Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/evaluate/__init__.py +51 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/config.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/hub.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/info.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/inspect.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/loading.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/module.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/naming.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/saving.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/visualization.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/commands/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/commands/__pycache__/evaluate_cli.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/commands/evaluate_cli.py +137 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/config.py +192 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluation_suite/__init__.py +128 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluation_suite/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__init__.py +140 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/audio_classification.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/automatic_speech_recognition.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/image_classification.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/question_answering.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text2text_generation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text_classification.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text_generation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/token_classification.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/audio_classification.py +151 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/automatic_speech_recognition.py +112 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/base.py +544 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/image_classification.py +119 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/question_answering.py +239 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text2text_generation.py +267 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text_classification.py +160 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text_generation.py +69 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/token_classification.py +278 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/utils.py +84 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/hub.py +133 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/info.py +157 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/inspect.py +129 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/loading.py +771 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/module.py +1029 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/naming.py +82 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/utils/__init__.py +39 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/file_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/gradio.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/evaluate/__init__.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# Copyright 2020 The HuggingFace Evaluate Authors and the TensorFlow Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
# pylint: enable=line-too-long
|
18 |
+
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
|
19 |
+
|
20 |
+
__version__ = "0.4.1"
|
21 |
+
|
22 |
+
from packaging import version
|
23 |
+
|
24 |
+
|
25 |
+
SCRIPTS_VERSION = "main" if version.parse(__version__).is_devrelease else __version__
|
26 |
+
|
27 |
+
del version
|
28 |
+
|
29 |
+
from .evaluation_suite import EvaluationSuite
|
30 |
+
from .evaluator import (
|
31 |
+
AudioClassificationEvaluator,
|
32 |
+
AutomaticSpeechRecognitionEvaluator,
|
33 |
+
Evaluator,
|
34 |
+
ImageClassificationEvaluator,
|
35 |
+
QuestionAnsweringEvaluator,
|
36 |
+
SummarizationEvaluator,
|
37 |
+
Text2TextGenerationEvaluator,
|
38 |
+
TextClassificationEvaluator,
|
39 |
+
TextGenerationEvaluator,
|
40 |
+
TokenClassificationEvaluator,
|
41 |
+
TranslationEvaluator,
|
42 |
+
evaluator,
|
43 |
+
)
|
44 |
+
from .hub import push_to_hub
|
45 |
+
from .info import ComparisonInfo, EvaluationModuleInfo, MeasurementInfo, MetricInfo
|
46 |
+
from .inspect import inspect_evaluation_module, list_evaluation_modules
|
47 |
+
from .loading import load
|
48 |
+
from .module import CombinedEvaluations, Comparison, EvaluationModule, Measurement, Metric, combine
|
49 |
+
from .saving import save
|
50 |
+
from .utils import *
|
51 |
+
from .utils import gradio, logging
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/config.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/hub.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/info.cpython-310.pyc
ADDED
Binary file (5.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/inspect.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/loading.cpython-310.pyc
ADDED
Binary file (24.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/module.cpython-310.pyc
ADDED
Binary file (40.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/naming.cpython-310.pyc
ADDED
Binary file (2.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/saving.cpython-310.pyc
ADDED
Binary file (2.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/__pycache__/visualization.cpython-310.pyc
ADDED
Binary file (8.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/commands/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/evaluate/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (182 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/commands/__pycache__/evaluate_cli.cpython-310.pyc
ADDED
Binary file (4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/commands/evaluate_cli.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
from cookiecutter.main import cookiecutter
|
7 |
+
from huggingface_hub import HfApi, Repository, create_repo
|
8 |
+
|
9 |
+
from evaluate.utils.logging import get_logger
|
10 |
+
|
11 |
+
|
12 |
+
logger = get_logger(__name__)
|
13 |
+
|
14 |
+
INSTRUCTIONS = """\
|
15 |
+
A new repository for your module "{module_name}" of type "{module_type}" has been created at {output_dir} and pushed to the Hugging Face Hub: {repo_url}.
|
16 |
+
|
17 |
+
Here are the next steps:
|
18 |
+
- implement the module logic in {module_slug}/{module_slug}.py
|
19 |
+
- document your module in {module_slug}/README.md
|
20 |
+
- add test cases for your module in {module_slug}/tests.py
|
21 |
+
- if your module has any dependencies update them in {module_slug}/requirements.txt
|
22 |
+
|
23 |
+
You can test your module's widget locally by running:
|
24 |
+
|
25 |
+
```
|
26 |
+
python {output_dir}/{module_slug}/app.py
|
27 |
+
```
|
28 |
+
|
29 |
+
When you are happy with your changes you can push your changes with the following commands to the Hugging Face Hub:
|
30 |
+
|
31 |
+
```
|
32 |
+
cd {output_dir}/{module_slug}
|
33 |
+
git add .
|
34 |
+
git commit -m "Updating module"
|
35 |
+
git push
|
36 |
+
```
|
37 |
+
|
38 |
+
You should then see the update widget on the Hugging Face Hub: {repo_url}
|
39 |
+
And you can load your module in Python with the following code:
|
40 |
+
|
41 |
+
```
|
42 |
+
from evaluate import load
|
43 |
+
module = load("{namespace}/{module_slug}")
|
44 |
+
```
|
45 |
+
"""
|
46 |
+
|
47 |
+
|
48 |
+
def main():
|
49 |
+
parser = argparse.ArgumentParser("HuggingFace Evaluate CLI tool", usage="evaluate-cli <command> [<args>]")
|
50 |
+
subparsers = parser.add_subparsers()
|
51 |
+
parser_create = subparsers.add_parser("create", help="Create new evaluation module.")
|
52 |
+
parser_create.add_argument(
|
53 |
+
"module_name", type=str, help='Pretty name of new evaluation module, e.g. "Recall" or "Exact Match".'
|
54 |
+
)
|
55 |
+
parser_create.add_argument(
|
56 |
+
"--module_type",
|
57 |
+
default="metric",
|
58 |
+
type=str,
|
59 |
+
help="Type of module, has to be one of [metric|comparison|measurement].",
|
60 |
+
)
|
61 |
+
parser_create.add_argument(
|
62 |
+
"--dataset_name", default="", type=str, help="Name of dataset if evaluation module is dataset specific."
|
63 |
+
)
|
64 |
+
parser_create.add_argument("--module_description", type=str, help="Short description of evaluation module.")
|
65 |
+
parser_create.add_argument("--output_dir", default=Path.cwd(), type=str, help="Path to output directory.")
|
66 |
+
parser_create.add_argument(
|
67 |
+
"--organization", default=None, type=str, help="Organization on the Hub to push evaluation module to."
|
68 |
+
)
|
69 |
+
parser_create.add_argument("--private", action="store_true", help="Sets evaluation module repository to private.")
|
70 |
+
args = vars(parser.parse_args())
|
71 |
+
|
72 |
+
if args["module_type"] not in ["metric", "comparison", "measurement"]:
|
73 |
+
raise ValueError("The module_type needs to be one of metric, comparison, or measurement")
|
74 |
+
|
75 |
+
if "-" in args["module_name"]:
|
76 |
+
raise ValueError("Hyphens ('-') are not allowed in module names.")
|
77 |
+
|
78 |
+
output_dir = Path(args["output_dir"])
|
79 |
+
organization = args["organization"]
|
80 |
+
module_slug = args["module_name"].lower().replace(" ", "_")
|
81 |
+
|
82 |
+
if organization is None:
|
83 |
+
hfapi = HfApi()
|
84 |
+
namespace = hfapi.whoami()["name"]
|
85 |
+
else:
|
86 |
+
namespace = organization
|
87 |
+
args["namespace"] = namespace
|
88 |
+
repo_url = f"https://huggingface.co/spaces/{namespace}/{module_slug}"
|
89 |
+
|
90 |
+
try:
|
91 |
+
create_repo(namespace + "/" + module_slug, repo_type="space", space_sdk="gradio", private=args["private"])
|
92 |
+
except Exception as exception:
|
93 |
+
logger.error(
|
94 |
+
f"Could not create Space for module at hf.co/spaces/{namespace}/{module_slug}. Make sure this space does not exist already."
|
95 |
+
)
|
96 |
+
raise exception
|
97 |
+
subprocess.run(
|
98 |
+
f"git clone {repo_url}".split(),
|
99 |
+
stderr=subprocess.PIPE,
|
100 |
+
stdout=subprocess.PIPE,
|
101 |
+
check=True,
|
102 |
+
encoding="utf-8",
|
103 |
+
cwd=output_dir,
|
104 |
+
env=os.environ.copy(),
|
105 |
+
)
|
106 |
+
|
107 |
+
repo = Repository(
|
108 |
+
local_dir=output_dir / module_slug,
|
109 |
+
)
|
110 |
+
|
111 |
+
cookiecutter(
|
112 |
+
"https://github.com/huggingface/evaluate/",
|
113 |
+
directory="templates",
|
114 |
+
no_input=True,
|
115 |
+
extra_context=args,
|
116 |
+
output_dir=output_dir,
|
117 |
+
overwrite_if_exists=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
repo.git_add()
|
121 |
+
repo.git_commit("add module default template")
|
122 |
+
repo.git_push()
|
123 |
+
|
124 |
+
print(
|
125 |
+
INSTRUCTIONS.format(
|
126 |
+
module_name=args["module_name"],
|
127 |
+
module_type=args["module_type"],
|
128 |
+
module_slug=module_slug,
|
129 |
+
namespace=namespace,
|
130 |
+
repo_url=repo_url,
|
131 |
+
output_dir=output_dir,
|
132 |
+
)
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
main()
|
env-llmeval/lib/python3.10/site-packages/evaluate/config.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
from packaging import version
|
7 |
+
|
8 |
+
from .utils.logging import get_logger
|
9 |
+
|
10 |
+
|
11 |
+
logger = get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
# Metrics
|
15 |
+
S3_METRICS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/metrics"
|
16 |
+
CLOUDFRONT_METRICS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/metric"
|
17 |
+
REPO_METRICS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/metrics/{path}/{name}"
|
18 |
+
REPO_MEASUREMENTS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/measurements/{path}/{name}"
|
19 |
+
REPO_COMPARISONS_URL = "https://raw.githubusercontent.com/huggingface/evaluate/{revision}/comparisons/{path}/{name}"
|
20 |
+
|
21 |
+
# Evaluation module types
|
22 |
+
EVALUATION_MODULE_TYPES = ["metric", "comparison", "measurement"]
|
23 |
+
|
24 |
+
# Hub
|
25 |
+
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
|
26 |
+
HF_LIST_ENDPOINT = HF_ENDPOINT + "/api/spaces?filter={type}"
|
27 |
+
HUB_EVALUATE_URL = HF_ENDPOINT + "/spaces/{path}/resolve/{revision}/{name}"
|
28 |
+
HUB_DEFAULT_VERSION = "main"
|
29 |
+
|
30 |
+
PY_VERSION = version.parse(platform.python_version())
|
31 |
+
|
32 |
+
if PY_VERSION < version.parse("3.8"):
|
33 |
+
import importlib_metadata
|
34 |
+
else:
|
35 |
+
import importlib.metadata as importlib_metadata
|
36 |
+
|
37 |
+
# General environment variables accepted values for booleans
|
38 |
+
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
|
39 |
+
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
|
40 |
+
|
41 |
+
|
42 |
+
# Imports
|
43 |
+
PANDAS_VERSION = version.parse(importlib_metadata.version("pandas"))
|
44 |
+
PYARROW_VERSION = version.parse(importlib_metadata.version("pyarrow"))
|
45 |
+
|
46 |
+
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
|
47 |
+
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
|
48 |
+
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper()
|
49 |
+
|
50 |
+
TORCH_VERSION = "N/A"
|
51 |
+
TORCH_AVAILABLE = False
|
52 |
+
|
53 |
+
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
|
54 |
+
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None
|
55 |
+
if TORCH_AVAILABLE:
|
56 |
+
try:
|
57 |
+
TORCH_VERSION = version.parse(importlib_metadata.version("torch"))
|
58 |
+
logger.info(f"PyTorch version {TORCH_VERSION} available.")
|
59 |
+
except importlib_metadata.PackageNotFoundError:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
logger.info("Disabling PyTorch because USE_TF is set")
|
63 |
+
|
64 |
+
TF_VERSION = "N/A"
|
65 |
+
TF_AVAILABLE = False
|
66 |
+
|
67 |
+
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
|
68 |
+
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None
|
69 |
+
if TF_AVAILABLE:
|
70 |
+
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
|
71 |
+
for package in [
|
72 |
+
"tensorflow",
|
73 |
+
"tensorflow-cpu",
|
74 |
+
"tensorflow-gpu",
|
75 |
+
"tf-nightly",
|
76 |
+
"tf-nightly-cpu",
|
77 |
+
"tf-nightly-gpu",
|
78 |
+
"intel-tensorflow",
|
79 |
+
"tensorflow-rocm",
|
80 |
+
"tensorflow-macos",
|
81 |
+
]:
|
82 |
+
try:
|
83 |
+
TF_VERSION = version.parse(importlib_metadata.version(package))
|
84 |
+
except importlib_metadata.PackageNotFoundError:
|
85 |
+
continue
|
86 |
+
else:
|
87 |
+
break
|
88 |
+
else:
|
89 |
+
TF_AVAILABLE = False
|
90 |
+
if TF_AVAILABLE:
|
91 |
+
if TF_VERSION.major < 2:
|
92 |
+
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.")
|
93 |
+
TF_AVAILABLE = False
|
94 |
+
else:
|
95 |
+
logger.info(f"TensorFlow version {TF_VERSION} available.")
|
96 |
+
else:
|
97 |
+
logger.info("Disabling Tensorflow because USE_TORCH is set")
|
98 |
+
|
99 |
+
|
100 |
+
JAX_VERSION = "N/A"
|
101 |
+
JAX_AVAILABLE = False
|
102 |
+
|
103 |
+
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
|
104 |
+
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None
|
105 |
+
if JAX_AVAILABLE:
|
106 |
+
try:
|
107 |
+
JAX_VERSION = version.parse(importlib_metadata.version("jax"))
|
108 |
+
logger.info(f"JAX version {JAX_VERSION} available.")
|
109 |
+
except importlib_metadata.PackageNotFoundError:
|
110 |
+
pass
|
111 |
+
else:
|
112 |
+
logger.info("Disabling JAX because USE_JAX is set to False")
|
113 |
+
|
114 |
+
|
115 |
+
# Cache location
|
116 |
+
DEFAULT_XDG_CACHE_HOME = "~/.cache"
|
117 |
+
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
|
118 |
+
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
|
119 |
+
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
|
120 |
+
|
121 |
+
DEFAULT_HF_EVALUATE_CACHE = os.path.join(HF_CACHE_HOME, "evaluate")
|
122 |
+
HF_EVALUATE_CACHE = Path(os.getenv("HF_EVALUATE_CACHE", DEFAULT_HF_EVALUATE_CACHE))
|
123 |
+
|
124 |
+
DEFAULT_HF_METRICS_CACHE = os.path.join(HF_CACHE_HOME, "metrics")
|
125 |
+
HF_METRICS_CACHE = Path(os.getenv("HF_METRICS_CACHE", DEFAULT_HF_METRICS_CACHE))
|
126 |
+
|
127 |
+
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules")
|
128 |
+
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE))
|
129 |
+
|
130 |
+
DOWNLOADED_DATASETS_DIR = "downloads"
|
131 |
+
DEFAULT_DOWNLOADED_EVALUATE_PATH = os.path.join(HF_EVALUATE_CACHE, DOWNLOADED_DATASETS_DIR)
|
132 |
+
DOWNLOADED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_EVALUATE_PATH", DEFAULT_DOWNLOADED_EVALUATE_PATH))
|
133 |
+
|
134 |
+
EXTRACTED_EVALUATE_DIR = "extracted"
|
135 |
+
DEFAULT_EXTRACTED_EVALUATE_PATH = os.path.join(DEFAULT_DOWNLOADED_EVALUATE_PATH, EXTRACTED_EVALUATE_DIR)
|
136 |
+
EXTRACTED_EVALUATE_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_EVALUATE_PATH", DEFAULT_EXTRACTED_EVALUATE_PATH))
|
137 |
+
|
138 |
+
# Download count for the website
|
139 |
+
HF_UPDATE_DOWNLOAD_COUNTS = (
|
140 |
+
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES
|
141 |
+
)
|
142 |
+
|
143 |
+
# Offline mode
|
144 |
+
HF_EVALUATE_OFFLINE = os.environ.get("HF_EVALUATE_OFFLINE", "AUTO").upper() in ENV_VARS_TRUE_VALUES
|
145 |
+
|
146 |
+
|
147 |
+
# File names
|
148 |
+
LICENSE_FILENAME = "LICENSE"
|
149 |
+
METRIC_INFO_FILENAME = "metric_info.json"
|
150 |
+
DATASETDICT_JSON_FILENAME = "dataset_dict.json"
|
151 |
+
|
152 |
+
MODULE_NAME_FOR_DYNAMIC_MODULES = "evaluate_modules"
|
153 |
+
|
154 |
+
HF_HUB_ALLOWED_TASKS = [
|
155 |
+
"image-classification",
|
156 |
+
"translation",
|
157 |
+
"image-segmentation",
|
158 |
+
"fill-mask",
|
159 |
+
"automatic-speech-recognition",
|
160 |
+
"token-classification",
|
161 |
+
"sentence-similarity",
|
162 |
+
"audio-classification",
|
163 |
+
"question-answering",
|
164 |
+
"summarization",
|
165 |
+
"zero-shot-classification",
|
166 |
+
"table-to-text",
|
167 |
+
"feature-extraction",
|
168 |
+
"other",
|
169 |
+
"multiple-choice",
|
170 |
+
"text-classification",
|
171 |
+
"text-to-image",
|
172 |
+
"text2text-generation",
|
173 |
+
"zero-shot-image-classification",
|
174 |
+
"tabular-classification",
|
175 |
+
"tabular-regression",
|
176 |
+
"image-to-image",
|
177 |
+
"tabular-to-text",
|
178 |
+
"unconditional-image-generation",
|
179 |
+
"text-retrieval",
|
180 |
+
"text-to-speech",
|
181 |
+
"object-detection",
|
182 |
+
"audio-to-audio",
|
183 |
+
"text-generation",
|
184 |
+
"conversational",
|
185 |
+
"table-question-answering",
|
186 |
+
"visual-question-answering",
|
187 |
+
"image-to-text",
|
188 |
+
"reinforcement-learning",
|
189 |
+
"voice-activity-detection",
|
190 |
+
"time-series-forecasting",
|
191 |
+
"document-question-answering",
|
192 |
+
]
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluation_suite/__init__.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import inspect
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Callable, Dict, Optional, Union
|
6 |
+
|
7 |
+
from datasets import Dataset, DownloadConfig, DownloadMode, load_dataset
|
8 |
+
from datasets.utils.version import Version
|
9 |
+
|
10 |
+
from ..evaluator import evaluator
|
11 |
+
from ..loading import evaluation_module_factory
|
12 |
+
from ..utils.logging import get_logger
|
13 |
+
|
14 |
+
|
15 |
+
logger = get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class SubTask:
|
20 |
+
task_type: str
|
21 |
+
data: Optional[Union[str, Dataset]] = None
|
22 |
+
subset: Optional[str] = None
|
23 |
+
split: Optional[str] = None
|
24 |
+
data_preprocessor: Optional[Callable] = None
|
25 |
+
args_for_task: Optional[dict] = None
|
26 |
+
|
27 |
+
def __post_init__(self):
|
28 |
+
if type(self.task_type) is not str:
|
29 |
+
raise ValueError(f"'task_type' must be type 'str', got {type(self.task_type)}")
|
30 |
+
if type(self.data) not in [Dataset, str]:
|
31 |
+
raise ValueError(
|
32 |
+
f"'data' must be an already-instantiated Dataset object or type 'str', got {type(self.data)}"
|
33 |
+
)
|
34 |
+
if self.subset and type(self.subset) is not str:
|
35 |
+
raise ValueError(f"'subset' must be type 'str', got {type(self.subset)}")
|
36 |
+
if self.split and type(self.split) is not str:
|
37 |
+
raise ValueError(f"'split' must be type 'str', got {type(self.split)}")
|
38 |
+
if self.data_preprocessor and not callable(self.data_preprocessor):
|
39 |
+
raise ValueError(f"'data_preprocessor' must be a Callable', got {self.data_preprocessor}")
|
40 |
+
if self.args_for_task and type(self.args_for_task) is not dict:
|
41 |
+
raise ValueError(f"'args_for_task' must be type 'dict', got {type(self.args_for_task)}")
|
42 |
+
|
43 |
+
|
44 |
+
def import_main_class(module_path):
|
45 |
+
"""Import a module at module_path and return the EvaluationSuite class"""
|
46 |
+
module = importlib.import_module(module_path)
|
47 |
+
|
48 |
+
module_main_cls = None
|
49 |
+
for name, obj in module.__dict__.items():
|
50 |
+
if isinstance(obj, type) and obj.__name__ == "Suite":
|
51 |
+
if inspect.isabstract(obj):
|
52 |
+
continue
|
53 |
+
module_main_cls = obj
|
54 |
+
break
|
55 |
+
|
56 |
+
return module_main_cls
|
57 |
+
|
58 |
+
|
59 |
+
class EvaluationSuite:
|
60 |
+
"""
|
61 |
+
This class instantiates an evaluation suite made up of multiple tasks, where each task consists of a dataset and
|
62 |
+
an associated metric, and runs evaluation on a model or pipeline. Evaluation suites can be a Python script found
|
63 |
+
either locally or uploaded as a Space on the Hugging Face Hub.
|
64 |
+
Usage:
|
65 |
+
```python
|
66 |
+
from evaluate import EvaluationSuite
|
67 |
+
suite = EvaluationSuite.load("evaluate/evaluation-suite-ci")
|
68 |
+
results = suite.run("lvwerra/distilbert-imdb")
|
69 |
+
```
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, name):
|
73 |
+
self.name = name
|
74 |
+
|
75 |
+
@staticmethod
|
76 |
+
def load(
|
77 |
+
path: str,
|
78 |
+
download_mode: Optional[DownloadMode] = None,
|
79 |
+
revision: Optional[Union[str, Version]] = None,
|
80 |
+
download_config: Optional[DownloadConfig] = None,
|
81 |
+
):
|
82 |
+
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
|
83 |
+
evaluation_module = evaluation_module_factory(
|
84 |
+
path, module_type=None, revision=revision, download_config=download_config, download_mode=download_mode
|
85 |
+
)
|
86 |
+
name = Path(path).stem
|
87 |
+
evaluation_cls = import_main_class(evaluation_module.module_path)
|
88 |
+
evaluation_instance = evaluation_cls(name)
|
89 |
+
|
90 |
+
return evaluation_instance
|
91 |
+
|
92 |
+
def __repr__(self):
|
93 |
+
self.tasks = [str(task) for task in self.suite]
|
94 |
+
return f'EvaluationSuite name: "{self.name}", ' f"Tasks: {self.tasks})"
|
95 |
+
|
96 |
+
def assert_suite_nonempty(self):
|
97 |
+
if not self.suite:
|
98 |
+
raise ValueError(
|
99 |
+
"No evaluation tasks found. The EvaluationSuite must include at least one SubTask definition."
|
100 |
+
)
|
101 |
+
|
102 |
+
def run(
|
103 |
+
self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"] # noqa: F821
|
104 |
+
) -> Dict[str, float]:
|
105 |
+
|
106 |
+
self.assert_suite_nonempty()
|
107 |
+
|
108 |
+
results_all = []
|
109 |
+
for task in self.suite:
|
110 |
+
|
111 |
+
task_name = task.data
|
112 |
+
|
113 |
+
if task.data_preprocessor: # task requires extra preprocessing
|
114 |
+
ds = load_dataset(task.data, name=task.subset, split=task.split)
|
115 |
+
task.data = ds.map(task.data_preprocessor)
|
116 |
+
|
117 |
+
task_evaluator = evaluator(task.task_type)
|
118 |
+
args_for_task = task.args_for_task
|
119 |
+
args_for_task["model_or_pipeline"] = model_or_pipeline
|
120 |
+
args_for_task["data"] = task.data
|
121 |
+
args_for_task["subset"] = task.subset
|
122 |
+
args_for_task["split"] = task.split
|
123 |
+
results = task_evaluator.compute(**args_for_task)
|
124 |
+
|
125 |
+
results["task_name"] = task_name + "/" + task.subset if task.subset else task_name
|
126 |
+
results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None
|
127 |
+
results_all.append(results)
|
128 |
+
return results_all
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluation_suite/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__init__.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
try:
|
17 |
+
from transformers.pipelines import SUPPORTED_TASKS as SUPPORTED_PIPELINE_TASKS
|
18 |
+
from transformers.pipelines import TASK_ALIASES
|
19 |
+
from transformers.pipelines import check_task as check_pipeline_task
|
20 |
+
|
21 |
+
TRANSFORMERS_AVAILABLE = True
|
22 |
+
except ImportError:
|
23 |
+
TRANSFORMERS_AVAILABLE = False
|
24 |
+
|
25 |
+
from typing import Dict, List
|
26 |
+
|
27 |
+
from .audio_classification import AudioClassificationEvaluator
|
28 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognitionEvaluator
|
29 |
+
from .base import Evaluator
|
30 |
+
from .image_classification import ImageClassificationEvaluator
|
31 |
+
from .question_answering import QuestionAnsweringEvaluator
|
32 |
+
from .text2text_generation import SummarizationEvaluator, Text2TextGenerationEvaluator, TranslationEvaluator
|
33 |
+
from .text_classification import TextClassificationEvaluator
|
34 |
+
from .text_generation import TextGenerationEvaluator
|
35 |
+
from .token_classification import TokenClassificationEvaluator
|
36 |
+
|
37 |
+
|
38 |
+
SUPPORTED_EVALUATOR_TASKS = {
|
39 |
+
"text-classification": {
|
40 |
+
"implementation": TextClassificationEvaluator,
|
41 |
+
"default_metric_name": "accuracy",
|
42 |
+
},
|
43 |
+
"image-classification": {
|
44 |
+
"implementation": ImageClassificationEvaluator,
|
45 |
+
"default_metric_name": "accuracy",
|
46 |
+
},
|
47 |
+
"question-answering": {
|
48 |
+
"implementation": QuestionAnsweringEvaluator,
|
49 |
+
"default_metric_name": "squad",
|
50 |
+
},
|
51 |
+
"token-classification": {
|
52 |
+
"implementation": TokenClassificationEvaluator,
|
53 |
+
"default_metric_name": "seqeval",
|
54 |
+
},
|
55 |
+
"text-generation": {
|
56 |
+
"implementation": TextGenerationEvaluator,
|
57 |
+
"default_metric_name": "word_count",
|
58 |
+
},
|
59 |
+
"text2text-generation": {
|
60 |
+
"implementation": Text2TextGenerationEvaluator,
|
61 |
+
"default_metric_name": "bleu",
|
62 |
+
},
|
63 |
+
"summarization": {
|
64 |
+
"implementation": SummarizationEvaluator,
|
65 |
+
"default_metric_name": "rouge",
|
66 |
+
},
|
67 |
+
"translation": {
|
68 |
+
"implementation": TranslationEvaluator,
|
69 |
+
"default_metric_name": "bleu",
|
70 |
+
},
|
71 |
+
"automatic-speech-recognition": {
|
72 |
+
"implementation": AutomaticSpeechRecognitionEvaluator,
|
73 |
+
"default_metric_name": "wer",
|
74 |
+
},
|
75 |
+
"audio-classification": {
|
76 |
+
"implementation": AudioClassificationEvaluator,
|
77 |
+
"default_metric_name": "accuracy",
|
78 |
+
},
|
79 |
+
}
|
80 |
+
|
81 |
+
|
82 |
+
def get_supported_tasks() -> List[str]:
|
83 |
+
"""
|
84 |
+
Returns a list of supported task strings.
|
85 |
+
"""
|
86 |
+
return list(SUPPORTED_EVALUATOR_TASKS.keys())
|
87 |
+
|
88 |
+
|
89 |
+
def check_task(task: str) -> Dict:
|
90 |
+
"""
|
91 |
+
Checks an incoming task string, to validate it's correct and returns the default Evaluator class and default metric
|
92 |
+
name. It first performs a check to validata that the string is a valid `Pipeline` task, then it checks if it's a
|
93 |
+
valid `Evaluator` task. `Evaluator` tasks are a substet of `Pipeline` tasks.
|
94 |
+
Args:
|
95 |
+
task (`str`):
|
96 |
+
The task defining which evaluator will be returned. Currently accepted tasks are:
|
97 |
+
- `"image-classification"`
|
98 |
+
- `"question-answering"`
|
99 |
+
- `"text-classification"` (alias `"sentiment-analysis"` available)
|
100 |
+
- `"token-classification"`
|
101 |
+
Returns:
|
102 |
+
task_defaults: `dict`, contains the implementasion class of a give Evaluator and the default metric name.
|
103 |
+
"""
|
104 |
+
if task in TASK_ALIASES:
|
105 |
+
task = TASK_ALIASES[task]
|
106 |
+
if not check_pipeline_task(task):
|
107 |
+
raise KeyError(f"Unknown task {task}, available tasks are: {get_supported_tasks()}.")
|
108 |
+
if task in SUPPORTED_EVALUATOR_TASKS.keys() and task in SUPPORTED_PIPELINE_TASKS.keys():
|
109 |
+
return SUPPORTED_EVALUATOR_TASKS[task]
|
110 |
+
raise KeyError(f"Unknown task {task}, available tasks are: {get_supported_tasks()}.")
|
111 |
+
|
112 |
+
|
113 |
+
def evaluator(task: str = None) -> Evaluator:
|
114 |
+
"""
|
115 |
+
Utility factory method to build an [`Evaluator`].
|
116 |
+
Evaluators encapsulate a task and a default metric name. They leverage `pipeline` functionality from `transformers`
|
117 |
+
to simplify the evaluation of multiple combinations of models, datasets and metrics for a given task.
|
118 |
+
Args:
|
119 |
+
task (`str`):
|
120 |
+
The task defining which evaluator will be returned. Currently accepted tasks are:
|
121 |
+
- `"image-classification"`: will return a [`ImageClassificationEvaluator`].
|
122 |
+
- `"question-answering"`: will return a [`QuestionAnsweringEvaluator`].
|
123 |
+
- `"text-classification"` (alias `"sentiment-analysis"` available): will return a [`TextClassificationEvaluator`].
|
124 |
+
- `"token-classification"`: will return a [`TokenClassificationEvaluator`].
|
125 |
+
Returns:
|
126 |
+
[`Evaluator`]: An evaluator suitable for the task.
|
127 |
+
Examples:
|
128 |
+
```python
|
129 |
+
>>> from evaluate import evaluator
|
130 |
+
>>> # Sentiment analysis evaluator
|
131 |
+
>>> evaluator("sentiment-analysis")
|
132 |
+
```"""
|
133 |
+
if not TRANSFORMERS_AVAILABLE:
|
134 |
+
raise ImportError(
|
135 |
+
"If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[transformers]`."
|
136 |
+
)
|
137 |
+
targeted_task = check_task(task)
|
138 |
+
evaluator_class = targeted_task["implementation"]
|
139 |
+
default_metric_name = targeted_task["default_metric_name"]
|
140 |
+
return evaluator_class(task=task, default_metric_name=default_metric_name)
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/audio_classification.cpython-310.pyc
ADDED
Binary file (5.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/automatic_speech_recognition.cpython-310.pyc
ADDED
Binary file (4.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/base.cpython-310.pyc
ADDED
Binary file (19.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/image_classification.cpython-310.pyc
ADDED
Binary file (4.64 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/question_answering.cpython-310.pyc
ADDED
Binary file (8.25 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text2text_generation.cpython-310.pyc
ADDED
Binary file (7.72 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text_classification.cpython-310.pyc
ADDED
Binary file (5.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/text_generation.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/token_classification.cpython-310.pyc
ADDED
Binary file (9.78 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/audio_classification.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from numbers import Number
|
16 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
from datasets import Dataset
|
19 |
+
from typing_extensions import Literal
|
20 |
+
|
21 |
+
from ..module import EvaluationModule
|
22 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
23 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
24 |
+
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
28 |
+
|
29 |
+
|
30 |
+
TASK_DOCUMENTATION = r"""
|
31 |
+
Examples:
|
32 |
+
|
33 |
+
<Tip>
|
34 |
+
|
35 |
+
Remember that, in order to process audio files, you need ffmpeg installed (https://ffmpeg.org/download.html)
|
36 |
+
|
37 |
+
</Tip>
|
38 |
+
|
39 |
+
```python
|
40 |
+
>>> from evaluate import evaluator
|
41 |
+
>>> from datasets import load_dataset
|
42 |
+
|
43 |
+
>>> task_evaluator = evaluator("audio-classification")
|
44 |
+
>>> data = load_dataset("superb", 'ks', split="test[:40]")
|
45 |
+
>>> results = task_evaluator.compute(
|
46 |
+
>>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"",
|
47 |
+
>>> data=data,
|
48 |
+
>>> label_column="label",
|
49 |
+
>>> input_column="file",
|
50 |
+
>>> metric="accuracy",
|
51 |
+
>>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"}
|
52 |
+
>>> )
|
53 |
+
```
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
The evaluator supports raw audio data as well, in the form of a numpy array. However, be aware that calling
|
58 |
+
the audio column automatically decodes and resamples the audio files, which can be slow for large datasets.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
```python
|
63 |
+
>>> from evaluate import evaluator
|
64 |
+
>>> from datasets import load_dataset
|
65 |
+
|
66 |
+
>>> task_evaluator = evaluator("audio-classification")
|
67 |
+
>>> data = load_dataset("superb", 'ks', split="test[:40]")
|
68 |
+
>>> data = data.map(lambda example: {"audio": example["audio"]["array"]})
|
69 |
+
>>> results = task_evaluator.compute(
|
70 |
+
>>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"",
|
71 |
+
>>> data=data,
|
72 |
+
>>> label_column="label",
|
73 |
+
>>> input_column="audio",
|
74 |
+
>>> metric="accuracy",
|
75 |
+
>>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"}
|
76 |
+
>>> )
|
77 |
+
```
|
78 |
+
"""
|
79 |
+
|
80 |
+
|
81 |
+
class AudioClassificationEvaluator(Evaluator):
|
82 |
+
"""
|
83 |
+
Audio classification evaluator.
|
84 |
+
This audio classification evaluator can currently be loaded from [`evaluator`] using the default task name
|
85 |
+
`audio-classification`.
|
86 |
+
Methods in this class assume a data format compatible with the [`transformers.AudioClassificationPipeline`].
|
87 |
+
"""
|
88 |
+
|
89 |
+
PIPELINE_KWARGS = {}
|
90 |
+
|
91 |
+
def __init__(self, task="audio-classification", default_metric_name=None):
|
92 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
93 |
+
|
94 |
+
def predictions_processor(self, predictions, label_mapping):
|
95 |
+
pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions]
|
96 |
+
pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label]
|
97 |
+
|
98 |
+
return {"predictions": pred_label}
|
99 |
+
|
100 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
101 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
102 |
+
def compute(
|
103 |
+
self,
|
104 |
+
model_or_pipeline: Union[
|
105 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
106 |
+
] = None,
|
107 |
+
data: Union[str, Dataset] = None,
|
108 |
+
subset: Optional[str] = None,
|
109 |
+
split: Optional[str] = None,
|
110 |
+
metric: Union[str, EvaluationModule] = None,
|
111 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
112 |
+
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
|
113 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
114 |
+
confidence_level: float = 0.95,
|
115 |
+
n_resamples: int = 9999,
|
116 |
+
device: int = None,
|
117 |
+
random_state: Optional[int] = None,
|
118 |
+
input_column: str = "file",
|
119 |
+
label_column: str = "label",
|
120 |
+
label_mapping: Optional[Dict[str, Number]] = None,
|
121 |
+
) -> Tuple[Dict[str, float], Any]:
|
122 |
+
|
123 |
+
"""
|
124 |
+
input_column (`str`, defaults to `"file"`):
|
125 |
+
The name of the column containing either the audio files or a raw waveform, represented as a numpy array, in the dataset specified by `data`.
|
126 |
+
label_column (`str`, defaults to `"label"`):
|
127 |
+
The name of the column containing the labels in the dataset specified by `data`.
|
128 |
+
label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`):
|
129 |
+
We want to map class labels defined by the model in the pipeline to values consistent with those
|
130 |
+
defined in the `label_column` of the `data` dataset.
|
131 |
+
"""
|
132 |
+
|
133 |
+
result = super().compute(
|
134 |
+
model_or_pipeline=model_or_pipeline,
|
135 |
+
data=data,
|
136 |
+
subset=subset,
|
137 |
+
split=split,
|
138 |
+
metric=metric,
|
139 |
+
tokenizer=tokenizer,
|
140 |
+
feature_extractor=feature_extractor,
|
141 |
+
strategy=strategy,
|
142 |
+
confidence_level=confidence_level,
|
143 |
+
n_resamples=n_resamples,
|
144 |
+
device=device,
|
145 |
+
random_state=random_state,
|
146 |
+
input_column=input_column,
|
147 |
+
label_column=label_column,
|
148 |
+
label_mapping=label_mapping,
|
149 |
+
)
|
150 |
+
|
151 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/automatic_speech_recognition.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
from datasets import Dataset
|
18 |
+
from typing_extensions import Literal
|
19 |
+
|
20 |
+
from ..module import EvaluationModule
|
21 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
22 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
23 |
+
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
27 |
+
|
28 |
+
|
29 |
+
TASK_DOCUMENTATION = r"""
|
30 |
+
Examples:
|
31 |
+
```python
|
32 |
+
>>> from evaluate import evaluator
|
33 |
+
>>> from datasets import load_dataset
|
34 |
+
>>> task_evaluator = evaluator("automatic-speech-recognition")
|
35 |
+
>>> data = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="validation[:40]")
|
36 |
+
>>> results = task_evaluator.compute(
|
37 |
+
>>> model_or_pipeline="https://huggingface.co/openai/whisper-tiny.en",
|
38 |
+
>>> data=data,
|
39 |
+
>>> input_column="path",
|
40 |
+
>>> label_column="sentence",
|
41 |
+
>>> metric="wer",
|
42 |
+
>>> )
|
43 |
+
```
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
class AutomaticSpeechRecognitionEvaluator(Evaluator):
|
48 |
+
"""
|
49 |
+
Automatic speech recognition evaluator.
|
50 |
+
This automatic speech recognition evaluator can currently be loaded from [`evaluator`] using the default task name
|
51 |
+
`automatic-speech-recognition`.
|
52 |
+
Methods in this class assume a data format compatible with the [`AutomaticSpeechRecognitionPipeline`].
|
53 |
+
"""
|
54 |
+
|
55 |
+
PIPELINE_KWARGS = {"truncation": True}
|
56 |
+
|
57 |
+
def __init__(self, task="automatic-speech-recognition", default_metric_name=None):
|
58 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
59 |
+
|
60 |
+
def predictions_processor(self, predictions, label_mapping):
|
61 |
+
return {"predictions": [pred["text"] for pred in predictions]}
|
62 |
+
|
63 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
64 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
65 |
+
def compute(
|
66 |
+
self,
|
67 |
+
model_or_pipeline: Union[
|
68 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
69 |
+
] = None,
|
70 |
+
data: Union[str, Dataset] = None,
|
71 |
+
subset: Optional[str] = None,
|
72 |
+
split: Optional[str] = None,
|
73 |
+
metric: Union[str, EvaluationModule] = None,
|
74 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
75 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
76 |
+
confidence_level: float = 0.95,
|
77 |
+
n_resamples: int = 9999,
|
78 |
+
device: int = None,
|
79 |
+
random_state: Optional[int] = None,
|
80 |
+
input_column: str = "path",
|
81 |
+
label_column: str = "sentence",
|
82 |
+
generation_kwargs: dict = None,
|
83 |
+
) -> Tuple[Dict[str, float], Any]:
|
84 |
+
"""
|
85 |
+
input_column (`str`, defaults to `"path"`):
|
86 |
+
the name of the column containing the input audio path in the dataset specified by `data`.
|
87 |
+
label_column (`str`, defaults to `"sentence"`):
|
88 |
+
the name of the column containing the labels in the dataset specified by `data`.
|
89 |
+
generation_kwargs (`Dict`, *optional*, defaults to `None`):
|
90 |
+
The generation kwargs are passed to the pipeline and set the text generation strategy.
|
91 |
+
"""
|
92 |
+
|
93 |
+
if generation_kwargs is not None:
|
94 |
+
self.PIPELINE_KWARGS.update(generation_kwargs)
|
95 |
+
|
96 |
+
result = super().compute(
|
97 |
+
model_or_pipeline=model_or_pipeline,
|
98 |
+
data=data,
|
99 |
+
subset=subset,
|
100 |
+
split=split,
|
101 |
+
metric=metric,
|
102 |
+
tokenizer=tokenizer,
|
103 |
+
strategy=strategy,
|
104 |
+
confidence_level=confidence_level,
|
105 |
+
n_resamples=n_resamples,
|
106 |
+
device=device,
|
107 |
+
random_state=random_state,
|
108 |
+
input_column=input_column,
|
109 |
+
label_column=label_column,
|
110 |
+
)
|
111 |
+
|
112 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/base.py
ADDED
@@ -0,0 +1,544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from numbers import Number
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
+
|
19 |
+
# Lint as: python3
|
20 |
+
from datasets import Dataset, load_dataset
|
21 |
+
|
22 |
+
from evaluate.evaluator.utils import choose_split
|
23 |
+
|
24 |
+
|
25 |
+
try:
|
26 |
+
from scipy.stats import bootstrap
|
27 |
+
|
28 |
+
SCIPY_AVAILABLE = True
|
29 |
+
except ImportError:
|
30 |
+
SCIPY_AVAILABLE = False
|
31 |
+
|
32 |
+
try:
|
33 |
+
import transformers
|
34 |
+
from transformers import Pipeline, pipeline
|
35 |
+
|
36 |
+
TRANSFORMERS_AVAILABLE = True
|
37 |
+
except ImportError:
|
38 |
+
TRANSFORMERS_AVAILABLE = False
|
39 |
+
|
40 |
+
from time import perf_counter
|
41 |
+
|
42 |
+
from typing_extensions import Literal
|
43 |
+
|
44 |
+
from ..loading import load
|
45 |
+
from ..module import EvaluationModule
|
46 |
+
from ..utils.logging import get_logger
|
47 |
+
from .utils import DatasetColumn
|
48 |
+
|
49 |
+
|
50 |
+
logger = get_logger(__name__)
|
51 |
+
|
52 |
+
|
53 |
+
EVALUTOR_COMPUTE_START_DOCSTRING = r"""
|
54 |
+
Compute the metric for a given pipeline and dataset combination.
|
55 |
+
Args:
|
56 |
+
model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`):
|
57 |
+
If the argument in not specified, we initialize the default pipeline for the task (in this case
|
58 |
+
`text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or
|
59 |
+
is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the
|
60 |
+
argument specifies a pre-initialized pipeline.
|
61 |
+
data (`str` or `Dataset`, defaults to `None`):
|
62 |
+
Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset
|
63 |
+
name, and load it. Otherwise we assume it represents a pre-loaded dataset.
|
64 |
+
subset (`str`, defaults to `None`):
|
65 |
+
Defines which dataset subset to load. If `None` is passed the default subset is loaded.
|
66 |
+
split (`str`, defaults to `None`):
|
67 |
+
Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function.
|
68 |
+
metric (`str` or `EvaluationModule`, defaults to `None`):
|
69 |
+
Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and
|
70 |
+
load it. Otherwise we assume it represents a pre-loaded metric.
|
71 |
+
tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`):
|
72 |
+
Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for
|
73 |
+
which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore
|
74 |
+
this argument.
|
75 |
+
strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"):
|
76 |
+
specifies the evaluation strategy. Possible values are:
|
77 |
+
- `"simple"` - we evaluate the metric and return the scores.
|
78 |
+
- `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each
|
79 |
+
of the returned metric keys, using `scipy`'s `bootstrap` method
|
80 |
+
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html.
|
81 |
+
confidence_level (`float`, defaults to `0.95`):
|
82 |
+
The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen.
|
83 |
+
n_resamples (`int`, defaults to `9999`):
|
84 |
+
The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen.
|
85 |
+
device (`int`, defaults to `None`):
|
86 |
+
Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive
|
87 |
+
integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and
|
88 |
+
CUDA:0 used if available, CPU otherwise.
|
89 |
+
random_state (`int`, *optional*, defaults to `None`):
|
90 |
+
The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for
|
91 |
+
debugging.
|
92 |
+
"""
|
93 |
+
|
94 |
+
EVALUATOR_COMPUTE_RETURN_DOCSTRING = r"""
|
95 |
+
Return:
|
96 |
+
A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the
|
97 |
+
`"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict`
|
98 |
+
containing the score, the confidence interval and the standard error calculated for each metric key.
|
99 |
+
"""
|
100 |
+
|
101 |
+
|
102 |
+
class Evaluator(ABC):
|
103 |
+
"""
|
104 |
+
The [`Evaluator`] class is the class from which all evaluators inherit. Refer to this class for methods shared across
|
105 |
+
different evaluators.
|
106 |
+
Base class implementing evaluator operations.
|
107 |
+
"""
|
108 |
+
|
109 |
+
PIPELINE_KWARGS = {}
|
110 |
+
METRIC_KWARGS = {}
|
111 |
+
|
112 |
+
def __init__(self, task: str, default_metric_name: str = None):
|
113 |
+
if not TRANSFORMERS_AVAILABLE:
|
114 |
+
raise ImportError(
|
115 |
+
"If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[evaluator]`."
|
116 |
+
)
|
117 |
+
if not SCIPY_AVAILABLE:
|
118 |
+
raise ImportError(
|
119 |
+
"If you want to use the `Evaluator` you need `scipy>=1.7.1`. Run `pip install evaluate[evaluator]`."
|
120 |
+
)
|
121 |
+
self.task = task
|
122 |
+
self.default_metric_name = default_metric_name
|
123 |
+
|
124 |
+
@staticmethod
|
125 |
+
def _compute_confidence_interval(
|
126 |
+
metric,
|
127 |
+
metric_inputs,
|
128 |
+
metric_keys: List[str],
|
129 |
+
confidence_level: float = 0.95,
|
130 |
+
n_resamples: int = 9999,
|
131 |
+
random_state: Optional[int] = None,
|
132 |
+
) -> Dict[str, Any]:
|
133 |
+
"""
|
134 |
+
A utility function enabling the confidence interval calculation for metrics computed
|
135 |
+
by the evaluator based on `scipy`'s `bootstrap` method.
|
136 |
+
"""
|
137 |
+
|
138 |
+
# bootstrap only works with functions that use args and no kwargs
|
139 |
+
def build_args_metric(metric, key, **kwargs):
|
140 |
+
def args_metric(*args):
|
141 |
+
return metric.compute(**{k: v for k, v in zip(kwargs.keys(), args)})[key]
|
142 |
+
|
143 |
+
return args_metric
|
144 |
+
|
145 |
+
bootstrap_dict = {}
|
146 |
+
for key in metric_keys:
|
147 |
+
bs = bootstrap(
|
148 |
+
data=list(metric_inputs.values()),
|
149 |
+
statistic=build_args_metric(metric, key, **metric_inputs),
|
150 |
+
paired=True,
|
151 |
+
vectorized=False,
|
152 |
+
confidence_level=confidence_level,
|
153 |
+
n_resamples=n_resamples,
|
154 |
+
random_state=random_state,
|
155 |
+
)
|
156 |
+
bootstrap_dict[key] = {
|
157 |
+
"confidence_interval": (bs.confidence_interval.low, bs.confidence_interval.high),
|
158 |
+
"standard_error": bs.standard_error,
|
159 |
+
}
|
160 |
+
return bootstrap_dict
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def _compute_time_perf(start_time: float, end_time: float, num_samples: int) -> Dict[str, Any]:
|
164 |
+
"""
|
165 |
+
A utility function computing time performance metrics:
|
166 |
+
- `total_time_in_seconds` - pipeline inference runtime for the evaluation data in seconds,
|
167 |
+
- `samples_per_second` - pipeline throughput in the number of samples per second.
|
168 |
+
- `latency_in_seconds` - pipeline inference runtime for the evaluation data in seconds per sample,
|
169 |
+
|
170 |
+
"""
|
171 |
+
latency = end_time - start_time
|
172 |
+
throughput = num_samples / latency
|
173 |
+
latency_sample = 1.0 / throughput
|
174 |
+
|
175 |
+
return {
|
176 |
+
"total_time_in_seconds": latency,
|
177 |
+
"samples_per_second": throughput,
|
178 |
+
"latency_in_seconds": latency_sample,
|
179 |
+
}
|
180 |
+
|
181 |
+
@staticmethod
|
182 |
+
def _infer_device() -> int:
|
183 |
+
"""Helper function to check if GPU or CPU is available for inference."""
|
184 |
+
# try infer with torch first
|
185 |
+
try:
|
186 |
+
import torch
|
187 |
+
|
188 |
+
if torch.cuda.is_available():
|
189 |
+
device = 0 # first GPU
|
190 |
+
else:
|
191 |
+
device = -1 # CPU
|
192 |
+
except ImportError:
|
193 |
+
# if not available try TF
|
194 |
+
try:
|
195 |
+
import tensorflow as tf
|
196 |
+
|
197 |
+
if len(tf.config.list_physical_devices("GPU")) > 0:
|
198 |
+
device = 0 # first GPU
|
199 |
+
else:
|
200 |
+
device = -1 # CPU
|
201 |
+
except ImportError:
|
202 |
+
device = -1
|
203 |
+
|
204 |
+
if device == -1:
|
205 |
+
logger.info("No GPU found. The default device for pipeline inference is set to CPU.")
|
206 |
+
else:
|
207 |
+
logger.info("GPU found. The default device for pipeline inference is set to GPU (CUDA:0).")
|
208 |
+
|
209 |
+
return device
|
210 |
+
|
211 |
+
@abstractmethod
|
212 |
+
def predictions_processor(self, *args, **kwargs):
|
213 |
+
"""
|
214 |
+
A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric.
|
215 |
+
"""
|
216 |
+
raise NotImplementedError()
|
217 |
+
|
218 |
+
def compute(
|
219 |
+
self,
|
220 |
+
model_or_pipeline: Union[
|
221 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
222 |
+
] = None,
|
223 |
+
data: Union[str, Dataset] = None,
|
224 |
+
subset: Optional[str] = None,
|
225 |
+
split: Optional[str] = None,
|
226 |
+
metric: Union[str, EvaluationModule] = None,
|
227 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
228 |
+
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
|
229 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
230 |
+
confidence_level: float = 0.95,
|
231 |
+
n_resamples: int = 9999,
|
232 |
+
device: int = None,
|
233 |
+
random_state: Optional[int] = None,
|
234 |
+
input_column: str = "text",
|
235 |
+
label_column: str = "label",
|
236 |
+
label_mapping: Optional[Dict[str, Number]] = None,
|
237 |
+
) -> Dict[str, float]:
|
238 |
+
|
239 |
+
result = {}
|
240 |
+
|
241 |
+
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
|
242 |
+
|
243 |
+
# Prepare inputs
|
244 |
+
data = self.load_data(data=data, subset=subset, split=split)
|
245 |
+
metric_inputs, pipe_inputs = self.prepare_data(data=data, input_column=input_column, label_column=label_column)
|
246 |
+
pipe = self.prepare_pipeline(
|
247 |
+
model_or_pipeline=model_or_pipeline,
|
248 |
+
tokenizer=tokenizer,
|
249 |
+
feature_extractor=feature_extractor,
|
250 |
+
device=device,
|
251 |
+
)
|
252 |
+
metric = self.prepare_metric(metric)
|
253 |
+
|
254 |
+
# Compute predictions
|
255 |
+
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
|
256 |
+
predictions = self.predictions_processor(predictions, label_mapping)
|
257 |
+
|
258 |
+
metric_inputs.update(predictions)
|
259 |
+
|
260 |
+
# Compute metrics from references and predictions
|
261 |
+
metric_results = self.compute_metric(
|
262 |
+
metric=metric,
|
263 |
+
metric_inputs=metric_inputs,
|
264 |
+
strategy=strategy,
|
265 |
+
confidence_level=confidence_level,
|
266 |
+
n_resamples=n_resamples,
|
267 |
+
random_state=random_state,
|
268 |
+
)
|
269 |
+
|
270 |
+
# TODO: To clarify why `wer` and `cer` return float
|
271 |
+
# even though metric.compute contract says that it
|
272 |
+
# returns Optional[dict].
|
273 |
+
if type(metric_results) == float:
|
274 |
+
metric_results = {metric.name: metric_results}
|
275 |
+
|
276 |
+
result.update(metric_results)
|
277 |
+
result.update(perf_results)
|
278 |
+
|
279 |
+
return result
|
280 |
+
|
281 |
+
@staticmethod
|
282 |
+
def check_for_mismatch_in_device_setup(device, model_or_pipeline):
|
283 |
+
if device is not None and device != -1 and isinstance(model_or_pipeline, Pipeline):
|
284 |
+
if model_or_pipeline.device.type == "cpu":
|
285 |
+
raise ValueError(
|
286 |
+
"The value of the `device` kwarg passed to `compute` suggests that this pipe should be run on an "
|
287 |
+
"accelerator, but the pipe was instantiated on CPU. Pass `device` to the pipeline during "
|
288 |
+
"initialization to use an accelerator, or pass `device=None` to `compute`. "
|
289 |
+
)
|
290 |
+
elif device != model_or_pipeline.device.index:
|
291 |
+
raise ValueError(
|
292 |
+
f"This pipeline was instantiated on device {model_or_pipeline.device.index} but device={device} was passed to `compute`."
|
293 |
+
)
|
294 |
+
|
295 |
+
def check_required_columns(self, data: Union[str, Dataset], columns_names: Dict[str, str]):
|
296 |
+
"""
|
297 |
+
Ensure the columns required for the evaluation are present in the dataset.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
data (`str` or [`Dataset`]):
|
301 |
+
Specifies the dataset we will run evaluation on.
|
302 |
+
columns_names (`List[str]`):
|
303 |
+
List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method,
|
304 |
+
while the values are the column names to check.
|
305 |
+
|
306 |
+
Example:
|
307 |
+
|
308 |
+
```py
|
309 |
+
>>> from datasets import load_dataset
|
310 |
+
>>> from evaluate import evaluator
|
311 |
+
>>> data = load_dataset("rotten_tomatoes', split="train")
|
312 |
+
>>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"})
|
313 |
+
```
|
314 |
+
"""
|
315 |
+
for input_name, column_name in columns_names.items():
|
316 |
+
if column_name not in data.column_names:
|
317 |
+
raise ValueError(
|
318 |
+
f"Invalid `{input_name}` {column_name} specified. The dataset contains the following columns: {data.column_names}."
|
319 |
+
)
|
320 |
+
|
321 |
+
@staticmethod
|
322 |
+
def get_dataset_split(data, subset=None, split=None):
|
323 |
+
"""
|
324 |
+
Infers which split to use if `None` is given.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
data (`str`):
|
328 |
+
Name of dataset.
|
329 |
+
subset (`str`):
|
330 |
+
Name of config for datasets with multiple configurations (e.g. 'glue/cola').
|
331 |
+
split (`str`, defaults to `None`):
|
332 |
+
Split to use.
|
333 |
+
Returns:
|
334 |
+
`split`: `str` containing which split to use
|
335 |
+
|
336 |
+
Example:
|
337 |
+
|
338 |
+
```py
|
339 |
+
>>> from evaluate import evaluator
|
340 |
+
>>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes")
|
341 |
+
WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST
|
342 |
+
'test'
|
343 |
+
```
|
344 |
+
"""
|
345 |
+
if split is None:
|
346 |
+
split = choose_split(data, subset)
|
347 |
+
logger.warning(f"Dataset split not defined! Automatically evaluating with split: {split.upper()}")
|
348 |
+
return split
|
349 |
+
|
350 |
+
def load_data(self, data: Union[str, Dataset], subset: str = None, split: str = None):
|
351 |
+
"""
|
352 |
+
Load dataset with given subset and split.
|
353 |
+
Args:
|
354 |
+
data ([`Dataset`] or `str`, defaults to `None`):
|
355 |
+
Specifies the dataset we will run evaluation on. If it is of
|
356 |
+
type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset.
|
357 |
+
subset (`str`, defaults to `None`):
|
358 |
+
Specifies dataset subset to be passed to `name` in `load_dataset`. To be
|
359 |
+
used with datasets with several configurations (e.g. glue/sst2).
|
360 |
+
split (`str`, defaults to `None`):
|
361 |
+
User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`).
|
362 |
+
If not defined and data is a `str` type, will automatically select the best one via `choose_split()`.
|
363 |
+
Returns:
|
364 |
+
data ([`Dataset`]): Loaded dataset which will be used for evaluation.
|
365 |
+
|
366 |
+
Example:
|
367 |
+
|
368 |
+
```py
|
369 |
+
>>> from evaluate import evaluator
|
370 |
+
>>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train")
|
371 |
+
Dataset({
|
372 |
+
features: ['text', 'label'],
|
373 |
+
num_rows: 8530
|
374 |
+
})
|
375 |
+
```
|
376 |
+
"""
|
377 |
+
if isinstance(data, str):
|
378 |
+
split = self.get_dataset_split(data, subset, split)
|
379 |
+
data = load_dataset(data, name=subset, split=split)
|
380 |
+
return data
|
381 |
+
elif isinstance(data, Dataset):
|
382 |
+
if split is not None or subset is not None:
|
383 |
+
logger.warning("`data` is a preloaded Dataset! Ignoring `subset` and `split`.")
|
384 |
+
return data
|
385 |
+
else:
|
386 |
+
raise ValueError(
|
387 |
+
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
|
388 |
+
)
|
389 |
+
|
390 |
+
def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs):
|
391 |
+
"""
|
392 |
+
Prepare data.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
data ([`Dataset`]):
|
396 |
+
Specifies the dataset we will run evaluation on.
|
397 |
+
input_column (`str`, defaults to `"text"`):
|
398 |
+
The name of the column containing the text feature in the dataset specified by `data`.
|
399 |
+
second_input_column(`str`, *optional*):
|
400 |
+
The name of the column containing the second text feature if there is one. Otherwise, set to `None`.
|
401 |
+
label_column (`str`, defaults to `"label"`):
|
402 |
+
The name of the column containing the labels in the dataset specified by `data`.
|
403 |
+
Returns:
|
404 |
+
`dict`: metric inputs.
|
405 |
+
`list`: pipeline inputs.
|
406 |
+
|
407 |
+
Example:
|
408 |
+
|
409 |
+
```py
|
410 |
+
>>> from evaluate import evaluator
|
411 |
+
>>> from datasets import load_dataset
|
412 |
+
|
413 |
+
>>> ds = load_dataset("rotten_tomatoes", split="train")
|
414 |
+
>>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label")
|
415 |
+
```
|
416 |
+
"""
|
417 |
+
|
418 |
+
self.check_required_columns(data, {"input_column": input_column, "label_column": label_column})
|
419 |
+
|
420 |
+
return {"references": data[label_column]}, DatasetColumn(data, input_column)
|
421 |
+
|
422 |
+
def prepare_pipeline(
|
423 |
+
self,
|
424 |
+
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821
|
425 |
+
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
426 |
+
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
427 |
+
device: int = None,
|
428 |
+
):
|
429 |
+
"""
|
430 |
+
Prepare pipeline.
|
431 |
+
|
432 |
+
Args:
|
433 |
+
model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`):
|
434 |
+
If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or
|
435 |
+
is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the
|
436 |
+
argument specifies a pre-initialized pipeline.
|
437 |
+
preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`):
|
438 |
+
Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for
|
439 |
+
which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore
|
440 |
+
this argument.
|
441 |
+
Returns:
|
442 |
+
The initialized pipeline.
|
443 |
+
|
444 |
+
Example:
|
445 |
+
|
446 |
+
```py
|
447 |
+
>>> from evaluate import evaluator
|
448 |
+
>>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased")
|
449 |
+
```
|
450 |
+
"""
|
451 |
+
|
452 |
+
if device is None:
|
453 |
+
device = self._infer_device()
|
454 |
+
|
455 |
+
if (
|
456 |
+
isinstance(model_or_pipeline, str)
|
457 |
+
or isinstance(model_or_pipeline, transformers.PreTrainedModel)
|
458 |
+
or isinstance(model_or_pipeline, transformers.TFPreTrainedModel)
|
459 |
+
):
|
460 |
+
pipe = pipeline(
|
461 |
+
self.task,
|
462 |
+
model=model_or_pipeline,
|
463 |
+
tokenizer=tokenizer,
|
464 |
+
feature_extractor=feature_extractor,
|
465 |
+
device=device,
|
466 |
+
)
|
467 |
+
else:
|
468 |
+
if model_or_pipeline is None:
|
469 |
+
pipe = pipeline(self.task, device=device)
|
470 |
+
else:
|
471 |
+
pipe = model_or_pipeline
|
472 |
+
if tokenizer is not None and feature_extractor is not None:
|
473 |
+
logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).")
|
474 |
+
if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")):
|
475 |
+
raise ValueError(
|
476 |
+
f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task."
|
477 |
+
)
|
478 |
+
return pipe
|
479 |
+
|
480 |
+
def prepare_metric(self, metric: Union[str, EvaluationModule]):
|
481 |
+
"""
|
482 |
+
Prepare metric.
|
483 |
+
|
484 |
+
Args:
|
485 |
+
metric (`str` or [`EvaluationModule`], defaults to `None`):
|
486 |
+
Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and
|
487 |
+
load it. Otherwise we assume it represents a pre-loaded metric.
|
488 |
+
|
489 |
+
Returns:
|
490 |
+
The loaded metric.
|
491 |
+
|
492 |
+
Example:
|
493 |
+
|
494 |
+
```py
|
495 |
+
>>> from evaluate import evaluator
|
496 |
+
>>> evaluator("text-classification").prepare_metric("accuracy")
|
497 |
+
```
|
498 |
+
"""
|
499 |
+
# Prepare metric.
|
500 |
+
if metric is None:
|
501 |
+
if self.default_metric_name is None:
|
502 |
+
raise ValueError(
|
503 |
+
"`Evaluator` doesn't specify a default metric. Please specify a valid `metric` argument."
|
504 |
+
)
|
505 |
+
metric = load(self.default_metric_name)
|
506 |
+
elif isinstance(metric, str):
|
507 |
+
metric = load(metric)
|
508 |
+
|
509 |
+
return metric
|
510 |
+
|
511 |
+
def call_pipeline(self, pipe, *args, **kwargs):
|
512 |
+
start_time = perf_counter()
|
513 |
+
pipe_output = pipe(*args, **kwargs, **self.PIPELINE_KWARGS)
|
514 |
+
end_time = perf_counter()
|
515 |
+
return pipe_output, self._compute_time_perf(start_time, end_time, len(pipe_output))
|
516 |
+
|
517 |
+
def compute_metric(
|
518 |
+
self,
|
519 |
+
metric: EvaluationModule,
|
520 |
+
metric_inputs: Dict,
|
521 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
522 |
+
confidence_level: float = 0.95,
|
523 |
+
n_resamples: int = 9999,
|
524 |
+
random_state: Optional[int] = None,
|
525 |
+
):
|
526 |
+
"""Compute and return metrics."""
|
527 |
+
result = metric.compute(**metric_inputs, **self.METRIC_KWARGS)
|
528 |
+
|
529 |
+
if strategy == "bootstrap":
|
530 |
+
metric_keys = result.keys()
|
531 |
+
bootstrap_dict = self._compute_confidence_interval(
|
532 |
+
metric,
|
533 |
+
metric_inputs,
|
534 |
+
metric_keys,
|
535 |
+
confidence_level,
|
536 |
+
n_resamples,
|
537 |
+
random_state,
|
538 |
+
)
|
539 |
+
for key in metric_keys:
|
540 |
+
bootstrap_dict[key]["score"] = result[key]
|
541 |
+
|
542 |
+
return bootstrap_dict
|
543 |
+
|
544 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/image_classification.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from numbers import Number
|
16 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
from datasets import Dataset
|
19 |
+
from typing_extensions import Literal
|
20 |
+
|
21 |
+
from ..module import EvaluationModule
|
22 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
23 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
24 |
+
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
28 |
+
|
29 |
+
|
30 |
+
TASK_DOCUMENTATION = r"""
|
31 |
+
Examples:
|
32 |
+
```python
|
33 |
+
>>> from evaluate import evaluator
|
34 |
+
>>> from datasets import load_dataset
|
35 |
+
>>> task_evaluator = evaluator("image-classification")
|
36 |
+
>>> data = load_dataset("beans", split="test[:40]")
|
37 |
+
>>> results = task_evaluator.compute(
|
38 |
+
>>> model_or_pipeline="nateraw/vit-base-beans",
|
39 |
+
>>> data=data,
|
40 |
+
>>> label_column="labels",
|
41 |
+
>>> metric="accuracy",
|
42 |
+
>>> label_mapping={'angular_leaf_spot': 0, 'bean_rust': 1, 'healthy': 2},
|
43 |
+
>>> strategy="bootstrap"
|
44 |
+
>>> )
|
45 |
+
```
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
class ImageClassificationEvaluator(Evaluator):
|
50 |
+
"""
|
51 |
+
Image classification evaluator.
|
52 |
+
This image classification evaluator can currently be loaded from [`evaluator`] using the default task name
|
53 |
+
`image-classification`.
|
54 |
+
Methods in this class assume a data format compatible with the [`ImageClassificationPipeline`].
|
55 |
+
"""
|
56 |
+
|
57 |
+
PIPELINE_KWARGS = {}
|
58 |
+
|
59 |
+
def __init__(self, task="image-classification", default_metric_name=None):
|
60 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
61 |
+
|
62 |
+
def predictions_processor(self, predictions, label_mapping):
|
63 |
+
pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions]
|
64 |
+
pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label]
|
65 |
+
|
66 |
+
return {"predictions": pred_label}
|
67 |
+
|
68 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
69 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
70 |
+
def compute(
|
71 |
+
self,
|
72 |
+
model_or_pipeline: Union[
|
73 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
74 |
+
] = None,
|
75 |
+
data: Union[str, Dataset] = None,
|
76 |
+
subset: Optional[str] = None,
|
77 |
+
split: Optional[str] = None,
|
78 |
+
metric: Union[str, EvaluationModule] = None,
|
79 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
80 |
+
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
|
81 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
82 |
+
confidence_level: float = 0.95,
|
83 |
+
n_resamples: int = 9999,
|
84 |
+
device: int = None,
|
85 |
+
random_state: Optional[int] = None,
|
86 |
+
input_column: str = "image",
|
87 |
+
label_column: str = "label",
|
88 |
+
label_mapping: Optional[Dict[str, Number]] = None,
|
89 |
+
) -> Tuple[Dict[str, float], Any]:
|
90 |
+
|
91 |
+
"""
|
92 |
+
input_column (`str`, defaults to `"image"`):
|
93 |
+
The name of the column containing the images as PIL ImageFile in the dataset specified by `data`.
|
94 |
+
label_column (`str`, defaults to `"label"`):
|
95 |
+
The name of the column containing the labels in the dataset specified by `data`.
|
96 |
+
label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`):
|
97 |
+
We want to map class labels defined by the model in the pipeline to values consistent with those
|
98 |
+
defined in the `label_column` of the `data` dataset.
|
99 |
+
"""
|
100 |
+
|
101 |
+
result = super().compute(
|
102 |
+
model_or_pipeline=model_or_pipeline,
|
103 |
+
data=data,
|
104 |
+
subset=subset,
|
105 |
+
split=split,
|
106 |
+
metric=metric,
|
107 |
+
tokenizer=tokenizer,
|
108 |
+
feature_extractor=feature_extractor,
|
109 |
+
strategy=strategy,
|
110 |
+
confidence_level=confidence_level,
|
111 |
+
n_resamples=n_resamples,
|
112 |
+
device=device,
|
113 |
+
random_state=random_state,
|
114 |
+
input_column=input_column,
|
115 |
+
label_column=label_column,
|
116 |
+
label_mapping=label_mapping,
|
117 |
+
)
|
118 |
+
|
119 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/question_answering.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
# Lint as: python3
|
18 |
+
from datasets import Dataset
|
19 |
+
|
20 |
+
|
21 |
+
try:
|
22 |
+
TRANSFORMERS_AVAILABLE = True
|
23 |
+
except ImportError:
|
24 |
+
TRANSFORMERS_AVAILABLE = False
|
25 |
+
|
26 |
+
from typing_extensions import Literal
|
27 |
+
|
28 |
+
from ..module import EvaluationModule
|
29 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
30 |
+
from ..utils.logging import get_logger
|
31 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
32 |
+
from .utils import DatasetColumn
|
33 |
+
|
34 |
+
|
35 |
+
if TYPE_CHECKING:
|
36 |
+
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
37 |
+
|
38 |
+
|
39 |
+
logger = get_logger(__name__)
|
40 |
+
|
41 |
+
|
42 |
+
TASK_DOCUMENTATION = r"""
|
43 |
+
Examples:
|
44 |
+
```python
|
45 |
+
>>> from evaluate import evaluator
|
46 |
+
>>> from datasets import load_dataset
|
47 |
+
>>> task_evaluator = evaluator("question-answering")
|
48 |
+
>>> data = load_dataset("squad", split="validation[:2]")
|
49 |
+
>>> results = task_evaluator.compute(
|
50 |
+
>>> model_or_pipeline="sshleifer/tiny-distilbert-base-cased-distilled-squad",
|
51 |
+
>>> data=data,
|
52 |
+
>>> metric="squad",
|
53 |
+
>>> )
|
54 |
+
```
|
55 |
+
|
56 |
+
<Tip>
|
57 |
+
|
58 |
+
Datasets where the answer may be missing in the context are supported, for example SQuAD v2 dataset. In this case, it is safer to pass `squad_v2_format=True` to
|
59 |
+
the compute() call.
|
60 |
+
|
61 |
+
</Tip>
|
62 |
+
|
63 |
+
```python
|
64 |
+
>>> from evaluate import evaluator
|
65 |
+
>>> from datasets import load_dataset
|
66 |
+
>>> task_evaluator = evaluator("question-answering")
|
67 |
+
>>> data = load_dataset("squad_v2", split="validation[:2]")
|
68 |
+
>>> results = task_evaluator.compute(
|
69 |
+
>>> model_or_pipeline="mrm8488/bert-tiny-finetuned-squadv2",
|
70 |
+
>>> data=data,
|
71 |
+
>>> metric="squad_v2",
|
72 |
+
>>> squad_v2_format=True,
|
73 |
+
>>> )
|
74 |
+
```
|
75 |
+
"""
|
76 |
+
|
77 |
+
|
78 |
+
class QuestionAnsweringEvaluator(Evaluator):
|
79 |
+
"""
|
80 |
+
Question answering evaluator. This evaluator handles
|
81 |
+
[**extractive** question answering](https://huggingface.co/docs/transformers/task_summary#extractive-question-answering),
|
82 |
+
where the answer to the question is extracted from a context.
|
83 |
+
|
84 |
+
This question answering evaluator can currently be loaded from [`evaluator`] using the default task name
|
85 |
+
`question-answering`.
|
86 |
+
|
87 |
+
Methods in this class assume a data format compatible with the
|
88 |
+
[`~transformers.QuestionAnsweringPipeline`].
|
89 |
+
"""
|
90 |
+
|
91 |
+
PIPELINE_KWARGS = {}
|
92 |
+
|
93 |
+
def __init__(self, task="question-answering", default_metric_name=None):
|
94 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
95 |
+
|
96 |
+
def prepare_data(
|
97 |
+
self, data: Dataset, question_column: str, context_column: str, id_column: str, label_column: str
|
98 |
+
):
|
99 |
+
"""Prepare data."""
|
100 |
+
if data is None:
|
101 |
+
raise ValueError(
|
102 |
+
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
|
103 |
+
)
|
104 |
+
self.check_required_columns(
|
105 |
+
data,
|
106 |
+
{
|
107 |
+
"question_column": question_column,
|
108 |
+
"context_column": context_column,
|
109 |
+
"id_column": id_column,
|
110 |
+
"label_column": label_column,
|
111 |
+
},
|
112 |
+
)
|
113 |
+
|
114 |
+
metric_inputs = dict()
|
115 |
+
metric_inputs["references"] = [
|
116 |
+
{"id": element[id_column], "answers": element[label_column]} for element in data
|
117 |
+
]
|
118 |
+
|
119 |
+
return metric_inputs, {
|
120 |
+
"question": DatasetColumn(data, question_column),
|
121 |
+
"context": DatasetColumn(data, context_column),
|
122 |
+
}
|
123 |
+
|
124 |
+
def is_squad_v2_format(self, data: Dataset, label_column: str = "answers"):
|
125 |
+
"""
|
126 |
+
Check if the provided dataset follows the squad v2 data schema, namely possible samples where the answer is not in the context.
|
127 |
+
In this case, the answer text list should be `[]`.
|
128 |
+
"""
|
129 |
+
original_num_rows = data.num_rows
|
130 |
+
nonempty_num_rows = data.filter(
|
131 |
+
lambda x: len(x[label_column]["text"]) > 0, load_from_cache_file=False
|
132 |
+
).num_rows
|
133 |
+
if original_num_rows > nonempty_num_rows:
|
134 |
+
return True
|
135 |
+
else:
|
136 |
+
return False
|
137 |
+
|
138 |
+
def predictions_processor(self, predictions: List, squad_v2_format: bool, ids: List):
|
139 |
+
result = []
|
140 |
+
for i in range(len(predictions)):
|
141 |
+
pred = {"prediction_text": predictions[i]["answer"], "id": ids[i]}
|
142 |
+
if squad_v2_format:
|
143 |
+
pred["no_answer_probability"] = predictions[i]["score"]
|
144 |
+
result.append(pred)
|
145 |
+
return {"predictions": result}
|
146 |
+
|
147 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
148 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
149 |
+
def compute(
|
150 |
+
self,
|
151 |
+
model_or_pipeline: Union[
|
152 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
153 |
+
] = None,
|
154 |
+
data: Union[str, Dataset] = None,
|
155 |
+
subset: Optional[str] = None,
|
156 |
+
split: Optional[str] = None,
|
157 |
+
metric: Union[str, EvaluationModule] = None,
|
158 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
159 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
160 |
+
confidence_level: float = 0.95,
|
161 |
+
n_resamples: int = 9999,
|
162 |
+
device: int = None,
|
163 |
+
random_state: Optional[int] = None,
|
164 |
+
question_column: str = "question",
|
165 |
+
context_column: str = "context",
|
166 |
+
id_column: str = "id",
|
167 |
+
label_column: str = "answers",
|
168 |
+
squad_v2_format: Optional[bool] = None,
|
169 |
+
) -> Tuple[Dict[str, float], Any]:
|
170 |
+
"""
|
171 |
+
question_column (`str`, defaults to `"question"`):
|
172 |
+
The name of the column containing the question in the dataset specified by `data`.
|
173 |
+
context_column (`str`, defaults to `"context"`):
|
174 |
+
The name of the column containing the context in the dataset specified by `data`.
|
175 |
+
id_column (`str`, defaults to `"id"`):
|
176 |
+
The name of the column containing the identification field of the question and answer pair in the
|
177 |
+
dataset specified by `data`.
|
178 |
+
label_column (`str`, defaults to `"answers"`):
|
179 |
+
The name of the column containing the answers in the dataset specified by `data`.
|
180 |
+
squad_v2_format (`bool`, *optional*, defaults to `None`):
|
181 |
+
Whether the dataset follows the format of squad_v2 dataset. This is the case when the provided dataset
|
182 |
+
has questions where the answer is not in the context, more specifically when are answers as
|
183 |
+
`{"text": [], "answer_start": []}` in the answer column. If all questions have at least one answer, this parameter
|
184 |
+
should be set to `False`. If this parameter is not provided, the format will be automatically inferred.
|
185 |
+
"""
|
186 |
+
result = {}
|
187 |
+
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
|
188 |
+
|
189 |
+
data = self.load_data(data=data, subset=subset, split=split)
|
190 |
+
metric_inputs, pipe_inputs = self.prepare_data(
|
191 |
+
data=data,
|
192 |
+
question_column=question_column,
|
193 |
+
context_column=context_column,
|
194 |
+
id_column=id_column,
|
195 |
+
label_column=label_column,
|
196 |
+
)
|
197 |
+
|
198 |
+
if squad_v2_format is None:
|
199 |
+
squad_v2_format = self.is_squad_v2_format(data=data, label_column=label_column)
|
200 |
+
logger.warning(
|
201 |
+
f"`squad_v2_format` parameter not provided to QuestionAnsweringEvaluator.compute(). Automatically inferred `squad_v2_format` as {squad_v2_format}."
|
202 |
+
)
|
203 |
+
pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device)
|
204 |
+
|
205 |
+
metric = self.prepare_metric(metric)
|
206 |
+
|
207 |
+
if squad_v2_format and metric.name == "squad":
|
208 |
+
logger.warning(
|
209 |
+
"The dataset has SQuAD v2 format but you are using the SQuAD metric. Consider passing the 'squad_v2' metric."
|
210 |
+
)
|
211 |
+
if not squad_v2_format and metric.name == "squad_v2":
|
212 |
+
logger.warning(
|
213 |
+
"The dataset has SQuAD v1 format but you are using the SQuAD v2 metric. Consider passing the 'squad' metric."
|
214 |
+
)
|
215 |
+
|
216 |
+
if squad_v2_format:
|
217 |
+
self.PIPELINE_KWARGS["handle_impossible_answer"] = True
|
218 |
+
else:
|
219 |
+
self.PIPELINE_KWARGS["handle_impossible_answer"] = False
|
220 |
+
|
221 |
+
# Compute predictions
|
222 |
+
predictions, perf_results = self.call_pipeline(pipe, **pipe_inputs)
|
223 |
+
predictions = self.predictions_processor(predictions, squad_v2_format=squad_v2_format, ids=data[id_column])
|
224 |
+
metric_inputs.update(predictions)
|
225 |
+
|
226 |
+
# Compute metrics from references and predictions
|
227 |
+
metric_results = self.compute_metric(
|
228 |
+
metric=metric,
|
229 |
+
metric_inputs=metric_inputs,
|
230 |
+
strategy=strategy,
|
231 |
+
confidence_level=confidence_level,
|
232 |
+
n_resamples=n_resamples,
|
233 |
+
random_state=random_state,
|
234 |
+
)
|
235 |
+
|
236 |
+
result.update(metric_results)
|
237 |
+
result.update(perf_results)
|
238 |
+
|
239 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text2text_generation.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
from datasets import Dataset
|
18 |
+
from typing_extensions import Literal
|
19 |
+
|
20 |
+
from ..module import EvaluationModule
|
21 |
+
from ..utils.file_utils import add_start_docstrings
|
22 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
23 |
+
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
27 |
+
|
28 |
+
|
29 |
+
TASK_DOCUMENTATION_KWARGS = r"""
|
30 |
+
input_column (`str`, defaults to `"text"`):
|
31 |
+
the name of the column containing the input text in the dataset specified by `data`.
|
32 |
+
label_column (`str`, defaults to `"label"`):
|
33 |
+
the name of the column containing the labels in the dataset specified by `data`.
|
34 |
+
generation_kwargs (`Dict`, *optional*, defaults to `None`):
|
35 |
+
The generation kwargs are passed to the pipeline and set the text generation strategy.
|
36 |
+
"""
|
37 |
+
|
38 |
+
TEXT2TEXT_TASK_DOCSTRING_EXAMPLE = r"""
|
39 |
+
Examples:
|
40 |
+
```python
|
41 |
+
>>> from evaluate import evaluator
|
42 |
+
>>> from datasets import load_dataset
|
43 |
+
>>> task_evaluator = evaluator("text2text-generation")
|
44 |
+
>>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]")
|
45 |
+
>>> results = task_evaluator.compute(
|
46 |
+
>>> model_or_pipeline="facebook/bart-large-cnn",
|
47 |
+
>>> data=data,
|
48 |
+
>>> input_column="article",
|
49 |
+
>>> label_column="highlights",
|
50 |
+
>>> metric="rouge",
|
51 |
+
>>> )
|
52 |
+
```
|
53 |
+
"""
|
54 |
+
|
55 |
+
SUMMARIZATION_TASK_DOCSTRING_EXAMPLE = r"""
|
56 |
+
Examples:
|
57 |
+
```python
|
58 |
+
>>> from evaluate import evaluator
|
59 |
+
>>> from datasets import load_dataset
|
60 |
+
>>> task_evaluator = evaluator("summarization")
|
61 |
+
>>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]")
|
62 |
+
>>> results = task_evaluator.compute(
|
63 |
+
>>> model_or_pipeline="facebook/bart-large-cnn",
|
64 |
+
>>> data=data,
|
65 |
+
>>> input_column="article",
|
66 |
+
>>> label_column="highlights",
|
67 |
+
>>> )
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
TRANSLATION_TASK_DOCSTRING_EXAMPLE = r"""
|
73 |
+
Examples:
|
74 |
+
```python
|
75 |
+
>>> from evaluate import evaluator
|
76 |
+
>>> from datasets import load_dataset
|
77 |
+
>>> task_evaluator = evaluator("translation")
|
78 |
+
>>> data = load_dataset("wmt19", "fr-de", split="validation[:40]")
|
79 |
+
>>> data = data.map(lambda x: {"text": x["translation"]["de"], "label": x["translation"]["fr"]})
|
80 |
+
>>> results = task_evaluator.compute(
|
81 |
+
>>> model_or_pipeline="Helsinki-NLP/opus-mt-de-fr",
|
82 |
+
>>> data=data,
|
83 |
+
>>> )
|
84 |
+
```
|
85 |
+
"""
|
86 |
+
|
87 |
+
|
88 |
+
class Text2TextGenerationEvaluator(Evaluator):
|
89 |
+
"""
|
90 |
+
Text2Text generation evaluator.
|
91 |
+
This Text2Text generation evaluator can currently be loaded from [`evaluator`] using the default task name
|
92 |
+
`text2text-generation`.
|
93 |
+
Methods in this class assume a data format compatible with the [`~transformers.Text2TextGenerationPipeline`].
|
94 |
+
"""
|
95 |
+
|
96 |
+
PREDICTION_PREFIX = "generated"
|
97 |
+
PIPELINE_KWARGS = {"truncation": True}
|
98 |
+
|
99 |
+
def __init__(self, task="text2text-generation", default_metric_name=None):
|
100 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
101 |
+
|
102 |
+
def predictions_processor(self, predictions, label_mapping):
|
103 |
+
return {"predictions": [pred[f"{self.PREDICTION_PREFIX}_text"] for pred in predictions]}
|
104 |
+
|
105 |
+
@add_start_docstrings(
|
106 |
+
EVALUTOR_COMPUTE_START_DOCSTRING,
|
107 |
+
TASK_DOCUMENTATION_KWARGS,
|
108 |
+
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
|
109 |
+
TEXT2TEXT_TASK_DOCSTRING_EXAMPLE,
|
110 |
+
)
|
111 |
+
def compute(
|
112 |
+
self,
|
113 |
+
model_or_pipeline: Union[
|
114 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
115 |
+
] = None,
|
116 |
+
data: Union[str, Dataset] = None,
|
117 |
+
subset: Optional[str] = None,
|
118 |
+
split: Optional[str] = None,
|
119 |
+
metric: Union[str, EvaluationModule] = None,
|
120 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
121 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
122 |
+
confidence_level: float = 0.95,
|
123 |
+
n_resamples: int = 9999,
|
124 |
+
device: int = None,
|
125 |
+
random_state: Optional[int] = None,
|
126 |
+
input_column: str = "text",
|
127 |
+
label_column: str = "label",
|
128 |
+
generation_kwargs: dict = None,
|
129 |
+
) -> Tuple[Dict[str, float], Any]:
|
130 |
+
if generation_kwargs is not None:
|
131 |
+
self.PIPELINE_KWARGS.update(generation_kwargs)
|
132 |
+
|
133 |
+
result = super().compute(
|
134 |
+
model_or_pipeline=model_or_pipeline,
|
135 |
+
data=data,
|
136 |
+
subset=subset,
|
137 |
+
split=split,
|
138 |
+
metric=metric,
|
139 |
+
tokenizer=tokenizer,
|
140 |
+
strategy=strategy,
|
141 |
+
confidence_level=confidence_level,
|
142 |
+
n_resamples=n_resamples,
|
143 |
+
device=device,
|
144 |
+
random_state=random_state,
|
145 |
+
input_column=input_column,
|
146 |
+
label_column=label_column,
|
147 |
+
)
|
148 |
+
|
149 |
+
return result
|
150 |
+
|
151 |
+
|
152 |
+
class SummarizationEvaluator(Text2TextGenerationEvaluator):
|
153 |
+
"""
|
154 |
+
Text summarization evaluator.
|
155 |
+
This text summarization evaluator can currently be loaded from [`evaluator`] using the default task name
|
156 |
+
`summarization`.
|
157 |
+
Methods in this class assume a data format compatible with the [`SummarizationEvaluator`].
|
158 |
+
"""
|
159 |
+
|
160 |
+
PREDICTION_PREFIX = "summary"
|
161 |
+
PIPELINE_KWARGS = {"truncation": True}
|
162 |
+
|
163 |
+
def __init__(self, task="summarization", default_metric_name=None):
|
164 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
165 |
+
|
166 |
+
@add_start_docstrings(
|
167 |
+
EVALUTOR_COMPUTE_START_DOCSTRING,
|
168 |
+
TASK_DOCUMENTATION_KWARGS,
|
169 |
+
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
|
170 |
+
SUMMARIZATION_TASK_DOCSTRING_EXAMPLE,
|
171 |
+
)
|
172 |
+
def compute(
|
173 |
+
self,
|
174 |
+
model_or_pipeline: Union[
|
175 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
176 |
+
] = None,
|
177 |
+
data: Union[str, Dataset] = None,
|
178 |
+
subset: Optional[str] = None,
|
179 |
+
split: Optional[str] = None,
|
180 |
+
metric: Union[str, EvaluationModule] = None,
|
181 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
182 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
183 |
+
confidence_level: float = 0.95,
|
184 |
+
n_resamples: int = 9999,
|
185 |
+
device: int = None,
|
186 |
+
random_state: Optional[int] = None,
|
187 |
+
input_column: str = "text",
|
188 |
+
label_column: str = "label",
|
189 |
+
generation_kwargs: dict = None,
|
190 |
+
) -> Tuple[Dict[str, float], Any]:
|
191 |
+
result = super().compute(
|
192 |
+
model_or_pipeline=model_or_pipeline,
|
193 |
+
data=data,
|
194 |
+
subset=subset,
|
195 |
+
split=split,
|
196 |
+
metric=metric,
|
197 |
+
tokenizer=tokenizer,
|
198 |
+
strategy=strategy,
|
199 |
+
confidence_level=confidence_level,
|
200 |
+
n_resamples=n_resamples,
|
201 |
+
device=device,
|
202 |
+
random_state=random_state,
|
203 |
+
input_column=input_column,
|
204 |
+
label_column=label_column,
|
205 |
+
generation_kwargs=generation_kwargs,
|
206 |
+
)
|
207 |
+
|
208 |
+
return result
|
209 |
+
|
210 |
+
|
211 |
+
class TranslationEvaluator(Text2TextGenerationEvaluator):
|
212 |
+
"""
|
213 |
+
Translation evaluator.
|
214 |
+
This translation generation evaluator can currently be loaded from [`evaluator`] using the default task name
|
215 |
+
`translation`.
|
216 |
+
Methods in this class assume a data format compatible with the [`~transformers.TranslationPipeline`].
|
217 |
+
"""
|
218 |
+
|
219 |
+
PREDICTION_PREFIX = "translation"
|
220 |
+
PIPELINE_KWARGS = {"truncation": True}
|
221 |
+
|
222 |
+
def __init__(self, task="translation", default_metric_name=None):
|
223 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
224 |
+
|
225 |
+
@add_start_docstrings(
|
226 |
+
EVALUTOR_COMPUTE_START_DOCSTRING,
|
227 |
+
TASK_DOCUMENTATION_KWARGS,
|
228 |
+
EVALUATOR_COMPUTE_RETURN_DOCSTRING,
|
229 |
+
TRANSLATION_TASK_DOCSTRING_EXAMPLE,
|
230 |
+
)
|
231 |
+
def compute(
|
232 |
+
self,
|
233 |
+
model_or_pipeline: Union[
|
234 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
235 |
+
] = None,
|
236 |
+
data: Union[str, Dataset] = None,
|
237 |
+
subset: Optional[str] = None,
|
238 |
+
split: Optional[str] = None,
|
239 |
+
metric: Union[str, EvaluationModule] = None,
|
240 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
241 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
242 |
+
confidence_level: float = 0.95,
|
243 |
+
n_resamples: int = 9999,
|
244 |
+
device: int = None,
|
245 |
+
random_state: Optional[int] = None,
|
246 |
+
input_column: str = "text",
|
247 |
+
label_column: str = "label",
|
248 |
+
generation_kwargs: dict = None,
|
249 |
+
) -> Tuple[Dict[str, float], Any]:
|
250 |
+
result = super().compute(
|
251 |
+
model_or_pipeline=model_or_pipeline,
|
252 |
+
data=data,
|
253 |
+
subset=subset,
|
254 |
+
split=split,
|
255 |
+
metric=metric,
|
256 |
+
tokenizer=tokenizer,
|
257 |
+
strategy=strategy,
|
258 |
+
confidence_level=confidence_level,
|
259 |
+
n_resamples=n_resamples,
|
260 |
+
device=device,
|
261 |
+
random_state=random_state,
|
262 |
+
input_column=input_column,
|
263 |
+
label_column=label_column,
|
264 |
+
generation_kwargs=generation_kwargs,
|
265 |
+
)
|
266 |
+
|
267 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text_classification.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from numbers import Number
|
16 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
from datasets import Dataset, load_dataset
|
19 |
+
from typing_extensions import Literal
|
20 |
+
|
21 |
+
from ..module import EvaluationModule
|
22 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
23 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
24 |
+
from .utils import DatasetColumnPair
|
25 |
+
|
26 |
+
|
27 |
+
if TYPE_CHECKING:
|
28 |
+
from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
29 |
+
|
30 |
+
|
31 |
+
TASK_DOCUMENTATION = r"""
|
32 |
+
Examples:
|
33 |
+
```python
|
34 |
+
>>> from evaluate import evaluator
|
35 |
+
>>> from datasets import load_dataset
|
36 |
+
>>> task_evaluator = evaluator("text-classification")
|
37 |
+
>>> data = load_dataset("imdb", split="test[:2]")
|
38 |
+
>>> results = task_evaluator.compute(
|
39 |
+
>>> model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli",
|
40 |
+
>>> data=data,
|
41 |
+
>>> metric="accuracy",
|
42 |
+
>>> label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0},
|
43 |
+
>>> strategy="bootstrap",
|
44 |
+
>>> n_resamples=10,
|
45 |
+
>>> random_state=0
|
46 |
+
>>> )
|
47 |
+
```
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
class TextClassificationEvaluator(Evaluator):
|
52 |
+
"""
|
53 |
+
Text classification evaluator.
|
54 |
+
This text classification evaluator can currently be loaded from [`evaluator`] using the default task name
|
55 |
+
`text-classification` or with a `"sentiment-analysis"` alias.
|
56 |
+
Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual
|
57 |
+
feature as input and a categorical label as output.
|
58 |
+
"""
|
59 |
+
|
60 |
+
PIPELINE_KWARGS = {"truncation": True}
|
61 |
+
|
62 |
+
def __init__(self, task="text-classification", default_metric_name=None):
|
63 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
64 |
+
|
65 |
+
def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str):
|
66 |
+
if data is None:
|
67 |
+
raise ValueError(
|
68 |
+
"Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
|
69 |
+
)
|
70 |
+
|
71 |
+
self.check_required_columns(data, {"input_column": input_column, "label_column": label_column})
|
72 |
+
|
73 |
+
if second_input_column is not None:
|
74 |
+
self.check_required_columns(data, {"second_input_column": second_input_column})
|
75 |
+
|
76 |
+
data = load_dataset(data) if isinstance(data, str) else data
|
77 |
+
|
78 |
+
return {"references": data[label_column]}, DatasetColumnPair(
|
79 |
+
data, input_column, second_input_column, "text", "text_pair"
|
80 |
+
)
|
81 |
+
|
82 |
+
def predictions_processor(self, predictions, label_mapping):
|
83 |
+
predictions = [
|
84 |
+
label_mapping[element["label"]] if label_mapping is not None else element["label"]
|
85 |
+
for element in predictions
|
86 |
+
]
|
87 |
+
return {"predictions": predictions}
|
88 |
+
|
89 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
90 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
91 |
+
def compute(
|
92 |
+
self,
|
93 |
+
model_or_pipeline: Union[
|
94 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
95 |
+
] = None,
|
96 |
+
data: Union[str, Dataset] = None,
|
97 |
+
subset: Optional[str] = None,
|
98 |
+
split: Optional[str] = None,
|
99 |
+
metric: Union[str, EvaluationModule] = None,
|
100 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
101 |
+
feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821
|
102 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
103 |
+
confidence_level: float = 0.95,
|
104 |
+
n_resamples: int = 9999,
|
105 |
+
device: int = None,
|
106 |
+
random_state: Optional[int] = None,
|
107 |
+
input_column: str = "text",
|
108 |
+
second_input_column: Optional[str] = None,
|
109 |
+
label_column: str = "label",
|
110 |
+
label_mapping: Optional[Dict[str, Number]] = None,
|
111 |
+
) -> Tuple[Dict[str, float], Any]:
|
112 |
+
"""
|
113 |
+
input_column (`str`, *optional*, defaults to `"text"`):
|
114 |
+
The name of the column containing the text feature in the dataset specified by `data`.
|
115 |
+
second_input_column (`str`, *optional*, defaults to `None`):
|
116 |
+
The name of the second column containing the text features. This may be useful for classification tasks
|
117 |
+
as MNLI, where two columns are used.
|
118 |
+
label_column (`str`, defaults to `"label"`):
|
119 |
+
The name of the column containing the labels in the dataset specified by `data`.
|
120 |
+
label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`):
|
121 |
+
We want to map class labels defined by the model in the pipeline to values consistent with those
|
122 |
+
defined in the `label_column` of the `data` dataset.
|
123 |
+
"""
|
124 |
+
|
125 |
+
result = {}
|
126 |
+
|
127 |
+
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
|
128 |
+
|
129 |
+
# Prepare inputs
|
130 |
+
data = self.load_data(data=data, subset=subset, split=split)
|
131 |
+
metric_inputs, pipe_inputs = self.prepare_data(
|
132 |
+
data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column
|
133 |
+
)
|
134 |
+
pipe = self.prepare_pipeline(
|
135 |
+
model_or_pipeline=model_or_pipeline,
|
136 |
+
tokenizer=tokenizer,
|
137 |
+
feature_extractor=feature_extractor,
|
138 |
+
device=device,
|
139 |
+
)
|
140 |
+
metric = self.prepare_metric(metric)
|
141 |
+
|
142 |
+
# Compute predictions
|
143 |
+
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
|
144 |
+
predictions = self.predictions_processor(predictions, label_mapping)
|
145 |
+
metric_inputs.update(predictions)
|
146 |
+
|
147 |
+
# Compute metrics from references and predictions
|
148 |
+
metric_results = self.compute_metric(
|
149 |
+
metric=metric,
|
150 |
+
metric_inputs=metric_inputs,
|
151 |
+
strategy=strategy,
|
152 |
+
confidence_level=confidence_level,
|
153 |
+
n_resamples=n_resamples,
|
154 |
+
random_state=random_state,
|
155 |
+
)
|
156 |
+
|
157 |
+
result.update(metric_results)
|
158 |
+
result.update(perf_results)
|
159 |
+
|
160 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/text_generation.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Dict, Tuple
|
16 |
+
|
17 |
+
from datasets import Dataset
|
18 |
+
|
19 |
+
from .base import Evaluator
|
20 |
+
from .utils import DatasetColumn
|
21 |
+
|
22 |
+
|
23 |
+
TASK_DOCUMENTATION_KWARGS = r"""
|
24 |
+
input_column (`str`, defaults to `"text"`):
|
25 |
+
the name of the column containing the input text in the dataset specified by `data`.
|
26 |
+
generation_kwargs (`Dict`, *optional*, defaults to `None`):
|
27 |
+
The generation kwargs are passed to the pipeline and set the text generation strategy.
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
class TextGenerationEvaluator(Evaluator):
|
32 |
+
"""
|
33 |
+
Text generation evaluator.
|
34 |
+
This Text generation evaluator can currently be loaded from [`evaluator`] using the default task name
|
35 |
+
`text-generation`.
|
36 |
+
Methods in this class assume a data format compatible with the [`~transformers.TextGenerationPipeline`].
|
37 |
+
"""
|
38 |
+
|
39 |
+
def predictions_processor(self, predictions, *args, **kwargs):
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
predictions: A list of lists of dicts
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
`dict`: All the generated texts are flattened and stored under the "data" key.
|
46 |
+
"""
|
47 |
+
return {"data": [pred[f"{self.predictions_prefix}_text"] for pred_list in predictions for pred in pred_list]}
|
48 |
+
|
49 |
+
def __init__(self, task="text-generation", default_metric_name=None, predictions_prefix: str = "generated"):
|
50 |
+
super().__init__(task=task, default_metric_name=default_metric_name)
|
51 |
+
self.predictions_prefix = predictions_prefix
|
52 |
+
|
53 |
+
def prepare_data(self, data: Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, DatasetColumn]:
|
54 |
+
"""
|
55 |
+
Prepare data.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
data ([`Dataset`]):
|
59 |
+
Specifies the dataset we will run evaluation on.
|
60 |
+
input_column (`str`, defaults to `"text"`):
|
61 |
+
The name of the column containing the text feature in the dataset specified by `data`.
|
62 |
+
Returns:
|
63 |
+
`dict`: metric inputs.
|
64 |
+
`list`: pipeline inputs.
|
65 |
+
"""
|
66 |
+
|
67 |
+
self.check_required_columns(data, {"input_column": input_column})
|
68 |
+
|
69 |
+
return {}, DatasetColumn(data, input_column)
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/token_classification.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
from datasets import ClassLabel, Dataset, Sequence
|
18 |
+
from typing_extensions import Literal
|
19 |
+
|
20 |
+
from ..module import EvaluationModule
|
21 |
+
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
|
22 |
+
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
|
23 |
+
from .utils import DatasetColumn
|
24 |
+
|
25 |
+
|
26 |
+
if TYPE_CHECKING:
|
27 |
+
from transformers import Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel
|
28 |
+
|
29 |
+
|
30 |
+
TASK_DOCUMENTATION = r"""
|
31 |
+
The dataset input and label columns are expected to be formatted as a list of words and a list of labels respectively, following [conll2003 dataset](https://huggingface.co/datasets/conll2003). Datasets whose inputs are single strings, and labels are a list of offset are not supported.
|
32 |
+
|
33 |
+
Examples:
|
34 |
+
```python
|
35 |
+
>>> from evaluate import evaluator
|
36 |
+
>>> from datasets import load_dataset
|
37 |
+
>>> task_evaluator = evaluator("token-classification")
|
38 |
+
>>> data = load_dataset("conll2003", split="validation[:2]")
|
39 |
+
>>> results = task_evaluator.compute(
|
40 |
+
>>> model_or_pipeline="elastic/distilbert-base-uncased-finetuned-conll03-english",
|
41 |
+
>>> data=data,
|
42 |
+
>>> metric="seqeval",
|
43 |
+
>>> )
|
44 |
+
```
|
45 |
+
|
46 |
+
<Tip>
|
47 |
+
|
48 |
+
For example, the following dataset format is accepted by the evaluator:
|
49 |
+
|
50 |
+
```python
|
51 |
+
dataset = Dataset.from_dict(
|
52 |
+
mapping={
|
53 |
+
"tokens": [["New", "York", "is", "a", "city", "and", "Felix", "a", "person", "."]],
|
54 |
+
"ner_tags": [[1, 2, 0, 0, 0, 0, 3, 0, 0, 0]],
|
55 |
+
},
|
56 |
+
features=Features({
|
57 |
+
"tokens": Sequence(feature=Value(dtype="string")),
|
58 |
+
"ner_tags": Sequence(feature=ClassLabel(names=["O", "B-LOC", "I-LOC", "B-PER", "I-PER"])),
|
59 |
+
}),
|
60 |
+
)
|
61 |
+
```
|
62 |
+
|
63 |
+
</Tip>
|
64 |
+
|
65 |
+
<Tip warning={true}>
|
66 |
+
|
67 |
+
For example, the following dataset format is **not** accepted by the evaluator:
|
68 |
+
|
69 |
+
```python
|
70 |
+
dataset = Dataset.from_dict(
|
71 |
+
mapping={
|
72 |
+
"tokens": [["New York is a city and Felix a person."]],
|
73 |
+
"starts": [[0, 23]],
|
74 |
+
"ends": [[7, 27]],
|
75 |
+
"ner_tags": [["LOC", "PER"]],
|
76 |
+
},
|
77 |
+
features=Features({
|
78 |
+
"tokens": Value(dtype="string"),
|
79 |
+
"starts": Sequence(feature=Value(dtype="int32")),
|
80 |
+
"ends": Sequence(feature=Value(dtype="int32")),
|
81 |
+
"ner_tags": Sequence(feature=Value(dtype="string")),
|
82 |
+
}),
|
83 |
+
)
|
84 |
+
```
|
85 |
+
|
86 |
+
</Tip>
|
87 |
+
"""
|
88 |
+
|
89 |
+
|
90 |
+
class TokenClassificationEvaluator(Evaluator):
|
91 |
+
"""
|
92 |
+
Token classification evaluator.
|
93 |
+
|
94 |
+
This token classification evaluator can currently be loaded from [`evaluator`] using the default task name
|
95 |
+
`token-classification`.
|
96 |
+
|
97 |
+
Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`].
|
98 |
+
"""
|
99 |
+
|
100 |
+
PIPELINE_KWARGS = {"ignore_labels": []}
|
101 |
+
|
102 |
+
def __init__(self, task="token-classification", default_metric_name=None):
|
103 |
+
super().__init__(task, default_metric_name=default_metric_name)
|
104 |
+
|
105 |
+
def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str):
|
106 |
+
"""
|
107 |
+
Transform the pipeline predictions into a list of predicted labels of the same length as the true labels.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
predictions (`List[List[Dict]]`):
|
111 |
+
List of pipeline predictions, where each token has been labeled.
|
112 |
+
words (`List[List[str]]`):
|
113 |
+
Original input data to the pipeline, used to build predicted labels of the same length.
|
114 |
+
join_by (`str`):
|
115 |
+
String to use to join two words. In English, it will typically be " ".
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
`dict`: a dictionary holding the predictions
|
119 |
+
"""
|
120 |
+
preds = []
|
121 |
+
|
122 |
+
# iterate over the data rows
|
123 |
+
for i, prediction in enumerate(predictions):
|
124 |
+
pred_processed = []
|
125 |
+
|
126 |
+
# get a list of tuples giving the indexes of the start and end character of each word
|
127 |
+
words_offsets = self.words_to_offsets(words[i], join_by)
|
128 |
+
|
129 |
+
token_index = 0
|
130 |
+
for word_offset in words_offsets:
|
131 |
+
# for each word, we may keep only the predicted label for the first token, discard the others
|
132 |
+
while prediction[token_index]["start"] < word_offset[0]:
|
133 |
+
token_index += 1
|
134 |
+
|
135 |
+
if prediction[token_index]["start"] > word_offset[0]: # bad indexing
|
136 |
+
pred_processed.append("O")
|
137 |
+
elif prediction[token_index]["start"] == word_offset[0]:
|
138 |
+
pred_processed.append(prediction[token_index]["entity"])
|
139 |
+
|
140 |
+
preds.append(pred_processed)
|
141 |
+
|
142 |
+
return {"predictions": preds}
|
143 |
+
|
144 |
+
def words_to_offsets(self, words: List[str], join_by: str):
|
145 |
+
"""
|
146 |
+
Convert a list of words to a list of offsets, where word are joined by `join_by`.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
words (`List[str]`):
|
150 |
+
List of words to get offsets from.
|
151 |
+
join_by (`str`):
|
152 |
+
String to insert between words.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
`List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words.
|
156 |
+
"""
|
157 |
+
offsets = []
|
158 |
+
|
159 |
+
start = 0
|
160 |
+
for word in words:
|
161 |
+
end = start + len(word) - 1
|
162 |
+
offsets.append((start, end))
|
163 |
+
start = end + len(join_by) + 1
|
164 |
+
|
165 |
+
return offsets
|
166 |
+
|
167 |
+
def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str):
|
168 |
+
super().prepare_data(data, input_column, label_column)
|
169 |
+
|
170 |
+
if not isinstance(data.features[input_column], Sequence) or not isinstance(
|
171 |
+
data.features[label_column], Sequence
|
172 |
+
):
|
173 |
+
raise ValueError(
|
174 |
+
"TokenClassificationEvaluator expects the input and label columns to be provided as lists."
|
175 |
+
)
|
176 |
+
|
177 |
+
# If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
|
178 |
+
# Otherwise, we have to get the list of labels manually.
|
179 |
+
labels_are_int = isinstance(data.features[label_column].feature, ClassLabel)
|
180 |
+
if labels_are_int:
|
181 |
+
label_list = data.features[label_column].feature.names # list of string labels
|
182 |
+
id_to_label = {i: label for i, label in enumerate(label_list)}
|
183 |
+
references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]]
|
184 |
+
elif data.features[label_column].feature.dtype.startswith("int"):
|
185 |
+
raise NotImplementedError(
|
186 |
+
"References provided as integers, but the reference column is not a Sequence of ClassLabels."
|
187 |
+
)
|
188 |
+
else:
|
189 |
+
# In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings
|
190 |
+
# An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset
|
191 |
+
references = data[label_column]
|
192 |
+
|
193 |
+
metric_inputs = {"references": references}
|
194 |
+
data = data.map(lambda x: {input_column: join_by.join(x[input_column])})
|
195 |
+
pipeline_inputs = DatasetColumn(data, input_column)
|
196 |
+
|
197 |
+
return metric_inputs, pipeline_inputs
|
198 |
+
|
199 |
+
def prepare_pipeline(
|
200 |
+
self,
|
201 |
+
model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821
|
202 |
+
tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
203 |
+
feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821
|
204 |
+
device: int = None,
|
205 |
+
):
|
206 |
+
pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device)
|
207 |
+
|
208 |
+
# check the pipeline outputs start characters in its predictions
|
209 |
+
dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS)
|
210 |
+
if dummy_output[0][0]["start"] is None:
|
211 |
+
raise ValueError(
|
212 |
+
"TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). "
|
213 |
+
"Transformers pipelines with a slow tokenizer will raise this error."
|
214 |
+
)
|
215 |
+
|
216 |
+
return pipe
|
217 |
+
|
218 |
+
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
|
219 |
+
@add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
|
220 |
+
def compute(
|
221 |
+
self,
|
222 |
+
model_or_pipeline: Union[
|
223 |
+
str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821
|
224 |
+
] = None,
|
225 |
+
data: Union[str, Dataset] = None,
|
226 |
+
subset: Optional[str] = None,
|
227 |
+
split: str = None,
|
228 |
+
metric: Union[str, EvaluationModule] = None,
|
229 |
+
tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821
|
230 |
+
strategy: Literal["simple", "bootstrap"] = "simple",
|
231 |
+
confidence_level: float = 0.95,
|
232 |
+
n_resamples: int = 9999,
|
233 |
+
device: Optional[int] = None,
|
234 |
+
random_state: Optional[int] = None,
|
235 |
+
input_column: str = "tokens",
|
236 |
+
label_column: str = "ner_tags",
|
237 |
+
join_by: Optional[str] = " ",
|
238 |
+
) -> Tuple[Dict[str, float], Any]:
|
239 |
+
"""
|
240 |
+
input_column (`str`, defaults to `"tokens"`):
|
241 |
+
The name of the column containing the tokens feature in the dataset specified by `data`.
|
242 |
+
label_column (`str`, defaults to `"label"`):
|
243 |
+
The name of the column containing the labels in the dataset specified by `data`.
|
244 |
+
join_by (`str`, *optional*, defaults to `" "`):
|
245 |
+
This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join
|
246 |
+
words to generate a string input. This is especially useful for languages that do not separate words by a space.
|
247 |
+
"""
|
248 |
+
result = {}
|
249 |
+
|
250 |
+
self.check_for_mismatch_in_device_setup(device, model_or_pipeline)
|
251 |
+
|
252 |
+
# Prepare inputs
|
253 |
+
data = self.load_data(data=data, subset=subset, split=split)
|
254 |
+
metric_inputs, pipe_inputs = self.prepare_data(
|
255 |
+
data=data, input_column=input_column, label_column=label_column, join_by=join_by
|
256 |
+
)
|
257 |
+
pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device)
|
258 |
+
metric = self.prepare_metric(metric)
|
259 |
+
|
260 |
+
# Compute predictions
|
261 |
+
predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
|
262 |
+
predictions = self.predictions_processor(predictions, data[input_column], join_by)
|
263 |
+
metric_inputs.update(predictions)
|
264 |
+
|
265 |
+
# Compute metrics from references and predictions
|
266 |
+
metric_results = self.compute_metric(
|
267 |
+
metric=metric,
|
268 |
+
metric_inputs=metric_inputs,
|
269 |
+
strategy=strategy,
|
270 |
+
confidence_level=confidence_level,
|
271 |
+
n_resamples=n_resamples,
|
272 |
+
random_state=random_state,
|
273 |
+
)
|
274 |
+
|
275 |
+
result.update(metric_results)
|
276 |
+
result.update(perf_results)
|
277 |
+
|
278 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/evaluate/evaluator/utils.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import Dataset, get_dataset_split_names
|
2 |
+
|
3 |
+
|
4 |
+
class DatasetColumn(list):
|
5 |
+
"""Helper class to avoid loading a dataset column into memory when accessing it."""
|
6 |
+
|
7 |
+
def __init__(self, dataset: Dataset, key: str):
|
8 |
+
self.dataset = dataset
|
9 |
+
self.key = key
|
10 |
+
|
11 |
+
def __len__(self):
|
12 |
+
return len(self.dataset)
|
13 |
+
|
14 |
+
def __getitem__(self, i):
|
15 |
+
return self.dataset[i][self.key]
|
16 |
+
|
17 |
+
def __iter__(self):
|
18 |
+
return (self.dataset[i][self.key] for i in range(len(self)))
|
19 |
+
|
20 |
+
|
21 |
+
def choose_split(data, subset=None):
|
22 |
+
available_splits = get_dataset_split_names(data, subset)
|
23 |
+
preferred_split_order = [
|
24 |
+
"test",
|
25 |
+
"testing",
|
26 |
+
"eval",
|
27 |
+
"evaluation",
|
28 |
+
"validation",
|
29 |
+
"val",
|
30 |
+
"valid",
|
31 |
+
"dev",
|
32 |
+
"train",
|
33 |
+
"training",
|
34 |
+
]
|
35 |
+
for split in preferred_split_order:
|
36 |
+
if split in available_splits:
|
37 |
+
return split
|
38 |
+
raise ValueError("No dataset split defined! Pass an explicit value to the `split` kwarg.")
|
39 |
+
|
40 |
+
|
41 |
+
class DatasetColumnPair(list):
|
42 |
+
"""Helper class to avoid loading two dataset columns into memory when accessing it."""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
dataset: Dataset,
|
47 |
+
first_col: str,
|
48 |
+
second_col: str,
|
49 |
+
first_key: str,
|
50 |
+
second_key: str,
|
51 |
+
):
|
52 |
+
"""
|
53 |
+
Args:
|
54 |
+
dataset (Dataset): dataset to build an iterator on
|
55 |
+
first_col (str): first column name to use in the dataset
|
56 |
+
second_col (str): second column name to use in the dataset
|
57 |
+
first_key (str): key name used for the first column in the returned dictionary
|
58 |
+
second_key (str): key name used for the second column in the returned dictionary
|
59 |
+
"""
|
60 |
+
self.dataset = dataset
|
61 |
+
|
62 |
+
self.first_col = first_col
|
63 |
+
self.second_col = second_col
|
64 |
+
|
65 |
+
self.first_key = first_key
|
66 |
+
self.second_key = second_key
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.dataset)
|
70 |
+
|
71 |
+
def __getitem__(self, i):
|
72 |
+
return {
|
73 |
+
self.first_key: self.dataset[i][self.first_col],
|
74 |
+
self.second_key: self.dataset[i][self.second_col] if self.second_col else None,
|
75 |
+
}
|
76 |
+
|
77 |
+
def __iter__(self):
|
78 |
+
return (
|
79 |
+
{
|
80 |
+
self.first_key: self.dataset[i][self.first_col],
|
81 |
+
self.second_key: self.dataset[i][self.second_col] if self.second_col else None,
|
82 |
+
}
|
83 |
+
for i in range(len(self))
|
84 |
+
)
|
env-llmeval/lib/python3.10/site-packages/evaluate/hub.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import requests
|
4 |
+
from huggingface_hub import dataset_info, model_info
|
5 |
+
from huggingface_hub.repocard import metadata_update
|
6 |
+
|
7 |
+
from .config import HF_HUB_ALLOWED_TASKS
|
8 |
+
from .utils.logging import get_logger
|
9 |
+
|
10 |
+
|
11 |
+
logger = get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def push_to_hub(
|
15 |
+
model_id: str,
|
16 |
+
task_type: str,
|
17 |
+
dataset_type: str,
|
18 |
+
dataset_name: str,
|
19 |
+
metric_type: str,
|
20 |
+
metric_name: str,
|
21 |
+
metric_value: float,
|
22 |
+
task_name: str = None,
|
23 |
+
dataset_config: str = None,
|
24 |
+
dataset_split: str = None,
|
25 |
+
dataset_revision: str = None,
|
26 |
+
dataset_args: Dict[str, int] = None,
|
27 |
+
metric_config: str = None,
|
28 |
+
metric_args: Dict[str, int] = None,
|
29 |
+
overwrite: bool = False,
|
30 |
+
):
|
31 |
+
r"""
|
32 |
+
Pushes the result of a metric to the metadata of a model repository in the Hub.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
model_id (`str`):
|
36 |
+
Model id from https://hf.co/models.
|
37 |
+
task_type (`str`):
|
38 |
+
Task id, refer to the [Hub allowed tasks](https://github.com/huggingface/evaluate/blob/main/src/evaluate/config.py#L154) for allowed values.
|
39 |
+
dataset_type (`str`):
|
40 |
+
Dataset id from https://hf.co/datasets.
|
41 |
+
dataset_name (`str`):
|
42 |
+
Pretty name for the dataset.
|
43 |
+
metric_type (`str`):
|
44 |
+
Metric id from https://hf.co/metrics.
|
45 |
+
metric_name (`str`):
|
46 |
+
Pretty name for the metric.
|
47 |
+
metric_value (`float`):
|
48 |
+
Computed metric value.
|
49 |
+
task_name (`str`, *optional*):
|
50 |
+
Pretty name for the task.
|
51 |
+
dataset_config (`str`, *optional*):
|
52 |
+
Dataset configuration used in [`~datasets.load_dataset`].
|
53 |
+
See [`~datasets.load_dataset`] for more info.
|
54 |
+
dataset_split (`str`, *optional*):
|
55 |
+
Name of split used for metric computation.
|
56 |
+
dataset_revision (`str`, *optional*):
|
57 |
+
Git hash for the specific version of the dataset.
|
58 |
+
dataset_args (`dict[str, int]`, *optional*):
|
59 |
+
Additional arguments passed to [`~datasets.load_dataset`].
|
60 |
+
metric_config (`str`, *optional*):
|
61 |
+
Configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
|
62 |
+
metric_args (`dict[str, int]`, *optional*):
|
63 |
+
Arguments passed during [`~evaluate.EvaluationModule.compute`].
|
64 |
+
overwrite (`bool`, *optional*, defaults to `False`):
|
65 |
+
If set to `True` an existing metric field can be overwritten, otherwise
|
66 |
+
attempting to overwrite any existing fields will cause an error.
|
67 |
+
|
68 |
+
Example:
|
69 |
+
|
70 |
+
```python
|
71 |
+
>>> push_to_hub(
|
72 |
+
... model_id="huggingface/gpt2-wikitext2",
|
73 |
+
... metric_value=0.5
|
74 |
+
... metric_type="bleu",
|
75 |
+
... metric_name="BLEU",
|
76 |
+
... dataset_name="WikiText",
|
77 |
+
... dataset_type="wikitext",
|
78 |
+
... dataset_split="test",
|
79 |
+
... task_type="text-generation",
|
80 |
+
... task_name="Text Generation"
|
81 |
+
... )
|
82 |
+
```"""
|
83 |
+
if task_type not in HF_HUB_ALLOWED_TASKS:
|
84 |
+
raise ValueError(f"Task type not supported. Task has to be one of {HF_HUB_ALLOWED_TASKS}")
|
85 |
+
|
86 |
+
try:
|
87 |
+
dataset_info(dataset_type)
|
88 |
+
except requests.exceptions.HTTPError:
|
89 |
+
logger.warning(f"Dataset {dataset_type} not found on the Hub at hf.co/datasets/{dataset_type}")
|
90 |
+
|
91 |
+
try:
|
92 |
+
model_info(model_id)
|
93 |
+
except requests.exceptions.HTTPError:
|
94 |
+
raise ValueError(f"Model {model_id} not found on the Hub at hf.co/{model_id}")
|
95 |
+
|
96 |
+
result = {
|
97 |
+
"task": {
|
98 |
+
"type": task_type,
|
99 |
+
},
|
100 |
+
"dataset": {
|
101 |
+
"type": dataset_type,
|
102 |
+
"name": dataset_name,
|
103 |
+
},
|
104 |
+
"metrics": [
|
105 |
+
{
|
106 |
+
"type": metric_type,
|
107 |
+
"value": metric_value,
|
108 |
+
},
|
109 |
+
],
|
110 |
+
}
|
111 |
+
|
112 |
+
if dataset_config is not None:
|
113 |
+
result["dataset"]["config"] = dataset_config
|
114 |
+
if dataset_split is not None:
|
115 |
+
result["dataset"]["split"] = dataset_split
|
116 |
+
if dataset_revision is not None:
|
117 |
+
result["dataset"]["revision"] = dataset_revision
|
118 |
+
if dataset_args is not None:
|
119 |
+
result["dataset"]["args"] = dataset_args
|
120 |
+
|
121 |
+
if task_name is not None:
|
122 |
+
result["task"]["name"] = task_name
|
123 |
+
|
124 |
+
if metric_name is not None:
|
125 |
+
result["metrics"][0]["name"] = metric_name
|
126 |
+
if metric_config is not None:
|
127 |
+
result["metrics"][0]["config"] = metric_config
|
128 |
+
if metric_args is not None:
|
129 |
+
result["metrics"][0]["args"] = metric_args
|
130 |
+
|
131 |
+
metadata = {"model-index": [{"results": [result]}]}
|
132 |
+
|
133 |
+
return metadata_update(repo_id=model_id, metadata=metadata, overwrite=overwrite)
|
env-llmeval/lib/python3.10/site-packages/evaluate/info.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
""" EvaluationModuleInfo records information we know about a dataset and a metric.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import dataclasses
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
from dataclasses import asdict, dataclass, field
|
23 |
+
from typing import List, Optional, Union
|
24 |
+
|
25 |
+
from datasets.features import Features, Value
|
26 |
+
|
27 |
+
from . import config
|
28 |
+
from .utils.logging import get_logger
|
29 |
+
|
30 |
+
|
31 |
+
logger = get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class EvaluationModuleInfo:
|
36 |
+
"""Base class to store information about an evaluation used for `MetricInfo`, `ComparisonInfo`,
|
37 |
+
and `MeasurementInfo`.
|
38 |
+
|
39 |
+
`EvaluationModuleInfo` documents an evaluation, including its name, version, and features.
|
40 |
+
See the constructor arguments and properties for a full list.
|
41 |
+
|
42 |
+
Note: Not all fields are known on construction and may be updated later.
|
43 |
+
"""
|
44 |
+
|
45 |
+
# Set in the dataset scripts
|
46 |
+
description: str
|
47 |
+
citation: str
|
48 |
+
features: Union[Features, List[Features]]
|
49 |
+
inputs_description: str = field(default_factory=str)
|
50 |
+
homepage: str = field(default_factory=str)
|
51 |
+
license: str = field(default_factory=str)
|
52 |
+
codebase_urls: List[str] = field(default_factory=list)
|
53 |
+
reference_urls: List[str] = field(default_factory=list)
|
54 |
+
streamable: bool = False
|
55 |
+
format: Optional[str] = None
|
56 |
+
module_type: str = "metric" # deprecate this in the future
|
57 |
+
|
58 |
+
# Set later by the builder
|
59 |
+
module_name: Optional[str] = None
|
60 |
+
config_name: Optional[str] = None
|
61 |
+
experiment_id: Optional[str] = None
|
62 |
+
|
63 |
+
def __post_init__(self):
|
64 |
+
if self.format is not None:
|
65 |
+
for key, value in self.features.items():
|
66 |
+
if not isinstance(value, Value):
|
67 |
+
raise ValueError(
|
68 |
+
f"When using 'numpy' format, all features should be a `datasets.Value` feature. "
|
69 |
+
f"Here {key} is an instance of {value.__class__.__name__}"
|
70 |
+
)
|
71 |
+
|
72 |
+
def write_to_directory(self, metric_info_dir):
|
73 |
+
"""Write `EvaluationModuleInfo` as JSON to `metric_info_dir`.
|
74 |
+
Also save the license separately in LICENSE.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
metric_info_dir (`str`):
|
78 |
+
The directory to save `metric_info_dir` to.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```py
|
83 |
+
>>> my_metric.info.write_to_directory("/path/to/directory/")
|
84 |
+
```
|
85 |
+
"""
|
86 |
+
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f:
|
87 |
+
json.dump(asdict(self), f)
|
88 |
+
|
89 |
+
with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f:
|
90 |
+
f.write(self.license)
|
91 |
+
|
92 |
+
@classmethod
|
93 |
+
def from_directory(cls, metric_info_dir) -> "EvaluationModuleInfo":
|
94 |
+
"""Create `EvaluationModuleInfo` from the JSON file in `metric_info_dir`.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
metric_info_dir (`str`):
|
98 |
+
The directory containing the `metric_info` JSON file. This
|
99 |
+
should be the root directory of a specific metric version.
|
100 |
+
|
101 |
+
Example:
|
102 |
+
|
103 |
+
```py
|
104 |
+
>>> my_metric = EvaluationModuleInfo.from_directory("/path/to/directory/")
|
105 |
+
```
|
106 |
+
"""
|
107 |
+
logger.info(f"Loading Metric info from {metric_info_dir}")
|
108 |
+
if not metric_info_dir:
|
109 |
+
raise ValueError("Calling EvaluationModuleInfo.from_directory() with undefined metric_info_dir.")
|
110 |
+
|
111 |
+
with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f:
|
112 |
+
metric_info_dict = json.load(f)
|
113 |
+
return cls.from_dict(metric_info_dict)
|
114 |
+
|
115 |
+
@classmethod
|
116 |
+
def from_dict(cls, metric_info_dict: dict) -> "EvaluationModuleInfo":
|
117 |
+
field_names = {f.name for f in dataclasses.fields(cls)}
|
118 |
+
return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
|
119 |
+
|
120 |
+
|
121 |
+
@dataclass
|
122 |
+
class MetricInfo(EvaluationModuleInfo):
|
123 |
+
"""Information about a metric.
|
124 |
+
|
125 |
+
`EvaluationModuleInfo` documents a metric, including its name, version, and features.
|
126 |
+
See the constructor arguments and properties for a full list.
|
127 |
+
|
128 |
+
Note: Not all fields are known on construction and may be updated later.
|
129 |
+
"""
|
130 |
+
|
131 |
+
module_type: str = "metric"
|
132 |
+
|
133 |
+
|
134 |
+
@dataclass
|
135 |
+
class ComparisonInfo(EvaluationModuleInfo):
|
136 |
+
"""Information about a comparison.
|
137 |
+
|
138 |
+
`EvaluationModuleInfo` documents a comparison, including its name, version, and features.
|
139 |
+
See the constructor arguments and properties for a full list.
|
140 |
+
|
141 |
+
Note: Not all fields are known on construction and may be updated later.
|
142 |
+
"""
|
143 |
+
|
144 |
+
module_type: str = "comparison"
|
145 |
+
|
146 |
+
|
147 |
+
@dataclass
|
148 |
+
class MeasurementInfo(EvaluationModuleInfo):
|
149 |
+
"""Information about a measurement.
|
150 |
+
|
151 |
+
`EvaluationModuleInfo` documents a measurement, including its name, version, and features.
|
152 |
+
See the constructor arguments and properties for a full list.
|
153 |
+
|
154 |
+
Note: Not all fields are known on construction and may be updated later.
|
155 |
+
"""
|
156 |
+
|
157 |
+
module_type: str = "measurement"
|
env-llmeval/lib/python3.10/site-packages/evaluate/inspect.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
""" List and inspect metrics."""
|
17 |
+
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
import requests
|
21 |
+
from datasets import DownloadConfig
|
22 |
+
|
23 |
+
from .config import EVALUATION_MODULE_TYPES, HF_LIST_ENDPOINT
|
24 |
+
from .loading import evaluation_module_factory
|
25 |
+
from .utils.logging import get_logger
|
26 |
+
|
27 |
+
|
28 |
+
logger = get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class SplitsNotFoundError(ValueError):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
def list_evaluation_modules(module_type=None, include_community=True, with_details=False):
|
36 |
+
"""List all evaluation modules available on the Hugging Face Hub.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
module_type (`str`, *optional*, defaults to `None`):
|
40 |
+
Type of evaluation modules to list. Has to be one of `'metric'`, `'comparison'`, or `'measurement'`. If `None`, all types are listed.
|
41 |
+
include_community (`bool`, *optional*, defaults to `True`):
|
42 |
+
Include community modules in the list.
|
43 |
+
with_details (`bool`, *optional*, defaults to `False`):
|
44 |
+
Return the full details on the metrics instead of only the ID.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
`List[Union[str, dict]]`
|
48 |
+
|
49 |
+
Example:
|
50 |
+
|
51 |
+
```py
|
52 |
+
>>> from evaluate import list_evaluation_modules
|
53 |
+
>>> list_evaluation_modules(module_type="metric")
|
54 |
+
```
|
55 |
+
"""
|
56 |
+
|
57 |
+
if module_type is None:
|
58 |
+
evaluations_list = []
|
59 |
+
for module_type in EVALUATION_MODULE_TYPES:
|
60 |
+
evaluations_list.extend(
|
61 |
+
_list_evaluation_modules_type(
|
62 |
+
module_type, include_community=include_community, with_details=with_details
|
63 |
+
)
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
if module_type not in EVALUATION_MODULE_TYPES:
|
67 |
+
raise ValueError(f"Invalid module type '{module_type}'. Has to be one of {EVALUATION_MODULE_TYPES}.")
|
68 |
+
evaluations_list = _list_evaluation_modules_type(
|
69 |
+
module_type, include_community=include_community, with_details=with_details
|
70 |
+
)
|
71 |
+
return evaluations_list
|
72 |
+
|
73 |
+
|
74 |
+
def _list_evaluation_modules_type(module_type, include_community=True, with_details=False):
|
75 |
+
|
76 |
+
r = requests.get(HF_LIST_ENDPOINT.format(type=module_type))
|
77 |
+
r.raise_for_status()
|
78 |
+
d = r.json()
|
79 |
+
|
80 |
+
if not include_community:
|
81 |
+
d = [element for element in d if element["id"].split("/")[0] == f"evaluate-{module_type}"]
|
82 |
+
|
83 |
+
# remove namespace for canonical modules and add community tag
|
84 |
+
for element in d:
|
85 |
+
if element["id"].split("/")[0] == f"evaluate-{module_type}":
|
86 |
+
element["id"] = element["id"].split("/")[1]
|
87 |
+
element["community"] = False
|
88 |
+
else:
|
89 |
+
element["community"] = True
|
90 |
+
|
91 |
+
if with_details:
|
92 |
+
return [
|
93 |
+
{
|
94 |
+
"name": element["id"],
|
95 |
+
"type": module_type,
|
96 |
+
"community": element["community"],
|
97 |
+
"likes": element.get("likes", 0),
|
98 |
+
}
|
99 |
+
for element in d
|
100 |
+
]
|
101 |
+
else:
|
102 |
+
return [element["id"] for element in d]
|
103 |
+
|
104 |
+
|
105 |
+
def inspect_evaluation_module(
|
106 |
+
path: str, local_path: str, download_config: Optional[DownloadConfig] = None, **download_kwargs
|
107 |
+
):
|
108 |
+
r"""
|
109 |
+
Allow inspection/modification of a evaluation script by copying it on local drive at local_path.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
path (``str``): path to the evaluation script. Can be either:
|
113 |
+
|
114 |
+
- a local path to script or the directory containing the script (if the script has the same name as the directory),
|
115 |
+
e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``
|
116 |
+
- a dataset identifier on the Hugging Face Hub (list all available datasets and ids with ``evaluate.list_evaluation_modules()``)
|
117 |
+
e.g. ``'accuracy'``, ``'bleu'`` or ``'word_length'``
|
118 |
+
local_path (``str``): path to the local folder to copy the datset script to.
|
119 |
+
download_config (Optional ``datasets.DownloadConfig``: specific download configuration parameters.
|
120 |
+
**download_kwargs: optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
|
121 |
+
"""
|
122 |
+
evaluation_module = evaluation_module_factory(
|
123 |
+
path, download_config=download_config, force_local_path=local_path, **download_kwargs
|
124 |
+
)
|
125 |
+
print(
|
126 |
+
f"The processing scripts for metric {path} can be inspected at {local_path}. "
|
127 |
+
f"The main class is in {evaluation_module.module_path}. "
|
128 |
+
f"You can modify this processing scripts and use it with `evaluate.load({local_path})`."
|
129 |
+
)
|
env-llmeval/lib/python3.10/site-packages/evaluate/loading.py
ADDED
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Access datasets."""
|
17 |
+
import filecmp
|
18 |
+
import importlib
|
19 |
+
import inspect
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import shutil
|
24 |
+
import time
|
25 |
+
from dataclasses import dataclass
|
26 |
+
from pathlib import Path
|
27 |
+
from typing import List, Optional, Tuple, Type, Union
|
28 |
+
from urllib.parse import urlparse
|
29 |
+
|
30 |
+
from datasets import DownloadConfig, DownloadMode
|
31 |
+
from datasets.builder import DatasetBuilder
|
32 |
+
from datasets.packaged_modules import _EXTENSION_TO_MODULE, _hash_python_lines
|
33 |
+
from datasets.utils.filelock import FileLock
|
34 |
+
from datasets.utils.version import Version
|
35 |
+
|
36 |
+
from . import SCRIPTS_VERSION, config
|
37 |
+
from .module import EvaluationModule
|
38 |
+
from .utils.file_utils import (
|
39 |
+
cached_path,
|
40 |
+
head_hf_s3,
|
41 |
+
hf_hub_url,
|
42 |
+
init_hf_modules,
|
43 |
+
is_relative_path,
|
44 |
+
relative_to_absolute_path,
|
45 |
+
url_or_path_join,
|
46 |
+
)
|
47 |
+
from .utils.logging import get_logger
|
48 |
+
|
49 |
+
|
50 |
+
logger = get_logger(__name__)
|
51 |
+
|
52 |
+
|
53 |
+
ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + ["zip"]
|
54 |
+
|
55 |
+
|
56 |
+
def init_dynamic_modules(
|
57 |
+
name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Create a module with name `name` in which you can add dynamic modules
|
61 |
+
such as metrics or datasets. The module can be imported using its name.
|
62 |
+
The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
|
63 |
+
be overriden by specifying a path to another directory in `hf_modules_cache`.
|
64 |
+
"""
|
65 |
+
hf_modules_cache = init_hf_modules(hf_modules_cache)
|
66 |
+
dynamic_modules_path = os.path.join(hf_modules_cache, name)
|
67 |
+
os.makedirs(dynamic_modules_path, exist_ok=True)
|
68 |
+
if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
|
69 |
+
with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
|
70 |
+
pass
|
71 |
+
return dynamic_modules_path
|
72 |
+
|
73 |
+
|
74 |
+
def import_main_class(module_path) -> Optional[Union[Type[DatasetBuilder], Type[EvaluationModule]]]:
|
75 |
+
"""Import a module at module_path and return its main class, a Metric by default"""
|
76 |
+
module = importlib.import_module(module_path)
|
77 |
+
main_cls_type = EvaluationModule
|
78 |
+
|
79 |
+
# Find the main class in our imported module
|
80 |
+
module_main_cls = None
|
81 |
+
for name, obj in module.__dict__.items():
|
82 |
+
if isinstance(obj, type) and issubclass(obj, main_cls_type):
|
83 |
+
if inspect.isabstract(obj):
|
84 |
+
continue
|
85 |
+
module_main_cls = obj
|
86 |
+
break
|
87 |
+
|
88 |
+
return module_main_cls
|
89 |
+
|
90 |
+
|
91 |
+
def files_to_hash(file_paths: List[str]) -> str:
|
92 |
+
"""
|
93 |
+
Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
|
94 |
+
"""
|
95 |
+
# List all python files in directories if directories are supplied as part of external imports
|
96 |
+
to_use_files: List[Union[Path, str]] = []
|
97 |
+
for file_path in file_paths:
|
98 |
+
if os.path.isdir(file_path):
|
99 |
+
to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
|
100 |
+
else:
|
101 |
+
to_use_files.append(file_path)
|
102 |
+
|
103 |
+
# Get the code from all these files
|
104 |
+
lines = []
|
105 |
+
for file_path in to_use_files:
|
106 |
+
with open(file_path, encoding="utf-8") as f:
|
107 |
+
lines.extend(f.readlines())
|
108 |
+
return _hash_python_lines(lines)
|
109 |
+
|
110 |
+
|
111 |
+
def convert_github_url(url_path: str) -> Tuple[str, Optional[str]]:
|
112 |
+
"""Convert a link to a file on a github repo in a link to the raw github object."""
|
113 |
+
parsed = urlparse(url_path)
|
114 |
+
sub_directory = None
|
115 |
+
if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com":
|
116 |
+
if "blob" in url_path:
|
117 |
+
if not url_path.endswith(".py"):
|
118 |
+
raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'")
|
119 |
+
url_path = url_path.replace("blob", "raw") # Point to the raw file
|
120 |
+
else:
|
121 |
+
# Parse github url to point to zip
|
122 |
+
github_path = parsed.path[1:]
|
123 |
+
repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master")
|
124 |
+
repo_owner, repo_name = repo_info.split("/")
|
125 |
+
url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip"
|
126 |
+
sub_directory = f"{repo_name}-{branch}"
|
127 |
+
return url_path, sub_directory
|
128 |
+
|
129 |
+
|
130 |
+
def increase_load_count(name: str, resource_type: str):
|
131 |
+
"""Update the download count of a dataset or metric."""
|
132 |
+
if not config.HF_EVALUATE_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
|
133 |
+
try:
|
134 |
+
head_hf_s3(name, filename=name + ".py", dataset=(resource_type == "dataset"))
|
135 |
+
except Exception:
|
136 |
+
pass
|
137 |
+
|
138 |
+
|
139 |
+
def get_imports(file_path: str) -> Tuple[str, str, str, str]:
|
140 |
+
"""Find whether we should import or clone additional files for a given processing script.
|
141 |
+
And list the import.
|
142 |
+
|
143 |
+
We allow:
|
144 |
+
- library dependencies,
|
145 |
+
- local dependencies and
|
146 |
+
- external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository.
|
147 |
+
external dependencies will be downloaded (and extracted if needed in the dataset folder).
|
148 |
+
We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script.
|
149 |
+
|
150 |
+
Note that only direct import in the dataset processing script will be handled
|
151 |
+
We don't recursively explore the additional import to download further files.
|
152 |
+
|
153 |
+
Example::
|
154 |
+
|
155 |
+
import tensorflow
|
156 |
+
import .c4_utils
|
157 |
+
import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset
|
158 |
+
"""
|
159 |
+
lines = []
|
160 |
+
with open(file_path, encoding="utf-8") as f:
|
161 |
+
lines.extend(f.readlines())
|
162 |
+
|
163 |
+
logger.debug(f"Checking {file_path} for additional imports.")
|
164 |
+
imports: List[Tuple[str, str, str, Optional[str]]] = []
|
165 |
+
is_in_docstring = False
|
166 |
+
for line in lines:
|
167 |
+
docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line)
|
168 |
+
|
169 |
+
if len(docstr_start_match) == 1:
|
170 |
+
# flip True <=> False only if doctstring
|
171 |
+
# starts at line without finishing
|
172 |
+
is_in_docstring = not is_in_docstring
|
173 |
+
|
174 |
+
if is_in_docstring:
|
175 |
+
# import statements in doctstrings should
|
176 |
+
# not be added as required dependencies
|
177 |
+
continue
|
178 |
+
|
179 |
+
match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE)
|
180 |
+
if match is None:
|
181 |
+
match = re.match(
|
182 |
+
r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)",
|
183 |
+
line,
|
184 |
+
flags=re.MULTILINE,
|
185 |
+
)
|
186 |
+
if match is None:
|
187 |
+
continue
|
188 |
+
if match.group(1):
|
189 |
+
# The import starts with a '.', we will download the relevant file
|
190 |
+
if any(imp[1] == match.group(2) for imp in imports):
|
191 |
+
# We already have this import
|
192 |
+
continue
|
193 |
+
if match.group(3):
|
194 |
+
# The import has a comment with 'From:', we'll retrieve it from the given url
|
195 |
+
url_path = match.group(3)
|
196 |
+
url_path, sub_directory = convert_github_url(url_path)
|
197 |
+
imports.append(("external", match.group(2), url_path, sub_directory))
|
198 |
+
elif match.group(2):
|
199 |
+
# The import should be at the same place as the file
|
200 |
+
imports.append(("internal", match.group(2), match.group(2), None))
|
201 |
+
else:
|
202 |
+
if match.group(3):
|
203 |
+
# The import has a comment with `From: git+https:...`, asks user to pip install from git.
|
204 |
+
url_path = match.group(3)
|
205 |
+
imports.append(("library", match.group(2), url_path, None))
|
206 |
+
else:
|
207 |
+
imports.append(("library", match.group(2), match.group(2), None))
|
208 |
+
|
209 |
+
return imports
|
210 |
+
|
211 |
+
|
212 |
+
def _download_additional_modules(
|
213 |
+
name: str, base_path: str, imports: Tuple[str, str, str, str], download_config: Optional[DownloadConfig]
|
214 |
+
) -> List[Tuple[str, str]]:
|
215 |
+
"""
|
216 |
+
Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
|
217 |
+
The imports must have been parsed first using ``get_imports``.
|
218 |
+
|
219 |
+
If some modules need to be installed with pip, an error is raised showing how to install them.
|
220 |
+
This function return the list of downloaded modules as tuples (import_name, module_file_path).
|
221 |
+
|
222 |
+
The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
|
223 |
+
"""
|
224 |
+
local_imports = []
|
225 |
+
library_imports = []
|
226 |
+
download_config = download_config.copy()
|
227 |
+
if download_config.download_desc is None:
|
228 |
+
download_config.download_desc = "Downloading extra modules"
|
229 |
+
for import_type, import_name, import_path, sub_directory in imports:
|
230 |
+
if import_type == "library":
|
231 |
+
library_imports.append((import_name, import_path)) # Import from a library
|
232 |
+
continue
|
233 |
+
|
234 |
+
if import_name == name:
|
235 |
+
raise ValueError(
|
236 |
+
f"Error in the {name} script, importing relative {import_name} module "
|
237 |
+
f"but {import_name} is the name of the script. "
|
238 |
+
f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
|
239 |
+
f"comment pointing to the original relative import file path."
|
240 |
+
)
|
241 |
+
if import_type == "internal":
|
242 |
+
url_or_filename = url_or_path_join(base_path, import_path + ".py")
|
243 |
+
elif import_type == "external":
|
244 |
+
url_or_filename = import_path
|
245 |
+
else:
|
246 |
+
raise ValueError("Wrong import_type")
|
247 |
+
|
248 |
+
local_import_path = cached_path(
|
249 |
+
url_or_filename,
|
250 |
+
download_config=download_config,
|
251 |
+
)
|
252 |
+
if sub_directory is not None:
|
253 |
+
local_import_path = os.path.join(local_import_path, sub_directory)
|
254 |
+
local_imports.append((import_name, local_import_path))
|
255 |
+
|
256 |
+
# Check library imports
|
257 |
+
needs_to_be_installed = set()
|
258 |
+
for library_import_name, library_import_path in library_imports:
|
259 |
+
try:
|
260 |
+
lib = importlib.import_module(library_import_name) # noqa F841
|
261 |
+
except ImportError:
|
262 |
+
library_import_name = "scikit-learn" if library_import_name == "sklearn" else library_import_name
|
263 |
+
needs_to_be_installed.add((library_import_name, library_import_path))
|
264 |
+
if needs_to_be_installed:
|
265 |
+
raise ImportError(
|
266 |
+
f"To be able to use {name}, you need to install the following dependencies"
|
267 |
+
f"{[lib_name for lib_name, lib_path in needs_to_be_installed]} using 'pip install "
|
268 |
+
f"{' '.join([lib_path for lib_name, lib_path in needs_to_be_installed])}' for instance'"
|
269 |
+
)
|
270 |
+
return local_imports
|
271 |
+
|
272 |
+
|
273 |
+
def _copy_script_and_other_resources_in_importable_dir(
|
274 |
+
name: str,
|
275 |
+
importable_directory_path: str,
|
276 |
+
subdirectory_name: str,
|
277 |
+
original_local_path: str,
|
278 |
+
local_imports: List[Tuple[str, str]],
|
279 |
+
additional_files: List[Tuple[str, str]],
|
280 |
+
download_mode: Optional[DownloadMode],
|
281 |
+
) -> str:
|
282 |
+
"""Copy a script and its required imports to an importable directory
|
283 |
+
|
284 |
+
Args:
|
285 |
+
name (str): name of the resource to load
|
286 |
+
importable_directory_path (str): path to the loadable folder in the dynamic modules directory
|
287 |
+
subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
|
288 |
+
original_local_path (str): local path to the resource script
|
289 |
+
local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
|
290 |
+
additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
|
291 |
+
download_mode (Optional[DownloadMode]): download mode
|
292 |
+
|
293 |
+
Return:
|
294 |
+
importable_local_file: path to an importable module with importlib.import_module
|
295 |
+
"""
|
296 |
+
|
297 |
+
# Define a directory with a unique name in our dataset or metric folder
|
298 |
+
# path is: ./datasets|metrics/dataset|metric_name/hash_from_code/script.py
|
299 |
+
# we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together
|
300 |
+
importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
|
301 |
+
importable_local_file = os.path.join(importable_subdirectory, name + ".py")
|
302 |
+
|
303 |
+
# Prevent parallel disk operations
|
304 |
+
lock_path = importable_directory_path + ".lock"
|
305 |
+
with FileLock(lock_path):
|
306 |
+
# Create main dataset/metrics folder if needed
|
307 |
+
if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
|
308 |
+
shutil.rmtree(importable_directory_path)
|
309 |
+
os.makedirs(importable_directory_path, exist_ok=True)
|
310 |
+
|
311 |
+
# add an __init__ file to the main dataset folder if needed
|
312 |
+
init_file_path = os.path.join(importable_directory_path, "__init__.py")
|
313 |
+
if not os.path.exists(init_file_path):
|
314 |
+
with open(init_file_path, "w"):
|
315 |
+
pass
|
316 |
+
|
317 |
+
# Create hash dataset folder if needed
|
318 |
+
os.makedirs(importable_subdirectory, exist_ok=True)
|
319 |
+
# add an __init__ file to the hash dataset folder if needed
|
320 |
+
init_file_path = os.path.join(importable_subdirectory, "__init__.py")
|
321 |
+
if not os.path.exists(init_file_path):
|
322 |
+
with open(init_file_path, "w"):
|
323 |
+
pass
|
324 |
+
|
325 |
+
# Copy dataset.py file in hash folder if needed
|
326 |
+
if not os.path.exists(importable_local_file):
|
327 |
+
shutil.copyfile(original_local_path, importable_local_file)
|
328 |
+
|
329 |
+
# Record metadata associating original dataset path with local unique folder
|
330 |
+
meta_path = importable_local_file.split(".py")[0] + ".json"
|
331 |
+
if not os.path.exists(meta_path):
|
332 |
+
meta = {"original file path": original_local_path, "local file path": importable_local_file}
|
333 |
+
# the filename is *.py in our case, so better rename to filenam.json instead of filename.py.json
|
334 |
+
with open(meta_path, "w", encoding="utf-8") as meta_file:
|
335 |
+
json.dump(meta, meta_file)
|
336 |
+
|
337 |
+
# Copy all the additional imports
|
338 |
+
for import_name, import_path in local_imports:
|
339 |
+
if os.path.isfile(import_path):
|
340 |
+
full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
|
341 |
+
if not os.path.exists(full_path_local_import):
|
342 |
+
shutil.copyfile(import_path, full_path_local_import)
|
343 |
+
elif os.path.isdir(import_path):
|
344 |
+
full_path_local_import = os.path.join(importable_subdirectory, import_name)
|
345 |
+
if not os.path.exists(full_path_local_import):
|
346 |
+
shutil.copytree(import_path, full_path_local_import)
|
347 |
+
else:
|
348 |
+
raise OSError(f"Error with local import at {import_path}")
|
349 |
+
|
350 |
+
# Copy aditional files like dataset infos file if needed
|
351 |
+
for file_name, original_path in additional_files:
|
352 |
+
destination_additional_path = os.path.join(importable_subdirectory, file_name)
|
353 |
+
if not os.path.exists(destination_additional_path) or not filecmp.cmp(
|
354 |
+
original_path, destination_additional_path
|
355 |
+
):
|
356 |
+
shutil.copyfile(original_path, destination_additional_path)
|
357 |
+
return importable_local_file
|
358 |
+
|
359 |
+
|
360 |
+
def _create_importable_file(
|
361 |
+
local_path: str,
|
362 |
+
local_imports: List[Tuple[str, str]],
|
363 |
+
additional_files: List[Tuple[str, str]],
|
364 |
+
dynamic_modules_path: str,
|
365 |
+
module_namespace: str,
|
366 |
+
name: str,
|
367 |
+
download_mode: DownloadMode,
|
368 |
+
) -> Tuple[str, str]:
|
369 |
+
importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
|
370 |
+
Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
|
371 |
+
(Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
|
372 |
+
hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
|
373 |
+
importable_local_file = _copy_script_and_other_resources_in_importable_dir(
|
374 |
+
name=name.split("/")[-1],
|
375 |
+
importable_directory_path=importable_directory_path,
|
376 |
+
subdirectory_name=hash,
|
377 |
+
original_local_path=local_path,
|
378 |
+
local_imports=local_imports,
|
379 |
+
additional_files=additional_files,
|
380 |
+
download_mode=download_mode,
|
381 |
+
)
|
382 |
+
logger.debug(f"Created importable dataset file at {importable_local_file}")
|
383 |
+
module_path = ".".join(
|
384 |
+
[os.path.basename(dynamic_modules_path), module_namespace, name.replace("/", "--"), hash, name.split("/")[-1]]
|
385 |
+
)
|
386 |
+
return module_path, hash
|
387 |
+
|
388 |
+
|
389 |
+
@dataclass
|
390 |
+
class ImportableModule:
|
391 |
+
module_path: str
|
392 |
+
hash: str
|
393 |
+
|
394 |
+
|
395 |
+
class _EvaluationModuleFactory:
|
396 |
+
def get_module(self) -> ImportableModule:
|
397 |
+
raise NotImplementedError
|
398 |
+
|
399 |
+
|
400 |
+
class LocalEvaluationModuleFactory(_EvaluationModuleFactory):
|
401 |
+
"""Get the module of a local metric. The metric script is loaded from a local script."""
|
402 |
+
|
403 |
+
def __init__(
|
404 |
+
self,
|
405 |
+
path: str,
|
406 |
+
module_type: str = "metrics",
|
407 |
+
download_config: Optional[DownloadConfig] = None,
|
408 |
+
download_mode: Optional[DownloadMode] = None,
|
409 |
+
dynamic_modules_path: Optional[str] = None,
|
410 |
+
):
|
411 |
+
self.path = path
|
412 |
+
self.module_type = module_type
|
413 |
+
self.name = Path(path).stem
|
414 |
+
self.download_config = download_config or DownloadConfig()
|
415 |
+
self.download_mode = download_mode
|
416 |
+
self.dynamic_modules_path = dynamic_modules_path
|
417 |
+
|
418 |
+
def get_module(self) -> ImportableModule:
|
419 |
+
# get script and other files
|
420 |
+
imports = get_imports(self.path)
|
421 |
+
local_imports = _download_additional_modules(
|
422 |
+
name=self.name,
|
423 |
+
base_path=str(Path(self.path).parent),
|
424 |
+
imports=imports,
|
425 |
+
download_config=self.download_config,
|
426 |
+
)
|
427 |
+
# copy the script and the files in an importable directory
|
428 |
+
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
|
429 |
+
module_path, hash = _create_importable_file(
|
430 |
+
local_path=self.path,
|
431 |
+
local_imports=local_imports,
|
432 |
+
additional_files=[],
|
433 |
+
dynamic_modules_path=dynamic_modules_path,
|
434 |
+
module_namespace=self.module_type,
|
435 |
+
name=self.name,
|
436 |
+
download_mode=self.download_mode,
|
437 |
+
)
|
438 |
+
# make the new module to be noticed by the import system
|
439 |
+
importlib.invalidate_caches()
|
440 |
+
return ImportableModule(module_path, hash)
|
441 |
+
|
442 |
+
|
443 |
+
class HubEvaluationModuleFactory(_EvaluationModuleFactory):
|
444 |
+
"""Get the module of a metric from a metric repository on the Hub."""
|
445 |
+
|
446 |
+
def __init__(
|
447 |
+
self,
|
448 |
+
name: str,
|
449 |
+
module_type: str = "metrics",
|
450 |
+
revision: Optional[Union[str, Version]] = None,
|
451 |
+
download_config: Optional[DownloadConfig] = None,
|
452 |
+
download_mode: Optional[DownloadMode] = None,
|
453 |
+
dynamic_modules_path: Optional[str] = None,
|
454 |
+
):
|
455 |
+
self.name = name
|
456 |
+
self.module_type = module_type
|
457 |
+
self.revision = revision
|
458 |
+
self.download_config = download_config or DownloadConfig()
|
459 |
+
self.download_mode = download_mode
|
460 |
+
self.dynamic_modules_path = dynamic_modules_path
|
461 |
+
assert self.name.count("/") == 1
|
462 |
+
increase_load_count(name, resource_type="metric")
|
463 |
+
|
464 |
+
def download_loading_script(self, revision) -> str:
|
465 |
+
file_path = hf_hub_url(path=self.name, name=self.name.split("/")[1] + ".py", revision=revision)
|
466 |
+
download_config = self.download_config.copy()
|
467 |
+
if download_config.download_desc is None:
|
468 |
+
download_config.download_desc = "Downloading builder script"
|
469 |
+
return cached_path(file_path, download_config=download_config)
|
470 |
+
|
471 |
+
def get_module(self) -> ImportableModule:
|
472 |
+
revision = self.revision or os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION)
|
473 |
+
|
474 |
+
if re.match(r"\d*\.\d*\.\d*", revision): # revision is version number (three digits separated by full stops)
|
475 |
+
revision = "v" + revision # tagging convention on evaluate repository starts with v
|
476 |
+
|
477 |
+
# get script and other files
|
478 |
+
try:
|
479 |
+
local_path = self.download_loading_script(revision)
|
480 |
+
except FileNotFoundError as err:
|
481 |
+
# if there is no file found with current revision tag try to load main
|
482 |
+
if self.revision is None and os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION) != "main":
|
483 |
+
revision = "main"
|
484 |
+
local_path = self.download_loading_script(revision)
|
485 |
+
else:
|
486 |
+
raise err
|
487 |
+
|
488 |
+
imports = get_imports(local_path)
|
489 |
+
local_imports = _download_additional_modules(
|
490 |
+
name=self.name,
|
491 |
+
base_path=hf_hub_url(path=self.name, name="", revision=revision),
|
492 |
+
imports=imports,
|
493 |
+
download_config=self.download_config,
|
494 |
+
)
|
495 |
+
# copy the script and the files in an importable directory
|
496 |
+
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
|
497 |
+
module_path, hash = _create_importable_file(
|
498 |
+
local_path=local_path,
|
499 |
+
local_imports=local_imports,
|
500 |
+
additional_files=[],
|
501 |
+
dynamic_modules_path=dynamic_modules_path,
|
502 |
+
module_namespace=self.module_type,
|
503 |
+
name=self.name,
|
504 |
+
download_mode=self.download_mode,
|
505 |
+
)
|
506 |
+
# make the new module to be noticed by the import system
|
507 |
+
importlib.invalidate_caches()
|
508 |
+
return ImportableModule(module_path, hash)
|
509 |
+
|
510 |
+
|
511 |
+
class CachedEvaluationModuleFactory(_EvaluationModuleFactory):
|
512 |
+
"""
|
513 |
+
Get the module of a metric that has been loaded once already and cached.
|
514 |
+
The script that is loaded from the cache is the most recent one with a matching name.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(
|
518 |
+
self,
|
519 |
+
name: str,
|
520 |
+
module_type: str = "metrics",
|
521 |
+
dynamic_modules_path: Optional[str] = None,
|
522 |
+
):
|
523 |
+
self.name = name
|
524 |
+
self.module_type = module_type
|
525 |
+
self.dynamic_modules_path = dynamic_modules_path
|
526 |
+
assert self.name.count("/") == 0
|
527 |
+
|
528 |
+
def get_module(self) -> ImportableModule:
|
529 |
+
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
|
530 |
+
importable_directory_path = os.path.join(dynamic_modules_path, self.module_type, self.name)
|
531 |
+
hashes = (
|
532 |
+
[h for h in os.listdir(importable_directory_path) if len(h) == 64]
|
533 |
+
if os.path.isdir(importable_directory_path)
|
534 |
+
else None
|
535 |
+
)
|
536 |
+
if not hashes:
|
537 |
+
raise FileNotFoundError(f"Metric {self.name} is not cached in {dynamic_modules_path}")
|
538 |
+
# get most recent
|
539 |
+
|
540 |
+
def _get_modification_time(module_hash):
|
541 |
+
return (
|
542 |
+
(Path(importable_directory_path) / module_hash / (self.name.split("--")[-1] + ".py")).stat().st_mtime
|
543 |
+
)
|
544 |
+
|
545 |
+
hash = sorted(hashes, key=_get_modification_time)[-1]
|
546 |
+
logger.warning(
|
547 |
+
f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
|
548 |
+
f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
|
549 |
+
f"couldn't be found locally at {self.name}, or remotely on the Hugging Face Hub."
|
550 |
+
)
|
551 |
+
# make the new module to be noticed by the import system
|
552 |
+
module_path = ".".join(
|
553 |
+
[os.path.basename(dynamic_modules_path), self.module_type, self.name, hash, self.name.split("--")[-1]]
|
554 |
+
)
|
555 |
+
importlib.invalidate_caches()
|
556 |
+
return ImportableModule(module_path, hash)
|
557 |
+
|
558 |
+
|
559 |
+
def evaluation_module_factory(
|
560 |
+
path: str,
|
561 |
+
module_type: Optional[str] = None,
|
562 |
+
revision: Optional[Union[str, Version]] = None,
|
563 |
+
download_config: Optional[DownloadConfig] = None,
|
564 |
+
download_mode: Optional[DownloadMode] = None,
|
565 |
+
force_local_path: Optional[str] = None,
|
566 |
+
dynamic_modules_path: Optional[str] = None,
|
567 |
+
**download_kwargs,
|
568 |
+
) -> ImportableModule:
|
569 |
+
"""
|
570 |
+
Download/extract/cache a metric module.
|
571 |
+
|
572 |
+
Metrics codes are cached inside the the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
|
573 |
+
|
574 |
+
Args:
|
575 |
+
|
576 |
+
path (str): Path or name of the metric script.
|
577 |
+
|
578 |
+
- if ``path`` is a local metric script or a directory containing a local metric script (if the script has the same name as the directory):
|
579 |
+
-> load the module from the metric script
|
580 |
+
e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``.
|
581 |
+
- if ``path`` is a metric on the Hugging Face Hub (ex: `glue`, `squad`)
|
582 |
+
-> load the module from the metric script in the github repository at huggingface/datasets
|
583 |
+
e.g. ``'accuracy'`` or ``'rouge'``.
|
584 |
+
|
585 |
+
revision (Optional ``Union[str, datasets.Version]``):
|
586 |
+
If specified, the module will be loaded from the datasets repository at this version.
|
587 |
+
By default:
|
588 |
+
- it is set to the local version of the lib.
|
589 |
+
- it will also try to load it from the master branch if it's not available at the local version of the lib.
|
590 |
+
Specifying a version that is different from your local version of the lib might cause compatibility issues.
|
591 |
+
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
|
592 |
+
download_mode (:class:`DownloadMode`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
|
593 |
+
force_local_path (Optional str): Optional path to a local path to download and prepare the script to.
|
594 |
+
Used to inspect or modify the script folder.
|
595 |
+
dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
|
596 |
+
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
|
597 |
+
By default the datasets and metrics are stored inside the `datasets_modules` module.
|
598 |
+
download_kwargs: optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
|
599 |
+
|
600 |
+
Returns:
|
601 |
+
ImportableModule
|
602 |
+
"""
|
603 |
+
if download_config is None:
|
604 |
+
download_config = DownloadConfig(**download_kwargs)
|
605 |
+
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
|
606 |
+
download_config.extract_compressed_file = True
|
607 |
+
download_config.force_extract = True
|
608 |
+
|
609 |
+
filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
|
610 |
+
if not filename.endswith(".py"):
|
611 |
+
filename = filename + ".py"
|
612 |
+
combined_path = os.path.join(path, filename)
|
613 |
+
# Try locally
|
614 |
+
if path.endswith(filename):
|
615 |
+
if os.path.isfile(path):
|
616 |
+
return LocalEvaluationModuleFactory(
|
617 |
+
path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
|
618 |
+
).get_module()
|
619 |
+
else:
|
620 |
+
raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(path)}")
|
621 |
+
elif os.path.isfile(combined_path):
|
622 |
+
return LocalEvaluationModuleFactory(
|
623 |
+
combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
|
624 |
+
).get_module()
|
625 |
+
elif is_relative_path(path) and path.count("/") <= 1 and not force_local_path:
|
626 |
+
try:
|
627 |
+
# load a canonical evaluation module from hub
|
628 |
+
if path.count("/") == 0:
|
629 |
+
# if no type provided look through all possible modules
|
630 |
+
if module_type is None:
|
631 |
+
for current_type in ["metric", "comparison", "measurement"]:
|
632 |
+
try:
|
633 |
+
return HubEvaluationModuleFactory(
|
634 |
+
f"evaluate-{current_type}/{path}",
|
635 |
+
revision=revision,
|
636 |
+
download_config=download_config,
|
637 |
+
download_mode=download_mode,
|
638 |
+
dynamic_modules_path=dynamic_modules_path,
|
639 |
+
).get_module()
|
640 |
+
except ConnectionError:
|
641 |
+
pass
|
642 |
+
raise FileNotFoundError
|
643 |
+
# if module_type provided load specific module_type
|
644 |
+
else:
|
645 |
+
return HubEvaluationModuleFactory(
|
646 |
+
f"evaluate-{module_type}/{path}",
|
647 |
+
revision=revision,
|
648 |
+
download_config=download_config,
|
649 |
+
download_mode=download_mode,
|
650 |
+
dynamic_modules_path=dynamic_modules_path,
|
651 |
+
).get_module()
|
652 |
+
# load community evaluation module from hub
|
653 |
+
elif path.count("/") == 1:
|
654 |
+
return HubEvaluationModuleFactory(
|
655 |
+
path,
|
656 |
+
revision=revision,
|
657 |
+
download_config=download_config,
|
658 |
+
download_mode=download_mode,
|
659 |
+
dynamic_modules_path=dynamic_modules_path,
|
660 |
+
).get_module()
|
661 |
+
except Exception as e1: # noqa: all the attempts failed, before raising the error we should check if the module is already cached.
|
662 |
+
# if it's a canonical module we need to check if it's any of the types
|
663 |
+
if path.count("/") == 0:
|
664 |
+
for current_type in ["metric", "comparison", "measurement"]:
|
665 |
+
try:
|
666 |
+
return CachedEvaluationModuleFactory(
|
667 |
+
f"evaluate-{current_type}--{path}", dynamic_modules_path=dynamic_modules_path
|
668 |
+
).get_module()
|
669 |
+
except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
|
670 |
+
pass
|
671 |
+
# if it's a community module we just need to check on path
|
672 |
+
elif path.count("/") == 1:
|
673 |
+
try:
|
674 |
+
return CachedEvaluationModuleFactory(
|
675 |
+
path.replace("/", "--"), dynamic_modules_path=dynamic_modules_path
|
676 |
+
).get_module()
|
677 |
+
except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
|
678 |
+
pass
|
679 |
+
if not isinstance(e1, (ConnectionError, FileNotFoundError)):
|
680 |
+
raise e1 from None
|
681 |
+
raise FileNotFoundError(
|
682 |
+
f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}. "
|
683 |
+
f"Module '{path}' doesn't exist on the Hugging Face Hub either."
|
684 |
+
) from None
|
685 |
+
else:
|
686 |
+
raise FileNotFoundError(f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}.")
|
687 |
+
|
688 |
+
|
689 |
+
def load(
|
690 |
+
path: str,
|
691 |
+
config_name: Optional[str] = None,
|
692 |
+
module_type: Optional[str] = None,
|
693 |
+
process_id: int = 0,
|
694 |
+
num_process: int = 1,
|
695 |
+
cache_dir: Optional[str] = None,
|
696 |
+
experiment_id: Optional[str] = None,
|
697 |
+
keep_in_memory: bool = False,
|
698 |
+
download_config: Optional[DownloadConfig] = None,
|
699 |
+
download_mode: Optional[DownloadMode] = None,
|
700 |
+
revision: Optional[Union[str, Version]] = None,
|
701 |
+
**init_kwargs,
|
702 |
+
) -> EvaluationModule:
|
703 |
+
"""Load a [`~evaluate.EvaluationModule`].
|
704 |
+
|
705 |
+
Args:
|
706 |
+
|
707 |
+
path (`str`):
|
708 |
+
Path to the evaluation processing script with the evaluation builder. Can be either:
|
709 |
+
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
|
710 |
+
e.g. `'./metrics/rouge'` or `'./metrics/rouge/rouge.py'`
|
711 |
+
- a evaluation module identifier on the HuggingFace evaluate repo e.g. `'rouge'` or `'bleu'` that are in either `'metrics/'`,
|
712 |
+
`'comparisons/'`, or `'measurements/'` depending on the provided `module_type`
|
713 |
+
config_name (`str`, *optional*):
|
714 |
+
Selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
|
715 |
+
module_type (`str`, default `'metric'`):
|
716 |
+
Type of evaluation module, can be one of `'metric'`, `'comparison'`, or `'measurement'`.
|
717 |
+
process_id (`int`, *optional*):
|
718 |
+
For distributed evaluation: id of the process.
|
719 |
+
num_process (`int`, *optional*):
|
720 |
+
For distributed evaluation: total number of processes.
|
721 |
+
cache_dir (`str`, *optional*):
|
722 |
+
Path to store the temporary predictions and references (default to `~/.cache/huggingface/evaluate/`).
|
723 |
+
experiment_id (`str`):
|
724 |
+
A specific experiment id. This is used if several distributed evaluations share the same file system.
|
725 |
+
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
|
726 |
+
keep_in_memory (`bool`):
|
727 |
+
Whether to store the temporary results in memory (defaults to `False`).
|
728 |
+
download_config ([`~evaluate.DownloadConfig`], *optional*):
|
729 |
+
Specific download configuration parameters.
|
730 |
+
download_mode ([`DownloadMode`], defaults to `REUSE_DATASET_IF_EXISTS`):
|
731 |
+
Download/generate mode.
|
732 |
+
revision (`Union[str, evaluate.Version]`, *optional*):
|
733 |
+
If specified, the module will be loaded from the datasets repository
|
734 |
+
at this version. By default it is set to the local version of the lib. Specifying a version that is different from
|
735 |
+
your local version of the lib might cause compatibility issues.
|
736 |
+
|
737 |
+
Returns:
|
738 |
+
[`evaluate.EvaluationModule`]
|
739 |
+
|
740 |
+
Example:
|
741 |
+
|
742 |
+
```py
|
743 |
+
>>> from evaluate import load
|
744 |
+
>>> accuracy = evaluate.load("accuracy")
|
745 |
+
```
|
746 |
+
"""
|
747 |
+
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
|
748 |
+
evaluation_module = evaluation_module_factory(
|
749 |
+
path, module_type=module_type, revision=revision, download_config=download_config, download_mode=download_mode
|
750 |
+
)
|
751 |
+
evaluation_cls = import_main_class(evaluation_module.module_path)
|
752 |
+
evaluation_instance = evaluation_cls(
|
753 |
+
config_name=config_name,
|
754 |
+
process_id=process_id,
|
755 |
+
num_process=num_process,
|
756 |
+
cache_dir=cache_dir,
|
757 |
+
keep_in_memory=keep_in_memory,
|
758 |
+
experiment_id=experiment_id,
|
759 |
+
hash=evaluation_module.hash,
|
760 |
+
**init_kwargs,
|
761 |
+
)
|
762 |
+
|
763 |
+
if module_type and module_type != evaluation_instance.module_type:
|
764 |
+
raise TypeError(
|
765 |
+
f"No module of module type '{module_type}' not found for '{path}' locally, or on the Hugging Face Hub. Found module of module type '{evaluation_instance.module_type}' instead."
|
766 |
+
)
|
767 |
+
|
768 |
+
# Download and prepare resources for the metric
|
769 |
+
evaluation_instance.download_and_prepare(download_config=download_config)
|
770 |
+
|
771 |
+
return evaluation_instance
|
env-llmeval/lib/python3.10/site-packages/evaluate/module.py
ADDED
@@ -0,0 +1,1029 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
""" EvaluationModule base class."""
|
17 |
+
import collections
|
18 |
+
import itertools
|
19 |
+
import os
|
20 |
+
import types
|
21 |
+
import uuid
|
22 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import pyarrow as pa
|
26 |
+
from datasets import DatasetInfo, DownloadConfig, DownloadManager
|
27 |
+
from datasets.arrow_dataset import Dataset
|
28 |
+
from datasets.arrow_reader import ArrowReader
|
29 |
+
from datasets.arrow_writer import ArrowWriter
|
30 |
+
from datasets.features import Features, Sequence, Value
|
31 |
+
from datasets.features.features import _check_non_null_non_empty_recursive
|
32 |
+
from datasets.utils.filelock import BaseFileLock, FileLock, Timeout
|
33 |
+
from datasets.utils.py_utils import copyfunc, temp_seed, zip_dict
|
34 |
+
|
35 |
+
from . import config
|
36 |
+
from .info import EvaluationModuleInfo
|
37 |
+
from .naming import camelcase_to_snakecase
|
38 |
+
from .utils.logging import get_logger
|
39 |
+
|
40 |
+
|
41 |
+
logger = get_logger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
class FileFreeLock(BaseFileLock):
|
45 |
+
"""Thread lock until a file **cannot** be locked"""
|
46 |
+
|
47 |
+
def __init__(self, lock_file, *args, **kwargs):
|
48 |
+
self.filelock = FileLock(lock_file)
|
49 |
+
super().__init__(lock_file, *args, **kwargs)
|
50 |
+
|
51 |
+
def _acquire(self):
|
52 |
+
try:
|
53 |
+
self.filelock.acquire(timeout=0.01, poll_intervall=0.02) # Try to lock once
|
54 |
+
except Timeout:
|
55 |
+
# We couldn't acquire the lock, the file is locked!
|
56 |
+
self._lock_file_fd = self.filelock.lock_file
|
57 |
+
else:
|
58 |
+
# We were able to acquire the lock, the file is not yet locked!
|
59 |
+
self.filelock.release()
|
60 |
+
self._lock_file_fd = None
|
61 |
+
|
62 |
+
def _release(self):
|
63 |
+
self._lock_file_fd = None
|
64 |
+
|
65 |
+
|
66 |
+
# lists - summarize long lists similarly to NumPy
|
67 |
+
# arrays/tensors - let the frameworks control formatting
|
68 |
+
def summarize_if_long_list(obj):
|
69 |
+
if not type(obj) == list or len(obj) <= 6:
|
70 |
+
return f"{obj}"
|
71 |
+
|
72 |
+
def format_chunk(chunk):
|
73 |
+
return ", ".join(repr(x) for x in chunk)
|
74 |
+
|
75 |
+
return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]"
|
76 |
+
|
77 |
+
|
78 |
+
class EvaluationModuleInfoMixin:
|
79 |
+
"""This base class exposes some attributes of EvaluationModuleInfo
|
80 |
+
at the base level of the EvaluationModule for easy access.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, info: EvaluationModuleInfo):
|
84 |
+
self._module_info = info
|
85 |
+
|
86 |
+
@property
|
87 |
+
def info(self):
|
88 |
+
""":class:`evaluate.EvaluationModuleInfo` object containing all the metadata in the evaluation module."""
|
89 |
+
return self._module_info
|
90 |
+
|
91 |
+
@property
|
92 |
+
def name(self) -> str:
|
93 |
+
return self._module_info.module_name
|
94 |
+
|
95 |
+
@property
|
96 |
+
def experiment_id(self) -> Optional[str]:
|
97 |
+
return self._module_info.experiment_id
|
98 |
+
|
99 |
+
@property
|
100 |
+
def description(self) -> str:
|
101 |
+
return self._module_info.description
|
102 |
+
|
103 |
+
@property
|
104 |
+
def citation(self) -> str:
|
105 |
+
return self._module_info.citation
|
106 |
+
|
107 |
+
@property
|
108 |
+
def features(self) -> Features:
|
109 |
+
return self._module_info.features
|
110 |
+
|
111 |
+
@property
|
112 |
+
def inputs_description(self) -> str:
|
113 |
+
return self._module_info.inputs_description
|
114 |
+
|
115 |
+
@property
|
116 |
+
def homepage(self) -> Optional[str]:
|
117 |
+
return self._module_info.homepage
|
118 |
+
|
119 |
+
@property
|
120 |
+
def license(self) -> str:
|
121 |
+
return self._module_info.license
|
122 |
+
|
123 |
+
@property
|
124 |
+
def codebase_urls(self) -> Optional[List[str]]:
|
125 |
+
return self._module_info.codebase_urls
|
126 |
+
|
127 |
+
@property
|
128 |
+
def reference_urls(self) -> Optional[List[str]]:
|
129 |
+
return self._module_info.reference_urls
|
130 |
+
|
131 |
+
@property
|
132 |
+
def streamable(self) -> bool:
|
133 |
+
return self._module_info.streamable
|
134 |
+
|
135 |
+
@property
|
136 |
+
def format(self) -> Optional[str]:
|
137 |
+
return self._module_info.format
|
138 |
+
|
139 |
+
@property
|
140 |
+
def module_type(self) -> str:
|
141 |
+
return self._module_info.module_type
|
142 |
+
|
143 |
+
|
144 |
+
class EvaluationModule(EvaluationModuleInfoMixin):
|
145 |
+
"""A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
config_name (`str`):
|
149 |
+
This is used to define a hash specific to a module computation script and prevents the module's data
|
150 |
+
to be overridden when the module loading script is modified.
|
151 |
+
keep_in_memory (`bool`):
|
152 |
+
Keep all predictions and references in memory. Not possible in distributed settings.
|
153 |
+
cache_dir (`str`):
|
154 |
+
Path to a directory in which temporary prediction/references data will be stored.
|
155 |
+
The data directory should be located on a shared file-system in distributed setups.
|
156 |
+
num_process (`int`):
|
157 |
+
Specify the total number of nodes in a distributed settings.
|
158 |
+
This is useful to compute module in distributed setups (in particular non-additive modules like F1).
|
159 |
+
process_id (`int`):
|
160 |
+
Specify the id of the current process in a distributed setup (between 0 and num_process-1)
|
161 |
+
This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
|
162 |
+
seed (`int`, optional):
|
163 |
+
If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run.
|
164 |
+
experiment_id (`str`):
|
165 |
+
A specific experiment id. This is used if several distributed evaluations share the same file system.
|
166 |
+
This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
|
167 |
+
hash (`str`):
|
168 |
+
Used to identify the evaluation module according to the hashed file contents.
|
169 |
+
max_concurrent_cache_files (`int`):
|
170 |
+
Max number of concurrent module cache files (default `10000`).
|
171 |
+
timeout (`Union[int, float]`):
|
172 |
+
Timeout in second for distributed setting synchronization.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(
|
176 |
+
self,
|
177 |
+
config_name: Optional[str] = None,
|
178 |
+
keep_in_memory: bool = False,
|
179 |
+
cache_dir: Optional[str] = None,
|
180 |
+
num_process: int = 1,
|
181 |
+
process_id: int = 0,
|
182 |
+
seed: Optional[int] = None,
|
183 |
+
experiment_id: Optional[str] = None,
|
184 |
+
hash: str = None,
|
185 |
+
max_concurrent_cache_files: int = 10000,
|
186 |
+
timeout: Union[int, float] = 100,
|
187 |
+
**kwargs,
|
188 |
+
):
|
189 |
+
# prepare info
|
190 |
+
self.config_name = config_name or "default"
|
191 |
+
info = self._info()
|
192 |
+
info.module_name = camelcase_to_snakecase(self.__class__.__name__)
|
193 |
+
info.config_name = self.config_name
|
194 |
+
info.experiment_id = experiment_id or "default_experiment"
|
195 |
+
EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level
|
196 |
+
|
197 |
+
# Safety checks on num_process and process_id
|
198 |
+
if not isinstance(process_id, int) or process_id < 0:
|
199 |
+
raise ValueError("'process_id' should be a number greater than 0")
|
200 |
+
if not isinstance(num_process, int) or num_process <= process_id:
|
201 |
+
raise ValueError("'num_process' should be a number greater than process_id")
|
202 |
+
if keep_in_memory and num_process != 1:
|
203 |
+
raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).")
|
204 |
+
|
205 |
+
self.num_process = num_process
|
206 |
+
self.process_id = process_id
|
207 |
+
self.max_concurrent_cache_files = max_concurrent_cache_files
|
208 |
+
|
209 |
+
self.keep_in_memory = keep_in_memory
|
210 |
+
self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE)
|
211 |
+
self.data_dir = self._build_data_dir()
|
212 |
+
if seed is None:
|
213 |
+
_, seed, pos, *_ = np.random.get_state()
|
214 |
+
self.seed: int = seed[pos] if pos < 624 else seed[0]
|
215 |
+
else:
|
216 |
+
self.seed: int = seed
|
217 |
+
self.timeout: Union[int, float] = timeout
|
218 |
+
|
219 |
+
# Update 'compute' and 'add' docstring
|
220 |
+
# methods need to be copied otherwise it changes the docstrings of every instance
|
221 |
+
self.compute = types.MethodType(copyfunc(self.compute), self)
|
222 |
+
self.add_batch = types.MethodType(copyfunc(self.add_batch), self)
|
223 |
+
self.add = types.MethodType(copyfunc(self.add), self)
|
224 |
+
self.compute.__func__.__doc__ += self.info.inputs_description
|
225 |
+
self.add_batch.__func__.__doc__ += self.info.inputs_description
|
226 |
+
self.add.__func__.__doc__ += self.info.inputs_description
|
227 |
+
|
228 |
+
# self.arrow_schema = pa.schema(field for field in self.info.features.type)
|
229 |
+
self.selected_feature_format = None
|
230 |
+
self.buf_writer = None
|
231 |
+
self.writer = None
|
232 |
+
self.writer_batch_size = None
|
233 |
+
self.data = None
|
234 |
+
|
235 |
+
# This is the cache file we store our predictions/references in
|
236 |
+
# Keep it None for now so we can (cloud)pickle the object
|
237 |
+
self.cache_file_name = None
|
238 |
+
self.filelock = None
|
239 |
+
self.rendez_vous_lock = None
|
240 |
+
|
241 |
+
# This is all the cache files on which we have a lock when we are in a distributed setting
|
242 |
+
self.file_paths = None
|
243 |
+
self.filelocks = None
|
244 |
+
|
245 |
+
# This fingerprints the evaluation module according to the hashed contents of the module code
|
246 |
+
self._hash = hash
|
247 |
+
|
248 |
+
def __len__(self):
|
249 |
+
"""Return the number of examples (predictions or predictions/references pair)
|
250 |
+
currently stored in the evaluation module's cache.
|
251 |
+
"""
|
252 |
+
return 0 if self.writer is None else len(self.writer)
|
253 |
+
|
254 |
+
def __repr__(self):
|
255 |
+
return (
|
256 |
+
f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", '
|
257 |
+
f'features: {self.features}, usage: """{self.inputs_description}""", '
|
258 |
+
f"stored examples: {len(self)})"
|
259 |
+
)
|
260 |
+
|
261 |
+
def _build_data_dir(self):
|
262 |
+
"""Path of this evaluation module in cache_dir:
|
263 |
+
Will be:
|
264 |
+
self._data_dir_root/self.name/self.config_name/self.hash (if not none)/
|
265 |
+
If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
|
266 |
+
"""
|
267 |
+
builder_data_dir = self._data_dir_root
|
268 |
+
builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name)
|
269 |
+
os.makedirs(builder_data_dir, exist_ok=True)
|
270 |
+
return builder_data_dir
|
271 |
+
|
272 |
+
def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]:
|
273 |
+
"""Create a new cache file. If the default cache file is used, we generated a new hash."""
|
274 |
+
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow")
|
275 |
+
filelock = None
|
276 |
+
for i in range(self.max_concurrent_cache_files):
|
277 |
+
filelock = FileLock(file_path + ".lock")
|
278 |
+
try:
|
279 |
+
filelock.acquire(timeout=timeout)
|
280 |
+
except Timeout:
|
281 |
+
# If we have reached the max number of attempts or we are not allow to find a free name (distributed setup)
|
282 |
+
# We raise an error
|
283 |
+
if self.num_process != 1:
|
284 |
+
raise ValueError(
|
285 |
+
f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. "
|
286 |
+
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
|
287 |
+
f"between distributed evaluation module instances."
|
288 |
+
) from None
|
289 |
+
if i == self.max_concurrent_cache_files - 1:
|
290 |
+
raise ValueError(
|
291 |
+
f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system."
|
292 |
+
f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module "
|
293 |
+
f"(current value is {self.max_concurrent_cache_files})."
|
294 |
+
) from None
|
295 |
+
# In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name.
|
296 |
+
file_uuid = str(uuid.uuid4())
|
297 |
+
file_path = os.path.join(
|
298 |
+
self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow"
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
break
|
302 |
+
|
303 |
+
return file_path, filelock
|
304 |
+
|
305 |
+
def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]:
|
306 |
+
"""Get a lock on all the cache files in a distributed setup.
|
307 |
+
We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds).
|
308 |
+
"""
|
309 |
+
if self.num_process == 1:
|
310 |
+
if self.cache_file_name is None:
|
311 |
+
raise ValueError(
|
312 |
+
"Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` "
|
313 |
+
"at least once before calling `compute`."
|
314 |
+
)
|
315 |
+
file_paths = [self.cache_file_name]
|
316 |
+
else:
|
317 |
+
file_paths = [
|
318 |
+
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow")
|
319 |
+
for process_id in range(self.num_process)
|
320 |
+
]
|
321 |
+
|
322 |
+
# Let's acquire a lock on each process files to be sure they are finished writing
|
323 |
+
filelocks = []
|
324 |
+
for process_id, file_path in enumerate(file_paths):
|
325 |
+
if process_id == 0: # process 0 already has its lock file
|
326 |
+
filelocks.append(self.filelock)
|
327 |
+
else:
|
328 |
+
filelock = FileLock(file_path + ".lock")
|
329 |
+
try:
|
330 |
+
filelock.acquire(timeout=self.timeout)
|
331 |
+
except Timeout:
|
332 |
+
raise ValueError(
|
333 |
+
f"Cannot acquire lock on cached file {file_path} for process {process_id}."
|
334 |
+
) from None
|
335 |
+
else:
|
336 |
+
filelocks.append(filelock)
|
337 |
+
|
338 |
+
return file_paths, filelocks
|
339 |
+
|
340 |
+
def _check_all_processes_locks(self):
|
341 |
+
expected_lock_file_names = [
|
342 |
+
os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock")
|
343 |
+
for process_id in range(self.num_process)
|
344 |
+
]
|
345 |
+
for expected_lock_file_name in expected_lock_file_names:
|
346 |
+
nofilelock = FileFreeLock(expected_lock_file_name)
|
347 |
+
try:
|
348 |
+
nofilelock.acquire(timeout=self.timeout)
|
349 |
+
except Timeout:
|
350 |
+
raise ValueError(
|
351 |
+
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
|
352 |
+
) from None
|
353 |
+
else:
|
354 |
+
nofilelock.release()
|
355 |
+
|
356 |
+
def _check_rendez_vous(self):
|
357 |
+
expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock")
|
358 |
+
nofilelock = FileFreeLock(expected_lock_file_name)
|
359 |
+
try:
|
360 |
+
nofilelock.acquire(timeout=self.timeout)
|
361 |
+
except Timeout:
|
362 |
+
raise ValueError(
|
363 |
+
f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
|
364 |
+
) from None
|
365 |
+
else:
|
366 |
+
nofilelock.release()
|
367 |
+
lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
|
368 |
+
rendez_vous_lock = FileLock(lock_file_name)
|
369 |
+
try:
|
370 |
+
rendez_vous_lock.acquire(timeout=self.timeout)
|
371 |
+
except Timeout:
|
372 |
+
raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None
|
373 |
+
else:
|
374 |
+
rendez_vous_lock.release()
|
375 |
+
|
376 |
+
def _finalize(self):
|
377 |
+
"""Close all the writing process and load/gather the data
|
378 |
+
from all the nodes if main node or all_process is True.
|
379 |
+
"""
|
380 |
+
if self.writer is not None:
|
381 |
+
self.writer.finalize()
|
382 |
+
self.writer = None
|
383 |
+
# release the locks of the processes > 0 so that process 0 can lock them to read + delete the data
|
384 |
+
if self.filelock is not None and self.process_id > 0:
|
385 |
+
self.filelock.release()
|
386 |
+
|
387 |
+
if self.keep_in_memory:
|
388 |
+
# Read the predictions and references
|
389 |
+
reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format))
|
390 |
+
self.data = Dataset.from_buffer(self.buf_writer.getvalue())
|
391 |
+
|
392 |
+
elif self.process_id == 0:
|
393 |
+
# Let's acquire a lock on each node files to be sure they are finished writing
|
394 |
+
file_paths, filelocks = self._get_all_cache_files()
|
395 |
+
|
396 |
+
# Read the predictions and references
|
397 |
+
try:
|
398 |
+
reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format))
|
399 |
+
self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths]))
|
400 |
+
except FileNotFoundError:
|
401 |
+
raise ValueError(
|
402 |
+
"Error in finalize: another evaluation module instance is already using the local cache file. "
|
403 |
+
"Please specify an experiment_id to avoid collision between distributed evaluation module instances."
|
404 |
+
) from None
|
405 |
+
|
406 |
+
# Store file paths and locks and we will release/delete them after the computation.
|
407 |
+
self.file_paths = file_paths
|
408 |
+
self.filelocks = filelocks
|
409 |
+
|
410 |
+
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
|
411 |
+
"""Compute the evaluation module.
|
412 |
+
|
413 |
+
Usage of positional arguments is not allowed to prevent mistakes.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
predictions (`list/array/tensor`, *optional*):
|
417 |
+
Predictions.
|
418 |
+
references (`list/array/tensor`, *optional*):
|
419 |
+
References.
|
420 |
+
**kwargs (optional):
|
421 |
+
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
|
422 |
+
method (see details in the docstring).
|
423 |
+
|
424 |
+
Return:
|
425 |
+
`dict` or `None`
|
426 |
+
|
427 |
+
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
|
428 |
+
- `None` if the evaluation module is not run on the main process (`process_id != 0`).
|
429 |
+
|
430 |
+
```py
|
431 |
+
>>> import evaluate
|
432 |
+
>>> accuracy = evaluate.load("accuracy")
|
433 |
+
>>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
|
434 |
+
```
|
435 |
+
"""
|
436 |
+
all_kwargs = {"predictions": predictions, "references": references, **kwargs}
|
437 |
+
if predictions is None and references is None:
|
438 |
+
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
|
439 |
+
all_kwargs.update(missing_kwargs)
|
440 |
+
else:
|
441 |
+
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
|
442 |
+
if missing_inputs:
|
443 |
+
raise ValueError(
|
444 |
+
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
|
445 |
+
)
|
446 |
+
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
|
447 |
+
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
|
448 |
+
|
449 |
+
if any(v is not None for v in inputs.values()):
|
450 |
+
self.add_batch(**inputs)
|
451 |
+
self._finalize()
|
452 |
+
|
453 |
+
self.cache_file_name = None
|
454 |
+
self.filelock = None
|
455 |
+
self.selected_feature_format = None
|
456 |
+
|
457 |
+
if self.process_id == 0:
|
458 |
+
self.data.set_format(type=self.info.format)
|
459 |
+
|
460 |
+
inputs = {input_name: self.data[input_name] for input_name in self._feature_names()}
|
461 |
+
with temp_seed(self.seed):
|
462 |
+
output = self._compute(**inputs, **compute_kwargs)
|
463 |
+
|
464 |
+
if self.buf_writer is not None:
|
465 |
+
self.buf_writer = None
|
466 |
+
del self.data
|
467 |
+
self.data = None
|
468 |
+
else:
|
469 |
+
# Release locks and delete all the cache files. Process 0 is released last.
|
470 |
+
for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))):
|
471 |
+
logger.info(f"Removing {file_path}")
|
472 |
+
del self.data
|
473 |
+
self.data = None
|
474 |
+
del self.writer
|
475 |
+
self.writer = None
|
476 |
+
os.remove(file_path)
|
477 |
+
filelock.release()
|
478 |
+
|
479 |
+
return output
|
480 |
+
else:
|
481 |
+
return None
|
482 |
+
|
483 |
+
def add_batch(self, *, predictions=None, references=None, **kwargs):
|
484 |
+
"""Add a batch of predictions and references for the evaluation module's stack.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
predictions (`list/array/tensor`, *optional*):
|
488 |
+
Predictions.
|
489 |
+
references (`list/array/tensor`, *optional*):
|
490 |
+
References.
|
491 |
+
|
492 |
+
Example:
|
493 |
+
|
494 |
+
```py
|
495 |
+
>>> import evaluate
|
496 |
+
>>> accuracy = evaluate.load("accuracy")
|
497 |
+
>>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
|
498 |
+
... accuracy.add_batch(references=refs, predictions=preds)
|
499 |
+
```
|
500 |
+
"""
|
501 |
+
bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
|
502 |
+
if bad_inputs:
|
503 |
+
raise ValueError(
|
504 |
+
f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
|
505 |
+
)
|
506 |
+
batch = {"predictions": predictions, "references": references, **kwargs}
|
507 |
+
batch = {input_name: batch[input_name] for input_name in self._feature_names()}
|
508 |
+
if self.writer is None:
|
509 |
+
self.selected_feature_format = self._infer_feature_from_batch(batch)
|
510 |
+
self._init_writer()
|
511 |
+
try:
|
512 |
+
for key, column in batch.items():
|
513 |
+
if len(column) > 0:
|
514 |
+
self._enforce_nested_string_type(self.selected_feature_format[key], column[0])
|
515 |
+
batch = self.selected_feature_format.encode_batch(batch)
|
516 |
+
self.writer.write_batch(batch)
|
517 |
+
except (pa.ArrowInvalid, TypeError):
|
518 |
+
if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch):
|
519 |
+
col0 = next(iter(batch))
|
520 |
+
bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0]
|
521 |
+
error_msg = (
|
522 |
+
f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})"
|
523 |
+
)
|
524 |
+
elif set(self.selected_feature_format) != {"references", "predictions"}:
|
525 |
+
error_msg = (
|
526 |
+
f"Module inputs don't match the expected format.\n"
|
527 |
+
f"Expected format: {self.selected_feature_format },\n"
|
528 |
+
)
|
529 |
+
error_msg_inputs = ",\n".join(
|
530 |
+
f"Input {input_name}: {summarize_if_long_list(batch[input_name])}"
|
531 |
+
for input_name in self.selected_feature_format
|
532 |
+
)
|
533 |
+
error_msg += error_msg_inputs
|
534 |
+
else:
|
535 |
+
error_msg = (
|
536 |
+
f"Predictions and/or references don't match the expected format.\n"
|
537 |
+
f"Expected format: {self.selected_feature_format },\n"
|
538 |
+
f"Input predictions: {summarize_if_long_list(predictions)},\n"
|
539 |
+
f"Input references: {summarize_if_long_list(references)}"
|
540 |
+
)
|
541 |
+
raise ValueError(error_msg) from None
|
542 |
+
|
543 |
+
def add(self, *, prediction=None, reference=None, **kwargs):
|
544 |
+
"""Add one prediction and reference for the evaluation module's stack.
|
545 |
+
|
546 |
+
Args:
|
547 |
+
prediction (`list/array/tensor`, *optional*):
|
548 |
+
Predictions.
|
549 |
+
reference (`list/array/tensor`, *optional*):
|
550 |
+
References.
|
551 |
+
|
552 |
+
Example:
|
553 |
+
|
554 |
+
```py
|
555 |
+
>>> import evaluate
|
556 |
+
>>> accuracy = evaluate.load("accuracy")
|
557 |
+
>>> accuracy.add(references=[0,1], predictions=[1,0])
|
558 |
+
```
|
559 |
+
"""
|
560 |
+
bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
|
561 |
+
if bad_inputs:
|
562 |
+
raise ValueError(
|
563 |
+
f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
|
564 |
+
)
|
565 |
+
example = {"predictions": prediction, "references": reference, **kwargs}
|
566 |
+
example = {input_name: example[input_name] for input_name in self._feature_names()}
|
567 |
+
if self.writer is None:
|
568 |
+
self.selected_feature_format = self._infer_feature_from_example(example)
|
569 |
+
self._init_writer()
|
570 |
+
try:
|
571 |
+
self._enforce_nested_string_type(self.selected_feature_format, example)
|
572 |
+
example = self.selected_feature_format.encode_example(example)
|
573 |
+
self.writer.write(example)
|
574 |
+
except (pa.ArrowInvalid, TypeError):
|
575 |
+
error_msg = (
|
576 |
+
f"Evaluation module inputs don't match the expected format.\n"
|
577 |
+
f"Expected format: {self.selected_feature_format},\n"
|
578 |
+
)
|
579 |
+
error_msg_inputs = ",\n".join(
|
580 |
+
f"Input {input_name}: {summarize_if_long_list(example[input_name])}"
|
581 |
+
for input_name in self.selected_feature_format
|
582 |
+
)
|
583 |
+
error_msg += error_msg_inputs
|
584 |
+
raise ValueError(error_msg) from None
|
585 |
+
|
586 |
+
def _infer_feature_from_batch(self, batch):
|
587 |
+
if isinstance(self.features, Features):
|
588 |
+
return self.features
|
589 |
+
else:
|
590 |
+
example = dict([(k, v[0]) for k, v in batch.items()])
|
591 |
+
return self._infer_feature_from_example(example)
|
592 |
+
|
593 |
+
def _infer_feature_from_example(self, example):
|
594 |
+
if isinstance(self.features, Features):
|
595 |
+
return self.features
|
596 |
+
else:
|
597 |
+
for features in self.features:
|
598 |
+
try:
|
599 |
+
self._enforce_nested_string_type(features, example)
|
600 |
+
features.encode_example(example)
|
601 |
+
return features
|
602 |
+
except (ValueError, TypeError):
|
603 |
+
continue
|
604 |
+
feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)])
|
605 |
+
error_msg = (
|
606 |
+
f"Predictions and/or references don't match the expected format.\n"
|
607 |
+
f"Expected format:\n{feature_strings},\n"
|
608 |
+
f"Input predictions: {summarize_if_long_list(example['predictions'])},\n"
|
609 |
+
f"Input references: {summarize_if_long_list(example['references'])}"
|
610 |
+
)
|
611 |
+
raise ValueError(error_msg) from None
|
612 |
+
|
613 |
+
def _feature_names(self):
|
614 |
+
if isinstance(self.features, list):
|
615 |
+
feature_names = list(self.features[0].keys())
|
616 |
+
else:
|
617 |
+
feature_names = list(self.features.keys())
|
618 |
+
return feature_names
|
619 |
+
|
620 |
+
def _init_writer(self, timeout=1):
|
621 |
+
if self.num_process > 1:
|
622 |
+
if self.process_id == 0:
|
623 |
+
file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
|
624 |
+
self.rendez_vous_lock = FileLock(file_path)
|
625 |
+
try:
|
626 |
+
self.rendez_vous_lock.acquire(timeout=timeout)
|
627 |
+
except TimeoutError:
|
628 |
+
raise ValueError(
|
629 |
+
f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. "
|
630 |
+
f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
|
631 |
+
f"between distributed evaluation module instances."
|
632 |
+
) from None
|
633 |
+
|
634 |
+
if self.keep_in_memory:
|
635 |
+
self.buf_writer = pa.BufferOutputStream()
|
636 |
+
self.writer = ArrowWriter(
|
637 |
+
features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size
|
638 |
+
)
|
639 |
+
else:
|
640 |
+
self.buf_writer = None
|
641 |
+
|
642 |
+
# Get cache file name and lock it
|
643 |
+
if self.cache_file_name is None or self.filelock is None:
|
644 |
+
cache_file_name, filelock = self._create_cache_file() # get ready
|
645 |
+
self.cache_file_name = cache_file_name
|
646 |
+
self.filelock = filelock
|
647 |
+
|
648 |
+
self.writer = ArrowWriter(
|
649 |
+
features=self.selected_feature_format,
|
650 |
+
path=self.cache_file_name,
|
651 |
+
writer_batch_size=self.writer_batch_size,
|
652 |
+
)
|
653 |
+
# Setup rendez-vous here if
|
654 |
+
if self.num_process > 1:
|
655 |
+
if self.process_id == 0:
|
656 |
+
self._check_all_processes_locks() # wait for everyone to be ready
|
657 |
+
self.rendez_vous_lock.release() # let everyone go
|
658 |
+
else:
|
659 |
+
self._check_rendez_vous() # wait for master to be ready and to let everyone go
|
660 |
+
|
661 |
+
def _info(self) -> EvaluationModuleInfo:
|
662 |
+
"""Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details.
|
663 |
+
|
664 |
+
Warning: This function is only called once and the result is cached for all
|
665 |
+
following .info() calls.
|
666 |
+
|
667 |
+
Returns:
|
668 |
+
info: (EvaluationModuleInfo) The EvaluationModule information
|
669 |
+
"""
|
670 |
+
raise NotImplementedError
|
671 |
+
|
672 |
+
def download_and_prepare(
|
673 |
+
self,
|
674 |
+
download_config: Optional[DownloadConfig] = None,
|
675 |
+
dl_manager: Optional[DownloadManager] = None,
|
676 |
+
):
|
677 |
+
"""Downloads and prepares evaluation module for reading.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
download_config ([`DownloadConfig`], *optional*):
|
681 |
+
Specific download configuration parameters.
|
682 |
+
dl_manager ([`DownloadManager`], *optional*):
|
683 |
+
Specific download manager to use.
|
684 |
+
|
685 |
+
Example:
|
686 |
+
|
687 |
+
```py
|
688 |
+
>>> import evaluate
|
689 |
+
```
|
690 |
+
"""
|
691 |
+
if dl_manager is None:
|
692 |
+
if download_config is None:
|
693 |
+
download_config = DownloadConfig()
|
694 |
+
download_config.cache_dir = os.path.join(self.data_dir, "downloads")
|
695 |
+
download_config.force_download = False
|
696 |
+
|
697 |
+
dl_manager = DownloadManager(
|
698 |
+
dataset_name=self.name, download_config=download_config, data_dir=self.data_dir
|
699 |
+
)
|
700 |
+
|
701 |
+
self._download_and_prepare(dl_manager)
|
702 |
+
|
703 |
+
def _download_and_prepare(self, dl_manager):
|
704 |
+
"""Downloads and prepares resources for the evaluation module.
|
705 |
+
|
706 |
+
This is the internal implementation to overwrite called when user calls
|
707 |
+
`download_and_prepare`. It should download all required resources for the evaluation module.
|
708 |
+
|
709 |
+
Args:
|
710 |
+
dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data.
|
711 |
+
"""
|
712 |
+
return None
|
713 |
+
|
714 |
+
def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]:
|
715 |
+
"""This method defines the common API for all the evaluation module in the library"""
|
716 |
+
raise NotImplementedError
|
717 |
+
|
718 |
+
def __del__(self):
|
719 |
+
if hasattr(self, "filelock") and self.filelock is not None:
|
720 |
+
self.filelock.release()
|
721 |
+
if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None:
|
722 |
+
self.rendez_vous_lock.release()
|
723 |
+
if hasattr(self, "writer"): # in case it was already deleted
|
724 |
+
del self.writer
|
725 |
+
if hasattr(self, "data"): # in case it was already deleted
|
726 |
+
del self.data
|
727 |
+
|
728 |
+
def _enforce_nested_string_type(self, schema, obj):
|
729 |
+
"""
|
730 |
+
Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string.
|
731 |
+
Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error.
|
732 |
+
"""
|
733 |
+
# Nested structures: we allow dict, list, tuples, sequences
|
734 |
+
if isinstance(schema, dict):
|
735 |
+
return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)]
|
736 |
+
|
737 |
+
elif isinstance(schema, (list, tuple)):
|
738 |
+
sub_schema = schema[0]
|
739 |
+
return [self._enforce_nested_string_type(sub_schema, o) for o in obj]
|
740 |
+
elif isinstance(schema, Sequence):
|
741 |
+
# We allow to reverse list of dict => dict of list for compatiblity with tfds
|
742 |
+
if isinstance(schema.feature, dict):
|
743 |
+
if isinstance(obj, (list, tuple)):
|
744 |
+
# obj is a list of dict
|
745 |
+
for k, dict_tuples in zip_dict(schema.feature, *obj):
|
746 |
+
for sub_obj in dict_tuples[1:]:
|
747 |
+
if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]):
|
748 |
+
self._enforce_nested_string_type(dict_tuples[0], sub_obj)
|
749 |
+
break
|
750 |
+
return None
|
751 |
+
else:
|
752 |
+
# obj is a single dict
|
753 |
+
for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj):
|
754 |
+
for sub_obj in sub_objs:
|
755 |
+
if _check_non_null_non_empty_recursive(sub_obj, sub_schema):
|
756 |
+
self._enforce_nested_string_type(sub_schema, sub_obj)
|
757 |
+
break
|
758 |
+
return None
|
759 |
+
# schema.feature is not a dict
|
760 |
+
if isinstance(obj, str): # don't interpret a string as a list
|
761 |
+
raise ValueError(f"Got a string but expected a list instead: '{obj}'")
|
762 |
+
if obj is None:
|
763 |
+
return None
|
764 |
+
else:
|
765 |
+
if len(obj) > 0:
|
766 |
+
for first_elmt in obj:
|
767 |
+
if _check_non_null_non_empty_recursive(first_elmt, schema.feature):
|
768 |
+
break
|
769 |
+
if not isinstance(first_elmt, list):
|
770 |
+
return self._enforce_nested_string_type(schema.feature, first_elmt)
|
771 |
+
|
772 |
+
elif isinstance(schema, Value):
|
773 |
+
if pa.types.is_string(schema.pa_type) and not isinstance(obj, str):
|
774 |
+
raise TypeError(f"Expected type str but got {type(obj)}.")
|
775 |
+
|
776 |
+
|
777 |
+
class Metric(EvaluationModule):
|
778 |
+
"""A Metric is the base class and common API for all metrics.
|
779 |
+
|
780 |
+
Args:
|
781 |
+
config_name (`str`):
|
782 |
+
This is used to define a hash specific to a metric computation script and prevents the metric's data
|
783 |
+
to be overridden when the metric loading script is modified.
|
784 |
+
keep_in_memory (`bool`):
|
785 |
+
Keep all predictions and references in memory. Not possible in distributed settings.
|
786 |
+
cache_dir (`str`):
|
787 |
+
Path to a directory in which temporary prediction/references data will be stored.
|
788 |
+
The data directory should be located on a shared file-system in distributed setups.
|
789 |
+
num_process (`int`):
|
790 |
+
Specify the total number of nodes in a distributed settings.
|
791 |
+
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
|
792 |
+
process_id (`int`):
|
793 |
+
Specify the id of the current process in a distributed setup (between 0 and num_process-1)
|
794 |
+
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
|
795 |
+
seed (`int`, *optional*):
|
796 |
+
If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run.
|
797 |
+
experiment_id (`str`):
|
798 |
+
A specific experiment id. This is used if several distributed evaluations share the same file system.
|
799 |
+
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
|
800 |
+
max_concurrent_cache_files (`int`):
|
801 |
+
Max number of concurrent metric cache files (default `10000`).
|
802 |
+
timeout (`Union[int, float]`):
|
803 |
+
Timeout in second for distributed setting synchronization.
|
804 |
+
"""
|
805 |
+
|
806 |
+
|
807 |
+
class Comparison(EvaluationModule):
|
808 |
+
"""A Comparison is the base class and common API for all comparisons.
|
809 |
+
|
810 |
+
Args:
|
811 |
+
config_name (`str`):
|
812 |
+
This is used to define a hash specific to a comparison computation script and prevents the comparison's data
|
813 |
+
to be overridden when the comparison loading script is modified.
|
814 |
+
keep_in_memory (`bool`):
|
815 |
+
Keep all predictions and references in memory. Not possible in distributed settings.
|
816 |
+
cache_dir (`str`):
|
817 |
+
Path to a directory in which temporary prediction/references data will be stored.
|
818 |
+
The data directory should be located on a shared file-system in distributed setups.
|
819 |
+
num_process (`int`):
|
820 |
+
Specify the total number of nodes in a distributed settings.
|
821 |
+
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
|
822 |
+
process_id (`int`):
|
823 |
+
Specify the id of the current process in a distributed setup (between 0 and num_process-1)
|
824 |
+
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
|
825 |
+
seed (`int`, *optional*):
|
826 |
+
If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run.
|
827 |
+
experiment_id (`str`):
|
828 |
+
A specific experiment id. This is used if several distributed evaluations share the same file system.
|
829 |
+
This is useful to compute comparisons in distributed setups (in particular non-additive comparisons).
|
830 |
+
max_concurrent_cache_files (`int`):
|
831 |
+
Max number of concurrent comparison cache files (default `10000`).
|
832 |
+
timeout (`Union[int, float]`):
|
833 |
+
Timeout in second for distributed setting synchronization.
|
834 |
+
"""
|
835 |
+
|
836 |
+
|
837 |
+
class Measurement(EvaluationModule):
|
838 |
+
"""A Measurement is the base class and common API for all measurements.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
config_name (`str`):
|
842 |
+
This is used to define a hash specific to a measurement computation script and prevents the measurement's data
|
843 |
+
to be overridden when the measurement loading script is modified.
|
844 |
+
keep_in_memory (`bool`):
|
845 |
+
Keep all predictions and references in memory. Not possible in distributed settings.
|
846 |
+
cache_dir (`str`):
|
847 |
+
Path to a directory in which temporary prediction/references data will be stored.
|
848 |
+
The data directory should be located on a shared file-system in distributed setups.
|
849 |
+
num_process (`int`):
|
850 |
+
Specify the total number of nodes in a distributed settings.
|
851 |
+
This is useful to compute measurements in distributed setups (in particular non-additive measurements).
|
852 |
+
process_id (`int`):
|
853 |
+
Specify the id of the current process in a distributed setup (between 0 and num_process-1)
|
854 |
+
This is useful to compute measurements in distributed setups (in particular non-additive measurements).
|
855 |
+
seed (`int`, *optional*):
|
856 |
+
If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run.
|
857 |
+
experiment_id (`str`):
|
858 |
+
A specific experiment id. This is used if several distributed evaluations share the same file system.
|
859 |
+
This is useful to compute measurements in distributed setups (in particular non-additive measurements).
|
860 |
+
max_concurrent_cache_files (`int`):
|
861 |
+
Max number of concurrent measurement cache files (default `10000`).
|
862 |
+
timeout (`Union[int, float]`):
|
863 |
+
Timeout in second for distributed setting synchronization.
|
864 |
+
"""
|
865 |
+
|
866 |
+
|
867 |
+
class CombinedEvaluations:
|
868 |
+
def __init__(self, evaluation_modules, force_prefix=False):
|
869 |
+
from .loading import load # avoid circular imports
|
870 |
+
|
871 |
+
self.evaluation_module_names = None
|
872 |
+
if isinstance(evaluation_modules, list):
|
873 |
+
self.evaluation_modules = evaluation_modules
|
874 |
+
elif isinstance(evaluation_modules, dict):
|
875 |
+
self.evaluation_modules = list(evaluation_modules.values())
|
876 |
+
self.evaluation_module_names = list(evaluation_modules.keys())
|
877 |
+
loaded_modules = []
|
878 |
+
|
879 |
+
for module in self.evaluation_modules:
|
880 |
+
if isinstance(module, str):
|
881 |
+
module = load(module)
|
882 |
+
loaded_modules.append(module)
|
883 |
+
self.evaluation_modules = loaded_modules
|
884 |
+
|
885 |
+
if self.evaluation_module_names is None:
|
886 |
+
self.evaluation_module_names = [module.name for module in self.evaluation_modules]
|
887 |
+
|
888 |
+
self.force_prefix = force_prefix
|
889 |
+
|
890 |
+
def add(self, prediction=None, reference=None, **kwargs):
|
891 |
+
"""Add one prediction and reference for each evaluation module's stack.
|
892 |
+
|
893 |
+
Args:
|
894 |
+
predictions (`list/array/tensor`, *optional*):
|
895 |
+
Predictions.
|
896 |
+
references (`list/array/tensor`, *optional*):
|
897 |
+
References.
|
898 |
+
|
899 |
+
Example:
|
900 |
+
|
901 |
+
```py
|
902 |
+
>>> import evaluate
|
903 |
+
>>> accuracy = evaluate.load("accuracy")
|
904 |
+
>>> f1 = evaluate.load("f1")
|
905 |
+
>>> clf_metrics = combine(["accuracy", "f1"])
|
906 |
+
>>> for ref, pred in zip([0,1,0,1], [1,0,0,1]):
|
907 |
+
... clf_metrics.add(references=ref, predictions=pred)
|
908 |
+
```
|
909 |
+
"""
|
910 |
+
for evaluation_module in self.evaluation_modules:
|
911 |
+
batch = {"predictions": prediction, "references": reference, **kwargs}
|
912 |
+
batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
|
913 |
+
evaluation_module.add(**batch)
|
914 |
+
|
915 |
+
def add_batch(self, predictions=None, references=None, **kwargs):
|
916 |
+
"""Add a batch of predictions and references for each evaluation module's stack.
|
917 |
+
|
918 |
+
Args:
|
919 |
+
predictions (`list/array/tensor`, *optional*):
|
920 |
+
Predictions.
|
921 |
+
references (`list/array/tensor`, *optional*):
|
922 |
+
References.
|
923 |
+
|
924 |
+
Example:
|
925 |
+
```py
|
926 |
+
>>> import evaluate
|
927 |
+
>>> accuracy = evaluate.load("accuracy")
|
928 |
+
>>> f1 = evaluate.load("f1")
|
929 |
+
>>> clf_metrics = combine(["accuracy", "f1"])
|
930 |
+
>>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
|
931 |
+
... clf_metrics.add(references=refs, predictions=preds)
|
932 |
+
```
|
933 |
+
"""
|
934 |
+
for evaluation_module in self.evaluation_modules:
|
935 |
+
batch = {"predictions": predictions, "references": references, **kwargs}
|
936 |
+
batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
|
937 |
+
evaluation_module.add_batch(**batch)
|
938 |
+
|
939 |
+
def compute(self, predictions=None, references=None, **kwargs):
|
940 |
+
"""Compute each evaluation module.
|
941 |
+
|
942 |
+
Usage of positional arguments is not allowed to prevent mistakes.
|
943 |
+
|
944 |
+
Args:
|
945 |
+
predictions (`list/array/tensor`, *optional*):
|
946 |
+
Predictions.
|
947 |
+
references (`list/array/tensor`, *optional*):
|
948 |
+
References.
|
949 |
+
**kwargs (*optional*):
|
950 |
+
Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
|
951 |
+
method (see details in the docstring).
|
952 |
+
|
953 |
+
Return:
|
954 |
+
`dict` or `None`
|
955 |
+
|
956 |
+
- Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
|
957 |
+
- `None` if the evaluation module is not run on the main process (`process_id != 0`).
|
958 |
+
|
959 |
+
Example:
|
960 |
+
|
961 |
+
```py
|
962 |
+
>>> import evaluate
|
963 |
+
>>> accuracy = evaluate.load("accuracy")
|
964 |
+
>>> f1 = evaluate.load("f1")
|
965 |
+
>>> clf_metrics = combine(["accuracy", "f1"])
|
966 |
+
>>> clf_metrics.compute(predictions=[0,1], references=[1,1])
|
967 |
+
{'accuracy': 0.5, 'f1': 0.6666666666666666}
|
968 |
+
```
|
969 |
+
"""
|
970 |
+
results = []
|
971 |
+
|
972 |
+
for evaluation_module in self.evaluation_modules:
|
973 |
+
batch = {"predictions": predictions, "references": references, **kwargs}
|
974 |
+
results.append(evaluation_module.compute(**batch))
|
975 |
+
|
976 |
+
return self._merge_results(results)
|
977 |
+
|
978 |
+
def _merge_results(self, results):
|
979 |
+
merged_results = {}
|
980 |
+
results_keys = list(itertools.chain.from_iterable([r.keys() for r in results]))
|
981 |
+
duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1}
|
982 |
+
|
983 |
+
duplicate_names = [
|
984 |
+
item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1
|
985 |
+
]
|
986 |
+
duplicate_counter = {name: 0 for name in duplicate_names}
|
987 |
+
|
988 |
+
for module_name, result in zip(self.evaluation_module_names, results):
|
989 |
+
for k, v in result.items():
|
990 |
+
if k not in duplicate_keys and not self.force_prefix:
|
991 |
+
merged_results[f"{k}"] = v
|
992 |
+
elif module_name in duplicate_counter:
|
993 |
+
merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v
|
994 |
+
else:
|
995 |
+
merged_results[f"{module_name}_{k}"] = v
|
996 |
+
|
997 |
+
if module_name in duplicate_counter:
|
998 |
+
duplicate_counter[module_name] += 1
|
999 |
+
|
1000 |
+
return merged_results
|
1001 |
+
|
1002 |
+
|
1003 |
+
def combine(evaluations, force_prefix=False):
|
1004 |
+
"""Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that
|
1005 |
+
can be used like a single evaluation module.
|
1006 |
+
|
1007 |
+
If two scores have the same name, then they are prefixed with their module names.
|
1008 |
+
And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix.
|
1009 |
+
|
1010 |
+
Args:
|
1011 |
+
evaluations (`Union[list, dict]`):
|
1012 |
+
A list or dictionary of evaluation modules. The modules can either be passed
|
1013 |
+
as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules.
|
1014 |
+
The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`.
|
1015 |
+
force_prefix (`bool`, *optional*, defaults to `False`):
|
1016 |
+
If `True` all scores from the modules are prefixed with their name. If
|
1017 |
+
a dictionary is passed the keys are used as name otherwise the module's name.
|
1018 |
+
|
1019 |
+
Examples:
|
1020 |
+
|
1021 |
+
```py
|
1022 |
+
>>> import evaluate
|
1023 |
+
>>> accuracy = evaluate.load("accuracy")
|
1024 |
+
>>> f1 = evaluate.load("f1")
|
1025 |
+
>>> clf_metrics = combine(["accuracy", "f1"])
|
1026 |
+
```
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
return CombinedEvaluations(evaluations, force_prefix=force_prefix)
|
env-llmeval/lib/python3.10/site-packages/evaluate/naming.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Utilities for file names."""
|
17 |
+
|
18 |
+
import itertools
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
|
22 |
+
|
23 |
+
_uppercase_uppercase_re = re.compile(r"([A-Z]+)([A-Z][a-z])")
|
24 |
+
_lowercase_uppercase_re = re.compile(r"([a-z\d])([A-Z])")
|
25 |
+
|
26 |
+
_single_underscore_re = re.compile(r"(?<!_)_(?!_)")
|
27 |
+
_multiple_underscores_re = re.compile(r"(_{2,})")
|
28 |
+
|
29 |
+
_split_re = r"^\w+(\.\w+)*$"
|
30 |
+
|
31 |
+
|
32 |
+
def camelcase_to_snakecase(name):
|
33 |
+
"""Convert camel-case string to snake-case."""
|
34 |
+
name = _uppercase_uppercase_re.sub(r"\1_\2", name)
|
35 |
+
name = _lowercase_uppercase_re.sub(r"\1_\2", name)
|
36 |
+
return name.lower()
|
37 |
+
|
38 |
+
|
39 |
+
def snakecase_to_camelcase(name):
|
40 |
+
"""Convert snake-case string to camel-case string."""
|
41 |
+
name = _single_underscore_re.split(name)
|
42 |
+
name = [_multiple_underscores_re.split(n) for n in name]
|
43 |
+
return "".join(n.capitalize() for n in itertools.chain.from_iterable(name) if n != "")
|
44 |
+
|
45 |
+
|
46 |
+
def filename_prefix_for_name(name):
|
47 |
+
if os.path.basename(name) != name:
|
48 |
+
raise ValueError(f"Should be a dataset name, not a path: {name}")
|
49 |
+
return camelcase_to_snakecase(name)
|
50 |
+
|
51 |
+
|
52 |
+
def filename_prefix_for_split(name, split):
|
53 |
+
if os.path.basename(name) != name:
|
54 |
+
raise ValueError(f"Should be a dataset name, not a path: {name}")
|
55 |
+
if not re.match(_split_re, split):
|
56 |
+
raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'.")
|
57 |
+
return f"{filename_prefix_for_name(name)}-{split}"
|
58 |
+
|
59 |
+
|
60 |
+
def filepattern_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None):
|
61 |
+
prefix = filename_prefix_for_split(dataset_name, split)
|
62 |
+
if filetype_suffix:
|
63 |
+
prefix += f".{filetype_suffix}"
|
64 |
+
filepath = os.path.join(data_dir, prefix)
|
65 |
+
return f"{filepath}*"
|
66 |
+
|
67 |
+
|
68 |
+
def filename_for_dataset_split(dataset_name, split, filetype_suffix=None):
|
69 |
+
prefix = filename_prefix_for_split(dataset_name, split)
|
70 |
+
if filetype_suffix:
|
71 |
+
prefix += f".{filetype_suffix}"
|
72 |
+
return prefix
|
73 |
+
|
74 |
+
|
75 |
+
def filepath_for_dataset_split(dataset_name, split, data_dir, filetype_suffix=None):
|
76 |
+
filename = filename_for_dataset_split(
|
77 |
+
dataset_name=dataset_name,
|
78 |
+
split=split,
|
79 |
+
filetype_suffix=filetype_suffix,
|
80 |
+
)
|
81 |
+
filepath = os.path.join(data_dir, filename)
|
82 |
+
return filepath
|
env-llmeval/lib/python3.10/site-packages/evaluate/utils/__init__.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# flake8: noqa
|
16 |
+
# Lint as: python3
|
17 |
+
"""Util import."""
|
18 |
+
|
19 |
+
__all__ = [
|
20 |
+
"disable_progress_bar",
|
21 |
+
"enable_progress_bar",
|
22 |
+
"is_progress_bar_enabled",
|
23 |
+
"infer_gradio_input_types",
|
24 |
+
"json_to_string_type",
|
25 |
+
"parse_readme",
|
26 |
+
"parse_gradio_data",
|
27 |
+
"parse_test_cases",
|
28 |
+
"launch_gradio_widget",
|
29 |
+
]
|
30 |
+
|
31 |
+
from .gradio import (
|
32 |
+
infer_gradio_input_types,
|
33 |
+
json_to_string_type,
|
34 |
+
launch_gradio_widget,
|
35 |
+
parse_gradio_data,
|
36 |
+
parse_readme,
|
37 |
+
parse_test_cases,
|
38 |
+
)
|
39 |
+
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
|
env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (584 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/file_utils.cpython-310.pyc
ADDED
Binary file (17.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/evaluate/utils/__pycache__/gradio.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|