b3}
|
226 |
+
return std::make_pair(_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
227 |
+
_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
228 |
+
}
|
229 |
+
|
230 |
+
template <>
|
231 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
232 |
+
inline deinterleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
233 |
+
// inputs:
|
234 |
+
// a = {a0, b0, a1, b1, a2, b2, a3, b3}
|
235 |
+
// b = {a4, b4, a5, b5, a6, b6, a7, b7}
|
236 |
+
|
237 |
+
// group cols crossing lanes:
|
238 |
+
// a_grouped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
239 |
+
// b_grouped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
240 |
+
// TODO: can we support caching this?
|
241 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
|
242 |
+
auto a_grouped = _mm256_permutevar8x32_ps(a, group_ctrl);
|
243 |
+
auto b_grouped = _mm256_permutevar8x32_ps(b, group_ctrl);
|
244 |
+
|
245 |
+
// swap lanes:
|
246 |
+
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
247 |
+
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
248 |
+
return std::make_pair(_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
249 |
+
_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
250 |
+
}
|
251 |
+
|
252 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
253 |
+
|
254 |
+
template<>
|
255 |
+
inline Vectorized<float> flip(const Vectorized<float> & v) {
|
256 |
+
const __m256i mask_float = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
257 |
+
return _mm256_permutevar8x32_ps(v, mask_float);
|
258 |
+
}
|
259 |
+
|
260 |
+
template<>
|
261 |
+
inline Vectorized<double> flip(const Vectorized<double> & v) {
|
262 |
+
return _mm256_permute4x64_pd(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
263 |
+
}
|
264 |
+
|
265 |
+
template<>
|
266 |
+
inline Vectorized<int64_t> flip(const Vectorized<int64_t> & v) {
|
267 |
+
return _mm256_permute4x64_epi64(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
268 |
+
}
|
269 |
+
|
270 |
+
template<>
|
271 |
+
inline Vectorized<int32_t> flip(const Vectorized<int32_t> & v) {
|
272 |
+
const __m256i mask_int32 = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
273 |
+
return _mm256_permutevar8x32_epi32(v, mask_int32);
|
274 |
+
}
|
275 |
+
|
276 |
+
template<>
|
277 |
+
inline Vectorized<int16_t> flip(const Vectorized<int16_t> & v) {
|
278 |
+
const __m256i mask = _mm256_set_epi8(
|
279 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14,
|
280 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14
|
281 |
+
);
|
282 |
+
auto reversed = _mm256_shuffle_epi8(v, mask);
|
283 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
284 |
+
}
|
285 |
+
|
286 |
+
inline __m256i flip8(const __m256i & v) {
|
287 |
+
const __m256i mask_int8 = _mm256_set_epi8(
|
288 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
289 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
290 |
+
);
|
291 |
+
auto reversed = _mm256_shuffle_epi8(v, mask_int8);
|
292 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
293 |
+
}
|
294 |
+
|
295 |
+
template<>
|
296 |
+
inline Vectorized<int8_t> flip(const Vectorized<int8_t> & v) {
|
297 |
+
return flip8(v);
|
298 |
+
}
|
299 |
+
|
300 |
+
template<>
|
301 |
+
inline Vectorized<uint8_t> flip(const Vectorized<uint8_t> & v) {
|
302 |
+
return flip8(v);
|
303 |
+
}
|
304 |
+
|
305 |
+
#endif // (defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
306 |
+
|
307 |
+
}} // namepsace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<double> {
|
21 |
+
private:
|
22 |
+
__m256d values;
|
23 |
+
public:
|
24 |
+
using value_type = double;
|
25 |
+
using size_type = int;
|
26 |
+
static constexpr size_type size() {
|
27 |
+
return 4;
|
28 |
+
}
|
29 |
+
Vectorized() {}
|
30 |
+
Vectorized(__m256d v) : values(v) {}
|
31 |
+
Vectorized(double val) {
|
32 |
+
values = _mm256_set1_pd(val);
|
33 |
+
}
|
34 |
+
Vectorized(double val1, double val2, double val3, double val4) {
|
35 |
+
values = _mm256_setr_pd(val1, val2, val3, val4);
|
36 |
+
}
|
37 |
+
operator __m256d() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<double> blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
42 |
+
return _mm256_blend_pd(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<double> blendv(const Vectorized<double>& a, const Vectorized<double>& b,
|
45 |
+
const Vectorized<double>& mask) {
|
46 |
+
return _mm256_blendv_pd(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<double> arange(double base = 0., step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<double>(base, base + step, base + 2 * step, base + 3 * step);
|
51 |
+
}
|
52 |
+
static Vectorized<double> set(const Vectorized<double>& a, const Vectorized<double>& b,
|
53 |
+
int64_t count = size()) {
|
54 |
+
switch (count) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return blend<1>(a, b);
|
59 |
+
case 2:
|
60 |
+
return blend<3>(a, b);
|
61 |
+
case 3:
|
62 |
+
return blend<7>(a, b);
|
63 |
+
}
|
64 |
+
return b;
|
65 |
+
}
|
66 |
+
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
67 |
+
if (count == size())
|
68 |
+
return _mm256_loadu_pd(reinterpret_cast<const double*>(ptr));
|
69 |
+
|
70 |
+
|
71 |
+
__at_align__ double tmp_values[size()];
|
72 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
73 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
74 |
+
// instructions while a loop would be compiled to one instruction.
|
75 |
+
for (const auto i : c10::irange(size())) {
|
76 |
+
tmp_values[i] = 0.0;
|
77 |
+
}
|
78 |
+
std::memcpy(
|
79 |
+
tmp_values,
|
80 |
+
reinterpret_cast<const double*>(ptr),
|
81 |
+
count * sizeof(double));
|
82 |
+
return _mm256_load_pd(tmp_values);
|
83 |
+
}
|
84 |
+
void store(void* ptr, int count = size()) const {
|
85 |
+
if (count == size()) {
|
86 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
87 |
+
} else if (count > 0) {
|
88 |
+
double tmp_values[size()];
|
89 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
90 |
+
std::memcpy(ptr, tmp_values, count * sizeof(double));
|
91 |
+
}
|
92 |
+
}
|
93 |
+
const double& operator[](int idx) const = delete;
|
94 |
+
double& operator[](int idx) = delete;
|
95 |
+
int zero_mask() const {
|
96 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
97 |
+
__m256d cmp = _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_EQ_OQ);
|
98 |
+
return _mm256_movemask_pd(cmp);
|
99 |
+
}
|
100 |
+
Vectorized<double> isnan() const {
|
101 |
+
return _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_UNORD_Q);
|
102 |
+
}
|
103 |
+
bool has_inf_nan() const {
|
104 |
+
__m256d self_sub = _mm256_sub_pd(values, values);
|
105 |
+
return (_mm256_movemask_epi8(_mm256_castpd_si256(self_sub)) & 0x77777777) != 0;
|
106 |
+
}
|
107 |
+
Vectorized<double> map(double (*const f)(double)) const {
|
108 |
+
__at_align__ double tmp[size()];
|
109 |
+
store(tmp);
|
110 |
+
for (const auto i : c10::irange(size())) {
|
111 |
+
tmp[i] = f(tmp[i]);
|
112 |
+
}
|
113 |
+
return loadu(tmp);
|
114 |
+
}
|
115 |
+
Vectorized<double> abs() const {
|
116 |
+
auto mask = _mm256_set1_pd(-0.f);
|
117 |
+
return _mm256_andnot_pd(mask, values);
|
118 |
+
}
|
119 |
+
Vectorized<double> angle() const {
|
120 |
+
const auto zero_vec = _mm256_set1_pd(0.f);
|
121 |
+
const auto nan_vec = _mm256_set1_pd(NAN);
|
122 |
+
const auto not_nan_mask = _mm256_cmp_pd(values, values, _CMP_EQ_OQ);
|
123 |
+
const auto nan_mask = _mm256_cmp_pd(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
124 |
+
const auto pi = _mm256_set1_pd(c10::pi<double>);
|
125 |
+
|
126 |
+
const auto neg_mask = _mm256_cmp_pd(values, zero_vec, _CMP_LT_OQ);
|
127 |
+
auto angle = _mm256_blendv_pd(zero_vec, pi, neg_mask);
|
128 |
+
angle = _mm256_blendv_pd(angle, nan_vec, nan_mask);
|
129 |
+
return angle;
|
130 |
+
}
|
131 |
+
Vectorized<double> real() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<double> imag() const {
|
135 |
+
return _mm256_set1_pd(0);
|
136 |
+
}
|
137 |
+
Vectorized<double> conj() const {
|
138 |
+
return *this;
|
139 |
+
}
|
140 |
+
Vectorized<double> acos() const {
|
141 |
+
return Vectorized<double>(Sleef_acosd4_u10(values));
|
142 |
+
}
|
143 |
+
Vectorized<double> acosh() const {
|
144 |
+
return Vectorized<double>(Sleef_acoshd4_u10(values));
|
145 |
+
}
|
146 |
+
Vectorized<double> asin() const {
|
147 |
+
return Vectorized<double>(Sleef_asind4_u10(values));
|
148 |
+
}
|
149 |
+
Vectorized<double> atan() const {
|
150 |
+
return Vectorized<double>(Sleef_atand4_u10(values));
|
151 |
+
}
|
152 |
+
Vectorized<double> atanh() const {
|
153 |
+
return Vectorized<double>(Sleef_atanhd4_u10(values));
|
154 |
+
}
|
155 |
+
Vectorized<double> atan2(const Vectorized<double> &b) const {
|
156 |
+
return Vectorized<double>(Sleef_atan2d4_u10(values, b));
|
157 |
+
}
|
158 |
+
Vectorized<double> copysign(const Vectorized<double> &sign) const {
|
159 |
+
return Vectorized<double>(Sleef_copysignd4(values, sign));
|
160 |
+
}
|
161 |
+
Vectorized<double> erf() const {
|
162 |
+
return Vectorized<double>(Sleef_erfd4_u10(values));
|
163 |
+
}
|
164 |
+
Vectorized<double> erfc() const {
|
165 |
+
return Vectorized<double>(Sleef_erfcd4_u15(values));
|
166 |
+
}
|
167 |
+
Vectorized<double> erfinv() const {
|
168 |
+
return map(calc_erfinv);
|
169 |
+
}
|
170 |
+
Vectorized<double> exp() const {
|
171 |
+
return Vectorized<double>(Sleef_expd4_u10(values));
|
172 |
+
}
|
173 |
+
Vectorized<double> exp2() const {
|
174 |
+
return Vectorized<double>(Sleef_exp2d4_u10(values));
|
175 |
+
}
|
176 |
+
Vectorized<double> expm1() const {
|
177 |
+
return Vectorized<double>(Sleef_expm1d4_u10(values));
|
178 |
+
}
|
179 |
+
Vectorized<double> exp_u20() const {
|
180 |
+
return exp();
|
181 |
+
}
|
182 |
+
Vectorized<double> fmod(const Vectorized<double>& q) const {
|
183 |
+
return Vectorized<double>(Sleef_fmodd4(values, q));
|
184 |
+
}
|
185 |
+
Vectorized<double> hypot(const Vectorized<double> &b) const {
|
186 |
+
return Vectorized<double>(Sleef_hypotd4_u05(values, b));
|
187 |
+
}
|
188 |
+
Vectorized<double> i0() const {
|
189 |
+
return map(calc_i0);
|
190 |
+
}
|
191 |
+
Vectorized<double> i0e() const {
|
192 |
+
return map(calc_i0e);
|
193 |
+
}
|
194 |
+
Vectorized<double> digamma() const {
|
195 |
+
return map(calc_digamma);
|
196 |
+
}
|
197 |
+
Vectorized<double> igamma(const Vectorized<double> &x) const {
|
198 |
+
__at_align__ double tmp[size()];
|
199 |
+
__at_align__ double tmp_x[size()];
|
200 |
+
store(tmp);
|
201 |
+
x.store(tmp_x);
|
202 |
+
for (const auto i : c10::irange(size())) {
|
203 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
204 |
+
}
|
205 |
+
return loadu(tmp);
|
206 |
+
}
|
207 |
+
Vectorized<double> igammac(const Vectorized<double> &x) const {
|
208 |
+
__at_align__ double tmp[size()];
|
209 |
+
__at_align__ double tmp_x[size()];
|
210 |
+
store(tmp);
|
211 |
+
x.store(tmp_x);
|
212 |
+
for (const auto i : c10::irange(size())) {
|
213 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
214 |
+
}
|
215 |
+
return loadu(tmp);
|
216 |
+
}
|
217 |
+
Vectorized<double> log() const {
|
218 |
+
return Vectorized<double>(Sleef_logd4_u10(values));
|
219 |
+
}
|
220 |
+
Vectorized<double> log2() const {
|
221 |
+
return Vectorized<double>(Sleef_log2d4_u10(values));
|
222 |
+
}
|
223 |
+
Vectorized<double> log10() const {
|
224 |
+
return Vectorized<double>(Sleef_log10d4_u10(values));
|
225 |
+
}
|
226 |
+
Vectorized<double> log1p() const {
|
227 |
+
return Vectorized<double>(Sleef_log1pd4_u10(values));
|
228 |
+
}
|
229 |
+
Vectorized<double> sin() const {
|
230 |
+
return Vectorized<double>(Sleef_sind4_u10(values));
|
231 |
+
}
|
232 |
+
Vectorized<double> sinh() const {
|
233 |
+
return Vectorized<double>(Sleef_sinhd4_u10(values));
|
234 |
+
}
|
235 |
+
Vectorized<double> cos() const {
|
236 |
+
return Vectorized<double>(Sleef_cosd4_u10(values));
|
237 |
+
}
|
238 |
+
Vectorized<double> cosh() const {
|
239 |
+
return Vectorized<double>(Sleef_coshd4_u10(values));
|
240 |
+
}
|
241 |
+
Vectorized<double> ceil() const {
|
242 |
+
return _mm256_ceil_pd(values);
|
243 |
+
}
|
244 |
+
Vectorized<double> floor() const {
|
245 |
+
return _mm256_floor_pd(values);
|
246 |
+
}
|
247 |
+
Vectorized<double> frac() const;
|
248 |
+
Vectorized<double> neg() const {
|
249 |
+
return _mm256_xor_pd(_mm256_set1_pd(-0.), values);
|
250 |
+
}
|
251 |
+
Vectorized<double> nextafter(const Vectorized<double> &b) const {
|
252 |
+
return Vectorized<double>(Sleef_nextafterd4(values, b));
|
253 |
+
}
|
254 |
+
Vectorized<double> round() const {
|
255 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
256 |
+
}
|
257 |
+
Vectorized<double> tan() const {
|
258 |
+
return Vectorized<double>(Sleef_tand4_u10(values));
|
259 |
+
}
|
260 |
+
Vectorized<double> tanh() const {
|
261 |
+
return Vectorized<double>(Sleef_tanhd4_u10(values));
|
262 |
+
}
|
263 |
+
Vectorized<double> trunc() const {
|
264 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
265 |
+
}
|
266 |
+
Vectorized<double> lgamma() const {
|
267 |
+
return Vectorized<double>(Sleef_lgammad4_u10(values));
|
268 |
+
}
|
269 |
+
Vectorized<double> sqrt() const {
|
270 |
+
return _mm256_sqrt_pd(values);
|
271 |
+
}
|
272 |
+
Vectorized<double> reciprocal() const {
|
273 |
+
return _mm256_div_pd(_mm256_set1_pd(1), values);
|
274 |
+
}
|
275 |
+
Vectorized<double> rsqrt() const {
|
276 |
+
return _mm256_div_pd(_mm256_set1_pd(1), _mm256_sqrt_pd(values));
|
277 |
+
}
|
278 |
+
Vectorized<double> pow(const Vectorized<double> &b) const {
|
279 |
+
return Vectorized<double>(Sleef_powd4_u10(values, b));
|
280 |
+
}
|
281 |
+
// Comparison using the _CMP_**_OQ predicate.
|
282 |
+
// `O`: get false if an operand is NaN
|
283 |
+
// `Q`: do not raise if an operand is NaN
|
284 |
+
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
285 |
+
return _mm256_cmp_pd(values, other.values, _CMP_EQ_OQ);
|
286 |
+
}
|
287 |
+
|
288 |
+
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
289 |
+
return _mm256_cmp_pd(values, other.values, _CMP_NEQ_UQ);
|
290 |
+
}
|
291 |
+
|
292 |
+
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
293 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LT_OQ);
|
294 |
+
}
|
295 |
+
|
296 |
+
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
297 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LE_OQ);
|
298 |
+
}
|
299 |
+
|
300 |
+
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
301 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GT_OQ);
|
302 |
+
}
|
303 |
+
|
304 |
+
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
305 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GE_OQ);
|
306 |
+
}
|
307 |
+
|
308 |
+
Vectorized<double> eq(const Vectorized<double>& other) const;
|
309 |
+
Vectorized<double> ne(const Vectorized<double>& other) const;
|
310 |
+
Vectorized<double> lt(const Vectorized<double>& other) const;
|
311 |
+
Vectorized<double> le(const Vectorized<double>& other) const;
|
312 |
+
Vectorized<double> gt(const Vectorized<double>& other) const;
|
313 |
+
Vectorized<double> ge(const Vectorized<double>& other) const;
|
314 |
+
};
|
315 |
+
|
316 |
+
template <>
|
317 |
+
Vectorized<double> inline operator+(const Vectorized<double>& a, const Vectorized<double>& b) {
|
318 |
+
return _mm256_add_pd(a, b);
|
319 |
+
}
|
320 |
+
|
321 |
+
template <>
|
322 |
+
Vectorized<double> inline operator-(const Vectorized<double>& a, const Vectorized<double>& b) {
|
323 |
+
return _mm256_sub_pd(a, b);
|
324 |
+
}
|
325 |
+
|
326 |
+
template <>
|
327 |
+
Vectorized<double> inline operator*(const Vectorized<double>& a, const Vectorized<double>& b) {
|
328 |
+
return _mm256_mul_pd(a, b);
|
329 |
+
}
|
330 |
+
|
331 |
+
template <>
|
332 |
+
Vectorized<double> inline operator/(const Vectorized<double>& a, const Vectorized<double>& b) {
|
333 |
+
return _mm256_div_pd(a, b);
|
334 |
+
}
|
335 |
+
|
336 |
+
// frac. Implement this here so we can use subtraction.
|
337 |
+
inline Vectorized<double> Vectorized<double>::frac() const {
|
338 |
+
return *this - this->trunc();
|
339 |
+
}
|
340 |
+
|
341 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
342 |
+
// either input is a NaN.
|
343 |
+
template <>
|
344 |
+
Vectorized<double> inline maximum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
345 |
+
Vectorized<double> max = _mm256_max_pd(a, b);
|
346 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
347 |
+
// Exploit the fact that all-ones is a NaN.
|
348 |
+
return _mm256_or_pd(max, isnan);
|
349 |
+
}
|
350 |
+
|
351 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
352 |
+
// either input is a NaN.
|
353 |
+
template <>
|
354 |
+
Vectorized<double> inline minimum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
355 |
+
Vectorized<double> min = _mm256_min_pd(a, b);
|
356 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
357 |
+
// Exploit the fact that all-ones is a NaN.
|
358 |
+
return _mm256_or_pd(min, isnan);
|
359 |
+
}
|
360 |
+
|
361 |
+
template <>
|
362 |
+
Vectorized<double> inline clamp(const Vectorized<double>& a, const Vectorized<double>& min, const Vectorized<double>& max) {
|
363 |
+
return _mm256_min_pd(max, _mm256_max_pd(min, a));
|
364 |
+
}
|
365 |
+
|
366 |
+
template <>
|
367 |
+
Vectorized<double> inline clamp_min(const Vectorized<double>& a, const Vectorized<double>& min) {
|
368 |
+
return _mm256_max_pd(min, a);
|
369 |
+
}
|
370 |
+
|
371 |
+
template <>
|
372 |
+
Vectorized<double> inline clamp_max(const Vectorized<double>& a, const Vectorized<double>& max) {
|
373 |
+
return _mm256_min_pd(max, a);
|
374 |
+
}
|
375 |
+
|
376 |
+
template <>
|
377 |
+
Vectorized<double> inline operator&(const Vectorized<double>& a, const Vectorized<double>& b) {
|
378 |
+
return _mm256_and_pd(a, b);
|
379 |
+
}
|
380 |
+
|
381 |
+
template <>
|
382 |
+
Vectorized<double> inline operator|(const Vectorized<double>& a, const Vectorized<double>& b) {
|
383 |
+
return _mm256_or_pd(a, b);
|
384 |
+
}
|
385 |
+
|
386 |
+
template <>
|
387 |
+
Vectorized<double> inline operator^(const Vectorized<double>& a, const Vectorized<double>& b) {
|
388 |
+
return _mm256_xor_pd(a, b);
|
389 |
+
}
|
390 |
+
|
391 |
+
inline Vectorized<double> Vectorized<double>::eq(const Vectorized<double>& other) const {
|
392 |
+
return (*this == other) & Vectorized<double>(1.0);
|
393 |
+
}
|
394 |
+
|
395 |
+
inline Vectorized<double> Vectorized<double>::ne(const Vectorized<double>& other) const {
|
396 |
+
return (*this != other) & Vectorized<double>(1.0);
|
397 |
+
}
|
398 |
+
|
399 |
+
inline Vectorized<double> Vectorized<double>::gt(const Vectorized<double>& other) const {
|
400 |
+
return (*this > other) & Vectorized<double>(1.0);
|
401 |
+
}
|
402 |
+
|
403 |
+
inline Vectorized<double> Vectorized<double>::ge(const Vectorized<double>& other) const {
|
404 |
+
return (*this >= other) & Vectorized<double>(1.0);
|
405 |
+
}
|
406 |
+
|
407 |
+
inline Vectorized<double> Vectorized<double>::lt(const Vectorized<double>& other) const {
|
408 |
+
return (*this < other) & Vectorized<double>(1.0);
|
409 |
+
}
|
410 |
+
|
411 |
+
inline Vectorized<double> Vectorized<double>::le(const Vectorized<double>& other) const {
|
412 |
+
return (*this <= other) & Vectorized<double>(1.0);
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
inline void convert(const double* src, double* dst, int64_t n) {
|
417 |
+
int64_t i;
|
418 |
+
#pragma unroll
|
419 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
420 |
+
_mm256_storeu_pd(dst + i, _mm256_loadu_pd(src + i));
|
421 |
+
}
|
422 |
+
#pragma unroll
|
423 |
+
for (; i < n; i++) {
|
424 |
+
dst[i] = src[i];
|
425 |
+
}
|
426 |
+
}
|
427 |
+
|
428 |
+
#ifdef CPU_CAPABILITY_AVX2
|
429 |
+
template <>
|
430 |
+
Vectorized<double> inline fmadd(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
431 |
+
return _mm256_fmadd_pd(a, b, c);
|
432 |
+
}
|
433 |
+
|
434 |
+
template <>
|
435 |
+
Vectorized<double> inline fmsub(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
436 |
+
return _mm256_fmsub_pd(a, b, c);
|
437 |
+
}
|
438 |
+
#endif
|
439 |
+
|
440 |
+
#endif
|
441 |
+
|
442 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
18 |
+
|
19 |
+
template <> class Vectorized<float> {
|
20 |
+
private:
|
21 |
+
__m256 values;
|
22 |
+
public:
|
23 |
+
using value_type = float;
|
24 |
+
using size_type = int;
|
25 |
+
static constexpr size_type size() {
|
26 |
+
return 8;
|
27 |
+
}
|
28 |
+
Vectorized() {}
|
29 |
+
Vectorized(__m256 v) : values(v) {}
|
30 |
+
Vectorized(float val) {
|
31 |
+
values = _mm256_set1_ps(val);
|
32 |
+
}
|
33 |
+
Vectorized(float val1, float val2, float val3, float val4,
|
34 |
+
float val5, float val6, float val7, float val8) {
|
35 |
+
values = _mm256_setr_ps(val1, val2, val3, val4, val5, val6, val7, val8);
|
36 |
+
}
|
37 |
+
operator __m256() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
42 |
+
return _mm256_blend_ps(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
45 |
+
const Vectorized<float>& mask) {
|
46 |
+
return _mm256_blendv_ps(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<float>(
|
51 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
52 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
53 |
+
}
|
54 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
55 |
+
int64_t count = size()) {
|
56 |
+
switch (count) {
|
57 |
+
case 0:
|
58 |
+
return a;
|
59 |
+
case 1:
|
60 |
+
return blend<1>(a, b);
|
61 |
+
case 2:
|
62 |
+
return blend<3>(a, b);
|
63 |
+
case 3:
|
64 |
+
return blend<7>(a, b);
|
65 |
+
case 4:
|
66 |
+
return blend<15>(a, b);
|
67 |
+
case 5:
|
68 |
+
return blend<31>(a, b);
|
69 |
+
case 6:
|
70 |
+
return blend<63>(a, b);
|
71 |
+
case 7:
|
72 |
+
return blend<127>(a, b);
|
73 |
+
}
|
74 |
+
return b;
|
75 |
+
}
|
76 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
77 |
+
if (count == size())
|
78 |
+
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
|
79 |
+
__at_align__ float tmp_values[size()];
|
80 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
81 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
82 |
+
// instructions while a loop would be compiled to one instruction.
|
83 |
+
for (const auto i : c10::irange(size())) {
|
84 |
+
tmp_values[i] = 0.0;
|
85 |
+
}
|
86 |
+
std::memcpy(
|
87 |
+
tmp_values, reinterpret_cast<const float*>(ptr), count * sizeof(float));
|
88 |
+
return _mm256_loadu_ps(tmp_values);
|
89 |
+
}
|
90 |
+
void store(void* ptr, int64_t count = size()) const {
|
91 |
+
if (count == size()) {
|
92 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
93 |
+
} else if (count > 0) {
|
94 |
+
float tmp_values[size()];
|
95 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
96 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
97 |
+
}
|
98 |
+
}
|
99 |
+
const float& operator[](int idx) const = delete;
|
100 |
+
float& operator[](int idx) = delete;
|
101 |
+
int zero_mask() const {
|
102 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
103 |
+
__m256 cmp = _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_EQ_OQ);
|
104 |
+
return _mm256_movemask_ps(cmp);
|
105 |
+
}
|
106 |
+
Vectorized<float> isnan() const {
|
107 |
+
return _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
108 |
+
}
|
109 |
+
|
110 |
+
bool has_inf_nan() const {
|
111 |
+
__m256 self_sub = _mm256_sub_ps(values, values);
|
112 |
+
return (_mm256_movemask_epi8(_mm256_castps_si256(self_sub)) & 0x77777777) != 0;
|
113 |
+
}
|
114 |
+
|
115 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
116 |
+
__at_align__ float tmp[size()];
|
117 |
+
store(tmp);
|
118 |
+
for (const auto i : c10::irange(size())) {
|
119 |
+
tmp[i] = f(tmp[i]);
|
120 |
+
}
|
121 |
+
return loadu(tmp);
|
122 |
+
}
|
123 |
+
Vectorized<float> abs() const {
|
124 |
+
auto mask = _mm256_set1_ps(-0.f);
|
125 |
+
return _mm256_andnot_ps(mask, values);
|
126 |
+
}
|
127 |
+
Vectorized<float> angle() const {
|
128 |
+
const auto zero_vec = _mm256_set1_ps(0.f);
|
129 |
+
const auto nan_vec = _mm256_set1_ps(NAN);
|
130 |
+
const auto not_nan_mask = _mm256_cmp_ps(values, values, _CMP_EQ_OQ);
|
131 |
+
const auto nan_mask = _mm256_cmp_ps(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
132 |
+
const auto pi = _mm256_set1_ps(c10::pi<float>);
|
133 |
+
|
134 |
+
const auto neg_mask = _mm256_cmp_ps(values, zero_vec, _CMP_LT_OQ);
|
135 |
+
auto angle = _mm256_blendv_ps(zero_vec, pi, neg_mask);
|
136 |
+
angle = _mm256_blendv_ps(angle, nan_vec, nan_mask);
|
137 |
+
return angle;
|
138 |
+
}
|
139 |
+
Vectorized<float> real() const {
|
140 |
+
return *this;
|
141 |
+
}
|
142 |
+
Vectorized<float> imag() const {
|
143 |
+
return _mm256_set1_ps(0);
|
144 |
+
}
|
145 |
+
Vectorized<float> conj() const {
|
146 |
+
return *this;
|
147 |
+
}
|
148 |
+
Vectorized<float> acos() const {
|
149 |
+
return Vectorized<float>(Sleef_acosf8_u10(values));
|
150 |
+
}
|
151 |
+
Vectorized<float> acosh() const {
|
152 |
+
return Vectorized<float>(Sleef_acoshf8_u10(values));
|
153 |
+
}
|
154 |
+
Vectorized<float> asin() const {
|
155 |
+
return Vectorized<float>(Sleef_asinf8_u10(values));
|
156 |
+
}
|
157 |
+
Vectorized<float> atan() const {
|
158 |
+
return Vectorized<float>(Sleef_atanf8_u10(values));
|
159 |
+
}
|
160 |
+
Vectorized<float> atanh() const {
|
161 |
+
return Vectorized<float>(Sleef_atanhf8_u10(values));
|
162 |
+
}
|
163 |
+
Vectorized<float> atan2(const Vectorized<float> &b) const {
|
164 |
+
return Vectorized<float>(Sleef_atan2f8_u10(values, b));
|
165 |
+
}
|
166 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
167 |
+
return Vectorized<float>(Sleef_copysignf8(values, sign));
|
168 |
+
}
|
169 |
+
Vectorized<float> erf() const {
|
170 |
+
// constants
|
171 |
+
const auto neg_zero_vec = _mm256_set1_ps(-0.f);
|
172 |
+
const auto one_vec = _mm256_set1_ps(1.0f);
|
173 |
+
const auto p = _mm256_set1_ps(0.3275911f);
|
174 |
+
const auto p1 = _mm256_set1_ps(0.254829592f);
|
175 |
+
const auto p2 = _mm256_set1_ps(-0.284496736f);
|
176 |
+
const auto p3 = _mm256_set1_ps(1.421413741f);
|
177 |
+
const auto p4 = _mm256_set1_ps(-1.453152027f);
|
178 |
+
const auto p5 = _mm256_set1_ps(1.061405429f);
|
179 |
+
// sign(x)
|
180 |
+
auto sign_mask = _mm256_and_ps(neg_zero_vec, values);
|
181 |
+
auto abs_vec = _mm256_xor_ps(sign_mask, values);
|
182 |
+
// t = 1 / (p * abs(x) + 1)
|
183 |
+
auto tmp0 = _mm256_fmadd_ps(p, abs_vec, one_vec);
|
184 |
+
auto t = _mm256_div_ps(one_vec, tmp0);
|
185 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
186 |
+
auto tmp1 = _mm256_fmadd_ps(p5, t, p4);
|
187 |
+
auto tmp2 = _mm256_fmadd_ps(tmp1, t, p3);
|
188 |
+
auto tmp3 = _mm256_fmadd_ps(tmp2, t, p2);
|
189 |
+
auto r = _mm256_fmadd_ps(tmp3, t, p1);
|
190 |
+
// - exp(- x * x)
|
191 |
+
auto pow_2 = _mm256_mul_ps(values, values);
|
192 |
+
auto neg_pow_2 = _mm256_xor_ps(neg_zero_vec, pow_2);
|
193 |
+
// auto tmp4 = exp(neg_pow_2);
|
194 |
+
auto tmp4 = Vectorized<float>(Sleef_expf8_u10(neg_pow_2));
|
195 |
+
auto tmp5 = _mm256_xor_ps(neg_zero_vec, tmp4);
|
196 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
197 |
+
auto tmp6 = _mm256_mul_ps(tmp5, t);
|
198 |
+
auto tmp7 = _mm256_fmadd_ps(tmp6, r, one_vec);
|
199 |
+
return _mm256_xor_ps(sign_mask, tmp7);
|
200 |
+
}
|
201 |
+
Vectorized<float> erfc() const {
|
202 |
+
return Vectorized<float>(Sleef_erfcf8_u15(values));
|
203 |
+
}
|
204 |
+
Vectorized<float> erfinv() const {
|
205 |
+
return map(calc_erfinv);
|
206 |
+
}
|
207 |
+
Vectorized<float> exp() const {
|
208 |
+
return Vectorized<float>(Sleef_expf8_u10(values));
|
209 |
+
}
|
210 |
+
Vectorized<float> exp2() const {
|
211 |
+
return Vectorized<float>(Sleef_exp2f8_u10(values));
|
212 |
+
}
|
213 |
+
Vectorized<float> expm1() const {
|
214 |
+
return Vectorized<float>(Sleef_expm1f8_u10(values));
|
215 |
+
}
|
216 |
+
Vectorized<float> exp_u20() const {
|
217 |
+
// A faster version of exp with ULP=20
|
218 |
+
static __m256 vec_factorial_1 =
|
219 |
+
_mm256_set1_ps(0.999999701f); // 1/factorial(1)
|
220 |
+
static __m256 vec_factorial_2 =
|
221 |
+
_mm256_set1_ps(0.499991506f); // 1/factorial(2)
|
222 |
+
static __m256 vec_factorial_3 =
|
223 |
+
_mm256_set1_ps(0.166676521f); // 1/factorial(3)
|
224 |
+
static __m256 vec_factorial_4 =
|
225 |
+
_mm256_set1_ps(0.0418978221f); // 1/factorial(4)
|
226 |
+
static __m256 vec_factorial_5 =
|
227 |
+
_mm256_set1_ps(0.00828929059f); // 1/factorial(5)
|
228 |
+
static __m256 vec_exp_log2ef =
|
229 |
+
(__m256)_mm256_set1_epi32(0x3fb8aa3b); // log2(e)
|
230 |
+
static __m256 vec_half = _mm256_set1_ps(0.5f);
|
231 |
+
static __m256 vec_one = _mm256_set1_ps(1.f);
|
232 |
+
static __m256 vec_zero = _mm256_set1_ps(0.f);
|
233 |
+
static __m256 vec_two = _mm256_set1_ps(2.f);
|
234 |
+
static __m256 vec_ln2f = (__m256)_mm256_set1_epi32(0x3f317218); // ln(2)
|
235 |
+
static __m256 vec_ln_flt_min = (__m256)_mm256_set1_epi32(0xc2aeac50);
|
236 |
+
static __m256 vec_ln_flt_max = (__m256)_mm256_set1_epi32(0x42b17218);
|
237 |
+
static __m256i vec_127 = _mm256_set1_epi32(0x0000007f);
|
238 |
+
static int n_mantissa_bits = 23;
|
239 |
+
|
240 |
+
// exp(x) =
|
241 |
+
// = exp(n * ln(2) + r) // divide x by ln(2) and get quot and rem
|
242 |
+
// = 2^n * exp(r) // simplify the exp(n*ln(2)) expression
|
243 |
+
|
244 |
+
auto less_ln_flt_min_mask =
|
245 |
+
_mm256_cmp_ps(values, vec_ln_flt_min, 1 /*_CMP_LT_OS*/);
|
246 |
+
auto vec_src = _mm256_min_ps(values, vec_ln_flt_max);
|
247 |
+
vec_src = _mm256_max_ps(vec_src, vec_ln_flt_min);
|
248 |
+
|
249 |
+
// fx = floorf(x * log2ef + 0.5)
|
250 |
+
auto vec_fx = _mm256_fmadd_ps(vec_src, vec_exp_log2ef, vec_half);
|
251 |
+
vec_fx = _mm256_floor_ps(vec_fx);
|
252 |
+
|
253 |
+
// x = x - fx * ln2
|
254 |
+
auto vec_exp_poly = _mm256_fnmadd_ps(vec_fx, vec_ln2f, vec_src);
|
255 |
+
|
256 |
+
// compute polynomial
|
257 |
+
auto vec_res =
|
258 |
+
_mm256_fmadd_ps(vec_exp_poly, vec_factorial_5, vec_factorial_4);
|
259 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_3);
|
260 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_2);
|
261 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_1);
|
262 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_one);
|
263 |
+
|
264 |
+
// compute 2^(n-1)
|
265 |
+
auto vec_exp_number = _mm256_sub_ps(vec_fx, vec_one);
|
266 |
+
auto vec_exp_number_i = _mm256_cvtps_epi32(vec_exp_number);
|
267 |
+
auto vec_two_pow_n_i = _mm256_add_epi32(vec_exp_number_i, vec_127);
|
268 |
+
vec_two_pow_n_i = _mm256_slli_epi32(vec_two_pow_n_i, n_mantissa_bits);
|
269 |
+
auto vec_two_pow_n = (__m256)vec_two_pow_n_i;
|
270 |
+
vec_two_pow_n =
|
271 |
+
_mm256_blendv_ps(vec_two_pow_n, vec_zero, less_ln_flt_min_mask);
|
272 |
+
|
273 |
+
// y = y * 2^n
|
274 |
+
vec_res = _mm256_mul_ps(vec_res, vec_two_pow_n);
|
275 |
+
vec_res = _mm256_mul_ps(vec_res, vec_two);
|
276 |
+
return vec_res;
|
277 |
+
}
|
278 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
279 |
+
return Vectorized<float>(Sleef_fmodf8(values, q));
|
280 |
+
}
|
281 |
+
Vectorized<float> log() const {
|
282 |
+
return Vectorized<float>(Sleef_logf8_u10(values));
|
283 |
+
}
|
284 |
+
Vectorized<float> log2() const {
|
285 |
+
return Vectorized<float>(Sleef_log2f8_u10(values));
|
286 |
+
}
|
287 |
+
Vectorized<float> log10() const {
|
288 |
+
return Vectorized<float>(Sleef_log10f8_u10(values));
|
289 |
+
}
|
290 |
+
Vectorized<float> log1p() const {
|
291 |
+
return Vectorized<float>(Sleef_log1pf8_u10(values));
|
292 |
+
}
|
293 |
+
Vectorized<float> frac() const;
|
294 |
+
Vectorized<float> sin() const {
|
295 |
+
return Vectorized<float>(Sleef_sinf8_u35(values));
|
296 |
+
}
|
297 |
+
Vectorized<float> sinh() const {
|
298 |
+
return Vectorized<float>(Sleef_sinhf8_u10(values));
|
299 |
+
}
|
300 |
+
Vectorized<float> cos() const {
|
301 |
+
return Vectorized<float>(Sleef_cosf8_u35(values));
|
302 |
+
}
|
303 |
+
Vectorized<float> cosh() const {
|
304 |
+
return Vectorized<float>(Sleef_coshf8_u10(values));
|
305 |
+
}
|
306 |
+
Vectorized<float> ceil() const {
|
307 |
+
return _mm256_ceil_ps(values);
|
308 |
+
}
|
309 |
+
Vectorized<float> floor() const {
|
310 |
+
return _mm256_floor_ps(values);
|
311 |
+
}
|
312 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
313 |
+
return Vectorized<float>(Sleef_hypotf8_u05(values, b));
|
314 |
+
}
|
315 |
+
Vectorized<float> i0() const {
|
316 |
+
return map(calc_i0);
|
317 |
+
}
|
318 |
+
Vectorized<float> i0e() const {
|
319 |
+
return map(calc_i0e);
|
320 |
+
}
|
321 |
+
Vectorized<float> digamma() const {
|
322 |
+
return map(calc_digamma);
|
323 |
+
}
|
324 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
325 |
+
__at_align__ float tmp[size()];
|
326 |
+
__at_align__ float tmp_x[size()];
|
327 |
+
store(tmp);
|
328 |
+
x.store(tmp_x);
|
329 |
+
for (const auto i : c10::irange(size())) {
|
330 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
331 |
+
}
|
332 |
+
return loadu(tmp);
|
333 |
+
}
|
334 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
335 |
+
__at_align__ float tmp[size()];
|
336 |
+
__at_align__ float tmp_x[size()];
|
337 |
+
store(tmp);
|
338 |
+
x.store(tmp_x);
|
339 |
+
for (const auto i : c10::irange(size())) {
|
340 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
341 |
+
}
|
342 |
+
return loadu(tmp);
|
343 |
+
}
|
344 |
+
Vectorized<float> neg() const {
|
345 |
+
return _mm256_xor_ps(_mm256_set1_ps(-0.f), values);
|
346 |
+
}
|
347 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
348 |
+
return Vectorized<float>(Sleef_nextafterf8(values, b));
|
349 |
+
}
|
350 |
+
Vectorized<float> round() const {
|
351 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
352 |
+
}
|
353 |
+
Vectorized<float> tan() const {
|
354 |
+
return Vectorized<float>(Sleef_tanf8_u10(values));
|
355 |
+
}
|
356 |
+
Vectorized<float> tanh() const {
|
357 |
+
return Vectorized<float>(Sleef_tanhf8_u10(values));
|
358 |
+
}
|
359 |
+
Vectorized<float> trunc() const {
|
360 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
361 |
+
}
|
362 |
+
Vectorized<float> lgamma() const {
|
363 |
+
return Vectorized<float>(Sleef_lgammaf8_u10(values));
|
364 |
+
}
|
365 |
+
Vectorized<float> sqrt() const {
|
366 |
+
return _mm256_sqrt_ps(values);
|
367 |
+
}
|
368 |
+
Vectorized<float> reciprocal() const {
|
369 |
+
return _mm256_div_ps(_mm256_set1_ps(1), values);
|
370 |
+
}
|
371 |
+
Vectorized<float> rsqrt() const {
|
372 |
+
return _mm256_div_ps(_mm256_set1_ps(1), _mm256_sqrt_ps(values));
|
373 |
+
}
|
374 |
+
Vectorized<float> pow(const Vectorized<float> &b) const {
|
375 |
+
return Vectorized<float>(Sleef_powf8_u10(values, b));
|
376 |
+
}
|
377 |
+
// Comparison using the _CMP_**_OQ predicate.
|
378 |
+
// `O`: get false if an operand is NaN
|
379 |
+
// `Q`: do not raise if an operand is NaN
|
380 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
381 |
+
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
|
382 |
+
}
|
383 |
+
|
384 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
385 |
+
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
|
386 |
+
}
|
387 |
+
|
388 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
389 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LT_OQ);
|
390 |
+
}
|
391 |
+
|
392 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
393 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LE_OQ);
|
394 |
+
}
|
395 |
+
|
396 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
397 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GT_OQ);
|
398 |
+
}
|
399 |
+
|
400 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
401 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GE_OQ);
|
402 |
+
}
|
403 |
+
|
404 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
405 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
406 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
407 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
408 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
409 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
410 |
+
};
|
411 |
+
|
412 |
+
template <>
|
413 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
414 |
+
return _mm256_add_ps(a, b);
|
415 |
+
}
|
416 |
+
|
417 |
+
template <>
|
418 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
419 |
+
return _mm256_sub_ps(a, b);
|
420 |
+
}
|
421 |
+
|
422 |
+
template <>
|
423 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
424 |
+
return _mm256_mul_ps(a, b);
|
425 |
+
}
|
426 |
+
|
427 |
+
template <>
|
428 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
429 |
+
return _mm256_div_ps(a, b);
|
430 |
+
}
|
431 |
+
|
432 |
+
// frac. Implement this here so we can use subtraction
|
433 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
434 |
+
return *this - this->trunc();
|
435 |
+
}
|
436 |
+
|
437 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
438 |
+
// either input is a NaN.
|
439 |
+
template <>
|
440 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
441 |
+
Vectorized<float> max = _mm256_max_ps(a, b);
|
442 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
443 |
+
// Exploit the fact that all-ones is a NaN.
|
444 |
+
return _mm256_or_ps(max, isnan);
|
445 |
+
}
|
446 |
+
|
447 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
448 |
+
// either input is a NaN.
|
449 |
+
template <>
|
450 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
451 |
+
Vectorized<float> min = _mm256_min_ps(a, b);
|
452 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
453 |
+
// Exploit the fact that all-ones is a NaN.
|
454 |
+
return _mm256_or_ps(min, isnan);
|
455 |
+
}
|
456 |
+
|
457 |
+
template <>
|
458 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
459 |
+
return _mm256_min_ps(max, _mm256_max_ps(min, a));
|
460 |
+
}
|
461 |
+
|
462 |
+
template <>
|
463 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
464 |
+
return _mm256_min_ps(max, a);
|
465 |
+
}
|
466 |
+
|
467 |
+
template <>
|
468 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
469 |
+
return _mm256_max_ps(min, a);
|
470 |
+
}
|
471 |
+
|
472 |
+
template <>
|
473 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
474 |
+
return _mm256_and_ps(a, b);
|
475 |
+
}
|
476 |
+
|
477 |
+
template <>
|
478 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
479 |
+
return _mm256_or_ps(a, b);
|
480 |
+
}
|
481 |
+
|
482 |
+
template <>
|
483 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
484 |
+
return _mm256_xor_ps(a, b);
|
485 |
+
}
|
486 |
+
|
487 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
488 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
489 |
+
}
|
490 |
+
|
491 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
492 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
493 |
+
}
|
494 |
+
|
495 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
496 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
497 |
+
}
|
498 |
+
|
499 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
500 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
501 |
+
}
|
502 |
+
|
503 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
504 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
505 |
+
}
|
506 |
+
|
507 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
508 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
509 |
+
}
|
510 |
+
|
511 |
+
template <>
|
512 |
+
inline void convert(const float* src, float* dst, int64_t n) {
|
513 |
+
int64_t i;
|
514 |
+
#pragma unroll
|
515 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
516 |
+
_mm256_storeu_ps(dst + i, _mm256_loadu_ps(src + i));
|
517 |
+
}
|
518 |
+
#pragma unroll
|
519 |
+
for (; i < n; i++) {
|
520 |
+
dst[i] = src[i];
|
521 |
+
}
|
522 |
+
}
|
523 |
+
|
524 |
+
|
525 |
+
template <>
|
526 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
527 |
+
return _mm256_fmadd_ps(a, b, c);
|
528 |
+
}
|
529 |
+
|
530 |
+
template <>
|
531 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
532 |
+
return _mm256_fmsub_ps(a, b, c);
|
533 |
+
}
|
534 |
+
|
535 |
+
// Used by Inductor CPP codegen
|
536 |
+
template<>
|
537 |
+
inline void transpose_mxn<float, 8, 8>(
|
538 |
+
const float* src,
|
539 |
+
int64_t ld_src,
|
540 |
+
float* dst,
|
541 |
+
int64_t ld_dst) {
|
542 |
+
// load from src to registers
|
543 |
+
// a: a0 a1 a2 a3 a4 a5 a6 a7
|
544 |
+
// b: b0 b1 b2 b3 b4 b5 b6 b7
|
545 |
+
// c: c0 c1 c2 c3 c4 c5 c6 c7
|
546 |
+
// d: d0 d1 d2 d3 d4 d5 d6 d7
|
547 |
+
// e: e0 e1 e2 e3 e4 e5 e6 e7
|
548 |
+
// f: f0 f1 f2 f3 f4 f5 f6 f7
|
549 |
+
// g: g0 g1 g2 g3 g4 g5 g6 g7
|
550 |
+
// h: h0 h1 h2 h3 h4 h5 h6 h7
|
551 |
+
__m256 a = _mm256_loadu_ps(&src[0 * ld_src]);
|
552 |
+
__m256 b = _mm256_loadu_ps(&src[1 * ld_src]);
|
553 |
+
__m256 c = _mm256_loadu_ps(&src[2 * ld_src]);
|
554 |
+
__m256 d = _mm256_loadu_ps(&src[3 * ld_src]);
|
555 |
+
__m256 e = _mm256_loadu_ps(&src[4 * ld_src]);
|
556 |
+
__m256 f = _mm256_loadu_ps(&src[5 * ld_src]);
|
557 |
+
__m256 g = _mm256_loadu_ps(&src[6 * ld_src]);
|
558 |
+
__m256 h = _mm256_loadu_ps(&src[7 * ld_src]);
|
559 |
+
|
560 |
+
__m256 ta, tb, tc, td, te, tf, tg, th;
|
561 |
+
// unpacking and interleaving 32-bit elements
|
562 |
+
// a0 b0 a1 b1 a4 b4 a5 b5
|
563 |
+
// a2 b2 a3 b3 a6 b6 a7 b7
|
564 |
+
// c0 d0 c1 d1 ...
|
565 |
+
// c2 d2 c3 d3 ...
|
566 |
+
// e0 f0 e1 f1 ...
|
567 |
+
// e2 f2 e3 f3 ...
|
568 |
+
// g0 h0 g1 h1 ...
|
569 |
+
// g2 h2 g3 h3 ...
|
570 |
+
ta = _mm256_unpacklo_ps(a, b);
|
571 |
+
tb = _mm256_unpackhi_ps(a, b);
|
572 |
+
tc = _mm256_unpacklo_ps(c, d);
|
573 |
+
td = _mm256_unpackhi_ps(c, d);
|
574 |
+
te = _mm256_unpacklo_ps(e, f);
|
575 |
+
tf = _mm256_unpackhi_ps(e, f);
|
576 |
+
tg = _mm256_unpacklo_ps(g, h);
|
577 |
+
th = _mm256_unpackhi_ps(g, h);
|
578 |
+
|
579 |
+
// unpacking and interleaving 64-bit elements
|
580 |
+
// a0 b0 c0 d0 a4 b4 c4 d4
|
581 |
+
// a1 b1 c1 d1 ...
|
582 |
+
// a2 b2 c2 d2 ...
|
583 |
+
// a3 b3 c3 d3 ...
|
584 |
+
// e0 f0 g0 h0 e4 f4 g4 h4
|
585 |
+
// e1 f1 g1 h1 ...
|
586 |
+
// e2 f2 g2 h2 ...
|
587 |
+
// e3 f3 g3 h3 ...
|
588 |
+
a = _mm256_castpd_ps(
|
589 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
590 |
+
b = _mm256_castpd_ps(
|
591 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
592 |
+
c = _mm256_castpd_ps(
|
593 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
594 |
+
d = _mm256_castpd_ps(
|
595 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
596 |
+
e = _mm256_castpd_ps(
|
597 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
598 |
+
f = _mm256_castpd_ps(
|
599 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
600 |
+
g = _mm256_castpd_ps(
|
601 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
602 |
+
h = _mm256_castpd_ps(
|
603 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
604 |
+
|
605 |
+
// shuffle 128-bits (composed of 4 32-bit elements)
|
606 |
+
// a0 b0 c0 d0 e0 f0 g0 h0
|
607 |
+
// a1 b1 c1 d1 ...
|
608 |
+
// a2 b2 c2 d2 ...
|
609 |
+
// a3 b3 c3 d3 ...
|
610 |
+
// a4 b4 c4 d4 ...
|
611 |
+
// a5 b5 c5 d5 ...
|
612 |
+
// a6 b6 c6 d6 ...
|
613 |
+
// a7 b7 c7 d7 ...
|
614 |
+
ta = _mm256_permute2f128_ps(a, e, 0x20);
|
615 |
+
tb = _mm256_permute2f128_ps(b, f, 0x20);
|
616 |
+
tc = _mm256_permute2f128_ps(c, g, 0x20);
|
617 |
+
td = _mm256_permute2f128_ps(d, h, 0x20);
|
618 |
+
te = _mm256_permute2f128_ps(a, e, 0x31);
|
619 |
+
tf = _mm256_permute2f128_ps(b, f, 0x31);
|
620 |
+
tg = _mm256_permute2f128_ps(c, g, 0x31);
|
621 |
+
th = _mm256_permute2f128_ps(d, h, 0x31);
|
622 |
+
|
623 |
+
// store from registers to dst
|
624 |
+
_mm256_storeu_ps(&dst[0 * ld_dst], ta);
|
625 |
+
_mm256_storeu_ps(&dst[1 * ld_dst], tb);
|
626 |
+
_mm256_storeu_ps(&dst[2 * ld_dst], tc);
|
627 |
+
_mm256_storeu_ps(&dst[3 * ld_dst], td);
|
628 |
+
_mm256_storeu_ps(&dst[4 * ld_dst], te);
|
629 |
+
_mm256_storeu_ps(&dst[5 * ld_dst], tf);
|
630 |
+
_mm256_storeu_ps(&dst[6 * ld_dst], tg);
|
631 |
+
_mm256_storeu_ps(&dst[7 * ld_dst], th);
|
632 |
+
}
|
633 |
+
|
634 |
+
#endif
|
635 |
+
|
636 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
// Sleef offers vectorized versions of some transcedentals
|
15 |
+
// such as sin, cos, tan etc..
|
16 |
+
// However for now opting for STL, since we are not building
|
17 |
+
// with Sleef for mobile yet.
|
18 |
+
|
19 |
+
namespace at::vec {
|
20 |
+
// See Note [CPU_CAPABILITY namespace]
|
21 |
+
inline namespace CPU_CAPABILITY {
|
22 |
+
|
23 |
+
// Right now contains only aarch64 implementation.
|
24 |
+
// Due to follow two reasons aarch32 is not currently supported.
|
25 |
+
// 1. Due to difference in ISA been aarch32 and aarch64, intrinsics
|
26 |
+
// that work for aarch64 dont work for aarch32.
|
27 |
+
// 2. Android NDK r21 has problems with compiling aarch32.
|
28 |
+
// Clang seg faults.
|
29 |
+
// https://github.com/android/ndk/issues/1248
|
30 |
+
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
31 |
+
// Most likely we will do aarch32 support with inline asm.
|
32 |
+
#if defined(__aarch64__)
|
33 |
+
|
34 |
+
#ifdef __BIG_ENDIAN__
|
35 |
+
#error "Big endian is not supported."
|
36 |
+
#endif
|
37 |
+
|
38 |
+
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
39 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
40 |
+
#else
|
41 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
42 |
+
#endif
|
43 |
+
|
44 |
+
template<int index, bool mask_val>
|
45 |
+
struct BlendRegs {
|
46 |
+
static float32x4_t impl(
|
47 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res);
|
48 |
+
};
|
49 |
+
|
50 |
+
template<int index>
|
51 |
+
struct BlendRegs<index, true>{
|
52 |
+
static float32x4_t impl(
|
53 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
54 |
+
return vsetq_lane_f32(vgetq_lane_f32(b, index), res, index);
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template<int index>
|
59 |
+
struct BlendRegs<index, false>{
|
60 |
+
static float32x4_t impl(
|
61 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
62 |
+
return vsetq_lane_f32(vgetq_lane_f32(a, index), res, index);
|
63 |
+
}
|
64 |
+
};
|
65 |
+
|
66 |
+
template <> class Vectorized<float> {
|
67 |
+
private:
|
68 |
+
float32x4x2_t values;
|
69 |
+
public:
|
70 |
+
using value_type = float;
|
71 |
+
using size_type = int;
|
72 |
+
static constexpr size_type size() {
|
73 |
+
return 8;
|
74 |
+
}
|
75 |
+
Vectorized() {}
|
76 |
+
Vectorized(float32x4x2_t v) : values(v) {}
|
77 |
+
Vectorized(float val) : values{vdupq_n_f32(val), vdupq_n_f32(val) } {}
|
78 |
+
Vectorized(float val0, float val1, float val2, float val3,
|
79 |
+
float val4, float val5, float val6, float val7) :
|
80 |
+
values{val0, val1, val2, val3, val4, val5, val6, val7} {}
|
81 |
+
Vectorized(float32x4_t val0, float32x4_t val1) : values{val0, val1} {}
|
82 |
+
operator float32x4x2_t() const {
|
83 |
+
return values;
|
84 |
+
}
|
85 |
+
template <int64_t mask>
|
86 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
87 |
+
Vectorized<float> vec;
|
88 |
+
// 0.
|
89 |
+
vec.values.val[0] =
|
90 |
+
BlendRegs<0, (mask & 0x01)!=0>::impl(
|
91 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
92 |
+
vec.values.val[0] =
|
93 |
+
BlendRegs<1, (mask & 0x02)!=0>::impl(
|
94 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
95 |
+
vec.values.val[0] =
|
96 |
+
BlendRegs<2, (mask & 0x04)!=0>::impl(
|
97 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
98 |
+
vec.values.val[0] =
|
99 |
+
BlendRegs<3, (mask & 0x08)!=0>::impl(
|
100 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
101 |
+
// 1.
|
102 |
+
vec.values.val[1] =
|
103 |
+
BlendRegs<0, (mask & 0x10)!=0>::impl(
|
104 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
105 |
+
vec.values.val[1] =
|
106 |
+
BlendRegs<1, (mask & 0x20)!=0>::impl(
|
107 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
108 |
+
vec.values.val[1] =
|
109 |
+
BlendRegs<2, (mask & 0x40)!=0>::impl(
|
110 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
111 |
+
vec.values.val[1] =
|
112 |
+
BlendRegs<3, (mask & 0x80)!=0>::impl(
|
113 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
114 |
+
return vec;
|
115 |
+
}
|
116 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
117 |
+
const Vectorized<float>& mask) {
|
118 |
+
// TODO
|
119 |
+
// NB: This requires that each value, i.e., each uint value,
|
120 |
+
// of the mask either all be zeros or all be 1s.
|
121 |
+
// We perhaps need some kind of an assert?
|
122 |
+
// But that will affect performance.
|
123 |
+
Vectorized<float> vec(mask.values);
|
124 |
+
vec.values.val[0] = vbslq_f32(
|
125 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
126 |
+
b.values.val[0],
|
127 |
+
a.values.val[0]);
|
128 |
+
vec.values.val[1] = vbslq_f32(
|
129 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
130 |
+
b.values.val[1],
|
131 |
+
a.values.val[1]);
|
132 |
+
return vec;
|
133 |
+
}
|
134 |
+
template<typename step_t>
|
135 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
136 |
+
const Vectorized<float> base_vec(base);
|
137 |
+
const Vectorized<float> step_vec(step);
|
138 |
+
const Vectorized<float> step_sizes(0, 1, 2, 3, 4, 5, 6, 7);
|
139 |
+
return fmadd(step_sizes, step_vec, base_vec);
|
140 |
+
}
|
141 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
142 |
+
int64_t count = size()) {
|
143 |
+
switch (count) {
|
144 |
+
case 0:
|
145 |
+
return a;
|
146 |
+
case 1:
|
147 |
+
{
|
148 |
+
Vectorized<float> vec;
|
149 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
150 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
151 |
+
vec.values.val[1] = a.values.val[1];
|
152 |
+
vec.values.val[0] = vbslq_f32(
|
153 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
154 |
+
b.values.val[0],
|
155 |
+
a.values.val[0]);
|
156 |
+
return vec;
|
157 |
+
}
|
158 |
+
case 2:
|
159 |
+
{
|
160 |
+
Vectorized<float> vec;
|
161 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
162 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
163 |
+
vec.values.val[1] = a.values.val[1];
|
164 |
+
vec.values.val[0] = vbslq_f32(
|
165 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
166 |
+
b.values.val[0],
|
167 |
+
a.values.val[0]);
|
168 |
+
return vec;
|
169 |
+
}
|
170 |
+
case 3:
|
171 |
+
{
|
172 |
+
Vectorized<float> vec;
|
173 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
174 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
175 |
+
vec.values.val[1] = a.values.val[1];
|
176 |
+
vec.values.val[0] = vbslq_f32(
|
177 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
178 |
+
b.values.val[0],
|
179 |
+
a.values.val[0]);
|
180 |
+
return vec;
|
181 |
+
}
|
182 |
+
case 4:
|
183 |
+
return Vectorized<float>(b.values.val[0], a.values.val[1]);
|
184 |
+
case 5:
|
185 |
+
{
|
186 |
+
Vectorized<float> vec;
|
187 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
188 |
+
vec.values.val[0] = b.values.val[0];
|
189 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
190 |
+
vec.values.val[1] = vbslq_f32(
|
191 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
192 |
+
b.values.val[1],
|
193 |
+
a.values.val[1]);
|
194 |
+
return vec;
|
195 |
+
}
|
196 |
+
case 6:
|
197 |
+
{
|
198 |
+
Vectorized<float> vec;
|
199 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
200 |
+
vec.values.val[0] = b.values.val[0];
|
201 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
202 |
+
vec.values.val[1] = vbslq_f32(
|
203 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
204 |
+
b.values.val[1],
|
205 |
+
a.values.val[1]);
|
206 |
+
return vec;
|
207 |
+
}
|
208 |
+
case 7:
|
209 |
+
{
|
210 |
+
Vectorized<float> vec;
|
211 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
212 |
+
vec.values.val[0] = b.values.val[0];
|
213 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
214 |
+
vec.values.val[1] = vbslq_f32(
|
215 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
216 |
+
b.values.val[1],
|
217 |
+
a.values.val[1]);
|
218 |
+
return vec;
|
219 |
+
}
|
220 |
+
}
|
221 |
+
return b;
|
222 |
+
}
|
223 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
224 |
+
if (count == size()) {
|
225 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(ptr));
|
226 |
+
}
|
227 |
+
else if (count == (size() >> 1)) {
|
228 |
+
Vectorized<float> res;
|
229 |
+
res.values.val[0] = vld1q_f32(reinterpret_cast<const float*>(ptr));
|
230 |
+
res.values.val[1] = vdupq_n_f32(0.f);
|
231 |
+
return res;
|
232 |
+
}
|
233 |
+
else {
|
234 |
+
__at_align__ float tmp_values[size()];
|
235 |
+
for (const auto i : c10::irange(size())) {
|
236 |
+
tmp_values[i] = 0.0;
|
237 |
+
}
|
238 |
+
std::memcpy(
|
239 |
+
tmp_values,
|
240 |
+
reinterpret_cast<const float*>(ptr),
|
241 |
+
count * sizeof(float));
|
242 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(tmp_values));
|
243 |
+
}
|
244 |
+
}
|
245 |
+
void store(void* ptr, int64_t count = size()) const {
|
246 |
+
if (count == size()) {
|
247 |
+
vst1q_f32_x2(reinterpret_cast<float*>(ptr), values);
|
248 |
+
}
|
249 |
+
else if (count == (size() >> 1)) {
|
250 |
+
vst1q_f32(reinterpret_cast<float*>(ptr), values.val[0]);
|
251 |
+
}
|
252 |
+
else {
|
253 |
+
float tmp_values[size()];
|
254 |
+
vst1q_f32_x2(reinterpret_cast<float*>(tmp_values), values);
|
255 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
256 |
+
}
|
257 |
+
}
|
258 |
+
inline const float32x4_t& get_low() const {
|
259 |
+
return values.val[0];
|
260 |
+
}
|
261 |
+
inline float32x4_t& get_low() {
|
262 |
+
return values.val[0];
|
263 |
+
}
|
264 |
+
inline const float32x4_t& get_high() const {
|
265 |
+
return values.val[1];
|
266 |
+
}
|
267 |
+
inline float32x4_t& get_high() {
|
268 |
+
return values.val[1];
|
269 |
+
}
|
270 |
+
// Very slow implementation of indexing.
|
271 |
+
// Only required because vec256_qint refers to this.
|
272 |
+
// Once we specialize that implementation for ARM
|
273 |
+
// this should be removed. TODO (kimishpatel)
|
274 |
+
float operator[](int idx) const {
|
275 |
+
__at_align__ float tmp[size()];
|
276 |
+
store(tmp);
|
277 |
+
return tmp[idx];
|
278 |
+
}
|
279 |
+
float operator[](int idx) {
|
280 |
+
__at_align__ float tmp[size()];
|
281 |
+
store(tmp);
|
282 |
+
return tmp[idx];
|
283 |
+
}
|
284 |
+
// For boolean version where we want to if any 1/all zero
|
285 |
+
// etc. can be done faster in a different way.
|
286 |
+
int zero_mask() const {
|
287 |
+
__at_align__ float tmp[size()];
|
288 |
+
store(tmp);
|
289 |
+
int mask = 0;
|
290 |
+
for (int i = 0; i < size(); ++ i) {
|
291 |
+
if (tmp[i] == 0.f) {
|
292 |
+
mask |= (1 << i);
|
293 |
+
}
|
294 |
+
}
|
295 |
+
return mask;
|
296 |
+
}
|
297 |
+
Vectorized<float> isnan() const {
|
298 |
+
__at_align__ float tmp[size()];
|
299 |
+
__at_align__ float res[size()];
|
300 |
+
store(tmp);
|
301 |
+
for (const auto i : c10::irange(size())) {
|
302 |
+
if (_isnan(tmp[i])) {
|
303 |
+
std::memset(static_cast<void*>(&res[i]), 0xFF, sizeof(float));
|
304 |
+
} else {
|
305 |
+
std::memset(static_cast<void*>(&res[i]), 0, sizeof(float));
|
306 |
+
}
|
307 |
+
}
|
308 |
+
return loadu(res);
|
309 |
+
};
|
310 |
+
bool has_inf_nan() const {
|
311 |
+
__at_align__ float tmp[size()];
|
312 |
+
store(tmp);
|
313 |
+
for (const auto i : c10::irange(size())) {
|
314 |
+
if(_isnan(tmp[i]) || _isinf(tmp[i])) {
|
315 |
+
return true;
|
316 |
+
}
|
317 |
+
}
|
318 |
+
return false;
|
319 |
+
}
|
320 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
321 |
+
__at_align__ float tmp[size()];
|
322 |
+
store(tmp);
|
323 |
+
for (const auto i : c10::irange(size())) {
|
324 |
+
tmp[i] = f(tmp[i]);
|
325 |
+
}
|
326 |
+
return loadu(tmp);
|
327 |
+
}
|
328 |
+
Vectorized<float> abs() const {
|
329 |
+
return Vectorized<float>(vabsq_f32(values.val[0]), vabsq_f32(values.val[1]));
|
330 |
+
}
|
331 |
+
Vectorized<float> angle() const {
|
332 |
+
auto zero = Vectorized<float>(0);
|
333 |
+
auto pi = Vectorized<float>(c10::pi<float>);
|
334 |
+
auto tmp = blendv(zero, pi, *this < zero);
|
335 |
+
return blendv(tmp, *this, isnan());
|
336 |
+
}
|
337 |
+
Vectorized<float> real() const {
|
338 |
+
return *this;
|
339 |
+
}
|
340 |
+
Vectorized<float> imag() const {
|
341 |
+
return Vectorized<float>(0.f);
|
342 |
+
}
|
343 |
+
Vectorized<float> conj() const {
|
344 |
+
return *this;
|
345 |
+
}
|
346 |
+
Vectorized<float> acos() const {
|
347 |
+
return USE_SLEEF(
|
348 |
+
Vectorized<float>(Sleef_acosf4_u10(values.val[0]), Sleef_acosf4_u10(values.val[1])),
|
349 |
+
map(std::acos)
|
350 |
+
);
|
351 |
+
}
|
352 |
+
Vectorized<float> asin() const {
|
353 |
+
return USE_SLEEF(
|
354 |
+
Vectorized<float>(Sleef_asinf4_u10(values.val[0]), Sleef_asinf4_u10(values.val[1])),
|
355 |
+
map(std::asin)
|
356 |
+
);
|
357 |
+
}
|
358 |
+
Vectorized<float> atan() const {
|
359 |
+
return USE_SLEEF(
|
360 |
+
Vectorized<float>(Sleef_atanf4_u10(values.val[0]), Sleef_atanf4_u10(values.val[1])),
|
361 |
+
map(std::atan)
|
362 |
+
);
|
363 |
+
}
|
364 |
+
Vectorized<float> atanh() const {
|
365 |
+
return USE_SLEEF(
|
366 |
+
Vectorized<float>(Sleef_atanhf4_u10(values.val[0]), Sleef_atanhf4_u10(values.val[1])),
|
367 |
+
map(std::atanh)
|
368 |
+
);
|
369 |
+
}
|
370 |
+
Vectorized<float> atan2(const Vectorized<float> &exp) const {
|
371 |
+
USE_SLEEF(
|
372 |
+
{
|
373 |
+
return Vectorized<float>(Sleef_atan2f4_u10(values.val[0], exp.values.val[0]),
|
374 |
+
Sleef_atan2f4_u10(values.val[1], exp.values.val[1]));
|
375 |
+
},
|
376 |
+
{
|
377 |
+
__at_align__ float tmp[size()];
|
378 |
+
__at_align__ float tmp_exp[size()];
|
379 |
+
store(tmp);
|
380 |
+
exp.store(tmp_exp);
|
381 |
+
for (const auto i : c10::irange(size())) {
|
382 |
+
tmp[i] = std::atan2(tmp[i], tmp_exp[i]);
|
383 |
+
}
|
384 |
+
return loadu(tmp);
|
385 |
+
}
|
386 |
+
)
|
387 |
+
}
|
388 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
389 |
+
USE_SLEEF(
|
390 |
+
{
|
391 |
+
return Vectorized<float>(Sleef_copysignf4(values.val[0], sign.values.val[0]),
|
392 |
+
Sleef_copysignf4(values.val[1], sign.values.val[1]));
|
393 |
+
},
|
394 |
+
{
|
395 |
+
__at_align__ float tmp[size()];
|
396 |
+
__at_align__ float tmp_sign[size()];
|
397 |
+
store(tmp);
|
398 |
+
sign.store(tmp_sign);
|
399 |
+
for (size_type i = 0; i < size(); i++) {
|
400 |
+
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
401 |
+
}
|
402 |
+
return loadu(tmp);
|
403 |
+
}
|
404 |
+
)
|
405 |
+
}
|
406 |
+
Vectorized<float> erf() const;
|
407 |
+
Vectorized<float> erfc() const {
|
408 |
+
return USE_SLEEF(
|
409 |
+
Vectorized<float>(Sleef_erfcf4_u15(values.val[0]), Sleef_erfcf4_u15(values.val[1])),
|
410 |
+
map(std::erfc)
|
411 |
+
);
|
412 |
+
}
|
413 |
+
Vectorized<float> erfinv() const {
|
414 |
+
return map(calc_erfinv);
|
415 |
+
}
|
416 |
+
Vectorized<float> exp() const {
|
417 |
+
return USE_SLEEF(
|
418 |
+
Vectorized<float>(Sleef_expf4_u10(values.val[0]), Sleef_expf4_u10(values.val[1])),
|
419 |
+
map(std::exp)
|
420 |
+
);
|
421 |
+
}
|
422 |
+
Vectorized<float> exp2() const {
|
423 |
+
return USE_SLEEF(
|
424 |
+
Vectorized<float>(Sleef_exp2f4_u10(values.val[0]), Sleef_exp2f4_u10(values.val[1])),
|
425 |
+
map(std::exp2)
|
426 |
+
);
|
427 |
+
}
|
428 |
+
Vectorized<float> expm1() const {
|
429 |
+
return USE_SLEEF(
|
430 |
+
Vectorized<float>(Sleef_expm1f4_u10(values.val[0]), Sleef_expm1f4_u10(values.val[1])),
|
431 |
+
map(std::expm1)
|
432 |
+
);
|
433 |
+
}
|
434 |
+
Vectorized<float> exp_u20() const {
|
435 |
+
return exp();
|
436 |
+
}
|
437 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
438 |
+
USE_SLEEF(
|
439 |
+
{
|
440 |
+
return Vectorized<float>(Sleef_fmodf4(values.val[0], q.values.val[0]),
|
441 |
+
Sleef_fmodf4(values.val[1], q.values.val[1]));
|
442 |
+
},
|
443 |
+
{
|
444 |
+
__at_align__ float tmp[size()];
|
445 |
+
__at_align__ float tmp_q[size()];
|
446 |
+
store(tmp);
|
447 |
+
q.store(tmp_q);
|
448 |
+
for (const auto i : c10::irange(size())) {
|
449 |
+
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
450 |
+
}
|
451 |
+
return loadu(tmp);
|
452 |
+
}
|
453 |
+
)
|
454 |
+
}
|
455 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
456 |
+
USE_SLEEF(
|
457 |
+
{
|
458 |
+
return Vectorized<float>(Sleef_hypotf4_u05(values.val[0], b.values.val[0]),
|
459 |
+
Sleef_hypotf4_u05(values.val[1], b.values.val[1]));
|
460 |
+
},
|
461 |
+
{
|
462 |
+
__at_align__ float tmp[size()];
|
463 |
+
__at_align__ float tmp_b[size()];
|
464 |
+
store(tmp);
|
465 |
+
b.store(tmp_b);
|
466 |
+
for (const auto i : c10::irange(size())) {
|
467 |
+
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
468 |
+
}
|
469 |
+
return loadu(tmp);
|
470 |
+
}
|
471 |
+
)
|
472 |
+
}
|
473 |
+
Vectorized<float> i0() const {
|
474 |
+
return map(calc_i0);
|
475 |
+
}
|
476 |
+
Vectorized<float> i0e() const {
|
477 |
+
return map(calc_i0e);
|
478 |
+
}
|
479 |
+
Vectorized<float> digamma() const {
|
480 |
+
return map(calc_digamma);
|
481 |
+
}
|
482 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
483 |
+
__at_align__ float tmp[size()];
|
484 |
+
__at_align__ float tmp_x[size()];
|
485 |
+
store(tmp);
|
486 |
+
x.store(tmp_x);
|
487 |
+
for (const auto i : c10::irange(size())) {
|
488 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
489 |
+
}
|
490 |
+
return loadu(tmp);
|
491 |
+
}
|
492 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
493 |
+
__at_align__ float tmp[size()];
|
494 |
+
__at_align__ float tmp_x[size()];
|
495 |
+
store(tmp);
|
496 |
+
x.store(tmp_x);
|
497 |
+
for (const auto i : c10::irange(size())) {
|
498 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
499 |
+
}
|
500 |
+
return loadu(tmp);
|
501 |
+
}
|
502 |
+
Vectorized<float> log() const {
|
503 |
+
return USE_SLEEF(
|
504 |
+
Vectorized<float>(Sleef_logf4_u10(values.val[0]), Sleef_logf4_u10(values.val[1])),
|
505 |
+
map(std::log)
|
506 |
+
);
|
507 |
+
}
|
508 |
+
Vectorized<float> log10() const {
|
509 |
+
return USE_SLEEF(
|
510 |
+
Vectorized<float>(Sleef_log10f4_u10(values.val[0]), Sleef_log10f4_u10(values.val[1])),
|
511 |
+
map(std::log10)
|
512 |
+
);
|
513 |
+
}
|
514 |
+
Vectorized<float> log1p() const {
|
515 |
+
return USE_SLEEF(
|
516 |
+
Vectorized<float>(Sleef_log1pf4_u10(values.val[0]), Sleef_log1pf4_u10(values.val[1])),
|
517 |
+
map(std::log1p)
|
518 |
+
);
|
519 |
+
}
|
520 |
+
Vectorized<float> log2() const {
|
521 |
+
return USE_SLEEF(
|
522 |
+
Vectorized<float>(Sleef_log2f4_u10(values.val[0]), Sleef_log2f4_u10(values.val[1])),
|
523 |
+
map(std::log2)
|
524 |
+
);
|
525 |
+
}
|
526 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
527 |
+
USE_SLEEF(
|
528 |
+
{
|
529 |
+
return Vectorized<float>(Sleef_nextafterf4(values.val[0], b.values.val[0]),
|
530 |
+
Sleef_nextafterf4(values.val[1], b.values.val[1]));
|
531 |
+
},
|
532 |
+
{
|
533 |
+
__at_align__ float tmp[size()];
|
534 |
+
__at_align__ float tmp_b[size()];
|
535 |
+
store(tmp);
|
536 |
+
b.store(tmp_b);
|
537 |
+
for (const auto i : c10::irange(size())) {
|
538 |
+
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
539 |
+
}
|
540 |
+
return loadu(tmp);
|
541 |
+
}
|
542 |
+
)
|
543 |
+
}
|
544 |
+
Vectorized<float> frac() const;
|
545 |
+
Vectorized<float> sin() const {
|
546 |
+
return USE_SLEEF(
|
547 |
+
Vectorized<float>(Sleef_sinf4_u10(values.val[0]), Sleef_sinf4_u10(values.val[1])),
|
548 |
+
map(std::sin)
|
549 |
+
);
|
550 |
+
}
|
551 |
+
Vectorized<float> sinh() const {
|
552 |
+
return USE_SLEEF(
|
553 |
+
Vectorized<float>(Sleef_sinhf4_u10(values.val[0]), Sleef_sinhf4_u10(values.val[1])),
|
554 |
+
map(std::sinh)
|
555 |
+
);
|
556 |
+
}
|
557 |
+
Vectorized<float> cos() const {
|
558 |
+
return USE_SLEEF(
|
559 |
+
Vectorized<float>(Sleef_cosf4_u10(values.val[0]), Sleef_cosf4_u10(values.val[1])),
|
560 |
+
map(std::cos)
|
561 |
+
);
|
562 |
+
}
|
563 |
+
Vectorized<float> cosh() const {
|
564 |
+
return USE_SLEEF(
|
565 |
+
Vectorized<float>(Sleef_coshf4_u10(values.val[0]), Sleef_coshf4_u10(values.val[1])),
|
566 |
+
map(std::cosh)
|
567 |
+
);
|
568 |
+
}
|
569 |
+
Vectorized<float> ceil() const {
|
570 |
+
return map(at::native::ceil_impl);
|
571 |
+
}
|
572 |
+
Vectorized<float> floor() const {
|
573 |
+
return map(at::native::floor_impl);
|
574 |
+
}
|
575 |
+
Vectorized<float> neg() const {
|
576 |
+
return Vectorized<float>(
|
577 |
+
vnegq_f32(values.val[0]),
|
578 |
+
vnegq_f32(values.val[1]));
|
579 |
+
}
|
580 |
+
Vectorized<float> round() const {
|
581 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
582 |
+
return map(at::native::round_impl);
|
583 |
+
}
|
584 |
+
Vectorized<float> tan() const {
|
585 |
+
return USE_SLEEF(
|
586 |
+
Vectorized<float>(Sleef_tanf4_u10(values.val[0]), Sleef_tanf4_u10(values.val[1])),
|
587 |
+
map(std::tan)
|
588 |
+
);
|
589 |
+
}
|
590 |
+
Vectorized<float> tanh() const {
|
591 |
+
return USE_SLEEF(
|
592 |
+
Vectorized<float>(Sleef_tanhf4_u10(values.val[0]), Sleef_tanhf4_u10(values.val[1])),
|
593 |
+
map(std::tanh)
|
594 |
+
);
|
595 |
+
}
|
596 |
+
Vectorized<float> trunc() const {
|
597 |
+
float32x4_t r0 = vrndq_f32(values.val[0]);
|
598 |
+
float32x4_t r1 = vrndq_f32(values.val[1]);
|
599 |
+
return Vectorized<float>(r0, r1);
|
600 |
+
}
|
601 |
+
Vectorized<float> lgamma() const {
|
602 |
+
return USE_SLEEF(
|
603 |
+
Vectorized<float>(Sleef_lgammaf4_u10(values.val[0]), Sleef_lgammaf4_u10(values.val[1])),
|
604 |
+
map(std::lgamma)
|
605 |
+
);
|
606 |
+
}
|
607 |
+
Vectorized<float> sqrt() const {
|
608 |
+
return Vectorized<float>(
|
609 |
+
vsqrtq_f32(values.val[0]),
|
610 |
+
vsqrtq_f32(values.val[1]));
|
611 |
+
}
|
612 |
+
Vectorized<float> reciprocal() const {
|
613 |
+
auto r0 = vdivq_f32(vdupq_n_f32(1.0f), values.val[0]);
|
614 |
+
auto r1 = vdivq_f32(vdupq_n_f32(1.0f), values.val[1]);
|
615 |
+
return Vectorized<float>(r0, r1);
|
616 |
+
}
|
617 |
+
Vectorized<float> rsqrt() const {
|
618 |
+
return this->sqrt().reciprocal();
|
619 |
+
}
|
620 |
+
Vectorized<float> pow(const Vectorized<float> &exp) const {
|
621 |
+
USE_SLEEF(
|
622 |
+
{
|
623 |
+
return Vectorized<float>(Sleef_powf4_u10(values.val[0], exp.values.val[0]),
|
624 |
+
Sleef_powf4_u10(values.val[1], exp.values.val[1]));
|
625 |
+
},
|
626 |
+
{
|
627 |
+
__at_align__ float tmp[size()];
|
628 |
+
__at_align__ float tmp_exp[size()];
|
629 |
+
store(tmp);
|
630 |
+
exp.store(tmp_exp);
|
631 |
+
for (const auto i : c10::irange(size())) {
|
632 |
+
tmp[i] = std::pow(tmp[i], tmp_exp[i]);
|
633 |
+
}
|
634 |
+
return loadu(tmp);
|
635 |
+
}
|
636 |
+
)
|
637 |
+
}
|
638 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
639 |
+
float32x4_t r0 =
|
640 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[0], other.values.val[0]));
|
641 |
+
float32x4_t r1 =
|
642 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[1], other.values.val[1]));
|
643 |
+
return Vectorized<float>(r0, r1);
|
644 |
+
}
|
645 |
+
|
646 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
647 |
+
float32x4_t r0 = vreinterpretq_f32_u32(
|
648 |
+
vmvnq_u32(vceqq_f32(values.val[0], other.values.val[0])));
|
649 |
+
float32x4_t r1 = vreinterpretq_f32_u32(
|
650 |
+
vmvnq_u32(vceqq_f32(values.val[1], other.values.val[1])));
|
651 |
+
return Vectorized<float>(r0, r1);
|
652 |
+
}
|
653 |
+
|
654 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
655 |
+
float32x4_t r0 =
|
656 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[0], other.values.val[0]));
|
657 |
+
float32x4_t r1 =
|
658 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[1], other.values.val[1]));
|
659 |
+
return Vectorized<float>(r0, r1);
|
660 |
+
}
|
661 |
+
|
662 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
663 |
+
float32x4_t r0 =
|
664 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[0], other.values.val[0]));
|
665 |
+
float32x4_t r1 =
|
666 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[1], other.values.val[1]));
|
667 |
+
return Vectorized<float>(r0, r1);
|
668 |
+
}
|
669 |
+
|
670 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
671 |
+
float32x4_t r0 =
|
672 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[0], other.values.val[0]));
|
673 |
+
float32x4_t r1 =
|
674 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[1], other.values.val[1]));
|
675 |
+
return Vectorized<float>(r0, r1);
|
676 |
+
}
|
677 |
+
|
678 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
679 |
+
float32x4_t r0 =
|
680 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[0], other.values.val[0]));
|
681 |
+
float32x4_t r1 =
|
682 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[1], other.values.val[1]));
|
683 |
+
return Vectorized<float>(r0, r1);
|
684 |
+
}
|
685 |
+
|
686 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
687 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
688 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
689 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
690 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
691 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
692 |
+
};
|
693 |
+
|
694 |
+
template <>
|
695 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
696 |
+
float32x4_t r0 = vaddq_f32(a.get_low(), b.get_low());
|
697 |
+
float32x4_t r1 = vaddq_f32(a.get_high(), b.get_high());
|
698 |
+
return Vectorized<float>(r0, r1);
|
699 |
+
}
|
700 |
+
|
701 |
+
template <>
|
702 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
703 |
+
float32x4_t r0 = vsubq_f32(a.get_low(), b.get_low());
|
704 |
+
float32x4_t r1 = vsubq_f32(a.get_high(), b.get_high());
|
705 |
+
return Vectorized<float>(r0, r1);
|
706 |
+
}
|
707 |
+
|
708 |
+
template <>
|
709 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
710 |
+
float32x4_t r0 = vmulq_f32(a.get_low(), b.get_low());
|
711 |
+
float32x4_t r1 = vmulq_f32(a.get_high(), b.get_high());
|
712 |
+
return Vectorized<float>(r0, r1);
|
713 |
+
}
|
714 |
+
|
715 |
+
template <>
|
716 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
717 |
+
float32x4_t r0 = vdivq_f32(a.get_low(), b.get_low());
|
718 |
+
float32x4_t r1 = vdivq_f32(a.get_high(), b.get_high());
|
719 |
+
return Vectorized<float>(r0, r1);
|
720 |
+
}
|
721 |
+
|
722 |
+
// frac. Implement this here so we can use subtraction
|
723 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
724 |
+
return *this - this->trunc();
|
725 |
+
}
|
726 |
+
|
727 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
728 |
+
// either input is a NaN.
|
729 |
+
template <>
|
730 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
731 |
+
float32x4_t r0 = vmaxq_f32(a.get_low(), b.get_low());
|
732 |
+
float32x4_t r1 = vmaxq_f32(a.get_high(), b.get_high());
|
733 |
+
return Vectorized<float>(r0, r1);
|
734 |
+
}
|
735 |
+
|
736 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
737 |
+
// either input is a NaN.
|
738 |
+
template <>
|
739 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
740 |
+
float32x4_t r0 = vminq_f32(a.get_low(), b.get_low());
|
741 |
+
float32x4_t r1 = vminq_f32(a.get_high(), b.get_high());
|
742 |
+
return Vectorized<float>(r0, r1);
|
743 |
+
}
|
744 |
+
|
745 |
+
template <>
|
746 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
747 |
+
return minimum(max, maximum(min, a));
|
748 |
+
}
|
749 |
+
|
750 |
+
template <>
|
751 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
752 |
+
return minimum(max, a);
|
753 |
+
}
|
754 |
+
|
755 |
+
template <>
|
756 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
757 |
+
return maximum(min, a);
|
758 |
+
}
|
759 |
+
|
760 |
+
template <>
|
761 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
762 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vandq_u32(
|
763 |
+
vreinterpretq_u32_f32(a.get_low()),
|
764 |
+
vreinterpretq_u32_f32(b.get_low())));
|
765 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vandq_u32(
|
766 |
+
vreinterpretq_u32_f32(a.get_high()),
|
767 |
+
vreinterpretq_u32_f32(b.get_high())));
|
768 |
+
return Vectorized<float>(r0, r1);
|
769 |
+
}
|
770 |
+
|
771 |
+
template <>
|
772 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
773 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vorrq_u32(
|
774 |
+
vreinterpretq_u32_f32(a.get_low()),
|
775 |
+
vreinterpretq_u32_f32(b.get_low())));
|
776 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vorrq_u32(
|
777 |
+
vreinterpretq_u32_f32(a.get_high()),
|
778 |
+
vreinterpretq_u32_f32(b.get_high())));
|
779 |
+
return Vectorized<float>(r0, r1);
|
780 |
+
}
|
781 |
+
|
782 |
+
template <>
|
783 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
784 |
+
float32x4_t r0 = vreinterpretq_f32_u32(veorq_u32(
|
785 |
+
vreinterpretq_u32_f32(a.get_low()),
|
786 |
+
vreinterpretq_u32_f32(b.get_low())));
|
787 |
+
float32x4_t r1 = vreinterpretq_f32_u32(veorq_u32(
|
788 |
+
vreinterpretq_u32_f32(a.get_high()),
|
789 |
+
vreinterpretq_u32_f32(b.get_high())));
|
790 |
+
return Vectorized<float>(r0, r1);
|
791 |
+
}
|
792 |
+
|
793 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
794 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
795 |
+
}
|
796 |
+
|
797 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
798 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
799 |
+
}
|
800 |
+
|
801 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
802 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
803 |
+
}
|
804 |
+
|
805 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
806 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
807 |
+
}
|
808 |
+
|
809 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
810 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
811 |
+
}
|
812 |
+
|
813 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
814 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
815 |
+
}
|
816 |
+
|
817 |
+
template <>
|
818 |
+
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
819 |
+
int64_t i;
|
820 |
+
#pragma unroll
|
821 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
822 |
+
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
823 |
+
vst1q_s32(dst + i + 4, vcvtq_s32_f32(vld1q_f32(src + i + 4)));
|
824 |
+
}
|
825 |
+
#pragma unroll
|
826 |
+
for (; i < n; i++) {
|
827 |
+
dst[i] = static_cast<int32_t>(src[i]);
|
828 |
+
}
|
829 |
+
}
|
830 |
+
|
831 |
+
template <>
|
832 |
+
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
833 |
+
int64_t i;
|
834 |
+
#pragma unroll
|
835 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
836 |
+
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
837 |
+
vst1q_f32(dst + i + 4, vcvtq_f32_s32(vld1q_s32(src + i + 4)));
|
838 |
+
}
|
839 |
+
#pragma unroll
|
840 |
+
for (; i < n; i++) {
|
841 |
+
dst[i] = static_cast<float>(src[i]);
|
842 |
+
}
|
843 |
+
}
|
844 |
+
|
845 |
+
template <>
|
846 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
847 |
+
float32x4_t r0 = vfmaq_f32(c.get_low(), a.get_low(), b.get_low());
|
848 |
+
float32x4_t r1 = vfmaq_f32(c.get_high(), a.get_high(), b.get_high());
|
849 |
+
return Vectorized<float>(r0, r1);
|
850 |
+
}
|
851 |
+
|
852 |
+
template <>
|
853 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
854 |
+
float32x4_t r0 = vfmsq_f32(c.get_low(), a.get_low(), b.get_low());
|
855 |
+
float32x4_t r1 = vfmsq_f32(c.get_high(), a.get_high(), b.get_high());
|
856 |
+
return Vectorized<float>(r0, r1);
|
857 |
+
}
|
858 |
+
|
859 |
+
inline Vectorized<float> Vectorized<float>::erf() const{
|
860 |
+
// constants
|
861 |
+
const Vectorized<float> neg_zero_vec(-0.f);
|
862 |
+
const Vectorized<float> one_vec(1.0f);
|
863 |
+
const Vectorized<float> p(0.3275911f);
|
864 |
+
const Vectorized<float> p1(0.254829592f);
|
865 |
+
const Vectorized<float> p2(-0.284496736f);
|
866 |
+
const Vectorized<float> p3(1.421413741f);
|
867 |
+
const Vectorized<float> p4(-1.453152027f);
|
868 |
+
const Vectorized<float> p5(1.061405429f);
|
869 |
+
// sign(x)
|
870 |
+
auto sign_mask = neg_zero_vec & *this;
|
871 |
+
auto abs_vec = this->abs();
|
872 |
+
// t = 1 / (p * abs(x) + 1)
|
873 |
+
auto tmp0 = fmadd(p, abs_vec, one_vec);
|
874 |
+
auto t = one_vec / tmp0;
|
875 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
876 |
+
auto tmp1 = fmadd(p5, t, p4);
|
877 |
+
auto tmp2 = fmadd(tmp1, t, p3);
|
878 |
+
auto tmp3 = fmadd(tmp2, t, p2);
|
879 |
+
auto r = fmadd(tmp3, t, p1);
|
880 |
+
// - exp(- x * x)
|
881 |
+
auto pow_2 = (*this) * (*this);
|
882 |
+
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
|
883 |
+
auto tmp4 = neg_pow_2.map(std::exp); // This can be swapped for a faster implementation of exp.
|
884 |
+
auto tmp5 = tmp4 ^ neg_zero_vec;
|
885 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
886 |
+
auto tmp6 = t * tmp5;
|
887 |
+
auto tmp7 = fmadd(tmp6, r, one_vec);
|
888 |
+
return tmp7 ^ sign_mask;
|
889 |
+
}
|
890 |
+
#endif /* defined(aarch64) */
|
891 |
+
|
892 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h
ADDED
@@ -0,0 +1,1586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <c10/util/irange.h>
|
10 |
+
|
11 |
+
namespace at::vec {
|
12 |
+
inline namespace CPU_CAPABILITY {
|
13 |
+
|
14 |
+
#ifdef CPU_CAPABILITY_AVX2
|
15 |
+
|
16 |
+
struct Vectorizedi {
|
17 |
+
protected:
|
18 |
+
__m256i values;
|
19 |
+
|
20 |
+
static inline __m256i invert(const __m256i& v) {
|
21 |
+
const auto ones = _mm256_set1_epi64x(-1);
|
22 |
+
return _mm256_xor_si256(ones, v);
|
23 |
+
}
|
24 |
+
public:
|
25 |
+
Vectorizedi() {}
|
26 |
+
Vectorizedi(__m256i v) : values(v) {}
|
27 |
+
operator __m256i() const {
|
28 |
+
return values;
|
29 |
+
}
|
30 |
+
};
|
31 |
+
|
32 |
+
#else
|
33 |
+
|
34 |
+
struct Vectorizedi {}; // dummy definition to make Vectorizedi always defined
|
35 |
+
|
36 |
+
#endif // CPU_CAPABILITY_AVX2
|
37 |
+
|
38 |
+
#ifdef CPU_CAPABILITY_AVX2
|
39 |
+
|
40 |
+
template <>
|
41 |
+
class Vectorized<int64_t> : public Vectorizedi {
|
42 |
+
private:
|
43 |
+
static const Vectorized<int64_t> ones;
|
44 |
+
public:
|
45 |
+
using value_type = int64_t;
|
46 |
+
using size_type = int;
|
47 |
+
static constexpr size_type size() {
|
48 |
+
return 4;
|
49 |
+
}
|
50 |
+
using Vectorizedi::Vectorizedi;
|
51 |
+
Vectorized() {}
|
52 |
+
Vectorized(int64_t v) { values = _mm256_set1_epi64x(v); }
|
53 |
+
Vectorized(int64_t val1, int64_t val2, int64_t val3, int64_t val4) {
|
54 |
+
values = _mm256_setr_epi64x(val1, val2, val3, val4);
|
55 |
+
}
|
56 |
+
template <int64_t mask>
|
57 |
+
static Vectorized<int64_t> blend(Vectorized<int64_t> a, Vectorized<int64_t> b) {
|
58 |
+
__at_align__ int64_t tmp_values[size()];
|
59 |
+
a.store(tmp_values);
|
60 |
+
if (mask & 0x01)
|
61 |
+
tmp_values[0] = _mm256_extract_epi64(b.values, 0);
|
62 |
+
if (mask & 0x02)
|
63 |
+
tmp_values[1] = _mm256_extract_epi64(b.values, 1);
|
64 |
+
if (mask & 0x04)
|
65 |
+
tmp_values[2] = _mm256_extract_epi64(b.values, 2);
|
66 |
+
if (mask & 0x08)
|
67 |
+
tmp_values[3] = _mm256_extract_epi64(b.values, 3);
|
68 |
+
return loadu(tmp_values);
|
69 |
+
}
|
70 |
+
static Vectorized<int64_t> blendv(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b,
|
71 |
+
const Vectorized<int64_t>& mask) {
|
72 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
73 |
+
}
|
74 |
+
template <typename step_t>
|
75 |
+
static Vectorized<int64_t> arange(int64_t base = 0, step_t step = static_cast<step_t>(1)) {
|
76 |
+
return Vectorized<int64_t>(base, base + step, base + 2 * step, base + 3 * step);
|
77 |
+
}
|
78 |
+
static Vectorized<int64_t>
|
79 |
+
set(Vectorized<int64_t> a, Vectorized<int64_t> b, int64_t count = size()) {
|
80 |
+
switch (count) {
|
81 |
+
case 0:
|
82 |
+
return a;
|
83 |
+
case 1:
|
84 |
+
return blend<1>(a, b);
|
85 |
+
case 2:
|
86 |
+
return blend<3>(a, b);
|
87 |
+
case 3:
|
88 |
+
return blend<7>(a, b);
|
89 |
+
}
|
90 |
+
return b;
|
91 |
+
}
|
92 |
+
static Vectorized<int64_t> loadu(const void* ptr) {
|
93 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
94 |
+
}
|
95 |
+
static Vectorized<int64_t> loadu(const void* ptr, int64_t count) {
|
96 |
+
__at_align__ int64_t tmp_values[size()];
|
97 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
98 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
99 |
+
// instructions while a loop would be compiled to one instruction.
|
100 |
+
for (const auto i : c10::irange(size())) {
|
101 |
+
tmp_values[i] = 0;
|
102 |
+
}
|
103 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int64_t));
|
104 |
+
return loadu(tmp_values);
|
105 |
+
}
|
106 |
+
void store(void* ptr, int count = size()) const {
|
107 |
+
if (count == size()) {
|
108 |
+
// ptr need not to be aligned here. See
|
109 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
110 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
111 |
+
} else if (count > 0) {
|
112 |
+
__at_align__ int64_t tmp_values[size()];
|
113 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
114 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int64_t));
|
115 |
+
}
|
116 |
+
}
|
117 |
+
const int64_t& operator[](int idx) const = delete;
|
118 |
+
int64_t& operator[](int idx) = delete;
|
119 |
+
Vectorized<int64_t> abs() const {
|
120 |
+
auto zero = _mm256_set1_epi64x(0);
|
121 |
+
auto is_larger = _mm256_cmpgt_epi64(zero, values);
|
122 |
+
auto inverse = _mm256_xor_si256(values, is_larger);
|
123 |
+
return _mm256_sub_epi64(inverse, is_larger);
|
124 |
+
}
|
125 |
+
Vectorized<int64_t> real() const {
|
126 |
+
return *this;
|
127 |
+
}
|
128 |
+
Vectorized<int64_t> imag() const {
|
129 |
+
return _mm256_set1_epi64x(0);
|
130 |
+
}
|
131 |
+
Vectorized<int64_t> conj() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<int64_t> neg() const;
|
135 |
+
Vectorized<int64_t> operator==(const Vectorized<int64_t>& other) const {
|
136 |
+
return _mm256_cmpeq_epi64(values, other.values);
|
137 |
+
}
|
138 |
+
Vectorized<int64_t> operator!=(const Vectorized<int64_t>& other) const {
|
139 |
+
return invert(_mm256_cmpeq_epi64(values, other.values));
|
140 |
+
}
|
141 |
+
Vectorized<int64_t> operator<(const Vectorized<int64_t>& other) const {
|
142 |
+
return _mm256_cmpgt_epi64(other.values, values);
|
143 |
+
}
|
144 |
+
Vectorized<int64_t> operator<=(const Vectorized<int64_t>& other) const {
|
145 |
+
return invert(_mm256_cmpgt_epi64(values, other.values));
|
146 |
+
}
|
147 |
+
Vectorized<int64_t> operator>(const Vectorized<int64_t>& other) const {
|
148 |
+
return _mm256_cmpgt_epi64(values, other.values);
|
149 |
+
}
|
150 |
+
Vectorized<int64_t> operator>=(const Vectorized<int64_t>& other) const {
|
151 |
+
return invert(_mm256_cmpgt_epi64(other.values, values));
|
152 |
+
}
|
153 |
+
|
154 |
+
Vectorized<int64_t> eq(const Vectorized<int64_t>& other) const;
|
155 |
+
Vectorized<int64_t> ne(const Vectorized<int64_t>& other) const;
|
156 |
+
Vectorized<int64_t> gt(const Vectorized<int64_t>& other) const;
|
157 |
+
Vectorized<int64_t> ge(const Vectorized<int64_t>& other) const;
|
158 |
+
Vectorized<int64_t> lt(const Vectorized<int64_t>& other) const;
|
159 |
+
Vectorized<int64_t> le(const Vectorized<int64_t>& other) const;
|
160 |
+
};
|
161 |
+
|
162 |
+
template <>
|
163 |
+
class Vectorized<int32_t> : public Vectorizedi {
|
164 |
+
private:
|
165 |
+
static const Vectorized<int32_t> ones;
|
166 |
+
public:
|
167 |
+
using value_type = int32_t;
|
168 |
+
static constexpr int size() {
|
169 |
+
return 8;
|
170 |
+
}
|
171 |
+
using Vectorizedi::Vectorizedi;
|
172 |
+
Vectorized() {}
|
173 |
+
Vectorized(int32_t v) { values = _mm256_set1_epi32(v); }
|
174 |
+
Vectorized(int32_t val1, int32_t val2, int32_t val3, int32_t val4,
|
175 |
+
int32_t val5, int32_t val6, int32_t val7, int32_t val8) {
|
176 |
+
values = _mm256_setr_epi32(val1, val2, val3, val4, val5, val6, val7, val8);
|
177 |
+
}
|
178 |
+
template <int64_t mask>
|
179 |
+
static Vectorized<int32_t> blend(Vectorized<int32_t> a, Vectorized<int32_t> b) {
|
180 |
+
return _mm256_blend_epi32(a, b, mask);
|
181 |
+
}
|
182 |
+
static Vectorized<int32_t> blendv(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b,
|
183 |
+
const Vectorized<int32_t>& mask) {
|
184 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
185 |
+
}
|
186 |
+
template <typename step_t>
|
187 |
+
static Vectorized<int32_t> arange(int32_t base = 0, step_t step = static_cast<step_t>(1)) {
|
188 |
+
return Vectorized<int32_t>(
|
189 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
190 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
191 |
+
}
|
192 |
+
static Vectorized<int32_t>
|
193 |
+
set(Vectorized<int32_t> a, Vectorized<int32_t> b, int32_t count = size()) {
|
194 |
+
switch (count) {
|
195 |
+
case 0:
|
196 |
+
return a;
|
197 |
+
case 1:
|
198 |
+
return blend<1>(a, b);
|
199 |
+
case 2:
|
200 |
+
return blend<3>(a, b);
|
201 |
+
case 3:
|
202 |
+
return blend<7>(a, b);
|
203 |
+
case 4:
|
204 |
+
return blend<15>(a, b);
|
205 |
+
case 5:
|
206 |
+
return blend<31>(a, b);
|
207 |
+
case 6:
|
208 |
+
return blend<63>(a, b);
|
209 |
+
case 7:
|
210 |
+
return blend<127>(a, b);
|
211 |
+
}
|
212 |
+
return b;
|
213 |
+
}
|
214 |
+
static Vectorized<int32_t> loadu(const void* ptr) {
|
215 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
216 |
+
}
|
217 |
+
static Vectorized<int32_t> loadu(const void* ptr, int32_t count) {
|
218 |
+
__at_align__ int32_t tmp_values[size()];
|
219 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
220 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
221 |
+
// instructions while a loop would be compiled to one instruction.
|
222 |
+
for (const auto i : c10::irange(size())) {
|
223 |
+
tmp_values[i] = 0;
|
224 |
+
}
|
225 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int32_t));
|
226 |
+
return loadu(tmp_values);
|
227 |
+
}
|
228 |
+
void store(void* ptr, int count = size()) const {
|
229 |
+
if (count == size()) {
|
230 |
+
// ptr need not to be aligned here. See
|
231 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
232 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
233 |
+
} else if (count > 0) {
|
234 |
+
__at_align__ int32_t tmp_values[size()];
|
235 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
236 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int32_t));
|
237 |
+
}
|
238 |
+
}
|
239 |
+
const int32_t& operator[](int idx) const = delete;
|
240 |
+
int32_t& operator[](int idx) = delete;
|
241 |
+
Vectorized<int32_t> abs() const {
|
242 |
+
return _mm256_abs_epi32(values);
|
243 |
+
}
|
244 |
+
Vectorized<int32_t> real() const {
|
245 |
+
return *this;
|
246 |
+
}
|
247 |
+
Vectorized<int32_t> imag() const {
|
248 |
+
return _mm256_set1_epi32(0);
|
249 |
+
}
|
250 |
+
Vectorized<int32_t> conj() const {
|
251 |
+
return *this;
|
252 |
+
}
|
253 |
+
Vectorized<int32_t> neg() const;
|
254 |
+
Vectorized<int32_t> operator==(const Vectorized<int32_t>& other) const {
|
255 |
+
return _mm256_cmpeq_epi32(values, other.values);
|
256 |
+
}
|
257 |
+
Vectorized<int32_t> operator!=(const Vectorized<int32_t>& other) const {
|
258 |
+
return invert(_mm256_cmpeq_epi32(values, other.values));
|
259 |
+
}
|
260 |
+
Vectorized<int32_t> operator<(const Vectorized<int32_t>& other) const {
|
261 |
+
return _mm256_cmpgt_epi32(other.values, values);
|
262 |
+
}
|
263 |
+
Vectorized<int32_t> operator<=(const Vectorized<int32_t>& other) const {
|
264 |
+
return invert(_mm256_cmpgt_epi32(values, other.values));
|
265 |
+
}
|
266 |
+
Vectorized<int32_t> operator>(const Vectorized<int32_t>& other) const {
|
267 |
+
return _mm256_cmpgt_epi32(values, other.values);
|
268 |
+
}
|
269 |
+
Vectorized<int32_t> operator>=(const Vectorized<int32_t>& other) const {
|
270 |
+
return invert(_mm256_cmpgt_epi32(other.values, values));
|
271 |
+
}
|
272 |
+
Vectorized<int32_t> eq(const Vectorized<int32_t>& other) const;
|
273 |
+
Vectorized<int32_t> ne(const Vectorized<int32_t>& other) const;
|
274 |
+
Vectorized<int32_t> gt(const Vectorized<int32_t>& other) const;
|
275 |
+
Vectorized<int32_t> ge(const Vectorized<int32_t>& other) const;
|
276 |
+
Vectorized<int32_t> lt(const Vectorized<int32_t>& other) const;
|
277 |
+
Vectorized<int32_t> le(const Vectorized<int32_t>& other) const;
|
278 |
+
};
|
279 |
+
|
280 |
+
template <>
|
281 |
+
inline void convert(const int32_t *src, float *dst, int64_t n) {
|
282 |
+
int64_t i;
|
283 |
+
// int32_t and float have same size
|
284 |
+
#ifndef _MSC_VER
|
285 |
+
# pragma unroll
|
286 |
+
#endif
|
287 |
+
for (i = 0; i <= (n - Vectorized<int32_t>::size()); i += Vectorized<int32_t>::size()) {
|
288 |
+
auto input_vec = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i));
|
289 |
+
auto output_vec = _mm256_cvtepi32_ps(input_vec);
|
290 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(dst + i), output_vec);
|
291 |
+
}
|
292 |
+
#ifndef _MSC_VER
|
293 |
+
# pragma unroll
|
294 |
+
#endif
|
295 |
+
for (; i < n; i++) {
|
296 |
+
dst[i] = static_cast<float>(src[i]);
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
template <>
|
301 |
+
inline void convert(const int32_t *src, double *dst, int64_t n) {
|
302 |
+
int64_t i;
|
303 |
+
// int32_t has half the size of double
|
304 |
+
#ifndef _MSC_VER
|
305 |
+
# pragma unroll
|
306 |
+
#endif
|
307 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
308 |
+
auto input_128_vec = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i));
|
309 |
+
auto output_vec = _mm256_cvtepi32_pd(input_128_vec);
|
310 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(dst + i), output_vec);
|
311 |
+
}
|
312 |
+
#ifndef _MSC_VER
|
313 |
+
# pragma unroll
|
314 |
+
#endif
|
315 |
+
for (; i < n; i++) {
|
316 |
+
dst[i] = static_cast<double>(src[i]);
|
317 |
+
}
|
318 |
+
}
|
319 |
+
|
320 |
+
template <>
|
321 |
+
class Vectorized<int16_t> : public Vectorizedi {
|
322 |
+
private:
|
323 |
+
static const Vectorized<int16_t> ones;
|
324 |
+
public:
|
325 |
+
using value_type = int16_t;
|
326 |
+
static constexpr int size() {
|
327 |
+
return 16;
|
328 |
+
}
|
329 |
+
using Vectorizedi::Vectorizedi;
|
330 |
+
Vectorized() {}
|
331 |
+
Vectorized(int16_t v) { values = _mm256_set1_epi16(v); }
|
332 |
+
Vectorized(int16_t val1, int16_t val2, int16_t val3, int16_t val4,
|
333 |
+
int16_t val5, int16_t val6, int16_t val7, int16_t val8,
|
334 |
+
int16_t val9, int16_t val10, int16_t val11, int16_t val12,
|
335 |
+
int16_t val13, int16_t val14, int16_t val15, int16_t val16) {
|
336 |
+
values = _mm256_setr_epi16(val1, val2, val3, val4, val5, val6, val7, val8,
|
337 |
+
val9, val10, val11, val12, val13, val14, val15, val16);
|
338 |
+
}
|
339 |
+
template <int64_t mask>
|
340 |
+
static Vectorized<int16_t> blend(Vectorized<int16_t> a, Vectorized<int16_t> b) {
|
341 |
+
__at_align__ int16_t tmp_values[size()];
|
342 |
+
a.store(tmp_values);
|
343 |
+
if (mask & 0x01)
|
344 |
+
tmp_values[0] = _mm256_extract_epi16(b.values, 0);
|
345 |
+
if (mask & 0x02)
|
346 |
+
tmp_values[1] = _mm256_extract_epi16(b.values, 1);
|
347 |
+
if (mask & 0x04)
|
348 |
+
tmp_values[2] = _mm256_extract_epi16(b.values, 2);
|
349 |
+
if (mask & 0x08)
|
350 |
+
tmp_values[3] = _mm256_extract_epi16(b.values, 3);
|
351 |
+
if (mask & 0x10)
|
352 |
+
tmp_values[4] = _mm256_extract_epi16(b.values, 4);
|
353 |
+
if (mask & 0x20)
|
354 |
+
tmp_values[5] = _mm256_extract_epi16(b.values, 5);
|
355 |
+
if (mask & 0x40)
|
356 |
+
tmp_values[6] = _mm256_extract_epi16(b.values, 6);
|
357 |
+
if (mask & 0x80)
|
358 |
+
tmp_values[7] = _mm256_extract_epi16(b.values, 7);
|
359 |
+
if (mask & 0x100)
|
360 |
+
tmp_values[8] = _mm256_extract_epi16(b.values, 8);
|
361 |
+
if (mask & 0x200)
|
362 |
+
tmp_values[9] = _mm256_extract_epi16(b.values, 9);
|
363 |
+
if (mask & 0x400)
|
364 |
+
tmp_values[10] = _mm256_extract_epi16(b.values, 10);
|
365 |
+
if (mask & 0x800)
|
366 |
+
tmp_values[11] = _mm256_extract_epi16(b.values, 11);
|
367 |
+
if (mask & 0x1000)
|
368 |
+
tmp_values[12] = _mm256_extract_epi16(b.values, 12);
|
369 |
+
if (mask & 0x2000)
|
370 |
+
tmp_values[13] = _mm256_extract_epi16(b.values, 13);
|
371 |
+
if (mask & 0x4000)
|
372 |
+
tmp_values[14] = _mm256_extract_epi16(b.values, 14);
|
373 |
+
if (mask & 0x8000)
|
374 |
+
tmp_values[15] = _mm256_extract_epi16(b.values, 15);
|
375 |
+
return loadu(tmp_values);
|
376 |
+
}
|
377 |
+
static Vectorized<int16_t> blendv(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b,
|
378 |
+
const Vectorized<int16_t>& mask) {
|
379 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
380 |
+
}
|
381 |
+
template <typename step_t>
|
382 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
383 |
+
return Vectorized<int16_t>(
|
384 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
385 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
386 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
387 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
388 |
+
}
|
389 |
+
static Vectorized<int16_t>
|
390 |
+
set(Vectorized<int16_t> a, Vectorized<int16_t> b, int16_t count = size()) {
|
391 |
+
switch (count) {
|
392 |
+
case 0:
|
393 |
+
return a;
|
394 |
+
case 1:
|
395 |
+
return blend<1>(a, b);
|
396 |
+
case 2:
|
397 |
+
return blend<3>(a, b);
|
398 |
+
case 3:
|
399 |
+
return blend<7>(a, b);
|
400 |
+
case 4:
|
401 |
+
return blend<15>(a, b);
|
402 |
+
case 5:
|
403 |
+
return blend<31>(a, b);
|
404 |
+
case 6:
|
405 |
+
return blend<63>(a, b);
|
406 |
+
case 7:
|
407 |
+
return blend<127>(a, b);
|
408 |
+
case 8:
|
409 |
+
return blend<255>(a, b);
|
410 |
+
case 9:
|
411 |
+
return blend<511>(a, b);
|
412 |
+
case 10:
|
413 |
+
return blend<1023>(a, b);
|
414 |
+
case 11:
|
415 |
+
return blend<2047>(a, b);
|
416 |
+
case 12:
|
417 |
+
return blend<4095>(a, b);
|
418 |
+
case 13:
|
419 |
+
return blend<8191>(a, b);
|
420 |
+
case 14:
|
421 |
+
return blend<16383>(a, b);
|
422 |
+
case 15:
|
423 |
+
return blend<32767>(a, b);
|
424 |
+
}
|
425 |
+
return b;
|
426 |
+
}
|
427 |
+
static Vectorized<int16_t> loadu(const void* ptr) {
|
428 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
429 |
+
}
|
430 |
+
static Vectorized<int16_t> loadu(const void* ptr, int16_t count) {
|
431 |
+
__at_align__ int16_t tmp_values[size()];
|
432 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
433 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
434 |
+
// instructions while a loop would be compiled to one instruction.
|
435 |
+
for (const auto i : c10::irange(size())) {
|
436 |
+
tmp_values[i] = 0;
|
437 |
+
}
|
438 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int16_t));
|
439 |
+
return loadu(tmp_values);
|
440 |
+
}
|
441 |
+
void store(void* ptr, int count = size()) const {
|
442 |
+
if (count == size()) {
|
443 |
+
// ptr need not to be aligned here. See
|
444 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
445 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
446 |
+
} else if (count > 0) {
|
447 |
+
__at_align__ int16_t tmp_values[size()];
|
448 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
449 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int16_t));
|
450 |
+
}
|
451 |
+
}
|
452 |
+
const int16_t& operator[](int idx) const = delete;
|
453 |
+
int16_t& operator[](int idx) = delete;
|
454 |
+
Vectorized<int16_t> abs() const {
|
455 |
+
return _mm256_abs_epi16(values);
|
456 |
+
}
|
457 |
+
Vectorized<int16_t> real() const {
|
458 |
+
return *this;
|
459 |
+
}
|
460 |
+
Vectorized<int16_t> imag() const {
|
461 |
+
return _mm256_set1_epi16(0);
|
462 |
+
}
|
463 |
+
Vectorized<int16_t> conj() const {
|
464 |
+
return *this;
|
465 |
+
}
|
466 |
+
Vectorized<int16_t> neg() const;
|
467 |
+
Vectorized<int16_t> operator==(const Vectorized<int16_t>& other) const {
|
468 |
+
return _mm256_cmpeq_epi16(values, other.values);
|
469 |
+
}
|
470 |
+
Vectorized<int16_t> operator!=(const Vectorized<int16_t>& other) const {
|
471 |
+
return invert(_mm256_cmpeq_epi16(values, other.values));
|
472 |
+
}
|
473 |
+
Vectorized<int16_t> operator<(const Vectorized<int16_t>& other) const {
|
474 |
+
return _mm256_cmpgt_epi16(other.values, values);
|
475 |
+
}
|
476 |
+
Vectorized<int16_t> operator<=(const Vectorized<int16_t>& other) const {
|
477 |
+
return invert(_mm256_cmpgt_epi16(values, other.values));
|
478 |
+
}
|
479 |
+
Vectorized<int16_t> operator>(const Vectorized<int16_t>& other) const {
|
480 |
+
return _mm256_cmpgt_epi16(values, other.values);
|
481 |
+
}
|
482 |
+
Vectorized<int16_t> operator>=(const Vectorized<int16_t>& other) const {
|
483 |
+
return invert(_mm256_cmpgt_epi16(other.values, values));
|
484 |
+
}
|
485 |
+
|
486 |
+
Vectorized<int16_t> eq(const Vectorized<int16_t>& other) const;
|
487 |
+
Vectorized<int16_t> ne(const Vectorized<int16_t>& other) const;
|
488 |
+
Vectorized<int16_t> gt(const Vectorized<int16_t>& other) const;
|
489 |
+
Vectorized<int16_t> ge(const Vectorized<int16_t>& other) const;
|
490 |
+
Vectorized<int16_t> lt(const Vectorized<int16_t>& other) const;
|
491 |
+
Vectorized<int16_t> le(const Vectorized<int16_t>& other) const;
|
492 |
+
};
|
493 |
+
|
494 |
+
template <typename T>
|
495 |
+
class Vectorized8 : public Vectorizedi {
|
496 |
+
static_assert(
|
497 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
498 |
+
"Only int8_t/uint8_t are supported");
|
499 |
+
protected:
|
500 |
+
static const Vectorized<T> ones;
|
501 |
+
public:
|
502 |
+
using value_type = T;
|
503 |
+
static constexpr int size() {
|
504 |
+
return 32;
|
505 |
+
}
|
506 |
+
using Vectorizedi::Vectorizedi;
|
507 |
+
Vectorized8() {}
|
508 |
+
Vectorized8(T v) { values = _mm256_set1_epi8(v); }
|
509 |
+
Vectorized8(T val1, T val2, T val3, T val4,
|
510 |
+
T val5, T val6, T val7, T val8,
|
511 |
+
T val9, T val10, T val11, T val12,
|
512 |
+
T val13, T val14, T val15, T val16,
|
513 |
+
T val17, T val18, T val19, T val20,
|
514 |
+
T val21, T val22, T val23, T val24,
|
515 |
+
T val25, T val26, T val27, T val28,
|
516 |
+
T val29, T val30, T val31, T val32) {
|
517 |
+
values = _mm256_setr_epi8(val1, val2, val3, val4, val5, val6, val7, val8,
|
518 |
+
val9, val10, val11, val12, val13, val14, val15, val16,
|
519 |
+
val17, val18, val19, val20, val21, val22, val23, val24,
|
520 |
+
val25, val26, val27, val28, val29, val30, val31, val32);
|
521 |
+
}
|
522 |
+
template <int64_t mask>
|
523 |
+
static Vectorized<T> blend(Vectorized<T> a, Vectorized<T> b) {
|
524 |
+
__at_align__ T tmp_values[size()];
|
525 |
+
a.store(tmp_values);
|
526 |
+
if (mask & 0x01)
|
527 |
+
tmp_values[0] = _mm256_extract_epi8(b.values, 0);
|
528 |
+
if (mask & 0x02)
|
529 |
+
tmp_values[1] = _mm256_extract_epi8(b.values, 1);
|
530 |
+
if (mask & 0x04)
|
531 |
+
tmp_values[2] = _mm256_extract_epi8(b.values, 2);
|
532 |
+
if (mask & 0x08)
|
533 |
+
tmp_values[3] = _mm256_extract_epi8(b.values, 3);
|
534 |
+
if (mask & 0x10)
|
535 |
+
tmp_values[4] = _mm256_extract_epi8(b.values, 4);
|
536 |
+
if (mask & 0x20)
|
537 |
+
tmp_values[5] = _mm256_extract_epi8(b.values, 5);
|
538 |
+
if (mask & 0x40)
|
539 |
+
tmp_values[6] = _mm256_extract_epi8(b.values, 6);
|
540 |
+
if (mask & 0x80)
|
541 |
+
tmp_values[7] = _mm256_extract_epi8(b.values, 7);
|
542 |
+
if (mask & 0x100)
|
543 |
+
tmp_values[8] = _mm256_extract_epi8(b.values, 8);
|
544 |
+
if (mask & 0x200)
|
545 |
+
tmp_values[9] = _mm256_extract_epi8(b.values, 9);
|
546 |
+
if (mask & 0x400)
|
547 |
+
tmp_values[10] = _mm256_extract_epi8(b.values, 10);
|
548 |
+
if (mask & 0x800)
|
549 |
+
tmp_values[11] = _mm256_extract_epi8(b.values, 11);
|
550 |
+
if (mask & 0x1000)
|
551 |
+
tmp_values[12] = _mm256_extract_epi8(b.values, 12);
|
552 |
+
if (mask & 0x2000)
|
553 |
+
tmp_values[13] = _mm256_extract_epi8(b.values, 13);
|
554 |
+
if (mask & 0x4000)
|
555 |
+
tmp_values[14] = _mm256_extract_epi8(b.values, 14);
|
556 |
+
if (mask & 0x8000)
|
557 |
+
tmp_values[15] = _mm256_extract_epi8(b.values, 15);
|
558 |
+
if (mask & 0x010000)
|
559 |
+
tmp_values[16] = _mm256_extract_epi8(b.values, 16);
|
560 |
+
if (mask & 0x020000)
|
561 |
+
tmp_values[17] = _mm256_extract_epi8(b.values, 17);
|
562 |
+
if (mask & 0x040000)
|
563 |
+
tmp_values[18] = _mm256_extract_epi8(b.values, 18);
|
564 |
+
if (mask & 0x080000)
|
565 |
+
tmp_values[19] = _mm256_extract_epi8(b.values, 19);
|
566 |
+
if (mask & 0x100000)
|
567 |
+
tmp_values[20] = _mm256_extract_epi8(b.values, 20);
|
568 |
+
if (mask & 0x200000)
|
569 |
+
tmp_values[21] = _mm256_extract_epi8(b.values, 21);
|
570 |
+
if (mask & 0x400000)
|
571 |
+
tmp_values[22] = _mm256_extract_epi8(b.values, 22);
|
572 |
+
if (mask & 0x800000)
|
573 |
+
tmp_values[23] = _mm256_extract_epi8(b.values, 23);
|
574 |
+
if (mask & 0x1000000)
|
575 |
+
tmp_values[24] = _mm256_extract_epi8(b.values, 24);
|
576 |
+
if (mask & 0x2000000)
|
577 |
+
tmp_values[25] = _mm256_extract_epi8(b.values, 25);
|
578 |
+
if (mask & 0x4000000)
|
579 |
+
tmp_values[26] = _mm256_extract_epi8(b.values, 26);
|
580 |
+
if (mask & 0x8000000)
|
581 |
+
tmp_values[27] = _mm256_extract_epi8(b.values, 27);
|
582 |
+
if (mask & 0x10000000)
|
583 |
+
tmp_values[28] = _mm256_extract_epi8(b.values, 28);
|
584 |
+
if (mask & 0x20000000)
|
585 |
+
tmp_values[29] = _mm256_extract_epi8(b.values, 29);
|
586 |
+
if (mask & 0x40000000)
|
587 |
+
tmp_values[30] = _mm256_extract_epi8(b.values, 30);
|
588 |
+
if (mask & 0x80000000)
|
589 |
+
tmp_values[31] = _mm256_extract_epi8(b.values, 31);
|
590 |
+
return loadu(tmp_values);
|
591 |
+
}
|
592 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
593 |
+
const Vectorized<T>& mask) {
|
594 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
595 |
+
}
|
596 |
+
template <typename step_t>
|
597 |
+
static Vectorized<T> arange(T base = 0, step_t step = static_cast<step_t>(1)) {
|
598 |
+
return Vectorized<T>(
|
599 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
600 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
601 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
602 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
603 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
604 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
605 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
606 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step);
|
607 |
+
}
|
608 |
+
static Vectorized<T>
|
609 |
+
set(Vectorized<T> a, Vectorized<T> b, T count = size()) {
|
610 |
+
switch (count) {
|
611 |
+
case 0:
|
612 |
+
return a;
|
613 |
+
case 1:
|
614 |
+
return blend<0x1>(a, b);
|
615 |
+
case 2:
|
616 |
+
return blend<0x3>(a, b);
|
617 |
+
case 3:
|
618 |
+
return blend<0x7>(a, b);
|
619 |
+
case 4:
|
620 |
+
return blend<0xF>(a, b);
|
621 |
+
case 5:
|
622 |
+
return blend<0x1F>(a, b);
|
623 |
+
case 6:
|
624 |
+
return blend<0x3F>(a, b);
|
625 |
+
case 7:
|
626 |
+
return blend<0x7F>(a, b);
|
627 |
+
case 8:
|
628 |
+
return blend<0xFF>(a, b);
|
629 |
+
case 9:
|
630 |
+
return blend<0x1FF>(a, b);
|
631 |
+
case 10:
|
632 |
+
return blend<0x3FF>(a, b);
|
633 |
+
case 11:
|
634 |
+
return blend<0x7FF>(a, b);
|
635 |
+
case 12:
|
636 |
+
return blend<0xFFF>(a, b);
|
637 |
+
case 13:
|
638 |
+
return blend<0x1FFF>(a, b);
|
639 |
+
case 14:
|
640 |
+
return blend<0x3FFF>(a, b);
|
641 |
+
case 15:
|
642 |
+
return blend<0x7FFF>(a, b);
|
643 |
+
case 16:
|
644 |
+
return blend<0xFFFF>(a, b);
|
645 |
+
case 17:
|
646 |
+
return blend<0x1FFFF>(a, b);
|
647 |
+
case 18:
|
648 |
+
return blend<0x3FFFF>(a, b);
|
649 |
+
case 19:
|
650 |
+
return blend<0x7FFFF>(a, b);
|
651 |
+
case 20:
|
652 |
+
return blend<0xFFFFF>(a, b);
|
653 |
+
case 21:
|
654 |
+
return blend<0x1FFFFF>(a, b);
|
655 |
+
case 22:
|
656 |
+
return blend<0x3FFFFF>(a, b);
|
657 |
+
case 23:
|
658 |
+
return blend<0x7FFFFF>(a, b);
|
659 |
+
case 24:
|
660 |
+
return blend<0xFFFFFF>(a, b);
|
661 |
+
case 25:
|
662 |
+
return blend<0x1FFFFFF>(a, b);
|
663 |
+
case 26:
|
664 |
+
return blend<0x3FFFFFF>(a, b);
|
665 |
+
case 27:
|
666 |
+
return blend<0x7FFFFFF>(a, b);
|
667 |
+
case 28:
|
668 |
+
return blend<0xFFFFFFF>(a, b);
|
669 |
+
case 29:
|
670 |
+
return blend<0x1FFFFFFF>(a, b);
|
671 |
+
case 30:
|
672 |
+
return blend<0x3FFFFFFF>(a, b);
|
673 |
+
case 31:
|
674 |
+
return blend<0x7FFFFFFF>(a, b);
|
675 |
+
}
|
676 |
+
return b;
|
677 |
+
}
|
678 |
+
static Vectorized<T> loadu(const void* ptr) {
|
679 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
680 |
+
}
|
681 |
+
static Vectorized<T> loadu_one_fourth(const void* ptr) {
|
682 |
+
// Fast path if only load element number of 8.
|
683 |
+
// Note: We didn't merge it as fast path of loadu(const void* ptr, T count),
|
684 |
+
// Because loadu(const void* ptr, T count) requires zero initialization for upper 128 bits.
|
685 |
+
// However, by using _mm256_castsi128_si256, the upper 128 bits of the result are undefined.
|
686 |
+
// TODO<leslie> We can use _mm256_zextsi128_si256 in the furture,
|
687 |
+
// since gcc 9.3 doesn't support it now.
|
688 |
+
__m128i input_128 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr));
|
689 |
+
return _mm256_castsi128_si256(input_128);
|
690 |
+
}
|
691 |
+
static Vectorized<T> loadu(const void* ptr, T count) {
|
692 |
+
__at_align__ T tmp_values[size()];
|
693 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
694 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
695 |
+
// instructions while a loop would be compiled to one instruction.
|
696 |
+
for (const auto i : c10::irange(size())) {
|
697 |
+
tmp_values[i] = 0;
|
698 |
+
}
|
699 |
+
std::memcpy(tmp_values, ptr, count * sizeof(T));
|
700 |
+
return loadu(tmp_values);
|
701 |
+
}
|
702 |
+
void store(void* ptr, int count = size()) const {
|
703 |
+
if (count == size()) {
|
704 |
+
// ptr need not to be aligned here. See
|
705 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
706 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
707 |
+
} else if (count > 0) {
|
708 |
+
if (count == 8) {
|
709 |
+
// Fast path if only store element number of 8
|
710 |
+
_mm_storel_epi64(reinterpret_cast<__m128i*>(ptr), _mm256_castsi256_si128(values));
|
711 |
+
} else {
|
712 |
+
__at_align__ T tmp_values[size()];
|
713 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
714 |
+
std::memcpy(ptr, tmp_values, count * sizeof(T));
|
715 |
+
}
|
716 |
+
}
|
717 |
+
}
|
718 |
+
const T& operator[](int idx) const = delete;
|
719 |
+
T& operator[](int idx) = delete;
|
720 |
+
Vectorized<T> real() const {
|
721 |
+
return *this;
|
722 |
+
}
|
723 |
+
Vectorized<T> imag() const {
|
724 |
+
return _mm256_set1_epi8(0);
|
725 |
+
}
|
726 |
+
Vectorized<T> conj() const {
|
727 |
+
return *this;
|
728 |
+
}
|
729 |
+
};
|
730 |
+
|
731 |
+
template<>
|
732 |
+
class Vectorized<int8_t>: public Vectorized8<int8_t> {
|
733 |
+
public:
|
734 |
+
using Vectorized8::Vectorized8;
|
735 |
+
|
736 |
+
Vectorized<int8_t> neg() const;
|
737 |
+
|
738 |
+
Vectorized<int8_t> abs() const {
|
739 |
+
return _mm256_abs_epi8(values);
|
740 |
+
}
|
741 |
+
|
742 |
+
Vectorized<int8_t> operator==(const Vectorized<int8_t>& other) const {
|
743 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
744 |
+
}
|
745 |
+
Vectorized<int8_t> operator!=(const Vectorized<int8_t>& other) const {
|
746 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
747 |
+
}
|
748 |
+
Vectorized<int8_t> operator<(const Vectorized<int8_t>& other) const {
|
749 |
+
return _mm256_cmpgt_epi8(other.values, values);
|
750 |
+
}
|
751 |
+
Vectorized<int8_t> operator<=(const Vectorized<int8_t>& other) const {
|
752 |
+
return invert(_mm256_cmpgt_epi8(values, other.values));
|
753 |
+
}
|
754 |
+
Vectorized<int8_t> operator>(const Vectorized<int8_t>& other) const {
|
755 |
+
return other < *this;
|
756 |
+
}
|
757 |
+
Vectorized<int8_t> operator>=(const Vectorized<int8_t>& other) const {
|
758 |
+
return other <= *this;
|
759 |
+
}
|
760 |
+
|
761 |
+
Vectorized<int8_t> eq(const Vectorized<int8_t>& other) const;
|
762 |
+
Vectorized<int8_t> ne(const Vectorized<int8_t>& other) const;
|
763 |
+
Vectorized<int8_t> gt(const Vectorized<int8_t>& other) const;
|
764 |
+
Vectorized<int8_t> ge(const Vectorized<int8_t>& other) const;
|
765 |
+
Vectorized<int8_t> lt(const Vectorized<int8_t>& other) const;
|
766 |
+
Vectorized<int8_t> le(const Vectorized<int8_t>& other) const;
|
767 |
+
};
|
768 |
+
|
769 |
+
template<>
|
770 |
+
class Vectorized<uint8_t>: public Vectorized8<uint8_t> {
|
771 |
+
public:
|
772 |
+
using Vectorized8::Vectorized8;
|
773 |
+
|
774 |
+
Vectorized<uint8_t> neg() const;
|
775 |
+
|
776 |
+
Vectorized<uint8_t> abs() const {
|
777 |
+
return *this;
|
778 |
+
}
|
779 |
+
|
780 |
+
Vectorized<uint8_t> operator==(const Vectorized<uint8_t>& other) const {
|
781 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
782 |
+
}
|
783 |
+
Vectorized<uint8_t> operator!=(const Vectorized<uint8_t>& other) const {
|
784 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
785 |
+
}
|
786 |
+
Vectorized<uint8_t> operator<(const Vectorized<uint8_t>& other) const {
|
787 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
788 |
+
return invert(_mm256_cmpeq_epi8(max, values));
|
789 |
+
}
|
790 |
+
Vectorized<uint8_t> operator<=(const Vectorized<uint8_t>& other) const {
|
791 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
792 |
+
return _mm256_cmpeq_epi8(max, other.values);
|
793 |
+
}
|
794 |
+
Vectorized<uint8_t> operator>(const Vectorized<uint8_t>& other) const {
|
795 |
+
return other < *this;
|
796 |
+
}
|
797 |
+
Vectorized<uint8_t> operator>=(const Vectorized<uint8_t>& other) const {
|
798 |
+
return other <= *this;
|
799 |
+
}
|
800 |
+
|
801 |
+
Vectorized<uint8_t> eq(const Vectorized<uint8_t>& other) const;
|
802 |
+
Vectorized<uint8_t> ne(const Vectorized<uint8_t>& other) const;
|
803 |
+
Vectorized<uint8_t> gt(const Vectorized<uint8_t>& other) const;
|
804 |
+
Vectorized<uint8_t> ge(const Vectorized<uint8_t>& other) const;
|
805 |
+
Vectorized<uint8_t> lt(const Vectorized<uint8_t>& other) const;
|
806 |
+
Vectorized<uint8_t> le(const Vectorized<uint8_t>& other) const;
|
807 |
+
};
|
808 |
+
|
809 |
+
template <>
|
810 |
+
Vectorized<int64_t> inline operator+(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
811 |
+
return _mm256_add_epi64(a, b);
|
812 |
+
}
|
813 |
+
|
814 |
+
template <>
|
815 |
+
Vectorized<int32_t> inline operator+(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
816 |
+
return _mm256_add_epi32(a, b);
|
817 |
+
}
|
818 |
+
|
819 |
+
template <>
|
820 |
+
Vectorized<int16_t> inline operator+(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
821 |
+
return _mm256_add_epi16(a, b);
|
822 |
+
}
|
823 |
+
|
824 |
+
template <>
|
825 |
+
Vectorized<int8_t> inline operator+(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
826 |
+
return _mm256_add_epi8(a, b);
|
827 |
+
}
|
828 |
+
|
829 |
+
template <>
|
830 |
+
Vectorized<uint8_t> inline operator+(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
831 |
+
return _mm256_add_epi8(a, b);
|
832 |
+
}
|
833 |
+
|
834 |
+
template <>
|
835 |
+
Vectorized<int64_t> inline operator-(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
836 |
+
return _mm256_sub_epi64(a, b);
|
837 |
+
}
|
838 |
+
|
839 |
+
template <>
|
840 |
+
Vectorized<int32_t> inline operator-(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
841 |
+
return _mm256_sub_epi32(a, b);
|
842 |
+
}
|
843 |
+
|
844 |
+
template <>
|
845 |
+
Vectorized<int16_t> inline operator-(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
846 |
+
return _mm256_sub_epi16(a, b);
|
847 |
+
}
|
848 |
+
|
849 |
+
template <>
|
850 |
+
Vectorized<int8_t> inline operator-(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
851 |
+
return _mm256_sub_epi8(a, b);
|
852 |
+
}
|
853 |
+
|
854 |
+
template <>
|
855 |
+
Vectorized<uint8_t> inline operator-(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
856 |
+
return _mm256_sub_epi8(a, b);
|
857 |
+
}
|
858 |
+
|
859 |
+
// Negation. Defined here so we can utilize operator-
|
860 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::neg() const {
|
861 |
+
return Vectorized<int64_t>(0) - *this;
|
862 |
+
}
|
863 |
+
|
864 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::neg() const {
|
865 |
+
return Vectorized<int32_t>(0) - *this;
|
866 |
+
}
|
867 |
+
|
868 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::neg() const {
|
869 |
+
return Vectorized<int16_t>(0) - *this;
|
870 |
+
}
|
871 |
+
|
872 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::neg() const {
|
873 |
+
return Vectorized<int8_t>(0) - *this;
|
874 |
+
}
|
875 |
+
|
876 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::neg() const {
|
877 |
+
return Vectorized<uint8_t>(0) - *this;
|
878 |
+
}
|
879 |
+
|
880 |
+
// Emulate operations with no native 64-bit support in avx,
|
881 |
+
// by extracting each element, performing the operation pointwise,
|
882 |
+
// then combining the results into a vector.
|
883 |
+
template <typename op_t>
|
884 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const op_t& op) {
|
885 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
886 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
887 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
888 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
889 |
+
|
890 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
891 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
892 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
893 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
894 |
+
|
895 |
+
int64_t c0 = op(a0, b0);
|
896 |
+
int64_t c1 = op(a1, b1);
|
897 |
+
int64_t c2 = op(a2, b2);
|
898 |
+
int64_t c3 = op(a3, b3);
|
899 |
+
|
900 |
+
return _mm256_set_epi64x(c3, c2, c1, c0);
|
901 |
+
}
|
902 |
+
|
903 |
+
template <typename op_t>
|
904 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const Vectorized<int64_t>& c, const op_t& op) {
|
905 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
906 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
907 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
908 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
909 |
+
|
910 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
911 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
912 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
913 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
914 |
+
|
915 |
+
int64_t c0 = _mm256_extract_epi64(c, 0);
|
916 |
+
int64_t c1 = _mm256_extract_epi64(c, 1);
|
917 |
+
int64_t c2 = _mm256_extract_epi64(c, 2);
|
918 |
+
int64_t c3 = _mm256_extract_epi64(c, 3);
|
919 |
+
|
920 |
+
int64_t d0 = op(a0, b0, c0);
|
921 |
+
int64_t d1 = op(a1, b1, c1);
|
922 |
+
int64_t d2 = op(a2, b2, c2);
|
923 |
+
int64_t d3 = op(a3, b3, c3);
|
924 |
+
|
925 |
+
return _mm256_set_epi64x(d3, d2, d1, d0);
|
926 |
+
}
|
927 |
+
|
928 |
+
// AVX2 has no intrinsic for int64_t multiply so it needs to be emulated
|
929 |
+
// This could be implemented more efficiently using epi32 instructions
|
930 |
+
// This is also technically avx compatible, but then we'll need AVX
|
931 |
+
// code for add as well.
|
932 |
+
// Note: intentionally ignores undefined behavior like (-lowest * -1).
|
933 |
+
template <>
|
934 |
+
Vectorized<int64_t> inline operator*(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
935 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) __ubsan_ignore_undefined__ {return a_point * b_point;});
|
936 |
+
}
|
937 |
+
|
938 |
+
template <>
|
939 |
+
Vectorized<int32_t> inline operator*(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
940 |
+
return _mm256_mullo_epi32(a, b);
|
941 |
+
}
|
942 |
+
|
943 |
+
template <>
|
944 |
+
Vectorized<int16_t> inline operator*(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
945 |
+
return _mm256_mullo_epi16(a, b);
|
946 |
+
}
|
947 |
+
|
948 |
+
template <typename T, typename Op>
|
949 |
+
Vectorized<T> inline int_elementwise_binary_256(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
950 |
+
T values_a[Vectorized<T>::size()];
|
951 |
+
T values_b[Vectorized<T>::size()];
|
952 |
+
a.store(values_a);
|
953 |
+
b.store(values_b);
|
954 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
955 |
+
values_a[i] = op(values_a[i], values_b[i]);
|
956 |
+
}
|
957 |
+
return Vectorized<T>::loadu(values_a);
|
958 |
+
}
|
959 |
+
|
960 |
+
template <>
|
961 |
+
Vectorized<int8_t> inline operator*(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
962 |
+
// We don't have an instruction for multiplying int8_t
|
963 |
+
#ifndef CPU_CAPABILITY_AVX2
|
964 |
+
return int_elementwise_binary_256(a, b, std::multiplies<int8_t>());
|
965 |
+
#else
|
966 |
+
__m256i mask00FF = _mm256_set1_epi16(0x00FF);
|
967 |
+
__m256i a_lo = _mm256_srai_epi16(_mm256_slli_epi16(a, 8), 8);
|
968 |
+
__m256i b_lo = _mm256_srai_epi16(_mm256_slli_epi16(b, 8), 8);
|
969 |
+
__m256i a_hi = _mm256_srai_epi16(a, 8);
|
970 |
+
__m256i b_hi = _mm256_srai_epi16(b, 8);
|
971 |
+
__m256i res_lo = _mm256_and_si256(_mm256_mullo_epi16(a_lo, b_lo), mask00FF);
|
972 |
+
__m256i res_hi = _mm256_slli_epi16(_mm256_mullo_epi16(a_hi, b_hi), 8);
|
973 |
+
__m256i res = _mm256_or_si256(res_hi, res_lo);
|
974 |
+
return res;
|
975 |
+
#endif
|
976 |
+
}
|
977 |
+
|
978 |
+
template <>
|
979 |
+
Vectorized<uint8_t> inline operator*(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
980 |
+
// We don't have an instruction for multiplying uint8_t
|
981 |
+
#ifndef CPU_CAPABILITY_AVX2
|
982 |
+
return int_elementwise_binary_256(a, b, std::multiplies<uint8_t>());
|
983 |
+
#else
|
984 |
+
__m256i mask00FF = _mm256_set1_epi16(0x00FF);
|
985 |
+
__m256i a_lo = _mm256_and_si256 (a, mask00FF);
|
986 |
+
__m256i b_lo = _mm256_and_si256 (b, mask00FF);
|
987 |
+
__m256i a_hi = _mm256_srli_epi16(a, 8);
|
988 |
+
__m256i b_hi = _mm256_srli_epi16(b, 8);
|
989 |
+
__m256i res_lo = _mm256_and_si256(_mm256_mullo_epi16(a_lo, b_lo), mask00FF);
|
990 |
+
__m256i res_hi = _mm256_slli_epi16(_mm256_mullo_epi16(a_hi, b_hi), 8);
|
991 |
+
__m256i res = _mm256_or_si256(res_hi, res_lo);
|
992 |
+
return res;
|
993 |
+
#endif
|
994 |
+
}
|
995 |
+
|
996 |
+
template <>
|
997 |
+
Vectorized<int64_t> inline minimum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
998 |
+
#ifndef CPU_CAPABILITY_AVX2
|
999 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::min(a_point, b_point);});
|
1000 |
+
#else
|
1001 |
+
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
1002 |
+
return _mm256_blendv_epi8(a, b, cmp);
|
1003 |
+
#endif
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
template <>
|
1007 |
+
Vectorized<int32_t> inline minimum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1008 |
+
return _mm256_min_epi32(a, b);
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
template <>
|
1012 |
+
Vectorized<int16_t> inline minimum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1013 |
+
return _mm256_min_epi16(a, b);
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
template <>
|
1017 |
+
Vectorized<int8_t> inline minimum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1018 |
+
return _mm256_min_epi8(a, b);
|
1019 |
+
}
|
1020 |
+
|
1021 |
+
template <>
|
1022 |
+
Vectorized<uint8_t> inline minimum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1023 |
+
return _mm256_min_epu8(a, b);
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
template <>
|
1027 |
+
Vectorized<int64_t> inline maximum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1028 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1029 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::max(a_point, b_point);});
|
1030 |
+
#else
|
1031 |
+
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
1032 |
+
return _mm256_blendv_epi8(b, a, cmp);
|
1033 |
+
#endif
|
1034 |
+
}
|
1035 |
+
|
1036 |
+
template <>
|
1037 |
+
Vectorized<int32_t> inline maximum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1038 |
+
return _mm256_max_epi32(a, b);
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
template <>
|
1042 |
+
Vectorized<int16_t> inline maximum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1043 |
+
return _mm256_max_epi16(a, b);
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
template <>
|
1047 |
+
Vectorized<int8_t> inline maximum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1048 |
+
return _mm256_max_epi8(a, b);
|
1049 |
+
}
|
1050 |
+
|
1051 |
+
template <>
|
1052 |
+
Vectorized<uint8_t> inline maximum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1053 |
+
return _mm256_max_epu8(a, b);
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
template <>
|
1057 |
+
Vectorized<int64_t> inline clamp(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val, const Vectorized<int64_t>& max_val) {
|
1058 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1059 |
+
return emulate(a, min_val, max_val, [](int64_t a_point, int64_t min_point, int64_t max_point) {return std::min(max_point, std::max(a_point, min_point));});
|
1060 |
+
#else
|
1061 |
+
return minimum(maximum(a, min_val), max_val);
|
1062 |
+
#endif
|
1063 |
+
}
|
1064 |
+
|
1065 |
+
template <>
|
1066 |
+
Vectorized<int32_t> inline clamp(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val, const Vectorized<int32_t>& max_val) {
|
1067 |
+
return _mm256_min_epi32(max_val, _mm256_max_epi32(a, min_val));
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
template <>
|
1071 |
+
Vectorized<int16_t> inline clamp(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val, const Vectorized<int16_t>& max_val) {
|
1072 |
+
return _mm256_min_epi16(max_val, _mm256_max_epi16(a, min_val));
|
1073 |
+
}
|
1074 |
+
|
1075 |
+
template <>
|
1076 |
+
Vectorized<int8_t> inline clamp(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val, const Vectorized<int8_t>& max_val) {
|
1077 |
+
return _mm256_min_epi8(max_val, _mm256_max_epi8(a, min_val));
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
template <>
|
1081 |
+
Vectorized<uint8_t> inline clamp(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val, const Vectorized<uint8_t>& max_val) {
|
1082 |
+
return _mm256_min_epu8(max_val, _mm256_max_epu8(a, min_val));
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
template <>
|
1086 |
+
Vectorized<int64_t> inline clamp_max(const Vectorized<int64_t>& a, const Vectorized<int64_t>& max_val) {
|
1087 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1088 |
+
return emulate(a, max_val, [](int64_t a_point, int64_t max_point) {return std::min(max_point, a_point);});
|
1089 |
+
#else
|
1090 |
+
return minimum(max_val, a);
|
1091 |
+
#endif
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
template <>
|
1095 |
+
Vectorized<int32_t> inline clamp_max(const Vectorized<int32_t>& a, const Vectorized<int32_t>& max_val) {
|
1096 |
+
return _mm256_min_epi32(max_val, a);
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
template <>
|
1100 |
+
Vectorized<int16_t> inline clamp_max(const Vectorized<int16_t>& a, const Vectorized<int16_t>& max_val) {
|
1101 |
+
return _mm256_min_epi16(max_val, a);
|
1102 |
+
}
|
1103 |
+
|
1104 |
+
template <>
|
1105 |
+
Vectorized<int8_t> inline clamp_max(const Vectorized<int8_t>& a, const Vectorized<int8_t>& max_val) {
|
1106 |
+
return _mm256_min_epi8(max_val, a);
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
template <>
|
1110 |
+
Vectorized<uint8_t> inline clamp_max(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& max_val) {
|
1111 |
+
return _mm256_min_epu8(max_val, a);
|
1112 |
+
}
|
1113 |
+
|
1114 |
+
template <>
|
1115 |
+
Vectorized<int64_t> inline clamp_min(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val) {
|
1116 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1117 |
+
return emulate(a, min_val, [](int64_t a_point, int64_t min_point) {return std::max(min_point, a_point);});
|
1118 |
+
#else
|
1119 |
+
return maximum(min_val, a);
|
1120 |
+
#endif
|
1121 |
+
}
|
1122 |
+
|
1123 |
+
template <>
|
1124 |
+
Vectorized<int32_t> inline clamp_min(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val) {
|
1125 |
+
return _mm256_max_epi32(min_val, a);
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
template <>
|
1129 |
+
Vectorized<int16_t> inline clamp_min(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val) {
|
1130 |
+
return _mm256_max_epi16(min_val, a);
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
template <>
|
1134 |
+
Vectorized<int8_t> inline clamp_min(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val) {
|
1135 |
+
return _mm256_max_epi8(min_val, a);
|
1136 |
+
}
|
1137 |
+
|
1138 |
+
template <>
|
1139 |
+
Vectorized<uint8_t> inline clamp_min(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val) {
|
1140 |
+
return _mm256_max_epu8(min_val, a);
|
1141 |
+
}
|
1142 |
+
|
1143 |
+
template<typename T>
|
1144 |
+
Vectorized<int32_t> inline convert_to_int32(const T* ptr) {
|
1145 |
+
return Vectorized<int32_t>::loadu(ptr);
|
1146 |
+
}
|
1147 |
+
|
1148 |
+
template<>
|
1149 |
+
Vectorized<int32_t> inline convert_to_int32<int8_t>(const int8_t* ptr) {
|
1150 |
+
return _mm256_cvtepi8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1151 |
+
}
|
1152 |
+
|
1153 |
+
template<>
|
1154 |
+
Vectorized<int32_t> inline convert_to_int32<uint8_t>(const uint8_t* ptr) {
|
1155 |
+
return _mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
template <>
|
1159 |
+
Vectorized<int64_t> inline operator/(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1160 |
+
return int_elementwise_binary_256(a, b, std::divides<int64_t>());
|
1161 |
+
}
|
1162 |
+
template <>
|
1163 |
+
Vectorized<int32_t> inline operator/(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1164 |
+
return int_elementwise_binary_256(a, b, std::divides<int32_t>());
|
1165 |
+
}
|
1166 |
+
template <>
|
1167 |
+
Vectorized<int16_t> inline operator/(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1168 |
+
return int_elementwise_binary_256(a, b, std::divides<int16_t>());
|
1169 |
+
}
|
1170 |
+
template <>
|
1171 |
+
Vectorized<int8_t> inline operator/(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1172 |
+
return int_elementwise_binary_256(a, b, std::divides<int8_t>());
|
1173 |
+
}
|
1174 |
+
template <>
|
1175 |
+
Vectorized<uint8_t> inline operator/(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1176 |
+
return int_elementwise_binary_256(a, b, std::divides<uint8_t>());
|
1177 |
+
}
|
1178 |
+
|
1179 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1180 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1181 |
+
return _mm256_and_si256(a, b);
|
1182 |
+
}
|
1183 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1184 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1185 |
+
return _mm256_or_si256(a, b);
|
1186 |
+
}
|
1187 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1188 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1189 |
+
return _mm256_xor_si256(a, b);
|
1190 |
+
}
|
1191 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1192 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
1193 |
+
return _mm256_xor_si256(a, _mm256_set1_epi32(-1));
|
1194 |
+
}
|
1195 |
+
|
1196 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::eq(const Vectorized<int64_t>& other) const {
|
1197 |
+
return (*this == other) & Vectorized<int64_t>(1);
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ne(const Vectorized<int64_t>& other) const {
|
1201 |
+
return (*this != other) & Vectorized<int64_t>(1);
|
1202 |
+
}
|
1203 |
+
|
1204 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::gt(const Vectorized<int64_t>& other) const {
|
1205 |
+
return (*this > other) & Vectorized<int64_t>(1);
|
1206 |
+
}
|
1207 |
+
|
1208 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ge(const Vectorized<int64_t>& other) const {
|
1209 |
+
return (*this >= other) & Vectorized<int64_t>(1);
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::lt(const Vectorized<int64_t>& other) const {
|
1213 |
+
return (*this < other) & Vectorized<int64_t>(1);
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::le(const Vectorized<int64_t>& other) const {
|
1217 |
+
return (*this <= other) & Vectorized<int64_t>(1);
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::eq(const Vectorized<int32_t>& other) const {
|
1221 |
+
return (*this == other) & Vectorized<int32_t>(1);
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ne(const Vectorized<int32_t>& other) const {
|
1225 |
+
return (*this != other) & Vectorized<int32_t>(1);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::gt(const Vectorized<int32_t>& other) const {
|
1229 |
+
return (*this > other) & Vectorized<int32_t>(1);
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ge(const Vectorized<int32_t>& other) const {
|
1233 |
+
return (*this >= other) & Vectorized<int32_t>(1);
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::lt(const Vectorized<int32_t>& other) const {
|
1237 |
+
return (*this < other) & Vectorized<int32_t>(1);
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::le(const Vectorized<int32_t>& other) const {
|
1241 |
+
return (*this <= other) & Vectorized<int32_t>(1);
|
1242 |
+
}
|
1243 |
+
|
1244 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::eq(const Vectorized<int16_t>& other) const {
|
1245 |
+
return (*this == other) & Vectorized<int16_t>(1);
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ne(const Vectorized<int16_t>& other) const {
|
1249 |
+
return (*this != other) & Vectorized<int16_t>(1);
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::gt(const Vectorized<int16_t>& other) const {
|
1253 |
+
return (*this > other) & Vectorized<int16_t>(1);
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ge(const Vectorized<int16_t>& other) const {
|
1257 |
+
return (*this >= other) & Vectorized<int16_t>(1);
|
1258 |
+
}
|
1259 |
+
|
1260 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::lt(const Vectorized<int16_t>& other) const {
|
1261 |
+
return (*this < other) & Vectorized<int16_t>(1);
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::le(const Vectorized<int16_t>& other) const {
|
1265 |
+
return (*this <= other) & Vectorized<int16_t>(1);
|
1266 |
+
}
|
1267 |
+
|
1268 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::eq(const Vectorized<int8_t>& other) const {
|
1269 |
+
return (*this == other) & Vectorized<int8_t>(1);
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ne(const Vectorized<int8_t>& other) const {
|
1273 |
+
return (*this != other) & Vectorized<int8_t>(1);
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::gt(const Vectorized<int8_t>& other) const {
|
1277 |
+
return (*this > other) & Vectorized<int8_t>(1);
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ge(const Vectorized<int8_t>& other) const {
|
1281 |
+
return (*this >= other) & Vectorized<int8_t>(1);
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::lt(const Vectorized<int8_t>& other) const {
|
1285 |
+
return (*this < other) & Vectorized<int8_t>(1);
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::le(const Vectorized<int8_t>& other) const {
|
1289 |
+
return (*this <= other) & Vectorized<int8_t>(1);
|
1290 |
+
}
|
1291 |
+
|
1292 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::eq(const Vectorized<uint8_t>& other) const {
|
1293 |
+
return (*this == other) & Vectorized<uint8_t>(1);
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ne(const Vectorized<uint8_t>& other) const {
|
1297 |
+
return (*this != other) & Vectorized<uint8_t>(1);
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::gt(const Vectorized<uint8_t>& other) const {
|
1301 |
+
return (*this > other) & Vectorized<uint8_t>(1);
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ge(const Vectorized<uint8_t>& other) const {
|
1305 |
+
return (*this >= other) & Vectorized<uint8_t>(1);
|
1306 |
+
}
|
1307 |
+
|
1308 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::lt(const Vectorized<uint8_t>& other) const {
|
1309 |
+
return (*this < other) & Vectorized<uint8_t>(1);
|
1310 |
+
}
|
1311 |
+
|
1312 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::le(const Vectorized<uint8_t>& other) const {
|
1313 |
+
return (*this <= other) & Vectorized<uint8_t>(1);
|
1314 |
+
}
|
1315 |
+
|
1316 |
+
template <bool left_shift>
|
1317 |
+
Vectorized<int16_t> inline shift_256_16(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1318 |
+
// No vector instruction for shifting int16_t, so emulating it instead.
|
1319 |
+
|
1320 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1321 |
+
// array of 16-bit elements, and considering pairs of neighboring
|
1322 |
+
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
1323 |
+
// M!=N) is set so that shuffle will move element with index M from
|
1324 |
+
// input pair into element with index N in output pair, and element
|
1325 |
+
// with index M in output pair will be set to all 0s.
|
1326 |
+
__m256i ctl_0_1 = _mm256_set_epi8(29, 28, 0x80, 0x80, 25, 24, 0x80, 0x80,
|
1327 |
+
21, 20, 0x80, 0x80, 17, 16, 0x80, 0x80,
|
1328 |
+
13, 12, 0x80, 0x80, 9, 8, 0x80, 0x80,
|
1329 |
+
5, 4, 0x80, 0x80, 1, 0, 0x80, 0x80);
|
1330 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 31, 30, 0x80, 0x80, 27, 26,
|
1331 |
+
0x80, 0x80, 23, 22, 0x80, 0x80, 19, 18,
|
1332 |
+
0x80, 0x80, 15, 14, 0x80, 0x80, 11, 10,
|
1333 |
+
0x80, 0x80, 7, 6, 0x80, 0x80, 3, 2);
|
1334 |
+
|
1335 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1336 |
+
// 16-bit elements, and considering them in pairs of neighboring
|
1337 |
+
// elements. A mask named "keep_M" (M in [0,1]) is set so that
|
1338 |
+
// bitwise and will copy element with index M from input pair into
|
1339 |
+
// element with the same index in output pair, while the other
|
1340 |
+
// element in output pair will be set to all 0s.
|
1341 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFFFF);
|
1342 |
+
__m256i keep_1 = _mm256_set1_epi32(0xFFFF0000);
|
1343 |
+
|
1344 |
+
// Take each 16-bit element with idx%2==0 from input array to be
|
1345 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1346 |
+
// right. Then, perform shifting on this 32-bit number. Upper 16
|
1347 |
+
// bits will be proper result of shifting original 16-bit number, so
|
1348 |
+
// write them to result array, into the same position from which
|
1349 |
+
// corresponding input element is taken. Also, make sure that
|
1350 |
+
// result array elements with idx%2!=0 are set to all 0s.
|
1351 |
+
//
|
1352 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1353 |
+
// adding 0s to the left. That means this number is not properly
|
1354 |
+
// sign-extended for negative values. However, number of bits to
|
1355 |
+
// shift is treated as an unsigned integer by respective shift
|
1356 |
+
// intrinsics anyway so if negative then either with or without
|
1357 |
+
// proper sign extension, it will be interpreted as a number greater
|
1358 |
+
// than 32, and the shifting result will be the same.
|
1359 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_1);
|
1360 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1361 |
+
__m256i c0;
|
1362 |
+
if (left_shift)
|
1363 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1364 |
+
else
|
1365 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1366 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_1_0);
|
1367 |
+
|
1368 |
+
// Peform shifting the same way for input array elements with
|
1369 |
+
// idx%2==1.
|
1370 |
+
__m256i a1 = _mm256_and_si256(a, keep_1);
|
1371 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1372 |
+
__m256i c1;
|
1373 |
+
if (left_shift)
|
1374 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1375 |
+
else
|
1376 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1377 |
+
c1 = _mm256_and_si256(c1, keep_1);
|
1378 |
+
|
1379 |
+
// Merge partial results into the final result.
|
1380 |
+
__m256i c = _mm256_or_si256(c0, c1);
|
1381 |
+
|
1382 |
+
return c;
|
1383 |
+
}
|
1384 |
+
|
1385 |
+
template <bool left_shift, typename T, typename std::enable_if_t<std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value, int> = 0>
|
1386 |
+
Vectorized<T> inline shift_256_8(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1387 |
+
// No vector instruction for shifting int8_t/uint8_t, so emulating
|
1388 |
+
// it instead.
|
1389 |
+
|
1390 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1391 |
+
// array of 8-bit elements, and considering quadruples of
|
1392 |
+
// neighboring elements. Specifially, a mask named "ctl_M_N" (M,N
|
1393 |
+
// in [0,1,2,3], and M!=N) is set so that shuffle will move element
|
1394 |
+
// with index M from input quadruple into element with index N in
|
1395 |
+
// output quadruple, and other elements in output quadruple will be
|
1396 |
+
// set to all 0s.
|
1397 |
+
__m256i ctl_0_3 = _mm256_set_epi8(28, 0x80, 0x80, 0x80, 24, 0x80, 0x80, 0x80,
|
1398 |
+
20, 0x80, 0x80, 0x80, 16, 0x80, 0x80, 0x80,
|
1399 |
+
12, 0x80, 0x80, 0x80, 8, 0x80, 0x80, 0x80,
|
1400 |
+
4, 0x80, 0x80, 0x80, 0, 0x80, 0x80, 0x80);
|
1401 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 29, 0x80, 0x80, 0x80, 25,
|
1402 |
+
0x80, 0x80, 0x80, 21, 0x80, 0x80, 0x80, 17,
|
1403 |
+
0x80, 0x80, 0x80, 13, 0x80, 0x80, 0x80, 9,
|
1404 |
+
0x80, 0x80, 0x80, 5, 0x80, 0x80, 0x80, 1);
|
1405 |
+
__m256i ctl_1_3 = _mm256_set_epi8(29, 0x80, 0x80, 0x80, 25, 0x80, 0x80, 0x80,
|
1406 |
+
21, 0x80, 0x80, 0x80, 17, 0x80, 0x80, 0x80,
|
1407 |
+
13, 0x80, 0x80, 0x80, 9, 0x80, 0x80, 0x80,
|
1408 |
+
5, 0x80, 0x80, 0x80, 1, 0x80, 0x80, 0x80);
|
1409 |
+
__m256i ctl_2_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 30, 0x80, 0x80, 0x80, 26,
|
1410 |
+
0x80, 0x80, 0x80, 22, 0x80, 0x80, 0x80, 18,
|
1411 |
+
0x80, 0x80, 0x80, 14, 0x80, 0x80, 0x80, 10,
|
1412 |
+
0x80, 0x80, 0x80, 6, 0x80, 0x80, 0x80, 2);
|
1413 |
+
__m256i ctl_2_3 = _mm256_set_epi8(30, 0x80, 0x80, 0x80, 26, 0x80, 0x80, 0x80,
|
1414 |
+
22, 0x80, 0x80, 0x80, 18, 0x80, 0x80, 0x80,
|
1415 |
+
14, 0x80, 0x80, 0x80, 10, 0x80, 0x80, 0x80,
|
1416 |
+
6, 0x80, 0x80, 0x80, 2, 0x80, 0x80, 0x80);
|
1417 |
+
__m256i ctl_3_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 31, 0x80, 0x80, 0x80, 27,
|
1418 |
+
0x80, 0x80, 0x80, 23, 0x80, 0x80, 0x80, 19,
|
1419 |
+
0x80, 0x80, 0x80, 15, 0x80, 0x80, 0x80, 11,
|
1420 |
+
0x80, 0x80, 0x80, 7, 0x80, 0x80, 0x80, 3);
|
1421 |
+
__m256i ctl_3_1 = _mm256_set_epi8(0x80, 0x80, 31, 0x80, 0x80, 0x80, 27, 0x80,
|
1422 |
+
0x80, 0x80, 23, 0x80, 0x80, 0x80, 19, 0x80,
|
1423 |
+
0x80, 0x80, 15, 0x80, 0x80, 0x80, 11, 0x80,
|
1424 |
+
0x80, 0x80, 7, 0x80, 0x80, 0x80, 3, 0x80);
|
1425 |
+
__m256i ctl_3_2 = _mm256_set_epi8(0x80, 31, 0x80, 0x80, 0x80, 27, 0x80, 0x80,
|
1426 |
+
0x80, 23, 0x80, 0x80, 0x80, 19, 0x80, 0x80,
|
1427 |
+
0x80, 15, 0x80, 0x80, 0x80, 11, 0x80, 0x80,
|
1428 |
+
0x80, 7, 0x80, 0x80, 0x80, 3, 0x80, 0x80);
|
1429 |
+
|
1430 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1431 |
+
// 8-bit elements, and considering them in quadruples of neighboring
|
1432 |
+
// elements. A mask named "keep_M" (M in [0,1,2,3]) is set so that
|
1433 |
+
// bitwise and will copy element with index M from input quadruple
|
1434 |
+
// into element with the same index in output quadruple, while the
|
1435 |
+
// other elements in output quadruple will be set to all 0s.
|
1436 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFF);
|
1437 |
+
__m256i keep_3 = _mm256_set1_epi32(0xFF000000);
|
1438 |
+
|
1439 |
+
// Take each 8-bit element with idx%4==0 from input array to be
|
1440 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1441 |
+
// right. Then, perform shifting on this 32-bit number. Upper 8
|
1442 |
+
// bits will be proper result of shifting original 8-bit number, so
|
1443 |
+
// write them to result array, into the same position from which
|
1444 |
+
// corresponding input element is taken. Also, make sure that
|
1445 |
+
// result array elements with idx%4!=0 are set to all 0s.
|
1446 |
+
//
|
1447 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1448 |
+
// adding 0s to the left. That means this number is not properly
|
1449 |
+
// sign-extended for negative values. However, number of bits to
|
1450 |
+
// shift is treated as an unsigned integer by respective shift
|
1451 |
+
// intrinsics anyway so if negative then either with or without
|
1452 |
+
// proper sign extension, it will be interpreted as a number greater
|
1453 |
+
// than 32, and the shifting result will be the same.
|
1454 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_3);
|
1455 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1456 |
+
__m256i c0;
|
1457 |
+
if (left_shift)
|
1458 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1459 |
+
else
|
1460 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1461 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1462 |
+
else
|
1463 |
+
c0 = _mm256_srlv_epi32(a0, b0);
|
1464 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_3_0);
|
1465 |
+
|
1466 |
+
// Peform shifting the same way for input array elements with
|
1467 |
+
// idx%4==1.
|
1468 |
+
__m256i a1 = _mm256_shuffle_epi8(a, ctl_1_3);
|
1469 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1470 |
+
__m256i c1;
|
1471 |
+
if (left_shift)
|
1472 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1473 |
+
else
|
1474 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1475 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1476 |
+
else
|
1477 |
+
c1 = _mm256_srlv_epi32(a1, b1);
|
1478 |
+
c1 = _mm256_shuffle_epi8(c1, ctl_3_1);
|
1479 |
+
|
1480 |
+
// Peform shifting the same way for input array elements with
|
1481 |
+
// idx%4==2.
|
1482 |
+
__m256i a2 = _mm256_shuffle_epi8(a, ctl_2_3);
|
1483 |
+
__m256i b2 = _mm256_shuffle_epi8(b, ctl_2_0);
|
1484 |
+
__m256i c2;
|
1485 |
+
if (left_shift)
|
1486 |
+
c2 = _mm256_sllv_epi32(a2, b2);
|
1487 |
+
else
|
1488 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1489 |
+
c2 = _mm256_srav_epi32(a2, b2);
|
1490 |
+
else
|
1491 |
+
c2 = _mm256_srlv_epi32(a2, b2);
|
1492 |
+
c2 = _mm256_shuffle_epi8(c2, ctl_3_2);
|
1493 |
+
|
1494 |
+
// Peform shifting the same way for input array elements with
|
1495 |
+
// idx%4==3.
|
1496 |
+
__m256i a3 = _mm256_and_si256(a, keep_3);
|
1497 |
+
__m256i b3 = _mm256_shuffle_epi8(b, ctl_3_0);
|
1498 |
+
__m256i c3;
|
1499 |
+
if (left_shift)
|
1500 |
+
c3 = _mm256_sllv_epi32(a3, b3);
|
1501 |
+
else
|
1502 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1503 |
+
c3 = _mm256_srav_epi32(a3, b3);
|
1504 |
+
else
|
1505 |
+
c3 = _mm256_srlv_epi32(a3, b3);
|
1506 |
+
c3 = _mm256_and_si256(c3, keep_3);
|
1507 |
+
|
1508 |
+
// Merge partial results into the final result.
|
1509 |
+
__m256i c01 = _mm256_or_si256(c0, c1);
|
1510 |
+
__m256i c23 = _mm256_or_si256(c2, c3);
|
1511 |
+
__m256i c = _mm256_or_si256(c01, c23);
|
1512 |
+
|
1513 |
+
return c;
|
1514 |
+
}
|
1515 |
+
|
1516 |
+
template <>
|
1517 |
+
Vectorized<int64_t> inline operator<<(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1518 |
+
return _mm256_sllv_epi64(a, b);
|
1519 |
+
}
|
1520 |
+
|
1521 |
+
template <>
|
1522 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1523 |
+
return _mm256_sllv_epi32(a, b);
|
1524 |
+
}
|
1525 |
+
|
1526 |
+
template <>
|
1527 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1528 |
+
return shift_256_16<true>(a, b);
|
1529 |
+
}
|
1530 |
+
|
1531 |
+
template <>
|
1532 |
+
Vectorized<int8_t> inline operator<<(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1533 |
+
return shift_256_8<true>(a, b);
|
1534 |
+
}
|
1535 |
+
|
1536 |
+
template <>
|
1537 |
+
Vectorized<uint8_t> inline operator<<(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1538 |
+
return shift_256_8<true>(a, b);
|
1539 |
+
}
|
1540 |
+
|
1541 |
+
template <>
|
1542 |
+
Vectorized<int64_t> inline operator>>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1543 |
+
// No vector instruction for right arithmetic shifting int64_t, so emulating it
|
1544 |
+
// instead.
|
1545 |
+
|
1546 |
+
// Clamp the shift values such that shift values < 0 and > 64 are changed to 64
|
1547 |
+
// which results in -1 for negative input and 0 for non-negative input.
|
1548 |
+
__m256i zero = _mm256_set1_epi64x(0);
|
1549 |
+
__m256i max_shift = _mm256_set1_epi64x(64);
|
1550 |
+
__m256i mask = _mm256_or_si256(_mm256_cmpgt_epi64(zero, b), _mm256_cmpgt_epi64(b, max_shift));
|
1551 |
+
__m256i shift = _mm256_blendv_epi8(b, max_shift, mask);
|
1552 |
+
// Shift the number logically to the right, thus filling the most
|
1553 |
+
// significant bits with 0s. Then, replace these bits with the sign
|
1554 |
+
// bit.
|
1555 |
+
__m256i sign_bits = _mm256_cmpgt_epi64(zero, a);
|
1556 |
+
__m256i sign_shift = _mm256_sub_epi64(max_shift, shift);
|
1557 |
+
__m256i sign_ext = _mm256_sllv_epi64(sign_bits, sign_shift);
|
1558 |
+
__m256i c = _mm256_srlv_epi64(a, shift);
|
1559 |
+
c = _mm256_or_si256(c, sign_ext);
|
1560 |
+
|
1561 |
+
return c;
|
1562 |
+
}
|
1563 |
+
|
1564 |
+
template <>
|
1565 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1566 |
+
return _mm256_srav_epi32(a, b);
|
1567 |
+
}
|
1568 |
+
|
1569 |
+
template <>
|
1570 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1571 |
+
return shift_256_16<false>(a, b);
|
1572 |
+
}
|
1573 |
+
|
1574 |
+
template <>
|
1575 |
+
Vectorized<int8_t> inline operator>>(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1576 |
+
return shift_256_8<false>(a, b);
|
1577 |
+
}
|
1578 |
+
|
1579 |
+
template <>
|
1580 |
+
Vectorized<uint8_t> inline operator>>(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1581 |
+
return shift_256_8<false>(a, b);
|
1582 |
+
}
|
1583 |
+
|
1584 |
+
#endif
|
1585 |
+
|
1586 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h
ADDED
@@ -0,0 +1,1335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
9 |
+
|
10 |
+
#include <c10/util/irange.h>
|
11 |
+
#include <c10/util/qint32.h>
|
12 |
+
#include <c10/util/qint8.h>
|
13 |
+
#include <c10/util/quint8.h>
|
14 |
+
|
15 |
+
#include <array>
|
16 |
+
#include <cmath>
|
17 |
+
|
18 |
+
// This file defines Vectorized<> for the quantized types.
|
19 |
+
//
|
20 |
+
//
|
21 |
+
// Currently, we simply use these classes as efficient converters between
|
22 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
23 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
24 |
+
// elementwise operators).
|
25 |
+
//
|
26 |
+
//
|
27 |
+
// Conversions are as follows:
|
28 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
29 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
30 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
31 |
+
//
|
32 |
+
// The size of the returned float vector is specified by the special
|
33 |
+
// constexpr function float_num_vecs. The type of the value returned
|
34 |
+
// from dequantize (and expected as an argument to quantize) is
|
35 |
+
// specified by float_vec_return_type.
|
36 |
+
//
|
37 |
+
// When writing kernels with these vectors, it is expected that floating-
|
38 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
39 |
+
// iterations.
|
40 |
+
|
41 |
+
namespace at::vec {
|
42 |
+
inline namespace CPU_CAPABILITY {
|
43 |
+
|
44 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
45 |
+
|
46 |
+
struct Vectorizedqi {
|
47 |
+
protected:
|
48 |
+
__m256i vals __attribute__((aligned(64)));
|
49 |
+
|
50 |
+
public:
|
51 |
+
Vectorizedqi() {}
|
52 |
+
Vectorizedqi(__m256i v) : vals(v) {}
|
53 |
+
operator __m256i() const {
|
54 |
+
return vals;
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template <typename T>
|
59 |
+
__m256i pack_saturate_and_clamp(
|
60 |
+
__m256i first,
|
61 |
+
__m256i second,
|
62 |
+
T min_val,
|
63 |
+
T max_val);
|
64 |
+
|
65 |
+
template <>
|
66 |
+
inline __m256i pack_saturate_and_clamp<int32_t>(
|
67 |
+
__m256i /*first*/,
|
68 |
+
__m256i /*second*/,
|
69 |
+
int32_t /*min_val*/,
|
70 |
+
int32_t /*max_val*/) {
|
71 |
+
// This function is for linkage only, will not be used
|
72 |
+
AT_ERROR("pack_saturate_and_clamp<int32_t> is not supported");
|
73 |
+
}
|
74 |
+
|
75 |
+
template <>
|
76 |
+
inline __m256i pack_saturate_and_clamp<int8_t>(
|
77 |
+
__m256i first,
|
78 |
+
__m256i second,
|
79 |
+
int8_t min_val,
|
80 |
+
int8_t max_val) {
|
81 |
+
__m256i packed_and_sat = _mm256_packs_epi16(first, second);
|
82 |
+
return _mm256_max_epi8(
|
83 |
+
_mm256_set1_epi8(min_val),
|
84 |
+
_mm256_min_epi8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
85 |
+
}
|
86 |
+
|
87 |
+
template <>
|
88 |
+
inline __m256i pack_saturate_and_clamp<uint8_t>(
|
89 |
+
__m256i first,
|
90 |
+
__m256i second,
|
91 |
+
uint8_t min_val,
|
92 |
+
uint8_t max_val) {
|
93 |
+
__m256i packed_and_sat = _mm256_packus_epi16(first, second);
|
94 |
+
return _mm256_max_epu8(
|
95 |
+
_mm256_set1_epi8(min_val),
|
96 |
+
_mm256_min_epu8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
97 |
+
}
|
98 |
+
|
99 |
+
template <typename T>
|
100 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<float>>::type
|
101 |
+
inline convert_int8_to_float(at::vec::Vectorized<T> src) {
|
102 |
+
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
|
103 |
+
// Only handle first 8*8 bits
|
104 |
+
__m128i input_128 = _mm256_castsi256_si128(src);
|
105 |
+
// Convert from 8*uint8/int8 to 8*int32
|
106 |
+
__m256i input_256_int32;
|
107 |
+
if constexpr (std::is_same_v<T, uint8_t>)
|
108 |
+
input_256_int32 = _mm256_cvtepu8_epi32(input_128);
|
109 |
+
else
|
110 |
+
input_256_int32 = _mm256_cvtepi8_epi32(input_128);
|
111 |
+
// Convert from 8*int32 to 8*float
|
112 |
+
return _mm256_cvtepi32_ps(input_256_int32);
|
113 |
+
}
|
114 |
+
|
115 |
+
template <typename T>
|
116 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<T>>::type
|
117 |
+
inline convert_float_to_int8(at::vec::Vectorized<float> src) {
|
118 |
+
// Convert from float32 to int32 with truncation
|
119 |
+
__m256i x_values_int32 = _mm256_cvttps_epi32(src);
|
120 |
+
|
121 |
+
// Convert from int32 to int16 using signed saturation
|
122 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_values_int32, x_values_int32);
|
123 |
+
|
124 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
125 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
126 |
+
|
127 |
+
// Convert from int16 to uint8/int8 using unsigned saturation
|
128 |
+
__m256i xyzw_clamped_v = pack_saturate_and_clamp<T>(
|
129 |
+
xy_packed_v, xy_packed_v, min_val, max_val);
|
130 |
+
__m256i permute_mask_v =
|
131 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
132 |
+
return _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename T>
|
136 |
+
inline void __attribute__((always_inline)) QuantizeAvx2(
|
137 |
+
const float* src,
|
138 |
+
T* dst,
|
139 |
+
int len,
|
140 |
+
float inverse_scale,
|
141 |
+
int64_t zero_point) {
|
142 |
+
constexpr int VLEN = 8;
|
143 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
144 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
145 |
+
const __m256i min_v = _mm256_set1_epi32(min_val);
|
146 |
+
const __m256i max_v = _mm256_set1_epi32(max_val);
|
147 |
+
// This is the largest int32 value < int32_max exactly representable in float
|
148 |
+
constexpr int32_t int32_float_max_val =
|
149 |
+
std::numeric_limits<int32_t>::max() - 127;
|
150 |
+
int i = 0;
|
151 |
+
__m256 inverse_scale_v = _mm256_set1_ps(inverse_scale);
|
152 |
+
// clang-format off
|
153 |
+
static const __m256i shuffle_mask_v = _mm256_set_epi8(
|
154 |
+
0xff, 0xff, 0xff, 0xff,
|
155 |
+
0xff, 0xff, 0xff, 0xff,
|
156 |
+
0xff, 0xff, 0xff, 0xff,
|
157 |
+
0x0c, 0x08, 0x04, 0x00,
|
158 |
+
0xff, 0xff, 0xff, 0xff,
|
159 |
+
0xff, 0xff, 0xff, 0xff,
|
160 |
+
0xff, 0xff, 0xff, 0xff,
|
161 |
+
0x0c, 0x08, 0x04, 0x00);
|
162 |
+
// clang-format on
|
163 |
+
__m256i permute_mask_v =
|
164 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
165 |
+
__m256i permute_mask_l8_v =
|
166 |
+
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
|
167 |
+
int len_aligned = len / (VLEN * 4) * (VLEN * 4);
|
168 |
+
for (; i < len_aligned; i += 4 * VLEN) {
|
169 |
+
// x
|
170 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
171 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
172 |
+
// If the floating point value is greater than int32_max,
|
173 |
+
// _mm256_cvtps_epi32 converts them to -ve. Clip at int32_float_max_val to
|
174 |
+
// Clip at int32_float_max_val to avoid this.
|
175 |
+
x_transformed_v =
|
176 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
177 |
+
// y
|
178 |
+
__m256 y_vals = _mm256_load_ps(src + i + VLEN);
|
179 |
+
__m256 y_transformed_v = _mm256_mul_ps(y_vals, inverse_scale_v);
|
180 |
+
y_transformed_v =
|
181 |
+
_mm256_min_ps(y_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
182 |
+
// z
|
183 |
+
__m256 z_vals = _mm256_load_ps(src + i + 2 * VLEN);
|
184 |
+
__m256 z_transformed_v = _mm256_mul_ps(z_vals, inverse_scale_v);
|
185 |
+
z_transformed_v =
|
186 |
+
_mm256_min_ps(z_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
187 |
+
// w
|
188 |
+
__m256 w_vals = _mm256_load_ps(src + i + 3 * VLEN);
|
189 |
+
__m256 w_transformed_v = _mm256_mul_ps(w_vals, inverse_scale_v);
|
190 |
+
w_transformed_v =
|
191 |
+
_mm256_min_ps(w_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
192 |
+
|
193 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
194 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_transformed_v);
|
195 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_transformed_v);
|
196 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_transformed_v);
|
197 |
+
|
198 |
+
// add zero point
|
199 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
200 |
+
y_rounded_v = _mm256_add_epi32(y_rounded_v, _mm256_set1_epi32(zero_point));
|
201 |
+
z_rounded_v = _mm256_add_epi32(z_rounded_v, _mm256_set1_epi32(zero_point));
|
202 |
+
w_rounded_v = _mm256_add_epi32(w_rounded_v, _mm256_set1_epi32(zero_point));
|
203 |
+
|
204 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_rounded_v, y_rounded_v);
|
205 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_rounded_v, w_rounded_v);
|
206 |
+
__m256i xyzw_clamped_v =
|
207 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
208 |
+
|
209 |
+
xyzw_clamped_v =
|
210 |
+
_mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
211 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst + i), xyzw_clamped_v);
|
212 |
+
}
|
213 |
+
|
214 |
+
// Additional 8-lane AVX2 version to take advantage when len is smaller
|
215 |
+
// based on fbgemm::QuantizeAvx2 (https://github.com/pytorch/FBGEMM)
|
216 |
+
for (; i < len / VLEN * VLEN; i += VLEN) {
|
217 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
218 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
219 |
+
x_transformed_v =
|
220 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
221 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
222 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
223 |
+
__m256i x_clipped_v =
|
224 |
+
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, x_rounded_v));
|
225 |
+
|
226 |
+
x_clipped_v = _mm256_shuffle_epi8(x_clipped_v, shuffle_mask_v);
|
227 |
+
x_clipped_v = _mm256_permutevar8x32_epi32(x_clipped_v, permute_mask_l8_v);
|
228 |
+
_mm_storel_epi64(
|
229 |
+
reinterpret_cast<__m128i*>(dst + i),
|
230 |
+
_mm256_castsi256_si128(x_clipped_v));
|
231 |
+
}
|
232 |
+
|
233 |
+
for (; i < len; ++i) {
|
234 |
+
float transformed = src[i] * inverse_scale;
|
235 |
+
|
236 |
+
// Not exactly the same behavior as the vectorized code.
|
237 |
+
// The vectorized code above always rounds to even in halfway cases
|
238 |
+
// (https://software.intel.com/en-us/node/523819), but std::nearbyint
|
239 |
+
// does the same only when the current rounding mode is FE_TONEAREST.
|
240 |
+
// However, in practice, this should not be a problem because most cases
|
241 |
+
// use the default rounding mode FE_TONEAREST.
|
242 |
+
// Note that we cannot implement the same behavior as the vectorized code
|
243 |
+
// using std::round because it does rounding away from zero in halfway
|
244 |
+
// cases.
|
245 |
+
transformed = zero_point + std::nearbyint(transformed);
|
246 |
+
float clipped =
|
247 |
+
std::min(std::max(transformed, float(min_val)), float(max_val));
|
248 |
+
dst[i] = clipped;
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
template<>
|
253 |
+
struct Vectorized<c10::qint32> : public Vectorizedqi {
|
254 |
+
using size_type = int;
|
255 |
+
static constexpr size_type size() {
|
256 |
+
return 8;
|
257 |
+
}
|
258 |
+
|
259 |
+
static constexpr int float_num_vecs() {
|
260 |
+
return 1;
|
261 |
+
}
|
262 |
+
|
263 |
+
static constexpr int int_num_vecs() {
|
264 |
+
return 1;
|
265 |
+
}
|
266 |
+
|
267 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
268 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
269 |
+
using value_type = c10::qint32::underlying;
|
270 |
+
|
271 |
+
public:
|
272 |
+
using Vectorizedqi::Vectorizedqi;
|
273 |
+
Vectorized() {}
|
274 |
+
|
275 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
276 |
+
|
277 |
+
// Broadcast constructor
|
278 |
+
Vectorized(const c10::qint32& val) {
|
279 |
+
value_type uw = val.val_;
|
280 |
+
vals = _mm256_set1_epi32(uw);
|
281 |
+
}
|
282 |
+
|
283 |
+
void store(void* ptr, int count = size()) const {
|
284 |
+
if (count != size()) {
|
285 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
286 |
+
} else {
|
287 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
288 |
+
}
|
289 |
+
}
|
290 |
+
|
291 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
292 |
+
return Vectorized<c10::qint32>(ptr);
|
293 |
+
}
|
294 |
+
|
295 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
296 |
+
__at_align__ value_type tmp_values[size()];
|
297 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
298 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
299 |
+
// instructions while a loop would be compiled to one instruction.
|
300 |
+
for (const auto i : c10::irange(size())) {
|
301 |
+
tmp_values[i] = 0;
|
302 |
+
}
|
303 |
+
std::memcpy(
|
304 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
305 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
306 |
+
}
|
307 |
+
|
308 |
+
float_vec_return_type dequantize(
|
309 |
+
Vectorized<float> scale,
|
310 |
+
Vectorized<float> /*zero_point*/,
|
311 |
+
Vectorized<float> scale_zp_premul) const {
|
312 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
313 |
+
return {vec::fmadd(scale, Vectorized<float>(float_vals), scale_zp_premul)};
|
314 |
+
}
|
315 |
+
|
316 |
+
float_vec_return_type dequantize(
|
317 |
+
Vectorized<float> scale,
|
318 |
+
Vectorized<float> zero_point) const {
|
319 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
320 |
+
return {(Vectorized<float>(float_vals) - zero_point) * scale};
|
321 |
+
}
|
322 |
+
|
323 |
+
static Vectorized<c10::qint32> quantize(
|
324 |
+
const float_vec_return_type& rhs,
|
325 |
+
float scale,
|
326 |
+
int32_t zero_point,
|
327 |
+
float /*inverse_scale*/) {
|
328 |
+
Vectorized<c10::qint32> retval;
|
329 |
+
auto rhs_data = (__m256)rhs[0];
|
330 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
331 |
+
scale, zero_point, (float*)&rhs_data, (c10::qint32*)&retval.vals, 8);
|
332 |
+
return retval;
|
333 |
+
}
|
334 |
+
|
335 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
336 |
+
return _mm256_max_epi32(vals, b.vals);
|
337 |
+
}
|
338 |
+
|
339 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
340 |
+
return _mm256_min_epi32(vals, b.vals);
|
341 |
+
}
|
342 |
+
|
343 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
344 |
+
return maximum(zero_point);
|
345 |
+
}
|
346 |
+
|
347 |
+
Vectorized<c10::qint32> relu6(
|
348 |
+
Vectorized<c10::qint32> zero_point,
|
349 |
+
Vectorized<c10::qint32> q_six) {
|
350 |
+
return _mm256_min_epi32(
|
351 |
+
_mm256_max_epi32(vals, zero_point.vals), q_six.vals);
|
352 |
+
}
|
353 |
+
|
354 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
355 |
+
return {_mm256_sub_epi32(vals, b)};
|
356 |
+
}
|
357 |
+
|
358 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
359 |
+
const int_vec_return_type& inp,
|
360 |
+
float multiplier,
|
361 |
+
int32_t zero_point) {
|
362 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
363 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
364 |
+
|
365 |
+
__m256 scaled = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier_v);
|
366 |
+
__m256i rounded = _mm256_cvtps_epi32(scaled);
|
367 |
+
return _mm256_add_epi32(rounded, zero_point_v);
|
368 |
+
}
|
369 |
+
|
370 |
+
private:
|
371 |
+
// Load from memory constructor
|
372 |
+
Vectorized(const void* ptr) {
|
373 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
374 |
+
}
|
375 |
+
};
|
376 |
+
|
377 |
+
template <>
|
378 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
379 |
+
return a.maximum(b);
|
380 |
+
}
|
381 |
+
|
382 |
+
template <>
|
383 |
+
Vectorized<c10::qint32> inline operator*(
|
384 |
+
const Vectorized<c10::qint32>& a,
|
385 |
+
const Vectorized<c10::qint32>& b) {
|
386 |
+
return _mm256_mullo_epi32(a, b);
|
387 |
+
}
|
388 |
+
|
389 |
+
template <>
|
390 |
+
Vectorized<c10::qint32> inline operator+(
|
391 |
+
const Vectorized<c10::qint32>& a,
|
392 |
+
const Vectorized<c10::qint32>& b) {
|
393 |
+
return _mm256_add_epi32(a, b);
|
394 |
+
}
|
395 |
+
|
396 |
+
/*
|
397 |
+
* Convert values from int32 back to int8/uint8
|
398 |
+
*/
|
399 |
+
template <typename T>
|
400 |
+
__m256i RequantizeAvx2(
|
401 |
+
const std::array<Vectorized<c10::qint32>, 4>& inp,
|
402 |
+
__m256 multiplier,
|
403 |
+
__m256i zp) {
|
404 |
+
static_assert(
|
405 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
406 |
+
"Only int8_t/uint8_t are supported");
|
407 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
408 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
409 |
+
__m256i permute_mask_v =
|
410 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
411 |
+
__m256 x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier);
|
412 |
+
__m256 y_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[1]), multiplier);
|
413 |
+
__m256 z_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[2]), multiplier);
|
414 |
+
__m256 w_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[3]), multiplier);
|
415 |
+
|
416 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
|
417 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_scaled_v);
|
418 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_scaled_v);
|
419 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_scaled_v);
|
420 |
+
|
421 |
+
/* Add zero point */
|
422 |
+
__m256i x_v = _mm256_add_epi32(x_rounded_v, zp);
|
423 |
+
__m256i y_v = _mm256_add_epi32(y_rounded_v, zp);
|
424 |
+
__m256i z_v = _mm256_add_epi32(z_rounded_v, zp);
|
425 |
+
__m256i w_v = _mm256_add_epi32(w_rounded_v, zp);
|
426 |
+
|
427 |
+
/* Pack to int16_t and saturate */
|
428 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_v, y_v);
|
429 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_v, w_v);
|
430 |
+
|
431 |
+
__m256i xyzw_clamped_v =
|
432 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
433 |
+
|
434 |
+
/*
|
435 |
+
* xyzw_clamped_v has results in the following layout so we need to
|
436 |
+
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7
|
437 |
+
*/
|
438 |
+
xyzw_clamped_v = _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
439 |
+
return xyzw_clamped_v;
|
440 |
+
}
|
441 |
+
|
442 |
+
template<>
|
443 |
+
struct Vectorized<c10::qint8> : public Vectorizedqi {
|
444 |
+
static constexpr int size() {
|
445 |
+
return 32;
|
446 |
+
}
|
447 |
+
|
448 |
+
static constexpr int float_num_vecs() {
|
449 |
+
return 4;
|
450 |
+
}
|
451 |
+
|
452 |
+
static constexpr int int_num_vecs() {
|
453 |
+
return 4;
|
454 |
+
}
|
455 |
+
|
456 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
457 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
458 |
+
using value_type = typename c10::qint8::underlying;
|
459 |
+
|
460 |
+
public:
|
461 |
+
using Vectorizedqi::Vectorizedqi;
|
462 |
+
|
463 |
+
Vectorized() {}
|
464 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
465 |
+
|
466 |
+
// Broadcast constructor
|
467 |
+
Vectorized(const c10::qint8& val) {
|
468 |
+
value_type uw = val.val_;
|
469 |
+
vals = _mm256_set1_epi8(uw);
|
470 |
+
}
|
471 |
+
|
472 |
+
// This is needed because the compiler emits awful code for the default
|
473 |
+
// constructor for moving the enum
|
474 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
475 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
476 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
477 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
478 |
+
#endif
|
479 |
+
Vectorized(const Vectorized<c10::qint8>& other) : Vectorizedqi(other.vals) { }
|
480 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
481 |
+
|
482 |
+
void store(void* ptr, int count = size()) const {
|
483 |
+
if (count != size()) {
|
484 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
485 |
+
} else {
|
486 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
487 |
+
}
|
488 |
+
}
|
489 |
+
|
490 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
491 |
+
return Vectorized<c10::qint8>(ptr);
|
492 |
+
}
|
493 |
+
|
494 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
495 |
+
__at_align__ value_type tmp_values[size()];
|
496 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
497 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
498 |
+
// instructions while a loop would be compiled to one instruction.
|
499 |
+
for (const auto i : c10::irange(size())) {
|
500 |
+
tmp_values[i] = 0;
|
501 |
+
}
|
502 |
+
std::memcpy(
|
503 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
504 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
505 |
+
}
|
506 |
+
|
507 |
+
private:
|
508 |
+
__m256i cvtepi8_epi32(__m128i epi8_vals) const {
|
509 |
+
return _mm256_cvtepi8_epi32(epi8_vals);
|
510 |
+
}
|
511 |
+
|
512 |
+
public:
|
513 |
+
float_vec_return_type dequantize(
|
514 |
+
Vectorized<float> scale,
|
515 |
+
Vectorized<float> /*zero_point*/,
|
516 |
+
Vectorized<float> scale_neg_zp_premul) const {
|
517 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
518 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
519 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
520 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
521 |
+
|
522 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
523 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
524 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
525 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
526 |
+
|
527 |
+
auto val0 =
|
528 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_neg_zp_premul);
|
529 |
+
auto val1 =
|
530 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_neg_zp_premul);
|
531 |
+
auto val2 =
|
532 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_neg_zp_premul);
|
533 |
+
auto val3 =
|
534 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_neg_zp_premul);
|
535 |
+
return {val0, val1, val2, val3};
|
536 |
+
}
|
537 |
+
|
538 |
+
float_vec_return_type dequantize(
|
539 |
+
Vectorized<float> scale,
|
540 |
+
Vectorized<float> zero_point) const {
|
541 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
542 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
543 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
544 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
545 |
+
|
546 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
547 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
548 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
549 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
550 |
+
|
551 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
552 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
553 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
554 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
555 |
+
return {val0, val1, val2, val3};
|
556 |
+
}
|
557 |
+
|
558 |
+
static Vectorized<c10::qint8> quantize(
|
559 |
+
const float_vec_return_type& rhs,
|
560 |
+
float /*scale*/,
|
561 |
+
int32_t zero_point,
|
562 |
+
float inverse_scale) {
|
563 |
+
auto* rhs_data = (float*)rhs.data();
|
564 |
+
int8_t quantized_values[32];
|
565 |
+
QuantizeAvx2<value_type>(
|
566 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
567 |
+
return Vectorized<c10::qint8>::loadu(quantized_values);
|
568 |
+
}
|
569 |
+
|
570 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
571 |
+
return _mm256_max_epi8(vals, b.vals);
|
572 |
+
}
|
573 |
+
|
574 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
575 |
+
return _mm256_min_epi8(vals, b.vals);
|
576 |
+
}
|
577 |
+
|
578 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
579 |
+
return maximum(zero_point);
|
580 |
+
}
|
581 |
+
|
582 |
+
Vectorized<c10::qint8> relu6(
|
583 |
+
Vectorized<c10::qint8> zero_point,
|
584 |
+
Vectorized<c10::qint8> q_six) {
|
585 |
+
return _mm256_min_epi8(
|
586 |
+
_mm256_max_epi8(vals, zero_point.vals), q_six.vals);
|
587 |
+
}
|
588 |
+
|
589 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
590 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
591 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
592 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
593 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
594 |
+
|
595 |
+
__m256i int32_val0 = cvtepi8_epi32(int_val0);
|
596 |
+
__m256i int32_val1 = cvtepi8_epi32(int_val1);
|
597 |
+
__m256i int32_val2 = cvtepi8_epi32(int_val2);
|
598 |
+
__m256i int32_val3 = cvtepi8_epi32(int_val3);
|
599 |
+
|
600 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
601 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
602 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
603 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
604 |
+
|
605 |
+
__m256i int32_b0 = cvtepi8_epi32(int_b0);
|
606 |
+
__m256i int32_b1 = cvtepi8_epi32(int_b1);
|
607 |
+
__m256i int32_b2 = cvtepi8_epi32(int_b2);
|
608 |
+
__m256i int32_b3 = cvtepi8_epi32(int_b3);
|
609 |
+
|
610 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
611 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
612 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
613 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
614 |
+
|
615 |
+
return {Vectorized<c10::qint32>(res_0),
|
616 |
+
Vectorized<c10::qint32>(res_1),
|
617 |
+
Vectorized<c10::qint32>(res_2),
|
618 |
+
Vectorized<c10::qint32>(res_3)};
|
619 |
+
}
|
620 |
+
|
621 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
622 |
+
const int_vec_return_type& inp,
|
623 |
+
float multiplier,
|
624 |
+
int32_t zero_point) {
|
625 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
626 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
627 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
628 |
+
}
|
629 |
+
|
630 |
+
private:
|
631 |
+
// Load from memory constructor
|
632 |
+
Vectorized(const void* ptr) {
|
633 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
634 |
+
}
|
635 |
+
};
|
636 |
+
|
637 |
+
template <>
|
638 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
639 |
+
return a.maximum(b);
|
640 |
+
}
|
641 |
+
|
642 |
+
template<>
|
643 |
+
struct Vectorized<c10::quint8> : public Vectorizedqi {
|
644 |
+
static constexpr int size() {
|
645 |
+
return 32;
|
646 |
+
}
|
647 |
+
|
648 |
+
static constexpr int float_num_vecs() {
|
649 |
+
return 4;
|
650 |
+
}
|
651 |
+
|
652 |
+
static constexpr int int_num_vecs() {
|
653 |
+
return 4;
|
654 |
+
}
|
655 |
+
|
656 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
657 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
658 |
+
using value_type = typename c10::quint8::underlying;
|
659 |
+
|
660 |
+
public:
|
661 |
+
using Vectorizedqi::Vectorizedqi;
|
662 |
+
Vectorized() {}
|
663 |
+
|
664 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
665 |
+
|
666 |
+
// Broadcast constructor
|
667 |
+
Vectorized(const c10::quint8& val) {
|
668 |
+
value_type uw = val.val_;
|
669 |
+
vals = _mm256_set1_epi8(uw);
|
670 |
+
}
|
671 |
+
|
672 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
673 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
674 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
675 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
676 |
+
#endif
|
677 |
+
Vectorized(const Vectorized<c10::quint8>& other) : Vectorizedqi(other.vals) { }
|
678 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
679 |
+
|
680 |
+
void store(void* ptr, int count = size()) const {
|
681 |
+
if (count != size()) {
|
682 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
683 |
+
} else {
|
684 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
685 |
+
}
|
686 |
+
}
|
687 |
+
|
688 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
689 |
+
return Vectorized<c10::quint8>(ptr);
|
690 |
+
}
|
691 |
+
|
692 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
693 |
+
__at_align__ value_type tmp_values[size()];
|
694 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
695 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
696 |
+
// instructions while a loop would be compiled to one instruction.
|
697 |
+
for (const auto i : c10::irange(size())) {
|
698 |
+
tmp_values[i] = 0;
|
699 |
+
}
|
700 |
+
std::memcpy(
|
701 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
702 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
703 |
+
}
|
704 |
+
|
705 |
+
private:
|
706 |
+
__m256i cvtepu8_epi32(__m128i epu8_vals) const {
|
707 |
+
return _mm256_cvtepu8_epi32(epu8_vals);
|
708 |
+
}
|
709 |
+
|
710 |
+
public:
|
711 |
+
float_vec_return_type dequantize(
|
712 |
+
Vectorized<float> scale,
|
713 |
+
Vectorized<float> /*zero_point*/,
|
714 |
+
Vectorized<float> scale_zp_premul) const {
|
715 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
716 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
717 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
718 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
719 |
+
|
720 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
721 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
722 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
723 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
724 |
+
|
725 |
+
auto val0 =
|
726 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_zp_premul);
|
727 |
+
auto val1 =
|
728 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_zp_premul);
|
729 |
+
auto val2 =
|
730 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_zp_premul);
|
731 |
+
auto val3 =
|
732 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_zp_premul);
|
733 |
+
return {val0, val1, val2, val3};
|
734 |
+
}
|
735 |
+
|
736 |
+
float_vec_return_type dequantize(
|
737 |
+
Vectorized<float> scale,
|
738 |
+
Vectorized<float> zero_point) const {
|
739 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
740 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
741 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
742 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
743 |
+
|
744 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
745 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
746 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
747 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
748 |
+
|
749 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
750 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
751 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
752 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
753 |
+
return {val0, val1, val2, val3};
|
754 |
+
}
|
755 |
+
|
756 |
+
static Vectorized<c10::quint8> quantize(
|
757 |
+
const float_vec_return_type& rhs,
|
758 |
+
float /*scale*/,
|
759 |
+
int32_t zero_point,
|
760 |
+
float inverse_scale) {
|
761 |
+
auto* rhs_data = (float*)rhs.data();
|
762 |
+
uint8_t quantized_values[32];
|
763 |
+
QuantizeAvx2<value_type>(
|
764 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
765 |
+
return Vectorized<c10::quint8>::loadu(quantized_values);
|
766 |
+
}
|
767 |
+
|
768 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
769 |
+
return _mm256_max_epu8(vals, b.vals);
|
770 |
+
}
|
771 |
+
|
772 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
773 |
+
return _mm256_min_epu8(vals, b.vals);
|
774 |
+
}
|
775 |
+
|
776 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
777 |
+
return maximum(zero_point);
|
778 |
+
}
|
779 |
+
|
780 |
+
Vectorized<c10::quint8> relu6(
|
781 |
+
Vectorized<c10::quint8> zero_point,
|
782 |
+
Vectorized<c10::quint8> q_six) {
|
783 |
+
return _mm256_min_epu8(
|
784 |
+
_mm256_max_epu8(vals, zero_point.vals), q_six.vals);
|
785 |
+
}
|
786 |
+
|
787 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
788 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
789 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
790 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
791 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
792 |
+
|
793 |
+
__m256i int32_val0 = cvtepu8_epi32(int_val0);
|
794 |
+
__m256i int32_val1 = cvtepu8_epi32(int_val1);
|
795 |
+
__m256i int32_val2 = cvtepu8_epi32(int_val2);
|
796 |
+
__m256i int32_val3 = cvtepu8_epi32(int_val3);
|
797 |
+
|
798 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
799 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
800 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
801 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
802 |
+
|
803 |
+
__m256i int32_b0 = cvtepu8_epi32(int_b0);
|
804 |
+
__m256i int32_b1 = cvtepu8_epi32(int_b1);
|
805 |
+
__m256i int32_b2 = cvtepu8_epi32(int_b2);
|
806 |
+
__m256i int32_b3 = cvtepu8_epi32(int_b3);
|
807 |
+
|
808 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
809 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
810 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
811 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
812 |
+
return {Vectorized<c10::qint32>(res_0),
|
813 |
+
Vectorized<c10::qint32>(res_1),
|
814 |
+
Vectorized<c10::qint32>(res_2),
|
815 |
+
Vectorized<c10::qint32>(res_3)};
|
816 |
+
}
|
817 |
+
|
818 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
819 |
+
const int_vec_return_type& inp,
|
820 |
+
float multiplier,
|
821 |
+
int32_t zero_point) {
|
822 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
823 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
824 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
825 |
+
}
|
826 |
+
|
827 |
+
private:
|
828 |
+
|
829 |
+
// Load from memory constructor
|
830 |
+
Vectorized(const void* ptr) {
|
831 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
832 |
+
}
|
833 |
+
};
|
834 |
+
|
835 |
+
template <>
|
836 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
837 |
+
return a.maximum(b);
|
838 |
+
}
|
839 |
+
|
840 |
+
#else
|
841 |
+
|
842 |
+
// NOTE: These are low-performance implementations that we fall back on
|
843 |
+
// if we are not building with AVX2. This may not be an issue, because
|
844 |
+
// currently for quantization we assume the user has at least AVX512
|
845 |
+
// installed, so these can simply act as a reference implementation.
|
846 |
+
//
|
847 |
+
// If in the future we relax this requirement (AVX2+), we should probably
|
848 |
+
// revisit these implementations
|
849 |
+
|
850 |
+
template <
|
851 |
+
typename T,
|
852 |
+
typename float_vec_return_type_,
|
853 |
+
typename int_vec_return_type_,
|
854 |
+
int size_>
|
855 |
+
struct VectorizedQuantizedConverter {
|
856 |
+
static constexpr int size() {
|
857 |
+
return size_;
|
858 |
+
}
|
859 |
+
|
860 |
+
static constexpr int float_num_vecs() {
|
861 |
+
return size() / 8;
|
862 |
+
}
|
863 |
+
|
864 |
+
static constexpr int int_num_vecs() {
|
865 |
+
return size() / 8;
|
866 |
+
}
|
867 |
+
|
868 |
+
using float_vec_return_type = float_vec_return_type_;
|
869 |
+
using int_vec_return_type = int_vec_return_type_;
|
870 |
+
|
871 |
+
using value_type = typename T::underlying;
|
872 |
+
std::array<value_type, size_> vals;
|
873 |
+
|
874 |
+
VectorizedQuantizedConverter(T val) {
|
875 |
+
for (const auto i : c10::irange(size())) {
|
876 |
+
vals[i] = val.val_;
|
877 |
+
}
|
878 |
+
}
|
879 |
+
|
880 |
+
VectorizedQuantizedConverter(const void* ptr) {
|
881 |
+
memcpy(vals.data(), ptr, sizeof(value_type) * size());
|
882 |
+
}
|
883 |
+
|
884 |
+
void store(void* ptr, int count = size()) const {
|
885 |
+
memcpy(ptr, vals.data(), count * sizeof(value_type));
|
886 |
+
}
|
887 |
+
|
888 |
+
float_vec_return_type dequantize(
|
889 |
+
Vectorized<float> scale,
|
890 |
+
Vectorized<float> zero_point,
|
891 |
+
Vectorized<float> /*scale_zp_premul*/) const {
|
892 |
+
float_vec_return_type rv;
|
893 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
894 |
+
float tmp_vals[8];
|
895 |
+
for (const auto j : c10::irange(8)) {
|
896 |
+
tmp_vals[j] = at::native::dequantize_val<T>(
|
897 |
+
scale[j], zero_point[j], T(vals[8 * i + j]));
|
898 |
+
}
|
899 |
+
rv[i] = Vectorized<float>(tmp_vals[0],
|
900 |
+
tmp_vals[1],
|
901 |
+
tmp_vals[2],
|
902 |
+
tmp_vals[3],
|
903 |
+
tmp_vals[4],
|
904 |
+
tmp_vals[5],
|
905 |
+
tmp_vals[6],
|
906 |
+
tmp_vals[7]);
|
907 |
+
}
|
908 |
+
return rv;
|
909 |
+
}
|
910 |
+
|
911 |
+
float_vec_return_type dequantize(
|
912 |
+
Vectorized<float> scale,
|
913 |
+
Vectorized<float> zero_point) const {
|
914 |
+
Vectorized<float> scale_zp_premul;
|
915 |
+
return dequantize(scale, zero_point, scale_zp_premul);
|
916 |
+
}
|
917 |
+
|
918 |
+
protected:
|
919 |
+
VectorizedQuantizedConverter() {}
|
920 |
+
};
|
921 |
+
|
922 |
+
template <>
|
923 |
+
struct Vectorized<c10::qint32> : public VectorizedQuantizedConverter<
|
924 |
+
c10::qint32,
|
925 |
+
std::array<Vectorized<float>, 1>,
|
926 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
927 |
+
8> {
|
928 |
+
Vectorized()
|
929 |
+
: VectorizedQuantizedConverter<
|
930 |
+
c10::qint32,
|
931 |
+
std::array<Vectorized<float>, 1>,
|
932 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
933 |
+
8>() {}
|
934 |
+
Vectorized(c10::qint32 val)
|
935 |
+
: VectorizedQuantizedConverter<
|
936 |
+
c10::qint32,
|
937 |
+
std::array<Vectorized<float>, 1>,
|
938 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
939 |
+
8>(val) {}
|
940 |
+
Vectorized(const void* ptr)
|
941 |
+
: VectorizedQuantizedConverter<
|
942 |
+
c10::qint32,
|
943 |
+
std::array<Vectorized<float>, 1>,
|
944 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
945 |
+
8>(ptr) {}
|
946 |
+
|
947 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
948 |
+
return Vectorized<c10::qint32>(ptr);
|
949 |
+
}
|
950 |
+
|
951 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
952 |
+
__at_align__ value_type tmp_values[size()];
|
953 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
954 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
955 |
+
// instructions while a loop would be compiled to one instruction.
|
956 |
+
for (const auto i : c10::irange(size())) {
|
957 |
+
tmp_values[i] = 0;
|
958 |
+
}
|
959 |
+
std::memcpy(
|
960 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
961 |
+
return Vectorized<c10::qint32>(tmp_values);
|
962 |
+
}
|
963 |
+
|
964 |
+
static Vectorized<c10::qint32> quantize(
|
965 |
+
const float_vec_return_type& rhs,
|
966 |
+
float scale,
|
967 |
+
int32_t zero_point,
|
968 |
+
float /*inverse_scale*/) {
|
969 |
+
std::array<value_type, size()> qvals;
|
970 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
971 |
+
|
972 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
973 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
974 |
+
}
|
975 |
+
|
976 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
977 |
+
scale,
|
978 |
+
zero_point,
|
979 |
+
float_vals.data(),
|
980 |
+
(c10::qint32*)qvals.data(),
|
981 |
+
8 * float_num_vecs());
|
982 |
+
|
983 |
+
return Vectorized<c10::qint32>::loadu(qvals.data());
|
984 |
+
}
|
985 |
+
|
986 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
987 |
+
Vectorized<c10::qint32> retval;
|
988 |
+
for (const auto i : c10::irange(size())) {
|
989 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
990 |
+
}
|
991 |
+
return retval;
|
992 |
+
}
|
993 |
+
|
994 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
995 |
+
Vectorized<c10::qint32> retval;
|
996 |
+
for (const auto i : c10::irange(size())) {
|
997 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
998 |
+
}
|
999 |
+
return retval;
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
1003 |
+
return maximum(zero_point);
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
|
1007 |
+
Vectorized<c10::qint32> relu6(
|
1008 |
+
Vectorized<c10::qint32> zero_point,
|
1009 |
+
Vectorized<c10::qint32> q_six) {
|
1010 |
+
Vectorized<c10::qint32> retval;
|
1011 |
+
for (const auto i : c10::irange(size())) {
|
1012 |
+
retval.vals[i] = std::min<value_type>(
|
1013 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1014 |
+
}
|
1015 |
+
return retval;
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
1019 |
+
int_vec_return_type retval;
|
1020 |
+
for (const auto i : c10::irange(size())) {
|
1021 |
+
retval[0].vals[i] = vals[i] - b.vals[i];
|
1022 |
+
}
|
1023 |
+
return retval;
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
1027 |
+
const int_vec_return_type& inp,
|
1028 |
+
float multiplier,
|
1029 |
+
int32_t zero_point) {
|
1030 |
+
Vectorized<c10::qint32> retval;
|
1031 |
+
for (const auto i : c10::irange(size())) {
|
1032 |
+
retval.vals[i] =
|
1033 |
+
std::nearbyint(static_cast<float>(inp[0].vals[i]) * multiplier) +
|
1034 |
+
zero_point;
|
1035 |
+
}
|
1036 |
+
return retval;
|
1037 |
+
}
|
1038 |
+
};
|
1039 |
+
|
1040 |
+
template <>
|
1041 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
1042 |
+
return a.maximum(b);
|
1043 |
+
}
|
1044 |
+
|
1045 |
+
template <>
|
1046 |
+
Vectorized<c10::qint32> inline operator*(
|
1047 |
+
const Vectorized<c10::qint32>& a,
|
1048 |
+
const Vectorized<c10::qint32>& b) {
|
1049 |
+
Vectorized<c10::qint32> retval;
|
1050 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1051 |
+
retval.vals[i] = a.vals[i] * b.vals[i];
|
1052 |
+
}
|
1053 |
+
return retval;
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
template <>
|
1057 |
+
Vectorized<c10::qint32> inline operator+(
|
1058 |
+
const Vectorized<c10::qint32>& a,
|
1059 |
+
const Vectorized<c10::qint32>& b) {
|
1060 |
+
Vectorized<c10::qint32> retval;
|
1061 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1062 |
+
retval.vals[i] = a.vals[i] + b.vals[i];
|
1063 |
+
}
|
1064 |
+
return retval;
|
1065 |
+
}
|
1066 |
+
|
1067 |
+
template <>
|
1068 |
+
struct Vectorized<c10::qint8> : public VectorizedQuantizedConverter<
|
1069 |
+
c10::qint8,
|
1070 |
+
std::array<Vectorized<float>, 4>,
|
1071 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1072 |
+
32> {
|
1073 |
+
Vectorized()
|
1074 |
+
: VectorizedQuantizedConverter<
|
1075 |
+
c10::qint8,
|
1076 |
+
std::array<Vectorized<float>, 4>,
|
1077 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1078 |
+
32>() {}
|
1079 |
+
Vectorized(c10::qint8 val)
|
1080 |
+
: VectorizedQuantizedConverter<
|
1081 |
+
c10::qint8,
|
1082 |
+
std::array<Vectorized<float>, 4>,
|
1083 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1084 |
+
32>(val) {}
|
1085 |
+
Vectorized(const void* ptr)
|
1086 |
+
: VectorizedQuantizedConverter<
|
1087 |
+
c10::qint8,
|
1088 |
+
std::array<Vectorized<float>, 4>,
|
1089 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1090 |
+
32>(ptr) {}
|
1091 |
+
|
1092 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
1093 |
+
return Vectorized<c10::qint8>(ptr);
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
1097 |
+
__at_align__ value_type tmp_values[size()];
|
1098 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1099 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1100 |
+
// instructions while a loop would be compiled to one instruction.
|
1101 |
+
for (const auto i : c10::irange(size())) {
|
1102 |
+
tmp_values[i] = 0;
|
1103 |
+
}
|
1104 |
+
std::memcpy(
|
1105 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1106 |
+
return Vectorized<c10::qint8>(tmp_values);
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
static Vectorized<c10::qint8> quantize(
|
1110 |
+
const float_vec_return_type& rhs,
|
1111 |
+
float scale,
|
1112 |
+
int32_t zero_point,
|
1113 |
+
float /*inverse_scale*/) {
|
1114 |
+
std::array<value_type, size()> qvals;
|
1115 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1116 |
+
|
1117 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1118 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
at::native::quantize_vec<c10::qint8>(
|
1122 |
+
scale,
|
1123 |
+
zero_point,
|
1124 |
+
float_vals.data(),
|
1125 |
+
(c10::qint8*)qvals.data(),
|
1126 |
+
8 * float_num_vecs());
|
1127 |
+
|
1128 |
+
return Vectorized<c10::qint8>::loadu(qvals.data());
|
1129 |
+
}
|
1130 |
+
|
1131 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
1132 |
+
Vectorized<c10::qint8> retval;
|
1133 |
+
for (const auto i : c10::irange(size())) {
|
1134 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1135 |
+
}
|
1136 |
+
return retval;
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
1140 |
+
Vectorized<c10::qint8> retval;
|
1141 |
+
for (const auto i : c10::irange(size())) {
|
1142 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1143 |
+
}
|
1144 |
+
return retval;
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
1148 |
+
return maximum(zero_point);
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
Vectorized<c10::qint8> relu6(
|
1152 |
+
Vectorized<c10::qint8> zero_point,
|
1153 |
+
Vectorized<c10::qint8> q_six) {
|
1154 |
+
Vectorized<c10::qint8> retval;
|
1155 |
+
for (const auto i : c10::irange(size())) {
|
1156 |
+
retval.vals[i] = std::min<value_type>(
|
1157 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1158 |
+
}
|
1159 |
+
return retval;
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
1163 |
+
int_vec_return_type retval;
|
1164 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1165 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1166 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1167 |
+
retval[i].vals[j] =
|
1168 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1169 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
return retval;
|
1173 |
+
}
|
1174 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
1175 |
+
const int_vec_return_type& inp,
|
1176 |
+
float multiplier,
|
1177 |
+
int32_t zero_point) {
|
1178 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1179 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1180 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1181 |
+
Vectorized<c10::qint8> retval;
|
1182 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1183 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1184 |
+
int32_t rounded =
|
1185 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1186 |
+
zero_point;
|
1187 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1188 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1189 |
+
}
|
1190 |
+
}
|
1191 |
+
return retval;
|
1192 |
+
}
|
1193 |
+
};
|
1194 |
+
|
1195 |
+
template <>
|
1196 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
1197 |
+
return a.maximum(b);
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
template <>
|
1201 |
+
struct Vectorized<c10::quint8> : public VectorizedQuantizedConverter<
|
1202 |
+
c10::quint8,
|
1203 |
+
std::array<Vectorized<float>, 4>,
|
1204 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1205 |
+
32> {
|
1206 |
+
Vectorized()
|
1207 |
+
: VectorizedQuantizedConverter<
|
1208 |
+
c10::quint8,
|
1209 |
+
std::array<Vectorized<float>, 4>,
|
1210 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1211 |
+
32>() {}
|
1212 |
+
Vectorized(c10::quint8 val)
|
1213 |
+
: VectorizedQuantizedConverter<
|
1214 |
+
c10::quint8,
|
1215 |
+
std::array<Vectorized<float>, 4>,
|
1216 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1217 |
+
32>(val) {}
|
1218 |
+
Vectorized(const void* ptr)
|
1219 |
+
: VectorizedQuantizedConverter<
|
1220 |
+
c10::quint8,
|
1221 |
+
std::array<Vectorized<float>, 4>,
|
1222 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1223 |
+
32>(ptr) {}
|
1224 |
+
|
1225 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
1226 |
+
return Vectorized<c10::quint8>(ptr);
|
1227 |
+
}
|
1228 |
+
|
1229 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
1230 |
+
__at_align__ value_type tmp_values[size()];
|
1231 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1232 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1233 |
+
// instructions while a loop would be compiled to one instruction.
|
1234 |
+
for (const auto i : c10::irange(size())) {
|
1235 |
+
tmp_values[i] = 0;
|
1236 |
+
}
|
1237 |
+
std::memcpy(
|
1238 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1239 |
+
return Vectorized<c10::quint8>(tmp_values);
|
1240 |
+
}
|
1241 |
+
|
1242 |
+
static Vectorized<c10::quint8> quantize(
|
1243 |
+
const float_vec_return_type& rhs,
|
1244 |
+
float scale,
|
1245 |
+
int32_t zero_point,
|
1246 |
+
float /*inverse_scale*/) {
|
1247 |
+
std::array<value_type, size()> qvals;
|
1248 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1249 |
+
|
1250 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1251 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
at::native::quantize_vec<c10::quint8>(
|
1255 |
+
scale,
|
1256 |
+
zero_point,
|
1257 |
+
float_vals.data(),
|
1258 |
+
(c10::quint8*)qvals.data(),
|
1259 |
+
8 * float_num_vecs());
|
1260 |
+
|
1261 |
+
return Vectorized<c10::quint8>::loadu(qvals.data());
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
1265 |
+
Vectorized<c10::quint8> retval;
|
1266 |
+
for (const auto i : c10::irange(size())) {
|
1267 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1268 |
+
}
|
1269 |
+
return retval;
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
1273 |
+
Vectorized<c10::quint8> retval;
|
1274 |
+
for (const auto i : c10::irange(size())) {
|
1275 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1276 |
+
}
|
1277 |
+
return retval;
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
1281 |
+
return maximum(zero_point);
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
|
1285 |
+
Vectorized<c10::quint8> relu6(
|
1286 |
+
Vectorized<c10::quint8> zero_point,
|
1287 |
+
Vectorized<c10::quint8> q_six) {
|
1288 |
+
Vectorized<c10::quint8> retval;
|
1289 |
+
for (const auto i : c10::irange(size())) {
|
1290 |
+
retval.vals[i] = std::min<value_type>(
|
1291 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1292 |
+
}
|
1293 |
+
return retval;
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
1297 |
+
int_vec_return_type retval;
|
1298 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1299 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1300 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1301 |
+
retval[i].vals[j] =
|
1302 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1303 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1304 |
+
}
|
1305 |
+
}
|
1306 |
+
return retval;
|
1307 |
+
}
|
1308 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
1309 |
+
const int_vec_return_type& inp,
|
1310 |
+
float multiplier,
|
1311 |
+
int32_t zero_point) {
|
1312 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1313 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1314 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1315 |
+
Vectorized<c10::quint8> retval;
|
1316 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1317 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1318 |
+
int32_t rounded =
|
1319 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1320 |
+
zero_point;
|
1321 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1322 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
return retval;
|
1326 |
+
}
|
1327 |
+
};
|
1328 |
+
|
1329 |
+
template <>
|
1330 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
1331 |
+
return a.maximum(b);
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
#endif // if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1335 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h
ADDED
@@ -0,0 +1,1108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
//
|
6 |
+
// Note [Do not compile initializers with AVX]
|
7 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
8 |
+
// If you define a static initializer in this file, the initialization will use
|
9 |
+
// AVX instructions because these object files are compiled with AVX enabled.
|
10 |
+
// We need to avoid non-trivial global data in these architecture specific files
|
11 |
+
// because there's no way to guard the global initializers with CPU capability
|
12 |
+
// detection.
|
13 |
+
//
|
14 |
+
// See https://github.com/pytorch/pytorch/issues/37577 for an instance
|
15 |
+
// of this bug in the past.
|
16 |
+
|
17 |
+
#include <array>
|
18 |
+
#include <algorithm>
|
19 |
+
#include <cassert>
|
20 |
+
#include <cstring>
|
21 |
+
#include <functional>
|
22 |
+
#include <cmath>
|
23 |
+
#include <type_traits>
|
24 |
+
#include <climits>
|
25 |
+
|
26 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
27 |
+
#include <ATen/native/Math.h>
|
28 |
+
#include <ATen/NumericUtils.h>
|
29 |
+
#include <c10/util/Half.h>
|
30 |
+
#include <c10/util/BFloat16.h>
|
31 |
+
#include <c10/util/BFloat16-math.h>
|
32 |
+
#include <c10/util/copysign.h>
|
33 |
+
#include <ATen/native/cpu/zmath.h>
|
34 |
+
#include <c10/util/TypeCast.h>
|
35 |
+
#include <c10/macros/Macros.h>
|
36 |
+
#include <c10/util/irange.h>
|
37 |
+
#include <c10/util/Load.h>
|
38 |
+
|
39 |
+
// These macros helped us unify vec_base.h
|
40 |
+
#ifdef CPU_CAPABILITY_AVX512
|
41 |
+
#if defined(__GNUC__)
|
42 |
+
#define __at_align__ __attribute__((aligned(64)))
|
43 |
+
#elif defined(_WIN32)
|
44 |
+
#define __at_align__ __declspec(align(64))
|
45 |
+
#else
|
46 |
+
#define __at_align__
|
47 |
+
#endif
|
48 |
+
#define VECTOR_WIDTH 64
|
49 |
+
#define int_vector __m512i
|
50 |
+
#else // CPU_CAPABILITY_AVX512
|
51 |
+
#if defined(__GNUC__)
|
52 |
+
#define __at_align__ __attribute__((aligned(32)))
|
53 |
+
#elif defined(_WIN32)
|
54 |
+
#define __at_align__ __declspec(align(32))
|
55 |
+
#else
|
56 |
+
#define __at_align__
|
57 |
+
#endif
|
58 |
+
#define VECTOR_WIDTH 32
|
59 |
+
#define int_vector __m256i
|
60 |
+
#endif // CPU_CAPABILITY_AVX512
|
61 |
+
|
62 |
+
namespace at::vec {
|
63 |
+
// See Note [CPU_CAPABILITY namespace]
|
64 |
+
inline namespace CPU_CAPABILITY {
|
65 |
+
// at::Half and at::BFloat16 should be treated as floating point
|
66 |
+
template <typename T>
|
67 |
+
struct is_floating_point:
|
68 |
+
std::integral_constant<bool,
|
69 |
+
std::is_floating_point<T>::value ||
|
70 |
+
std::is_same<T, at::Half>::value ||
|
71 |
+
std::is_same<T, at::BFloat16>::value> {
|
72 |
+
};
|
73 |
+
|
74 |
+
template<typename T>
|
75 |
+
constexpr bool is_floating_point_v = is_floating_point<T>::value;
|
76 |
+
|
77 |
+
template <typename T>
|
78 |
+
struct is_reduced_floating_point:
|
79 |
+
std::integral_constant<bool,
|
80 |
+
std::is_same<T, at::Half>::value ||
|
81 |
+
std::is_same<T, at::BFloat16>::value> {
|
82 |
+
};
|
83 |
+
|
84 |
+
template <typename T>
|
85 |
+
constexpr bool is_reduced_floating_point_v = is_reduced_floating_point<T>::value;
|
86 |
+
|
87 |
+
template<size_t n> struct int_of_size;
|
88 |
+
|
89 |
+
#define DEFINE_INT_OF_SIZE(int_t) \
|
90 |
+
template<> struct int_of_size<sizeof(int_t)> { using type = int_t; }
|
91 |
+
|
92 |
+
DEFINE_INT_OF_SIZE(int64_t);
|
93 |
+
DEFINE_INT_OF_SIZE(int32_t);
|
94 |
+
DEFINE_INT_OF_SIZE(int16_t);
|
95 |
+
DEFINE_INT_OF_SIZE(int8_t);
|
96 |
+
|
97 |
+
#undef DEFINE_INT_OF_SIZE
|
98 |
+
|
99 |
+
template <typename T>
|
100 |
+
using int_same_size_t = typename int_of_size<sizeof(T)>::type;
|
101 |
+
|
102 |
+
// NOTE: If you specialize on a type, you must define all operations!
|
103 |
+
|
104 |
+
// emulates Vectorized types
|
105 |
+
#if defined(__s390x__)
|
106 |
+
template <class T, class TEMP=void>
|
107 |
+
#else
|
108 |
+
template <class T>
|
109 |
+
#endif
|
110 |
+
struct Vectorized {
|
111 |
+
private:
|
112 |
+
__at_align__ T values[VECTOR_WIDTH / sizeof(T)];
|
113 |
+
public:
|
114 |
+
using value_type = T;
|
115 |
+
using size_type = int;
|
116 |
+
// Note [constexpr static function to avoid odr-usage compiler bug]
|
117 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
118 |
+
// Why, you might ask, is size defined to be a static constexpr function,
|
119 |
+
// rather than a more ordinary 'static constexpr int size;' variable?
|
120 |
+
// The problem lies within ODR rules for static constexpr members versus
|
121 |
+
// static constexpr functions. First, recall that this class (along with all
|
122 |
+
// of its derivations) live in an anonymous namespace: they are intended to be
|
123 |
+
// *completely* inlined at their use-sites, because we need to compile it
|
124 |
+
// multiple times for different instruction sets.
|
125 |
+
//
|
126 |
+
// Because of this constraint, we CANNOT provide a single definition for
|
127 |
+
// any static members in this class; since we want to compile the class
|
128 |
+
// multiple times, there wouldn't actually be any good place to put the
|
129 |
+
// definition. Now here is the problem: if we ODR-use a static constexpr
|
130 |
+
// member, we are *obligated* to provide a definition. Without the
|
131 |
+
// definition, you get a compile error like:
|
132 |
+
//
|
133 |
+
// relocation R_X86_64_PC32 against undefined symbol
|
134 |
+
// `_ZN2at6vec25612_GLOBAL__N_16VectorizedIdE4sizeE' can not be used when making
|
135 |
+
// a shared object; recompile with -fPIC
|
136 |
+
//
|
137 |
+
// If this were C++17, we could replace a static constexpr variable with
|
138 |
+
// an inline variable which doesn't require one definition. But we are not
|
139 |
+
// C++17. So the next best thing is to replace the member with a static
|
140 |
+
// constexpr (and therefore inline) function, which does not require ODR
|
141 |
+
// either.
|
142 |
+
//
|
143 |
+
// Also, technically according to the C++ standard, we don't have to define
|
144 |
+
// a constexpr variable if we never odr-use it. But it seems that some
|
145 |
+
// versions GCC/Clang have buggy determinations on whether or not an
|
146 |
+
// identifier is odr-used or not, and in any case it's hard to tell if
|
147 |
+
// a variable is odr-used or not. So best to just cut the problem at the root.
|
148 |
+
static constexpr size_type size() {
|
149 |
+
return VECTOR_WIDTH / sizeof(T);
|
150 |
+
}
|
151 |
+
Vectorized() : values{static_cast<T>(0)} {}
|
152 |
+
Vectorized(T val) {
|
153 |
+
for (int i = 0; i != size(); i++) {
|
154 |
+
values[i] = val;
|
155 |
+
}
|
156 |
+
}
|
157 |
+
template<typename... Args,
|
158 |
+
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
159 |
+
Vectorized(Args... vals) : values{vals...}{
|
160 |
+
}
|
161 |
+
// This also implies const T& operator[](int idx) const
|
162 |
+
inline operator const T*() const {
|
163 |
+
return values;
|
164 |
+
}
|
165 |
+
// This also implies T& operator[](int idx)
|
166 |
+
inline operator T*() {
|
167 |
+
return values;
|
168 |
+
}
|
169 |
+
// Return the values as char* for type punning
|
170 |
+
auto as_bytes() const -> const char* {
|
171 |
+
return reinterpret_cast<const char*>(values);
|
172 |
+
}
|
173 |
+
template <int64_t mask_>
|
174 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
175 |
+
int64_t mask = mask_;
|
176 |
+
Vectorized vector;
|
177 |
+
for (const auto i : c10::irange(size())) {
|
178 |
+
if (mask & 0x01) {
|
179 |
+
vector[i] = b[i];
|
180 |
+
} else {
|
181 |
+
vector[i] = a[i];
|
182 |
+
}
|
183 |
+
mask = mask >> 1;
|
184 |
+
}
|
185 |
+
return vector;
|
186 |
+
}
|
187 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
188 |
+
const Vectorized<T>& mask) {
|
189 |
+
Vectorized vector;
|
190 |
+
int_same_size_t<T> buffer[size()];
|
191 |
+
mask.store(buffer);
|
192 |
+
for (const auto i : c10::irange(size())) {
|
193 |
+
if (buffer[i] & 0x01)
|
194 |
+
{
|
195 |
+
vector[i] = b[i];
|
196 |
+
} else {
|
197 |
+
vector[i] = a[i];
|
198 |
+
}
|
199 |
+
}
|
200 |
+
return vector;
|
201 |
+
}
|
202 |
+
template<typename step_t> // step sometimes requires a higher precision type (e.g., T=int, step_t=double)
|
203 |
+
static Vectorized<T> arange(T base = static_cast<T>(0), step_t step = static_cast<step_t>(1)) {
|
204 |
+
Vectorized vector;
|
205 |
+
for (const auto i : c10::irange(size())) {
|
206 |
+
vector.values[i] = base + i * step;
|
207 |
+
}
|
208 |
+
return vector;
|
209 |
+
}
|
210 |
+
static Vectorized<T> set(const Vectorized<T>& a, const Vectorized<T>& b, int64_t count = size()) {
|
211 |
+
Vectorized vector;
|
212 |
+
for (const auto i : c10::irange(size())) {
|
213 |
+
if (i < count) {
|
214 |
+
vector[i] = b[i];
|
215 |
+
} else {
|
216 |
+
vector[i] = a[i];
|
217 |
+
}
|
218 |
+
}
|
219 |
+
return vector;
|
220 |
+
}
|
221 |
+
static Vectorized<T> loadu(const void* ptr) {
|
222 |
+
Vectorized vector;
|
223 |
+
std::memcpy(vector.values, ptr, VECTOR_WIDTH);
|
224 |
+
return vector;
|
225 |
+
}
|
226 |
+
static Vectorized<T> loadu(const void* ptr, int64_t count) {
|
227 |
+
Vectorized vector;
|
228 |
+
std::memcpy(vector.values, ptr, count * sizeof(T));
|
229 |
+
return vector;
|
230 |
+
}
|
231 |
+
void store(void* ptr, int count = size()) const {
|
232 |
+
std::memcpy(ptr, values, count * sizeof(T));
|
233 |
+
}
|
234 |
+
int zero_mask() const {
|
235 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
236 |
+
int mask = 0;
|
237 |
+
for (int i = 0; i < size(); ++ i) {
|
238 |
+
if (values[i] == static_cast<T>(0)) {
|
239 |
+
mask |= (1 << i);
|
240 |
+
}
|
241 |
+
}
|
242 |
+
return mask;
|
243 |
+
}
|
244 |
+
Vectorized<T> isnan() const {
|
245 |
+
Vectorized<T> vector;
|
246 |
+
for (int64_t i = 0; i != size(); i++) {
|
247 |
+
if (_isnan(values[i])) {
|
248 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
249 |
+
} else {
|
250 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
251 |
+
}
|
252 |
+
}
|
253 |
+
return vector;
|
254 |
+
}
|
255 |
+
bool has_inf_nan() const {
|
256 |
+
for (int64_t i = 0; i != size(); i++) {
|
257 |
+
if(_isnan(values[i]) || _isinf(values[i])) {
|
258 |
+
return true;
|
259 |
+
}
|
260 |
+
}
|
261 |
+
return false;
|
262 |
+
}
|
263 |
+
Vectorized<T> map(T (*const f)(T)) const {
|
264 |
+
Vectorized<T> ret;
|
265 |
+
for (int64_t i = 0; i != size(); i++) {
|
266 |
+
ret[i] = f(values[i]);
|
267 |
+
}
|
268 |
+
return ret;
|
269 |
+
}
|
270 |
+
Vectorized<T> map(T (*const f)(const T &)) const {
|
271 |
+
Vectorized<T> ret;
|
272 |
+
for (int64_t i = 0; i != size(); i++) {
|
273 |
+
ret[i] = f(values[i]);
|
274 |
+
}
|
275 |
+
return ret;
|
276 |
+
}
|
277 |
+
template <typename other_t_abs = T,
|
278 |
+
typename std::enable_if<!is_floating_point_v<other_t_abs> && !c10::is_complex<other_t_abs>::value, int>::type = 0>
|
279 |
+
Vectorized<T> abs() const {
|
280 |
+
// other_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
281 |
+
static_assert(std::is_same<other_t_abs, T>::value, "other_t_abs must be T");
|
282 |
+
return map([](T x) -> T { return x < static_cast<T>(0) ? -x : x; });
|
283 |
+
}
|
284 |
+
template <typename float_t_abs = T,
|
285 |
+
typename std::enable_if<is_floating_point_v<float_t_abs>, int>::type = 0>
|
286 |
+
Vectorized<T> abs() const {
|
287 |
+
// float_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
288 |
+
static_assert(std::is_same<float_t_abs, T>::value, "float_t_abs must be T");
|
289 |
+
// Specifically deal with floating-point because the generic code above won't handle -0.0 (which should result in
|
290 |
+
// 0.0) properly.
|
291 |
+
return map([](T x) -> T { return std::abs(x); });
|
292 |
+
}
|
293 |
+
template <typename complex_t_abs = T,
|
294 |
+
typename std::enable_if<c10::is_complex<complex_t_abs>::value, int>::type = 0>
|
295 |
+
Vectorized<T> abs() const {
|
296 |
+
// complex_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
297 |
+
static_assert(std::is_same<complex_t_abs, T>::value, "complex_t_abs must be T");
|
298 |
+
// Specifically map() does not perform the type conversion needed by abs.
|
299 |
+
return map([](T x) { return static_cast<T>(std::abs(x)); });
|
300 |
+
}
|
301 |
+
|
302 |
+
template <typename other_t_sgn = T,
|
303 |
+
typename std::enable_if<c10::is_complex<other_t_sgn>::value, int>::type = 0>
|
304 |
+
Vectorized<T> sgn() const {
|
305 |
+
return map(at::native::sgn_impl);
|
306 |
+
}
|
307 |
+
|
308 |
+
template <typename other_t_angle = T,
|
309 |
+
typename std::enable_if<!c10::is_complex<other_t_angle>::value, int>::type = 0>
|
310 |
+
Vectorized<T> angle() const {
|
311 |
+
// other_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
312 |
+
static_assert(std::is_same<other_t_angle, T>::value, "other_t_angle must be T");
|
313 |
+
return map(at::native::angle_impl<T>); // compiler is unable to resolve the overload without <T>
|
314 |
+
}
|
315 |
+
template <typename complex_t_angle = T,
|
316 |
+
typename std::enable_if<c10::is_complex<complex_t_angle>::value, int>::type = 0>
|
317 |
+
Vectorized<T> angle() const {
|
318 |
+
// complex_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
319 |
+
static_assert(std::is_same<complex_t_angle, T>::value, "complex_t_angle must be T");
|
320 |
+
return map([](T x) { return static_cast<T>(std::arg(x)); });
|
321 |
+
}
|
322 |
+
template <typename other_t_real = T,
|
323 |
+
typename std::enable_if<!c10::is_complex<other_t_real>::value, int>::type = 0>
|
324 |
+
Vectorized<T> real() const {
|
325 |
+
// other_t_real is for SFINAE and clarity. Make sure it is not changed.
|
326 |
+
static_assert(std::is_same<other_t_real, T>::value, "other_t_real must be T");
|
327 |
+
return *this;
|
328 |
+
}
|
329 |
+
template <typename complex_t_real = T,
|
330 |
+
typename std::enable_if<c10::is_complex<complex_t_real>::value, int>::type = 0>
|
331 |
+
Vectorized<T> real() const {
|
332 |
+
// complex_t_real is for SFINAE and clarity. Make sure it is not changed.
|
333 |
+
static_assert(std::is_same<complex_t_real, T>::value, "complex_t_real must be T");
|
334 |
+
return map([](T x) { return static_cast<T>(x.real()); });
|
335 |
+
}
|
336 |
+
template <typename other_t_imag = T,
|
337 |
+
typename std::enable_if<!c10::is_complex<other_t_imag>::value, int>::type = 0>
|
338 |
+
Vectorized<T> imag() const {
|
339 |
+
// other_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
340 |
+
static_assert(std::is_same<other_t_imag, T>::value, "other_t_imag must be T");
|
341 |
+
return Vectorized(0);
|
342 |
+
}
|
343 |
+
template <typename complex_t_imag = T,
|
344 |
+
typename std::enable_if<c10::is_complex<complex_t_imag>::value, int>::type = 0>
|
345 |
+
Vectorized<T> imag() const {
|
346 |
+
// complex_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
347 |
+
static_assert(std::is_same<complex_t_imag, T>::value, "complex_t_imag must be T");
|
348 |
+
return map([](T x) { return static_cast<T>(x.imag()); });
|
349 |
+
}
|
350 |
+
template <typename other_t_conj = T,
|
351 |
+
typename std::enable_if<!c10::is_complex<other_t_conj>::value, int>::type = 0>
|
352 |
+
Vectorized<T> conj() const {
|
353 |
+
// other_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
354 |
+
static_assert(std::is_same<other_t_conj, T>::value, "other_t_conj must be T");
|
355 |
+
return *this;
|
356 |
+
}
|
357 |
+
template <typename complex_t_conj = T,
|
358 |
+
typename std::enable_if<c10::is_complex<complex_t_conj>::value, int>::type = 0>
|
359 |
+
Vectorized<T> conj() const {
|
360 |
+
// complex_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
361 |
+
static_assert(std::is_same<complex_t_conj, T>::value, "complex_t_conj must be T");
|
362 |
+
return map([](T x) { return static_cast<T>(std::conj(x)); });
|
363 |
+
}
|
364 |
+
Vectorized<T> acos() const {
|
365 |
+
return map(std::acos);
|
366 |
+
}
|
367 |
+
Vectorized<T> acosh() const {
|
368 |
+
return map(std::acosh);
|
369 |
+
}
|
370 |
+
Vectorized<T> asin() const {
|
371 |
+
return map(std::asin);
|
372 |
+
}
|
373 |
+
Vectorized<T> atan() const {
|
374 |
+
return map(std::atan);
|
375 |
+
}
|
376 |
+
Vectorized<T> atanh() const {
|
377 |
+
return map(std::atanh);
|
378 |
+
}
|
379 |
+
Vectorized<T> atan2(const Vectorized<T> &exp) const {
|
380 |
+
Vectorized<T> ret;
|
381 |
+
for (const auto i : c10::irange(size())) {
|
382 |
+
ret[i] = std::atan2(values[i], exp[i]);
|
383 |
+
}
|
384 |
+
return ret;
|
385 |
+
}
|
386 |
+
template <
|
387 |
+
typename U = T,
|
388 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
389 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
390 |
+
Vectorized<T> ret;
|
391 |
+
for (size_type i = 0; i < size(); i++) {
|
392 |
+
ret[i] = c10::copysign(values[i], sign[i]);
|
393 |
+
}
|
394 |
+
return ret;
|
395 |
+
}
|
396 |
+
Vectorized<T> erf() const {
|
397 |
+
return map(std::erf);
|
398 |
+
}
|
399 |
+
Vectorized<T> erfc() const {
|
400 |
+
return map(std::erfc);
|
401 |
+
}
|
402 |
+
Vectorized<T> erfinv() const {
|
403 |
+
return map(calc_erfinv);
|
404 |
+
}
|
405 |
+
Vectorized<T> exp() const {
|
406 |
+
return map(std::exp);
|
407 |
+
}
|
408 |
+
Vectorized<T> exp2() const {
|
409 |
+
return map(exp2_impl);
|
410 |
+
}
|
411 |
+
Vectorized<T> expm1() const {
|
412 |
+
return map(std::expm1);
|
413 |
+
}
|
414 |
+
Vectorized<T> exp_u20() const {
|
415 |
+
return map(std::exp);
|
416 |
+
}
|
417 |
+
Vectorized<T> frac() const {
|
418 |
+
return *this - this->trunc();
|
419 |
+
}
|
420 |
+
template <
|
421 |
+
typename U = T,
|
422 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
423 |
+
Vectorized<T> fmod(const Vectorized<T>& q) const {
|
424 |
+
// U is for SFINAE purposes only. Make sure it is not changed.
|
425 |
+
static_assert(std::is_same<U, T>::value, "U must be T");
|
426 |
+
Vectorized<T> ret;
|
427 |
+
for (const auto i : c10::irange(size())) {
|
428 |
+
ret[i] = std::fmod(values[i], q[i]);
|
429 |
+
}
|
430 |
+
return ret;
|
431 |
+
}
|
432 |
+
Vectorized<T> log() const {
|
433 |
+
return map(std::log);
|
434 |
+
}
|
435 |
+
Vectorized<T> log10() const {
|
436 |
+
return map(std::log10);
|
437 |
+
}
|
438 |
+
Vectorized<T> log1p() const {
|
439 |
+
return map(std::log1p);
|
440 |
+
}
|
441 |
+
template <typename other_t_log2 = T,
|
442 |
+
typename std::enable_if<!c10::is_complex<other_t_log2>::value, int>::type = 0>
|
443 |
+
Vectorized<T> log2() const {
|
444 |
+
// other_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
445 |
+
static_assert(std::is_same<other_t_log2, T>::value, "other_t_log2 must be T");
|
446 |
+
return map(std::log2);
|
447 |
+
}
|
448 |
+
template <typename complex_t_log2 = T,
|
449 |
+
typename std::enable_if<c10::is_complex<complex_t_log2>::value, int>::type = 0>
|
450 |
+
Vectorized<T> log2() const {
|
451 |
+
// complex_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
452 |
+
static_assert(std::is_same<complex_t_log2, T>::value, "complex_t_log2 must be T");
|
453 |
+
const T log_2 = T(std::log(2.0));
|
454 |
+
return Vectorized(map(std::log))/Vectorized(log_2);
|
455 |
+
}
|
456 |
+
Vectorized<T> ceil() const {
|
457 |
+
return map(at::native::ceil_impl);
|
458 |
+
}
|
459 |
+
Vectorized<T> cos() const {
|
460 |
+
return map(std::cos);
|
461 |
+
}
|
462 |
+
Vectorized<T> cosh() const {
|
463 |
+
return map(std::cosh);
|
464 |
+
}
|
465 |
+
Vectorized<T> floor() const {
|
466 |
+
return map(at::native::floor_impl);
|
467 |
+
}
|
468 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
469 |
+
Vectorized<T> ret;
|
470 |
+
for (const auto i : c10::irange(size())) {
|
471 |
+
ret[i] = std::hypot(values[i], b[i]);
|
472 |
+
}
|
473 |
+
return ret;
|
474 |
+
}
|
475 |
+
Vectorized<T> i0() const {
|
476 |
+
return map(calc_i0);
|
477 |
+
}
|
478 |
+
Vectorized<T> i0e() const {
|
479 |
+
return map(calc_i0e);
|
480 |
+
}
|
481 |
+
Vectorized<T> digamma() const {
|
482 |
+
return map(calc_digamma);
|
483 |
+
}
|
484 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
485 |
+
Vectorized<T> ret;
|
486 |
+
for (const auto i : c10::irange(size())) {
|
487 |
+
ret[i] = calc_igamma(values[i], x[i]);
|
488 |
+
}
|
489 |
+
return ret;
|
490 |
+
}
|
491 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
492 |
+
Vectorized<T> ret;
|
493 |
+
for (const auto i : c10::irange(size())) {
|
494 |
+
ret[i] = calc_igammac(values[i], x[i]);
|
495 |
+
}
|
496 |
+
return ret;
|
497 |
+
}
|
498 |
+
Vectorized<T> neg() const {
|
499 |
+
// NB: the trailing return type is needed because we need to coerce the
|
500 |
+
// return value back to T in the case of unary operator- incuring a
|
501 |
+
// promotion
|
502 |
+
return map([](T x) -> T { return -x; });
|
503 |
+
}
|
504 |
+
Vectorized<T> nextafter(const Vectorized<T> &b) const {
|
505 |
+
Vectorized<T> ret;
|
506 |
+
for (const auto i : c10::irange(size())) {
|
507 |
+
ret[i] = std::nextafter(values[i], b[i]);
|
508 |
+
}
|
509 |
+
return ret;
|
510 |
+
}
|
511 |
+
Vectorized<T> round() const {
|
512 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
513 |
+
return map(at::native::round_impl);
|
514 |
+
}
|
515 |
+
Vectorized<T> sin() const {
|
516 |
+
return map(std::sin);
|
517 |
+
}
|
518 |
+
Vectorized<T> sinh() const {
|
519 |
+
return map(std::sinh);
|
520 |
+
}
|
521 |
+
Vectorized<T> tan() const {
|
522 |
+
return map(std::tan);
|
523 |
+
}
|
524 |
+
Vectorized<T> tanh() const {
|
525 |
+
return map(std::tanh);
|
526 |
+
}
|
527 |
+
Vectorized<T> trunc() const {
|
528 |
+
return map(at::native::trunc_impl);
|
529 |
+
}
|
530 |
+
Vectorized<T> lgamma() const {
|
531 |
+
return map(std::lgamma);
|
532 |
+
}
|
533 |
+
Vectorized<T> sqrt() const {
|
534 |
+
return map(std::sqrt);
|
535 |
+
}
|
536 |
+
Vectorized<T> reciprocal() const {
|
537 |
+
return map([](T x) { return (T)(1) / x; });
|
538 |
+
}
|
539 |
+
Vectorized<T> rsqrt() const {
|
540 |
+
return map([](T x) { return (T)1 / std::sqrt(x); });
|
541 |
+
}
|
542 |
+
Vectorized<T> pow(const Vectorized<T> &exp) const {
|
543 |
+
Vectorized<T> ret;
|
544 |
+
for (const auto i : c10::irange(size())) {
|
545 |
+
ret[i] = std::pow(values[i], exp[i]);
|
546 |
+
}
|
547 |
+
return ret;
|
548 |
+
}
|
549 |
+
private:
|
550 |
+
template <typename Op>
|
551 |
+
inline Vectorized<T> binary_pred(const Vectorized<T>& other, Op op) const {
|
552 |
+
// All bits are set to 1 if the pred is true, otherwise 0.
|
553 |
+
Vectorized<T> vector;
|
554 |
+
for (int64_t i = 0; i != size(); i++) {
|
555 |
+
if (op(values[i], other.values[i])) {
|
556 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
557 |
+
} else {
|
558 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
559 |
+
}
|
560 |
+
}
|
561 |
+
return vector;
|
562 |
+
}
|
563 |
+
|
564 |
+
public:
|
565 |
+
Vectorized<T> operator==(const Vectorized<T>& other) const { return binary_pred(other, std::equal_to<T>()); }
|
566 |
+
Vectorized<T> operator!=(const Vectorized<T>& other) const { return binary_pred(other, std::not_equal_to<T>()); }
|
567 |
+
Vectorized<T> operator>=(const Vectorized<T>& other) const { return binary_pred(other, std::greater_equal<T>()); }
|
568 |
+
Vectorized<T> operator<=(const Vectorized<T>& other) const { return binary_pred(other, std::less_equal<T>()); }
|
569 |
+
Vectorized<T> operator>(const Vectorized<T>& other) const { return binary_pred(other, std::greater<T>()); }
|
570 |
+
Vectorized<T> operator<(const Vectorized<T>& other) const { return binary_pred(other, std::less<T>()); }
|
571 |
+
|
572 |
+
private:
|
573 |
+
template <typename Op>
|
574 |
+
inline Vectorized<T> binary_pred_bool(const Vectorized<T>& other, Op op) const {
|
575 |
+
// 1 if the pred is true, otherwise 0.
|
576 |
+
Vectorized<T> vector;
|
577 |
+
for (int i = 0; i != size(); ++ i) {
|
578 |
+
vector[i] = static_cast<T>(op(values[i], other.values[i]));
|
579 |
+
}
|
580 |
+
return vector;
|
581 |
+
}
|
582 |
+
|
583 |
+
public:
|
584 |
+
Vectorized<T> eq(const Vectorized<T>& other) const { return binary_pred_bool(other, std::equal_to<T>()); }
|
585 |
+
Vectorized<T> ne(const Vectorized<T>& other) const { return binary_pred_bool(other, std::not_equal_to<T>()); }
|
586 |
+
Vectorized<T> gt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater<T>()); }
|
587 |
+
Vectorized<T> ge(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater_equal<T>()); }
|
588 |
+
Vectorized<T> lt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less<T>()); }
|
589 |
+
Vectorized<T> le(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less_equal<T>()); }
|
590 |
+
};
|
591 |
+
|
592 |
+
template <class T> Vectorized<T> inline operator+(const Vectorized<T> &a, const Vectorized<T> &b) {
|
593 |
+
Vectorized<T> c;
|
594 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
595 |
+
c[i] = a[i] + b[i];
|
596 |
+
}
|
597 |
+
return c;
|
598 |
+
}
|
599 |
+
|
600 |
+
template <class T> Vectorized<T> inline operator-(const Vectorized<T> &a, const Vectorized<T> &b) {
|
601 |
+
Vectorized<T> c;
|
602 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
603 |
+
c[i] = a[i] - b[i];
|
604 |
+
}
|
605 |
+
return c;
|
606 |
+
}
|
607 |
+
|
608 |
+
template <class T> Vectorized<T> inline operator*(const Vectorized<T> &a, const Vectorized<T> &b) {
|
609 |
+
Vectorized<T> c;
|
610 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
611 |
+
c[i] = a[i] * b[i];
|
612 |
+
}
|
613 |
+
return c;
|
614 |
+
}
|
615 |
+
|
616 |
+
template <class T> Vectorized<T> inline operator/(const Vectorized<T> &a, const Vectorized<T> &b) __ubsan_ignore_float_divide_by_zero__ {
|
617 |
+
Vectorized<T> c;
|
618 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
619 |
+
c[i] = a[i] / b[i];
|
620 |
+
}
|
621 |
+
return c;
|
622 |
+
}
|
623 |
+
|
624 |
+
template <class T,
|
625 |
+
typename std::enable_if<!is_floating_point_v<T>, int>::type = 0>
|
626 |
+
Vectorized<T> inline operator%(const Vectorized<T> &a, const Vectorized<T> &b) __ubsan_ignore_float_divide_by_zero__ {
|
627 |
+
return a - a / b * b;
|
628 |
+
}
|
629 |
+
|
630 |
+
template <class T> Vectorized<T> inline operator||(
|
631 |
+
const Vectorized<T> &a, const Vectorized<T> &b) {
|
632 |
+
Vectorized<T> c;
|
633 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
634 |
+
c[i] = a[i] || b[i];
|
635 |
+
}
|
636 |
+
return c;
|
637 |
+
}
|
638 |
+
|
639 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
640 |
+
// either input is a NaN.
|
641 |
+
template <class T,
|
642 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
643 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
644 |
+
Vectorized<T> c;
|
645 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
646 |
+
c[i] = (a[i] > b[i]) ? a[i] : b[i];
|
647 |
+
if (_isnan(a[i])) {
|
648 |
+
// If either input is NaN, propagate a NaN.
|
649 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
650 |
+
// ternary operator above.
|
651 |
+
c[i] = a[i];
|
652 |
+
}
|
653 |
+
}
|
654 |
+
return c;
|
655 |
+
}
|
656 |
+
|
657 |
+
template <class T,
|
658 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
659 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
660 |
+
Vectorized<T> c;
|
661 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
662 |
+
c[i] = (std::abs(a[i]) > std::abs(b[i])) ? a[i] : b[i];
|
663 |
+
if (_isnan(a[i])) {
|
664 |
+
// If either input is NaN, propagate a NaN.
|
665 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
666 |
+
// ternary operator above.
|
667 |
+
c[i] = a[i];
|
668 |
+
}
|
669 |
+
}
|
670 |
+
return c;
|
671 |
+
}
|
672 |
+
|
673 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
674 |
+
// either input is a NaN.
|
675 |
+
template <class T,
|
676 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
677 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
678 |
+
Vectorized<T> c;
|
679 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
680 |
+
c[i] = (a[i] < b[i]) ? a[i] : b[i];
|
681 |
+
if (_isnan(a[i])) {
|
682 |
+
// If either input is NaN, propagate a NaN.
|
683 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
684 |
+
// ternary operator above.
|
685 |
+
c[i] = a[i];
|
686 |
+
}
|
687 |
+
}
|
688 |
+
return c;
|
689 |
+
}
|
690 |
+
|
691 |
+
template <class T,
|
692 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
693 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
694 |
+
Vectorized<T> c;
|
695 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
696 |
+
c[i] = (std::abs(a[i]) < std::abs(b[i])) ? a[i] : b[i];
|
697 |
+
if (_isnan(a[i])) {
|
698 |
+
// If either input is NaN, propagate a NaN.
|
699 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
700 |
+
// ternary operator above.
|
701 |
+
c[i] = a[i];
|
702 |
+
}
|
703 |
+
}
|
704 |
+
return c;
|
705 |
+
}
|
706 |
+
|
707 |
+
template <class T,
|
708 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
709 |
+
Vectorized<T> inline clamp(const Vectorized<T> &a, const Vectorized<T> &min_vec, const Vectorized<T> &max_vec) {
|
710 |
+
Vectorized<T> c;
|
711 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
712 |
+
c[i] = std::min(std::max(a[i], min_vec[i]), max_vec[i]);
|
713 |
+
}
|
714 |
+
return c;
|
715 |
+
}
|
716 |
+
|
717 |
+
template <class T,
|
718 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
719 |
+
Vectorized<T> inline clamp_max(const Vectorized<T> &a, const Vectorized<T> &max_vec) {
|
720 |
+
Vectorized<T> c;
|
721 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
722 |
+
c[i] = a[i] > max_vec[i] ? max_vec[i] : a[i];
|
723 |
+
}
|
724 |
+
return c;
|
725 |
+
}
|
726 |
+
|
727 |
+
template <class T,
|
728 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
729 |
+
Vectorized<T> inline clamp_min(const Vectorized<T> &a, const Vectorized<T> &min_vec) {
|
730 |
+
Vectorized<T> c;
|
731 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
732 |
+
c[i] = a[i] < min_vec[i] ? min_vec[i] : a[i];
|
733 |
+
}
|
734 |
+
return c;
|
735 |
+
}
|
736 |
+
|
737 |
+
struct Vectorizedi;
|
738 |
+
|
739 |
+
#if defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
740 |
+
template <class T, typename Op>
|
741 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
742 |
+
int_vector buffer;
|
743 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
744 |
+
int_vector a_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)a));
|
745 |
+
int_vector b_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)b));
|
746 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
747 |
+
int_vector a_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)a));
|
748 |
+
int_vector b_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)b));
|
749 |
+
#endif
|
750 |
+
buffer = op(a_buffer, b_buffer);
|
751 |
+
__at_align__ T results[Vectorized<T>::size()];
|
752 |
+
|
753 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
754 |
+
_mm256_store_si256(reinterpret_cast<int_vector*>(results), buffer);
|
755 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
756 |
+
_mm512_store_si512(reinterpret_cast<int_vector*>(results), buffer);
|
757 |
+
#endif
|
758 |
+
return Vectorized<T>::loadu(results);
|
759 |
+
}
|
760 |
+
|
761 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
762 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
763 |
+
// We enclose _mm512_and_si512 or _mm256_and_si256 with lambda because it is always_inline
|
764 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
765 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_and_si256(a, b); });
|
766 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
767 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_and_si512(a, b); });
|
768 |
+
#endif
|
769 |
+
}
|
770 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
771 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
772 |
+
// We enclose _mm512_or_si512 or _mm256_or_si256 with lambda because it is always_inline
|
773 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
774 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_or_si256(a, b); });
|
775 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
776 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_or_si512(a, b); });
|
777 |
+
#endif
|
778 |
+
}
|
779 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
780 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
781 |
+
// We enclose _mm512_xor_si512 or _mm256_xor_si256 with lambda because it is always_inline
|
782 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
783 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_xor_si256(a, b); });
|
784 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
785 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_xor_si512(a, b); });
|
786 |
+
#endif
|
787 |
+
}
|
788 |
+
|
789 |
+
#else
|
790 |
+
|
791 |
+
template <typename T>
|
792 |
+
auto load(char const* data) -> T {
|
793 |
+
T ret;
|
794 |
+
std::memcpy(&ret, data, sizeof(ret));
|
795 |
+
return ret;
|
796 |
+
}
|
797 |
+
|
798 |
+
template<class T, typename Op>
|
799 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
800 |
+
static constexpr uint32_t element_no = VECTOR_WIDTH / sizeof(intmax_t);
|
801 |
+
__at_align__ intmax_t buffer[element_no];
|
802 |
+
static_assert(VECTOR_WIDTH % sizeof(intmax_t) == 0, "VECTOR_WIDTH not a multiple of sizeof(intmax_t)");
|
803 |
+
static_assert(sizeof(buffer) == sizeof(Vectorized<T>), "sizeof(buffer) must match sizeof(Vectorized<T>)");
|
804 |
+
// We should be using memcpy in order to respect the strict aliasing rule
|
805 |
+
// see: https://github.com/pytorch/pytorch/issues/66119
|
806 |
+
// Using char* is defined in the C11 standard 6.5 Expression paragraph 7
|
807 |
+
// (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf)
|
808 |
+
const auto* a_data = a.as_bytes();
|
809 |
+
const auto* b_data = b.as_bytes();
|
810 |
+
// load each intmax_t chunk and process; increase pointers by sizeof(intmax_t)
|
811 |
+
for (auto& out : buffer) {
|
812 |
+
out = op(load<intmax_t>(a_data), load<intmax_t>(b_data));
|
813 |
+
a_data += sizeof(intmax_t);
|
814 |
+
b_data += sizeof(intmax_t);
|
815 |
+
}
|
816 |
+
assert(a_data == a.as_bytes() + sizeof(a));
|
817 |
+
assert(b_data == b.as_bytes() + sizeof(b));
|
818 |
+
return Vectorized<T>::loadu(buffer);
|
819 |
+
}
|
820 |
+
|
821 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
822 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
823 |
+
return bitwise_binary_op(a, b, std::bit_and<intmax_t>());
|
824 |
+
}
|
825 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
826 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
827 |
+
return bitwise_binary_op(a, b, std::bit_or<intmax_t>());
|
828 |
+
}
|
829 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
830 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
831 |
+
return bitwise_binary_op(a, b, std::bit_xor<intmax_t>());
|
832 |
+
}
|
833 |
+
|
834 |
+
#endif // defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
835 |
+
|
836 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
837 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
838 |
+
Vectorized<T> ones; // All bits are 1
|
839 |
+
memset((T*) ones, 0xFF, VECTOR_WIDTH);
|
840 |
+
return a ^ ones;
|
841 |
+
}
|
842 |
+
|
843 |
+
template <class T> Vectorized<T> inline operator<<(const Vectorized<T> &a, const Vectorized<T> &b) {
|
844 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT;
|
845 |
+
Vectorized<T> c;
|
846 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
847 |
+
T shift = b[i];
|
848 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
849 |
+
c[i] = 0;
|
850 |
+
} else {
|
851 |
+
c[i] = static_cast<std::make_unsigned_t<T>>(a[i]) << shift;
|
852 |
+
}
|
853 |
+
}
|
854 |
+
return c;
|
855 |
+
}
|
856 |
+
|
857 |
+
template <class T> Vectorized<T> inline operator>>(const Vectorized<T> &a, const Vectorized<T> &b) {
|
858 |
+
// right shift value to retain sign bit for signed and no bits for unsigned
|
859 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT - std::is_signed_v<T>;
|
860 |
+
Vectorized<T> c;
|
861 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
862 |
+
T shift = b[i];
|
863 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
864 |
+
c[i] = a[i] >> max_shift;
|
865 |
+
} else {
|
866 |
+
c[i] = a[i] >> shift;
|
867 |
+
}
|
868 |
+
}
|
869 |
+
return c;
|
870 |
+
}
|
871 |
+
|
872 |
+
template <typename T>
|
873 |
+
inline Vectorized<T>& operator += (Vectorized<T>& a, const Vectorized<T>& b) {
|
874 |
+
a = a + b;
|
875 |
+
return a;
|
876 |
+
}
|
877 |
+
template <typename T>
|
878 |
+
inline Vectorized<T>& operator -= (Vectorized<T>& a, const Vectorized<T>& b) {
|
879 |
+
a = a - b;
|
880 |
+
return a;
|
881 |
+
}
|
882 |
+
template <typename T>
|
883 |
+
inline Vectorized<T>& operator /= (Vectorized<T>& a, const Vectorized<T>& b) {
|
884 |
+
a = a / b;
|
885 |
+
return a;
|
886 |
+
}
|
887 |
+
template <typename T>
|
888 |
+
inline Vectorized<T>& operator %= (Vectorized<T>& a, const Vectorized<T>& b) {
|
889 |
+
a = a % b;
|
890 |
+
return a;
|
891 |
+
}
|
892 |
+
template <typename T>
|
893 |
+
inline Vectorized<T>& operator *= (Vectorized<T>& a, const Vectorized<T>& b) {
|
894 |
+
a = a * b;
|
895 |
+
return a;
|
896 |
+
}
|
897 |
+
|
898 |
+
template <typename T>
|
899 |
+
inline Vectorized<T>& operator <<= (Vectorized<T>& a, const Vectorized<T>& b) {
|
900 |
+
a = a << b;
|
901 |
+
return a;
|
902 |
+
}
|
903 |
+
|
904 |
+
template <typename T>
|
905 |
+
inline Vectorized<T>& operator >>= (Vectorized<T>& a, const Vectorized<T>& b) {
|
906 |
+
a = a >> b;
|
907 |
+
return a;
|
908 |
+
}
|
909 |
+
|
910 |
+
template <typename T>
|
911 |
+
inline Vectorized<T> fmadd(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
912 |
+
return a * b + c;
|
913 |
+
}
|
914 |
+
|
915 |
+
template <typename T>
|
916 |
+
inline Vectorized<T> fmsub(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
917 |
+
return a * b - c;
|
918 |
+
}
|
919 |
+
|
920 |
+
template <int64_t scale = 1, typename T = void>
|
921 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
922 |
+
inline gather(T const* base_addr, const Vectorized<int_same_size_t<T>>& vindex) {
|
923 |
+
static constexpr int size = Vectorized<T>::size();
|
924 |
+
int_same_size_t<T> index_arr[size];
|
925 |
+
vindex.store(static_cast<void*>(index_arr));
|
926 |
+
T buffer[size];
|
927 |
+
for (const auto i : c10::irange(size)) {
|
928 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
929 |
+
}
|
930 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
931 |
+
}
|
932 |
+
|
933 |
+
template <int64_t scale = 1, typename T = void>
|
934 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
935 |
+
inline mask_gather(const Vectorized<T>& src, T const* base_addr,
|
936 |
+
const Vectorized<int_same_size_t<T>>& vindex, Vectorized<T>& mask) {
|
937 |
+
static constexpr int size = Vectorized<T>::size();
|
938 |
+
T src_arr[size];
|
939 |
+
int_same_size_t<T> mask_arr[size]; // use int type so we can logical and
|
940 |
+
int_same_size_t<T> index_arr[size];
|
941 |
+
src.store(static_cast<void*>(src_arr));
|
942 |
+
mask.store(static_cast<void*>(mask_arr));
|
943 |
+
vindex.store(static_cast<void*>(index_arr));
|
944 |
+
T buffer[size];
|
945 |
+
for (const auto i : c10::irange(size)) {
|
946 |
+
if (mask_arr[i] & 0x01) { // check highest bit
|
947 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
948 |
+
} else {
|
949 |
+
buffer[i] = src_arr[i];
|
950 |
+
}
|
951 |
+
}
|
952 |
+
mask = Vectorized<T>(); // "zero out" mask
|
953 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
954 |
+
}
|
955 |
+
|
956 |
+
// Cast a given vector to another type without changing the bits representation.
|
957 |
+
// So a Vectorized<double> of 512 bits containing all ones can be cast to a
|
958 |
+
// Vectorized<int64_t> of 512 bits containing all ones (i.e., eight negative 1s).
|
959 |
+
// A Vec<double> of 256 bits containing all ones can be cast to a
|
960 |
+
// Vec<int64_t> of 256 bits containing all ones (i.e., four negative 1s).
|
961 |
+
// There is a struct here because we don't have static_if and I can't
|
962 |
+
// partially specialize a templated function.
|
963 |
+
template<typename dst_t, typename src_t>
|
964 |
+
struct CastImpl {
|
965 |
+
static inline Vectorized<dst_t> apply(const Vectorized<src_t>& src) {
|
966 |
+
src_t src_arr[Vectorized<src_t>::size()];
|
967 |
+
src.store(static_cast<void*>(src_arr));
|
968 |
+
return Vectorized<dst_t>::loadu(static_cast<const void*>(src_arr));
|
969 |
+
}
|
970 |
+
};
|
971 |
+
|
972 |
+
template<typename scalar_t>
|
973 |
+
struct CastImpl<scalar_t, scalar_t> {
|
974 |
+
static inline Vectorized<scalar_t> apply(const Vectorized<scalar_t>& src) {
|
975 |
+
return src;
|
976 |
+
}
|
977 |
+
};
|
978 |
+
|
979 |
+
template<typename dst_t, typename src_t>
|
980 |
+
inline Vectorized<dst_t> cast(const Vectorized<src_t>& src) {
|
981 |
+
return CastImpl<dst_t, src_t>::apply(src);
|
982 |
+
}
|
983 |
+
|
984 |
+
template <typename T, typename IntType = int_same_size_t<T>>
|
985 |
+
inline Vectorized<IntType> convert_to_int_of_same_size(const Vectorized<T>& src) {
|
986 |
+
static_assert(sizeof(T) == sizeof(IntType));
|
987 |
+
static constexpr int size = Vectorized<T>::size();
|
988 |
+
|
989 |
+
std::array<T, size> src_arr;
|
990 |
+
src.store(static_cast<void*>(src_arr.data()));
|
991 |
+
std::array<IntType, size> buffer;
|
992 |
+
std::transform(src_arr.cbegin(), src_arr.cend(), buffer.begin(),
|
993 |
+
[](const T& x) { return static_cast<IntType>(x); });
|
994 |
+
return Vectorized<IntType>::loadu(static_cast<const void*>(buffer.data()));
|
995 |
+
}
|
996 |
+
|
997 |
+
template <typename T, typename IntType = int_same_size_t<T>>
|
998 |
+
inline Vectorized<T> convert_to_fp_of_same_size(const Vectorized<IntType>& src) {
|
999 |
+
static_assert(sizeof(T) == sizeof(IntType));
|
1000 |
+
static constexpr int size = Vectorized<T>::size();
|
1001 |
+
|
1002 |
+
std::array<IntType, size> src_arr;
|
1003 |
+
src.store(static_cast<void*>(src_arr.data()));
|
1004 |
+
std::array<T, size> buffer;
|
1005 |
+
std::transform(src_arr.cbegin(), src_arr.cend(), buffer.begin(),
|
1006 |
+
[](const IntType& x) { return static_cast<T>(x); });
|
1007 |
+
return Vectorized<T>::loadu(static_cast<const void*>(buffer.data()));
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
// Example inputs for AVX512:
|
1011 |
+
// a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
1012 |
+
// b Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
1013 |
+
// returns:
|
1014 |
+
// Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
1015 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
1016 |
+
// Example inputs for AVX2: a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
1017 |
+
// b Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
1018 |
+
// returns: Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
1019 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
1020 |
+
template <typename T>
|
1021 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
1022 |
+
deinterleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1023 |
+
static constexpr int size = Vectorized<T>::size();
|
1024 |
+
static constexpr int half_size = size / 2;
|
1025 |
+
T a_arr[size];
|
1026 |
+
T b_arr[size];
|
1027 |
+
T buffer1[size];
|
1028 |
+
T buffer2[size];
|
1029 |
+
a.store(static_cast<void*>(a_arr));
|
1030 |
+
b.store(static_cast<void*>(b_arr));
|
1031 |
+
for (const auto i : c10::irange(half_size)) {
|
1032 |
+
buffer1[i] = a_arr[i * 2];
|
1033 |
+
buffer1[half_size + i] = b_arr[i * 2];
|
1034 |
+
buffer2[i] = a_arr[i * 2 + 1];
|
1035 |
+
buffer2[half_size + i] = b_arr[i * 2 + 1];
|
1036 |
+
}
|
1037 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1038 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
// inverse operation of deinterleave2
|
1042 |
+
// Example inputs for AVX512:
|
1043 |
+
// a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
1044 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
1045 |
+
// returns, for AVX512:
|
1046 |
+
// Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
1047 |
+
// Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
1048 |
+
// Example inputs for AVX2 : a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
1049 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
1050 |
+
// returns: Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
1051 |
+
// Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
1052 |
+
template <typename T>
|
1053 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
1054 |
+
interleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1055 |
+
static constexpr int size = Vectorized<T>::size();
|
1056 |
+
static constexpr int half_size = size / 2;
|
1057 |
+
T a_arr[size];
|
1058 |
+
T b_arr[size];
|
1059 |
+
T buffer1[size];
|
1060 |
+
T buffer2[size];
|
1061 |
+
a.store(static_cast<void*>(a_arr));
|
1062 |
+
b.store(static_cast<void*>(b_arr));
|
1063 |
+
for (const auto i : c10::irange(half_size)) {
|
1064 |
+
buffer1[i * 2] = a_arr[i];
|
1065 |
+
buffer1[i * 2 + 1] = b_arr[i];
|
1066 |
+
buffer2[i * 2] = a_arr[half_size + i];
|
1067 |
+
buffer2[i * 2 + 1] = b_arr[half_size + i];
|
1068 |
+
}
|
1069 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1070 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
template <typename src_T, typename dst_T>
|
1074 |
+
inline void convert(const src_T *src, dst_T *dst, int64_t n) {
|
1075 |
+
#ifndef _MSC_VER
|
1076 |
+
# pragma unroll
|
1077 |
+
#endif
|
1078 |
+
for (C10_UNUSED const auto i : c10::irange(n)) {
|
1079 |
+
*dst = c10::convert<dst_T>(c10::load(src));
|
1080 |
+
src++;
|
1081 |
+
dst++;
|
1082 |
+
}
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
template <typename T>
|
1086 |
+
inline Vectorized<T> flip(const Vectorized<T> & data) {
|
1087 |
+
static constexpr int size = Vectorized<T>::size();
|
1088 |
+
T output[size];
|
1089 |
+
T buffer[size];
|
1090 |
+
data.store(static_cast<void*>(buffer));
|
1091 |
+
for (const auto i : c10::irange(size)) {
|
1092 |
+
output[i] = buffer[size - i - 1];
|
1093 |
+
}
|
1094 |
+
return Vectorized<T>::loadu(static_cast<void*>(output));
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
// Transpose the `src` buffer of type `T` and size (M,N) into the `dst` buffer. `ld_src` is the leading
|
1098 |
+
// dimension of `src` and `ld_dst` is the leading dimension of `dst`.
|
1099 |
+
template <typename T, int M, int N>
|
1100 |
+
inline void transpose_mxn(const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
|
1101 |
+
for (int i = 0; i < M; i++) {
|
1102 |
+
for (int j = 0; j < N; j++) {
|
1103 |
+
dst[j*ld_dst + i] = src[i*ld_src + j];
|
1104 |
+
}
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
|
5 |
+
namespace at::vec {
|
6 |
+
// See Note [CPU_CAPABILITY namespace]
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
#if (defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)) && \
|
10 |
+
!defined(__APPLE__)
|
11 |
+
static inline uint16_t float2half_scalar(float val) {
|
12 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
13 |
+
#if defined(_MSC_VER)
|
14 |
+
__m256 v = _mm256_set1_ps(val);
|
15 |
+
__m128i o =
|
16 |
+
_mm256_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
17 |
+
return static_cast<std::uint16_t>(_mm_cvtsi128_si32(o));
|
18 |
+
#else
|
19 |
+
return _cvtss_sh(val, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
|
20 |
+
#endif
|
21 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
22 |
+
__m512 v = _mm512_set1_ps(val);
|
23 |
+
__m256i o =
|
24 |
+
_mm512_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
25 |
+
return static_cast<std::uint16_t>(
|
26 |
+
_mm_cvtsi128_si32(_mm256_castsi256_si128(o)));
|
27 |
+
#endif
|
28 |
+
}
|
29 |
+
|
30 |
+
static inline float half2float_scalar(uint16_t val) {
|
31 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
32 |
+
#if defined(_MSC_VER)
|
33 |
+
__m128i v = _mm_cvtsi32_si128(val);
|
34 |
+
__m256 o = _mm256_cvtph_ps(v);
|
35 |
+
return _mm256_cvtss_f32(o);
|
36 |
+
#else
|
37 |
+
return _cvtsh_ss(val);
|
38 |
+
#endif
|
39 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
40 |
+
__m256i v =
|
41 |
+
_mm256_setr_epi16(val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
42 |
+
__m512 o = _mm512_cvtph_ps(v);
|
43 |
+
return _mm512_cvtss_f32(o);
|
44 |
+
#endif
|
45 |
+
}
|
46 |
+
|
47 |
+
#endif
|
48 |
+
|
49 |
+
} // namespace CPU_CAPABILITY
|
50 |
+
} // namespace at::vec
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_n.h
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/cpu/vec/vec_base.h>
|
2 |
+
#include <array>
|
3 |
+
|
4 |
+
namespace at::vec {
|
5 |
+
inline namespace CPU_CAPABILITY {
|
6 |
+
|
7 |
+
/**
|
8 |
+
* @brief A class template representing a vectorized type with
|
9 |
+
* `N * Vectorized<T>::size()` elements, aiming to support vectors of
|
10 |
+
* arbitrary size. A specific use case of it is to represent vectors
|
11 |
+
* converted from data types with different sizes but with the same
|
12 |
+
* number of vector elements, e.g., `VectorizedN<float, 2>` can be
|
13 |
+
* a vector converted from two `Vectorized<bfloat16>`, `VectorizedN<int64_t, 2>`
|
14 |
+
* can be a vector converted from two `Vectorized<int32_t>` etc.
|
15 |
+
*
|
16 |
+
* It supports most of the operations of `Vectorized<T>`
|
17 |
+
* and the implementation delegates to `Vectorized<T>` with loops over `N`.
|
18 |
+
*
|
19 |
+
* @tparam T The underlying type of the vectorized elements.
|
20 |
+
* @tparam N The number of underlying `Vectorized<T>`.
|
21 |
+
*/
|
22 |
+
template <typename T, int N>
|
23 |
+
class VectorizedN {
|
24 |
+
public:
|
25 |
+
using value_type = T;
|
26 |
+
using size_type = int;
|
27 |
+
|
28 |
+
static constexpr size_type size_T = sizeof(T);
|
29 |
+
static constexpr size_type size() {
|
30 |
+
return Vectorized<T>::size() * N;
|
31 |
+
}
|
32 |
+
|
33 |
+
private:
|
34 |
+
std::array<Vectorized<T>, N> values;
|
35 |
+
|
36 |
+
public:
|
37 |
+
// methods not implemented yet:
|
38 |
+
// variadic constructor, operator T*, as_bytes, zero_mask
|
39 |
+
|
40 |
+
#define VECTORIZEDN_DEFINE_UNARY_OP(op) \
|
41 |
+
VectorizedN<T, N> op() const { \
|
42 |
+
return unary_op([](const Vectorized<T>& a) { return a.op(); }); \
|
43 |
+
}
|
44 |
+
|
45 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP(op) \
|
46 |
+
VectorizedN<T, N> op(const VectorizedN<T, N>& other) const { \
|
47 |
+
return binary_op( \
|
48 |
+
other, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
49 |
+
return a.op(b); \
|
50 |
+
}); \
|
51 |
+
}
|
52 |
+
|
53 |
+
template <typename Op>
|
54 |
+
inline VectorizedN<T, N> unary_op(Op op) const {
|
55 |
+
VectorizedN<T, N> result;
|
56 |
+
#ifndef _MSC_VER
|
57 |
+
#pragma unroll
|
58 |
+
#endif
|
59 |
+
for (int i = 0; i < N; ++i) {
|
60 |
+
result.values[i] = op(values[i]);
|
61 |
+
}
|
62 |
+
return result;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <typename Op>
|
66 |
+
inline VectorizedN<T, N> binary_op(const VectorizedN<T, N>& other, Op op)
|
67 |
+
const {
|
68 |
+
VectorizedN<T, N> result;
|
69 |
+
#ifndef _MSC_VER
|
70 |
+
#pragma unroll
|
71 |
+
#endif
|
72 |
+
for (int i = 0; i < N; ++i) {
|
73 |
+
result.values[i] = op(values[i], other.values[i]);
|
74 |
+
}
|
75 |
+
return result;
|
76 |
+
}
|
77 |
+
|
78 |
+
VectorizedN() = default;
|
79 |
+
|
80 |
+
explicit VectorizedN(T val) {
|
81 |
+
for (int i = 0; i < N; ++i) {
|
82 |
+
values[i] = Vectorized<T>(val);
|
83 |
+
}
|
84 |
+
}
|
85 |
+
|
86 |
+
const Vectorized<T>& operator[](int i) const {
|
87 |
+
return values[i];
|
88 |
+
}
|
89 |
+
|
90 |
+
Vectorized<T>& operator[](int i) {
|
91 |
+
return values[i];
|
92 |
+
}
|
93 |
+
|
94 |
+
template <int64_t mask>
|
95 |
+
static VectorizedN<T, N> blend(
|
96 |
+
const VectorizedN<T, N>& a,
|
97 |
+
const VectorizedN<T, N>& b) {
|
98 |
+
VectorizedN<T, N> result;
|
99 |
+
for (int i = 0; i < N; ++i) {
|
100 |
+
result.values[i] = Vectorized<T>::blend<mask>(a.values[i], b.values[i]);
|
101 |
+
}
|
102 |
+
return result;
|
103 |
+
}
|
104 |
+
|
105 |
+
static VectorizedN<T, N> blendv(
|
106 |
+
const VectorizedN<T, N>& a,
|
107 |
+
const VectorizedN<T, N>& b,
|
108 |
+
const VectorizedN<T, N>& mask) {
|
109 |
+
VectorizedN<T, N> result;
|
110 |
+
for (int i = 0; i < N; ++i) {
|
111 |
+
result.values[i] =
|
112 |
+
Vectorized<T>::blendv(a.values[i], b.values[i], mask.values[i]);
|
113 |
+
}
|
114 |
+
return result;
|
115 |
+
}
|
116 |
+
|
117 |
+
template <typename step_t>
|
118 |
+
static VectorizedN<T, N> arange(
|
119 |
+
T base = static_cast<T>(0),
|
120 |
+
step_t step = static_cast<step_t>(1)) {
|
121 |
+
VectorizedN<T, N> result;
|
122 |
+
for (int i = 0; i < N; ++i) {
|
123 |
+
result.values[i] = Vectorized<T>::arange(base, step);
|
124 |
+
base += step * Vectorized<T>::size();
|
125 |
+
}
|
126 |
+
return result;
|
127 |
+
}
|
128 |
+
|
129 |
+
static VectorizedN<T, N> set(
|
130 |
+
const VectorizedN<T, N>& a,
|
131 |
+
const VectorizedN<T, N>& b,
|
132 |
+
int64_t count = size()) {
|
133 |
+
VectorizedN<T, N> result;
|
134 |
+
for (int i = 0; i < N; ++i) {
|
135 |
+
result.values[i] =
|
136 |
+
Vectorized<T>::set(a.values[i], b.values[i], std::min(count, Vectorized<T>::size()));
|
137 |
+
count -= Vectorized<T>::size();
|
138 |
+
if (count <= 0) {
|
139 |
+
break;
|
140 |
+
}
|
141 |
+
}
|
142 |
+
return result;
|
143 |
+
}
|
144 |
+
|
145 |
+
static VectorizedN<T, N> loadu(const void* ptr) {
|
146 |
+
VectorizedN<T, N> result;
|
147 |
+
for (int i = 0; i < N; ++i) {
|
148 |
+
result.values[i] = Vectorized<T>::loadu(ptr);
|
149 |
+
ptr = static_cast<const T*>(ptr) + Vectorized<T>::size();
|
150 |
+
}
|
151 |
+
return result;
|
152 |
+
}
|
153 |
+
|
154 |
+
static VectorizedN<T, N> loadu(const void* ptr, int64_t count) {
|
155 |
+
VectorizedN<T, N> result;
|
156 |
+
for (int i = 0; i < N; ++i) {
|
157 |
+
result.values[i] =
|
158 |
+
Vectorized<T>::loadu(ptr, std::min(count, Vectorized<T>::size()));
|
159 |
+
ptr = static_cast<const T*>(ptr) + Vectorized<T>::size();
|
160 |
+
count -= Vectorized<T>::size();
|
161 |
+
if (count <= 0) {
|
162 |
+
break;
|
163 |
+
}
|
164 |
+
}
|
165 |
+
return result;
|
166 |
+
}
|
167 |
+
|
168 |
+
void store(void* ptr) const {
|
169 |
+
for (int i = 0; i < N; ++i) {
|
170 |
+
values[i].store(ptr);
|
171 |
+
ptr = static_cast<T*>(ptr) + Vectorized<T>::size();
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
void store(void* ptr, int count) const {
|
176 |
+
for (int i = 0; i < N; ++i) {
|
177 |
+
values[i].store(ptr, std::min(count, Vectorized<T>::size()));
|
178 |
+
ptr = static_cast<T*>(ptr) + Vectorized<T>::size();
|
179 |
+
count -= Vectorized<T>::size();
|
180 |
+
if (count <= 0) {
|
181 |
+
break;
|
182 |
+
}
|
183 |
+
}
|
184 |
+
}
|
185 |
+
|
186 |
+
bool has_inf_nan() const {
|
187 |
+
for (int i = 0; i < N; ++i) {
|
188 |
+
if (values[i].has_inf_nan()) {
|
189 |
+
return true;
|
190 |
+
}
|
191 |
+
}
|
192 |
+
return false;
|
193 |
+
}
|
194 |
+
|
195 |
+
VectorizedN<T, N> map(T (*const f)(T)) const {
|
196 |
+
VectorizedN<T, N> result;
|
197 |
+
for (int i = 0; i < N; ++i) {
|
198 |
+
result.values[i] = values[i].map(f);
|
199 |
+
}
|
200 |
+
return result;
|
201 |
+
}
|
202 |
+
|
203 |
+
VectorizedN<T, N> map(T (*const f)(const T&)) const {
|
204 |
+
VectorizedN<T, N> result;
|
205 |
+
for (int i = 0; i < N; ++i) {
|
206 |
+
result.values[i] = values[i].map(f);
|
207 |
+
}
|
208 |
+
return result;
|
209 |
+
}
|
210 |
+
|
211 |
+
VECTORIZEDN_DEFINE_UNARY_OP(abs)
|
212 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sgn)
|
213 |
+
VECTORIZEDN_DEFINE_UNARY_OP(angle)
|
214 |
+
VECTORIZEDN_DEFINE_UNARY_OP(real)
|
215 |
+
VECTORIZEDN_DEFINE_UNARY_OP(imag)
|
216 |
+
VECTORIZEDN_DEFINE_UNARY_OP(conj)
|
217 |
+
VECTORIZEDN_DEFINE_UNARY_OP(acos)
|
218 |
+
VECTORIZEDN_DEFINE_UNARY_OP(acosh)
|
219 |
+
VECTORIZEDN_DEFINE_UNARY_OP(asin)
|
220 |
+
VECTORIZEDN_DEFINE_UNARY_OP(atan)
|
221 |
+
VECTORIZEDN_DEFINE_UNARY_OP(atanh)
|
222 |
+
VECTORIZEDN_DEFINE_BINARY_OP(atan2)
|
223 |
+
VECTORIZEDN_DEFINE_BINARY_OP(copysign)
|
224 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erf)
|
225 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erfc)
|
226 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erfinv)
|
227 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp)
|
228 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp2)
|
229 |
+
VECTORIZEDN_DEFINE_UNARY_OP(expm1)
|
230 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp_u20)
|
231 |
+
VECTORIZEDN_DEFINE_UNARY_OP(frac)
|
232 |
+
VECTORIZEDN_DEFINE_BINARY_OP(fmod)
|
233 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log)
|
234 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log10)
|
235 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log1p)
|
236 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log2)
|
237 |
+
VECTORIZEDN_DEFINE_UNARY_OP(ceil)
|
238 |
+
VECTORIZEDN_DEFINE_UNARY_OP(cos)
|
239 |
+
VECTORIZEDN_DEFINE_UNARY_OP(cosh)
|
240 |
+
VECTORIZEDN_DEFINE_UNARY_OP(floor)
|
241 |
+
VECTORIZEDN_DEFINE_BINARY_OP(hypot)
|
242 |
+
VECTORIZEDN_DEFINE_UNARY_OP(i0)
|
243 |
+
VECTORIZEDN_DEFINE_UNARY_OP(i0e)
|
244 |
+
VECTORIZEDN_DEFINE_UNARY_OP(digamma)
|
245 |
+
VECTORIZEDN_DEFINE_BINARY_OP(igamma)
|
246 |
+
VECTORIZEDN_DEFINE_BINARY_OP(igammac)
|
247 |
+
VECTORIZEDN_DEFINE_UNARY_OP(neg)
|
248 |
+
VECTORIZEDN_DEFINE_BINARY_OP(nextafter)
|
249 |
+
VECTORIZEDN_DEFINE_UNARY_OP(round)
|
250 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sin)
|
251 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sinh)
|
252 |
+
VECTORIZEDN_DEFINE_UNARY_OP(tan)
|
253 |
+
VECTORIZEDN_DEFINE_UNARY_OP(tanh)
|
254 |
+
VECTORIZEDN_DEFINE_UNARY_OP(trunc)
|
255 |
+
VECTORIZEDN_DEFINE_UNARY_OP(lgamma)
|
256 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sqrt)
|
257 |
+
VECTORIZEDN_DEFINE_UNARY_OP(reciprocal)
|
258 |
+
VECTORIZEDN_DEFINE_UNARY_OP(rsqrt)
|
259 |
+
VECTORIZEDN_DEFINE_BINARY_OP(pow)
|
260 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator==)
|
261 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator!=)
|
262 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator>=)
|
263 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator<=)
|
264 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator>)
|
265 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator<)
|
266 |
+
VECTORIZEDN_DEFINE_BINARY_OP(eq)
|
267 |
+
VECTORIZEDN_DEFINE_BINARY_OP(ne)
|
268 |
+
VECTORIZEDN_DEFINE_BINARY_OP(gt)
|
269 |
+
VECTORIZEDN_DEFINE_BINARY_OP(ge)
|
270 |
+
VECTORIZEDN_DEFINE_BINARY_OP(lt)
|
271 |
+
VECTORIZEDN_DEFINE_BINARY_OP(le)
|
272 |
+
|
273 |
+
#undef VECTORIZEDN_DEFINE_UNARY_OP
|
274 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP
|
275 |
+
};
|
276 |
+
|
277 |
+
#define VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL(op) \
|
278 |
+
template <typename T, int N> \
|
279 |
+
inline VectorizedN<T, N> op(const VectorizedN<T, N>& a) { \
|
280 |
+
return a.unary_op([](const Vectorized<T>& a) { return op(a); }); \
|
281 |
+
}
|
282 |
+
|
283 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(op) \
|
284 |
+
template <typename T, int N> \
|
285 |
+
inline VectorizedN<T, N> op( \
|
286 |
+
const VectorizedN<T, N>& a, const VectorizedN<T, N>& b) { \
|
287 |
+
return a.binary_op(b, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
288 |
+
return op(a, b); \
|
289 |
+
}); \
|
290 |
+
}
|
291 |
+
|
292 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(op) \
|
293 |
+
template <typename T, int N> \
|
294 |
+
inline VectorizedN<T, N>& op( \
|
295 |
+
VectorizedN<T, N>& a, const VectorizedN<T, N>& b) { \
|
296 |
+
a = a.binary_op(b, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
297 |
+
return op(a, b); \
|
298 |
+
}); \
|
299 |
+
return a; \
|
300 |
+
}
|
301 |
+
|
302 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator+)
|
303 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator-)
|
304 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator*)
|
305 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator/)
|
306 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator%)
|
307 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator||)
|
308 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator<<)
|
309 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator>>)
|
310 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(maximum)
|
311 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(minimum)
|
312 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(fmadd)
|
313 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(fmsub)
|
314 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp)
|
315 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp_max)
|
316 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp_min)
|
317 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator&)
|
318 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator|)
|
319 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator^)
|
320 |
+
VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL(operator~)
|
321 |
+
|
322 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator+=)
|
323 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator-=)
|
324 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator*=)
|
325 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator/=)
|
326 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator%=)
|
327 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator<<=)
|
328 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator>>=)
|
329 |
+
|
330 |
+
#undef VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL
|
331 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL
|
332 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL
|
333 |
+
|
334 |
+
template <typename T, int N, typename OpVec>
|
335 |
+
inline T vec_reduce_all(const OpVec& vec_fun, VectorizedN<T, N> acc_vec) {
|
336 |
+
Vectorized<T> vec_result = acc_vec[0];
|
337 |
+
for (int i = 1; i < N; i++) {
|
338 |
+
vec_result = vec_fun(vec_result, acc_vec[i]);
|
339 |
+
}
|
340 |
+
return vec_reduce_all(vec_fun, vec_result);
|
341 |
+
}
|
342 |
+
|
343 |
+
} // namespace CPU_CAPABILITY
|
344 |
+
} // namespace at::vec
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cpu/vml.h
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
#include <ATen/Parallel.h>
|
5 |
+
#include <ATen/OpMathType.h>
|
6 |
+
#include <ATen/cpu/vec/functional.h>
|
7 |
+
#include <ATen/cpu/vec/vec.h>
|
8 |
+
#include <c10/util/complex.h>
|
9 |
+
|
10 |
+
// This header implements various unary operations using a MKL VML style
|
11 |
+
// interface.
|
12 |
+
|
13 |
+
// It implements various functions with a simple interface
|
14 |
+
// For example it enables the user to call vsin(float* out, const float* in,
|
15 |
+
// size) This functions takes a pointer to a continuous output array of floats and
|
16 |
+
// a constant input array. It will then apply sin to each value in the input
|
17 |
+
// array and write the result into the output array. out and in may point to the
|
18 |
+
// same memory, i.e. this fully supports in-place operations. These functions
|
19 |
+
// also implement their own parallelization, so take precautions when calling
|
20 |
+
// these from threaded functions.
|
21 |
+
|
22 |
+
// When MKL is available it will call into MKL's VML library similar to NumPy
|
23 |
+
// If MKL is not available it will use SLEEF.
|
24 |
+
|
25 |
+
// This file might be compiled under AVX or AVX2 when called from e.g.
|
26 |
+
// UnaryOpsKernel.cpp
|
27 |
+
|
28 |
+
#include <algorithm>
|
29 |
+
#include <cstddef>
|
30 |
+
#include <cstdint>
|
31 |
+
#include <cstring>
|
32 |
+
#include <type_traits>
|
33 |
+
|
34 |
+
#if AT_MKL_ENABLED() && !defined(__APPLE__)
|
35 |
+
#include <mkl.h>
|
36 |
+
#endif
|
37 |
+
|
38 |
+
namespace at {
|
39 |
+
namespace vml {
|
40 |
+
inline namespace CPU_CAPABILITY {
|
41 |
+
|
42 |
+
using namespace vec;
|
43 |
+
|
44 |
+
template <typename scalar_t>
|
45 |
+
inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
|
46 |
+
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
|
47 |
+
map(
|
48 |
+
[](const Vectorized<scalar_t>& x) {
|
49 |
+
return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
|
50 |
+
},
|
51 |
+
out + begin,
|
52 |
+
in + begin,
|
53 |
+
end - begin);
|
54 |
+
});
|
55 |
+
}
|
56 |
+
|
57 |
+
// NB: We ignore numerical errors by convention and leave them to the user
|
58 |
+
|
59 |
+
#define IMPLEMENT_VML(op) \
|
60 |
+
template <typename scalar_t> \
|
61 |
+
inline void v##op(scalar_t* out, const scalar_t* in, int64_t size) { \
|
62 |
+
using vec_t = Vectorized<vec_scalar_t<scalar_t>>; \
|
63 |
+
vec::map([](vec_t x) { return x.op(); }, out, in, size); \
|
64 |
+
} \
|
65 |
+
|
66 |
+
IMPLEMENT_VML(abs)
|
67 |
+
IMPLEMENT_VML(acos)
|
68 |
+
IMPLEMENT_VML(asin)
|
69 |
+
IMPLEMENT_VML(atan)
|
70 |
+
IMPLEMENT_VML(atanh)
|
71 |
+
IMPLEMENT_VML(ceil)
|
72 |
+
IMPLEMENT_VML(cos)
|
73 |
+
// IMPLEMENT_VML(cosh)
|
74 |
+
IMPLEMENT_VML(erf)
|
75 |
+
IMPLEMENT_VML(erfc)
|
76 |
+
IMPLEMENT_VML(erfinv)
|
77 |
+
IMPLEMENT_VML(exp)
|
78 |
+
IMPLEMENT_VML(expm1)
|
79 |
+
IMPLEMENT_VML(floor)
|
80 |
+
IMPLEMENT_VML(i0)
|
81 |
+
IMPLEMENT_VML(i0e)
|
82 |
+
IMPLEMENT_VML(digamma)
|
83 |
+
IMPLEMENT_VML(reciprocal)
|
84 |
+
IMPLEMENT_VML(log)
|
85 |
+
IMPLEMENT_VML(log10)
|
86 |
+
IMPLEMENT_VML(log1p)
|
87 |
+
IMPLEMENT_VML(log2)
|
88 |
+
IMPLEMENT_VML(neg)
|
89 |
+
IMPLEMENT_VML(sin)
|
90 |
+
// IMPLEMENT_VML(sinh)
|
91 |
+
IMPLEMENT_VML(sqrt)
|
92 |
+
IMPLEMENT_VML(round)
|
93 |
+
IMPLEMENT_VML(rsqrt)
|
94 |
+
IMPLEMENT_VML(tan)
|
95 |
+
IMPLEMENT_VML(tanh)
|
96 |
+
IMPLEMENT_VML(trunc)
|
97 |
+
IMPLEMENT_VML(lgamma)
|
98 |
+
|
99 |
+
|
100 |
+
#if AT_MKL_ENABLED() && !defined(__APPLE__)
|
101 |
+
|
102 |
+
// NB: LP64 MKL is the most commonly used and thus we assume it here. That means
|
103 |
+
// we need to expect MKL_INT to be of type int, which implies int32_t or int64_t in most
|
104 |
+
// cases.
|
105 |
+
static_assert(
|
106 |
+
std::is_same_v<MKL_INT, int32_t> || std::is_same_v<MKL_INT, int64_t>,
|
107 |
+
"MKL_INT is assumed to be int32_t or int64_t");
|
108 |
+
#define IMPLEMENT_VML_MKL_STUB(op, mklop, type, mkltype) \
|
109 |
+
template <> \
|
110 |
+
inline void v##op(type * out, const type * in, int64_t size) { \
|
111 |
+
int64_t max_mkl_ind = std::numeric_limits<MKL_INT>::max(); \
|
112 |
+
if (size <= static_cast<int64_t>(max_mkl_ind)) { \
|
113 |
+
vm##mkltype##mklop( \
|
114 |
+
size, in, out, VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
115 |
+
} else { \
|
116 |
+
MKL_INT ind = 0; \
|
117 |
+
int64_t chunks = size / max_mkl_ind; \
|
118 |
+
int64_t rest = size % max_mkl_ind; \
|
119 |
+
for (; ind < chunks; ind++) { \
|
120 |
+
vm##mkltype##mklop( \
|
121 |
+
max_mkl_ind, \
|
122 |
+
in + ind * max_mkl_ind, \
|
123 |
+
out + ind * max_mkl_ind, \
|
124 |
+
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
125 |
+
} \
|
126 |
+
vm##mkltype##mklop( \
|
127 |
+
rest, \
|
128 |
+
in + ind * max_mkl_ind, \
|
129 |
+
out + ind * max_mkl_ind, \
|
130 |
+
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
131 |
+
} \
|
132 |
+
}
|
133 |
+
|
134 |
+
#define IMPLEMENT_VML_MKL(op, mklop) \
|
135 |
+
IMPLEMENT_VML_MKL_STUB(op, mklop, float, s) \
|
136 |
+
IMPLEMENT_VML_MKL_STUB(op, mklop, double, d)
|
137 |
+
|
138 |
+
// NB: abs, cosh and sinh were temporarily disabled due to issues with Apple
|
139 |
+
// NB: expm1 is disabled because on some configs it produces expm1(nan)=-1
|
140 |
+
IMPLEMENT_VML_MKL(acos, Acos)
|
141 |
+
IMPLEMENT_VML_MKL(asin, Asin)
|
142 |
+
IMPLEMENT_VML_MKL(atan, Atan)
|
143 |
+
IMPLEMENT_VML_MKL(cos, Cos)
|
144 |
+
// IMPLEMENT_VML_MKL(cosh, Cosh)
|
145 |
+
IMPLEMENT_VML_MKL(erf, Erf)
|
146 |
+
IMPLEMENT_VML_MKL(erfc, Erfc)
|
147 |
+
IMPLEMENT_VML_MKL(erfinv, ErfInv)
|
148 |
+
IMPLEMENT_VML_MKL(exp, Exp)
|
149 |
+
// IMPLEMENT_VML_MKL(expm1, Expm1)
|
150 |
+
IMPLEMENT_VML_MKL(log, Ln)
|
151 |
+
IMPLEMENT_VML_MKL(log10, Log10)
|
152 |
+
IMPLEMENT_VML_MKL(sin, Sin)
|
153 |
+
// IMPLEMENT_VML_MKL(sinh, Sinh)
|
154 |
+
IMPLEMENT_VML_MKL(sqrt, Sqrt)
|
155 |
+
IMPLEMENT_VML_MKL(tan, Tan)
|
156 |
+
IMPLEMENT_VML_MKL(tanh, Tanh)
|
157 |
+
IMPLEMENT_VML_MKL(trunc, Trunc)
|
158 |
+
|
159 |
+
// Not vectorized in MKL version tested
|
160 |
+
// IMPLEMENT_VML_MKL(abs, Abs)
|
161 |
+
// IMPLEMENT_VML_MKL(log1p, Log1p)
|
162 |
+
|
163 |
+
#if INTEL_MKL_VERSION >= 20180406
|
164 |
+
IMPLEMENT_VML_MKL(log2, Log2)
|
165 |
+
#endif
|
166 |
+
|
167 |
+
#endif
|
168 |
+
|
169 |
+
} // namespace
|
170 |
+
} // namespace vml
|
171 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Descriptors.h
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <string>
|
4 |
+
|
5 |
+
#include <ATen/cuda/CUDAContext.h>
|
6 |
+
#include <ATen/cuda/Exceptions.h>
|
7 |
+
|
8 |
+
#include <ATen/cudnn/cudnn-wrapper.h>
|
9 |
+
#include <ATen/cudnn/Utils.h>
|
10 |
+
#include <ATen/core/Tensor.h>
|
11 |
+
#include <ATen/TensorUtils.h>
|
12 |
+
#include <ATen/cuda/ATenCUDAGeneral.h>
|
13 |
+
#include <cuda.h>
|
14 |
+
|
15 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
16 |
+
#include <ATen/Functions.h>
|
17 |
+
#else
|
18 |
+
#include <ATen/ops/empty.h>
|
19 |
+
#endif
|
20 |
+
|
21 |
+
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8907
|
22 |
+
#define USE_CUDNN_RNN_V8_API
|
23 |
+
#endif
|
24 |
+
|
25 |
+
namespace at { namespace native {
|
26 |
+
|
27 |
+
std::string cudnnTypeToString(cudnnDataType_t dtype);
|
28 |
+
|
29 |
+
// TODO: Add constructors for all of the descriptors
|
30 |
+
|
31 |
+
inline int dataSize(cudnnDataType_t dataType)
|
32 |
+
{
|
33 |
+
switch (dataType) {
|
34 |
+
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8200
|
35 |
+
case CUDNN_DATA_BFLOAT16:
|
36 |
+
#endif
|
37 |
+
case CUDNN_DATA_HALF: return 2;
|
38 |
+
case CUDNN_DATA_FLOAT: return 4;
|
39 |
+
default: return 8;
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
// The stride for a size-1 dimensions is not uniquely determined; in
|
44 |
+
// fact, it can be anything you want, because the fact that the
|
45 |
+
// tensor is size 1 at this dimension means that you will never actually
|
46 |
+
// try advancing your pointer by this stride.
|
47 |
+
//
|
48 |
+
// However, CuDNN has a much more stringent requirement on strides:
|
49 |
+
// if you are passing a contiguous input, it better be the case
|
50 |
+
// that the stride for dim i is the product of the sizes of dims
|
51 |
+
// i+1 to the end. This stride is indeed uniquely determined. This
|
52 |
+
// function modifies 'stride' in place so this invariant holds.
|
53 |
+
template <typename T>
|
54 |
+
static inline void fixSizeOneDimStride(int dim, const T *size, T *stride, bool nhwc) {
|
55 |
+
int64_t z = 1;
|
56 |
+
int index = 0;
|
57 |
+
std::vector<int> permutation(dim);
|
58 |
+
|
59 |
+
if (nhwc) {
|
60 |
+
permutation[index++] = 1;
|
61 |
+
}
|
62 |
+
for (int d = dim-1; d > 1; d--) {
|
63 |
+
permutation[index++] = d;
|
64 |
+
}
|
65 |
+
if (!nhwc) {
|
66 |
+
permutation[index++] = 1;
|
67 |
+
}
|
68 |
+
permutation[index++] = 0;
|
69 |
+
for (int d : permutation) {
|
70 |
+
if (size[d] == 1) {
|
71 |
+
stride[d] = z;
|
72 |
+
} else {
|
73 |
+
z *= size[d];
|
74 |
+
}
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
template <typename T, cudnnStatus_t (*dtor)(T*)>
|
79 |
+
struct DescriptorDeleter {
|
80 |
+
void operator()(T* x) {
|
81 |
+
if (x != nullptr) {
|
82 |
+
AT_CUDNN_CHECK(dtor(x));
|
83 |
+
}
|
84 |
+
}
|
85 |
+
};
|
86 |
+
|
87 |
+
// A generic class for wrapping cuDNN descriptor types. All you need
|
88 |
+
// is to give the underlying type the Descriptor_t points to (usually,
|
89 |
+
// if it's cudnnTensorDescriptor_t it points to cudnnTensorStruct),
|
90 |
+
// the constructor and the destructor. Subclasses are responsible
|
91 |
+
// for defining a set() function to actually set the descriptor.
|
92 |
+
//
|
93 |
+
// Descriptors default construct to a nullptr, and have a descriptor
|
94 |
+
// initialized the first time you call set() or any other initializing
|
95 |
+
// function.
|
96 |
+
template <typename T, cudnnStatus_t (*ctor)(T**), cudnnStatus_t (*dtor)(T*)>
|
97 |
+
class TORCH_CUDA_CPP_API Descriptor {
|
98 |
+
public:
|
99 |
+
// TODO: Figure out why const-correctness doesn't work here
|
100 |
+
|
101 |
+
// Use desc() to access the underlying descriptor pointer in
|
102 |
+
// a read-only fashion. Most client code should use this.
|
103 |
+
// If the descriptor was never initialized, this will return
|
104 |
+
// nullptr.
|
105 |
+
T* desc() const { return desc_.get(); }
|
106 |
+
T* desc() { return desc_.get(); }
|
107 |
+
|
108 |
+
// Use mut_desc() to access the underlying descriptor pointer
|
109 |
+
// if you intend to modify what it points to (e.g., using
|
110 |
+
// cudnnSetFooDescriptor). This will ensure that the descriptor
|
111 |
+
// is initialized. Code in this file will use this function.
|
112 |
+
T* mut_desc() { init(); return desc_.get(); }
|
113 |
+
protected:
|
114 |
+
void init() {
|
115 |
+
if (desc_ == nullptr) {
|
116 |
+
T* raw_desc;
|
117 |
+
AT_CUDNN_CHECK(ctor(&raw_desc));
|
118 |
+
desc_.reset(raw_desc);
|
119 |
+
}
|
120 |
+
}
|
121 |
+
private:
|
122 |
+
std::unique_ptr<T, DescriptorDeleter<T, dtor>> desc_;
|
123 |
+
};
|
124 |
+
|
125 |
+
class TORCH_CUDA_CPP_API RNNDataDescriptor : public Descriptor<
|
126 |
+
cudnnRNNDataStruct,
|
127 |
+
&cudnnCreateRNNDataDescriptor,
|
128 |
+
&cudnnDestroyRNNDataDescriptor> {
|
129 |
+
public:
|
130 |
+
void set(const at::Tensor &t, cudnnRNNDataLayout_t layout, int maxSeqLength, int batchSize, int vectorSize, const int* seqLengthArray);
|
131 |
+
private:
|
132 |
+
void set(cudnnDataType_t dataType, cudnnRNNDataLayout_t layout, int maxSeqLength, int batchSize, int vectorSize, const int* seqLengthArray) {
|
133 |
+
AT_CUDNN_CHECK(cudnnSetRNNDataDescriptor(mut_desc(), dataType, layout, maxSeqLength, batchSize, vectorSize, seqLengthArray, NULL));
|
134 |
+
}
|
135 |
+
};
|
136 |
+
|
137 |
+
class TORCH_CUDA_CPP_API TensorDescriptor : public Descriptor<
|
138 |
+
cudnnTensorStruct,
|
139 |
+
&cudnnCreateTensorDescriptor,
|
140 |
+
&cudnnDestroyTensorDescriptor> {
|
141 |
+
public:
|
142 |
+
TensorDescriptor() = default;
|
143 |
+
explicit TensorDescriptor(const at::Tensor &t, size_t pad = 0) {
|
144 |
+
set(t, pad);
|
145 |
+
}
|
146 |
+
|
147 |
+
// Note [CuDNN broadcast padding]
|
148 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
149 |
+
// pad specifies the minimum dimensionality of the tensor descriptor
|
150 |
+
// we produce (it doesn't have anything to do with, e.g., convolution
|
151 |
+
// padding). If 't' is lower-dimensional than 'pad', the remaining
|
152 |
+
// dimensions (on the right) are padded with ones. This doesn't
|
153 |
+
// affect the underlying data layout. This is particularly useful for
|
154 |
+
// dealing with a peculiarity of the CuDNN API, which is that broadcasting in CuDNN is
|
155 |
+
// done in two steps: first, the client code is expected to pad out
|
156 |
+
// (the dimensions) input tensors to be the same dimension as the
|
157 |
+
// target broadcast, and then second, CuDNN takes of actually
|
158 |
+
// broadcasting size 1 dimensions.
|
159 |
+
|
160 |
+
void set(const at::Tensor &t, size_t pad = 0);
|
161 |
+
void set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad = 0);
|
162 |
+
void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
|
163 |
+
|
164 |
+
void print();
|
165 |
+
|
166 |
+
private:
|
167 |
+
void set(cudnnDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad, bool nhwc);
|
168 |
+
|
169 |
+
void set(cudnnDataType_t dataType, int dim, int* size, int* stride, bool nhwc) {
|
170 |
+
fixSizeOneDimStride<int>(dim, size, stride, nhwc);
|
171 |
+
AT_CUDNN_CHECK(cudnnSetTensorNdDescriptor(mut_desc(), dataType, dim, size, stride));
|
172 |
+
}
|
173 |
+
};
|
174 |
+
|
175 |
+
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
|
176 |
+
|
177 |
+
class TORCH_CUDA_CPP_API FilterDescriptor : public Descriptor<
|
178 |
+
cudnnFilterStruct,
|
179 |
+
&cudnnCreateFilterDescriptor,
|
180 |
+
&cudnnDestroyFilterDescriptor> {
|
181 |
+
public:
|
182 |
+
void set(const at::Tensor &t, int64_t pad = 0) {
|
183 |
+
set(t, at::MemoryFormat::Contiguous, pad);
|
184 |
+
}
|
185 |
+
|
186 |
+
void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
|
187 |
+
|
188 |
+
void print();
|
189 |
+
private:
|
190 |
+
void set(cudnnDataType_t dataType, int dim, int* size, cudnnTensorFormat_t filter_format) {
|
191 |
+
AT_CUDNN_CHECK(cudnnSetFilterNdDescriptor(mut_desc(), dataType, filter_format, dim, size));
|
192 |
+
}
|
193 |
+
};
|
194 |
+
|
195 |
+
std::ostream& operator<<(std::ostream & out, const FilterDescriptor& d);
|
196 |
+
|
197 |
+
struct TORCH_CUDA_CPP_API ConvolutionDescriptor
|
198 |
+
: public Descriptor<
|
199 |
+
cudnnConvolutionStruct,
|
200 |
+
&cudnnCreateConvolutionDescriptor,
|
201 |
+
&cudnnDestroyConvolutionDescriptor> {
|
202 |
+
void set(cudnnDataType_t dataType, int dim, int* pad, int* stride, int * upscale /* aka dilation */, int groups, bool allow_tf32) {
|
203 |
+
cudnnDataType_t mathType = dataType;
|
204 |
+
if (dataType == CUDNN_DATA_HALF) mathType = CUDNN_DATA_FLOAT;
|
205 |
+
AT_CUDNN_CHECK(cudnnSetConvolutionNdDescriptor(mut_desc(), dim, pad, stride, upscale,
|
206 |
+
CUDNN_CROSS_CORRELATION, mathType));
|
207 |
+
AT_CUDNN_CHECK(cudnnSetConvolutionGroupCount(mut_desc(), groups));
|
208 |
+
// See Note [behavior of cudnnFind and cudnnGet]
|
209 |
+
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_DEFAULT_MATH));
|
210 |
+
if(dataType == CUDNN_DATA_HALF) {
|
211 |
+
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_TENSOR_OP_MATH));
|
212 |
+
} else if (dataType == CUDNN_DATA_FLOAT && !allow_tf32) {
|
213 |
+
AT_CUDNN_CHECK(cudnnSetConvolutionMathType(mut_desc(), CUDNN_FMA_MATH));
|
214 |
+
}
|
215 |
+
}
|
216 |
+
};
|
217 |
+
|
218 |
+
struct TORCH_CUDA_CPP_API SpatialTransformerDescriptor
|
219 |
+
: public Descriptor<
|
220 |
+
cudnnSpatialTransformerStruct,
|
221 |
+
&cudnnCreateSpatialTransformerDescriptor,
|
222 |
+
&cudnnDestroySpatialTransformerDescriptor> {
|
223 |
+
void set(cudnnDataType_t dataType, int dim, int* size) {
|
224 |
+
AT_CUDNN_CHECK(cudnnSetSpatialTransformerNdDescriptor(mut_desc(), CUDNN_SAMPLER_BILINEAR, dataType, dim, size));
|
225 |
+
}
|
226 |
+
};
|
227 |
+
|
228 |
+
struct TORCH_CUDA_CPP_API DropoutDescriptor
|
229 |
+
: public Descriptor<
|
230 |
+
cudnnDropoutStruct,
|
231 |
+
&cudnnCreateDropoutDescriptor,
|
232 |
+
&cudnnDestroyDropoutDescriptor> {
|
233 |
+
at::Tensor state;
|
234 |
+
|
235 |
+
// Initialize a dropout descriptor's RNG state.
|
236 |
+
// WARNING: This function is very expensive, avoid calling this function!
|
237 |
+
void initialize_rng(cudnnHandle_t handle, float dropout, long long int seed, const TensorOptions& options) {
|
238 |
+
TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
|
239 |
+
size_t state_size;
|
240 |
+
AT_CUDNN_CHECK(cudnnDropoutGetStatesSize(handle, &state_size));
|
241 |
+
AT_ASSERT(options.device().type() == kCUDA);
|
242 |
+
AT_ASSERT(options.dtype() == kByte);
|
243 |
+
state = at::empty({static_cast<int64_t>(state_size)}, options);
|
244 |
+
AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, dropout, state.data_ptr(), state_size, seed));
|
245 |
+
}
|
246 |
+
|
247 |
+
// Restore a dropout descriptor given a dropout probability and existing RNG state.
|
248 |
+
void set(cudnnHandle_t handle, float dropout, at::Tensor state_) {
|
249 |
+
TORCH_INTERNAL_ASSERT(dropout > 0, "dropout must be nonzero; otherwise call set_no_dropout");
|
250 |
+
state = state_;
|
251 |
+
void *state_ptr = state.data_ptr();
|
252 |
+
size_t state_size = state.size(0);
|
253 |
+
// NB: The seed doesn't actually matter, so we give a dummy value
|
254 |
+
AT_CUDNN_CHECK(cudnnRestoreDropoutDescriptor(mut_desc(), handle, dropout, state_ptr, state_size, 0 /* seed */));
|
255 |
+
}
|
256 |
+
|
257 |
+
// Restore a dropout descriptor corresponding to no dropout
|
258 |
+
void set_no_dropout(cudnnHandle_t handle) {
|
259 |
+
// NB: seed doesn't matter when dropout = 0, because no random number
|
260 |
+
// initialization actually takes place when there is no dropout.
|
261 |
+
// NB: Empirically, cudnnSetDropoutDescriptor is cheap when
|
262 |
+
// dropout == 0
|
263 |
+
AT_CUDNN_CHECK(cudnnSetDropoutDescriptor(mut_desc(), handle, 0 /* dropout */, nullptr, 0 /* state_size */, 0 /* seed */));
|
264 |
+
}
|
265 |
+
};
|
266 |
+
|
267 |
+
struct TORCH_CUDA_CPP_API RNNDescriptor : public Descriptor<
|
268 |
+
cudnnRNNStruct,
|
269 |
+
&cudnnCreateRNNDescriptor,
|
270 |
+
&cudnnDestroyRNNDescriptor> {
|
271 |
+
DropoutDescriptor dropout_desc_;
|
272 |
+
void set(cudnnHandle_t handle,
|
273 |
+
#ifdef USE_CUDNN_RNN_V8_API
|
274 |
+
int input_size,
|
275 |
+
bool packed,
|
276 |
+
#endif
|
277 |
+
int hidden_size, int proj_size, int num_layers, DropoutDescriptor&& dropout_desc,
|
278 |
+
cudnnRNNInputMode_t input_mode, cudnnDirectionMode_t bidirectional,
|
279 |
+
cudnnRNNMode_t mode, cudnnDataType_t datatype, cudnnDataType_t input_type, cudnnRNNAlgo_t algo, bool allow_tf32) {
|
280 |
+
dropout_desc_ = std::move(dropout_desc);
|
281 |
+
#ifndef USE_CUDNN_RNN_V8_API
|
282 |
+
AT_CUDNN_CHECK(cudnnSetRNNDescriptor_v6(
|
283 |
+
handle,
|
284 |
+
mut_desc(),
|
285 |
+
hidden_size,
|
286 |
+
num_layers,
|
287 |
+
dropout_desc_.desc(),
|
288 |
+
input_mode,
|
289 |
+
bidirectional,
|
290 |
+
mode,
|
291 |
+
algo,
|
292 |
+
datatype));
|
293 |
+
if (proj_size != 0) {
|
294 |
+
AT_CUDNN_CHECK(cudnnSetRNNProjectionLayers(
|
295 |
+
handle,
|
296 |
+
/*rnnDesc=*/mut_desc(),
|
297 |
+
/*recProjSize=*/proj_size,
|
298 |
+
/*outProjSize=*/0));
|
299 |
+
}
|
300 |
+
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
301 |
+
if (prop->major >= 7) {
|
302 |
+
if (input_type == CUDNN_DATA_HALF) {
|
303 |
+
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_TENSOR_OP_MATH);
|
304 |
+
}
|
305 |
+
else if (input_type == CUDNN_DATA_FLOAT && !allow_tf32) {
|
306 |
+
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_FMA_MATH);
|
307 |
+
}
|
308 |
+
else {
|
309 |
+
// Technically, as the default it's not necessary to explicitly
|
310 |
+
// set this.
|
311 |
+
cudnnSetRNNMatrixMathType(mut_desc(), CUDNN_DEFAULT_MATH);
|
312 |
+
}
|
313 |
+
}
|
314 |
+
#else
|
315 |
+
cudaDeviceProp* prop = at::cuda::getCurrentDeviceProperties();
|
316 |
+
auto math_type = CUDNN_DEFAULT_MATH;
|
317 |
+
if (prop->major >= 7) {
|
318 |
+
if (input_type == CUDNN_DATA_HALF) {
|
319 |
+
math_type = CUDNN_TENSOR_OP_MATH;
|
320 |
+
} else if (!allow_tf32) {
|
321 |
+
math_type = CUDNN_FMA_MATH;
|
322 |
+
}
|
323 |
+
}
|
324 |
+
AT_CUDNN_CHECK(cudnnSetRNNDescriptor_v8(
|
325 |
+
mut_desc(),
|
326 |
+
algo,
|
327 |
+
mode,
|
328 |
+
CUDNN_RNN_DOUBLE_BIAS,
|
329 |
+
bidirectional,
|
330 |
+
input_mode,
|
331 |
+
input_type,
|
332 |
+
datatype,
|
333 |
+
math_type,
|
334 |
+
input_size,
|
335 |
+
hidden_size,
|
336 |
+
proj_size ? proj_size : hidden_size,
|
337 |
+
num_layers,
|
338 |
+
dropout_desc_.desc(),
|
339 |
+
packed ? CUDNN_RNN_PADDED_IO_DISABLED : CUDNN_RNN_PADDED_IO_ENABLED));
|
340 |
+
#endif
|
341 |
+
}
|
342 |
+
};
|
343 |
+
|
344 |
+
struct TORCH_CUDA_CPP_API CTCLossDescriptor
|
345 |
+
: public Descriptor<
|
346 |
+
cudnnCTCLossStruct,
|
347 |
+
&cudnnCreateCTCLossDescriptor,
|
348 |
+
&cudnnDestroyCTCLossDescriptor> {
|
349 |
+
void set(cudnnDataType_t datatype) {
|
350 |
+
AT_CUDNN_CHECK(cudnnSetCTCLossDescriptor(mut_desc(), datatype));
|
351 |
+
}
|
352 |
+
void setEx(
|
353 |
+
cudnnDataType_t datatype,
|
354 |
+
cudnnLossNormalizationMode_t normMode,
|
355 |
+
cudnnNanPropagation_t gradMode) {
|
356 |
+
AT_CUDNN_CHECK(
|
357 |
+
cudnnSetCTCLossDescriptorEx(mut_desc(), datatype, normMode, gradMode));
|
358 |
+
}
|
359 |
+
};
|
360 |
+
|
361 |
+
struct TORCH_CUDA_CPP_API ActivationDescriptor
|
362 |
+
: public Descriptor<
|
363 |
+
cudnnActivationStruct,
|
364 |
+
&cudnnCreateActivationDescriptor,
|
365 |
+
&cudnnDestroyActivationDescriptor> {
|
366 |
+
void set(cudnnActivationMode_t mode) {
|
367 |
+
AT_ASSERT(
|
368 |
+
mode == CUDNN_ACTIVATION_RELU,
|
369 |
+
"TODO: support more cuDNN activation modes");
|
370 |
+
AT_CUDNN_CHECK(cudnnSetActivationDescriptor(
|
371 |
+
mut_desc(),
|
372 |
+
mode,
|
373 |
+
cudnnNanPropagation_t::CUDNN_NOT_PROPAGATE_NAN,
|
374 |
+
std::numeric_limits<double>::max()));
|
375 |
+
}
|
376 |
+
};
|
377 |
+
|
378 |
+
union Constant
|
379 |
+
{
|
380 |
+
float f;
|
381 |
+
double d;
|
382 |
+
Constant(cudnnDataType_t dataType, double value) {
|
383 |
+
if (dataType == CUDNN_DATA_HALF || dataType == CUDNN_DATA_FLOAT) {
|
384 |
+
f = static_cast<float>(value);
|
385 |
+
} else {
|
386 |
+
d = value;
|
387 |
+
}
|
388 |
+
}
|
389 |
+
};
|
390 |
+
|
391 |
+
}} // namespace
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Exceptions.h
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handle.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cudnn/cudnn-wrapper.h>
|
4 |
+
#include <ATen/cuda/ATenCUDAGeneral.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
TORCH_CUDA_CPP_API cudnnHandle_t getCudnnHandle();
|
9 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Handles.h
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/cudnn/Handle.h>
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Types.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cudnn/cudnn-wrapper.h>
|
4 |
+
#include <ATen/Tensor.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
TORCH_CUDA_CPP_API cudnnDataType_t
|
9 |
+
getCudnnDataTypeFromScalarType(const at::ScalarType dtype);
|
10 |
+
cudnnDataType_t getCudnnDataType(const at::Tensor& tensor);
|
11 |
+
|
12 |
+
int64_t cudnn_version();
|
13 |
+
|
14 |
+
}} // namespace at::cudnn
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/Utils.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/cuda/Exceptions.h>
|
5 |
+
#include <ATen/cudnn/cudnn-wrapper.h>
|
6 |
+
#include <ATen/cudnn/Handle.h>
|
7 |
+
|
8 |
+
namespace at { namespace native {
|
9 |
+
|
10 |
+
// cuDNN has a buggy check for tensor being contiguous (that is, it does
|
11 |
+
// not ignore stride for dimension that is equal to 0). This function
|
12 |
+
// makes tensors which have zero stride contiguous, by setting the
|
13 |
+
// strides to 1 as cuDNN likes.
|
14 |
+
inline Tensor contiguousIfZeroInStrides(const Tensor& t) {
|
15 |
+
for (auto s : t.strides()) {
|
16 |
+
if (s == 0) return t.contiguous();
|
17 |
+
}
|
18 |
+
return t;
|
19 |
+
}
|
20 |
+
|
21 |
+
}}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/cudnn/cudnn-wrapper.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cudnn.h>
|
4 |
+
|
5 |
+
#define STRINGIFY(x) #x
|
6 |
+
#define STRING(x) STRINGIFY(x)
|
7 |
+
|
8 |
+
#if CUDNN_MAJOR < 6
|
9 |
+
#pragma message ("CuDNN v" STRING(CUDNN_MAJOR) " found, but need at least CuDNN v6. You can get the latest version of CuDNN from https://developer.nvidia.com/cudnn or disable CuDNN with USE_CUDNN=0")
|
10 |
+
#pragma message "We strongly encourage you to move to 6.0 and above."
|
11 |
+
#pragma message "This message is intended to annoy you enough to update."
|
12 |
+
#endif
|
13 |
+
|
14 |
+
#undef STRINGIFY
|
15 |
+
#undef STRING
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/EmptyTensor.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
#include <ATen/core/TensorBase.h>
|
5 |
+
|
6 |
+
namespace at::detail {
|
7 |
+
|
8 |
+
C10_EXPORT TensorBase empty_mps(
|
9 |
+
IntArrayRef size,
|
10 |
+
c10::optional<ScalarType> dtype_opt,
|
11 |
+
c10::optional<Layout> layout_opt,
|
12 |
+
c10::optional<Device> device_opt,
|
13 |
+
c10::optional<bool> pin_memory_opt,
|
14 |
+
c10::optional<c10::MemoryFormat> memory_format_opt);
|
15 |
+
C10_EXPORT TensorBase empty_mps(
|
16 |
+
IntArrayRef size, const TensorOptions &options);
|
17 |
+
|
18 |
+
C10_EXPORT TensorBase empty_strided_mps(
|
19 |
+
IntArrayRef size,
|
20 |
+
IntArrayRef stride,
|
21 |
+
ScalarType dtype,
|
22 |
+
c10::optional<Device> device_opt);
|
23 |
+
|
24 |
+
C10_EXPORT TensorBase empty_strided_mps(
|
25 |
+
IntArrayRef size,
|
26 |
+
IntArrayRef stride,
|
27 |
+
const TensorOptions &options);
|
28 |
+
|
29 |
+
} // namespace at::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/IndexKernels.h
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at::mps {
|
4 |
+
|
5 |
+
static const char * indexing_metal_shaders = R"INDEX_METAL(
|
6 |
+
#include <metal_stdlib>
|
7 |
+
#include <metal_atomic>
|
8 |
+
|
9 |
+
using namespace metal;
|
10 |
+
|
11 |
+
#if __METAL_VERSION__ < 300
|
12 |
+
struct IndexAB {
|
13 |
+
// Allow up to 16 indices
|
14 |
+
metal::array<constant void *, 16> indexArray [[ id(0) ]];
|
15 |
+
};
|
16 |
+
#else
|
17 |
+
struct IndexAB {
|
18 |
+
constant int64_t* indexArray;
|
19 |
+
};
|
20 |
+
|
21 |
+
#endif
|
22 |
+
|
23 |
+
template<typename T, typename OffsetsT>
|
24 |
+
kernel void index_select(
|
25 |
+
#if __METAL_VERSION__ >= 300
|
26 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
27 |
+
#else
|
28 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
29 |
+
#endif
|
30 |
+
constant void * indexSizes [[buffer(1)]],
|
31 |
+
constant void * indexStrides [[buffer(2)]],
|
32 |
+
constant OffsetsT * offsets [[buffer(3)]],
|
33 |
+
constant void * inputData [[buffer(4)]],
|
34 |
+
device void * outputData [[buffer(5)]],
|
35 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
36 |
+
uint thread_index [[thread_position_in_grid]]) {
|
37 |
+
constant int64_t * index_sizes = (constant int64_t *)indexSizes;
|
38 |
+
constant int64_t * index_strides = (constant int64_t *)indexStrides;
|
39 |
+
int64_t offset = 0;
|
40 |
+
for (uint32_t i = 0; i < num_indices; i++) {
|
41 |
+
#if __METAL_VERSION__ >= 300
|
42 |
+
constant int64_t* indexArray = indexAB[i].indexArray;
|
43 |
+
#else
|
44 |
+
constant int64_t* indexArray = (constant int64_t*)indexAB.indexArray[i];
|
45 |
+
#endif
|
46 |
+
int64_t index = indexArray[offsets[thread_index].z / sizeof(int64_t)];
|
47 |
+
if (index < 0) {
|
48 |
+
index += index_sizes[i];
|
49 |
+
}
|
50 |
+
offset += index * index_strides[i];
|
51 |
+
}
|
52 |
+
device T * out = (device T*)((device char*)outputData + offsets[thread_index].x);
|
53 |
+
constant T * in = (constant T*)((constant char*)inputData + offsets[thread_index].y + offset);
|
54 |
+
*out = *in;
|
55 |
+
}
|
56 |
+
|
57 |
+
template<typename T, typename OffsetsT>
|
58 |
+
void index_put_impl(
|
59 |
+
#if __METAL_VERSION__ >= 300
|
60 |
+
constant IndexAB * indexAB,
|
61 |
+
#else
|
62 |
+
constant IndexAB & indexAB,
|
63 |
+
#endif
|
64 |
+
constant int64_t * index_sizes,
|
65 |
+
constant int64_t * index_strides,
|
66 |
+
constant OffsetsT * offsets,
|
67 |
+
constant void * inputData,
|
68 |
+
device void * outputData,
|
69 |
+
constant uint32_t & num_indices,
|
70 |
+
uint thread_index) {
|
71 |
+
int64_t offset = 0;
|
72 |
+
for (uint32_t i = 0; i < num_indices; i++) {
|
73 |
+
#if __METAL_VERSION__ >= 300
|
74 |
+
constant int64_t* indexArray = indexAB[i].indexArray;
|
75 |
+
#else
|
76 |
+
constant int64_t* indexArray = (constant int64_t*)indexAB.indexArray[i];
|
77 |
+
#endif
|
78 |
+
int64_t index = indexArray[offsets[thread_index].z / sizeof(int64_t)];
|
79 |
+
|
80 |
+
if (index < 0) {
|
81 |
+
index += index_sizes[i];
|
82 |
+
}
|
83 |
+
offset += index * index_strides[i];
|
84 |
+
}
|
85 |
+
device T * out = (device T*)((device char*)outputData + offsets[thread_index].x + offset);
|
86 |
+
constant T * in = (constant T*)((constant char*)inputData + offsets[thread_index].y);
|
87 |
+
*out = *in;
|
88 |
+
}
|
89 |
+
|
90 |
+
template<typename T, typename OffsetsT>
|
91 |
+
kernel void index_put_serial(
|
92 |
+
#if __METAL_VERSION__ >= 300
|
93 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
94 |
+
#else
|
95 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
96 |
+
#endif
|
97 |
+
constant void * indexSizes [[buffer(1)]],
|
98 |
+
constant void * indexStrides [[buffer(2)]],
|
99 |
+
constant OffsetsT * offsets [[buffer(3)]],
|
100 |
+
constant void * inputData [[buffer(4)]],
|
101 |
+
device void * outputData [[buffer(5)]],
|
102 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
103 |
+
constant uint * numIters [[buffer(7)]],
|
104 |
+
uint thread_index [[thread_position_in_grid]]) {
|
105 |
+
|
106 |
+
constant int64_t * index_sizes = (constant int64_t *)indexSizes;
|
107 |
+
constant int64_t * index_strides = (constant int64_t *)indexStrides;
|
108 |
+
|
109 |
+
for (uint iter_i = 0; iter_i < *numIters; iter_i++) {
|
110 |
+
index_put_impl<T>(indexAB, index_sizes, index_strides, offsets, inputData, outputData, num_indices, iter_i);
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
template<typename T, typename OffsetsT>
|
115 |
+
kernel void index_put(
|
116 |
+
#if __METAL_VERSION__ >= 300
|
117 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
118 |
+
#else
|
119 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
120 |
+
#endif
|
121 |
+
constant void * indexSizes [[buffer(1)]],
|
122 |
+
constant void * indexStrides [[buffer(2)]],
|
123 |
+
constant OffsetsT * offsets [[buffer(3)]],
|
124 |
+
constant void * inputData [[buffer(4)]],
|
125 |
+
device void * outputData [[buffer(5)]],
|
126 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
127 |
+
uint thread_index [[thread_position_in_grid]]) {
|
128 |
+
|
129 |
+
constant int64_t * index_sizes = (constant int64_t *)indexSizes;
|
130 |
+
constant int64_t * index_strides = (constant int64_t *)indexStrides;
|
131 |
+
index_put_impl<T>(indexAB, index_sizes, index_strides, offsets, inputData, outputData, num_indices, thread_index);
|
132 |
+
}
|
133 |
+
|
134 |
+
#if __METAL_VERSION__ < 300
|
135 |
+
#define REGISTER_INDEX_OP(DTYPE_SIZE, IDX_SIZE, DTYPE, INDEX_OP_TYPE, IDX_DTYPE) \
|
136 |
+
template \
|
137 |
+
[[host_name("index_" #INDEX_OP_TYPE "_" #DTYPE_SIZE "_" #IDX_SIZE)]] \
|
138 |
+
kernel void index_ ## INDEX_OP_TYPE<DTYPE, IDX_DTYPE>( \
|
139 |
+
constant IndexAB & indexAB [[buffer(0)]], \
|
140 |
+
constant void * indexSizes [[buffer(1)]], \
|
141 |
+
constant void * indexStrides [[buffer(2)]], \
|
142 |
+
constant IDX_DTYPE * offsets [[buffer(3)]], \
|
143 |
+
constant void * inputData [[buffer(4)]], \
|
144 |
+
device void * outputData [[buffer(5)]], \
|
145 |
+
constant uint32_t & num_indices [[buffer(6)]], \
|
146 |
+
uint thread_index [[thread_position_in_grid]]);
|
147 |
+
#else
|
148 |
+
#define REGISTER_INDEX_OP(DTYPE_SIZE, IDX_SIZE, DTYPE, INDEX_OP_TYPE, IDX_DTYPE) \
|
149 |
+
template \
|
150 |
+
[[host_name("index_" #INDEX_OP_TYPE "_" #DTYPE_SIZE "_" #IDX_SIZE)]] \
|
151 |
+
kernel void index_ ## INDEX_OP_TYPE<DTYPE, IDX_DTYPE>( \
|
152 |
+
constant IndexAB * indexAB [[buffer(0)]], \
|
153 |
+
constant void * indexSizes [[buffer(1)]], \
|
154 |
+
constant void * indexStrides [[buffer(2)]], \
|
155 |
+
constant IDX_DTYPE * offsets [[buffer(3)]], \
|
156 |
+
constant void * inputData [[buffer(4)]], \
|
157 |
+
device void * outputData [[buffer(5)]], \
|
158 |
+
constant uint32_t & num_indices [[buffer(6)]], \
|
159 |
+
uint thread_index [[thread_position_in_grid]]);
|
160 |
+
#endif
|
161 |
+
|
162 |
+
#define REGISTER_INDEX_OP_ALL_DTYPES(INDEX_OP_TYPE) \
|
163 |
+
REGISTER_INDEX_OP(8bit, idx32, char, INDEX_OP_TYPE, uint3); \
|
164 |
+
REGISTER_INDEX_OP(8bit, idx64, char, INDEX_OP_TYPE, ulong3); \
|
165 |
+
REGISTER_INDEX_OP(16bit, idx32, short, INDEX_OP_TYPE, uint3); \
|
166 |
+
REGISTER_INDEX_OP(16bit, idx64, short, INDEX_OP_TYPE, ulong3); \
|
167 |
+
REGISTER_INDEX_OP(32bit, idx32, int, INDEX_OP_TYPE, uint3); \
|
168 |
+
REGISTER_INDEX_OP(32bit, idx64, int, INDEX_OP_TYPE, ulong3); \
|
169 |
+
REGISTER_INDEX_OP(64bit, idx32, long, INDEX_OP_TYPE, uint3); \
|
170 |
+
REGISTER_INDEX_OP(64bit, idx64, long, INDEX_OP_TYPE, ulong3);
|
171 |
+
|
172 |
+
REGISTER_INDEX_OP_ALL_DTYPES(select);
|
173 |
+
REGISTER_INDEX_OP_ALL_DTYPES(put);
|
174 |
+
|
175 |
+
#if __METAL_VERSION__ < 300
|
176 |
+
#define REGISTER_SINGLE_THREADED_INDEX_OP(DTYPE_SIZE, IDX_SIZE, DTYPE, INDEX_OP_TYPE, IDX_DTYPE) \
|
177 |
+
template \
|
178 |
+
[[host_name("index_" #INDEX_OP_TYPE "_" #DTYPE_SIZE "_" #IDX_SIZE)]] \
|
179 |
+
kernel void index_ ## INDEX_OP_TYPE<DTYPE, IDX_DTYPE>( \
|
180 |
+
constant IndexAB & indexAB [[buffer(0)]], \
|
181 |
+
constant void * indexSizes [[buffer(1)]], \
|
182 |
+
constant void * indexStrides [[buffer(2)]], \
|
183 |
+
constant IDX_DTYPE * offsets [[buffer(3)]], \
|
184 |
+
constant void * inputData [[buffer(4)]], \
|
185 |
+
device void * outputData [[buffer(5)]], \
|
186 |
+
constant uint32_t & num_indices [[buffer(6)]], \
|
187 |
+
constant uint * numIters [[buffer(7)]], \
|
188 |
+
uint thread_index [[thread_position_in_grid]]);
|
189 |
+
#else
|
190 |
+
#define REGISTER_SINGLE_THREADED_INDEX_OP(DTYPE_SIZE, IDX_SIZE, DTYPE, INDEX_OP_TYPE, IDX_DTYPE) \
|
191 |
+
template \
|
192 |
+
[[host_name("index_" #INDEX_OP_TYPE "_" #DTYPE_SIZE "_" #IDX_SIZE)]] \
|
193 |
+
kernel void index_ ## INDEX_OP_TYPE<DTYPE, IDX_DTYPE>( \
|
194 |
+
constant IndexAB * indexAB [[buffer(0)]], \
|
195 |
+
constant void * indexSizes [[buffer(1)]], \
|
196 |
+
constant void * indexStrides [[buffer(2)]], \
|
197 |
+
constant IDX_DTYPE * offsets [[buffer(3)]], \
|
198 |
+
constant void * inputData [[buffer(4)]], \
|
199 |
+
device void * outputData [[buffer(5)]], \
|
200 |
+
constant uint32_t & num_indices [[buffer(6)]], \
|
201 |
+
constant uint * numIters [[buffer(7)]], \
|
202 |
+
uint thread_index [[thread_position_in_grid]]);
|
203 |
+
#endif
|
204 |
+
|
205 |
+
#define REGISTER_SINGLE_THREADED_INDEX_OP_ALL_DTYPES(INDEX_OP_TYPE) \
|
206 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(8bit, idx32, char, INDEX_OP_TYPE, uint3); \
|
207 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(8bit, idx64, char, INDEX_OP_TYPE, ulong3); \
|
208 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(16bit, idx32, short, INDEX_OP_TYPE, uint3); \
|
209 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(16bit, idx64, short, INDEX_OP_TYPE, ulong3); \
|
210 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(32bit, idx32, int, INDEX_OP_TYPE, uint3); \
|
211 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(32bit, idx64, int, INDEX_OP_TYPE, ulong3); \
|
212 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(64bit, idx32, long, INDEX_OP_TYPE, uint3); \
|
213 |
+
REGISTER_SINGLE_THREADED_INDEX_OP(64bit, idx64, long, INDEX_OP_TYPE, ulong3);
|
214 |
+
|
215 |
+
REGISTER_SINGLE_THREADED_INDEX_OP_ALL_DTYPES(put_serial);
|
216 |
+
|
217 |
+
template<typename StridesT, typename DataT>
|
218 |
+
kernel void kernel_index_offsets(constant StridesT * strides [[buffer(0)]],
|
219 |
+
device DataT * data_offsets [[buffer(1)]],
|
220 |
+
constant uint * iter_shape [[buffer(2)]],
|
221 |
+
constant uint & num_dimensions [[buffer(3)]],
|
222 |
+
uint thread_index [[thread_position_in_grid]]) {
|
223 |
+
data_offsets[thread_index] = 0;
|
224 |
+
uint32_t idx = thread_index;
|
225 |
+
for (uint32_t dim = 0; dim < num_dimensions; dim++) {
|
226 |
+
uint32_t remainder = idx % iter_shape[dim];
|
227 |
+
idx /= iter_shape[dim];
|
228 |
+
|
229 |
+
data_offsets[thread_index] += remainder * DataT(strides[dim]);
|
230 |
+
}
|
231 |
+
}
|
232 |
+
|
233 |
+
template
|
234 |
+
[[host_name("kernel_index_offsets_32")]]
|
235 |
+
kernel void kernel_index_offsets<packed_uint3, uint3>(
|
236 |
+
constant packed_uint3 * strides [[buffer(0)]],
|
237 |
+
device uint3 * data_offsets [[buffer(1)]],
|
238 |
+
constant uint * iter_shape [[buffer(2)]],
|
239 |
+
constant uint & num_dimensions [[buffer(3)]],
|
240 |
+
uint thread_index [[thread_position_in_grid]]);
|
241 |
+
|
242 |
+
template
|
243 |
+
[[host_name("kernel_index_offsets_64")]]
|
244 |
+
kernel void kernel_index_offsets<packed_uint3, ulong3>(
|
245 |
+
constant packed_uint3 * strides [[buffer(0)]],
|
246 |
+
device ulong3 * data_offsets [[buffer(1)]],
|
247 |
+
constant uint * iter_shape [[buffer(2)]],
|
248 |
+
constant uint & num_dimensions [[buffer(3)]],
|
249 |
+
uint thread_index [[thread_position_in_grid]]);
|
250 |
+
|
251 |
+
template<typename T, typename E, typename OffsetsT>
|
252 |
+
kernel void index_put_accumulate_native_dtypes(
|
253 |
+
#if __METAL_VERSION__ >= 300
|
254 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
255 |
+
#else
|
256 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
257 |
+
#endif
|
258 |
+
constant void * indexSizes [[buffer(1)]],
|
259 |
+
constant void * indexStrides [[buffer(2)]],
|
260 |
+
constant OffsetsT * offsets [[buffer(3)]],
|
261 |
+
constant void * inputData [[buffer(4)]],
|
262 |
+
device void * outputData [[buffer(5)]],
|
263 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
264 |
+
uint thread_index [[thread_position_in_grid]]) {
|
265 |
+
constant int64_t * index_sizes = (constant int64_t *)indexSizes;
|
266 |
+
constant int64_t * index_strides = (constant int64_t *)indexStrides;
|
267 |
+
int64_t offset = 0;
|
268 |
+
for (uint32_t i = 0; i < num_indices; i++) {
|
269 |
+
#if __METAL_VERSION__ >= 300
|
270 |
+
constant int64_t* indexArray = indexAB[i].indexArray;
|
271 |
+
#else
|
272 |
+
constant int64_t* indexArray = (constant int64_t*)indexAB.indexArray[i];
|
273 |
+
#endif
|
274 |
+
int64_t index = indexArray[offsets[thread_index].z / sizeof(int64_t)];
|
275 |
+
if (index < 0) {
|
276 |
+
index += index_sizes[i];
|
277 |
+
}
|
278 |
+
offset += index * index_strides[i];
|
279 |
+
}
|
280 |
+
device T * out = (device T*)((device char*)outputData + offsets[thread_index].x + offset);
|
281 |
+
constant E * in = (constant E*)((constant char*)inputData + offsets[thread_index].y);
|
282 |
+
atomic_fetch_add_explicit(out, *in, memory_order_relaxed);
|
283 |
+
}
|
284 |
+
|
285 |
+
template<typename T>
|
286 |
+
__attribute__((__always_inline__)) void atomic_fetch_add_relaxed(device void * addr, T value) {
|
287 |
+
device atomic_uint* uintAddr = (device atomic_uint*)addr;
|
288 |
+
uint expected = atomic_load_explicit(uintAddr, memory_order_relaxed);
|
289 |
+
T updated = as_type<T>(expected) + value;
|
290 |
+
while (!atomic_compare_exchange_weak_explicit(uintAddr, &expected, as_type<uint>(updated), memory_order_relaxed, memory_order_relaxed)) {
|
291 |
+
updated = as_type<T>(expected) + value;
|
292 |
+
}
|
293 |
+
}
|
294 |
+
|
295 |
+
template<typename T, typename OffsetsT>
|
296 |
+
kernel void atomic_index_put_accumulate(
|
297 |
+
#if __METAL_VERSION__ >= 300
|
298 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
299 |
+
#else
|
300 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
301 |
+
#endif
|
302 |
+
constant void * indexSizes [[buffer(1)]],
|
303 |
+
constant void * indexStrides [[buffer(2)]],
|
304 |
+
constant OffsetsT * offsets [[buffer(3)]],
|
305 |
+
constant void * inputData [[buffer(4)]],
|
306 |
+
device void * outputData [[buffer(5)]],
|
307 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
308 |
+
uint thread_index [[thread_position_in_grid]]) {
|
309 |
+
constant int64_t * index_sizes = (constant int64_t *)indexSizes;
|
310 |
+
constant int64_t * index_strides = (constant int64_t *)indexStrides;
|
311 |
+
int64_t offset = 0;
|
312 |
+
for (uint32_t i = 0; i < num_indices; i++) {
|
313 |
+
#if __METAL_VERSION__ >= 300
|
314 |
+
constant int64_t* indexArray = indexAB[i].indexArray;
|
315 |
+
#else
|
316 |
+
constant int64_t* indexArray = (constant int64_t*)indexAB.indexArray[i];
|
317 |
+
#endif
|
318 |
+
int64_t index = indexArray[offsets[thread_index].z / sizeof(int64_t)];
|
319 |
+
if (index < 0) {
|
320 |
+
index += index_sizes[i];
|
321 |
+
}
|
322 |
+
offset += index * index_strides[i];
|
323 |
+
}
|
324 |
+
device void * out = (device void*)((device char*)outputData + offsets[thread_index].x + offset);
|
325 |
+
constant T * in = (constant T*)((constant char*)inputData + offsets[thread_index].y);
|
326 |
+
atomic_fetch_add_relaxed<T>(out, *in);
|
327 |
+
}
|
328 |
+
|
329 |
+
template
|
330 |
+
[[host_name("index_put_accumulate_32bit_float_idx32")]]
|
331 |
+
kernel void atomic_index_put_accumulate<float, uint3>(
|
332 |
+
#if __METAL_VERSION__ >= 300
|
333 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
334 |
+
#else
|
335 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
336 |
+
#endif
|
337 |
+
constant void * indexSizes [[buffer(1)]],
|
338 |
+
constant void * indexStrides [[buffer(2)]],
|
339 |
+
constant uint3 * offsets [[buffer(3)]],
|
340 |
+
constant void * inputData [[buffer(4)]],
|
341 |
+
device void * outputData [[buffer(5)]],
|
342 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
343 |
+
uint thread_index [[thread_position_in_grid]]);
|
344 |
+
|
345 |
+
template
|
346 |
+
[[host_name("index_put_accumulate_32bit_float_idx64")]]
|
347 |
+
kernel void atomic_index_put_accumulate<float, ulong3>(
|
348 |
+
#if __METAL_VERSION__ >= 300
|
349 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
350 |
+
#else
|
351 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
352 |
+
#endif
|
353 |
+
constant void * indexSizes [[buffer(1)]],
|
354 |
+
constant void * indexStrides [[buffer(2)]],
|
355 |
+
constant ulong3 * offsets [[buffer(3)]],
|
356 |
+
constant void * inputData [[buffer(4)]],
|
357 |
+
device void * outputData [[buffer(5)]],
|
358 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
359 |
+
uint thread_index [[thread_position_in_grid]]);
|
360 |
+
|
361 |
+
template
|
362 |
+
[[host_name("index_put_accumulate_32bit_int_idx32")]]
|
363 |
+
kernel void index_put_accumulate_native_dtypes<atomic_int, int, uint3>(
|
364 |
+
#if __METAL_VERSION__ >= 300
|
365 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
366 |
+
#else
|
367 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
368 |
+
#endif
|
369 |
+
constant void * indexSizes [[buffer(1)]],
|
370 |
+
constant void * indexStrides [[buffer(2)]],
|
371 |
+
constant uint3 * offsets [[buffer(3)]],
|
372 |
+
constant void * inputData [[buffer(4)]],
|
373 |
+
device void * outputData [[buffer(5)]],
|
374 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
375 |
+
uint thread_index [[thread_position_in_grid]]);
|
376 |
+
|
377 |
+
template
|
378 |
+
[[host_name("index_put_accumulate_32bit_int_idx64")]]
|
379 |
+
kernel void index_put_accumulate_native_dtypes<atomic_int, int, ulong3>(
|
380 |
+
#if __METAL_VERSION__ >= 300
|
381 |
+
constant IndexAB * indexAB [[buffer(0)]],
|
382 |
+
#else
|
383 |
+
constant IndexAB & indexAB [[buffer(0)]],
|
384 |
+
#endif
|
385 |
+
constant void * indexSizes [[buffer(1)]],
|
386 |
+
constant void * indexStrides [[buffer(2)]],
|
387 |
+
constant ulong3 * offsets [[buffer(3)]],
|
388 |
+
constant void * inputData [[buffer(4)]],
|
389 |
+
device void * outputData [[buffer(5)]],
|
390 |
+
constant uint32_t & num_indices [[buffer(6)]],
|
391 |
+
uint thread_index [[thread_position_in_grid]]);
|
392 |
+
)INDEX_METAL";
|
393 |
+
|
394 |
+
static const char *SCATTER_OPS_TEMPLATE = R"METAL_SCATTER(
|
395 |
+
struct __attribute__ ((packed)) packed_uint5{{
|
396 |
+
uint32_t x; uint32_t y; uint32_t z; uint32_t w; uint32_t u;
|
397 |
+
}};
|
398 |
+
|
399 |
+
template<typename Y, typename X>
|
400 |
+
Y cast(const X x);
|
401 |
+
|
402 |
+
template<>
|
403 |
+
{1} cast<{1}, {0}>(const {0} x) {{
|
404 |
+
return {2};
|
405 |
+
}}
|
406 |
+
|
407 |
+
kernel void scatter_kernel_5(uint linear_index [[thread_position_in_grid]],
|
408 |
+
constant void * src_ [[buffer(0)]],
|
409 |
+
device void * dst_ [[buffer(1)]],
|
410 |
+
constant packed_uint5 & size [[buffer(2)]],
|
411 |
+
constant packed_uint5 & stride [[buffer(3)]],
|
412 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
413 |
+
if (linear_index >= numel) return;
|
414 |
+
|
415 |
+
constant {0} * src = (constant {0} *)src_;
|
416 |
+
device {1} * dst = (device {1} *)dst_;
|
417 |
+
|
418 |
+
packed_uint5 local_index;
|
419 |
+
local_index.x = linear_index / (size.u * size.w * size.z * size.y) % size.x;
|
420 |
+
local_index.y = linear_index / (size.u * size.w * size.z) % size.y;
|
421 |
+
local_index.z = linear_index / (size.u * size.w) % size.z;
|
422 |
+
local_index.w = linear_index / size.u % size.w;
|
423 |
+
local_index.u = linear_index % size.u;
|
424 |
+
|
425 |
+
packed_uint5 strided_index;
|
426 |
+
strided_index.x = local_index.x * stride.x;
|
427 |
+
strided_index.y = local_index.y * stride.y;
|
428 |
+
strided_index.z = local_index.z * stride.z;
|
429 |
+
strided_index.w = local_index.w * stride.w;
|
430 |
+
strided_index.u = local_index.u * stride.u;
|
431 |
+
|
432 |
+
dst[strided_index.x + strided_index.y + strided_index.z + strided_index.w + strided_index.u] = cast<{1}>(src[linear_index]);
|
433 |
+
}}
|
434 |
+
|
435 |
+
kernel void scatter_kernel_4(uint linear_index [[thread_position_in_grid]],
|
436 |
+
constant void * src_ [[buffer(0)]],
|
437 |
+
device void * dst_ [[buffer(1)]],
|
438 |
+
constant packed_uint4 & size [[buffer(2)]],
|
439 |
+
constant packed_uint4 & stride [[buffer(3)]],
|
440 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
441 |
+
if (linear_index >= numel) return;
|
442 |
+
|
443 |
+
constant {0} * src = (constant {0} *)src_;
|
444 |
+
device {1} * dst = (device {1} *)dst_;
|
445 |
+
|
446 |
+
packed_uint4 local_index;
|
447 |
+
local_index.x = linear_index / (size[3] * size[2] * size[1]) % size[0];
|
448 |
+
local_index.y = linear_index / (size[3] * size[2]) % size[1];
|
449 |
+
local_index.z = linear_index / size[3] % size[2];
|
450 |
+
local_index.w = linear_index % size[3];
|
451 |
+
|
452 |
+
const packed_uint4 strided_index = local_index * stride;
|
453 |
+
dst[strided_index.x + strided_index.y + strided_index.z + strided_index.w] = cast<{1}>(src[linear_index]);
|
454 |
+
}}
|
455 |
+
|
456 |
+
kernel void scatter_kernel_3(uint linear_index [[thread_position_in_grid]],
|
457 |
+
constant void * src_ [[buffer(0)]],
|
458 |
+
device void * dst_ [[buffer(1)]],
|
459 |
+
constant packed_uint3 & size [[buffer(2)]],
|
460 |
+
constant packed_uint3 & stride [[buffer(3)]],
|
461 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
462 |
+
if (linear_index >= numel) return;
|
463 |
+
|
464 |
+
constant {0} * src = (constant {0} *)src_;
|
465 |
+
device {1} * dst = (device {1} *)dst_;
|
466 |
+
|
467 |
+
packed_uint3 local_index;
|
468 |
+
local_index.x = linear_index / (size[2] * size[1]) % size[0];
|
469 |
+
local_index.y = linear_index / size[2] % size[1];
|
470 |
+
local_index.z = linear_index % size[2];
|
471 |
+
|
472 |
+
const packed_uint3 strided_index = local_index * stride;
|
473 |
+
dst[strided_index.x + strided_index.y + strided_index.z] = cast<{1}>(src[linear_index]);
|
474 |
+
}}
|
475 |
+
|
476 |
+
kernel void scatter_kernel_2(uint linear_index [[thread_position_in_grid]],
|
477 |
+
constant void * src_ [[buffer(0)]],
|
478 |
+
device void * dst_ [[buffer(1)]],
|
479 |
+
constant packed_uint2 & size [[buffer(2)]],
|
480 |
+
constant packed_uint2 & stride [[buffer(3)]],
|
481 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
482 |
+
if (linear_index >= numel) return;
|
483 |
+
|
484 |
+
constant {0} * src = (constant {0} *)src_;
|
485 |
+
device {1} * dst = (device {1} *)dst_;
|
486 |
+
|
487 |
+
packed_uint2 local_index;
|
488 |
+
local_index.x = linear_index / size[1] % size[0];
|
489 |
+
local_index.y = linear_index % size[1];
|
490 |
+
|
491 |
+
const packed_uint2 strided_index = local_index * stride;
|
492 |
+
dst[strided_index.x + strided_index.y] = cast<{1}>(src[linear_index]);
|
493 |
+
}}
|
494 |
+
|
495 |
+
kernel void scatter_kernel_1(uint linear_index [[thread_position_in_grid]],
|
496 |
+
constant void * src_ [[buffer(0)]],
|
497 |
+
device void * dst_ [[buffer(1)]],
|
498 |
+
constant int & size [[buffer(2)]],
|
499 |
+
constant int & stride [[buffer(3)]],
|
500 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
501 |
+
if (linear_index >= numel) return;
|
502 |
+
|
503 |
+
constant {0} * src = (constant {0} *)src_;
|
504 |
+
device {1} * dst = (device {1} *)dst_;
|
505 |
+
|
506 |
+
const int local_index = linear_index % size;
|
507 |
+
const int strided_index = local_index * stride;
|
508 |
+
dst[strided_index] = cast<{1}>(src[linear_index]);
|
509 |
+
}}
|
510 |
+
)METAL_SCATTER";
|
511 |
+
|
512 |
+
static const char *GATHER_OPS_TEMPLATE = R"METAL_GATHER(
|
513 |
+
struct __attribute__ ((packed)) packed_uint5{{
|
514 |
+
uint32_t x; uint32_t y; uint32_t z; uint32_t w; uint32_t u;
|
515 |
+
}};
|
516 |
+
|
517 |
+
template<typename Y, typename X>
|
518 |
+
Y cast(const X x);
|
519 |
+
|
520 |
+
template<>
|
521 |
+
{1} cast<{1}, {0}>(const {0} x) {{
|
522 |
+
return {2};
|
523 |
+
}}
|
524 |
+
|
525 |
+
kernel void gather_kernel_5(uint linear_index [[thread_position_in_grid]],
|
526 |
+
constant void * src_ [[buffer(0)]],
|
527 |
+
device void * dst_ [[buffer(1)]],
|
528 |
+
constant packed_uint5 & size [[buffer(2)]],
|
529 |
+
constant packed_uint5 & stride [[buffer(3)]],
|
530 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
531 |
+
if (linear_index >= numel) return;
|
532 |
+
|
533 |
+
constant {0} * src = (constant {0} *)src_;
|
534 |
+
device {1} * dst = (device {1} *)dst_;
|
535 |
+
|
536 |
+
|
537 |
+
packed_uint5 local_index;
|
538 |
+
local_index.x = linear_index / (size.u * size.w * size.z * size.y) % size.x;
|
539 |
+
local_index.y = linear_index / (size.u * size.w * size.z) % size.y;
|
540 |
+
local_index.z = linear_index / (size.u * size.w) % size.z;
|
541 |
+
local_index.w = linear_index / size.u % size.w;
|
542 |
+
local_index.u = linear_index % size.u;
|
543 |
+
|
544 |
+
packed_uint5 strided_index;
|
545 |
+
strided_index.x = local_index.x * stride.x;
|
546 |
+
strided_index.y = local_index.y * stride.y;
|
547 |
+
strided_index.z = local_index.z * stride.z;
|
548 |
+
strided_index.w = local_index.w * stride.w;
|
549 |
+
strided_index.u = local_index.u * stride.u;
|
550 |
+
|
551 |
+
dst[linear_index] = cast<{1}>(src[strided_index.x + strided_index.y + strided_index.z + strided_index.w + strided_index.u]);
|
552 |
+
}}
|
553 |
+
|
554 |
+
kernel void gather_kernel_4(uint linear_index [[thread_position_in_grid]],
|
555 |
+
constant void * src_ [[buffer(0)]],
|
556 |
+
device void * dst_ [[buffer(1)]],
|
557 |
+
constant packed_uint4 & size [[buffer(2)]],
|
558 |
+
constant packed_uint4 & stride [[buffer(3)]],
|
559 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
560 |
+
if (linear_index >= numel) return;
|
561 |
+
|
562 |
+
constant {0} * src = (constant {0} *)src_;
|
563 |
+
device {1} * dst = (device {1} *)dst_;
|
564 |
+
|
565 |
+
packed_uint4 local_index;
|
566 |
+
local_index.x = linear_index / (size[3] * size[2] * size[1]) % size[0];
|
567 |
+
local_index.y = linear_index / (size[3] * size[2]) % size[1];
|
568 |
+
local_index.z = linear_index / size[3] % size[2];
|
569 |
+
local_index.w = linear_index % size[3];
|
570 |
+
|
571 |
+
const packed_uint4 strided_index = local_index * stride;
|
572 |
+
dst[linear_index] = cast<{1}>(src[strided_index.x + strided_index.y + strided_index.z + strided_index.w]);
|
573 |
+
}}
|
574 |
+
|
575 |
+
kernel void gather_kernel_3(uint linear_index [[thread_position_in_grid]],
|
576 |
+
constant void * src_ [[buffer(0)]],
|
577 |
+
device void * dst_ [[buffer(1)]],
|
578 |
+
constant packed_uint3 & size [[buffer(2)]],
|
579 |
+
constant packed_uint3 & stride [[buffer(3)]],
|
580 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
581 |
+
if (linear_index >= numel) return;
|
582 |
+
|
583 |
+
constant {0} * src = (constant {0} *)src_;
|
584 |
+
device {1} * dst = (device {1} *)dst_;
|
585 |
+
|
586 |
+
packed_uint3 local_index;
|
587 |
+
local_index.x = linear_index / (size[2] * size[1]) % size[0];
|
588 |
+
local_index.y = linear_index / size[2] % size[1];
|
589 |
+
local_index.z = linear_index % size[2];
|
590 |
+
|
591 |
+
const packed_uint3 strided_index = local_index * stride;
|
592 |
+
dst[linear_index] = cast<{1}>(src[strided_index.x + strided_index.y + strided_index.z]);
|
593 |
+
}}
|
594 |
+
|
595 |
+
kernel void gather_kernel_2(uint linear_index [[thread_position_in_grid]],
|
596 |
+
constant void * src_ [[buffer(0)]],
|
597 |
+
device void * dst_ [[buffer(1)]],
|
598 |
+
constant packed_uint2 & size [[buffer(2)]],
|
599 |
+
constant packed_uint2 & stride [[buffer(3)]],
|
600 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
601 |
+
if (linear_index >= numel) return;
|
602 |
+
|
603 |
+
constant {0} * src = (constant {0} *)src_;
|
604 |
+
device {1} * dst = (device {1} *)dst_;
|
605 |
+
|
606 |
+
packed_uint2 local_index;
|
607 |
+
local_index.x = linear_index / size[1] % size[0];
|
608 |
+
local_index.y = linear_index % size[1];
|
609 |
+
|
610 |
+
const packed_uint2 strided_index = local_index * stride;
|
611 |
+
dst[linear_index] = cast<{1}>(src[strided_index.x + strided_index.y]);
|
612 |
+
}}
|
613 |
+
|
614 |
+
kernel void gather_kernel_1(uint linear_index [[thread_position_in_grid]],
|
615 |
+
constant void * src_ [[buffer(0)]],
|
616 |
+
device void * dst_ [[buffer(1)]],
|
617 |
+
constant int & size [[buffer(2)]],
|
618 |
+
constant int & stride [[buffer(3)]],
|
619 |
+
constant uint32_t & numel [[buffer(4)]]) {{
|
620 |
+
if (linear_index >= numel) return;
|
621 |
+
|
622 |
+
constant {0} * src = (constant {0} *)src_;
|
623 |
+
device {1} * dst = (device {1} *)dst_;
|
624 |
+
|
625 |
+
const int local_index = linear_index % size;
|
626 |
+
const int strided_index = local_index * stride;
|
627 |
+
dst[linear_index] = cast<{1}>(src[strided_index]);
|
628 |
+
}}
|
629 |
+
)METAL_GATHER";
|
630 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSAllocator.h
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <ATen/mps/MPSAllocatorInterface.h>
|
6 |
+
#include <ATen/mps/MPSEvent.h>
|
7 |
+
#include <ATen/mps/MPSStream.h>
|
8 |
+
|
9 |
+
#include <cstdio>
|
10 |
+
#include <mutex>
|
11 |
+
#include <set>
|
12 |
+
#include <unordered_set>
|
13 |
+
#include <mach/vm_page_size.h>
|
14 |
+
#include <c10/util/flat_hash_map.h>
|
15 |
+
|
16 |
+
// this implementation is based on CUDACachingAllocator.
|
17 |
+
// It utilizes Metal Heaps to improve the performance with buffer allocation.
|
18 |
+
// Do not include this header. Use MPSAllocatorInterface.h instead.
|
19 |
+
// TODO: Unify the logic with CUDACachingAllocator and remove redundant code.
|
20 |
+
namespace at::mps::HeapAllocator {
|
21 |
+
|
22 |
+
static const size_t kMaxSmallAlloc = MB(1); // largest "small" allocation is 1 MiB
|
23 |
+
static const size_t kMinLargeAlloc = MB(10); // allocations between 1 and 10 MiB may use kLargeHeap
|
24 |
+
static const size_t kRoundLarge = MB(2); // round up large allocations to 2 MiB
|
25 |
+
static const size_t kSmallHeap = MB(8); // "small" allocations are packed in 8 MiB heaps
|
26 |
+
static const size_t kLargeHeap = MB(32); // "large" allocations may be packed in 32 MiB heaps
|
27 |
+
static const size_t kXLargeHeapD = MB(128); // "extra large" allocations on Discrete devices may be packed in 128 MiB heaps
|
28 |
+
static const size_t kXLargeHeapU = MB(1024); // "extra large" allocations on Unified devices may be packed in 1 GiB heaps
|
29 |
+
static const size_t kMaxScalarAlloc = (sizeof(int64_t)); // largest "scalar" allocation
|
30 |
+
|
31 |
+
// buffer pools could be customized with a combination of usage flags
|
32 |
+
enum UsageFlags : uint32_t {
|
33 |
+
PRIVATE = 0,
|
34 |
+
SMALL = (1 << 0), // small heaps have sizes of kSmallHeap, and large ones kLargeHeap
|
35 |
+
SHARED = (1 << 1), // shared pools allocated on devices with unified memory; otherwise, private between host/device
|
36 |
+
MANAGED = (1 << 2), // managed storage mode
|
37 |
+
HAZARD = (1 << 3), // enables Automatic Hazard Tracking for the resources allocated on the pool
|
38 |
+
SCALAR = (1 << 4), // used to import CPU scalar values to GPU and use them in MPS Stream
|
39 |
+
};
|
40 |
+
// debug verbosity flags
|
41 |
+
enum DebugVerbosity : uint32_t {
|
42 |
+
SILENT = 0,
|
43 |
+
PROFILING = (1 << 0), // print generic profiling data for total system memory usage
|
44 |
+
ALLOCATIONS = (1 << 1), // print buffer allocations
|
45 |
+
RECYCLES = (1 << 2), // print buffer recycling
|
46 |
+
RELEASES = (1 << 3), // print buffer releases
|
47 |
+
LARGE_ONLY = (1 << 4), // only log large buffer pool transactions
|
48 |
+
};
|
49 |
+
|
50 |
+
struct HeapBlock;
|
51 |
+
|
52 |
+
struct BufferBlock {
|
53 |
+
id<MTLBuffer> buffer;
|
54 |
+
void* cpu_ptr = nullptr; // stores the pointer to CPU mapping of a Shared MTLBuffer
|
55 |
+
size_t size; // size after alignment
|
56 |
+
size_t requested_size; // requested size (before alignment)
|
57 |
+
// buffer shape is used for retrieving base of views in cached graphs
|
58 |
+
std::vector<int64_t> shape;
|
59 |
+
bool in_use = false;
|
60 |
+
HeapBlock* heap;
|
61 |
+
id_t buf_id;
|
62 |
+
// counter to candidate least recently used buffers for garbage collection
|
63 |
+
uint32_t gc_count = 0;
|
64 |
+
uint32_t use_count = 0;
|
65 |
+
// counter to assign unique ids to buffer blocks
|
66 |
+
static uint64_t buffer_counter;
|
67 |
+
// Metal events used to sync GPU/CPU operations on the shared-storage buffers
|
68 |
+
MPSEventPtr event;
|
69 |
+
|
70 |
+
BufferBlock(size_t Size, size_t RequestedSize = 0, const id<MTLBuffer> Buffer = nullptr,
|
71 |
+
HeapBlock* Heap = nullptr) :
|
72 |
+
buffer(Buffer), size(Size), requested_size(RequestedSize),
|
73 |
+
heap(Heap), buf_id(Buffer ? ++buffer_counter : 0) { }
|
74 |
+
|
75 |
+
static bool Comparator(const BufferBlock* a, const BufferBlock* b) {
|
76 |
+
return (a->size != b->size) ? a->size < b->size : (uintptr_t)a->buffer < (uintptr_t)b->buffer;
|
77 |
+
}
|
78 |
+
static size_t alignUp(size_t Size, size_t Alignment) {
|
79 |
+
assert(((Alignment - 1) & Alignment) == 0);
|
80 |
+
return ((Size + Alignment - 1) & ~(Alignment - 1));
|
81 |
+
}
|
82 |
+
uint32_t retainCount() const { return [buffer retainCount]; }
|
83 |
+
};
|
84 |
+
typedef bool (*BufferComparison)(const BufferBlock*, const BufferBlock*);
|
85 |
+
|
86 |
+
struct BufferPool;
|
87 |
+
struct AllocParams {
|
88 |
+
AllocParams(size_t Alloc_Size, size_t Requested_Size, BufferPool* Pool) :
|
89 |
+
search_key(Alloc_Size), pool(Pool), requested_size(Requested_Size) { }
|
90 |
+
size_t size() const { return search_key.size; }
|
91 |
+
|
92 |
+
BufferBlock search_key;
|
93 |
+
BufferPool* pool;
|
94 |
+
BufferBlock* buffer_block = nullptr;
|
95 |
+
size_t requested_size;
|
96 |
+
// true if we exceed the low watermark limit. In this case
|
97 |
+
// we apply strategies to relieve the pressure before allocation.
|
98 |
+
bool has_memory_pressure = false;
|
99 |
+
// true if we're allocating on a unified memory device
|
100 |
+
bool has_unified_memory = true;
|
101 |
+
};
|
102 |
+
|
103 |
+
struct HeapBlock {
|
104 |
+
id<MTLHeap> heap;
|
105 |
+
struct { size_t total, available; } size;
|
106 |
+
BufferPool* pool;
|
107 |
+
unsigned int n_buffers = 0;
|
108 |
+
id_t heap_id;
|
109 |
+
// indicates if we split this heap to sub-allocate 'several' buffers (otherwise single buffer)
|
110 |
+
bool is_split;
|
111 |
+
// counter to assign unique ids to heap blocks
|
112 |
+
static uint64_t heap_counter;
|
113 |
+
|
114 |
+
HeapBlock(size_t Size, const id<MTLHeap> Heap = nullptr, BufferPool *Pool = nullptr) :
|
115 |
+
heap(Heap), size({.total = Size, .available = Size}), pool(Pool),
|
116 |
+
heap_id(Heap ? ++heap_counter : 0), is_split(true) { }
|
117 |
+
|
118 |
+
static MTLResourceOptions getOptions(uint32_t usage) {
|
119 |
+
// TODO: check the caching performance of write-combined mode
|
120 |
+
MTLResourceOptions options = MTLResourceCPUCacheModeDefaultCache;
|
121 |
+
|
122 |
+
if (usage & UsageFlags::MANAGED)
|
123 |
+
options |= MTLResourceStorageModeManaged;
|
124 |
+
else if (usage & UsageFlags::SHARED)
|
125 |
+
options |= MTLResourceStorageModeShared;
|
126 |
+
else
|
127 |
+
options |= MTLResourceStorageModePrivate;
|
128 |
+
|
129 |
+
options |= (usage & UsageFlags::HAZARD) ? MTLResourceHazardTrackingModeTracked : MTLResourceHazardTrackingModeUntracked;
|
130 |
+
|
131 |
+
return options;
|
132 |
+
}
|
133 |
+
|
134 |
+
static HeapBlock* createHeapBlock(AllocParams& params, id<MTLDevice> device, uint32_t usage) {
|
135 |
+
HeapBlock *heapBlock = nullptr;
|
136 |
+
bool is_split = true;
|
137 |
+
const size_t size = params.size();
|
138 |
+
MTLHeapDescriptor *d = [MTLHeapDescriptor new];
|
139 |
+
if (d) {
|
140 |
+
const size_t kXLargeHeap = params.has_unified_memory ? kXLargeHeapU : kXLargeHeapD;
|
141 |
+
if (size <= kMaxSmallAlloc) {
|
142 |
+
d.size = kSmallHeap;
|
143 |
+
} else if (size < kMinLargeAlloc) {
|
144 |
+
d.size = kLargeHeap;
|
145 |
+
} else if (size < kXLargeHeap / 2 && !params.has_memory_pressure) {
|
146 |
+
d.size = kXLargeHeap;
|
147 |
+
} else {
|
148 |
+
d.size = kRoundLarge * ((size + kRoundLarge - 1) / kRoundLarge);
|
149 |
+
is_split = false;
|
150 |
+
}
|
151 |
+
d.storageMode = (usage & UsageFlags::SHARED) ? MTLStorageModeShared : MTLStorageModePrivate;
|
152 |
+
d.cpuCacheMode = MTLCPUCacheModeDefaultCache;
|
153 |
+
// this automatically handles Metal buffer access synchronizations at the
|
154 |
+
// cost of slightly lower performance.
|
155 |
+
d.hazardTrackingMode = (usage & UsageFlags::HAZARD) ? MTLHazardTrackingModeTracked : MTLHazardTrackingModeUntracked;
|
156 |
+
d.resourceOptions = getOptions(usage);
|
157 |
+
d.type = MTLHeapTypeAutomatic;
|
158 |
+
id<MTLHeap> heap = [device newHeapWithDescriptor: d];
|
159 |
+
if (heap) {
|
160 |
+
[heap setPurgeableState:MTLPurgeableStateNonVolatile];
|
161 |
+
const size_t heap_size = heapAvailableSize(heap);
|
162 |
+
heapBlock = new HeapBlock(heap_size, heap, params.pool);
|
163 |
+
if (heapBlock) {
|
164 |
+
heapBlock->is_split = is_split;
|
165 |
+
}
|
166 |
+
}
|
167 |
+
[d release];
|
168 |
+
}
|
169 |
+
return heapBlock;
|
170 |
+
}
|
171 |
+
static bool Comparator(const HeapBlock* a, const HeapBlock* b) {
|
172 |
+
return (a->size.available != b->size.available) ? a->size.available < b->size.available :
|
173 |
+
(uintptr_t)a->heap < (uintptr_t)b->heap;
|
174 |
+
}
|
175 |
+
static NSUInteger heapAvailableSize(id<MTLHeap> heap, size_t Alignment = vm_page_size) {
|
176 |
+
return [heap maxAvailableSizeWithAlignment:Alignment];
|
177 |
+
}
|
178 |
+
NSUInteger Size() {
|
179 |
+
return [heap size];
|
180 |
+
}
|
181 |
+
id<MTLBuffer> newMTLBuffer(size_t length, uint32_t usage) {
|
182 |
+
id<MTLBuffer> buf = [heap newBufferWithLength:length options:getOptions(usage)];
|
183 |
+
if (buf) {
|
184 |
+
updateAvailableSize();
|
185 |
+
n_buffers++;
|
186 |
+
}
|
187 |
+
return buf;
|
188 |
+
}
|
189 |
+
// returns the retainCount before releasing the buffer
|
190 |
+
uint32_t releaseMTLBuffer(id<MTLBuffer>& buffer) {
|
191 |
+
const uint32_t retainCount = [buffer retainCount];
|
192 |
+
[buffer release];
|
193 |
+
buffer = nil;
|
194 |
+
updateAvailableSize();
|
195 |
+
n_buffers--;
|
196 |
+
return retainCount;
|
197 |
+
}
|
198 |
+
// returns the retainCount before releasing the heap
|
199 |
+
uint32_t releaseMTLHeap() {
|
200 |
+
const uint32_t retainCount = [heap retainCount];
|
201 |
+
TORCH_INTERNAL_ASSERT(!n_buffers); // assert if heap isn't empty
|
202 |
+
[heap setPurgeableState:MTLPurgeableStateEmpty];
|
203 |
+
[heap release];
|
204 |
+
heap = nil;
|
205 |
+
size.available = 0;
|
206 |
+
return retainCount;
|
207 |
+
}
|
208 |
+
uint32_t retainCount() const { return [heap retainCount]; }
|
209 |
+
void updateAvailableSize() { size.available = heapAvailableSize(heap); }
|
210 |
+
};
|
211 |
+
typedef bool (*HeapComparison)(const HeapBlock*, const HeapBlock*);
|
212 |
+
|
213 |
+
struct BufferPool {
|
214 |
+
enum class Kind {
|
215 |
+
PRIVATE_SMALL,
|
216 |
+
PRIVATE_LARGE,
|
217 |
+
SHARED_SMALL,
|
218 |
+
SHARED_LARGE,
|
219 |
+
SCALAR,
|
220 |
+
};
|
221 |
+
|
222 |
+
BufferPool(const id<MTLDevice> Device, uint32_t Usage) :
|
223 |
+
device(Device), usage(Usage),
|
224 |
+
heaps(HeapBlock::Comparator), available_buffers(BufferBlock::Comparator) { }
|
225 |
+
|
226 |
+
const id<MTLDevice> device;
|
227 |
+
// usage flags to customize the pool for various purposes (see UsageFlags enum)
|
228 |
+
const uint32_t usage;
|
229 |
+
// total number of buffers in the pool
|
230 |
+
uint32_t n_buffers = 0;
|
231 |
+
// total allocations size on this pool
|
232 |
+
size_t allocated_size = 0;
|
233 |
+
// total memory available in the pool
|
234 |
+
size_t available_size = 0;
|
235 |
+
// list of heaps ordered by their "available" (not total) memory size
|
236 |
+
std::set<HeapBlock*, HeapComparison> heaps;
|
237 |
+
// list of only "available" buffers in the pool (i.e., buffers not in-use)
|
238 |
+
std::set<BufferBlock*, BufferComparison> available_buffers;
|
239 |
+
// list of buffers that are in a state of "limbo" where they've already been freed
|
240 |
+
// from PyTorch-side, but were not returned to pool due to still being
|
241 |
+
// in-use by command buffers with retainCount > 1. In this state, the buffer is
|
242 |
+
// neither ready to be recycled, nor could be returned to pool as available.
|
243 |
+
// These buffers will be returned to pool once the command buffer's
|
244 |
+
// completionHandler callbacks are called.
|
245 |
+
std::unordered_set<BufferBlock*> buffers_pending_free;
|
246 |
+
// list of heaps pending size update
|
247 |
+
std::unordered_set<HeapBlock*> heaps_pending_update;
|
248 |
+
};
|
249 |
+
|
250 |
+
class MPSHeapAllocatorImpl {
|
251 |
+
public:
|
252 |
+
explicit MPSHeapAllocatorImpl() :
|
253 |
+
m_device(at::mps::MPSDevice::getInstance()->device()),
|
254 |
+
m_max_buffer_size([m_device maxBufferLength]),
|
255 |
+
m_stream(getDefaultMPSStream()),
|
256 |
+
m_event_pool(getMPSEventPool()) {
|
257 |
+
init_allocator();
|
258 |
+
}
|
259 |
+
~MPSHeapAllocatorImpl() {
|
260 |
+
emptyCache();
|
261 |
+
}
|
262 |
+
// interface exposed to at::Allocator
|
263 |
+
id<MTLBuffer> malloc(size_t size, uint32_t usage);
|
264 |
+
// frees a buffer and returns it into buffer pool
|
265 |
+
void free(void* ptr);
|
266 |
+
// releases all the cached buffers and their associated heaps
|
267 |
+
void emptyCache();
|
268 |
+
// free inactive buffers that are pending to be freed
|
269 |
+
void freeInactiveBuffers();
|
270 |
+
// returns true if buffer was allocated from the shared pool
|
271 |
+
bool isSharedBuffer(const void* ptr);
|
272 |
+
// get the requested unaligned size of an MTLBuffer
|
273 |
+
ssize_t getUnalignedBufferSize(const void* ptr);
|
274 |
+
// set the shape of a base tensor from a view tensor
|
275 |
+
void setBufferShape(const void* ptr, const IntArrayRef& shape);
|
276 |
+
// retrieve the shape of a base tensor from a view tensor
|
277 |
+
IntArrayRef getBufferShape(const void* ptr);
|
278 |
+
// get the unique ID of the buffer
|
279 |
+
id_t getBufferId(const void* ptr);
|
280 |
+
// allocate a buffer from a specialized pool to import CPU scalars into GPU
|
281 |
+
id<MTLBuffer> allocScalarBufferWithValue(void* value, size_t size);
|
282 |
+
// returns a CPU-mapping of the input buffer and its retainCount,
|
283 |
+
// if only it has Shared storage-mode and allocated on MPSAllocator
|
284 |
+
std::pair<const void*, uint32_t> getSharedBufferPtr(const void* buffer);
|
285 |
+
// records events for a list of MTLBuffers (list is used to lock the mutex once)
|
286 |
+
// returns true if records any event (given if passed buffers exist and are shared-storage)
|
287 |
+
bool recordEvents(c10::ArrayRef<const void*> buffers);
|
288 |
+
// waits for the event to signal the completion of GPU execution
|
289 |
+
// on the passed shared buffers (list is used to lock the mutex once)
|
290 |
+
// returns true if actually waited on any event
|
291 |
+
bool waitForEvents(c10::ArrayRef<const void*> buffers);
|
292 |
+
// this indicates how far (in Megabytes) the current total allocations are from the
|
293 |
+
// low watermark limit which is used to detect if we're under memory pressure
|
294 |
+
// This returns zero if we've reached the low watermark limit
|
295 |
+
ssize_t getLowWatermarkValue();
|
296 |
+
// (see m_low_watermark_ratio for description)
|
297 |
+
void setLowWatermarkRatio(double ratio);
|
298 |
+
// (see m_high_watermark_ratio for description)
|
299 |
+
void setHighWatermarkRatio(double ratio);
|
300 |
+
// (see m_low_watermark_limit for description)
|
301 |
+
size_t getLowWatermarkLimit() const { return m_low_watermark_limit; }
|
302 |
+
// (see m_max_total_allowed_size for description)
|
303 |
+
size_t getHighWatermarkLimit() const { return m_max_total_allowed_size; }
|
304 |
+
// (see m_total_allocated_memory for description)
|
305 |
+
size_t getTotalAllocatedMemory() const { return m_total_allocated_memory; }
|
306 |
+
// (see m_current_allocated_memory for description)
|
307 |
+
size_t getCurrentAllocatedMemory() const { return m_current_allocated_memory; }
|
308 |
+
// total GPU memory allocated in the process by Metal driver; including
|
309 |
+
// implicit allocations from MPS/MPSGraph frameworks and MPSHeapAllocatorImpl.
|
310 |
+
size_t getDriverAllocatedMemory() const { return current_allocated_size(); }
|
311 |
+
// (see enum DebugVerbosity for description)
|
312 |
+
uint32_t getDebugVerbosity() const { return m_debug_verbosity; }
|
313 |
+
// returns the device that we allocate from
|
314 |
+
inline id<MTLDevice> Device() const { return m_device; }
|
315 |
+
|
316 |
+
// TODO: make a common function to do size unit conversions in PyTorch.
|
317 |
+
inline std::string format_size(uint64_t size) const;
|
318 |
+
|
319 |
+
private:
|
320 |
+
// (see m_high_watermark_ratio for description)
|
321 |
+
constexpr static double default_high_watermark_ratio = 1.7;
|
322 |
+
// we set the allowed upper bound to twice the size of recommendedMaxWorkingSetSize.
|
323 |
+
constexpr static double default_high_watermark_upper_bound = 2.0;
|
324 |
+
// (see m_low_watermark_ratio for description)
|
325 |
+
// on unified memory, we could allocate beyond the recommendedMaxWorkingSetSize
|
326 |
+
constexpr static double default_low_watermark_ratio_unified = 1.4;
|
327 |
+
constexpr static double default_low_watermark_ratio_discrete = 1.0;
|
328 |
+
|
329 |
+
const id<MTLDevice> m_device;
|
330 |
+
std::recursive_mutex m_mutex;
|
331 |
+
// allocated buffers by device pointer
|
332 |
+
ska::flat_hash_map<const void*, BufferBlock*> m_allocated_buffers;
|
333 |
+
// using a container for pools to simplify iterating them
|
334 |
+
ska::flat_hash_map<BufferPool::Kind, std::unique_ptr<BufferPool>> m_pools;
|
335 |
+
// total memory allocated by HeapAllocator (including blocks in pools)
|
336 |
+
size_t m_total_allocated_memory = 0;
|
337 |
+
// currently active memory allocations in use (i.e., blocks not in pools)
|
338 |
+
size_t m_current_allocated_memory = 0;
|
339 |
+
// max buffer size allowed by Metal
|
340 |
+
size_t m_max_buffer_size = 0;
|
341 |
+
// maximum total size allowed to be allocated
|
342 |
+
size_t m_max_total_allowed_size = 0;
|
343 |
+
// high watermark ratio is a hard limit for the total allowed allocations
|
344 |
+
// 0. : disables high watermark limit (may cause system failure if system-wide OOM occurs)
|
345 |
+
// 1. : recommended maximum allocation size (i.e., device.recommendedMaxWorkingSetSize)
|
346 |
+
// >1.: allows limits beyond the device.recommendedMaxWorkingSetSize
|
347 |
+
// e.g., value 0.95 means we allocate up to 95% of recommended maximum
|
348 |
+
// allocation size; beyond that, the allocations would fail with OOM error.
|
349 |
+
double m_high_watermark_ratio;
|
350 |
+
// low watermark ratio is a soft limit to attempt limiting memory allocations up to the lower watermark
|
351 |
+
// level by garbage collection or committing command buffers more frequently (a.k.a, adaptive commit).
|
352 |
+
// Value between 0 to m_high_watermark_ratio (setting 0.0 disables adaptive commit and garbage collection)
|
353 |
+
// e.g., value 0.9 means we 'attempt' to limit allocations up to 90% of recommended maximum
|
354 |
+
// allocation size.
|
355 |
+
double m_low_watermark_ratio;
|
356 |
+
// low watermark size limit (in Bytes) at the time we initialize the allocator
|
357 |
+
size_t m_low_watermark_limit;
|
358 |
+
// use "PYTORCH_DEBUG_MPS_ALLOCATOR" env-var to set debug verbosity
|
359 |
+
uint32_t m_debug_verbosity;
|
360 |
+
// default MPS stream
|
361 |
+
MPSStream* m_stream;
|
362 |
+
// we hold a reference to MPSEventPool so it could get destroyed after MPSAllocator
|
363 |
+
std::shared_ptr<MPSEventPool> m_event_pool;
|
364 |
+
|
365 |
+
void init_allocator();
|
366 |
+
void init_buffer_pools();
|
367 |
+
HeapBlock* get_free_heap(AllocParams& params);
|
368 |
+
bool get_free_buffer(AllocParams& params);
|
369 |
+
BufferBlock* get_allocated_buffer_block(const void* ptr);
|
370 |
+
BufferBlock* alloc_buffer_block(size_t size, uint32_t usage);
|
371 |
+
bool alloc_buffer(AllocParams& params);
|
372 |
+
void free_buffer(BufferBlock* buffer_block);
|
373 |
+
// returns true if the container heap is also released
|
374 |
+
bool release_buffer(BufferBlock* buffer_block, bool remove_empty_heap = true);
|
375 |
+
void release_buffers(BufferPool& pool);
|
376 |
+
bool release_available_cached_buffers(AllocParams& params);
|
377 |
+
bool release_cached_buffers();
|
378 |
+
// free unused cached blocks to reclaim GPU memory if memory pressure is high
|
379 |
+
void garbage_collect_cached_buffers(AllocParams& params);
|
380 |
+
// returns the suitable buffer pool type for the usage or
|
381 |
+
// requested/allocated sizes
|
382 |
+
BufferPool& get_pool(size_t requested_size, size_t aligned_size, uint32_t usage);
|
383 |
+
// returns the aligned allocation size that is optimized
|
384 |
+
// for the buffers to get reused frequently
|
385 |
+
size_t get_allocation_size(size_t size, uint32_t usage) const;
|
386 |
+
// maximum size of device memory available for allocation in current process
|
387 |
+
// Note: the recommendedMaxWorkingSetSize is typically 75% of the total system memory.
|
388 |
+
size_t max_device_size() const { return [m_device recommendedMaxWorkingSetSize]; }
|
389 |
+
// there are implicit allocations from MPS backend, so we need to query the 'device' for
|
390 |
+
// total allocated size instead of manually tracking in MPSAllocator
|
391 |
+
size_t current_allocated_size() const { return [m_device currentAllocatedSize]; }
|
392 |
+
|
393 |
+
bool trigger_memory_callbacks(BufferBlock* buffer_block, IMpsAllocatorCallback::EventType event) const {
|
394 |
+
for (const auto& name : MPSAllocatorCallbacksRegistry()->Keys()) {
|
395 |
+
MPSAllocatorCallbacksRegistry()->Create(name)->executeMPSAllocatorCallback(buffer_block ? buffer_block->buffer : nullptr, event);
|
396 |
+
}
|
397 |
+
return true;
|
398 |
+
}
|
399 |
+
};
|
400 |
+
|
401 |
+
} // namespace at::mps::HeapAllocator
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSAllocatorInterface.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2023 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <c10/core/Allocator.h>
|
6 |
+
#include <c10/util/Registry.h>
|
7 |
+
#include <ATen/core/ATen_fwd.h>
|
8 |
+
|
9 |
+
#define MB(x) (x * 1048576UL)
|
10 |
+
|
11 |
+
namespace at::mps {
|
12 |
+
|
13 |
+
// this is a public interface to access MPSAllocator.
|
14 |
+
// Do not declare methods that would depend on MPS or Metal frameworks.
|
15 |
+
class IMPSAllocator : public c10::Allocator {
|
16 |
+
public:
|
17 |
+
// see the comments in MPSAllocator.h for the description of these methods.
|
18 |
+
virtual void emptyCache() const = 0;
|
19 |
+
virtual void freeInactiveBuffers() const = 0;
|
20 |
+
virtual ssize_t getUnalignedBufferSize(const void* ptr) const = 0;
|
21 |
+
virtual IntArrayRef getBufferShape(const void* ptr) const = 0;
|
22 |
+
virtual id_t getBufferId(const void* ptr) const = 0;
|
23 |
+
virtual void setBufferShape(const void* ptr, const IntArrayRef& shape) const = 0;
|
24 |
+
virtual bool isSharedBuffer(const void* ptr) const = 0;
|
25 |
+
virtual bool isSharedStorageSupported() const = 0;
|
26 |
+
virtual c10::DataPtr allocScalarBufferWithValue(void* value, size_t size) const = 0;
|
27 |
+
virtual std::string formatSize(size_t size) const = 0;
|
28 |
+
virtual void setLowWatermarkRatio(double ratio) const = 0;
|
29 |
+
virtual void setHighWatermarkRatio(double ratio) const = 0;
|
30 |
+
virtual ssize_t getLowWatermarkValue() const = 0;
|
31 |
+
virtual size_t getLowWatermarkLimit() const = 0;
|
32 |
+
virtual size_t getHighWatermarkLimit() const = 0;
|
33 |
+
virtual size_t getTotalAllocatedMemory() const = 0;
|
34 |
+
virtual size_t getCurrentAllocatedMemory() const = 0;
|
35 |
+
virtual size_t getDriverAllocatedMemory() const = 0;
|
36 |
+
virtual std::pair<const void*, uint32_t> getSharedBufferPtr(const void* ptr) const = 0;
|
37 |
+
virtual bool recordEvents(c10::ArrayRef<const void*> buffers) const = 0;
|
38 |
+
virtual bool waitForEvents(c10::ArrayRef<const void*> buffers) const = 0;
|
39 |
+
};
|
40 |
+
|
41 |
+
class IMpsAllocatorCallback {
|
42 |
+
public:
|
43 |
+
enum class EventType {
|
44 |
+
ALLOCATED, // buffer got allocated to be used immediately
|
45 |
+
RECYCLED, // buffer pulled from free list to be reused
|
46 |
+
FREED, // buffer put to free list for future recycling
|
47 |
+
RELEASED, // buffer memory released
|
48 |
+
ALLOCATION_FAILED // buffer allocation failed
|
49 |
+
};
|
50 |
+
virtual ~IMpsAllocatorCallback() = default;
|
51 |
+
virtual void executeMPSAllocatorCallback(void* ptr, EventType event) = 0;
|
52 |
+
};
|
53 |
+
|
54 |
+
// MPS allocator will execute every registered callback when a block of memory is freed.
|
55 |
+
C10_DECLARE_REGISTRY(MPSAllocatorCallbacksRegistry, IMpsAllocatorCallback);
|
56 |
+
#define REGISTER_MPS_ALLOCATOR_CALLBACK(name, ...) \
|
57 |
+
C10_REGISTER_CLASS(MPSAllocatorCallbacksRegistry, name, __VA_ARGS__);
|
58 |
+
|
59 |
+
IMPSAllocator* getIMPSAllocator(bool sharedAllocator = false);
|
60 |
+
|
61 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSDevice.h
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
#include <c10/core/Allocator.h>
|
5 |
+
#include <c10/macros/Macros.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
|
8 |
+
|
9 |
+
#ifdef __OBJC__
|
10 |
+
#include <Foundation/Foundation.h>
|
11 |
+
#include <Metal/Metal.h>
|
12 |
+
#include <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
13 |
+
typedef id<MTLDevice> MTLDevice_t;
|
14 |
+
typedef id<MTLLibrary> MTLLibrary_t;
|
15 |
+
typedef id<MTLComputePipelineState> MTLComputePipelineState_t;
|
16 |
+
typedef id<MTLLibrary> MTLLibrary_t;
|
17 |
+
#else
|
18 |
+
typedef void* MTLDevice;
|
19 |
+
typedef void* MTLDevice_t;
|
20 |
+
typedef void* MTLLibrary_t;
|
21 |
+
typedef void* MTLComputePipelineState_t;
|
22 |
+
typedef void* MTLLibrary_t;
|
23 |
+
#endif
|
24 |
+
|
25 |
+
using namespace std;
|
26 |
+
|
27 |
+
namespace at::mps {
|
28 |
+
|
29 |
+
// Helper enum to check if a MPSGraph op is supported in a given macOS version
|
30 |
+
enum class MacOSVersion : uint32_t {
|
31 |
+
MACOS_VER_13_0_PLUS = 0,
|
32 |
+
MACOS_VER_13_1_PLUS,
|
33 |
+
MACOS_VER_13_2_PLUS,
|
34 |
+
MACOS_VER_13_3_PLUS,
|
35 |
+
MACOS_VER_14_0_PLUS,
|
36 |
+
};
|
37 |
+
|
38 |
+
//-----------------------------------------------------------------
|
39 |
+
// MPSDevice
|
40 |
+
//
|
41 |
+
// MPSDevice is a singleton class that returns the default device
|
42 |
+
//-----------------------------------------------------------------
|
43 |
+
|
44 |
+
class TORCH_API MPSDevice {
|
45 |
+
public:
|
46 |
+
/**
|
47 |
+
* MPSDevice should not be cloneable.
|
48 |
+
*/
|
49 |
+
MPSDevice(MPSDevice& other) = delete;
|
50 |
+
/**
|
51 |
+
* MPSDevice should not be assignable.
|
52 |
+
*/
|
53 |
+
void operator=(const MPSDevice&) = delete;
|
54 |
+
/**
|
55 |
+
* Gets single instance of the Device.
|
56 |
+
*/
|
57 |
+
static MPSDevice* getInstance();
|
58 |
+
/**
|
59 |
+
* Returns the single device.
|
60 |
+
*/
|
61 |
+
MTLDevice_t device() {
|
62 |
+
return _mtl_device;
|
63 |
+
}
|
64 |
+
/**
|
65 |
+
* Returns whether running on Ventura or newer
|
66 |
+
*/
|
67 |
+
bool isMacOS13Plus(MacOSVersion version) const;
|
68 |
+
|
69 |
+
MTLComputePipelineState_t metalIndexingPSO(const std::string &kernel);
|
70 |
+
MTLLibrary_t getMetalIndexingLibrary();
|
71 |
+
|
72 |
+
~MPSDevice();
|
73 |
+
|
74 |
+
private:
|
75 |
+
static MPSDevice* _device;
|
76 |
+
MTLDevice_t _mtl_device;
|
77 |
+
MTLLibrary_t _mtl_indexing_library;
|
78 |
+
MPSDevice();
|
79 |
+
};
|
80 |
+
|
81 |
+
TORCH_API bool is_available();
|
82 |
+
TORCH_API bool is_macos_13_or_newer(MacOSVersion version = MacOSVersion::MACOS_VER_13_0_PLUS);
|
83 |
+
TORCH_API at::Allocator* GetMPSAllocator(bool useSharedAllocator = false);
|
84 |
+
|
85 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSEvent.h
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2023 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <ATen/mps/MPSStream.h>
|
6 |
+
#include <ctime>
|
7 |
+
#include <stack>
|
8 |
+
|
9 |
+
namespace at::mps {
|
10 |
+
|
11 |
+
// NOTE: don't create instances of this class directly.
|
12 |
+
// Use MPSEventPool to acquire instances of MPSEvent.
|
13 |
+
class MPSEvent {
|
14 |
+
public:
|
15 |
+
explicit MPSEvent(id_t ID, MPSStream* stream, bool enable_timing);
|
16 |
+
~MPSEvent();
|
17 |
+
|
18 |
+
// records an event on the stream
|
19 |
+
void record(bool needsLock, bool syncEvent = false);
|
20 |
+
// makes all future work submitted to the stream wait for this event.
|
21 |
+
bool wait(bool needsLock, bool syncEvent = false);
|
22 |
+
// schedules a notifyListener callback for the event.
|
23 |
+
bool notify(bool needsLock, MTLSharedEventNotificationBlock block);
|
24 |
+
// checks if events are already signaled.
|
25 |
+
bool query() const;
|
26 |
+
// blocks the CPU thread until all the GPU work that were scheduled
|
27 |
+
// prior to recording this event are completed.
|
28 |
+
bool synchronize();
|
29 |
+
// resets this event with new parameters in case it gets reused from the event pool
|
30 |
+
void reset(MPSStream* stream, bool enable_timing);
|
31 |
+
// returns the unique ID of the event instance
|
32 |
+
id_t getID() const { return m_id; }
|
33 |
+
// returns the completion timestamp of the event
|
34 |
+
uint64_t getCompletionTime() const { return m_completion_time; }
|
35 |
+
// if already recorded, waits for cpu_sync_cv to be signaled
|
36 |
+
void waitForCpuSync();
|
37 |
+
|
38 |
+
private:
|
39 |
+
id_t m_id;
|
40 |
+
// enables measuring the completion time of the notifyListener of this event
|
41 |
+
bool m_enable_timing;
|
42 |
+
uint64_t m_signalCounter = 0;
|
43 |
+
MPSStream* m_stream = nullptr;
|
44 |
+
MTLSharedEvent_t m_event = nullptr;
|
45 |
+
MTLSharedEventListener* m_listener = nullptr;
|
46 |
+
// used to sync the events created on this Stream with CPU
|
47 |
+
std::mutex m_cpu_sync_mutex{};
|
48 |
+
std::condition_variable m_cpu_sync_cv{};
|
49 |
+
// CondVar predicate to sync the events created on this Stream with CPU
|
50 |
+
bool m_cpu_sync_completed = false;
|
51 |
+
// used to compute elapsed time
|
52 |
+
uint64_t m_completion_time = 0;
|
53 |
+
|
54 |
+
void recordLocked(bool syncEvent);
|
55 |
+
bool waitLocked(bool syncEvent);
|
56 |
+
bool notifyLocked(MTLSharedEventNotificationBlock block);
|
57 |
+
void notifyCpuSync();
|
58 |
+
static uint64_t getTime() {
|
59 |
+
return clock_gettime_nsec_np(CLOCK_MONOTONIC_RAW);
|
60 |
+
}
|
61 |
+
};
|
62 |
+
|
63 |
+
typedef std::unique_ptr<MPSEvent, std::function<void(MPSEvent*)>> MPSEventPtr;
|
64 |
+
|
65 |
+
class MPSEventPool {
|
66 |
+
public:
|
67 |
+
explicit MPSEventPool(MPSStream* default_stream);
|
68 |
+
~MPSEventPool();
|
69 |
+
|
70 |
+
MPSEventPtr acquireEvent(bool enable_timing, MPSStream* stream);
|
71 |
+
void emptyCache();
|
72 |
+
|
73 |
+
// these are mainly used for MPSHooks and torch.mps.Event() bindings
|
74 |
+
id_t acquireEvent(bool enable_timing);
|
75 |
+
void releaseEvent(id_t event_id);
|
76 |
+
void recordEvent(id_t event_id, bool syncEvent);
|
77 |
+
void waitForEvent(id_t event_id, bool syncEvent);
|
78 |
+
void synchronizeEvent(id_t event_id);
|
79 |
+
bool queryEvent(id_t event_id);
|
80 |
+
// returns elapsed time between two recorded events in milliseconds
|
81 |
+
double elapsedTime(id_t start_event_id, id_t end_event_id);
|
82 |
+
|
83 |
+
private:
|
84 |
+
MPSStream* m_default_stream = nullptr;
|
85 |
+
std::recursive_mutex m_mutex;
|
86 |
+
std::stack<std::unique_ptr<MPSEvent>> m_pool{};
|
87 |
+
// dictionary to associate event IDs with event objects
|
88 |
+
// used to retain in-use events out of the pool
|
89 |
+
// for torch.mps.Event() bindings.
|
90 |
+
std::unordered_map<id_t, MPSEventPtr> m_in_use_events{};
|
91 |
+
uint64_t m_event_counter = 0;
|
92 |
+
std::function<void(MPSEvent*)> m_default_deleter;
|
93 |
+
|
94 |
+
MPSEvent* getInUseEvent(id_t event_id, bool locked = true);
|
95 |
+
};
|
96 |
+
|
97 |
+
// shared_ptr is used to get MPSEventPool destroyed after dependent instances
|
98 |
+
std::shared_ptr<MPSEventPool> getMPSEventPool();
|
99 |
+
|
100 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSGeneratorImpl.h
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <ATen/core/Generator.h>
|
6 |
+
#include <ATen/core/PhiloxRNGEngine.h>
|
7 |
+
#include <c10/core/GeneratorImpl.h>
|
8 |
+
#include <c10/util/Optional.h>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
namespace mps::detail {
|
12 |
+
|
13 |
+
static const uint32_t PHILOX_STATE_N = 7;
|
14 |
+
struct rng_data_pod {
|
15 |
+
std::array<uint32_t, PHILOX_STATE_N> state{1};
|
16 |
+
uint64_t seed = default_rng_seed_val;
|
17 |
+
};
|
18 |
+
|
19 |
+
TORCH_API const Generator& getDefaultMPSGenerator();
|
20 |
+
TORCH_API Generator createMPSGenerator(uint64_t seed_val = default_rng_seed_val);
|
21 |
+
|
22 |
+
} // namespace mps::detail
|
23 |
+
|
24 |
+
struct TORCH_API MPSGeneratorImpl : public c10::GeneratorImpl {
|
25 |
+
// Constructors
|
26 |
+
MPSGeneratorImpl(uint64_t seed_in = default_rng_seed_val);
|
27 |
+
~MPSGeneratorImpl() override = default;
|
28 |
+
|
29 |
+
// MPSGeneratorImpl methods
|
30 |
+
std::shared_ptr<MPSGeneratorImpl> clone() const;
|
31 |
+
void set_current_seed(uint64_t seed) override;
|
32 |
+
void set_offset(uint64_t offset) override;
|
33 |
+
uint64_t get_offset() const override;
|
34 |
+
uint64_t current_seed() const override;
|
35 |
+
uint64_t seed() override;
|
36 |
+
void set_state(const c10::TensorImpl& new_state) override;
|
37 |
+
c10::intrusive_ptr<c10::TensorImpl> get_state() const override;
|
38 |
+
void update_philox_counters();
|
39 |
+
|
40 |
+
void set_engine(at::Philox4_32 engine) { engine_ = engine; };
|
41 |
+
at::Philox4_32 engine() { return engine_; };
|
42 |
+
uint32_t* state_data() { return data_.state.data(); }
|
43 |
+
static DeviceType device_type() { return DeviceType::MPS; };
|
44 |
+
|
45 |
+
private:
|
46 |
+
mps::detail::rng_data_pod data_;
|
47 |
+
at::Philox4_32 engine_;
|
48 |
+
|
49 |
+
MPSGeneratorImpl* clone_impl() const override;
|
50 |
+
};
|
51 |
+
|
52 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSGuardImpl.h
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
#include <c10/core/impl/DeviceGuardImplInterface.h>
|
5 |
+
#include <c10/macros/Macros.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <ATen/Context.h>
|
8 |
+
#include <ATen/mps/MPSStream.h>
|
9 |
+
#include <ATen/mps/MPSEvent.h>
|
10 |
+
|
11 |
+
#ifdef __OBJC__
|
12 |
+
#include <Foundation/Foundation.h>
|
13 |
+
#include <Metal/Metal.h>
|
14 |
+
#include <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
15 |
+
#endif
|
16 |
+
|
17 |
+
#include <ATen/Tensor.h>
|
18 |
+
#include <c10/core/MemoryFormat.h>
|
19 |
+
#include <c10/core/Storage.h>
|
20 |
+
#include <c10/core/TensorImpl.h>
|
21 |
+
#include <sys/_types/_size_t.h>
|
22 |
+
#include <memory>
|
23 |
+
#include <c10/core/UndefinedTensorImpl.h>
|
24 |
+
#include <c10/util/intrusive_ptr.h>
|
25 |
+
|
26 |
+
|
27 |
+
namespace at::mps {
|
28 |
+
|
29 |
+
typedef MPSEvent* mpsEvent_t;
|
30 |
+
|
31 |
+
// TODO: Move the MPSGuardImpl to inherit from NoOpDeviceGuardImpl
|
32 |
+
// https://github.com/pytorch/pytorch/issues/77170
|
33 |
+
struct TORCH_API MPSGuardImpl final : public c10::impl::DeviceGuardImplInterface {
|
34 |
+
static constexpr c10::DeviceType static_type = c10::DeviceType::MPS;
|
35 |
+
|
36 |
+
// constructor
|
37 |
+
MPSGuardImpl() {}
|
38 |
+
explicit MPSGuardImpl(c10::DeviceType t) {
|
39 |
+
TORCH_INTERNAL_ASSERT(t == c10::DeviceType::MPS);
|
40 |
+
}
|
41 |
+
|
42 |
+
// returns the type
|
43 |
+
c10::DeviceType type() const override {
|
44 |
+
return c10::DeviceType::MPS;
|
45 |
+
}
|
46 |
+
|
47 |
+
Device exchangeDevice(Device d) const override {
|
48 |
+
return Device(c10::DeviceType::MPS, 0);
|
49 |
+
}
|
50 |
+
|
51 |
+
Device getDevice() const override {
|
52 |
+
return Device(c10::DeviceType::MPS, 0);
|
53 |
+
}
|
54 |
+
|
55 |
+
c10::optional<Device> uncheckedGetDevice() const noexcept {
|
56 |
+
return Device(c10::DeviceType::MPS, 0);
|
57 |
+
}
|
58 |
+
|
59 |
+
void setDevice(Device d) const override {
|
60 |
+
TORCH_INTERNAL_ASSERT(d.is_mps());
|
61 |
+
}
|
62 |
+
|
63 |
+
void uncheckedSetDevice(Device d) const noexcept override {
|
64 |
+
// TODO: Currently setting only device 0
|
65 |
+
}
|
66 |
+
|
67 |
+
Stream getStream(Device d) const noexcept override {
|
68 |
+
return Stream(Stream::DEFAULT, Device(c10::DeviceType::MPS, 0));
|
69 |
+
}
|
70 |
+
|
71 |
+
Stream getDefaultStream(Device d) const override {
|
72 |
+
return Stream(Stream::DEFAULT, Device(c10::DeviceType::MPS, 0));
|
73 |
+
}
|
74 |
+
|
75 |
+
// NB: These do NOT set the current device
|
76 |
+
Stream exchangeStream(Stream s) const noexcept override {
|
77 |
+
return Stream(Stream::DEFAULT, Device(c10::DeviceType::MPS, 0));
|
78 |
+
}
|
79 |
+
DeviceIndex deviceCount() const noexcept override {
|
80 |
+
if (at::hasMPS()) {
|
81 |
+
//TODO: extend it for multi-device case
|
82 |
+
return 1;
|
83 |
+
} else {
|
84 |
+
return 0;
|
85 |
+
}
|
86 |
+
}
|
87 |
+
|
88 |
+
// Event-related functions
|
89 |
+
void createEvent(
|
90 |
+
mpsEvent_t* event,
|
91 |
+
const EventFlag flag) const;
|
92 |
+
|
93 |
+
void destroyEvent(
|
94 |
+
void* event,
|
95 |
+
const DeviceIndex device_index) const noexcept override;
|
96 |
+
|
97 |
+
void record(
|
98 |
+
void** event,
|
99 |
+
const Stream& stream,
|
100 |
+
const DeviceIndex device_index,
|
101 |
+
const EventFlag flag) const override;
|
102 |
+
|
103 |
+
void block(
|
104 |
+
void* event,
|
105 |
+
const Stream& stream) const override;
|
106 |
+
|
107 |
+
bool queryEvent(void* event) const override;
|
108 |
+
|
109 |
+
};
|
110 |
+
|
111 |
+
/// A variant of OptionalDeviceGuard that is specialized for MPS.
|
112 |
+
struct OptionalMPSGuard {
|
113 |
+
explicit OptionalMPSGuard() : guard_() {}
|
114 |
+
|
115 |
+
explicit OptionalMPSGuard(c10::optional<Device> device_opt)
|
116 |
+
: guard_(device_opt) {}
|
117 |
+
|
118 |
+
/// Set the current MPS device to the passed device index, if it is not
|
119 |
+
/// nullopt
|
120 |
+
explicit OptionalMPSGuard(c10::optional<DeviceIndex> device_index_opt)
|
121 |
+
: guard_(device_index_opt) {}
|
122 |
+
|
123 |
+
// Copy is not allowed
|
124 |
+
OptionalMPSGuard(const OptionalMPSGuard&) = delete;
|
125 |
+
OptionalMPSGuard& operator=(const OptionalMPSGuard&) = delete;
|
126 |
+
OptionalMPSGuard(OptionalMPSGuard&& other) = delete;
|
127 |
+
OptionalMPSGuard& operator=(OptionalMPSGuard&& other) = delete;
|
128 |
+
|
129 |
+
/// Sets the MPS device to the given device, initializing the guard if it
|
130 |
+
/// is not already initialized. Errors if the given device is not a MPS
|
131 |
+
/// device.
|
132 |
+
void set_device(Device device) {
|
133 |
+
guard_.set_device(device);
|
134 |
+
}
|
135 |
+
|
136 |
+
/// Sets the MPS device to the given device, initializing the guard if it is
|
137 |
+
/// not already initialized. Errors if the given device is not a MPS device.
|
138 |
+
void reset_device(Device device) {
|
139 |
+
guard_.reset_device(device);
|
140 |
+
}
|
141 |
+
|
142 |
+
/// Sets the MPS device to the given device index, initializing the guard if
|
143 |
+
/// it is not already initialized.
|
144 |
+
void set_index(DeviceIndex device_index) {
|
145 |
+
guard_.set_index(device_index);
|
146 |
+
}
|
147 |
+
|
148 |
+
/// Returns the device that was set immediately prior to initialization of the
|
149 |
+
/// guard, or nullopt if the guard is uninitialized.
|
150 |
+
c10::optional<Device> original_device() const {
|
151 |
+
return guard_.original_device();
|
152 |
+
}
|
153 |
+
|
154 |
+
/// Returns the most recent device that was set using this device guard,
|
155 |
+
/// either from construction, or via set_device, if the guard is initialized,
|
156 |
+
/// or nullopt if the guard is uninitialized.
|
157 |
+
c10::optional<Device> current_device() const {
|
158 |
+
return guard_.current_device();
|
159 |
+
}
|
160 |
+
|
161 |
+
/// Restore the original MPS device, resetting this guard to uninitialized
|
162 |
+
/// state.
|
163 |
+
void reset() {
|
164 |
+
guard_.reset();
|
165 |
+
}
|
166 |
+
|
167 |
+
private:
|
168 |
+
c10::impl::InlineOptionalDeviceGuard<MPSGuardImpl> guard_;
|
169 |
+
};
|
170 |
+
|
171 |
+
|
172 |
+
C10_REGISTER_GUARD_IMPL(MPS, MPSGuardImpl);
|
173 |
+
|
174 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSHooks.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <ATen/detail/MPSHooksInterface.h>
|
6 |
+
#include <ATen/Generator.h>
|
7 |
+
#include <ATen/mps/MPSEvent.h>
|
8 |
+
#include <c10/util/Optional.h>
|
9 |
+
|
10 |
+
namespace at::mps {
|
11 |
+
|
12 |
+
// The real implementation of MPSHooksInterface
|
13 |
+
struct MPSHooks : public at::MPSHooksInterface {
|
14 |
+
MPSHooks(at::MPSHooksArgs) {}
|
15 |
+
void initMPS() const override;
|
16 |
+
|
17 |
+
// MPSDevice interface
|
18 |
+
bool hasMPS() const override;
|
19 |
+
bool isOnMacOSorNewer(unsigned major, unsigned minor) const override;
|
20 |
+
|
21 |
+
// MPSGeneratorImpl interface
|
22 |
+
const Generator& getDefaultMPSGenerator() const override;
|
23 |
+
|
24 |
+
// MPSStream interface
|
25 |
+
void deviceSynchronize() const override;
|
26 |
+
void commitStream() const override;
|
27 |
+
void* getCommandBuffer() const override;
|
28 |
+
void* getDispatchQueue() const override;
|
29 |
+
|
30 |
+
// MPSAllocator interface
|
31 |
+
Allocator* getMPSDeviceAllocator() const override;
|
32 |
+
void emptyCache() const override;
|
33 |
+
size_t getCurrentAllocatedMemory() const override;
|
34 |
+
size_t getDriverAllocatedMemory() const override;
|
35 |
+
void setMemoryFraction(double ratio) const override;
|
36 |
+
|
37 |
+
// MPSProfiler interface
|
38 |
+
void profilerStartTrace(const std::string& mode, bool waitUntilCompleted) const override;
|
39 |
+
void profilerStopTrace() const override;
|
40 |
+
|
41 |
+
// MPSEvent interface
|
42 |
+
uint32_t acquireEvent(bool enable_timing) const override;
|
43 |
+
void releaseEvent(uint32_t event_id) const override;
|
44 |
+
void recordEvent(uint32_t event_id) const override;
|
45 |
+
void waitForEvent(uint32_t event_id) const override;
|
46 |
+
void synchronizeEvent(uint32_t event_id) const override;
|
47 |
+
bool queryEvent(uint32_t event_id) const override;
|
48 |
+
double elapsedTimeOfEvents(uint32_t start_event_id, uint32_t end_event_id) const override;
|
49 |
+
|
50 |
+
// Compatibility with Accelerator API
|
51 |
+
bool hasPrimaryContext(DeviceIndex device_index) const override {
|
52 |
+
// When MPS is available, it is always in use for the one device.
|
53 |
+
return true;
|
54 |
+
}
|
55 |
+
};
|
56 |
+
|
57 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSProfiler.h
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <ATen/Tensor.h>
|
6 |
+
#include <ATen/mps/MPSStream.h>
|
7 |
+
#include <ATen/mps/MPSAllocatorInterface.h>
|
8 |
+
|
9 |
+
#include <os/signpost.h>
|
10 |
+
#include <os/log.h>
|
11 |
+
|
12 |
+
#include <sstream>
|
13 |
+
#include <string>
|
14 |
+
#include <atomic>
|
15 |
+
#include <unordered_map>
|
16 |
+
#include <utility>
|
17 |
+
#include <ctime>
|
18 |
+
|
19 |
+
namespace at::mps {
|
20 |
+
|
21 |
+
namespace Profiler {
|
22 |
+
|
23 |
+
struct BaseInfo {
|
24 |
+
// profiling info types
|
25 |
+
enum class Type {
|
26 |
+
GRAPH,
|
27 |
+
KERNEL,
|
28 |
+
COPY,
|
29 |
+
CPU_FALLBACK,
|
30 |
+
};
|
31 |
+
|
32 |
+
BaseInfo(Type infoType, uint64_t Id, const uintptr_t Handle) :
|
33 |
+
type(infoType), profileId(Id), handle(Handle) { }
|
34 |
+
virtual ~BaseInfo() = default;
|
35 |
+
|
36 |
+
// type of profiling info
|
37 |
+
Type type;
|
38 |
+
// unique profile ID for execution instances of operations or copies
|
39 |
+
uint64_t profileId;
|
40 |
+
// ID generated by os_signpost
|
41 |
+
// since it's possible to use event and interval-based signposts at the
|
42 |
+
// same time, we need separate IDs for each.
|
43 |
+
os_signpost_id_t eventSignpostId = 0, intervalSignpostId = 0;
|
44 |
+
// accumulated GPU time in ms (obtained from CompletionHandler's "GPUEndTime - GPUStartTime")
|
45 |
+
std::atomic<double> totalGpuTime{0.0};
|
46 |
+
// accumulated Scheduling time in ms (obtained from CompletionHandler's "KernelEndTime - KernelStartTime")
|
47 |
+
std::atomic<double> totalSchedulingTime{0.0};
|
48 |
+
// indicates if the operation or copy execution has completed
|
49 |
+
std::atomic_bool completed{false};
|
50 |
+
// handle used to identify the profile info's instance (usually the pointer)
|
51 |
+
const uintptr_t handle;
|
52 |
+
|
53 |
+
virtual const std::string toString(double gpuTime = 0, double schedulingTime = 0) const;
|
54 |
+
// builds a string for a tensor (format: Device:ScalarType[tensor.sizes()])
|
55 |
+
static std::string buildTensorString(const Tensor& tensor, bool includeBufferId = false) {
|
56 |
+
if (tensor.defined()) {
|
57 |
+
std::stringstream tensorStr;
|
58 |
+
auto deviceType = tensor.device().type();
|
59 |
+
tensorStr << c10::DeviceTypeName(deviceType);
|
60 |
+
// see comments for INCLUDE_BUFFER_ID
|
61 |
+
if (includeBufferId && deviceType == at::kMPS) {
|
62 |
+
id<MTLBuffer> buffer = __builtin_bit_cast(id<MTLBuffer>, tensor.storage().data());
|
63 |
+
tensorStr << "(buf#" << (getIMPSAllocator()->getBufferId(buffer))
|
64 |
+
<< ":" << buffer.retainCount << ")";
|
65 |
+
}
|
66 |
+
tensorStr << ":"
|
67 |
+
<< tensor.scalar_type() << tensor.sizes();
|
68 |
+
return tensorStr.str();
|
69 |
+
} else {
|
70 |
+
return "undefined";
|
71 |
+
}
|
72 |
+
}
|
73 |
+
static uint64_t getTime() {
|
74 |
+
return clock_gettime_nsec_np(CLOCK_MONOTONIC_RAW);
|
75 |
+
}
|
76 |
+
};
|
77 |
+
|
78 |
+
struct OperationInfo : BaseInfo {
|
79 |
+
OperationInfo(const void* Handle, bool IsGraph, uint64_t Id, const std::string& StrKey) :
|
80 |
+
BaseInfo(IsGraph ? Type::GRAPH : Type::KERNEL, Id, uintptr_t(Handle)), strKey(StrKey) { }
|
81 |
+
|
82 |
+
uint64_t runCount = 0;
|
83 |
+
std::string strKey;
|
84 |
+
|
85 |
+
const std::string toString(double gpuTime = 0, double schedulingTime = 0) const override;
|
86 |
+
|
87 |
+
// builds a string for a kernel
|
88 |
+
static std::string buildKernelString(const std::string& kernelName,
|
89 |
+
const TensorList& tensors,
|
90 |
+
bool includeBufferId = false) {
|
91 |
+
std::stringstream kernelStr;
|
92 |
+
kernelStr << kernelName;
|
93 |
+
for (const Tensor& tensor: tensors) {
|
94 |
+
kernelStr << ":" << BaseInfo::buildTensorString(tensor, includeBufferId);
|
95 |
+
}
|
96 |
+
return kernelStr.str();
|
97 |
+
}
|
98 |
+
};
|
99 |
+
|
100 |
+
struct CpuFbInfo : BaseInfo {
|
101 |
+
CpuFbInfo(uint64_t Id, const std::string& OpName) :
|
102 |
+
BaseInfo(Type::CPU_FALLBACK, Id, 0), opName(OpName) { }
|
103 |
+
|
104 |
+
uint64_t runCount = 0;
|
105 |
+
// the current and total overhead of copies in bytes required to convert the Op's
|
106 |
+
// input tensors from MPS to CPU and then output from CPU back to MPS
|
107 |
+
size_t currentCopyOverhead = 0;
|
108 |
+
size_t totalCopyOverhead = 0;
|
109 |
+
std::string opName;
|
110 |
+
std::string strKey;
|
111 |
+
uint64_t startTime = 0;
|
112 |
+
|
113 |
+
const std::string toString(double gpuTime = 0, double schedulingTime = 0) const override;
|
114 |
+
|
115 |
+
void updateCopyOverhead(const TensorList& tensors) {
|
116 |
+
currentCopyOverhead = 0;
|
117 |
+
for (const Tensor& tensor: tensors) {
|
118 |
+
if (tensor.defined()) {
|
119 |
+
currentCopyOverhead += tensor.nbytes();
|
120 |
+
}
|
121 |
+
}
|
122 |
+
totalCopyOverhead += currentCopyOverhead;
|
123 |
+
}
|
124 |
+
};
|
125 |
+
|
126 |
+
struct CopyInfo : BaseInfo {
|
127 |
+
enum class Kind {
|
128 |
+
MPS_TO_MPS,
|
129 |
+
MPS_TO_CPU,
|
130 |
+
CPU_TO_MPS,
|
131 |
+
};
|
132 |
+
|
133 |
+
CopyInfo(const void* Handle, size_t Length, uint64_t Id, bool IsNonBlocking, bool UsesBlitter) :
|
134 |
+
BaseInfo(Type::COPY, Id, uintptr_t(Handle)), kind(Kind::MPS_TO_MPS),
|
135 |
+
length(Length), isNonBlocking(IsNonBlocking), usesBlitter(UsesBlitter) { }
|
136 |
+
|
137 |
+
Kind kind;
|
138 |
+
size_t length;
|
139 |
+
bool isNonBlocking;
|
140 |
+
bool usesBlitter;
|
141 |
+
std::string srcStrKey;
|
142 |
+
std::string dstStrKey;
|
143 |
+
// for copies that don't use blitters, we measure CPU time
|
144 |
+
uint64_t startTime = 0;
|
145 |
+
|
146 |
+
const std::string toString(double gpuTime = 0, double schedulingTime = 0) const override;
|
147 |
+
|
148 |
+
static std::string buildTensorString(const void* buffer, const OptionalTensorRef tensor, bool includeBufferId = false);
|
149 |
+
|
150 |
+
static bool isStorageOnMPS(const void* buffer, const OptionalTensorRef tensor) {
|
151 |
+
if (tensor.has_value()) {
|
152 |
+
return tensor->device().type() == at::kMPS;
|
153 |
+
}
|
154 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(buffer);
|
155 |
+
// getUnalignedBufferSize() returns -1 if input buffer is not on MPS device
|
156 |
+
return getIMPSAllocator()->getUnalignedBufferSize(buffer) >= 0;
|
157 |
+
}
|
158 |
+
|
159 |
+
static Kind getCopyKind(const void* srcBuffer, const void* dstBuffer,
|
160 |
+
const OptionalTensorRef srcTensor, const OptionalTensorRef dstTensor) {
|
161 |
+
const bool isSrcOnMPS = isStorageOnMPS(srcBuffer, srcTensor);
|
162 |
+
const bool isDstOnMPS = isStorageOnMPS(dstBuffer, dstTensor);
|
163 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(isSrcOnMPS || isDstOnMPS);
|
164 |
+
if (isSrcOnMPS && !isDstOnMPS) {
|
165 |
+
return Kind::MPS_TO_CPU;
|
166 |
+
} else if (!isSrcOnMPS && isDstOnMPS) {
|
167 |
+
return Kind::CPU_TO_MPS;
|
168 |
+
}
|
169 |
+
return Kind::MPS_TO_MPS;
|
170 |
+
}
|
171 |
+
};
|
172 |
+
|
173 |
+
struct CopyStat : CopyInfo {
|
174 |
+
explicit CopyStat(std::string CopyKindStr) :
|
175 |
+
CopyInfo(nullptr, 0, 0, false, false), kindStr(std::move(CopyKindStr)) {}
|
176 |
+
// total number of copies
|
177 |
+
size_t totalCount = 0;
|
178 |
+
// number of Scalar copies (i.e., less than sizeof(int64))
|
179 |
+
size_t scalarsCount = 0;
|
180 |
+
// number of blocking copies (i.e., require syncing to GPU)
|
181 |
+
size_t blockingCount = 0;
|
182 |
+
// number of copies that used memcpy(), instead of Metal Blit Encoder
|
183 |
+
size_t memcpyCount = 0;
|
184 |
+
// accumulated GPU time in ms for the scalar copies
|
185 |
+
std::atomic<double> scalarsGpuTime{0.0};
|
186 |
+
// copy kind in string type
|
187 |
+
std::string kindStr;
|
188 |
+
};
|
189 |
+
|
190 |
+
class MPSProfiler {
|
191 |
+
public:
|
192 |
+
// lower 16 bits used for profiler options
|
193 |
+
enum ProfileOptions : uint32_t {
|
194 |
+
OPTIONS_NONE = 0,
|
195 |
+
// ALL_* means, all signpost types (RUN_OPERATION|BLIT_COPY|CPU_FALLBACK, etc.)
|
196 |
+
// (used for convenience to not compute bit flags by OR-ing manually)
|
197 |
+
// trace all signpost types using events
|
198 |
+
ALL_SIGNPOST_EVENTS = (1 << 0),
|
199 |
+
// trace all signpost types using intervals
|
200 |
+
ALL_SIGNPOST_INTERVALS = (1 << 1),
|
201 |
+
// always wait for command buffer to finish executing after each commit
|
202 |
+
WAIT_UNTIL_COMPLETED = (1 << 2),
|
203 |
+
// for interval-based signposts, include the scheduling portion of
|
204 |
+
// Graph/Kernel/Copy executions as well.
|
205 |
+
// if flag is disable, only "GPU run time" is included in interval,
|
206 |
+
// and not schedule time.
|
207 |
+
INCLUDE_SCHEDULE_INTERVAL = (1 << 3),
|
208 |
+
|
209 |
+
// use these if you need to trace signposts types individually (rarely required)
|
210 |
+
// trace signpost using intervals
|
211 |
+
USE_INTERVALS = (1 << 4),
|
212 |
+
// trace signpost by emitting events
|
213 |
+
USE_EVENTS = (1 << 5),
|
214 |
+
// used for sanity check (Change this when new option added)
|
215 |
+
OPTIONS_COUNT = (USE_EVENTS << 1) - 1,
|
216 |
+
};
|
217 |
+
|
218 |
+
// when adding new types, #define the type string in MPSProfiler.mm as well.
|
219 |
+
// upper 16 bits used for event types
|
220 |
+
enum SignpostTypes : uint32_t {
|
221 |
+
SIGNPOST_NONE = 0,
|
222 |
+
// trace signposts for PyTorch operation executions
|
223 |
+
RUN_OPERATION = (1 << 16),
|
224 |
+
// trace signposts for blitter copies
|
225 |
+
BLIT_COPY = (1 << 17),
|
226 |
+
// trace signposts for ops that fall back on CPU
|
227 |
+
CPU_FALLBACK = (1 << 18),
|
228 |
+
// used for sanity check (Change this when new type added)
|
229 |
+
SIGNPOST_COUNT = (CPU_FALLBACK << 1) - 1,
|
230 |
+
};
|
231 |
+
|
232 |
+
enum LogOptions : uint32_t {
|
233 |
+
LOG_NONE = 0,
|
234 |
+
|
235 |
+
// Info logging options during execution
|
236 |
+
// -------------------------------------
|
237 |
+
// prints operation info (id/key/run_count) during execution
|
238 |
+
OPERATION_INFO = (1 << 0),
|
239 |
+
// prints copy info (src/dst tensors/buffers, size, etc.) during execution
|
240 |
+
COPY_INFO = (1 << 1),
|
241 |
+
// prints CPU Fallback info (id/runCount/opName/copyOverhead) during execution
|
242 |
+
CPU_FALLBACK_INFO = (1 << 2),
|
243 |
+
|
244 |
+
// Profiling Statistics logging options when process terminates
|
245 |
+
// ------------------------------------------------------------
|
246 |
+
// prints all stats (OPERATION_STATS, COPY_STATS, CPU_FALLBACK_STATS) before process terminates
|
247 |
+
// this is convenient to not combine following stats bit flags manually
|
248 |
+
ALL_STATS = (1 << 3),
|
249 |
+
// prints operation stats (GPU times, run count, etc.) before process terminates
|
250 |
+
OPERATION_STATS = (1 << 4),
|
251 |
+
// prints copies stats (GPU times, copy kinds, sizes, etc.) before process terminates
|
252 |
+
COPY_STATS = (1 << 5),
|
253 |
+
// prints CPU Fallback stats (CPU times, run times, size of MPS<->CPU copies
|
254 |
+
// for tensors, etc.) before process terminates
|
255 |
+
CPU_FALLBACK_STATS = (1 << 6),
|
256 |
+
|
257 |
+
// Metadata format options when logging the info
|
258 |
+
// ---------------------------------------------
|
259 |
+
// if enabled, includes GPU run time in metadata (i.e., GPUEndTime-GPUStartTime
|
260 |
+
// from Metal Command Buffers) (e.g., [GPU=0.324 ms])
|
261 |
+
INCLUDE_GPU_TIME = (1 << 7),
|
262 |
+
// if enabled, includes GPU scheduling time in metadata separately
|
263 |
+
// (i.e., KernelEndTime-KernelStartTime from Metal Command Buffers)
|
264 |
+
// e.g., [GPU=0.324 ms, KRNL=0.036 ms]
|
265 |
+
INCLUDE_KERNEL_TIME = (1 << 8),
|
266 |
+
// if enabled, includes the unique buffer ID in metadata for the storage
|
267 |
+
// of a tensor that was allocated on MPSAllocator. This is useful (along with
|
268 |
+
// the EV "PYTORCH_DEBUG_MPS_ALLOCATOR") to identify buffers that are involved
|
269 |
+
// with various operations.
|
270 |
+
INCLUDE_BUFFER_ID = (1 << 9),
|
271 |
+
|
272 |
+
// used for sanity check (Change this when new option added)
|
273 |
+
LOG_COUNT = (INCLUDE_BUFFER_ID << 1) - 1,
|
274 |
+
};
|
275 |
+
|
276 |
+
explicit MPSProfiler();
|
277 |
+
~MPSProfiler();
|
278 |
+
|
279 |
+
// the handle is either "MPSGraph*" or "id<MTLComputePipelineState>" for Metal Kernels
|
280 |
+
// the beginProfile*() functions return a profileId which is unique per graph/kernel/copy
|
281 |
+
uint64_t beginProfileKernel(const void* handle, const std::string& strKey, bool isGraph);
|
282 |
+
uint64_t beginProfileKernel(const void* handle, const std::string& kernelName, const TensorList& tensors);
|
283 |
+
uint64_t beginProfileCopy(const void* srcBuffer, const void* dstBuffer,
|
284 |
+
const OptionalTensorRef srcTensor,
|
285 |
+
const OptionalTensorRef dstTensor,
|
286 |
+
size_t length, bool isNonBlocking, bool usesBlitter = true);
|
287 |
+
uint64_t beginProfileCPUFallback(const std::string& opName, const TensorList& tensors);
|
288 |
+
void beginProfileGPUInterval(const void* handle);
|
289 |
+
|
290 |
+
void endProfileCopy(uint64_t profileId, SyncType syncType);
|
291 |
+
void endProfileKernel(const void* handle, SyncType syncType = SyncType::NONE);
|
292 |
+
void endProfileCPUFallback(const std::string& opName);
|
293 |
+
|
294 |
+
// these are used to hook into Python bindings for torch.mps.profiler module.
|
295 |
+
// this enables generating OS Signpost traces from MPSProfiler on-demand
|
296 |
+
// during runtime (instead of environment variables).
|
297 |
+
// The "mode" could be either "interval", "event", or both "interval,event"
|
298 |
+
// for interval-based and/or event-based signpost tracing.
|
299 |
+
void StartTrace(const string& mode, bool waitUntilCompleted);
|
300 |
+
void StopTrace();
|
301 |
+
|
302 |
+
// convenience functions to indicate whether signpost tracing or
|
303 |
+
// logging are enabled for the SignpostTypes
|
304 |
+
bool isOperationProfilingEnabled() const {
|
305 |
+
return (m_signpost_types & SignpostTypes::RUN_OPERATION) ||
|
306 |
+
(m_log_options & (LogOptions::OPERATION_INFO | LogOptions::OPERATION_STATS));
|
307 |
+
}
|
308 |
+
bool isCopyProfilingEnabled() const {
|
309 |
+
return (m_signpost_types & SignpostTypes::BLIT_COPY) ||
|
310 |
+
(m_log_options & (LogOptions::COPY_INFO | LogOptions::COPY_STATS));
|
311 |
+
}
|
312 |
+
bool isCPUFallbackProfilingEnabled() const {
|
313 |
+
return (m_signpost_types & SignpostTypes::CPU_FALLBACK) ||
|
314 |
+
(m_log_options & (LogOptions::CPU_FALLBACK_INFO | LogOptions::CPU_FALLBACK_STATS));
|
315 |
+
}
|
316 |
+
bool isSignpostTracingEnabled() const {
|
317 |
+
return (m_signpost_types != SignpostTypes::SIGNPOST_NONE);
|
318 |
+
}
|
319 |
+
|
320 |
+
private:
|
321 |
+
// indicates what type of signpost types are enabled and traced by MPS profiler.
|
322 |
+
uint32_t m_signpost_types = 0;
|
323 |
+
uint32_t m_profile_options = 0;
|
324 |
+
uint32_t m_log_options = 0;
|
325 |
+
uint64_t m_kernel_counter = 0;
|
326 |
+
uint64_t m_graph_counter = 0;
|
327 |
+
uint64_t m_cpu_fb_counter = 0;
|
328 |
+
uint64_t m_copy_counter = 0;
|
329 |
+
// technically, it's possible to trace both events and intervals at the same time
|
330 |
+
// so we use separate os_log categories for them
|
331 |
+
os_log_t m_os_log_events;
|
332 |
+
os_log_t m_os_log_intervals;
|
333 |
+
// stats logging could run either from destructor or signal handler
|
334 |
+
// so this is used to check if logging has already started.
|
335 |
+
std::atomic_bool hasLoggedStats{false};
|
336 |
+
// indicates there are pending completionHandler callbacks that haven't been called yet.
|
337 |
+
std::atomic_bool hasPendingCompletionHandlers{false};
|
338 |
+
// used to capture sigint signal to log profiling stats
|
339 |
+
static struct sigaction currentSigint, previousSigint;
|
340 |
+
|
341 |
+
// We use the following lists for two reasons:
|
342 |
+
// 1- for interval-based signposts the "begin" point won't be in same function
|
343 |
+
// as the "end" point where we need to be able to retrieve signpost's info
|
344 |
+
// 2- if Operations info need to be logged when process ends using LogOptions::OPERATION_INFO.
|
345 |
+
|
346 |
+
// the pointer key for this map is either "MPSGraph*" or "id<MTLComputePipelineState>" for Metal Kernels
|
347 |
+
// this list is retained and could be logged along with aggregate profiling numbers when the process ends.
|
348 |
+
std::unordered_map<uintptr_t, std::unique_ptr<OperationInfo>> m_op_info_list{};
|
349 |
+
// the string key for this map is the op name that we fall back to execute on CPU
|
350 |
+
// this list is retained and could be logged along with aggregate profiling numbers when the process ends.
|
351 |
+
std::unordered_map<std::string, std::unique_ptr<CpuFbInfo>> m_cpu_fb_info_list{};
|
352 |
+
// this list contains the info for copies, and its key is the unique profileId
|
353 |
+
// which is generated from m_copy_counter
|
354 |
+
// The copyInfo list is not retained.
|
355 |
+
std::unordered_map<uint64_t, std::unique_ptr<CopyInfo>> m_copy_info_list{};
|
356 |
+
// a short list that contains copy stats
|
357 |
+
std::unordered_map<CopyInfo::Kind, std::unique_ptr<CopyStat>> m_copy_stat_list{};
|
358 |
+
|
359 |
+
void initialize();
|
360 |
+
void beginProfileExecution(BaseInfo& info, bool cpuExecution = false);
|
361 |
+
void endProfileExecution(BaseInfo& info, os_signpost_id_t event_signpost_id,
|
362 |
+
os_signpost_id_t interval_signpost_id,
|
363 |
+
double gpuTime, double schedulingTime);
|
364 |
+
void addProfilerScheduledHandler(BaseInfo& info);
|
365 |
+
void addProfilerCompletedHandler(BaseInfo& info, SyncType syncType);
|
366 |
+
void emitSignpostEvent(SignpostTypes signpost_type, os_signpost_id_t signpost_id,
|
367 |
+
const std::string& msg) const;
|
368 |
+
void beginSignpostInterval(SignpostTypes signpost_type, os_signpost_id_t signpost_id,
|
369 |
+
const std::string& msg) const;
|
370 |
+
void endSignpostInterval(SignpostTypes signpost_type, os_signpost_id_t signpost_id) const;
|
371 |
+
|
372 |
+
void updateCopyStats(const CopyInfo& copyInfo, double gpuTime, double schedulingTime);
|
373 |
+
// returns true if logging the profiling info "during the execution" is enabled
|
374 |
+
bool isProfileInfoLoggingEnabled(BaseInfo::Type infoType, bool isExecutionEnded);
|
375 |
+
// logs all the profiling stats that are enabled
|
376 |
+
void logProfilingStats();
|
377 |
+
// logs kernel profiling stats when the process ends.
|
378 |
+
void logOperationsProfilingStats(std::FILE* f) const;
|
379 |
+
// logs CPU Fallback profiling stats when the process ends.
|
380 |
+
void logCPUFallbackProfilingStats(std::FILE* f) const;
|
381 |
+
// logs copy profiling stats when the process ends.
|
382 |
+
void logCopyProfilingStats(std::FILE* f) const;
|
383 |
+
|
384 |
+
os_signpost_id_t generateSignpostId(os_signpost_type_t signpostType, const void* ptr = nullptr);
|
385 |
+
static SignpostTypes getSignpostType(BaseInfo::Type infoType);
|
386 |
+
static void handleIntSignal(int signal);
|
387 |
+
};
|
388 |
+
|
389 |
+
} // namespace Profiler
|
390 |
+
|
391 |
+
Profiler::MPSProfiler& getMPSProfiler();
|
392 |
+
|
393 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/mps/MPSStream.h
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright © 2022 Apple Inc.
|
2 |
+
|
3 |
+
#pragma once
|
4 |
+
|
5 |
+
#include <cstdint>
|
6 |
+
#include <utility>
|
7 |
+
|
8 |
+
#include <c10/core/DeviceGuard.h>
|
9 |
+
#include <c10/util/Exception.h>
|
10 |
+
#include <c10/core/Stream.h>
|
11 |
+
#include <ATen/mps/MPSDevice.h>
|
12 |
+
|
13 |
+
#ifdef __OBJC__
|
14 |
+
#include <Foundation/Foundation.h>
|
15 |
+
#include <Metal/Metal.h>
|
16 |
+
#include <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
17 |
+
#include <MetalPerformanceShadersGraph/MetalPerformanceShadersGraph.h>
|
18 |
+
typedef id<MTLCommandQueue> MTLCommandQueue_t;
|
19 |
+
typedef id<MTLCommandBuffer> MTLCommandBuffer_t;
|
20 |
+
typedef id<MTLComputeCommandEncoder> MTLComputeCommandEncoder_t;
|
21 |
+
typedef id<MTLSharedEvent> MTLSharedEvent_t;
|
22 |
+
typedef id<MTLDevice> MTLDevice_t;
|
23 |
+
#else
|
24 |
+
typedef void* MTLCommandQueue_t;
|
25 |
+
typedef void* MTLCommandQueue;
|
26 |
+
typedef void* MTLCommandBuffer_t;
|
27 |
+
typedef void* MTLCommandBuffer;
|
28 |
+
typedef void* MTLComputeCommandEncoder_t;
|
29 |
+
typedef void* MTLSharedEvent_t;
|
30 |
+
typedef void* dispatch_queue_t;
|
31 |
+
typedef void* MTLDevice_t;
|
32 |
+
#define nil NULL;
|
33 |
+
#endif
|
34 |
+
|
35 |
+
|
36 |
+
namespace at::mps {
|
37 |
+
|
38 |
+
//-----------------------------------------------------------------
|
39 |
+
// MPSStream
|
40 |
+
//-----------------------------------------------------------------
|
41 |
+
|
42 |
+
enum class SyncType {
|
43 |
+
NONE, // no commit to command buffer
|
44 |
+
COMMIT, // commit and flush the command buffer
|
45 |
+
COMMIT_AND_WAIT, // flush and wait for command buffer execution to finish
|
46 |
+
COMMIT_AND_CONTINUE,// commit and continue with a new underlying command buffer
|
47 |
+
COMMIT_ADAPTIVE, // commit adaptively based on available memory
|
48 |
+
};
|
49 |
+
|
50 |
+
class TORCH_API MPSStream
|
51 |
+
{
|
52 |
+
public:
|
53 |
+
enum Unchecked { UNCHECKED };
|
54 |
+
|
55 |
+
/// Construct a MPSStream from a Stream. This construction is checked,
|
56 |
+
/// and will raise an error if the Stream is not, in fact, a MPS stream.
|
57 |
+
explicit MPSStream(Stream stream);
|
58 |
+
|
59 |
+
~MPSStream();
|
60 |
+
MTLCommandQueue_t commandQueue() const { return _commandQueue; };
|
61 |
+
dispatch_queue_t queue() const { return _serialQueue; }
|
62 |
+
|
63 |
+
MPSCommandBuffer* commandBuffer();
|
64 |
+
MTLComputeCommandEncoder_t commandEncoder();
|
65 |
+
void endKernelCoalescing();
|
66 |
+
void synchronize(SyncType syncType);
|
67 |
+
void fill(id<MTLBuffer> buffer, uint8_t value, size_t length, size_t offset, SyncType syncType = SyncType::NONE);
|
68 |
+
void copy(id<MTLBuffer> srcBuffer, id<MTLBuffer> dstBuffer,
|
69 |
+
size_t length, size_t srcOffset, size_t dstOffset,
|
70 |
+
uint64_t profileId, SyncType syncType = SyncType::NONE);
|
71 |
+
void copy_and_sync(id<MTLBuffer> srcBuffer, id<MTLBuffer> dstBuffer,
|
72 |
+
size_t length, size_t srcOffset, size_t dstOffset,
|
73 |
+
bool non_blocking, uint64_t profileId);
|
74 |
+
void executeMPSGraph(MPSGraph* mpsGraph, NSDictionary* feeds, NSDictionary* results, SyncType syncType = SyncType::NONE);
|
75 |
+
void addCompletedHandler(MTLCommandBufferHandler block);
|
76 |
+
|
77 |
+
/// Get the MPS device index that this stream is associated with.
|
78 |
+
c10::DeviceIndex device_index() const { return _stream.device_index(); }
|
79 |
+
|
80 |
+
MTLCommandQueue_t stream() const { return _commandQueue; };
|
81 |
+
|
82 |
+
MTLDevice_t device() const { return [_commandQueue device];}
|
83 |
+
|
84 |
+
/// Explicit conversion to Stream.
|
85 |
+
Stream unwrap() const { return _stream; }
|
86 |
+
|
87 |
+
private:
|
88 |
+
Stream _stream;
|
89 |
+
MTLCommandQueue_t _commandQueue = nil;
|
90 |
+
MPSCommandBuffer* _commandBuffer = nil;
|
91 |
+
MPSCommandBuffer* _prevCommandBuffer = nil;
|
92 |
+
MTLComputeCommandEncoder_t _commandEncoder = nil;
|
93 |
+
MPSGraphExecutionDescriptor *_executionDescriptor = nil;
|
94 |
+
MPSGraphCompilationDescriptor *_compilationDescriptor = nil;
|
95 |
+
dispatch_queue_t _serialQueue = nullptr;
|
96 |
+
// CommitAndContinue is enabled by default
|
97 |
+
bool _enableCommitAndContinue = true;
|
98 |
+
|
99 |
+
// use synchronize() to access any of these commit functions outside MPSStream
|
100 |
+
void commit();
|
101 |
+
void commitAndWait();
|
102 |
+
void commitAndContinue();
|
103 |
+
void flush();
|
104 |
+
};
|
105 |
+
|
106 |
+
/**
|
107 |
+
* Get the current MPS stream
|
108 |
+
*/
|
109 |
+
TORCH_API MPSStream* getCurrentMPSStream();
|
110 |
+
|
111 |
+
/**
|
112 |
+
* Get the default MPS stream
|
113 |
+
*/
|
114 |
+
TORCH_API MPSStream* getDefaultMPSStream();
|
115 |
+
|
116 |
+
//-----------------------------------------------------------------
|
117 |
+
// MPSStreamImpl
|
118 |
+
//-----------------------------------------------------------------
|
119 |
+
|
120 |
+
class TORCH_API MPSStreamImpl
|
121 |
+
{
|
122 |
+
public:
|
123 |
+
/**
|
124 |
+
* Gets single instance of the MPSStream.
|
125 |
+
*/
|
126 |
+
static MPSStream* getInstance();
|
127 |
+
|
128 |
+
private:
|
129 |
+
static MPSStream* _stream;
|
130 |
+
MPSStreamImpl();
|
131 |
+
};
|
132 |
+
|
133 |
+
} // namespace at::mps
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ChannelShuffleKernel.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/DispatchStub.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
class TensorBase;
|
7 |
+
}
|
8 |
+
|
9 |
+
namespace at { namespace native {
|
10 |
+
|
11 |
+
using channel_shuffle_fn = void(*)(TensorBase&, const TensorBase&, int64_t);
|
12 |
+
DECLARE_DISPATCH(channel_shuffle_fn, channel_shuffle_kernel);
|
13 |
+
|
14 |
+
}} // at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CPUApplyUtils.h>
|
4 |
+
#include <ATen/Dispatch.h>
|
5 |
+
#include <ATen/Dispatch_v2.h>
|
6 |
+
#include <ATen/ExpandBase.h>
|
7 |
+
#include <ATen/core/DistributionsHelper.h>
|
8 |
+
#include <ATen/native/TensorIterator.h>
|
9 |
+
#include <ATen/native/cpu/Loops.h>
|
10 |
+
#include <limits>
|
11 |
+
#include <mutex>
|
12 |
+
|
13 |
+
#ifdef CPU_CAPABILITY_AVX2
|
14 |
+
#include <ATen/native/cpu/avx_mathfun.h>
|
15 |
+
#include <c10/util/irange.h>
|
16 |
+
#endif
|
17 |
+
|
18 |
+
|
19 |
+
namespace at {
|
20 |
+
namespace native {
|
21 |
+
namespace templates {
|
22 |
+
namespace cpu {
|
23 |
+
namespace {
|
24 |
+
|
25 |
+
// ==================================================== Random ========================================================
|
26 |
+
|
27 |
+
template<typename RNG>
|
28 |
+
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG generator) {
|
29 |
+
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cpu", AT_WRAP([&] {
|
30 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
31 |
+
cpu_serial_kernel(iter, [range, base, generator]() -> scalar_t {
|
32 |
+
uniform_int_from_to_distribution<scalar_t> random(range, base);
|
33 |
+
return random(generator);
|
34 |
+
});
|
35 |
+
}), kBool, kHalf, kBFloat16, AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
|
36 |
+
}
|
37 |
+
|
38 |
+
// This is the special kernel to handle single specific case:
|
39 |
+
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
|
40 |
+
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
|
41 |
+
template<typename RNG>
|
42 |
+
void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG generator) {
|
43 |
+
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cpu", [&] {
|
44 |
+
if constexpr (std::is_same<scalar_t, int64_t>::value ||
|
45 |
+
std::is_same<scalar_t, double>::value ||
|
46 |
+
std::is_same<scalar_t, float>::value ||
|
47 |
+
std::is_same<scalar_t, at::BFloat16>::value) {
|
48 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
49 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
50 |
+
uniform_int_full_range_distribution<scalar_t> random;
|
51 |
+
return random(generator);
|
52 |
+
});
|
53 |
+
} else {
|
54 |
+
TORCH_CHECK(false, "random_full_64_bits_range_kernel_cpu handles only int64, double, float and bfloat16");
|
55 |
+
}
|
56 |
+
});
|
57 |
+
}
|
58 |
+
|
59 |
+
template<typename RNG>
|
60 |
+
struct RandomFromToKernel {
|
61 |
+
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, c10::optional<Generator> gen) {
|
62 |
+
random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
|
63 |
+
}
|
64 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
65 |
+
random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
|
66 |
+
}
|
67 |
+
};
|
68 |
+
|
69 |
+
template<typename RNG>
|
70 |
+
void random_kernel(TensorIteratorBase& iter, RNG generator) {
|
71 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
72 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cpu", [&] {
|
73 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
74 |
+
uniform_int_distribution<scalar_t> random;
|
75 |
+
return random(generator);
|
76 |
+
});
|
77 |
+
});
|
78 |
+
}
|
79 |
+
|
80 |
+
template<typename RNG>
|
81 |
+
struct RandomKernel {
|
82 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
83 |
+
random_kernel(iter, check_generator<RNG>(gen));
|
84 |
+
}
|
85 |
+
};
|
86 |
+
|
87 |
+
// ==================================================== Normal ========================================================
|
88 |
+
|
89 |
+
#ifdef CPU_CAPABILITY_AVX2
|
90 |
+
static void normal_fill_16_AVX2(float *data,
|
91 |
+
const __m256* two_pi,
|
92 |
+
const __m256* one,
|
93 |
+
const __m256* minus_two,
|
94 |
+
const __m256* mean,
|
95 |
+
const __m256* std_v) {
|
96 |
+
const __m256 u1 = _mm256_sub_ps(*one, _mm256_loadu_ps(data));
|
97 |
+
const __m256 u2 = _mm256_loadu_ps(data + 8);
|
98 |
+
// sincos256_ps and log256_ps are from avx_mathfun.h
|
99 |
+
const __m256 radius = _mm256_sqrt_ps(_mm256_mul_ps(*minus_two, log256_ps(u1)));
|
100 |
+
const __m256 theta = _mm256_mul_ps(*two_pi, u2);
|
101 |
+
__m256 sintheta, costheta;
|
102 |
+
sincos256_ps(theta, &sintheta, &costheta);
|
103 |
+
const __m256 n1 = _mm256_mul_ps(radius, costheta);
|
104 |
+
const __m256 n2 = _mm256_mul_ps(radius, sintheta);
|
105 |
+
_mm256_storeu_ps(data, _mm256_fmadd_ps(n1, *std_v, *mean));
|
106 |
+
_mm256_storeu_ps(data + 8, _mm256_fmadd_ps(n2, *std_v, *mean));
|
107 |
+
}
|
108 |
+
|
109 |
+
template<typename RNG>
|
110 |
+
void normal_fill_AVX2(const TensorBase &self, const float mean, const float std, RNG generator) {
|
111 |
+
float *data = self.data_ptr<float>();
|
112 |
+
auto size = self.numel();
|
113 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
114 |
+
for (const auto i : c10::irange(size)) {
|
115 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
116 |
+
data[i] = uniform(generator);
|
117 |
+
}
|
118 |
+
const __m256 two_pi = _mm256_set1_ps(2.0f * c10::pi<double>);
|
119 |
+
const __m256 one = _mm256_set1_ps(1.0f);
|
120 |
+
const __m256 minus_two = _mm256_set1_ps(-2.0f);
|
121 |
+
const __m256 mean_v = _mm256_set1_ps(mean);
|
122 |
+
const __m256 std_v = _mm256_set1_ps(std);
|
123 |
+
|
124 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
125 |
+
normal_fill_16_AVX2(data + i, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
126 |
+
}
|
127 |
+
|
128 |
+
if (size % 16 != 0) {
|
129 |
+
// Recompute the last 16 values.
|
130 |
+
data = data + size - 16;
|
131 |
+
for (const auto i : c10::irange(16)) {
|
132 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
133 |
+
data[i] = uniform(generator);
|
134 |
+
}
|
135 |
+
normal_fill_16_AVX2(data, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
136 |
+
}
|
137 |
+
}
|
138 |
+
#endif
|
139 |
+
|
140 |
+
template <typename scalar_t>
|
141 |
+
static void normal_fill_16(scalar_t *data, const scalar_t mean, const scalar_t std) {
|
142 |
+
for (const auto j : c10::irange(8)) {
|
143 |
+
const scalar_t u1 = 1 - data[j]; // [0, 1) -> (0, 1] for log.
|
144 |
+
const scalar_t u2 = data[j + 8];
|
145 |
+
const scalar_t radius = std::sqrt(-2 * std::log(u1));
|
146 |
+
const scalar_t theta = 2.0f * c10::pi<double> * u2;
|
147 |
+
data[j] = radius * std::cos(theta) * std + mean;
|
148 |
+
data[j + 8] = radius * std::sin(theta) * std + mean;
|
149 |
+
}
|
150 |
+
}
|
151 |
+
|
152 |
+
template <typename scalar_t, typename RNG>
|
153 |
+
void normal_fill(const TensorBase &self, const scalar_t mean, const scalar_t std, RNG generator) {
|
154 |
+
scalar_t *data = self.data_ptr<scalar_t>();
|
155 |
+
auto size = self.numel();
|
156 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
157 |
+
for (const auto i : c10::irange(size)) {
|
158 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
159 |
+
data[i] = uniform(generator);
|
160 |
+
}
|
161 |
+
|
162 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
163 |
+
normal_fill_16<scalar_t>(data + i, mean, std);
|
164 |
+
}
|
165 |
+
if (size % 16 != 0) {
|
166 |
+
// Recompute the last 16 values.
|
167 |
+
data = data + size - 16;
|
168 |
+
for (const auto i : c10::irange(16)) {
|
169 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
170 |
+
data[i] = uniform(generator);
|
171 |
+
}
|
172 |
+
normal_fill_16<scalar_t>(data, mean, std);
|
173 |
+
}
|
174 |
+
}
|
175 |
+
|
176 |
+
template<typename RNG>
|
177 |
+
void normal_kernel(const TensorBase &self, double mean, double std, RNG generator) {
|
178 |
+
auto size = self.numel();
|
179 |
+
if (self.scalar_type() == ScalarType::Float && size >= 16 && self.is_contiguous()) {
|
180 |
+
#ifdef CPU_CAPABILITY_AVX2
|
181 |
+
normal_fill_AVX2(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
182 |
+
#else
|
183 |
+
normal_fill(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
184 |
+
#endif
|
185 |
+
} else {
|
186 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, self.scalar_type(), "normal_kernel_cpu", [&] {
|
187 |
+
if (size >= 16 && self.is_contiguous()) {
|
188 |
+
normal_fill<scalar_t>(self, static_cast<scalar_t>(mean), static_cast<scalar_t>(std), generator);
|
189 |
+
} else {
|
190 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
191 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
192 |
+
cpu_serial_kernel(iter, [mean, std, generator]() -> scalar_t {
|
193 |
+
at::normal_distribution<double> normal(mean, std);
|
194 |
+
return static_cast<scalar_t>(normal(generator));
|
195 |
+
});
|
196 |
+
}
|
197 |
+
});
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
template<typename RNG>
|
202 |
+
struct NormalKernel {
|
203 |
+
void operator()(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
|
204 |
+
normal_kernel(self, mean, std, check_generator<RNG>(gen));
|
205 |
+
}
|
206 |
+
};
|
207 |
+
|
208 |
+
// ==================================================== Uniform =======================================================
|
209 |
+
|
210 |
+
template<typename RNG>
|
211 |
+
void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG generator) {
|
212 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "uniform_kernel_cpu", [&]() {
|
213 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
214 |
+
auto from = static_cast<scalar_t>(from_);
|
215 |
+
auto to = static_cast<scalar_t>(to_);
|
216 |
+
at::uniform_real_distribution<scalar_t> uniform(from, to);
|
217 |
+
cpu_serial_kernel(iter, [&uniform, generator]() -> scalar_t {
|
218 |
+
return static_cast<scalar_t>(uniform(generator));
|
219 |
+
});
|
220 |
+
});
|
221 |
+
}
|
222 |
+
|
223 |
+
template<typename RNG>
|
224 |
+
struct UniformKernel {
|
225 |
+
void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
|
226 |
+
uniform_kernel(iter, from, to, check_generator<RNG>(gen));
|
227 |
+
}
|
228 |
+
};
|
229 |
+
|
230 |
+
// ==================================================== Cauchy ========================================================
|
231 |
+
|
232 |
+
template<typename RNG>
|
233 |
+
void cauchy_kernel(TensorIteratorBase& iter, double median, double sigma, RNG generator) {
|
234 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "cauchy_cpu", [&]() {
|
235 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
236 |
+
at::cauchy_distribution<double> cauchy(median, sigma);
|
237 |
+
cpu_serial_kernel(iter, [&cauchy, generator]() -> scalar_t {
|
238 |
+
return static_cast<scalar_t>(cauchy(generator));
|
239 |
+
});
|
240 |
+
});
|
241 |
+
}
|
242 |
+
|
243 |
+
template<typename RNG>
|
244 |
+
struct CauchyKernel {
|
245 |
+
void operator()(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
|
246 |
+
cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
|
247 |
+
}
|
248 |
+
};
|
249 |
+
|
250 |
+
// ================================================== LogNormal =======================================================
|
251 |
+
|
252 |
+
template<typename RNG>
|
253 |
+
void log_normal_kernel(TensorIteratorBase& iter, double mean, double std, RNG generator) {
|
254 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cpu", [&]() {
|
255 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
256 |
+
at::lognormal_distribution<double> logNormal(mean, std);
|
257 |
+
cpu_serial_kernel(iter, [&logNormal, generator]() -> scalar_t {
|
258 |
+
return static_cast<scalar_t>(logNormal(generator));
|
259 |
+
});
|
260 |
+
});
|
261 |
+
}
|
262 |
+
|
263 |
+
template<typename RNG>
|
264 |
+
struct LogNormalKernel {
|
265 |
+
void operator()(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
|
266 |
+
log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
|
267 |
+
}
|
268 |
+
};
|
269 |
+
|
270 |
+
// =================================================== Geometric ======================================================
|
271 |
+
|
272 |
+
template<typename RNG>
|
273 |
+
void geometric_kernel(TensorIteratorBase& iter, double p, RNG generator) {
|
274 |
+
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cpu", [&]() {
|
275 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
276 |
+
at::geometric_distribution<double> geometric(p);
|
277 |
+
cpu_serial_kernel(iter, [&geometric, generator]() -> scalar_t {
|
278 |
+
return static_cast<scalar_t>(geometric(generator));
|
279 |
+
});
|
280 |
+
});
|
281 |
+
}
|
282 |
+
|
283 |
+
template<typename RNG>
|
284 |
+
struct GeometricKernel {
|
285 |
+
void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
|
286 |
+
geometric_kernel(iter, p, check_generator<RNG>(gen));
|
287 |
+
}
|
288 |
+
};
|
289 |
+
|
290 |
+
// ================================================== Exponential =====================================================
|
291 |
+
|
292 |
+
template<typename RNG>
|
293 |
+
void exponential_kernel(TensorIteratorBase& iter, double lambda, RNG generator) {
|
294 |
+
TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
|
295 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cpu", [&]() {
|
296 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
297 |
+
at::exponential_distribution<double> exponential(lambda);
|
298 |
+
cpu_serial_kernel(iter, [&exponential, generator]() -> scalar_t {
|
299 |
+
return static_cast<scalar_t>(exponential(generator));
|
300 |
+
});
|
301 |
+
});
|
302 |
+
}
|
303 |
+
|
304 |
+
template<typename RNG>
|
305 |
+
struct ExponentialKernel {
|
306 |
+
void operator()(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
|
307 |
+
exponential_kernel(iter, lambda, check_generator<RNG>(gen));
|
308 |
+
}
|
309 |
+
};
|
310 |
+
|
311 |
+
// ================================================== Bernoulli =======================================================
|
312 |
+
|
313 |
+
template<typename RNG>
|
314 |
+
void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG generator) {
|
315 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
316 |
+
self.scalar_type(), "bernoulli_tensor_cpu_self_", [&] {
|
317 |
+
// See Note [Acquire lock when using random generators]
|
318 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
319 |
+
using self_t = scalar_t;
|
320 |
+
auto p_cpu = p_.to(kCPU);
|
321 |
+
auto p = expand_inplace(self, p_cpu);
|
322 |
+
auto iter = TensorIteratorConfig()
|
323 |
+
.add_output(self)
|
324 |
+
.add_input(*p)
|
325 |
+
.check_all_same_dtype(false)
|
326 |
+
.build();
|
327 |
+
if (p->scalar_type() == kDouble) {
|
328 |
+
cpu_serial_kernel(iter, [&](const double p_val) -> self_t {
|
329 |
+
at::bernoulli_distribution<double> bernoulli(p_val);
|
330 |
+
return static_cast<self_t>(bernoulli(generator));
|
331 |
+
});
|
332 |
+
} else {
|
333 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half,
|
334 |
+
p->scalar_type(), "bernoulli_tensor_cpu_p_", [&] {
|
335 |
+
using p_t = scalar_t;
|
336 |
+
cpu_serial_kernel(iter, [&](const p_t p_val) -> self_t {
|
337 |
+
at::bernoulli_distribution<float> bernoulli(p_val);
|
338 |
+
return static_cast<self_t>(bernoulli(generator));
|
339 |
+
});
|
340 |
+
});
|
341 |
+
}
|
342 |
+
});
|
343 |
+
}
|
344 |
+
|
345 |
+
template<typename RNG>
|
346 |
+
void bernoulli_kernel(const TensorBase &self, double p, RNG generator) {
|
347 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
348 |
+
self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
|
349 |
+
// See Note [Acquire lock when using random generators]
|
350 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
351 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
352 |
+
cpu_serial_kernel(iter, [p, generator]() -> scalar_t {
|
353 |
+
at::bernoulli_distribution<double> bernoulli(p);
|
354 |
+
return static_cast<scalar_t>(bernoulli(generator));
|
355 |
+
});
|
356 |
+
});
|
357 |
+
}
|
358 |
+
|
359 |
+
template<typename RNG>
|
360 |
+
struct BernoulliKernel {
|
361 |
+
void operator()(const TensorBase &self, double p, c10::optional<Generator> gen) {
|
362 |
+
bernoulli_kernel(self, p, check_generator<RNG>(gen));
|
363 |
+
}
|
364 |
+
void operator()(const TensorBase &self, const TensorBase &p_, c10::optional<Generator> gen) {
|
365 |
+
bernoulli_kernel(self, p_, check_generator<RNG>(gen));
|
366 |
+
}
|
367 |
+
};
|
368 |
+
|
369 |
+
}}}}}
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IndexKernelUtils.h
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/TensorIterator.h>
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
namespace native {
|
7 |
+
|
8 |
+
namespace {
|
9 |
+
static bool is_constant_index(int ntensor, const int64_t* strides) {
|
10 |
+
AT_ASSERT(ntensor >= 3);
|
11 |
+
for (const auto arg : c10::irange(2, ntensor)) {
|
12 |
+
if (strides[arg] != 0) {
|
13 |
+
return false;
|
14 |
+
}
|
15 |
+
}
|
16 |
+
return true;
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
struct Indexer {
|
21 |
+
Indexer(int64_t num_indexers, char** indexers, const int64_t* indexer_strides,
|
22 |
+
IntArrayRef original_sizes, IntArrayRef original_strides)
|
23 |
+
: num_indexers(num_indexers)
|
24 |
+
, indexers(indexers)
|
25 |
+
, indexer_strides(indexer_strides)
|
26 |
+
, original_strides(original_strides.data())
|
27 |
+
, original_sizes(original_sizes.data()) {
|
28 |
+
AT_ASSERT(static_cast<int64_t>(original_strides.size()) == num_indexers);
|
29 |
+
AT_ASSERT(static_cast<int64_t>(original_sizes.size()) == num_indexers);
|
30 |
+
}
|
31 |
+
|
32 |
+
int64_t num_indexers;
|
33 |
+
char** indexers;
|
34 |
+
const int64_t* indexer_strides;
|
35 |
+
const int64_t* original_strides;
|
36 |
+
const int64_t* original_sizes;
|
37 |
+
|
38 |
+
int64_t get(int64_t idx) {
|
39 |
+
int64_t offset = 0;
|
40 |
+
for (const auto j : c10::irange(num_indexers)) {
|
41 |
+
int64_t value = *(int64_t*)&indexers[j][idx * indexer_strides[j]];
|
42 |
+
int64_t size = original_sizes[j];
|
43 |
+
TORCH_CHECK_INDEX(value >= -size && value < size,
|
44 |
+
"index ", value, " is out of bounds for dimension ", j, " with size ", size);
|
45 |
+
if (value < 0) {
|
46 |
+
value += size;
|
47 |
+
}
|
48 |
+
offset += value * original_strides[j];
|
49 |
+
}
|
50 |
+
return offset;
|
51 |
+
}
|
52 |
+
};
|
53 |
+
} // anonymous namespace
|
54 |
+
|
55 |
+
template <typename scalar_t, typename func_t>
|
56 |
+
void cpu_index_kernel(TensorIteratorBase& iter, IntArrayRef index_size, IntArrayRef index_stride,
|
57 |
+
const func_t& f, bool serial_execution=false)
|
58 |
+
{
|
59 |
+
int ntensor = iter.ntensors();
|
60 |
+
// When launch the index parallel version, set a relative small grain size less than the INTERNAL::GRAIN_SIZE
|
61 |
+
// to make the whole available thread numbers get more balanced work load and a better cache location.
|
62 |
+
// The grain size here is chosen by the op benchmark to overcome the thread launch overhead
|
63 |
+
const int index_parallel_grain_size = 3000;
|
64 |
+
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
|
65 |
+
auto indexer = Indexer(ntensor - 2, &data[2], &strides[2], index_size, index_stride);
|
66 |
+
char* dst = data[0];
|
67 |
+
char* src = data[1];
|
68 |
+
if (is_constant_index(ntensor, strides)) {
|
69 |
+
// specialization for when every element uses the same index
|
70 |
+
int64_t offset = indexer.get(0);
|
71 |
+
for (const auto i : c10::irange(n)) {
|
72 |
+
f(dst + strides[0] * i, src + strides[1] * i, offset);
|
73 |
+
}
|
74 |
+
} else {
|
75 |
+
for (const auto i : c10::irange(n)) {
|
76 |
+
int64_t offset = indexer.get(i);
|
77 |
+
f(dst + strides[0] * i, src + strides[1] * i, offset);
|
78 |
+
}
|
79 |
+
}
|
80 |
+
};
|
81 |
+
if (serial_execution) {
|
82 |
+
iter.serial_for_each(loop, {0, iter.numel()});
|
83 |
+
} else {
|
84 |
+
iter.for_each(loop, index_parallel_grain_size);
|
85 |
+
}
|
86 |
+
}
|
87 |
+
} // at
|
88 |
+
} // native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Parallel.h>
|
4 |
+
#include <ATen/NumericUtils.h>
|
5 |
+
#include <ATen/cpu/vec/vec.h>
|
6 |
+
#include <ATen/cpu/vec/functional.h>
|
7 |
+
#include <ATen/native/ReductionType.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#include <ATen/OpMathType.h>
|
10 |
+
#include <ATen/native/cpu/utils.h>
|
11 |
+
#include <ATen/OpMathType.h>
|
12 |
+
|
13 |
+
namespace at::native {
|
14 |
+
inline namespace CPU_CAPABILITY {
|
15 |
+
|
16 |
+
using namespace vec;
|
17 |
+
|
18 |
+
#define AT_DISPATCH_REDUCTION_TYPES(op, ...) \
|
19 |
+
[&] { \
|
20 |
+
switch (op) { \
|
21 |
+
case ReductionType::SUM: { \
|
22 |
+
static constexpr auto reduce = ReductionType::SUM; \
|
23 |
+
return __VA_ARGS__(); \
|
24 |
+
} \
|
25 |
+
case ReductionType::MEAN: { \
|
26 |
+
static constexpr auto reduce = ReductionType::MEAN; \
|
27 |
+
return __VA_ARGS__(); \
|
28 |
+
} \
|
29 |
+
case ReductionType::MIN: { \
|
30 |
+
static constexpr auto reduce = ReductionType::MIN; \
|
31 |
+
return __VA_ARGS__(); \
|
32 |
+
} \
|
33 |
+
case ReductionType::MAX: { \
|
34 |
+
static constexpr auto reduce = ReductionType::MAX; \
|
35 |
+
return __VA_ARGS__(); \
|
36 |
+
} \
|
37 |
+
case ReductionType::PROD: { \
|
38 |
+
static constexpr auto reduce = ReductionType::PROD; \
|
39 |
+
return __VA_ARGS__(); \
|
40 |
+
} \
|
41 |
+
} \
|
42 |
+
}()
|
43 |
+
|
44 |
+
template <typename scalar_t, ReductionType reduce>
|
45 |
+
inline vec_scalar_t<scalar_t> init_value() {
|
46 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
47 |
+
acc_t val;
|
48 |
+
if (reduce == ReductionType::SUM ||
|
49 |
+
reduce == ReductionType::MEAN) {
|
50 |
+
val = static_cast<acc_t>(0);
|
51 |
+
} else if (reduce == ReductionType::PROD) {
|
52 |
+
val = static_cast<acc_t>(1);
|
53 |
+
} else if (reduce == ReductionType::MAX) {
|
54 |
+
val = -std::numeric_limits<acc_t>::infinity();
|
55 |
+
} else {
|
56 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
57 |
+
val = std::numeric_limits<acc_t>::infinity();
|
58 |
+
}
|
59 |
+
return val;
|
60 |
+
}
|
61 |
+
|
62 |
+
template <typename scalar_t, ReductionType reduce>
|
63 |
+
inline vec_scalar_t<scalar_t> init_value(const c10::optional<Scalar>& initial) {
|
64 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
65 |
+
if (initial.has_value()) {
|
66 |
+
return initial.value().to<acc_t>();
|
67 |
+
} else {
|
68 |
+
return init_value<scalar_t, reduce>();
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
template <typename scalar_t>
|
73 |
+
inline void init(scalar_t* out, int64_t size, const vec_scalar_t<scalar_t>& val) {
|
74 |
+
using Vec = Vectorized<vec_scalar_t<scalar_t>>;
|
75 |
+
map<scalar_t>(
|
76 |
+
[val](Vec x) { return Vec(val); },
|
77 |
+
out,
|
78 |
+
out,
|
79 |
+
size);
|
80 |
+
}
|
81 |
+
|
82 |
+
template <typename scalar_t, ReductionType reduce>
|
83 |
+
inline void init(scalar_t* out, int64_t size, const c10::optional<Scalar>& initial) {
|
84 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
85 |
+
acc_t val = init_value<scalar_t, reduce>(initial);
|
86 |
+
init(out, size, val);
|
87 |
+
}
|
88 |
+
|
89 |
+
// overload with `include_self`, used by scatter_reduce
|
90 |
+
template <typename scalar_t, ReductionType reduce>
|
91 |
+
inline void init(scalar_t* out, int64_t size, bool include_self = false) {
|
92 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
93 |
+
if (!include_self) {
|
94 |
+
acc_t val = init_value<scalar_t, reduce>();
|
95 |
+
init(out, size, val);
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
template <typename scalar_t, ReductionType reduce>
|
100 |
+
inline void _init(scalar_t* self_ptr, at::opmath_type<scalar_t>* buffer_ptr, int64_t size, bool include_self) {
|
101 |
+
if (!include_self) {
|
102 |
+
init<at::opmath_type<scalar_t>, reduce>(buffer_ptr, size, include_self);
|
103 |
+
} else {
|
104 |
+
vec::convert(self_ptr, buffer_ptr, size);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
template <typename scalar_t>
|
109 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
110 |
+
_max(const scalar_t& x, const scalar_t& y) {
|
111 |
+
return at::_isnan(y) ? y : std::max(x, y);
|
112 |
+
}
|
113 |
+
|
114 |
+
template <typename scalar_t>
|
115 |
+
inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
116 |
+
// vec::maximum propagates NaN
|
117 |
+
return vec::maximum(x, y);
|
118 |
+
}
|
119 |
+
|
120 |
+
template <typename vec_t>
|
121 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
122 |
+
_max(const vec_t& x, const vec_t& y) {
|
123 |
+
// vec::maximum propagates NaN
|
124 |
+
return maximum(x, y);
|
125 |
+
}
|
126 |
+
|
127 |
+
template <typename scalar_t>
|
128 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
129 |
+
_min(const scalar_t& x, const scalar_t& y) {
|
130 |
+
return at::_isnan(y) ? y : std::min(x, y);
|
131 |
+
}
|
132 |
+
|
133 |
+
template <typename scalar_t>
|
134 |
+
inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
135 |
+
// vec::minimum propagates NaN
|
136 |
+
return vec::minimum(x, y);
|
137 |
+
}
|
138 |
+
|
139 |
+
template <typename vec_t>
|
140 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
141 |
+
_min(const vec_t& x, const vec_t& y) {
|
142 |
+
// vec::minimum propagates NaN
|
143 |
+
return minimum(x, y);
|
144 |
+
}
|
145 |
+
|
146 |
+
template <typename scalar_t, typename accumut, typename Op,
|
147 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
148 |
+
inline void map_acc(
|
149 |
+
const Op& vec_fun,
|
150 |
+
accumut* output_data,
|
151 |
+
const accumut* input_data,
|
152 |
+
const scalar_t* input_data2,
|
153 |
+
int64_t size) {
|
154 |
+
using Vec = vec::Vectorized<scalar_t>;
|
155 |
+
using aVec = vec::Vectorized<accumut>;
|
156 |
+
int64_t d = 0;
|
157 |
+
constexpr int64_t kVecSize = Vec::size();
|
158 |
+
constexpr int64_t kaVecSize = aVec::size();
|
159 |
+
for (d = 0; d < size - (size % kVecSize); d += kVecSize) {
|
160 |
+
Vec data2_vec = Vec::loadu(input_data2 + d);
|
161 |
+
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
|
162 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
163 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize);
|
164 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
165 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize);
|
166 |
+
}
|
167 |
+
if (size - d > 0) {
|
168 |
+
int64_t tail_size = size - d;
|
169 |
+
Vec data2_vec = Vec::loadu(input_data2 + d, tail_size);
|
170 |
+
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
|
171 |
+
if (tail_size > kaVecSize) {
|
172 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
173 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize, tail_size - kaVecSize);
|
174 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
175 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize, tail_size - kaVecSize);
|
176 |
+
} else {
|
177 |
+
aVec input_vec0 = aVec::loadu(input_data + d, tail_size);
|
178 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d, tail_size);
|
179 |
+
}
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
// for Max and Min, propagate NaN:
|
184 |
+
template <typename T, ReductionType reduce>
|
185 |
+
inline T update(const T& x, const T& y) {
|
186 |
+
if (reduce == ReductionType::SUM ||
|
187 |
+
reduce == ReductionType::MEAN) {
|
188 |
+
return x + y;
|
189 |
+
} else if (reduce == ReductionType::PROD) {
|
190 |
+
return x * y;
|
191 |
+
} else if (reduce == ReductionType::MAX) {
|
192 |
+
return _max(x, y);
|
193 |
+
} else {
|
194 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
195 |
+
return _min(x, y);
|
196 |
+
}
|
197 |
+
}
|
198 |
+
|
199 |
+
template <typename scalar_t, ReductionType reduce>
|
200 |
+
inline void update(scalar_t* out, const scalar_t* data, int64_t K) {
|
201 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
202 |
+
map2<scalar_t>(
|
203 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
204 |
+
out,
|
205 |
+
out,
|
206 |
+
data,
|
207 |
+
K);
|
208 |
+
}
|
209 |
+
|
210 |
+
template <typename scalar_t, ReductionType reduce,
|
211 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
212 |
+
inline void update(at::opmath_type<scalar_t>* out, const scalar_t* data, int64_t K) {
|
213 |
+
using opmath_t = at::opmath_type<scalar_t>;
|
214 |
+
using Vec = vec::Vectorized<opmath_t>;
|
215 |
+
map_acc<scalar_t, opmath_t>(
|
216 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
217 |
+
out,
|
218 |
+
out,
|
219 |
+
data,
|
220 |
+
K);
|
221 |
+
}
|
222 |
+
|
223 |
+
template <typename scalar_t, ReductionType reduce>
|
224 |
+
inline void write(scalar_t* out, int64_t count, int64_t K) {
|
225 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
226 |
+
if (reduce == ReductionType::MEAN) {
|
227 |
+
if (count > 0) {
|
228 |
+
vec::map<scalar_t>(
|
229 |
+
[count](Vec x) { return x / Vec(count); },
|
230 |
+
out,
|
231 |
+
out,
|
232 |
+
K);
|
233 |
+
}
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
} // namespace CPU_CAPABILITY
|
238 |
+
} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/int_mm_kernel.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
|
6 |
+
namespace at::native {
|
7 |
+
|
8 |
+
using weight_to_int4pack_fn = void(*)(const Tensor&, const Tensor&, int, int);
|
9 |
+
using int4pack_mm_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, int, const Tensor&, int, int);
|
10 |
+
using int8pack_mm_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&);
|
11 |
+
|
12 |
+
DECLARE_DISPATCH(weight_to_int4pack_fn, weight_to_int4pack_stub);
|
13 |
+
DECLARE_DISPATCH(int4pack_mm_fn, int4pack_mm_stub);
|
14 |
+
DECLARE_DISPATCH(int8pack_mm_fn, int8pack_mm_stub);
|
15 |
+
|
16 |
+
} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
|
5 |
+
namespace at { namespace native {
|
6 |
+
|
7 |
+
inline ScalarType first_type() {
|
8 |
+
return ScalarType::Undefined;
|
9 |
+
}
|
10 |
+
|
11 |
+
template <typename... Args>
|
12 |
+
inline ScalarType first_type(const Tensor& arg, const Args&... parameters) {
|
13 |
+
return arg.defined() ? arg.scalar_type() : first_type(parameters...);
|
14 |
+
}
|
15 |
+
|
16 |
+
template <typename... Args>
|
17 |
+
inline bool is_mixed_type(const Tensor& input, const Args&... parameters) {
|
18 |
+
const auto parameter_type = first_type(parameters...);
|
19 |
+
return ((parameter_type != ScalarType::Undefined) &&
|
20 |
+
(parameter_type != input.scalar_type()));
|
21 |
+
}
|
22 |
+
|
23 |
+
// currently on CPU, mixed data type is only supported
|
24 |
+
// when input is 'BFloat16' or 'Half' and parameters are 'Float'
|
25 |
+
inline void check_mixed_data_type(const Tensor& input) {
|
26 |
+
TORCH_CHECK(at::isReducedFloatingType(input.scalar_type()),
|
27 |
+
"mixed dtype (CPU): all inputs must share same datatype.");
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename... Args>
|
31 |
+
inline void check_mixed_data_type(const Tensor& input, const Tensor& parameter, const Args&... parameters) {
|
32 |
+
TORCH_CHECK(!parameter.defined() || parameter.scalar_type() == ScalarType::Float,
|
33 |
+
"mixed dtype (CPU): expect parameter to have scalar type of Float");
|
34 |
+
check_mixed_data_type(input, parameters...);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline ScalarType param_scalar_type(const Tensor& t, bool is_mixed_type) {
|
38 |
+
return is_mixed_type ? ScalarType::Float : t.scalar_type();
|
39 |
+
}
|
40 |
+
|
41 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cpu/moments_utils.h
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <array>
|
4 |
+
#include <cstring>
|
5 |
+
#include <numeric>
|
6 |
+
#include <utility>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
#include <ATen/Parallel.h>
|
10 |
+
#include <ATen/OpMathType.h>
|
11 |
+
#include <ATen/cpu/vec/vec.h>
|
12 |
+
#include <ATen/native/cpu/utils.h>
|
13 |
+
#include <c10/util/SmallVector.h>
|
14 |
+
#include <c10/util/irange.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
namespace native {
|
18 |
+
inline namespace CPU_CAPABILITY {
|
19 |
+
|
20 |
+
template<typename T> using opmath_t = at::opmath_type<T>;
|
21 |
+
|
22 |
+
constexpr int64_t kChunkSize = 16;
|
23 |
+
|
24 |
+
template <typename T>
|
25 |
+
void AddMoments(
|
26 |
+
int64_t m0_add,
|
27 |
+
const T& m1_add,
|
28 |
+
const T& m2_add,
|
29 |
+
int64_t& m0,
|
30 |
+
T& m1,
|
31 |
+
T& m2) {
|
32 |
+
const int64_t n = m0 + m0_add;
|
33 |
+
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
|
34 |
+
const T delta = m1_add - m1;
|
35 |
+
m1 += c * delta;
|
36 |
+
m2 += m2_add + delta * delta * c * static_cast<T>(m0);
|
37 |
+
m0 = n;
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename T>
|
41 |
+
C10_ALWAYS_INLINE void AddMomentsVec(
|
42 |
+
int64_t m0_add,
|
43 |
+
const vec::Vectorized<T>& m1_add,
|
44 |
+
const vec::Vectorized<T>& m2_add,
|
45 |
+
int64_t& m0,
|
46 |
+
vec::Vectorized<T>& m1,
|
47 |
+
vec::Vectorized<T>& m2) {
|
48 |
+
using Vec = vec::Vectorized<T>;
|
49 |
+
const int64_t n = m0 + m0_add;
|
50 |
+
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
|
51 |
+
const Vec c_vec(c);
|
52 |
+
const Vec delta = m1_add - m1;
|
53 |
+
m1 += c_vec * delta;
|
54 |
+
m2 += m2_add + delta * delta * c_vec * Vec(static_cast<T>(m0));
|
55 |
+
m0 = n;
|
56 |
+
}
|
57 |
+
|
58 |
+
template <typename T>
|
59 |
+
inline typename std::enable_if<std::is_same<T, opmath_t<T>>::value, void>::type
|
60 |
+
UpdateMomentsVec(
|
61 |
+
int64_t m0,
|
62 |
+
const T* X_ptr,
|
63 |
+
const std::array<vec::Vectorized<opmath_t<T>>, kChunkSize>& c_vecs,
|
64 |
+
int64_t& m0_stk0,
|
65 |
+
vec::Vectorized<opmath_t<T>>& m1_stk0,
|
66 |
+
vec::Vectorized<opmath_t<T>>& m2_stk0) {
|
67 |
+
using Vec = vec::Vectorized<opmath_t<T>>;
|
68 |
+
Vec m1_vec(0);
|
69 |
+
Vec m2_vec(0);
|
70 |
+
for (const auto j : c10::irange(m0)) {
|
71 |
+
const Vec x_vec = Vec::loadu(X_ptr + j * Vec::size());
|
72 |
+
const Vec delta_vec = x_vec - m1_vec;
|
73 |
+
m1_vec += delta_vec * c_vecs[j];
|
74 |
+
m2_vec += delta_vec * (x_vec - m1_vec);
|
75 |
+
}
|
76 |
+
AddMomentsVec(m0, m1_vec, m2_vec, m0_stk0, m1_stk0, m2_stk0);
|
77 |
+
}
|
78 |
+
|
79 |
+
// each bfloat16/half vector will be converted to two float vectors,
|
80 |
+
// and accumulated successively on m1_stk0/m2_stk0.
|
81 |
+
template <typename T>
|
82 |
+
inline typename std::enable_if<!std::is_same<T, at::opmath_type<T>>::value, void>::type
|
83 |
+
UpdateMomentsVec(
|
84 |
+
int64_t m0,
|
85 |
+
const T* X_ptr,
|
86 |
+
const std::array<vec::Vectorized<at::opmath_type<T>>, kChunkSize>& c_vecs,
|
87 |
+
int64_t& m0_stk0,
|
88 |
+
vec::Vectorized<at::opmath_type<T>>& m1_stk0,
|
89 |
+
vec::Vectorized<at::opmath_type<T>>& m2_stk0) {
|
90 |
+
using Vec = vec::Vectorized<T>;
|
91 |
+
using fVec = vec::Vectorized<at::opmath_type<T>>;
|
92 |
+
fVec m1_fvec0(0), m1_fvec1(0);
|
93 |
+
fVec m2_fvec0(0), m2_fvec1(0);
|
94 |
+
for (const auto j : c10::irange(m0)) {
|
95 |
+
const Vec x_bvec = Vec::loadu(X_ptr + j * Vec::size());
|
96 |
+
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
|
97 |
+
const fVec delta_fvec0 = x_fvec0 - m1_fvec0;
|
98 |
+
const fVec delta_fvec1 = x_fvec1 - m1_fvec1;
|
99 |
+
m1_fvec0 += delta_fvec0 * c_vecs[j];
|
100 |
+
m1_fvec1 += delta_fvec1 * c_vecs[j];
|
101 |
+
m2_fvec0 += delta_fvec0 * (x_fvec0 - m1_fvec0);
|
102 |
+
m2_fvec1 += delta_fvec1 * (x_fvec1 - m1_fvec1);
|
103 |
+
}
|
104 |
+
AddMomentsVec(m0, m1_fvec0, m2_fvec0, m0_stk0, m1_stk0, m2_stk0);
|
105 |
+
AddMomentsVec(m0, m1_fvec1, m2_fvec1, m0_stk0, m1_stk0, m2_stk0);
|
106 |
+
}
|
107 |
+
|
108 |
+
// Compute rowwise moments by Welford algorithm and cascade sum to improve
|
109 |
+
// numerical stability.
|
110 |
+
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
111 |
+
// https://en.wikipedia.org/wiki/Pairwise_summation
|
112 |
+
template <typename T, int64_t kMaxDepth>
|
113 |
+
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMomentsImpl(const T* X, int64_t N, int64_t ddof = 0) {
|
114 |
+
using math_t = opmath_t<T>;
|
115 |
+
|
116 |
+
constexpr int64_t kVecSize = vec::Vectorized<T>::size();
|
117 |
+
constexpr int64_t kAccVecSize = vec::Vectorized<math_t>::size();
|
118 |
+
const int64_t n = N / kVecSize;
|
119 |
+
const int64_t m = divup(n, kChunkSize);
|
120 |
+
const int64_t depth = utils::CeilLog2(m);
|
121 |
+
|
122 |
+
using Vec = vec::Vectorized<math_t>;
|
123 |
+
const Vec kZeroVec(math_t(0));
|
124 |
+
c10::SmallVector<int64_t, kMaxDepth> m0_stk(depth, 0);
|
125 |
+
c10::SmallVector<Vec, kMaxDepth> m1_stk(depth, kZeroVec);
|
126 |
+
c10::SmallVector<Vec, kMaxDepth> m2_stk(depth, kZeroVec);
|
127 |
+
|
128 |
+
for (const auto i : c10::irange(m)) {
|
129 |
+
const T* X_ptr = X + i * kChunkSize * kVecSize;
|
130 |
+
const int64_t m0 = std::min(kChunkSize, n - i * kChunkSize);
|
131 |
+
static std::array<Vec, kChunkSize> c_vecs = ([]() {
|
132 |
+
std::array<Vec, kChunkSize> result;
|
133 |
+
for (const auto i : c10::irange(kChunkSize)) {
|
134 |
+
result[i] = Vec(math_t(1) / static_cast<math_t>(i + 1));
|
135 |
+
}
|
136 |
+
return result;
|
137 |
+
})();
|
138 |
+
UpdateMomentsVec(m0, X_ptr, c_vecs, m0_stk[0], m1_stk[0], m2_stk[0]);
|
139 |
+
|
140 |
+
int64_t mask = i + 1;
|
141 |
+
for (int64_t j = 1; j < depth && (mask & 1) == 0; ++j) {
|
142 |
+
AddMomentsVec(
|
143 |
+
m0_stk[j - 1],
|
144 |
+
m1_stk[j - 1],
|
145 |
+
m2_stk[j - 1],
|
146 |
+
m0_stk[j],
|
147 |
+
m1_stk[j],
|
148 |
+
m2_stk[j]);
|
149 |
+
m0_stk[j - 1] = 0;
|
150 |
+
m1_stk[j - 1] = kZeroVec;
|
151 |
+
m2_stk[j - 1] = kZeroVec;
|
152 |
+
mask >>= 1;
|
153 |
+
}
|
154 |
+
}
|
155 |
+
for (const auto i : c10::irange(1, depth)) {
|
156 |
+
AddMomentsVec(
|
157 |
+
m0_stk[i], m1_stk[i], m2_stk[i], m0_stk[0], m1_stk[0], m2_stk[0]);
|
158 |
+
}
|
159 |
+
|
160 |
+
std::array<math_t, kAccVecSize> m1_arr{};
|
161 |
+
std::array<math_t, kAccVecSize> m2_arr{};
|
162 |
+
m1_stk[0].store(m1_arr.data());
|
163 |
+
m2_stk[0].store(m2_arr.data());
|
164 |
+
|
165 |
+
int64_t m0 = 0;
|
166 |
+
math_t m1 = 0;
|
167 |
+
math_t m2 = 0;
|
168 |
+
for (int64_t i = n * kVecSize; i < N; ++i) {
|
169 |
+
math_t x = static_cast<math_t>(X[i]);
|
170 |
+
const math_t delta = x - m1;
|
171 |
+
++m0;
|
172 |
+
m1 += delta / static_cast<math_t>(m0);
|
173 |
+
m2 += delta * (x - m1);
|
174 |
+
}
|
175 |
+
// for BFloat16, each vector in m1_arr/m2_arr holds 2*n accumulated result
|
176 |
+
int64_t m0_add = n * kVecSize / kAccVecSize;
|
177 |
+
for (const auto i : c10::irange(kAccVecSize)) {
|
178 |
+
AddMoments(m0_add, m1_arr[i], m2_arr[i], m0, m1, m2);
|
179 |
+
}
|
180 |
+
|
181 |
+
return std::make_pair(m1, m2 / static_cast<math_t>(N - ddof));
|
182 |
+
}
|
183 |
+
|
184 |
+
template <typename T>
|
185 |
+
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMoments(const T* X, int64_t N, int64_t ddof = 0) {
|
186 |
+
using Vec = vec::Vectorized<T>;
|
187 |
+
constexpr int64_t kVecSize = Vec::size();
|
188 |
+
const int64_t n = N / kVecSize;
|
189 |
+
const int64_t m = divup(n, kChunkSize);
|
190 |
+
const int64_t depth = utils::CeilLog2(m);
|
191 |
+
if (depth <= 4) {
|
192 |
+
return RowwiseMomentsImpl<T, 4>(X, N, ddof);
|
193 |
+
} else if (depth <= 8) {
|
194 |
+
return RowwiseMomentsImpl<T, 8>(X, N, ddof);
|
195 |
+
} else if (depth <= 16) {
|
196 |
+
return RowwiseMomentsImpl<T, 16>(X, N, ddof);
|
197 |
+
} else if (depth <= 32) {
|
198 |
+
return RowwiseMomentsImpl<T, 32>(X, N, ddof);
|
199 |
+
} else {
|
200 |
+
return RowwiseMomentsImpl<T, 64>(X, N, ddof);
|
201 |
+
}
|
202 |
+
}
|
203 |
+
|
204 |
+
} // namespace CPU_CAPABILITY
|
205 |
+
} // namespace native
|
206 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Activation.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/Activation.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
struct TensorIteratorBase;
|
7 |
+
class TensorBase;
|
8 |
+
}
|
9 |
+
|
10 |
+
namespace at { namespace native {
|
11 |
+
|
12 |
+
void launch_glu_backward_kernel(const TensorIteratorBase& iter,
|
13 |
+
int64_t gI_stride, int64_t I_stride);
|
14 |
+
|
15 |
+
void launch_log_sigmoid_forward_kernel(TensorIteratorBase& iter);
|
16 |
+
|
17 |
+
void GeluCUDAKernelImpl(TensorIteratorBase& it, GeluType approximate);
|
18 |
+
void GeluBackwardCUDAKernelImpl(TensorIteratorBase& it, GeluType approximate);
|
19 |
+
|
20 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CUDAJitLoops.cuh
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/jit_macros.h>
|
3 |
+
|
4 |
+
// Jiterator functions are guarded behind this macro
|
5 |
+
#if AT_USE_JITERATOR()
|
6 |
+
|
7 |
+
#include <ATen/OpMathType.h>
|
8 |
+
#include <ATen/TensorIterator.h>
|
9 |
+
#include <ATen/core/Array.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
12 |
+
#include <ATen/native/cuda/jit_utils.h>
|
13 |
+
#include <ATen/native/cuda/MemoryAccess.cuh>
|
14 |
+
#include <ATen/native/cuda/thread_constants.h>
|
15 |
+
|
16 |
+
#include <ATen/native/cuda/Loops.cuh>
|
17 |
+
|
18 |
+
#include <c10/macros/Macros.h>
|
19 |
+
#include <c10/core/ScalarType.h>
|
20 |
+
#include <c10/util/SmallBuffer.h>
|
21 |
+
|
22 |
+
#include <initializer_list>
|
23 |
+
#include <type_traits>
|
24 |
+
#include <tuple>
|
25 |
+
#include <mutex>
|
26 |
+
|
27 |
+
namespace at {
|
28 |
+
namespace native {
|
29 |
+
|
30 |
+
template <typename Tuple, std::size_t... I>
|
31 |
+
constexpr auto tuple_to_array_helper(Tuple& t, std::index_sequence<I...> seq) {
|
32 |
+
constexpr auto size = seq.size();
|
33 |
+
(void)t; // warning : unused parameter when tuple is empty.
|
34 |
+
return std::array<void*, size>{static_cast<void*>(&std::get<I>(t))...};
|
35 |
+
}
|
36 |
+
|
37 |
+
// Helper function convert tuple to std::array<void*, N>
|
38 |
+
// for passing the arguments to CUDA Kernel
|
39 |
+
// NOTE: We capture tuple by reference,
|
40 |
+
// so the pointers in returned array are only valid
|
41 |
+
// till tuple is alive.
|
42 |
+
template <typename ...Args>
|
43 |
+
constexpr auto tuple_to_array(std::tuple<Args...>& extra_args) {
|
44 |
+
constexpr auto tuple_size = sizeof...(Args);
|
45 |
+
return tuple_to_array_helper(extra_args, std::make_index_sequence<tuple_size>{});
|
46 |
+
}
|
47 |
+
|
48 |
+
struct JittedVecKernelCache {
|
49 |
+
// Different kernels are compiled depending on what we're vectorizing up to (1, 2 or 4 elements)
|
50 |
+
at::cuda::jit::NvrtcFunction vec1;
|
51 |
+
at::cuda::jit::NvrtcFunction vec2;
|
52 |
+
at::cuda::jit::NvrtcFunction vec4;
|
53 |
+
};
|
54 |
+
|
55 |
+
struct JittedKernelVariantCache {
|
56 |
+
JittedVecKernelCache vec;
|
57 |
+
at::cuda::jit::NvrtcFunction noncontiguous;
|
58 |
+
at::cuda::jit::NvrtcFunction dynamic_contiguous;
|
59 |
+
at::cuda::jit::NvrtcFunction dynamic_noncontiguous;
|
60 |
+
};
|
61 |
+
|
62 |
+
inline c10::SmallBuffer<void*, 64> pack_kernel_args(
|
63 |
+
std::initializer_list<void*> args,
|
64 |
+
c10::ArrayRef<void*> extra_args) {
|
65 |
+
c10::SmallBuffer<void*, 64> ret(args.size() + extra_args.size());
|
66 |
+
std::copy(args.begin(), args.end(), ret.data());
|
67 |
+
std::copy(extra_args.begin(), extra_args.end(), ret.data() + args.size());
|
68 |
+
return ret;
|
69 |
+
}
|
70 |
+
|
71 |
+
template<typename array_t,
|
72 |
+
typename inp_calc_t,
|
73 |
+
typename out_calc_t,
|
74 |
+
typename loader_t,
|
75 |
+
typename storer_t>
|
76 |
+
void launch_jitted_unrolled_kernel(
|
77 |
+
std::mutex &jiterator_mutex,
|
78 |
+
at::cuda::jit::NvrtcFunction &fn_cache,
|
79 |
+
const at::cuda::jit::KernelDescriptor &desc,
|
80 |
+
int64_t N,
|
81 |
+
array_t data,
|
82 |
+
inp_calc_t ic,
|
83 |
+
out_calc_t oc,
|
84 |
+
loader_t l,
|
85 |
+
storer_t s,
|
86 |
+
bool contiguous,
|
87 |
+
at::cuda::jit::BinaryFuncVariant scalar_pos,
|
88 |
+
void* scalar_val,
|
89 |
+
c10::ArrayRef<void*> extra_args) {
|
90 |
+
|
91 |
+
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
92 |
+
//casting result to int is always safe, intermediate is int64 and won't overflow
|
93 |
+
const uint32_t grid = (N + block_work_size() - 1) / block_work_size();
|
94 |
+
|
95 |
+
if (!fn_cache.function) {
|
96 |
+
const std::lock_guard<std::mutex> lock{jiterator_mutex};
|
97 |
+
if (!fn_cache.function) {
|
98 |
+
constexpr bool dynamic_casting = !std::is_same<decltype(l), memory::LoadWithoutCast>() ||
|
99 |
+
!std::is_same<decltype(s), memory::StoreWithoutCast>();
|
100 |
+
auto code = at::cuda::jit::generate_code(
|
101 |
+
desc, contiguous, dynamic_casting, scalar_pos);
|
102 |
+
fn_cache = at::cuda::jit::jit_pwise_function(code, desc.name);
|
103 |
+
}
|
104 |
+
}
|
105 |
+
|
106 |
+
auto args = pack_kernel_args({&N, &data, &ic, &oc, &l, &s, scalar_val}, extra_args);
|
107 |
+
at::cuda::jit::launch_jitted_pwise_function(fn_cache, args.data(), {grid, 1u, 1u},
|
108 |
+
{num_threads(), 1u, 1u});
|
109 |
+
}
|
110 |
+
|
111 |
+
template<int arity, typename array_t>
|
112 |
+
void launch_jitted_vectorized_kernel(
|
113 |
+
std::mutex &jiterator_mutex, JittedVecKernelCache &fn_cache,
|
114 |
+
const at::cuda::jit::KernelDescriptor &desc, int64_t N, array_t data,
|
115 |
+
at::cuda::jit::BinaryFuncVariant scalar_pos,
|
116 |
+
void *scalar_val, c10::ArrayRef<void*> extra_args) {
|
117 |
+
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
118 |
+
// N is still int64_t for the computation, but it's always safe to cast result to int
|
119 |
+
const uint32_t grid = (N + block_work_size() - 1) / block_work_size();
|
120 |
+
const int vec_size = at::cuda::jit::can_vectorize_up_to(
|
121 |
+
desc, c10::ArrayRef<char*>(data.data, data.size()));
|
122 |
+
|
123 |
+
// Different kernels are compiled depending on what we're vectorizing up to (1, 2 or 4 elements)
|
124 |
+
// fn_ptr is set to the appropriate function based on the vec size and GPU used
|
125 |
+
at::cuda::jit::NvrtcFunction* fn_ptr;
|
126 |
+
if (vec_size == 4) {
|
127 |
+
fn_ptr = &fn_cache.vec4;
|
128 |
+
} else if (vec_size == 2) {
|
129 |
+
fn_ptr = &fn_cache.vec2;
|
130 |
+
} else if (vec_size ==1) {
|
131 |
+
fn_ptr = &fn_cache.vec1;
|
132 |
+
} else {
|
133 |
+
TORCH_INTERNAL_ASSERT(false, "unexpected vec_size for jitter vectorized kernel");
|
134 |
+
}
|
135 |
+
|
136 |
+
bool vectorized = vec_size > 1;
|
137 |
+
|
138 |
+
if (!fn_ptr->function) {
|
139 |
+
const std::lock_guard<std::mutex> lock{jiterator_mutex};
|
140 |
+
if (!fn_ptr->function) { // cache miss!
|
141 |
+
|
142 |
+
// Generates program
|
143 |
+
auto code = at::cuda::jit::generate_code(
|
144 |
+
desc, /*contiguous=*/true, /*dynamic_casting=*/false,
|
145 |
+
scalar_pos, vectorized, vec_size);
|
146 |
+
std::string kernel_name = vectorized ? desc.name + "_vectorized" + std::to_string(vec_size) : desc.name;
|
147 |
+
|
148 |
+
// Acquires the program
|
149 |
+
*fn_ptr = at::cuda::jit::jit_pwise_function(code, kernel_name);
|
150 |
+
}
|
151 |
+
}
|
152 |
+
|
153 |
+
if (vectorized) {
|
154 |
+
auto args = pack_kernel_args({&N, &data, scalar_val}, extra_args);
|
155 |
+
at::cuda::jit::launch_jitted_pwise_function(
|
156 |
+
*fn_ptr, args.data(), {grid, 1u, 1u}, {num_threads(), 1u, 1u});
|
157 |
+
} else {
|
158 |
+
// NVCC complains about unused variables l and s.
|
159 |
+
// It should be false positive in most cases, so we suppress the warnings.
|
160 |
+
#pragma nv_diagnostic push
|
161 |
+
#pragma nv_diag_suppress 177
|
162 |
+
auto ic = TrivialOffsetCalculator<arity>();
|
163 |
+
auto oc = TrivialOffsetCalculator<1>();
|
164 |
+
auto l = memory::LoadWithoutCast();
|
165 |
+
auto s = memory::StoreWithoutCast();
|
166 |
+
|
167 |
+
auto args = pack_kernel_args(
|
168 |
+
{&N, &data, &ic, &oc, &l, &s, scalar_val}, extra_args);
|
169 |
+
at::cuda::jit::launch_jitted_pwise_function(
|
170 |
+
*fn_ptr, args.data(), {grid, 1u, 1u}, {num_threads(), 1u, 1u});
|
171 |
+
#pragma nv_diagnostic pop
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
template <int arity>
|
176 |
+
void jitted_gpu_kernel_generic(
|
177 |
+
std::mutex &jiterator_mutex,
|
178 |
+
JittedKernelVariantCache &cache,
|
179 |
+
const at::cuda::jit::KernelDescriptor &desc,
|
180 |
+
at::cuda::jit::BinaryFuncVariant scalar_pos,
|
181 |
+
c10::ArrayRef<void*> extra_args,
|
182 |
+
TensorIteratorBase& iter,
|
183 |
+
const bool dynamic_casting,
|
184 |
+
void *scalar_val) {
|
185 |
+
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
186 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == arity);
|
187 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
188 |
+
|
189 |
+
constexpr int ntensors = arity + 1;
|
190 |
+
at::detail::Array<char*, ntensors> data;
|
191 |
+
for (auto i : c10::irange(ntensors)) {
|
192 |
+
data[i] = (char*)iter.data_ptr(i);
|
193 |
+
}
|
194 |
+
|
195 |
+
int64_t numel = iter.numel();
|
196 |
+
bool contiguous = iter.is_contiguous();
|
197 |
+
|
198 |
+
// Decides which of 4 kernel types to launch
|
199 |
+
// Variations are:
|
200 |
+
// - Case 1: no dynamic casting and contiguous
|
201 |
+
// - Case 2: no dynamic casting and noncontiguous
|
202 |
+
// - Case 3: dynamic casting and contiguous
|
203 |
+
// - Case 4: dynamic casting and noncontiguous
|
204 |
+
// These cases align with the non-jitted CUDALoops.cuh cases in gpu_kernel_impl
|
205 |
+
|
206 |
+
if (!dynamic_casting) {
|
207 |
+
if (contiguous) {
|
208 |
+
// Case 1: no dynamic casting and contiguous
|
209 |
+
launch_jitted_vectorized_kernel<arity>(
|
210 |
+
jiterator_mutex, cache.vec, desc,
|
211 |
+
numel, data, scalar_pos, scalar_val, extra_args);
|
212 |
+
return;
|
213 |
+
}
|
214 |
+
|
215 |
+
// Case 2: no dynamic casting and noncontiguous
|
216 |
+
auto input_offset_calculator = make_input_offset_calculator<arity>(iter);
|
217 |
+
auto output_offset_calculator = make_output_offset_calculator(iter);
|
218 |
+
auto loader = memory::LoadWithoutCast();
|
219 |
+
auto storer = memory::StoreWithoutCast();
|
220 |
+
launch_jitted_unrolled_kernel(
|
221 |
+
jiterator_mutex, cache.noncontiguous, desc, numel, data,
|
222 |
+
input_offset_calculator, output_offset_calculator, loader,
|
223 |
+
storer, contiguous, scalar_pos, scalar_val, extra_args);
|
224 |
+
return;
|
225 |
+
}
|
226 |
+
|
227 |
+
// Cases 3 and 4 are handled below
|
228 |
+
// Both require construction of a storer (this asserts 1 output) and one or more loaders
|
229 |
+
|
230 |
+
// Creates store cast to output (the zeroth tensor in TensorIterator)
|
231 |
+
auto storer = memory::StoreWithCast<1>(iter);
|
232 |
+
|
233 |
+
// Creates load casts from inputs (note offset indexing into the iterators 1...n tensors)
|
234 |
+
auto loader = memory::LoadWithCast<arity>(iter);
|
235 |
+
|
236 |
+
if (contiguous) {
|
237 |
+
// Case 3: dynamic casting and contiguous
|
238 |
+
auto input_offset_calculator = TrivialOffsetCalculator<arity>();
|
239 |
+
auto output_offset_calculator = TrivialOffsetCalculator<1>();
|
240 |
+
launch_jitted_unrolled_kernel(
|
241 |
+
jiterator_mutex, cache.dynamic_contiguous, desc, numel, data, input_offset_calculator,
|
242 |
+
output_offset_calculator, loader, storer, contiguous, scalar_pos, scalar_val, extra_args);
|
243 |
+
return;
|
244 |
+
}
|
245 |
+
|
246 |
+
// Case 4: dynamic casting and noncontiguous
|
247 |
+
auto input_offset_calculator = make_input_offset_calculator<arity>(iter);
|
248 |
+
auto output_offset_calculator = make_output_offset_calculator(iter);
|
249 |
+
launch_jitted_unrolled_kernel(
|
250 |
+
jiterator_mutex, cache.dynamic_noncontiguous, desc, numel, data, input_offset_calculator,
|
251 |
+
output_offset_calculator, loader, storer, contiguous, scalar_pos, scalar_val, extra_args);
|
252 |
+
}
|
253 |
+
|
254 |
+
// NOTE: static to reduce chances of name collision.
|
255 |
+
template <
|
256 |
+
char const* name,
|
257 |
+
typename result_type,
|
258 |
+
typename f_inputs_type,
|
259 |
+
int arity,
|
260 |
+
at::cuda::jit::BinaryFuncVariant scalar_pos =
|
261 |
+
at::cuda::jit::BinaryFuncVariant::NoScalar,
|
262 |
+
typename... ExtraArgs>
|
263 |
+
static void jitted_gpu_kernel_impl(
|
264 |
+
TensorIteratorBase& iter,
|
265 |
+
const std::string &f,
|
266 |
+
const bool dynamic_casting,
|
267 |
+
at::opmath_type<f_inputs_type> scalar_val,
|
268 |
+
std::tuple<ExtraArgs...> extra_args) {
|
269 |
+
|
270 |
+
// TODO: Memory use can probably be optimized by re-using kernels across GPUs with
|
271 |
+
// the same compute capability
|
272 |
+
static std::mutex jiterator_mutex;
|
273 |
+
static std::vector<JittedKernelVariantCache> device_caches(c10::cuda::device_count());
|
274 |
+
|
275 |
+
constexpr int nInputs = arity;
|
276 |
+
constexpr int nOutputs = 1; // TODO: Support more than 1 output
|
277 |
+
static const auto desc = at::cuda::jit::make_kernel_descriptor<
|
278 |
+
result_type, f_inputs_type, ExtraArgs...>(name, f, nInputs, nOutputs);
|
279 |
+
|
280 |
+
auto &cache = device_caches[iter.device().index()];
|
281 |
+
auto extra_args_array = tuple_to_array(extra_args);
|
282 |
+
return jitted_gpu_kernel_generic<arity>(
|
283 |
+
jiterator_mutex,
|
284 |
+
cache,
|
285 |
+
desc,
|
286 |
+
scalar_pos,
|
287 |
+
extra_args_array,
|
288 |
+
iter,
|
289 |
+
dynamic_casting,
|
290 |
+
&scalar_val
|
291 |
+
);
|
292 |
+
}
|
293 |
+
|
294 |
+
}} // at::native
|
295 |
+
|
296 |
+
#endif // AT_USE_JITERATOR()
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CUDALoops.cuh
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This file provides two functions to help write GPU elementwise kernels:
|
4 |
+
//
|
5 |
+
// gpu_kernel(TensorIterator iter, <lambda>)
|
6 |
+
// gpu_kernel_with_scalars(TensorIterator iter, <lambda>)
|
7 |
+
//
|
8 |
+
// The gpu_kernel_with_scalars generates specializations that support a
|
9 |
+
// single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar
|
10 |
+
// is lifted to a kernel parameter instead of copying to device memory.
|
11 |
+
// This should be used in conjunction with TensorIterator::allow_cpu_scalars_,
|
12 |
+
// which is the default for TensorIterator::binary_op. Otherwise, all inputs
|
13 |
+
// and the output must be on the GPU.
|
14 |
+
//
|
15 |
+
// For example, to write a reciprocal kernel for GPU float Tensors:
|
16 |
+
//
|
17 |
+
// gpu_kernel(iter, []GPU_LAMBDA(float a) {
|
18 |
+
// return 1.0f / a;
|
19 |
+
// });
|
20 |
+
//
|
21 |
+
// To write a multiplication kernel for GPU float Tensors where one argument
|
22 |
+
// may be a CPU scalar:
|
23 |
+
//
|
24 |
+
// gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) {
|
25 |
+
// return a * b;
|
26 |
+
// });
|
27 |
+
//
|
28 |
+
// See BinaryOpsKernel.cu for the complete implementation
|
29 |
+
//
|
30 |
+
|
31 |
+
#include <iostream>
|
32 |
+
#include <tuple>
|
33 |
+
#include <type_traits>
|
34 |
+
|
35 |
+
#include <ATen/core/Array.h>
|
36 |
+
#include <ATen/cuda/CUDAContext.h>
|
37 |
+
#include <ATen/detail/FunctionTraits.h>
|
38 |
+
#include <ATen/native/TensorIterator.h>
|
39 |
+
#include <c10/core/DynamicCast.h>
|
40 |
+
#include <c10/core/ScalarType.h>
|
41 |
+
#include <c10/macros/Macros.h>
|
42 |
+
#include <c10/util/TypeCast.h>
|
43 |
+
|
44 |
+
#ifdef __NVCC__
|
45 |
+
#define ASSERT_HOST_DEVICE_LAMBDA(type) \
|
46 |
+
static_assert( \
|
47 |
+
__nv_is_extended_host_device_lambda_closure_type(type), \
|
48 |
+
#type " must be a __host__ __device__ lambda")
|
49 |
+
#else
|
50 |
+
#define ASSERT_HOST_DEVICE_LAMBDA(type)
|
51 |
+
#endif
|
52 |
+
|
53 |
+
namespace at {
|
54 |
+
namespace native {
|
55 |
+
|
56 |
+
template <int vec_size, typename func_t, typename array_t>
|
57 |
+
C10_LAUNCH_BOUNDS_1(num_threads())
|
58 |
+
__global__ void vectorized_elementwise_kernel(int N, func_t f, array_t data) {
|
59 |
+
using traits = function_traits<func_t>;
|
60 |
+
int remaining = N - block_work_size() * blockIdx.x;
|
61 |
+
|
62 |
+
if (remaining < block_work_size()) { // if this block handles the reminder,
|
63 |
+
// just do a naive unrolled loop
|
64 |
+
auto input_calc = TrivialOffsetCalculator<traits::arity>();
|
65 |
+
auto output_calc = TrivialOffsetCalculator<1>();
|
66 |
+
auto loader = memory::LoadWithoutCast();
|
67 |
+
auto storer = memory::StoreWithoutCast();
|
68 |
+
auto policy = memory::policies::unroll<
|
69 |
+
array_t,
|
70 |
+
decltype(input_calc),
|
71 |
+
decltype(output_calc),
|
72 |
+
memory::LoadWithoutCast,
|
73 |
+
memory::StoreWithoutCast>(
|
74 |
+
data, remaining, input_calc, output_calc, loader, storer);
|
75 |
+
elementwise_kernel_helper(f, policy);
|
76 |
+
} else { // if this block has a full `block_work_size` data to handle, use
|
77 |
+
// vectorized memory access
|
78 |
+
elementwise_kernel_helper(
|
79 |
+
f, memory::policies::vectorized<vec_size, array_t>(data));
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
template <
|
84 |
+
typename func_t,
|
85 |
+
typename array_t,
|
86 |
+
typename inp_calc_t,
|
87 |
+
typename out_calc_t,
|
88 |
+
typename loader_t,
|
89 |
+
typename storer_t>
|
90 |
+
C10_LAUNCH_BOUNDS_1(num_threads())
|
91 |
+
__global__ void unrolled_elementwise_kernel(
|
92 |
+
int N,
|
93 |
+
func_t f,
|
94 |
+
array_t data,
|
95 |
+
inp_calc_t ic,
|
96 |
+
out_calc_t oc,
|
97 |
+
loader_t l,
|
98 |
+
storer_t s) {
|
99 |
+
int remaining = N - block_work_size() * blockIdx.x;
|
100 |
+
auto policy = memory::policies::
|
101 |
+
unroll<array_t, inp_calc_t, out_calc_t, loader_t, storer_t>(
|
102 |
+
data, remaining, ic, oc, l, s);
|
103 |
+
elementwise_kernel_helper(f, policy);
|
104 |
+
}
|
105 |
+
|
106 |
+
// this function assume trivial 1d and no dynamic casting
|
107 |
+
template <typename func_t, typename array_t>
|
108 |
+
static inline void launch_vectorized_kernel(
|
109 |
+
int64_t N,
|
110 |
+
const func_t& f,
|
111 |
+
array_t data) {
|
112 |
+
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
113 |
+
using traits = function_traits<func_t>;
|
114 |
+
int64_t grid = (N + block_work_size() - 1) / block_work_size();
|
115 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
116 |
+
int vec_size = memory::can_vectorize_up_to<func_t>(data);
|
117 |
+
|
118 |
+
switch (vec_size) {
|
119 |
+
case 4:
|
120 |
+
vectorized_elementwise_kernel<4, func_t, array_t>
|
121 |
+
<<<grid, num_threads(), 0, stream>>>(N, f, data);
|
122 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
123 |
+
break;
|
124 |
+
case 2:
|
125 |
+
vectorized_elementwise_kernel<2, func_t, array_t>
|
126 |
+
<<<grid, num_threads(), 0, stream>>>(N, f, data);
|
127 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
128 |
+
break;
|
129 |
+
case 1: {
|
130 |
+
auto input_calc = TrivialOffsetCalculator<traits::arity>();
|
131 |
+
auto output_calc = TrivialOffsetCalculator<1>();
|
132 |
+
auto loader = memory::LoadWithoutCast();
|
133 |
+
auto storer = memory::StoreWithoutCast();
|
134 |
+
unrolled_elementwise_kernel<func_t, array_t>
|
135 |
+
<<<grid, num_threads(), 0, stream>>>(
|
136 |
+
N, f, data, input_calc, output_calc, loader, storer);
|
137 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
138 |
+
break;
|
139 |
+
}
|
140 |
+
default:
|
141 |
+
TORCH_INTERNAL_ASSERT(false, "Unexpected vectorization size");
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
template <
|
146 |
+
typename func_t,
|
147 |
+
typename array_t,
|
148 |
+
typename inp_calc_t,
|
149 |
+
typename out_calc_t,
|
150 |
+
typename loader_t,
|
151 |
+
typename storer_t>
|
152 |
+
static inline void launch_unrolled_kernel(
|
153 |
+
int64_t N,
|
154 |
+
const func_t& f,
|
155 |
+
array_t data,
|
156 |
+
inp_calc_t ic,
|
157 |
+
out_calc_t oc,
|
158 |
+
loader_t l,
|
159 |
+
storer_t s) {
|
160 |
+
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
161 |
+
int64_t grid = (N + block_work_size() - 1) / block_work_size();
|
162 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
163 |
+
unrolled_elementwise_kernel<func_t, array_t>
|
164 |
+
<<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc, l, s);
|
165 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
166 |
+
}
|
167 |
+
|
168 |
+
template <int nt, int vt, typename func_t>
|
169 |
+
C10_LAUNCH_BOUNDS_2(nt, 4)
|
170 |
+
__global__ void elementwise_kernel(int N, func_t f) {
|
171 |
+
int tid = threadIdx.x;
|
172 |
+
int nv = nt * vt;
|
173 |
+
int idx = nv * blockIdx.x + tid;
|
174 |
+
#pragma unroll
|
175 |
+
for (int i = 0; i < vt; i++) {
|
176 |
+
if (idx < N) {
|
177 |
+
f(idx);
|
178 |
+
idx += nt;
|
179 |
+
}
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
template <int nt, int vt, typename func_t>
|
184 |
+
static void launch_legacy_kernel(int64_t N, const func_t& f) {
|
185 |
+
TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
|
186 |
+
if (N == 0) {
|
187 |
+
return;
|
188 |
+
}
|
189 |
+
dim3 block(nt);
|
190 |
+
dim3 grid((N + block.x * vt - 1) / (block.x * vt));
|
191 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
192 |
+
elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
|
193 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
194 |
+
}
|
195 |
+
|
196 |
+
template <typename traits, typename func_t, typename index_t, size_t... INDEX>
|
197 |
+
C10_HOST_DEVICE typename traits::result_type invoke_impl(
|
198 |
+
const func_t& f,
|
199 |
+
char* const C10_RESTRICT data[],
|
200 |
+
const index_t strides[],
|
201 |
+
int i,
|
202 |
+
std::index_sequence<INDEX...>) {
|
203 |
+
(void)strides;
|
204 |
+
(void)i;
|
205 |
+
return f(c10::load<typename traits::template arg<INDEX>::type>(
|
206 |
+
data[INDEX] + i * strides[INDEX])...);
|
207 |
+
}
|
208 |
+
|
209 |
+
template <
|
210 |
+
typename func_t,
|
211 |
+
typename index_t,
|
212 |
+
typename traits = function_traits<func_t>>
|
213 |
+
C10_HOST_DEVICE typename traits::result_type invoke(
|
214 |
+
const func_t& f,
|
215 |
+
char* const C10_RESTRICT data[],
|
216 |
+
const index_t strides[],
|
217 |
+
int i) {
|
218 |
+
using Indices = std::make_index_sequence<traits::arity>;
|
219 |
+
return invoke_impl<traits>(f, data, strides, i, Indices{});
|
220 |
+
}
|
221 |
+
|
222 |
+
template <typename traits, typename func_t, typename index_t, size_t... I>
|
223 |
+
C10_HOST_DEVICE typename traits::result_type invoke_impl(
|
224 |
+
const func_t& f,
|
225 |
+
char* const C10_RESTRICT data[],
|
226 |
+
const index_t strides[],
|
227 |
+
const ScalarType dtypes[],
|
228 |
+
int i,
|
229 |
+
std::index_sequence<I...>) {
|
230 |
+
(void)strides;
|
231 |
+
(void)i;
|
232 |
+
return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(
|
233 |
+
dtypes[I], data[I] + i * strides[I])...);
|
234 |
+
}
|
235 |
+
|
236 |
+
template <
|
237 |
+
typename func_t,
|
238 |
+
typename index_t,
|
239 |
+
typename traits = function_traits<func_t>>
|
240 |
+
C10_HOST_DEVICE typename traits::result_type invoke(
|
241 |
+
const func_t& f,
|
242 |
+
char* const C10_RESTRICT data[],
|
243 |
+
const index_t strides[],
|
244 |
+
const ScalarType dtypes[],
|
245 |
+
int i) {
|
246 |
+
using Indices = std::make_index_sequence<traits::arity>;
|
247 |
+
return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{});
|
248 |
+
}
|
249 |
+
|
250 |
+
template <typename func_t>
|
251 |
+
void gpu_kernel_impl_nocast(TensorIteratorBase& iter, const func_t& f) {
|
252 |
+
using traits = function_traits<func_t>;
|
253 |
+
using arg0_t = typename traits::result_type;
|
254 |
+
constexpr int ntensors = traits::arity + 1;
|
255 |
+
|
256 |
+
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
257 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
258 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
259 |
+
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
260 |
+
|
261 |
+
at::detail::Array<char*, ntensors> data;
|
262 |
+
for (int i = 0; i < ntensors; i++) {
|
263 |
+
data[i] = (char*)iter.data_ptr(i);
|
264 |
+
}
|
265 |
+
|
266 |
+
int64_t numel = iter.numel();
|
267 |
+
|
268 |
+
bool contiguous = iter.is_contiguous();
|
269 |
+
|
270 |
+
if (contiguous) {
|
271 |
+
return launch_vectorized_kernel(numel, f, data);
|
272 |
+
}
|
273 |
+
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
|
274 |
+
constexpr int unroll_factor = sizeof(arg0_t) >= 4 ? 2 : 4;
|
275 |
+
launch_legacy_kernel<128, unroll_factor>(numel, [=] GPU_LAMBDA(int idx) {
|
276 |
+
auto offsets = offset_calc.get(idx);
|
277 |
+
arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
|
278 |
+
*out = invoke(f, &data.data[1], &offsets.data[1], 1);
|
279 |
+
});
|
280 |
+
}
|
281 |
+
|
282 |
+
template <typename func_t>
|
283 |
+
void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
|
284 |
+
if (!needs_dynamic_casting<func_t>::check(iter)) {
|
285 |
+
return gpu_kernel_impl_nocast(iter, f);
|
286 |
+
}
|
287 |
+
using traits = function_traits<func_t>;
|
288 |
+
using arg0_t = typename traits::result_type;
|
289 |
+
constexpr int ntensors = traits::arity + 1;
|
290 |
+
|
291 |
+
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
292 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
293 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
294 |
+
|
295 |
+
at::detail::Array<char*, ntensors> data;
|
296 |
+
for (int i = 0; i < ntensors; i++) {
|
297 |
+
data[i] = (char*)iter.data_ptr(i);
|
298 |
+
}
|
299 |
+
|
300 |
+
int64_t numel = iter.numel();
|
301 |
+
|
302 |
+
bool contiguous = iter.is_contiguous();
|
303 |
+
|
304 |
+
if (contiguous) {
|
305 |
+
#ifdef USE_ROCM
|
306 |
+
at::detail::Array<ScalarType, ntensors> dtypes;
|
307 |
+
auto inner_strides = iter.get_inner_strides();
|
308 |
+
at::detail::Array<int, ntensors> strides;
|
309 |
+
for (int i = 0; i < ntensors; i++) {
|
310 |
+
dtypes[i] = iter.dtype(i);
|
311 |
+
strides[i] = inner_strides[i];
|
312 |
+
}
|
313 |
+
launch_legacy_kernel<512, 1>(numel, [=]GPU_LAMBDA(int idx) {
|
314 |
+
void* out = data[0] + strides[0] * idx;
|
315 |
+
arg0_t result = invoke(f, &data.data[1], &strides.data[1], &dtypes.data[1], idx);
|
316 |
+
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
317 |
+
});
|
318 |
+
#else
|
319 |
+
auto loader = memory::LoadWithCast<traits::arity>(iter);
|
320 |
+
auto storer = memory::StoreWithCast<1>(iter);
|
321 |
+
auto input_offset_calculator = TrivialOffsetCalculator<traits::arity>();
|
322 |
+
auto output_offset_calculator = TrivialOffsetCalculator<1>();
|
323 |
+
launch_unrolled_kernel(
|
324 |
+
numel,
|
325 |
+
f,
|
326 |
+
data,
|
327 |
+
input_offset_calculator,
|
328 |
+
output_offset_calculator,
|
329 |
+
loader,
|
330 |
+
storer);
|
331 |
+
#endif
|
332 |
+
} else {
|
333 |
+
at::detail::Array<ScalarType, ntensors> dtypes;
|
334 |
+
for (int i = 0; i < ntensors; i++) {
|
335 |
+
dtypes[i] = iter.dtype(i);
|
336 |
+
}
|
337 |
+
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
|
338 |
+
launch_legacy_kernel<128, 4>(numel, [=] GPU_LAMBDA(int idx) {
|
339 |
+
auto offsets = offset_calc.get(idx);
|
340 |
+
void* out = data[0] + offsets[0];
|
341 |
+
arg0_t result = invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
|
342 |
+
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
|
343 |
+
});
|
344 |
+
}
|
345 |
+
}
|
346 |
+
|
347 |
+
} // namespace native
|
348 |
+
} // namespace at
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CompositeRandomAccessor.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/CompositeRandomAccessorCommon.h>
|
4 |
+
#include <thrust/tuple.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
struct TupleInfoCPU {
|
9 |
+
template <typename ...Types>
|
10 |
+
using tuple = thrust::tuple<Types...>;
|
11 |
+
|
12 |
+
template <typename ...Types>
|
13 |
+
static constexpr auto tie(Types&... args) noexcept {
|
14 |
+
return thrust::tie(args...);
|
15 |
+
}
|
16 |
+
};
|
17 |
+
|
18 |
+
template <typename KeyAccessor, typename ValueAccessor>
|
19 |
+
using CompositeRandomAccessorCPU =
|
20 |
+
CompositeRandomAccessor<KeyAccessor, ValueAccessor, TupleInfoCPU>;
|
21 |
+
|
22 |
+
template <typename Values, typename References>
|
23 |
+
void swap(
|
24 |
+
references_holder<Values, References> rh1,
|
25 |
+
references_holder<Values, References> rh2
|
26 |
+
) {
|
27 |
+
return thrust::swap(rh1.data(), rh2.data());
|
28 |
+
}
|
29 |
+
|
30 |
+
template <int N, typename Values, typename References>
|
31 |
+
auto get(references_holder<Values, References> rh) -> decltype(thrust::get<N>(rh.data())) {
|
32 |
+
return thrust::get<N>(rh.data());
|
33 |
+
}
|
34 |
+
|
35 |
+
}} // namespace at::native
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTPlanCache.h
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Config.h>
|
2 |
+
#include <ATen/core/DimVector.h>
|
3 |
+
#include <ATen/cuda/CUDAContext.h>
|
4 |
+
#include <ATen/native/cuda/CuFFTUtils.h>
|
5 |
+
#include <ATen/native/utils/ParamsHash.h>
|
6 |
+
#include <c10/util/accumulate.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
#include <cufft.h>
|
10 |
+
#include <cufftXt.h>
|
11 |
+
|
12 |
+
#include <limits>
|
13 |
+
#include <list>
|
14 |
+
#include <sstream>
|
15 |
+
#include <stdexcept>
|
16 |
+
#include <string>
|
17 |
+
#include <unordered_map>
|
18 |
+
|
19 |
+
namespace at { namespace native { namespace detail {
|
20 |
+
|
21 |
+
// Enum representing the FFT type
|
22 |
+
enum class CuFFTTransformType : int8_t {
|
23 |
+
C2C, // Complex-to-complex
|
24 |
+
R2C, // Real-to-complex
|
25 |
+
C2R, // Complex-to-real
|
26 |
+
};
|
27 |
+
|
28 |
+
// This struct is used to let us easily compute hashes of the
|
29 |
+
// parameters.
|
30 |
+
// It will be the **key** to the plan cache.
|
31 |
+
struct CuFFTParams
|
32 |
+
{
|
33 |
+
int64_t signal_ndim_; // between 1 and max_rank, i.e., 1 <= signal_ndim <= 3
|
34 |
+
// These include additional batch dimension as well.
|
35 |
+
int64_t sizes_[max_rank + 1];
|
36 |
+
int64_t input_strides_[max_rank + 1];
|
37 |
+
int64_t output_strides_[max_rank + 1];
|
38 |
+
CuFFTTransformType fft_type_;
|
39 |
+
ScalarType value_type_;
|
40 |
+
|
41 |
+
CuFFTParams() = default;
|
42 |
+
|
43 |
+
CuFFTParams(IntArrayRef in_strides, IntArrayRef out_strides,
|
44 |
+
IntArrayRef signal_sizes, CuFFTTransformType fft_type, ScalarType value_type) {
|
45 |
+
// Padding bits must be zeroed for hashing
|
46 |
+
memset(this, 0, sizeof(*this));
|
47 |
+
signal_ndim_ = signal_sizes.size() - 1;
|
48 |
+
fft_type_ = fft_type;
|
49 |
+
value_type_ = value_type;
|
50 |
+
|
51 |
+
TORCH_INTERNAL_ASSERT(in_strides.size() == signal_sizes.size());
|
52 |
+
TORCH_INTERNAL_ASSERT(out_strides.size() == signal_sizes.size());
|
53 |
+
TORCH_INTERNAL_ASSERT(1 <= signal_ndim_ && signal_ndim_ <= max_rank);
|
54 |
+
|
55 |
+
std::copy(signal_sizes.cbegin(), signal_sizes.cend(), sizes_);
|
56 |
+
std::copy(in_strides.cbegin(), in_strides.cend(), input_strides_);
|
57 |
+
std::copy(out_strides.cbegin(), out_strides.cend(), output_strides_);
|
58 |
+
}
|
59 |
+
};
|
60 |
+
|
61 |
+
static_assert(std::is_trivial<CuFFTParams>::value, "");
|
62 |
+
|
63 |
+
// Returns true if the transform type has complex input
|
64 |
+
inline bool cufft_complex_input(CuFFTTransformType type) {
|
65 |
+
switch (type) {
|
66 |
+
case CuFFTTransformType::C2C:
|
67 |
+
case CuFFTTransformType::C2R:
|
68 |
+
return true;
|
69 |
+
|
70 |
+
case CuFFTTransformType::R2C:
|
71 |
+
return false;
|
72 |
+
}
|
73 |
+
TORCH_INTERNAL_ASSERT(false);
|
74 |
+
}
|
75 |
+
|
76 |
+
// Returns true if the transform type has complex output
|
77 |
+
inline bool cufft_complex_output(CuFFTTransformType type) {
|
78 |
+
switch (type) {
|
79 |
+
case CuFFTTransformType::C2C:
|
80 |
+
case CuFFTTransformType::R2C:
|
81 |
+
return true;
|
82 |
+
|
83 |
+
case CuFFTTransformType::C2R:
|
84 |
+
return false;
|
85 |
+
}
|
86 |
+
TORCH_INTERNAL_ASSERT(false);
|
87 |
+
}
|
88 |
+
|
89 |
+
// Create transform type enum from bools representing if input and output are complex
|
90 |
+
inline CuFFTTransformType GetCuFFTTransformType(bool complex_input, bool complex_output) {
|
91 |
+
if (complex_input && complex_output) {
|
92 |
+
return CuFFTTransformType::C2C;
|
93 |
+
} else if (complex_input && !complex_output) {
|
94 |
+
return CuFFTTransformType::C2R;
|
95 |
+
} else if (!complex_input && complex_output) {
|
96 |
+
return CuFFTTransformType::R2C;
|
97 |
+
}
|
98 |
+
TORCH_INTERNAL_ASSERT(false, "Real to real FFTs are not supported");
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
class CuFFTHandle {
|
103 |
+
::cufftHandle handle_;
|
104 |
+
public:
|
105 |
+
|
106 |
+
CuFFTHandle() {
|
107 |
+
CUFFT_CHECK(cufftCreate(&handle_));
|
108 |
+
}
|
109 |
+
|
110 |
+
::cufftHandle & get() { return handle_; }
|
111 |
+
const ::cufftHandle & get() const { return handle_; }
|
112 |
+
|
113 |
+
~CuFFTHandle() {
|
114 |
+
// Not using fftDestroy() for rocFFT to work around double freeing of handles
|
115 |
+
#if !defined(USE_ROCM)
|
116 |
+
cufftDestroy(handle_);
|
117 |
+
#endif
|
118 |
+
}
|
119 |
+
};
|
120 |
+
|
121 |
+
__forceinline__
|
122 |
+
static bool is_pow_of_two(int64_t x) {
|
123 |
+
return (x & (x - 1)) == 0;
|
124 |
+
}
|
125 |
+
|
126 |
+
using cufft_size_type = long long int;
|
127 |
+
|
128 |
+
using CuFFTDimVector = c10::SmallVector<cufft_size_type, at::kDimVectorStaticSize>;
|
129 |
+
|
130 |
+
// Struct representing a tensor in CuFFT's data layout for planning transforms
|
131 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
132 |
+
struct CuFFTDataLayout {
|
133 |
+
CuFFTDimVector embed;
|
134 |
+
cufft_size_type stride, dist;
|
135 |
+
bool must_clone, simple;
|
136 |
+
};
|
137 |
+
|
138 |
+
// Returns a cufft embedding for a contiguous signal of the given size.
|
139 |
+
// e.g. if the input is cloned, this will be the resulting data layout
|
140 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
141 |
+
inline CuFFTDataLayout cufft_simple_embed(IntArrayRef sizes, bool onesided) {
|
142 |
+
CuFFTDataLayout layout;
|
143 |
+
layout.simple = true;
|
144 |
+
layout.must_clone = false;
|
145 |
+
layout.embed.assign(sizes.cbegin() + 1, sizes.cend());
|
146 |
+
if (onesided) {
|
147 |
+
layout.embed.back() = sizes.back() / 2 + 1;
|
148 |
+
}
|
149 |
+
layout.stride = 1;
|
150 |
+
layout.dist = 1;
|
151 |
+
for (const auto& len : layout.embed) {
|
152 |
+
layout.dist *= len;
|
153 |
+
}
|
154 |
+
return layout;
|
155 |
+
}
|
156 |
+
|
157 |
+
// Convert strides to a CuFFT embedded representation.
|
158 |
+
// If strides cannot be embedded, returns a simple layout and sets must_clone flag
|
159 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
160 |
+
inline CuFFTDataLayout as_cufft_embed(IntArrayRef strides, IntArrayRef sizes, bool onesided) {
|
161 |
+
const auto signal_ndim = strides.size() - 1;
|
162 |
+
CuFFTDataLayout layout;
|
163 |
+
auto last_stride = strides[signal_ndim];
|
164 |
+
layout.must_clone = (last_stride <= 0);
|
165 |
+
|
166 |
+
const auto last_dim_size = onesided ?
|
167 |
+
sizes[signal_ndim] / 2 + 1 : sizes[signal_ndim];
|
168 |
+
const auto signal_numel = c10::multiply_integers(sizes.slice(1, sizes.size() - 2)) * last_dim_size;
|
169 |
+
|
170 |
+
// Zero stides are not allowed, even if the batch size is one.
|
171 |
+
// If that happens just set a dummy case
|
172 |
+
if (sizes[0] == 1) {
|
173 |
+
layout.dist = signal_numel;
|
174 |
+
} else if (strides[0] == 0) {
|
175 |
+
layout.must_clone = true;
|
176 |
+
} else {
|
177 |
+
layout.dist = strides[0];
|
178 |
+
}
|
179 |
+
|
180 |
+
// Calculate the embedding shape, or set must_clone if the strides cannot be embedded
|
181 |
+
layout.embed.resize(signal_ndim);
|
182 |
+
for (auto i = signal_ndim - 1; !layout.must_clone && i > 0; i--) {
|
183 |
+
auto stride = strides[i];
|
184 |
+
if (sizes[i] == 1) {
|
185 |
+
layout.embed[i] = 1;
|
186 |
+
} else if (stride > 0 && stride % last_stride == 0) {
|
187 |
+
layout.embed[i] = stride / last_stride;
|
188 |
+
last_stride = stride;
|
189 |
+
} else {
|
190 |
+
layout.must_clone = true;
|
191 |
+
}
|
192 |
+
}
|
193 |
+
|
194 |
+
if (layout.must_clone) {
|
195 |
+
// If the input needs to be cloned, assume it will be contiguous
|
196 |
+
layout = cufft_simple_embed(sizes, onesided);
|
197 |
+
layout.must_clone = true;
|
198 |
+
} else {
|
199 |
+
layout.embed[0] = sizes[1];
|
200 |
+
layout.stride = strides[signal_ndim];
|
201 |
+
// Determine if layout represents a simple embedding (contiguous data)
|
202 |
+
layout.simple = [&] {
|
203 |
+
for (const auto i : c10::irange(1, signal_ndim - 1)) {
|
204 |
+
if (layout.embed[i] != sizes[i + 1]) {
|
205 |
+
return false;
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
return (layout.stride == 1 && layout.dist == signal_numel &&
|
210 |
+
layout.embed.back() == last_dim_size);
|
211 |
+
}();
|
212 |
+
}
|
213 |
+
return layout;
|
214 |
+
}
|
215 |
+
|
216 |
+
// This class contains all the information needed to execute a cuFFT plan:
|
217 |
+
// 1. the plan
|
218 |
+
// 2. whether to clone input before executing the plan
|
219 |
+
// 3. the workspace size needed
|
220 |
+
//
|
221 |
+
// This class will be the **value** in the plan cache.
|
222 |
+
// It **owns** the raw plan via a unique_ptr.
|
223 |
+
class CuFFTConfig {
|
224 |
+
public:
|
225 |
+
|
226 |
+
// Only move semantics is enought for this class. Although we already use
|
227 |
+
// unique_ptr for the plan, still remove copy constructor and assignment op so
|
228 |
+
// we don't accidentally copy and take perf hit.
|
229 |
+
CuFFTConfig(const CuFFTConfig&) = delete;
|
230 |
+
CuFFTConfig& operator=(CuFFTConfig const&) = delete;
|
231 |
+
|
232 |
+
explicit CuFFTConfig(const CuFFTParams& params):
|
233 |
+
CuFFTConfig(
|
234 |
+
IntArrayRef(params.input_strides_, params.signal_ndim_ + 1),
|
235 |
+
IntArrayRef(params.output_strides_, params.signal_ndim_ + 1),
|
236 |
+
IntArrayRef(params.sizes_, params.signal_ndim_ + 1),
|
237 |
+
params.fft_type_,
|
238 |
+
params.value_type_) {}
|
239 |
+
|
240 |
+
// For complex types, strides are in units of 2 * element_size(dtype)
|
241 |
+
// sizes are for the full signal, including batch size and always two-sided
|
242 |
+
CuFFTConfig(IntArrayRef in_strides, IntArrayRef out_strides,
|
243 |
+
IntArrayRef sizes, CuFFTTransformType fft_type, ScalarType dtype):
|
244 |
+
fft_type_(fft_type), value_type_(dtype) {
|
245 |
+
|
246 |
+
// signal sizes (excluding batch dim)
|
247 |
+
CuFFTDimVector signal_sizes(sizes.begin() + 1, sizes.end());
|
248 |
+
|
249 |
+
// input batch size
|
250 |
+
const int64_t batch = sizes[0];
|
251 |
+
const int64_t signal_ndim = sizes.size() - 1;
|
252 |
+
|
253 |
+
// Since cuFFT has limited non-unit stride support and various constraints, we
|
254 |
+
// use a flag to keep track throughout this function to see if we need to
|
255 |
+
// input = input.clone();
|
256 |
+
|
257 |
+
#if defined(USE_ROCM)
|
258 |
+
// clone input to avoid issues with hipfft clobering the input and failing tests
|
259 |
+
clone_input = true;
|
260 |
+
#else
|
261 |
+
clone_input = false;
|
262 |
+
#endif
|
263 |
+
|
264 |
+
// For half, base strides on the real part of real-to-complex and
|
265 |
+
// complex-to-real transforms are not supported. Since our output is always
|
266 |
+
// contiguous, only need to check real-to-complex case.
|
267 |
+
if (dtype == ScalarType::Half) {
|
268 |
+
// cuFFT on half requires compute capability of at least SM_53
|
269 |
+
auto dev_prop = at::cuda::getCurrentDeviceProperties();
|
270 |
+
TORCH_CHECK(dev_prop->major >= 5 && !(dev_prop->major == 5 && dev_prop->minor < 3),
|
271 |
+
"cuFFT doesn't support signals of half type with compute "
|
272 |
+
"capability less than SM_53, but the device containing input half "
|
273 |
+
"tensor only has SM_", dev_prop->major, dev_prop->minor);
|
274 |
+
for (const auto i : c10::irange(signal_ndim)) {
|
275 |
+
TORCH_CHECK(is_pow_of_two(sizes[i + 1]),
|
276 |
+
"cuFFT only supports dimensions whose sizes are powers of two when"
|
277 |
+
" computing in half precision, but got a signal size of",
|
278 |
+
sizes.slice(1));
|
279 |
+
}
|
280 |
+
clone_input |= in_strides.back() != 1;
|
281 |
+
}
|
282 |
+
|
283 |
+
CuFFTDataLayout in_layout;
|
284 |
+
if (clone_input) {
|
285 |
+
in_layout = cufft_simple_embed(sizes, fft_type == CuFFTTransformType::C2R);
|
286 |
+
} else {
|
287 |
+
in_layout = as_cufft_embed(in_strides, sizes, fft_type == CuFFTTransformType::C2R);
|
288 |
+
}
|
289 |
+
auto out_layout = as_cufft_embed(out_strides, sizes, fft_type == CuFFTTransformType::R2C);
|
290 |
+
TORCH_INTERNAL_ASSERT(!out_layout.must_clone, "Out strides cannot be represented as CuFFT embedding");
|
291 |
+
clone_input |= in_layout.must_clone;
|
292 |
+
|
293 |
+
// Check if we can take advantage of simple data layout.
|
294 |
+
//
|
295 |
+
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
|
296 |
+
|
297 |
+
const bool simple_layout = in_layout.simple && out_layout.simple;
|
298 |
+
cudaDataType itype, otype, exec_type;
|
299 |
+
const auto complex_input = cufft_complex_input(fft_type);
|
300 |
+
const auto complex_output = cufft_complex_output(fft_type);
|
301 |
+
if (dtype == ScalarType::Float) {
|
302 |
+
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
|
303 |
+
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
|
304 |
+
exec_type = CUDA_C_32F;
|
305 |
+
} else if (dtype == ScalarType::Double) {
|
306 |
+
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
|
307 |
+
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
|
308 |
+
exec_type = CUDA_C_64F;
|
309 |
+
} else if (dtype == ScalarType::Half) {
|
310 |
+
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
|
311 |
+
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
|
312 |
+
exec_type = CUDA_C_16F;
|
313 |
+
} else {
|
314 |
+
TORCH_CHECK(false, "cuFFT doesn't support tensor of type: ", dtype);
|
315 |
+
}
|
316 |
+
|
317 |
+
// disable auto allocation of workspace to use THC allocator
|
318 |
+
CUFFT_CHECK(cufftSetAutoAllocation(plan(), /* autoAllocate */ 0));
|
319 |
+
|
320 |
+
size_t ws_size_t;
|
321 |
+
|
322 |
+
// make plan
|
323 |
+
if (simple_layout) {
|
324 |
+
// If with unit-stride, we tell cuFFT by setting inembed == onembed == NULL.
|
325 |
+
// In such case, cuFFT ignores istride, ostride, idist, and odist
|
326 |
+
// by assuming istride = ostride = 1.
|
327 |
+
//
|
328 |
+
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
|
329 |
+
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
|
330 |
+
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
|
331 |
+
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
|
332 |
+
batch, &ws_size_t, exec_type));
|
333 |
+
} else {
|
334 |
+
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
|
335 |
+
in_layout.embed.data(), in_layout.stride, in_layout.dist, itype,
|
336 |
+
out_layout.embed.data(), out_layout.stride, out_layout.dist, otype,
|
337 |
+
batch, &ws_size_t, exec_type));
|
338 |
+
}
|
339 |
+
ws_size = static_cast<int64_t>(ws_size_t);
|
340 |
+
}
|
341 |
+
|
342 |
+
const cufftHandle &plan() const { return plan_ptr.get(); }
|
343 |
+
|
344 |
+
CuFFTTransformType transform_type() const { return fft_type_; }
|
345 |
+
ScalarType data_type() const { return value_type_; }
|
346 |
+
bool should_clone_input() const { return clone_input; }
|
347 |
+
int64_t workspace_size() const { return ws_size; }
|
348 |
+
|
349 |
+
private:
|
350 |
+
CuFFTHandle plan_ptr;
|
351 |
+
bool clone_input;
|
352 |
+
int64_t ws_size;
|
353 |
+
CuFFTTransformType fft_type_;
|
354 |
+
ScalarType value_type_;
|
355 |
+
};
|
356 |
+
|
357 |
+
#if defined(USE_ROCM)
|
358 |
+
// Note that the max plan number for CUDA version < 10 has to be 1023
|
359 |
+
// due to a bug that fails on the 1024th plan
|
360 |
+
constexpr int64_t CUFFT_MAX_PLAN_NUM = 1023;
|
361 |
+
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
|
362 |
+
#else
|
363 |
+
constexpr int64_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<int64_t>::max();
|
364 |
+
// The default max cache size chosen for CUDA version > 10 is arbitrary.
|
365 |
+
// This number puts a limit on how big of a plan cache should we maintain by
|
366 |
+
// default. Users can always configure it via cufft_set_plan_cache_max_size.
|
367 |
+
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
|
368 |
+
#endif
|
369 |
+
static_assert(0 <= CUFFT_MAX_PLAN_NUM && CUFFT_MAX_PLAN_NUM <= std::numeric_limits<int64_t>::max(),
|
370 |
+
"CUFFT_MAX_PLAN_NUM not in size_t range");
|
371 |
+
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 && CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
|
372 |
+
"CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
|
373 |
+
|
374 |
+
// This cache assumes that the mapping from key to value never changes.
|
375 |
+
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
|
376 |
+
// value returned from try_emplace_value.
|
377 |
+
// The contract of using this cache is that try_emplace_value should only be
|
378 |
+
// used when the max_size is positive.
|
379 |
+
class CuFFTParamsLRUCache {
|
380 |
+
public:
|
381 |
+
using kv_t = typename std::pair<CuFFTParams, CuFFTConfig>;
|
382 |
+
using map_t = typename std::unordered_map<std::reference_wrapper<CuFFTParams>,
|
383 |
+
typename std::list<kv_t>::iterator,
|
384 |
+
ParamsHash<CuFFTParams>,
|
385 |
+
ParamsEqual<CuFFTParams>>;
|
386 |
+
using map_kkv_iter_t = typename map_t::iterator;
|
387 |
+
|
388 |
+
|
389 |
+
CuFFTParamsLRUCache() : CuFFTParamsLRUCache(CUFFT_DEFAULT_CACHE_SIZE) {}
|
390 |
+
|
391 |
+
CuFFTParamsLRUCache(int64_t max_size) {
|
392 |
+
_set_max_size(max_size);
|
393 |
+
}
|
394 |
+
|
395 |
+
CuFFTParamsLRUCache(CuFFTParamsLRUCache&& other) noexcept :
|
396 |
+
_usage_list(std::move(other._usage_list)),
|
397 |
+
_cache_map(std::move(other._cache_map)),
|
398 |
+
_max_size(other._max_size) {}
|
399 |
+
|
400 |
+
CuFFTParamsLRUCache& operator=(CuFFTParamsLRUCache&& other) noexcept {
|
401 |
+
_usage_list = std::move(other._usage_list);
|
402 |
+
_cache_map = std::move(other._cache_map);
|
403 |
+
_max_size = other._max_size;
|
404 |
+
return *this;
|
405 |
+
}
|
406 |
+
|
407 |
+
// If key is in this cache, return the cached config. Otherwise, emplace the
|
408 |
+
// config in this cache and return it.
|
409 |
+
// Return const reference because CuFFTConfig shouldn't be tampered with once
|
410 |
+
// created.
|
411 |
+
const CuFFTConfig &lookup(CuFFTParams params) {
|
412 |
+
AT_ASSERT(_max_size > 0);
|
413 |
+
|
414 |
+
map_kkv_iter_t map_it = _cache_map.find(params);
|
415 |
+
// Hit, put to list front
|
416 |
+
if (map_it != _cache_map.end()) {
|
417 |
+
_usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
|
418 |
+
return map_it->second->second;
|
419 |
+
}
|
420 |
+
|
421 |
+
// Miss
|
422 |
+
// remove if needed
|
423 |
+
if (_usage_list.size() >= _max_size) {
|
424 |
+
auto last = _usage_list.end();
|
425 |
+
last--;
|
426 |
+
_cache_map.erase(last->first);
|
427 |
+
_usage_list.pop_back();
|
428 |
+
}
|
429 |
+
|
430 |
+
// construct new plan at list front, then insert into _cache_map
|
431 |
+
_usage_list.emplace_front(std::piecewise_construct,
|
432 |
+
std::forward_as_tuple(params),
|
433 |
+
std::forward_as_tuple(params));
|
434 |
+
auto kv_it = _usage_list.begin();
|
435 |
+
_cache_map.emplace(std::piecewise_construct,
|
436 |
+
std::forward_as_tuple(kv_it->first),
|
437 |
+
std::forward_as_tuple(kv_it));
|
438 |
+
return kv_it->second;
|
439 |
+
}
|
440 |
+
|
441 |
+
void clear() {
|
442 |
+
_cache_map.clear();
|
443 |
+
_usage_list.clear();
|
444 |
+
}
|
445 |
+
|
446 |
+
void resize(int64_t new_size) {
|
447 |
+
_set_max_size(new_size);
|
448 |
+
auto cur_size = _usage_list.size();
|
449 |
+
if (cur_size > _max_size) {
|
450 |
+
auto delete_it = _usage_list.end();
|
451 |
+
for (size_t i = 0; i < cur_size - _max_size; i++) {
|
452 |
+
delete_it--;
|
453 |
+
_cache_map.erase(delete_it->first);
|
454 |
+
}
|
455 |
+
_usage_list.erase(delete_it, _usage_list.end());
|
456 |
+
}
|
457 |
+
}
|
458 |
+
|
459 |
+
size_t size() const { return _cache_map.size(); }
|
460 |
+
|
461 |
+
size_t max_size() const noexcept { return _max_size; }
|
462 |
+
|
463 |
+
std::mutex mutex;
|
464 |
+
|
465 |
+
private:
|
466 |
+
// Only sets size and does value check. Does not resize the data structures.
|
467 |
+
void _set_max_size(int64_t new_size) {
|
468 |
+
// We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
|
469 |
+
// CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
|
470 |
+
// first.
|
471 |
+
TORCH_CHECK(new_size >= 0,
|
472 |
+
"cuFFT plan cache size must be non-negative, but got ", new_size);
|
473 |
+
TORCH_CHECK(new_size <= CUFFT_MAX_PLAN_NUM,
|
474 |
+
"cuFFT plan cache size can not be larger than ", CUFFT_MAX_PLAN_NUM, ", but got ", new_size);
|
475 |
+
_max_size = static_cast<size_t>(new_size);
|
476 |
+
}
|
477 |
+
|
478 |
+
std::list<kv_t> _usage_list;
|
479 |
+
map_t _cache_map;
|
480 |
+
size_t _max_size;
|
481 |
+
};
|
482 |
+
|
483 |
+
// Since ATen is separated into CPU build and CUDA build, we need a way to call
|
484 |
+
// these functions only when CUDA is loaded. We use CUDA hooks for this purpose
|
485 |
+
// (at cuda/detail/CUDAHooks.cpp), and call the hooked functions from the actual
|
486 |
+
// native function counterparts (at native/SpectralOps.cpp), i.e.,
|
487 |
+
// _cufft_get_plan_cache_max_size, _cufft_set_plan_cache_max_size
|
488 |
+
// _cufft_get_plan_cache_size, and _cufft_clear_plan_cache.
|
489 |
+
int64_t cufft_get_plan_cache_max_size_impl(DeviceIndex device_index);
|
490 |
+
void cufft_set_plan_cache_max_size_impl(DeviceIndex device_index, int64_t max_size);
|
491 |
+
int64_t cufft_get_plan_cache_size_impl(DeviceIndex device_index);
|
492 |
+
void cufft_clear_plan_cache_impl(DeviceIndex device_index);
|
493 |
+
|
494 |
+
}}} // namespace at::native::detail
|
llmeval-env/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTUtils.h
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
|
5 |
+
#include <string>
|
6 |
+
#include <stdexcept>
|
7 |
+
#include <sstream>
|
8 |
+
#include <cufft.h>
|
9 |
+
#include <cufftXt.h>
|
10 |
+
|
11 |
+
namespace at { namespace native {
|
12 |
+
|
13 |
+
// This means that max dim is 3 + 2 = 5 with batch dimension and possible
|
14 |
+
// complex dimension
|
15 |
+
constexpr int max_rank = 3;
|
16 |
+
|
17 |
+
static inline std::string _cudaGetErrorEnum(cufftResult error)
|
18 |
+
{
|
19 |
+
switch (error)
|
20 |
+
{
|
21 |
+
case CUFFT_SUCCESS:
|
22 |
+
return "CUFFT_SUCCESS";
|
23 |
+
case CUFFT_INVALID_PLAN:
|
24 |
+
return "CUFFT_INVALID_PLAN";
|
25 |
+
case CUFFT_ALLOC_FAILED:
|
26 |
+
return "CUFFT_ALLOC_FAILED";
|
27 |
+
case CUFFT_INVALID_TYPE:
|
28 |
+
return "CUFFT_INVALID_TYPE";
|
29 |
+
case CUFFT_INVALID_VALUE:
|
30 |
+
return "CUFFT_INVALID_VALUE";
|
31 |
+
case CUFFT_INTERNAL_ERROR:
|
32 |
+
return "CUFFT_INTERNAL_ERROR";
|
33 |
+
case CUFFT_EXEC_FAILED:
|
34 |
+
return "CUFFT_EXEC_FAILED";
|
35 |
+
case CUFFT_SETUP_FAILED:
|
36 |
+
return "CUFFT_SETUP_FAILED";
|
37 |
+
case CUFFT_INVALID_SIZE:
|
38 |
+
return "CUFFT_INVALID_SIZE";
|
39 |
+
case CUFFT_UNALIGNED_DATA:
|
40 |
+
return "CUFFT_UNALIGNED_DATA";
|
41 |
+
case CUFFT_INCOMPLETE_PARAMETER_LIST:
|
42 |
+
return "CUFFT_INCOMPLETE_PARAMETER_LIST";
|
43 |
+
case CUFFT_INVALID_DEVICE:
|
44 |
+
return "CUFFT_INVALID_DEVICE";
|
45 |
+
case CUFFT_PARSE_ERROR:
|
46 |
+
return "CUFFT_PARSE_ERROR";
|
47 |
+
case CUFFT_NO_WORKSPACE:
|
48 |
+
return "CUFFT_NO_WORKSPACE";
|
49 |
+
case CUFFT_NOT_IMPLEMENTED:
|
50 |
+
return "CUFFT_NOT_IMPLEMENTED";
|
51 |
+
#if !defined(USE_ROCM)
|
52 |
+
case CUFFT_LICENSE_ERROR:
|
53 |
+
return "CUFFT_LICENSE_ERROR";
|
54 |
+
#endif
|
55 |
+
case CUFFT_NOT_SUPPORTED:
|
56 |
+
return "CUFFT_NOT_SUPPORTED";
|
57 |
+
default:
|
58 |
+
std::ostringstream ss;
|
59 |
+
ss << "unknown error " << error;
|
60 |
+
return ss.str();
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
static inline void CUFFT_CHECK(cufftResult error)
|
65 |
+
{
|
66 |
+
if (error != CUFFT_SUCCESS) {
|
67 |
+
std::ostringstream ss;
|
68 |
+
ss << "cuFFT error: " << _cudaGetErrorEnum(error);
|
69 |
+
AT_ERROR(ss.str());
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
}} // at::native
|