Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__pycache__/_async_client.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/_async_client.py +0 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/__init__.py +132 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/base.py +149 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/image_to_text.py +105 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/summarization.py +46 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/text_generation.py +139 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/visual_question_answering.py +53 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/__init__.py +128 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py +397 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_experimental.py +66 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_fixes.py +94 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_git_credential.py +121 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_http.py +319 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_pagination.py +52 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_paths.py +130 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_subprocess.py +143 -0
- llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_telemetry.py +118 -0
- llmeval-env/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/LICENSE.txt +21 -0
- llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/datasets/__init__.py +90 -0
- llmeval-env/lib/python3.10/site-packages/scipy/datasets/_download_all.py +57 -0
- llmeval-env/lib/python3.10/site-packages/scipy/datasets/_fetchers.py +220 -0
- llmeval-env/lib/python3.10/site-packages/scipy/datasets/_registry.py +26 -0
- llmeval-env/lib/python3.10/site-packages/scipy/datasets/_utils.py +81 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_arraytools.py +264 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_czt.py +575 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_fir_filter_design.py +1301 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_lti_conversion.py +533 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_ltisys.py +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_max_len_seq.py +139 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_savitzky_golay.py +357 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_short_time_fft.py +1676 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_signaltools.py +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_sigtools.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_spline.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_upfirdn.py +216 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_waveforms.py +672 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/_wavelets.py +556 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/bsplines.py +23 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/filter_design.py +34 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/fir_filter_design.py +22 -0
- llmeval-env/lib/python3.10/site-packages/scipy/signal/lti_conversion.py +21 -0
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (209 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/__pycache__/_async_client.cpython-310.pyc
ADDED
Binary file (102 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/_async_client.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/__init__.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is auto-generated by `utils/generate_inference_types.py`.
|
2 |
+
# Do not modify it manually.
|
3 |
+
#
|
4 |
+
# ruff: noqa: F401
|
5 |
+
|
6 |
+
from .audio_classification import (
|
7 |
+
AudioClassificationInput,
|
8 |
+
AudioClassificationOutputElement,
|
9 |
+
AudioClassificationParameters,
|
10 |
+
)
|
11 |
+
from .audio_to_audio import AudioToAudioInput, AudioToAudioOutputElement
|
12 |
+
from .automatic_speech_recognition import (
|
13 |
+
AutomaticSpeechRecognitionGenerationParameters,
|
14 |
+
AutomaticSpeechRecognitionInput,
|
15 |
+
AutomaticSpeechRecognitionOutput,
|
16 |
+
AutomaticSpeechRecognitionOutputChunk,
|
17 |
+
AutomaticSpeechRecognitionParameters,
|
18 |
+
)
|
19 |
+
from .base import BaseInferenceType
|
20 |
+
from .chat_completion import (
|
21 |
+
ChatCompletionInput,
|
22 |
+
ChatCompletionInputFunctionDefinition,
|
23 |
+
ChatCompletionInputMessage,
|
24 |
+
ChatCompletionInputTool,
|
25 |
+
ChatCompletionInputToolCall,
|
26 |
+
ChatCompletionInputToolTypeClass,
|
27 |
+
ChatCompletionOutput,
|
28 |
+
ChatCompletionOutputComplete,
|
29 |
+
ChatCompletionOutputFunctionDefinition,
|
30 |
+
ChatCompletionOutputLogprob,
|
31 |
+
ChatCompletionOutputLogprobs,
|
32 |
+
ChatCompletionOutputMessage,
|
33 |
+
ChatCompletionOutputToolCall,
|
34 |
+
ChatCompletionOutputTopLogprob,
|
35 |
+
ChatCompletionOutputUsage,
|
36 |
+
ChatCompletionStreamOutput,
|
37 |
+
ChatCompletionStreamOutputChoice,
|
38 |
+
ChatCompletionStreamOutputDelta,
|
39 |
+
ChatCompletionStreamOutputDeltaToolCall,
|
40 |
+
ChatCompletionStreamOutputFunction,
|
41 |
+
ChatCompletionStreamOutputLogprob,
|
42 |
+
ChatCompletionStreamOutputLogprobs,
|
43 |
+
ChatCompletionStreamOutputTopLogprob,
|
44 |
+
)
|
45 |
+
from .depth_estimation import DepthEstimationInput, DepthEstimationOutput
|
46 |
+
from .document_question_answering import (
|
47 |
+
DocumentQuestionAnsweringInput,
|
48 |
+
DocumentQuestionAnsweringInputData,
|
49 |
+
DocumentQuestionAnsweringOutputElement,
|
50 |
+
DocumentQuestionAnsweringParameters,
|
51 |
+
)
|
52 |
+
from .feature_extraction import FeatureExtractionInput
|
53 |
+
from .fill_mask import FillMaskInput, FillMaskOutputElement, FillMaskParameters
|
54 |
+
from .image_classification import (
|
55 |
+
ImageClassificationInput,
|
56 |
+
ImageClassificationOutputElement,
|
57 |
+
ImageClassificationParameters,
|
58 |
+
)
|
59 |
+
from .image_segmentation import ImageSegmentationInput, ImageSegmentationOutputElement, ImageSegmentationParameters
|
60 |
+
from .image_to_image import ImageToImageInput, ImageToImageOutput, ImageToImageParameters, ImageToImageTargetSize
|
61 |
+
from .image_to_text import ImageToTextGenerationParameters, ImageToTextInput, ImageToTextOutput, ImageToTextParameters
|
62 |
+
from .object_detection import (
|
63 |
+
ObjectDetectionBoundingBox,
|
64 |
+
ObjectDetectionInput,
|
65 |
+
ObjectDetectionOutputElement,
|
66 |
+
ObjectDetectionParameters,
|
67 |
+
)
|
68 |
+
from .question_answering import (
|
69 |
+
QuestionAnsweringInput,
|
70 |
+
QuestionAnsweringInputData,
|
71 |
+
QuestionAnsweringOutputElement,
|
72 |
+
QuestionAnsweringParameters,
|
73 |
+
)
|
74 |
+
from .sentence_similarity import SentenceSimilarityInput, SentenceSimilarityInputData
|
75 |
+
from .summarization import SummarizationGenerationParameters, SummarizationInput, SummarizationOutput
|
76 |
+
from .table_question_answering import (
|
77 |
+
TableQuestionAnsweringInput,
|
78 |
+
TableQuestionAnsweringInputData,
|
79 |
+
TableQuestionAnsweringOutputElement,
|
80 |
+
)
|
81 |
+
from .text2text_generation import Text2TextGenerationInput, Text2TextGenerationOutput, Text2TextGenerationParameters
|
82 |
+
from .text_classification import TextClassificationInput, TextClassificationOutputElement, TextClassificationParameters
|
83 |
+
from .text_generation import (
|
84 |
+
TextGenerationInput,
|
85 |
+
TextGenerationInputGenerateParameters,
|
86 |
+
TextGenerationInputGrammarType,
|
87 |
+
TextGenerationOutput,
|
88 |
+
TextGenerationOutputBestOfSequence,
|
89 |
+
TextGenerationOutputDetails,
|
90 |
+
TextGenerationOutputPrefillToken,
|
91 |
+
TextGenerationOutputToken,
|
92 |
+
TextGenerationStreamOutput,
|
93 |
+
TextGenerationStreamOutputStreamDetails,
|
94 |
+
TextGenerationStreamOutputToken,
|
95 |
+
)
|
96 |
+
from .text_to_audio import TextToAudioGenerationParameters, TextToAudioInput, TextToAudioOutput, TextToAudioParameters
|
97 |
+
from .text_to_image import TextToImageInput, TextToImageOutput, TextToImageParameters, TextToImageTargetSize
|
98 |
+
from .token_classification import (
|
99 |
+
TokenClassificationInput,
|
100 |
+
TokenClassificationOutputElement,
|
101 |
+
TokenClassificationParameters,
|
102 |
+
)
|
103 |
+
from .translation import TranslationGenerationParameters, TranslationInput, TranslationOutput
|
104 |
+
from .video_classification import (
|
105 |
+
VideoClassificationInput,
|
106 |
+
VideoClassificationOutputElement,
|
107 |
+
VideoClassificationParameters,
|
108 |
+
)
|
109 |
+
from .visual_question_answering import (
|
110 |
+
VisualQuestionAnsweringInput,
|
111 |
+
VisualQuestionAnsweringInputData,
|
112 |
+
VisualQuestionAnsweringOutputElement,
|
113 |
+
VisualQuestionAnsweringParameters,
|
114 |
+
)
|
115 |
+
from .zero_shot_classification import (
|
116 |
+
ZeroShotClassificationInput,
|
117 |
+
ZeroShotClassificationInputData,
|
118 |
+
ZeroShotClassificationOutputElement,
|
119 |
+
ZeroShotClassificationParameters,
|
120 |
+
)
|
121 |
+
from .zero_shot_image_classification import (
|
122 |
+
ZeroShotImageClassificationInput,
|
123 |
+
ZeroShotImageClassificationInputData,
|
124 |
+
ZeroShotImageClassificationOutputElement,
|
125 |
+
ZeroShotImageClassificationParameters,
|
126 |
+
)
|
127 |
+
from .zero_shot_object_detection import (
|
128 |
+
ZeroShotObjectDetectionBoundingBox,
|
129 |
+
ZeroShotObjectDetectionInput,
|
130 |
+
ZeroShotObjectDetectionInputData,
|
131 |
+
ZeroShotObjectDetectionOutputElement,
|
132 |
+
)
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/base.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Contains a base class for all inference types."""
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import json
|
18 |
+
import warnings
|
19 |
+
from dataclasses import asdict, dataclass
|
20 |
+
from typing import Any, Dict, List, Type, TypeVar, Union, get_args
|
21 |
+
|
22 |
+
|
23 |
+
T = TypeVar("T", bound="BaseInferenceType")
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class BaseInferenceType(dict):
|
28 |
+
"""Base class for all inference types.
|
29 |
+
|
30 |
+
Object is a dataclass and a dict for backward compatibility but plan is to remove the dict part in the future.
|
31 |
+
|
32 |
+
Handle parsing from dict, list and json strings in a permissive way to ensure future-compatibility (e.g. all fields
|
33 |
+
are made optional, and non-expected fields are added as dict attributes).
|
34 |
+
"""
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def parse_obj_as_list(cls: Type[T], data: Union[bytes, str, List, Dict]) -> List[T]:
|
38 |
+
"""Alias to parse server response and return a single instance.
|
39 |
+
|
40 |
+
See `parse_obj` for more details.
|
41 |
+
"""
|
42 |
+
output = cls.parse_obj(data)
|
43 |
+
if not isinstance(output, list):
|
44 |
+
raise ValueError(f"Invalid input data for {cls}. Expected a list, but got {type(output)}.")
|
45 |
+
return output
|
46 |
+
|
47 |
+
@classmethod
|
48 |
+
def parse_obj_as_instance(cls: Type[T], data: Union[bytes, str, List, Dict]) -> T:
|
49 |
+
"""Alias to parse server response and return a single instance.
|
50 |
+
|
51 |
+
See `parse_obj` for more details.
|
52 |
+
"""
|
53 |
+
output = cls.parse_obj(data)
|
54 |
+
if isinstance(output, list):
|
55 |
+
raise ValueError(f"Invalid input data for {cls}. Expected a single instance, but got a list.")
|
56 |
+
return output
|
57 |
+
|
58 |
+
@classmethod
|
59 |
+
def parse_obj(cls: Type[T], data: Union[bytes, str, List, Dict]) -> Union[List[T], T]:
|
60 |
+
"""Parse server response as a dataclass or list of dataclasses.
|
61 |
+
|
62 |
+
To enable future-compatibility, we want to handle cases where the server return more fields than expected.
|
63 |
+
In such cases, we don't want to raise an error but still create the dataclass object. Remaining fields are
|
64 |
+
added as dict attributes.
|
65 |
+
"""
|
66 |
+
# Parse server response (from bytes)
|
67 |
+
if isinstance(data, bytes):
|
68 |
+
data = data.decode()
|
69 |
+
if isinstance(data, str):
|
70 |
+
data = json.loads(data)
|
71 |
+
|
72 |
+
# If a list, parse each item individually
|
73 |
+
if isinstance(data, List):
|
74 |
+
return [cls.parse_obj(d) for d in data] # type: ignore [misc]
|
75 |
+
|
76 |
+
# At this point, we expect a dict
|
77 |
+
if not isinstance(data, dict):
|
78 |
+
raise ValueError(f"Invalid data type: {type(data)}")
|
79 |
+
|
80 |
+
init_values = {}
|
81 |
+
other_values = {}
|
82 |
+
for key, value in data.items():
|
83 |
+
key = normalize_key(key)
|
84 |
+
if key in cls.__dataclass_fields__ and cls.__dataclass_fields__[key].init:
|
85 |
+
if isinstance(value, dict) or isinstance(value, list):
|
86 |
+
field_type = cls.__dataclass_fields__[key].type
|
87 |
+
|
88 |
+
# if `field_type` is a `BaseInferenceType`, parse it
|
89 |
+
if inspect.isclass(field_type) and issubclass(field_type, BaseInferenceType):
|
90 |
+
value = field_type.parse_obj(value)
|
91 |
+
|
92 |
+
# otherwise, recursively parse nested dataclasses (if possible)
|
93 |
+
# `get_args` returns handle Union and Optional for us
|
94 |
+
else:
|
95 |
+
expected_types = get_args(field_type)
|
96 |
+
for expected_type in expected_types:
|
97 |
+
if getattr(expected_type, "_name", None) == "List":
|
98 |
+
expected_type = get_args(expected_type)[
|
99 |
+
0
|
100 |
+
] # assume same type for all items in the list
|
101 |
+
if inspect.isclass(expected_type) and issubclass(expected_type, BaseInferenceType):
|
102 |
+
value = expected_type.parse_obj(value)
|
103 |
+
break
|
104 |
+
init_values[key] = value
|
105 |
+
else:
|
106 |
+
other_values[key] = value
|
107 |
+
|
108 |
+
# Make all missing fields default to None
|
109 |
+
# => ensure that dataclass initialization will never fail even if the server does not return all fields.
|
110 |
+
for key in cls.__dataclass_fields__:
|
111 |
+
if key not in init_values:
|
112 |
+
init_values[key] = None
|
113 |
+
|
114 |
+
# Initialize dataclass with expected values
|
115 |
+
item = cls(**init_values)
|
116 |
+
|
117 |
+
# Add remaining fields as dict attributes
|
118 |
+
item.update(other_values)
|
119 |
+
return item
|
120 |
+
|
121 |
+
def __post_init__(self):
|
122 |
+
self.update(asdict(self))
|
123 |
+
|
124 |
+
def __setitem__(self, __key: Any, __value: Any) -> None:
|
125 |
+
# Hacky way to keep dataclass values in sync when dict is updated
|
126 |
+
super().__setitem__(__key, __value)
|
127 |
+
if __key in self.__dataclass_fields__ and getattr(self, __key, None) != __value:
|
128 |
+
self.__setattr__(__key, __value)
|
129 |
+
return
|
130 |
+
|
131 |
+
def __setattr__(self, __name: str, __value: Any) -> None:
|
132 |
+
# Hacky way to keep dict values is sync when dataclass is updated
|
133 |
+
super().__setattr__(__name, __value)
|
134 |
+
if self.get(__name) != __value:
|
135 |
+
self[__name] = __value
|
136 |
+
return
|
137 |
+
|
138 |
+
def __getitem__(self, __key: Any) -> Any:
|
139 |
+
warnings.warn(
|
140 |
+
f"Accessing '{self.__class__.__name__}' values through dict is deprecated and "
|
141 |
+
"will be removed from version '0.25'. Use dataclass attributes instead.",
|
142 |
+
FutureWarning,
|
143 |
+
)
|
144 |
+
return super().__getitem__(__key)
|
145 |
+
|
146 |
+
|
147 |
+
def normalize_key(key: str) -> str:
|
148 |
+
# e.g "content-type" -> "content_type", "Accept" -> "accept"
|
149 |
+
return key.replace("-", "_").replace(" ", "_").lower()
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/image_to_text.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
2 |
+
#
|
3 |
+
# See:
|
4 |
+
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
5 |
+
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Literal, Optional, Union
|
8 |
+
|
9 |
+
from .base import BaseInferenceType
|
10 |
+
|
11 |
+
|
12 |
+
EarlyStoppingEnum = Literal["never"]
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class ImageToTextGenerationParameters(BaseInferenceType):
|
17 |
+
"""Parametrization of the text generation process
|
18 |
+
Ad-hoc parametrization of the text generation process
|
19 |
+
"""
|
20 |
+
|
21 |
+
do_sample: Optional[bool] = None
|
22 |
+
"""Whether to use sampling instead of greedy decoding when generating new tokens."""
|
23 |
+
early_stopping: Optional[Union[bool, "EarlyStoppingEnum"]] = None
|
24 |
+
"""Controls the stopping condition for beam-based methods."""
|
25 |
+
epsilon_cutoff: Optional[float] = None
|
26 |
+
"""If set to float strictly between 0 and 1, only tokens with a conditional probability
|
27 |
+
greater than epsilon_cutoff will be sampled. In the paper, suggested values range from
|
28 |
+
3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language
|
29 |
+
Model Desmoothing](https://hf.co/papers/2210.15191) for more details.
|
30 |
+
"""
|
31 |
+
eta_cutoff: Optional[float] = None
|
32 |
+
"""Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to
|
33 |
+
float strictly between 0 and 1, a token is only considered if it is greater than either
|
34 |
+
eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter
|
35 |
+
term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In
|
36 |
+
the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model.
|
37 |
+
See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191)
|
38 |
+
for more details.
|
39 |
+
"""
|
40 |
+
max_length: Optional[int] = None
|
41 |
+
"""The maximum length (in tokens) of the generated text, including the input."""
|
42 |
+
max_new_tokens: Optional[int] = None
|
43 |
+
"""The maximum number of tokens to generate. Takes precedence over maxLength."""
|
44 |
+
min_length: Optional[int] = None
|
45 |
+
"""The minimum length (in tokens) of the generated text, including the input."""
|
46 |
+
min_new_tokens: Optional[int] = None
|
47 |
+
"""The minimum number of tokens to generate. Takes precedence over maxLength."""
|
48 |
+
num_beam_groups: Optional[int] = None
|
49 |
+
"""Number of groups to divide num_beams into in order to ensure diversity among different
|
50 |
+
groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details.
|
51 |
+
"""
|
52 |
+
num_beams: Optional[int] = None
|
53 |
+
"""Number of beams to use for beam search."""
|
54 |
+
penalty_alpha: Optional[float] = None
|
55 |
+
"""The value balances the model confidence and the degeneration penalty in contrastive
|
56 |
+
search decoding.
|
57 |
+
"""
|
58 |
+
temperature: Optional[float] = None
|
59 |
+
"""The value used to modulate the next token probabilities."""
|
60 |
+
top_k: Optional[int] = None
|
61 |
+
"""The number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
62 |
+
top_p: Optional[float] = None
|
63 |
+
"""If set to float < 1, only the smallest set of most probable tokens with probabilities
|
64 |
+
that add up to top_p or higher are kept for generation.
|
65 |
+
"""
|
66 |
+
typical_p: Optional[float] = None
|
67 |
+
"""Local typicality measures how similar the conditional probability of predicting a target
|
68 |
+
token next is to the expected conditional probability of predicting a random token next,
|
69 |
+
given the partial text already generated. If set to float < 1, the smallest set of the
|
70 |
+
most locally typical tokens with probabilities that add up to typical_p or higher are
|
71 |
+
kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details.
|
72 |
+
"""
|
73 |
+
use_cache: Optional[bool] = None
|
74 |
+
"""Whether the model should use the past last key/values attentions to speed up decoding"""
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class ImageToTextParameters(BaseInferenceType):
|
79 |
+
"""Additional inference parameters
|
80 |
+
Additional inference parameters for Image To Text
|
81 |
+
"""
|
82 |
+
|
83 |
+
generate: Optional[ImageToTextGenerationParameters] = None
|
84 |
+
"""Parametrization of the text generation process"""
|
85 |
+
max_new_tokens: Optional[int] = None
|
86 |
+
"""The amount of maximum tokens to generate."""
|
87 |
+
|
88 |
+
|
89 |
+
@dataclass
|
90 |
+
class ImageToTextInput(BaseInferenceType):
|
91 |
+
"""Inputs for Image To Text inference"""
|
92 |
+
|
93 |
+
inputs: Any
|
94 |
+
"""The input image data"""
|
95 |
+
parameters: Optional[ImageToTextParameters] = None
|
96 |
+
"""Additional inference parameters"""
|
97 |
+
|
98 |
+
|
99 |
+
@dataclass
|
100 |
+
class ImageToTextOutput(BaseInferenceType):
|
101 |
+
"""Outputs of inference for the Image To Text task"""
|
102 |
+
|
103 |
+
generated_text: Any
|
104 |
+
image_to_text_output_generated_text: Optional[str] = None
|
105 |
+
"""The generated text."""
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/summarization.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
2 |
+
#
|
3 |
+
# See:
|
4 |
+
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
5 |
+
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Dict, Literal, Optional
|
8 |
+
|
9 |
+
from .base import BaseInferenceType
|
10 |
+
|
11 |
+
|
12 |
+
SummarizationGenerationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"]
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class SummarizationGenerationParameters(BaseInferenceType):
|
17 |
+
"""Additional inference parameters
|
18 |
+
Additional inference parameters for Text2text Generation
|
19 |
+
"""
|
20 |
+
|
21 |
+
clean_up_tokenization_spaces: Optional[bool] = None
|
22 |
+
"""Whether to clean up the potential extra spaces in the text output."""
|
23 |
+
generate_parameters: Optional[Dict[str, Any]] = None
|
24 |
+
"""Additional parametrization of the text generation algorithm"""
|
25 |
+
truncation: Optional["SummarizationGenerationTruncationStrategy"] = None
|
26 |
+
"""The truncation strategy to use"""
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class SummarizationInput(BaseInferenceType):
|
31 |
+
"""Inputs for Summarization inference
|
32 |
+
Inputs for Text2text Generation inference
|
33 |
+
"""
|
34 |
+
|
35 |
+
inputs: str
|
36 |
+
"""The input text data"""
|
37 |
+
parameters: Optional[SummarizationGenerationParameters] = None
|
38 |
+
"""Additional inference parameters"""
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class SummarizationOutput(BaseInferenceType):
|
43 |
+
"""Outputs of inference for the Summarization task"""
|
44 |
+
|
45 |
+
summary_text: str
|
46 |
+
"""The summarized text."""
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/text_generation.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
2 |
+
#
|
3 |
+
# See:
|
4 |
+
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
5 |
+
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, List, Literal, Optional
|
8 |
+
|
9 |
+
from .base import BaseInferenceType
|
10 |
+
|
11 |
+
|
12 |
+
TypeEnum = Literal["json", "regex"]
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class TextGenerationInputGrammarType(BaseInferenceType):
|
17 |
+
type: "TypeEnum"
|
18 |
+
value: Any
|
19 |
+
"""A string that represents a [JSON Schema](https://json-schema.org/).
|
20 |
+
JSON Schema is a declarative language that allows to annotate JSON documents
|
21 |
+
with types and descriptions.
|
22 |
+
"""
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class TextGenerationInputGenerateParameters(BaseInferenceType):
|
27 |
+
best_of: Optional[int] = None
|
28 |
+
decoder_input_details: Optional[bool] = None
|
29 |
+
details: Optional[bool] = None
|
30 |
+
do_sample: Optional[bool] = None
|
31 |
+
frequency_penalty: Optional[float] = None
|
32 |
+
grammar: Optional[TextGenerationInputGrammarType] = None
|
33 |
+
max_new_tokens: Optional[int] = None
|
34 |
+
repetition_penalty: Optional[float] = None
|
35 |
+
return_full_text: Optional[bool] = None
|
36 |
+
seed: Optional[int] = None
|
37 |
+
stop: Optional[List[str]] = None
|
38 |
+
temperature: Optional[float] = None
|
39 |
+
top_k: Optional[int] = None
|
40 |
+
top_n_tokens: Optional[int] = None
|
41 |
+
top_p: Optional[float] = None
|
42 |
+
truncate: Optional[int] = None
|
43 |
+
typical_p: Optional[float] = None
|
44 |
+
watermark: Optional[bool] = None
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class TextGenerationInput(BaseInferenceType):
|
49 |
+
"""Text Generation Input.
|
50 |
+
Auto-generated from TGI specs.
|
51 |
+
For more details, check out
|
52 |
+
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
53 |
+
"""
|
54 |
+
|
55 |
+
inputs: str
|
56 |
+
parameters: Optional[TextGenerationInputGenerateParameters] = None
|
57 |
+
stream: Optional[bool] = None
|
58 |
+
|
59 |
+
|
60 |
+
TextGenerationOutputFinishReason = Literal["length", "eos_token", "stop_sequence"]
|
61 |
+
|
62 |
+
|
63 |
+
@dataclass
|
64 |
+
class TextGenerationOutputPrefillToken(BaseInferenceType):
|
65 |
+
id: int
|
66 |
+
logprob: float
|
67 |
+
text: str
|
68 |
+
|
69 |
+
|
70 |
+
@dataclass
|
71 |
+
class TextGenerationOutputToken(BaseInferenceType):
|
72 |
+
id: int
|
73 |
+
logprob: float
|
74 |
+
special: bool
|
75 |
+
text: str
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class TextGenerationOutputBestOfSequence(BaseInferenceType):
|
80 |
+
finish_reason: "TextGenerationOutputFinishReason"
|
81 |
+
generated_text: str
|
82 |
+
generated_tokens: int
|
83 |
+
prefill: List[TextGenerationOutputPrefillToken]
|
84 |
+
tokens: List[TextGenerationOutputToken]
|
85 |
+
seed: Optional[int] = None
|
86 |
+
top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None
|
87 |
+
|
88 |
+
|
89 |
+
@dataclass
|
90 |
+
class TextGenerationOutputDetails(BaseInferenceType):
|
91 |
+
finish_reason: "TextGenerationOutputFinishReason"
|
92 |
+
generated_tokens: int
|
93 |
+
prefill: List[TextGenerationOutputPrefillToken]
|
94 |
+
tokens: List[TextGenerationOutputToken]
|
95 |
+
best_of_sequences: Optional[List[TextGenerationOutputBestOfSequence]] = None
|
96 |
+
seed: Optional[int] = None
|
97 |
+
top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None
|
98 |
+
|
99 |
+
|
100 |
+
@dataclass
|
101 |
+
class TextGenerationOutput(BaseInferenceType):
|
102 |
+
"""Text Generation Output.
|
103 |
+
Auto-generated from TGI specs.
|
104 |
+
For more details, check out
|
105 |
+
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
106 |
+
"""
|
107 |
+
|
108 |
+
generated_text: str
|
109 |
+
details: Optional[TextGenerationOutputDetails] = None
|
110 |
+
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class TextGenerationStreamOutputStreamDetails(BaseInferenceType):
|
114 |
+
finish_reason: "TextGenerationOutputFinishReason"
|
115 |
+
generated_tokens: int
|
116 |
+
seed: Optional[int] = None
|
117 |
+
|
118 |
+
|
119 |
+
@dataclass
|
120 |
+
class TextGenerationStreamOutputToken(BaseInferenceType):
|
121 |
+
id: int
|
122 |
+
logprob: float
|
123 |
+
special: bool
|
124 |
+
text: str
|
125 |
+
|
126 |
+
|
127 |
+
@dataclass
|
128 |
+
class TextGenerationStreamOutput(BaseInferenceType):
|
129 |
+
"""Text Generation Stream Output.
|
130 |
+
Auto-generated from TGI specs.
|
131 |
+
For more details, check out
|
132 |
+
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
|
133 |
+
"""
|
134 |
+
|
135 |
+
index: int
|
136 |
+
token: TextGenerationStreamOutputToken
|
137 |
+
details: Optional[TextGenerationStreamOutputStreamDetails] = None
|
138 |
+
generated_text: Optional[str] = None
|
139 |
+
top_tokens: Optional[List[TextGenerationStreamOutputToken]] = None
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/inference/_generated/types/visual_question_answering.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inference code generated from the JSON schema spec in @huggingface/tasks.
|
2 |
+
#
|
3 |
+
# See:
|
4 |
+
# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts
|
5 |
+
# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks.
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Any, Optional
|
8 |
+
|
9 |
+
from .base import BaseInferenceType
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class VisualQuestionAnsweringInputData(BaseInferenceType):
|
14 |
+
"""One (image, question) pair to answer"""
|
15 |
+
|
16 |
+
image: Any
|
17 |
+
"""The image."""
|
18 |
+
question: Any
|
19 |
+
"""The question to answer based on the image."""
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class VisualQuestionAnsweringParameters(BaseInferenceType):
|
24 |
+
"""Additional inference parameters
|
25 |
+
Additional inference parameters for Visual Question Answering
|
26 |
+
"""
|
27 |
+
|
28 |
+
top_k: Optional[int] = None
|
29 |
+
"""The number of answers to return (will be chosen by order of likelihood). Note that we
|
30 |
+
return less than topk answers if there are not enough options available within the
|
31 |
+
context.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class VisualQuestionAnsweringInput(BaseInferenceType):
|
37 |
+
"""Inputs for Visual Question Answering inference"""
|
38 |
+
|
39 |
+
inputs: VisualQuestionAnsweringInputData
|
40 |
+
"""One (image, question) pair to answer"""
|
41 |
+
parameters: Optional[VisualQuestionAnsweringParameters] = None
|
42 |
+
"""Additional inference parameters"""
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class VisualQuestionAnsweringOutputElement(BaseInferenceType):
|
47 |
+
"""Outputs of inference for the Visual Question Answering task"""
|
48 |
+
|
49 |
+
label: Any
|
50 |
+
score: float
|
51 |
+
"""The associated score / probability"""
|
52 |
+
answer: Optional[str] = None
|
53 |
+
"""The answer to the question"""
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/__init__.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License
|
16 |
+
|
17 |
+
# ruff: noqa: F401
|
18 |
+
|
19 |
+
from huggingface_hub.errors import (
|
20 |
+
HFValidationError,
|
21 |
+
LocalTokenNotFoundError,
|
22 |
+
NotASafetensorsRepoError,
|
23 |
+
OfflineModeIsEnabled,
|
24 |
+
SafetensorsParsingError,
|
25 |
+
)
|
26 |
+
|
27 |
+
from . import tqdm as _tqdm # _tqdm is the module
|
28 |
+
from ._cache_assets import cached_assets_path
|
29 |
+
from ._cache_manager import (
|
30 |
+
CachedFileInfo,
|
31 |
+
CachedRepoInfo,
|
32 |
+
CachedRevisionInfo,
|
33 |
+
CacheNotFound,
|
34 |
+
CorruptedCacheException,
|
35 |
+
DeleteCacheStrategy,
|
36 |
+
HFCacheInfo,
|
37 |
+
scan_cache_dir,
|
38 |
+
)
|
39 |
+
from ._chunk_utils import chunk_iterable
|
40 |
+
from ._datetime import parse_datetime
|
41 |
+
from ._errors import (
|
42 |
+
BadRequestError,
|
43 |
+
DisabledRepoError,
|
44 |
+
EntryNotFoundError,
|
45 |
+
FileMetadataError,
|
46 |
+
GatedRepoError,
|
47 |
+
HfHubHTTPError,
|
48 |
+
LocalEntryNotFoundError,
|
49 |
+
RepositoryNotFoundError,
|
50 |
+
RevisionNotFoundError,
|
51 |
+
hf_raise_for_status,
|
52 |
+
)
|
53 |
+
from ._experimental import experimental
|
54 |
+
from ._fixes import SoftTemporaryDirectory, WeakFileLock, yaml_dump
|
55 |
+
from ._git_credential import list_credential_helpers, set_git_credential, unset_git_credential
|
56 |
+
from ._headers import build_hf_headers, get_token_to_send
|
57 |
+
from ._hf_folder import HfFolder
|
58 |
+
from ._http import (
|
59 |
+
configure_http_backend,
|
60 |
+
fix_hf_endpoint_in_url,
|
61 |
+
get_session,
|
62 |
+
http_backoff,
|
63 |
+
reset_sessions,
|
64 |
+
)
|
65 |
+
from ._pagination import paginate
|
66 |
+
from ._paths import DEFAULT_IGNORE_PATTERNS, FORBIDDEN_FOLDERS, filter_repo_objects
|
67 |
+
from ._runtime import (
|
68 |
+
dump_environment_info,
|
69 |
+
get_aiohttp_version,
|
70 |
+
get_fastai_version,
|
71 |
+
get_fastapi_version,
|
72 |
+
get_fastcore_version,
|
73 |
+
get_gradio_version,
|
74 |
+
get_graphviz_version,
|
75 |
+
get_hf_hub_version,
|
76 |
+
get_hf_transfer_version,
|
77 |
+
get_jinja_version,
|
78 |
+
get_minijinja_version,
|
79 |
+
get_numpy_version,
|
80 |
+
get_pillow_version,
|
81 |
+
get_pydantic_version,
|
82 |
+
get_pydot_version,
|
83 |
+
get_python_version,
|
84 |
+
get_tensorboard_version,
|
85 |
+
get_tf_version,
|
86 |
+
get_torch_version,
|
87 |
+
is_aiohttp_available,
|
88 |
+
is_fastai_available,
|
89 |
+
is_fastapi_available,
|
90 |
+
is_fastcore_available,
|
91 |
+
is_google_colab,
|
92 |
+
is_gradio_available,
|
93 |
+
is_graphviz_available,
|
94 |
+
is_hf_transfer_available,
|
95 |
+
is_jinja_available,
|
96 |
+
is_minijinja_available,
|
97 |
+
is_notebook,
|
98 |
+
is_numpy_available,
|
99 |
+
is_package_available,
|
100 |
+
is_pillow_available,
|
101 |
+
is_pydantic_available,
|
102 |
+
is_pydot_available,
|
103 |
+
is_safetensors_available,
|
104 |
+
is_tensorboard_available,
|
105 |
+
is_tf_available,
|
106 |
+
is_torch_available,
|
107 |
+
)
|
108 |
+
from ._safetensors import (
|
109 |
+
SafetensorsFileMetadata,
|
110 |
+
SafetensorsRepoMetadata,
|
111 |
+
TensorInfo,
|
112 |
+
)
|
113 |
+
from ._subprocess import capture_output, run_interactive_subprocess, run_subprocess
|
114 |
+
from ._telemetry import send_telemetry
|
115 |
+
from ._token import get_token
|
116 |
+
from ._typing import is_jsonable
|
117 |
+
from ._validators import (
|
118 |
+
smoothly_deprecate_use_auth_token,
|
119 |
+
validate_hf_hub_args,
|
120 |
+
validate_repo_id,
|
121 |
+
)
|
122 |
+
from .tqdm import (
|
123 |
+
are_progress_bars_disabled,
|
124 |
+
disable_progress_bars,
|
125 |
+
enable_progress_bars,
|
126 |
+
tqdm,
|
127 |
+
tqdm_stream_file,
|
128 |
+
)
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
from requests import HTTPError, Response
|
5 |
+
|
6 |
+
from ._fixes import JSONDecodeError
|
7 |
+
|
8 |
+
|
9 |
+
REPO_API_REGEX = re.compile(
|
10 |
+
r"""
|
11 |
+
# staging or production endpoint
|
12 |
+
^https://[^/]+
|
13 |
+
(
|
14 |
+
# on /api/repo_type/repo_id
|
15 |
+
/api/(models|datasets|spaces)/(.+)
|
16 |
+
|
|
17 |
+
# or /repo_id/resolve/revision/...
|
18 |
+
/(.+)/resolve/(.+)
|
19 |
+
)
|
20 |
+
""",
|
21 |
+
flags=re.VERBOSE,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
class FileMetadataError(OSError):
|
26 |
+
"""Error triggered when the metadata of a file on the Hub cannot be retrieved (missing ETag or commit_hash).
|
27 |
+
|
28 |
+
Inherits from `OSError` for backward compatibility.
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
class HfHubHTTPError(HTTPError):
|
33 |
+
"""
|
34 |
+
HTTPError to inherit from for any custom HTTP Error raised in HF Hub.
|
35 |
+
|
36 |
+
Any HTTPError is converted at least into a `HfHubHTTPError`. If some information is
|
37 |
+
sent back by the server, it will be added to the error message.
|
38 |
+
|
39 |
+
Added details:
|
40 |
+
- Request id from "X-Request-Id" header if exists.
|
41 |
+
- Server error message from the header "X-Error-Message".
|
42 |
+
- Server error message if we can found one in the response body.
|
43 |
+
|
44 |
+
Example:
|
45 |
+
```py
|
46 |
+
import requests
|
47 |
+
from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError
|
48 |
+
|
49 |
+
response = get_session().post(...)
|
50 |
+
try:
|
51 |
+
hf_raise_for_status(response)
|
52 |
+
except HfHubHTTPError as e:
|
53 |
+
print(str(e)) # formatted message
|
54 |
+
e.request_id, e.server_message # details returned by server
|
55 |
+
|
56 |
+
# Complete the error message with additional information once it's raised
|
57 |
+
e.append_to_message("\n`create_commit` expects the repository to exist.")
|
58 |
+
raise
|
59 |
+
```
|
60 |
+
"""
|
61 |
+
|
62 |
+
request_id: Optional[str] = None
|
63 |
+
server_message: Optional[str] = None
|
64 |
+
|
65 |
+
def __init__(self, message: str, response: Optional[Response] = None):
|
66 |
+
# Parse server information if any.
|
67 |
+
if response is not None:
|
68 |
+
self.request_id = response.headers.get("X-Request-Id")
|
69 |
+
try:
|
70 |
+
server_data = response.json()
|
71 |
+
except JSONDecodeError:
|
72 |
+
server_data = {}
|
73 |
+
|
74 |
+
# Retrieve server error message from multiple sources
|
75 |
+
server_message_from_headers = response.headers.get("X-Error-Message")
|
76 |
+
server_message_from_body = server_data.get("error")
|
77 |
+
server_multiple_messages_from_body = "\n".join(
|
78 |
+
error["message"] for error in server_data.get("errors", []) if "message" in error
|
79 |
+
)
|
80 |
+
|
81 |
+
# Concatenate error messages
|
82 |
+
_server_message = ""
|
83 |
+
if server_message_from_headers is not None: # from headers
|
84 |
+
_server_message += server_message_from_headers + "\n"
|
85 |
+
if server_message_from_body is not None: # from body "error"
|
86 |
+
if isinstance(server_message_from_body, list):
|
87 |
+
server_message_from_body = "\n".join(server_message_from_body)
|
88 |
+
if server_message_from_body not in _server_message:
|
89 |
+
_server_message += server_message_from_body + "\n"
|
90 |
+
if server_multiple_messages_from_body is not None: # from body "errors"
|
91 |
+
if server_multiple_messages_from_body not in _server_message:
|
92 |
+
_server_message += server_multiple_messages_from_body + "\n"
|
93 |
+
_server_message = _server_message.strip()
|
94 |
+
|
95 |
+
# Set message to `HfHubHTTPError` (if any)
|
96 |
+
if _server_message != "":
|
97 |
+
self.server_message = _server_message
|
98 |
+
|
99 |
+
super().__init__(
|
100 |
+
_format_error_message(
|
101 |
+
message,
|
102 |
+
request_id=self.request_id,
|
103 |
+
server_message=self.server_message,
|
104 |
+
),
|
105 |
+
response=response, # type: ignore
|
106 |
+
request=response.request if response is not None else None, # type: ignore
|
107 |
+
)
|
108 |
+
|
109 |
+
def append_to_message(self, additional_message: str) -> None:
|
110 |
+
"""Append additional information to the `HfHubHTTPError` initial message."""
|
111 |
+
self.args = (self.args[0] + additional_message,) + self.args[1:]
|
112 |
+
|
113 |
+
|
114 |
+
class RepositoryNotFoundError(HfHubHTTPError):
|
115 |
+
"""
|
116 |
+
Raised when trying to access a hf.co URL with an invalid repository name, or
|
117 |
+
with a private repo name the user does not have access to.
|
118 |
+
|
119 |
+
Example:
|
120 |
+
|
121 |
+
```py
|
122 |
+
>>> from huggingface_hub import model_info
|
123 |
+
>>> model_info("<non_existent_repository>")
|
124 |
+
(...)
|
125 |
+
huggingface_hub.utils._errors.RepositoryNotFoundError: 401 Client Error. (Request ID: PvMw_VjBMjVdMz53WKIzP)
|
126 |
+
|
127 |
+
Repository Not Found for url: https://huggingface.co/api/models/%3Cnon_existent_repository%3E.
|
128 |
+
Please make sure you specified the correct `repo_id` and `repo_type`.
|
129 |
+
If the repo is private, make sure you are authenticated.
|
130 |
+
Invalid username or password.
|
131 |
+
```
|
132 |
+
"""
|
133 |
+
|
134 |
+
|
135 |
+
class GatedRepoError(RepositoryNotFoundError):
|
136 |
+
"""
|
137 |
+
Raised when trying to access a gated repository for which the user is not on the
|
138 |
+
authorized list.
|
139 |
+
|
140 |
+
Note: derives from `RepositoryNotFoundError` to ensure backward compatibility.
|
141 |
+
|
142 |
+
Example:
|
143 |
+
|
144 |
+
```py
|
145 |
+
>>> from huggingface_hub import model_info
|
146 |
+
>>> model_info("<gated_repository>")
|
147 |
+
(...)
|
148 |
+
huggingface_hub.utils._errors.GatedRepoError: 403 Client Error. (Request ID: ViT1Bf7O_026LGSQuVqfa)
|
149 |
+
|
150 |
+
Cannot access gated repo for url https://huggingface.co/api/models/ardent-figment/gated-model.
|
151 |
+
Access to model ardent-figment/gated-model is restricted and you are not in the authorized list.
|
152 |
+
Visit https://huggingface.co/ardent-figment/gated-model to ask for access.
|
153 |
+
```
|
154 |
+
"""
|
155 |
+
|
156 |
+
|
157 |
+
class DisabledRepoError(HfHubHTTPError):
|
158 |
+
"""
|
159 |
+
Raised when trying to access a repository that has been disabled by its author.
|
160 |
+
|
161 |
+
Example:
|
162 |
+
|
163 |
+
```py
|
164 |
+
>>> from huggingface_hub import dataset_info
|
165 |
+
>>> dataset_info("laion/laion-art")
|
166 |
+
(...)
|
167 |
+
huggingface_hub.utils._errors.DisabledRepoError: 403 Client Error. (Request ID: Root=1-659fc3fa-3031673e0f92c71a2260dbe2;bc6f4dfb-b30a-4862-af0a-5cfe827610d8)
|
168 |
+
|
169 |
+
Cannot access repository for url https://huggingface.co/api/datasets/laion/laion-art.
|
170 |
+
Access to this resource is disabled.
|
171 |
+
```
|
172 |
+
"""
|
173 |
+
|
174 |
+
|
175 |
+
class RevisionNotFoundError(HfHubHTTPError):
|
176 |
+
"""
|
177 |
+
Raised when trying to access a hf.co URL with a valid repository but an invalid
|
178 |
+
revision.
|
179 |
+
|
180 |
+
Example:
|
181 |
+
|
182 |
+
```py
|
183 |
+
>>> from huggingface_hub import hf_hub_download
|
184 |
+
>>> hf_hub_download('bert-base-cased', 'config.json', revision='<non-existent-revision>')
|
185 |
+
(...)
|
186 |
+
huggingface_hub.utils._errors.RevisionNotFoundError: 404 Client Error. (Request ID: Mwhe_c3Kt650GcdKEFomX)
|
187 |
+
|
188 |
+
Revision Not Found for url: https://huggingface.co/bert-base-cased/resolve/%3Cnon-existent-revision%3E/config.json.
|
189 |
+
```
|
190 |
+
"""
|
191 |
+
|
192 |
+
|
193 |
+
class EntryNotFoundError(HfHubHTTPError):
|
194 |
+
"""
|
195 |
+
Raised when trying to access a hf.co URL with a valid repository and revision
|
196 |
+
but an invalid filename.
|
197 |
+
|
198 |
+
Example:
|
199 |
+
|
200 |
+
```py
|
201 |
+
>>> from huggingface_hub import hf_hub_download
|
202 |
+
>>> hf_hub_download('bert-base-cased', '<non-existent-file>')
|
203 |
+
(...)
|
204 |
+
huggingface_hub.utils._errors.EntryNotFoundError: 404 Client Error. (Request ID: 53pNl6M0MxsnG5Sw8JA6x)
|
205 |
+
|
206 |
+
Entry Not Found for url: https://huggingface.co/bert-base-cased/resolve/main/%3Cnon-existent-file%3E.
|
207 |
+
```
|
208 |
+
"""
|
209 |
+
|
210 |
+
|
211 |
+
class LocalEntryNotFoundError(EntryNotFoundError, FileNotFoundError, ValueError):
|
212 |
+
"""
|
213 |
+
Raised when trying to access a file or snapshot that is not on the disk when network is
|
214 |
+
disabled or unavailable (connection issue). The entry may exist on the Hub.
|
215 |
+
|
216 |
+
Note: `ValueError` type is to ensure backward compatibility.
|
217 |
+
Note: `LocalEntryNotFoundError` derives from `HTTPError` because of `EntryNotFoundError`
|
218 |
+
even when it is not a network issue.
|
219 |
+
|
220 |
+
Example:
|
221 |
+
|
222 |
+
```py
|
223 |
+
>>> from huggingface_hub import hf_hub_download
|
224 |
+
>>> hf_hub_download('bert-base-cased', '<non-cached-file>', local_files_only=True)
|
225 |
+
(...)
|
226 |
+
huggingface_hub.utils._errors.LocalEntryNotFoundError: Cannot find the requested files in the disk cache and outgoing traffic has been disabled. To enable hf.co look-ups and downloads online, set 'local_files_only' to False.
|
227 |
+
```
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, message: str):
|
231 |
+
super().__init__(message, response=None)
|
232 |
+
|
233 |
+
|
234 |
+
class BadRequestError(HfHubHTTPError, ValueError):
|
235 |
+
"""
|
236 |
+
Raised by `hf_raise_for_status` when the server returns a HTTP 400 error.
|
237 |
+
|
238 |
+
Example:
|
239 |
+
|
240 |
+
```py
|
241 |
+
>>> resp = requests.post("hf.co/api/check", ...)
|
242 |
+
>>> hf_raise_for_status(resp, endpoint_name="check")
|
243 |
+
huggingface_hub.utils._errors.BadRequestError: Bad request for check endpoint: {details} (Request ID: XXX)
|
244 |
+
```
|
245 |
+
"""
|
246 |
+
|
247 |
+
|
248 |
+
def hf_raise_for_status(response: Response, endpoint_name: Optional[str] = None) -> None:
|
249 |
+
"""
|
250 |
+
Internal version of `response.raise_for_status()` that will refine a
|
251 |
+
potential HTTPError. Raised exception will be an instance of `HfHubHTTPError`.
|
252 |
+
|
253 |
+
This helper is meant to be the unique method to raise_for_status when making a call
|
254 |
+
to the Hugging Face Hub.
|
255 |
+
|
256 |
+
Example:
|
257 |
+
```py
|
258 |
+
import requests
|
259 |
+
from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError
|
260 |
+
|
261 |
+
response = get_session().post(...)
|
262 |
+
try:
|
263 |
+
hf_raise_for_status(response)
|
264 |
+
except HfHubHTTPError as e:
|
265 |
+
print(str(e)) # formatted message
|
266 |
+
e.request_id, e.server_message # details returned by server
|
267 |
+
|
268 |
+
# Complete the error message with additional information once it's raised
|
269 |
+
e.append_to_message("\n`create_commit` expects the repository to exist.")
|
270 |
+
raise
|
271 |
+
```
|
272 |
+
|
273 |
+
Args:
|
274 |
+
response (`Response`):
|
275 |
+
Response from the server.
|
276 |
+
endpoint_name (`str`, *optional*):
|
277 |
+
Name of the endpoint that has been called. If provided, the error message
|
278 |
+
will be more complete.
|
279 |
+
|
280 |
+
<Tip warning={true}>
|
281 |
+
|
282 |
+
Raises when the request has failed:
|
283 |
+
|
284 |
+
- [`~utils.RepositoryNotFoundError`]
|
285 |
+
If the repository to download from cannot be found. This may be because it
|
286 |
+
doesn't exist, because `repo_type` is not set correctly, or because the repo
|
287 |
+
is `private` and you do not have access.
|
288 |
+
- [`~utils.GatedRepoError`]
|
289 |
+
If the repository exists but is gated and the user is not on the authorized
|
290 |
+
list.
|
291 |
+
- [`~utils.RevisionNotFoundError`]
|
292 |
+
If the repository exists but the revision couldn't be find.
|
293 |
+
- [`~utils.EntryNotFoundError`]
|
294 |
+
If the repository exists but the entry (e.g. the requested file) couldn't be
|
295 |
+
find.
|
296 |
+
- [`~utils.BadRequestError`]
|
297 |
+
If request failed with a HTTP 400 BadRequest error.
|
298 |
+
- [`~utils.HfHubHTTPError`]
|
299 |
+
If request failed for a reason not listed above.
|
300 |
+
|
301 |
+
</Tip>
|
302 |
+
"""
|
303 |
+
try:
|
304 |
+
response.raise_for_status()
|
305 |
+
except HTTPError as e:
|
306 |
+
error_code = response.headers.get("X-Error-Code")
|
307 |
+
error_message = response.headers.get("X-Error-Message")
|
308 |
+
|
309 |
+
if error_code == "RevisionNotFound":
|
310 |
+
message = f"{response.status_code} Client Error." + "\n\n" + f"Revision Not Found for url: {response.url}."
|
311 |
+
raise RevisionNotFoundError(message, response) from e
|
312 |
+
|
313 |
+
elif error_code == "EntryNotFound":
|
314 |
+
message = f"{response.status_code} Client Error." + "\n\n" + f"Entry Not Found for url: {response.url}."
|
315 |
+
raise EntryNotFoundError(message, response) from e
|
316 |
+
|
317 |
+
elif error_code == "GatedRepo":
|
318 |
+
message = (
|
319 |
+
f"{response.status_code} Client Error." + "\n\n" + f"Cannot access gated repo for url {response.url}."
|
320 |
+
)
|
321 |
+
raise GatedRepoError(message, response) from e
|
322 |
+
|
323 |
+
elif error_message == "Access to this resource is disabled.":
|
324 |
+
message = (
|
325 |
+
f"{response.status_code} Client Error."
|
326 |
+
+ "\n\n"
|
327 |
+
+ f"Cannot access repository for url {response.url}."
|
328 |
+
+ "\n"
|
329 |
+
+ "Access to this resource is disabled."
|
330 |
+
)
|
331 |
+
raise DisabledRepoError(message, response) from e
|
332 |
+
|
333 |
+
elif error_code == "RepoNotFound" or (
|
334 |
+
response.status_code == 401
|
335 |
+
and response.request is not None
|
336 |
+
and response.request.url is not None
|
337 |
+
and REPO_API_REGEX.search(response.request.url) is not None
|
338 |
+
):
|
339 |
+
# 401 is misleading as it is returned for:
|
340 |
+
# - private and gated repos if user is not authenticated
|
341 |
+
# - missing repos
|
342 |
+
# => for now, we process them as `RepoNotFound` anyway.
|
343 |
+
# See https://gist.github.com/Wauplin/46c27ad266b15998ce56a6603796f0b9
|
344 |
+
message = (
|
345 |
+
f"{response.status_code} Client Error."
|
346 |
+
+ "\n\n"
|
347 |
+
+ f"Repository Not Found for url: {response.url}."
|
348 |
+
+ "\nPlease make sure you specified the correct `repo_id` and"
|
349 |
+
" `repo_type`.\nIf you are trying to access a private or gated repo,"
|
350 |
+
" make sure you are authenticated."
|
351 |
+
)
|
352 |
+
raise RepositoryNotFoundError(message, response) from e
|
353 |
+
|
354 |
+
elif response.status_code == 400:
|
355 |
+
message = (
|
356 |
+
f"\n\nBad request for {endpoint_name} endpoint:" if endpoint_name is not None else "\n\nBad request:"
|
357 |
+
)
|
358 |
+
raise BadRequestError(message, response=response) from e
|
359 |
+
|
360 |
+
elif response.status_code == 403:
|
361 |
+
message = (
|
362 |
+
f"\n\n{response.status_code} Forbidden: {error_message}."
|
363 |
+
+ f"\nCannot access content at: {response.url}."
|
364 |
+
+ "\nIf you are trying to create or update content,"
|
365 |
+
+ "make sure you have a token with the `write` role."
|
366 |
+
)
|
367 |
+
raise HfHubHTTPError(message, response=response) from e
|
368 |
+
|
369 |
+
# Convert `HTTPError` into a `HfHubHTTPError` to display request information
|
370 |
+
# as well (request id and/or server error message)
|
371 |
+
raise HfHubHTTPError(str(e), response=response) from e
|
372 |
+
|
373 |
+
|
374 |
+
def _format_error_message(message: str, request_id: Optional[str], server_message: Optional[str]) -> str:
|
375 |
+
"""
|
376 |
+
Format the `HfHubHTTPError` error message based on initial message and information
|
377 |
+
returned by the server.
|
378 |
+
|
379 |
+
Used when initializing `HfHubHTTPError`.
|
380 |
+
"""
|
381 |
+
# Add message from response body
|
382 |
+
if server_message is not None and len(server_message) > 0 and server_message.lower() not in message.lower():
|
383 |
+
if "\n\n" in message:
|
384 |
+
message += "\n" + server_message
|
385 |
+
else:
|
386 |
+
message += "\n\n" + server_message
|
387 |
+
|
388 |
+
# Add Request ID
|
389 |
+
if request_id is not None and str(request_id).lower() not in message.lower():
|
390 |
+
request_id_message = f" (Request ID: {request_id})"
|
391 |
+
if "\n" in message:
|
392 |
+
newline_index = message.index("\n")
|
393 |
+
message = message[:newline_index] + request_id_message + message[newline_index:]
|
394 |
+
else:
|
395 |
+
message += request_id_message
|
396 |
+
|
397 |
+
return message
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_experimental.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains utilities to flag a feature as "experimental" in Huggingface Hub."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from functools import wraps
|
19 |
+
from typing import Callable
|
20 |
+
|
21 |
+
from .. import constants
|
22 |
+
|
23 |
+
|
24 |
+
def experimental(fn: Callable) -> Callable:
|
25 |
+
"""Decorator to flag a feature as experimental.
|
26 |
+
|
27 |
+
An experimental feature trigger a warning when used as it might be subject to breaking changes in the future.
|
28 |
+
Warnings can be disabled by setting the environment variable `HF_EXPERIMENTAL_WARNING` to `0`.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
fn (`Callable`):
|
32 |
+
The function to flag as experimental.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
`Callable`: The decorated function.
|
36 |
+
|
37 |
+
Example:
|
38 |
+
|
39 |
+
```python
|
40 |
+
>>> from huggingface_hub.utils import experimental
|
41 |
+
|
42 |
+
>>> @experimental
|
43 |
+
... def my_function():
|
44 |
+
... print("Hello world!")
|
45 |
+
|
46 |
+
>>> my_function()
|
47 |
+
UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future. You can disable
|
48 |
+
this warning by setting `HF_HUB_DISABLE_EXPERIMENTAL_WARNING=1` as environment variable.
|
49 |
+
Hello world!
|
50 |
+
```
|
51 |
+
"""
|
52 |
+
# For classes, put the "experimental" around the "__new__" method => __new__ will be removed in warning message
|
53 |
+
name = fn.__qualname__[: -len(".__new__")] if fn.__qualname__.endswith(".__new__") else fn.__qualname__
|
54 |
+
|
55 |
+
@wraps(fn)
|
56 |
+
def _inner_fn(*args, **kwargs):
|
57 |
+
if not constants.HF_HUB_DISABLE_EXPERIMENTAL_WARNING:
|
58 |
+
warnings.warn(
|
59 |
+
f"'{name}' is experimental and might be subject to breaking changes in the future."
|
60 |
+
" You can disable this warning by setting `HF_HUB_DISABLE_EXPERIMENTAL_WARNING=1` as environment"
|
61 |
+
" variable.",
|
62 |
+
UserWarning,
|
63 |
+
)
|
64 |
+
return fn(*args, **kwargs)
|
65 |
+
|
66 |
+
return _inner_fn
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_fixes.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# JSONDecodeError was introduced in requests=2.27 released in 2022.
|
2 |
+
# This allows us to support older requests for users
|
3 |
+
# More information: https://github.com/psf/requests/pull/5856
|
4 |
+
try:
|
5 |
+
from requests import JSONDecodeError # type: ignore # noqa: F401
|
6 |
+
except ImportError:
|
7 |
+
try:
|
8 |
+
from simplejson import JSONDecodeError # type: ignore # noqa: F401
|
9 |
+
except ImportError:
|
10 |
+
from json import JSONDecodeError # type: ignore # noqa: F401
|
11 |
+
import contextlib
|
12 |
+
import os
|
13 |
+
import shutil
|
14 |
+
import stat
|
15 |
+
import tempfile
|
16 |
+
from functools import partial
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Callable, Generator, Optional, Union
|
19 |
+
|
20 |
+
import yaml
|
21 |
+
from filelock import BaseFileLock, FileLock
|
22 |
+
|
23 |
+
|
24 |
+
# Wrap `yaml.dump` to set `allow_unicode=True` by default.
|
25 |
+
#
|
26 |
+
# Example:
|
27 |
+
# ```py
|
28 |
+
# >>> yaml.dump({"emoji": "👀", "some unicode": "日本か"})
|
29 |
+
# 'emoji: "\\U0001F440"\nsome unicode: "\\u65E5\\u672C\\u304B"\n'
|
30 |
+
#
|
31 |
+
# >>> yaml_dump({"emoji": "👀", "some unicode": "日本か"})
|
32 |
+
# 'emoji: "👀"\nsome unicode: "日本か"\n'
|
33 |
+
# ```
|
34 |
+
yaml_dump: Callable[..., str] = partial(yaml.dump, stream=None, allow_unicode=True) # type: ignore
|
35 |
+
|
36 |
+
|
37 |
+
@contextlib.contextmanager
|
38 |
+
def SoftTemporaryDirectory(
|
39 |
+
suffix: Optional[str] = None,
|
40 |
+
prefix: Optional[str] = None,
|
41 |
+
dir: Optional[Union[Path, str]] = None,
|
42 |
+
**kwargs,
|
43 |
+
) -> Generator[Path, None, None]:
|
44 |
+
"""
|
45 |
+
Context manager to create a temporary directory and safely delete it.
|
46 |
+
|
47 |
+
If tmp directory cannot be deleted normally, we set the WRITE permission and retry.
|
48 |
+
If cleanup still fails, we give up but don't raise an exception. This is equivalent
|
49 |
+
to `tempfile.TemporaryDirectory(..., ignore_cleanup_errors=True)` introduced in
|
50 |
+
Python 3.10.
|
51 |
+
|
52 |
+
See https://www.scivision.dev/python-tempfile-permission-error-windows/.
|
53 |
+
"""
|
54 |
+
tmpdir = tempfile.TemporaryDirectory(prefix=prefix, suffix=suffix, dir=dir, **kwargs)
|
55 |
+
yield Path(tmpdir.name).resolve()
|
56 |
+
|
57 |
+
try:
|
58 |
+
# First once with normal cleanup
|
59 |
+
shutil.rmtree(tmpdir.name)
|
60 |
+
except Exception:
|
61 |
+
# If failed, try to set write permission and retry
|
62 |
+
try:
|
63 |
+
shutil.rmtree(tmpdir.name, onerror=_set_write_permission_and_retry)
|
64 |
+
except Exception:
|
65 |
+
pass
|
66 |
+
|
67 |
+
# And finally, cleanup the tmpdir.
|
68 |
+
# If it fails again, give up but do not throw error
|
69 |
+
try:
|
70 |
+
tmpdir.cleanup()
|
71 |
+
except Exception:
|
72 |
+
pass
|
73 |
+
|
74 |
+
|
75 |
+
def _set_write_permission_and_retry(func, path, excinfo):
|
76 |
+
os.chmod(path, stat.S_IWRITE)
|
77 |
+
func(path)
|
78 |
+
|
79 |
+
|
80 |
+
@contextlib.contextmanager
|
81 |
+
def WeakFileLock(lock_file: Union[str, Path]) -> Generator[BaseFileLock, None, None]:
|
82 |
+
"""A filelock that won't raise an exception if release fails."""
|
83 |
+
lock = FileLock(lock_file)
|
84 |
+
lock.acquire()
|
85 |
+
|
86 |
+
yield lock
|
87 |
+
|
88 |
+
try:
|
89 |
+
return lock.release()
|
90 |
+
except OSError:
|
91 |
+
try:
|
92 |
+
Path(lock_file).unlink()
|
93 |
+
except OSError:
|
94 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_git_credential.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains utilities to manage Git credentials."""
|
16 |
+
|
17 |
+
import re
|
18 |
+
import subprocess
|
19 |
+
from typing import List, Optional
|
20 |
+
|
21 |
+
from ..constants import ENDPOINT
|
22 |
+
from ._subprocess import run_interactive_subprocess, run_subprocess
|
23 |
+
|
24 |
+
|
25 |
+
GIT_CREDENTIAL_REGEX = re.compile(
|
26 |
+
r"""
|
27 |
+
^\s* # start of line
|
28 |
+
credential\.helper # credential.helper value
|
29 |
+
\s*=\s* # separator
|
30 |
+
(\w+) # the helper name (group 1)
|
31 |
+
(\s|$) # whitespace or end of line
|
32 |
+
""",
|
33 |
+
flags=re.MULTILINE | re.IGNORECASE | re.VERBOSE,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def list_credential_helpers(folder: Optional[str] = None) -> List[str]:
|
38 |
+
"""Return the list of git credential helpers configured.
|
39 |
+
|
40 |
+
See https://git-scm.com/docs/gitcredentials.
|
41 |
+
|
42 |
+
Credentials are saved in all configured helpers (store, cache, macOS keychain,...).
|
43 |
+
Calls "`git credential approve`" internally. See https://git-scm.com/docs/git-credential.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
folder (`str`, *optional*):
|
47 |
+
The folder in which to check the configured helpers.
|
48 |
+
"""
|
49 |
+
try:
|
50 |
+
output = run_subprocess("git config --list", folder=folder).stdout
|
51 |
+
parsed = _parse_credential_output(output)
|
52 |
+
return parsed
|
53 |
+
except subprocess.CalledProcessError as exc:
|
54 |
+
raise EnvironmentError(exc.stderr)
|
55 |
+
|
56 |
+
|
57 |
+
def set_git_credential(token: str, username: str = "hf_user", folder: Optional[str] = None) -> None:
|
58 |
+
"""Save a username/token pair in git credential for HF Hub registry.
|
59 |
+
|
60 |
+
Credentials are saved in all configured helpers (store, cache, macOS keychain,...).
|
61 |
+
Calls "`git credential approve`" internally. See https://git-scm.com/docs/git-credential.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
username (`str`, defaults to `"hf_user"`):
|
65 |
+
A git username. Defaults to `"hf_user"`, the default user used in the Hub.
|
66 |
+
token (`str`, defaults to `"hf_user"`):
|
67 |
+
A git password. In practice, the User Access Token for the Hub.
|
68 |
+
See https://huggingface.co/settings/tokens.
|
69 |
+
folder (`str`, *optional*):
|
70 |
+
The folder in which to check the configured helpers.
|
71 |
+
"""
|
72 |
+
with run_interactive_subprocess("git credential approve", folder=folder) as (
|
73 |
+
stdin,
|
74 |
+
_,
|
75 |
+
):
|
76 |
+
stdin.write(f"url={ENDPOINT}\nusername={username.lower()}\npassword={token}\n\n")
|
77 |
+
stdin.flush()
|
78 |
+
|
79 |
+
|
80 |
+
def unset_git_credential(username: str = "hf_user", folder: Optional[str] = None) -> None:
|
81 |
+
"""Erase credentials from git credential for HF Hub registry.
|
82 |
+
|
83 |
+
Credentials are erased from the configured helpers (store, cache, macOS
|
84 |
+
keychain,...), if any. If `username` is not provided, any credential configured for
|
85 |
+
HF Hub endpoint is erased.
|
86 |
+
Calls "`git credential erase`" internally. See https://git-scm.com/docs/git-credential.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
username (`str`, defaults to `"hf_user"`):
|
90 |
+
A git username. Defaults to `"hf_user"`, the default user used in the Hub.
|
91 |
+
folder (`str`, *optional*):
|
92 |
+
The folder in which to check the configured helpers.
|
93 |
+
"""
|
94 |
+
with run_interactive_subprocess("git credential reject", folder=folder) as (
|
95 |
+
stdin,
|
96 |
+
_,
|
97 |
+
):
|
98 |
+
standard_input = f"url={ENDPOINT}\n"
|
99 |
+
if username is not None:
|
100 |
+
standard_input += f"username={username.lower()}\n"
|
101 |
+
standard_input += "\n"
|
102 |
+
|
103 |
+
stdin.write(standard_input)
|
104 |
+
stdin.flush()
|
105 |
+
|
106 |
+
|
107 |
+
def _parse_credential_output(output: str) -> List[str]:
|
108 |
+
"""Parse the output of `git credential fill` to extract the password.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
output (`str`):
|
112 |
+
The output of `git credential fill`.
|
113 |
+
"""
|
114 |
+
# NOTE: If user has set an helper for a custom URL, it will not we caught here.
|
115 |
+
# Example: `credential.https://huggingface.co.helper=store`
|
116 |
+
# See: https://github.com/huggingface/huggingface_hub/pull/1138#discussion_r1013324508
|
117 |
+
return sorted( # Sort for nice printing
|
118 |
+
set( # Might have some duplicates
|
119 |
+
match[0] for match in GIT_CREDENTIAL_REGEX.findall(output)
|
120 |
+
)
|
121 |
+
)
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_http.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains utilities to handle HTTP requests in Huggingface Hub."""
|
16 |
+
|
17 |
+
import io
|
18 |
+
import os
|
19 |
+
import threading
|
20 |
+
import time
|
21 |
+
import uuid
|
22 |
+
from functools import lru_cache
|
23 |
+
from http import HTTPStatus
|
24 |
+
from typing import Callable, Optional, Tuple, Type, Union
|
25 |
+
|
26 |
+
import requests
|
27 |
+
from requests import Response
|
28 |
+
from requests.adapters import HTTPAdapter
|
29 |
+
from requests.models import PreparedRequest
|
30 |
+
|
31 |
+
from huggingface_hub.errors import OfflineModeIsEnabled
|
32 |
+
|
33 |
+
from .. import constants
|
34 |
+
from . import logging
|
35 |
+
from ._typing import HTTP_METHOD_T
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
# Both headers are used by the Hub to debug failed requests.
|
41 |
+
# `X_AMZN_TRACE_ID` is better as it also works to debug on Cloudfront and ALB.
|
42 |
+
# If `X_AMZN_TRACE_ID` is set, the Hub will use it as well.
|
43 |
+
X_AMZN_TRACE_ID = "X-Amzn-Trace-Id"
|
44 |
+
X_REQUEST_ID = "x-request-id"
|
45 |
+
|
46 |
+
|
47 |
+
class UniqueRequestIdAdapter(HTTPAdapter):
|
48 |
+
X_AMZN_TRACE_ID = "X-Amzn-Trace-Id"
|
49 |
+
|
50 |
+
def add_headers(self, request, **kwargs):
|
51 |
+
super().add_headers(request, **kwargs)
|
52 |
+
|
53 |
+
# Add random request ID => easier for server-side debug
|
54 |
+
if X_AMZN_TRACE_ID not in request.headers:
|
55 |
+
request.headers[X_AMZN_TRACE_ID] = request.headers.get(X_REQUEST_ID) or str(uuid.uuid4())
|
56 |
+
|
57 |
+
# Add debug log
|
58 |
+
has_token = str(request.headers.get("authorization", "")).startswith("Bearer hf_")
|
59 |
+
logger.debug(
|
60 |
+
f"Request {request.headers[X_AMZN_TRACE_ID]}: {request.method} {request.url} (authenticated: {has_token})"
|
61 |
+
)
|
62 |
+
|
63 |
+
def send(self, request: PreparedRequest, *args, **kwargs) -> Response:
|
64 |
+
"""Catch any RequestException to append request id to the error message for debugging."""
|
65 |
+
try:
|
66 |
+
return super().send(request, *args, **kwargs)
|
67 |
+
except requests.RequestException as e:
|
68 |
+
request_id = request.headers.get(X_AMZN_TRACE_ID)
|
69 |
+
if request_id is not None:
|
70 |
+
# Taken from https://stackoverflow.com/a/58270258
|
71 |
+
e.args = (*e.args, f"(Request ID: {request_id})")
|
72 |
+
raise
|
73 |
+
|
74 |
+
|
75 |
+
class OfflineAdapter(HTTPAdapter):
|
76 |
+
def send(self, request: PreparedRequest, *args, **kwargs) -> Response:
|
77 |
+
raise OfflineModeIsEnabled(
|
78 |
+
f"Cannot reach {request.url}: offline mode is enabled. To disable it, please unset the `HF_HUB_OFFLINE` environment variable."
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def _default_backend_factory() -> requests.Session:
|
83 |
+
session = requests.Session()
|
84 |
+
if constants.HF_HUB_OFFLINE:
|
85 |
+
session.mount("http://", OfflineAdapter())
|
86 |
+
session.mount("https://", OfflineAdapter())
|
87 |
+
else:
|
88 |
+
session.mount("http://", UniqueRequestIdAdapter())
|
89 |
+
session.mount("https://", UniqueRequestIdAdapter())
|
90 |
+
return session
|
91 |
+
|
92 |
+
|
93 |
+
BACKEND_FACTORY_T = Callable[[], requests.Session]
|
94 |
+
_GLOBAL_BACKEND_FACTORY: BACKEND_FACTORY_T = _default_backend_factory
|
95 |
+
|
96 |
+
|
97 |
+
def configure_http_backend(backend_factory: BACKEND_FACTORY_T = _default_backend_factory) -> None:
|
98 |
+
"""
|
99 |
+
Configure the HTTP backend by providing a `backend_factory`. Any HTTP calls made by `huggingface_hub` will use a
|
100 |
+
Session object instantiated by this factory. This can be useful if you are running your scripts in a specific
|
101 |
+
environment requiring custom configuration (e.g. custom proxy or certifications).
|
102 |
+
|
103 |
+
Use [`get_session`] to get a configured Session. Since `requests.Session` is not guaranteed to be thread-safe,
|
104 |
+
`huggingface_hub` creates 1 Session instance per thread. They are all instantiated using the same `backend_factory`
|
105 |
+
set in [`configure_http_backend`]. A LRU cache is used to cache the created sessions (and connections) between
|
106 |
+
calls. Max size is 128 to avoid memory leaks if thousands of threads are spawned.
|
107 |
+
|
108 |
+
See [this issue](https://github.com/psf/requests/issues/2766) to know more about thread-safety in `requests`.
|
109 |
+
|
110 |
+
Example:
|
111 |
+
```py
|
112 |
+
import requests
|
113 |
+
from huggingface_hub import configure_http_backend, get_session
|
114 |
+
|
115 |
+
# Create a factory function that returns a Session with configured proxies
|
116 |
+
def backend_factory() -> requests.Session:
|
117 |
+
session = requests.Session()
|
118 |
+
session.proxies = {"http": "http://10.10.1.10:3128", "https": "https://10.10.1.11:1080"}
|
119 |
+
return session
|
120 |
+
|
121 |
+
# Set it as the default session factory
|
122 |
+
configure_http_backend(backend_factory=backend_factory)
|
123 |
+
|
124 |
+
# In practice, this is mostly done internally in `huggingface_hub`
|
125 |
+
session = get_session()
|
126 |
+
```
|
127 |
+
"""
|
128 |
+
global _GLOBAL_BACKEND_FACTORY
|
129 |
+
_GLOBAL_BACKEND_FACTORY = backend_factory
|
130 |
+
reset_sessions()
|
131 |
+
|
132 |
+
|
133 |
+
def get_session() -> requests.Session:
|
134 |
+
"""
|
135 |
+
Get a `requests.Session` object, using the session factory from the user.
|
136 |
+
|
137 |
+
Use [`get_session`] to get a configured Session. Since `requests.Session` is not guaranteed to be thread-safe,
|
138 |
+
`huggingface_hub` creates 1 Session instance per thread. They are all instantiated using the same `backend_factory`
|
139 |
+
set in [`configure_http_backend`]. A LRU cache is used to cache the created sessions (and connections) between
|
140 |
+
calls. Max size is 128 to avoid memory leaks if thousands of threads are spawned.
|
141 |
+
|
142 |
+
See [this issue](https://github.com/psf/requests/issues/2766) to know more about thread-safety in `requests`.
|
143 |
+
|
144 |
+
Example:
|
145 |
+
```py
|
146 |
+
import requests
|
147 |
+
from huggingface_hub import configure_http_backend, get_session
|
148 |
+
|
149 |
+
# Create a factory function that returns a Session with configured proxies
|
150 |
+
def backend_factory() -> requests.Session:
|
151 |
+
session = requests.Session()
|
152 |
+
session.proxies = {"http": "http://10.10.1.10:3128", "https": "https://10.10.1.11:1080"}
|
153 |
+
return session
|
154 |
+
|
155 |
+
# Set it as the default session factory
|
156 |
+
configure_http_backend(backend_factory=backend_factory)
|
157 |
+
|
158 |
+
# In practice, this is mostly done internally in `huggingface_hub`
|
159 |
+
session = get_session()
|
160 |
+
```
|
161 |
+
"""
|
162 |
+
return _get_session_from_cache(process_id=os.getpid(), thread_id=threading.get_ident())
|
163 |
+
|
164 |
+
|
165 |
+
def reset_sessions() -> None:
|
166 |
+
"""Reset the cache of sessions.
|
167 |
+
|
168 |
+
Mostly used internally when sessions are reconfigured or an SSLError is raised.
|
169 |
+
See [`configure_http_backend`] for more details.
|
170 |
+
"""
|
171 |
+
_get_session_from_cache.cache_clear()
|
172 |
+
|
173 |
+
|
174 |
+
@lru_cache
|
175 |
+
def _get_session_from_cache(process_id: int, thread_id: int) -> requests.Session:
|
176 |
+
"""
|
177 |
+
Create a new session per thread using global factory. Using LRU cache (maxsize 128) to avoid memory leaks when
|
178 |
+
using thousands of threads. Cache is cleared when `configure_http_backend` is called.
|
179 |
+
"""
|
180 |
+
return _GLOBAL_BACKEND_FACTORY()
|
181 |
+
|
182 |
+
|
183 |
+
def http_backoff(
|
184 |
+
method: HTTP_METHOD_T,
|
185 |
+
url: str,
|
186 |
+
*,
|
187 |
+
max_retries: int = 5,
|
188 |
+
base_wait_time: float = 1,
|
189 |
+
max_wait_time: float = 8,
|
190 |
+
retry_on_exceptions: Union[Type[Exception], Tuple[Type[Exception], ...]] = (
|
191 |
+
requests.Timeout,
|
192 |
+
requests.ConnectionError,
|
193 |
+
),
|
194 |
+
retry_on_status_codes: Union[int, Tuple[int, ...]] = HTTPStatus.SERVICE_UNAVAILABLE,
|
195 |
+
**kwargs,
|
196 |
+
) -> Response:
|
197 |
+
"""Wrapper around requests to retry calls on an endpoint, with exponential backoff.
|
198 |
+
|
199 |
+
Endpoint call is retried on exceptions (ex: connection timeout, proxy error,...)
|
200 |
+
and/or on specific status codes (ex: service unavailable). If the call failed more
|
201 |
+
than `max_retries`, the exception is thrown or `raise_for_status` is called on the
|
202 |
+
response object.
|
203 |
+
|
204 |
+
Re-implement mechanisms from the `backoff` library to avoid adding an external
|
205 |
+
dependencies to `hugging_face_hub`. See https://github.com/litl/backoff.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
method (`Literal["GET", "OPTIONS", "HEAD", "POST", "PUT", "PATCH", "DELETE"]`):
|
209 |
+
HTTP method to perform.
|
210 |
+
url (`str`):
|
211 |
+
The URL of the resource to fetch.
|
212 |
+
max_retries (`int`, *optional*, defaults to `5`):
|
213 |
+
Maximum number of retries, defaults to 5 (no retries).
|
214 |
+
base_wait_time (`float`, *optional*, defaults to `1`):
|
215 |
+
Duration (in seconds) to wait before retrying the first time.
|
216 |
+
Wait time between retries then grows exponentially, capped by
|
217 |
+
`max_wait_time`.
|
218 |
+
max_wait_time (`float`, *optional*, defaults to `8`):
|
219 |
+
Maximum duration (in seconds) to wait before retrying.
|
220 |
+
retry_on_exceptions (`Type[Exception]` or `Tuple[Type[Exception]]`, *optional*):
|
221 |
+
Define which exceptions must be caught to retry the request. Can be a single type or a tuple of types.
|
222 |
+
By default, retry on `requests.Timeout` and `requests.ConnectionError`.
|
223 |
+
retry_on_status_codes (`int` or `Tuple[int]`, *optional*, defaults to `503`):
|
224 |
+
Define on which status codes the request must be retried. By default, only
|
225 |
+
HTTP 503 Service Unavailable is retried.
|
226 |
+
**kwargs (`dict`, *optional*):
|
227 |
+
kwargs to pass to `requests.request`.
|
228 |
+
|
229 |
+
Example:
|
230 |
+
```
|
231 |
+
>>> from huggingface_hub.utils import http_backoff
|
232 |
+
|
233 |
+
# Same usage as "requests.request".
|
234 |
+
>>> response = http_backoff("GET", "https://www.google.com")
|
235 |
+
>>> response.raise_for_status()
|
236 |
+
|
237 |
+
# If you expect a Gateway Timeout from time to time
|
238 |
+
>>> http_backoff("PUT", upload_url, data=data, retry_on_status_codes=504)
|
239 |
+
>>> response.raise_for_status()
|
240 |
+
```
|
241 |
+
|
242 |
+
<Tip warning={true}>
|
243 |
+
|
244 |
+
When using `requests` it is possible to stream data by passing an iterator to the
|
245 |
+
`data` argument. On http backoff this is a problem as the iterator is not reset
|
246 |
+
after a failed call. This issue is mitigated for file objects or any IO streams
|
247 |
+
by saving the initial position of the cursor (with `data.tell()`) and resetting the
|
248 |
+
cursor between each call (with `data.seek()`). For arbitrary iterators, http backoff
|
249 |
+
will fail. If this is a hard constraint for you, please let us know by opening an
|
250 |
+
issue on [Github](https://github.com/huggingface/huggingface_hub).
|
251 |
+
|
252 |
+
</Tip>
|
253 |
+
"""
|
254 |
+
if isinstance(retry_on_exceptions, type): # Tuple from single exception type
|
255 |
+
retry_on_exceptions = (retry_on_exceptions,)
|
256 |
+
|
257 |
+
if isinstance(retry_on_status_codes, int): # Tuple from single status code
|
258 |
+
retry_on_status_codes = (retry_on_status_codes,)
|
259 |
+
|
260 |
+
nb_tries = 0
|
261 |
+
sleep_time = base_wait_time
|
262 |
+
|
263 |
+
# If `data` is used and is a file object (or any IO), it will be consumed on the
|
264 |
+
# first HTTP request. We need to save the initial position so that the full content
|
265 |
+
# of the file is re-sent on http backoff. See warning tip in docstring.
|
266 |
+
io_obj_initial_pos = None
|
267 |
+
if "data" in kwargs and isinstance(kwargs["data"], io.IOBase):
|
268 |
+
io_obj_initial_pos = kwargs["data"].tell()
|
269 |
+
|
270 |
+
session = get_session()
|
271 |
+
while True:
|
272 |
+
nb_tries += 1
|
273 |
+
try:
|
274 |
+
# If `data` is used and is a file object (or any IO), set back cursor to
|
275 |
+
# initial position.
|
276 |
+
if io_obj_initial_pos is not None:
|
277 |
+
kwargs["data"].seek(io_obj_initial_pos)
|
278 |
+
|
279 |
+
# Perform request and return if status_code is not in the retry list.
|
280 |
+
response = session.request(method=method, url=url, **kwargs)
|
281 |
+
if response.status_code not in retry_on_status_codes:
|
282 |
+
return response
|
283 |
+
|
284 |
+
# Wrong status code returned (HTTP 503 for instance)
|
285 |
+
logger.warning(f"HTTP Error {response.status_code} thrown while requesting {method} {url}")
|
286 |
+
if nb_tries > max_retries:
|
287 |
+
response.raise_for_status() # Will raise uncaught exception
|
288 |
+
# We return response to avoid infinite loop in the corner case where the
|
289 |
+
# user ask for retry on a status code that doesn't raise_for_status.
|
290 |
+
return response
|
291 |
+
|
292 |
+
except retry_on_exceptions as err:
|
293 |
+
logger.warning(f"'{err}' thrown while requesting {method} {url}")
|
294 |
+
|
295 |
+
if isinstance(err, requests.ConnectionError):
|
296 |
+
reset_sessions() # In case of SSLError it's best to reset the shared requests.Session objects
|
297 |
+
|
298 |
+
if nb_tries > max_retries:
|
299 |
+
raise err
|
300 |
+
|
301 |
+
# Sleep for X seconds
|
302 |
+
logger.warning(f"Retrying in {sleep_time}s [Retry {nb_tries}/{max_retries}].")
|
303 |
+
time.sleep(sleep_time)
|
304 |
+
|
305 |
+
# Update sleep time for next retry
|
306 |
+
sleep_time = min(max_wait_time, sleep_time * 2) # Exponential backoff
|
307 |
+
|
308 |
+
|
309 |
+
def fix_hf_endpoint_in_url(url: str, endpoint: Optional[str]) -> str:
|
310 |
+
"""Replace the default endpoint in a URL by a custom one.
|
311 |
+
|
312 |
+
This is useful when using a proxy and the Hugging Face Hub returns a URL with the default endpoint.
|
313 |
+
"""
|
314 |
+
endpoint = endpoint or constants.ENDPOINT
|
315 |
+
# check if a proxy has been set => if yes, update the returned URL to use the proxy
|
316 |
+
if endpoint not in (None, constants._HF_DEFAULT_ENDPOINT, constants._HF_DEFAULT_STAGING_ENDPOINT):
|
317 |
+
url = url.replace(constants._HF_DEFAULT_ENDPOINT, endpoint)
|
318 |
+
url = url.replace(constants._HF_DEFAULT_STAGING_ENDPOINT, endpoint)
|
319 |
+
return url
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_pagination.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains utilities to handle pagination on Huggingface Hub."""
|
16 |
+
|
17 |
+
from typing import Dict, Iterable, Optional
|
18 |
+
|
19 |
+
import requests
|
20 |
+
|
21 |
+
from . import get_session, hf_raise_for_status, logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def paginate(path: str, params: Dict, headers: Dict) -> Iterable:
|
28 |
+
"""Fetch a list of models/datasets/spaces and paginate through results.
|
29 |
+
|
30 |
+
This is using the same "Link" header format as GitHub.
|
31 |
+
See:
|
32 |
+
- https://requests.readthedocs.io/en/latest/api/#requests.Response.links
|
33 |
+
- https://docs.github.com/en/rest/guides/traversing-with-pagination#link-header
|
34 |
+
"""
|
35 |
+
session = get_session()
|
36 |
+
r = session.get(path, params=params, headers=headers)
|
37 |
+
hf_raise_for_status(r)
|
38 |
+
yield from r.json()
|
39 |
+
|
40 |
+
# Follow pages
|
41 |
+
# Next link already contains query params
|
42 |
+
next_page = _get_next_page(r)
|
43 |
+
while next_page is not None:
|
44 |
+
logger.debug(f"Pagination detected. Requesting next page: {next_page}")
|
45 |
+
r = session.get(next_page, headers=headers)
|
46 |
+
hf_raise_for_status(r)
|
47 |
+
yield from r.json()
|
48 |
+
next_page = _get_next_page(r)
|
49 |
+
|
50 |
+
|
51 |
+
def _get_next_page(response: requests.Response) -> Optional[str]:
|
52 |
+
return response.links.get("next", {}).get("url")
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_paths.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains utilities to handle paths in Huggingface Hub."""
|
16 |
+
|
17 |
+
from fnmatch import fnmatch
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Callable, Generator, Iterable, List, Optional, TypeVar, Union
|
20 |
+
|
21 |
+
|
22 |
+
T = TypeVar("T")
|
23 |
+
|
24 |
+
# Always ignore `.git` and `.huggingface` folders in commits
|
25 |
+
DEFAULT_IGNORE_PATTERNS = [
|
26 |
+
".git",
|
27 |
+
".git/*",
|
28 |
+
"*/.git",
|
29 |
+
"**/.git/**",
|
30 |
+
".huggingface",
|
31 |
+
".huggingface/*",
|
32 |
+
"*/.huggingface",
|
33 |
+
"**/.huggingface/**",
|
34 |
+
]
|
35 |
+
# Forbidden to commit these folders
|
36 |
+
FORBIDDEN_FOLDERS = [".git", ".huggingface"]
|
37 |
+
|
38 |
+
|
39 |
+
def filter_repo_objects(
|
40 |
+
items: Iterable[T],
|
41 |
+
*,
|
42 |
+
allow_patterns: Optional[Union[List[str], str]] = None,
|
43 |
+
ignore_patterns: Optional[Union[List[str], str]] = None,
|
44 |
+
key: Optional[Callable[[T], str]] = None,
|
45 |
+
) -> Generator[T, None, None]:
|
46 |
+
"""Filter repo objects based on an allowlist and a denylist.
|
47 |
+
|
48 |
+
Input must be a list of paths (`str` or `Path`) or a list of arbitrary objects.
|
49 |
+
In the later case, `key` must be provided and specifies a function of one argument
|
50 |
+
that is used to extract a path from each element in iterable.
|
51 |
+
|
52 |
+
Patterns are Unix shell-style wildcards which are NOT regular expressions. See
|
53 |
+
https://docs.python.org/3/library/fnmatch.html for more details.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
items (`Iterable`):
|
57 |
+
List of items to filter.
|
58 |
+
allow_patterns (`str` or `List[str]`, *optional*):
|
59 |
+
Patterns constituting the allowlist. If provided, item paths must match at
|
60 |
+
least one pattern from the allowlist.
|
61 |
+
ignore_patterns (`str` or `List[str]`, *optional*):
|
62 |
+
Patterns constituting the denylist. If provided, item paths must not match
|
63 |
+
any patterns from the denylist.
|
64 |
+
key (`Callable[[T], str]`, *optional*):
|
65 |
+
Single-argument function to extract a path from each item. If not provided,
|
66 |
+
the `items` must already be `str` or `Path`.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Filtered list of objects, as a generator.
|
70 |
+
|
71 |
+
Raises:
|
72 |
+
:class:`ValueError`:
|
73 |
+
If `key` is not provided and items are not `str` or `Path`.
|
74 |
+
|
75 |
+
Example usage with paths:
|
76 |
+
```python
|
77 |
+
>>> # Filter only PDFs that are not hidden.
|
78 |
+
>>> list(filter_repo_objects(
|
79 |
+
... ["aaa.PDF", "bbb.jpg", ".ccc.pdf", ".ddd.png"],
|
80 |
+
... allow_patterns=["*.pdf"],
|
81 |
+
... ignore_patterns=[".*"],
|
82 |
+
... ))
|
83 |
+
["aaa.pdf"]
|
84 |
+
```
|
85 |
+
|
86 |
+
Example usage with objects:
|
87 |
+
```python
|
88 |
+
>>> list(filter_repo_objects(
|
89 |
+
... [
|
90 |
+
... CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf")
|
91 |
+
... CommitOperationAdd(path_or_fileobj="/tmp/bbb.jpg", path_in_repo="bbb.jpg")
|
92 |
+
... CommitOperationAdd(path_or_fileobj="/tmp/.ccc.pdf", path_in_repo=".ccc.pdf")
|
93 |
+
... CommitOperationAdd(path_or_fileobj="/tmp/.ddd.png", path_in_repo=".ddd.png")
|
94 |
+
... ],
|
95 |
+
... allow_patterns=["*.pdf"],
|
96 |
+
... ignore_patterns=[".*"],
|
97 |
+
... key=lambda x: x.repo_in_path
|
98 |
+
... ))
|
99 |
+
[CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf")]
|
100 |
+
```
|
101 |
+
"""
|
102 |
+
if isinstance(allow_patterns, str):
|
103 |
+
allow_patterns = [allow_patterns]
|
104 |
+
|
105 |
+
if isinstance(ignore_patterns, str):
|
106 |
+
ignore_patterns = [ignore_patterns]
|
107 |
+
|
108 |
+
if key is None:
|
109 |
+
|
110 |
+
def _identity(item: T) -> str:
|
111 |
+
if isinstance(item, str):
|
112 |
+
return item
|
113 |
+
if isinstance(item, Path):
|
114 |
+
return str(item)
|
115 |
+
raise ValueError(f"Please provide `key` argument in `filter_repo_objects`: `{item}` is not a string.")
|
116 |
+
|
117 |
+
key = _identity # Items must be `str` or `Path`, otherwise raise ValueError
|
118 |
+
|
119 |
+
for item in items:
|
120 |
+
path = key(item)
|
121 |
+
|
122 |
+
# Skip if there's an allowlist and path doesn't match any
|
123 |
+
if allow_patterns is not None and not any(fnmatch(path, r) for r in allow_patterns):
|
124 |
+
continue
|
125 |
+
|
126 |
+
# Skip if there's a denylist and path matches any
|
127 |
+
if ignore_patterns is not None and any(fnmatch(path, r) for r in ignore_patterns):
|
128 |
+
continue
|
129 |
+
|
130 |
+
yield item
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_subprocess.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License
|
16 |
+
"""Contains utilities to easily handle subprocesses in `huggingface_hub`."""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import subprocess
|
20 |
+
import sys
|
21 |
+
from contextlib import contextmanager
|
22 |
+
from io import StringIO
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import IO, Generator, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
from .logging import get_logger
|
27 |
+
|
28 |
+
|
29 |
+
logger = get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
@contextmanager
|
33 |
+
def capture_output() -> Generator[StringIO, None, None]:
|
34 |
+
"""Capture output that is printed to terminal.
|
35 |
+
|
36 |
+
Taken from https://stackoverflow.com/a/34738440
|
37 |
+
|
38 |
+
Example:
|
39 |
+
```py
|
40 |
+
>>> with capture_output() as output:
|
41 |
+
... print("hello world")
|
42 |
+
>>> assert output.getvalue() == "hello world\n"
|
43 |
+
```
|
44 |
+
"""
|
45 |
+
output = StringIO()
|
46 |
+
previous_output = sys.stdout
|
47 |
+
sys.stdout = output
|
48 |
+
yield output
|
49 |
+
sys.stdout = previous_output
|
50 |
+
|
51 |
+
|
52 |
+
def run_subprocess(
|
53 |
+
command: Union[str, List[str]],
|
54 |
+
folder: Optional[Union[str, Path]] = None,
|
55 |
+
check=True,
|
56 |
+
**kwargs,
|
57 |
+
) -> subprocess.CompletedProcess:
|
58 |
+
"""
|
59 |
+
Method to run subprocesses. Calling this will capture the `stderr` and `stdout`,
|
60 |
+
please call `subprocess.run` manually in case you would like for them not to
|
61 |
+
be captured.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
command (`str` or `List[str]`):
|
65 |
+
The command to execute as a string or list of strings.
|
66 |
+
folder (`str`, *optional*):
|
67 |
+
The folder in which to run the command. Defaults to current working
|
68 |
+
directory (from `os.getcwd()`).
|
69 |
+
check (`bool`, *optional*, defaults to `True`):
|
70 |
+
Setting `check` to `True` will raise a `subprocess.CalledProcessError`
|
71 |
+
when the subprocess has a non-zero exit code.
|
72 |
+
kwargs (`Dict[str]`):
|
73 |
+
Keyword arguments to be passed to the `subprocess.run` underlying command.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
`subprocess.CompletedProcess`: The completed process.
|
77 |
+
"""
|
78 |
+
if isinstance(command, str):
|
79 |
+
command = command.split()
|
80 |
+
|
81 |
+
if isinstance(folder, Path):
|
82 |
+
folder = str(folder)
|
83 |
+
|
84 |
+
return subprocess.run(
|
85 |
+
command,
|
86 |
+
stderr=subprocess.PIPE,
|
87 |
+
stdout=subprocess.PIPE,
|
88 |
+
check=check,
|
89 |
+
encoding="utf-8",
|
90 |
+
errors="replace", # if not utf-8, replace char by �
|
91 |
+
cwd=folder or os.getcwd(),
|
92 |
+
**kwargs,
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
@contextmanager
|
97 |
+
def run_interactive_subprocess(
|
98 |
+
command: Union[str, List[str]],
|
99 |
+
folder: Optional[Union[str, Path]] = None,
|
100 |
+
**kwargs,
|
101 |
+
) -> Generator[Tuple[IO[str], IO[str]], None, None]:
|
102 |
+
"""Run a subprocess in an interactive mode in a context manager.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
command (`str` or `List[str]`):
|
106 |
+
The command to execute as a string or list of strings.
|
107 |
+
folder (`str`, *optional*):
|
108 |
+
The folder in which to run the command. Defaults to current working
|
109 |
+
directory (from `os.getcwd()`).
|
110 |
+
kwargs (`Dict[str]`):
|
111 |
+
Keyword arguments to be passed to the `subprocess.run` underlying command.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
`Tuple[IO[str], IO[str]]`: A tuple with `stdin` and `stdout` to interact
|
115 |
+
with the process (input and output are utf-8 encoded).
|
116 |
+
|
117 |
+
Example:
|
118 |
+
```python
|
119 |
+
with _interactive_subprocess("git credential-store get") as (stdin, stdout):
|
120 |
+
# Write to stdin
|
121 |
+
stdin.write("url=hf.co\nusername=obama\n".encode("utf-8"))
|
122 |
+
stdin.flush()
|
123 |
+
|
124 |
+
# Read from stdout
|
125 |
+
output = stdout.read().decode("utf-8")
|
126 |
+
```
|
127 |
+
"""
|
128 |
+
if isinstance(command, str):
|
129 |
+
command = command.split()
|
130 |
+
|
131 |
+
with subprocess.Popen(
|
132 |
+
command,
|
133 |
+
stdin=subprocess.PIPE,
|
134 |
+
stdout=subprocess.PIPE,
|
135 |
+
stderr=subprocess.STDOUT,
|
136 |
+
encoding="utf-8",
|
137 |
+
errors="replace", # if not utf-8, replace char by �
|
138 |
+
cwd=folder or os.getcwd(),
|
139 |
+
**kwargs,
|
140 |
+
) as process:
|
141 |
+
assert process.stdin is not None, "subprocess is opened as subprocess.PIPE"
|
142 |
+
assert process.stdout is not None, "subprocess is opened as subprocess.PIPE"
|
143 |
+
yield process.stdin, process.stdout
|
llmeval-env/lib/python3.10/site-packages/huggingface_hub/utils/_telemetry.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from queue import Queue
|
2 |
+
from threading import Lock, Thread
|
3 |
+
from typing import Dict, Optional, Union
|
4 |
+
from urllib.parse import quote
|
5 |
+
|
6 |
+
from .. import constants, logging
|
7 |
+
from . import build_hf_headers, get_session, hf_raise_for_status
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
# Telemetry is sent by a separate thread to avoid blocking the main thread.
|
13 |
+
# A daemon thread is started once and consume tasks from the _TELEMETRY_QUEUE.
|
14 |
+
# If the thread stops for some reason -shouldn't happen-, we restart a new one.
|
15 |
+
_TELEMETRY_THREAD: Optional[Thread] = None
|
16 |
+
_TELEMETRY_THREAD_LOCK = Lock() # Lock to avoid starting multiple threads in parallel
|
17 |
+
_TELEMETRY_QUEUE: Queue = Queue()
|
18 |
+
|
19 |
+
|
20 |
+
def send_telemetry(
|
21 |
+
topic: str,
|
22 |
+
*,
|
23 |
+
library_name: Optional[str] = None,
|
24 |
+
library_version: Optional[str] = None,
|
25 |
+
user_agent: Union[Dict, str, None] = None,
|
26 |
+
) -> None:
|
27 |
+
"""
|
28 |
+
Sends telemetry that helps tracking usage of different HF libraries.
|
29 |
+
|
30 |
+
This usage data helps us debug issues and prioritize new features. However, we understand that not everyone wants
|
31 |
+
to share additional information, and we respect your privacy. You can disable telemetry collection by setting the
|
32 |
+
`HF_HUB_DISABLE_TELEMETRY=1` as environment variable. Telemetry is also disabled in offline mode (i.e. when setting
|
33 |
+
`HF_HUB_OFFLINE=1`).
|
34 |
+
|
35 |
+
Telemetry collection is run in a separate thread to minimize impact for the user.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
topic (`str`):
|
39 |
+
Name of the topic that is monitored. The topic is directly used to build the URL. If you want to monitor
|
40 |
+
subtopics, just use "/" separation. Examples: "gradio", "transformers/examples",...
|
41 |
+
library_name (`str`, *optional*):
|
42 |
+
The name of the library that is making the HTTP request. Will be added to the user-agent header.
|
43 |
+
library_version (`str`, *optional*):
|
44 |
+
The version of the library that is making the HTTP request. Will be added to the user-agent header.
|
45 |
+
user_agent (`str`, `dict`, *optional*):
|
46 |
+
The user agent info in the form of a dictionary or a single string. It will be completed with information about the installed packages.
|
47 |
+
|
48 |
+
Example:
|
49 |
+
```py
|
50 |
+
>>> from huggingface_hub.utils import send_telemetry
|
51 |
+
|
52 |
+
# Send telemetry without library information
|
53 |
+
>>> send_telemetry("ping")
|
54 |
+
|
55 |
+
# Send telemetry to subtopic with library information
|
56 |
+
>>> send_telemetry("gradio/local_link", library_name="gradio", library_version="3.22.1")
|
57 |
+
|
58 |
+
# Send telemetry with additional data
|
59 |
+
>>> send_telemetry(
|
60 |
+
... topic="examples",
|
61 |
+
... library_name="transformers",
|
62 |
+
... library_version="4.26.0",
|
63 |
+
... user_agent={"pipeline": "text_classification", "framework": "flax"},
|
64 |
+
... )
|
65 |
+
```
|
66 |
+
"""
|
67 |
+
if constants.HF_HUB_OFFLINE or constants.HF_HUB_DISABLE_TELEMETRY:
|
68 |
+
return
|
69 |
+
|
70 |
+
_start_telemetry_thread() # starts thread only if doesn't exist yet
|
71 |
+
_TELEMETRY_QUEUE.put(
|
72 |
+
{"topic": topic, "library_name": library_name, "library_version": library_version, "user_agent": user_agent}
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
def _start_telemetry_thread():
|
77 |
+
"""Start a daemon thread to consume tasks from the telemetry queue.
|
78 |
+
|
79 |
+
If the thread is interrupted, start a new one.
|
80 |
+
"""
|
81 |
+
with _TELEMETRY_THREAD_LOCK: # avoid to start multiple threads if called concurrently
|
82 |
+
global _TELEMETRY_THREAD
|
83 |
+
if _TELEMETRY_THREAD is None or not _TELEMETRY_THREAD.is_alive():
|
84 |
+
_TELEMETRY_THREAD = Thread(target=_telemetry_worker, daemon=True)
|
85 |
+
_TELEMETRY_THREAD.start()
|
86 |
+
|
87 |
+
|
88 |
+
def _telemetry_worker():
|
89 |
+
"""Wait for a task and consume it."""
|
90 |
+
while True:
|
91 |
+
kwargs = _TELEMETRY_QUEUE.get()
|
92 |
+
_send_telemetry_in_thread(**kwargs)
|
93 |
+
_TELEMETRY_QUEUE.task_done()
|
94 |
+
|
95 |
+
|
96 |
+
def _send_telemetry_in_thread(
|
97 |
+
topic: str,
|
98 |
+
*,
|
99 |
+
library_name: Optional[str] = None,
|
100 |
+
library_version: Optional[str] = None,
|
101 |
+
user_agent: Union[Dict, str, None] = None,
|
102 |
+
) -> None:
|
103 |
+
"""Contains the actual data sending data to the Hub."""
|
104 |
+
path = "/".join(quote(part) for part in topic.split("/") if len(part) > 0)
|
105 |
+
try:
|
106 |
+
r = get_session().head(
|
107 |
+
f"{constants.ENDPOINT}/api/telemetry/{path}",
|
108 |
+
headers=build_hf_headers(
|
109 |
+
token=False, # no need to send a token for telemetry
|
110 |
+
library_name=library_name,
|
111 |
+
library_version=library_version,
|
112 |
+
user_agent=user_agent,
|
113 |
+
),
|
114 |
+
)
|
115 |
+
hf_raise_for_status(r)
|
116 |
+
except Exception as e:
|
117 |
+
# We don't want to error in case of connection errors of any kind.
|
118 |
+
logger.debug(f"Error while sending telemetry: {e}")
|
llmeval-env/lib/python3.10/site-packages/numexpr-2.10.0.dist-info/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2007,2008 David M. Cooke <[email protected]>
|
2 |
+
Copyright (c) 2009,2010 Francesc Alted <[email protected]>
|
3 |
+
Copyright (c) 2011- See AUTHORS.txt
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in
|
13 |
+
all copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21 |
+
THE SOFTWARE.
|
llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc
ADDED
Binary file (131 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc
ADDED
Binary file (28.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/datasets/__init__.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
================================
|
3 |
+
Datasets (:mod:`scipy.datasets`)
|
4 |
+
================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.datasets
|
7 |
+
|
8 |
+
Dataset Methods
|
9 |
+
===============
|
10 |
+
|
11 |
+
.. autosummary::
|
12 |
+
:toctree: generated/
|
13 |
+
|
14 |
+
ascent
|
15 |
+
face
|
16 |
+
electrocardiogram
|
17 |
+
|
18 |
+
Utility Methods
|
19 |
+
===============
|
20 |
+
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
download_all -- Download all the dataset files to specified path.
|
25 |
+
clear_cache -- Clear cached dataset directory.
|
26 |
+
|
27 |
+
|
28 |
+
Usage of Datasets
|
29 |
+
=================
|
30 |
+
|
31 |
+
SciPy dataset methods can be simply called as follows: ``'<dataset-name>()'``
|
32 |
+
This downloads the dataset files over the network once, and saves the cache,
|
33 |
+
before returning a `numpy.ndarray` object representing the dataset.
|
34 |
+
|
35 |
+
Note that the return data structure and data type might be different for
|
36 |
+
different dataset methods. For a more detailed example on usage, please look
|
37 |
+
into the particular dataset method documentation above.
|
38 |
+
|
39 |
+
|
40 |
+
How dataset retrieval and storage works
|
41 |
+
=======================================
|
42 |
+
|
43 |
+
SciPy dataset files are stored within individual github repositories under the
|
44 |
+
SciPy GitHub organization, following a naming convention as
|
45 |
+
``'dataset-<name>'``, for example `scipy.datasets.face` files live at
|
46 |
+
https://github.com/scipy/dataset-face. The `scipy.datasets` submodule utilizes
|
47 |
+
and depends on `Pooch <https://www.fatiando.org/pooch/latest/>`_, a Python
|
48 |
+
package built to simplify fetching data files. Pooch uses these repos to
|
49 |
+
retrieve the respective dataset files when calling the dataset function.
|
50 |
+
|
51 |
+
A registry of all the datasets, essentially a mapping of filenames with their
|
52 |
+
SHA256 hash and repo urls are maintained, which Pooch uses to handle and verify
|
53 |
+
the downloads on function call. After downloading the dataset once, the files
|
54 |
+
are saved in the system cache directory under ``'scipy-data'``.
|
55 |
+
|
56 |
+
Dataset cache locations may vary on different platforms.
|
57 |
+
|
58 |
+
For macOS::
|
59 |
+
|
60 |
+
'~/Library/Caches/scipy-data'
|
61 |
+
|
62 |
+
For Linux and other Unix-like platforms::
|
63 |
+
|
64 |
+
'~/.cache/scipy-data' # or the value of the XDG_CACHE_HOME env var, if defined
|
65 |
+
|
66 |
+
For Windows::
|
67 |
+
|
68 |
+
'C:\\Users\\<user>\\AppData\\Local\\<AppAuthor>\\scipy-data\\Cache'
|
69 |
+
|
70 |
+
|
71 |
+
In environments with constrained network connectivity for various security
|
72 |
+
reasons or on systems without continuous internet connections, one may manually
|
73 |
+
load the cache of the datasets by placing the contents of the dataset repo in
|
74 |
+
the above mentioned cache directory to avoid fetching dataset errors without
|
75 |
+
the internet connectivity.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
from ._fetchers import face, ascent, electrocardiogram
|
81 |
+
from ._download_all import download_all
|
82 |
+
from ._utils import clear_cache
|
83 |
+
|
84 |
+
__all__ = ['ascent', 'electrocardiogram', 'face',
|
85 |
+
'download_all', 'clear_cache']
|
86 |
+
|
87 |
+
|
88 |
+
from scipy._lib._testutils import PytestTester
|
89 |
+
test = PytestTester(__name__)
|
90 |
+
del PytestTester
|
llmeval-env/lib/python3.10/site-packages/scipy/datasets/_download_all.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Platform independent script to download all the
|
3 |
+
`scipy.datasets` module data files.
|
4 |
+
This doesn't require a full scipy build.
|
5 |
+
|
6 |
+
Run: python _download_all.py <download_dir>
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
try:
|
11 |
+
import pooch
|
12 |
+
except ImportError:
|
13 |
+
pooch = None
|
14 |
+
|
15 |
+
|
16 |
+
if __package__ is None or __package__ == '':
|
17 |
+
# Running as python script, use absolute import
|
18 |
+
import _registry # type: ignore
|
19 |
+
else:
|
20 |
+
# Running as python module, use relative import
|
21 |
+
from . import _registry
|
22 |
+
|
23 |
+
|
24 |
+
def download_all(path=None):
|
25 |
+
"""
|
26 |
+
Utility method to download all the dataset files
|
27 |
+
for `scipy.datasets` module.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
path : str, optional
|
32 |
+
Directory path to download all the dataset files.
|
33 |
+
If None, default to the system cache_dir detected by pooch.
|
34 |
+
"""
|
35 |
+
if pooch is None:
|
36 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
37 |
+
"for scipy.datasets module. Please use pip or "
|
38 |
+
"conda to install 'pooch'.")
|
39 |
+
if path is None:
|
40 |
+
path = pooch.os_cache('scipy-data')
|
41 |
+
for dataset_name, dataset_hash in _registry.registry.items():
|
42 |
+
pooch.retrieve(url=_registry.registry_urls[dataset_name],
|
43 |
+
known_hash=dataset_hash,
|
44 |
+
fname=dataset_name, path=path)
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
parser = argparse.ArgumentParser(description='Download SciPy data files.')
|
49 |
+
parser.add_argument("path", nargs='?', type=str,
|
50 |
+
default=pooch.os_cache('scipy-data'),
|
51 |
+
help="Directory path to download all the data files.")
|
52 |
+
args = parser.parse_args()
|
53 |
+
download_all(args.path)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
llmeval-env/lib/python3.10/site-packages/scipy/datasets/_fetchers.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import array, frombuffer, load
|
2 |
+
from ._registry import registry, registry_urls
|
3 |
+
|
4 |
+
try:
|
5 |
+
import pooch
|
6 |
+
except ImportError:
|
7 |
+
pooch = None
|
8 |
+
data_fetcher = None
|
9 |
+
else:
|
10 |
+
data_fetcher = pooch.create(
|
11 |
+
# Use the default cache folder for the operating system
|
12 |
+
# Pooch uses appdirs (https://github.com/ActiveState/appdirs) to
|
13 |
+
# select an appropriate directory for the cache on each platform.
|
14 |
+
path=pooch.os_cache("scipy-data"),
|
15 |
+
|
16 |
+
# The remote data is on Github
|
17 |
+
# base_url is a required param, even though we override this
|
18 |
+
# using individual urls in the registry.
|
19 |
+
base_url="https://github.com/scipy/",
|
20 |
+
registry=registry,
|
21 |
+
urls=registry_urls
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def fetch_data(dataset_name, data_fetcher=data_fetcher):
|
26 |
+
if data_fetcher is None:
|
27 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
28 |
+
"for scipy.datasets module. Please use pip or "
|
29 |
+
"conda to install 'pooch'.")
|
30 |
+
# The "fetch" method returns the full path to the downloaded data file.
|
31 |
+
return data_fetcher.fetch(dataset_name)
|
32 |
+
|
33 |
+
|
34 |
+
def ascent():
|
35 |
+
"""
|
36 |
+
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy
|
37 |
+
use in demos.
|
38 |
+
|
39 |
+
The image is derived from accent-to-the-top.jpg at
|
40 |
+
http://www.public-domain-image.com/people-public-domain-images-pictures/
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
None
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
ascent : ndarray
|
49 |
+
convenient image to use for testing and demonstration
|
50 |
+
|
51 |
+
Examples
|
52 |
+
--------
|
53 |
+
>>> import scipy.datasets
|
54 |
+
>>> ascent = scipy.datasets.ascent()
|
55 |
+
>>> ascent.shape
|
56 |
+
(512, 512)
|
57 |
+
>>> ascent.max()
|
58 |
+
255
|
59 |
+
|
60 |
+
>>> import matplotlib.pyplot as plt
|
61 |
+
>>> plt.gray()
|
62 |
+
>>> plt.imshow(ascent)
|
63 |
+
>>> plt.show()
|
64 |
+
|
65 |
+
"""
|
66 |
+
import pickle
|
67 |
+
|
68 |
+
# The file will be downloaded automatically the first time this is run,
|
69 |
+
# returning the path to the downloaded file. Afterwards, Pooch finds
|
70 |
+
# it in the local cache and doesn't repeat the download.
|
71 |
+
fname = fetch_data("ascent.dat")
|
72 |
+
# Now we just need to load it with our standard Python tools.
|
73 |
+
with open(fname, 'rb') as f:
|
74 |
+
ascent = array(pickle.load(f))
|
75 |
+
return ascent
|
76 |
+
|
77 |
+
|
78 |
+
def electrocardiogram():
|
79 |
+
"""
|
80 |
+
Load an electrocardiogram as an example for a 1-D signal.
|
81 |
+
|
82 |
+
The returned signal is a 5 minute long electrocardiogram (ECG), a medical
|
83 |
+
recording of the heart's electrical activity, sampled at 360 Hz.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
ecg : ndarray
|
88 |
+
The electrocardiogram in millivolt (mV) sampled at 360 Hz.
|
89 |
+
|
90 |
+
Notes
|
91 |
+
-----
|
92 |
+
The provided signal is an excerpt (19:35 to 24:35) from the `record 208`_
|
93 |
+
(lead MLII) provided by the MIT-BIH Arrhythmia Database [1]_ on
|
94 |
+
PhysioNet [2]_. The excerpt includes noise induced artifacts, typical
|
95 |
+
heartbeats as well as pathological changes.
|
96 |
+
|
97 |
+
.. _record 208: https://physionet.org/physiobank/database/html/mitdbdir/records.htm#208
|
98 |
+
|
99 |
+
.. versionadded:: 1.1.0
|
100 |
+
|
101 |
+
References
|
102 |
+
----------
|
103 |
+
.. [1] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database.
|
104 |
+
IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001).
|
105 |
+
(PMID: 11446209); :doi:`10.13026/C2F305`
|
106 |
+
.. [2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh,
|
107 |
+
Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank,
|
108 |
+
PhysioToolkit, and PhysioNet: Components of a New Research Resource
|
109 |
+
for Complex Physiologic Signals. Circulation 101(23):e215-e220;
|
110 |
+
:doi:`10.1161/01.CIR.101.23.e215`
|
111 |
+
|
112 |
+
Examples
|
113 |
+
--------
|
114 |
+
>>> from scipy.datasets import electrocardiogram
|
115 |
+
>>> ecg = electrocardiogram()
|
116 |
+
>>> ecg
|
117 |
+
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385])
|
118 |
+
>>> ecg.shape, ecg.mean(), ecg.std()
|
119 |
+
((108000,), -0.16510875, 0.5992473991177294)
|
120 |
+
|
121 |
+
As stated the signal features several areas with a different morphology.
|
122 |
+
E.g., the first few seconds show the electrical activity of a heart in
|
123 |
+
normal sinus rhythm as seen below.
|
124 |
+
|
125 |
+
>>> import numpy as np
|
126 |
+
>>> import matplotlib.pyplot as plt
|
127 |
+
>>> fs = 360
|
128 |
+
>>> time = np.arange(ecg.size) / fs
|
129 |
+
>>> plt.plot(time, ecg)
|
130 |
+
>>> plt.xlabel("time in s")
|
131 |
+
>>> plt.ylabel("ECG in mV")
|
132 |
+
>>> plt.xlim(9, 10.2)
|
133 |
+
>>> plt.ylim(-1, 1.5)
|
134 |
+
>>> plt.show()
|
135 |
+
|
136 |
+
After second 16, however, the first premature ventricular contractions,
|
137 |
+
also called extrasystoles, appear. These have a different morphology
|
138 |
+
compared to typical heartbeats. The difference can easily be observed
|
139 |
+
in the following plot.
|
140 |
+
|
141 |
+
>>> plt.plot(time, ecg)
|
142 |
+
>>> plt.xlabel("time in s")
|
143 |
+
>>> plt.ylabel("ECG in mV")
|
144 |
+
>>> plt.xlim(46.5, 50)
|
145 |
+
>>> plt.ylim(-2, 1.5)
|
146 |
+
>>> plt.show()
|
147 |
+
|
148 |
+
At several points large artifacts disturb the recording, e.g.:
|
149 |
+
|
150 |
+
>>> plt.plot(time, ecg)
|
151 |
+
>>> plt.xlabel("time in s")
|
152 |
+
>>> plt.ylabel("ECG in mV")
|
153 |
+
>>> plt.xlim(207, 215)
|
154 |
+
>>> plt.ylim(-2, 3.5)
|
155 |
+
>>> plt.show()
|
156 |
+
|
157 |
+
Finally, examining the power spectrum reveals that most of the biosignal is
|
158 |
+
made up of lower frequencies. At 60 Hz the noise induced by the mains
|
159 |
+
electricity can be clearly observed.
|
160 |
+
|
161 |
+
>>> from scipy.signal import welch
|
162 |
+
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
|
163 |
+
>>> plt.semilogy(f, Pxx)
|
164 |
+
>>> plt.xlabel("Frequency in Hz")
|
165 |
+
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
|
166 |
+
>>> plt.xlim(f[[0, -1]])
|
167 |
+
>>> plt.show()
|
168 |
+
"""
|
169 |
+
fname = fetch_data("ecg.dat")
|
170 |
+
with load(fname) as file:
|
171 |
+
ecg = file["ecg"].astype(int) # np.uint16 -> int
|
172 |
+
# Convert raw output of ADC to mV: (ecg - adc_zero) / adc_gain
|
173 |
+
ecg = (ecg - 1024) / 200.0
|
174 |
+
return ecg
|
175 |
+
|
176 |
+
|
177 |
+
def face(gray=False):
|
178 |
+
"""
|
179 |
+
Get a 1024 x 768, color image of a raccoon face.
|
180 |
+
|
181 |
+
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
gray : bool, optional
|
186 |
+
If True return 8-bit grey-scale image, otherwise return a color image
|
187 |
+
|
188 |
+
Returns
|
189 |
+
-------
|
190 |
+
face : ndarray
|
191 |
+
image of a raccoon face
|
192 |
+
|
193 |
+
Examples
|
194 |
+
--------
|
195 |
+
>>> import scipy.datasets
|
196 |
+
>>> face = scipy.datasets.face()
|
197 |
+
>>> face.shape
|
198 |
+
(768, 1024, 3)
|
199 |
+
>>> face.max()
|
200 |
+
255
|
201 |
+
>>> face.dtype
|
202 |
+
dtype('uint8')
|
203 |
+
|
204 |
+
>>> import matplotlib.pyplot as plt
|
205 |
+
>>> plt.gray()
|
206 |
+
>>> plt.imshow(face)
|
207 |
+
>>> plt.show()
|
208 |
+
|
209 |
+
"""
|
210 |
+
import bz2
|
211 |
+
fname = fetch_data("face.dat")
|
212 |
+
with open(fname, 'rb') as f:
|
213 |
+
rawdata = f.read()
|
214 |
+
face_data = bz2.decompress(rawdata)
|
215 |
+
face = frombuffer(face_data, dtype='uint8')
|
216 |
+
face.shape = (768, 1024, 3)
|
217 |
+
if gray is True:
|
218 |
+
face = (0.21 * face[:, :, 0] + 0.71 * face[:, :, 1] +
|
219 |
+
0.07 * face[:, :, 2]).astype('uint8')
|
220 |
+
return face
|
llmeval-env/lib/python3.10/site-packages/scipy/datasets/_registry.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##########################################################################
|
2 |
+
# This file serves as the dataset registry for SciPy Datasets SubModule.
|
3 |
+
##########################################################################
|
4 |
+
|
5 |
+
|
6 |
+
# To generate the SHA256 hash, use the command
|
7 |
+
# openssl sha256 <filename>
|
8 |
+
registry = {
|
9 |
+
"ascent.dat": "03ce124c1afc880f87b55f6b061110e2e1e939679184f5614e38dacc6c1957e2",
|
10 |
+
"ecg.dat": "f20ad3365fb9b7f845d0e5c48b6fe67081377ee466c3a220b7f69f35c8958baf",
|
11 |
+
"face.dat": "9d8b0b4d081313e2b485748c770472e5a95ed1738146883d84c7030493e82886"
|
12 |
+
}
|
13 |
+
|
14 |
+
registry_urls = {
|
15 |
+
"ascent.dat": "https://raw.githubusercontent.com/scipy/dataset-ascent/main/ascent.dat",
|
16 |
+
"ecg.dat": "https://raw.githubusercontent.com/scipy/dataset-ecg/main/ecg.dat",
|
17 |
+
"face.dat": "https://raw.githubusercontent.com/scipy/dataset-face/main/face.dat"
|
18 |
+
}
|
19 |
+
|
20 |
+
# dataset method mapping with their associated filenames
|
21 |
+
# <method_name> : ["filename1", "filename2", ...]
|
22 |
+
method_files_map = {
|
23 |
+
"ascent": ["ascent.dat"],
|
24 |
+
"electrocardiogram": ["ecg.dat"],
|
25 |
+
"face": ["face.dat"]
|
26 |
+
}
|
llmeval-env/lib/python3.10/site-packages/scipy/datasets/_utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from ._registry import method_files_map
|
4 |
+
|
5 |
+
try:
|
6 |
+
import platformdirs
|
7 |
+
except ImportError:
|
8 |
+
platformdirs = None # type: ignore[assignment]
|
9 |
+
|
10 |
+
|
11 |
+
def _clear_cache(datasets, cache_dir=None, method_map=None):
|
12 |
+
if method_map is None:
|
13 |
+
# Use SciPy Datasets method map
|
14 |
+
method_map = method_files_map
|
15 |
+
if cache_dir is None:
|
16 |
+
# Use default cache_dir path
|
17 |
+
if platformdirs is None:
|
18 |
+
# platformdirs is pooch dependency
|
19 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
20 |
+
"for scipy.datasets module. Please use pip or "
|
21 |
+
"conda to install 'pooch'.")
|
22 |
+
cache_dir = platformdirs.user_cache_dir("scipy-data")
|
23 |
+
|
24 |
+
if not os.path.exists(cache_dir):
|
25 |
+
print(f"Cache Directory {cache_dir} doesn't exist. Nothing to clear.")
|
26 |
+
return
|
27 |
+
|
28 |
+
if datasets is None:
|
29 |
+
print(f"Cleaning the cache directory {cache_dir}!")
|
30 |
+
shutil.rmtree(cache_dir)
|
31 |
+
else:
|
32 |
+
if not isinstance(datasets, (list, tuple)):
|
33 |
+
# single dataset method passed should be converted to list
|
34 |
+
datasets = [datasets, ]
|
35 |
+
for dataset in datasets:
|
36 |
+
assert callable(dataset)
|
37 |
+
dataset_name = dataset.__name__ # Name of the dataset method
|
38 |
+
if dataset_name not in method_map:
|
39 |
+
raise ValueError(f"Dataset method {dataset_name} doesn't "
|
40 |
+
"exist. Please check if the passed dataset "
|
41 |
+
"is a subset of the following dataset "
|
42 |
+
f"methods: {list(method_map.keys())}")
|
43 |
+
|
44 |
+
data_files = method_map[dataset_name]
|
45 |
+
data_filepaths = [os.path.join(cache_dir, file)
|
46 |
+
for file in data_files]
|
47 |
+
for data_filepath in data_filepaths:
|
48 |
+
if os.path.exists(data_filepath):
|
49 |
+
print("Cleaning the file "
|
50 |
+
f"{os.path.split(data_filepath)[1]} "
|
51 |
+
f"for dataset {dataset_name}")
|
52 |
+
os.remove(data_filepath)
|
53 |
+
else:
|
54 |
+
print(f"Path {data_filepath} doesn't exist. "
|
55 |
+
"Nothing to clear.")
|
56 |
+
|
57 |
+
|
58 |
+
def clear_cache(datasets=None):
|
59 |
+
"""
|
60 |
+
Cleans the scipy datasets cache directory.
|
61 |
+
|
62 |
+
If a scipy.datasets method or a list/tuple of the same is
|
63 |
+
provided, then clear_cache removes all the data files
|
64 |
+
associated to the passed dataset method callable(s).
|
65 |
+
|
66 |
+
By default, it removes all the cached data files.
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
datasets : callable or list/tuple of callable or None
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
>>> from scipy import datasets
|
75 |
+
>>> ascent_array = datasets.ascent()
|
76 |
+
>>> ascent_array.shape
|
77 |
+
(512, 512)
|
78 |
+
>>> datasets.clear_cache([datasets.ascent])
|
79 |
+
Cleaning the file ascent.dat for dataset ascent
|
80 |
+
"""
|
81 |
+
_clear_cache(datasets)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_arraytools.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions for acting on a axis of an array.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def axis_slice(a, start=None, stop=None, step=None, axis=-1):
|
8 |
+
"""Take a slice along axis 'axis' from 'a'.
|
9 |
+
|
10 |
+
Parameters
|
11 |
+
----------
|
12 |
+
a : numpy.ndarray
|
13 |
+
The array to be sliced.
|
14 |
+
start, stop, step : int or None
|
15 |
+
The slice parameters.
|
16 |
+
axis : int, optional
|
17 |
+
The axis of `a` to be sliced.
|
18 |
+
|
19 |
+
Examples
|
20 |
+
--------
|
21 |
+
>>> import numpy as np
|
22 |
+
>>> from scipy.signal._arraytools import axis_slice
|
23 |
+
>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
24 |
+
>>> axis_slice(a, start=0, stop=1, axis=1)
|
25 |
+
array([[1],
|
26 |
+
[4],
|
27 |
+
[7]])
|
28 |
+
>>> axis_slice(a, start=1, axis=0)
|
29 |
+
array([[4, 5, 6],
|
30 |
+
[7, 8, 9]])
|
31 |
+
|
32 |
+
Notes
|
33 |
+
-----
|
34 |
+
The keyword arguments start, stop and step are used by calling
|
35 |
+
slice(start, stop, step). This implies axis_slice() does not
|
36 |
+
handle its arguments the exactly the same as indexing. To select
|
37 |
+
a single index k, for example, use
|
38 |
+
axis_slice(a, start=k, stop=k+1)
|
39 |
+
In this case, the length of the axis 'axis' in the result will
|
40 |
+
be 1; the trivial dimension is not removed. (Use numpy.squeeze()
|
41 |
+
to remove trivial axes.)
|
42 |
+
"""
|
43 |
+
a_slice = [slice(None)] * a.ndim
|
44 |
+
a_slice[axis] = slice(start, stop, step)
|
45 |
+
b = a[tuple(a_slice)]
|
46 |
+
return b
|
47 |
+
|
48 |
+
|
49 |
+
def axis_reverse(a, axis=-1):
|
50 |
+
"""Reverse the 1-D slices of `a` along axis `axis`.
|
51 |
+
|
52 |
+
Returns axis_slice(a, step=-1, axis=axis).
|
53 |
+
"""
|
54 |
+
return axis_slice(a, step=-1, axis=axis)
|
55 |
+
|
56 |
+
|
57 |
+
def odd_ext(x, n, axis=-1):
|
58 |
+
"""
|
59 |
+
Odd extension at the boundaries of an array
|
60 |
+
|
61 |
+
Generate a new ndarray by making an odd extension of `x` along an axis.
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
x : ndarray
|
66 |
+
The array to be extended.
|
67 |
+
n : int
|
68 |
+
The number of elements by which to extend `x` at each end of the axis.
|
69 |
+
axis : int, optional
|
70 |
+
The axis along which to extend `x`. Default is -1.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
>>> import numpy as np
|
75 |
+
>>> from scipy.signal._arraytools import odd_ext
|
76 |
+
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
|
77 |
+
>>> odd_ext(a, 2)
|
78 |
+
array([[-1, 0, 1, 2, 3, 4, 5, 6, 7],
|
79 |
+
[-4, -1, 0, 1, 4, 9, 16, 23, 28]])
|
80 |
+
|
81 |
+
Odd extension is a "180 degree rotation" at the endpoints of the original
|
82 |
+
array:
|
83 |
+
|
84 |
+
>>> t = np.linspace(0, 1.5, 100)
|
85 |
+
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
|
86 |
+
>>> b = odd_ext(a, 40)
|
87 |
+
>>> import matplotlib.pyplot as plt
|
88 |
+
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='odd extension')
|
89 |
+
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
|
90 |
+
>>> plt.legend(loc='best')
|
91 |
+
>>> plt.show()
|
92 |
+
"""
|
93 |
+
if n < 1:
|
94 |
+
return x
|
95 |
+
if n > x.shape[axis] - 1:
|
96 |
+
raise ValueError(("The extension length n (%d) is too big. " +
|
97 |
+
"It must not exceed x.shape[axis]-1, which is %d.")
|
98 |
+
% (n, x.shape[axis] - 1))
|
99 |
+
left_end = axis_slice(x, start=0, stop=1, axis=axis)
|
100 |
+
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
|
101 |
+
right_end = axis_slice(x, start=-1, axis=axis)
|
102 |
+
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
|
103 |
+
ext = np.concatenate((2 * left_end - left_ext,
|
104 |
+
x,
|
105 |
+
2 * right_end - right_ext),
|
106 |
+
axis=axis)
|
107 |
+
return ext
|
108 |
+
|
109 |
+
|
110 |
+
def even_ext(x, n, axis=-1):
|
111 |
+
"""
|
112 |
+
Even extension at the boundaries of an array
|
113 |
+
|
114 |
+
Generate a new ndarray by making an even extension of `x` along an axis.
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
----------
|
118 |
+
x : ndarray
|
119 |
+
The array to be extended.
|
120 |
+
n : int
|
121 |
+
The number of elements by which to extend `x` at each end of the axis.
|
122 |
+
axis : int, optional
|
123 |
+
The axis along which to extend `x`. Default is -1.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
--------
|
127 |
+
>>> import numpy as np
|
128 |
+
>>> from scipy.signal._arraytools import even_ext
|
129 |
+
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
|
130 |
+
>>> even_ext(a, 2)
|
131 |
+
array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3],
|
132 |
+
[ 4, 1, 0, 1, 4, 9, 16, 9, 4]])
|
133 |
+
|
134 |
+
Even extension is a "mirror image" at the boundaries of the original array:
|
135 |
+
|
136 |
+
>>> t = np.linspace(0, 1.5, 100)
|
137 |
+
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
|
138 |
+
>>> b = even_ext(a, 40)
|
139 |
+
>>> import matplotlib.pyplot as plt
|
140 |
+
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='even extension')
|
141 |
+
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
|
142 |
+
>>> plt.legend(loc='best')
|
143 |
+
>>> plt.show()
|
144 |
+
"""
|
145 |
+
if n < 1:
|
146 |
+
return x
|
147 |
+
if n > x.shape[axis] - 1:
|
148 |
+
raise ValueError(("The extension length n (%d) is too big. " +
|
149 |
+
"It must not exceed x.shape[axis]-1, which is %d.")
|
150 |
+
% (n, x.shape[axis] - 1))
|
151 |
+
left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis)
|
152 |
+
right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis)
|
153 |
+
ext = np.concatenate((left_ext,
|
154 |
+
x,
|
155 |
+
right_ext),
|
156 |
+
axis=axis)
|
157 |
+
return ext
|
158 |
+
|
159 |
+
|
160 |
+
def const_ext(x, n, axis=-1):
|
161 |
+
"""
|
162 |
+
Constant extension at the boundaries of an array
|
163 |
+
|
164 |
+
Generate a new ndarray that is a constant extension of `x` along an axis.
|
165 |
+
|
166 |
+
The extension repeats the values at the first and last element of
|
167 |
+
the axis.
|
168 |
+
|
169 |
+
Parameters
|
170 |
+
----------
|
171 |
+
x : ndarray
|
172 |
+
The array to be extended.
|
173 |
+
n : int
|
174 |
+
The number of elements by which to extend `x` at each end of the axis.
|
175 |
+
axis : int, optional
|
176 |
+
The axis along which to extend `x`. Default is -1.
|
177 |
+
|
178 |
+
Examples
|
179 |
+
--------
|
180 |
+
>>> import numpy as np
|
181 |
+
>>> from scipy.signal._arraytools import const_ext
|
182 |
+
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
|
183 |
+
>>> const_ext(a, 2)
|
184 |
+
array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5],
|
185 |
+
[ 0, 0, 0, 1, 4, 9, 16, 16, 16]])
|
186 |
+
|
187 |
+
Constant extension continues with the same values as the endpoints of the
|
188 |
+
array:
|
189 |
+
|
190 |
+
>>> t = np.linspace(0, 1.5, 100)
|
191 |
+
>>> a = 0.9 * np.sin(2 * np.pi * t**2)
|
192 |
+
>>> b = const_ext(a, 40)
|
193 |
+
>>> import matplotlib.pyplot as plt
|
194 |
+
>>> plt.plot(np.arange(-40, 140), b, 'b', lw=1, label='constant extension')
|
195 |
+
>>> plt.plot(np.arange(100), a, 'r', lw=2, label='original')
|
196 |
+
>>> plt.legend(loc='best')
|
197 |
+
>>> plt.show()
|
198 |
+
"""
|
199 |
+
if n < 1:
|
200 |
+
return x
|
201 |
+
left_end = axis_slice(x, start=0, stop=1, axis=axis)
|
202 |
+
ones_shape = [1] * x.ndim
|
203 |
+
ones_shape[axis] = n
|
204 |
+
ones = np.ones(ones_shape, dtype=x.dtype)
|
205 |
+
left_ext = ones * left_end
|
206 |
+
right_end = axis_slice(x, start=-1, axis=axis)
|
207 |
+
right_ext = ones * right_end
|
208 |
+
ext = np.concatenate((left_ext,
|
209 |
+
x,
|
210 |
+
right_ext),
|
211 |
+
axis=axis)
|
212 |
+
return ext
|
213 |
+
|
214 |
+
|
215 |
+
def zero_ext(x, n, axis=-1):
|
216 |
+
"""
|
217 |
+
Zero padding at the boundaries of an array
|
218 |
+
|
219 |
+
Generate a new ndarray that is a zero-padded extension of `x` along
|
220 |
+
an axis.
|
221 |
+
|
222 |
+
Parameters
|
223 |
+
----------
|
224 |
+
x : ndarray
|
225 |
+
The array to be extended.
|
226 |
+
n : int
|
227 |
+
The number of elements by which to extend `x` at each end of the
|
228 |
+
axis.
|
229 |
+
axis : int, optional
|
230 |
+
The axis along which to extend `x`. Default is -1.
|
231 |
+
|
232 |
+
Examples
|
233 |
+
--------
|
234 |
+
>>> import numpy as np
|
235 |
+
>>> from scipy.signal._arraytools import zero_ext
|
236 |
+
>>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]])
|
237 |
+
>>> zero_ext(a, 2)
|
238 |
+
array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0],
|
239 |
+
[ 0, 0, 0, 1, 4, 9, 16, 0, 0]])
|
240 |
+
"""
|
241 |
+
if n < 1:
|
242 |
+
return x
|
243 |
+
zeros_shape = list(x.shape)
|
244 |
+
zeros_shape[axis] = n
|
245 |
+
zeros = np.zeros(zeros_shape, dtype=x.dtype)
|
246 |
+
ext = np.concatenate((zeros, x, zeros), axis=axis)
|
247 |
+
return ext
|
248 |
+
|
249 |
+
|
250 |
+
def _validate_fs(fs, allow_none=True):
|
251 |
+
"""
|
252 |
+
Check if the given sampling frequency is a scalar and raises an exception
|
253 |
+
otherwise. If allow_none is False, also raises an exception for none
|
254 |
+
sampling rates. Returns the sampling frequency as float or none if the
|
255 |
+
input is none.
|
256 |
+
"""
|
257 |
+
if fs is None:
|
258 |
+
if not allow_none:
|
259 |
+
raise ValueError("Sampling frequency can not be none.")
|
260 |
+
else: # should be float
|
261 |
+
if not np.isscalar(fs):
|
262 |
+
raise ValueError("Sampling frequency fs must be a single scalar.")
|
263 |
+
fs = float(fs)
|
264 |
+
return fs
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_czt.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This program is public domain
|
2 |
+
# Authors: Paul Kienzle, Nadav Horesh
|
3 |
+
"""
|
4 |
+
Chirp z-transform.
|
5 |
+
|
6 |
+
We provide two interfaces to the chirp z-transform: an object interface
|
7 |
+
which precalculates part of the transform and can be applied efficiently
|
8 |
+
to many different data sets, and a functional interface which is applied
|
9 |
+
only to the given data set.
|
10 |
+
|
11 |
+
Transforms
|
12 |
+
----------
|
13 |
+
|
14 |
+
CZT : callable (x, axis=-1) -> array
|
15 |
+
Define a chirp z-transform that can be applied to different signals.
|
16 |
+
ZoomFFT : callable (x, axis=-1) -> array
|
17 |
+
Define a Fourier transform on a range of frequencies.
|
18 |
+
|
19 |
+
Functions
|
20 |
+
---------
|
21 |
+
|
22 |
+
czt : array
|
23 |
+
Compute the chirp z-transform for a signal.
|
24 |
+
zoom_fft : array
|
25 |
+
Compute the Fourier transform on a range of frequencies.
|
26 |
+
"""
|
27 |
+
|
28 |
+
import cmath
|
29 |
+
import numbers
|
30 |
+
import numpy as np
|
31 |
+
from numpy import pi, arange
|
32 |
+
from scipy.fft import fft, ifft, next_fast_len
|
33 |
+
|
34 |
+
__all__ = ['czt', 'zoom_fft', 'CZT', 'ZoomFFT', 'czt_points']
|
35 |
+
|
36 |
+
|
37 |
+
def _validate_sizes(n, m):
|
38 |
+
if n < 1 or not isinstance(n, numbers.Integral):
|
39 |
+
raise ValueError('Invalid number of CZT data '
|
40 |
+
f'points ({n}) specified. '
|
41 |
+
'n must be positive and integer type.')
|
42 |
+
|
43 |
+
if m is None:
|
44 |
+
m = n
|
45 |
+
elif m < 1 or not isinstance(m, numbers.Integral):
|
46 |
+
raise ValueError('Invalid number of CZT output '
|
47 |
+
f'points ({m}) specified. '
|
48 |
+
'm must be positive and integer type.')
|
49 |
+
|
50 |
+
return m
|
51 |
+
|
52 |
+
|
53 |
+
def czt_points(m, w=None, a=1+0j):
|
54 |
+
"""
|
55 |
+
Return the points at which the chirp z-transform is computed.
|
56 |
+
|
57 |
+
Parameters
|
58 |
+
----------
|
59 |
+
m : int
|
60 |
+
The number of points desired.
|
61 |
+
w : complex, optional
|
62 |
+
The ratio between points in each step.
|
63 |
+
Defaults to equally spaced points around the entire unit circle.
|
64 |
+
a : complex, optional
|
65 |
+
The starting point in the complex plane. Default is 1+0j.
|
66 |
+
|
67 |
+
Returns
|
68 |
+
-------
|
69 |
+
out : ndarray
|
70 |
+
The points in the Z plane at which `CZT` samples the z-transform,
|
71 |
+
when called with arguments `m`, `w`, and `a`, as complex numbers.
|
72 |
+
|
73 |
+
See Also
|
74 |
+
--------
|
75 |
+
CZT : Class that creates a callable chirp z-transform function.
|
76 |
+
czt : Convenience function for quickly calculating CZT.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
--------
|
80 |
+
Plot the points of a 16-point FFT:
|
81 |
+
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> from scipy.signal import czt_points
|
84 |
+
>>> points = czt_points(16)
|
85 |
+
>>> import matplotlib.pyplot as plt
|
86 |
+
>>> plt.plot(points.real, points.imag, 'o')
|
87 |
+
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
|
88 |
+
>>> plt.axis('equal')
|
89 |
+
>>> plt.show()
|
90 |
+
|
91 |
+
and a 91-point logarithmic spiral that crosses the unit circle:
|
92 |
+
|
93 |
+
>>> m, w, a = 91, 0.995*np.exp(-1j*np.pi*.05), 0.8*np.exp(1j*np.pi/6)
|
94 |
+
>>> points = czt_points(m, w, a)
|
95 |
+
>>> plt.plot(points.real, points.imag, 'o')
|
96 |
+
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
|
97 |
+
>>> plt.axis('equal')
|
98 |
+
>>> plt.show()
|
99 |
+
"""
|
100 |
+
m = _validate_sizes(1, m)
|
101 |
+
|
102 |
+
k = arange(m)
|
103 |
+
|
104 |
+
a = 1.0 * a # at least float
|
105 |
+
|
106 |
+
if w is None:
|
107 |
+
# Nothing specified, default to FFT
|
108 |
+
return a * np.exp(2j * pi * k / m)
|
109 |
+
else:
|
110 |
+
# w specified
|
111 |
+
w = 1.0 * w # at least float
|
112 |
+
return a * w**-k
|
113 |
+
|
114 |
+
|
115 |
+
class CZT:
|
116 |
+
"""
|
117 |
+
Create a callable chirp z-transform function.
|
118 |
+
|
119 |
+
Transform to compute the frequency response around a spiral.
|
120 |
+
Objects of this class are callables which can compute the
|
121 |
+
chirp z-transform on their inputs. This object precalculates the constant
|
122 |
+
chirps used in the given transform.
|
123 |
+
|
124 |
+
Parameters
|
125 |
+
----------
|
126 |
+
n : int
|
127 |
+
The size of the signal.
|
128 |
+
m : int, optional
|
129 |
+
The number of output points desired. Default is `n`.
|
130 |
+
w : complex, optional
|
131 |
+
The ratio between points in each step. This must be precise or the
|
132 |
+
accumulated error will degrade the tail of the output sequence.
|
133 |
+
Defaults to equally spaced points around the entire unit circle.
|
134 |
+
a : complex, optional
|
135 |
+
The starting point in the complex plane. Default is 1+0j.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
f : CZT
|
140 |
+
Callable object ``f(x, axis=-1)`` for computing the chirp z-transform
|
141 |
+
on `x`.
|
142 |
+
|
143 |
+
See Also
|
144 |
+
--------
|
145 |
+
czt : Convenience function for quickly calculating CZT.
|
146 |
+
ZoomFFT : Class that creates a callable partial FFT function.
|
147 |
+
|
148 |
+
Notes
|
149 |
+
-----
|
150 |
+
The defaults are chosen such that ``f(x)`` is equivalent to
|
151 |
+
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, m)`` is equivalent to
|
152 |
+
``fft.fft(x, m)``.
|
153 |
+
|
154 |
+
If `w` does not lie on the unit circle, then the transform will be
|
155 |
+
around a spiral with exponentially-increasing radius. Regardless,
|
156 |
+
angle will increase linearly.
|
157 |
+
|
158 |
+
For transforms that do lie on the unit circle, accuracy is better when
|
159 |
+
using `ZoomFFT`, since any numerical error in `w` is
|
160 |
+
accumulated for long data lengths, drifting away from the unit circle.
|
161 |
+
|
162 |
+
The chirp z-transform can be faster than an equivalent FFT with
|
163 |
+
zero padding. Try it with your own array sizes to see.
|
164 |
+
|
165 |
+
However, the chirp z-transform is considerably less precise than the
|
166 |
+
equivalent zero-padded FFT.
|
167 |
+
|
168 |
+
As this CZT is implemented using the Bluestein algorithm, it can compute
|
169 |
+
large prime-length Fourier transforms in O(N log N) time, rather than the
|
170 |
+
O(N**2) time required by the direct DFT calculation. (`scipy.fft` also
|
171 |
+
uses Bluestein's algorithm'.)
|
172 |
+
|
173 |
+
(The name "chirp z-transform" comes from the use of a chirp in the
|
174 |
+
Bluestein algorithm. It does not decompose signals into chirps, like
|
175 |
+
other transforms with "chirp" in the name.)
|
176 |
+
|
177 |
+
References
|
178 |
+
----------
|
179 |
+
.. [1] Leo I. Bluestein, "A linear filtering approach to the computation
|
180 |
+
of the discrete Fourier transform," Northeast Electronics Research
|
181 |
+
and Engineering Meeting Record 10, 218-219 (1968).
|
182 |
+
.. [2] Rabiner, Schafer, and Rader, "The chirp z-transform algorithm and
|
183 |
+
its application," Bell Syst. Tech. J. 48, 1249-1292 (1969).
|
184 |
+
|
185 |
+
Examples
|
186 |
+
--------
|
187 |
+
Compute multiple prime-length FFTs:
|
188 |
+
|
189 |
+
>>> from scipy.signal import CZT
|
190 |
+
>>> import numpy as np
|
191 |
+
>>> a = np.random.rand(7)
|
192 |
+
>>> b = np.random.rand(7)
|
193 |
+
>>> c = np.random.rand(7)
|
194 |
+
>>> czt_7 = CZT(n=7)
|
195 |
+
>>> A = czt_7(a)
|
196 |
+
>>> B = czt_7(b)
|
197 |
+
>>> C = czt_7(c)
|
198 |
+
|
199 |
+
Display the points at which the FFT is calculated:
|
200 |
+
|
201 |
+
>>> czt_7.points()
|
202 |
+
array([ 1.00000000+0.j , 0.62348980+0.78183148j,
|
203 |
+
-0.22252093+0.97492791j, -0.90096887+0.43388374j,
|
204 |
+
-0.90096887-0.43388374j, -0.22252093-0.97492791j,
|
205 |
+
0.62348980-0.78183148j])
|
206 |
+
>>> import matplotlib.pyplot as plt
|
207 |
+
>>> plt.plot(czt_7.points().real, czt_7.points().imag, 'o')
|
208 |
+
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
|
209 |
+
>>> plt.axis('equal')
|
210 |
+
>>> plt.show()
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self, n, m=None, w=None, a=1+0j):
|
214 |
+
m = _validate_sizes(n, m)
|
215 |
+
|
216 |
+
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
|
217 |
+
|
218 |
+
if w is None:
|
219 |
+
# Nothing specified, default to FFT-like
|
220 |
+
w = cmath.exp(-2j*pi/m)
|
221 |
+
wk2 = np.exp(-(1j * pi * ((k**2) % (2*m))) / m)
|
222 |
+
else:
|
223 |
+
# w specified
|
224 |
+
wk2 = w**(k**2/2.)
|
225 |
+
|
226 |
+
a = 1.0 * a # at least float
|
227 |
+
|
228 |
+
self.w, self.a = w, a
|
229 |
+
self.m, self.n = m, n
|
230 |
+
|
231 |
+
nfft = next_fast_len(n + m - 1)
|
232 |
+
self._Awk2 = a**-k[:n] * wk2[:n]
|
233 |
+
self._nfft = nfft
|
234 |
+
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
|
235 |
+
self._wk2 = wk2[:m]
|
236 |
+
self._yidx = slice(n-1, n+m-1)
|
237 |
+
|
238 |
+
def __call__(self, x, *, axis=-1):
|
239 |
+
"""
|
240 |
+
Calculate the chirp z-transform of a signal.
|
241 |
+
|
242 |
+
Parameters
|
243 |
+
----------
|
244 |
+
x : array
|
245 |
+
The signal to transform.
|
246 |
+
axis : int, optional
|
247 |
+
Axis over which to compute the FFT. If not given, the last axis is
|
248 |
+
used.
|
249 |
+
|
250 |
+
Returns
|
251 |
+
-------
|
252 |
+
out : ndarray
|
253 |
+
An array of the same dimensions as `x`, but with the length of the
|
254 |
+
transformed axis set to `m`.
|
255 |
+
"""
|
256 |
+
x = np.asarray(x)
|
257 |
+
if x.shape[axis] != self.n:
|
258 |
+
raise ValueError(f"CZT defined for length {self.n}, not "
|
259 |
+
f"{x.shape[axis]}")
|
260 |
+
# Calculate transpose coordinates, to allow operation on any given axis
|
261 |
+
trnsp = np.arange(x.ndim)
|
262 |
+
trnsp[[axis, -1]] = [-1, axis]
|
263 |
+
x = x.transpose(*trnsp)
|
264 |
+
y = ifft(self._Fwk2 * fft(x*self._Awk2, self._nfft))
|
265 |
+
y = y[..., self._yidx] * self._wk2
|
266 |
+
return y.transpose(*trnsp)
|
267 |
+
|
268 |
+
def points(self):
|
269 |
+
"""
|
270 |
+
Return the points at which the chirp z-transform is computed.
|
271 |
+
"""
|
272 |
+
return czt_points(self.m, self.w, self.a)
|
273 |
+
|
274 |
+
|
275 |
+
class ZoomFFT(CZT):
|
276 |
+
"""
|
277 |
+
Create a callable zoom FFT transform function.
|
278 |
+
|
279 |
+
This is a specialization of the chirp z-transform (`CZT`) for a set of
|
280 |
+
equally-spaced frequencies around the unit circle, used to calculate a
|
281 |
+
section of the FFT more efficiently than calculating the entire FFT and
|
282 |
+
truncating.
|
283 |
+
|
284 |
+
Parameters
|
285 |
+
----------
|
286 |
+
n : int
|
287 |
+
The size of the signal.
|
288 |
+
fn : array_like
|
289 |
+
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
|
290 |
+
scalar, for which the range [0, `fn`] is assumed.
|
291 |
+
m : int, optional
|
292 |
+
The number of points to evaluate. Default is `n`.
|
293 |
+
fs : float, optional
|
294 |
+
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
|
295 |
+
then `f1` and `f2` would also be given in kHz.
|
296 |
+
The default sampling frequency is 2, so `f1` and `f2` should be
|
297 |
+
in the range [0, 1] to keep the transform below the Nyquist
|
298 |
+
frequency.
|
299 |
+
endpoint : bool, optional
|
300 |
+
If True, `f2` is the last sample. Otherwise, it is not included.
|
301 |
+
Default is False.
|
302 |
+
|
303 |
+
Returns
|
304 |
+
-------
|
305 |
+
f : ZoomFFT
|
306 |
+
Callable object ``f(x, axis=-1)`` for computing the zoom FFT on `x`.
|
307 |
+
|
308 |
+
See Also
|
309 |
+
--------
|
310 |
+
zoom_fft : Convenience function for calculating a zoom FFT.
|
311 |
+
|
312 |
+
Notes
|
313 |
+
-----
|
314 |
+
The defaults are chosen such that ``f(x, 2)`` is equivalent to
|
315 |
+
``fft.fft(x)`` and, if ``m > len(x)``, that ``f(x, 2, m)`` is equivalent to
|
316 |
+
``fft.fft(x, m)``.
|
317 |
+
|
318 |
+
Sampling frequency is 1/dt, the time step between samples in the
|
319 |
+
signal `x`. The unit circle corresponds to frequencies from 0 up
|
320 |
+
to the sampling frequency. The default sampling frequency of 2
|
321 |
+
means that `f1`, `f2` values up to the Nyquist frequency are in the
|
322 |
+
range [0, 1). For `f1`, `f2` values expressed in radians, a sampling
|
323 |
+
frequency of 2*pi should be used.
|
324 |
+
|
325 |
+
Remember that a zoom FFT can only interpolate the points of the existing
|
326 |
+
FFT. It cannot help to resolve two separate nearby frequencies.
|
327 |
+
Frequency resolution can only be increased by increasing acquisition
|
328 |
+
time.
|
329 |
+
|
330 |
+
These functions are implemented using Bluestein's algorithm (as is
|
331 |
+
`scipy.fft`). [2]_
|
332 |
+
|
333 |
+
References
|
334 |
+
----------
|
335 |
+
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
|
336 |
+
applications", pg 29 (1970)
|
337 |
+
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
|
338 |
+
.. [2] Leo I. Bluestein, "A linear filtering approach to the computation
|
339 |
+
of the discrete Fourier transform," Northeast Electronics Research
|
340 |
+
and Engineering Meeting Record 10, 218-219 (1968).
|
341 |
+
|
342 |
+
Examples
|
343 |
+
--------
|
344 |
+
To plot the transform results use something like the following:
|
345 |
+
|
346 |
+
>>> import numpy as np
|
347 |
+
>>> from scipy.signal import ZoomFFT
|
348 |
+
>>> t = np.linspace(0, 1, 1021)
|
349 |
+
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
|
350 |
+
>>> f1, f2 = 5, 27
|
351 |
+
>>> transform = ZoomFFT(len(x), [f1, f2], len(x), fs=1021)
|
352 |
+
>>> X = transform(x)
|
353 |
+
>>> f = np.linspace(f1, f2, len(x))
|
354 |
+
>>> import matplotlib.pyplot as plt
|
355 |
+
>>> plt.plot(f, 20*np.log10(np.abs(X)))
|
356 |
+
>>> plt.show()
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(self, n, fn, m=None, *, fs=2, endpoint=False):
|
360 |
+
m = _validate_sizes(n, m)
|
361 |
+
|
362 |
+
k = arange(max(m, n), dtype=np.min_scalar_type(-max(m, n)**2))
|
363 |
+
|
364 |
+
if np.size(fn) == 2:
|
365 |
+
f1, f2 = fn
|
366 |
+
elif np.size(fn) == 1:
|
367 |
+
f1, f2 = 0.0, fn
|
368 |
+
else:
|
369 |
+
raise ValueError('fn must be a scalar or 2-length sequence')
|
370 |
+
|
371 |
+
self.f1, self.f2, self.fs = f1, f2, fs
|
372 |
+
|
373 |
+
if endpoint:
|
374 |
+
scale = ((f2 - f1) * m) / (fs * (m - 1))
|
375 |
+
else:
|
376 |
+
scale = (f2 - f1) / fs
|
377 |
+
a = cmath.exp(2j * pi * f1/fs)
|
378 |
+
wk2 = np.exp(-(1j * pi * scale * k**2) / m)
|
379 |
+
|
380 |
+
self.w = cmath.exp(-2j*pi/m * scale)
|
381 |
+
self.a = a
|
382 |
+
self.m, self.n = m, n
|
383 |
+
|
384 |
+
ak = np.exp(-2j * pi * f1/fs * k[:n])
|
385 |
+
self._Awk2 = ak * wk2[:n]
|
386 |
+
|
387 |
+
nfft = next_fast_len(n + m - 1)
|
388 |
+
self._nfft = nfft
|
389 |
+
self._Fwk2 = fft(1/np.hstack((wk2[n-1:0:-1], wk2[:m])), nfft)
|
390 |
+
self._wk2 = wk2[:m]
|
391 |
+
self._yidx = slice(n-1, n+m-1)
|
392 |
+
|
393 |
+
|
394 |
+
def czt(x, m=None, w=None, a=1+0j, *, axis=-1):
|
395 |
+
"""
|
396 |
+
Compute the frequency response around a spiral in the Z plane.
|
397 |
+
|
398 |
+
Parameters
|
399 |
+
----------
|
400 |
+
x : array
|
401 |
+
The signal to transform.
|
402 |
+
m : int, optional
|
403 |
+
The number of output points desired. Default is the length of the
|
404 |
+
input data.
|
405 |
+
w : complex, optional
|
406 |
+
The ratio between points in each step. This must be precise or the
|
407 |
+
accumulated error will degrade the tail of the output sequence.
|
408 |
+
Defaults to equally spaced points around the entire unit circle.
|
409 |
+
a : complex, optional
|
410 |
+
The starting point in the complex plane. Default is 1+0j.
|
411 |
+
axis : int, optional
|
412 |
+
Axis over which to compute the FFT. If not given, the last axis is
|
413 |
+
used.
|
414 |
+
|
415 |
+
Returns
|
416 |
+
-------
|
417 |
+
out : ndarray
|
418 |
+
An array of the same dimensions as `x`, but with the length of the
|
419 |
+
transformed axis set to `m`.
|
420 |
+
|
421 |
+
See Also
|
422 |
+
--------
|
423 |
+
CZT : Class that creates a callable chirp z-transform function.
|
424 |
+
zoom_fft : Convenience function for partial FFT calculations.
|
425 |
+
|
426 |
+
Notes
|
427 |
+
-----
|
428 |
+
The defaults are chosen such that ``signal.czt(x)`` is equivalent to
|
429 |
+
``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.czt(x, m)`` is
|
430 |
+
equivalent to ``fft.fft(x, m)``.
|
431 |
+
|
432 |
+
If the transform needs to be repeated, use `CZT` to construct a
|
433 |
+
specialized transform function which can be reused without
|
434 |
+
recomputing constants.
|
435 |
+
|
436 |
+
An example application is in system identification, repeatedly evaluating
|
437 |
+
small slices of the z-transform of a system, around where a pole is
|
438 |
+
expected to exist, to refine the estimate of the pole's true location. [1]_
|
439 |
+
|
440 |
+
References
|
441 |
+
----------
|
442 |
+
.. [1] Steve Alan Shilling, "A study of the chirp z-transform and its
|
443 |
+
applications", pg 20 (1970)
|
444 |
+
https://krex.k-state.edu/dspace/bitstream/handle/2097/7844/LD2668R41972S43.pdf
|
445 |
+
|
446 |
+
Examples
|
447 |
+
--------
|
448 |
+
Generate a sinusoid:
|
449 |
+
|
450 |
+
>>> import numpy as np
|
451 |
+
>>> f1, f2, fs = 8, 10, 200 # Hz
|
452 |
+
>>> t = np.linspace(0, 1, fs, endpoint=False)
|
453 |
+
>>> x = np.sin(2*np.pi*t*f2)
|
454 |
+
>>> import matplotlib.pyplot as plt
|
455 |
+
>>> plt.plot(t, x)
|
456 |
+
>>> plt.axis([0, 1, -1.1, 1.1])
|
457 |
+
>>> plt.show()
|
458 |
+
|
459 |
+
Its discrete Fourier transform has all of its energy in a single frequency
|
460 |
+
bin:
|
461 |
+
|
462 |
+
>>> from scipy.fft import rfft, rfftfreq
|
463 |
+
>>> from scipy.signal import czt, czt_points
|
464 |
+
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
|
465 |
+
>>> plt.margins(0, 0.1)
|
466 |
+
>>> plt.show()
|
467 |
+
|
468 |
+
However, if the sinusoid is logarithmically-decaying:
|
469 |
+
|
470 |
+
>>> x = np.exp(-t*f1) * np.sin(2*np.pi*t*f2)
|
471 |
+
>>> plt.plot(t, x)
|
472 |
+
>>> plt.axis([0, 1, -1.1, 1.1])
|
473 |
+
>>> plt.show()
|
474 |
+
|
475 |
+
the DFT will have spectral leakage:
|
476 |
+
|
477 |
+
>>> plt.plot(rfftfreq(fs, 1/fs), abs(rfft(x)))
|
478 |
+
>>> plt.margins(0, 0.1)
|
479 |
+
>>> plt.show()
|
480 |
+
|
481 |
+
While the DFT always samples the z-transform around the unit circle, the
|
482 |
+
chirp z-transform allows us to sample the Z-transform along any
|
483 |
+
logarithmic spiral, such as a circle with radius smaller than unity:
|
484 |
+
|
485 |
+
>>> M = fs // 2 # Just positive frequencies, like rfft
|
486 |
+
>>> a = np.exp(-f1/fs) # Starting point of the circle, radius < 1
|
487 |
+
>>> w = np.exp(-1j*np.pi/M) # "Step size" of circle
|
488 |
+
>>> points = czt_points(M + 1, w, a) # M + 1 to include Nyquist
|
489 |
+
>>> plt.plot(points.real, points.imag, '.')
|
490 |
+
>>> plt.gca().add_patch(plt.Circle((0,0), radius=1, fill=False, alpha=.3))
|
491 |
+
>>> plt.axis('equal'); plt.axis([-1.05, 1.05, -0.05, 1.05])
|
492 |
+
>>> plt.show()
|
493 |
+
|
494 |
+
With the correct radius, this transforms the decaying sinusoid (and others
|
495 |
+
with the same decay rate) without spectral leakage:
|
496 |
+
|
497 |
+
>>> z_vals = czt(x, M + 1, w, a) # Include Nyquist for comparison to rfft
|
498 |
+
>>> freqs = np.angle(points)*fs/(2*np.pi) # angle = omega, radius = sigma
|
499 |
+
>>> plt.plot(freqs, abs(z_vals))
|
500 |
+
>>> plt.margins(0, 0.1)
|
501 |
+
>>> plt.show()
|
502 |
+
"""
|
503 |
+
x = np.asarray(x)
|
504 |
+
transform = CZT(x.shape[axis], m=m, w=w, a=a)
|
505 |
+
return transform(x, axis=axis)
|
506 |
+
|
507 |
+
|
508 |
+
def zoom_fft(x, fn, m=None, *, fs=2, endpoint=False, axis=-1):
|
509 |
+
"""
|
510 |
+
Compute the DFT of `x` only for frequencies in range `fn`.
|
511 |
+
|
512 |
+
Parameters
|
513 |
+
----------
|
514 |
+
x : array
|
515 |
+
The signal to transform.
|
516 |
+
fn : array_like
|
517 |
+
A length-2 sequence [`f1`, `f2`] giving the frequency range, or a
|
518 |
+
scalar, for which the range [0, `fn`] is assumed.
|
519 |
+
m : int, optional
|
520 |
+
The number of points to evaluate. The default is the length of `x`.
|
521 |
+
fs : float, optional
|
522 |
+
The sampling frequency. If ``fs=10`` represented 10 kHz, for example,
|
523 |
+
then `f1` and `f2` would also be given in kHz.
|
524 |
+
The default sampling frequency is 2, so `f1` and `f2` should be
|
525 |
+
in the range [0, 1] to keep the transform below the Nyquist
|
526 |
+
frequency.
|
527 |
+
endpoint : bool, optional
|
528 |
+
If True, `f2` is the last sample. Otherwise, it is not included.
|
529 |
+
Default is False.
|
530 |
+
axis : int, optional
|
531 |
+
Axis over which to compute the FFT. If not given, the last axis is
|
532 |
+
used.
|
533 |
+
|
534 |
+
Returns
|
535 |
+
-------
|
536 |
+
out : ndarray
|
537 |
+
The transformed signal. The Fourier transform will be calculated
|
538 |
+
at the points f1, f1+df, f1+2df, ..., f2, where df=(f2-f1)/m.
|
539 |
+
|
540 |
+
See Also
|
541 |
+
--------
|
542 |
+
ZoomFFT : Class that creates a callable partial FFT function.
|
543 |
+
|
544 |
+
Notes
|
545 |
+
-----
|
546 |
+
The defaults are chosen such that ``signal.zoom_fft(x, 2)`` is equivalent
|
547 |
+
to ``fft.fft(x)`` and, if ``m > len(x)``, that ``signal.zoom_fft(x, 2, m)``
|
548 |
+
is equivalent to ``fft.fft(x, m)``.
|
549 |
+
|
550 |
+
To graph the magnitude of the resulting transform, use::
|
551 |
+
|
552 |
+
plot(linspace(f1, f2, m, endpoint=False), abs(zoom_fft(x, [f1, f2], m)))
|
553 |
+
|
554 |
+
If the transform needs to be repeated, use `ZoomFFT` to construct
|
555 |
+
a specialized transform function which can be reused without
|
556 |
+
recomputing constants.
|
557 |
+
|
558 |
+
Examples
|
559 |
+
--------
|
560 |
+
To plot the transform results use something like the following:
|
561 |
+
|
562 |
+
>>> import numpy as np
|
563 |
+
>>> from scipy.signal import zoom_fft
|
564 |
+
>>> t = np.linspace(0, 1, 1021)
|
565 |
+
>>> x = np.cos(2*np.pi*15*t) + np.sin(2*np.pi*17*t)
|
566 |
+
>>> f1, f2 = 5, 27
|
567 |
+
>>> X = zoom_fft(x, [f1, f2], len(x), fs=1021)
|
568 |
+
>>> f = np.linspace(f1, f2, len(x))
|
569 |
+
>>> import matplotlib.pyplot as plt
|
570 |
+
>>> plt.plot(f, 20*np.log10(np.abs(X)))
|
571 |
+
>>> plt.show()
|
572 |
+
"""
|
573 |
+
x = np.asarray(x)
|
574 |
+
transform = ZoomFFT(x.shape[axis], fn, m=m, fs=fs, endpoint=endpoint)
|
575 |
+
return transform(x, axis=axis)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_fir_filter_design.py
ADDED
@@ -0,0 +1,1301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for FIR filter design."""
|
2 |
+
|
3 |
+
from math import ceil, log
|
4 |
+
import operator
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
from numpy.fft import irfft, fft, ifft
|
9 |
+
from scipy.special import sinc
|
10 |
+
from scipy.linalg import (toeplitz, hankel, solve, LinAlgError, LinAlgWarning,
|
11 |
+
lstsq)
|
12 |
+
from scipy._lib.deprecation import _NoValue, _deprecate_positional_args
|
13 |
+
from scipy.signal._arraytools import _validate_fs
|
14 |
+
|
15 |
+
from . import _sigtools
|
16 |
+
|
17 |
+
__all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord',
|
18 |
+
'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase']
|
19 |
+
|
20 |
+
|
21 |
+
def _get_fs(fs, nyq):
|
22 |
+
"""
|
23 |
+
Utility for replacing the argument 'nyq' (with default 1) with 'fs'.
|
24 |
+
"""
|
25 |
+
if nyq is _NoValue and fs is None:
|
26 |
+
fs = 2
|
27 |
+
elif nyq is not _NoValue:
|
28 |
+
if fs is not None:
|
29 |
+
raise ValueError("Values cannot be given for both 'nyq' and 'fs'.")
|
30 |
+
msg = ("Keyword argument 'nyq' is deprecated in favour of 'fs' and "
|
31 |
+
"will be removed in SciPy 1.14.0.")
|
32 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=3)
|
33 |
+
if nyq is None:
|
34 |
+
fs = 2
|
35 |
+
else:
|
36 |
+
fs = 2*nyq
|
37 |
+
return fs
|
38 |
+
|
39 |
+
|
40 |
+
# Some notes on function parameters:
|
41 |
+
#
|
42 |
+
# `cutoff` and `width` are given as numbers between 0 and 1. These are
|
43 |
+
# relative frequencies, expressed as a fraction of the Nyquist frequency.
|
44 |
+
# For example, if the Nyquist frequency is 2 KHz, then width=0.15 is a width
|
45 |
+
# of 300 Hz.
|
46 |
+
#
|
47 |
+
# The `order` of a FIR filter is one less than the number of taps.
|
48 |
+
# This is a potential source of confusion, so in the following code,
|
49 |
+
# we will always use the number of taps as the parameterization of
|
50 |
+
# the 'size' of the filter. The "number of taps" means the number
|
51 |
+
# of coefficients, which is the same as the length of the impulse
|
52 |
+
# response of the filter.
|
53 |
+
|
54 |
+
|
55 |
+
def kaiser_beta(a):
|
56 |
+
"""Compute the Kaiser parameter `beta`, given the attenuation `a`.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
a : float
|
61 |
+
The desired attenuation in the stopband and maximum ripple in
|
62 |
+
the passband, in dB. This should be a *positive* number.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
-------
|
66 |
+
beta : float
|
67 |
+
The `beta` parameter to be used in the formula for a Kaiser window.
|
68 |
+
|
69 |
+
References
|
70 |
+
----------
|
71 |
+
Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
|
72 |
+
|
73 |
+
Examples
|
74 |
+
--------
|
75 |
+
Suppose we want to design a lowpass filter, with 65 dB attenuation
|
76 |
+
in the stop band. The Kaiser window parameter to be used in the
|
77 |
+
window method is computed by ``kaiser_beta(65)``:
|
78 |
+
|
79 |
+
>>> from scipy.signal import kaiser_beta
|
80 |
+
>>> kaiser_beta(65)
|
81 |
+
6.20426
|
82 |
+
|
83 |
+
"""
|
84 |
+
if a > 50:
|
85 |
+
beta = 0.1102 * (a - 8.7)
|
86 |
+
elif a > 21:
|
87 |
+
beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21)
|
88 |
+
else:
|
89 |
+
beta = 0.0
|
90 |
+
return beta
|
91 |
+
|
92 |
+
|
93 |
+
def kaiser_atten(numtaps, width):
|
94 |
+
"""Compute the attenuation of a Kaiser FIR filter.
|
95 |
+
|
96 |
+
Given the number of taps `N` and the transition width `width`, compute the
|
97 |
+
attenuation `a` in dB, given by Kaiser's formula:
|
98 |
+
|
99 |
+
a = 2.285 * (N - 1) * pi * width + 7.95
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
----------
|
103 |
+
numtaps : int
|
104 |
+
The number of taps in the FIR filter.
|
105 |
+
width : float
|
106 |
+
The desired width of the transition region between passband and
|
107 |
+
stopband (or, in general, at any discontinuity) for the filter,
|
108 |
+
expressed as a fraction of the Nyquist frequency.
|
109 |
+
|
110 |
+
Returns
|
111 |
+
-------
|
112 |
+
a : float
|
113 |
+
The attenuation of the ripple, in dB.
|
114 |
+
|
115 |
+
See Also
|
116 |
+
--------
|
117 |
+
kaiserord, kaiser_beta
|
118 |
+
|
119 |
+
Examples
|
120 |
+
--------
|
121 |
+
Suppose we want to design a FIR filter using the Kaiser window method
|
122 |
+
that will have 211 taps and a transition width of 9 Hz for a signal that
|
123 |
+
is sampled at 480 Hz. Expressed as a fraction of the Nyquist frequency,
|
124 |
+
the width is 9/(0.5*480) = 0.0375. The approximate attenuation (in dB)
|
125 |
+
is computed as follows:
|
126 |
+
|
127 |
+
>>> from scipy.signal import kaiser_atten
|
128 |
+
>>> kaiser_atten(211, 0.0375)
|
129 |
+
64.48099630593983
|
130 |
+
|
131 |
+
"""
|
132 |
+
a = 2.285 * (numtaps - 1) * np.pi * width + 7.95
|
133 |
+
return a
|
134 |
+
|
135 |
+
|
136 |
+
def kaiserord(ripple, width):
|
137 |
+
"""
|
138 |
+
Determine the filter window parameters for the Kaiser window method.
|
139 |
+
|
140 |
+
The parameters returned by this function are generally used to create
|
141 |
+
a finite impulse response filter using the window method, with either
|
142 |
+
`firwin` or `firwin2`.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
ripple : float
|
147 |
+
Upper bound for the deviation (in dB) of the magnitude of the
|
148 |
+
filter's frequency response from that of the desired filter (not
|
149 |
+
including frequencies in any transition intervals). That is, if w
|
150 |
+
is the frequency expressed as a fraction of the Nyquist frequency,
|
151 |
+
A(w) is the actual frequency response of the filter and D(w) is the
|
152 |
+
desired frequency response, the design requirement is that::
|
153 |
+
|
154 |
+
abs(A(w) - D(w))) < 10**(-ripple/20)
|
155 |
+
|
156 |
+
for 0 <= w <= 1 and w not in a transition interval.
|
157 |
+
width : float
|
158 |
+
Width of transition region, normalized so that 1 corresponds to pi
|
159 |
+
radians / sample. That is, the frequency is expressed as a fraction
|
160 |
+
of the Nyquist frequency.
|
161 |
+
|
162 |
+
Returns
|
163 |
+
-------
|
164 |
+
numtaps : int
|
165 |
+
The length of the Kaiser window.
|
166 |
+
beta : float
|
167 |
+
The beta parameter for the Kaiser window.
|
168 |
+
|
169 |
+
See Also
|
170 |
+
--------
|
171 |
+
kaiser_beta, kaiser_atten
|
172 |
+
|
173 |
+
Notes
|
174 |
+
-----
|
175 |
+
There are several ways to obtain the Kaiser window:
|
176 |
+
|
177 |
+
- ``signal.windows.kaiser(numtaps, beta, sym=True)``
|
178 |
+
- ``signal.get_window(beta, numtaps)``
|
179 |
+
- ``signal.get_window(('kaiser', beta), numtaps)``
|
180 |
+
|
181 |
+
The empirical equations discovered by Kaiser are used.
|
182 |
+
|
183 |
+
References
|
184 |
+
----------
|
185 |
+
Oppenheim, Schafer, "Discrete-Time Signal Processing", pp.475-476.
|
186 |
+
|
187 |
+
Examples
|
188 |
+
--------
|
189 |
+
We will use the Kaiser window method to design a lowpass FIR filter
|
190 |
+
for a signal that is sampled at 1000 Hz.
|
191 |
+
|
192 |
+
We want at least 65 dB rejection in the stop band, and in the pass
|
193 |
+
band the gain should vary no more than 0.5%.
|
194 |
+
|
195 |
+
We want a cutoff frequency of 175 Hz, with a transition between the
|
196 |
+
pass band and the stop band of 24 Hz. That is, in the band [0, 163],
|
197 |
+
the gain varies no more than 0.5%, and in the band [187, 500], the
|
198 |
+
signal is attenuated by at least 65 dB.
|
199 |
+
|
200 |
+
>>> import numpy as np
|
201 |
+
>>> from scipy.signal import kaiserord, firwin, freqz
|
202 |
+
>>> import matplotlib.pyplot as plt
|
203 |
+
>>> fs = 1000.0
|
204 |
+
>>> cutoff = 175
|
205 |
+
>>> width = 24
|
206 |
+
|
207 |
+
The Kaiser method accepts just a single parameter to control the pass
|
208 |
+
band ripple and the stop band rejection, so we use the more restrictive
|
209 |
+
of the two. In this case, the pass band ripple is 0.005, or 46.02 dB,
|
210 |
+
so we will use 65 dB as the design parameter.
|
211 |
+
|
212 |
+
Use `kaiserord` to determine the length of the filter and the
|
213 |
+
parameter for the Kaiser window.
|
214 |
+
|
215 |
+
>>> numtaps, beta = kaiserord(65, width/(0.5*fs))
|
216 |
+
>>> numtaps
|
217 |
+
167
|
218 |
+
>>> beta
|
219 |
+
6.20426
|
220 |
+
|
221 |
+
Use `firwin` to create the FIR filter.
|
222 |
+
|
223 |
+
>>> taps = firwin(numtaps, cutoff, window=('kaiser', beta),
|
224 |
+
... scale=False, fs=fs)
|
225 |
+
|
226 |
+
Compute the frequency response of the filter. ``w`` is the array of
|
227 |
+
frequencies, and ``h`` is the corresponding complex array of frequency
|
228 |
+
responses.
|
229 |
+
|
230 |
+
>>> w, h = freqz(taps, worN=8000)
|
231 |
+
>>> w *= 0.5*fs/np.pi # Convert w to Hz.
|
232 |
+
|
233 |
+
Compute the deviation of the magnitude of the filter's response from
|
234 |
+
that of the ideal lowpass filter. Values in the transition region are
|
235 |
+
set to ``nan``, so they won't appear in the plot.
|
236 |
+
|
237 |
+
>>> ideal = w < cutoff # The "ideal" frequency response.
|
238 |
+
>>> deviation = np.abs(np.abs(h) - ideal)
|
239 |
+
>>> deviation[(w > cutoff - 0.5*width) & (w < cutoff + 0.5*width)] = np.nan
|
240 |
+
|
241 |
+
Plot the deviation. A close look at the left end of the stop band shows
|
242 |
+
that the requirement for 65 dB attenuation is violated in the first lobe
|
243 |
+
by about 0.125 dB. This is not unusual for the Kaiser window method.
|
244 |
+
|
245 |
+
>>> plt.plot(w, 20*np.log10(np.abs(deviation)))
|
246 |
+
>>> plt.xlim(0, 0.5*fs)
|
247 |
+
>>> plt.ylim(-90, -60)
|
248 |
+
>>> plt.grid(alpha=0.25)
|
249 |
+
>>> plt.axhline(-65, color='r', ls='--', alpha=0.3)
|
250 |
+
>>> plt.xlabel('Frequency (Hz)')
|
251 |
+
>>> plt.ylabel('Deviation from ideal (dB)')
|
252 |
+
>>> plt.title('Lowpass Filter Frequency Response')
|
253 |
+
>>> plt.show()
|
254 |
+
|
255 |
+
"""
|
256 |
+
A = abs(ripple) # in case somebody is confused as to what's meant
|
257 |
+
if A < 8:
|
258 |
+
# Formula for N is not valid in this range.
|
259 |
+
raise ValueError("Requested maximum ripple attenuation %f is too "
|
260 |
+
"small for the Kaiser formula." % A)
|
261 |
+
beta = kaiser_beta(A)
|
262 |
+
|
263 |
+
# Kaiser's formula (as given in Oppenheim and Schafer) is for the filter
|
264 |
+
# order, so we have to add 1 to get the number of taps.
|
265 |
+
numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1
|
266 |
+
|
267 |
+
return int(ceil(numtaps)), beta
|
268 |
+
|
269 |
+
|
270 |
+
@_deprecate_positional_args(version="1.14")
|
271 |
+
def firwin(numtaps, cutoff, *, width=None, window='hamming', pass_zero=True,
|
272 |
+
scale=True, nyq=_NoValue, fs=None):
|
273 |
+
"""
|
274 |
+
FIR filter design using the window method.
|
275 |
+
|
276 |
+
This function computes the coefficients of a finite impulse response
|
277 |
+
filter. The filter will have linear phase; it will be Type I if
|
278 |
+
`numtaps` is odd and Type II if `numtaps` is even.
|
279 |
+
|
280 |
+
Type II filters always have zero response at the Nyquist frequency, so a
|
281 |
+
ValueError exception is raised if firwin is called with `numtaps` even and
|
282 |
+
having a passband whose right end is at the Nyquist frequency.
|
283 |
+
|
284 |
+
Parameters
|
285 |
+
----------
|
286 |
+
numtaps : int
|
287 |
+
Length of the filter (number of coefficients, i.e. the filter
|
288 |
+
order + 1). `numtaps` must be odd if a passband includes the
|
289 |
+
Nyquist frequency.
|
290 |
+
cutoff : float or 1-D array_like
|
291 |
+
Cutoff frequency of filter (expressed in the same units as `fs`)
|
292 |
+
OR an array of cutoff frequencies (that is, band edges). In the
|
293 |
+
latter case, the frequencies in `cutoff` should be positive and
|
294 |
+
monotonically increasing between 0 and `fs/2`. The values 0 and
|
295 |
+
`fs/2` must not be included in `cutoff`.
|
296 |
+
width : float or None, optional
|
297 |
+
If `width` is not None, then assume it is the approximate width
|
298 |
+
of the transition region (expressed in the same units as `fs`)
|
299 |
+
for use in Kaiser FIR filter design. In this case, the `window`
|
300 |
+
argument is ignored.
|
301 |
+
window : string or tuple of string and parameter values, optional
|
302 |
+
Desired window to use. See `scipy.signal.get_window` for a list
|
303 |
+
of windows and required parameters.
|
304 |
+
pass_zero : {True, False, 'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional
|
305 |
+
If True, the gain at the frequency 0 (i.e., the "DC gain") is 1.
|
306 |
+
If False, the DC gain is 0. Can also be a string argument for the
|
307 |
+
desired filter type (equivalent to ``btype`` in IIR design functions).
|
308 |
+
|
309 |
+
.. versionadded:: 1.3.0
|
310 |
+
Support for string arguments.
|
311 |
+
scale : bool, optional
|
312 |
+
Set to True to scale the coefficients so that the frequency
|
313 |
+
response is exactly unity at a certain frequency.
|
314 |
+
That frequency is either:
|
315 |
+
|
316 |
+
- 0 (DC) if the first passband starts at 0 (i.e. pass_zero
|
317 |
+
is True)
|
318 |
+
- `fs/2` (the Nyquist frequency) if the first passband ends at
|
319 |
+
`fs/2` (i.e the filter is a single band highpass filter);
|
320 |
+
center of first passband otherwise
|
321 |
+
|
322 |
+
nyq : float, optional, deprecated
|
323 |
+
This is the Nyquist frequency. Each frequency in `cutoff` must be
|
324 |
+
between 0 and `nyq`. Default is 1.
|
325 |
+
|
326 |
+
.. deprecated:: 1.0.0
|
327 |
+
`firwin` keyword argument `nyq` is deprecated in favour of `fs` and
|
328 |
+
will be removed in SciPy 1.14.0.
|
329 |
+
fs : float, optional
|
330 |
+
The sampling frequency of the signal. Each frequency in `cutoff`
|
331 |
+
must be between 0 and ``fs/2``. Default is 2.
|
332 |
+
|
333 |
+
Returns
|
334 |
+
-------
|
335 |
+
h : (numtaps,) ndarray
|
336 |
+
Coefficients of length `numtaps` FIR filter.
|
337 |
+
|
338 |
+
Raises
|
339 |
+
------
|
340 |
+
ValueError
|
341 |
+
If any value in `cutoff` is less than or equal to 0 or greater
|
342 |
+
than or equal to ``fs/2``, if the values in `cutoff` are not strictly
|
343 |
+
monotonically increasing, or if `numtaps` is even but a passband
|
344 |
+
includes the Nyquist frequency.
|
345 |
+
|
346 |
+
See Also
|
347 |
+
--------
|
348 |
+
firwin2
|
349 |
+
firls
|
350 |
+
minimum_phase
|
351 |
+
remez
|
352 |
+
|
353 |
+
Examples
|
354 |
+
--------
|
355 |
+
Low-pass from 0 to f:
|
356 |
+
|
357 |
+
>>> from scipy import signal
|
358 |
+
>>> numtaps = 3
|
359 |
+
>>> f = 0.1
|
360 |
+
>>> signal.firwin(numtaps, f)
|
361 |
+
array([ 0.06799017, 0.86401967, 0.06799017])
|
362 |
+
|
363 |
+
Use a specific window function:
|
364 |
+
|
365 |
+
>>> signal.firwin(numtaps, f, window='nuttall')
|
366 |
+
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])
|
367 |
+
|
368 |
+
High-pass ('stop' from 0 to f):
|
369 |
+
|
370 |
+
>>> signal.firwin(numtaps, f, pass_zero=False)
|
371 |
+
array([-0.00859313, 0.98281375, -0.00859313])
|
372 |
+
|
373 |
+
Band-pass:
|
374 |
+
|
375 |
+
>>> f1, f2 = 0.1, 0.2
|
376 |
+
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
|
377 |
+
array([ 0.06301614, 0.88770441, 0.06301614])
|
378 |
+
|
379 |
+
Band-stop:
|
380 |
+
|
381 |
+
>>> signal.firwin(numtaps, [f1, f2])
|
382 |
+
array([-0.00801395, 1.0160279 , -0.00801395])
|
383 |
+
|
384 |
+
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):
|
385 |
+
|
386 |
+
>>> f3, f4 = 0.3, 0.4
|
387 |
+
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
|
388 |
+
array([-0.01376344, 1.02752689, -0.01376344])
|
389 |
+
|
390 |
+
Multi-band (passbands are [f1, f2] and [f3,f4]):
|
391 |
+
|
392 |
+
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
|
393 |
+
array([ 0.04890915, 0.91284326, 0.04890915])
|
394 |
+
|
395 |
+
"""
|
396 |
+
# The major enhancements to this function added in November 2010 were
|
397 |
+
# developed by Tom Krauss (see ticket #902).
|
398 |
+
fs = _validate_fs(fs, allow_none=True)
|
399 |
+
|
400 |
+
nyq = 0.5 * _get_fs(fs, nyq)
|
401 |
+
|
402 |
+
cutoff = np.atleast_1d(cutoff) / float(nyq)
|
403 |
+
|
404 |
+
# Check for invalid input.
|
405 |
+
if cutoff.ndim > 1:
|
406 |
+
raise ValueError("The cutoff argument must be at most "
|
407 |
+
"one-dimensional.")
|
408 |
+
if cutoff.size == 0:
|
409 |
+
raise ValueError("At least one cutoff frequency must be given.")
|
410 |
+
if cutoff.min() <= 0 or cutoff.max() >= 1:
|
411 |
+
raise ValueError("Invalid cutoff frequency: frequencies must be "
|
412 |
+
"greater than 0 and less than fs/2.")
|
413 |
+
if np.any(np.diff(cutoff) <= 0):
|
414 |
+
raise ValueError("Invalid cutoff frequencies: the frequencies "
|
415 |
+
"must be strictly increasing.")
|
416 |
+
|
417 |
+
if width is not None:
|
418 |
+
# A width was given. Find the beta parameter of the Kaiser window
|
419 |
+
# and set `window`. This overrides the value of `window` passed in.
|
420 |
+
atten = kaiser_atten(numtaps, float(width) / nyq)
|
421 |
+
beta = kaiser_beta(atten)
|
422 |
+
window = ('kaiser', beta)
|
423 |
+
|
424 |
+
if isinstance(pass_zero, str):
|
425 |
+
if pass_zero in ('bandstop', 'lowpass'):
|
426 |
+
if pass_zero == 'lowpass':
|
427 |
+
if cutoff.size != 1:
|
428 |
+
raise ValueError('cutoff must have one element if '
|
429 |
+
f'pass_zero=="lowpass", got {cutoff.shape}')
|
430 |
+
elif cutoff.size <= 1:
|
431 |
+
raise ValueError('cutoff must have at least two elements if '
|
432 |
+
f'pass_zero=="bandstop", got {cutoff.shape}')
|
433 |
+
pass_zero = True
|
434 |
+
elif pass_zero in ('bandpass', 'highpass'):
|
435 |
+
if pass_zero == 'highpass':
|
436 |
+
if cutoff.size != 1:
|
437 |
+
raise ValueError('cutoff must have one element if '
|
438 |
+
f'pass_zero=="highpass", got {cutoff.shape}')
|
439 |
+
elif cutoff.size <= 1:
|
440 |
+
raise ValueError('cutoff must have at least two elements if '
|
441 |
+
f'pass_zero=="bandpass", got {cutoff.shape}')
|
442 |
+
pass_zero = False
|
443 |
+
else:
|
444 |
+
raise ValueError('pass_zero must be True, False, "bandpass", '
|
445 |
+
'"lowpass", "highpass", or "bandstop", got '
|
446 |
+
f'{pass_zero}')
|
447 |
+
pass_zero = bool(operator.index(pass_zero)) # ensure bool-like
|
448 |
+
|
449 |
+
pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
|
450 |
+
if pass_nyquist and numtaps % 2 == 0:
|
451 |
+
raise ValueError("A filter with an even number of coefficients must "
|
452 |
+
"have zero response at the Nyquist frequency.")
|
453 |
+
|
454 |
+
# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
|
455 |
+
# is even, and each pair in cutoff corresponds to passband.
|
456 |
+
cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))
|
457 |
+
|
458 |
+
# `bands` is a 2-D array; each row gives the left and right edges of
|
459 |
+
# a passband.
|
460 |
+
bands = cutoff.reshape(-1, 2)
|
461 |
+
|
462 |
+
# Build up the coefficients.
|
463 |
+
alpha = 0.5 * (numtaps - 1)
|
464 |
+
m = np.arange(0, numtaps) - alpha
|
465 |
+
h = 0
|
466 |
+
for left, right in bands:
|
467 |
+
h += right * sinc(right * m)
|
468 |
+
h -= left * sinc(left * m)
|
469 |
+
|
470 |
+
# Get and apply the window function.
|
471 |
+
from .windows import get_window
|
472 |
+
win = get_window(window, numtaps, fftbins=False)
|
473 |
+
h *= win
|
474 |
+
|
475 |
+
# Now handle scaling if desired.
|
476 |
+
if scale:
|
477 |
+
# Get the first passband.
|
478 |
+
left, right = bands[0]
|
479 |
+
if left == 0:
|
480 |
+
scale_frequency = 0.0
|
481 |
+
elif right == 1:
|
482 |
+
scale_frequency = 1.0
|
483 |
+
else:
|
484 |
+
scale_frequency = 0.5 * (left + right)
|
485 |
+
c = np.cos(np.pi * m * scale_frequency)
|
486 |
+
s = np.sum(h * c)
|
487 |
+
h /= s
|
488 |
+
|
489 |
+
return h
|
490 |
+
|
491 |
+
|
492 |
+
# Original version of firwin2 from scipy ticket #457, submitted by "tash".
|
493 |
+
#
|
494 |
+
# Rewritten by Warren Weckesser, 2010.
|
495 |
+
@_deprecate_positional_args(version="1.14")
|
496 |
+
def firwin2(numtaps, freq, gain, *, nfreqs=None, window='hamming', nyq=_NoValue,
|
497 |
+
antisymmetric=False, fs=None):
|
498 |
+
"""
|
499 |
+
FIR filter design using the window method.
|
500 |
+
|
501 |
+
From the given frequencies `freq` and corresponding gains `gain`,
|
502 |
+
this function constructs an FIR filter with linear phase and
|
503 |
+
(approximately) the given frequency response.
|
504 |
+
|
505 |
+
Parameters
|
506 |
+
----------
|
507 |
+
numtaps : int
|
508 |
+
The number of taps in the FIR filter. `numtaps` must be less than
|
509 |
+
`nfreqs`.
|
510 |
+
freq : array_like, 1-D
|
511 |
+
The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
|
512 |
+
Nyquist. The Nyquist frequency is half `fs`.
|
513 |
+
The values in `freq` must be nondecreasing. A value can be repeated
|
514 |
+
once to implement a discontinuity. The first value in `freq` must
|
515 |
+
be 0, and the last value must be ``fs/2``. Values 0 and ``fs/2`` must
|
516 |
+
not be repeated.
|
517 |
+
gain : array_like
|
518 |
+
The filter gains at the frequency sampling points. Certain
|
519 |
+
constraints to gain values, depending on the filter type, are applied,
|
520 |
+
see Notes for details.
|
521 |
+
nfreqs : int, optional
|
522 |
+
The size of the interpolation mesh used to construct the filter.
|
523 |
+
For most efficient behavior, this should be a power of 2 plus 1
|
524 |
+
(e.g, 129, 257, etc). The default is one more than the smallest
|
525 |
+
power of 2 that is not less than `numtaps`. `nfreqs` must be greater
|
526 |
+
than `numtaps`.
|
527 |
+
window : string or (string, float) or float, or None, optional
|
528 |
+
Window function to use. Default is "hamming". See
|
529 |
+
`scipy.signal.get_window` for the complete list of possible values.
|
530 |
+
If None, no window function is applied.
|
531 |
+
nyq : float, optional, deprecated
|
532 |
+
This is the Nyquist frequency. Each frequency in `freq` must be
|
533 |
+
between 0 and `nyq`. Default is 1.
|
534 |
+
|
535 |
+
.. deprecated:: 1.0.0
|
536 |
+
`firwin2` keyword argument `nyq` is deprecated in favour of `fs` and
|
537 |
+
will be removed in SciPy 1.14.0.
|
538 |
+
antisymmetric : bool, optional
|
539 |
+
Whether resulting impulse response is symmetric/antisymmetric.
|
540 |
+
See Notes for more details.
|
541 |
+
fs : float, optional
|
542 |
+
The sampling frequency of the signal. Each frequency in `cutoff`
|
543 |
+
must be between 0 and ``fs/2``. Default is 2.
|
544 |
+
|
545 |
+
Returns
|
546 |
+
-------
|
547 |
+
taps : ndarray
|
548 |
+
The filter coefficients of the FIR filter, as a 1-D array of length
|
549 |
+
`numtaps`.
|
550 |
+
|
551 |
+
See Also
|
552 |
+
--------
|
553 |
+
firls
|
554 |
+
firwin
|
555 |
+
minimum_phase
|
556 |
+
remez
|
557 |
+
|
558 |
+
Notes
|
559 |
+
-----
|
560 |
+
From the given set of frequencies and gains, the desired response is
|
561 |
+
constructed in the frequency domain. The inverse FFT is applied to the
|
562 |
+
desired response to create the associated convolution kernel, and the
|
563 |
+
first `numtaps` coefficients of this kernel, scaled by `window`, are
|
564 |
+
returned.
|
565 |
+
|
566 |
+
The FIR filter will have linear phase. The type of filter is determined by
|
567 |
+
the value of 'numtaps` and `antisymmetric` flag.
|
568 |
+
There are four possible combinations:
|
569 |
+
|
570 |
+
- odd `numtaps`, `antisymmetric` is False, type I filter is produced
|
571 |
+
- even `numtaps`, `antisymmetric` is False, type II filter is produced
|
572 |
+
- odd `numtaps`, `antisymmetric` is True, type III filter is produced
|
573 |
+
- even `numtaps`, `antisymmetric` is True, type IV filter is produced
|
574 |
+
|
575 |
+
Magnitude response of all but type I filters are subjects to following
|
576 |
+
constraints:
|
577 |
+
|
578 |
+
- type II -- zero at the Nyquist frequency
|
579 |
+
- type III -- zero at zero and Nyquist frequencies
|
580 |
+
- type IV -- zero at zero frequency
|
581 |
+
|
582 |
+
.. versionadded:: 0.9.0
|
583 |
+
|
584 |
+
References
|
585 |
+
----------
|
586 |
+
.. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal
|
587 |
+
Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989).
|
588 |
+
(See, for example, Section 7.4.)
|
589 |
+
|
590 |
+
.. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital
|
591 |
+
Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm
|
592 |
+
|
593 |
+
Examples
|
594 |
+
--------
|
595 |
+
A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and
|
596 |
+
that decreases linearly on [0.5, 1.0] from 1 to 0:
|
597 |
+
|
598 |
+
>>> from scipy import signal
|
599 |
+
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
|
600 |
+
>>> print(taps[72:78])
|
601 |
+
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]
|
602 |
+
|
603 |
+
"""
|
604 |
+
fs = _validate_fs(fs, allow_none=True)
|
605 |
+
nyq = 0.5 * _get_fs(fs, nyq)
|
606 |
+
|
607 |
+
if len(freq) != len(gain):
|
608 |
+
raise ValueError('freq and gain must be of same length.')
|
609 |
+
|
610 |
+
if nfreqs is not None and numtaps >= nfreqs:
|
611 |
+
raise ValueError(('ntaps must be less than nfreqs, but firwin2 was '
|
612 |
+
'called with ntaps=%d and nfreqs=%s') %
|
613 |
+
(numtaps, nfreqs))
|
614 |
+
|
615 |
+
if freq[0] != 0 or freq[-1] != nyq:
|
616 |
+
raise ValueError('freq must start with 0 and end with fs/2.')
|
617 |
+
d = np.diff(freq)
|
618 |
+
if (d < 0).any():
|
619 |
+
raise ValueError('The values in freq must be nondecreasing.')
|
620 |
+
d2 = d[:-1] + d[1:]
|
621 |
+
if (d2 == 0).any():
|
622 |
+
raise ValueError('A value in freq must not occur more than twice.')
|
623 |
+
if freq[1] == 0:
|
624 |
+
raise ValueError('Value 0 must not be repeated in freq')
|
625 |
+
if freq[-2] == nyq:
|
626 |
+
raise ValueError('Value fs/2 must not be repeated in freq')
|
627 |
+
|
628 |
+
if antisymmetric:
|
629 |
+
if numtaps % 2 == 0:
|
630 |
+
ftype = 4
|
631 |
+
else:
|
632 |
+
ftype = 3
|
633 |
+
else:
|
634 |
+
if numtaps % 2 == 0:
|
635 |
+
ftype = 2
|
636 |
+
else:
|
637 |
+
ftype = 1
|
638 |
+
|
639 |
+
if ftype == 2 and gain[-1] != 0.0:
|
640 |
+
raise ValueError("A Type II filter must have zero gain at the "
|
641 |
+
"Nyquist frequency.")
|
642 |
+
elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0):
|
643 |
+
raise ValueError("A Type III filter must have zero gain at zero "
|
644 |
+
"and Nyquist frequencies.")
|
645 |
+
elif ftype == 4 and gain[0] != 0.0:
|
646 |
+
raise ValueError("A Type IV filter must have zero gain at zero "
|
647 |
+
"frequency.")
|
648 |
+
|
649 |
+
if nfreqs is None:
|
650 |
+
nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2)))
|
651 |
+
|
652 |
+
if (d == 0).any():
|
653 |
+
# Tweak any repeated values in freq so that interp works.
|
654 |
+
freq = np.array(freq, copy=True)
|
655 |
+
eps = np.finfo(float).eps * nyq
|
656 |
+
for k in range(len(freq) - 1):
|
657 |
+
if freq[k] == freq[k + 1]:
|
658 |
+
freq[k] = freq[k] - eps
|
659 |
+
freq[k + 1] = freq[k + 1] + eps
|
660 |
+
# Check if freq is strictly increasing after tweak
|
661 |
+
d = np.diff(freq)
|
662 |
+
if (d <= 0).any():
|
663 |
+
raise ValueError("freq cannot contain numbers that are too close "
|
664 |
+
"(within eps * (fs/2): "
|
665 |
+
f"{eps}) to a repeated value")
|
666 |
+
|
667 |
+
# Linearly interpolate the desired response on a uniform mesh `x`.
|
668 |
+
x = np.linspace(0.0, nyq, nfreqs)
|
669 |
+
fx = np.interp(x, freq, gain)
|
670 |
+
|
671 |
+
# Adjust the phases of the coefficients so that the first `ntaps` of the
|
672 |
+
# inverse FFT are the desired filter coefficients.
|
673 |
+
shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq)
|
674 |
+
if ftype > 2:
|
675 |
+
shift *= 1j
|
676 |
+
|
677 |
+
fx2 = fx * shift
|
678 |
+
|
679 |
+
# Use irfft to compute the inverse FFT.
|
680 |
+
out_full = irfft(fx2)
|
681 |
+
|
682 |
+
if window is not None:
|
683 |
+
# Create the window to apply to the filter coefficients.
|
684 |
+
from .windows import get_window
|
685 |
+
wind = get_window(window, numtaps, fftbins=False)
|
686 |
+
else:
|
687 |
+
wind = 1
|
688 |
+
|
689 |
+
# Keep only the first `numtaps` coefficients in `out`, and multiply by
|
690 |
+
# the window.
|
691 |
+
out = out_full[:numtaps] * wind
|
692 |
+
|
693 |
+
if ftype == 3:
|
694 |
+
out[out.size // 2] = 0.0
|
695 |
+
|
696 |
+
return out
|
697 |
+
|
698 |
+
|
699 |
+
@_deprecate_positional_args(version="1.14")
|
700 |
+
def remez(numtaps, bands, desired, *, weight=None, Hz=_NoValue, type='bandpass',
|
701 |
+
maxiter=25, grid_density=16, fs=None):
|
702 |
+
"""
|
703 |
+
Calculate the minimax optimal filter using the Remez exchange algorithm.
|
704 |
+
|
705 |
+
Calculate the filter-coefficients for the finite impulse response
|
706 |
+
(FIR) filter whose transfer function minimizes the maximum error
|
707 |
+
between the desired gain and the realized gain in the specified
|
708 |
+
frequency bands using the Remez exchange algorithm.
|
709 |
+
|
710 |
+
Parameters
|
711 |
+
----------
|
712 |
+
numtaps : int
|
713 |
+
The desired number of taps in the filter. The number of taps is
|
714 |
+
the number of terms in the filter, or the filter order plus one.
|
715 |
+
bands : array_like
|
716 |
+
A monotonic sequence containing the band edges.
|
717 |
+
All elements must be non-negative and less than half the sampling
|
718 |
+
frequency as given by `fs`.
|
719 |
+
desired : array_like
|
720 |
+
A sequence half the size of bands containing the desired gain
|
721 |
+
in each of the specified bands.
|
722 |
+
weight : array_like, optional
|
723 |
+
A relative weighting to give to each band region. The length of
|
724 |
+
`weight` has to be half the length of `bands`.
|
725 |
+
Hz : scalar, optional, deprecated
|
726 |
+
The sampling frequency in Hz. Default is 1.
|
727 |
+
|
728 |
+
.. deprecated:: 1.0.0
|
729 |
+
`remez` keyword argument `Hz` is deprecated in favour of `fs` and
|
730 |
+
will be removed in SciPy 1.14.0.
|
731 |
+
type : {'bandpass', 'differentiator', 'hilbert'}, optional
|
732 |
+
The type of filter:
|
733 |
+
|
734 |
+
* 'bandpass' : flat response in bands. This is the default.
|
735 |
+
|
736 |
+
* 'differentiator' : frequency proportional response in bands.
|
737 |
+
|
738 |
+
* 'hilbert' : filter with odd symmetry, that is, type III
|
739 |
+
(for even order) or type IV (for odd order)
|
740 |
+
linear phase filters.
|
741 |
+
|
742 |
+
maxiter : int, optional
|
743 |
+
Maximum number of iterations of the algorithm. Default is 25.
|
744 |
+
grid_density : int, optional
|
745 |
+
Grid density. The dense grid used in `remez` is of size
|
746 |
+
``(numtaps + 1) * grid_density``. Default is 16.
|
747 |
+
fs : float, optional
|
748 |
+
The sampling frequency of the signal. Default is 1.
|
749 |
+
|
750 |
+
Returns
|
751 |
+
-------
|
752 |
+
out : ndarray
|
753 |
+
A rank-1 array containing the coefficients of the optimal
|
754 |
+
(in a minimax sense) filter.
|
755 |
+
|
756 |
+
See Also
|
757 |
+
--------
|
758 |
+
firls
|
759 |
+
firwin
|
760 |
+
firwin2
|
761 |
+
minimum_phase
|
762 |
+
|
763 |
+
References
|
764 |
+
----------
|
765 |
+
.. [1] J. H. McClellan and T. W. Parks, "A unified approach to the
|
766 |
+
design of optimum FIR linear phase digital filters",
|
767 |
+
IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
|
768 |
+
.. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer
|
769 |
+
Program for Designing Optimum FIR Linear Phase Digital
|
770 |
+
Filters", IEEE Trans. Audio Electroacoust., vol. AU-21,
|
771 |
+
pp. 506-525, 1973.
|
772 |
+
|
773 |
+
Examples
|
774 |
+
--------
|
775 |
+
In these examples, `remez` is used to design low-pass, high-pass,
|
776 |
+
band-pass and band-stop filters. The parameters that define each filter
|
777 |
+
are the filter order, the band boundaries, the transition widths of the
|
778 |
+
boundaries, the desired gains in each band, and the sampling frequency.
|
779 |
+
|
780 |
+
We'll use a sample frequency of 22050 Hz in all the examples. In each
|
781 |
+
example, the desired gain in each band is either 0 (for a stop band)
|
782 |
+
or 1 (for a pass band).
|
783 |
+
|
784 |
+
`freqz` is used to compute the frequency response of each filter, and
|
785 |
+
the utility function ``plot_response`` defined below is used to plot
|
786 |
+
the response.
|
787 |
+
|
788 |
+
>>> import numpy as np
|
789 |
+
>>> from scipy import signal
|
790 |
+
>>> import matplotlib.pyplot as plt
|
791 |
+
|
792 |
+
>>> fs = 22050 # Sample rate, Hz
|
793 |
+
|
794 |
+
>>> def plot_response(w, h, title):
|
795 |
+
... "Utility function to plot response functions"
|
796 |
+
... fig = plt.figure()
|
797 |
+
... ax = fig.add_subplot(111)
|
798 |
+
... ax.plot(w, 20*np.log10(np.abs(h)))
|
799 |
+
... ax.set_ylim(-40, 5)
|
800 |
+
... ax.grid(True)
|
801 |
+
... ax.set_xlabel('Frequency (Hz)')
|
802 |
+
... ax.set_ylabel('Gain (dB)')
|
803 |
+
... ax.set_title(title)
|
804 |
+
|
805 |
+
The first example is a low-pass filter, with cutoff frequency 8 kHz.
|
806 |
+
The filter length is 325, and the transition width from pass to stop
|
807 |
+
is 100 Hz.
|
808 |
+
|
809 |
+
>>> cutoff = 8000.0 # Desired cutoff frequency, Hz
|
810 |
+
>>> trans_width = 100 # Width of transition from pass to stop, Hz
|
811 |
+
>>> numtaps = 325 # Size of the FIR filter.
|
812 |
+
>>> taps = signal.remez(numtaps, [0, cutoff, cutoff + trans_width, 0.5*fs],
|
813 |
+
... [1, 0], fs=fs)
|
814 |
+
>>> w, h = signal.freqz(taps, [1], worN=2000, fs=fs)
|
815 |
+
>>> plot_response(w, h, "Low-pass Filter")
|
816 |
+
>>> plt.show()
|
817 |
+
|
818 |
+
This example shows a high-pass filter:
|
819 |
+
|
820 |
+
>>> cutoff = 2000.0 # Desired cutoff frequency, Hz
|
821 |
+
>>> trans_width = 250 # Width of transition from pass to stop, Hz
|
822 |
+
>>> numtaps = 125 # Size of the FIR filter.
|
823 |
+
>>> taps = signal.remez(numtaps, [0, cutoff - trans_width, cutoff, 0.5*fs],
|
824 |
+
... [0, 1], fs=fs)
|
825 |
+
>>> w, h = signal.freqz(taps, [1], worN=2000, fs=fs)
|
826 |
+
>>> plot_response(w, h, "High-pass Filter")
|
827 |
+
>>> plt.show()
|
828 |
+
|
829 |
+
This example shows a band-pass filter with a pass-band from 2 kHz to
|
830 |
+
5 kHz. The transition width is 260 Hz and the length of the filter
|
831 |
+
is 63, which is smaller than in the other examples:
|
832 |
+
|
833 |
+
>>> band = [2000, 5000] # Desired pass band, Hz
|
834 |
+
>>> trans_width = 260 # Width of transition from pass to stop, Hz
|
835 |
+
>>> numtaps = 63 # Size of the FIR filter.
|
836 |
+
>>> edges = [0, band[0] - trans_width, band[0], band[1],
|
837 |
+
... band[1] + trans_width, 0.5*fs]
|
838 |
+
>>> taps = signal.remez(numtaps, edges, [0, 1, 0], fs=fs)
|
839 |
+
>>> w, h = signal.freqz(taps, [1], worN=2000, fs=fs)
|
840 |
+
>>> plot_response(w, h, "Band-pass Filter")
|
841 |
+
>>> plt.show()
|
842 |
+
|
843 |
+
The low order leads to higher ripple and less steep transitions.
|
844 |
+
|
845 |
+
The next example shows a band-stop filter.
|
846 |
+
|
847 |
+
>>> band = [6000, 8000] # Desired stop band, Hz
|
848 |
+
>>> trans_width = 200 # Width of transition from pass to stop, Hz
|
849 |
+
>>> numtaps = 175 # Size of the FIR filter.
|
850 |
+
>>> edges = [0, band[0] - trans_width, band[0], band[1],
|
851 |
+
... band[1] + trans_width, 0.5*fs]
|
852 |
+
>>> taps = signal.remez(numtaps, edges, [1, 0, 1], fs=fs)
|
853 |
+
>>> w, h = signal.freqz(taps, [1], worN=2000, fs=fs)
|
854 |
+
>>> plot_response(w, h, "Band-stop Filter")
|
855 |
+
>>> plt.show()
|
856 |
+
|
857 |
+
"""
|
858 |
+
fs = _validate_fs(fs, allow_none=True)
|
859 |
+
if Hz is _NoValue and fs is None:
|
860 |
+
fs = 1.0
|
861 |
+
elif Hz is not _NoValue:
|
862 |
+
if fs is not None:
|
863 |
+
raise ValueError("Values cannot be given for both 'Hz' and 'fs'.")
|
864 |
+
msg = ("'remez' keyword argument 'Hz' is deprecated in favour of 'fs'"
|
865 |
+
" and will be removed in SciPy 1.14.0.")
|
866 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
867 |
+
fs = Hz
|
868 |
+
|
869 |
+
# Convert type
|
870 |
+
try:
|
871 |
+
tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type]
|
872 |
+
except KeyError as e:
|
873 |
+
raise ValueError("Type must be 'bandpass', 'differentiator', "
|
874 |
+
"or 'hilbert'") from e
|
875 |
+
|
876 |
+
# Convert weight
|
877 |
+
if weight is None:
|
878 |
+
weight = [1] * len(desired)
|
879 |
+
|
880 |
+
bands = np.asarray(bands).copy()
|
881 |
+
return _sigtools._remez(numtaps, bands, desired, weight, tnum, fs,
|
882 |
+
maxiter, grid_density)
|
883 |
+
|
884 |
+
|
885 |
+
@_deprecate_positional_args(version="1.14")
|
886 |
+
def firls(numtaps, bands, desired, *, weight=None, nyq=_NoValue, fs=None):
|
887 |
+
"""
|
888 |
+
FIR filter design using least-squares error minimization.
|
889 |
+
|
890 |
+
Calculate the filter coefficients for the linear-phase finite
|
891 |
+
impulse response (FIR) filter which has the best approximation
|
892 |
+
to the desired frequency response described by `bands` and
|
893 |
+
`desired` in the least squares sense (i.e., the integral of the
|
894 |
+
weighted mean-squared error within the specified bands is
|
895 |
+
minimized).
|
896 |
+
|
897 |
+
Parameters
|
898 |
+
----------
|
899 |
+
numtaps : int
|
900 |
+
The number of taps in the FIR filter. `numtaps` must be odd.
|
901 |
+
bands : array_like
|
902 |
+
A monotonic nondecreasing sequence containing the band edges in
|
903 |
+
Hz. All elements must be non-negative and less than or equal to
|
904 |
+
the Nyquist frequency given by `nyq`. The bands are specified as
|
905 |
+
frequency pairs, thus, if using a 1D array, its length must be
|
906 |
+
even, e.g., `np.array([0, 1, 2, 3, 4, 5])`. Alternatively, the
|
907 |
+
bands can be specified as an nx2 sized 2D array, where n is the
|
908 |
+
number of bands, e.g, `np.array([[0, 1], [2, 3], [4, 5]])`.
|
909 |
+
desired : array_like
|
910 |
+
A sequence the same size as `bands` containing the desired gain
|
911 |
+
at the start and end point of each band.
|
912 |
+
weight : array_like, optional
|
913 |
+
A relative weighting to give to each band region when solving
|
914 |
+
the least squares problem. `weight` has to be half the size of
|
915 |
+
`bands`.
|
916 |
+
nyq : float, optional, deprecated
|
917 |
+
This is the Nyquist frequency. Each frequency in `bands` must be
|
918 |
+
between 0 and `nyq` (inclusive). Default is 1.
|
919 |
+
|
920 |
+
.. deprecated:: 1.0.0
|
921 |
+
`firls` keyword argument `nyq` is deprecated in favour of `fs` and
|
922 |
+
will be removed in SciPy 1.14.0.
|
923 |
+
fs : float, optional
|
924 |
+
The sampling frequency of the signal. Each frequency in `bands`
|
925 |
+
must be between 0 and ``fs/2`` (inclusive). Default is 2.
|
926 |
+
|
927 |
+
Returns
|
928 |
+
-------
|
929 |
+
coeffs : ndarray
|
930 |
+
Coefficients of the optimal (in a least squares sense) FIR filter.
|
931 |
+
|
932 |
+
See Also
|
933 |
+
--------
|
934 |
+
firwin
|
935 |
+
firwin2
|
936 |
+
minimum_phase
|
937 |
+
remez
|
938 |
+
|
939 |
+
Notes
|
940 |
+
-----
|
941 |
+
This implementation follows the algorithm given in [1]_.
|
942 |
+
As noted there, least squares design has multiple advantages:
|
943 |
+
|
944 |
+
1. Optimal in a least-squares sense.
|
945 |
+
2. Simple, non-iterative method.
|
946 |
+
3. The general solution can obtained by solving a linear
|
947 |
+
system of equations.
|
948 |
+
4. Allows the use of a frequency dependent weighting function.
|
949 |
+
|
950 |
+
This function constructs a Type I linear phase FIR filter, which
|
951 |
+
contains an odd number of `coeffs` satisfying for :math:`n < numtaps`:
|
952 |
+
|
953 |
+
.. math:: coeffs(n) = coeffs(numtaps - 1 - n)
|
954 |
+
|
955 |
+
The odd number of coefficients and filter symmetry avoid boundary
|
956 |
+
conditions that could otherwise occur at the Nyquist and 0 frequencies
|
957 |
+
(e.g., for Type II, III, or IV variants).
|
958 |
+
|
959 |
+
.. versionadded:: 0.18
|
960 |
+
|
961 |
+
References
|
962 |
+
----------
|
963 |
+
.. [1] Ivan Selesnick, Linear-Phase Fir Filter Design By Least Squares.
|
964 |
+
OpenStax CNX. Aug 9, 2005.
|
965 |
+
http://cnx.org/contents/eb1ecb35-03a9-4610-ba87-41cd771c95f2@7
|
966 |
+
|
967 |
+
Examples
|
968 |
+
--------
|
969 |
+
We want to construct a band-pass filter. Note that the behavior in the
|
970 |
+
frequency ranges between our stop bands and pass bands is unspecified,
|
971 |
+
and thus may overshoot depending on the parameters of our filter:
|
972 |
+
|
973 |
+
>>> import numpy as np
|
974 |
+
>>> from scipy import signal
|
975 |
+
>>> import matplotlib.pyplot as plt
|
976 |
+
>>> fig, axs = plt.subplots(2)
|
977 |
+
>>> fs = 10.0 # Hz
|
978 |
+
>>> desired = (0, 0, 1, 1, 0, 0)
|
979 |
+
>>> for bi, bands in enumerate(((0, 1, 2, 3, 4, 5), (0, 1, 2, 4, 4.5, 5))):
|
980 |
+
... fir_firls = signal.firls(73, bands, desired, fs=fs)
|
981 |
+
... fir_remez = signal.remez(73, bands, desired[::2], fs=fs)
|
982 |
+
... fir_firwin2 = signal.firwin2(73, bands, desired, fs=fs)
|
983 |
+
... hs = list()
|
984 |
+
... ax = axs[bi]
|
985 |
+
... for fir in (fir_firls, fir_remez, fir_firwin2):
|
986 |
+
... freq, response = signal.freqz(fir)
|
987 |
+
... hs.append(ax.semilogy(0.5*fs*freq/np.pi, np.abs(response))[0])
|
988 |
+
... for band, gains in zip(zip(bands[::2], bands[1::2]),
|
989 |
+
... zip(desired[::2], desired[1::2])):
|
990 |
+
... ax.semilogy(band, np.maximum(gains, 1e-7), 'k--', linewidth=2)
|
991 |
+
... if bi == 0:
|
992 |
+
... ax.legend(hs, ('firls', 'remez', 'firwin2'),
|
993 |
+
... loc='lower center', frameon=False)
|
994 |
+
... else:
|
995 |
+
... ax.set_xlabel('Frequency (Hz)')
|
996 |
+
... ax.grid(True)
|
997 |
+
... ax.set(title='Band-pass %d-%d Hz' % bands[2:4], ylabel='Magnitude')
|
998 |
+
...
|
999 |
+
>>> fig.tight_layout()
|
1000 |
+
>>> plt.show()
|
1001 |
+
|
1002 |
+
"""
|
1003 |
+
fs = _validate_fs(fs, allow_none=True)
|
1004 |
+
nyq = 0.5 * _get_fs(fs, nyq)
|
1005 |
+
|
1006 |
+
numtaps = int(numtaps)
|
1007 |
+
if numtaps % 2 == 0 or numtaps < 1:
|
1008 |
+
raise ValueError("numtaps must be odd and >= 1")
|
1009 |
+
M = (numtaps-1) // 2
|
1010 |
+
|
1011 |
+
# normalize bands 0->1 and make it 2 columns
|
1012 |
+
nyq = float(nyq)
|
1013 |
+
if nyq <= 0:
|
1014 |
+
raise ValueError('nyq must be positive, got %s <= 0.' % nyq)
|
1015 |
+
bands = np.asarray(bands).flatten() / nyq
|
1016 |
+
if len(bands) % 2 != 0:
|
1017 |
+
raise ValueError("bands must contain frequency pairs.")
|
1018 |
+
if (bands < 0).any() or (bands > 1).any():
|
1019 |
+
raise ValueError("bands must be between 0 and 1 relative to Nyquist")
|
1020 |
+
bands.shape = (-1, 2)
|
1021 |
+
|
1022 |
+
# check remaining params
|
1023 |
+
desired = np.asarray(desired).flatten()
|
1024 |
+
if bands.size != desired.size:
|
1025 |
+
raise ValueError("desired must have one entry per frequency, got {} "
|
1026 |
+
"gains for {} frequencies.".format(desired.size, bands.size))
|
1027 |
+
desired.shape = (-1, 2)
|
1028 |
+
if (np.diff(bands) <= 0).any() or (np.diff(bands[:, 0]) < 0).any():
|
1029 |
+
raise ValueError("bands must be monotonically nondecreasing and have "
|
1030 |
+
"width > 0.")
|
1031 |
+
if (bands[:-1, 1] > bands[1:, 0]).any():
|
1032 |
+
raise ValueError("bands must not overlap.")
|
1033 |
+
if (desired < 0).any():
|
1034 |
+
raise ValueError("desired must be non-negative.")
|
1035 |
+
if weight is None:
|
1036 |
+
weight = np.ones(len(desired))
|
1037 |
+
weight = np.asarray(weight).flatten()
|
1038 |
+
if len(weight) != len(desired):
|
1039 |
+
raise ValueError("weight must be the same size as the number of "
|
1040 |
+
f"band pairs ({len(bands)}).")
|
1041 |
+
if (weight < 0).any():
|
1042 |
+
raise ValueError("weight must be non-negative.")
|
1043 |
+
|
1044 |
+
# Set up the linear matrix equation to be solved, Qa = b
|
1045 |
+
|
1046 |
+
# We can express Q(k,n) = 0.5 Q1(k,n) + 0.5 Q2(k,n)
|
1047 |
+
# where Q1(k,n)=q(k-n) and Q2(k,n)=q(k+n), i.e. a Toeplitz plus Hankel.
|
1048 |
+
|
1049 |
+
# We omit the factor of 0.5 above, instead adding it during coefficient
|
1050 |
+
# calculation.
|
1051 |
+
|
1052 |
+
# We also omit the 1/π from both Q and b equations, as they cancel
|
1053 |
+
# during solving.
|
1054 |
+
|
1055 |
+
# We have that:
|
1056 |
+
# q(n) = 1/π ∫W(ω)cos(nω)dω (over 0->π)
|
1057 |
+
# Using our normalization ω=πf and with a constant weight W over each
|
1058 |
+
# interval f1->f2 we get:
|
1059 |
+
# q(n) = W∫cos(πnf)df (0->1) = Wf sin(πnf)/πnf
|
1060 |
+
# integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
|
1061 |
+
n = np.arange(numtaps)[:, np.newaxis, np.newaxis]
|
1062 |
+
q = np.dot(np.diff(np.sinc(bands * n) * bands, axis=2)[:, :, 0], weight)
|
1063 |
+
|
1064 |
+
# Now we assemble our sum of Toeplitz and Hankel
|
1065 |
+
Q1 = toeplitz(q[:M+1])
|
1066 |
+
Q2 = hankel(q[:M+1], q[M:])
|
1067 |
+
Q = Q1 + Q2
|
1068 |
+
|
1069 |
+
# Now for b(n) we have that:
|
1070 |
+
# b(n) = 1/π ∫ W(ω)D(ω)cos(nω)dω (over 0->π)
|
1071 |
+
# Using our normalization ω=πf and with a constant weight W over each
|
1072 |
+
# interval and a linear term for D(ω) we get (over each f1->f2 interval):
|
1073 |
+
# b(n) = W ∫ (mf+c)cos(πnf)df
|
1074 |
+
# = f(mf+c)sin(πnf)/πnf + mf**2 cos(nπf)/(πnf)**2
|
1075 |
+
# integrated over each f1->f2 pair (i.e., value at f2 - value at f1).
|
1076 |
+
n = n[:M + 1] # only need this many coefficients here
|
1077 |
+
# Choose m and c such that we are at the start and end weights
|
1078 |
+
m = (np.diff(desired, axis=1) / np.diff(bands, axis=1))
|
1079 |
+
c = desired[:, [0]] - bands[:, [0]] * m
|
1080 |
+
b = bands * (m*bands + c) * np.sinc(bands * n)
|
1081 |
+
# Use L'Hospital's rule here for cos(nπf)/(πnf)**2 @ n=0
|
1082 |
+
b[0] -= m * bands * bands / 2.
|
1083 |
+
b[1:] += m * np.cos(n[1:] * np.pi * bands) / (np.pi * n[1:]) ** 2
|
1084 |
+
b = np.dot(np.diff(b, axis=2)[:, :, 0], weight)
|
1085 |
+
|
1086 |
+
# Now we can solve the equation
|
1087 |
+
try: # try the fast way
|
1088 |
+
with warnings.catch_warnings(record=True) as w:
|
1089 |
+
warnings.simplefilter('always')
|
1090 |
+
a = solve(Q, b, assume_a="pos", check_finite=False)
|
1091 |
+
for ww in w:
|
1092 |
+
if (ww.category == LinAlgWarning and
|
1093 |
+
str(ww.message).startswith('Ill-conditioned matrix')):
|
1094 |
+
raise LinAlgError(str(ww.message))
|
1095 |
+
except LinAlgError: # in case Q is rank deficient
|
1096 |
+
# This is faster than pinvh, even though we don't explicitly use
|
1097 |
+
# the symmetry here. gelsy was faster than gelsd and gelss in
|
1098 |
+
# some non-exhaustive tests.
|
1099 |
+
a = lstsq(Q, b, lapack_driver='gelsy')[0]
|
1100 |
+
|
1101 |
+
# make coefficients symmetric (linear phase)
|
1102 |
+
coeffs = np.hstack((a[:0:-1], 2 * a[0], a[1:]))
|
1103 |
+
return coeffs
|
1104 |
+
|
1105 |
+
|
1106 |
+
def _dhtm(mag):
|
1107 |
+
"""Compute the modified 1-D discrete Hilbert transform
|
1108 |
+
|
1109 |
+
Parameters
|
1110 |
+
----------
|
1111 |
+
mag : ndarray
|
1112 |
+
The magnitude spectrum. Should be 1-D with an even length, and
|
1113 |
+
preferably a fast length for FFT/IFFT.
|
1114 |
+
"""
|
1115 |
+
# Adapted based on code by Niranjan Damera-Venkata,
|
1116 |
+
# Brian L. Evans and Shawn R. McCaslin (see refs for `minimum_phase`)
|
1117 |
+
sig = np.zeros(len(mag))
|
1118 |
+
# Leave Nyquist and DC at 0, knowing np.abs(fftfreq(N)[midpt]) == 0.5
|
1119 |
+
midpt = len(mag) // 2
|
1120 |
+
sig[1:midpt] = 1
|
1121 |
+
sig[midpt+1:] = -1
|
1122 |
+
# eventually if we want to support complex filters, we will need a
|
1123 |
+
# np.abs() on the mag inside the log, and should remove the .real
|
1124 |
+
recon = ifft(mag * np.exp(fft(sig * ifft(np.log(mag))))).real
|
1125 |
+
return recon
|
1126 |
+
|
1127 |
+
|
1128 |
+
def minimum_phase(h, method='homomorphic', n_fft=None):
|
1129 |
+
"""Convert a linear-phase FIR filter to minimum phase
|
1130 |
+
|
1131 |
+
Parameters
|
1132 |
+
----------
|
1133 |
+
h : array
|
1134 |
+
Linear-phase FIR filter coefficients.
|
1135 |
+
method : {'hilbert', 'homomorphic'}
|
1136 |
+
The method to use:
|
1137 |
+
|
1138 |
+
'homomorphic' (default)
|
1139 |
+
This method [4]_ [5]_ works best with filters with an
|
1140 |
+
odd number of taps, and the resulting minimum phase filter
|
1141 |
+
will have a magnitude response that approximates the square
|
1142 |
+
root of the original filter's magnitude response.
|
1143 |
+
|
1144 |
+
'hilbert'
|
1145 |
+
This method [1]_ is designed to be used with equiripple
|
1146 |
+
filters (e.g., from `remez`) with unity or zero gain
|
1147 |
+
regions.
|
1148 |
+
|
1149 |
+
n_fft : int
|
1150 |
+
The number of points to use for the FFT. Should be at least a
|
1151 |
+
few times larger than the signal length (see Notes).
|
1152 |
+
|
1153 |
+
Returns
|
1154 |
+
-------
|
1155 |
+
h_minimum : array
|
1156 |
+
The minimum-phase version of the filter, with length
|
1157 |
+
``(length(h) + 1) // 2``.
|
1158 |
+
|
1159 |
+
See Also
|
1160 |
+
--------
|
1161 |
+
firwin
|
1162 |
+
firwin2
|
1163 |
+
remez
|
1164 |
+
|
1165 |
+
Notes
|
1166 |
+
-----
|
1167 |
+
Both the Hilbert [1]_ or homomorphic [4]_ [5]_ methods require selection
|
1168 |
+
of an FFT length to estimate the complex cepstrum of the filter.
|
1169 |
+
|
1170 |
+
In the case of the Hilbert method, the deviation from the ideal
|
1171 |
+
spectrum ``epsilon`` is related to the number of stopband zeros
|
1172 |
+
``n_stop`` and FFT length ``n_fft`` as::
|
1173 |
+
|
1174 |
+
epsilon = 2. * n_stop / n_fft
|
1175 |
+
|
1176 |
+
For example, with 100 stopband zeros and a FFT length of 2048,
|
1177 |
+
``epsilon = 0.0976``. If we conservatively assume that the number of
|
1178 |
+
stopband zeros is one less than the filter length, we can take the FFT
|
1179 |
+
length to be the next power of 2 that satisfies ``epsilon=0.01`` as::
|
1180 |
+
|
1181 |
+
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
|
1182 |
+
|
1183 |
+
This gives reasonable results for both the Hilbert and homomorphic
|
1184 |
+
methods, and gives the value used when ``n_fft=None``.
|
1185 |
+
|
1186 |
+
Alternative implementations exist for creating minimum-phase filters,
|
1187 |
+
including zero inversion [2]_ and spectral factorization [3]_ [4]_.
|
1188 |
+
For more information, see:
|
1189 |
+
|
1190 |
+
http://dspguru.com/dsp/howtos/how-to-design-minimum-phase-fir-filters
|
1191 |
+
|
1192 |
+
References
|
1193 |
+
----------
|
1194 |
+
.. [1] N. Damera-Venkata and B. L. Evans, "Optimal design of real and
|
1195 |
+
complex minimum phase digital FIR filters," Acoustics, Speech,
|
1196 |
+
and Signal Processing, 1999. Proceedings., 1999 IEEE International
|
1197 |
+
Conference on, Phoenix, AZ, 1999, pp. 1145-1148 vol.3.
|
1198 |
+
:doi:`10.1109/ICASSP.1999.756179`
|
1199 |
+
.. [2] X. Chen and T. W. Parks, "Design of optimal minimum phase FIR
|
1200 |
+
filters by direct factorization," Signal Processing,
|
1201 |
+
vol. 10, no. 4, pp. 369-383, Jun. 1986.
|
1202 |
+
.. [3] T. Saramaki, "Finite Impulse Response Filter Design," in
|
1203 |
+
Handbook for Digital Signal Processing, chapter 4,
|
1204 |
+
New York: Wiley-Interscience, 1993.
|
1205 |
+
.. [4] J. S. Lim, Advanced Topics in Signal Processing.
|
1206 |
+
Englewood Cliffs, N.J.: Prentice Hall, 1988.
|
1207 |
+
.. [5] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,
|
1208 |
+
"Discrete-Time Signal Processing," 2nd edition.
|
1209 |
+
Upper Saddle River, N.J.: Prentice Hall, 1999.
|
1210 |
+
|
1211 |
+
Examples
|
1212 |
+
--------
|
1213 |
+
Create an optimal linear-phase filter, then convert it to minimum phase:
|
1214 |
+
|
1215 |
+
>>> import numpy as np
|
1216 |
+
>>> from scipy.signal import remez, minimum_phase, freqz, group_delay
|
1217 |
+
>>> import matplotlib.pyplot as plt
|
1218 |
+
>>> freq = [0, 0.2, 0.3, 1.0]
|
1219 |
+
>>> desired = [1, 0]
|
1220 |
+
>>> h_linear = remez(151, freq, desired, fs=2.)
|
1221 |
+
|
1222 |
+
Convert it to minimum phase:
|
1223 |
+
|
1224 |
+
>>> h_min_hom = minimum_phase(h_linear, method='homomorphic')
|
1225 |
+
>>> h_min_hil = minimum_phase(h_linear, method='hilbert')
|
1226 |
+
|
1227 |
+
Compare the three filters:
|
1228 |
+
|
1229 |
+
>>> fig, axs = plt.subplots(4, figsize=(4, 8))
|
1230 |
+
>>> for h, style, color in zip((h_linear, h_min_hom, h_min_hil),
|
1231 |
+
... ('-', '-', '--'), ('k', 'r', 'c')):
|
1232 |
+
... w, H = freqz(h)
|
1233 |
+
... w, gd = group_delay((h, 1))
|
1234 |
+
... w /= np.pi
|
1235 |
+
... axs[0].plot(h, color=color, linestyle=style)
|
1236 |
+
... axs[1].plot(w, np.abs(H), color=color, linestyle=style)
|
1237 |
+
... axs[2].plot(w, 20 * np.log10(np.abs(H)), color=color, linestyle=style)
|
1238 |
+
... axs[3].plot(w, gd, color=color, linestyle=style)
|
1239 |
+
>>> for ax in axs:
|
1240 |
+
... ax.grid(True, color='0.5')
|
1241 |
+
... ax.fill_between(freq[1:3], *ax.get_ylim(), color='#ffeeaa', zorder=1)
|
1242 |
+
>>> axs[0].set(xlim=[0, len(h_linear) - 1], ylabel='Amplitude', xlabel='Samples')
|
1243 |
+
>>> axs[1].legend(['Linear', 'Min-Hom', 'Min-Hil'], title='Phase')
|
1244 |
+
>>> for ax, ylim in zip(axs[1:], ([0, 1.1], [-150, 10], [-60, 60])):
|
1245 |
+
... ax.set(xlim=[0, 1], ylim=ylim, xlabel='Frequency')
|
1246 |
+
>>> axs[1].set(ylabel='Magnitude')
|
1247 |
+
>>> axs[2].set(ylabel='Magnitude (dB)')
|
1248 |
+
>>> axs[3].set(ylabel='Group delay')
|
1249 |
+
>>> plt.tight_layout()
|
1250 |
+
|
1251 |
+
"""
|
1252 |
+
h = np.asarray(h)
|
1253 |
+
if np.iscomplexobj(h):
|
1254 |
+
raise ValueError('Complex filters not supported')
|
1255 |
+
if h.ndim != 1 or h.size <= 2:
|
1256 |
+
raise ValueError('h must be 1-D and at least 2 samples long')
|
1257 |
+
n_half = len(h) // 2
|
1258 |
+
if not np.allclose(h[-n_half:][::-1], h[:n_half]):
|
1259 |
+
warnings.warn('h does not appear to by symmetric, conversion may fail',
|
1260 |
+
RuntimeWarning, stacklevel=2)
|
1261 |
+
if not isinstance(method, str) or method not in \
|
1262 |
+
('homomorphic', 'hilbert',):
|
1263 |
+
raise ValueError(f'method must be "homomorphic" or "hilbert", got {method!r}')
|
1264 |
+
if n_fft is None:
|
1265 |
+
n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01)))
|
1266 |
+
n_fft = int(n_fft)
|
1267 |
+
if n_fft < len(h):
|
1268 |
+
raise ValueError('n_fft must be at least len(h)==%s' % len(h))
|
1269 |
+
if method == 'hilbert':
|
1270 |
+
w = np.arange(n_fft) * (2 * np.pi / n_fft * n_half)
|
1271 |
+
H = np.real(fft(h, n_fft) * np.exp(1j * w))
|
1272 |
+
dp = max(H) - 1
|
1273 |
+
ds = 0 - min(H)
|
1274 |
+
S = 4. / (np.sqrt(1+dp+ds) + np.sqrt(1-dp+ds)) ** 2
|
1275 |
+
H += ds
|
1276 |
+
H *= S
|
1277 |
+
H = np.sqrt(H, out=H)
|
1278 |
+
H += 1e-10 # ensure that the log does not explode
|
1279 |
+
h_minimum = _dhtm(H)
|
1280 |
+
else: # method == 'homomorphic'
|
1281 |
+
# zero-pad; calculate the DFT
|
1282 |
+
h_temp = np.abs(fft(h, n_fft))
|
1283 |
+
# take 0.25*log(|H|**2) = 0.5*log(|H|)
|
1284 |
+
h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up
|
1285 |
+
np.log(h_temp, out=h_temp)
|
1286 |
+
h_temp *= 0.5
|
1287 |
+
# IDFT
|
1288 |
+
h_temp = ifft(h_temp).real
|
1289 |
+
# multiply pointwise by the homomorphic filter
|
1290 |
+
# lmin[n] = 2u[n] - d[n]
|
1291 |
+
win = np.zeros(n_fft)
|
1292 |
+
win[0] = 1
|
1293 |
+
stop = (len(h) + 1) // 2
|
1294 |
+
win[1:stop] = 2
|
1295 |
+
if len(h) % 2:
|
1296 |
+
win[stop] = 1
|
1297 |
+
h_temp *= win
|
1298 |
+
h_temp = ifft(np.exp(fft(h_temp)))
|
1299 |
+
h_minimum = h_temp.real
|
1300 |
+
n_out = n_half + len(h) % 2
|
1301 |
+
return h_minimum[:n_out]
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_lti_conversion.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ltisys -- a collection of functions to convert linear time invariant systems
|
3 |
+
from one representation to another.
|
4 |
+
"""
|
5 |
+
import numpy
|
6 |
+
import numpy as np
|
7 |
+
from numpy import (r_, eye, atleast_2d, poly, dot,
|
8 |
+
asarray, prod, zeros, array, outer)
|
9 |
+
from scipy import linalg
|
10 |
+
|
11 |
+
from ._filter_design import tf2zpk, zpk2tf, normalize
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
|
15 |
+
'cont2discrete']
|
16 |
+
|
17 |
+
|
18 |
+
def tf2ss(num, den):
|
19 |
+
r"""Transfer function to state-space representation.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
num, den : array_like
|
24 |
+
Sequences representing the coefficients of the numerator and
|
25 |
+
denominator polynomials, in order of descending degree. The
|
26 |
+
denominator needs to be at least as long as the numerator.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
A, B, C, D : ndarray
|
31 |
+
State space representation of the system, in controller canonical
|
32 |
+
form.
|
33 |
+
|
34 |
+
Examples
|
35 |
+
--------
|
36 |
+
Convert the transfer function:
|
37 |
+
|
38 |
+
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
|
39 |
+
|
40 |
+
>>> num = [1, 3, 3]
|
41 |
+
>>> den = [1, 2, 1]
|
42 |
+
|
43 |
+
to the state-space representation:
|
44 |
+
|
45 |
+
.. math::
|
46 |
+
|
47 |
+
\dot{\textbf{x}}(t) =
|
48 |
+
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
|
49 |
+
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
|
50 |
+
|
51 |
+
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
|
52 |
+
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
|
53 |
+
|
54 |
+
>>> from scipy.signal import tf2ss
|
55 |
+
>>> A, B, C, D = tf2ss(num, den)
|
56 |
+
>>> A
|
57 |
+
array([[-2., -1.],
|
58 |
+
[ 1., 0.]])
|
59 |
+
>>> B
|
60 |
+
array([[ 1.],
|
61 |
+
[ 0.]])
|
62 |
+
>>> C
|
63 |
+
array([[ 1., 2.]])
|
64 |
+
>>> D
|
65 |
+
array([[ 1.]])
|
66 |
+
"""
|
67 |
+
# Controller canonical state-space representation.
|
68 |
+
# if M+1 = len(num) and K+1 = len(den) then we must have M <= K
|
69 |
+
# states are found by asserting that X(s) = U(s) / D(s)
|
70 |
+
# then Y(s) = N(s) * X(s)
|
71 |
+
#
|
72 |
+
# A, B, C, and D follow quite naturally.
|
73 |
+
#
|
74 |
+
num, den = normalize(num, den) # Strips zeros, checks arrays
|
75 |
+
nn = len(num.shape)
|
76 |
+
if nn == 1:
|
77 |
+
num = asarray([num], num.dtype)
|
78 |
+
M = num.shape[1]
|
79 |
+
K = len(den)
|
80 |
+
if M > K:
|
81 |
+
msg = "Improper transfer function. `num` is longer than `den`."
|
82 |
+
raise ValueError(msg)
|
83 |
+
if M == 0 or K == 0: # Null system
|
84 |
+
return (array([], float), array([], float), array([], float),
|
85 |
+
array([], float))
|
86 |
+
|
87 |
+
# pad numerator to have same number of columns has denominator
|
88 |
+
num = np.hstack((np.zeros((num.shape[0], K - M), dtype=num.dtype), num))
|
89 |
+
|
90 |
+
if num.shape[-1] > 0:
|
91 |
+
D = atleast_2d(num[:, 0])
|
92 |
+
|
93 |
+
else:
|
94 |
+
# We don't assign it an empty array because this system
|
95 |
+
# is not 'null'. It just doesn't have a non-zero D
|
96 |
+
# matrix. Thus, it should have a non-zero shape so that
|
97 |
+
# it can be operated on by functions like 'ss2tf'
|
98 |
+
D = array([[0]], float)
|
99 |
+
|
100 |
+
if K == 1:
|
101 |
+
D = D.reshape(num.shape)
|
102 |
+
|
103 |
+
return (zeros((1, 1)), zeros((1, D.shape[1])),
|
104 |
+
zeros((D.shape[0], 1)), D)
|
105 |
+
|
106 |
+
frow = -array([den[1:]])
|
107 |
+
A = r_[frow, eye(K - 2, K - 1)]
|
108 |
+
B = eye(K - 1, 1)
|
109 |
+
C = num[:, 1:] - outer(num[:, 0], den[1:])
|
110 |
+
D = D.reshape((C.shape[0], B.shape[1]))
|
111 |
+
|
112 |
+
return A, B, C, D
|
113 |
+
|
114 |
+
|
115 |
+
def _none_to_empty_2d(arg):
|
116 |
+
if arg is None:
|
117 |
+
return zeros((0, 0))
|
118 |
+
else:
|
119 |
+
return arg
|
120 |
+
|
121 |
+
|
122 |
+
def _atleast_2d_or_none(arg):
|
123 |
+
if arg is not None:
|
124 |
+
return atleast_2d(arg)
|
125 |
+
|
126 |
+
|
127 |
+
def _shape_or_none(M):
|
128 |
+
if M is not None:
|
129 |
+
return M.shape
|
130 |
+
else:
|
131 |
+
return (None,) * 2
|
132 |
+
|
133 |
+
|
134 |
+
def _choice_not_none(*args):
|
135 |
+
for arg in args:
|
136 |
+
if arg is not None:
|
137 |
+
return arg
|
138 |
+
|
139 |
+
|
140 |
+
def _restore(M, shape):
|
141 |
+
if M.shape == (0, 0):
|
142 |
+
return zeros(shape)
|
143 |
+
else:
|
144 |
+
if M.shape != shape:
|
145 |
+
raise ValueError("The input arrays have incompatible shapes.")
|
146 |
+
return M
|
147 |
+
|
148 |
+
|
149 |
+
def abcd_normalize(A=None, B=None, C=None, D=None):
|
150 |
+
"""Check state-space matrices and ensure they are 2-D.
|
151 |
+
|
152 |
+
If enough information on the system is provided, that is, enough
|
153 |
+
properly-shaped arrays are passed to the function, the missing ones
|
154 |
+
are built from this information, ensuring the correct number of
|
155 |
+
rows and columns. Otherwise a ValueError is raised.
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
A, B, C, D : array_like, optional
|
160 |
+
State-space matrices. All of them are None (missing) by default.
|
161 |
+
See `ss2tf` for format.
|
162 |
+
|
163 |
+
Returns
|
164 |
+
-------
|
165 |
+
A, B, C, D : array
|
166 |
+
Properly shaped state-space matrices.
|
167 |
+
|
168 |
+
Raises
|
169 |
+
------
|
170 |
+
ValueError
|
171 |
+
If not enough information on the system was provided.
|
172 |
+
|
173 |
+
"""
|
174 |
+
A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D))
|
175 |
+
|
176 |
+
MA, NA = _shape_or_none(A)
|
177 |
+
MB, NB = _shape_or_none(B)
|
178 |
+
MC, NC = _shape_or_none(C)
|
179 |
+
MD, ND = _shape_or_none(D)
|
180 |
+
|
181 |
+
p = _choice_not_none(MA, MB, NC)
|
182 |
+
q = _choice_not_none(NB, ND)
|
183 |
+
r = _choice_not_none(MC, MD)
|
184 |
+
if p is None or q is None or r is None:
|
185 |
+
raise ValueError("Not enough information on the system.")
|
186 |
+
|
187 |
+
A, B, C, D = map(_none_to_empty_2d, (A, B, C, D))
|
188 |
+
A = _restore(A, (p, p))
|
189 |
+
B = _restore(B, (p, q))
|
190 |
+
C = _restore(C, (r, p))
|
191 |
+
D = _restore(D, (r, q))
|
192 |
+
|
193 |
+
return A, B, C, D
|
194 |
+
|
195 |
+
|
196 |
+
def ss2tf(A, B, C, D, input=0):
|
197 |
+
r"""State-space to transfer function.
|
198 |
+
|
199 |
+
A, B, C, D defines a linear state-space system with `p` inputs,
|
200 |
+
`q` outputs, and `n` state variables.
|
201 |
+
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
A : array_like
|
205 |
+
State (or system) matrix of shape ``(n, n)``
|
206 |
+
B : array_like
|
207 |
+
Input matrix of shape ``(n, p)``
|
208 |
+
C : array_like
|
209 |
+
Output matrix of shape ``(q, n)``
|
210 |
+
D : array_like
|
211 |
+
Feedthrough (or feedforward) matrix of shape ``(q, p)``
|
212 |
+
input : int, optional
|
213 |
+
For multiple-input systems, the index of the input to use.
|
214 |
+
|
215 |
+
Returns
|
216 |
+
-------
|
217 |
+
num : 2-D ndarray
|
218 |
+
Numerator(s) of the resulting transfer function(s). `num` has one row
|
219 |
+
for each of the system's outputs. Each row is a sequence representation
|
220 |
+
of the numerator polynomial.
|
221 |
+
den : 1-D ndarray
|
222 |
+
Denominator of the resulting transfer function(s). `den` is a sequence
|
223 |
+
representation of the denominator polynomial.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
--------
|
227 |
+
Convert the state-space representation:
|
228 |
+
|
229 |
+
.. math::
|
230 |
+
|
231 |
+
\dot{\textbf{x}}(t) =
|
232 |
+
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
|
233 |
+
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
|
234 |
+
|
235 |
+
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
|
236 |
+
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
|
237 |
+
|
238 |
+
>>> A = [[-2, -1], [1, 0]]
|
239 |
+
>>> B = [[1], [0]] # 2-D column vector
|
240 |
+
>>> C = [[1, 2]] # 2-D row vector
|
241 |
+
>>> D = 1
|
242 |
+
|
243 |
+
to the transfer function:
|
244 |
+
|
245 |
+
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
|
246 |
+
|
247 |
+
>>> from scipy.signal import ss2tf
|
248 |
+
>>> ss2tf(A, B, C, D)
|
249 |
+
(array([[1., 3., 3.]]), array([ 1., 2., 1.]))
|
250 |
+
"""
|
251 |
+
# transfer function is C (sI - A)**(-1) B + D
|
252 |
+
|
253 |
+
# Check consistency and make them all rank-2 arrays
|
254 |
+
A, B, C, D = abcd_normalize(A, B, C, D)
|
255 |
+
|
256 |
+
nout, nin = D.shape
|
257 |
+
if input >= nin:
|
258 |
+
raise ValueError("System does not have the input specified.")
|
259 |
+
|
260 |
+
# make SIMO from possibly MIMO system.
|
261 |
+
B = B[:, input:input + 1]
|
262 |
+
D = D[:, input:input + 1]
|
263 |
+
|
264 |
+
try:
|
265 |
+
den = poly(A)
|
266 |
+
except ValueError:
|
267 |
+
den = 1
|
268 |
+
|
269 |
+
if (prod(B.shape, axis=0) == 0) and (prod(C.shape, axis=0) == 0):
|
270 |
+
num = numpy.ravel(D)
|
271 |
+
if (prod(D.shape, axis=0) == 0) and (prod(A.shape, axis=0) == 0):
|
272 |
+
den = []
|
273 |
+
return num, den
|
274 |
+
|
275 |
+
num_states = A.shape[0]
|
276 |
+
type_test = A[:, 0] + B[:, 0] + C[0, :] + D + 0.0
|
277 |
+
num = numpy.empty((nout, num_states + 1), type_test.dtype)
|
278 |
+
for k in range(nout):
|
279 |
+
Ck = atleast_2d(C[k, :])
|
280 |
+
num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den
|
281 |
+
|
282 |
+
return num, den
|
283 |
+
|
284 |
+
|
285 |
+
def zpk2ss(z, p, k):
|
286 |
+
"""Zero-pole-gain representation to state-space representation
|
287 |
+
|
288 |
+
Parameters
|
289 |
+
----------
|
290 |
+
z, p : sequence
|
291 |
+
Zeros and poles.
|
292 |
+
k : float
|
293 |
+
System gain.
|
294 |
+
|
295 |
+
Returns
|
296 |
+
-------
|
297 |
+
A, B, C, D : ndarray
|
298 |
+
State space representation of the system, in controller canonical
|
299 |
+
form.
|
300 |
+
|
301 |
+
"""
|
302 |
+
return tf2ss(*zpk2tf(z, p, k))
|
303 |
+
|
304 |
+
|
305 |
+
def ss2zpk(A, B, C, D, input=0):
|
306 |
+
"""State-space representation to zero-pole-gain representation.
|
307 |
+
|
308 |
+
A, B, C, D defines a linear state-space system with `p` inputs,
|
309 |
+
`q` outputs, and `n` state variables.
|
310 |
+
|
311 |
+
Parameters
|
312 |
+
----------
|
313 |
+
A : array_like
|
314 |
+
State (or system) matrix of shape ``(n, n)``
|
315 |
+
B : array_like
|
316 |
+
Input matrix of shape ``(n, p)``
|
317 |
+
C : array_like
|
318 |
+
Output matrix of shape ``(q, n)``
|
319 |
+
D : array_like
|
320 |
+
Feedthrough (or feedforward) matrix of shape ``(q, p)``
|
321 |
+
input : int, optional
|
322 |
+
For multiple-input systems, the index of the input to use.
|
323 |
+
|
324 |
+
Returns
|
325 |
+
-------
|
326 |
+
z, p : sequence
|
327 |
+
Zeros and poles.
|
328 |
+
k : float
|
329 |
+
System gain.
|
330 |
+
|
331 |
+
"""
|
332 |
+
return tf2zpk(*ss2tf(A, B, C, D, input=input))
|
333 |
+
|
334 |
+
|
335 |
+
def cont2discrete(system, dt, method="zoh", alpha=None):
|
336 |
+
"""
|
337 |
+
Transform a continuous to a discrete state-space system.
|
338 |
+
|
339 |
+
Parameters
|
340 |
+
----------
|
341 |
+
system : a tuple describing the system or an instance of `lti`
|
342 |
+
The following gives the number of elements in the tuple and
|
343 |
+
the interpretation:
|
344 |
+
|
345 |
+
* 1: (instance of `lti`)
|
346 |
+
* 2: (num, den)
|
347 |
+
* 3: (zeros, poles, gain)
|
348 |
+
* 4: (A, B, C, D)
|
349 |
+
|
350 |
+
dt : float
|
351 |
+
The discretization time step.
|
352 |
+
method : str, optional
|
353 |
+
Which method to use:
|
354 |
+
|
355 |
+
* gbt: generalized bilinear transformation
|
356 |
+
* bilinear: Tustin's approximation ("gbt" with alpha=0.5)
|
357 |
+
* euler: Euler (or forward differencing) method ("gbt" with alpha=0)
|
358 |
+
* backward_diff: Backwards differencing ("gbt" with alpha=1.0)
|
359 |
+
* zoh: zero-order hold (default)
|
360 |
+
* foh: first-order hold (*versionadded: 1.3.0*)
|
361 |
+
* impulse: equivalent impulse response (*versionadded: 1.3.0*)
|
362 |
+
|
363 |
+
alpha : float within [0, 1], optional
|
364 |
+
The generalized bilinear transformation weighting parameter, which
|
365 |
+
should only be specified with method="gbt", and is ignored otherwise
|
366 |
+
|
367 |
+
Returns
|
368 |
+
-------
|
369 |
+
sysd : tuple containing the discrete system
|
370 |
+
Based on the input type, the output will be of the form
|
371 |
+
|
372 |
+
* (num, den, dt) for transfer function input
|
373 |
+
* (zeros, poles, gain, dt) for zeros-poles-gain input
|
374 |
+
* (A, B, C, D, dt) for state-space system input
|
375 |
+
|
376 |
+
Notes
|
377 |
+
-----
|
378 |
+
By default, the routine uses a Zero-Order Hold (zoh) method to perform
|
379 |
+
the transformation. Alternatively, a generalized bilinear transformation
|
380 |
+
may be used, which includes the common Tustin's bilinear approximation,
|
381 |
+
an Euler's method technique, or a backwards differencing technique.
|
382 |
+
|
383 |
+
The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
|
384 |
+
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
|
385 |
+
is based on [4]_.
|
386 |
+
|
387 |
+
References
|
388 |
+
----------
|
389 |
+
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models
|
390 |
+
|
391 |
+
.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
|
392 |
+
|
393 |
+
.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
|
394 |
+
bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
|
395 |
+
2009.
|
396 |
+
(https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)
|
397 |
+
|
398 |
+
.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
|
399 |
+
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
|
400 |
+
pp. 204-206, 1998.
|
401 |
+
|
402 |
+
Examples
|
403 |
+
--------
|
404 |
+
We can transform a continuous state-space system to a discrete one:
|
405 |
+
|
406 |
+
>>> import numpy as np
|
407 |
+
>>> import matplotlib.pyplot as plt
|
408 |
+
>>> from scipy.signal import cont2discrete, lti, dlti, dstep
|
409 |
+
|
410 |
+
Define a continuous state-space system.
|
411 |
+
|
412 |
+
>>> A = np.array([[0, 1],[-10., -3]])
|
413 |
+
>>> B = np.array([[0],[10.]])
|
414 |
+
>>> C = np.array([[1., 0]])
|
415 |
+
>>> D = np.array([[0.]])
|
416 |
+
>>> l_system = lti(A, B, C, D)
|
417 |
+
>>> t, x = l_system.step(T=np.linspace(0, 5, 100))
|
418 |
+
>>> fig, ax = plt.subplots()
|
419 |
+
>>> ax.plot(t, x, label='Continuous', linewidth=3)
|
420 |
+
|
421 |
+
Transform it to a discrete state-space system using several methods.
|
422 |
+
|
423 |
+
>>> dt = 0.1
|
424 |
+
>>> for method in ['zoh', 'bilinear', 'euler', 'backward_diff', 'foh', 'impulse']:
|
425 |
+
... d_system = cont2discrete((A, B, C, D), dt, method=method)
|
426 |
+
... s, x_d = dstep(d_system)
|
427 |
+
... ax.step(s, np.squeeze(x_d), label=method, where='post')
|
428 |
+
>>> ax.axis([t[0], t[-1], x[0], 1.4])
|
429 |
+
>>> ax.legend(loc='best')
|
430 |
+
>>> fig.tight_layout()
|
431 |
+
>>> plt.show()
|
432 |
+
|
433 |
+
"""
|
434 |
+
if len(system) == 1:
|
435 |
+
return system.to_discrete()
|
436 |
+
if len(system) == 2:
|
437 |
+
sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method,
|
438 |
+
alpha=alpha)
|
439 |
+
return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
|
440 |
+
elif len(system) == 3:
|
441 |
+
sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt,
|
442 |
+
method=method, alpha=alpha)
|
443 |
+
return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
|
444 |
+
elif len(system) == 4:
|
445 |
+
a, b, c, d = system
|
446 |
+
else:
|
447 |
+
raise ValueError("First argument must either be a tuple of 2 (tf), "
|
448 |
+
"3 (zpk), or 4 (ss) arrays.")
|
449 |
+
|
450 |
+
if method == 'gbt':
|
451 |
+
if alpha is None:
|
452 |
+
raise ValueError("Alpha parameter must be specified for the "
|
453 |
+
"generalized bilinear transform (gbt) method")
|
454 |
+
elif alpha < 0 or alpha > 1:
|
455 |
+
raise ValueError("Alpha parameter must be within the interval "
|
456 |
+
"[0,1] for the gbt method")
|
457 |
+
|
458 |
+
if method == 'gbt':
|
459 |
+
# This parameter is used repeatedly - compute once here
|
460 |
+
ima = np.eye(a.shape[0]) - alpha*dt*a
|
461 |
+
ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a)
|
462 |
+
bd = linalg.solve(ima, dt*b)
|
463 |
+
|
464 |
+
# Similarly solve for the output equation matrices
|
465 |
+
cd = linalg.solve(ima.transpose(), c.transpose())
|
466 |
+
cd = cd.transpose()
|
467 |
+
dd = d + alpha*np.dot(c, bd)
|
468 |
+
|
469 |
+
elif method == 'bilinear' or method == 'tustin':
|
470 |
+
return cont2discrete(system, dt, method="gbt", alpha=0.5)
|
471 |
+
|
472 |
+
elif method == 'euler' or method == 'forward_diff':
|
473 |
+
return cont2discrete(system, dt, method="gbt", alpha=0.0)
|
474 |
+
|
475 |
+
elif method == 'backward_diff':
|
476 |
+
return cont2discrete(system, dt, method="gbt", alpha=1.0)
|
477 |
+
|
478 |
+
elif method == 'zoh':
|
479 |
+
# Build an exponential matrix
|
480 |
+
em_upper = np.hstack((a, b))
|
481 |
+
|
482 |
+
# Need to stack zeros under the a and b matrices
|
483 |
+
em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])),
|
484 |
+
np.zeros((b.shape[1], b.shape[1]))))
|
485 |
+
|
486 |
+
em = np.vstack((em_upper, em_lower))
|
487 |
+
ms = linalg.expm(dt * em)
|
488 |
+
|
489 |
+
# Dispose of the lower rows
|
490 |
+
ms = ms[:a.shape[0], :]
|
491 |
+
|
492 |
+
ad = ms[:, 0:a.shape[1]]
|
493 |
+
bd = ms[:, a.shape[1]:]
|
494 |
+
|
495 |
+
cd = c
|
496 |
+
dd = d
|
497 |
+
|
498 |
+
elif method == 'foh':
|
499 |
+
# Size parameters for convenience
|
500 |
+
n = a.shape[0]
|
501 |
+
m = b.shape[1]
|
502 |
+
|
503 |
+
# Build an exponential matrix similar to 'zoh' method
|
504 |
+
em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m))
|
505 |
+
em_lower = zeros((m, n + 2 * m))
|
506 |
+
em = np.block([[em_upper], [em_lower]])
|
507 |
+
|
508 |
+
ms = linalg.expm(em)
|
509 |
+
|
510 |
+
# Get the three blocks from upper rows
|
511 |
+
ms11 = ms[:n, 0:n]
|
512 |
+
ms12 = ms[:n, n:n + m]
|
513 |
+
ms13 = ms[:n, n + m:]
|
514 |
+
|
515 |
+
ad = ms11
|
516 |
+
bd = ms12 - ms13 + ms11 @ ms13
|
517 |
+
cd = c
|
518 |
+
dd = d + c @ ms13
|
519 |
+
|
520 |
+
elif method == 'impulse':
|
521 |
+
if not np.allclose(d, 0):
|
522 |
+
raise ValueError("Impulse method is only applicable"
|
523 |
+
"to strictly proper systems")
|
524 |
+
|
525 |
+
ad = linalg.expm(a * dt)
|
526 |
+
bd = ad @ b * dt
|
527 |
+
cd = c
|
528 |
+
dd = c @ b * dt
|
529 |
+
|
530 |
+
else:
|
531 |
+
raise ValueError("Unknown transformation method '%s'" % method)
|
532 |
+
|
533 |
+
return ad, bd, cd, dd, dt
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_ltisys.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_max_len_seq.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Eric Larson
|
2 |
+
# 2014
|
3 |
+
|
4 |
+
"""Tools for MLS generation"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from ._max_len_seq_inner import _max_len_seq_inner
|
9 |
+
|
10 |
+
__all__ = ['max_len_seq']
|
11 |
+
|
12 |
+
|
13 |
+
# These are definitions of linear shift register taps for use in max_len_seq()
|
14 |
+
_mls_taps = {2: [1], 3: [2], 4: [3], 5: [3], 6: [5], 7: [6], 8: [7, 6, 1],
|
15 |
+
9: [5], 10: [7], 11: [9], 12: [11, 10, 4], 13: [12, 11, 8],
|
16 |
+
14: [13, 12, 2], 15: [14], 16: [15, 13, 4], 17: [14],
|
17 |
+
18: [11], 19: [18, 17, 14], 20: [17], 21: [19], 22: [21],
|
18 |
+
23: [18], 24: [23, 22, 17], 25: [22], 26: [25, 24, 20],
|
19 |
+
27: [26, 25, 22], 28: [25], 29: [27], 30: [29, 28, 7],
|
20 |
+
31: [28], 32: [31, 30, 10]}
|
21 |
+
|
22 |
+
def max_len_seq(nbits, state=None, length=None, taps=None):
|
23 |
+
"""
|
24 |
+
Maximum length sequence (MLS) generator.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
nbits : int
|
29 |
+
Number of bits to use. Length of the resulting sequence will
|
30 |
+
be ``(2**nbits) - 1``. Note that generating long sequences
|
31 |
+
(e.g., greater than ``nbits == 16``) can take a long time.
|
32 |
+
state : array_like, optional
|
33 |
+
If array, must be of length ``nbits``, and will be cast to binary
|
34 |
+
(bool) representation. If None, a seed of ones will be used,
|
35 |
+
producing a repeatable representation. If ``state`` is all
|
36 |
+
zeros, an error is raised as this is invalid. Default: None.
|
37 |
+
length : int, optional
|
38 |
+
Number of samples to compute. If None, the entire length
|
39 |
+
``(2**nbits) - 1`` is computed.
|
40 |
+
taps : array_like, optional
|
41 |
+
Polynomial taps to use (e.g., ``[7, 6, 1]`` for an 8-bit sequence).
|
42 |
+
If None, taps will be automatically selected (for up to
|
43 |
+
``nbits == 32``).
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
seq : array
|
48 |
+
Resulting MLS sequence of 0's and 1's.
|
49 |
+
state : array
|
50 |
+
The final state of the shift register.
|
51 |
+
|
52 |
+
Notes
|
53 |
+
-----
|
54 |
+
The algorithm for MLS generation is generically described in:
|
55 |
+
|
56 |
+
https://en.wikipedia.org/wiki/Maximum_length_sequence
|
57 |
+
|
58 |
+
The default values for taps are specifically taken from the first
|
59 |
+
option listed for each value of ``nbits`` in:
|
60 |
+
|
61 |
+
https://web.archive.org/web/20181001062252/http://www.newwaveinstruments.com/resources/articles/m_sequence_linear_feedback_shift_register_lfsr.htm
|
62 |
+
|
63 |
+
.. versionadded:: 0.15.0
|
64 |
+
|
65 |
+
Examples
|
66 |
+
--------
|
67 |
+
MLS uses binary convention:
|
68 |
+
|
69 |
+
>>> from scipy.signal import max_len_seq
|
70 |
+
>>> max_len_seq(4)[0]
|
71 |
+
array([1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=int8)
|
72 |
+
|
73 |
+
MLS has a white spectrum (except for DC):
|
74 |
+
|
75 |
+
>>> import numpy as np
|
76 |
+
>>> import matplotlib.pyplot as plt
|
77 |
+
>>> from numpy.fft import fft, ifft, fftshift, fftfreq
|
78 |
+
>>> seq = max_len_seq(6)[0]*2-1 # +1 and -1
|
79 |
+
>>> spec = fft(seq)
|
80 |
+
>>> N = len(seq)
|
81 |
+
>>> plt.plot(fftshift(fftfreq(N)), fftshift(np.abs(spec)), '.-')
|
82 |
+
>>> plt.margins(0.1, 0.1)
|
83 |
+
>>> plt.grid(True)
|
84 |
+
>>> plt.show()
|
85 |
+
|
86 |
+
Circular autocorrelation of MLS is an impulse:
|
87 |
+
|
88 |
+
>>> acorrcirc = ifft(spec * np.conj(spec)).real
|
89 |
+
>>> plt.figure()
|
90 |
+
>>> plt.plot(np.arange(-N/2+1, N/2+1), fftshift(acorrcirc), '.-')
|
91 |
+
>>> plt.margins(0.1, 0.1)
|
92 |
+
>>> plt.grid(True)
|
93 |
+
>>> plt.show()
|
94 |
+
|
95 |
+
Linear autocorrelation of MLS is approximately an impulse:
|
96 |
+
|
97 |
+
>>> acorr = np.correlate(seq, seq, 'full')
|
98 |
+
>>> plt.figure()
|
99 |
+
>>> plt.plot(np.arange(-N+1, N), acorr, '.-')
|
100 |
+
>>> plt.margins(0.1, 0.1)
|
101 |
+
>>> plt.grid(True)
|
102 |
+
>>> plt.show()
|
103 |
+
|
104 |
+
"""
|
105 |
+
taps_dtype = np.int32 if np.intp().itemsize == 4 else np.int64
|
106 |
+
if taps is None:
|
107 |
+
if nbits not in _mls_taps:
|
108 |
+
known_taps = np.array(list(_mls_taps.keys()))
|
109 |
+
raise ValueError(f'nbits must be between {known_taps.min()} and '
|
110 |
+
f'{known_taps.max()} if taps is None')
|
111 |
+
taps = np.array(_mls_taps[nbits], taps_dtype)
|
112 |
+
else:
|
113 |
+
taps = np.unique(np.array(taps, taps_dtype))[::-1]
|
114 |
+
if np.any(taps < 0) or np.any(taps > nbits) or taps.size < 1:
|
115 |
+
raise ValueError('taps must be non-empty with values between '
|
116 |
+
'zero and nbits (inclusive)')
|
117 |
+
taps = np.array(taps) # needed for Cython and Pythran
|
118 |
+
n_max = (2**nbits) - 1
|
119 |
+
if length is None:
|
120 |
+
length = n_max
|
121 |
+
else:
|
122 |
+
length = int(length)
|
123 |
+
if length < 0:
|
124 |
+
raise ValueError('length must be greater than or equal to 0')
|
125 |
+
# We use int8 instead of bool here because NumPy arrays of bools
|
126 |
+
# don't seem to work nicely with Cython
|
127 |
+
if state is None:
|
128 |
+
state = np.ones(nbits, dtype=np.int8, order='c')
|
129 |
+
else:
|
130 |
+
# makes a copy if need be, ensuring it's 0's and 1's
|
131 |
+
state = np.array(state, dtype=bool, order='c').astype(np.int8)
|
132 |
+
if state.ndim != 1 or state.size != nbits:
|
133 |
+
raise ValueError('state must be a 1-D array of size nbits')
|
134 |
+
if np.all(state == 0):
|
135 |
+
raise ValueError('state must not be all zeros')
|
136 |
+
|
137 |
+
seq = np.empty(length, dtype=np.int8, order='c')
|
138 |
+
state = _max_len_seq_inner(taps, state, nbits, length, seq)
|
139 |
+
return seq, state
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_savitzky_golay.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.linalg import lstsq
|
3 |
+
from scipy._lib._util import float_factorial
|
4 |
+
from scipy.ndimage import convolve1d
|
5 |
+
from ._arraytools import axis_slice
|
6 |
+
|
7 |
+
|
8 |
+
def savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None,
|
9 |
+
use="conv"):
|
10 |
+
"""Compute the coefficients for a 1-D Savitzky-Golay FIR filter.
|
11 |
+
|
12 |
+
Parameters
|
13 |
+
----------
|
14 |
+
window_length : int
|
15 |
+
The length of the filter window (i.e., the number of coefficients).
|
16 |
+
polyorder : int
|
17 |
+
The order of the polynomial used to fit the samples.
|
18 |
+
`polyorder` must be less than `window_length`.
|
19 |
+
deriv : int, optional
|
20 |
+
The order of the derivative to compute. This must be a
|
21 |
+
nonnegative integer. The default is 0, which means to filter
|
22 |
+
the data without differentiating.
|
23 |
+
delta : float, optional
|
24 |
+
The spacing of the samples to which the filter will be applied.
|
25 |
+
This is only used if deriv > 0.
|
26 |
+
pos : int or None, optional
|
27 |
+
If pos is not None, it specifies evaluation position within the
|
28 |
+
window. The default is the middle of the window.
|
29 |
+
use : str, optional
|
30 |
+
Either 'conv' or 'dot'. This argument chooses the order of the
|
31 |
+
coefficients. The default is 'conv', which means that the
|
32 |
+
coefficients are ordered to be used in a convolution. With
|
33 |
+
use='dot', the order is reversed, so the filter is applied by
|
34 |
+
dotting the coefficients with the data set.
|
35 |
+
|
36 |
+
Returns
|
37 |
+
-------
|
38 |
+
coeffs : 1-D ndarray
|
39 |
+
The filter coefficients.
|
40 |
+
|
41 |
+
See Also
|
42 |
+
--------
|
43 |
+
savgol_filter
|
44 |
+
|
45 |
+
Notes
|
46 |
+
-----
|
47 |
+
.. versionadded:: 0.14.0
|
48 |
+
|
49 |
+
References
|
50 |
+
----------
|
51 |
+
A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
|
52 |
+
Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
|
53 |
+
pp 1627-1639.
|
54 |
+
Jianwen Luo, Kui Ying, and Jing Bai. 2005. Savitzky-Golay smoothing and
|
55 |
+
differentiation filter for even number data. Signal Process.
|
56 |
+
85, 7 (July 2005), 1429-1434.
|
57 |
+
|
58 |
+
Examples
|
59 |
+
--------
|
60 |
+
>>> import numpy as np
|
61 |
+
>>> from scipy.signal import savgol_coeffs
|
62 |
+
>>> savgol_coeffs(5, 2)
|
63 |
+
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
|
64 |
+
>>> savgol_coeffs(5, 2, deriv=1)
|
65 |
+
array([ 2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
|
66 |
+
-2.00000000e-01])
|
67 |
+
|
68 |
+
Note that use='dot' simply reverses the coefficients.
|
69 |
+
|
70 |
+
>>> savgol_coeffs(5, 2, pos=3)
|
71 |
+
array([ 0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
|
72 |
+
>>> savgol_coeffs(5, 2, pos=3, use='dot')
|
73 |
+
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
|
74 |
+
>>> savgol_coeffs(4, 2, pos=3, deriv=1, use='dot')
|
75 |
+
array([0.45, -0.85, -0.65, 1.05])
|
76 |
+
|
77 |
+
`x` contains data from the parabola x = t**2, sampled at
|
78 |
+
t = -1, 0, 1, 2, 3. `c` holds the coefficients that will compute the
|
79 |
+
derivative at the last position. When dotted with `x` the result should
|
80 |
+
be 6.
|
81 |
+
|
82 |
+
>>> x = np.array([1, 0, 1, 4, 9])
|
83 |
+
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
|
84 |
+
>>> c.dot(x)
|
85 |
+
6.0
|
86 |
+
"""
|
87 |
+
|
88 |
+
# An alternative method for finding the coefficients when deriv=0 is
|
89 |
+
# t = np.arange(window_length)
|
90 |
+
# unit = (t == pos).astype(int)
|
91 |
+
# coeffs = np.polyval(np.polyfit(t, unit, polyorder), t)
|
92 |
+
# The method implemented here is faster.
|
93 |
+
|
94 |
+
# To recreate the table of sample coefficients shown in the chapter on
|
95 |
+
# the Savitzy-Golay filter in the Numerical Recipes book, use
|
96 |
+
# window_length = nL + nR + 1
|
97 |
+
# pos = nL + 1
|
98 |
+
# c = savgol_coeffs(window_length, M, pos=pos, use='dot')
|
99 |
+
|
100 |
+
if polyorder >= window_length:
|
101 |
+
raise ValueError("polyorder must be less than window_length.")
|
102 |
+
|
103 |
+
halflen, rem = divmod(window_length, 2)
|
104 |
+
|
105 |
+
if pos is None:
|
106 |
+
if rem == 0:
|
107 |
+
pos = halflen - 0.5
|
108 |
+
else:
|
109 |
+
pos = halflen
|
110 |
+
|
111 |
+
if not (0 <= pos < window_length):
|
112 |
+
raise ValueError("pos must be nonnegative and less than "
|
113 |
+
"window_length.")
|
114 |
+
|
115 |
+
if use not in ['conv', 'dot']:
|
116 |
+
raise ValueError("`use` must be 'conv' or 'dot'")
|
117 |
+
|
118 |
+
if deriv > polyorder:
|
119 |
+
coeffs = np.zeros(window_length)
|
120 |
+
return coeffs
|
121 |
+
|
122 |
+
# Form the design matrix A. The columns of A are powers of the integers
|
123 |
+
# from -pos to window_length - pos - 1. The powers (i.e., rows) range
|
124 |
+
# from 0 to polyorder. (That is, A is a vandermonde matrix, but not
|
125 |
+
# necessarily square.)
|
126 |
+
x = np.arange(-pos, window_length - pos, dtype=float)
|
127 |
+
|
128 |
+
if use == "conv":
|
129 |
+
# Reverse so that result can be used in a convolution.
|
130 |
+
x = x[::-1]
|
131 |
+
|
132 |
+
order = np.arange(polyorder + 1).reshape(-1, 1)
|
133 |
+
A = x ** order
|
134 |
+
|
135 |
+
# y determines which order derivative is returned.
|
136 |
+
y = np.zeros(polyorder + 1)
|
137 |
+
# The coefficient assigned to y[deriv] scales the result to take into
|
138 |
+
# account the order of the derivative and the sample spacing.
|
139 |
+
y[deriv] = float_factorial(deriv) / (delta ** deriv)
|
140 |
+
|
141 |
+
# Find the least-squares solution of A*c = y
|
142 |
+
coeffs, _, _, _ = lstsq(A, y)
|
143 |
+
|
144 |
+
return coeffs
|
145 |
+
|
146 |
+
|
147 |
+
def _polyder(p, m):
|
148 |
+
"""Differentiate polynomials represented with coefficients.
|
149 |
+
|
150 |
+
p must be a 1-D or 2-D array. In the 2-D case, each column gives
|
151 |
+
the coefficients of a polynomial; the first row holds the coefficients
|
152 |
+
associated with the highest power. m must be a nonnegative integer.
|
153 |
+
(numpy.polyder doesn't handle the 2-D case.)
|
154 |
+
"""
|
155 |
+
|
156 |
+
if m == 0:
|
157 |
+
result = p
|
158 |
+
else:
|
159 |
+
n = len(p)
|
160 |
+
if n <= m:
|
161 |
+
result = np.zeros_like(p[:1, ...])
|
162 |
+
else:
|
163 |
+
dp = p[:-m].copy()
|
164 |
+
for k in range(m):
|
165 |
+
rng = np.arange(n - k - 1, m - k - 1, -1)
|
166 |
+
dp *= rng.reshape((n - m,) + (1,) * (p.ndim - 1))
|
167 |
+
result = dp
|
168 |
+
return result
|
169 |
+
|
170 |
+
|
171 |
+
def _fit_edge(x, window_start, window_stop, interp_start, interp_stop,
|
172 |
+
axis, polyorder, deriv, delta, y):
|
173 |
+
"""
|
174 |
+
Given an N-d array `x` and the specification of a slice of `x` from
|
175 |
+
`window_start` to `window_stop` along `axis`, create an interpolating
|
176 |
+
polynomial of each 1-D slice, and evaluate that polynomial in the slice
|
177 |
+
from `interp_start` to `interp_stop`. Put the result into the
|
178 |
+
corresponding slice of `y`.
|
179 |
+
"""
|
180 |
+
|
181 |
+
# Get the edge into a (window_length, -1) array.
|
182 |
+
x_edge = axis_slice(x, start=window_start, stop=window_stop, axis=axis)
|
183 |
+
if axis == 0 or axis == -x.ndim:
|
184 |
+
xx_edge = x_edge
|
185 |
+
swapped = False
|
186 |
+
else:
|
187 |
+
xx_edge = x_edge.swapaxes(axis, 0)
|
188 |
+
swapped = True
|
189 |
+
xx_edge = xx_edge.reshape(xx_edge.shape[0], -1)
|
190 |
+
|
191 |
+
# Fit the edges. poly_coeffs has shape (polyorder + 1, -1),
|
192 |
+
# where '-1' is the same as in xx_edge.
|
193 |
+
poly_coeffs = np.polyfit(np.arange(0, window_stop - window_start),
|
194 |
+
xx_edge, polyorder)
|
195 |
+
|
196 |
+
if deriv > 0:
|
197 |
+
poly_coeffs = _polyder(poly_coeffs, deriv)
|
198 |
+
|
199 |
+
# Compute the interpolated values for the edge.
|
200 |
+
i = np.arange(interp_start - window_start, interp_stop - window_start)
|
201 |
+
values = np.polyval(poly_coeffs, i.reshape(-1, 1)) / (delta ** deriv)
|
202 |
+
|
203 |
+
# Now put the values into the appropriate slice of y.
|
204 |
+
# First reshape values to match y.
|
205 |
+
shp = list(y.shape)
|
206 |
+
shp[0], shp[axis] = shp[axis], shp[0]
|
207 |
+
values = values.reshape(interp_stop - interp_start, *shp[1:])
|
208 |
+
if swapped:
|
209 |
+
values = values.swapaxes(0, axis)
|
210 |
+
# Get a view of the data to be replaced by values.
|
211 |
+
y_edge = axis_slice(y, start=interp_start, stop=interp_stop, axis=axis)
|
212 |
+
y_edge[...] = values
|
213 |
+
|
214 |
+
|
215 |
+
def _fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y):
|
216 |
+
"""
|
217 |
+
Use polynomial interpolation of x at the low and high ends of the axis
|
218 |
+
to fill in the halflen values in y.
|
219 |
+
|
220 |
+
This function just calls _fit_edge twice, once for each end of the axis.
|
221 |
+
"""
|
222 |
+
halflen = window_length // 2
|
223 |
+
_fit_edge(x, 0, window_length, 0, halflen, axis,
|
224 |
+
polyorder, deriv, delta, y)
|
225 |
+
n = x.shape[axis]
|
226 |
+
_fit_edge(x, n - window_length, n, n - halflen, n, axis,
|
227 |
+
polyorder, deriv, delta, y)
|
228 |
+
|
229 |
+
|
230 |
+
def savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0,
|
231 |
+
axis=-1, mode='interp', cval=0.0):
|
232 |
+
""" Apply a Savitzky-Golay filter to an array.
|
233 |
+
|
234 |
+
This is a 1-D filter. If `x` has dimension greater than 1, `axis`
|
235 |
+
determines the axis along which the filter is applied.
|
236 |
+
|
237 |
+
Parameters
|
238 |
+
----------
|
239 |
+
x : array_like
|
240 |
+
The data to be filtered. If `x` is not a single or double precision
|
241 |
+
floating point array, it will be converted to type ``numpy.float64``
|
242 |
+
before filtering.
|
243 |
+
window_length : int
|
244 |
+
The length of the filter window (i.e., the number of coefficients).
|
245 |
+
If `mode` is 'interp', `window_length` must be less than or equal
|
246 |
+
to the size of `x`.
|
247 |
+
polyorder : int
|
248 |
+
The order of the polynomial used to fit the samples.
|
249 |
+
`polyorder` must be less than `window_length`.
|
250 |
+
deriv : int, optional
|
251 |
+
The order of the derivative to compute. This must be a
|
252 |
+
nonnegative integer. The default is 0, which means to filter
|
253 |
+
the data without differentiating.
|
254 |
+
delta : float, optional
|
255 |
+
The spacing of the samples to which the filter will be applied.
|
256 |
+
This is only used if deriv > 0. Default is 1.0.
|
257 |
+
axis : int, optional
|
258 |
+
The axis of the array `x` along which the filter is to be applied.
|
259 |
+
Default is -1.
|
260 |
+
mode : str, optional
|
261 |
+
Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
|
262 |
+
determines the type of extension to use for the padded signal to
|
263 |
+
which the filter is applied. When `mode` is 'constant', the padding
|
264 |
+
value is given by `cval`. See the Notes for more details on 'mirror',
|
265 |
+
'constant', 'wrap', and 'nearest'.
|
266 |
+
When the 'interp' mode is selected (the default), no extension
|
267 |
+
is used. Instead, a degree `polyorder` polynomial is fit to the
|
268 |
+
last `window_length` values of the edges, and this polynomial is
|
269 |
+
used to evaluate the last `window_length // 2` output values.
|
270 |
+
cval : scalar, optional
|
271 |
+
Value to fill past the edges of the input if `mode` is 'constant'.
|
272 |
+
Default is 0.0.
|
273 |
+
|
274 |
+
Returns
|
275 |
+
-------
|
276 |
+
y : ndarray, same shape as `x`
|
277 |
+
The filtered data.
|
278 |
+
|
279 |
+
See Also
|
280 |
+
--------
|
281 |
+
savgol_coeffs
|
282 |
+
|
283 |
+
Notes
|
284 |
+
-----
|
285 |
+
Details on the `mode` options:
|
286 |
+
|
287 |
+
'mirror':
|
288 |
+
Repeats the values at the edges in reverse order. The value
|
289 |
+
closest to the edge is not included.
|
290 |
+
'nearest':
|
291 |
+
The extension contains the nearest input value.
|
292 |
+
'constant':
|
293 |
+
The extension contains the value given by the `cval` argument.
|
294 |
+
'wrap':
|
295 |
+
The extension contains the values from the other end of the array.
|
296 |
+
|
297 |
+
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
|
298 |
+
`window_length` is 7, the following shows the extended data for
|
299 |
+
the various `mode` options (assuming `cval` is 0)::
|
300 |
+
|
301 |
+
mode | Ext | Input | Ext
|
302 |
+
-----------+---------+------------------------+---------
|
303 |
+
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
|
304 |
+
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
|
305 |
+
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
|
306 |
+
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3
|
307 |
+
|
308 |
+
.. versionadded:: 0.14.0
|
309 |
+
|
310 |
+
Examples
|
311 |
+
--------
|
312 |
+
>>> import numpy as np
|
313 |
+
>>> from scipy.signal import savgol_filter
|
314 |
+
>>> np.set_printoptions(precision=2) # For compact display.
|
315 |
+
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])
|
316 |
+
|
317 |
+
Filter with a window length of 5 and a degree 2 polynomial. Use
|
318 |
+
the defaults for all other parameters.
|
319 |
+
|
320 |
+
>>> savgol_filter(x, 5, 2)
|
321 |
+
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9. ])
|
322 |
+
|
323 |
+
Note that the last five values in x are samples of a parabola, so
|
324 |
+
when mode='interp' (the default) is used with polyorder=2, the last
|
325 |
+
three values are unchanged. Compare that to, for example,
|
326 |
+
`mode='nearest'`:
|
327 |
+
|
328 |
+
>>> savgol_filter(x, 5, 2, mode='nearest')
|
329 |
+
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])
|
330 |
+
|
331 |
+
"""
|
332 |
+
if mode not in ["mirror", "constant", "nearest", "interp", "wrap"]:
|
333 |
+
raise ValueError("mode must be 'mirror', 'constant', 'nearest' "
|
334 |
+
"'wrap' or 'interp'.")
|
335 |
+
|
336 |
+
x = np.asarray(x)
|
337 |
+
# Ensure that x is either single or double precision floating point.
|
338 |
+
if x.dtype != np.float64 and x.dtype != np.float32:
|
339 |
+
x = x.astype(np.float64)
|
340 |
+
|
341 |
+
coeffs = savgol_coeffs(window_length, polyorder, deriv=deriv, delta=delta)
|
342 |
+
|
343 |
+
if mode == "interp":
|
344 |
+
if window_length > x.shape[axis]:
|
345 |
+
raise ValueError("If mode is 'interp', window_length must be less "
|
346 |
+
"than or equal to the size of x.")
|
347 |
+
|
348 |
+
# Do not pad. Instead, for the elements within `window_length // 2`
|
349 |
+
# of the ends of the sequence, use the polynomial that is fitted to
|
350 |
+
# the last `window_length` elements.
|
351 |
+
y = convolve1d(x, coeffs, axis=axis, mode="constant")
|
352 |
+
_fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y)
|
353 |
+
else:
|
354 |
+
# Any mode other than 'interp' is passed on to ndimage.convolve1d.
|
355 |
+
y = convolve1d(x, coeffs, axis=axis, mode=mode, cval=cval)
|
356 |
+
|
357 |
+
return y
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_short_time_fft.py
ADDED
@@ -0,0 +1,1676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of an FFT-based Short-time Fourier Transform. """
|
2 |
+
|
3 |
+
# Implementation Notes for this file (as of 2023-07)
|
4 |
+
# --------------------------------------------------
|
5 |
+
# * MyPy version 1.1.1 does not seem to support decorated property methods
|
6 |
+
# properly. Hence, applying ``@property`` to methods decorated with `@cache``
|
7 |
+
# (as tried with the ``lower_border_end`` method) causes a mypy error when
|
8 |
+
# accessing it as an index (e.g., ``SFT.lower_border_end[0]``).
|
9 |
+
# * Since the method `stft` and `istft` have identical names as the legacy
|
10 |
+
# functions in the signal module, referencing them as HTML link in the
|
11 |
+
# docstrings has to be done by an explicit `~ShortTimeFFT.stft` instead of an
|
12 |
+
# ambiguous `stft` (The ``~`` hides the class / module name).
|
13 |
+
# * The HTML documentation currently renders each method/property on a separate
|
14 |
+
# page without reference to the parent class. Thus, a link to `ShortTimeFFT`
|
15 |
+
# was added to the "See Also" section of each method/property. These links
|
16 |
+
# can be removed, when SciPy updates ``pydata-sphinx-theme`` to >= 0.13.3
|
17 |
+
# (currently 0.9). Consult Issue 18512 and PR 16660 for further details.
|
18 |
+
#
|
19 |
+
|
20 |
+
# Provides typing union operator ``|`` in Python 3.9:
|
21 |
+
from __future__ import annotations
|
22 |
+
# Linter does not allow to import ``Generator`` from ``typing`` module:
|
23 |
+
from collections.abc import Generator
|
24 |
+
from functools import cache, lru_cache, partial
|
25 |
+
from typing import Callable, get_args, Literal
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
import scipy.fft as fft_lib
|
30 |
+
from scipy.signal import detrend
|
31 |
+
from scipy.signal.windows import get_window
|
32 |
+
|
33 |
+
__all__ = ['ShortTimeFFT']
|
34 |
+
|
35 |
+
|
36 |
+
#: Allowed values for parameter `padding` of method `ShortTimeFFT.stft()`:
|
37 |
+
PAD_TYPE = Literal['zeros', 'edge', 'even', 'odd']
|
38 |
+
|
39 |
+
#: Allowed values for property `ShortTimeFFT.fft_mode`:
|
40 |
+
FFT_MODE_TYPE = Literal['twosided', 'centered', 'onesided', 'onesided2X']
|
41 |
+
|
42 |
+
|
43 |
+
def _calc_dual_canonical_window(win: np.ndarray, hop: int) -> np.ndarray:
|
44 |
+
"""Calculate canonical dual window for 1d window `win` and a time step
|
45 |
+
of `hop` samples.
|
46 |
+
|
47 |
+
A ``ValueError`` is raised, if the inversion fails.
|
48 |
+
|
49 |
+
This is a separate function not a method, since it is also used in the
|
50 |
+
class method ``ShortTimeFFT.from_dual()``.
|
51 |
+
"""
|
52 |
+
if hop > len(win):
|
53 |
+
raise ValueError(f"{hop=} is larger than window length of {len(win)}" +
|
54 |
+
" => STFT not invertible!")
|
55 |
+
if issubclass(win.dtype.type, np.integer):
|
56 |
+
raise ValueError("Parameter 'win' cannot be of integer type, but " +
|
57 |
+
f"{win.dtype=} => STFT not invertible!")
|
58 |
+
# The calculation of `relative_resolution` does not work for ints.
|
59 |
+
# Furthermore, `win / DD` casts the integers away, thus an implicit
|
60 |
+
# cast is avoided, which can always cause confusion when using 32-Bit
|
61 |
+
# floats.
|
62 |
+
|
63 |
+
w2 = win.real**2 + win.imag**2 # win*win.conj() does not ensure w2 is real
|
64 |
+
DD = w2.copy()
|
65 |
+
for k_ in range(hop, len(win), hop):
|
66 |
+
DD[k_:] += w2[:-k_]
|
67 |
+
DD[:-k_] += w2[k_:]
|
68 |
+
|
69 |
+
# check DD > 0:
|
70 |
+
relative_resolution = np.finfo(win.dtype).resolution * max(DD)
|
71 |
+
if not np.all(DD >= relative_resolution):
|
72 |
+
raise ValueError("Short-time Fourier Transform not invertible!")
|
73 |
+
|
74 |
+
return win / DD
|
75 |
+
|
76 |
+
|
77 |
+
# noinspection PyShadowingNames
|
78 |
+
class ShortTimeFFT:
|
79 |
+
r"""Provide a parametrized discrete Short-time Fourier transform (stft)
|
80 |
+
and its inverse (istft).
|
81 |
+
|
82 |
+
.. currentmodule:: scipy.signal.ShortTimeFFT
|
83 |
+
|
84 |
+
The `~ShortTimeFFT.stft` calculates sequential FFTs by sliding a
|
85 |
+
window (`win`) over an input signal by `hop` increments. It can be used to
|
86 |
+
quantify the change of the spectrum over time.
|
87 |
+
|
88 |
+
The `~ShortTimeFFT.stft` is represented by a complex-valued matrix S[q,p]
|
89 |
+
where the p-th column represents an FFT with the window centered at the
|
90 |
+
time t[p] = p * `delta_t` = p * `hop` * `T` where `T` is the sampling
|
91 |
+
interval of the input signal. The q-th row represents the values at the
|
92 |
+
frequency f[q] = q * `delta_f` with `delta_f` = 1 / (`mfft` * `T`) being
|
93 |
+
the bin width of the FFT.
|
94 |
+
|
95 |
+
The inverse STFT `~ShortTimeFFT.istft` is calculated by reversing the steps
|
96 |
+
of the STFT: Take the IFFT of the p-th slice of S[q,p] and multiply the
|
97 |
+
result with the so-called dual window (see `dual_win`). Shift the result by
|
98 |
+
p * `delta_t` and add the result to previous shifted results to reconstruct
|
99 |
+
the signal. If only the dual window is known and the STFT is invertible,
|
100 |
+
`from_dual` can be used to instantiate this class.
|
101 |
+
|
102 |
+
Due to the convention of time t = 0 being at the first sample of the input
|
103 |
+
signal, the STFT values typically have negative time slots. Hence,
|
104 |
+
negative indexes like `p_min` or `k_min` do not indicate counting
|
105 |
+
backwards from an array's end like in standard Python indexing but being
|
106 |
+
left of t = 0.
|
107 |
+
|
108 |
+
More detailed information can be found in the :ref:`tutorial_stft` section
|
109 |
+
of the :ref:`user_guide`.
|
110 |
+
|
111 |
+
Note that all parameters of the initializer, except `scale_to` (which uses
|
112 |
+
`scaling`) have identical named attributes.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
----------
|
116 |
+
win : np.ndarray
|
117 |
+
The window must be a real- or complex-valued 1d array.
|
118 |
+
hop : int
|
119 |
+
The increment in samples, by which the window is shifted in each step.
|
120 |
+
fs : float
|
121 |
+
Sampling frequency of input signal and window. Its relation to the
|
122 |
+
sampling interval `T` is ``T = 1 / fs``.
|
123 |
+
fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
|
124 |
+
Mode of FFT to be used (default 'onesided').
|
125 |
+
See property `fft_mode` for details.
|
126 |
+
mfft: int | None
|
127 |
+
Length of the FFT used, if a zero padded FFT is desired.
|
128 |
+
If ``None`` (default), the length of the window `win` is used.
|
129 |
+
dual_win : np.ndarray | None
|
130 |
+
The dual window of `win`. If set to ``None``, it is calculated if
|
131 |
+
needed.
|
132 |
+
scale_to : 'magnitude', 'psd' | None
|
133 |
+
If not ``None`` (default) the window function is scaled, so each STFT
|
134 |
+
column represents either a 'magnitude' or a power spectral density
|
135 |
+
('psd') spectrum. This parameter sets the property `scaling` to the
|
136 |
+
same value. See method `scale_to` for details.
|
137 |
+
phase_shift : int | None
|
138 |
+
If set, add a linear phase `phase_shift` / `mfft` * `f` to each
|
139 |
+
frequency `f`. The default value 0 ensures that there is no phase shift
|
140 |
+
on the zeroth slice (in which t=0 is centered). See property
|
141 |
+
`phase_shift` for more details.
|
142 |
+
|
143 |
+
Examples
|
144 |
+
--------
|
145 |
+
The following example shows the magnitude of the STFT of a sine with
|
146 |
+
varying frequency :math:`f_i(t)` (marked by a red dashed line in the plot):
|
147 |
+
|
148 |
+
>>> import numpy as np
|
149 |
+
>>> import matplotlib.pyplot as plt
|
150 |
+
>>> from scipy.signal import ShortTimeFFT
|
151 |
+
>>> from scipy.signal.windows import gaussian
|
152 |
+
...
|
153 |
+
>>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
|
154 |
+
>>> t_x = np.arange(N) * T_x # time indexes for signal
|
155 |
+
>>> f_i = 1 * np.arctan((t_x - t_x[N // 2]) / 2) + 5 # varying frequency
|
156 |
+
>>> x = np.sin(2*np.pi*np.cumsum(f_i)*T_x) # the signal
|
157 |
+
|
158 |
+
The utilized Gaussian window is 50 samples or 2.5 s long. The parameter
|
159 |
+
``mfft=200`` in `ShortTimeFFT` causes the spectrum to be oversampled
|
160 |
+
by a factor of 4:
|
161 |
+
|
162 |
+
>>> g_std = 8 # standard deviation for Gaussian window in samples
|
163 |
+
>>> w = gaussian(50, std=g_std, sym=True) # symmetric Gaussian window
|
164 |
+
>>> SFT = ShortTimeFFT(w, hop=10, fs=1/T_x, mfft=200, scale_to='magnitude')
|
165 |
+
>>> Sx = SFT.stft(x) # perform the STFT
|
166 |
+
|
167 |
+
In the plot, the time extent of the signal `x` is marked by vertical dashed
|
168 |
+
lines. Note that the SFT produces values outside the time range of `x`. The
|
169 |
+
shaded areas on the left and the right indicate border effects caused
|
170 |
+
by the window slices in that area not fully being inside time range of
|
171 |
+
`x`:
|
172 |
+
|
173 |
+
>>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
|
174 |
+
>>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
|
175 |
+
>>> ax1.set_title(rf"STFT ({SFT.m_num*SFT.T:g}$\,s$ Gaussian window, " +
|
176 |
+
... rf"$\sigma_t={g_std*SFT.T}\,$s)")
|
177 |
+
>>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
|
178 |
+
... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
|
179 |
+
... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
|
180 |
+
... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
|
181 |
+
... xlim=(t_lo, t_hi))
|
182 |
+
...
|
183 |
+
>>> im1 = ax1.imshow(abs(Sx), origin='lower', aspect='auto',
|
184 |
+
... extent=SFT.extent(N), cmap='viridis')
|
185 |
+
>>> ax1.plot(t_x, f_i, 'r--', alpha=.5, label='$f_i(t)$')
|
186 |
+
>>> fig1.colorbar(im1, label="Magnitude $|S_x(t, f)|$")
|
187 |
+
...
|
188 |
+
>>> # Shade areas where window slices stick out to the side:
|
189 |
+
>>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
|
190 |
+
... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
|
191 |
+
... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.2)
|
192 |
+
>>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line:
|
193 |
+
... ax1.axvline(t_, color='y', linestyle='--', alpha=0.5)
|
194 |
+
>>> ax1.legend()
|
195 |
+
>>> fig1.tight_layout()
|
196 |
+
>>> plt.show()
|
197 |
+
|
198 |
+
Reconstructing the signal with the `~ShortTimeFFT.istft` is
|
199 |
+
straightforward, but note that the length of `x1` should be specified,
|
200 |
+
since the SFT length increases in `hop` steps:
|
201 |
+
|
202 |
+
>>> SFT.invertible # check if invertible
|
203 |
+
True
|
204 |
+
>>> x1 = SFT.istft(Sx, k1=N)
|
205 |
+
>>> np.allclose(x, x1)
|
206 |
+
True
|
207 |
+
|
208 |
+
It is possible to calculate the SFT of signal parts:
|
209 |
+
|
210 |
+
>>> p_q = SFT.nearest_k_p(N // 2)
|
211 |
+
>>> Sx0 = SFT.stft(x[:p_q])
|
212 |
+
>>> Sx1 = SFT.stft(x[p_q:])
|
213 |
+
|
214 |
+
When assembling sequential STFT parts together, the overlap needs to be
|
215 |
+
considered:
|
216 |
+
|
217 |
+
>>> p0_ub = SFT.upper_border_begin(p_q)[1] - SFT.p_min
|
218 |
+
>>> p1_le = SFT.lower_border_end[1] - SFT.p_min
|
219 |
+
>>> Sx01 = np.hstack((Sx0[:, :p0_ub],
|
220 |
+
... Sx0[:, p0_ub:] + Sx1[:, :p1_le],
|
221 |
+
... Sx1[:, p1_le:]))
|
222 |
+
>>> np.allclose(Sx01, Sx) # Compare with SFT of complete signal
|
223 |
+
True
|
224 |
+
|
225 |
+
It is also possible to calculate the `itsft` for signal parts:
|
226 |
+
|
227 |
+
>>> y_p = SFT.istft(Sx, N//3, N//2)
|
228 |
+
>>> np.allclose(y_p, x[N//3:N//2])
|
229 |
+
True
|
230 |
+
|
231 |
+
"""
|
232 |
+
# immutable attributes (only have getters but no setters):
|
233 |
+
_win: np.ndarray # window
|
234 |
+
_dual_win: np.ndarray | None = None # canonical dual window
|
235 |
+
_hop: int # Step of STFT in number of samples
|
236 |
+
|
237 |
+
# mutable attributes:
|
238 |
+
_fs: float # sampling frequency of input signal and window
|
239 |
+
_fft_mode: FFT_MODE_TYPE = 'onesided' # Mode of FFT to use
|
240 |
+
_mfft: int # length of FFT used - defaults to len(win)
|
241 |
+
_scaling: Literal['magnitude', 'psd'] | None = None # Scaling of _win
|
242 |
+
_phase_shift: int | None # amount to shift phase of FFT in samples
|
243 |
+
|
244 |
+
# attributes for caching calculated values:
|
245 |
+
_fac_mag: float | None = None
|
246 |
+
_fac_psd: float | None = None
|
247 |
+
_lower_border_end: tuple[int, int] | None = None
|
248 |
+
|
249 |
+
def __init__(self, win: np.ndarray, hop: int, fs: float, *,
|
250 |
+
fft_mode: FFT_MODE_TYPE = 'onesided',
|
251 |
+
mfft: int | None = None,
|
252 |
+
dual_win: np.ndarray | None = None,
|
253 |
+
scale_to: Literal['magnitude', 'psd'] | None = None,
|
254 |
+
phase_shift: int | None = 0):
|
255 |
+
if not (win.ndim == 1 and win.size > 0):
|
256 |
+
raise ValueError(f"Parameter win must be 1d, but {win.shape=}!")
|
257 |
+
if not all(np.isfinite(win)):
|
258 |
+
raise ValueError("Parameter win must have finite entries!")
|
259 |
+
if not (hop >= 1 and isinstance(hop, int)):
|
260 |
+
raise ValueError(f"Parameter {hop=} is not an integer >= 1!")
|
261 |
+
self._win, self._hop, self.fs = win, hop, fs
|
262 |
+
|
263 |
+
self.mfft = len(win) if mfft is None else mfft
|
264 |
+
|
265 |
+
if dual_win is not None:
|
266 |
+
if dual_win.shape != win.shape:
|
267 |
+
raise ValueError(f"{dual_win.shape=} must equal {win.shape=}!")
|
268 |
+
if not all(np.isfinite(dual_win)):
|
269 |
+
raise ValueError("Parameter dual_win must be a finite array!")
|
270 |
+
self._dual_win = dual_win # needs to be set before scaling
|
271 |
+
|
272 |
+
if scale_to is not None: # needs to be set before fft_mode
|
273 |
+
self.scale_to(scale_to)
|
274 |
+
|
275 |
+
self.fft_mode, self.phase_shift = fft_mode, phase_shift
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def from_dual(cls, dual_win: np.ndarray, hop: int, fs: float, *,
|
279 |
+
fft_mode: FFT_MODE_TYPE = 'onesided',
|
280 |
+
mfft: int | None = None,
|
281 |
+
scale_to: Literal['magnitude', 'psd'] | None = None,
|
282 |
+
phase_shift: int | None = 0):
|
283 |
+
r"""Instantiate a `ShortTimeFFT` by only providing a dual window.
|
284 |
+
|
285 |
+
If an STFT is invertible, it is possible to calculate the window `win`
|
286 |
+
from a given dual window `dual_win`. All other parameters have the
|
287 |
+
same meaning as in the initializer of `ShortTimeFFT`.
|
288 |
+
|
289 |
+
As explained in the :ref:`tutorial_stft` section of the
|
290 |
+
:ref:`user_guide`, an invertible STFT can be interpreted as series
|
291 |
+
expansion of time-shifted and frequency modulated dual windows. E.g.,
|
292 |
+
the series coefficient S[q,p] belongs to the term, which shifted
|
293 |
+
`dual_win` by p * `delta_t` and multiplied it by
|
294 |
+
exp( 2 * j * pi * t * q * `delta_f`).
|
295 |
+
|
296 |
+
|
297 |
+
Examples
|
298 |
+
--------
|
299 |
+
The following example discusses decomposing a signal into time- and
|
300 |
+
frequency-shifted Gaussians. A Gaussian with standard deviation of
|
301 |
+
one made up of 51 samples will be used:
|
302 |
+
|
303 |
+
>>> import numpy as np
|
304 |
+
>>> import matplotlib.pyplot as plt
|
305 |
+
>>> from scipy.signal import ShortTimeFFT
|
306 |
+
>>> from scipy.signal.windows import gaussian
|
307 |
+
...
|
308 |
+
>>> T, N = 0.1, 51
|
309 |
+
>>> d_win = gaussian(N, std=1/T, sym=True) # symmetric Gaussian window
|
310 |
+
>>> t = T * (np.arange(N) - N//2)
|
311 |
+
...
|
312 |
+
>>> fg1, ax1 = plt.subplots()
|
313 |
+
>>> ax1.set_title(r"Dual Window: Gaussian with $\sigma_t=1$")
|
314 |
+
>>> ax1.set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
|
315 |
+
... xlim=(t[0], t[-1]), ylim=(0, 1.1*max(d_win)))
|
316 |
+
>>> ax1.plot(t, d_win, 'C0-')
|
317 |
+
|
318 |
+
The following plot with the overlap of 41, 11 and 2 samples show how
|
319 |
+
the `hop` interval affects the shape of the window `win`:
|
320 |
+
|
321 |
+
>>> fig2, axx = plt.subplots(3, 1, sharex='all')
|
322 |
+
...
|
323 |
+
>>> axx[0].set_title(r"Windows for hop$\in\{10, 40, 49\}$")
|
324 |
+
>>> for c_, h_ in enumerate([10, 40, 49]):
|
325 |
+
... SFT = ShortTimeFFT.from_dual(d_win, h_, 1/T)
|
326 |
+
... axx[c_].plot(t + h_ * T, SFT.win, 'k--', alpha=.3, label=None)
|
327 |
+
... axx[c_].plot(t - h_ * T, SFT.win, 'k:', alpha=.3, label=None)
|
328 |
+
... axx[c_].plot(t, SFT.win, f'C{c_+1}',
|
329 |
+
... label=r"$\Delta t=%0.1f\,$s" % SFT.delta_t)
|
330 |
+
... axx[c_].set_ylim(0, 1.1*max(SFT.win))
|
331 |
+
... axx[c_].legend(loc='center')
|
332 |
+
>>> axx[-1].set(xlabel=f"Time $t$ in seconds ({N} samples, $T={T}$ s)",
|
333 |
+
... xlim=(t[0], t[-1]))
|
334 |
+
>>> plt.show()
|
335 |
+
|
336 |
+
Beside the window `win` centered at t = 0 the previous (t = -`delta_t`)
|
337 |
+
and following window (t = `delta_t`) are depicted. It can be seen that
|
338 |
+
for small `hop` intervals, the window is compact and smooth, having a
|
339 |
+
good time-frequency concentration in the STFT. For the large `hop`
|
340 |
+
interval of 4.9 s, the window has small values around t = 0, which are
|
341 |
+
not covered by the overlap of the adjacent windows, which could lead to
|
342 |
+
numeric inaccuracies. Furthermore, the peaky shape at the beginning and
|
343 |
+
the end of the window points to a higher bandwidth, resulting in a
|
344 |
+
poorer time-frequency resolution of the STFT.
|
345 |
+
Hence, the choice of the `hop` interval will be a compromise between
|
346 |
+
a time-frequency resolution and memory requirements demanded by small
|
347 |
+
`hop` sizes.
|
348 |
+
|
349 |
+
See Also
|
350 |
+
--------
|
351 |
+
from_window: Create instance by wrapping `get_window`.
|
352 |
+
ShortTimeFFT: Create instance using standard initializer.
|
353 |
+
"""
|
354 |
+
win = _calc_dual_canonical_window(dual_win, hop)
|
355 |
+
return cls(win=win, hop=hop, fs=fs, fft_mode=fft_mode, mfft=mfft,
|
356 |
+
dual_win=dual_win, scale_to=scale_to,
|
357 |
+
phase_shift=phase_shift)
|
358 |
+
|
359 |
+
@classmethod
|
360 |
+
def from_window(cls, win_param: str | tuple | float,
|
361 |
+
fs: float, nperseg: int, noverlap: int, *,
|
362 |
+
symmetric_win: bool = False,
|
363 |
+
fft_mode: FFT_MODE_TYPE = 'onesided',
|
364 |
+
mfft: int | None = None,
|
365 |
+
scale_to: Literal['magnitude', 'psd'] | None = None,
|
366 |
+
phase_shift: int | None = 0):
|
367 |
+
"""Instantiate `ShortTimeFFT` by using `get_window`.
|
368 |
+
|
369 |
+
The method `get_window` is used to create a window of length
|
370 |
+
`nperseg`. The parameter names `noverlap`, and `nperseg` are used here,
|
371 |
+
since they more inline with other classical STFT libraries.
|
372 |
+
|
373 |
+
Parameters
|
374 |
+
----------
|
375 |
+
win_param: Union[str, tuple, float],
|
376 |
+
Parameters passed to `get_window`. For windows with no parameters,
|
377 |
+
it may be a string (e.g., ``'hann'``), for parametrized windows a
|
378 |
+
tuple, (e.g., ``('gaussian', 2.)``) or a single float specifying
|
379 |
+
the shape parameter of a kaiser window (i.e. ``4.`` and
|
380 |
+
``('kaiser', 4.)`` are equal. See `get_window` for more details.
|
381 |
+
fs : float
|
382 |
+
Sampling frequency of input signal. Its relation to the
|
383 |
+
sampling interval `T` is ``T = 1 / fs``.
|
384 |
+
nperseg: int
|
385 |
+
Window length in samples, which corresponds to the `m_num`.
|
386 |
+
noverlap: int
|
387 |
+
Window overlap in samples. It relates to the `hop` increment by
|
388 |
+
``hop = npsereg - noverlap``.
|
389 |
+
symmetric_win: bool
|
390 |
+
If ``True`` then a symmetric window is generated, else a periodic
|
391 |
+
window is generated (default). Though symmetric windows seem for
|
392 |
+
most applications to be more sensible, the default of a periodic
|
393 |
+
windows was chosen to correspond to the default of `get_window`.
|
394 |
+
fft_mode : 'twosided', 'centered', 'onesided', 'onesided2X'
|
395 |
+
Mode of FFT to be used (default 'onesided').
|
396 |
+
See property `fft_mode` for details.
|
397 |
+
mfft: int | None
|
398 |
+
Length of the FFT used, if a zero padded FFT is desired.
|
399 |
+
If ``None`` (default), the length of the window `win` is used.
|
400 |
+
scale_to : 'magnitude', 'psd' | None
|
401 |
+
If not ``None`` (default) the window function is scaled, so each
|
402 |
+
STFT column represents either a 'magnitude' or a power spectral
|
403 |
+
density ('psd') spectrum. This parameter sets the property
|
404 |
+
`scaling` to the same value. See method `scale_to` for details.
|
405 |
+
phase_shift : int | None
|
406 |
+
If set, add a linear phase `phase_shift` / `mfft` * `f` to each
|
407 |
+
frequency `f`. The default value 0 ensures that there is no phase
|
408 |
+
shift on the zeroth slice (in which t=0 is centered). See property
|
409 |
+
`phase_shift` for more details.
|
410 |
+
|
411 |
+
Examples
|
412 |
+
--------
|
413 |
+
The following instances ``SFT0`` and ``SFT1`` are equivalent:
|
414 |
+
|
415 |
+
>>> from scipy.signal import ShortTimeFFT, get_window
|
416 |
+
>>> nperseg = 9 # window length
|
417 |
+
>>> w = get_window(('gaussian', 2.), nperseg)
|
418 |
+
>>> fs = 128 # sampling frequency
|
419 |
+
>>> hop = 3 # increment of STFT time slice
|
420 |
+
>>> SFT0 = ShortTimeFFT(w, hop, fs=fs)
|
421 |
+
>>> SFT1 = ShortTimeFFT.from_window(('gaussian', 2.), fs, nperseg,
|
422 |
+
... noverlap=nperseg-hop)
|
423 |
+
|
424 |
+
See Also
|
425 |
+
--------
|
426 |
+
scipy.signal.get_window: Return a window of a given length and type.
|
427 |
+
from_dual: Create instance using dual window.
|
428 |
+
ShortTimeFFT: Create instance using standard initializer.
|
429 |
+
"""
|
430 |
+
win = get_window(win_param, nperseg, fftbins=not symmetric_win)
|
431 |
+
return cls(win, hop=nperseg-noverlap, fs=fs, fft_mode=fft_mode,
|
432 |
+
mfft=mfft, scale_to=scale_to, phase_shift=phase_shift)
|
433 |
+
|
434 |
+
@property
|
435 |
+
def win(self) -> np.ndarray:
|
436 |
+
"""Window function as real- or complex-valued 1d array.
|
437 |
+
|
438 |
+
This attribute is read only, since `dual_win` depends on it.
|
439 |
+
|
440 |
+
See Also
|
441 |
+
--------
|
442 |
+
dual_win: Canonical dual window.
|
443 |
+
m_num: Number of samples in window `win`.
|
444 |
+
m_num_mid: Center index of window `win`.
|
445 |
+
mfft: Length of input for the FFT used - may be larger than `m_num`.
|
446 |
+
hop: ime increment in signal samples for sliding window.
|
447 |
+
win: Window function as real- or complex-valued 1d array.
|
448 |
+
ShortTimeFFT: Class this property belongs to.
|
449 |
+
"""
|
450 |
+
return self._win
|
451 |
+
|
452 |
+
@property
|
453 |
+
def hop(self) -> int:
|
454 |
+
"""Time increment in signal samples for sliding window.
|
455 |
+
|
456 |
+
This attribute is read only, since `dual_win` depends on it.
|
457 |
+
|
458 |
+
See Also
|
459 |
+
--------
|
460 |
+
delta_t: Time increment of STFT (``hop*T``)
|
461 |
+
m_num: Number of samples in window `win`.
|
462 |
+
m_num_mid: Center index of window `win`.
|
463 |
+
mfft: Length of input for the FFT used - may be larger than `m_num`.
|
464 |
+
T: Sampling interval of input signal and of the window.
|
465 |
+
win: Window function as real- or complex-valued 1d array.
|
466 |
+
ShortTimeFFT: Class this property belongs to.
|
467 |
+
"""
|
468 |
+
return self._hop
|
469 |
+
|
470 |
+
@property
|
471 |
+
def T(self) -> float:
|
472 |
+
"""Sampling interval of input signal and of the window.
|
473 |
+
|
474 |
+
A ``ValueError`` is raised if it is set to a non-positive value.
|
475 |
+
|
476 |
+
See Also
|
477 |
+
--------
|
478 |
+
delta_t: Time increment of STFT (``hop*T``)
|
479 |
+
hop: Time increment in signal samples for sliding window.
|
480 |
+
fs: Sampling frequency (being ``1/T``)
|
481 |
+
t: Times of STFT for an input signal with `n` samples.
|
482 |
+
ShortTimeFFT: Class this property belongs to.
|
483 |
+
"""
|
484 |
+
return 1 / self._fs
|
485 |
+
|
486 |
+
@T.setter
|
487 |
+
def T(self, v: float):
|
488 |
+
"""Sampling interval of input signal and of the window.
|
489 |
+
|
490 |
+
A ``ValueError`` is raised if it is set to a non-positive value.
|
491 |
+
"""
|
492 |
+
if not (v > 0):
|
493 |
+
raise ValueError(f"Sampling interval T={v} must be positive!")
|
494 |
+
self._fs = 1 / v
|
495 |
+
|
496 |
+
@property
|
497 |
+
def fs(self) -> float:
|
498 |
+
"""Sampling frequency of input signal and of the window.
|
499 |
+
|
500 |
+
The sampling frequency is the inverse of the sampling interval `T`.
|
501 |
+
A ``ValueError`` is raised if it is set to a non-positive value.
|
502 |
+
|
503 |
+
See Also
|
504 |
+
--------
|
505 |
+
delta_t: Time increment of STFT (``hop*T``)
|
506 |
+
hop: Time increment in signal samples for sliding window.
|
507 |
+
T: Sampling interval of input signal and of the window (``1/fs``).
|
508 |
+
ShortTimeFFT: Class this property belongs to.
|
509 |
+
"""
|
510 |
+
return self._fs
|
511 |
+
|
512 |
+
@fs.setter
|
513 |
+
def fs(self, v: float):
|
514 |
+
"""Sampling frequency of input signal and of the window.
|
515 |
+
|
516 |
+
The sampling frequency is the inverse of the sampling interval `T`.
|
517 |
+
A ``ValueError`` is raised if it is set to a non-positive value.
|
518 |
+
"""
|
519 |
+
if not (v > 0):
|
520 |
+
raise ValueError(f"Sampling frequency fs={v} must be positive!")
|
521 |
+
self._fs = v
|
522 |
+
|
523 |
+
@property
|
524 |
+
def fft_mode(self) -> FFT_MODE_TYPE:
|
525 |
+
"""Mode of utilized FFT ('twosided', 'centered', 'onesided' or
|
526 |
+
'onesided2X').
|
527 |
+
|
528 |
+
It can have the following values:
|
529 |
+
|
530 |
+
'twosided':
|
531 |
+
Two-sided FFT, where values for the negative frequencies are in
|
532 |
+
upper half of the array. Corresponds to :func:`~scipy.fft.fft()`.
|
533 |
+
'centered':
|
534 |
+
Two-sided FFT with the values being ordered along monotonically
|
535 |
+
increasing frequencies. Corresponds to applying
|
536 |
+
:func:`~scipy.fft.fftshift()` to :func:`~scipy.fft.fft()`.
|
537 |
+
'onesided':
|
538 |
+
Calculates only values for non-negative frequency values.
|
539 |
+
Corresponds to :func:`~scipy.fft.rfft()`.
|
540 |
+
'onesided2X':
|
541 |
+
Like `onesided`, but the non-zero frequencies are doubled if
|
542 |
+
`scaling` is set to 'magnitude' or multiplied by ``sqrt(2)`` if
|
543 |
+
set to 'psd'. If `scaling` is ``None``, setting `fft_mode` to
|
544 |
+
`onesided2X` is not allowed.
|
545 |
+
If the FFT length `mfft` is even, the last FFT value is not paired,
|
546 |
+
and thus it is not scaled.
|
547 |
+
|
548 |
+
Note that `onesided` and `onesided2X` do not work for complex-valued signals or
|
549 |
+
complex-valued windows. Furthermore, the frequency values can be obtained by
|
550 |
+
reading the `f` property, and the number of samples by accessing the `f_pts`
|
551 |
+
property.
|
552 |
+
|
553 |
+
See Also
|
554 |
+
--------
|
555 |
+
delta_f: Width of the frequency bins of the STFT.
|
556 |
+
f: Frequencies values of the STFT.
|
557 |
+
f_pts: Width of the frequency bins of the STFT.
|
558 |
+
onesided_fft: True if a one-sided FFT is used.
|
559 |
+
scaling: Normalization applied to the window function
|
560 |
+
ShortTimeFFT: Class this property belongs to.
|
561 |
+
"""
|
562 |
+
return self._fft_mode
|
563 |
+
|
564 |
+
@fft_mode.setter
|
565 |
+
def fft_mode(self, t: FFT_MODE_TYPE):
|
566 |
+
"""Set mode of FFT.
|
567 |
+
|
568 |
+
Allowed values are 'twosided', 'centered', 'onesided', 'onesided2X'.
|
569 |
+
See the property `fft_mode` for more details.
|
570 |
+
"""
|
571 |
+
if t not in (fft_mode_types := get_args(FFT_MODE_TYPE)):
|
572 |
+
raise ValueError(f"fft_mode='{t}' not in {fft_mode_types}!")
|
573 |
+
|
574 |
+
if t in {'onesided', 'onesided2X'} and np.iscomplexobj(self.win):
|
575 |
+
raise ValueError(f"One-sided spectra, i.e., fft_mode='{t}', " +
|
576 |
+
"are not allowed for complex-valued windows!")
|
577 |
+
|
578 |
+
if t == 'onesided2X' and self.scaling is None:
|
579 |
+
raise ValueError(f"For scaling is None, fft_mode='{t}' is invalid!"
|
580 |
+
"Do scale_to('psd') or scale_to('magnitude')!")
|
581 |
+
self._fft_mode = t
|
582 |
+
|
583 |
+
@property
|
584 |
+
def mfft(self) -> int:
|
585 |
+
"""Length of input for the FFT used - may be larger than window
|
586 |
+
length `m_num`.
|
587 |
+
|
588 |
+
If not set, `mfft` defaults to the window length `m_num`.
|
589 |
+
|
590 |
+
See Also
|
591 |
+
--------
|
592 |
+
f_pts: Number of points along the frequency axis.
|
593 |
+
f: Frequencies values of the STFT.
|
594 |
+
m_num: Number of samples in window `win`.
|
595 |
+
ShortTimeFFT: Class this property belongs to.
|
596 |
+
"""
|
597 |
+
return self._mfft
|
598 |
+
|
599 |
+
@mfft.setter
|
600 |
+
def mfft(self, n_: int):
|
601 |
+
"""Setter for the length of FFT utilized.
|
602 |
+
|
603 |
+
See the property `mfft` for further details.
|
604 |
+
"""
|
605 |
+
if not (n_ >= self.m_num):
|
606 |
+
raise ValueError(f"Attribute mfft={n_} needs to be at least the " +
|
607 |
+
f"window length m_num={self.m_num}!")
|
608 |
+
self._mfft = n_
|
609 |
+
|
610 |
+
@property
|
611 |
+
def scaling(self) -> Literal['magnitude', 'psd'] | None:
|
612 |
+
"""Normalization applied to the window function
|
613 |
+
('magnitude', 'psd' or ``None``).
|
614 |
+
|
615 |
+
If not ``None``, the FFTs can be either interpreted as a magnitude or
|
616 |
+
a power spectral density spectrum.
|
617 |
+
|
618 |
+
The window function can be scaled by calling the `scale_to` method,
|
619 |
+
or it is set by the initializer parameter ``scale_to``.
|
620 |
+
|
621 |
+
See Also
|
622 |
+
--------
|
623 |
+
fac_magnitude: Scaling factor for to a magnitude spectrum.
|
624 |
+
fac_psd: Scaling factor for to a power spectral density spectrum.
|
625 |
+
fft_mode: Mode of utilized FFT
|
626 |
+
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
|
627 |
+
ShortTimeFFT: Class this property belongs to.
|
628 |
+
"""
|
629 |
+
return self._scaling
|
630 |
+
|
631 |
+
def scale_to(self, scaling: Literal['magnitude', 'psd']):
|
632 |
+
"""Scale window to obtain 'magnitude' or 'psd' scaling for the STFT.
|
633 |
+
|
634 |
+
The window of a 'magnitude' spectrum has an integral of one, i.e., unit
|
635 |
+
area for non-negative windows. This ensures that absolute the values of
|
636 |
+
spectrum does not change if the length of the window changes (given
|
637 |
+
the input signal is stationary).
|
638 |
+
|
639 |
+
To represent the power spectral density ('psd') for varying length
|
640 |
+
windows the area of the absolute square of the window needs to be
|
641 |
+
unity.
|
642 |
+
|
643 |
+
The `scaling` property shows the current scaling. The properties
|
644 |
+
`fac_magnitude` and `fac_psd` show the scaling factors required to
|
645 |
+
scale the STFT values to a magnitude or a psd spectrum.
|
646 |
+
|
647 |
+
This method is called, if the initializer parameter `scale_to` is set.
|
648 |
+
|
649 |
+
See Also
|
650 |
+
--------
|
651 |
+
fac_magnitude: Scaling factor for to a magnitude spectrum.
|
652 |
+
fac_psd: Scaling factor for to a power spectral density spectrum.
|
653 |
+
fft_mode: Mode of utilized FFT
|
654 |
+
scaling: Normalization applied to the window function.
|
655 |
+
ShortTimeFFT: Class this method belongs to.
|
656 |
+
"""
|
657 |
+
if scaling not in (scaling_values := {'magnitude', 'psd'}):
|
658 |
+
raise ValueError(f"{scaling=} not in {scaling_values}!")
|
659 |
+
if self._scaling == scaling: # do nothing
|
660 |
+
return
|
661 |
+
|
662 |
+
s_fac = self.fac_psd if scaling == 'psd' else self.fac_magnitude
|
663 |
+
self._win = self._win * s_fac
|
664 |
+
if self._dual_win is not None:
|
665 |
+
self._dual_win = self._dual_win / s_fac
|
666 |
+
self._fac_mag, self._fac_psd = None, None # reset scaling factors
|
667 |
+
self._scaling = scaling
|
668 |
+
|
669 |
+
@property
|
670 |
+
def phase_shift(self) -> int | None:
|
671 |
+
"""If set, add linear phase `phase_shift` / `mfft` * `f` to each FFT
|
672 |
+
slice of frequency `f`.
|
673 |
+
|
674 |
+
Shifting (more precisely `rolling`) an `mfft`-point FFT input by
|
675 |
+
`phase_shift` samples results in a multiplication of the output by
|
676 |
+
``np.exp(2j*np.pi*q*phase_shift/mfft)`` at the frequency q * `delta_f`.
|
677 |
+
|
678 |
+
The default value 0 ensures that there is no phase shift on the
|
679 |
+
zeroth slice (in which t=0 is centered).
|
680 |
+
No phase shift (``phase_shift is None``) is equivalent to
|
681 |
+
``phase_shift = -mfft//2``. In this case slices are not shifted
|
682 |
+
before calculating the FFT.
|
683 |
+
|
684 |
+
The absolute value of `phase_shift` is limited to be less than `mfft`.
|
685 |
+
|
686 |
+
See Also
|
687 |
+
--------
|
688 |
+
delta_f: Width of the frequency bins of the STFT.
|
689 |
+
f: Frequencies values of the STFT.
|
690 |
+
mfft: Length of input for the FFT used
|
691 |
+
ShortTimeFFT: Class this property belongs to.
|
692 |
+
"""
|
693 |
+
return self._phase_shift
|
694 |
+
|
695 |
+
@phase_shift.setter
|
696 |
+
def phase_shift(self, v: int | None):
|
697 |
+
"""The absolute value of the phase shift needs to be less than mfft
|
698 |
+
samples.
|
699 |
+
|
700 |
+
See the `phase_shift` getter method for more details.
|
701 |
+
"""
|
702 |
+
if v is None:
|
703 |
+
self._phase_shift = v
|
704 |
+
return
|
705 |
+
if not isinstance(v, int):
|
706 |
+
raise ValueError(f"phase_shift={v} has the unit samples. Hence " +
|
707 |
+
"it needs to be an int or it may be None!")
|
708 |
+
if not (-self.mfft < v < self.mfft):
|
709 |
+
raise ValueError("-mfft < phase_shift < mfft does not hold " +
|
710 |
+
f"for mfft={self.mfft}, phase_shift={v}!")
|
711 |
+
self._phase_shift = v
|
712 |
+
|
713 |
+
def _x_slices(self, x: np.ndarray, k_off: int, p0: int, p1: int,
|
714 |
+
padding: PAD_TYPE) -> Generator[np.ndarray, None, None]:
|
715 |
+
"""Generate signal slices along last axis of `x`.
|
716 |
+
|
717 |
+
This method is only used by `stft_detrend`. The parameters are
|
718 |
+
described in `~ShortTimeFFT.stft`.
|
719 |
+
"""
|
720 |
+
if padding not in (padding_types := get_args(PAD_TYPE)):
|
721 |
+
raise ValueError(f"Parameter {padding=} not in {padding_types}!")
|
722 |
+
pad_kws: dict[str, dict] = { # possible keywords to pass to np.pad:
|
723 |
+
'zeros': dict(mode='constant', constant_values=(0, 0)),
|
724 |
+
'edge': dict(mode='edge'),
|
725 |
+
'even': dict(mode='reflect', reflect_type='even'),
|
726 |
+
'odd': dict(mode='reflect', reflect_type='odd'),
|
727 |
+
} # typing of pad_kws is needed to make mypy happy
|
728 |
+
|
729 |
+
n, n1 = x.shape[-1], (p1 - p0) * self.hop
|
730 |
+
k0 = p0 * self.hop - self.m_num_mid + k_off # start sample
|
731 |
+
k1 = k0 + n1 + self.m_num # end sample
|
732 |
+
|
733 |
+
i0, i1 = max(k0, 0), min(k1, n) # indexes to shorten x
|
734 |
+
# dimensions for padding x:
|
735 |
+
pad_width = [(0, 0)] * (x.ndim-1) + [(-min(k0, 0), max(k1 - n, 0))]
|
736 |
+
|
737 |
+
x1 = np.pad(x[..., i0:i1], pad_width, **pad_kws[padding])
|
738 |
+
for k_ in range(0, n1, self.hop):
|
739 |
+
yield x1[..., k_:k_ + self.m_num]
|
740 |
+
|
741 |
+
def stft(self, x: np.ndarray, p0: int | None = None,
|
742 |
+
p1: int | None = None, *, k_offset: int = 0,
|
743 |
+
padding: PAD_TYPE = 'zeros', axis: int = -1) \
|
744 |
+
-> np.ndarray:
|
745 |
+
"""Perform the short-time Fourier transform.
|
746 |
+
|
747 |
+
A two-dimensional matrix with ``p1-p0`` columns is calculated.
|
748 |
+
The `f_pts` rows represent value at the frequencies `f`. The q-th
|
749 |
+
column of the windowed FFT with the window `win` is centered at t[q].
|
750 |
+
The columns represent the values at the frequencies `f`.
|
751 |
+
|
752 |
+
Parameters
|
753 |
+
----------
|
754 |
+
x
|
755 |
+
The input signal as real or complex valued array. For complex values, the
|
756 |
+
property `fft_mode` must be set to 'twosided' or 'centered'.
|
757 |
+
p0
|
758 |
+
The first element of the range of slices to calculate. If ``None``
|
759 |
+
then it is set to :attr:`p_min`, which is the smallest possible
|
760 |
+
slice.
|
761 |
+
p1
|
762 |
+
The end of the array. If ``None`` then `p_max(n)` is used.
|
763 |
+
k_offset
|
764 |
+
Index of first sample (t = 0) in `x`.
|
765 |
+
padding
|
766 |
+
Kind of values which are added, when the sliding window sticks out
|
767 |
+
on either the lower or upper end of the input `x`. Zeros are added
|
768 |
+
if the default 'zeros' is set. For 'edge' either the first or the
|
769 |
+
last value of `x` is used. 'even' pads by reflecting the
|
770 |
+
signal on the first or last sample and 'odd' additionally
|
771 |
+
multiplies it with -1.
|
772 |
+
axis
|
773 |
+
The axis of `x` over which to compute the STFT.
|
774 |
+
If not given, the last axis is used.
|
775 |
+
|
776 |
+
Returns
|
777 |
+
-------
|
778 |
+
S
|
779 |
+
A complex array is returned with the dimension always being larger
|
780 |
+
by one than of `x`. The last axis always represent the time slices
|
781 |
+
of the STFT. `axis` defines the frequency axis (default second to
|
782 |
+
last). E.g., for a one-dimensional `x`, a complex 2d array is
|
783 |
+
returned, with axis 0 representing frequency and axis 1 the time
|
784 |
+
slices.
|
785 |
+
|
786 |
+
See Also
|
787 |
+
--------
|
788 |
+
delta_f: Width of the frequency bins of the STFT.
|
789 |
+
delta_t: Time increment of STFT
|
790 |
+
f: Frequencies values of the STFT.
|
791 |
+
invertible: Check if STFT is invertible.
|
792 |
+
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
|
793 |
+
p_range: Determine and validate slice index range.
|
794 |
+
stft_detrend: STFT with detrended segments.
|
795 |
+
t: Times of STFT for an input signal with `n` samples.
|
796 |
+
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
|
797 |
+
"""
|
798 |
+
return self.stft_detrend(x, None, p0, p1, k_offset=k_offset,
|
799 |
+
padding=padding, axis=axis)
|
800 |
+
|
801 |
+
def stft_detrend(self, x: np.ndarray,
|
802 |
+
detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None, # noqa: E501
|
803 |
+
p0: int | None = None, p1: int | None = None, *,
|
804 |
+
k_offset: int = 0, padding: PAD_TYPE = 'zeros',
|
805 |
+
axis: int = -1) \
|
806 |
+
-> np.ndarray:
|
807 |
+
"""Short-time Fourier transform with a trend being subtracted from each
|
808 |
+
segment beforehand.
|
809 |
+
|
810 |
+
If `detr` is set to 'constant', the mean is subtracted, if set to
|
811 |
+
"linear", the linear trend is removed. This is achieved by calling
|
812 |
+
:func:`scipy.signal.detrend`. If `detr` is a function, `detr` is
|
813 |
+
applied to each segment.
|
814 |
+
All other parameters have the same meaning as in `~ShortTimeFFT.stft`.
|
815 |
+
|
816 |
+
Note that due to the detrending, the original signal cannot be
|
817 |
+
reconstructed by the `~ShortTimeFFT.istft`.
|
818 |
+
|
819 |
+
See Also
|
820 |
+
--------
|
821 |
+
invertible: Check if STFT is invertible.
|
822 |
+
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
|
823 |
+
:meth:`~ShortTimeFFT.stft`: Short-time Fourier transform
|
824 |
+
(without detrending).
|
825 |
+
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
|
826 |
+
"""
|
827 |
+
if self.onesided_fft and np.iscomplexobj(x):
|
828 |
+
raise ValueError(f"Complex-valued `x` not allowed for {self.fft_mode=}'! "
|
829 |
+
"Set property `fft_mode` to 'twosided' or 'centered'.")
|
830 |
+
if isinstance(detr, str):
|
831 |
+
detr = partial(detrend, type=detr)
|
832 |
+
elif not (detr is None or callable(detr)):
|
833 |
+
raise ValueError(f"Parameter {detr=} is not a str, function or " +
|
834 |
+
"None!")
|
835 |
+
n = x.shape[axis]
|
836 |
+
if not (n >= (m2p := self.m_num-self.m_num_mid)):
|
837 |
+
e_str = f'{len(x)=}' if x.ndim == 1 else f'of {axis=} of {x.shape}'
|
838 |
+
raise ValueError(f"{e_str} must be >= ceil(m_num/2) = {m2p}!")
|
839 |
+
|
840 |
+
if x.ndim > 1: # motivated by the NumPy broadcasting mechanisms:
|
841 |
+
x = np.moveaxis(x, axis, -1)
|
842 |
+
# determine slice index range:
|
843 |
+
p0, p1 = self.p_range(n, p0, p1)
|
844 |
+
S_shape_1d = (self.f_pts, p1 - p0)
|
845 |
+
S_shape = x.shape[:-1] + S_shape_1d if x.ndim > 1 else S_shape_1d
|
846 |
+
S = np.zeros(S_shape, dtype=complex)
|
847 |
+
for p_, x_ in enumerate(self._x_slices(x, k_offset, p0, p1, padding)):
|
848 |
+
if detr is not None:
|
849 |
+
x_ = detr(x_)
|
850 |
+
S[..., :, p_] = self._fft_func(x_ * self.win.conj())
|
851 |
+
if x.ndim > 1:
|
852 |
+
return np.moveaxis(S, -2, axis if axis >= 0 else axis-1)
|
853 |
+
return S
|
854 |
+
|
855 |
+
def spectrogram(self, x: np.ndarray, y: np.ndarray | None = None,
|
856 |
+
detr: Callable[[np.ndarray], np.ndarray] | Literal['linear', 'constant'] | None = None, # noqa: E501
|
857 |
+
*,
|
858 |
+
p0: int | None = None, p1: int | None = None,
|
859 |
+
k_offset: int = 0, padding: PAD_TYPE = 'zeros',
|
860 |
+
axis: int = -1) \
|
861 |
+
-> np.ndarray:
|
862 |
+
r"""Calculate spectrogram or cross-spectrogram.
|
863 |
+
|
864 |
+
The spectrogram is the absolute square of the STFT, i.e, it is
|
865 |
+
``abs(S[q,p])**2`` for given ``S[q,p]`` and thus is always
|
866 |
+
non-negative.
|
867 |
+
For two STFTs ``Sx[q,p], Sy[q,p]``, the cross-spectrogram is defined
|
868 |
+
as ``Sx[q,p] * np.conj(Sx[q,p])`` and is complex-valued.
|
869 |
+
This is a convenience function for calling `~ShortTimeFFT.stft` /
|
870 |
+
`stft_detrend`, hence all parameters are discussed there. If `y` is not
|
871 |
+
``None`` it needs to have the same shape as `x`.
|
872 |
+
|
873 |
+
Examples
|
874 |
+
--------
|
875 |
+
The following example shows the spectrogram of a square wave with
|
876 |
+
varying frequency :math:`f_i(t)` (marked by a green dashed line in the
|
877 |
+
plot) sampled with 20 Hz:
|
878 |
+
|
879 |
+
>>> import matplotlib.pyplot as plt
|
880 |
+
>>> import numpy as np
|
881 |
+
>>> from scipy.signal import square, ShortTimeFFT
|
882 |
+
>>> from scipy.signal.windows import gaussian
|
883 |
+
...
|
884 |
+
>>> T_x, N = 1 / 20, 1000 # 20 Hz sampling rate for 50 s signal
|
885 |
+
>>> t_x = np.arange(N) * T_x # time indexes for signal
|
886 |
+
>>> f_i = 5e-3*(t_x - t_x[N // 3])**2 + 1 # varying frequency
|
887 |
+
>>> x = square(2*np.pi*np.cumsum(f_i)*T_x) # the signal
|
888 |
+
|
889 |
+
The utitlized Gaussian window is 50 samples or 2.5 s long. The
|
890 |
+
parameter ``mfft=800`` (oversampling factor 16) and the `hop` interval
|
891 |
+
of 2 in `ShortTimeFFT` was chosen to produce a sufficient number of
|
892 |
+
points:
|
893 |
+
|
894 |
+
>>> g_std = 12 # standard deviation for Gaussian window in samples
|
895 |
+
>>> win = gaussian(50, std=g_std, sym=True) # symmetric Gaussian wind.
|
896 |
+
>>> SFT = ShortTimeFFT(win, hop=2, fs=1/T_x, mfft=800, scale_to='psd')
|
897 |
+
>>> Sx2 = SFT.spectrogram(x) # calculate absolute square of STFT
|
898 |
+
|
899 |
+
The plot's colormap is logarithmically scaled as the power spectral
|
900 |
+
density is in dB. The time extent of the signal `x` is marked by
|
901 |
+
vertical dashed lines and the shaded areas mark the presence of border
|
902 |
+
effects:
|
903 |
+
|
904 |
+
>>> fig1, ax1 = plt.subplots(figsize=(6., 4.)) # enlarge plot a bit
|
905 |
+
>>> t_lo, t_hi = SFT.extent(N)[:2] # time range of plot
|
906 |
+
>>> ax1.set_title(rf"Spectrogram ({SFT.m_num*SFT.T:g}$\,s$ Gaussian " +
|
907 |
+
... rf"window, $\sigma_t={g_std*SFT.T:g}\,$s)")
|
908 |
+
>>> ax1.set(xlabel=f"Time $t$ in seconds ({SFT.p_num(N)} slices, " +
|
909 |
+
... rf"$\Delta t = {SFT.delta_t:g}\,$s)",
|
910 |
+
... ylabel=f"Freq. $f$ in Hz ({SFT.f_pts} bins, " +
|
911 |
+
... rf"$\Delta f = {SFT.delta_f:g}\,$Hz)",
|
912 |
+
... xlim=(t_lo, t_hi))
|
913 |
+
>>> Sx_dB = 10 * np.log10(np.fmax(Sx2, 1e-4)) # limit range to -40 dB
|
914 |
+
>>> im1 = ax1.imshow(Sx_dB, origin='lower', aspect='auto',
|
915 |
+
... extent=SFT.extent(N), cmap='magma')
|
916 |
+
>>> ax1.plot(t_x, f_i, 'g--', alpha=.5, label='$f_i(t)$')
|
917 |
+
>>> fig1.colorbar(im1, label='Power Spectral Density ' +
|
918 |
+
... r"$20\,\log_{10}|S_x(t, f)|$ in dB")
|
919 |
+
...
|
920 |
+
>>> # Shade areas where window slices stick out to the side:
|
921 |
+
>>> for t0_, t1_ in [(t_lo, SFT.lower_border_end[0] * SFT.T),
|
922 |
+
... (SFT.upper_border_begin(N)[0] * SFT.T, t_hi)]:
|
923 |
+
... ax1.axvspan(t0_, t1_, color='w', linewidth=0, alpha=.3)
|
924 |
+
>>> for t_ in [0, N * SFT.T]: # mark signal borders with vertical line
|
925 |
+
... ax1.axvline(t_, color='c', linestyle='--', alpha=0.5)
|
926 |
+
>>> ax1.legend()
|
927 |
+
>>> fig1.tight_layout()
|
928 |
+
>>> plt.show()
|
929 |
+
|
930 |
+
The logarithmic scaling reveals the odd harmonics of the square wave,
|
931 |
+
which are reflected at the Nyquist frequency of 10 Hz. This aliasing
|
932 |
+
is also the main source of the noise artifacts in the plot.
|
933 |
+
|
934 |
+
|
935 |
+
See Also
|
936 |
+
--------
|
937 |
+
:meth:`~ShortTimeFFT.stft`: Perform the short-time Fourier transform.
|
938 |
+
stft_detrend: STFT with a trend subtracted from each segment.
|
939 |
+
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
|
940 |
+
"""
|
941 |
+
Sx = self.stft_detrend(x, detr, p0, p1, k_offset=k_offset,
|
942 |
+
padding=padding, axis=axis)
|
943 |
+
if y is None or y is x: # do spectrogram:
|
944 |
+
return Sx.real**2 + Sx.imag**2
|
945 |
+
# Cross-spectrogram:
|
946 |
+
Sy = self.stft_detrend(y, detr, p0, p1, k_offset=k_offset,
|
947 |
+
padding=padding, axis=axis)
|
948 |
+
return Sx * Sy.conj()
|
949 |
+
|
950 |
+
@property
|
951 |
+
def dual_win(self) -> np.ndarray:
|
952 |
+
"""Canonical dual window.
|
953 |
+
|
954 |
+
A STFT can be interpreted as the input signal being expressed as a
|
955 |
+
weighted sum of modulated and time-shifted dual windows. Note that for
|
956 |
+
a given window there exist many dual windows. The canonical window is
|
957 |
+
the one with the minimal energy (i.e., :math:`L_2` norm).
|
958 |
+
|
959 |
+
`dual_win` has same length as `win`, namely `m_num` samples.
|
960 |
+
|
961 |
+
If the dual window cannot be calculated a ``ValueError`` is raised.
|
962 |
+
This attribute is read only and calculated lazily.
|
963 |
+
|
964 |
+
See Also
|
965 |
+
--------
|
966 |
+
dual_win: Canonical dual window.
|
967 |
+
m_num: Number of samples in window `win`.
|
968 |
+
win: Window function as real- or complex-valued 1d array.
|
969 |
+
ShortTimeFFT: Class this property belongs to.
|
970 |
+
"""
|
971 |
+
if self._dual_win is None:
|
972 |
+
self._dual_win = _calc_dual_canonical_window(self.win, self.hop)
|
973 |
+
return self._dual_win
|
974 |
+
|
975 |
+
@property
|
976 |
+
def invertible(self) -> bool:
|
977 |
+
"""Check if STFT is invertible.
|
978 |
+
|
979 |
+
This is achieved by trying to calculate the canonical dual window.
|
980 |
+
|
981 |
+
See Also
|
982 |
+
--------
|
983 |
+
:meth:`~ShortTimeFFT.istft`: Inverse short-time Fourier transform.
|
984 |
+
m_num: Number of samples in window `win` and `dual_win`.
|
985 |
+
dual_win: Canonical dual window.
|
986 |
+
win: Window for STFT.
|
987 |
+
ShortTimeFFT: Class this property belongs to.
|
988 |
+
"""
|
989 |
+
try:
|
990 |
+
return len(self.dual_win) > 0 # call self.dual_win()
|
991 |
+
except ValueError:
|
992 |
+
return False
|
993 |
+
|
994 |
+
def istft(self, S: np.ndarray, k0: int = 0, k1: int | None = None, *,
|
995 |
+
f_axis: int = -2, t_axis: int = -1) \
|
996 |
+
-> np.ndarray:
|
997 |
+
"""Inverse short-time Fourier transform.
|
998 |
+
|
999 |
+
It returns an array of dimension ``S.ndim - 1`` which is real
|
1000 |
+
if `onesided_fft` is set, else complex. If the STFT is not
|
1001 |
+
`invertible`, or the parameters are out of bounds a ``ValueError`` is
|
1002 |
+
raised.
|
1003 |
+
|
1004 |
+
Parameters
|
1005 |
+
----------
|
1006 |
+
S
|
1007 |
+
A complex valued array where `f_axis` denotes the frequency
|
1008 |
+
values and the `t-axis` dimension the temporal values of the
|
1009 |
+
STFT values.
|
1010 |
+
k0, k1
|
1011 |
+
The start and the end index of the reconstructed signal. The
|
1012 |
+
default (``k0 = 0``, ``k1 = None``) assumes that the maximum length
|
1013 |
+
signal should be reconstructed.
|
1014 |
+
f_axis, t_axis
|
1015 |
+
The axes in `S` denoting the frequency and the time dimension.
|
1016 |
+
|
1017 |
+
Notes
|
1018 |
+
-----
|
1019 |
+
It is required that `S` has `f_pts` entries along the `f_axis`. For
|
1020 |
+
the `t_axis` it is assumed that the first entry corresponds to
|
1021 |
+
`p_min` * `delta_t` (being <= 0). The length of `t_axis` needs to be
|
1022 |
+
compatible with `k1`. I.e., ``S.shape[t_axis] >= self.p_max(k1)`` must
|
1023 |
+
hold, if `k1` is not ``None``. Else `k1` is set to `k_max` with::
|
1024 |
+
|
1025 |
+
q_max = S.shape[t_range] + self.p_min
|
1026 |
+
k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
|
1027 |
+
|
1028 |
+
The :ref:`tutorial_stft` section of the :ref:`user_guide` discussed the
|
1029 |
+
slicing behavior by means of an example.
|
1030 |
+
|
1031 |
+
See Also
|
1032 |
+
--------
|
1033 |
+
invertible: Check if STFT is invertible.
|
1034 |
+
:meth:`~ShortTimeFFT.stft`: Perform Short-time Fourier transform.
|
1035 |
+
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
|
1036 |
+
"""
|
1037 |
+
if f_axis == t_axis:
|
1038 |
+
raise ValueError(f"{f_axis=} may not be equal to {t_axis=}!")
|
1039 |
+
if S.shape[f_axis] != self.f_pts:
|
1040 |
+
raise ValueError(f"{S.shape[f_axis]=} must be equal to " +
|
1041 |
+
f"{self.f_pts=} ({S.shape=})!")
|
1042 |
+
n_min = self.m_num-self.m_num_mid # minimum signal length
|
1043 |
+
if not (S.shape[t_axis] >= (q_num := self.p_num(n_min))):
|
1044 |
+
raise ValueError(f"{S.shape[t_axis]=} needs to have at least " +
|
1045 |
+
f"{q_num} slices ({S.shape=})!")
|
1046 |
+
if t_axis != S.ndim - 1 or f_axis != S.ndim - 2:
|
1047 |
+
t_axis = S.ndim + t_axis if t_axis < 0 else t_axis
|
1048 |
+
f_axis = S.ndim + f_axis if f_axis < 0 else f_axis
|
1049 |
+
S = np.moveaxis(S, (f_axis, t_axis), (-2, -1))
|
1050 |
+
|
1051 |
+
q_max = S.shape[-1] + self.p_min
|
1052 |
+
k_max = (q_max - 1) * self.hop + self.m_num - self.m_num_mid
|
1053 |
+
|
1054 |
+
k1 = k_max if k1 is None else k1
|
1055 |
+
if not (self.k_min <= k0 < k1 <= k_max):
|
1056 |
+
raise ValueError(f"({self.k_min=}) <= ({k0=}) < ({k1=}) <= " +
|
1057 |
+
f"({k_max=}) is false!")
|
1058 |
+
if not (num_pts := k1 - k0) >= n_min:
|
1059 |
+
raise ValueError(f"({k1=}) - ({k0=}) = {num_pts} has to be at " +
|
1060 |
+
f"least the half the window length {n_min}!")
|
1061 |
+
|
1062 |
+
q0 = (k0 // self.hop + self.p_min if k0 >= 0 else # p_min always <= 0
|
1063 |
+
k0 // self.hop)
|
1064 |
+
q1 = min(self.p_max(k1), q_max)
|
1065 |
+
k_q0, k_q1 = self.nearest_k_p(k0), self.nearest_k_p(k1, left=False)
|
1066 |
+
n_pts = k_q1 - k_q0 + self.m_num - self.m_num_mid
|
1067 |
+
x = np.zeros(S.shape[:-2] + (n_pts,),
|
1068 |
+
dtype=float if self.onesided_fft else complex)
|
1069 |
+
for q_ in range(q0, q1):
|
1070 |
+
xs = self._ifft_func(S[..., :, q_ - self.p_min]) * self.dual_win
|
1071 |
+
i0 = q_ * self.hop - self.m_num_mid
|
1072 |
+
i1 = min(i0 + self.m_num, n_pts+k0)
|
1073 |
+
j0, j1 = 0, i1 - i0
|
1074 |
+
if i0 < k0: # xs sticks out to the left on x:
|
1075 |
+
j0 += k0 - i0
|
1076 |
+
i0 = k0
|
1077 |
+
x[..., i0-k0:i1-k0] += xs[..., j0:j1]
|
1078 |
+
x = x[..., :k1-k0]
|
1079 |
+
if x.ndim > 1:
|
1080 |
+
x = np.moveaxis(x, -1, f_axis if f_axis < x.ndim else t_axis)
|
1081 |
+
return x
|
1082 |
+
|
1083 |
+
@property
|
1084 |
+
def fac_magnitude(self) -> float:
|
1085 |
+
"""Factor to multiply the STFT values by to scale each frequency slice
|
1086 |
+
to a magnitude spectrum.
|
1087 |
+
|
1088 |
+
It is 1 if attribute ``scaling == 'magnitude'``.
|
1089 |
+
The window can be scaled to a magnitude spectrum by using the method
|
1090 |
+
`scale_to`.
|
1091 |
+
|
1092 |
+
See Also
|
1093 |
+
--------
|
1094 |
+
fac_psd: Scaling factor for to a power spectral density spectrum.
|
1095 |
+
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
|
1096 |
+
scaling: Normalization applied to the window function.
|
1097 |
+
ShortTimeFFT: Class this property belongs to.
|
1098 |
+
"""
|
1099 |
+
if self.scaling == 'magnitude':
|
1100 |
+
return 1
|
1101 |
+
if self._fac_mag is None:
|
1102 |
+
self._fac_mag = 1 / abs(sum(self.win))
|
1103 |
+
return self._fac_mag
|
1104 |
+
|
1105 |
+
@property
|
1106 |
+
def fac_psd(self) -> float:
|
1107 |
+
"""Factor to multiply the STFT values by to scale each frequency slice
|
1108 |
+
to a power spectral density (PSD).
|
1109 |
+
|
1110 |
+
It is 1 if attribute ``scaling == 'psd'``.
|
1111 |
+
The window can be scaled to a psd spectrum by using the method
|
1112 |
+
`scale_to`.
|
1113 |
+
|
1114 |
+
See Also
|
1115 |
+
--------
|
1116 |
+
fac_magnitude: Scaling factor for to a magnitude spectrum.
|
1117 |
+
scale_to: Scale window to obtain 'magnitude' or 'psd' scaling.
|
1118 |
+
scaling: Normalization applied to the window function.
|
1119 |
+
ShortTimeFFT: Class this property belongs to.
|
1120 |
+
"""
|
1121 |
+
if self.scaling == 'psd':
|
1122 |
+
return 1
|
1123 |
+
if self._fac_psd is None:
|
1124 |
+
self._fac_psd = 1 / np.sqrt(
|
1125 |
+
sum(self.win.real**2+self.win.imag**2) / self.T)
|
1126 |
+
return self._fac_psd
|
1127 |
+
|
1128 |
+
@property
|
1129 |
+
def m_num(self) -> int:
|
1130 |
+
"""Number of samples in window `win`.
|
1131 |
+
|
1132 |
+
Note that the FFT can be oversampled by zero-padding. This is achieved
|
1133 |
+
by setting the `mfft` property.
|
1134 |
+
|
1135 |
+
See Also
|
1136 |
+
--------
|
1137 |
+
m_num_mid: Center index of window `win`.
|
1138 |
+
mfft: Length of input for the FFT used - may be larger than `m_num`.
|
1139 |
+
hop: Time increment in signal samples for sliding window.
|
1140 |
+
win: Window function as real- or complex-valued 1d array.
|
1141 |
+
ShortTimeFFT: Class this property belongs to.
|
1142 |
+
"""
|
1143 |
+
return len(self.win)
|
1144 |
+
|
1145 |
+
@property
|
1146 |
+
def m_num_mid(self) -> int:
|
1147 |
+
"""Center index of window `win`.
|
1148 |
+
|
1149 |
+
For odd `m_num`, ``(m_num - 1) / 2`` is returned and
|
1150 |
+
for even `m_num` (per definition) ``m_num / 2`` is returned.
|
1151 |
+
|
1152 |
+
See Also
|
1153 |
+
--------
|
1154 |
+
m_num: Number of samples in window `win`.
|
1155 |
+
mfft: Length of input for the FFT used - may be larger than `m_num`.
|
1156 |
+
hop: ime increment in signal samples for sliding window.
|
1157 |
+
win: Window function as real- or complex-valued 1d array.
|
1158 |
+
ShortTimeFFT: Class this property belongs to.
|
1159 |
+
"""
|
1160 |
+
return self.m_num // 2
|
1161 |
+
|
1162 |
+
@cache
|
1163 |
+
def _pre_padding(self) -> tuple[int, int]:
|
1164 |
+
"""Smallest signal index and slice index due to padding.
|
1165 |
+
|
1166 |
+
Since, per convention, for time t=0, n,q is zero, the returned values
|
1167 |
+
are negative or zero.
|
1168 |
+
"""
|
1169 |
+
w2 = self.win.real**2 + self.win.imag**2
|
1170 |
+
# move window to the left until the overlap with t >= 0 vanishes:
|
1171 |
+
n0 = -self.m_num_mid
|
1172 |
+
for q_, n_ in enumerate(range(n0, n0-self.m_num-1, -self.hop)):
|
1173 |
+
n_next = n_ - self.hop
|
1174 |
+
if n_next + self.m_num <= 0 or all(w2[n_next:] == 0):
|
1175 |
+
return n_, -q_
|
1176 |
+
raise RuntimeError("This is code line should not have been reached!")
|
1177 |
+
# If this case is reached, it probably means the first slice should be
|
1178 |
+
# returned, i.e.: return n0, 0
|
1179 |
+
|
1180 |
+
@property
|
1181 |
+
def k_min(self) -> int:
|
1182 |
+
"""The smallest possible signal index of the STFT.
|
1183 |
+
|
1184 |
+
`k_min` is the index of the left-most non-zero value of the lowest
|
1185 |
+
slice `p_min`. Since the zeroth slice is centered over the zeroth
|
1186 |
+
sample of the input signal, `k_min` is never positive.
|
1187 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1188 |
+
section of the :ref:`user_guide`.
|
1189 |
+
|
1190 |
+
See Also
|
1191 |
+
--------
|
1192 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1193 |
+
lower_border_end: Where pre-padding effects end.
|
1194 |
+
p_min: The smallest possible slice index.
|
1195 |
+
p_max: Index of first non-overlapping upper time slice.
|
1196 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1197 |
+
p_range: Determine and validate slice index range.
|
1198 |
+
upper_border_begin: Where post-padding effects start.
|
1199 |
+
ShortTimeFFT: Class this property belongs to.
|
1200 |
+
"""
|
1201 |
+
return self._pre_padding()[0]
|
1202 |
+
|
1203 |
+
@property
|
1204 |
+
def p_min(self) -> int:
|
1205 |
+
"""The smallest possible slice index.
|
1206 |
+
|
1207 |
+
`p_min` is the index of the left-most slice, where the window still
|
1208 |
+
sticks into the signal, i.e., has non-zero part for t >= 0.
|
1209 |
+
`k_min` is the smallest index where the window function of the slice
|
1210 |
+
`p_min` is non-zero.
|
1211 |
+
|
1212 |
+
Since, per convention the zeroth slice is centered at t=0,
|
1213 |
+
`p_min` <= 0 always holds.
|
1214 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1215 |
+
section of the :ref:`user_guide`.
|
1216 |
+
|
1217 |
+
See Also
|
1218 |
+
--------
|
1219 |
+
k_min: The smallest possible signal index.
|
1220 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1221 |
+
p_max: Index of first non-overlapping upper time slice.
|
1222 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1223 |
+
p_range: Determine and validate slice index range.
|
1224 |
+
ShortTimeFFT: Class this property belongs to.
|
1225 |
+
"""
|
1226 |
+
return self._pre_padding()[1]
|
1227 |
+
|
1228 |
+
@lru_cache(maxsize=256)
|
1229 |
+
def _post_padding(self, n: int) -> tuple[int, int]:
|
1230 |
+
"""Largest signal index and slice index due to padding."""
|
1231 |
+
w2 = self.win.real**2 + self.win.imag**2
|
1232 |
+
# move window to the right until the overlap for t < t[n] vanishes:
|
1233 |
+
q1 = n // self.hop # last slice index with t[p1] <= t[n]
|
1234 |
+
k1 = q1 * self.hop - self.m_num_mid
|
1235 |
+
for q_, k_ in enumerate(range(k1, n+self.m_num, self.hop), start=q1):
|
1236 |
+
n_next = k_ + self.hop
|
1237 |
+
if n_next >= n or all(w2[:n-n_next] == 0):
|
1238 |
+
return k_ + self.m_num, q_ + 1
|
1239 |
+
raise RuntimeError("This is code line should not have been reached!")
|
1240 |
+
# If this case is reached, it probably means the last slice should be
|
1241 |
+
# returned, i.e.: return k1 + self.m_num - self.m_num_mid, q1 + 1
|
1242 |
+
|
1243 |
+
def k_max(self, n: int) -> int:
|
1244 |
+
"""First sample index after signal end not touched by a time slice.
|
1245 |
+
|
1246 |
+
`k_max` - 1 is the largest sample index of the slice `p_max` for a
|
1247 |
+
given input signal of `n` samples.
|
1248 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1249 |
+
section of the :ref:`user_guide`.
|
1250 |
+
|
1251 |
+
See Also
|
1252 |
+
--------
|
1253 |
+
k_min: The smallest possible signal index.
|
1254 |
+
p_min: The smallest possible slice index.
|
1255 |
+
p_max: Index of first non-overlapping upper time slice.
|
1256 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1257 |
+
p_range: Determine and validate slice index range.
|
1258 |
+
ShortTimeFFT: Class this method belongs to.
|
1259 |
+
"""
|
1260 |
+
return self._post_padding(n)[0]
|
1261 |
+
|
1262 |
+
def p_max(self, n: int) -> int:
|
1263 |
+
"""Index of first non-overlapping upper time slice for `n` sample
|
1264 |
+
input.
|
1265 |
+
|
1266 |
+
Note that center point t[p_max] = (p_max(n)-1) * `delta_t` is typically
|
1267 |
+
larger than last time index t[n-1] == (`n`-1) * `T`. The upper border
|
1268 |
+
of samples indexes covered by the window slices is given by `k_max`.
|
1269 |
+
Furthermore, `p_max` does not denote the number of slices `p_num` since
|
1270 |
+
`p_min` is typically less than zero.
|
1271 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1272 |
+
section of the :ref:`user_guide`.
|
1273 |
+
|
1274 |
+
See Also
|
1275 |
+
--------
|
1276 |
+
k_min: The smallest possible signal index.
|
1277 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1278 |
+
p_min: The smallest possible slice index.
|
1279 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1280 |
+
p_range: Determine and validate slice index range.
|
1281 |
+
ShortTimeFFT: Class this method belongs to.
|
1282 |
+
"""
|
1283 |
+
return self._post_padding(n)[1]
|
1284 |
+
|
1285 |
+
def p_num(self, n: int) -> int:
|
1286 |
+
"""Number of time slices for an input signal with `n` samples.
|
1287 |
+
|
1288 |
+
It is given by `p_num` = `p_max` - `p_min` with `p_min` typically
|
1289 |
+
being negative.
|
1290 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1291 |
+
section of the :ref:`user_guide`.
|
1292 |
+
|
1293 |
+
See Also
|
1294 |
+
--------
|
1295 |
+
k_min: The smallest possible signal index.
|
1296 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1297 |
+
lower_border_end: Where pre-padding effects end.
|
1298 |
+
p_min: The smallest possible slice index.
|
1299 |
+
p_max: Index of first non-overlapping upper time slice.
|
1300 |
+
p_range: Determine and validate slice index range.
|
1301 |
+
upper_border_begin: Where post-padding effects start.
|
1302 |
+
ShortTimeFFT: Class this method belongs to.
|
1303 |
+
"""
|
1304 |
+
return self.p_max(n) - self.p_min
|
1305 |
+
|
1306 |
+
@property
|
1307 |
+
def lower_border_end(self) -> tuple[int, int]:
|
1308 |
+
"""First signal index and first slice index unaffected by pre-padding.
|
1309 |
+
|
1310 |
+
Describes the point where the window does not stick out to the left
|
1311 |
+
of the signal domain.
|
1312 |
+
A detailed example is provided in the :ref:`tutorial_stft_sliding_win`
|
1313 |
+
section of the :ref:`user_guide`.
|
1314 |
+
|
1315 |
+
See Also
|
1316 |
+
--------
|
1317 |
+
k_min: The smallest possible signal index.
|
1318 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1319 |
+
lower_border_end: Where pre-padding effects end.
|
1320 |
+
p_min: The smallest possible slice index.
|
1321 |
+
p_max: Index of first non-overlapping upper time slice.
|
1322 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1323 |
+
p_range: Determine and validate slice index range.
|
1324 |
+
upper_border_begin: Where post-padding effects start.
|
1325 |
+
ShortTimeFFT: Class this property belongs to.
|
1326 |
+
"""
|
1327 |
+
# not using @cache decorator due to MyPy limitations
|
1328 |
+
if self._lower_border_end is not None:
|
1329 |
+
return self._lower_border_end
|
1330 |
+
|
1331 |
+
# first non-zero element in self.win:
|
1332 |
+
m0 = np.flatnonzero(self.win.real**2 + self.win.imag**2)[0]
|
1333 |
+
|
1334 |
+
# move window to the right until does not stick out to the left:
|
1335 |
+
k0 = -self.m_num_mid + m0
|
1336 |
+
for q_, k_ in enumerate(range(k0, self.hop + 1, self.hop)):
|
1337 |
+
if k_ + self.hop >= 0: # next entry does not stick out anymore
|
1338 |
+
self._lower_border_end = (k_ + self.m_num, q_ + 1)
|
1339 |
+
return self._lower_border_end
|
1340 |
+
self._lower_border_end = (0, max(self.p_min, 0)) # ends at first slice
|
1341 |
+
return self._lower_border_end
|
1342 |
+
|
1343 |
+
@lru_cache(maxsize=256)
|
1344 |
+
def upper_border_begin(self, n: int) -> tuple[int, int]:
|
1345 |
+
"""First signal index and first slice index affected by post-padding.
|
1346 |
+
|
1347 |
+
Describes the point where the window does begin stick out to the right
|
1348 |
+
of the signal domain.
|
1349 |
+
A detailed example is given :ref:`tutorial_stft_sliding_win` section
|
1350 |
+
of the :ref:`user_guide`.
|
1351 |
+
|
1352 |
+
See Also
|
1353 |
+
--------
|
1354 |
+
k_min: The smallest possible signal index.
|
1355 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1356 |
+
lower_border_end: Where pre-padding effects end.
|
1357 |
+
p_min: The smallest possible slice index.
|
1358 |
+
p_max: Index of first non-overlapping upper time slice.
|
1359 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1360 |
+
p_range: Determine and validate slice index range.
|
1361 |
+
ShortTimeFFT: Class this method belongs to.
|
1362 |
+
"""
|
1363 |
+
w2 = self.win.real**2 + self.win.imag**2
|
1364 |
+
q2 = n // self.hop + 1 # first t[q] >= t[n]
|
1365 |
+
q1 = max((n-self.m_num) // self.hop - 1, -1)
|
1366 |
+
# move window left until does not stick out to the right:
|
1367 |
+
for q_ in range(q2, q1, -1):
|
1368 |
+
k_ = q_ * self.hop + (self.m_num - self.m_num_mid)
|
1369 |
+
if k_ < n or all(w2[n-k_:] == 0):
|
1370 |
+
return (q_ + 1) * self.hop - self.m_num_mid, q_ + 1
|
1371 |
+
return 0, 0 # border starts at first slice
|
1372 |
+
|
1373 |
+
@property
|
1374 |
+
def delta_t(self) -> float:
|
1375 |
+
"""Time increment of STFT.
|
1376 |
+
|
1377 |
+
The time increment `delta_t` = `T` * `hop` represents the sample
|
1378 |
+
increment `hop` converted to time based on the sampling interval `T`.
|
1379 |
+
|
1380 |
+
See Also
|
1381 |
+
--------
|
1382 |
+
delta_f: Width of the frequency bins of the STFT.
|
1383 |
+
hop: Hop size in signal samples for sliding window.
|
1384 |
+
t: Times of STFT for an input signal with `n` samples.
|
1385 |
+
T: Sampling interval of input signal and window `win`.
|
1386 |
+
ShortTimeFFT: Class this property belongs to
|
1387 |
+
"""
|
1388 |
+
return self.T * self.hop
|
1389 |
+
|
1390 |
+
def p_range(self, n: int, p0: int | None = None,
|
1391 |
+
p1: int | None = None) -> tuple[int, int]:
|
1392 |
+
"""Determine and validate slice index range.
|
1393 |
+
|
1394 |
+
Parameters
|
1395 |
+
----------
|
1396 |
+
n : int
|
1397 |
+
Number of samples of input signal, assuming t[0] = 0.
|
1398 |
+
p0 : int | None
|
1399 |
+
First slice index. If 0 then the first slice is centered at t = 0.
|
1400 |
+
If ``None`` then `p_min` is used. Note that p0 may be < 0 if
|
1401 |
+
slices are left of t = 0.
|
1402 |
+
p1 : int | None
|
1403 |
+
End of interval (last value is p1-1).
|
1404 |
+
If ``None`` then `p_max(n)` is used.
|
1405 |
+
|
1406 |
+
|
1407 |
+
Returns
|
1408 |
+
-------
|
1409 |
+
p0_ : int
|
1410 |
+
The fist slice index
|
1411 |
+
p1_ : int
|
1412 |
+
End of interval (last value is p1-1).
|
1413 |
+
|
1414 |
+
Notes
|
1415 |
+
-----
|
1416 |
+
A ``ValueError`` is raised if ``p_min <= p0 < p1 <= p_max(n)`` does not
|
1417 |
+
hold.
|
1418 |
+
|
1419 |
+
See Also
|
1420 |
+
--------
|
1421 |
+
k_min: The smallest possible signal index.
|
1422 |
+
k_max: First sample index after signal end not touched by a time slice.
|
1423 |
+
lower_border_end: Where pre-padding effects end.
|
1424 |
+
p_min: The smallest possible slice index.
|
1425 |
+
p_max: Index of first non-overlapping upper time slice.
|
1426 |
+
p_num: Number of time slices, i.e., `p_max` - `p_min`.
|
1427 |
+
upper_border_begin: Where post-padding effects start.
|
1428 |
+
ShortTimeFFT: Class this property belongs to.
|
1429 |
+
"""
|
1430 |
+
p_max = self.p_max(n) # shorthand
|
1431 |
+
p0_ = self.p_min if p0 is None else p0
|
1432 |
+
p1_ = p_max if p1 is None else p1
|
1433 |
+
if not (self.p_min <= p0_ < p1_ <= p_max):
|
1434 |
+
raise ValueError(f"Invalid Parameter {p0=}, {p1=}, i.e., " +
|
1435 |
+
f"{self.p_min=} <= p0 < p1 <= {p_max=} " +
|
1436 |
+
f"does not hold for signal length {n=}!")
|
1437 |
+
return p0_, p1_
|
1438 |
+
|
1439 |
+
@lru_cache(maxsize=1)
|
1440 |
+
def t(self, n: int, p0: int | None = None, p1: int | None = None,
|
1441 |
+
k_offset: int = 0) -> np.ndarray:
|
1442 |
+
"""Times of STFT for an input signal with `n` samples.
|
1443 |
+
|
1444 |
+
Returns a 1d array with times of the `~ShortTimeFFT.stft` values with
|
1445 |
+
the same parametrization. Note that the slices are
|
1446 |
+
``delta_t = hop * T`` time units apart.
|
1447 |
+
|
1448 |
+
Parameters
|
1449 |
+
----------
|
1450 |
+
n
|
1451 |
+
Number of sample of the input signal.
|
1452 |
+
p0
|
1453 |
+
The first element of the range of slices to calculate. If ``None``
|
1454 |
+
then it is set to :attr:`p_min`, which is the smallest possible
|
1455 |
+
slice.
|
1456 |
+
p1
|
1457 |
+
The end of the array. If ``None`` then `p_max(n)` is used.
|
1458 |
+
k_offset
|
1459 |
+
Index of first sample (t = 0) in `x`.
|
1460 |
+
|
1461 |
+
|
1462 |
+
See Also
|
1463 |
+
--------
|
1464 |
+
delta_t: Time increment of STFT (``hop*T``)
|
1465 |
+
hop: Time increment in signal samples for sliding window.
|
1466 |
+
nearest_k_p: Nearest sample index k_p for which t[k_p] == t[p] holds.
|
1467 |
+
T: Sampling interval of input signal and of the window (``1/fs``).
|
1468 |
+
fs: Sampling frequency (being ``1/T``)
|
1469 |
+
ShortTimeFFT: Class this method belongs to.
|
1470 |
+
"""
|
1471 |
+
p0, p1 = self.p_range(n, p0, p1)
|
1472 |
+
return np.arange(p0, p1) * self.delta_t + k_offset * self.T
|
1473 |
+
|
1474 |
+
def nearest_k_p(self, k: int, left: bool = True) -> int:
|
1475 |
+
"""Return nearest sample index k_p for which t[k_p] == t[p] holds.
|
1476 |
+
|
1477 |
+
The nearest next smaller time sample p (where t[p] is the center
|
1478 |
+
position of the window of the p-th slice) is p_k = k // `hop`.
|
1479 |
+
If `hop` is a divisor of `k` than `k` is returned.
|
1480 |
+
If `left` is set than p_k * `hop` is returned else (p_k+1) * `hop`.
|
1481 |
+
|
1482 |
+
This method can be used to slice an input signal into chunks for
|
1483 |
+
calculating the STFT and iSTFT incrementally.
|
1484 |
+
|
1485 |
+
See Also
|
1486 |
+
--------
|
1487 |
+
delta_t: Time increment of STFT (``hop*T``)
|
1488 |
+
hop: Time increment in signal samples for sliding window.
|
1489 |
+
T: Sampling interval of input signal and of the window (``1/fs``).
|
1490 |
+
fs: Sampling frequency (being ``1/T``)
|
1491 |
+
t: Times of STFT for an input signal with `n` samples.
|
1492 |
+
ShortTimeFFT: Class this method belongs to.
|
1493 |
+
"""
|
1494 |
+
p_q, remainder = divmod(k, self.hop)
|
1495 |
+
if remainder == 0:
|
1496 |
+
return k
|
1497 |
+
return p_q * self.hop if left else (p_q + 1) * self.hop
|
1498 |
+
|
1499 |
+
@property
|
1500 |
+
def delta_f(self) -> float:
|
1501 |
+
"""Width of the frequency bins of the STFT.
|
1502 |
+
|
1503 |
+
Return the frequency interval `delta_f` = 1 / (`mfft` * `T`).
|
1504 |
+
|
1505 |
+
See Also
|
1506 |
+
--------
|
1507 |
+
delta_t: Time increment of STFT.
|
1508 |
+
f_pts: Number of points along the frequency axis.
|
1509 |
+
f: Frequencies values of the STFT.
|
1510 |
+
mfft: Length of the input for FFT used.
|
1511 |
+
T: Sampling interval.
|
1512 |
+
t: Times of STFT for an input signal with `n` samples.
|
1513 |
+
ShortTimeFFT: Class this property belongs to.
|
1514 |
+
"""
|
1515 |
+
return 1 / (self.mfft * self.T)
|
1516 |
+
|
1517 |
+
@property
|
1518 |
+
def f_pts(self) -> int:
|
1519 |
+
"""Number of points along the frequency axis.
|
1520 |
+
|
1521 |
+
See Also
|
1522 |
+
--------
|
1523 |
+
delta_f: Width of the frequency bins of the STFT.
|
1524 |
+
f: Frequencies values of the STFT.
|
1525 |
+
mfft: Length of the input for FFT used.
|
1526 |
+
ShortTimeFFT: Class this property belongs to.
|
1527 |
+
"""
|
1528 |
+
return self.mfft // 2 + 1 if self.onesided_fft else self.mfft
|
1529 |
+
|
1530 |
+
@property
|
1531 |
+
def onesided_fft(self) -> bool:
|
1532 |
+
"""Return True if a one-sided FFT is used.
|
1533 |
+
|
1534 |
+
Returns ``True`` if `fft_mode` is either 'onesided' or 'onesided2X'.
|
1535 |
+
|
1536 |
+
See Also
|
1537 |
+
--------
|
1538 |
+
fft_mode: Utilized FFT ('twosided', 'centered', 'onesided' or
|
1539 |
+
'onesided2X')
|
1540 |
+
ShortTimeFFT: Class this property belongs to.
|
1541 |
+
"""
|
1542 |
+
return self.fft_mode in {'onesided', 'onesided2X'}
|
1543 |
+
|
1544 |
+
@property
|
1545 |
+
def f(self) -> np.ndarray:
|
1546 |
+
"""Frequencies values of the STFT.
|
1547 |
+
|
1548 |
+
A 1d array of length `f_pts` with `delta_f` spaced entries is returned.
|
1549 |
+
|
1550 |
+
See Also
|
1551 |
+
--------
|
1552 |
+
delta_f: Width of the frequency bins of the STFT.
|
1553 |
+
f_pts: Number of points along the frequency axis.
|
1554 |
+
mfft: Length of the input for FFT used.
|
1555 |
+
ShortTimeFFT: Class this property belongs to.
|
1556 |
+
"""
|
1557 |
+
if self.fft_mode in {'onesided', 'onesided2X'}:
|
1558 |
+
return fft_lib.rfftfreq(self.mfft, self.T)
|
1559 |
+
elif self.fft_mode == 'twosided':
|
1560 |
+
return fft_lib.fftfreq(self.mfft, self.T)
|
1561 |
+
elif self.fft_mode == 'centered':
|
1562 |
+
return fft_lib.fftshift(fft_lib.fftfreq(self.mfft, self.T))
|
1563 |
+
# This should never happen but makes the Linters happy:
|
1564 |
+
fft_modes = get_args(FFT_MODE_TYPE)
|
1565 |
+
raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
|
1566 |
+
|
1567 |
+
def _fft_func(self, x: np.ndarray) -> np.ndarray:
|
1568 |
+
"""FFT based on the `fft_mode`, `mfft`, `scaling` and `phase_shift`
|
1569 |
+
attributes.
|
1570 |
+
|
1571 |
+
For multidimensional arrays the transformation is carried out on the
|
1572 |
+
last axis.
|
1573 |
+
"""
|
1574 |
+
if self.phase_shift is not None:
|
1575 |
+
if x.shape[-1] < self.mfft: # zero pad if needed
|
1576 |
+
z_shape = list(x.shape)
|
1577 |
+
z_shape[-1] = self.mfft - x.shape[-1]
|
1578 |
+
x = np.hstack((x, np.zeros(z_shape, dtype=x.dtype)))
|
1579 |
+
p_s = (self.phase_shift + self.m_num_mid) % self.m_num
|
1580 |
+
x = np.roll(x, -p_s, axis=-1)
|
1581 |
+
|
1582 |
+
if self.fft_mode == 'twosided':
|
1583 |
+
return fft_lib.fft(x, n=self.mfft, axis=-1)
|
1584 |
+
if self.fft_mode == 'centered':
|
1585 |
+
return fft_lib.fftshift(fft_lib.fft(x, self.mfft, axis=-1), axes=-1)
|
1586 |
+
if self.fft_mode == 'onesided':
|
1587 |
+
return fft_lib.rfft(x, n=self.mfft, axis=-1)
|
1588 |
+
if self.fft_mode == 'onesided2X':
|
1589 |
+
X = fft_lib.rfft(x, n=self.mfft, axis=-1)
|
1590 |
+
# Either squared magnitude (psd) or magnitude is doubled:
|
1591 |
+
fac = np.sqrt(2) if self.scaling == 'psd' else 2
|
1592 |
+
# For even input length, the last entry is unpaired:
|
1593 |
+
X[..., 1: -1 if self.mfft % 2 == 0 else None] *= fac
|
1594 |
+
return X
|
1595 |
+
# This should never happen but makes the Linter happy:
|
1596 |
+
fft_modes = get_args(FFT_MODE_TYPE)
|
1597 |
+
raise RuntimeError(f"{self.fft_mode=} not in {fft_modes}!")
|
1598 |
+
|
1599 |
+
def _ifft_func(self, X: np.ndarray) -> np.ndarray:
|
1600 |
+
"""Inverse to `_fft_func`.
|
1601 |
+
|
1602 |
+
Returned is an array of length `m_num`. If the FFT is `onesided`
|
1603 |
+
then a float array is returned else a complex array is returned.
|
1604 |
+
For multidimensional arrays the transformation is carried out on the
|
1605 |
+
last axis.
|
1606 |
+
"""
|
1607 |
+
if self.fft_mode == 'twosided':
|
1608 |
+
x = fft_lib.ifft(X, n=self.mfft, axis=-1)
|
1609 |
+
elif self.fft_mode == 'centered':
|
1610 |
+
x = fft_lib.ifft(fft_lib.ifftshift(X, axes=-1), n=self.mfft, axis=-1)
|
1611 |
+
elif self.fft_mode == 'onesided':
|
1612 |
+
x = fft_lib.irfft(X, n=self.mfft, axis=-1)
|
1613 |
+
elif self.fft_mode == 'onesided2X':
|
1614 |
+
Xc = X.copy() # we do not want to modify function parameters
|
1615 |
+
fac = np.sqrt(2) if self.scaling == 'psd' else 2
|
1616 |
+
# For even length X the last value is not paired with a negative
|
1617 |
+
# value on the two-sided FFT:
|
1618 |
+
q1 = -1 if self.mfft % 2 == 0 else None
|
1619 |
+
Xc[..., 1:q1] /= fac
|
1620 |
+
x = fft_lib.irfft(Xc, n=self.mfft, axis=-1)
|
1621 |
+
else: # This should never happen but makes the Linter happy:
|
1622 |
+
error_str = f"{self.fft_mode=} not in {get_args(FFT_MODE_TYPE)}!"
|
1623 |
+
raise RuntimeError(error_str)
|
1624 |
+
|
1625 |
+
if self.phase_shift is None:
|
1626 |
+
return x[:self.m_num]
|
1627 |
+
p_s = (self.phase_shift + self.m_num_mid) % self.m_num
|
1628 |
+
return np.roll(x, p_s, axis=-1)[:self.m_num]
|
1629 |
+
|
1630 |
+
def extent(self, n: int, axes_seq: Literal['tf', 'ft'] = 'tf',
|
1631 |
+
center_bins: bool = False) -> tuple[float, float, float, float]:
|
1632 |
+
"""Return minimum and maximum values time-frequency values.
|
1633 |
+
|
1634 |
+
A tuple with four floats ``(t0, t1, f0, f1)`` for 'tf' and
|
1635 |
+
``(f0, f1, t0, t1)`` for 'ft' is returned describing the corners
|
1636 |
+
of the time-frequency domain of the `~ShortTimeFFT.stft`.
|
1637 |
+
That tuple can be passed to `matplotlib.pyplot.imshow` as a parameter
|
1638 |
+
with the same name.
|
1639 |
+
|
1640 |
+
Parameters
|
1641 |
+
----------
|
1642 |
+
n : int
|
1643 |
+
Number of samples in input signal.
|
1644 |
+
axes_seq : {'tf', 'ft'}
|
1645 |
+
Return time extent first and then frequency extent or vice-versa.
|
1646 |
+
center_bins: bool
|
1647 |
+
If set (default ``False``), the values of the time slots and
|
1648 |
+
frequency bins are moved from the side the middle. This is useful,
|
1649 |
+
when plotting the `~ShortTimeFFT.stft` values as step functions,
|
1650 |
+
i.e., with no interpolation.
|
1651 |
+
|
1652 |
+
See Also
|
1653 |
+
--------
|
1654 |
+
:func:`matplotlib.pyplot.imshow`: Display data as an image.
|
1655 |
+
:class:`scipy.signal.ShortTimeFFT`: Class this method belongs to.
|
1656 |
+
"""
|
1657 |
+
if axes_seq not in ('tf', 'ft'):
|
1658 |
+
raise ValueError(f"Parameter {axes_seq=} not in ['tf', 'ft']!")
|
1659 |
+
|
1660 |
+
if self.onesided_fft:
|
1661 |
+
q0, q1 = 0, self.f_pts
|
1662 |
+
elif self.fft_mode == 'centered':
|
1663 |
+
q0 = -self.mfft // 2
|
1664 |
+
q1 = self.mfft // 2 - 1 if self.mfft % 2 == 0 else self.mfft // 2
|
1665 |
+
else:
|
1666 |
+
raise ValueError(f"Attribute fft_mode={self.fft_mode} must be " +
|
1667 |
+
"in ['centered', 'onesided', 'onesided2X']")
|
1668 |
+
|
1669 |
+
p0, p1 = self.p_min, self.p_max(n) # shorthand
|
1670 |
+
if center_bins:
|
1671 |
+
t0, t1 = self.delta_t * (p0 - 0.5), self.delta_t * (p1 - 0.5)
|
1672 |
+
f0, f1 = self.delta_f * (q0 - 0.5), self.delta_f * (q1 - 0.5)
|
1673 |
+
else:
|
1674 |
+
t0, t1 = self.delta_t * p0, self.delta_t * p1
|
1675 |
+
f0, f1 = self.delta_f * q0, self.delta_f * q1
|
1676 |
+
return (t0, t1, f0, f1) if axes_seq == 'tf' else (f0, f1, t0, t1)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_signaltools.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_sigtools.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (109 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_spline.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (85.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_upfirdn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code adapted from "upfirdn" python library with permission:
|
2 |
+
#
|
3 |
+
# Copyright (c) 2009, Motorola, Inc
|
4 |
+
#
|
5 |
+
# All Rights Reserved.
|
6 |
+
#
|
7 |
+
# Redistribution and use in source and binary forms, with or without
|
8 |
+
# modification, are permitted provided that the following conditions are
|
9 |
+
# met:
|
10 |
+
#
|
11 |
+
# * Redistributions of source code must retain the above copyright notice,
|
12 |
+
# this list of conditions and the following disclaimer.
|
13 |
+
#
|
14 |
+
# * Redistributions in binary form must reproduce the above copyright
|
15 |
+
# notice, this list of conditions and the following disclaimer in the
|
16 |
+
# documentation and/or other materials provided with the distribution.
|
17 |
+
#
|
18 |
+
# * Neither the name of Motorola nor the names of its contributors may be
|
19 |
+
# used to endorse or promote products derived from this software without
|
20 |
+
# specific prior written permission.
|
21 |
+
#
|
22 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
23 |
+
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
24 |
+
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
25 |
+
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
26 |
+
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
27 |
+
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
28 |
+
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
29 |
+
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
30 |
+
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
31 |
+
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
32 |
+
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
33 |
+
|
34 |
+
import numpy as np
|
35 |
+
|
36 |
+
from ._upfirdn_apply import _output_len, _apply, mode_enum
|
37 |
+
|
38 |
+
__all__ = ['upfirdn', '_output_len']
|
39 |
+
|
40 |
+
_upfirdn_modes = [
|
41 |
+
'constant', 'wrap', 'edge', 'smooth', 'symmetric', 'reflect',
|
42 |
+
'antisymmetric', 'antireflect', 'line',
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def _pad_h(h, up):
|
47 |
+
"""Store coefficients in a transposed, flipped arrangement.
|
48 |
+
|
49 |
+
For example, suppose upRate is 3, and the
|
50 |
+
input number of coefficients is 10, represented as h[0], ..., h[9].
|
51 |
+
|
52 |
+
Then the internal buffer will look like this::
|
53 |
+
|
54 |
+
h[9], h[6], h[3], h[0], // flipped phase 0 coefs
|
55 |
+
0, h[7], h[4], h[1], // flipped phase 1 coefs (zero-padded)
|
56 |
+
0, h[8], h[5], h[2], // flipped phase 2 coefs (zero-padded)
|
57 |
+
|
58 |
+
"""
|
59 |
+
h_padlen = len(h) + (-len(h) % up)
|
60 |
+
h_full = np.zeros(h_padlen, h.dtype)
|
61 |
+
h_full[:len(h)] = h
|
62 |
+
h_full = h_full.reshape(-1, up).T[:, ::-1].ravel()
|
63 |
+
return h_full
|
64 |
+
|
65 |
+
|
66 |
+
def _check_mode(mode):
|
67 |
+
mode = mode.lower()
|
68 |
+
enum = mode_enum(mode)
|
69 |
+
return enum
|
70 |
+
|
71 |
+
|
72 |
+
class _UpFIRDn:
|
73 |
+
"""Helper for resampling."""
|
74 |
+
|
75 |
+
def __init__(self, h, x_dtype, up, down):
|
76 |
+
h = np.asarray(h)
|
77 |
+
if h.ndim != 1 or h.size == 0:
|
78 |
+
raise ValueError('h must be 1-D with non-zero length')
|
79 |
+
self._output_type = np.result_type(h.dtype, x_dtype, np.float32)
|
80 |
+
h = np.asarray(h, self._output_type)
|
81 |
+
self._up = int(up)
|
82 |
+
self._down = int(down)
|
83 |
+
if self._up < 1 or self._down < 1:
|
84 |
+
raise ValueError('Both up and down must be >= 1')
|
85 |
+
# This both transposes, and "flips" each phase for filtering
|
86 |
+
self._h_trans_flip = _pad_h(h, self._up)
|
87 |
+
self._h_trans_flip = np.ascontiguousarray(self._h_trans_flip)
|
88 |
+
self._h_len_orig = len(h)
|
89 |
+
|
90 |
+
def apply_filter(self, x, axis=-1, mode='constant', cval=0):
|
91 |
+
"""Apply the prepared filter to the specified axis of N-D signal x."""
|
92 |
+
output_len = _output_len(self._h_len_orig, x.shape[axis],
|
93 |
+
self._up, self._down)
|
94 |
+
# Explicit use of np.int64 for output_shape dtype avoids OverflowError
|
95 |
+
# when allocating large array on platforms where intp is 32 bits.
|
96 |
+
output_shape = np.asarray(x.shape, dtype=np.int64)
|
97 |
+
output_shape[axis] = output_len
|
98 |
+
out = np.zeros(output_shape, dtype=self._output_type, order='C')
|
99 |
+
axis = axis % x.ndim
|
100 |
+
mode = _check_mode(mode)
|
101 |
+
_apply(np.asarray(x, self._output_type),
|
102 |
+
self._h_trans_flip, out,
|
103 |
+
self._up, self._down, axis, mode, cval)
|
104 |
+
return out
|
105 |
+
|
106 |
+
|
107 |
+
def upfirdn(h, x, up=1, down=1, axis=-1, mode='constant', cval=0):
|
108 |
+
"""Upsample, FIR filter, and downsample.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
h : array_like
|
113 |
+
1-D FIR (finite-impulse response) filter coefficients.
|
114 |
+
x : array_like
|
115 |
+
Input signal array.
|
116 |
+
up : int, optional
|
117 |
+
Upsampling rate. Default is 1.
|
118 |
+
down : int, optional
|
119 |
+
Downsampling rate. Default is 1.
|
120 |
+
axis : int, optional
|
121 |
+
The axis of the input data array along which to apply the
|
122 |
+
linear filter. The filter is applied to each subarray along
|
123 |
+
this axis. Default is -1.
|
124 |
+
mode : str, optional
|
125 |
+
The signal extension mode to use. The set
|
126 |
+
``{"constant", "symmetric", "reflect", "edge", "wrap"}`` correspond to
|
127 |
+
modes provided by `numpy.pad`. ``"smooth"`` implements a smooth
|
128 |
+
extension by extending based on the slope of the last 2 points at each
|
129 |
+
end of the array. ``"antireflect"`` and ``"antisymmetric"`` are
|
130 |
+
anti-symmetric versions of ``"reflect"`` and ``"symmetric"``. The mode
|
131 |
+
`"line"` extends the signal based on a linear trend defined by the
|
132 |
+
first and last points along the ``axis``.
|
133 |
+
|
134 |
+
.. versionadded:: 1.4.0
|
135 |
+
cval : float, optional
|
136 |
+
The constant value to use when ``mode == "constant"``.
|
137 |
+
|
138 |
+
.. versionadded:: 1.4.0
|
139 |
+
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
y : ndarray
|
143 |
+
The output signal array. Dimensions will be the same as `x` except
|
144 |
+
for along `axis`, which will change size according to the `h`,
|
145 |
+
`up`, and `down` parameters.
|
146 |
+
|
147 |
+
Notes
|
148 |
+
-----
|
149 |
+
The algorithm is an implementation of the block diagram shown on page 129
|
150 |
+
of the Vaidyanathan text [1]_ (Figure 4.3-8d).
|
151 |
+
|
152 |
+
The direct approach of upsampling by factor of P with zero insertion,
|
153 |
+
FIR filtering of length ``N``, and downsampling by factor of Q is
|
154 |
+
O(N*Q) per output sample. The polyphase implementation used here is
|
155 |
+
O(N/P).
|
156 |
+
|
157 |
+
.. versionadded:: 0.18
|
158 |
+
|
159 |
+
References
|
160 |
+
----------
|
161 |
+
.. [1] P. P. Vaidyanathan, Multirate Systems and Filter Banks,
|
162 |
+
Prentice Hall, 1993.
|
163 |
+
|
164 |
+
Examples
|
165 |
+
--------
|
166 |
+
Simple operations:
|
167 |
+
|
168 |
+
>>> import numpy as np
|
169 |
+
>>> from scipy.signal import upfirdn
|
170 |
+
>>> upfirdn([1, 1, 1], [1, 1, 1]) # FIR filter
|
171 |
+
array([ 1., 2., 3., 2., 1.])
|
172 |
+
>>> upfirdn([1], [1, 2, 3], 3) # upsampling with zeros insertion
|
173 |
+
array([ 1., 0., 0., 2., 0., 0., 3.])
|
174 |
+
>>> upfirdn([1, 1, 1], [1, 2, 3], 3) # upsampling with sample-and-hold
|
175 |
+
array([ 1., 1., 1., 2., 2., 2., 3., 3., 3.])
|
176 |
+
>>> upfirdn([.5, 1, .5], [1, 1, 1], 2) # linear interpolation
|
177 |
+
array([ 0.5, 1. , 1. , 1. , 1. , 1. , 0.5])
|
178 |
+
>>> upfirdn([1], np.arange(10), 1, 3) # decimation by 3
|
179 |
+
array([ 0., 3., 6., 9.])
|
180 |
+
>>> upfirdn([.5, 1, .5], np.arange(10), 2, 3) # linear interp, rate 2/3
|
181 |
+
array([ 0. , 1. , 2.5, 4. , 5.5, 7. , 8.5])
|
182 |
+
|
183 |
+
Apply a single filter to multiple signals:
|
184 |
+
|
185 |
+
>>> x = np.reshape(np.arange(8), (4, 2))
|
186 |
+
>>> x
|
187 |
+
array([[0, 1],
|
188 |
+
[2, 3],
|
189 |
+
[4, 5],
|
190 |
+
[6, 7]])
|
191 |
+
|
192 |
+
Apply along the last dimension of ``x``:
|
193 |
+
|
194 |
+
>>> h = [1, 1]
|
195 |
+
>>> upfirdn(h, x, 2)
|
196 |
+
array([[ 0., 0., 1., 1.],
|
197 |
+
[ 2., 2., 3., 3.],
|
198 |
+
[ 4., 4., 5., 5.],
|
199 |
+
[ 6., 6., 7., 7.]])
|
200 |
+
|
201 |
+
Apply along the 0th dimension of ``x``:
|
202 |
+
|
203 |
+
>>> upfirdn(h, x, 2, axis=0)
|
204 |
+
array([[ 0., 1.],
|
205 |
+
[ 0., 1.],
|
206 |
+
[ 2., 3.],
|
207 |
+
[ 2., 3.],
|
208 |
+
[ 4., 5.],
|
209 |
+
[ 4., 5.],
|
210 |
+
[ 6., 7.],
|
211 |
+
[ 6., 7.]])
|
212 |
+
"""
|
213 |
+
x = np.asarray(x)
|
214 |
+
ufd = _UpFIRDn(h, x.dtype, up, down)
|
215 |
+
# This is equivalent to (but faster than) using np.apply_along_axis
|
216 |
+
return ufd.apply_filter(x, axis, mode, cval)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_upfirdn_apply.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (395 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_waveforms.py
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Travis Oliphant
|
2 |
+
# 2003
|
3 |
+
#
|
4 |
+
# Feb. 2010: Updated by Warren Weckesser:
|
5 |
+
# Rewrote much of chirp()
|
6 |
+
# Added sweep_poly()
|
7 |
+
import numpy as np
|
8 |
+
from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \
|
9 |
+
exp, cos, sin, polyval, polyint
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly',
|
13 |
+
'unit_impulse']
|
14 |
+
|
15 |
+
|
16 |
+
def sawtooth(t, width=1):
|
17 |
+
"""
|
18 |
+
Return a periodic sawtooth or triangle waveform.
|
19 |
+
|
20 |
+
The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
|
21 |
+
interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
|
22 |
+
``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].
|
23 |
+
|
24 |
+
Note that this is not band-limited. It produces an infinite number
|
25 |
+
of harmonics, which are aliased back and forth across the frequency
|
26 |
+
spectrum.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
t : array_like
|
31 |
+
Time.
|
32 |
+
width : array_like, optional
|
33 |
+
Width of the rising ramp as a proportion of the total cycle.
|
34 |
+
Default is 1, producing a rising ramp, while 0 produces a falling
|
35 |
+
ramp. `width` = 0.5 produces a triangle wave.
|
36 |
+
If an array, causes wave shape to change over time, and must be the
|
37 |
+
same length as t.
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
y : ndarray
|
42 |
+
Output array containing the sawtooth waveform.
|
43 |
+
|
44 |
+
Examples
|
45 |
+
--------
|
46 |
+
A 5 Hz waveform sampled at 500 Hz for 1 second:
|
47 |
+
|
48 |
+
>>> import numpy as np
|
49 |
+
>>> from scipy import signal
|
50 |
+
>>> import matplotlib.pyplot as plt
|
51 |
+
>>> t = np.linspace(0, 1, 500)
|
52 |
+
>>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))
|
53 |
+
|
54 |
+
"""
|
55 |
+
t, w = asarray(t), asarray(width)
|
56 |
+
w = asarray(w + (t - t))
|
57 |
+
t = asarray(t + (w - w))
|
58 |
+
if t.dtype.char in ['fFdD']:
|
59 |
+
ytype = t.dtype.char
|
60 |
+
else:
|
61 |
+
ytype = 'd'
|
62 |
+
y = zeros(t.shape, ytype)
|
63 |
+
|
64 |
+
# width must be between 0 and 1 inclusive
|
65 |
+
mask1 = (w > 1) | (w < 0)
|
66 |
+
place(y, mask1, nan)
|
67 |
+
|
68 |
+
# take t modulo 2*pi
|
69 |
+
tmod = mod(t, 2 * pi)
|
70 |
+
|
71 |
+
# on the interval 0 to width*2*pi function is
|
72 |
+
# tmod / (pi*w) - 1
|
73 |
+
mask2 = (1 - mask1) & (tmod < w * 2 * pi)
|
74 |
+
tsub = extract(mask2, tmod)
|
75 |
+
wsub = extract(mask2, w)
|
76 |
+
place(y, mask2, tsub / (pi * wsub) - 1)
|
77 |
+
|
78 |
+
# on the interval width*2*pi to 2*pi function is
|
79 |
+
# (pi*(w+1)-tmod) / (pi*(1-w))
|
80 |
+
|
81 |
+
mask3 = (1 - mask1) & (1 - mask2)
|
82 |
+
tsub = extract(mask3, tmod)
|
83 |
+
wsub = extract(mask3, w)
|
84 |
+
place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub)))
|
85 |
+
return y
|
86 |
+
|
87 |
+
|
88 |
+
def square(t, duty=0.5):
|
89 |
+
"""
|
90 |
+
Return a periodic square-wave waveform.
|
91 |
+
|
92 |
+
The square wave has a period ``2*pi``, has value +1 from 0 to
|
93 |
+
``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
|
94 |
+
the interval [0,1].
|
95 |
+
|
96 |
+
Note that this is not band-limited. It produces an infinite number
|
97 |
+
of harmonics, which are aliased back and forth across the frequency
|
98 |
+
spectrum.
|
99 |
+
|
100 |
+
Parameters
|
101 |
+
----------
|
102 |
+
t : array_like
|
103 |
+
The input time array.
|
104 |
+
duty : array_like, optional
|
105 |
+
Duty cycle. Default is 0.5 (50% duty cycle).
|
106 |
+
If an array, causes wave shape to change over time, and must be the
|
107 |
+
same length as t.
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
y : ndarray
|
112 |
+
Output array containing the square waveform.
|
113 |
+
|
114 |
+
Examples
|
115 |
+
--------
|
116 |
+
A 5 Hz waveform sampled at 500 Hz for 1 second:
|
117 |
+
|
118 |
+
>>> import numpy as np
|
119 |
+
>>> from scipy import signal
|
120 |
+
>>> import matplotlib.pyplot as plt
|
121 |
+
>>> t = np.linspace(0, 1, 500, endpoint=False)
|
122 |
+
>>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
|
123 |
+
>>> plt.ylim(-2, 2)
|
124 |
+
|
125 |
+
A pulse-width modulated sine wave:
|
126 |
+
|
127 |
+
>>> plt.figure()
|
128 |
+
>>> sig = np.sin(2 * np.pi * t)
|
129 |
+
>>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
|
130 |
+
>>> plt.subplot(2, 1, 1)
|
131 |
+
>>> plt.plot(t, sig)
|
132 |
+
>>> plt.subplot(2, 1, 2)
|
133 |
+
>>> plt.plot(t, pwm)
|
134 |
+
>>> plt.ylim(-1.5, 1.5)
|
135 |
+
|
136 |
+
"""
|
137 |
+
t, w = asarray(t), asarray(duty)
|
138 |
+
w = asarray(w + (t - t))
|
139 |
+
t = asarray(t + (w - w))
|
140 |
+
if t.dtype.char in ['fFdD']:
|
141 |
+
ytype = t.dtype.char
|
142 |
+
else:
|
143 |
+
ytype = 'd'
|
144 |
+
|
145 |
+
y = zeros(t.shape, ytype)
|
146 |
+
|
147 |
+
# width must be between 0 and 1 inclusive
|
148 |
+
mask1 = (w > 1) | (w < 0)
|
149 |
+
place(y, mask1, nan)
|
150 |
+
|
151 |
+
# on the interval 0 to duty*2*pi function is 1
|
152 |
+
tmod = mod(t, 2 * pi)
|
153 |
+
mask2 = (1 - mask1) & (tmod < w * 2 * pi)
|
154 |
+
place(y, mask2, 1)
|
155 |
+
|
156 |
+
# on the interval duty*2*pi to 2*pi function is
|
157 |
+
# (pi*(w+1)-tmod) / (pi*(1-w))
|
158 |
+
mask3 = (1 - mask1) & (1 - mask2)
|
159 |
+
place(y, mask3, -1)
|
160 |
+
return y
|
161 |
+
|
162 |
+
|
163 |
+
def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,
|
164 |
+
retenv=False):
|
165 |
+
"""
|
166 |
+
Return a Gaussian modulated sinusoid:
|
167 |
+
|
168 |
+
``exp(-a t^2) exp(1j*2*pi*fc*t).``
|
169 |
+
|
170 |
+
If `retquad` is True, then return the real and imaginary parts
|
171 |
+
(in-phase and quadrature).
|
172 |
+
If `retenv` is True, then return the envelope (unmodulated signal).
|
173 |
+
Otherwise, return the real part of the modulated sinusoid.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
t : ndarray or the string 'cutoff'
|
178 |
+
Input array.
|
179 |
+
fc : float, optional
|
180 |
+
Center frequency (e.g. Hz). Default is 1000.
|
181 |
+
bw : float, optional
|
182 |
+
Fractional bandwidth in frequency domain of pulse (e.g. Hz).
|
183 |
+
Default is 0.5.
|
184 |
+
bwr : float, optional
|
185 |
+
Reference level at which fractional bandwidth is calculated (dB).
|
186 |
+
Default is -6.
|
187 |
+
tpr : float, optional
|
188 |
+
If `t` is 'cutoff', then the function returns the cutoff
|
189 |
+
time for when the pulse amplitude falls below `tpr` (in dB).
|
190 |
+
Default is -60.
|
191 |
+
retquad : bool, optional
|
192 |
+
If True, return the quadrature (imaginary) as well as the real part
|
193 |
+
of the signal. Default is False.
|
194 |
+
retenv : bool, optional
|
195 |
+
If True, return the envelope of the signal. Default is False.
|
196 |
+
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
yI : ndarray
|
200 |
+
Real part of signal. Always returned.
|
201 |
+
yQ : ndarray
|
202 |
+
Imaginary part of signal. Only returned if `retquad` is True.
|
203 |
+
yenv : ndarray
|
204 |
+
Envelope of signal. Only returned if `retenv` is True.
|
205 |
+
|
206 |
+
See Also
|
207 |
+
--------
|
208 |
+
scipy.signal.morlet
|
209 |
+
|
210 |
+
Examples
|
211 |
+
--------
|
212 |
+
Plot real component, imaginary component, and envelope for a 5 Hz pulse,
|
213 |
+
sampled at 100 Hz for 2 seconds:
|
214 |
+
|
215 |
+
>>> import numpy as np
|
216 |
+
>>> from scipy import signal
|
217 |
+
>>> import matplotlib.pyplot as plt
|
218 |
+
>>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
|
219 |
+
>>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
|
220 |
+
>>> plt.plot(t, i, t, q, t, e, '--')
|
221 |
+
|
222 |
+
"""
|
223 |
+
if fc < 0:
|
224 |
+
raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc)
|
225 |
+
if bw <= 0:
|
226 |
+
raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw)
|
227 |
+
if bwr >= 0:
|
228 |
+
raise ValueError("Reference level for bandwidth (bwr=%.2f) must "
|
229 |
+
"be < 0 dB" % bwr)
|
230 |
+
|
231 |
+
# exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f)
|
232 |
+
|
233 |
+
ref = pow(10.0, bwr / 20.0)
|
234 |
+
# fdel = fc*bw/2: g(fdel) = ref --- solve this for a
|
235 |
+
#
|
236 |
+
# pi^2/a * fc^2 * bw^2 /4=-log(ref)
|
237 |
+
a = -(pi * fc * bw) ** 2 / (4.0 * log(ref))
|
238 |
+
|
239 |
+
if isinstance(t, str):
|
240 |
+
if t == 'cutoff': # compute cut_off point
|
241 |
+
# Solve exp(-a tc**2) = tref for tc
|
242 |
+
# tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20)
|
243 |
+
if tpr >= 0:
|
244 |
+
raise ValueError("Reference level for time cutoff must "
|
245 |
+
"be < 0 dB")
|
246 |
+
tref = pow(10.0, tpr / 20.0)
|
247 |
+
return sqrt(-log(tref) / a)
|
248 |
+
else:
|
249 |
+
raise ValueError("If `t` is a string, it must be 'cutoff'")
|
250 |
+
|
251 |
+
yenv = exp(-a * t * t)
|
252 |
+
yI = yenv * cos(2 * pi * fc * t)
|
253 |
+
yQ = yenv * sin(2 * pi * fc * t)
|
254 |
+
if not retquad and not retenv:
|
255 |
+
return yI
|
256 |
+
if not retquad and retenv:
|
257 |
+
return yI, yenv
|
258 |
+
if retquad and not retenv:
|
259 |
+
return yI, yQ
|
260 |
+
if retquad and retenv:
|
261 |
+
return yI, yQ, yenv
|
262 |
+
|
263 |
+
|
264 |
+
def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True):
|
265 |
+
"""Frequency-swept cosine generator.
|
266 |
+
|
267 |
+
In the following, 'Hz' should be interpreted as 'cycles per unit';
|
268 |
+
there is no requirement here that the unit is one second. The
|
269 |
+
important distinction is that the units of rotation are cycles, not
|
270 |
+
radians. Likewise, `t` could be a measurement of space instead of time.
|
271 |
+
|
272 |
+
Parameters
|
273 |
+
----------
|
274 |
+
t : array_like
|
275 |
+
Times at which to evaluate the waveform.
|
276 |
+
f0 : float
|
277 |
+
Frequency (e.g. Hz) at time t=0.
|
278 |
+
t1 : float
|
279 |
+
Time at which `f1` is specified.
|
280 |
+
f1 : float
|
281 |
+
Frequency (e.g. Hz) of the waveform at time `t1`.
|
282 |
+
method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
|
283 |
+
Kind of frequency sweep. If not given, `linear` is assumed. See
|
284 |
+
Notes below for more details.
|
285 |
+
phi : float, optional
|
286 |
+
Phase offset, in degrees. Default is 0.
|
287 |
+
vertex_zero : bool, optional
|
288 |
+
This parameter is only used when `method` is 'quadratic'.
|
289 |
+
It determines whether the vertex of the parabola that is the graph
|
290 |
+
of the frequency is at t=0 or t=t1.
|
291 |
+
|
292 |
+
Returns
|
293 |
+
-------
|
294 |
+
y : ndarray
|
295 |
+
A numpy array containing the signal evaluated at `t` with the
|
296 |
+
requested time-varying frequency. More precisely, the function
|
297 |
+
returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral
|
298 |
+
(from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below.
|
299 |
+
|
300 |
+
See Also
|
301 |
+
--------
|
302 |
+
sweep_poly
|
303 |
+
|
304 |
+
Notes
|
305 |
+
-----
|
306 |
+
There are four options for the `method`. The following formulas give
|
307 |
+
the instantaneous frequency (in Hz) of the signal generated by
|
308 |
+
`chirp()`. For convenience, the shorter names shown below may also be
|
309 |
+
used.
|
310 |
+
|
311 |
+
linear, lin, li:
|
312 |
+
|
313 |
+
``f(t) = f0 + (f1 - f0) * t / t1``
|
314 |
+
|
315 |
+
quadratic, quad, q:
|
316 |
+
|
317 |
+
The graph of the frequency f(t) is a parabola through (0, f0) and
|
318 |
+
(t1, f1). By default, the vertex of the parabola is at (0, f0).
|
319 |
+
If `vertex_zero` is False, then the vertex is at (t1, f1). The
|
320 |
+
formula is:
|
321 |
+
|
322 |
+
if vertex_zero is True:
|
323 |
+
|
324 |
+
``f(t) = f0 + (f1 - f0) * t**2 / t1**2``
|
325 |
+
|
326 |
+
else:
|
327 |
+
|
328 |
+
``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2``
|
329 |
+
|
330 |
+
To use a more general quadratic function, or an arbitrary
|
331 |
+
polynomial, use the function `scipy.signal.sweep_poly`.
|
332 |
+
|
333 |
+
logarithmic, log, lo:
|
334 |
+
|
335 |
+
``f(t) = f0 * (f1/f0)**(t/t1)``
|
336 |
+
|
337 |
+
f0 and f1 must be nonzero and have the same sign.
|
338 |
+
|
339 |
+
This signal is also known as a geometric or exponential chirp.
|
340 |
+
|
341 |
+
hyperbolic, hyp:
|
342 |
+
|
343 |
+
``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)``
|
344 |
+
|
345 |
+
f0 and f1 must be nonzero.
|
346 |
+
|
347 |
+
Examples
|
348 |
+
--------
|
349 |
+
The following will be used in the examples:
|
350 |
+
|
351 |
+
>>> import numpy as np
|
352 |
+
>>> from scipy.signal import chirp, spectrogram
|
353 |
+
>>> import matplotlib.pyplot as plt
|
354 |
+
|
355 |
+
For the first example, we'll plot the waveform for a linear chirp
|
356 |
+
from 6 Hz to 1 Hz over 10 seconds:
|
357 |
+
|
358 |
+
>>> t = np.linspace(0, 10, 1500)
|
359 |
+
>>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
|
360 |
+
>>> plt.plot(t, w)
|
361 |
+
>>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
|
362 |
+
>>> plt.xlabel('t (sec)')
|
363 |
+
>>> plt.show()
|
364 |
+
|
365 |
+
For the remaining examples, we'll use higher frequency ranges,
|
366 |
+
and demonstrate the result using `scipy.signal.spectrogram`.
|
367 |
+
We'll use a 4 second interval sampled at 7200 Hz.
|
368 |
+
|
369 |
+
>>> fs = 7200
|
370 |
+
>>> T = 4
|
371 |
+
>>> t = np.arange(0, int(T*fs)) / fs
|
372 |
+
|
373 |
+
We'll use this function to plot the spectrogram in each example.
|
374 |
+
|
375 |
+
>>> def plot_spectrogram(title, w, fs):
|
376 |
+
... ff, tt, Sxx = spectrogram(w, fs=fs, nperseg=256, nfft=576)
|
377 |
+
... fig, ax = plt.subplots()
|
378 |
+
... ax.pcolormesh(tt, ff[:145], Sxx[:145], cmap='gray_r',
|
379 |
+
... shading='gouraud')
|
380 |
+
... ax.set_title(title)
|
381 |
+
... ax.set_xlabel('t (sec)')
|
382 |
+
... ax.set_ylabel('Frequency (Hz)')
|
383 |
+
... ax.grid(True)
|
384 |
+
...
|
385 |
+
|
386 |
+
Quadratic chirp from 1500 Hz to 250 Hz
|
387 |
+
(vertex of the parabolic curve of the frequency is at t=0):
|
388 |
+
|
389 |
+
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic')
|
390 |
+
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250', w, fs)
|
391 |
+
>>> plt.show()
|
392 |
+
|
393 |
+
Quadratic chirp from 1500 Hz to 250 Hz
|
394 |
+
(vertex of the parabolic curve of the frequency is at t=T):
|
395 |
+
|
396 |
+
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='quadratic',
|
397 |
+
... vertex_zero=False)
|
398 |
+
>>> plot_spectrogram(f'Quadratic Chirp, f(0)=1500, f({T})=250\\n' +
|
399 |
+
... '(vertex_zero=False)', w, fs)
|
400 |
+
>>> plt.show()
|
401 |
+
|
402 |
+
Logarithmic chirp from 1500 Hz to 250 Hz:
|
403 |
+
|
404 |
+
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='logarithmic')
|
405 |
+
>>> plot_spectrogram(f'Logarithmic Chirp, f(0)=1500, f({T})=250', w, fs)
|
406 |
+
>>> plt.show()
|
407 |
+
|
408 |
+
Hyperbolic chirp from 1500 Hz to 250 Hz:
|
409 |
+
|
410 |
+
>>> w = chirp(t, f0=1500, f1=250, t1=T, method='hyperbolic')
|
411 |
+
>>> plot_spectrogram(f'Hyperbolic Chirp, f(0)=1500, f({T})=250', w, fs)
|
412 |
+
>>> plt.show()
|
413 |
+
|
414 |
+
"""
|
415 |
+
# 'phase' is computed in _chirp_phase, to make testing easier.
|
416 |
+
phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero)
|
417 |
+
# Convert phi to radians.
|
418 |
+
phi *= pi / 180
|
419 |
+
return cos(phase + phi)
|
420 |
+
|
421 |
+
|
422 |
+
def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True):
|
423 |
+
"""
|
424 |
+
Calculate the phase used by `chirp` to generate its output.
|
425 |
+
|
426 |
+
See `chirp` for a description of the arguments.
|
427 |
+
|
428 |
+
"""
|
429 |
+
t = asarray(t)
|
430 |
+
f0 = float(f0)
|
431 |
+
t1 = float(t1)
|
432 |
+
f1 = float(f1)
|
433 |
+
if method in ['linear', 'lin', 'li']:
|
434 |
+
beta = (f1 - f0) / t1
|
435 |
+
phase = 2 * pi * (f0 * t + 0.5 * beta * t * t)
|
436 |
+
|
437 |
+
elif method in ['quadratic', 'quad', 'q']:
|
438 |
+
beta = (f1 - f0) / (t1 ** 2)
|
439 |
+
if vertex_zero:
|
440 |
+
phase = 2 * pi * (f0 * t + beta * t ** 3 / 3)
|
441 |
+
else:
|
442 |
+
phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3)
|
443 |
+
|
444 |
+
elif method in ['logarithmic', 'log', 'lo']:
|
445 |
+
if f0 * f1 <= 0.0:
|
446 |
+
raise ValueError("For a logarithmic chirp, f0 and f1 must be "
|
447 |
+
"nonzero and have the same sign.")
|
448 |
+
if f0 == f1:
|
449 |
+
phase = 2 * pi * f0 * t
|
450 |
+
else:
|
451 |
+
beta = t1 / log(f1 / f0)
|
452 |
+
phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0)
|
453 |
+
|
454 |
+
elif method in ['hyperbolic', 'hyp']:
|
455 |
+
if f0 == 0 or f1 == 0:
|
456 |
+
raise ValueError("For a hyperbolic chirp, f0 and f1 must be "
|
457 |
+
"nonzero.")
|
458 |
+
if f0 == f1:
|
459 |
+
# Degenerate case: constant frequency.
|
460 |
+
phase = 2 * pi * f0 * t
|
461 |
+
else:
|
462 |
+
# Singular point: the instantaneous frequency blows up
|
463 |
+
# when t == sing.
|
464 |
+
sing = -f1 * t1 / (f0 - f1)
|
465 |
+
phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing))
|
466 |
+
|
467 |
+
else:
|
468 |
+
raise ValueError("method must be 'linear', 'quadratic', 'logarithmic',"
|
469 |
+
" or 'hyperbolic', but a value of %r was given."
|
470 |
+
% method)
|
471 |
+
|
472 |
+
return phase
|
473 |
+
|
474 |
+
|
475 |
+
def sweep_poly(t, poly, phi=0):
|
476 |
+
"""
|
477 |
+
Frequency-swept cosine generator, with a time-dependent frequency.
|
478 |
+
|
479 |
+
This function generates a sinusoidal function whose instantaneous
|
480 |
+
frequency varies with time. The frequency at time `t` is given by
|
481 |
+
the polynomial `poly`.
|
482 |
+
|
483 |
+
Parameters
|
484 |
+
----------
|
485 |
+
t : ndarray
|
486 |
+
Times at which to evaluate the waveform.
|
487 |
+
poly : 1-D array_like or instance of numpy.poly1d
|
488 |
+
The desired frequency expressed as a polynomial. If `poly` is
|
489 |
+
a list or ndarray of length n, then the elements of `poly` are
|
490 |
+
the coefficients of the polynomial, and the instantaneous
|
491 |
+
frequency is
|
492 |
+
|
493 |
+
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
|
494 |
+
|
495 |
+
If `poly` is an instance of numpy.poly1d, then the
|
496 |
+
instantaneous frequency is
|
497 |
+
|
498 |
+
``f(t) = poly(t)``
|
499 |
+
|
500 |
+
phi : float, optional
|
501 |
+
Phase offset, in degrees, Default: 0.
|
502 |
+
|
503 |
+
Returns
|
504 |
+
-------
|
505 |
+
sweep_poly : ndarray
|
506 |
+
A numpy array containing the signal evaluated at `t` with the
|
507 |
+
requested time-varying frequency. More precisely, the function
|
508 |
+
returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
|
509 |
+
(from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.
|
510 |
+
|
511 |
+
See Also
|
512 |
+
--------
|
513 |
+
chirp
|
514 |
+
|
515 |
+
Notes
|
516 |
+
-----
|
517 |
+
.. versionadded:: 0.8.0
|
518 |
+
|
519 |
+
If `poly` is a list or ndarray of length `n`, then the elements of
|
520 |
+
`poly` are the coefficients of the polynomial, and the instantaneous
|
521 |
+
frequency is:
|
522 |
+
|
523 |
+
``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``
|
524 |
+
|
525 |
+
If `poly` is an instance of `numpy.poly1d`, then the instantaneous
|
526 |
+
frequency is:
|
527 |
+
|
528 |
+
``f(t) = poly(t)``
|
529 |
+
|
530 |
+
Finally, the output `s` is:
|
531 |
+
|
532 |
+
``cos(phase + (pi/180)*phi)``
|
533 |
+
|
534 |
+
where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
|
535 |
+
``f(t)`` as defined above.
|
536 |
+
|
537 |
+
Examples
|
538 |
+
--------
|
539 |
+
Compute the waveform with instantaneous frequency::
|
540 |
+
|
541 |
+
f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2
|
542 |
+
|
543 |
+
over the interval 0 <= t <= 10.
|
544 |
+
|
545 |
+
>>> import numpy as np
|
546 |
+
>>> from scipy.signal import sweep_poly
|
547 |
+
>>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
|
548 |
+
>>> t = np.linspace(0, 10, 5001)
|
549 |
+
>>> w = sweep_poly(t, p)
|
550 |
+
|
551 |
+
Plot it:
|
552 |
+
|
553 |
+
>>> import matplotlib.pyplot as plt
|
554 |
+
>>> plt.subplot(2, 1, 1)
|
555 |
+
>>> plt.plot(t, w)
|
556 |
+
>>> plt.title("Sweep Poly\\nwith frequency " +
|
557 |
+
... "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
|
558 |
+
>>> plt.subplot(2, 1, 2)
|
559 |
+
>>> plt.plot(t, p(t), 'r', label='f(t)')
|
560 |
+
>>> plt.legend()
|
561 |
+
>>> plt.xlabel('t')
|
562 |
+
>>> plt.tight_layout()
|
563 |
+
>>> plt.show()
|
564 |
+
|
565 |
+
"""
|
566 |
+
# 'phase' is computed in _sweep_poly_phase, to make testing easier.
|
567 |
+
phase = _sweep_poly_phase(t, poly)
|
568 |
+
# Convert to radians.
|
569 |
+
phi *= pi / 180
|
570 |
+
return cos(phase + phi)
|
571 |
+
|
572 |
+
|
573 |
+
def _sweep_poly_phase(t, poly):
|
574 |
+
"""
|
575 |
+
Calculate the phase used by sweep_poly to generate its output.
|
576 |
+
|
577 |
+
See `sweep_poly` for a description of the arguments.
|
578 |
+
|
579 |
+
"""
|
580 |
+
# polyint handles lists, ndarrays and instances of poly1d automatically.
|
581 |
+
intpoly = polyint(poly)
|
582 |
+
phase = 2 * pi * polyval(intpoly, t)
|
583 |
+
return phase
|
584 |
+
|
585 |
+
|
586 |
+
def unit_impulse(shape, idx=None, dtype=float):
|
587 |
+
"""
|
588 |
+
Unit impulse signal (discrete delta function) or unit basis vector.
|
589 |
+
|
590 |
+
Parameters
|
591 |
+
----------
|
592 |
+
shape : int or tuple of int
|
593 |
+
Number of samples in the output (1-D), or a tuple that represents the
|
594 |
+
shape of the output (N-D).
|
595 |
+
idx : None or int or tuple of int or 'mid', optional
|
596 |
+
Index at which the value is 1. If None, defaults to the 0th element.
|
597 |
+
If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
|
598 |
+
all dimensions. If an int, the impulse will be at `idx` in all
|
599 |
+
dimensions.
|
600 |
+
dtype : data-type, optional
|
601 |
+
The desired data-type for the array, e.g., ``numpy.int8``. Default is
|
602 |
+
``numpy.float64``.
|
603 |
+
|
604 |
+
Returns
|
605 |
+
-------
|
606 |
+
y : ndarray
|
607 |
+
Output array containing an impulse signal.
|
608 |
+
|
609 |
+
Notes
|
610 |
+
-----
|
611 |
+
The 1D case is also known as the Kronecker delta.
|
612 |
+
|
613 |
+
.. versionadded:: 0.19.0
|
614 |
+
|
615 |
+
Examples
|
616 |
+
--------
|
617 |
+
An impulse at the 0th element (:math:`\\delta[n]`):
|
618 |
+
|
619 |
+
>>> from scipy import signal
|
620 |
+
>>> signal.unit_impulse(8)
|
621 |
+
array([ 1., 0., 0., 0., 0., 0., 0., 0.])
|
622 |
+
|
623 |
+
Impulse offset by 2 samples (:math:`\\delta[n-2]`):
|
624 |
+
|
625 |
+
>>> signal.unit_impulse(7, 2)
|
626 |
+
array([ 0., 0., 1., 0., 0., 0., 0.])
|
627 |
+
|
628 |
+
2-dimensional impulse, centered:
|
629 |
+
|
630 |
+
>>> signal.unit_impulse((3, 3), 'mid')
|
631 |
+
array([[ 0., 0., 0.],
|
632 |
+
[ 0., 1., 0.],
|
633 |
+
[ 0., 0., 0.]])
|
634 |
+
|
635 |
+
Impulse at (2, 2), using broadcasting:
|
636 |
+
|
637 |
+
>>> signal.unit_impulse((4, 4), 2)
|
638 |
+
array([[ 0., 0., 0., 0.],
|
639 |
+
[ 0., 0., 0., 0.],
|
640 |
+
[ 0., 0., 1., 0.],
|
641 |
+
[ 0., 0., 0., 0.]])
|
642 |
+
|
643 |
+
Plot the impulse response of a 4th-order Butterworth lowpass filter:
|
644 |
+
|
645 |
+
>>> imp = signal.unit_impulse(100, 'mid')
|
646 |
+
>>> b, a = signal.butter(4, 0.2)
|
647 |
+
>>> response = signal.lfilter(b, a, imp)
|
648 |
+
|
649 |
+
>>> import numpy as np
|
650 |
+
>>> import matplotlib.pyplot as plt
|
651 |
+
>>> plt.plot(np.arange(-50, 50), imp)
|
652 |
+
>>> plt.plot(np.arange(-50, 50), response)
|
653 |
+
>>> plt.margins(0.1, 0.1)
|
654 |
+
>>> plt.xlabel('Time [samples]')
|
655 |
+
>>> plt.ylabel('Amplitude')
|
656 |
+
>>> plt.grid(True)
|
657 |
+
>>> plt.show()
|
658 |
+
|
659 |
+
"""
|
660 |
+
out = zeros(shape, dtype)
|
661 |
+
|
662 |
+
shape = np.atleast_1d(shape)
|
663 |
+
|
664 |
+
if idx is None:
|
665 |
+
idx = (0,) * len(shape)
|
666 |
+
elif idx == 'mid':
|
667 |
+
idx = tuple(shape // 2)
|
668 |
+
elif not hasattr(idx, "__iter__"):
|
669 |
+
idx = (idx,) * len(shape)
|
670 |
+
|
671 |
+
out[idx] = 1
|
672 |
+
return out
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/_wavelets.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from scipy.linalg import eig
|
5 |
+
from scipy.special import comb
|
6 |
+
from scipy.signal import convolve
|
7 |
+
|
8 |
+
__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'morlet2', 'cwt']
|
9 |
+
|
10 |
+
|
11 |
+
_msg="""scipy.signal.%s is deprecated in SciPy 1.12 and will be removed
|
12 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
def daub(p):
|
17 |
+
"""
|
18 |
+
The coefficients for the FIR low-pass filter producing Daubechies wavelets.
|
19 |
+
|
20 |
+
.. deprecated:: 1.12.0
|
21 |
+
|
22 |
+
scipy.signal.daub is deprecated in SciPy 1.12 and will be removed
|
23 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
24 |
+
|
25 |
+
p>=1 gives the order of the zero at f=1/2.
|
26 |
+
There are 2p filter coefficients.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
p : int
|
31 |
+
Order of the zero at f=1/2, can have values from 1 to 34.
|
32 |
+
|
33 |
+
Returns
|
34 |
+
-------
|
35 |
+
daub : ndarray
|
36 |
+
Return
|
37 |
+
|
38 |
+
"""
|
39 |
+
warnings.warn(_msg % 'daub', DeprecationWarning, stacklevel=2)
|
40 |
+
|
41 |
+
sqrt = np.sqrt
|
42 |
+
if p < 1:
|
43 |
+
raise ValueError("p must be at least 1.")
|
44 |
+
if p == 1:
|
45 |
+
c = 1 / sqrt(2)
|
46 |
+
return np.array([c, c])
|
47 |
+
elif p == 2:
|
48 |
+
f = sqrt(2) / 8
|
49 |
+
c = sqrt(3)
|
50 |
+
return f * np.array([1 + c, 3 + c, 3 - c, 1 - c])
|
51 |
+
elif p == 3:
|
52 |
+
tmp = 12 * sqrt(10)
|
53 |
+
z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6
|
54 |
+
z1c = np.conj(z1)
|
55 |
+
f = sqrt(2) / 8
|
56 |
+
d0 = np.real((1 - z1) * (1 - z1c))
|
57 |
+
a0 = np.real(z1 * z1c)
|
58 |
+
a1 = 2 * np.real(z1)
|
59 |
+
return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1,
|
60 |
+
a0 - 3 * a1 + 3, 3 - a1, 1])
|
61 |
+
elif p < 35:
|
62 |
+
# construct polynomial and factor it
|
63 |
+
if p < 35:
|
64 |
+
P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1]
|
65 |
+
yj = np.roots(P)
|
66 |
+
else: # try different polynomial --- needs work
|
67 |
+
P = [comb(p - 1 + k, k, exact=1) / 4.0**k
|
68 |
+
for k in range(p)][::-1]
|
69 |
+
yj = np.roots(P) / 4
|
70 |
+
# for each root, compute two z roots, select the one with |z|>1
|
71 |
+
# Build up final polynomial
|
72 |
+
c = np.poly1d([1, 1])**p
|
73 |
+
q = np.poly1d([1])
|
74 |
+
for k in range(p - 1):
|
75 |
+
yval = yj[k]
|
76 |
+
part = 2 * sqrt(yval * (yval - 1))
|
77 |
+
const = 1 - 2 * yval
|
78 |
+
z1 = const + part
|
79 |
+
if (abs(z1)) < 1:
|
80 |
+
z1 = const - part
|
81 |
+
q = q * [1, -z1]
|
82 |
+
|
83 |
+
q = c * np.real(q)
|
84 |
+
# Normalize result
|
85 |
+
q = q / np.sum(q) * sqrt(2)
|
86 |
+
return q.c[::-1]
|
87 |
+
else:
|
88 |
+
raise ValueError("Polynomial factorization does not work "
|
89 |
+
"well for p too large.")
|
90 |
+
|
91 |
+
|
92 |
+
def qmf(hk):
|
93 |
+
"""
|
94 |
+
Return high-pass qmf filter from low-pass
|
95 |
+
|
96 |
+
.. deprecated:: 1.12.0
|
97 |
+
|
98 |
+
scipy.signal.qmf is deprecated in SciPy 1.12 and will be removed
|
99 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
----------
|
103 |
+
hk : array_like
|
104 |
+
Coefficients of high-pass filter.
|
105 |
+
|
106 |
+
Returns
|
107 |
+
-------
|
108 |
+
array_like
|
109 |
+
High-pass filter coefficients.
|
110 |
+
|
111 |
+
"""
|
112 |
+
warnings.warn(_msg % 'qmf', DeprecationWarning, stacklevel=2)
|
113 |
+
|
114 |
+
N = len(hk) - 1
|
115 |
+
asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)]
|
116 |
+
return hk[::-1] * np.array(asgn)
|
117 |
+
|
118 |
+
|
119 |
+
def cascade(hk, J=7):
|
120 |
+
"""
|
121 |
+
Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients.
|
122 |
+
|
123 |
+
.. deprecated:: 1.12.0
|
124 |
+
|
125 |
+
scipy.signal.cascade is deprecated in SciPy 1.12 and will be removed
|
126 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
hk : array_like
|
131 |
+
Coefficients of low-pass filter.
|
132 |
+
J : int, optional
|
133 |
+
Values will be computed at grid points ``K/2**J``. Default is 7.
|
134 |
+
|
135 |
+
Returns
|
136 |
+
-------
|
137 |
+
x : ndarray
|
138 |
+
The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where
|
139 |
+
``len(hk) = len(gk) = N+1``.
|
140 |
+
phi : ndarray
|
141 |
+
The scaling function ``phi(x)`` at `x`:
|
142 |
+
``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N.
|
143 |
+
psi : ndarray, optional
|
144 |
+
The wavelet function ``psi(x)`` at `x`:
|
145 |
+
``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N.
|
146 |
+
`psi` is only returned if `gk` is not None.
|
147 |
+
|
148 |
+
Notes
|
149 |
+
-----
|
150 |
+
The algorithm uses the vector cascade algorithm described by Strang and
|
151 |
+
Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values
|
152 |
+
and slices for quick reuse. Then inserts vectors into final vector at the
|
153 |
+
end.
|
154 |
+
|
155 |
+
"""
|
156 |
+
warnings.warn(_msg % 'cascade', DeprecationWarning, stacklevel=2)
|
157 |
+
|
158 |
+
N = len(hk) - 1
|
159 |
+
|
160 |
+
if (J > 30 - np.log2(N + 1)):
|
161 |
+
raise ValueError("Too many levels.")
|
162 |
+
if (J < 1):
|
163 |
+
raise ValueError("Too few levels.")
|
164 |
+
|
165 |
+
# construct matrices needed
|
166 |
+
nn, kk = np.ogrid[:N, :N]
|
167 |
+
s2 = np.sqrt(2)
|
168 |
+
# append a zero so that take works
|
169 |
+
thk = np.r_[hk, 0]
|
170 |
+
gk = qmf(hk)
|
171 |
+
tgk = np.r_[gk, 0]
|
172 |
+
|
173 |
+
indx1 = np.clip(2 * nn - kk, -1, N + 1)
|
174 |
+
indx2 = np.clip(2 * nn - kk + 1, -1, N + 1)
|
175 |
+
m = np.empty((2, 2, N, N), 'd')
|
176 |
+
m[0, 0] = np.take(thk, indx1, 0)
|
177 |
+
m[0, 1] = np.take(thk, indx2, 0)
|
178 |
+
m[1, 0] = np.take(tgk, indx1, 0)
|
179 |
+
m[1, 1] = np.take(tgk, indx2, 0)
|
180 |
+
m *= s2
|
181 |
+
|
182 |
+
# construct the grid of points
|
183 |
+
x = np.arange(0, N * (1 << J), dtype=float) / (1 << J)
|
184 |
+
phi = 0 * x
|
185 |
+
|
186 |
+
psi = 0 * x
|
187 |
+
|
188 |
+
# find phi0, and phi1
|
189 |
+
lam, v = eig(m[0, 0])
|
190 |
+
ind = np.argmin(np.absolute(lam - 1))
|
191 |
+
# a dictionary with a binary representation of the
|
192 |
+
# evaluation points x < 1 -- i.e. position is 0.xxxx
|
193 |
+
v = np.real(v[:, ind])
|
194 |
+
# need scaling function to integrate to 1 so find
|
195 |
+
# eigenvector normalized to sum(v,axis=0)=1
|
196 |
+
sm = np.sum(v)
|
197 |
+
if sm < 0: # need scaling function to integrate to 1
|
198 |
+
v = -v
|
199 |
+
sm = -sm
|
200 |
+
bitdic = {'0': v / sm}
|
201 |
+
bitdic['1'] = np.dot(m[0, 1], bitdic['0'])
|
202 |
+
step = 1 << J
|
203 |
+
phi[::step] = bitdic['0']
|
204 |
+
phi[(1 << (J - 1))::step] = bitdic['1']
|
205 |
+
psi[::step] = np.dot(m[1, 0], bitdic['0'])
|
206 |
+
psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0'])
|
207 |
+
# descend down the levels inserting more and more values
|
208 |
+
# into bitdic -- store the values in the correct location once we
|
209 |
+
# have computed them -- stored in the dictionary
|
210 |
+
# for quicker use later.
|
211 |
+
prevkeys = ['1']
|
212 |
+
for level in range(2, J + 1):
|
213 |
+
newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys]
|
214 |
+
fac = 1 << (J - level)
|
215 |
+
for key in newkeys:
|
216 |
+
# convert key to number
|
217 |
+
num = 0
|
218 |
+
for pos in range(level):
|
219 |
+
if key[pos] == '1':
|
220 |
+
num += (1 << (level - 1 - pos))
|
221 |
+
pastphi = bitdic[key[1:]]
|
222 |
+
ii = int(key[0])
|
223 |
+
temp = np.dot(m[0, ii], pastphi)
|
224 |
+
bitdic[key] = temp
|
225 |
+
phi[num * fac::step] = temp
|
226 |
+
psi[num * fac::step] = np.dot(m[1, ii], pastphi)
|
227 |
+
prevkeys = newkeys
|
228 |
+
|
229 |
+
return x, phi, psi
|
230 |
+
|
231 |
+
|
232 |
+
def morlet(M, w=5.0, s=1.0, complete=True):
|
233 |
+
"""
|
234 |
+
Complex Morlet wavelet.
|
235 |
+
|
236 |
+
.. deprecated:: 1.12.0
|
237 |
+
|
238 |
+
scipy.signal.morlet is deprecated in SciPy 1.12 and will be removed
|
239 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
240 |
+
|
241 |
+
Parameters
|
242 |
+
----------
|
243 |
+
M : int
|
244 |
+
Length of the wavelet.
|
245 |
+
w : float, optional
|
246 |
+
Omega0. Default is 5
|
247 |
+
s : float, optional
|
248 |
+
Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1.
|
249 |
+
complete : bool, optional
|
250 |
+
Whether to use the complete or the standard version.
|
251 |
+
|
252 |
+
Returns
|
253 |
+
-------
|
254 |
+
morlet : (M,) ndarray
|
255 |
+
|
256 |
+
See Also
|
257 |
+
--------
|
258 |
+
morlet2 : Implementation of Morlet wavelet, compatible with `cwt`.
|
259 |
+
scipy.signal.gausspulse
|
260 |
+
|
261 |
+
Notes
|
262 |
+
-----
|
263 |
+
The standard version::
|
264 |
+
|
265 |
+
pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))
|
266 |
+
|
267 |
+
This commonly used wavelet is often referred to simply as the
|
268 |
+
Morlet wavelet. Note that this simplified version can cause
|
269 |
+
admissibility problems at low values of `w`.
|
270 |
+
|
271 |
+
The complete version::
|
272 |
+
|
273 |
+
pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))
|
274 |
+
|
275 |
+
This version has a correction
|
276 |
+
term to improve admissibility. For `w` greater than 5, the
|
277 |
+
correction term is negligible.
|
278 |
+
|
279 |
+
Note that the energy of the return wavelet is not normalised
|
280 |
+
according to `s`.
|
281 |
+
|
282 |
+
The fundamental frequency of this wavelet in Hz is given
|
283 |
+
by ``f = 2*s*w*r / M`` where `r` is the sampling rate.
|
284 |
+
|
285 |
+
Note: This function was created before `cwt` and is not compatible
|
286 |
+
with it.
|
287 |
+
|
288 |
+
Examples
|
289 |
+
--------
|
290 |
+
>>> from scipy import signal
|
291 |
+
>>> import matplotlib.pyplot as plt
|
292 |
+
|
293 |
+
>>> M = 100
|
294 |
+
>>> s = 4.0
|
295 |
+
>>> w = 2.0
|
296 |
+
>>> wavelet = signal.morlet(M, s, w)
|
297 |
+
>>> plt.plot(wavelet.real, label="real")
|
298 |
+
>>> plt.plot(wavelet.imag, label="imag")
|
299 |
+
>>> plt.legend()
|
300 |
+
>>> plt.show()
|
301 |
+
|
302 |
+
"""
|
303 |
+
warnings.warn(_msg % 'morlet', DeprecationWarning, stacklevel=2)
|
304 |
+
|
305 |
+
x = np.linspace(-s * 2 * np.pi, s * 2 * np.pi, M)
|
306 |
+
output = np.exp(1j * w * x)
|
307 |
+
|
308 |
+
if complete:
|
309 |
+
output -= np.exp(-0.5 * (w**2))
|
310 |
+
|
311 |
+
output *= np.exp(-0.5 * (x**2)) * np.pi**(-0.25)
|
312 |
+
|
313 |
+
return output
|
314 |
+
|
315 |
+
|
316 |
+
def ricker(points, a):
|
317 |
+
"""
|
318 |
+
Return a Ricker wavelet, also known as the "Mexican hat wavelet".
|
319 |
+
|
320 |
+
.. deprecated:: 1.12.0
|
321 |
+
|
322 |
+
scipy.signal.ricker is deprecated in SciPy 1.12 and will be removed
|
323 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
324 |
+
|
325 |
+
It models the function:
|
326 |
+
|
327 |
+
``A * (1 - (x/a)**2) * exp(-0.5*(x/a)**2)``,
|
328 |
+
|
329 |
+
where ``A = 2/(sqrt(3*a)*(pi**0.25))``.
|
330 |
+
|
331 |
+
Parameters
|
332 |
+
----------
|
333 |
+
points : int
|
334 |
+
Number of points in `vector`.
|
335 |
+
Will be centered around 0.
|
336 |
+
a : scalar
|
337 |
+
Width parameter of the wavelet.
|
338 |
+
|
339 |
+
Returns
|
340 |
+
-------
|
341 |
+
vector : (N,) ndarray
|
342 |
+
Array of length `points` in shape of ricker curve.
|
343 |
+
|
344 |
+
Examples
|
345 |
+
--------
|
346 |
+
>>> from scipy import signal
|
347 |
+
>>> import matplotlib.pyplot as plt
|
348 |
+
|
349 |
+
>>> points = 100
|
350 |
+
>>> a = 4.0
|
351 |
+
>>> vec2 = signal.ricker(points, a)
|
352 |
+
>>> print(len(vec2))
|
353 |
+
100
|
354 |
+
>>> plt.plot(vec2)
|
355 |
+
>>> plt.show()
|
356 |
+
|
357 |
+
"""
|
358 |
+
warnings.warn(_msg % 'ricker', DeprecationWarning, stacklevel=2)
|
359 |
+
return _ricker(points, a)
|
360 |
+
|
361 |
+
|
362 |
+
def _ricker(points, a):
|
363 |
+
A = 2 / (np.sqrt(3 * a) * (np.pi**0.25))
|
364 |
+
wsq = a**2
|
365 |
+
vec = np.arange(0, points) - (points - 1.0) / 2
|
366 |
+
xsq = vec**2
|
367 |
+
mod = (1 - xsq / wsq)
|
368 |
+
gauss = np.exp(-xsq / (2 * wsq))
|
369 |
+
total = A * mod * gauss
|
370 |
+
return total
|
371 |
+
|
372 |
+
|
373 |
+
def morlet2(M, s, w=5):
|
374 |
+
"""
|
375 |
+
Complex Morlet wavelet, designed to work with `cwt`.
|
376 |
+
|
377 |
+
.. deprecated:: 1.12.0
|
378 |
+
|
379 |
+
scipy.signal.morlet2 is deprecated in SciPy 1.12 and will be removed
|
380 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
381 |
+
|
382 |
+
Returns the complete version of morlet wavelet, normalised
|
383 |
+
according to `s`::
|
384 |
+
|
385 |
+
exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s)
|
386 |
+
|
387 |
+
Parameters
|
388 |
+
----------
|
389 |
+
M : int
|
390 |
+
Length of the wavelet.
|
391 |
+
s : float
|
392 |
+
Width parameter of the wavelet.
|
393 |
+
w : float, optional
|
394 |
+
Omega0. Default is 5
|
395 |
+
|
396 |
+
Returns
|
397 |
+
-------
|
398 |
+
morlet : (M,) ndarray
|
399 |
+
|
400 |
+
See Also
|
401 |
+
--------
|
402 |
+
morlet : Implementation of Morlet wavelet, incompatible with `cwt`
|
403 |
+
|
404 |
+
Notes
|
405 |
+
-----
|
406 |
+
|
407 |
+
.. versionadded:: 1.4.0
|
408 |
+
|
409 |
+
This function was designed to work with `cwt`. Because `morlet2`
|
410 |
+
returns an array of complex numbers, the `dtype` argument of `cwt`
|
411 |
+
should be set to `complex128` for best results.
|
412 |
+
|
413 |
+
Note the difference in implementation with `morlet`.
|
414 |
+
The fundamental frequency of this wavelet in Hz is given by::
|
415 |
+
|
416 |
+
f = w*fs / (2*s*np.pi)
|
417 |
+
|
418 |
+
where ``fs`` is the sampling rate and `s` is the wavelet width parameter.
|
419 |
+
Similarly we can get the wavelet width parameter at ``f``::
|
420 |
+
|
421 |
+
s = w*fs / (2*f*np.pi)
|
422 |
+
|
423 |
+
Examples
|
424 |
+
--------
|
425 |
+
>>> import numpy as np
|
426 |
+
>>> from scipy import signal
|
427 |
+
>>> import matplotlib.pyplot as plt
|
428 |
+
|
429 |
+
>>> M = 100
|
430 |
+
>>> s = 4.0
|
431 |
+
>>> w = 2.0
|
432 |
+
>>> wavelet = signal.morlet2(M, s, w)
|
433 |
+
>>> plt.plot(abs(wavelet))
|
434 |
+
>>> plt.show()
|
435 |
+
|
436 |
+
This example shows basic use of `morlet2` with `cwt` in time-frequency
|
437 |
+
analysis:
|
438 |
+
|
439 |
+
>>> t, dt = np.linspace(0, 1, 200, retstep=True)
|
440 |
+
>>> fs = 1/dt
|
441 |
+
>>> w = 6.
|
442 |
+
>>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
|
443 |
+
>>> freq = np.linspace(1, fs/2, 100)
|
444 |
+
>>> widths = w*fs / (2*freq*np.pi)
|
445 |
+
>>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
|
446 |
+
>>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud')
|
447 |
+
>>> plt.show()
|
448 |
+
|
449 |
+
"""
|
450 |
+
warnings.warn(_msg % 'morlet2', DeprecationWarning, stacklevel=2)
|
451 |
+
|
452 |
+
x = np.arange(0, M) - (M - 1.0) / 2
|
453 |
+
x = x / s
|
454 |
+
wavelet = np.exp(1j * w * x) * np.exp(-0.5 * x**2) * np.pi**(-0.25)
|
455 |
+
output = np.sqrt(1/s) * wavelet
|
456 |
+
return output
|
457 |
+
|
458 |
+
|
459 |
+
def cwt(data, wavelet, widths, dtype=None, **kwargs):
|
460 |
+
"""
|
461 |
+
Continuous wavelet transform.
|
462 |
+
|
463 |
+
.. deprecated:: 1.12.0
|
464 |
+
|
465 |
+
scipy.signal.cwt is deprecated in SciPy 1.12 and will be removed
|
466 |
+
in SciPy 1.15. We recommend using PyWavelets instead.
|
467 |
+
|
468 |
+
Performs a continuous wavelet transform on `data`,
|
469 |
+
using the `wavelet` function. A CWT performs a convolution
|
470 |
+
with `data` using the `wavelet` function, which is characterized
|
471 |
+
by a width parameter and length parameter. The `wavelet` function
|
472 |
+
is allowed to be complex.
|
473 |
+
|
474 |
+
Parameters
|
475 |
+
----------
|
476 |
+
data : (N,) ndarray
|
477 |
+
data on which to perform the transform.
|
478 |
+
wavelet : function
|
479 |
+
Wavelet function, which should take 2 arguments.
|
480 |
+
The first argument is the number of points that the returned vector
|
481 |
+
will have (len(wavelet(length,width)) == length).
|
482 |
+
The second is a width parameter, defining the size of the wavelet
|
483 |
+
(e.g. standard deviation of a gaussian). See `ricker`, which
|
484 |
+
satisfies these requirements.
|
485 |
+
widths : (M,) sequence
|
486 |
+
Widths to use for transform.
|
487 |
+
dtype : data-type, optional
|
488 |
+
The desired data type of output. Defaults to ``float64`` if the
|
489 |
+
output of `wavelet` is real and ``complex128`` if it is complex.
|
490 |
+
|
491 |
+
.. versionadded:: 1.4.0
|
492 |
+
|
493 |
+
kwargs
|
494 |
+
Keyword arguments passed to wavelet function.
|
495 |
+
|
496 |
+
.. versionadded:: 1.4.0
|
497 |
+
|
498 |
+
Returns
|
499 |
+
-------
|
500 |
+
cwt: (M, N) ndarray
|
501 |
+
Will have shape of (len(widths), len(data)).
|
502 |
+
|
503 |
+
Notes
|
504 |
+
-----
|
505 |
+
|
506 |
+
.. versionadded:: 1.4.0
|
507 |
+
|
508 |
+
For non-symmetric, complex-valued wavelets, the input signal is convolved
|
509 |
+
with the time-reversed complex-conjugate of the wavelet data [1].
|
510 |
+
|
511 |
+
::
|
512 |
+
|
513 |
+
length = min(10 * width[ii], len(data))
|
514 |
+
cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii],
|
515 |
+
**kwargs))[::-1], mode='same')
|
516 |
+
|
517 |
+
References
|
518 |
+
----------
|
519 |
+
.. [1] S. Mallat, "A Wavelet Tour of Signal Processing (3rd Edition)",
|
520 |
+
Academic Press, 2009.
|
521 |
+
|
522 |
+
Examples
|
523 |
+
--------
|
524 |
+
>>> import numpy as np
|
525 |
+
>>> from scipy import signal
|
526 |
+
>>> import matplotlib.pyplot as plt
|
527 |
+
>>> t = np.linspace(-1, 1, 200, endpoint=False)
|
528 |
+
>>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
|
529 |
+
>>> widths = np.arange(1, 31)
|
530 |
+
>>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
|
531 |
+
|
532 |
+
.. note:: For cwt matrix plotting it is advisable to flip the y-axis
|
533 |
+
|
534 |
+
>>> cwtmatr_yflip = np.flipud(cwtmatr)
|
535 |
+
>>> plt.imshow(cwtmatr_yflip, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
|
536 |
+
... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
|
537 |
+
>>> plt.show()
|
538 |
+
"""
|
539 |
+
warnings.warn(_msg % 'cwt', DeprecationWarning, stacklevel=2)
|
540 |
+
return _cwt(data, wavelet, widths, dtype, **kwargs)
|
541 |
+
|
542 |
+
|
543 |
+
def _cwt(data, wavelet, widths, dtype=None, **kwargs):
|
544 |
+
# Determine output type
|
545 |
+
if dtype is None:
|
546 |
+
if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG':
|
547 |
+
dtype = np.complex128
|
548 |
+
else:
|
549 |
+
dtype = np.float64
|
550 |
+
|
551 |
+
output = np.empty((len(widths), len(data)), dtype=dtype)
|
552 |
+
for ind, width in enumerate(widths):
|
553 |
+
N = np.min([10 * width, len(data)])
|
554 |
+
wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1])
|
555 |
+
output[ind] = convolve(data, wavelet_data, mode='same')
|
556 |
+
return output
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/bsplines.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.signal` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'spline_filter', 'gauss_spline',
|
9 |
+
'cspline1d', 'qspline1d', 'cspline1d_eval', 'qspline1d_eval',
|
10 |
+
'zeros_like', 'array', 'arctan2',
|
11 |
+
'tan', 'arange', 'floor', 'exp', 'greater', 'add',
|
12 |
+
'cspline2d', 'sepfir2d'
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
def __dir__():
|
17 |
+
return __all__
|
18 |
+
|
19 |
+
|
20 |
+
def __getattr__(name):
|
21 |
+
return _sub_module_deprecation(sub_package="signal", module="bsplines",
|
22 |
+
private_modules=["_bsplines"], all=__all__,
|
23 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/filter_design.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.signal` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize',
|
9 |
+
'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign',
|
10 |
+
'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel',
|
11 |
+
'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord',
|
12 |
+
'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap',
|
13 |
+
'BadCoefficients', 'freqs_zpk', 'freqz_zpk',
|
14 |
+
'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay',
|
15 |
+
'sosfreqz', 'iirnotch', 'iirpeak', 'bilinear_zpk',
|
16 |
+
'lp2lp_zpk', 'lp2hp_zpk', 'lp2bp_zpk', 'lp2bs_zpk',
|
17 |
+
'gammatone', 'iircomb',
|
18 |
+
'atleast_1d', 'poly', 'polyval', 'roots', 'resize', 'absolute',
|
19 |
+
'tan', 'log10', 'arcsinh', 'exp', 'arccosh',
|
20 |
+
'ceil', 'conjugate', 'append', 'prod', 'full', 'array', 'mintypecode',
|
21 |
+
'npp_polyval', 'polyvalfromroots', 'optimize', 'sp_fft', 'comb',
|
22 |
+
'float_factorial', 'abs', 'maxflat', 'yulewalk',
|
23 |
+
'EPSILON', 'filter_dict', 'band_dict', 'bessel_norms'
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
def __dir__():
|
28 |
+
return __all__
|
29 |
+
|
30 |
+
|
31 |
+
def __getattr__(name):
|
32 |
+
return _sub_module_deprecation(sub_package="signal", module="filter_design",
|
33 |
+
private_modules=["_filter_design"], all=__all__,
|
34 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/fir_filter_design.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.signal` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'kaiser_beta', 'kaiser_atten', 'kaiserord',
|
9 |
+
'firwin', 'firwin2', 'remez', 'firls', 'minimum_phase',
|
10 |
+
'ceil', 'log', 'irfft', 'fft', 'ifft', 'sinc', 'toeplitz',
|
11 |
+
'hankel', 'solve', 'LinAlgError', 'LinAlgWarning', 'lstsq'
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
def __dir__():
|
16 |
+
return __all__
|
17 |
+
|
18 |
+
|
19 |
+
def __getattr__(name):
|
20 |
+
return _sub_module_deprecation(sub_package="signal", module="fir_filter_design",
|
21 |
+
private_modules=["_fir_filter_design"], all=__all__,
|
22 |
+
attribute=name)
|
llmeval-env/lib/python3.10/site-packages/scipy/signal/lti_conversion.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.signal` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
|
9 |
+
'cont2discrete','eye', 'atleast_2d',
|
10 |
+
'poly', 'prod', 'array', 'outer', 'linalg', 'tf2zpk', 'zpk2tf', 'normalize'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
def __dir__():
|
15 |
+
return __all__
|
16 |
+
|
17 |
+
|
18 |
+
def __getattr__(name):
|
19 |
+
return _sub_module_deprecation(sub_package="signal", module="lti_conversion",
|
20 |
+
private_modules=["_lti_conversion"], all=__all__,
|
21 |
+
attribute=name)
|