Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__init__.py +65 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/configuration_audio_spectrogram_transformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/convert_audio_spectrogram_transformer_original_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/feature_extraction_audio_spectrogram_transformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/modeling_audio_spectrogram_transformer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +124 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py +279 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +236 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +613 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py +287 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__init__.py +157 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/configuration_gpt2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/convert_gpt2_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_flax_gpt2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_gpt2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_tf_gpt2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2_tf.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/configuration_gpt2.py +272 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py +69 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_flax_gpt2.py +779 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_gpt2.py +1944 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_tf_gpt2.py +1238 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2.py +345 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2_fast.py +156 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2_tf.py +104 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__init__.py +80 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/configuration_gpt_neox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/modeling_gpt_neox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/tokenization_gpt_neox_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/configuration_gpt_neox.py +179 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py +1426 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py +243 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py +67 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py +200 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py +1170 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py +800 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py +130 -0
- llmeval-env/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_audio_spectrogram_transformer": [
|
21 |
+
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
22 |
+
"ASTConfig",
|
23 |
+
],
|
24 |
+
"feature_extraction_audio_spectrogram_transformer": ["ASTFeatureExtractor"],
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_audio_spectrogram_transformer"] = [
|
34 |
+
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"ASTForAudioClassification",
|
36 |
+
"ASTModel",
|
37 |
+
"ASTPreTrainedModel",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from .configuration_audio_spectrogram_transformer import (
|
43 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
44 |
+
ASTConfig,
|
45 |
+
)
|
46 |
+
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .modeling_audio_spectrogram_transformer import (
|
55 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
56 |
+
ASTForAudioClassification,
|
57 |
+
ASTModel,
|
58 |
+
ASTPreTrainedModel,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
else:
|
63 |
+
import sys
|
64 |
+
|
65 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/configuration_audio_spectrogram_transformer.cpython-310.pyc
ADDED
Binary file (4.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/convert_audio_spectrogram_transformer_original_to_pytorch.cpython-310.pyc
ADDED
Binary file (7.59 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/feature_extraction_audio_spectrogram_transformer.cpython-310.pyc
ADDED
Binary file (8.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/__pycache__/modeling_audio_spectrogram_transformer.cpython-310.pyc
ADDED
Binary file (19.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Audio Spectogram Transformer (AST) model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class ASTConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`ASTModel`]. It is used to instantiate an AST
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the AST
|
33 |
+
[MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
|
34 |
+
architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
41 |
+
Dimensionality of the encoder layers and the pooler layer.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
47 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
49 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
50 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
51 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
52 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
53 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
58 |
+
The epsilon used by the layer normalization layers.
|
59 |
+
patch_size (`int`, *optional*, defaults to 16):
|
60 |
+
The size (resolution) of each patch.
|
61 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
62 |
+
Whether to add a bias to the queries, keys and values.
|
63 |
+
frequency_stride (`int`, *optional*, defaults to 10):
|
64 |
+
Frequency stride to use when patchifying the spectrograms.
|
65 |
+
time_stride (`int`, *optional*, defaults to 10):
|
66 |
+
Temporal stride to use when patchifying the spectrograms.
|
67 |
+
max_length (`int`, *optional*, defaults to 1024):
|
68 |
+
Temporal dimension of the spectrograms.
|
69 |
+
num_mel_bins (`int`, *optional*, defaults to 128):
|
70 |
+
Frequency dimension of the spectrograms (number of Mel-frequency bins).
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import ASTConfig, ASTModel
|
76 |
+
|
77 |
+
>>> # Initializing a AST MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
|
78 |
+
>>> configuration = ASTConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a model (with random weights) from the MIT/ast-finetuned-audioset-10-10-0.4593 style configuration
|
81 |
+
>>> model = ASTModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "audio-spectrogram-transformer"
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
hidden_size=768,
|
92 |
+
num_hidden_layers=12,
|
93 |
+
num_attention_heads=12,
|
94 |
+
intermediate_size=3072,
|
95 |
+
hidden_act="gelu",
|
96 |
+
hidden_dropout_prob=0.0,
|
97 |
+
attention_probs_dropout_prob=0.0,
|
98 |
+
initializer_range=0.02,
|
99 |
+
layer_norm_eps=1e-12,
|
100 |
+
patch_size=16,
|
101 |
+
qkv_bias=True,
|
102 |
+
frequency_stride=10,
|
103 |
+
time_stride=10,
|
104 |
+
max_length=1024,
|
105 |
+
num_mel_bins=128,
|
106 |
+
**kwargs,
|
107 |
+
):
|
108 |
+
super().__init__(**kwargs)
|
109 |
+
|
110 |
+
self.hidden_size = hidden_size
|
111 |
+
self.num_hidden_layers = num_hidden_layers
|
112 |
+
self.num_attention_heads = num_attention_heads
|
113 |
+
self.intermediate_size = intermediate_size
|
114 |
+
self.hidden_act = hidden_act
|
115 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
116 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
117 |
+
self.initializer_range = initializer_range
|
118 |
+
self.layer_norm_eps = layer_norm_eps
|
119 |
+
self.patch_size = patch_size
|
120 |
+
self.qkv_bias = qkv_bias
|
121 |
+
self.frequency_stride = frequency_stride
|
122 |
+
self.time_stride = time_stride
|
123 |
+
self.max_length = max_length
|
124 |
+
self.num_mel_bins = num_mel_bins
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Audio Spectrogram Transformer checkpoints from the original repository. URL: https://github.com/YuanGongND/ast"""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
from pathlib import Path
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torchaudio
|
24 |
+
from datasets import load_dataset
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
|
27 |
+
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logging.set_verbosity_info()
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def get_audio_spectrogram_transformer_config(model_name):
|
36 |
+
config = ASTConfig()
|
37 |
+
|
38 |
+
if "10-10" in model_name:
|
39 |
+
pass
|
40 |
+
elif "speech-commands" in model_name:
|
41 |
+
config.max_length = 128
|
42 |
+
elif "12-12" in model_name:
|
43 |
+
config.time_stride = 12
|
44 |
+
config.frequency_stride = 12
|
45 |
+
elif "14-14" in model_name:
|
46 |
+
config.time_stride = 14
|
47 |
+
config.frequency_stride = 14
|
48 |
+
elif "16-16" in model_name:
|
49 |
+
config.time_stride = 16
|
50 |
+
config.frequency_stride = 16
|
51 |
+
else:
|
52 |
+
raise ValueError("Model not supported")
|
53 |
+
|
54 |
+
repo_id = "huggingface/label-files"
|
55 |
+
if "speech-commands" in model_name:
|
56 |
+
config.num_labels = 35
|
57 |
+
filename = "speech-commands-v2-id2label.json"
|
58 |
+
else:
|
59 |
+
config.num_labels = 527
|
60 |
+
filename = "audioset-id2label.json"
|
61 |
+
|
62 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
63 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
64 |
+
config.id2label = id2label
|
65 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
66 |
+
|
67 |
+
return config
|
68 |
+
|
69 |
+
|
70 |
+
def rename_key(name):
|
71 |
+
if "module.v" in name:
|
72 |
+
name = name.replace("module.v", "audio_spectrogram_transformer")
|
73 |
+
if "cls_token" in name:
|
74 |
+
name = name.replace("cls_token", "embeddings.cls_token")
|
75 |
+
if "dist_token" in name:
|
76 |
+
name = name.replace("dist_token", "embeddings.distillation_token")
|
77 |
+
if "pos_embed" in name:
|
78 |
+
name = name.replace("pos_embed", "embeddings.position_embeddings")
|
79 |
+
if "patch_embed.proj" in name:
|
80 |
+
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
|
81 |
+
# transformer blocks
|
82 |
+
if "blocks" in name:
|
83 |
+
name = name.replace("blocks", "encoder.layer")
|
84 |
+
if "attn.proj" in name:
|
85 |
+
name = name.replace("attn.proj", "attention.output.dense")
|
86 |
+
if "attn" in name:
|
87 |
+
name = name.replace("attn", "attention.self")
|
88 |
+
if "norm1" in name:
|
89 |
+
name = name.replace("norm1", "layernorm_before")
|
90 |
+
if "norm2" in name:
|
91 |
+
name = name.replace("norm2", "layernorm_after")
|
92 |
+
if "mlp.fc1" in name:
|
93 |
+
name = name.replace("mlp.fc1", "intermediate.dense")
|
94 |
+
if "mlp.fc2" in name:
|
95 |
+
name = name.replace("mlp.fc2", "output.dense")
|
96 |
+
# final layernorm
|
97 |
+
if "audio_spectrogram_transformer.norm" in name:
|
98 |
+
name = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm")
|
99 |
+
# classifier head
|
100 |
+
if "module.mlp_head.0" in name:
|
101 |
+
name = name.replace("module.mlp_head.0", "classifier.layernorm")
|
102 |
+
if "module.mlp_head.1" in name:
|
103 |
+
name = name.replace("module.mlp_head.1", "classifier.dense")
|
104 |
+
|
105 |
+
return name
|
106 |
+
|
107 |
+
|
108 |
+
def convert_state_dict(orig_state_dict, config):
|
109 |
+
for key in orig_state_dict.copy().keys():
|
110 |
+
val = orig_state_dict.pop(key)
|
111 |
+
|
112 |
+
if "qkv" in key:
|
113 |
+
key_split = key.split(".")
|
114 |
+
layer_num = int(key_split[3])
|
115 |
+
dim = config.hidden_size
|
116 |
+
if "weight" in key:
|
117 |
+
orig_state_dict[
|
118 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.weight"
|
119 |
+
] = val[:dim, :]
|
120 |
+
orig_state_dict[
|
121 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.weight"
|
122 |
+
] = val[dim : dim * 2, :]
|
123 |
+
orig_state_dict[
|
124 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.weight"
|
125 |
+
] = val[-dim:, :]
|
126 |
+
else:
|
127 |
+
orig_state_dict[
|
128 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.bias"
|
129 |
+
] = val[:dim]
|
130 |
+
orig_state_dict[
|
131 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.bias"
|
132 |
+
] = val[dim : dim * 2]
|
133 |
+
orig_state_dict[
|
134 |
+
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.bias"
|
135 |
+
] = val[-dim:]
|
136 |
+
else:
|
137 |
+
orig_state_dict[rename_key(key)] = val
|
138 |
+
|
139 |
+
return orig_state_dict
|
140 |
+
|
141 |
+
|
142 |
+
def remove_keys(state_dict):
|
143 |
+
ignore_keys = [
|
144 |
+
"module.v.head.weight",
|
145 |
+
"module.v.head.bias",
|
146 |
+
"module.v.head_dist.weight",
|
147 |
+
"module.v.head_dist.bias",
|
148 |
+
]
|
149 |
+
for k in ignore_keys:
|
150 |
+
state_dict.pop(k, None)
|
151 |
+
|
152 |
+
|
153 |
+
@torch.no_grad()
|
154 |
+
def convert_audio_spectrogram_transformer_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
|
155 |
+
"""
|
156 |
+
Copy/paste/tweak model's weights to our Audio Spectrogram Transformer structure.
|
157 |
+
"""
|
158 |
+
config = get_audio_spectrogram_transformer_config(model_name)
|
159 |
+
|
160 |
+
model_name_to_url = {
|
161 |
+
"ast-finetuned-audioset-10-10-0.4593": (
|
162 |
+
"https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"
|
163 |
+
),
|
164 |
+
"ast-finetuned-audioset-10-10-0.450": (
|
165 |
+
"https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"
|
166 |
+
),
|
167 |
+
"ast-finetuned-audioset-10-10-0.448": (
|
168 |
+
"https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"
|
169 |
+
),
|
170 |
+
"ast-finetuned-audioset-10-10-0.448-v2": (
|
171 |
+
"https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"
|
172 |
+
),
|
173 |
+
"ast-finetuned-audioset-12-12-0.447": (
|
174 |
+
"https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"
|
175 |
+
),
|
176 |
+
"ast-finetuned-audioset-14-14-0.443": (
|
177 |
+
"https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"
|
178 |
+
),
|
179 |
+
"ast-finetuned-audioset-16-16-0.442": (
|
180 |
+
"https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"
|
181 |
+
),
|
182 |
+
"ast-finetuned-speech-commands-v2": (
|
183 |
+
"https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"
|
184 |
+
),
|
185 |
+
}
|
186 |
+
|
187 |
+
# load original state_dict
|
188 |
+
checkpoint_url = model_name_to_url[model_name]
|
189 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
|
190 |
+
# remove some keys
|
191 |
+
remove_keys(state_dict)
|
192 |
+
# rename some keys
|
193 |
+
new_state_dict = convert_state_dict(state_dict, config)
|
194 |
+
|
195 |
+
# load 🤗 model
|
196 |
+
model = ASTForAudioClassification(config)
|
197 |
+
model.eval()
|
198 |
+
|
199 |
+
model.load_state_dict(new_state_dict)
|
200 |
+
|
201 |
+
# verify outputs on dummy input
|
202 |
+
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
|
203 |
+
mean = -4.2677393 if "speech-commands" not in model_name else -6.845978
|
204 |
+
std = 4.5689974 if "speech-commands" not in model_name else 5.5654526
|
205 |
+
max_length = 1024 if "speech-commands" not in model_name else 128
|
206 |
+
feature_extractor = ASTFeatureExtractor(mean=mean, std=std, max_length=max_length)
|
207 |
+
|
208 |
+
if "speech-commands" in model_name:
|
209 |
+
dataset = load_dataset("speech_commands", "v0.02", split="validation")
|
210 |
+
waveform = dataset[0]["audio"]["array"]
|
211 |
+
else:
|
212 |
+
filepath = hf_hub_download(
|
213 |
+
repo_id="nielsr/audio-spectogram-transformer-checkpoint",
|
214 |
+
filename="sample_audio.flac",
|
215 |
+
repo_type="dataset",
|
216 |
+
)
|
217 |
+
|
218 |
+
waveform, _ = torchaudio.load(filepath)
|
219 |
+
waveform = waveform.squeeze().numpy()
|
220 |
+
|
221 |
+
inputs = feature_extractor(waveform, sampling_rate=16000, return_tensors="pt")
|
222 |
+
|
223 |
+
# forward pass
|
224 |
+
outputs = model(**inputs)
|
225 |
+
logits = outputs.logits
|
226 |
+
|
227 |
+
if model_name == "ast-finetuned-audioset-10-10-0.4593":
|
228 |
+
expected_slice = torch.tensor([-0.8760, -7.0042, -8.6602])
|
229 |
+
elif model_name == "ast-finetuned-audioset-10-10-0.450":
|
230 |
+
expected_slice = torch.tensor([-1.1986, -7.0903, -8.2718])
|
231 |
+
elif model_name == "ast-finetuned-audioset-10-10-0.448":
|
232 |
+
expected_slice = torch.tensor([-2.6128, -8.0080, -9.4344])
|
233 |
+
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
|
234 |
+
expected_slice = torch.tensor([-1.5080, -7.4534, -8.8917])
|
235 |
+
elif model_name == "ast-finetuned-audioset-12-12-0.447":
|
236 |
+
expected_slice = torch.tensor([-0.5050, -6.5833, -8.0843])
|
237 |
+
elif model_name == "ast-finetuned-audioset-14-14-0.443":
|
238 |
+
expected_slice = torch.tensor([-0.3826, -7.0336, -8.2413])
|
239 |
+
elif model_name == "ast-finetuned-audioset-16-16-0.442":
|
240 |
+
expected_slice = torch.tensor([-1.2113, -6.9101, -8.3470])
|
241 |
+
elif model_name == "ast-finetuned-speech-commands-v2":
|
242 |
+
expected_slice = torch.tensor([6.1589, -8.0566, -8.7984])
|
243 |
+
else:
|
244 |
+
raise ValueError("Unknown model name")
|
245 |
+
if not torch.allclose(logits[0, :3], expected_slice, atol=1e-4):
|
246 |
+
raise ValueError("Logits don't match")
|
247 |
+
print("Looks ok!")
|
248 |
+
|
249 |
+
if pytorch_dump_folder_path is not None:
|
250 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
251 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
252 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
253 |
+
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
|
254 |
+
feature_extractor.save_pretrained(pytorch_dump_folder_path)
|
255 |
+
|
256 |
+
if push_to_hub:
|
257 |
+
print("Pushing model and feature extractor to the hub...")
|
258 |
+
model.push_to_hub(f"MIT/{model_name}")
|
259 |
+
feature_extractor.push_to_hub(f"MIT/{model_name}")
|
260 |
+
|
261 |
+
|
262 |
+
if __name__ == "__main__":
|
263 |
+
parser = argparse.ArgumentParser()
|
264 |
+
# Required parameters
|
265 |
+
parser.add_argument(
|
266 |
+
"--model_name",
|
267 |
+
default="ast-finetuned-audioset-10-10-0.4593",
|
268 |
+
type=str,
|
269 |
+
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
|
270 |
+
)
|
271 |
+
parser.add_argument(
|
272 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
276 |
+
)
|
277 |
+
|
278 |
+
args = parser.parse_args()
|
279 |
+
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extractor class for Audio Spectrogram Transformer.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
from ...audio_utils import mel_filter_bank, spectrogram, window_function
|
24 |
+
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
|
25 |
+
from ...feature_extraction_utils import BatchFeature
|
26 |
+
from ...utils import TensorType, is_speech_available, is_torch_available, logging
|
27 |
+
|
28 |
+
|
29 |
+
if is_speech_available():
|
30 |
+
import torchaudio.compliance.kaldi as ta_kaldi
|
31 |
+
|
32 |
+
if is_torch_available():
|
33 |
+
import torch
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
class ASTFeatureExtractor(SequenceFeatureExtractor):
|
40 |
+
r"""
|
41 |
+
Constructs a Audio Spectrogram Transformer (AST) feature extractor.
|
42 |
+
|
43 |
+
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
|
44 |
+
most of the main methods. Users should refer to this superclass for more information regarding those methods.
|
45 |
+
|
46 |
+
This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy
|
47 |
+
otherwise, pads/truncates them to a fixed length and normalizes them using a mean and standard deviation.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
feature_size (`int`, *optional*, defaults to 1):
|
51 |
+
The feature dimension of the extracted features.
|
52 |
+
sampling_rate (`int`, *optional*, defaults to 16000):
|
53 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
54 |
+
num_mel_bins (`int`, *optional*, defaults to 128):
|
55 |
+
Number of Mel-frequency bins.
|
56 |
+
max_length (`int`, *optional*, defaults to 1024):
|
57 |
+
Maximum length to which to pad/truncate the extracted features.
|
58 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
59 |
+
Whether or not to normalize the log-Mel features using `mean` and `std`.
|
60 |
+
mean (`float`, *optional*, defaults to -4.2677393):
|
61 |
+
The mean value used to normalize the log-Mel features. Uses the AudioSet mean by default.
|
62 |
+
std (`float`, *optional*, defaults to 4.5689974):
|
63 |
+
The standard deviation value used to normalize the log-Mel features. Uses the AudioSet standard deviation
|
64 |
+
by default.
|
65 |
+
return_attention_mask (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`.
|
67 |
+
"""
|
68 |
+
|
69 |
+
model_input_names = ["input_values", "attention_mask"]
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
feature_size=1,
|
74 |
+
sampling_rate=16000,
|
75 |
+
num_mel_bins=128,
|
76 |
+
max_length=1024,
|
77 |
+
padding_value=0.0,
|
78 |
+
do_normalize=True,
|
79 |
+
mean=-4.2677393,
|
80 |
+
std=4.5689974,
|
81 |
+
return_attention_mask=False,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
|
85 |
+
self.num_mel_bins = num_mel_bins
|
86 |
+
self.max_length = max_length
|
87 |
+
self.do_normalize = do_normalize
|
88 |
+
self.mean = mean
|
89 |
+
self.std = std
|
90 |
+
self.return_attention_mask = return_attention_mask
|
91 |
+
|
92 |
+
if not is_speech_available():
|
93 |
+
mel_filters = mel_filter_bank(
|
94 |
+
num_frequency_bins=256,
|
95 |
+
num_mel_filters=self.num_mel_bins,
|
96 |
+
min_frequency=20,
|
97 |
+
max_frequency=sampling_rate // 2,
|
98 |
+
sampling_rate=sampling_rate,
|
99 |
+
norm=None,
|
100 |
+
mel_scale="kaldi",
|
101 |
+
triangularize_in_mel_space=True,
|
102 |
+
)
|
103 |
+
|
104 |
+
self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0)))
|
105 |
+
self.window = window_function(400, "hann", periodic=False)
|
106 |
+
|
107 |
+
def _extract_fbank_features(
|
108 |
+
self,
|
109 |
+
waveform: np.ndarray,
|
110 |
+
max_length: int,
|
111 |
+
) -> np.ndarray:
|
112 |
+
"""
|
113 |
+
Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs
|
114 |
+
and hence the waveform should not be normalized before feature extraction.
|
115 |
+
"""
|
116 |
+
# waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
|
117 |
+
if is_speech_available():
|
118 |
+
waveform = torch.from_numpy(waveform).unsqueeze(0)
|
119 |
+
fbank = ta_kaldi.fbank(
|
120 |
+
waveform,
|
121 |
+
sample_frequency=self.sampling_rate,
|
122 |
+
window_type="hanning",
|
123 |
+
num_mel_bins=self.num_mel_bins,
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
waveform = np.squeeze(waveform)
|
127 |
+
fbank = spectrogram(
|
128 |
+
waveform,
|
129 |
+
self.window,
|
130 |
+
frame_length=400,
|
131 |
+
hop_length=160,
|
132 |
+
fft_length=512,
|
133 |
+
power=2.0,
|
134 |
+
center=False,
|
135 |
+
preemphasis=0.97,
|
136 |
+
mel_filters=self.mel_filters,
|
137 |
+
log_mel="log",
|
138 |
+
mel_floor=1.192092955078125e-07,
|
139 |
+
remove_dc_offset=True,
|
140 |
+
).T
|
141 |
+
|
142 |
+
fbank = torch.from_numpy(fbank)
|
143 |
+
|
144 |
+
n_frames = fbank.shape[0]
|
145 |
+
difference = max_length - n_frames
|
146 |
+
|
147 |
+
# pad or truncate, depending on difference
|
148 |
+
if difference > 0:
|
149 |
+
pad_module = torch.nn.ZeroPad2d((0, 0, 0, difference))
|
150 |
+
fbank = pad_module(fbank)
|
151 |
+
elif difference < 0:
|
152 |
+
fbank = fbank[0:max_length, :]
|
153 |
+
|
154 |
+
fbank = fbank.numpy()
|
155 |
+
|
156 |
+
return fbank
|
157 |
+
|
158 |
+
def normalize(self, input_values: np.ndarray) -> np.ndarray:
|
159 |
+
return (input_values - (self.mean)) / (self.std * 2)
|
160 |
+
|
161 |
+
def __call__(
|
162 |
+
self,
|
163 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
164 |
+
sampling_rate: Optional[int] = None,
|
165 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
166 |
+
**kwargs,
|
167 |
+
) -> BatchFeature:
|
168 |
+
"""
|
169 |
+
Main method to featurize and prepare for the model one or several sequence(s).
|
170 |
+
|
171 |
+
Args:
|
172 |
+
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
|
173 |
+
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
|
174 |
+
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
|
175 |
+
stereo, i.e. single float per timestep.
|
176 |
+
sampling_rate (`int`, *optional*):
|
177 |
+
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
|
178 |
+
`sampling_rate` at the forward call to prevent silent errors.
|
179 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
180 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
181 |
+
|
182 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
183 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
184 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
185 |
+
"""
|
186 |
+
|
187 |
+
if sampling_rate is not None:
|
188 |
+
if sampling_rate != self.sampling_rate:
|
189 |
+
raise ValueError(
|
190 |
+
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
|
191 |
+
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
|
192 |
+
f" {self.sampling_rate} and not {sampling_rate}."
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
logger.warning(
|
196 |
+
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
|
197 |
+
"Failing to do so can result in silent errors that might be hard to debug."
|
198 |
+
)
|
199 |
+
|
200 |
+
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
201 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
202 |
+
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
|
203 |
+
is_batched = is_batched_numpy or (
|
204 |
+
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
205 |
+
)
|
206 |
+
|
207 |
+
if is_batched:
|
208 |
+
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
|
209 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
210 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
211 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
|
212 |
+
raw_speech = raw_speech.astype(np.float32)
|
213 |
+
|
214 |
+
# always return batch
|
215 |
+
if not is_batched:
|
216 |
+
raw_speech = [raw_speech]
|
217 |
+
|
218 |
+
# extract fbank features and pad/truncate to max_length
|
219 |
+
features = [self._extract_fbank_features(waveform, max_length=self.max_length) for waveform in raw_speech]
|
220 |
+
|
221 |
+
# convert into BatchFeature
|
222 |
+
padded_inputs = BatchFeature({"input_values": features})
|
223 |
+
|
224 |
+
# make sure list is in array format
|
225 |
+
input_values = padded_inputs.get("input_values")
|
226 |
+
if isinstance(input_values[0], list):
|
227 |
+
padded_inputs["input_values"] = [np.asarray(feature, dtype=np.float32) for feature in input_values]
|
228 |
+
|
229 |
+
# normalization
|
230 |
+
if self.do_normalize:
|
231 |
+
padded_inputs["input_values"] = [self.normalize(feature) for feature in input_values]
|
232 |
+
|
233 |
+
if return_tensors is not None:
|
234 |
+
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
|
235 |
+
|
236 |
+
return padded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 MIT and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Audio Spectrogram Transformer (AST) model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput
|
27 |
+
from ...modeling_utils import PreTrainedModel
|
28 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
29 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
30 |
+
from .configuration_audio_spectrogram_transformer import ASTConfig
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
# General docstring
|
36 |
+
_CONFIG_FOR_DOC = "ASTConfig"
|
37 |
+
|
38 |
+
# Base docstring
|
39 |
+
_CHECKPOINT_FOR_DOC = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
40 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 1214, 768]
|
41 |
+
|
42 |
+
# Audio classification docstring
|
43 |
+
_SEQ_CLASS_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
44 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'Speech'"
|
45 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.17
|
46 |
+
|
47 |
+
|
48 |
+
from ..deprecated._archive_maps import AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
49 |
+
|
50 |
+
|
51 |
+
class ASTEmbeddings(nn.Module):
|
52 |
+
"""
|
53 |
+
Construct the CLS token, position and patch embeddings.
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(self, config: ASTConfig) -> None:
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
60 |
+
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
61 |
+
self.patch_embeddings = ASTPatchEmbeddings(config)
|
62 |
+
|
63 |
+
frequency_out_dimension, time_out_dimension = self.get_shape(config)
|
64 |
+
num_patches = frequency_out_dimension * time_out_dimension
|
65 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size))
|
66 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
67 |
+
self.config = config
|
68 |
+
|
69 |
+
def get_shape(self, config):
|
70 |
+
# see Karpathy's cs231n blog on how to calculate the output dimensions
|
71 |
+
# https://cs231n.github.io/convolutional-networks/#conv
|
72 |
+
frequency_out_dimension = (config.num_mel_bins - config.patch_size) // config.frequency_stride + 1
|
73 |
+
time_out_dimension = (config.max_length - config.patch_size) // config.time_stride + 1
|
74 |
+
|
75 |
+
return frequency_out_dimension, time_out_dimension
|
76 |
+
|
77 |
+
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
|
78 |
+
batch_size = input_values.shape[0]
|
79 |
+
embeddings = self.patch_embeddings(input_values)
|
80 |
+
|
81 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
82 |
+
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1)
|
83 |
+
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1)
|
84 |
+
embeddings = embeddings + self.position_embeddings
|
85 |
+
embeddings = self.dropout(embeddings)
|
86 |
+
|
87 |
+
return embeddings
|
88 |
+
|
89 |
+
|
90 |
+
class ASTPatchEmbeddings(nn.Module):
|
91 |
+
"""
|
92 |
+
This class turns `input_values` into the initial `hidden_states` (patch embeddings) of shape `(batch_size,
|
93 |
+
seq_length, hidden_size)` to be consumed by a Transformer.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
patch_size = config.patch_size
|
100 |
+
frequency_stride = config.frequency_stride
|
101 |
+
time_stride = config.time_stride
|
102 |
+
|
103 |
+
self.projection = nn.Conv2d(
|
104 |
+
1, config.hidden_size, kernel_size=(patch_size, patch_size), stride=(frequency_stride, time_stride)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, input_values: torch.Tensor) -> torch.Tensor:
|
108 |
+
input_values = input_values.unsqueeze(1)
|
109 |
+
input_values = input_values.transpose(2, 3)
|
110 |
+
embeddings = self.projection(input_values).flatten(2).transpose(1, 2)
|
111 |
+
return embeddings
|
112 |
+
|
113 |
+
|
114 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->AST
|
115 |
+
class ASTSelfAttention(nn.Module):
|
116 |
+
def __init__(self, config: ASTConfig) -> None:
|
117 |
+
super().__init__()
|
118 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
119 |
+
raise ValueError(
|
120 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
121 |
+
f"heads {config.num_attention_heads}."
|
122 |
+
)
|
123 |
+
|
124 |
+
self.num_attention_heads = config.num_attention_heads
|
125 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
126 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
127 |
+
|
128 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
129 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
130 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
131 |
+
|
132 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
133 |
+
|
134 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
135 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
136 |
+
x = x.view(new_x_shape)
|
137 |
+
return x.permute(0, 2, 1, 3)
|
138 |
+
|
139 |
+
def forward(
|
140 |
+
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
141 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
142 |
+
mixed_query_layer = self.query(hidden_states)
|
143 |
+
|
144 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
145 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
146 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
147 |
+
|
148 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
149 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
150 |
+
|
151 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
152 |
+
|
153 |
+
# Normalize the attention scores to probabilities.
|
154 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
155 |
+
|
156 |
+
# This is actually dropping out entire tokens to attend to, which might
|
157 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
158 |
+
attention_probs = self.dropout(attention_probs)
|
159 |
+
|
160 |
+
# Mask heads if we want to
|
161 |
+
if head_mask is not None:
|
162 |
+
attention_probs = attention_probs * head_mask
|
163 |
+
|
164 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
165 |
+
|
166 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
167 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
168 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
169 |
+
|
170 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
171 |
+
|
172 |
+
return outputs
|
173 |
+
|
174 |
+
|
175 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->AST
|
176 |
+
class ASTSelfOutput(nn.Module):
|
177 |
+
"""
|
178 |
+
The residual connection is defined in ASTLayer instead of here (as is the case with other models), due to the
|
179 |
+
layernorm applied before each block.
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, config: ASTConfig) -> None:
|
183 |
+
super().__init__()
|
184 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
185 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
186 |
+
|
187 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
188 |
+
hidden_states = self.dense(hidden_states)
|
189 |
+
hidden_states = self.dropout(hidden_states)
|
190 |
+
|
191 |
+
return hidden_states
|
192 |
+
|
193 |
+
|
194 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->AST
|
195 |
+
class ASTAttention(nn.Module):
|
196 |
+
def __init__(self, config: ASTConfig) -> None:
|
197 |
+
super().__init__()
|
198 |
+
self.attention = ASTSelfAttention(config)
|
199 |
+
self.output = ASTSelfOutput(config)
|
200 |
+
self.pruned_heads = set()
|
201 |
+
|
202 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
203 |
+
if len(heads) == 0:
|
204 |
+
return
|
205 |
+
heads, index = find_pruneable_heads_and_indices(
|
206 |
+
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
207 |
+
)
|
208 |
+
|
209 |
+
# Prune linear layers
|
210 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
211 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
212 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
213 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
214 |
+
|
215 |
+
# Update hyper params and store pruned heads
|
216 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
217 |
+
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
218 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self,
|
222 |
+
hidden_states: torch.Tensor,
|
223 |
+
head_mask: Optional[torch.Tensor] = None,
|
224 |
+
output_attentions: bool = False,
|
225 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
226 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
227 |
+
|
228 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
229 |
+
|
230 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
231 |
+
return outputs
|
232 |
+
|
233 |
+
|
234 |
+
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->AST
|
235 |
+
class ASTIntermediate(nn.Module):
|
236 |
+
def __init__(self, config: ASTConfig) -> None:
|
237 |
+
super().__init__()
|
238 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
239 |
+
if isinstance(config.hidden_act, str):
|
240 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
241 |
+
else:
|
242 |
+
self.intermediate_act_fn = config.hidden_act
|
243 |
+
|
244 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
245 |
+
hidden_states = self.dense(hidden_states)
|
246 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
247 |
+
|
248 |
+
return hidden_states
|
249 |
+
|
250 |
+
|
251 |
+
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->AST
|
252 |
+
class ASTOutput(nn.Module):
|
253 |
+
def __init__(self, config: ASTConfig) -> None:
|
254 |
+
super().__init__()
|
255 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
256 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
257 |
+
|
258 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
259 |
+
hidden_states = self.dense(hidden_states)
|
260 |
+
hidden_states = self.dropout(hidden_states)
|
261 |
+
|
262 |
+
hidden_states = hidden_states + input_tensor
|
263 |
+
|
264 |
+
return hidden_states
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->AST
|
268 |
+
class ASTLayer(nn.Module):
|
269 |
+
"""This corresponds to the Block class in the timm implementation."""
|
270 |
+
|
271 |
+
def __init__(self, config: ASTConfig) -> None:
|
272 |
+
super().__init__()
|
273 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
274 |
+
self.seq_len_dim = 1
|
275 |
+
self.attention = ASTAttention(config)
|
276 |
+
self.intermediate = ASTIntermediate(config)
|
277 |
+
self.output = ASTOutput(config)
|
278 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
279 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
280 |
+
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
hidden_states: torch.Tensor,
|
284 |
+
head_mask: Optional[torch.Tensor] = None,
|
285 |
+
output_attentions: bool = False,
|
286 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
287 |
+
self_attention_outputs = self.attention(
|
288 |
+
self.layernorm_before(hidden_states), # in AST, layernorm is applied before self-attention
|
289 |
+
head_mask,
|
290 |
+
output_attentions=output_attentions,
|
291 |
+
)
|
292 |
+
attention_output = self_attention_outputs[0]
|
293 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
294 |
+
|
295 |
+
# first residual connection
|
296 |
+
hidden_states = attention_output + hidden_states
|
297 |
+
|
298 |
+
# in AST, layernorm is also applied after self-attention
|
299 |
+
layer_output = self.layernorm_after(hidden_states)
|
300 |
+
layer_output = self.intermediate(layer_output)
|
301 |
+
|
302 |
+
# second residual connection is done here
|
303 |
+
layer_output = self.output(layer_output, hidden_states)
|
304 |
+
|
305 |
+
outputs = (layer_output,) + outputs
|
306 |
+
|
307 |
+
return outputs
|
308 |
+
|
309 |
+
|
310 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->AST
|
311 |
+
class ASTEncoder(nn.Module):
|
312 |
+
def __init__(self, config: ASTConfig) -> None:
|
313 |
+
super().__init__()
|
314 |
+
self.config = config
|
315 |
+
self.layer = nn.ModuleList([ASTLayer(config) for _ in range(config.num_hidden_layers)])
|
316 |
+
self.gradient_checkpointing = False
|
317 |
+
|
318 |
+
def forward(
|
319 |
+
self,
|
320 |
+
hidden_states: torch.Tensor,
|
321 |
+
head_mask: Optional[torch.Tensor] = None,
|
322 |
+
output_attentions: bool = False,
|
323 |
+
output_hidden_states: bool = False,
|
324 |
+
return_dict: bool = True,
|
325 |
+
) -> Union[tuple, BaseModelOutput]:
|
326 |
+
all_hidden_states = () if output_hidden_states else None
|
327 |
+
all_self_attentions = () if output_attentions else None
|
328 |
+
|
329 |
+
for i, layer_module in enumerate(self.layer):
|
330 |
+
if output_hidden_states:
|
331 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
332 |
+
|
333 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
334 |
+
|
335 |
+
if self.gradient_checkpointing and self.training:
|
336 |
+
layer_outputs = self._gradient_checkpointing_func(
|
337 |
+
layer_module.__call__,
|
338 |
+
hidden_states,
|
339 |
+
layer_head_mask,
|
340 |
+
output_attentions,
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
344 |
+
|
345 |
+
hidden_states = layer_outputs[0]
|
346 |
+
|
347 |
+
if output_attentions:
|
348 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
349 |
+
|
350 |
+
if output_hidden_states:
|
351 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
352 |
+
|
353 |
+
if not return_dict:
|
354 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
355 |
+
return BaseModelOutput(
|
356 |
+
last_hidden_state=hidden_states,
|
357 |
+
hidden_states=all_hidden_states,
|
358 |
+
attentions=all_self_attentions,
|
359 |
+
)
|
360 |
+
|
361 |
+
|
362 |
+
class ASTPreTrainedModel(PreTrainedModel):
|
363 |
+
"""
|
364 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
365 |
+
models.
|
366 |
+
"""
|
367 |
+
|
368 |
+
config_class = ASTConfig
|
369 |
+
base_model_prefix = "audio_spectrogram_transformer"
|
370 |
+
main_input_name = "input_values"
|
371 |
+
supports_gradient_checkpointing = True
|
372 |
+
|
373 |
+
# Copied from transformers.models.deit.modeling_deit.DeiTPreTrainedModel._init_weights
|
374 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
375 |
+
"""Initialize the weights"""
|
376 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
377 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
378 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
379 |
+
module.weight.data = nn.init.trunc_normal_(
|
380 |
+
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
381 |
+
).to(module.weight.dtype)
|
382 |
+
if module.bias is not None:
|
383 |
+
module.bias.data.zero_()
|
384 |
+
elif isinstance(module, nn.LayerNorm):
|
385 |
+
module.bias.data.zero_()
|
386 |
+
module.weight.data.fill_(1.0)
|
387 |
+
|
388 |
+
|
389 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r"""
|
390 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
391 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
392 |
+
behavior.
|
393 |
+
|
394 |
+
Parameters:
|
395 |
+
config ([`ASTConfig`]):
|
396 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
397 |
+
load the weights associated with the model, only the configuration. Check out the
|
398 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
399 |
+
"""
|
400 |
+
|
401 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING = r"""
|
402 |
+
Args:
|
403 |
+
input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`):
|
404 |
+
Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by
|
405 |
+
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
406 |
+
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
407 |
+
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
408 |
+
tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`]
|
409 |
+
|
410 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
411 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
412 |
+
|
413 |
+
- 1 indicates the head is **not masked**,
|
414 |
+
- 0 indicates the head is **masked**.
|
415 |
+
|
416 |
+
output_attentions (`bool`, *optional*):
|
417 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
418 |
+
tensors for more detail.
|
419 |
+
output_hidden_states (`bool`, *optional*):
|
420 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
421 |
+
more detail.
|
422 |
+
return_dict (`bool`, *optional*):
|
423 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
424 |
+
"""
|
425 |
+
|
426 |
+
|
427 |
+
@add_start_docstrings(
|
428 |
+
"The bare AST Model transformer outputting raw hidden-states without any specific head on top.",
|
429 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
|
430 |
+
)
|
431 |
+
class ASTModel(ASTPreTrainedModel):
|
432 |
+
def __init__(self, config: ASTConfig) -> None:
|
433 |
+
super().__init__(config)
|
434 |
+
self.config = config
|
435 |
+
|
436 |
+
self.embeddings = ASTEmbeddings(config)
|
437 |
+
self.encoder = ASTEncoder(config)
|
438 |
+
|
439 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
440 |
+
|
441 |
+
# Initialize weights and apply final processing
|
442 |
+
self.post_init()
|
443 |
+
|
444 |
+
def get_input_embeddings(self) -> ASTPatchEmbeddings:
|
445 |
+
return self.embeddings.patch_embeddings
|
446 |
+
|
447 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
448 |
+
"""
|
449 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
450 |
+
class PreTrainedModel
|
451 |
+
"""
|
452 |
+
for layer, heads in heads_to_prune.items():
|
453 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
454 |
+
|
455 |
+
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
|
456 |
+
@add_code_sample_docstrings(
|
457 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
458 |
+
output_type=BaseModelOutputWithPooling,
|
459 |
+
config_class=_CONFIG_FOR_DOC,
|
460 |
+
modality="audio",
|
461 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
462 |
+
)
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
input_values: Optional[torch.Tensor] = None,
|
466 |
+
head_mask: Optional[torch.Tensor] = None,
|
467 |
+
output_attentions: Optional[bool] = None,
|
468 |
+
output_hidden_states: Optional[bool] = None,
|
469 |
+
return_dict: Optional[bool] = None,
|
470 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
471 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
472 |
+
output_hidden_states = (
|
473 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
474 |
+
)
|
475 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
476 |
+
|
477 |
+
if input_values is None:
|
478 |
+
raise ValueError("You have to specify input_values")
|
479 |
+
|
480 |
+
# Prepare head mask if needed
|
481 |
+
# 1.0 in head_mask indicate we keep the head
|
482 |
+
# attention_probs has shape bsz x n_heads x N x N
|
483 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
484 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
485 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
486 |
+
|
487 |
+
embedding_output = self.embeddings(input_values)
|
488 |
+
|
489 |
+
encoder_outputs = self.encoder(
|
490 |
+
embedding_output,
|
491 |
+
head_mask=head_mask,
|
492 |
+
output_attentions=output_attentions,
|
493 |
+
output_hidden_states=output_hidden_states,
|
494 |
+
return_dict=return_dict,
|
495 |
+
)
|
496 |
+
sequence_output = encoder_outputs[0]
|
497 |
+
sequence_output = self.layernorm(sequence_output)
|
498 |
+
|
499 |
+
pooled_output = (sequence_output[:, 0] + sequence_output[:, 1]) / 2
|
500 |
+
|
501 |
+
if not return_dict:
|
502 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
503 |
+
|
504 |
+
return BaseModelOutputWithPooling(
|
505 |
+
last_hidden_state=sequence_output,
|
506 |
+
pooler_output=pooled_output,
|
507 |
+
hidden_states=encoder_outputs.hidden_states,
|
508 |
+
attentions=encoder_outputs.attentions,
|
509 |
+
)
|
510 |
+
|
511 |
+
|
512 |
+
class ASTMLPHead(nn.Module):
|
513 |
+
def __init__(self, config: ASTConfig):
|
514 |
+
super().__init__()
|
515 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
516 |
+
self.dense = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
517 |
+
|
518 |
+
def forward(self, hidden_state):
|
519 |
+
hidden_state = self.layernorm(hidden_state)
|
520 |
+
hidden_state = self.dense(hidden_state)
|
521 |
+
return hidden_state
|
522 |
+
|
523 |
+
|
524 |
+
@add_start_docstrings(
|
525 |
+
"""
|
526 |
+
Audio Spectrogram Transformer model with an audio classification head on top (a linear layer on top of the pooled
|
527 |
+
output) e.g. for datasets like AudioSet, Speech Commands v2.
|
528 |
+
""",
|
529 |
+
AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING,
|
530 |
+
)
|
531 |
+
class ASTForAudioClassification(ASTPreTrainedModel):
|
532 |
+
def __init__(self, config: ASTConfig) -> None:
|
533 |
+
super().__init__(config)
|
534 |
+
|
535 |
+
self.num_labels = config.num_labels
|
536 |
+
self.audio_spectrogram_transformer = ASTModel(config)
|
537 |
+
|
538 |
+
# Classifier head
|
539 |
+
self.classifier = ASTMLPHead(config)
|
540 |
+
|
541 |
+
# Initialize weights and apply final processing
|
542 |
+
self.post_init()
|
543 |
+
|
544 |
+
@add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING)
|
545 |
+
@add_code_sample_docstrings(
|
546 |
+
checkpoint=_SEQ_CLASS_CHECKPOINT,
|
547 |
+
output_type=SequenceClassifierOutput,
|
548 |
+
config_class=_CONFIG_FOR_DOC,
|
549 |
+
modality="audio",
|
550 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
551 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
552 |
+
)
|
553 |
+
def forward(
|
554 |
+
self,
|
555 |
+
input_values: Optional[torch.Tensor] = None,
|
556 |
+
head_mask: Optional[torch.Tensor] = None,
|
557 |
+
labels: Optional[torch.Tensor] = None,
|
558 |
+
output_attentions: Optional[bool] = None,
|
559 |
+
output_hidden_states: Optional[bool] = None,
|
560 |
+
return_dict: Optional[bool] = None,
|
561 |
+
) -> Union[tuple, SequenceClassifierOutput]:
|
562 |
+
r"""
|
563 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
564 |
+
Labels for computing the audio classification/regression loss. Indices should be in `[0, ...,
|
565 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
566 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
567 |
+
"""
|
568 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
569 |
+
|
570 |
+
outputs = self.audio_spectrogram_transformer(
|
571 |
+
input_values,
|
572 |
+
head_mask=head_mask,
|
573 |
+
output_attentions=output_attentions,
|
574 |
+
output_hidden_states=output_hidden_states,
|
575 |
+
return_dict=return_dict,
|
576 |
+
)
|
577 |
+
|
578 |
+
pooled_output = outputs[1]
|
579 |
+
logits = self.classifier(pooled_output)
|
580 |
+
|
581 |
+
loss = None
|
582 |
+
if labels is not None:
|
583 |
+
if self.config.problem_type is None:
|
584 |
+
if self.num_labels == 1:
|
585 |
+
self.config.problem_type = "regression"
|
586 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
587 |
+
self.config.problem_type = "single_label_classification"
|
588 |
+
else:
|
589 |
+
self.config.problem_type = "multi_label_classification"
|
590 |
+
|
591 |
+
if self.config.problem_type == "regression":
|
592 |
+
loss_fct = MSELoss()
|
593 |
+
if self.num_labels == 1:
|
594 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
595 |
+
else:
|
596 |
+
loss = loss_fct(logits, labels)
|
597 |
+
elif self.config.problem_type == "single_label_classification":
|
598 |
+
loss_fct = CrossEntropyLoss()
|
599 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
600 |
+
elif self.config.problem_type == "multi_label_classification":
|
601 |
+
loss_fct = BCEWithLogitsLoss()
|
602 |
+
loss = loss_fct(logits, labels)
|
603 |
+
|
604 |
+
if not return_dict:
|
605 |
+
output = (logits,) + outputs[2:]
|
606 |
+
return ((loss,) + output) if loss is not None else output
|
607 |
+
|
608 |
+
return SequenceClassifierOutput(
|
609 |
+
loss=loss,
|
610 |
+
logits=logits,
|
611 |
+
hidden_states=outputs.hidden_states,
|
612 |
+
attentions=outputs.attentions,
|
613 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (927 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc
ADDED
Binary file (7.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for the BARThez model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
SPIECE_UNDERLINE = "▁"
|
34 |
+
|
35 |
+
# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this.
|
36 |
+
|
37 |
+
|
38 |
+
class BarthezTokenizer(PreTrainedTokenizer):
|
39 |
+
"""
|
40 |
+
Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on
|
41 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
42 |
+
|
43 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
44 |
+
this superclass for more information regarding those methods.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_file (`str`):
|
48 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
49 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
50 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
51 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
52 |
+
|
53 |
+
<Tip>
|
54 |
+
|
55 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
56 |
+
sequence. The token used is the `cls_token`.
|
57 |
+
|
58 |
+
</Tip>
|
59 |
+
|
60 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
61 |
+
The end of sequence token.
|
62 |
+
|
63 |
+
<Tip>
|
64 |
+
|
65 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
66 |
+
The token used is the `sep_token`.
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
71 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
72 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
73 |
+
token of a sequence built with special tokens.
|
74 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
75 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
76 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
77 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
78 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
79 |
+
token instead.
|
80 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
81 |
+
The token used for padding, for example when batching sequences of different lengths.
|
82 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
83 |
+
The token used for masking values. This is the token used when training this model with masked language
|
84 |
+
modeling. This is the token which the model will try to predict.
|
85 |
+
sp_model_kwargs (`dict`, *optional*):
|
86 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
87 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
88 |
+
to set:
|
89 |
+
|
90 |
+
- `enable_sampling`: Enable subword regularization.
|
91 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
92 |
+
|
93 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
94 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
95 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
96 |
+
using forward-filtering-and-backward-sampling algorithm.
|
97 |
+
|
98 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
99 |
+
BPE-dropout.
|
100 |
+
|
101 |
+
Attributes:
|
102 |
+
sp_model (`SentencePieceProcessor`):
|
103 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
104 |
+
"""
|
105 |
+
|
106 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
107 |
+
model_input_names = ["input_ids", "attention_mask"]
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_file,
|
112 |
+
bos_token="<s>",
|
113 |
+
eos_token="</s>",
|
114 |
+
sep_token="</s>",
|
115 |
+
cls_token="<s>",
|
116 |
+
unk_token="<unk>",
|
117 |
+
pad_token="<pad>",
|
118 |
+
mask_token="<mask>",
|
119 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
120 |
+
**kwargs,
|
121 |
+
) -> None:
|
122 |
+
# Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way
|
123 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
124 |
+
|
125 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
126 |
+
|
127 |
+
self.vocab_file = vocab_file
|
128 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
129 |
+
self.sp_model.Load(str(vocab_file))
|
130 |
+
super().__init__(
|
131 |
+
bos_token=bos_token,
|
132 |
+
eos_token=eos_token,
|
133 |
+
unk_token=unk_token,
|
134 |
+
sep_token=sep_token,
|
135 |
+
cls_token=cls_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
mask_token=mask_token,
|
138 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
139 |
+
**kwargs,
|
140 |
+
)
|
141 |
+
|
142 |
+
def build_inputs_with_special_tokens(
|
143 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
144 |
+
) -> List[int]:
|
145 |
+
"""
|
146 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
147 |
+
adding special tokens. A BARThez sequence has the following format:
|
148 |
+
|
149 |
+
- single sequence: `<s> X </s>`
|
150 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
151 |
+
|
152 |
+
Args:
|
153 |
+
token_ids_0 (`List[int]`):
|
154 |
+
List of IDs to which the special tokens will be added.
|
155 |
+
token_ids_1 (`List[int]`, *optional*):
|
156 |
+
Optional second list of IDs for sequence pairs.
|
157 |
+
|
158 |
+
Returns:
|
159 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
160 |
+
"""
|
161 |
+
|
162 |
+
if token_ids_1 is None:
|
163 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
164 |
+
cls = [self.cls_token_id]
|
165 |
+
sep = [self.sep_token_id]
|
166 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
167 |
+
|
168 |
+
def get_special_tokens_mask(
|
169 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
170 |
+
) -> List[int]:
|
171 |
+
"""
|
172 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
173 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
token_ids_0 (`List[int]`):
|
177 |
+
List of IDs.
|
178 |
+
token_ids_1 (`List[int]`, *optional*):
|
179 |
+
Optional second list of IDs for sequence pairs.
|
180 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
181 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
185 |
+
"""
|
186 |
+
if already_has_special_tokens:
|
187 |
+
return super().get_special_tokens_mask(
|
188 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
189 |
+
)
|
190 |
+
|
191 |
+
if token_ids_1 is None:
|
192 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
193 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
194 |
+
|
195 |
+
def create_token_type_ids_from_sequences(
|
196 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
197 |
+
) -> List[int]:
|
198 |
+
"""
|
199 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
token_ids_0 (`List[int]`):
|
203 |
+
List of IDs.
|
204 |
+
token_ids_1 (`List[int]`, *optional*):
|
205 |
+
Optional second list of IDs for sequence pairs.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
`List[int]`: List of zeros.
|
209 |
+
"""
|
210 |
+
sep = [self.sep_token_id]
|
211 |
+
cls = [self.cls_token_id]
|
212 |
+
|
213 |
+
if token_ids_1 is None:
|
214 |
+
return len(cls + token_ids_0 + sep) * [0]
|
215 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
216 |
+
|
217 |
+
@property
|
218 |
+
def vocab_size(self):
|
219 |
+
return len(self.sp_model)
|
220 |
+
|
221 |
+
def get_vocab(self):
|
222 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
223 |
+
vocab.update(self.added_tokens_encoder)
|
224 |
+
return vocab
|
225 |
+
|
226 |
+
def _tokenize(self, text: str) -> List[str]:
|
227 |
+
return self.sp_model.encode(text, out_type=str)
|
228 |
+
|
229 |
+
def _convert_token_to_id(self, token):
|
230 |
+
"""Converts a token (str) in an id using the vocab."""
|
231 |
+
return self.sp_model.PieceToId(token)
|
232 |
+
|
233 |
+
def _convert_id_to_token(self, index):
|
234 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
235 |
+
return self.sp_model.IdToPiece(index)
|
236 |
+
|
237 |
+
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
238 |
+
def convert_tokens_to_string(self, tokens):
|
239 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
240 |
+
current_sub_tokens = []
|
241 |
+
out_string = ""
|
242 |
+
prev_is_special = False
|
243 |
+
for token in tokens:
|
244 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
245 |
+
if token in self.all_special_tokens:
|
246 |
+
if not prev_is_special:
|
247 |
+
out_string += " "
|
248 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
249 |
+
prev_is_special = True
|
250 |
+
current_sub_tokens = []
|
251 |
+
else:
|
252 |
+
current_sub_tokens.append(token)
|
253 |
+
prev_is_special = False
|
254 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
255 |
+
return out_string.strip()
|
256 |
+
|
257 |
+
def __getstate__(self):
|
258 |
+
state = self.__dict__.copy()
|
259 |
+
state["sp_model"] = None
|
260 |
+
return state
|
261 |
+
|
262 |
+
def __setstate__(self, d):
|
263 |
+
self.__dict__ = d
|
264 |
+
|
265 |
+
# for backward compatibility
|
266 |
+
if not hasattr(self, "sp_model_kwargs"):
|
267 |
+
self.sp_model_kwargs = {}
|
268 |
+
|
269 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
270 |
+
self.sp_model.Load(self.vocab_file)
|
271 |
+
|
272 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
273 |
+
if not os.path.isdir(save_directory):
|
274 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
275 |
+
return
|
276 |
+
out_vocab_file = os.path.join(
|
277 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
278 |
+
)
|
279 |
+
|
280 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
281 |
+
copyfile(self.vocab_file, out_vocab_file)
|
282 |
+
elif not os.path.isfile(self.vocab_file):
|
283 |
+
with open(out_vocab_file, "wb") as fi:
|
284 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
285 |
+
fi.write(content_spiece_model)
|
286 |
+
|
287 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__init__.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_keras_nlp_available,
|
22 |
+
is_tensorflow_text_available,
|
23 |
+
is_tf_available,
|
24 |
+
is_tokenizers_available,
|
25 |
+
is_torch_available,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
_import_structure = {
|
30 |
+
"configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"],
|
31 |
+
"tokenization_gpt2": ["GPT2Tokenizer"],
|
32 |
+
}
|
33 |
+
|
34 |
+
try:
|
35 |
+
if not is_tokenizers_available():
|
36 |
+
raise OptionalDependencyNotAvailable()
|
37 |
+
except OptionalDependencyNotAvailable:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
_import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"]
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_torch_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
_import_structure["modeling_gpt2"] = [
|
49 |
+
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
50 |
+
"GPT2DoubleHeadsModel",
|
51 |
+
"GPT2ForQuestionAnswering",
|
52 |
+
"GPT2ForSequenceClassification",
|
53 |
+
"GPT2ForTokenClassification",
|
54 |
+
"GPT2LMHeadModel",
|
55 |
+
"GPT2Model",
|
56 |
+
"GPT2PreTrainedModel",
|
57 |
+
"load_tf_weights_in_gpt2",
|
58 |
+
]
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_tf_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
_import_structure["modeling_tf_gpt2"] = [
|
67 |
+
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
68 |
+
"TFGPT2DoubleHeadsModel",
|
69 |
+
"TFGPT2ForSequenceClassification",
|
70 |
+
"TFGPT2LMHeadModel",
|
71 |
+
"TFGPT2MainLayer",
|
72 |
+
"TFGPT2Model",
|
73 |
+
"TFGPT2PreTrainedModel",
|
74 |
+
]
|
75 |
+
|
76 |
+
try:
|
77 |
+
if not is_keras_nlp_available():
|
78 |
+
raise OptionalDependencyNotAvailable()
|
79 |
+
except OptionalDependencyNotAvailable:
|
80 |
+
pass
|
81 |
+
else:
|
82 |
+
_import_structure["tokenization_gpt2_tf"] = ["TFGPT2Tokenizer"]
|
83 |
+
|
84 |
+
try:
|
85 |
+
if not is_flax_available():
|
86 |
+
raise OptionalDependencyNotAvailable()
|
87 |
+
except OptionalDependencyNotAvailable:
|
88 |
+
pass
|
89 |
+
else:
|
90 |
+
_import_structure["modeling_flax_gpt2"] = ["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]
|
91 |
+
|
92 |
+
if TYPE_CHECKING:
|
93 |
+
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig
|
94 |
+
from .tokenization_gpt2 import GPT2Tokenizer
|
95 |
+
|
96 |
+
try:
|
97 |
+
if not is_tokenizers_available():
|
98 |
+
raise OptionalDependencyNotAvailable()
|
99 |
+
except OptionalDependencyNotAvailable:
|
100 |
+
pass
|
101 |
+
else:
|
102 |
+
from .tokenization_gpt2_fast import GPT2TokenizerFast
|
103 |
+
|
104 |
+
try:
|
105 |
+
if not is_torch_available():
|
106 |
+
raise OptionalDependencyNotAvailable()
|
107 |
+
except OptionalDependencyNotAvailable:
|
108 |
+
pass
|
109 |
+
else:
|
110 |
+
from .modeling_gpt2 import (
|
111 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
112 |
+
GPT2DoubleHeadsModel,
|
113 |
+
GPT2ForQuestionAnswering,
|
114 |
+
GPT2ForSequenceClassification,
|
115 |
+
GPT2ForTokenClassification,
|
116 |
+
GPT2LMHeadModel,
|
117 |
+
GPT2Model,
|
118 |
+
GPT2PreTrainedModel,
|
119 |
+
load_tf_weights_in_gpt2,
|
120 |
+
)
|
121 |
+
|
122 |
+
try:
|
123 |
+
if not is_tf_available():
|
124 |
+
raise OptionalDependencyNotAvailable()
|
125 |
+
except OptionalDependencyNotAvailable:
|
126 |
+
pass
|
127 |
+
else:
|
128 |
+
from .modeling_tf_gpt2 import (
|
129 |
+
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
130 |
+
TFGPT2DoubleHeadsModel,
|
131 |
+
TFGPT2ForSequenceClassification,
|
132 |
+
TFGPT2LMHeadModel,
|
133 |
+
TFGPT2MainLayer,
|
134 |
+
TFGPT2Model,
|
135 |
+
TFGPT2PreTrainedModel,
|
136 |
+
)
|
137 |
+
|
138 |
+
try:
|
139 |
+
if not is_keras_nlp_available():
|
140 |
+
raise OptionalDependencyNotAvailable()
|
141 |
+
except OptionalDependencyNotAvailable:
|
142 |
+
pass
|
143 |
+
else:
|
144 |
+
from .tokenization_gpt2_tf import TFGPT2Tokenizer
|
145 |
+
|
146 |
+
try:
|
147 |
+
if not is_flax_available():
|
148 |
+
raise OptionalDependencyNotAvailable()
|
149 |
+
except OptionalDependencyNotAvailable:
|
150 |
+
pass
|
151 |
+
else:
|
152 |
+
from .modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel
|
153 |
+
|
154 |
+
else:
|
155 |
+
import sys
|
156 |
+
|
157 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/configuration_gpt2.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/convert_gpt2_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_flax_gpt2.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_gpt2.cpython-310.pyc
ADDED
Binary file (55.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/modeling_tf_gpt2.cpython-310.pyc
ADDED
Binary file (39.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2_fast.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/__pycache__/tokenization_gpt2_tf.cpython-310.pyc
ADDED
Binary file (4.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/configuration_gpt2.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" OpenAI GPT-2 configuration"""
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Any, List, Mapping, Optional
|
19 |
+
|
20 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
21 |
+
from ...configuration_utils import PretrainedConfig
|
22 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
from ..deprecated._archive_maps import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
30 |
+
|
31 |
+
|
32 |
+
class GPT2Config(PretrainedConfig):
|
33 |
+
"""
|
34 |
+
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
|
35 |
+
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
|
36 |
+
configuration with the defaults will yield a similar configuration to that of the GPT-2
|
37 |
+
[openai-community/gpt2](https://huggingface.co/openai-community/gpt2) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
40 |
+
documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
45 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
46 |
+
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
|
47 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
48 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
49 |
+
just in case (e.g., 512 or 1024 or 2048).
|
50 |
+
n_embd (`int`, *optional*, defaults to 768):
|
51 |
+
Dimensionality of the embeddings and hidden states.
|
52 |
+
n_layer (`int`, *optional*, defaults to 12):
|
53 |
+
Number of hidden layers in the Transformer encoder.
|
54 |
+
n_head (`int`, *optional*, defaults to 12):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
n_inner (`int`, *optional*):
|
57 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
58 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
59 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
60 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the embeddings.
|
64 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
65 |
+
The dropout ratio for the attention.
|
66 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
67 |
+
The epsilon to use in the layer normalization layers.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
summary_type (`string`, *optional*, defaults to `"cls_index"`):
|
71 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
72 |
+
[`TFGPT2DoubleHeadsModel`].
|
73 |
+
|
74 |
+
Has to be one of the following options:
|
75 |
+
|
76 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
77 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
78 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
79 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
80 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
81 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
82 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
83 |
+
[`TFGPT2DoubleHeadsModel`].
|
84 |
+
|
85 |
+
Whether or not to add a projection after the vector extraction.
|
86 |
+
summary_activation (`str`, *optional*):
|
87 |
+
Argument used when doing sequence summary. Used in for the multiple choice head in
|
88 |
+
[`GPT2DoubleHeadsModel`].
|
89 |
+
|
90 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
91 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
92 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
93 |
+
[`TFGPT2DoubleHeadsModel`].
|
94 |
+
|
95 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
96 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
97 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
98 |
+
[`TFGPT2DoubleHeadsModel`].
|
99 |
+
|
100 |
+
The dropout ratio to be used after the projection and activation.
|
101 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
102 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
103 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
105 |
+
bos_token_id (`int`, *optional*, defaults to 50256):
|
106 |
+
Id of the beginning of sentence token in the vocabulary.
|
107 |
+
eos_token_id (`int`, *optional*, defaults to 50256):
|
108 |
+
Id of the end of sentence token in the vocabulary.
|
109 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
111 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
112 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
113 |
+
dot-product/softmax to float() when training with mixed precision.
|
114 |
+
|
115 |
+
Example:
|
116 |
+
|
117 |
+
```python
|
118 |
+
>>> from transformers import GPT2Config, GPT2Model
|
119 |
+
|
120 |
+
>>> # Initializing a GPT2 configuration
|
121 |
+
>>> configuration = GPT2Config()
|
122 |
+
|
123 |
+
>>> # Initializing a model (with random weights) from the configuration
|
124 |
+
>>> model = GPT2Model(configuration)
|
125 |
+
|
126 |
+
>>> # Accessing the model configuration
|
127 |
+
>>> configuration = model.config
|
128 |
+
```"""
|
129 |
+
|
130 |
+
model_type = "gpt2"
|
131 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
132 |
+
attribute_map = {
|
133 |
+
"hidden_size": "n_embd",
|
134 |
+
"max_position_embeddings": "n_positions",
|
135 |
+
"num_attention_heads": "n_head",
|
136 |
+
"num_hidden_layers": "n_layer",
|
137 |
+
}
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
vocab_size=50257,
|
142 |
+
n_positions=1024,
|
143 |
+
n_embd=768,
|
144 |
+
n_layer=12,
|
145 |
+
n_head=12,
|
146 |
+
n_inner=None,
|
147 |
+
activation_function="gelu_new",
|
148 |
+
resid_pdrop=0.1,
|
149 |
+
embd_pdrop=0.1,
|
150 |
+
attn_pdrop=0.1,
|
151 |
+
layer_norm_epsilon=1e-5,
|
152 |
+
initializer_range=0.02,
|
153 |
+
summary_type="cls_index",
|
154 |
+
summary_use_proj=True,
|
155 |
+
summary_activation=None,
|
156 |
+
summary_proj_to_labels=True,
|
157 |
+
summary_first_dropout=0.1,
|
158 |
+
scale_attn_weights=True,
|
159 |
+
use_cache=True,
|
160 |
+
bos_token_id=50256,
|
161 |
+
eos_token_id=50256,
|
162 |
+
scale_attn_by_inverse_layer_idx=False,
|
163 |
+
reorder_and_upcast_attn=False,
|
164 |
+
**kwargs,
|
165 |
+
):
|
166 |
+
self.vocab_size = vocab_size
|
167 |
+
self.n_positions = n_positions
|
168 |
+
self.n_embd = n_embd
|
169 |
+
self.n_layer = n_layer
|
170 |
+
self.n_head = n_head
|
171 |
+
self.n_inner = n_inner
|
172 |
+
self.activation_function = activation_function
|
173 |
+
self.resid_pdrop = resid_pdrop
|
174 |
+
self.embd_pdrop = embd_pdrop
|
175 |
+
self.attn_pdrop = attn_pdrop
|
176 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
177 |
+
self.initializer_range = initializer_range
|
178 |
+
self.summary_type = summary_type
|
179 |
+
self.summary_use_proj = summary_use_proj
|
180 |
+
self.summary_activation = summary_activation
|
181 |
+
self.summary_first_dropout = summary_first_dropout
|
182 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
183 |
+
self.scale_attn_weights = scale_attn_weights
|
184 |
+
self.use_cache = use_cache
|
185 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
186 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
187 |
+
|
188 |
+
self.bos_token_id = bos_token_id
|
189 |
+
self.eos_token_id = eos_token_id
|
190 |
+
|
191 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
192 |
+
|
193 |
+
|
194 |
+
class GPT2OnnxConfig(OnnxConfigWithPast):
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
config: PretrainedConfig,
|
198 |
+
task: str = "default",
|
199 |
+
patching_specs: List[PatchingSpec] = None,
|
200 |
+
use_past: bool = False,
|
201 |
+
):
|
202 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
203 |
+
if not getattr(self._config, "pad_token_id", None):
|
204 |
+
# TODO: how to do that better?
|
205 |
+
self._config.pad_token_id = 0
|
206 |
+
|
207 |
+
@property
|
208 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
209 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
210 |
+
if self.use_past:
|
211 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
212 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
213 |
+
else:
|
214 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
215 |
+
|
216 |
+
return common_inputs
|
217 |
+
|
218 |
+
@property
|
219 |
+
def num_layers(self) -> int:
|
220 |
+
return self._config.n_layer
|
221 |
+
|
222 |
+
@property
|
223 |
+
def num_attention_heads(self) -> int:
|
224 |
+
return self._config.n_head
|
225 |
+
|
226 |
+
def generate_dummy_inputs(
|
227 |
+
self,
|
228 |
+
tokenizer: PreTrainedTokenizer,
|
229 |
+
batch_size: int = -1,
|
230 |
+
seq_length: int = -1,
|
231 |
+
is_pair: bool = False,
|
232 |
+
framework: Optional[TensorType] = None,
|
233 |
+
) -> Mapping[str, Any]:
|
234 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
235 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
236 |
+
)
|
237 |
+
|
238 |
+
# We need to order the input in the way they appears in the forward()
|
239 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
240 |
+
|
241 |
+
# Need to add the past_keys
|
242 |
+
if self.use_past:
|
243 |
+
if not is_torch_available():
|
244 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
245 |
+
else:
|
246 |
+
import torch
|
247 |
+
|
248 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
249 |
+
# Not using the same length for past_key_values
|
250 |
+
past_key_values_length = seqlen + 2
|
251 |
+
past_shape = (
|
252 |
+
batch,
|
253 |
+
self.num_attention_heads,
|
254 |
+
past_key_values_length,
|
255 |
+
self._config.hidden_size // self.num_attention_heads,
|
256 |
+
)
|
257 |
+
ordered_inputs["past_key_values"] = [
|
258 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
259 |
+
]
|
260 |
+
|
261 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
262 |
+
if self.use_past:
|
263 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
264 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
265 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
266 |
+
)
|
267 |
+
|
268 |
+
return ordered_inputs
|
269 |
+
|
270 |
+
@property
|
271 |
+
def default_onnx_opset(self) -> int:
|
272 |
+
return 13
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert OpenAI GPT checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2
|
23 |
+
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
|
29 |
+
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
|
30 |
+
# Construct model
|
31 |
+
if gpt2_config_file == "":
|
32 |
+
config = GPT2Config()
|
33 |
+
else:
|
34 |
+
config = GPT2Config.from_json_file(gpt2_config_file)
|
35 |
+
model = GPT2Model(config)
|
36 |
+
|
37 |
+
# Load weights from numpy
|
38 |
+
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
|
39 |
+
|
40 |
+
# Save pytorch-model
|
41 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
42 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
43 |
+
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
|
44 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
45 |
+
print(f"Save configuration file to {pytorch_config_dump_path}")
|
46 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
47 |
+
f.write(config.to_json_string())
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
parser = argparse.ArgumentParser()
|
52 |
+
# Required parameters
|
53 |
+
parser.add_argument(
|
54 |
+
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
55 |
+
)
|
56 |
+
parser.add_argument(
|
57 |
+
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
58 |
+
)
|
59 |
+
parser.add_argument(
|
60 |
+
"--gpt2_config_file",
|
61 |
+
default="",
|
62 |
+
type=str,
|
63 |
+
help=(
|
64 |
+
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
|
65 |
+
"This specifies the model architecture."
|
66 |
+
),
|
67 |
+
)
|
68 |
+
args = parser.parse_args()
|
69 |
+
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_flax_gpt2.py
ADDED
@@ -0,0 +1,779 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Any, Optional, Tuple
|
17 |
+
|
18 |
+
import flax.linen as nn
|
19 |
+
import jax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
22 |
+
from flax.linen import combine_masks, make_causal_mask
|
23 |
+
from flax.linen.attention import dot_product_attention_weights
|
24 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
25 |
+
from jax import lax
|
26 |
+
|
27 |
+
from ...modeling_flax_outputs import (
|
28 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
30 |
+
)
|
31 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
32 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
33 |
+
from .configuration_gpt2 import GPT2Config
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
39 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
40 |
+
|
41 |
+
|
42 |
+
GPT2_START_DOCSTRING = r"""
|
43 |
+
|
44 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
45 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
46 |
+
etc.)
|
47 |
+
|
48 |
+
This model is also a Flax Linen
|
49 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
50 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
51 |
+
|
52 |
+
Finally, this model supports inherent JAX features such as:
|
53 |
+
|
54 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
55 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
56 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
57 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
58 |
+
|
59 |
+
Parameters:
|
60 |
+
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
61 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
62 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
63 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
64 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
65 |
+
`jax.numpy.bfloat16` (on TPUs).
|
66 |
+
|
67 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
68 |
+
specified all the computation will be performed with the given `dtype`.
|
69 |
+
|
70 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
71 |
+
parameters.**
|
72 |
+
|
73 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
74 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
75 |
+
"""
|
76 |
+
|
77 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
78 |
+
Args:
|
79 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
80 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
81 |
+
|
82 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
83 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
84 |
+
|
85 |
+
[What are input IDs?](../glossary#input-ids)
|
86 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
87 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
88 |
+
|
89 |
+
- 1 for tokens that are **not masked**,
|
90 |
+
- 0 for tokens that are **masked**.
|
91 |
+
|
92 |
+
[What are attention masks?](../glossary#attention-mask)
|
93 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
94 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
95 |
+
config.max_position_embeddings - 1]`.
|
96 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
97 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
98 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
99 |
+
output_attentions (`bool`, *optional*):
|
100 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
101 |
+
tensors for more detail.
|
102 |
+
output_hidden_states (`bool`, *optional*):
|
103 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
104 |
+
more detail.
|
105 |
+
return_dict (`bool`, *optional*):
|
106 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
107 |
+
"""
|
108 |
+
|
109 |
+
|
110 |
+
class FlaxConv1D(nn.Module):
|
111 |
+
features: int
|
112 |
+
use_bias: bool = True
|
113 |
+
dtype: Any = jnp.float32
|
114 |
+
precision: Any = None
|
115 |
+
|
116 |
+
@nn.compact
|
117 |
+
def __call__(self, inputs):
|
118 |
+
inputs = jnp.asarray(inputs, self.dtype)
|
119 |
+
kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1]))
|
120 |
+
kernel = jnp.asarray(kernel.transpose(), self.dtype)
|
121 |
+
y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision)
|
122 |
+
if self.use_bias:
|
123 |
+
bias = self.param("bias", jax.nn.initializers.zeros, (self.features,))
|
124 |
+
bias = jnp.asarray(bias, self.dtype)
|
125 |
+
y = y + bias
|
126 |
+
return y
|
127 |
+
|
128 |
+
|
129 |
+
class FlaxGPT2Attention(nn.Module):
|
130 |
+
config: GPT2Config
|
131 |
+
dtype: jnp.dtype = jnp.float32
|
132 |
+
causal: bool = True
|
133 |
+
is_cross_attention: bool = False
|
134 |
+
|
135 |
+
def setup(self):
|
136 |
+
config = self.config
|
137 |
+
self.embed_dim = config.hidden_size
|
138 |
+
self.num_heads = config.num_attention_heads
|
139 |
+
self.head_dim = self.embed_dim // self.num_heads
|
140 |
+
|
141 |
+
if self.is_cross_attention:
|
142 |
+
self.c_attn = FlaxConv1D(2 * self.embed_dim, dtype=self.dtype)
|
143 |
+
self.q_attn = FlaxConv1D(self.embed_dim, dtype=self.dtype)
|
144 |
+
else:
|
145 |
+
self.c_attn = FlaxConv1D(3 * self.embed_dim, dtype=self.dtype)
|
146 |
+
self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype)
|
147 |
+
|
148 |
+
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
|
149 |
+
|
150 |
+
if self.causal:
|
151 |
+
self.causal_mask = make_causal_mask(
|
152 |
+
jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool"
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_heads(self, hidden_states):
|
156 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
157 |
+
|
158 |
+
def _merge_heads(self, hidden_states):
|
159 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
160 |
+
|
161 |
+
@nn.compact
|
162 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
163 |
+
"""
|
164 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
165 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
166 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
167 |
+
"""
|
168 |
+
# detect if we're initializing by absence of existing cache data.
|
169 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
170 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
171 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
172 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
173 |
+
|
174 |
+
if is_initialized:
|
175 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
176 |
+
# update key, value caches with our new 1d spatial slices
|
177 |
+
cur_index = cache_index.value
|
178 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
179 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
180 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
181 |
+
cached_key.value = key
|
182 |
+
cached_value.value = value
|
183 |
+
num_updated_cache_vectors = query.shape[1]
|
184 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
185 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
186 |
+
pad_mask = jnp.broadcast_to(
|
187 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
188 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
189 |
+
)
|
190 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
191 |
+
return key, value, attention_mask
|
192 |
+
|
193 |
+
def __call__(
|
194 |
+
self,
|
195 |
+
hidden_states,
|
196 |
+
key_value_states: Optional[jnp.ndarray] = None,
|
197 |
+
attention_mask=None,
|
198 |
+
deterministic: bool = True,
|
199 |
+
init_cache: bool = False,
|
200 |
+
output_attentions: bool = False,
|
201 |
+
):
|
202 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
203 |
+
# for the decoder
|
204 |
+
is_cross_attention = key_value_states is not None
|
205 |
+
batch_size = hidden_states.shape[0]
|
206 |
+
|
207 |
+
if not is_cross_attention:
|
208 |
+
qkv_out = self.c_attn(hidden_states)
|
209 |
+
query, key, value = jnp.split(qkv_out, 3, axis=2)
|
210 |
+
else:
|
211 |
+
q_out = self.q_attn(hidden_states)
|
212 |
+
(query,) = jnp.split(q_out, 1, axis=2)
|
213 |
+
kv_out = self.c_attn(key_value_states)
|
214 |
+
key, value = jnp.split(kv_out, 2, axis=2)
|
215 |
+
|
216 |
+
query = self._split_heads(query)
|
217 |
+
key = self._split_heads(key)
|
218 |
+
value = self._split_heads(value)
|
219 |
+
|
220 |
+
query_length, key_length = query.shape[1], key.shape[1]
|
221 |
+
|
222 |
+
if self.causal:
|
223 |
+
if self.has_variable("cache", "cached_key"):
|
224 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
225 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
226 |
+
causal_mask = lax.dynamic_slice(
|
227 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
228 |
+
)
|
229 |
+
else:
|
230 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
231 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
232 |
+
|
233 |
+
# combine masks if needed
|
234 |
+
if attention_mask is not None and self.causal:
|
235 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
236 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
237 |
+
elif self.causal:
|
238 |
+
attention_mask = causal_mask
|
239 |
+
elif attention_mask is not None:
|
240 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
241 |
+
|
242 |
+
dropout_rng = None
|
243 |
+
if not deterministic and self.config.attn_pdrop > 0.0:
|
244 |
+
dropout_rng = self.make_rng("dropout")
|
245 |
+
|
246 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
247 |
+
# and cache the keys and values step by step.
|
248 |
+
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
249 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
250 |
+
|
251 |
+
# transform boolean mask into float mask
|
252 |
+
if attention_mask is not None:
|
253 |
+
attention_bias = lax.select(
|
254 |
+
attention_mask > 0,
|
255 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
256 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
257 |
+
)
|
258 |
+
else:
|
259 |
+
attention_bias = None
|
260 |
+
|
261 |
+
# usual dot product attention
|
262 |
+
attn_weights = dot_product_attention_weights(
|
263 |
+
query,
|
264 |
+
key,
|
265 |
+
bias=attention_bias,
|
266 |
+
dropout_rng=dropout_rng,
|
267 |
+
dropout_rate=self.config.attn_pdrop,
|
268 |
+
deterministic=deterministic,
|
269 |
+
dtype=self.dtype,
|
270 |
+
precision=None,
|
271 |
+
)
|
272 |
+
|
273 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
274 |
+
attn_output = self._merge_heads(attn_output)
|
275 |
+
attn_output = self.c_proj(attn_output)
|
276 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
277 |
+
|
278 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
279 |
+
return outputs
|
280 |
+
|
281 |
+
|
282 |
+
class FlaxGPT2MLP(nn.Module):
|
283 |
+
config: GPT2Config
|
284 |
+
intermediate_size: int
|
285 |
+
dtype: jnp.dtype = jnp.float32
|
286 |
+
|
287 |
+
def setup(self):
|
288 |
+
embed_dim = self.config.hidden_size
|
289 |
+
self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype)
|
290 |
+
self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype)
|
291 |
+
self.act = ACT2FN[self.config.activation_function]
|
292 |
+
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
|
293 |
+
|
294 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
295 |
+
hidden_states = self.c_fc(hidden_states)
|
296 |
+
hidden_states = self.act(hidden_states)
|
297 |
+
hidden_states = self.c_proj(hidden_states)
|
298 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
299 |
+
return hidden_states
|
300 |
+
|
301 |
+
|
302 |
+
class FlaxGPT2Block(nn.Module):
|
303 |
+
config: GPT2Config
|
304 |
+
dtype: jnp.dtype = jnp.float32
|
305 |
+
|
306 |
+
def setup(self):
|
307 |
+
hidden_size = self.config.hidden_size
|
308 |
+
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
|
309 |
+
|
310 |
+
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
311 |
+
self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype)
|
312 |
+
self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
313 |
+
|
314 |
+
if self.config.add_cross_attention:
|
315 |
+
self.crossattention = FlaxGPT2Attention(
|
316 |
+
config=self.config, dtype=self.dtype, causal=False, is_cross_attention=True
|
317 |
+
)
|
318 |
+
self.ln_cross_attn = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
319 |
+
|
320 |
+
self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype)
|
321 |
+
|
322 |
+
def __call__(
|
323 |
+
self,
|
324 |
+
hidden_states,
|
325 |
+
attention_mask=None,
|
326 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
327 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
328 |
+
deterministic: bool = True,
|
329 |
+
init_cache: bool = False,
|
330 |
+
output_attentions: bool = False,
|
331 |
+
):
|
332 |
+
residual = hidden_states
|
333 |
+
hidden_states = self.ln_1(hidden_states)
|
334 |
+
attn_outputs = self.attn(
|
335 |
+
hidden_states,
|
336 |
+
attention_mask=attention_mask,
|
337 |
+
deterministic=deterministic,
|
338 |
+
init_cache=init_cache,
|
339 |
+
output_attentions=output_attentions,
|
340 |
+
)
|
341 |
+
# residual connection
|
342 |
+
attn_output = attn_outputs[0] # output_attn: a, (attentions)
|
343 |
+
outputs = attn_outputs[1:]
|
344 |
+
# residual connection
|
345 |
+
hidden_states = attn_output + residual
|
346 |
+
|
347 |
+
# Cross-Attention Block
|
348 |
+
if encoder_hidden_states is not None:
|
349 |
+
# add one self-attention block for cross-attention
|
350 |
+
if not hasattr(self, "crossattention"):
|
351 |
+
raise ValueError(
|
352 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
353 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
354 |
+
)
|
355 |
+
residual = hidden_states
|
356 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
357 |
+
cross_attn_outputs = self.crossattention(
|
358 |
+
hidden_states,
|
359 |
+
key_value_states=encoder_hidden_states,
|
360 |
+
attention_mask=encoder_attention_mask,
|
361 |
+
deterministic=deterministic,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
)
|
364 |
+
attn_output = cross_attn_outputs[0]
|
365 |
+
# residual connection
|
366 |
+
hidden_states = residual + attn_output
|
367 |
+
outputs = outputs + cross_attn_outputs[1:] # add cross attentions if we output attention weights
|
368 |
+
|
369 |
+
residual = hidden_states
|
370 |
+
hidden_states = self.ln_2(hidden_states)
|
371 |
+
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
|
372 |
+
# residual connection
|
373 |
+
hidden_states = residual + feed_forward_hidden_states
|
374 |
+
|
375 |
+
outputs = (hidden_states,) + outputs
|
376 |
+
|
377 |
+
return outputs
|
378 |
+
|
379 |
+
|
380 |
+
class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel):
|
381 |
+
"""
|
382 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
383 |
+
models.
|
384 |
+
"""
|
385 |
+
|
386 |
+
config_class = GPT2Config
|
387 |
+
base_model_prefix = "transformer"
|
388 |
+
module_class: nn.Module = None
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
config: GPT2Config,
|
393 |
+
input_shape: Tuple = (1, 1),
|
394 |
+
seed: int = 0,
|
395 |
+
dtype: jnp.dtype = jnp.float32,
|
396 |
+
_do_init: bool = True,
|
397 |
+
**kwargs,
|
398 |
+
):
|
399 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
400 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
401 |
+
|
402 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
403 |
+
# init input tensors
|
404 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
405 |
+
attention_mask = jnp.ones_like(input_ids)
|
406 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
407 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
408 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
409 |
+
|
410 |
+
if self.config.add_cross_attention:
|
411 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
|
412 |
+
encoder_attention_mask = attention_mask
|
413 |
+
module_init_outputs = self.module.init(
|
414 |
+
rngs,
|
415 |
+
input_ids,
|
416 |
+
attention_mask,
|
417 |
+
position_ids,
|
418 |
+
encoder_hidden_states,
|
419 |
+
encoder_attention_mask,
|
420 |
+
return_dict=False,
|
421 |
+
)
|
422 |
+
else:
|
423 |
+
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
|
424 |
+
|
425 |
+
random_params = module_init_outputs["params"]
|
426 |
+
|
427 |
+
if params is not None:
|
428 |
+
random_params = flatten_dict(unfreeze(random_params))
|
429 |
+
params = flatten_dict(unfreeze(params))
|
430 |
+
for missing_key in self._missing_keys:
|
431 |
+
params[missing_key] = random_params[missing_key]
|
432 |
+
self._missing_keys = set()
|
433 |
+
return freeze(unflatten_dict(params))
|
434 |
+
else:
|
435 |
+
return random_params
|
436 |
+
|
437 |
+
def init_cache(self, batch_size, max_length):
|
438 |
+
r"""
|
439 |
+
Args:
|
440 |
+
batch_size (`int`):
|
441 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
442 |
+
max_length (`int`):
|
443 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
444 |
+
cache.
|
445 |
+
"""
|
446 |
+
# init input variables to retrieve cache
|
447 |
+
input_ids = jnp.ones((batch_size, max_length))
|
448 |
+
attention_mask = jnp.ones_like(input_ids)
|
449 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
450 |
+
|
451 |
+
init_variables = self.module.init(
|
452 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
453 |
+
)
|
454 |
+
return unfreeze(init_variables["cache"])
|
455 |
+
|
456 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
457 |
+
def __call__(
|
458 |
+
self,
|
459 |
+
input_ids,
|
460 |
+
attention_mask=None,
|
461 |
+
position_ids=None,
|
462 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
463 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
464 |
+
params: dict = None,
|
465 |
+
past_key_values: dict = None,
|
466 |
+
dropout_rng: jax.random.PRNGKey = None,
|
467 |
+
train: bool = False,
|
468 |
+
output_attentions: Optional[bool] = None,
|
469 |
+
output_hidden_states: Optional[bool] = None,
|
470 |
+
return_dict: Optional[bool] = None,
|
471 |
+
):
|
472 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
473 |
+
output_hidden_states = (
|
474 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
475 |
+
)
|
476 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
477 |
+
|
478 |
+
if encoder_hidden_states is not None and encoder_attention_mask is None:
|
479 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
480 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
481 |
+
|
482 |
+
batch_size, sequence_length = input_ids.shape
|
483 |
+
|
484 |
+
if position_ids is None:
|
485 |
+
if past_key_values is not None:
|
486 |
+
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
|
487 |
+
|
488 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
489 |
+
|
490 |
+
if attention_mask is None:
|
491 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
492 |
+
|
493 |
+
# Handle any PRNG if needed
|
494 |
+
rngs = {}
|
495 |
+
if dropout_rng is not None:
|
496 |
+
rngs["dropout"] = dropout_rng
|
497 |
+
|
498 |
+
inputs = {"params": params or self.params}
|
499 |
+
|
500 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module
|
501 |
+
if past_key_values:
|
502 |
+
inputs["cache"] = past_key_values
|
503 |
+
mutable = ["cache"]
|
504 |
+
else:
|
505 |
+
mutable = False
|
506 |
+
|
507 |
+
outputs = self.module.apply(
|
508 |
+
inputs,
|
509 |
+
jnp.array(input_ids, dtype="i4"),
|
510 |
+
jnp.array(attention_mask, dtype="i4"),
|
511 |
+
jnp.array(position_ids, dtype="i4"),
|
512 |
+
encoder_hidden_states,
|
513 |
+
encoder_attention_mask,
|
514 |
+
not train,
|
515 |
+
False,
|
516 |
+
output_attentions,
|
517 |
+
output_hidden_states,
|
518 |
+
return_dict,
|
519 |
+
rngs=rngs,
|
520 |
+
mutable=mutable,
|
521 |
+
)
|
522 |
+
|
523 |
+
# add updated cache to model output
|
524 |
+
if past_key_values is not None and return_dict:
|
525 |
+
outputs, past_key_values = outputs
|
526 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
527 |
+
return outputs
|
528 |
+
elif past_key_values is not None and not return_dict:
|
529 |
+
outputs, past_key_values = outputs
|
530 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
531 |
+
|
532 |
+
return outputs
|
533 |
+
|
534 |
+
|
535 |
+
class FlaxGPT2BlockCollection(nn.Module):
|
536 |
+
config: GPT2Config
|
537 |
+
dtype: jnp.dtype = jnp.float32
|
538 |
+
|
539 |
+
def setup(self):
|
540 |
+
self.blocks = [
|
541 |
+
FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
542 |
+
]
|
543 |
+
|
544 |
+
def __call__(
|
545 |
+
self,
|
546 |
+
hidden_states,
|
547 |
+
attention_mask=None,
|
548 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
549 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
550 |
+
deterministic: bool = True,
|
551 |
+
init_cache: bool = False,
|
552 |
+
output_attentions: bool = False,
|
553 |
+
output_hidden_states: bool = False,
|
554 |
+
return_dict: bool = True,
|
555 |
+
):
|
556 |
+
all_attentions = () if output_attentions else None
|
557 |
+
all_hidden_states = () if output_hidden_states else None
|
558 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
559 |
+
|
560 |
+
for block in self.blocks:
|
561 |
+
if output_hidden_states:
|
562 |
+
all_hidden_states += (hidden_states,)
|
563 |
+
|
564 |
+
layer_outputs = block(
|
565 |
+
hidden_states,
|
566 |
+
attention_mask,
|
567 |
+
encoder_hidden_states=encoder_hidden_states,
|
568 |
+
encoder_attention_mask=encoder_attention_mask,
|
569 |
+
deterministic=deterministic,
|
570 |
+
init_cache=init_cache,
|
571 |
+
output_attentions=output_attentions,
|
572 |
+
)
|
573 |
+
hidden_states = layer_outputs[0]
|
574 |
+
|
575 |
+
if output_attentions:
|
576 |
+
all_attentions += (layer_outputs[1],)
|
577 |
+
|
578 |
+
if encoder_hidden_states is not None:
|
579 |
+
all_cross_attentions += (layer_outputs[2],)
|
580 |
+
|
581 |
+
# this contains possible `None` values - `FlaxGPT2Module` will filter them out
|
582 |
+
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
|
583 |
+
|
584 |
+
return outputs
|
585 |
+
|
586 |
+
|
587 |
+
class FlaxGPT2Module(nn.Module):
|
588 |
+
config: GPT2Config
|
589 |
+
dtype: jnp.dtype = jnp.float32
|
590 |
+
|
591 |
+
def setup(self):
|
592 |
+
self.embed_dim = self.config.hidden_size
|
593 |
+
|
594 |
+
self.wte = nn.Embed(
|
595 |
+
self.config.vocab_size,
|
596 |
+
self.embed_dim,
|
597 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
598 |
+
dtype=self.dtype,
|
599 |
+
)
|
600 |
+
self.wpe = nn.Embed(
|
601 |
+
self.config.max_position_embeddings,
|
602 |
+
self.embed_dim,
|
603 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
604 |
+
dtype=self.dtype,
|
605 |
+
)
|
606 |
+
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
|
607 |
+
self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)
|
608 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
609 |
+
|
610 |
+
def __call__(
|
611 |
+
self,
|
612 |
+
input_ids,
|
613 |
+
attention_mask,
|
614 |
+
position_ids,
|
615 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
616 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
617 |
+
deterministic=True,
|
618 |
+
init_cache: bool = False,
|
619 |
+
output_attentions: bool = False,
|
620 |
+
output_hidden_states: bool = False,
|
621 |
+
return_dict: bool = True,
|
622 |
+
):
|
623 |
+
input_embeds = self.wte(input_ids.astype("i4"))
|
624 |
+
position_embeds = self.wpe(position_ids.astype("i4"))
|
625 |
+
|
626 |
+
hidden_states = input_embeds + position_embeds
|
627 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
628 |
+
|
629 |
+
outputs = self.h(
|
630 |
+
hidden_states,
|
631 |
+
attention_mask,
|
632 |
+
encoder_hidden_states,
|
633 |
+
encoder_attention_mask,
|
634 |
+
deterministic=deterministic,
|
635 |
+
init_cache=init_cache,
|
636 |
+
output_attentions=output_attentions,
|
637 |
+
output_hidden_states=output_hidden_states,
|
638 |
+
return_dict=return_dict,
|
639 |
+
)
|
640 |
+
|
641 |
+
hidden_states = outputs[0]
|
642 |
+
hidden_states = self.ln_f(hidden_states)
|
643 |
+
|
644 |
+
if output_hidden_states:
|
645 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
646 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
647 |
+
else:
|
648 |
+
outputs = (hidden_states,) + outputs[1:]
|
649 |
+
|
650 |
+
if not return_dict:
|
651 |
+
return tuple(v for v in outputs if v is not None)
|
652 |
+
|
653 |
+
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
654 |
+
last_hidden_state=hidden_states,
|
655 |
+
hidden_states=outputs[1],
|
656 |
+
attentions=outputs[2],
|
657 |
+
cross_attentions=outputs[3],
|
658 |
+
)
|
659 |
+
|
660 |
+
|
661 |
+
@add_start_docstrings(
|
662 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
663 |
+
GPT2_START_DOCSTRING,
|
664 |
+
)
|
665 |
+
class FlaxGPT2Model(FlaxGPT2PreTrainedModel):
|
666 |
+
module_class = FlaxGPT2Module
|
667 |
+
|
668 |
+
|
669 |
+
append_call_sample_docstring(
|
670 |
+
FlaxGPT2Model,
|
671 |
+
_CHECKPOINT_FOR_DOC,
|
672 |
+
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
673 |
+
_CONFIG_FOR_DOC,
|
674 |
+
)
|
675 |
+
|
676 |
+
|
677 |
+
class FlaxGPT2LMHeadModule(nn.Module):
|
678 |
+
config: GPT2Config
|
679 |
+
dtype: jnp.dtype = jnp.float32
|
680 |
+
|
681 |
+
def setup(self):
|
682 |
+
self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype)
|
683 |
+
self.lm_head = nn.Dense(
|
684 |
+
self.config.vocab_size,
|
685 |
+
use_bias=False,
|
686 |
+
dtype=self.dtype,
|
687 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
688 |
+
)
|
689 |
+
|
690 |
+
def __call__(
|
691 |
+
self,
|
692 |
+
input_ids,
|
693 |
+
attention_mask,
|
694 |
+
position_ids,
|
695 |
+
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
696 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
697 |
+
deterministic: bool = True,
|
698 |
+
init_cache: bool = False,
|
699 |
+
output_attentions: bool = False,
|
700 |
+
output_hidden_states: bool = False,
|
701 |
+
return_dict: bool = True,
|
702 |
+
):
|
703 |
+
outputs = self.transformer(
|
704 |
+
input_ids,
|
705 |
+
attention_mask,
|
706 |
+
position_ids,
|
707 |
+
encoder_hidden_states,
|
708 |
+
encoder_attention_mask,
|
709 |
+
deterministic=deterministic,
|
710 |
+
init_cache=init_cache,
|
711 |
+
output_attentions=output_attentions,
|
712 |
+
output_hidden_states=output_hidden_states,
|
713 |
+
return_dict=return_dict,
|
714 |
+
)
|
715 |
+
|
716 |
+
hidden_states = outputs[0]
|
717 |
+
|
718 |
+
if self.config.tie_word_embeddings:
|
719 |
+
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
|
720 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
721 |
+
else:
|
722 |
+
lm_logits = self.lm_head(hidden_states)
|
723 |
+
|
724 |
+
if not return_dict:
|
725 |
+
return (lm_logits,) + outputs[1:]
|
726 |
+
|
727 |
+
return FlaxCausalLMOutputWithCrossAttentions(
|
728 |
+
logits=lm_logits,
|
729 |
+
hidden_states=outputs.hidden_states,
|
730 |
+
attentions=outputs.attentions,
|
731 |
+
cross_attentions=outputs.cross_attentions,
|
732 |
+
)
|
733 |
+
|
734 |
+
|
735 |
+
@add_start_docstrings(
|
736 |
+
"""
|
737 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
738 |
+
embeddings).
|
739 |
+
""",
|
740 |
+
GPT2_START_DOCSTRING,
|
741 |
+
)
|
742 |
+
class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel):
|
743 |
+
module_class = FlaxGPT2LMHeadModule
|
744 |
+
|
745 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
746 |
+
# initializing the cache
|
747 |
+
batch_size, seq_length = input_ids.shape
|
748 |
+
|
749 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
750 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
751 |
+
# But since GPT2 uses a causal mask, those positions are masked anyways.
|
752 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
753 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
754 |
+
if attention_mask is not None:
|
755 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
756 |
+
extended_attention_mask = lax.dynamic_update_slice(
|
757 |
+
extended_attention_mask, attention_mask.astype("i4"), (0, 0)
|
758 |
+
)
|
759 |
+
else:
|
760 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
761 |
+
|
762 |
+
return {
|
763 |
+
"past_key_values": past_key_values,
|
764 |
+
"attention_mask": extended_attention_mask,
|
765 |
+
"position_ids": position_ids,
|
766 |
+
}
|
767 |
+
|
768 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
769 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
770 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
771 |
+
return model_kwargs
|
772 |
+
|
773 |
+
|
774 |
+
append_call_sample_docstring(
|
775 |
+
FlaxGPT2LMHeadModel,
|
776 |
+
_CHECKPOINT_FOR_DOC,
|
777 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
778 |
+
_CONFIG_FOR_DOC,
|
779 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_gpt2.py
ADDED
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import warnings
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.cuda.amp import autocast
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from ...activations import ACT2FN
|
32 |
+
from ...modeling_outputs import (
|
33 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary
|
40 |
+
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
41 |
+
from ...utils import (
|
42 |
+
ModelOutput,
|
43 |
+
add_code_sample_docstrings,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
is_flash_attn_2_available,
|
47 |
+
is_flash_attn_greater_or_equal_2_10,
|
48 |
+
logging,
|
49 |
+
replace_return_docstrings,
|
50 |
+
)
|
51 |
+
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
52 |
+
from .configuration_gpt2 import GPT2Config
|
53 |
+
|
54 |
+
|
55 |
+
if is_flash_attn_2_available():
|
56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
63 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
64 |
+
|
65 |
+
|
66 |
+
from ..deprecated._archive_maps import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
70 |
+
def _get_unpad_data(attention_mask):
|
71 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
72 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
73 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
74 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
75 |
+
return (
|
76 |
+
indices,
|
77 |
+
cu_seqlens,
|
78 |
+
max_seqlen_in_batch,
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
83 |
+
"""Load tf checkpoints in a pytorch model"""
|
84 |
+
try:
|
85 |
+
import re
|
86 |
+
|
87 |
+
import tensorflow as tf
|
88 |
+
except ImportError:
|
89 |
+
logger.error(
|
90 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
91 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
92 |
+
)
|
93 |
+
raise
|
94 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
95 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
96 |
+
# Load weights from TF model
|
97 |
+
init_vars = tf.train.list_variables(tf_path)
|
98 |
+
names = []
|
99 |
+
arrays = []
|
100 |
+
for name, shape in init_vars:
|
101 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
102 |
+
array = tf.train.load_variable(tf_path, name)
|
103 |
+
names.append(name)
|
104 |
+
arrays.append(array.squeeze())
|
105 |
+
|
106 |
+
for name, array in zip(names, arrays):
|
107 |
+
name = name[6:] # skip "model/"
|
108 |
+
name = name.split("/")
|
109 |
+
pointer = model
|
110 |
+
for m_name in name:
|
111 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
112 |
+
scope_names = re.split(r"(\d+)", m_name)
|
113 |
+
else:
|
114 |
+
scope_names = [m_name]
|
115 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
116 |
+
pointer = getattr(pointer, "weight")
|
117 |
+
elif scope_names[0] == "b":
|
118 |
+
pointer = getattr(pointer, "bias")
|
119 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
120 |
+
pointer = getattr(pointer, scope_names[0])
|
121 |
+
pointer = getattr(pointer, "weight")
|
122 |
+
else:
|
123 |
+
pointer = getattr(pointer, scope_names[0])
|
124 |
+
if len(scope_names) >= 2:
|
125 |
+
num = int(scope_names[1])
|
126 |
+
pointer = pointer[num]
|
127 |
+
try:
|
128 |
+
if pointer.shape != array.shape:
|
129 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
130 |
+
except ValueError as e:
|
131 |
+
e.args += (pointer.shape, array.shape)
|
132 |
+
raise
|
133 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
134 |
+
pointer.data = torch.from_numpy(array)
|
135 |
+
return model
|
136 |
+
|
137 |
+
|
138 |
+
class GPT2Attention(nn.Module):
|
139 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
140 |
+
super().__init__()
|
141 |
+
self.config = config
|
142 |
+
max_positions = config.max_position_embeddings
|
143 |
+
self.register_buffer(
|
144 |
+
"bias",
|
145 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
146 |
+
1, 1, max_positions, max_positions
|
147 |
+
),
|
148 |
+
persistent=False,
|
149 |
+
)
|
150 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
151 |
+
|
152 |
+
self.embed_dim = config.hidden_size
|
153 |
+
self.num_heads = config.num_attention_heads
|
154 |
+
self.head_dim = self.embed_dim // self.num_heads
|
155 |
+
self.split_size = self.embed_dim
|
156 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
157 |
+
raise ValueError(
|
158 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
159 |
+
f" {self.num_heads})."
|
160 |
+
)
|
161 |
+
|
162 |
+
self.scale_attn_weights = config.scale_attn_weights
|
163 |
+
self.is_cross_attention = is_cross_attention
|
164 |
+
|
165 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
166 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
167 |
+
self.layer_idx = layer_idx
|
168 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
169 |
+
|
170 |
+
if self.is_cross_attention:
|
171 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
172 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
173 |
+
else:
|
174 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
175 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
176 |
+
|
177 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
178 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
179 |
+
self.is_causal = True
|
180 |
+
|
181 |
+
self.pruned_heads = set()
|
182 |
+
|
183 |
+
def prune_heads(self, heads):
|
184 |
+
if len(heads) == 0:
|
185 |
+
return
|
186 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
187 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
188 |
+
|
189 |
+
# Prune conv1d layers
|
190 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
191 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
192 |
+
|
193 |
+
# Update hyper params
|
194 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
195 |
+
self.num_heads = self.num_heads - len(heads)
|
196 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
197 |
+
|
198 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
199 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
200 |
+
|
201 |
+
if self.scale_attn_weights:
|
202 |
+
attn_weights = attn_weights / torch.full(
|
203 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
204 |
+
)
|
205 |
+
|
206 |
+
# Layer-wise attention scaling
|
207 |
+
if self.scale_attn_by_inverse_layer_idx:
|
208 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
209 |
+
|
210 |
+
if not self.is_cross_attention:
|
211 |
+
# if only "normal" attention layer implements causal mask
|
212 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
213 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
214 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
215 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
216 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
217 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
218 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
219 |
+
|
220 |
+
if attention_mask is not None:
|
221 |
+
# Apply the attention mask
|
222 |
+
attn_weights = attn_weights + attention_mask
|
223 |
+
|
224 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
225 |
+
|
226 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
227 |
+
attn_weights = attn_weights.type(value.dtype)
|
228 |
+
attn_weights = self.attn_dropout(attn_weights)
|
229 |
+
|
230 |
+
# Mask heads if we want to
|
231 |
+
if head_mask is not None:
|
232 |
+
attn_weights = attn_weights * head_mask
|
233 |
+
|
234 |
+
attn_output = torch.matmul(attn_weights, value)
|
235 |
+
|
236 |
+
return attn_output, attn_weights
|
237 |
+
|
238 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
239 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
240 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
241 |
+
_, _, k_seq_len, _ = key.size()
|
242 |
+
|
243 |
+
# Preallocate attn_weights for `baddbmm`
|
244 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
245 |
+
|
246 |
+
# Compute Scale Factor
|
247 |
+
scale_factor = 1.0
|
248 |
+
if self.scale_attn_weights:
|
249 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
250 |
+
|
251 |
+
if self.scale_attn_by_inverse_layer_idx:
|
252 |
+
scale_factor /= float(self.layer_idx + 1)
|
253 |
+
|
254 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
255 |
+
with autocast(enabled=False):
|
256 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
257 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
258 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
259 |
+
|
260 |
+
if not self.is_cross_attention:
|
261 |
+
# if only "normal" attention layer implements causal mask
|
262 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
263 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
264 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
265 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
266 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
267 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
268 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
269 |
+
|
270 |
+
if attention_mask is not None:
|
271 |
+
# Apply the attention mask
|
272 |
+
attn_weights = attn_weights + attention_mask
|
273 |
+
|
274 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
275 |
+
|
276 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
277 |
+
if attn_weights.dtype != torch.float32:
|
278 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
279 |
+
attn_weights = attn_weights.type(value.dtype)
|
280 |
+
attn_weights = self.attn_dropout(attn_weights)
|
281 |
+
|
282 |
+
# Mask heads if we want to
|
283 |
+
if head_mask is not None:
|
284 |
+
attn_weights = attn_weights * head_mask
|
285 |
+
|
286 |
+
attn_output = torch.matmul(attn_weights, value)
|
287 |
+
|
288 |
+
return attn_output, attn_weights
|
289 |
+
|
290 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
291 |
+
"""
|
292 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
293 |
+
"""
|
294 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
295 |
+
tensor = tensor.view(new_shape)
|
296 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
297 |
+
|
298 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
299 |
+
"""
|
300 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
301 |
+
"""
|
302 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
303 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
304 |
+
return tensor.view(new_shape)
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
309 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
310 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
311 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
312 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
313 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
314 |
+
use_cache: Optional[bool] = False,
|
315 |
+
output_attentions: Optional[bool] = False,
|
316 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
317 |
+
if encoder_hidden_states is not None:
|
318 |
+
if not hasattr(self, "q_attn"):
|
319 |
+
raise ValueError(
|
320 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
321 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
322 |
+
)
|
323 |
+
|
324 |
+
query = self.q_attn(hidden_states)
|
325 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
326 |
+
attention_mask = encoder_attention_mask
|
327 |
+
else:
|
328 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
329 |
+
|
330 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
331 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
332 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
333 |
+
|
334 |
+
if layer_past is not None:
|
335 |
+
past_key, past_value = layer_past
|
336 |
+
key = torch.cat((past_key, key), dim=-2)
|
337 |
+
value = torch.cat((past_value, value), dim=-2)
|
338 |
+
|
339 |
+
if use_cache is True:
|
340 |
+
present = (key, value)
|
341 |
+
else:
|
342 |
+
present = None
|
343 |
+
|
344 |
+
if self.reorder_and_upcast_attn:
|
345 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
346 |
+
else:
|
347 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
348 |
+
|
349 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
350 |
+
attn_output = self.c_proj(attn_output)
|
351 |
+
attn_output = self.resid_dropout(attn_output)
|
352 |
+
|
353 |
+
outputs = (attn_output, present)
|
354 |
+
if output_attentions:
|
355 |
+
outputs += (attn_weights,)
|
356 |
+
|
357 |
+
return outputs # a, present, (attentions)
|
358 |
+
|
359 |
+
|
360 |
+
class GPT2FlashAttention2(GPT2Attention):
|
361 |
+
"""
|
362 |
+
GPT2 flash attention module. This module inherits from `GPT2Attention` as the weights of the module stays
|
363 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
364 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
365 |
+
"""
|
366 |
+
|
367 |
+
def __init__(self, *args, **kwargs):
|
368 |
+
super().__init__(*args, **kwargs)
|
369 |
+
|
370 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
371 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
372 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
373 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self,
|
377 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
378 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
379 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
380 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
381 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
382 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
383 |
+
use_cache: Optional[bool] = False,
|
384 |
+
output_attentions: Optional[bool] = False,
|
385 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
386 |
+
bsz, _, _ = hidden_states.size()
|
387 |
+
if encoder_hidden_states is not None:
|
388 |
+
if not hasattr(self, "q_attn"):
|
389 |
+
raise ValueError(
|
390 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
391 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
392 |
+
)
|
393 |
+
|
394 |
+
query = self.q_attn(hidden_states)
|
395 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
396 |
+
attention_mask = encoder_attention_mask
|
397 |
+
else:
|
398 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
399 |
+
|
400 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
401 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
402 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
403 |
+
|
404 |
+
if layer_past is not None:
|
405 |
+
past_key = layer_past[0]
|
406 |
+
past_value = layer_past[1]
|
407 |
+
key = torch.cat((past_key, key), dim=-2)
|
408 |
+
value = torch.cat((past_value, value), dim=-2)
|
409 |
+
|
410 |
+
present = None
|
411 |
+
if use_cache is True:
|
412 |
+
present = (key, value)
|
413 |
+
|
414 |
+
query_length = query.shape[2]
|
415 |
+
tgt_len = key.shape[2]
|
416 |
+
|
417 |
+
# Flash attention requires the input to have the shape
|
418 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
419 |
+
query = query.transpose(1, 2).view(bsz, query_length, self.num_heads, self.head_dim)
|
420 |
+
key = key.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
421 |
+
value = value.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
422 |
+
|
423 |
+
attn_dropout = self.attn_dropout.p if self.training else 0.0
|
424 |
+
|
425 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
426 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
427 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
428 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
429 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
430 |
+
|
431 |
+
if query.dtype == torch.float32:
|
432 |
+
if torch.is_autocast_enabled():
|
433 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
434 |
+
# Handle the case where the model is quantized
|
435 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
436 |
+
target_dtype = self.config._pre_quantization_dtype
|
437 |
+
else:
|
438 |
+
target_dtype = self.c_proj.weight.dtype
|
439 |
+
|
440 |
+
logger.warning_once(
|
441 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
442 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
443 |
+
f" {target_dtype}."
|
444 |
+
)
|
445 |
+
|
446 |
+
query = query.to(target_dtype)
|
447 |
+
key = key.to(target_dtype)
|
448 |
+
value = value.to(target_dtype)
|
449 |
+
|
450 |
+
attn_output = self._flash_attention_forward(
|
451 |
+
query, key, value, attention_mask, query_length, dropout=attn_dropout
|
452 |
+
)
|
453 |
+
|
454 |
+
attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim)
|
455 |
+
attn_output = self.c_proj(attn_weights_reshaped)
|
456 |
+
attn_output = self.resid_dropout(attn_output)
|
457 |
+
|
458 |
+
outputs = (attn_output, present)
|
459 |
+
if output_attentions:
|
460 |
+
outputs += (attn_weights_reshaped,)
|
461 |
+
|
462 |
+
return outputs
|
463 |
+
|
464 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
465 |
+
def _flash_attention_forward(
|
466 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
467 |
+
):
|
468 |
+
"""
|
469 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
470 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
query_states (`torch.Tensor`):
|
474 |
+
Input query states to be passed to Flash Attention API
|
475 |
+
key_states (`torch.Tensor`):
|
476 |
+
Input key states to be passed to Flash Attention API
|
477 |
+
value_states (`torch.Tensor`):
|
478 |
+
Input value states to be passed to Flash Attention API
|
479 |
+
attention_mask (`torch.Tensor`):
|
480 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
481 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
482 |
+
dropout (`float`):
|
483 |
+
Attention dropout
|
484 |
+
softmax_scale (`float`, *optional*):
|
485 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
486 |
+
"""
|
487 |
+
if not self._flash_attn_uses_top_left_mask:
|
488 |
+
causal = self.is_causal
|
489 |
+
else:
|
490 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
491 |
+
causal = self.is_causal and query_length != 1
|
492 |
+
|
493 |
+
# Contains at least one padding token in the sequence
|
494 |
+
if attention_mask is not None:
|
495 |
+
batch_size = query_states.shape[0]
|
496 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
497 |
+
query_states, key_states, value_states, attention_mask, query_length
|
498 |
+
)
|
499 |
+
|
500 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
501 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
502 |
+
|
503 |
+
attn_output_unpad = flash_attn_varlen_func(
|
504 |
+
query_states,
|
505 |
+
key_states,
|
506 |
+
value_states,
|
507 |
+
cu_seqlens_q=cu_seqlens_q,
|
508 |
+
cu_seqlens_k=cu_seqlens_k,
|
509 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
510 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
511 |
+
dropout_p=dropout,
|
512 |
+
softmax_scale=softmax_scale,
|
513 |
+
causal=causal,
|
514 |
+
)
|
515 |
+
|
516 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
517 |
+
else:
|
518 |
+
attn_output = flash_attn_func(
|
519 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
520 |
+
)
|
521 |
+
|
522 |
+
return attn_output
|
523 |
+
|
524 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
525 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
526 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
527 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
528 |
+
|
529 |
+
key_layer = index_first_axis(
|
530 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
531 |
+
)
|
532 |
+
value_layer = index_first_axis(
|
533 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
534 |
+
)
|
535 |
+
if query_length == kv_seq_len:
|
536 |
+
query_layer = index_first_axis(
|
537 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
538 |
+
)
|
539 |
+
cu_seqlens_q = cu_seqlens_k
|
540 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
541 |
+
indices_q = indices_k
|
542 |
+
elif query_length == 1:
|
543 |
+
max_seqlen_in_batch_q = 1
|
544 |
+
cu_seqlens_q = torch.arange(
|
545 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
546 |
+
) # There is a memcpy here, that is very bad.
|
547 |
+
indices_q = cu_seqlens_q[:-1]
|
548 |
+
query_layer = query_layer.squeeze(1)
|
549 |
+
else:
|
550 |
+
# The -q_len: slice assumes left padding.
|
551 |
+
attention_mask = attention_mask[:, -query_length:]
|
552 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
553 |
+
|
554 |
+
return (
|
555 |
+
query_layer,
|
556 |
+
key_layer,
|
557 |
+
value_layer,
|
558 |
+
indices_q,
|
559 |
+
(cu_seqlens_q, cu_seqlens_k),
|
560 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
class GPT2MLP(nn.Module):
|
565 |
+
def __init__(self, intermediate_size, config):
|
566 |
+
super().__init__()
|
567 |
+
embed_dim = config.hidden_size
|
568 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
569 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
570 |
+
self.act = ACT2FN[config.activation_function]
|
571 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
572 |
+
|
573 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
574 |
+
hidden_states = self.c_fc(hidden_states)
|
575 |
+
hidden_states = self.act(hidden_states)
|
576 |
+
hidden_states = self.c_proj(hidden_states)
|
577 |
+
hidden_states = self.dropout(hidden_states)
|
578 |
+
return hidden_states
|
579 |
+
|
580 |
+
|
581 |
+
GPT2_ATTENTION_CLASSES = {
|
582 |
+
"eager": GPT2Attention,
|
583 |
+
"flash_attention_2": GPT2FlashAttention2,
|
584 |
+
}
|
585 |
+
|
586 |
+
|
587 |
+
class GPT2Block(nn.Module):
|
588 |
+
def __init__(self, config, layer_idx=None):
|
589 |
+
super().__init__()
|
590 |
+
hidden_size = config.hidden_size
|
591 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
592 |
+
attention_class = GPT2_ATTENTION_CLASSES[config._attn_implementation]
|
593 |
+
|
594 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
595 |
+
self.attn = attention_class(config=config, layer_idx=layer_idx)
|
596 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
597 |
+
|
598 |
+
if config.add_cross_attention:
|
599 |
+
self.crossattention = attention_class(config=config, is_cross_attention=True, layer_idx=layer_idx)
|
600 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
601 |
+
|
602 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
603 |
+
|
604 |
+
def forward(
|
605 |
+
self,
|
606 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
607 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
610 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
611 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
use_cache: Optional[bool] = False,
|
613 |
+
output_attentions: Optional[bool] = False,
|
614 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
615 |
+
residual = hidden_states
|
616 |
+
hidden_states = self.ln_1(hidden_states)
|
617 |
+
attn_outputs = self.attn(
|
618 |
+
hidden_states,
|
619 |
+
layer_past=layer_past,
|
620 |
+
attention_mask=attention_mask,
|
621 |
+
head_mask=head_mask,
|
622 |
+
use_cache=use_cache,
|
623 |
+
output_attentions=output_attentions,
|
624 |
+
)
|
625 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
626 |
+
outputs = attn_outputs[1:]
|
627 |
+
# residual connection
|
628 |
+
hidden_states = attn_output + residual
|
629 |
+
|
630 |
+
if encoder_hidden_states is not None:
|
631 |
+
# add one self-attention block for cross-attention
|
632 |
+
if not hasattr(self, "crossattention"):
|
633 |
+
raise ValueError(
|
634 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
635 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
636 |
+
)
|
637 |
+
residual = hidden_states
|
638 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
639 |
+
cross_attn_outputs = self.crossattention(
|
640 |
+
hidden_states,
|
641 |
+
attention_mask=attention_mask,
|
642 |
+
head_mask=head_mask,
|
643 |
+
encoder_hidden_states=encoder_hidden_states,
|
644 |
+
encoder_attention_mask=encoder_attention_mask,
|
645 |
+
output_attentions=output_attentions,
|
646 |
+
)
|
647 |
+
attn_output = cross_attn_outputs[0]
|
648 |
+
# residual connection
|
649 |
+
hidden_states = residual + attn_output
|
650 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
651 |
+
|
652 |
+
residual = hidden_states
|
653 |
+
hidden_states = self.ln_2(hidden_states)
|
654 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
655 |
+
# residual connection
|
656 |
+
hidden_states = residual + feed_forward_hidden_states
|
657 |
+
|
658 |
+
if use_cache:
|
659 |
+
outputs = (hidden_states,) + outputs
|
660 |
+
else:
|
661 |
+
outputs = (hidden_states,) + outputs[1:]
|
662 |
+
|
663 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
664 |
+
|
665 |
+
|
666 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
667 |
+
"""
|
668 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
669 |
+
models.
|
670 |
+
"""
|
671 |
+
|
672 |
+
config_class = GPT2Config
|
673 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
674 |
+
base_model_prefix = "transformer"
|
675 |
+
is_parallelizable = True
|
676 |
+
supports_gradient_checkpointing = True
|
677 |
+
_no_split_modules = ["GPT2Block"]
|
678 |
+
_skip_keys_device_placement = "past_key_values"
|
679 |
+
_supports_flash_attn_2 = True
|
680 |
+
|
681 |
+
def __init__(self, *inputs, **kwargs):
|
682 |
+
super().__init__(*inputs, **kwargs)
|
683 |
+
|
684 |
+
def _init_weights(self, module):
|
685 |
+
"""Initialize the weights."""
|
686 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
687 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
688 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
689 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
690 |
+
if module.bias is not None:
|
691 |
+
module.bias.data.zero_()
|
692 |
+
elif isinstance(module, nn.Embedding):
|
693 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
694 |
+
if module.padding_idx is not None:
|
695 |
+
module.weight.data[module.padding_idx].zero_()
|
696 |
+
elif isinstance(module, nn.LayerNorm):
|
697 |
+
module.bias.data.zero_()
|
698 |
+
module.weight.data.fill_(1.0)
|
699 |
+
|
700 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
701 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
702 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
703 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
704 |
+
#
|
705 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
706 |
+
for name, p in module.named_parameters():
|
707 |
+
if name == "c_proj.weight":
|
708 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
709 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
710 |
+
|
711 |
+
|
712 |
+
@dataclass
|
713 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
714 |
+
"""
|
715 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
716 |
+
|
717 |
+
Args:
|
718 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
719 |
+
Language modeling loss.
|
720 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
721 |
+
Multiple choice classification loss.
|
722 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
723 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
724 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
725 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
726 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
727 |
+
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
728 |
+
sequence_length, embed_size_per_head)`).
|
729 |
+
|
730 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
731 |
+
`past_key_values` input) to speed up sequential decoding.
|
732 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
733 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
734 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
735 |
+
|
736 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
737 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
738 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
739 |
+
sequence_length)`.
|
740 |
+
|
741 |
+
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
742 |
+
self-attention heads.
|
743 |
+
"""
|
744 |
+
|
745 |
+
loss: Optional[torch.FloatTensor] = None
|
746 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
747 |
+
logits: torch.FloatTensor = None
|
748 |
+
mc_logits: torch.FloatTensor = None
|
749 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
750 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
751 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
752 |
+
|
753 |
+
|
754 |
+
GPT2_START_DOCSTRING = r"""
|
755 |
+
|
756 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
757 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
758 |
+
etc.)
|
759 |
+
|
760 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
761 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
762 |
+
and behavior.
|
763 |
+
|
764 |
+
Parameters:
|
765 |
+
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
766 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
767 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
768 |
+
"""
|
769 |
+
|
770 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
771 |
+
Args:
|
772 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
773 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
774 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
775 |
+
sequence tokens in the vocabulary.
|
776 |
+
|
777 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
778 |
+
`input_ids`.
|
779 |
+
|
780 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
781 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
782 |
+
|
783 |
+
[What are input IDs?](../glossary#input-ids)
|
784 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
785 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
786 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
787 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
788 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
789 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
790 |
+
|
791 |
+
- 1 for tokens that are **not masked**,
|
792 |
+
- 0 for tokens that are **masked**.
|
793 |
+
|
794 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
795 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
796 |
+
`len(past_key_values) + len(input_ids)`
|
797 |
+
|
798 |
+
[What are attention masks?](../glossary#attention-mask)
|
799 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
800 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
801 |
+
1]`:
|
802 |
+
|
803 |
+
- 0 corresponds to a *sentence A* token,
|
804 |
+
- 1 corresponds to a *sentence B* token.
|
805 |
+
|
806 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
807 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
808 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
809 |
+
config.max_position_embeddings - 1]`.
|
810 |
+
|
811 |
+
[What are position IDs?](../glossary#position-ids)
|
812 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
813 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
814 |
+
|
815 |
+
- 1 indicates the head is **not masked**,
|
816 |
+
- 0 indicates the head is **masked**.
|
817 |
+
|
818 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
819 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
820 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
821 |
+
model's internal embedding lookup matrix.
|
822 |
+
|
823 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
824 |
+
`past_key_values`).
|
825 |
+
use_cache (`bool`, *optional*):
|
826 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
827 |
+
`past_key_values`).
|
828 |
+
output_attentions (`bool`, *optional*):
|
829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
830 |
+
tensors for more detail.
|
831 |
+
output_hidden_states (`bool`, *optional*):
|
832 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
833 |
+
more detail.
|
834 |
+
return_dict (`bool`, *optional*):
|
835 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
836 |
+
"""
|
837 |
+
PARALLELIZE_DOCSTRING = r"""
|
838 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
839 |
+
|
840 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
841 |
+
it will evenly distribute blocks across all devices.
|
842 |
+
|
843 |
+
Args:
|
844 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
845 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
846 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
847 |
+
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
848 |
+
following number of attention modules:
|
849 |
+
|
850 |
+
- openai-community/gpt2: 12
|
851 |
+
- openai-community/gpt2-medium: 24
|
852 |
+
- openai-community/gpt2-large: 36
|
853 |
+
- openai-community/gpt2-xl: 48
|
854 |
+
|
855 |
+
Example:
|
856 |
+
|
857 |
+
```python
|
858 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
859 |
+
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-xl")
|
860 |
+
device_map = {
|
861 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
862 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
863 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
864 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
|
865 |
+
}
|
866 |
+
model.parallelize(device_map)
|
867 |
+
```
|
868 |
+
"""
|
869 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
870 |
+
Moves the model to cpu from a model parallel state.
|
871 |
+
|
872 |
+
Example:
|
873 |
+
|
874 |
+
```python
|
875 |
+
# On a 4 GPU machine with openai-community/gpt2-large:
|
876 |
+
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large")
|
877 |
+
device_map = {
|
878 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7],
|
879 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
880 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
881 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
|
882 |
+
}
|
883 |
+
model.parallelize(device_map) # Splits the model across several devices
|
884 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
885 |
+
```
|
886 |
+
"""
|
887 |
+
|
888 |
+
|
889 |
+
@add_start_docstrings(
|
890 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
891 |
+
GPT2_START_DOCSTRING,
|
892 |
+
)
|
893 |
+
class GPT2Model(GPT2PreTrainedModel):
|
894 |
+
def __init__(self, config):
|
895 |
+
super().__init__(config)
|
896 |
+
|
897 |
+
self.embed_dim = config.hidden_size
|
898 |
+
|
899 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
900 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
901 |
+
|
902 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
903 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
904 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
905 |
+
|
906 |
+
# Model parallel
|
907 |
+
self.model_parallel = False
|
908 |
+
self.device_map = None
|
909 |
+
self.gradient_checkpointing = False
|
910 |
+
self._attn_implementation = config._attn_implementation
|
911 |
+
|
912 |
+
# Initialize weights and apply final processing
|
913 |
+
self.post_init()
|
914 |
+
|
915 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
916 |
+
def parallelize(self, device_map=None):
|
917 |
+
# Check validity of device_map
|
918 |
+
warnings.warn(
|
919 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
920 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
921 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
922 |
+
" ...}",
|
923 |
+
FutureWarning,
|
924 |
+
)
|
925 |
+
self.device_map = (
|
926 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
927 |
+
)
|
928 |
+
assert_device_map(self.device_map, len(self.h))
|
929 |
+
self.model_parallel = True
|
930 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
931 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
932 |
+
self.wte = self.wte.to(self.first_device)
|
933 |
+
self.wpe = self.wpe.to(self.first_device)
|
934 |
+
# Load onto devices
|
935 |
+
for k, v in self.device_map.items():
|
936 |
+
for block in v:
|
937 |
+
cuda_device = "cuda:" + str(k)
|
938 |
+
self.h[block] = self.h[block].to(cuda_device)
|
939 |
+
# ln_f to last
|
940 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
941 |
+
|
942 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
943 |
+
def deparallelize(self):
|
944 |
+
warnings.warn(
|
945 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
946 |
+
FutureWarning,
|
947 |
+
)
|
948 |
+
self.model_parallel = False
|
949 |
+
self.device_map = None
|
950 |
+
self.first_device = "cpu"
|
951 |
+
self.last_device = "cpu"
|
952 |
+
self.wte = self.wte.to("cpu")
|
953 |
+
self.wpe = self.wpe.to("cpu")
|
954 |
+
for index in range(len(self.h)):
|
955 |
+
self.h[index] = self.h[index].to("cpu")
|
956 |
+
self.ln_f = self.ln_f.to("cpu")
|
957 |
+
torch.cuda.empty_cache()
|
958 |
+
|
959 |
+
def get_input_embeddings(self):
|
960 |
+
return self.wte
|
961 |
+
|
962 |
+
def set_input_embeddings(self, new_embeddings):
|
963 |
+
self.wte = new_embeddings
|
964 |
+
|
965 |
+
def _prune_heads(self, heads_to_prune):
|
966 |
+
"""
|
967 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
968 |
+
"""
|
969 |
+
for layer, heads in heads_to_prune.items():
|
970 |
+
self.h[layer].attn.prune_heads(heads)
|
971 |
+
|
972 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
973 |
+
@add_code_sample_docstrings(
|
974 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
975 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
976 |
+
config_class=_CONFIG_FOR_DOC,
|
977 |
+
)
|
978 |
+
def forward(
|
979 |
+
self,
|
980 |
+
input_ids: Optional[torch.LongTensor] = None,
|
981 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
982 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
983 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
984 |
+
position_ids: Optional[torch.LongTensor] = None,
|
985 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
986 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
987 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
988 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
989 |
+
use_cache: Optional[bool] = None,
|
990 |
+
output_attentions: Optional[bool] = None,
|
991 |
+
output_hidden_states: Optional[bool] = None,
|
992 |
+
return_dict: Optional[bool] = None,
|
993 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
994 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
995 |
+
output_hidden_states = (
|
996 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
997 |
+
)
|
998 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
999 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1000 |
+
|
1001 |
+
if input_ids is not None and inputs_embeds is not None:
|
1002 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1003 |
+
elif input_ids is not None:
|
1004 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1005 |
+
input_shape = input_ids.size()
|
1006 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1007 |
+
batch_size = input_ids.shape[0]
|
1008 |
+
elif inputs_embeds is not None:
|
1009 |
+
input_shape = inputs_embeds.size()[:-1]
|
1010 |
+
batch_size = inputs_embeds.shape[0]
|
1011 |
+
else:
|
1012 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1013 |
+
|
1014 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1015 |
+
|
1016 |
+
if token_type_ids is not None:
|
1017 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
1018 |
+
|
1019 |
+
if past_key_values is None:
|
1020 |
+
past_length = 0
|
1021 |
+
past_key_values = tuple([None] * len(self.h))
|
1022 |
+
else:
|
1023 |
+
past_length = past_key_values[0][0].size(-2)
|
1024 |
+
if position_ids is None:
|
1025 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
1026 |
+
position_ids = position_ids.unsqueeze(0)
|
1027 |
+
|
1028 |
+
# Attention mask.
|
1029 |
+
if attention_mask is not None:
|
1030 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
1031 |
+
if self._attn_implementation == "flash_attention_2":
|
1032 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
1033 |
+
else:
|
1034 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
1035 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
1036 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
1037 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
1038 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
1039 |
+
attention_mask = attention_mask[:, None, None, :]
|
1040 |
+
|
1041 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
1042 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
1043 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
1044 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
1045 |
+
# effectively the same as removing these entirely.
|
1046 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
1047 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
1048 |
+
|
1049 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1050 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1051 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
1052 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1053 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1054 |
+
if encoder_attention_mask is None:
|
1055 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1056 |
+
if self._attn_implementation != "flash_attention_2":
|
1057 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1058 |
+
else:
|
1059 |
+
encoder_attention_mask = None
|
1060 |
+
|
1061 |
+
# Prepare head mask if needed
|
1062 |
+
# 1.0 in head_mask indicate we keep the head
|
1063 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1064 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
1065 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
1066 |
+
|
1067 |
+
if inputs_embeds is None:
|
1068 |
+
inputs_embeds = self.wte(input_ids)
|
1069 |
+
position_embeds = self.wpe(position_ids)
|
1070 |
+
hidden_states = inputs_embeds + position_embeds
|
1071 |
+
|
1072 |
+
if token_type_ids is not None:
|
1073 |
+
token_type_embeds = self.wte(token_type_ids)
|
1074 |
+
hidden_states = hidden_states + token_type_embeds
|
1075 |
+
|
1076 |
+
hidden_states = self.drop(hidden_states)
|
1077 |
+
|
1078 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
1079 |
+
|
1080 |
+
if self.gradient_checkpointing and self.training:
|
1081 |
+
if use_cache:
|
1082 |
+
logger.warning_once(
|
1083 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1084 |
+
)
|
1085 |
+
use_cache = False
|
1086 |
+
|
1087 |
+
presents = () if use_cache else None
|
1088 |
+
all_self_attentions = () if output_attentions else None
|
1089 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
1090 |
+
all_hidden_states = () if output_hidden_states else None
|
1091 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
1092 |
+
# Model parallel
|
1093 |
+
if self.model_parallel:
|
1094 |
+
torch.cuda.set_device(hidden_states.device)
|
1095 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
1096 |
+
if layer_past is not None:
|
1097 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
1098 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
1099 |
+
if attention_mask is not None:
|
1100 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
1101 |
+
if isinstance(head_mask, torch.Tensor):
|
1102 |
+
head_mask = head_mask.to(hidden_states.device)
|
1103 |
+
if output_hidden_states:
|
1104 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1105 |
+
|
1106 |
+
if self.gradient_checkpointing and self.training:
|
1107 |
+
outputs = self._gradient_checkpointing_func(
|
1108 |
+
block.__call__,
|
1109 |
+
hidden_states,
|
1110 |
+
None,
|
1111 |
+
attention_mask,
|
1112 |
+
head_mask[i],
|
1113 |
+
encoder_hidden_states,
|
1114 |
+
encoder_attention_mask,
|
1115 |
+
use_cache,
|
1116 |
+
output_attentions,
|
1117 |
+
)
|
1118 |
+
else:
|
1119 |
+
outputs = block(
|
1120 |
+
hidden_states,
|
1121 |
+
layer_past=layer_past,
|
1122 |
+
attention_mask=attention_mask,
|
1123 |
+
head_mask=head_mask[i],
|
1124 |
+
encoder_hidden_states=encoder_hidden_states,
|
1125 |
+
encoder_attention_mask=encoder_attention_mask,
|
1126 |
+
use_cache=use_cache,
|
1127 |
+
output_attentions=output_attentions,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
hidden_states = outputs[0]
|
1131 |
+
if use_cache is True:
|
1132 |
+
presents = presents + (outputs[1],)
|
1133 |
+
|
1134 |
+
if output_attentions:
|
1135 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
1136 |
+
if self.config.add_cross_attention:
|
1137 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
1138 |
+
|
1139 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1140 |
+
if self.model_parallel:
|
1141 |
+
for k, v in self.device_map.items():
|
1142 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1143 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1144 |
+
|
1145 |
+
hidden_states = self.ln_f(hidden_states)
|
1146 |
+
|
1147 |
+
hidden_states = hidden_states.view(output_shape)
|
1148 |
+
# Add last hidden state
|
1149 |
+
if output_hidden_states:
|
1150 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1151 |
+
|
1152 |
+
if not return_dict:
|
1153 |
+
return tuple(
|
1154 |
+
v
|
1155 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
1156 |
+
if v is not None
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1160 |
+
last_hidden_state=hidden_states,
|
1161 |
+
past_key_values=presents,
|
1162 |
+
hidden_states=all_hidden_states,
|
1163 |
+
attentions=all_self_attentions,
|
1164 |
+
cross_attentions=all_cross_attentions,
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
|
1168 |
+
@add_start_docstrings(
|
1169 |
+
"""
|
1170 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
1171 |
+
embeddings).
|
1172 |
+
""",
|
1173 |
+
GPT2_START_DOCSTRING,
|
1174 |
+
)
|
1175 |
+
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
1176 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1177 |
+
|
1178 |
+
def __init__(self, config):
|
1179 |
+
super().__init__(config)
|
1180 |
+
self.transformer = GPT2Model(config)
|
1181 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1182 |
+
|
1183 |
+
# Model parallel
|
1184 |
+
self.model_parallel = False
|
1185 |
+
self.device_map = None
|
1186 |
+
|
1187 |
+
# Initialize weights and apply final processing
|
1188 |
+
self.post_init()
|
1189 |
+
|
1190 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1191 |
+
def parallelize(self, device_map=None):
|
1192 |
+
warnings.warn(
|
1193 |
+
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
1194 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1195 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
1196 |
+
" 0, 'transformer.h.1': 1, ...}",
|
1197 |
+
FutureWarning,
|
1198 |
+
)
|
1199 |
+
self.device_map = (
|
1200 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1201 |
+
if device_map is None
|
1202 |
+
else device_map
|
1203 |
+
)
|
1204 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1205 |
+
self.transformer.parallelize(self.device_map)
|
1206 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1207 |
+
self.model_parallel = True
|
1208 |
+
|
1209 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1210 |
+
def deparallelize(self):
|
1211 |
+
warnings.warn(
|
1212 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1213 |
+
FutureWarning,
|
1214 |
+
)
|
1215 |
+
self.transformer.deparallelize()
|
1216 |
+
self.transformer = self.transformer.to("cpu")
|
1217 |
+
self.lm_head = self.lm_head.to("cpu")
|
1218 |
+
self.model_parallel = False
|
1219 |
+
torch.cuda.empty_cache()
|
1220 |
+
|
1221 |
+
def get_output_embeddings(self):
|
1222 |
+
return self.lm_head
|
1223 |
+
|
1224 |
+
def set_output_embeddings(self, new_embeddings):
|
1225 |
+
self.lm_head = new_embeddings
|
1226 |
+
|
1227 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1228 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1229 |
+
# Omit tokens covered by past_key_values
|
1230 |
+
if past_key_values:
|
1231 |
+
past_length = past_key_values[0][0].shape[2]
|
1232 |
+
|
1233 |
+
# Some generation methods already pass only the last input ID
|
1234 |
+
if input_ids.shape[1] > past_length:
|
1235 |
+
remove_prefix_length = past_length
|
1236 |
+
else:
|
1237 |
+
# Default to old behavior: keep only final ID
|
1238 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1239 |
+
|
1240 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1241 |
+
if token_type_ids is not None:
|
1242 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1243 |
+
|
1244 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1245 |
+
position_ids = kwargs.get("position_ids", None)
|
1246 |
+
|
1247 |
+
if attention_mask is not None and position_ids is None:
|
1248 |
+
# create position_ids on the fly for batch generation
|
1249 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1250 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1251 |
+
if past_key_values:
|
1252 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1253 |
+
else:
|
1254 |
+
position_ids = None
|
1255 |
+
|
1256 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1257 |
+
if inputs_embeds is not None and past_key_values is None:
|
1258 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1259 |
+
else:
|
1260 |
+
model_inputs = {"input_ids": input_ids}
|
1261 |
+
|
1262 |
+
model_inputs.update(
|
1263 |
+
{
|
1264 |
+
"past_key_values": past_key_values,
|
1265 |
+
"use_cache": kwargs.get("use_cache"),
|
1266 |
+
"position_ids": position_ids,
|
1267 |
+
"attention_mask": attention_mask,
|
1268 |
+
"token_type_ids": token_type_ids,
|
1269 |
+
}
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
return model_inputs
|
1273 |
+
|
1274 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1275 |
+
@add_code_sample_docstrings(
|
1276 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1277 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1278 |
+
config_class=_CONFIG_FOR_DOC,
|
1279 |
+
)
|
1280 |
+
def forward(
|
1281 |
+
self,
|
1282 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1283 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1284 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1285 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1286 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1287 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1288 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1289 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1290 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1291 |
+
labels: Optional[torch.LongTensor] = None,
|
1292 |
+
use_cache: Optional[bool] = None,
|
1293 |
+
output_attentions: Optional[bool] = None,
|
1294 |
+
output_hidden_states: Optional[bool] = None,
|
1295 |
+
return_dict: Optional[bool] = None,
|
1296 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1297 |
+
r"""
|
1298 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1299 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1300 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1301 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1302 |
+
"""
|
1303 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1304 |
+
|
1305 |
+
transformer_outputs = self.transformer(
|
1306 |
+
input_ids,
|
1307 |
+
past_key_values=past_key_values,
|
1308 |
+
attention_mask=attention_mask,
|
1309 |
+
token_type_ids=token_type_ids,
|
1310 |
+
position_ids=position_ids,
|
1311 |
+
head_mask=head_mask,
|
1312 |
+
inputs_embeds=inputs_embeds,
|
1313 |
+
encoder_hidden_states=encoder_hidden_states,
|
1314 |
+
encoder_attention_mask=encoder_attention_mask,
|
1315 |
+
use_cache=use_cache,
|
1316 |
+
output_attentions=output_attentions,
|
1317 |
+
output_hidden_states=output_hidden_states,
|
1318 |
+
return_dict=return_dict,
|
1319 |
+
)
|
1320 |
+
hidden_states = transformer_outputs[0]
|
1321 |
+
|
1322 |
+
# Set device for model parallelism
|
1323 |
+
if self.model_parallel:
|
1324 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1325 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1326 |
+
|
1327 |
+
lm_logits = self.lm_head(hidden_states)
|
1328 |
+
|
1329 |
+
loss = None
|
1330 |
+
if labels is not None:
|
1331 |
+
# move labels to correct device to enable model parallelism
|
1332 |
+
labels = labels.to(lm_logits.device)
|
1333 |
+
# Shift so that tokens < n predict n
|
1334 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1335 |
+
shift_labels = labels[..., 1:].contiguous()
|
1336 |
+
# Flatten the tokens
|
1337 |
+
loss_fct = CrossEntropyLoss()
|
1338 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1339 |
+
|
1340 |
+
if not return_dict:
|
1341 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1342 |
+
return ((loss,) + output) if loss is not None else output
|
1343 |
+
|
1344 |
+
return CausalLMOutputWithCrossAttentions(
|
1345 |
+
loss=loss,
|
1346 |
+
logits=lm_logits,
|
1347 |
+
past_key_values=transformer_outputs.past_key_values,
|
1348 |
+
hidden_states=transformer_outputs.hidden_states,
|
1349 |
+
attentions=transformer_outputs.attentions,
|
1350 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
@staticmethod
|
1354 |
+
def _reorder_cache(
|
1355 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1356 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1357 |
+
"""
|
1358 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1359 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1360 |
+
beam_idx at every generation step.
|
1361 |
+
"""
|
1362 |
+
return tuple(
|
1363 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1364 |
+
for layer_past in past_key_values
|
1365 |
+
)
|
1366 |
+
|
1367 |
+
|
1368 |
+
@add_start_docstrings(
|
1369 |
+
"""
|
1370 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
1371 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
1372 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
1373 |
+
input sequence).
|
1374 |
+
""",
|
1375 |
+
GPT2_START_DOCSTRING,
|
1376 |
+
)
|
1377 |
+
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
1378 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1379 |
+
|
1380 |
+
def __init__(self, config):
|
1381 |
+
super().__init__(config)
|
1382 |
+
config.num_labels = 1
|
1383 |
+
self.transformer = GPT2Model(config)
|
1384 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1385 |
+
self.multiple_choice_head = SequenceSummary(config)
|
1386 |
+
|
1387 |
+
# Model parallel
|
1388 |
+
self.model_parallel = False
|
1389 |
+
self.device_map = None
|
1390 |
+
|
1391 |
+
# Initialize weights and apply final processing
|
1392 |
+
self.post_init()
|
1393 |
+
|
1394 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1395 |
+
def parallelize(self, device_map=None):
|
1396 |
+
warnings.warn(
|
1397 |
+
"`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should"
|
1398 |
+
" load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your"
|
1399 |
+
" own `device_map` but it needs to be a dictionary module_name to device, so for instance"
|
1400 |
+
" {'transformer.h.0': 0, 'transformer.h.1': 1, ...}",
|
1401 |
+
FutureWarning,
|
1402 |
+
)
|
1403 |
+
self.device_map = (
|
1404 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1405 |
+
if device_map is None
|
1406 |
+
else device_map
|
1407 |
+
)
|
1408 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1409 |
+
self.transformer.parallelize(self.device_map)
|
1410 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1411 |
+
self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
|
1412 |
+
self.model_parallel = True
|
1413 |
+
|
1414 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1415 |
+
def deparallelize(self):
|
1416 |
+
warnings.warn(
|
1417 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1418 |
+
FutureWarning,
|
1419 |
+
)
|
1420 |
+
self.transformer.deparallelize()
|
1421 |
+
self.transformer = self.transformer.to("cpu")
|
1422 |
+
self.lm_head = self.lm_head.to("cpu")
|
1423 |
+
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
|
1424 |
+
self.model_parallel = False
|
1425 |
+
torch.cuda.empty_cache()
|
1426 |
+
|
1427 |
+
def get_output_embeddings(self):
|
1428 |
+
return self.lm_head
|
1429 |
+
|
1430 |
+
def set_output_embeddings(self, new_embeddings):
|
1431 |
+
self.lm_head = new_embeddings
|
1432 |
+
|
1433 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
1434 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1435 |
+
# Omit tokens covered by past_key_values
|
1436 |
+
if past_key_values:
|
1437 |
+
past_length = past_key_values[0][0].shape[2]
|
1438 |
+
|
1439 |
+
# Some generation methods already pass only the last input ID
|
1440 |
+
if input_ids.shape[1] > past_length:
|
1441 |
+
remove_prefix_length = past_length
|
1442 |
+
else:
|
1443 |
+
# Default to old behavior: keep only final ID
|
1444 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1445 |
+
|
1446 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1447 |
+
if token_type_ids is not None:
|
1448 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1449 |
+
|
1450 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1451 |
+
position_ids = kwargs.get("position_ids", None)
|
1452 |
+
|
1453 |
+
if attention_mask is not None and position_ids is None:
|
1454 |
+
# create position_ids on the fly for batch generation
|
1455 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1456 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1457 |
+
if past_key_values:
|
1458 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1459 |
+
else:
|
1460 |
+
position_ids = None
|
1461 |
+
|
1462 |
+
return {
|
1463 |
+
"input_ids": input_ids,
|
1464 |
+
"past_key_values": past_key_values,
|
1465 |
+
"use_cache": kwargs.get("use_cache"),
|
1466 |
+
"position_ids": position_ids,
|
1467 |
+
"attention_mask": attention_mask,
|
1468 |
+
"token_type_ids": token_type_ids,
|
1469 |
+
}
|
1470 |
+
|
1471 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1472 |
+
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
1473 |
+
def forward(
|
1474 |
+
self,
|
1475 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1476 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1477 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1478 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1479 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1480 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1481 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1482 |
+
mc_token_ids: Optional[torch.LongTensor] = None,
|
1483 |
+
labels: Optional[torch.LongTensor] = None,
|
1484 |
+
mc_labels: Optional[torch.LongTensor] = None,
|
1485 |
+
use_cache: Optional[bool] = None,
|
1486 |
+
output_attentions: Optional[bool] = None,
|
1487 |
+
output_hidden_states: Optional[bool] = None,
|
1488 |
+
return_dict: Optional[bool] = None,
|
1489 |
+
**kwargs,
|
1490 |
+
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
1491 |
+
r"""
|
1492 |
+
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
1493 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
1494 |
+
1]`.
|
1495 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1496 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1497 |
+
`labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
|
1498 |
+
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
1499 |
+
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
1500 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
1501 |
+
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
1502 |
+
|
1503 |
+
Return:
|
1504 |
+
|
1505 |
+
Example:
|
1506 |
+
|
1507 |
+
```python
|
1508 |
+
>>> import torch
|
1509 |
+
>>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel
|
1510 |
+
|
1511 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
1512 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
|
1513 |
+
|
1514 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
1515 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
1516 |
+
>>> # Update the model embeddings with the new vocabulary size
|
1517 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
|
1518 |
+
|
1519 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
1520 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
1521 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
1522 |
+
|
1523 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
1524 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
1525 |
+
|
1526 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
1527 |
+
>>> lm_logits = outputs.logits
|
1528 |
+
>>> mc_logits = outputs.mc_logits
|
1529 |
+
```"""
|
1530 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1531 |
+
|
1532 |
+
transformer_outputs = self.transformer(
|
1533 |
+
input_ids,
|
1534 |
+
past_key_values=past_key_values,
|
1535 |
+
attention_mask=attention_mask,
|
1536 |
+
token_type_ids=token_type_ids,
|
1537 |
+
position_ids=position_ids,
|
1538 |
+
head_mask=head_mask,
|
1539 |
+
inputs_embeds=inputs_embeds,
|
1540 |
+
use_cache=use_cache,
|
1541 |
+
output_attentions=output_attentions,
|
1542 |
+
output_hidden_states=output_hidden_states,
|
1543 |
+
return_dict=return_dict,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
hidden_states = transformer_outputs[0]
|
1547 |
+
|
1548 |
+
# Set device for model parallelism
|
1549 |
+
if self.model_parallel:
|
1550 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1551 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1552 |
+
|
1553 |
+
lm_logits = self.lm_head(hidden_states)
|
1554 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
1555 |
+
|
1556 |
+
mc_loss = None
|
1557 |
+
if mc_labels is not None:
|
1558 |
+
loss_fct = CrossEntropyLoss()
|
1559 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
1560 |
+
lm_loss = None
|
1561 |
+
if labels is not None:
|
1562 |
+
labels = labels.to(lm_logits.device)
|
1563 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1564 |
+
shift_labels = labels[..., 1:].contiguous()
|
1565 |
+
loss_fct = CrossEntropyLoss()
|
1566 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1567 |
+
|
1568 |
+
if not return_dict:
|
1569 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
1570 |
+
if mc_loss is not None:
|
1571 |
+
output = (mc_loss,) + output
|
1572 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1573 |
+
|
1574 |
+
return GPT2DoubleHeadsModelOutput(
|
1575 |
+
loss=lm_loss,
|
1576 |
+
mc_loss=mc_loss,
|
1577 |
+
logits=lm_logits,
|
1578 |
+
mc_logits=mc_logits,
|
1579 |
+
past_key_values=transformer_outputs.past_key_values,
|
1580 |
+
hidden_states=transformer_outputs.hidden_states,
|
1581 |
+
attentions=transformer_outputs.attentions,
|
1582 |
+
)
|
1583 |
+
|
1584 |
+
@staticmethod
|
1585 |
+
def _reorder_cache(
|
1586 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1587 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1588 |
+
"""
|
1589 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1590 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1591 |
+
beam_idx at every generation step.
|
1592 |
+
"""
|
1593 |
+
return tuple(
|
1594 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1595 |
+
for layer_past in past_key_values
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
|
1599 |
+
@add_start_docstrings(
|
1600 |
+
"""
|
1601 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
1602 |
+
|
1603 |
+
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1604 |
+
(e.g. GPT-1) do.
|
1605 |
+
|
1606 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1607 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1608 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1609 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1610 |
+
each row of the batch).
|
1611 |
+
""",
|
1612 |
+
GPT2_START_DOCSTRING,
|
1613 |
+
)
|
1614 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
1615 |
+
def __init__(self, config):
|
1616 |
+
super().__init__(config)
|
1617 |
+
self.num_labels = config.num_labels
|
1618 |
+
self.transformer = GPT2Model(config)
|
1619 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1620 |
+
|
1621 |
+
# Model parallel
|
1622 |
+
self.model_parallel = False
|
1623 |
+
self.device_map = None
|
1624 |
+
|
1625 |
+
# Initialize weights and apply final processing
|
1626 |
+
self.post_init()
|
1627 |
+
|
1628 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1629 |
+
@add_code_sample_docstrings(
|
1630 |
+
checkpoint="microsoft/DialogRPT-updown",
|
1631 |
+
output_type=SequenceClassifierOutputWithPast,
|
1632 |
+
config_class=_CONFIG_FOR_DOC,
|
1633 |
+
)
|
1634 |
+
def forward(
|
1635 |
+
self,
|
1636 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1637 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1638 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1639 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1640 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1641 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1642 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1643 |
+
labels: Optional[torch.LongTensor] = None,
|
1644 |
+
use_cache: Optional[bool] = None,
|
1645 |
+
output_attentions: Optional[bool] = None,
|
1646 |
+
output_hidden_states: Optional[bool] = None,
|
1647 |
+
return_dict: Optional[bool] = None,
|
1648 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1649 |
+
r"""
|
1650 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1651 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1652 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1653 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1654 |
+
"""
|
1655 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1656 |
+
|
1657 |
+
transformer_outputs = self.transformer(
|
1658 |
+
input_ids,
|
1659 |
+
past_key_values=past_key_values,
|
1660 |
+
attention_mask=attention_mask,
|
1661 |
+
token_type_ids=token_type_ids,
|
1662 |
+
position_ids=position_ids,
|
1663 |
+
head_mask=head_mask,
|
1664 |
+
inputs_embeds=inputs_embeds,
|
1665 |
+
use_cache=use_cache,
|
1666 |
+
output_attentions=output_attentions,
|
1667 |
+
output_hidden_states=output_hidden_states,
|
1668 |
+
return_dict=return_dict,
|
1669 |
+
)
|
1670 |
+
hidden_states = transformer_outputs[0]
|
1671 |
+
logits = self.score(hidden_states)
|
1672 |
+
|
1673 |
+
if input_ids is not None:
|
1674 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1675 |
+
else:
|
1676 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1677 |
+
|
1678 |
+
assert (
|
1679 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1680 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1681 |
+
if self.config.pad_token_id is None:
|
1682 |
+
sequence_lengths = -1
|
1683 |
+
else:
|
1684 |
+
if input_ids is not None:
|
1685 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1686 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1687 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1688 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1689 |
+
else:
|
1690 |
+
sequence_lengths = -1
|
1691 |
+
logger.warning(
|
1692 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1693 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1697 |
+
|
1698 |
+
loss = None
|
1699 |
+
if labels is not None:
|
1700 |
+
if self.config.problem_type is None:
|
1701 |
+
if self.num_labels == 1:
|
1702 |
+
self.config.problem_type = "regression"
|
1703 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1704 |
+
self.config.problem_type = "single_label_classification"
|
1705 |
+
else:
|
1706 |
+
self.config.problem_type = "multi_label_classification"
|
1707 |
+
|
1708 |
+
if self.config.problem_type == "regression":
|
1709 |
+
loss_fct = MSELoss()
|
1710 |
+
if self.num_labels == 1:
|
1711 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1712 |
+
else:
|
1713 |
+
loss = loss_fct(pooled_logits, labels)
|
1714 |
+
elif self.config.problem_type == "single_label_classification":
|
1715 |
+
loss_fct = CrossEntropyLoss()
|
1716 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1717 |
+
elif self.config.problem_type == "multi_label_classification":
|
1718 |
+
loss_fct = BCEWithLogitsLoss()
|
1719 |
+
loss = loss_fct(pooled_logits, labels)
|
1720 |
+
if not return_dict:
|
1721 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1722 |
+
return ((loss,) + output) if loss is not None else output
|
1723 |
+
|
1724 |
+
return SequenceClassifierOutputWithPast(
|
1725 |
+
loss=loss,
|
1726 |
+
logits=pooled_logits,
|
1727 |
+
past_key_values=transformer_outputs.past_key_values,
|
1728 |
+
hidden_states=transformer_outputs.hidden_states,
|
1729 |
+
attentions=transformer_outputs.attentions,
|
1730 |
+
)
|
1731 |
+
|
1732 |
+
|
1733 |
+
@add_start_docstrings(
|
1734 |
+
"""
|
1735 |
+
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1736 |
+
Named-Entity-Recognition (NER) tasks.
|
1737 |
+
""",
|
1738 |
+
GPT2_START_DOCSTRING,
|
1739 |
+
)
|
1740 |
+
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
1741 |
+
def __init__(self, config):
|
1742 |
+
super().__init__(config)
|
1743 |
+
self.num_labels = config.num_labels
|
1744 |
+
|
1745 |
+
self.transformer = GPT2Model(config)
|
1746 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1747 |
+
classifier_dropout = config.classifier_dropout
|
1748 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1749 |
+
classifier_dropout = config.hidden_dropout
|
1750 |
+
else:
|
1751 |
+
classifier_dropout = 0.1
|
1752 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1753 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1754 |
+
|
1755 |
+
# Model parallel
|
1756 |
+
self.model_parallel = False
|
1757 |
+
self.device_map = None
|
1758 |
+
|
1759 |
+
# Initialize weights and apply final processing
|
1760 |
+
self.post_init()
|
1761 |
+
|
1762 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1763 |
+
# fmt: off
|
1764 |
+
@add_code_sample_docstrings(
|
1765 |
+
checkpoint="brad1141/gpt2-finetuned-comp2",
|
1766 |
+
output_type=TokenClassifierOutput,
|
1767 |
+
config_class=_CONFIG_FOR_DOC,
|
1768 |
+
expected_loss=0.25,
|
1769 |
+
expected_output=[
|
1770 |
+
"Lead",
|
1771 |
+
"Lead",
|
1772 |
+
"Lead",
|
1773 |
+
"Position",
|
1774 |
+
"Lead",
|
1775 |
+
"Lead",
|
1776 |
+
"Lead",
|
1777 |
+
"Lead",
|
1778 |
+
"Lead",
|
1779 |
+
"Lead",
|
1780 |
+
"Lead",
|
1781 |
+
"Lead",
|
1782 |
+
],
|
1783 |
+
)
|
1784 |
+
# fmt: on
|
1785 |
+
def forward(
|
1786 |
+
self,
|
1787 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1788 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1789 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1790 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1791 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1792 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1793 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1794 |
+
labels: Optional[torch.LongTensor] = None,
|
1795 |
+
use_cache: Optional[bool] = None,
|
1796 |
+
output_attentions: Optional[bool] = None,
|
1797 |
+
output_hidden_states: Optional[bool] = None,
|
1798 |
+
return_dict: Optional[bool] = None,
|
1799 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1800 |
+
r"""
|
1801 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1802 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1803 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1804 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1805 |
+
"""
|
1806 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1807 |
+
|
1808 |
+
transformer_outputs = self.transformer(
|
1809 |
+
input_ids,
|
1810 |
+
past_key_values=past_key_values,
|
1811 |
+
attention_mask=attention_mask,
|
1812 |
+
token_type_ids=token_type_ids,
|
1813 |
+
position_ids=position_ids,
|
1814 |
+
head_mask=head_mask,
|
1815 |
+
inputs_embeds=inputs_embeds,
|
1816 |
+
use_cache=use_cache,
|
1817 |
+
output_attentions=output_attentions,
|
1818 |
+
output_hidden_states=output_hidden_states,
|
1819 |
+
return_dict=return_dict,
|
1820 |
+
)
|
1821 |
+
|
1822 |
+
hidden_states = transformer_outputs[0]
|
1823 |
+
hidden_states = self.dropout(hidden_states)
|
1824 |
+
logits = self.classifier(hidden_states)
|
1825 |
+
|
1826 |
+
loss = None
|
1827 |
+
if labels is not None:
|
1828 |
+
labels = labels.to(logits.device)
|
1829 |
+
loss_fct = CrossEntropyLoss()
|
1830 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1831 |
+
|
1832 |
+
if not return_dict:
|
1833 |
+
output = (logits,) + transformer_outputs[2:]
|
1834 |
+
return ((loss,) + output) if loss is not None else output
|
1835 |
+
|
1836 |
+
return TokenClassifierOutput(
|
1837 |
+
loss=loss,
|
1838 |
+
logits=logits,
|
1839 |
+
hidden_states=transformer_outputs.hidden_states,
|
1840 |
+
attentions=transformer_outputs.attentions,
|
1841 |
+
)
|
1842 |
+
|
1843 |
+
|
1844 |
+
@add_start_docstrings(
|
1845 |
+
"""
|
1846 |
+
The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
1847 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1848 |
+
""",
|
1849 |
+
GPT2_START_DOCSTRING,
|
1850 |
+
)
|
1851 |
+
class GPT2ForQuestionAnswering(GPT2PreTrainedModel):
|
1852 |
+
def __init__(self, config):
|
1853 |
+
super().__init__(config)
|
1854 |
+
self.num_labels = config.num_labels
|
1855 |
+
self.transformer = GPT2Model(config)
|
1856 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1857 |
+
|
1858 |
+
# Model parallel
|
1859 |
+
self.model_parallel = False
|
1860 |
+
self.device_map = None
|
1861 |
+
|
1862 |
+
# Initialize weights and apply final processing
|
1863 |
+
self.post_init()
|
1864 |
+
|
1865 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1866 |
+
@add_code_sample_docstrings(
|
1867 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1868 |
+
output_type=QuestionAnsweringModelOutput,
|
1869 |
+
config_class=_CONFIG_FOR_DOC,
|
1870 |
+
real_checkpoint=_CHECKPOINT_FOR_DOC,
|
1871 |
+
)
|
1872 |
+
def forward(
|
1873 |
+
self,
|
1874 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1875 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1876 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1877 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1878 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1879 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1880 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1881 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1882 |
+
output_attentions: Optional[bool] = None,
|
1883 |
+
output_hidden_states: Optional[bool] = None,
|
1884 |
+
return_dict: Optional[bool] = None,
|
1885 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1886 |
+
r"""
|
1887 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1888 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1889 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1890 |
+
are not taken into account for computing the loss.
|
1891 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1892 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1893 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1894 |
+
are not taken into account for computing the loss.
|
1895 |
+
"""
|
1896 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1897 |
+
|
1898 |
+
outputs = self.transformer(
|
1899 |
+
input_ids,
|
1900 |
+
attention_mask=attention_mask,
|
1901 |
+
token_type_ids=token_type_ids,
|
1902 |
+
position_ids=position_ids,
|
1903 |
+
head_mask=head_mask,
|
1904 |
+
inputs_embeds=inputs_embeds,
|
1905 |
+
output_attentions=output_attentions,
|
1906 |
+
output_hidden_states=output_hidden_states,
|
1907 |
+
return_dict=return_dict,
|
1908 |
+
)
|
1909 |
+
|
1910 |
+
sequence_output = outputs[0]
|
1911 |
+
|
1912 |
+
logits = self.qa_outputs(sequence_output)
|
1913 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1914 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1915 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1916 |
+
|
1917 |
+
total_loss = None
|
1918 |
+
if start_positions is not None and end_positions is not None:
|
1919 |
+
# If we are on multi-GPU, split add a dimension
|
1920 |
+
if len(start_positions.size()) > 1:
|
1921 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1922 |
+
if len(end_positions.size()) > 1:
|
1923 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1924 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1925 |
+
ignored_index = start_logits.size(1)
|
1926 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1927 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1928 |
+
|
1929 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1930 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1931 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1932 |
+
total_loss = (start_loss + end_loss) / 2
|
1933 |
+
|
1934 |
+
if not return_dict:
|
1935 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1936 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1937 |
+
|
1938 |
+
return QuestionAnsweringModelOutput(
|
1939 |
+
loss=total_loss,
|
1940 |
+
start_logits=start_logits,
|
1941 |
+
end_logits=end_logits,
|
1942 |
+
hidden_states=outputs.hidden_states,
|
1943 |
+
attentions=outputs.attentions,
|
1944 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/modeling_tf_gpt2.py
ADDED
@@ -0,0 +1,1238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" TF 2.0 OpenAI GPT-2 model."""
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
from ...activations_tf import get_tf_activation
|
27 |
+
from ...modeling_tf_outputs import (
|
28 |
+
TFBaseModelOutputWithPastAndCrossAttentions,
|
29 |
+
TFCausalLMOutputWithCrossAttentions,
|
30 |
+
TFSequenceClassifierOutputWithPast,
|
31 |
+
)
|
32 |
+
from ...modeling_tf_utils import (
|
33 |
+
TFCausalLanguageModelingLoss,
|
34 |
+
TFConv1D,
|
35 |
+
TFModelInputType,
|
36 |
+
TFPreTrainedModel,
|
37 |
+
TFSequenceClassificationLoss,
|
38 |
+
TFSequenceSummary,
|
39 |
+
get_initializer,
|
40 |
+
keras,
|
41 |
+
keras_serializable,
|
42 |
+
unpack_inputs,
|
43 |
+
)
|
44 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
45 |
+
from ...utils import (
|
46 |
+
ModelOutput,
|
47 |
+
add_code_sample_docstrings,
|
48 |
+
add_start_docstrings,
|
49 |
+
add_start_docstrings_to_model_forward,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
)
|
53 |
+
from .configuration_gpt2 import GPT2Config
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
_CHECKPOINT_FOR_DOC = "openai-community/gpt2"
|
59 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
60 |
+
|
61 |
+
|
62 |
+
from ..deprecated._archive_maps import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
63 |
+
|
64 |
+
|
65 |
+
class TFAttention(keras.layers.Layer):
|
66 |
+
def __init__(self, nx, config, scale=False, is_cross_attention=False, **kwargs):
|
67 |
+
super().__init__(**kwargs)
|
68 |
+
|
69 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
70 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
|
71 |
+
assert n_state % config.n_head == 0
|
72 |
+
self.n_head = config.n_head
|
73 |
+
self.split_size = n_state
|
74 |
+
self.scale = scale
|
75 |
+
self.output_attentions = config.output_attentions
|
76 |
+
|
77 |
+
self.is_cross_attention = is_cross_attention
|
78 |
+
|
79 |
+
if self.is_cross_attention:
|
80 |
+
self.c_attn = TFConv1D(n_state * 2, nx, initializer_range=config.initializer_range, name="c_attn")
|
81 |
+
self.q_attn = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="q_attn")
|
82 |
+
else:
|
83 |
+
self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn")
|
84 |
+
|
85 |
+
self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj")
|
86 |
+
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
|
87 |
+
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
|
88 |
+
self.pruned_heads = set()
|
89 |
+
self.embed_dim = n_state
|
90 |
+
|
91 |
+
def prune_heads(self, heads):
|
92 |
+
pass
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def causal_attention_mask(nd, ns, dtype):
|
96 |
+
"""
|
97 |
+
1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]),
|
98 |
+
-1, ns-nd), but doesn't produce garbage on TPUs.
|
99 |
+
"""
|
100 |
+
i = tf.range(nd)[:, None]
|
101 |
+
j = tf.range(ns)
|
102 |
+
m = i >= j - ns + nd
|
103 |
+
return tf.cast(m, dtype)
|
104 |
+
|
105 |
+
def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False):
|
106 |
+
# q, k, v have shape [batch, heads, sequence, features]
|
107 |
+
w = tf.matmul(q, k, transpose_b=True)
|
108 |
+
if self.scale:
|
109 |
+
dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores
|
110 |
+
w = w / tf.math.sqrt(dk)
|
111 |
+
|
112 |
+
if not self.is_cross_attention:
|
113 |
+
# if only "normal" attention layer implements causal mask
|
114 |
+
|
115 |
+
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
|
116 |
+
_, _, nd, ns = shape_list(w)
|
117 |
+
b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
|
118 |
+
b = tf.reshape(b, [1, 1, nd, ns])
|
119 |
+
w = w * b - 1e4 * (1 - b)
|
120 |
+
|
121 |
+
if attention_mask is not None:
|
122 |
+
# Apply the attention mask
|
123 |
+
attention_mask = tf.cast(attention_mask, dtype=w.dtype)
|
124 |
+
w = w + attention_mask
|
125 |
+
|
126 |
+
w = stable_softmax(w, axis=-1)
|
127 |
+
w = self.attn_dropout(w, training=training)
|
128 |
+
|
129 |
+
# Mask heads if we want to
|
130 |
+
if head_mask is not None:
|
131 |
+
w = w * head_mask
|
132 |
+
|
133 |
+
outputs = [tf.matmul(w, v)]
|
134 |
+
if output_attentions:
|
135 |
+
outputs.append(w)
|
136 |
+
return outputs
|
137 |
+
|
138 |
+
def merge_heads(self, x):
|
139 |
+
x = tf.transpose(x, [0, 2, 1, 3])
|
140 |
+
x_shape = shape_list(x)
|
141 |
+
new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
|
142 |
+
return tf.reshape(x, new_x_shape)
|
143 |
+
|
144 |
+
def split_heads(self, x):
|
145 |
+
x_shape = shape_list(x)
|
146 |
+
new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
|
147 |
+
x = tf.reshape(x, new_x_shape)
|
148 |
+
return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
|
149 |
+
|
150 |
+
def call(
|
151 |
+
self,
|
152 |
+
x,
|
153 |
+
layer_past,
|
154 |
+
attention_mask,
|
155 |
+
head_mask,
|
156 |
+
encoder_hidden_states,
|
157 |
+
encoder_attention_mask,
|
158 |
+
use_cache,
|
159 |
+
output_attentions,
|
160 |
+
training=False,
|
161 |
+
):
|
162 |
+
if encoder_hidden_states is not None:
|
163 |
+
if not hasattr(self, "q_attn"):
|
164 |
+
raise ValueError(
|
165 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
166 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
167 |
+
)
|
168 |
+
|
169 |
+
query = self.q_attn(x)
|
170 |
+
kv_out = self.c_attn(encoder_hidden_states)
|
171 |
+
key, value = tf.split(kv_out, 2, axis=2)
|
172 |
+
attention_mask = encoder_attention_mask
|
173 |
+
else:
|
174 |
+
x = self.c_attn(x)
|
175 |
+
query, key, value = tf.split(x, 3, axis=2)
|
176 |
+
|
177 |
+
query = self.split_heads(query)
|
178 |
+
key = self.split_heads(key)
|
179 |
+
value = self.split_heads(value)
|
180 |
+
if layer_past is not None:
|
181 |
+
past_key, past_value = tf.unstack(layer_past, axis=0, num=2)
|
182 |
+
key = tf.concat([past_key, key], axis=-2)
|
183 |
+
value = tf.concat([past_value, value], axis=-2)
|
184 |
+
|
185 |
+
# to cope with keras serialization
|
186 |
+
if use_cache:
|
187 |
+
present = tf.stack([key, value], axis=0)
|
188 |
+
else:
|
189 |
+
present = (None,)
|
190 |
+
|
191 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training)
|
192 |
+
a = attn_outputs[0]
|
193 |
+
|
194 |
+
a = self.merge_heads(a)
|
195 |
+
a = self.c_proj(a)
|
196 |
+
a = self.resid_dropout(a, training=training)
|
197 |
+
|
198 |
+
outputs = [a, present] + attn_outputs[1:]
|
199 |
+
return outputs # a, present, (attentions)
|
200 |
+
|
201 |
+
def build(self, input_shape=None):
|
202 |
+
if self.built:
|
203 |
+
return
|
204 |
+
self.built = True
|
205 |
+
if self.is_cross_attention:
|
206 |
+
c_attn_shape = 2 * self.embed_dim
|
207 |
+
else:
|
208 |
+
c_attn_shape = 3 * self.embed_dim
|
209 |
+
if getattr(self, "c_proj", None) is not None:
|
210 |
+
with tf.name_scope(self.c_proj.name):
|
211 |
+
self.c_proj.build([None, None, self.embed_dim])
|
212 |
+
if getattr(self, "c_attn", None) is not None:
|
213 |
+
with tf.name_scope(self.c_attn.name):
|
214 |
+
self.c_attn.build([None, None, c_attn_shape])
|
215 |
+
if getattr(self, "q_attn", None) is not None:
|
216 |
+
with tf.name_scope(self.q_attn.name):
|
217 |
+
self.q_attn.build([None, None, self.embed_dim])
|
218 |
+
|
219 |
+
|
220 |
+
class TFMLP(keras.layers.Layer):
|
221 |
+
def __init__(self, n_state, config, **kwargs):
|
222 |
+
super().__init__(**kwargs)
|
223 |
+
nx = config.n_embd
|
224 |
+
self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc")
|
225 |
+
self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj")
|
226 |
+
self.act = get_tf_activation(config.activation_function)
|
227 |
+
self.dropout = keras.layers.Dropout(config.resid_pdrop)
|
228 |
+
self.intermediate_size = n_state
|
229 |
+
self.embed_dim = nx
|
230 |
+
|
231 |
+
def call(self, x, training=False):
|
232 |
+
h = self.act(self.c_fc(x))
|
233 |
+
h2 = self.c_proj(h)
|
234 |
+
h2 = self.dropout(h2, training=training)
|
235 |
+
return h2
|
236 |
+
|
237 |
+
def build(self, input_shape=None):
|
238 |
+
if self.built:
|
239 |
+
return
|
240 |
+
self.built = True
|
241 |
+
if getattr(self, "c_fc", None) is not None:
|
242 |
+
with tf.name_scope(self.c_fc.name):
|
243 |
+
self.c_fc.build([None, None, self.intermediate_size])
|
244 |
+
if getattr(self, "c_proj", None) is not None:
|
245 |
+
with tf.name_scope(self.c_proj.name):
|
246 |
+
self.c_proj.build([None, None, self.embed_dim])
|
247 |
+
|
248 |
+
|
249 |
+
class TFBlock(keras.layers.Layer):
|
250 |
+
def __init__(self, config, scale=False, **kwargs):
|
251 |
+
super().__init__(**kwargs)
|
252 |
+
nx = config.n_embd
|
253 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * nx
|
254 |
+
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
|
255 |
+
self.attn = TFAttention(nx, config, scale, name="attn")
|
256 |
+
self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2")
|
257 |
+
|
258 |
+
if config.add_cross_attention:
|
259 |
+
self.crossattention = TFAttention(nx, config, scale, name="crossattention", is_cross_attention=True)
|
260 |
+
self.ln_cross_attn = keras.layers.LayerNormalization(
|
261 |
+
epsilon=config.layer_norm_epsilon, name="ln_cross_attn"
|
262 |
+
)
|
263 |
+
|
264 |
+
self.mlp = TFMLP(inner_dim, config, name="mlp")
|
265 |
+
self.hidden_size = config.hidden_size
|
266 |
+
|
267 |
+
def call(
|
268 |
+
self,
|
269 |
+
x,
|
270 |
+
layer_past,
|
271 |
+
attention_mask,
|
272 |
+
head_mask,
|
273 |
+
encoder_hidden_states,
|
274 |
+
encoder_attention_mask,
|
275 |
+
use_cache,
|
276 |
+
output_attentions,
|
277 |
+
training=False,
|
278 |
+
):
|
279 |
+
a = self.ln_1(x)
|
280 |
+
output_attn = self.attn(
|
281 |
+
a,
|
282 |
+
layer_past=layer_past,
|
283 |
+
attention_mask=attention_mask,
|
284 |
+
head_mask=head_mask,
|
285 |
+
encoder_hidden_states=None,
|
286 |
+
encoder_attention_mask=None,
|
287 |
+
use_cache=use_cache,
|
288 |
+
output_attentions=output_attentions,
|
289 |
+
training=training,
|
290 |
+
)
|
291 |
+
a = output_attn[0] # output_attn: a, present, (attentions)
|
292 |
+
outputs = output_attn[1:]
|
293 |
+
x = x + a
|
294 |
+
|
295 |
+
# Cross-Attention Block
|
296 |
+
if encoder_hidden_states is not None:
|
297 |
+
# add one self-attention block for cross-attention
|
298 |
+
if not hasattr(self, "crossattention"):
|
299 |
+
raise ValueError(
|
300 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
301 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
302 |
+
)
|
303 |
+
|
304 |
+
ca = self.ln_cross_attn(x)
|
305 |
+
output_cross_attn = self.crossattention(
|
306 |
+
ca,
|
307 |
+
layer_past=None,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
head_mask=head_mask,
|
310 |
+
encoder_hidden_states=encoder_hidden_states,
|
311 |
+
encoder_attention_mask=encoder_attention_mask,
|
312 |
+
use_cache=False,
|
313 |
+
output_attentions=output_attentions,
|
314 |
+
training=training,
|
315 |
+
)
|
316 |
+
ca = output_cross_attn[0] # output_attn: a, present, (cross_attentions)
|
317 |
+
x = x + ca
|
318 |
+
outputs = outputs + output_cross_attn[2:] # add cross attentions if we output attention weights
|
319 |
+
|
320 |
+
m = self.ln_2(x)
|
321 |
+
m = self.mlp(m, training=training)
|
322 |
+
x = x + m
|
323 |
+
|
324 |
+
outputs = [x] + outputs
|
325 |
+
return outputs # x, present, (attentions, cross_attentions)
|
326 |
+
|
327 |
+
def build(self, input_shape=None):
|
328 |
+
if self.built:
|
329 |
+
return
|
330 |
+
self.built = True
|
331 |
+
if getattr(self, "ln_1", None) is not None:
|
332 |
+
with tf.name_scope(self.ln_1.name):
|
333 |
+
self.ln_1.build([None, None, self.hidden_size])
|
334 |
+
if getattr(self, "attn", None) is not None:
|
335 |
+
with tf.name_scope(self.attn.name):
|
336 |
+
self.attn.build(None)
|
337 |
+
if getattr(self, "ln_2", None) is not None:
|
338 |
+
with tf.name_scope(self.ln_2.name):
|
339 |
+
self.ln_2.build([None, None, self.hidden_size])
|
340 |
+
if getattr(self, "mlp", None) is not None:
|
341 |
+
with tf.name_scope(self.mlp.name):
|
342 |
+
self.mlp.build(None)
|
343 |
+
if getattr(self, "crossattention", None) is not None:
|
344 |
+
with tf.name_scope(self.crossattention.name):
|
345 |
+
self.crossattention.build(None)
|
346 |
+
if getattr(self, "ln_cross_attn", None) is not None:
|
347 |
+
with tf.name_scope(self.ln_cross_attn.name):
|
348 |
+
self.ln_cross_attn.build([None, None, self.hidden_size])
|
349 |
+
|
350 |
+
|
351 |
+
@keras_serializable
|
352 |
+
class TFGPT2MainLayer(keras.layers.Layer):
|
353 |
+
config_class = GPT2Config
|
354 |
+
|
355 |
+
def __init__(self, config, *inputs, **kwargs):
|
356 |
+
super().__init__(*inputs, **kwargs)
|
357 |
+
|
358 |
+
self.config = config
|
359 |
+
self.output_attentions = config.output_attentions
|
360 |
+
self.output_hidden_states = config.output_hidden_states
|
361 |
+
self.use_cache = config.use_cache
|
362 |
+
self.return_dict = config.use_return_dict
|
363 |
+
|
364 |
+
self.num_hidden_layers = config.n_layer
|
365 |
+
self.n_embd = config.n_embd
|
366 |
+
self.n_positions = config.n_positions
|
367 |
+
self.initializer_range = config.initializer_range
|
368 |
+
|
369 |
+
self.wte = keras.layers.Embedding(
|
370 |
+
input_dim=config.vocab_size,
|
371 |
+
output_dim=config.hidden_size,
|
372 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
373 |
+
name="wte",
|
374 |
+
)
|
375 |
+
self.wpe = keras.layers.Embedding(
|
376 |
+
input_dim=config.n_positions,
|
377 |
+
output_dim=config.n_embd,
|
378 |
+
embeddings_initializer=get_initializer(config.initializer_range),
|
379 |
+
name="wpe",
|
380 |
+
)
|
381 |
+
self.drop = keras.layers.Dropout(config.embd_pdrop)
|
382 |
+
self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)]
|
383 |
+
self.ln_f = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
|
384 |
+
self.embed_dim = config.hidden_size
|
385 |
+
|
386 |
+
def get_input_embeddings(self):
|
387 |
+
return self.wte
|
388 |
+
|
389 |
+
def set_input_embeddings(self, new_embeddings):
|
390 |
+
self.wte = new_embeddings
|
391 |
+
|
392 |
+
def _prune_heads(self, heads_to_prune):
|
393 |
+
"""
|
394 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
395 |
+
"""
|
396 |
+
raise NotImplementedError
|
397 |
+
|
398 |
+
@unpack_inputs
|
399 |
+
def call(
|
400 |
+
self,
|
401 |
+
input_ids: TFModelInputType | None = None,
|
402 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
403 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
404 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
405 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
406 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
407 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
408 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
409 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
410 |
+
use_cache: Optional[bool] = None,
|
411 |
+
output_attentions: Optional[bool] = None,
|
412 |
+
output_hidden_states: Optional[bool] = None,
|
413 |
+
return_dict: Optional[bool] = None,
|
414 |
+
training: Optional[bool] = False,
|
415 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
416 |
+
if input_ids is not None and inputs_embeds is not None:
|
417 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
418 |
+
elif input_ids is not None:
|
419 |
+
input_shape = shape_list(input_ids)
|
420 |
+
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
|
421 |
+
elif inputs_embeds is not None:
|
422 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
423 |
+
else:
|
424 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
425 |
+
|
426 |
+
if past_key_values is None:
|
427 |
+
past_length = 0
|
428 |
+
past_key_values = [None] * len(self.h)
|
429 |
+
else:
|
430 |
+
past_length = shape_list(past_key_values[0][0])[-2]
|
431 |
+
|
432 |
+
if position_ids is None:
|
433 |
+
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
|
434 |
+
|
435 |
+
if attention_mask is not None:
|
436 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
437 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
438 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
439 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
440 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
441 |
+
attention_mask_shape = shape_list(attention_mask)
|
442 |
+
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
|
443 |
+
|
444 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
445 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
446 |
+
# positions we want to attend and -10000.0 for masked positions.
|
447 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
448 |
+
# effectively the same as removing these entirely.
|
449 |
+
one_cst = tf.constant(1.0)
|
450 |
+
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
|
451 |
+
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
|
452 |
+
|
453 |
+
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
|
454 |
+
if self.config.add_cross_attention and encoder_attention_mask is not None:
|
455 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
456 |
+
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
|
457 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
458 |
+
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=encoder_hidden_states.dtype)
|
459 |
+
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
|
460 |
+
if num_dims_encoder_attention_mask == 3:
|
461 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
462 |
+
if num_dims_encoder_attention_mask == 2:
|
463 |
+
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
464 |
+
|
465 |
+
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
466 |
+
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
|
467 |
+
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
|
468 |
+
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
|
469 |
+
|
470 |
+
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
|
471 |
+
else:
|
472 |
+
encoder_extended_attention_mask = None
|
473 |
+
|
474 |
+
encoder_attention_mask = encoder_extended_attention_mask
|
475 |
+
|
476 |
+
# Prepare head mask if needed
|
477 |
+
# 1.0 in head_mask indicate we keep the head
|
478 |
+
# attention_probs has shape bsz x n_heads x N x N
|
479 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
480 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
481 |
+
if head_mask is not None:
|
482 |
+
raise NotImplementedError
|
483 |
+
else:
|
484 |
+
head_mask = [None] * self.num_hidden_layers
|
485 |
+
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
486 |
+
|
487 |
+
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
|
488 |
+
|
489 |
+
if inputs_embeds is None:
|
490 |
+
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
|
491 |
+
inputs_embeds = self.wte(input_ids)
|
492 |
+
|
493 |
+
position_embeds = self.wpe(position_ids)
|
494 |
+
|
495 |
+
if token_type_ids is not None:
|
496 |
+
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
|
497 |
+
token_type_embeds = self.wte(token_type_ids)
|
498 |
+
else:
|
499 |
+
token_type_embeds = tf.constant(0.0)
|
500 |
+
|
501 |
+
position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
|
502 |
+
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
|
503 |
+
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
504 |
+
hidden_states = self.drop(hidden_states, training=training)
|
505 |
+
|
506 |
+
output_shape = input_shape + [shape_list(hidden_states)[-1]]
|
507 |
+
|
508 |
+
presents = () if use_cache else None
|
509 |
+
all_attentions = () if output_attentions else None
|
510 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
511 |
+
all_hidden_states = () if output_hidden_states else None
|
512 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
513 |
+
if output_hidden_states:
|
514 |
+
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
|
515 |
+
|
516 |
+
outputs = block(
|
517 |
+
hidden_states,
|
518 |
+
layer_past,
|
519 |
+
attention_mask,
|
520 |
+
head_mask[i],
|
521 |
+
encoder_hidden_states,
|
522 |
+
encoder_attention_mask,
|
523 |
+
use_cache,
|
524 |
+
output_attentions,
|
525 |
+
training=training,
|
526 |
+
)
|
527 |
+
|
528 |
+
hidden_states, present = outputs[:2]
|
529 |
+
if use_cache:
|
530 |
+
presents = presents + (present,)
|
531 |
+
|
532 |
+
if output_attentions:
|
533 |
+
all_attentions = all_attentions + (outputs[2],)
|
534 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
535 |
+
all_cross_attentions = all_cross_attentions + (outputs[3],)
|
536 |
+
|
537 |
+
hidden_states = self.ln_f(hidden_states)
|
538 |
+
|
539 |
+
hidden_states = tf.reshape(hidden_states, output_shape)
|
540 |
+
# Add last hidden state
|
541 |
+
if output_hidden_states:
|
542 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
543 |
+
|
544 |
+
if output_attentions:
|
545 |
+
# let the number of heads free (-1) so we can extract attention even after head pruning
|
546 |
+
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
|
547 |
+
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
|
548 |
+
|
549 |
+
if not return_dict:
|
550 |
+
return tuple(
|
551 |
+
v
|
552 |
+
for v in [hidden_states, presents, all_hidden_states, all_attentions, all_cross_attentions]
|
553 |
+
if v is not None
|
554 |
+
)
|
555 |
+
|
556 |
+
return TFBaseModelOutputWithPastAndCrossAttentions(
|
557 |
+
last_hidden_state=hidden_states,
|
558 |
+
past_key_values=presents,
|
559 |
+
hidden_states=all_hidden_states,
|
560 |
+
attentions=all_attentions,
|
561 |
+
cross_attentions=all_cross_attentions,
|
562 |
+
)
|
563 |
+
|
564 |
+
def build(self, input_shape=None):
|
565 |
+
if self.built:
|
566 |
+
return
|
567 |
+
self.built = True
|
568 |
+
if getattr(self, "wte", None) is not None:
|
569 |
+
with tf.name_scope(self.wte.name):
|
570 |
+
self.wte.build(None)
|
571 |
+
if getattr(self, "wpe", None) is not None:
|
572 |
+
with tf.name_scope(self.wpe.name):
|
573 |
+
self.wpe.build(None)
|
574 |
+
if getattr(self, "ln_f", None) is not None:
|
575 |
+
with tf.name_scope(self.ln_f.name):
|
576 |
+
self.ln_f.build([None, None, self.embed_dim])
|
577 |
+
if getattr(self, "h", None) is not None:
|
578 |
+
for layer in self.h:
|
579 |
+
with tf.name_scope(layer.name):
|
580 |
+
layer.build(None)
|
581 |
+
|
582 |
+
|
583 |
+
class TFGPT2PreTrainedModel(TFPreTrainedModel):
|
584 |
+
"""
|
585 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
586 |
+
models.
|
587 |
+
"""
|
588 |
+
|
589 |
+
config_class = GPT2Config
|
590 |
+
base_model_prefix = "transformer"
|
591 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
592 |
+
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias", r"h.\d+.crossattention.bias"]
|
593 |
+
|
594 |
+
@property
|
595 |
+
def input_signature(self):
|
596 |
+
# Although GPT-2 supports token_type_ids in theory, in practice they are rarely used, and the implementation
|
597 |
+
# means that passing token_type_ids=0 yields different outputs from token_type_ids=None.
|
598 |
+
# Therefore, we remove the token_type_ids argument by default, even though it would usually be included.
|
599 |
+
return {
|
600 |
+
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
|
601 |
+
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
|
602 |
+
}
|
603 |
+
|
604 |
+
|
605 |
+
@dataclass
|
606 |
+
class TFGPT2DoubleHeadsModelOutput(ModelOutput):
|
607 |
+
"""
|
608 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
609 |
+
|
610 |
+
Args:
|
611 |
+
logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
612 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
613 |
+
mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`):
|
614 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
615 |
+
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
616 |
+
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
|
617 |
+
sequence_length, embed_size_per_head)`).
|
618 |
+
|
619 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
620 |
+
`past_key_values` input) to speed up sequential decoding.
|
621 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
622 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
623 |
+
`(batch_size, sequence_length, hidden_size)`.
|
624 |
+
|
625 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
626 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
627 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
628 |
+
sequence_length)`.
|
629 |
+
|
630 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
631 |
+
heads.
|
632 |
+
"""
|
633 |
+
|
634 |
+
logits: tf.Tensor = None
|
635 |
+
mc_logits: tf.Tensor = None
|
636 |
+
past_key_values: List[tf.Tensor] | None = None
|
637 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
638 |
+
attentions: Tuple[tf.Tensor] | None = None
|
639 |
+
|
640 |
+
|
641 |
+
GPT2_START_DOCSTRING = r"""
|
642 |
+
|
643 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
644 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
645 |
+
etc.)
|
646 |
+
|
647 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
648 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
649 |
+
behavior.
|
650 |
+
|
651 |
+
<Tip>
|
652 |
+
|
653 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
654 |
+
|
655 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
656 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
657 |
+
|
658 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
659 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
660 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
661 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
662 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
663 |
+
positional argument:
|
664 |
+
|
665 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
666 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
667 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
668 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
669 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
670 |
+
|
671 |
+
Note that when creating models and layers with
|
672 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
673 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
674 |
+
|
675 |
+
</Tip>
|
676 |
+
|
677 |
+
Parameters:
|
678 |
+
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
679 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
680 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
681 |
+
"""
|
682 |
+
|
683 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
684 |
+
Args:
|
685 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
|
686 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]`
|
687 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
688 |
+
|
689 |
+
If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as
|
690 |
+
`input_ids`.
|
691 |
+
|
692 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
693 |
+
[`PreTrainedTokenizer.encode`] for details.
|
694 |
+
|
695 |
+
[What are input IDs?](../glossary#input-ids)
|
696 |
+
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
|
697 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
698 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The token ids which have
|
699 |
+
their past given to this model should not be passed as input ids as they have already been computed.
|
700 |
+
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
701 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
702 |
+
|
703 |
+
- 1 for tokens that are **not masked**,
|
704 |
+
- 0 for tokens that are **masked**.
|
705 |
+
|
706 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
707 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
708 |
+
`len(past_key_values) + len(input_ids)`
|
709 |
+
|
710 |
+
[What are attention masks?](../glossary#attention-mask)
|
711 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
712 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
713 |
+
1]`:
|
714 |
+
|
715 |
+
- 0 corresponds to a *sentence A* token,
|
716 |
+
- 1 corresponds to a *sentence B* token.
|
717 |
+
|
718 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
719 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
720 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
721 |
+
config.max_position_embeddings - 1]`.
|
722 |
+
|
723 |
+
[What are position IDs?](../glossary#position-ids)
|
724 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
725 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
726 |
+
|
727 |
+
- 1 indicates the head is **not masked**,
|
728 |
+
- 0 indicates the head is **masked**.
|
729 |
+
|
730 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
731 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
732 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
733 |
+
model's internal embedding lookup matrix.
|
734 |
+
output_attentions (`bool`, *optional*):
|
735 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
736 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
737 |
+
config will be used instead.
|
738 |
+
output_hidden_states (`bool`, *optional*):
|
739 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
740 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
741 |
+
used instead.
|
742 |
+
return_dict (`bool`, *optional*):
|
743 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
744 |
+
eager mode, in graph mode the value will always be set to True.
|
745 |
+
training (`bool`, *optional*, defaults to `False`):
|
746 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
747 |
+
behaviors between training and evaluation).
|
748 |
+
"""
|
749 |
+
|
750 |
+
|
751 |
+
@add_start_docstrings(
|
752 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
753 |
+
GPT2_START_DOCSTRING,
|
754 |
+
)
|
755 |
+
class TFGPT2Model(TFGPT2PreTrainedModel):
|
756 |
+
def __init__(self, config, *inputs, **kwargs):
|
757 |
+
super().__init__(config, *inputs, **kwargs)
|
758 |
+
self.transformer = TFGPT2MainLayer(config, name="transformer")
|
759 |
+
|
760 |
+
@unpack_inputs
|
761 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
762 |
+
@add_code_sample_docstrings(
|
763 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
764 |
+
output_type=TFBaseModelOutputWithPastAndCrossAttentions,
|
765 |
+
config_class=_CONFIG_FOR_DOC,
|
766 |
+
)
|
767 |
+
def call(
|
768 |
+
self,
|
769 |
+
input_ids: TFModelInputType | None = None,
|
770 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
771 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
772 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
773 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
774 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
775 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
776 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
777 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
778 |
+
use_cache: Optional[bool] = None,
|
779 |
+
output_attentions: Optional[bool] = None,
|
780 |
+
output_hidden_states: Optional[bool] = None,
|
781 |
+
return_dict: Optional[bool] = None,
|
782 |
+
training: Optional[bool] = False,
|
783 |
+
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
|
784 |
+
r"""
|
785 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
786 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
787 |
+
the model is configured as a decoder.
|
788 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
789 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
790 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
791 |
+
|
792 |
+
- 1 for tokens that are **not masked**,
|
793 |
+
- 0 for tokens that are **masked**.
|
794 |
+
|
795 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
796 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
797 |
+
If `past` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have
|
798 |
+
their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
799 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
800 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
801 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
802 |
+
`past`). Set to `False` during training, `True` during generation
|
803 |
+
"""
|
804 |
+
|
805 |
+
outputs = self.transformer(
|
806 |
+
input_ids=input_ids,
|
807 |
+
past_key_values=past_key_values,
|
808 |
+
attention_mask=attention_mask,
|
809 |
+
token_type_ids=token_type_ids,
|
810 |
+
position_ids=position_ids,
|
811 |
+
head_mask=head_mask,
|
812 |
+
inputs_embeds=inputs_embeds,
|
813 |
+
encoder_hidden_states=encoder_hidden_states,
|
814 |
+
encoder_attention_mask=encoder_attention_mask,
|
815 |
+
use_cache=use_cache,
|
816 |
+
output_attentions=output_attentions,
|
817 |
+
output_hidden_states=output_hidden_states,
|
818 |
+
return_dict=return_dict,
|
819 |
+
training=training,
|
820 |
+
)
|
821 |
+
|
822 |
+
return outputs
|
823 |
+
|
824 |
+
def build(self, input_shape=None):
|
825 |
+
if self.built:
|
826 |
+
return
|
827 |
+
self.built = True
|
828 |
+
if getattr(self, "transformer", None) is not None:
|
829 |
+
with tf.name_scope(self.transformer.name):
|
830 |
+
self.transformer.build(None)
|
831 |
+
|
832 |
+
|
833 |
+
@add_start_docstrings(
|
834 |
+
"""
|
835 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
836 |
+
embeddings).
|
837 |
+
""",
|
838 |
+
GPT2_START_DOCSTRING,
|
839 |
+
)
|
840 |
+
class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss):
|
841 |
+
def __init__(self, config, *inputs, **kwargs):
|
842 |
+
super().__init__(config, *inputs, **kwargs)
|
843 |
+
self.transformer = TFGPT2MainLayer(config, name="transformer")
|
844 |
+
|
845 |
+
def get_output_embeddings(self):
|
846 |
+
return self.get_input_embeddings()
|
847 |
+
|
848 |
+
def set_output_embeddings(self, value):
|
849 |
+
self.set_input_embeddings(value)
|
850 |
+
|
851 |
+
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
|
852 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
853 |
+
# only last token for inputs_ids if past is defined in kwargs
|
854 |
+
if past_key_values:
|
855 |
+
inputs = tf.expand_dims(inputs[:, -1], -1)
|
856 |
+
if token_type_ids is not None:
|
857 |
+
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
|
858 |
+
|
859 |
+
position_ids = kwargs.get("position_ids", None)
|
860 |
+
attention_mask = kwargs.get("attention_mask", None)
|
861 |
+
|
862 |
+
if attention_mask is not None and position_ids is None:
|
863 |
+
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
|
864 |
+
if past_key_values:
|
865 |
+
position_ids = tf.expand_dims(position_ids[:, -1], -1)
|
866 |
+
|
867 |
+
return {
|
868 |
+
"input_ids": inputs,
|
869 |
+
"attention_mask": attention_mask,
|
870 |
+
"position_ids": position_ids,
|
871 |
+
"past_key_values": past_key_values,
|
872 |
+
"use_cache": use_cache,
|
873 |
+
"token_type_ids": token_type_ids,
|
874 |
+
}
|
875 |
+
|
876 |
+
@unpack_inputs
|
877 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
878 |
+
@add_code_sample_docstrings(
|
879 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
880 |
+
output_type=TFCausalLMOutputWithCrossAttentions,
|
881 |
+
config_class=_CONFIG_FOR_DOC,
|
882 |
+
)
|
883 |
+
def call(
|
884 |
+
self,
|
885 |
+
input_ids: TFModelInputType | None = None,
|
886 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
887 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
888 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
889 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
890 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
891 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
892 |
+
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
|
893 |
+
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
|
894 |
+
use_cache: Optional[bool] = None,
|
895 |
+
output_attentions: Optional[bool] = None,
|
896 |
+
output_hidden_states: Optional[bool] = None,
|
897 |
+
return_dict: Optional[bool] = None,
|
898 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
899 |
+
training: Optional[bool] = False,
|
900 |
+
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
|
901 |
+
r"""
|
902 |
+
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
903 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
904 |
+
the model is configured as a decoder.
|
905 |
+
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
906 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
907 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
908 |
+
|
909 |
+
- 1 for tokens that are **not masked**,
|
910 |
+
- 0 for tokens that are **masked**.
|
911 |
+
|
912 |
+
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
|
913 |
+
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
914 |
+
If `past` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have
|
915 |
+
their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
916 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
917 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
918 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
919 |
+
`past`). Set to `False` during training, `True` during generation
|
920 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
921 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
922 |
+
config.vocab_size - 1]`.
|
923 |
+
"""
|
924 |
+
|
925 |
+
transformer_outputs = self.transformer(
|
926 |
+
input_ids=input_ids,
|
927 |
+
past_key_values=past_key_values,
|
928 |
+
attention_mask=attention_mask,
|
929 |
+
token_type_ids=token_type_ids,
|
930 |
+
position_ids=position_ids,
|
931 |
+
head_mask=head_mask,
|
932 |
+
inputs_embeds=inputs_embeds,
|
933 |
+
encoder_hidden_states=encoder_hidden_states,
|
934 |
+
encoder_attention_mask=encoder_attention_mask,
|
935 |
+
use_cache=use_cache,
|
936 |
+
output_attentions=output_attentions,
|
937 |
+
output_hidden_states=output_hidden_states,
|
938 |
+
return_dict=return_dict,
|
939 |
+
training=training,
|
940 |
+
)
|
941 |
+
hidden_states = transformer_outputs[0]
|
942 |
+
logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
|
943 |
+
|
944 |
+
loss = None
|
945 |
+
if labels is not None:
|
946 |
+
# shift labels to the left and cut last logit token
|
947 |
+
shifted_logits = logits[:, :-1]
|
948 |
+
labels = labels[:, 1:]
|
949 |
+
loss = self.hf_compute_loss(labels, shifted_logits)
|
950 |
+
|
951 |
+
if not return_dict:
|
952 |
+
output = (logits,) + transformer_outputs[1:]
|
953 |
+
return ((loss,) + output) if loss is not None else output
|
954 |
+
|
955 |
+
return TFCausalLMOutputWithCrossAttentions(
|
956 |
+
loss=loss,
|
957 |
+
logits=logits,
|
958 |
+
past_key_values=transformer_outputs.past_key_values,
|
959 |
+
hidden_states=transformer_outputs.hidden_states,
|
960 |
+
attentions=transformer_outputs.attentions,
|
961 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
962 |
+
)
|
963 |
+
|
964 |
+
def build(self, input_shape=None):
|
965 |
+
if self.built:
|
966 |
+
return
|
967 |
+
self.built = True
|
968 |
+
if getattr(self, "transformer", None) is not None:
|
969 |
+
with tf.name_scope(self.transformer.name):
|
970 |
+
self.transformer.build(None)
|
971 |
+
|
972 |
+
|
973 |
+
@add_start_docstrings(
|
974 |
+
"""
|
975 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
976 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
977 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
978 |
+
input sequence).
|
979 |
+
""",
|
980 |
+
GPT2_START_DOCSTRING,
|
981 |
+
)
|
982 |
+
class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
|
983 |
+
def __init__(self, config, *inputs, **kwargs):
|
984 |
+
super().__init__(config, *inputs, **kwargs)
|
985 |
+
config.num_labels = 1
|
986 |
+
self.transformer = TFGPT2MainLayer(config, name="transformer")
|
987 |
+
self.multiple_choice_head = TFSequenceSummary(
|
988 |
+
config, initializer_range=config.initializer_range, name="multiple_choice_head"
|
989 |
+
)
|
990 |
+
|
991 |
+
@unpack_inputs
|
992 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
993 |
+
@replace_return_docstrings(output_type=TFGPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
994 |
+
def call(
|
995 |
+
self,
|
996 |
+
input_ids: TFModelInputType | None = None,
|
997 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
998 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
999 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1000 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1001 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1002 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1003 |
+
mc_token_ids: np.ndarray | tf.Tensor | None = None,
|
1004 |
+
use_cache: Optional[bool] = None,
|
1005 |
+
output_attentions: Optional[bool] = None,
|
1006 |
+
output_hidden_states: Optional[bool] = None,
|
1007 |
+
return_dict: Optional[bool] = None,
|
1008 |
+
training: Optional[bool] = False,
|
1009 |
+
) -> Union[TFGPT2DoubleHeadsModelOutput, Tuple[tf.Tensor]]:
|
1010 |
+
r"""
|
1011 |
+
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
1012 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
1013 |
+
1]`.
|
1014 |
+
|
1015 |
+
Return:
|
1016 |
+
|
1017 |
+
Examples:
|
1018 |
+
|
1019 |
+
```python
|
1020 |
+
>>> import tensorflow as tf
|
1021 |
+
>>> from transformers import AutoTokenizer, TFGPT2DoubleHeadsModel
|
1022 |
+
|
1023 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
1024 |
+
>>> model = TFGPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
|
1025 |
+
|
1026 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
1027 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
1028 |
+
|
1029 |
+
>>> embedding_layer = model.resize_token_embeddings(
|
1030 |
+
... len(tokenizer)
|
1031 |
+
... ) # Update the model embeddings with the new vocabulary size
|
1032 |
+
|
1033 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
1034 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
1035 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
1036 |
+
|
1037 |
+
>>> input_ids = tf.constant(encoded_choices)[None, :] # Batch size: 1, number of choices: 2
|
1038 |
+
>>> mc_token_ids = tf.constant([cls_token_location]) # Batch size: 1
|
1039 |
+
|
1040 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
1041 |
+
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
|
1042 |
+
```"""
|
1043 |
+
|
1044 |
+
if input_ids is not None:
|
1045 |
+
input_shapes = shape_list(input_ids)
|
1046 |
+
else:
|
1047 |
+
input_shapes = shape_list(inputs_embeds)[:-1]
|
1048 |
+
|
1049 |
+
seq_length = input_shapes[-1]
|
1050 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1051 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1052 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1053 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1054 |
+
transformer_outputs = self.transformer(
|
1055 |
+
input_ids=flat_input_ids,
|
1056 |
+
past_key_values=past_key_values,
|
1057 |
+
attention_mask=flat_attention_mask,
|
1058 |
+
token_type_ids=flat_token_type_ids,
|
1059 |
+
position_ids=flat_position_ids,
|
1060 |
+
head_mask=head_mask,
|
1061 |
+
inputs_embeds=inputs_embeds,
|
1062 |
+
encoder_hidden_states=None,
|
1063 |
+
encoder_attention_mask=None,
|
1064 |
+
use_cache=use_cache,
|
1065 |
+
output_attentions=output_attentions,
|
1066 |
+
output_hidden_states=output_hidden_states,
|
1067 |
+
return_dict=return_dict,
|
1068 |
+
training=training,
|
1069 |
+
)
|
1070 |
+
hidden_states = transformer_outputs[0]
|
1071 |
+
hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])
|
1072 |
+
if return_dict and output_hidden_states:
|
1073 |
+
# We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the
|
1074 |
+
# input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged)
|
1075 |
+
all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,)
|
1076 |
+
else:
|
1077 |
+
all_hidden_states = None
|
1078 |
+
lm_logits = tf.matmul(hidden_states, self.transformer.wte.weights, transpose_b=True)
|
1079 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training)
|
1080 |
+
mc_logits = tf.squeeze(mc_logits, axis=-1)
|
1081 |
+
|
1082 |
+
if not return_dict:
|
1083 |
+
return (lm_logits, mc_logits) + transformer_outputs[1:]
|
1084 |
+
|
1085 |
+
return TFGPT2DoubleHeadsModelOutput(
|
1086 |
+
logits=lm_logits,
|
1087 |
+
mc_logits=mc_logits,
|
1088 |
+
past_key_values=transformer_outputs.past_key_values,
|
1089 |
+
hidden_states=all_hidden_states,
|
1090 |
+
attentions=transformer_outputs.attentions,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
@property
|
1094 |
+
def input_signature(self):
|
1095 |
+
return {
|
1096 |
+
"input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"),
|
1097 |
+
"attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"),
|
1098 |
+
"mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="mc_token_ids"),
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
def build(self, input_shape=None):
|
1102 |
+
if self.built:
|
1103 |
+
return
|
1104 |
+
self.built = True
|
1105 |
+
if getattr(self, "transformer", None) is not None:
|
1106 |
+
with tf.name_scope(self.transformer.name):
|
1107 |
+
self.transformer.build(None)
|
1108 |
+
if getattr(self, "multiple_choice_head", None) is not None:
|
1109 |
+
with tf.name_scope(self.multiple_choice_head.name):
|
1110 |
+
self.multiple_choice_head.build(None)
|
1111 |
+
|
1112 |
+
|
1113 |
+
@add_start_docstrings(
|
1114 |
+
"""
|
1115 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
1116 |
+
|
1117 |
+
[`TFGPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1118 |
+
(e.g. GPT-1) do.
|
1119 |
+
|
1120 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1121 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1122 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1123 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1124 |
+
each row of the batch).
|
1125 |
+
""",
|
1126 |
+
GPT2_START_DOCSTRING,
|
1127 |
+
)
|
1128 |
+
class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassificationLoss):
|
1129 |
+
def __init__(self, config, *inputs, **kwargs):
|
1130 |
+
super().__init__(config, *inputs, **kwargs)
|
1131 |
+
self.num_labels = config.num_labels
|
1132 |
+
self.score = keras.layers.Dense(
|
1133 |
+
config.num_labels,
|
1134 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
1135 |
+
name="score",
|
1136 |
+
use_bias=False,
|
1137 |
+
)
|
1138 |
+
self.transformer = TFGPT2MainLayer(config, name="transformer")
|
1139 |
+
self.config = config
|
1140 |
+
|
1141 |
+
@unpack_inputs
|
1142 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1143 |
+
@add_code_sample_docstrings(
|
1144 |
+
checkpoint="microsoft/DialogRPT-updown",
|
1145 |
+
output_type=TFSequenceClassifierOutputWithPast,
|
1146 |
+
config_class=_CONFIG_FOR_DOC,
|
1147 |
+
)
|
1148 |
+
def call(
|
1149 |
+
self,
|
1150 |
+
input_ids: TFModelInputType | None = None,
|
1151 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1152 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1153 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1154 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1155 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1156 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1157 |
+
use_cache: Optional[bool] = None,
|
1158 |
+
output_attentions: Optional[bool] = None,
|
1159 |
+
output_hidden_states: Optional[bool] = None,
|
1160 |
+
return_dict: Optional[bool] = None,
|
1161 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1162 |
+
training: Optional[bool] = False,
|
1163 |
+
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
|
1164 |
+
r"""
|
1165 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1166 |
+
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
|
1167 |
+
config.vocab_size - 1]`.
|
1168 |
+
"""
|
1169 |
+
transformer_outputs = self.transformer(
|
1170 |
+
input_ids=input_ids,
|
1171 |
+
past_key_values=past_key_values,
|
1172 |
+
attention_mask=attention_mask,
|
1173 |
+
token_type_ids=token_type_ids,
|
1174 |
+
position_ids=position_ids,
|
1175 |
+
head_mask=head_mask,
|
1176 |
+
inputs_embeds=inputs_embeds,
|
1177 |
+
use_cache=use_cache,
|
1178 |
+
output_attentions=output_attentions,
|
1179 |
+
output_hidden_states=output_hidden_states,
|
1180 |
+
return_dict=return_dict,
|
1181 |
+
training=training,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
hidden_states = transformer_outputs[0]
|
1185 |
+
logits = self.score(hidden_states)
|
1186 |
+
logits_shape = shape_list(logits)
|
1187 |
+
in_logits = None
|
1188 |
+
if self.config.pad_token_id is None:
|
1189 |
+
sequence_lengths = -1
|
1190 |
+
else:
|
1191 |
+
if input_ids is not None:
|
1192 |
+
sequence_lengths = (
|
1193 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
1194 |
+
- 1
|
1195 |
+
)
|
1196 |
+
sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1)
|
1197 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
1198 |
+
else:
|
1199 |
+
sequence_lengths = -1
|
1200 |
+
logger.warning(
|
1201 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1202 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1203 |
+
)
|
1204 |
+
loss = None
|
1205 |
+
|
1206 |
+
if labels is not None:
|
1207 |
+
assert (
|
1208 |
+
self.config.pad_token_id is not None or logits_shape[0] == 1
|
1209 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1210 |
+
|
1211 |
+
if not tf.is_tensor(sequence_lengths):
|
1212 |
+
in_logits = logits[0 : logits_shape[0], sequence_lengths]
|
1213 |
+
|
1214 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
1215 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
1216 |
+
|
1217 |
+
if not return_dict:
|
1218 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1219 |
+
return ((loss,) + output) if loss is not None else output
|
1220 |
+
|
1221 |
+
return TFSequenceClassifierOutputWithPast(
|
1222 |
+
loss=loss,
|
1223 |
+
logits=pooled_logits,
|
1224 |
+
past_key_values=transformer_outputs.past_key_values,
|
1225 |
+
hidden_states=transformer_outputs.hidden_states,
|
1226 |
+
attentions=transformer_outputs.attentions,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
def build(self, input_shape=None):
|
1230 |
+
if self.built:
|
1231 |
+
return
|
1232 |
+
self.built = True
|
1233 |
+
if getattr(self, "score", None) is not None:
|
1234 |
+
with tf.name_scope(self.score.name):
|
1235 |
+
self.score.build([None, None, self.config.n_embd])
|
1236 |
+
if getattr(self, "transformer", None) is not None:
|
1237 |
+
with tf.name_scope(self.transformer.name):
|
1238 |
+
self.transformer.build(None)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
from functools import lru_cache
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
|
23 |
+
import regex as re
|
24 |
+
|
25 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
26 |
+
from ...utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {
|
32 |
+
"vocab_file": "vocab.json",
|
33 |
+
"merges_file": "merges.txt",
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
@lru_cache()
|
38 |
+
def bytes_to_unicode():
|
39 |
+
"""
|
40 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
41 |
+
characters the bpe code barfs on.
|
42 |
+
|
43 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
44 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
45 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
46 |
+
tables between utf-8 bytes and unicode strings.
|
47 |
+
"""
|
48 |
+
bs = (
|
49 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
50 |
+
)
|
51 |
+
cs = bs[:]
|
52 |
+
n = 0
|
53 |
+
for b in range(2**8):
|
54 |
+
if b not in bs:
|
55 |
+
bs.append(b)
|
56 |
+
cs.append(2**8 + n)
|
57 |
+
n += 1
|
58 |
+
cs = [chr(n) for n in cs]
|
59 |
+
return dict(zip(bs, cs))
|
60 |
+
|
61 |
+
|
62 |
+
def get_pairs(word):
|
63 |
+
"""
|
64 |
+
Return set of symbol pairs in a word.
|
65 |
+
|
66 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
67 |
+
"""
|
68 |
+
pairs = set()
|
69 |
+
prev_char = word[0]
|
70 |
+
for char in word[1:]:
|
71 |
+
pairs.add((prev_char, char))
|
72 |
+
prev_char = char
|
73 |
+
return pairs
|
74 |
+
|
75 |
+
|
76 |
+
class GPT2Tokenizer(PreTrainedTokenizer):
|
77 |
+
"""
|
78 |
+
Construct a GPT-2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
79 |
+
|
80 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
81 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
82 |
+
|
83 |
+
```python
|
84 |
+
>>> from transformers import GPT2Tokenizer
|
85 |
+
|
86 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
87 |
+
>>> tokenizer("Hello world")["input_ids"]
|
88 |
+
[15496, 995]
|
89 |
+
|
90 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
91 |
+
[18435, 995]
|
92 |
+
```
|
93 |
+
|
94 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
95 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
96 |
+
|
97 |
+
<Tip>
|
98 |
+
|
99 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
100 |
+
|
101 |
+
</Tip>
|
102 |
+
|
103 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
104 |
+
this superclass for more information regarding those methods.
|
105 |
+
|
106 |
+
Args:
|
107 |
+
vocab_file (`str`):
|
108 |
+
Path to the vocabulary file.
|
109 |
+
merges_file (`str`):
|
110 |
+
Path to the merges file.
|
111 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
112 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
113 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
114 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
115 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
116 |
+
token instead.
|
117 |
+
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
118 |
+
The beginning of sequence token.
|
119 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
120 |
+
The end of sequence token.
|
121 |
+
pad_token (`str`, *optional*):
|
122 |
+
The token used for padding, for example when batching sequences of different lengths.
|
123 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
125 |
+
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
|
126 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether or not to add an initial beginning of sentence token to the input. This allows to treat the leading
|
128 |
+
word just as any other word.
|
129 |
+
"""
|
130 |
+
|
131 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
132 |
+
model_input_names = ["input_ids", "attention_mask"]
|
133 |
+
|
134 |
+
def __init__(
|
135 |
+
self,
|
136 |
+
vocab_file,
|
137 |
+
merges_file,
|
138 |
+
errors="replace",
|
139 |
+
unk_token="<|endoftext|>",
|
140 |
+
bos_token="<|endoftext|>",
|
141 |
+
eos_token="<|endoftext|>",
|
142 |
+
pad_token=None,
|
143 |
+
add_prefix_space=False,
|
144 |
+
add_bos_token=False,
|
145 |
+
**kwargs,
|
146 |
+
):
|
147 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
148 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
149 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
150 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
151 |
+
|
152 |
+
self.add_bos_token = add_bos_token
|
153 |
+
|
154 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
155 |
+
self.encoder = json.load(vocab_handle)
|
156 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
157 |
+
self.errors = errors # how to handle errors in decoding
|
158 |
+
self.byte_encoder = bytes_to_unicode()
|
159 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
160 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
161 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
162 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
163 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
164 |
+
self.cache = {}
|
165 |
+
self.add_prefix_space = add_prefix_space
|
166 |
+
|
167 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
168 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
errors=errors,
|
172 |
+
unk_token=unk_token,
|
173 |
+
bos_token=bos_token,
|
174 |
+
eos_token=eos_token,
|
175 |
+
pad_token=pad_token,
|
176 |
+
add_prefix_space=add_prefix_space,
|
177 |
+
add_bos_token=add_bos_token,
|
178 |
+
**kwargs,
|
179 |
+
)
|
180 |
+
|
181 |
+
@property
|
182 |
+
def vocab_size(self):
|
183 |
+
return len(self.encoder)
|
184 |
+
|
185 |
+
def get_vocab(self):
|
186 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
187 |
+
|
188 |
+
def bpe(self, token):
|
189 |
+
if token in self.cache:
|
190 |
+
return self.cache[token]
|
191 |
+
word = tuple(token)
|
192 |
+
pairs = get_pairs(word)
|
193 |
+
|
194 |
+
if not pairs:
|
195 |
+
return token
|
196 |
+
|
197 |
+
while True:
|
198 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
199 |
+
if bigram not in self.bpe_ranks:
|
200 |
+
break
|
201 |
+
first, second = bigram
|
202 |
+
new_word = []
|
203 |
+
i = 0
|
204 |
+
while i < len(word):
|
205 |
+
try:
|
206 |
+
j = word.index(first, i)
|
207 |
+
except ValueError:
|
208 |
+
new_word.extend(word[i:])
|
209 |
+
break
|
210 |
+
else:
|
211 |
+
new_word.extend(word[i:j])
|
212 |
+
i = j
|
213 |
+
|
214 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
215 |
+
new_word.append(first + second)
|
216 |
+
i += 2
|
217 |
+
else:
|
218 |
+
new_word.append(word[i])
|
219 |
+
i += 1
|
220 |
+
new_word = tuple(new_word)
|
221 |
+
word = new_word
|
222 |
+
if len(word) == 1:
|
223 |
+
break
|
224 |
+
else:
|
225 |
+
pairs = get_pairs(word)
|
226 |
+
word = " ".join(word)
|
227 |
+
self.cache[token] = word
|
228 |
+
return word
|
229 |
+
|
230 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
231 |
+
if self.add_bos_token:
|
232 |
+
bos_token_ids = [self.bos_token_id]
|
233 |
+
else:
|
234 |
+
bos_token_ids = []
|
235 |
+
|
236 |
+
output = bos_token_ids + token_ids_0
|
237 |
+
|
238 |
+
if token_ids_1 is None:
|
239 |
+
return output
|
240 |
+
|
241 |
+
return output + bos_token_ids + token_ids_1
|
242 |
+
|
243 |
+
def get_special_tokens_mask(
|
244 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
245 |
+
) -> List[int]:
|
246 |
+
"""
|
247 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
248 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
token_ids_0 (`List[int]`):
|
252 |
+
List of IDs.
|
253 |
+
token_ids_1 (`List[int]`, *optional*):
|
254 |
+
Optional second list of IDs for sequence pairs.
|
255 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
256 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
260 |
+
"""
|
261 |
+
if already_has_special_tokens:
|
262 |
+
return super().get_special_tokens_mask(
|
263 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
264 |
+
)
|
265 |
+
|
266 |
+
if not self.add_bos_token:
|
267 |
+
return super().get_special_tokens_mask(
|
268 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
269 |
+
)
|
270 |
+
|
271 |
+
if token_ids_1 is None:
|
272 |
+
return [1] + ([0] * len(token_ids_0))
|
273 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
274 |
+
|
275 |
+
def _tokenize(self, text):
|
276 |
+
"""Tokenize a string."""
|
277 |
+
bpe_tokens = []
|
278 |
+
for token in re.findall(self.pat, text):
|
279 |
+
token = "".join(
|
280 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
281 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
282 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
283 |
+
return bpe_tokens
|
284 |
+
|
285 |
+
def _convert_token_to_id(self, token):
|
286 |
+
"""Converts a token (str) in an id using the vocab."""
|
287 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
288 |
+
|
289 |
+
def _convert_id_to_token(self, index):
|
290 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
291 |
+
return self.decoder.get(index)
|
292 |
+
|
293 |
+
def convert_tokens_to_string(self, tokens):
|
294 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
295 |
+
text = "".join(tokens)
|
296 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
297 |
+
return text
|
298 |
+
|
299 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
300 |
+
if not os.path.isdir(save_directory):
|
301 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
302 |
+
return
|
303 |
+
vocab_file = os.path.join(
|
304 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
305 |
+
)
|
306 |
+
merge_file = os.path.join(
|
307 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
308 |
+
)
|
309 |
+
|
310 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
311 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
312 |
+
|
313 |
+
index = 0
|
314 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
315 |
+
writer.write("#version: 0.2\n")
|
316 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
317 |
+
if index != token_index:
|
318 |
+
logger.warning(
|
319 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
320 |
+
" Please check that the tokenizer is not corrupted!"
|
321 |
+
)
|
322 |
+
index = token_index
|
323 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
324 |
+
index += 1
|
325 |
+
|
326 |
+
return vocab_file, merge_file
|
327 |
+
|
328 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
329 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
330 |
+
if is_split_into_words or add_prefix_space:
|
331 |
+
text = " " + text
|
332 |
+
return (text, kwargs)
|
333 |
+
|
334 |
+
@property
|
335 |
+
def default_chat_template(self):
|
336 |
+
"""
|
337 |
+
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
338 |
+
"""
|
339 |
+
logger.warning_once(
|
340 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
341 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
342 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
343 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
344 |
+
)
|
345 |
+
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2_fast.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for OpenAI GPT."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
from tokenizers import pre_tokenizers
|
22 |
+
|
23 |
+
from ...tokenization_utils_base import BatchEncoding
|
24 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
25 |
+
from ...utils import logging
|
26 |
+
from .tokenization_gpt2 import GPT2Tokenizer
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
32 |
+
|
33 |
+
|
34 |
+
class GPT2TokenizerFast(PreTrainedTokenizerFast):
|
35 |
+
"""
|
36 |
+
Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
37 |
+
Byte-Pair-Encoding.
|
38 |
+
|
39 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
40 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
41 |
+
|
42 |
+
```python
|
43 |
+
>>> from transformers import GPT2TokenizerFast
|
44 |
+
|
45 |
+
>>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2")
|
46 |
+
>>> tokenizer("Hello world")["input_ids"]
|
47 |
+
[15496, 995]
|
48 |
+
|
49 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
50 |
+
[18435, 995]
|
51 |
+
```
|
52 |
+
|
53 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
54 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
55 |
+
|
56 |
+
<Tip>
|
57 |
+
|
58 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
63 |
+
refer to this superclass for more information regarding those methods.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vocab_file (`str`, *optional*):
|
67 |
+
Path to the vocabulary file.
|
68 |
+
merges_file (`str`, *optional*):
|
69 |
+
Path to the merges file.
|
70 |
+
tokenizer_file (`str`, *optional*):
|
71 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
72 |
+
contains everything needed to load the tokenizer.
|
73 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
74 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
75 |
+
token instead.
|
76 |
+
bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
77 |
+
The beginning of sequence token.
|
78 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
79 |
+
The end of sequence token.
|
80 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
81 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
82 |
+
other word. (GPT2 tokenizer detect beginning of words by the preceding space).
|
83 |
+
"""
|
84 |
+
|
85 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
86 |
+
model_input_names = ["input_ids", "attention_mask"]
|
87 |
+
slow_tokenizer_class = GPT2Tokenizer
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
vocab_file=None,
|
92 |
+
merges_file=None,
|
93 |
+
tokenizer_file=None,
|
94 |
+
unk_token="<|endoftext|>",
|
95 |
+
bos_token="<|endoftext|>",
|
96 |
+
eos_token="<|endoftext|>",
|
97 |
+
add_prefix_space=False,
|
98 |
+
**kwargs,
|
99 |
+
):
|
100 |
+
super().__init__(
|
101 |
+
vocab_file,
|
102 |
+
merges_file,
|
103 |
+
tokenizer_file=tokenizer_file,
|
104 |
+
unk_token=unk_token,
|
105 |
+
bos_token=bos_token,
|
106 |
+
eos_token=eos_token,
|
107 |
+
add_prefix_space=add_prefix_space,
|
108 |
+
**kwargs,
|
109 |
+
)
|
110 |
+
|
111 |
+
self.add_bos_token = kwargs.pop("add_bos_token", False)
|
112 |
+
|
113 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
114 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
115 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
116 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
117 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
118 |
+
|
119 |
+
self.add_prefix_space = add_prefix_space
|
120 |
+
|
121 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
122 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
123 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
124 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
125 |
+
"to use it with pretokenized inputs."
|
126 |
+
)
|
127 |
+
|
128 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
129 |
+
|
130 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
131 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
132 |
+
|
133 |
+
assert self.add_prefix_space or not is_split_into_words, (
|
134 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
135 |
+
"to use it with pretokenized inputs."
|
136 |
+
)
|
137 |
+
|
138 |
+
return super()._encode_plus(*args, **kwargs)
|
139 |
+
|
140 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
141 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
142 |
+
return tuple(files)
|
143 |
+
|
144 |
+
@property
|
145 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
|
146 |
+
def default_chat_template(self):
|
147 |
+
"""
|
148 |
+
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
149 |
+
"""
|
150 |
+
logger.warning_once(
|
151 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
152 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
153 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
154 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
155 |
+
)
|
156 |
+
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt2/tokenization_gpt2_tf.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List, Union
|
3 |
+
|
4 |
+
import tensorflow as tf
|
5 |
+
from keras_nlp.tokenizers import BytePairTokenizer
|
6 |
+
from tensorflow_text import pad_model_inputs
|
7 |
+
|
8 |
+
from ...modeling_tf_utils import keras
|
9 |
+
from .tokenization_gpt2 import GPT2Tokenizer
|
10 |
+
|
11 |
+
|
12 |
+
class TFGPT2Tokenizer(keras.layers.Layer):
|
13 |
+
"""
|
14 |
+
This is an in-graph tokenizer for GPT2. It should be initialized similarly to other tokenizers, using the
|
15 |
+
`from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings
|
16 |
+
from an existing standard tokenizer object.
|
17 |
+
|
18 |
+
In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run
|
19 |
+
when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options
|
20 |
+
than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes
|
21 |
+
straight from `tf.string` inputs to outputs.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
vocab (Dict[str, int]): Vocabulary dict for Byte Pair Tokenizer
|
25 |
+
merges (List[str]): Merges list for Byte Pair Tokenizer
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, vocab: Dict[str, int], merges: List[str], max_length: int = None, pad_token_id: int = None):
|
29 |
+
super().__init__()
|
30 |
+
self.pad_token_id = pad_token_id
|
31 |
+
self.max_length = max_length
|
32 |
+
self.vocab = vocab
|
33 |
+
self.merges = merges
|
34 |
+
self.tf_tokenizer = BytePairTokenizer(vocab, merges, sequence_length=max_length)
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def from_tokenizer(cls, tokenizer: GPT2Tokenizer, *args, **kwargs):
|
38 |
+
"""Creates TFGPT2Tokenizer from GPT2Tokenizer
|
39 |
+
|
40 |
+
Args:
|
41 |
+
tokenizer (GPT2Tokenizer)
|
42 |
+
|
43 |
+
Examples:
|
44 |
+
|
45 |
+
```python
|
46 |
+
from transformers import AutoTokenizer, TFGPT2Tokenizer
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
49 |
+
tf_tokenizer = TFGPT2Tokenizer.from_tokenizer(tokenizer)
|
50 |
+
```
|
51 |
+
"""
|
52 |
+
merges = [" ".join(m) for m in tokenizer.bpe_ranks.keys()]
|
53 |
+
vocab = tokenizer.get_vocab()
|
54 |
+
return cls(vocab, merges, *args, **kwargs)
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs):
|
58 |
+
"""Creates TFGPT2Tokenizer from pretrained GPT2Tokenizer
|
59 |
+
|
60 |
+
Args:
|
61 |
+
pretrained_model_name_or_path (Union[str, os.PathLike]): Path to pretrained model
|
62 |
+
|
63 |
+
Examples:
|
64 |
+
|
65 |
+
```python
|
66 |
+
from transformers import TFGPT2Tokenizer
|
67 |
+
|
68 |
+
tf_tokenizer = TFGPT2Tokenizer.from_pretrained("openai-community/gpt2")
|
69 |
+
```
|
70 |
+
"""
|
71 |
+
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
|
72 |
+
return cls.from_tokenizer(tokenizer, *init_inputs, **kwargs)
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def from_config(cls, config):
|
76 |
+
"""Creates TFGPT2Tokenizer from configurations
|
77 |
+
|
78 |
+
Args:
|
79 |
+
config (Dict): Dictionary with keys such as stated in `get_config`.
|
80 |
+
"""
|
81 |
+
return cls(**config)
|
82 |
+
|
83 |
+
def get_config(self):
|
84 |
+
return {
|
85 |
+
"vocab": self.vocab,
|
86 |
+
"merges": self.merges,
|
87 |
+
"max_length": self.max_length,
|
88 |
+
"pad_token_id": self.pad_token_id,
|
89 |
+
}
|
90 |
+
|
91 |
+
def call(self, x, max_length: int = None):
|
92 |
+
input_ids = self.tf_tokenizer(x)
|
93 |
+
attention_mask = tf.ones_like(input_ids)
|
94 |
+
|
95 |
+
if self.pad_token_id is not None:
|
96 |
+
# pad the tokens up to max length
|
97 |
+
max_length = max_length if max_length is not None else self.max_length
|
98 |
+
|
99 |
+
if max_length is not None:
|
100 |
+
input_ids, attention_mask = pad_model_inputs(
|
101 |
+
input_ids, max_seq_length=max_length, pad_value=self.pad_token_id
|
102 |
+
)
|
103 |
+
|
104 |
+
return {"attention_mask": attention_mask, "input_ids": input_ids}
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__init__.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
from ...utils import OptionalDependencyNotAvailable
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]}
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_tokenizers_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["tokenization_gpt_neox_fast"] = ["GPTNeoXTokenizerFast"]
|
29 |
+
|
30 |
+
try:
|
31 |
+
if not is_torch_available():
|
32 |
+
raise OptionalDependencyNotAvailable()
|
33 |
+
except OptionalDependencyNotAvailable:
|
34 |
+
pass
|
35 |
+
else:
|
36 |
+
_import_structure["modeling_gpt_neox"] = [
|
37 |
+
"GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST",
|
38 |
+
"GPTNeoXForCausalLM",
|
39 |
+
"GPTNeoXForQuestionAnswering",
|
40 |
+
"GPTNeoXForSequenceClassification",
|
41 |
+
"GPTNeoXForTokenClassification",
|
42 |
+
"GPTNeoXLayer",
|
43 |
+
"GPTNeoXModel",
|
44 |
+
"GPTNeoXPreTrainedModel",
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
|
50 |
+
|
51 |
+
try:
|
52 |
+
if not is_tokenizers_available():
|
53 |
+
raise OptionalDependencyNotAvailable()
|
54 |
+
except OptionalDependencyNotAvailable:
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
|
58 |
+
|
59 |
+
try:
|
60 |
+
if not is_torch_available():
|
61 |
+
raise OptionalDependencyNotAvailable()
|
62 |
+
except OptionalDependencyNotAvailable:
|
63 |
+
pass
|
64 |
+
else:
|
65 |
+
from .modeling_gpt_neox import (
|
66 |
+
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
|
67 |
+
GPTNeoXForCausalLM,
|
68 |
+
GPTNeoXForQuestionAnswering,
|
69 |
+
GPTNeoXForSequenceClassification,
|
70 |
+
GPTNeoXForTokenClassification,
|
71 |
+
GPTNeoXLayer,
|
72 |
+
GPTNeoXModel,
|
73 |
+
GPTNeoXPreTrainedModel,
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
else:
|
78 |
+
import sys
|
79 |
+
|
80 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/configuration_gpt_neox.cpython-310.pyc
ADDED
Binary file (7.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/modeling_gpt_neox.cpython-310.pyc
ADDED
Binary file (41.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/__pycache__/tokenization_gpt_neox_fast.cpython-310.pyc
ADDED
Binary file (8.46 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/configuration_gpt_neox.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPTNeoX model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class GPTNeoXConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
|
30 |
+
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
31 |
+
with the defaults will yield a similar configuration to that of the GPTNeoX
|
32 |
+
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
40 |
+
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`GPTNeoXModel`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
43 |
+
Dimension of the encoder layers and the pooler layer.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
49 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
50 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
52 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
53 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
54 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
55 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
56 |
+
base for computing rotary embeddings frequency
|
57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio probability of the attention score.
|
59 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
|
61 |
+
hidden states.
|
62 |
+
classifier_dropout (`float`, *optional*, defaults to 0.1):
|
63 |
+
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
|
64 |
+
|
65 |
+
The dropout ratio for the hidden layer.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
72 |
+
The epsilon used by the layer normalization layers.
|
73 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
75 |
+
relevant if `config.is_decoder=True`.
|
76 |
+
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
78 |
+
speedup at large scales (e.g. 20B).
|
79 |
+
rope_scaling (`Dict`, *optional*):
|
80 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
81 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
82 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
83 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
84 |
+
these scaling strategies behave:
|
85 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
86 |
+
experimental feature, subject to breaking API changes in future versions.
|
87 |
+
attention_bias (`bool`, *optional*, defaults to `True`):
|
88 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
89 |
+
|
90 |
+
Example:
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
|
94 |
+
|
95 |
+
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
|
96 |
+
>>> configuration = GPTNeoXConfig()
|
97 |
+
|
98 |
+
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
|
99 |
+
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
|
100 |
+
|
101 |
+
>>> # Accessing the model configuration
|
102 |
+
>>> configuration = model.config # doctest: +SKIP
|
103 |
+
```"""
|
104 |
+
|
105 |
+
model_type = "gpt_neox"
|
106 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=50432,
|
111 |
+
hidden_size=6144,
|
112 |
+
num_hidden_layers=44,
|
113 |
+
num_attention_heads=64,
|
114 |
+
intermediate_size=24576,
|
115 |
+
hidden_act="gelu",
|
116 |
+
rotary_pct=0.25,
|
117 |
+
rotary_emb_base=10000,
|
118 |
+
attention_dropout=0.0,
|
119 |
+
hidden_dropout=0.0,
|
120 |
+
classifier_dropout=0.1,
|
121 |
+
max_position_embeddings=2048,
|
122 |
+
initializer_range=0.02,
|
123 |
+
layer_norm_eps=1e-5,
|
124 |
+
use_cache=True,
|
125 |
+
bos_token_id=0,
|
126 |
+
eos_token_id=2,
|
127 |
+
tie_word_embeddings=False,
|
128 |
+
use_parallel_residual=True,
|
129 |
+
rope_scaling=None,
|
130 |
+
attention_bias=True,
|
131 |
+
**kwargs,
|
132 |
+
):
|
133 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.num_hidden_layers = num_hidden_layers
|
138 |
+
self.num_attention_heads = num_attention_heads
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.rotary_pct = rotary_pct
|
142 |
+
self.rotary_emb_base = rotary_emb_base
|
143 |
+
self.attention_dropout = attention_dropout
|
144 |
+
self.hidden_dropout = hidden_dropout
|
145 |
+
self.classifier_dropout = classifier_dropout
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.layer_norm_eps = layer_norm_eps
|
148 |
+
self.use_cache = use_cache
|
149 |
+
self.tie_word_embeddings = tie_word_embeddings
|
150 |
+
self.use_parallel_residual = use_parallel_residual
|
151 |
+
self.rope_scaling = rope_scaling
|
152 |
+
self.attention_bias = attention_bias
|
153 |
+
self._rope_scaling_validation()
|
154 |
+
|
155 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
156 |
+
raise ValueError(
|
157 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
|
158 |
+
)
|
159 |
+
|
160 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
161 |
+
def _rope_scaling_validation(self):
|
162 |
+
"""
|
163 |
+
Validate the `rope_scaling` configuration.
|
164 |
+
"""
|
165 |
+
if self.rope_scaling is None:
|
166 |
+
return
|
167 |
+
|
168 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
169 |
+
raise ValueError(
|
170 |
+
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
171 |
+
)
|
172 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
173 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
174 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
175 |
+
raise ValueError(
|
176 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
177 |
+
)
|
178 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
179 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py
ADDED
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPTNeoX model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
from torch.nn import functional as F
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...file_utils import (
|
27 |
+
add_code_sample_docstrings,
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
replace_return_docstrings,
|
31 |
+
)
|
32 |
+
from ...modeling_outputs import (
|
33 |
+
BaseModelOutputWithPast,
|
34 |
+
CausalLMOutputWithPast,
|
35 |
+
QuestionAnsweringModelOutput,
|
36 |
+
SequenceClassifierOutputWithPast,
|
37 |
+
TokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_utils import PreTrainedModel
|
40 |
+
from ...utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging
|
41 |
+
from .configuration_gpt_neox import GPTNeoXConfig
|
42 |
+
|
43 |
+
|
44 |
+
if is_flash_attn_2_available():
|
45 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
46 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
|
52 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
|
53 |
+
_CONFIG_FOR_DOC = "GPTNeoXConfig"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
60 |
+
def _get_unpad_data(attention_mask):
|
61 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
62 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
63 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
64 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
65 |
+
return (
|
66 |
+
indices,
|
67 |
+
cu_seqlens,
|
68 |
+
max_seqlen_in_batch,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class GPTNeoXPreTrainedModel(PreTrainedModel):
|
73 |
+
"""
|
74 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
75 |
+
models.
|
76 |
+
"""
|
77 |
+
|
78 |
+
config_class = GPTNeoXConfig
|
79 |
+
base_model_prefix = "gpt_neox"
|
80 |
+
supports_gradient_checkpointing = True
|
81 |
+
_no_split_modules = ["GPTNeoXLayer"]
|
82 |
+
_skip_keys_device_placement = "past_key_values"
|
83 |
+
_supports_flash_attn_2 = True
|
84 |
+
|
85 |
+
def _init_weights(self, module):
|
86 |
+
"""Initialize the weights"""
|
87 |
+
if isinstance(module, nn.Linear):
|
88 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
89 |
+
if module.bias is not None:
|
90 |
+
module.bias.data.zero_()
|
91 |
+
elif isinstance(module, nn.Embedding):
|
92 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
93 |
+
if module.padding_idx is not None:
|
94 |
+
module.weight.data[module.padding_idx].zero_()
|
95 |
+
elif isinstance(module, nn.LayerNorm):
|
96 |
+
module.bias.data.zero_()
|
97 |
+
module.weight.data.fill_(1.0)
|
98 |
+
|
99 |
+
|
100 |
+
class GPTNeoXAttention(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.config = config
|
104 |
+
self.num_attention_heads = config.num_attention_heads
|
105 |
+
self.hidden_size = config.hidden_size
|
106 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
107 |
+
raise ValueError(
|
108 |
+
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
|
109 |
+
)
|
110 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
111 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
112 |
+
self._init_bias(config.max_position_embeddings)
|
113 |
+
|
114 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
115 |
+
self._init_rope()
|
116 |
+
|
117 |
+
self.norm_factor = self.head_size**-0.5
|
118 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
|
119 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
120 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
121 |
+
self.is_causal = True
|
122 |
+
|
123 |
+
def _init_bias(self, max_positions, device=None):
|
124 |
+
self.register_buffer(
|
125 |
+
"bias",
|
126 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
127 |
+
1, 1, max_positions, max_positions
|
128 |
+
),
|
129 |
+
persistent=False,
|
130 |
+
)
|
131 |
+
if device is not None:
|
132 |
+
self.bias = self.bias.to(device)
|
133 |
+
|
134 |
+
def _init_rope(self):
|
135 |
+
if self.config.rope_scaling is None:
|
136 |
+
self.rotary_emb = GPTNeoXRotaryEmbedding(
|
137 |
+
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
scaling_type = self.config.rope_scaling["type"]
|
141 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
142 |
+
if scaling_type == "linear":
|
143 |
+
self.rotary_emb = GPTNeoXLinearScalingRotaryEmbedding(
|
144 |
+
self.rotary_ndims,
|
145 |
+
self.config.max_position_embeddings,
|
146 |
+
base=self.config.rotary_emb_base,
|
147 |
+
scaling_factor=scaling_factor,
|
148 |
+
)
|
149 |
+
elif scaling_type == "dynamic":
|
150 |
+
self.rotary_emb = GPTNeoXDynamicNTKScalingRotaryEmbedding(
|
151 |
+
self.rotary_ndims,
|
152 |
+
self.config.max_position_embeddings,
|
153 |
+
base=self.config.rotary_emb_base,
|
154 |
+
scaling_factor=scaling_factor,
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
158 |
+
|
159 |
+
def forward(
|
160 |
+
self,
|
161 |
+
hidden_states: torch.FloatTensor,
|
162 |
+
attention_mask: torch.FloatTensor,
|
163 |
+
position_ids: torch.LongTensor,
|
164 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
165 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
166 |
+
use_cache: Optional[bool] = False,
|
167 |
+
output_attentions: Optional[bool] = False,
|
168 |
+
padding_mask: Optional[torch.Tensor] = None,
|
169 |
+
):
|
170 |
+
has_layer_past = layer_past is not None
|
171 |
+
|
172 |
+
# Compute QKV
|
173 |
+
# Attention heads [batch, seq_len, hidden_size]
|
174 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
175 |
+
qkv = self.query_key_value(hidden_states)
|
176 |
+
|
177 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
178 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
179 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
180 |
+
qkv = qkv.view(*new_qkv_shape)
|
181 |
+
|
182 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
183 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
184 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
185 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
186 |
+
|
187 |
+
# Compute rotary embeddings on rotary_ndims
|
188 |
+
query_rot = query[..., : self.rotary_ndims]
|
189 |
+
query_pass = query[..., self.rotary_ndims :]
|
190 |
+
key_rot = key[..., : self.rotary_ndims]
|
191 |
+
key_pass = key[..., self.rotary_ndims :]
|
192 |
+
|
193 |
+
# Compute token offset for rotary embeddings (when decoding)
|
194 |
+
seq_len = key.shape[-2]
|
195 |
+
if has_layer_past:
|
196 |
+
seq_len += layer_past[0].shape[-2]
|
197 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
198 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
199 |
+
query = torch.cat((query, query_pass), dim=-1)
|
200 |
+
key = torch.cat((key, key_pass), dim=-1)
|
201 |
+
|
202 |
+
# Cache QKV values
|
203 |
+
if has_layer_past:
|
204 |
+
past_key = layer_past[0]
|
205 |
+
past_value = layer_past[1]
|
206 |
+
key = torch.cat((past_key, key), dim=-2)
|
207 |
+
value = torch.cat((past_value, value), dim=-2)
|
208 |
+
present = (key, value) if use_cache else None
|
209 |
+
|
210 |
+
# Compute attention
|
211 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
212 |
+
|
213 |
+
# Reshape outputs
|
214 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
215 |
+
attn_output = self.dense(attn_output)
|
216 |
+
|
217 |
+
outputs = (attn_output, present)
|
218 |
+
if output_attentions:
|
219 |
+
outputs += (attn_weights,)
|
220 |
+
|
221 |
+
return outputs
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
225 |
+
"""
|
226 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
227 |
+
"""
|
228 |
+
# tensor: [bs, seq_len, hidden_size]
|
229 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
230 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
231 |
+
tensor = tensor.view(new_shape)
|
232 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
233 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
234 |
+
return tensor
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
238 |
+
"""
|
239 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
240 |
+
"""
|
241 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
242 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
243 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
244 |
+
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
245 |
+
# -> [bs, seq_len, hidden_size]
|
246 |
+
return tensor
|
247 |
+
|
248 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
249 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
250 |
+
# compute causal mask from causal mask buffer
|
251 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
252 |
+
key_length = key.size(-2)
|
253 |
+
|
254 |
+
# dynamically increase the causal mask with the key length, if needed.
|
255 |
+
if key_length > self.bias.shape[-1]:
|
256 |
+
self._init_bias(key_length, device=key.device)
|
257 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
258 |
+
|
259 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
260 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
261 |
+
attn_scores = torch.zeros(
|
262 |
+
batch_size * num_attention_heads,
|
263 |
+
query_length,
|
264 |
+
key_length,
|
265 |
+
dtype=query.dtype,
|
266 |
+
device=key.device,
|
267 |
+
)
|
268 |
+
attn_scores = torch.baddbmm(
|
269 |
+
attn_scores,
|
270 |
+
query,
|
271 |
+
key.transpose(1, 2),
|
272 |
+
beta=1.0,
|
273 |
+
alpha=self.norm_factor,
|
274 |
+
)
|
275 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
276 |
+
|
277 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
278 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
279 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
280 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
281 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
282 |
+
|
283 |
+
if attention_mask is not None:
|
284 |
+
# Apply the attention mask
|
285 |
+
attn_scores = attn_scores + attention_mask
|
286 |
+
|
287 |
+
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
288 |
+
attn_weights = attn_weights.to(value.dtype)
|
289 |
+
|
290 |
+
# Mask heads if we want to
|
291 |
+
if head_mask is not None:
|
292 |
+
attn_weights = attn_weights * head_mask
|
293 |
+
|
294 |
+
attn_weights = self.attention_dropout(attn_weights)
|
295 |
+
|
296 |
+
attn_output = torch.matmul(attn_weights, value)
|
297 |
+
return attn_output, attn_weights
|
298 |
+
|
299 |
+
|
300 |
+
class GPTNeoXFlashAttention2(GPTNeoXAttention):
|
301 |
+
"""
|
302 |
+
GPTNeoX flash attention module. This module inherits from `GPTNeoXAttention` as the weights of the module stays
|
303 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
304 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
305 |
+
"""
|
306 |
+
|
307 |
+
def __init__(self, *args, **kwargs):
|
308 |
+
super().__init__(*args, **kwargs)
|
309 |
+
|
310 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
311 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
312 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
313 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states: torch.FloatTensor,
|
318 |
+
attention_mask: torch.FloatTensor,
|
319 |
+
position_ids: torch.LongTensor,
|
320 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
321 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
322 |
+
use_cache: Optional[bool] = False,
|
323 |
+
output_attentions: Optional[bool] = False,
|
324 |
+
):
|
325 |
+
has_layer_past = layer_past is not None
|
326 |
+
|
327 |
+
# Compute QKV
|
328 |
+
# Attention heads [batch, seq_len, hidden_size]
|
329 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
330 |
+
qkv = self.query_key_value(hidden_states)
|
331 |
+
|
332 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
333 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
334 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
335 |
+
qkv = qkv.view(*new_qkv_shape)
|
336 |
+
|
337 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
338 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
339 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
340 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
341 |
+
|
342 |
+
query_length = query.shape[-2]
|
343 |
+
|
344 |
+
# Compute rotary embeddings on rotary_ndims
|
345 |
+
query_rot = query[..., : self.rotary_ndims]
|
346 |
+
query_pass = query[..., self.rotary_ndims :]
|
347 |
+
key_rot = key[..., : self.rotary_ndims]
|
348 |
+
key_pass = key[..., self.rotary_ndims :]
|
349 |
+
|
350 |
+
# Compute token offset for rotary embeddings (when decoding)
|
351 |
+
seq_len = key.shape[-2]
|
352 |
+
if has_layer_past:
|
353 |
+
seq_len += layer_past[0].shape[-2]
|
354 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
355 |
+
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
356 |
+
query = torch.cat((query, query_pass), dim=-1)
|
357 |
+
key = torch.cat((key, key_pass), dim=-1)
|
358 |
+
|
359 |
+
# Cache QKV values
|
360 |
+
if has_layer_past:
|
361 |
+
past_key = layer_past[0]
|
362 |
+
past_value = layer_past[1]
|
363 |
+
key = torch.cat((past_key, key), dim=-2)
|
364 |
+
value = torch.cat((past_value, value), dim=-2)
|
365 |
+
present = (key, value) if use_cache else None
|
366 |
+
|
367 |
+
# GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
|
368 |
+
target_dtype = value.dtype
|
369 |
+
if query.dtype != target_dtype:
|
370 |
+
query = query.to(target_dtype)
|
371 |
+
if key.dtype != target_dtype:
|
372 |
+
key = key.to(target_dtype)
|
373 |
+
|
374 |
+
# Permute to get the expected shape for Flash Attention
|
375 |
+
query = query.permute(0, 2, 1, 3)
|
376 |
+
key = key.permute(0, 2, 1, 3)
|
377 |
+
value = value.permute(0, 2, 1, 3)
|
378 |
+
|
379 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
380 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
381 |
+
# cast them back in float16 / bfloat16 just to be sure everything works as expected.
|
382 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
383 |
+
input_dtype = query.dtype
|
384 |
+
if input_dtype == torch.float32:
|
385 |
+
if torch.is_autocast_enabled():
|
386 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
387 |
+
# Handle the case where the model is quantized
|
388 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
389 |
+
target_dtype = self.config._pre_quantization_dtype
|
390 |
+
else:
|
391 |
+
target_dtype = self.query_key_value.weight.dtype
|
392 |
+
|
393 |
+
logger.warning_once(
|
394 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
395 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
396 |
+
f" {target_dtype}."
|
397 |
+
)
|
398 |
+
|
399 |
+
query = query.to(target_dtype)
|
400 |
+
key = key.to(target_dtype)
|
401 |
+
value = value.to(target_dtype)
|
402 |
+
|
403 |
+
attention_dropout = self.config.attention_dropout if self.training else 0.0
|
404 |
+
|
405 |
+
# Compute attention
|
406 |
+
attn_weights = self._flash_attention_forward(
|
407 |
+
query, key, value, attention_mask, query_length, dropout=attention_dropout, softmax_scale=self.norm_factor
|
408 |
+
)
|
409 |
+
|
410 |
+
# Reshape outputs
|
411 |
+
attn_output = attn_weights.reshape(
|
412 |
+
attn_weights.shape[0], attn_weights.shape[1], self.num_attention_heads * self.head_size
|
413 |
+
)
|
414 |
+
attn_output = self.dense(attn_output)
|
415 |
+
|
416 |
+
outputs = (attn_output, present)
|
417 |
+
if output_attentions:
|
418 |
+
outputs += (attn_weights,)
|
419 |
+
|
420 |
+
return outputs
|
421 |
+
|
422 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
423 |
+
def _flash_attention_forward(
|
424 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
425 |
+
):
|
426 |
+
"""
|
427 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
428 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
429 |
+
|
430 |
+
Args:
|
431 |
+
query_states (`torch.Tensor`):
|
432 |
+
Input query states to be passed to Flash Attention API
|
433 |
+
key_states (`torch.Tensor`):
|
434 |
+
Input key states to be passed to Flash Attention API
|
435 |
+
value_states (`torch.Tensor`):
|
436 |
+
Input value states to be passed to Flash Attention API
|
437 |
+
attention_mask (`torch.Tensor`):
|
438 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
439 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
440 |
+
dropout (`float`):
|
441 |
+
Attention dropout
|
442 |
+
softmax_scale (`float`, *optional*):
|
443 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
444 |
+
"""
|
445 |
+
if not self._flash_attn_uses_top_left_mask:
|
446 |
+
causal = self.is_causal
|
447 |
+
else:
|
448 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
449 |
+
causal = self.is_causal and query_length != 1
|
450 |
+
|
451 |
+
# Contains at least one padding token in the sequence
|
452 |
+
if attention_mask is not None:
|
453 |
+
batch_size = query_states.shape[0]
|
454 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
455 |
+
query_states, key_states, value_states, attention_mask, query_length
|
456 |
+
)
|
457 |
+
|
458 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
459 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
460 |
+
|
461 |
+
attn_output_unpad = flash_attn_varlen_func(
|
462 |
+
query_states,
|
463 |
+
key_states,
|
464 |
+
value_states,
|
465 |
+
cu_seqlens_q=cu_seqlens_q,
|
466 |
+
cu_seqlens_k=cu_seqlens_k,
|
467 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
468 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
469 |
+
dropout_p=dropout,
|
470 |
+
softmax_scale=softmax_scale,
|
471 |
+
causal=causal,
|
472 |
+
)
|
473 |
+
|
474 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
475 |
+
else:
|
476 |
+
attn_output = flash_attn_func(
|
477 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
478 |
+
)
|
479 |
+
|
480 |
+
return attn_output
|
481 |
+
|
482 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
|
483 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
484 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
485 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
486 |
+
|
487 |
+
key_layer = index_first_axis(
|
488 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
489 |
+
)
|
490 |
+
value_layer = index_first_axis(
|
491 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
492 |
+
)
|
493 |
+
if query_length == kv_seq_len:
|
494 |
+
query_layer = index_first_axis(
|
495 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
|
496 |
+
)
|
497 |
+
cu_seqlens_q = cu_seqlens_k
|
498 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
499 |
+
indices_q = indices_k
|
500 |
+
elif query_length == 1:
|
501 |
+
max_seqlen_in_batch_q = 1
|
502 |
+
cu_seqlens_q = torch.arange(
|
503 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
504 |
+
) # There is a memcpy here, that is very bad.
|
505 |
+
indices_q = cu_seqlens_q[:-1]
|
506 |
+
query_layer = query_layer.squeeze(1)
|
507 |
+
else:
|
508 |
+
# The -q_len: slice assumes left padding.
|
509 |
+
attention_mask = attention_mask[:, -query_length:]
|
510 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
511 |
+
|
512 |
+
return (
|
513 |
+
query_layer,
|
514 |
+
key_layer,
|
515 |
+
value_layer,
|
516 |
+
indices_q,
|
517 |
+
(cu_seqlens_q, cu_seqlens_k),
|
518 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
def attention_mask_func(attention_scores, ltor_mask):
|
523 |
+
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
|
524 |
+
return attention_scores
|
525 |
+
|
526 |
+
|
527 |
+
class GPTNeoXRotaryEmbedding(nn.Module):
|
528 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding.__init__
|
529 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
530 |
+
super().__init__()
|
531 |
+
|
532 |
+
self.dim = dim
|
533 |
+
self.max_position_embeddings = max_position_embeddings
|
534 |
+
self.base = base
|
535 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
536 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
537 |
+
|
538 |
+
# Build here to make `torch.jit.trace` work.
|
539 |
+
self._set_cos_sin_cache(
|
540 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
541 |
+
)
|
542 |
+
|
543 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
544 |
+
self.max_seq_len_cached = seq_len
|
545 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
546 |
+
|
547 |
+
freqs = torch.outer(t, self.inv_freq)
|
548 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
549 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
550 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
551 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
552 |
+
|
553 |
+
def forward(self, x, seq_len=None):
|
554 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
555 |
+
if seq_len > self.max_seq_len_cached:
|
556 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
557 |
+
|
558 |
+
return (
|
559 |
+
self.cos_cached[:seq_len],
|
560 |
+
self.sin_cached[:seq_len],
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding.__init__
|
565 |
+
# TODO @gante bring compatibility back
|
566 |
+
class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
567 |
+
"""GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
568 |
+
|
569 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
570 |
+
self.scaling_factor = scaling_factor
|
571 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
572 |
+
|
573 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
574 |
+
self.max_seq_len_cached = seq_len
|
575 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
576 |
+
t = t / self.scaling_factor
|
577 |
+
|
578 |
+
freqs = torch.outer(t, self.inv_freq)
|
579 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
580 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
581 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
582 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
583 |
+
|
584 |
+
|
585 |
+
class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
|
586 |
+
"""GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
587 |
+
|
588 |
+
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding.__init__
|
589 |
+
# TODO @gante no longer copied from
|
590 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
591 |
+
self.scaling_factor = scaling_factor
|
592 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
593 |
+
|
594 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
595 |
+
self.max_seq_len_cached = seq_len
|
596 |
+
|
597 |
+
if seq_len > self.max_position_embeddings:
|
598 |
+
base = self.base * (
|
599 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
600 |
+
) ** (self.dim / (self.dim - 2))
|
601 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
602 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
603 |
+
|
604 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
605 |
+
|
606 |
+
freqs = torch.outer(t, self.inv_freq)
|
607 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
608 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
609 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
610 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
611 |
+
|
612 |
+
|
613 |
+
def rotate_half(x):
|
614 |
+
"""Rotates half the hidden dims of the input."""
|
615 |
+
x1 = x[..., : x.shape[-1] // 2]
|
616 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
617 |
+
return torch.cat((-x2, x1), dim=-1)
|
618 |
+
|
619 |
+
|
620 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
621 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
622 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
623 |
+
|
624 |
+
Args:
|
625 |
+
q (`torch.Tensor`): The query tensor.
|
626 |
+
k (`torch.Tensor`): The key tensor.
|
627 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
628 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
629 |
+
position_ids (`torch.Tensor`):
|
630 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
631 |
+
used to pass offsetted position ids when working with a KV-cache.
|
632 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
633 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
634 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
635 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
636 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
637 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
638 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
639 |
+
Returns:
|
640 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
641 |
+
"""
|
642 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
643 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
644 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
645 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
646 |
+
return q_embed, k_embed
|
647 |
+
|
648 |
+
|
649 |
+
class GPTNeoXMLP(nn.Module):
|
650 |
+
def __init__(self, config):
|
651 |
+
super().__init__()
|
652 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
|
653 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
|
654 |
+
self.act = ACT2FN[config.hidden_act]
|
655 |
+
|
656 |
+
def forward(self, hidden_states):
|
657 |
+
hidden_states = self.dense_h_to_4h(hidden_states)
|
658 |
+
hidden_states = self.act(hidden_states)
|
659 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
660 |
+
return hidden_states
|
661 |
+
|
662 |
+
|
663 |
+
GPT_NEOX_ATTENTION_CLASSES = {
|
664 |
+
"eager": GPTNeoXAttention,
|
665 |
+
"flash_attention_2": GPTNeoXFlashAttention2,
|
666 |
+
}
|
667 |
+
|
668 |
+
|
669 |
+
class GPTNeoXLayer(nn.Module):
|
670 |
+
def __init__(self, config):
|
671 |
+
super().__init__()
|
672 |
+
self.use_parallel_residual = config.use_parallel_residual
|
673 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
674 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
675 |
+
self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
|
676 |
+
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
|
677 |
+
self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config)
|
678 |
+
self.mlp = GPTNeoXMLP(config)
|
679 |
+
|
680 |
+
def forward(
|
681 |
+
self,
|
682 |
+
hidden_states: Optional[torch.FloatTensor],
|
683 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
684 |
+
position_ids: Optional[torch.LongTensor] = None,
|
685 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
686 |
+
use_cache: Optional[bool] = False,
|
687 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
688 |
+
output_attentions: Optional[bool] = False,
|
689 |
+
):
|
690 |
+
attention_layer_outputs = self.attention(
|
691 |
+
self.input_layernorm(hidden_states),
|
692 |
+
attention_mask=attention_mask,
|
693 |
+
position_ids=position_ids,
|
694 |
+
layer_past=layer_past,
|
695 |
+
head_mask=head_mask,
|
696 |
+
use_cache=use_cache,
|
697 |
+
output_attentions=output_attentions,
|
698 |
+
)
|
699 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
700 |
+
attn_output = self.post_attention_dropout(attn_output)
|
701 |
+
outputs = attention_layer_outputs[1:]
|
702 |
+
|
703 |
+
if self.use_parallel_residual:
|
704 |
+
# pseudocode:
|
705 |
+
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
706 |
+
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
707 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
708 |
+
hidden_states = mlp_output + attn_output + hidden_states
|
709 |
+
else:
|
710 |
+
# pseudocode:
|
711 |
+
# x = x + attn(ln1(x))
|
712 |
+
# x = x + mlp(ln2(x))
|
713 |
+
attn_output = attn_output + hidden_states
|
714 |
+
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
715 |
+
mlp_output = self.post_mlp_dropout(mlp_output)
|
716 |
+
hidden_states = mlp_output + attn_output
|
717 |
+
|
718 |
+
if use_cache:
|
719 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
720 |
+
else:
|
721 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
722 |
+
|
723 |
+
return outputs
|
724 |
+
|
725 |
+
|
726 |
+
GPT_NEOX_START_DOCSTRING = r"""
|
727 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
728 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
729 |
+
behavior.
|
730 |
+
|
731 |
+
Parameters:
|
732 |
+
config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
|
733 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
734 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
735 |
+
"""
|
736 |
+
|
737 |
+
GPT_NEOX_INPUTS_DOCSTRING = r"""
|
738 |
+
Args:
|
739 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
740 |
+
Indices of input sequence tokens in the vocabulary.
|
741 |
+
|
742 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
743 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
744 |
+
|
745 |
+
[What are input IDs?](../glossary#input-ids)
|
746 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
747 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
748 |
+
|
749 |
+
- 1 for tokens that are **not masked**,
|
750 |
+
- 0 for tokens that are **masked**.
|
751 |
+
|
752 |
+
[What are attention masks?](../glossary#attention-mask)
|
753 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
754 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
755 |
+
config.n_positions - 1]`.
|
756 |
+
|
757 |
+
[What are position IDs?](../glossary#position-ids)
|
758 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
759 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
760 |
+
|
761 |
+
- 1 indicates the head is **not masked**,
|
762 |
+
- 0 indicates the head is **masked**.
|
763 |
+
|
764 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
765 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
766 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
767 |
+
model's internal embedding lookup matrix.
|
768 |
+
output_attentions (`bool`, *optional*):
|
769 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
770 |
+
tensors for more detail.
|
771 |
+
output_hidden_states (`bool`, *optional*):
|
772 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
773 |
+
more detail.
|
774 |
+
return_dict (`bool`, *optional*):
|
775 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
776 |
+
"""
|
777 |
+
|
778 |
+
|
779 |
+
@add_start_docstrings(
|
780 |
+
"The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
|
781 |
+
GPT_NEOX_START_DOCSTRING,
|
782 |
+
)
|
783 |
+
class GPTNeoXModel(GPTNeoXPreTrainedModel):
|
784 |
+
def __init__(self, config):
|
785 |
+
super().__init__(config)
|
786 |
+
self.config = config
|
787 |
+
|
788 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
789 |
+
self.emb_dropout = nn.Dropout(config.hidden_dropout)
|
790 |
+
self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
|
791 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
792 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
793 |
+
|
794 |
+
self.gradient_checkpointing = False
|
795 |
+
|
796 |
+
# Initialize weights and apply final processing
|
797 |
+
self.post_init()
|
798 |
+
|
799 |
+
def get_input_embeddings(self):
|
800 |
+
return self.embed_in
|
801 |
+
|
802 |
+
def set_input_embeddings(self, value):
|
803 |
+
self.embed_in = value
|
804 |
+
|
805 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
806 |
+
@add_code_sample_docstrings(
|
807 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
808 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
809 |
+
output_type=BaseModelOutputWithPast,
|
810 |
+
config_class=_CONFIG_FOR_DOC,
|
811 |
+
)
|
812 |
+
def forward(
|
813 |
+
self,
|
814 |
+
input_ids: Optional[torch.LongTensor] = None,
|
815 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
816 |
+
position_ids: Optional[torch.LongTensor] = None,
|
817 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
818 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
819 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
820 |
+
use_cache: Optional[bool] = None,
|
821 |
+
output_attentions: Optional[bool] = None,
|
822 |
+
output_hidden_states: Optional[bool] = None,
|
823 |
+
return_dict: Optional[bool] = None,
|
824 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
825 |
+
r"""
|
826 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
827 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
828 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
829 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
830 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
831 |
+
use_cache (`bool`, *optional*):
|
832 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
833 |
+
`past_key_values`).
|
834 |
+
"""
|
835 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
836 |
+
output_hidden_states = (
|
837 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
838 |
+
)
|
839 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
840 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
841 |
+
|
842 |
+
if input_ids is not None and inputs_embeds is not None:
|
843 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
844 |
+
elif input_ids is not None:
|
845 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
846 |
+
input_shape = input_ids.size()
|
847 |
+
elif inputs_embeds is not None:
|
848 |
+
input_shape = inputs_embeds.size()[:-1]
|
849 |
+
else:
|
850 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
851 |
+
|
852 |
+
batch_size, seq_length = input_shape
|
853 |
+
|
854 |
+
if past_key_values is None:
|
855 |
+
past_length = 0
|
856 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
857 |
+
else:
|
858 |
+
past_length = past_key_values[0][0].size(-2)
|
859 |
+
|
860 |
+
if position_ids is None:
|
861 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
862 |
+
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
863 |
+
position_ids = position_ids.unsqueeze(0)
|
864 |
+
|
865 |
+
# Attention mask.
|
866 |
+
if attention_mask is not None:
|
867 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
868 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
869 |
+
if self._use_flash_attention_2:
|
870 |
+
attention_mask = attention_mask if 0 in attention_mask else None
|
871 |
+
else:
|
872 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
873 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
874 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
875 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
876 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
877 |
+
attention_mask = attention_mask[:, None, None, :]
|
878 |
+
|
879 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
880 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
881 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
882 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
883 |
+
# effectively the same as removing these entirely.
|
884 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
885 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
886 |
+
|
887 |
+
# Prepare head mask if needed
|
888 |
+
# 1.0 in head_mask indicate we keep the head
|
889 |
+
# attention_probs has shape bsz x n_heads x N x N
|
890 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
891 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
892 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
893 |
+
|
894 |
+
if inputs_embeds is None:
|
895 |
+
inputs_embeds = self.embed_in(input_ids)
|
896 |
+
|
897 |
+
hidden_states = self.emb_dropout(inputs_embeds)
|
898 |
+
|
899 |
+
if self.gradient_checkpointing and self.training:
|
900 |
+
if use_cache:
|
901 |
+
logger.warning(
|
902 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
903 |
+
)
|
904 |
+
use_cache = False
|
905 |
+
|
906 |
+
presents = () if use_cache else None
|
907 |
+
all_attentions = () if output_attentions else None
|
908 |
+
all_hidden_states = () if output_hidden_states else None
|
909 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
910 |
+
if output_hidden_states:
|
911 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
912 |
+
|
913 |
+
if self.gradient_checkpointing and self.training:
|
914 |
+
outputs = self._gradient_checkpointing_func(
|
915 |
+
layer.__call__,
|
916 |
+
hidden_states,
|
917 |
+
attention_mask,
|
918 |
+
position_ids,
|
919 |
+
head_mask[i],
|
920 |
+
use_cache,
|
921 |
+
None,
|
922 |
+
output_attentions,
|
923 |
+
)
|
924 |
+
else:
|
925 |
+
outputs = layer(
|
926 |
+
hidden_states,
|
927 |
+
attention_mask=attention_mask,
|
928 |
+
position_ids=position_ids,
|
929 |
+
head_mask=head_mask[i],
|
930 |
+
layer_past=layer_past,
|
931 |
+
use_cache=use_cache,
|
932 |
+
output_attentions=output_attentions,
|
933 |
+
)
|
934 |
+
hidden_states = outputs[0]
|
935 |
+
if use_cache is True:
|
936 |
+
presents = presents + (outputs[1],)
|
937 |
+
if output_attentions:
|
938 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
939 |
+
|
940 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
941 |
+
# Add last hidden state
|
942 |
+
if output_hidden_states:
|
943 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
944 |
+
|
945 |
+
if not return_dict:
|
946 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
947 |
+
|
948 |
+
return BaseModelOutputWithPast(
|
949 |
+
last_hidden_state=hidden_states,
|
950 |
+
past_key_values=presents,
|
951 |
+
hidden_states=all_hidden_states,
|
952 |
+
attentions=all_attentions,
|
953 |
+
)
|
954 |
+
|
955 |
+
|
956 |
+
@add_start_docstrings(
|
957 |
+
"""GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
|
958 |
+
)
|
959 |
+
class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel):
|
960 |
+
_tied_weights_keys = ["embed_out.weight"]
|
961 |
+
|
962 |
+
def __init__(self, config):
|
963 |
+
super().__init__(config)
|
964 |
+
|
965 |
+
self.gpt_neox = GPTNeoXModel(config)
|
966 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
967 |
+
|
968 |
+
# Initialize weights and apply final processing
|
969 |
+
self.post_init()
|
970 |
+
|
971 |
+
def get_output_embeddings(self):
|
972 |
+
return self.embed_out
|
973 |
+
|
974 |
+
def set_output_embeddings(self, new_embeddings):
|
975 |
+
self.embed_out = new_embeddings
|
976 |
+
|
977 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
978 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
979 |
+
def forward(
|
980 |
+
self,
|
981 |
+
input_ids: Optional[torch.LongTensor] = None,
|
982 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
983 |
+
position_ids: Optional[torch.LongTensor] = None,
|
984 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
985 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
986 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
987 |
+
labels: Optional[torch.LongTensor] = None,
|
988 |
+
use_cache: Optional[bool] = None,
|
989 |
+
output_attentions: Optional[bool] = None,
|
990 |
+
output_hidden_states: Optional[bool] = None,
|
991 |
+
return_dict: Optional[bool] = None,
|
992 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
993 |
+
r"""
|
994 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
995 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
996 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
997 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
998 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
999 |
+
|
1000 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
1001 |
+
`past_key_values` input) to speed up sequential decoding.
|
1002 |
+
|
1003 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1004 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1005 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1006 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1007 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1008 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
1009 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
1010 |
+
use_cache (`bool`, *optional*):
|
1011 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1012 |
+
`past_key_values`).
|
1013 |
+
|
1014 |
+
Returns:
|
1015 |
+
|
1016 |
+
Example:
|
1017 |
+
|
1018 |
+
```python
|
1019 |
+
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
|
1020 |
+
>>> import torch
|
1021 |
+
|
1022 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
1023 |
+
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
1024 |
+
>>> config.is_decoder = True
|
1025 |
+
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
1026 |
+
|
1027 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1028 |
+
>>> outputs = model(**inputs)
|
1029 |
+
|
1030 |
+
>>> prediction_logits = outputs.logits
|
1031 |
+
```"""
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1033 |
+
|
1034 |
+
outputs = self.gpt_neox(
|
1035 |
+
input_ids,
|
1036 |
+
attention_mask=attention_mask,
|
1037 |
+
position_ids=position_ids,
|
1038 |
+
head_mask=head_mask,
|
1039 |
+
inputs_embeds=inputs_embeds,
|
1040 |
+
past_key_values=past_key_values,
|
1041 |
+
use_cache=use_cache,
|
1042 |
+
output_attentions=output_attentions,
|
1043 |
+
output_hidden_states=output_hidden_states,
|
1044 |
+
return_dict=return_dict,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
hidden_states = outputs[0]
|
1048 |
+
lm_logits = self.embed_out(hidden_states)
|
1049 |
+
|
1050 |
+
lm_loss = None
|
1051 |
+
if labels is not None:
|
1052 |
+
# move labels to correct device to enable model parallelism
|
1053 |
+
labels = labels.to(lm_logits.device)
|
1054 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1055 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
1056 |
+
labels = labels[:, 1:].contiguous()
|
1057 |
+
loss_fct = CrossEntropyLoss()
|
1058 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
1059 |
+
|
1060 |
+
if not return_dict:
|
1061 |
+
output = (lm_logits,) + outputs[1:]
|
1062 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1063 |
+
|
1064 |
+
return CausalLMOutputWithPast(
|
1065 |
+
loss=lm_loss,
|
1066 |
+
logits=lm_logits,
|
1067 |
+
past_key_values=outputs.past_key_values,
|
1068 |
+
hidden_states=outputs.hidden_states,
|
1069 |
+
attentions=outputs.attentions,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
def prepare_inputs_for_generation(
|
1073 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1074 |
+
):
|
1075 |
+
input_shape = input_ids.shape
|
1076 |
+
# cut decoder_input_ids if past is used
|
1077 |
+
if past_key_values is not None:
|
1078 |
+
past_length = past_key_values[0][0].shape[2]
|
1079 |
+
|
1080 |
+
# Some generation methods already pass only the last input ID
|
1081 |
+
if input_ids.shape[1] > past_length:
|
1082 |
+
remove_prefix_length = past_length
|
1083 |
+
else:
|
1084 |
+
# Default to old behavior: keep only final ID
|
1085 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1086 |
+
|
1087 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1088 |
+
|
1089 |
+
position_ids = kwargs.get("position_ids", None)
|
1090 |
+
if attention_mask is not None and position_ids is None:
|
1091 |
+
# create position_ids on the fly for batch generation
|
1092 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1093 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1094 |
+
if past_key_values:
|
1095 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1096 |
+
|
1097 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1098 |
+
if attention_mask is None:
|
1099 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1100 |
+
|
1101 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1102 |
+
if inputs_embeds is not None and past_key_values is None:
|
1103 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1104 |
+
else:
|
1105 |
+
model_inputs = {"input_ids": input_ids}
|
1106 |
+
model_inputs.update(
|
1107 |
+
{
|
1108 |
+
"attention_mask": attention_mask,
|
1109 |
+
"past_key_values": past_key_values,
|
1110 |
+
"position_ids": position_ids,
|
1111 |
+
}
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
return model_inputs
|
1115 |
+
|
1116 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
1117 |
+
reordered_past = ()
|
1118 |
+
for layer_past in past_key_values:
|
1119 |
+
reordered_past += (
|
1120 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1121 |
+
+ layer_past[2:],
|
1122 |
+
)
|
1123 |
+
return reordered_past
|
1124 |
+
|
1125 |
+
|
1126 |
+
@add_start_docstrings(
|
1127 |
+
"""
|
1128 |
+
The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
|
1129 |
+
|
1130 |
+
[`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1131 |
+
(e.g. GPT-1) do.
|
1132 |
+
|
1133 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1134 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1135 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1136 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1137 |
+
each row of the batch).
|
1138 |
+
""",
|
1139 |
+
GPT_NEOX_START_DOCSTRING,
|
1140 |
+
)
|
1141 |
+
class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
|
1142 |
+
def __init__(self, config):
|
1143 |
+
super().__init__(config)
|
1144 |
+
self.num_labels = config.num_labels
|
1145 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1146 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1147 |
+
|
1148 |
+
# Initialize weights and apply final processing
|
1149 |
+
self.post_init()
|
1150 |
+
|
1151 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1152 |
+
@add_code_sample_docstrings(
|
1153 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1154 |
+
output_type=SequenceClassifierOutputWithPast,
|
1155 |
+
config_class=_CONFIG_FOR_DOC,
|
1156 |
+
)
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1160 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1161 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1162 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1163 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1164 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1165 |
+
labels: Optional[torch.LongTensor] = None,
|
1166 |
+
use_cache: Optional[bool] = None,
|
1167 |
+
output_attentions: Optional[bool] = None,
|
1168 |
+
output_hidden_states: Optional[bool] = None,
|
1169 |
+
return_dict: Optional[bool] = None,
|
1170 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
1171 |
+
r"""
|
1172 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1173 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1174 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1175 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1176 |
+
"""
|
1177 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1178 |
+
|
1179 |
+
outputs = self.gpt_neox(
|
1180 |
+
input_ids,
|
1181 |
+
attention_mask=attention_mask,
|
1182 |
+
position_ids=position_ids,
|
1183 |
+
head_mask=head_mask,
|
1184 |
+
inputs_embeds=inputs_embeds,
|
1185 |
+
past_key_values=past_key_values,
|
1186 |
+
use_cache=use_cache,
|
1187 |
+
output_attentions=output_attentions,
|
1188 |
+
output_hidden_states=output_hidden_states,
|
1189 |
+
return_dict=return_dict,
|
1190 |
+
)
|
1191 |
+
hidden_states = outputs[0]
|
1192 |
+
logits = self.score(hidden_states)
|
1193 |
+
|
1194 |
+
if input_ids is not None:
|
1195 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1196 |
+
else:
|
1197 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1198 |
+
|
1199 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1200 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1201 |
+
if self.config.pad_token_id is None:
|
1202 |
+
sequence_lengths = -1
|
1203 |
+
else:
|
1204 |
+
if input_ids is not None:
|
1205 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1206 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1207 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1208 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1209 |
+
else:
|
1210 |
+
sequence_lengths = -1
|
1211 |
+
logger.warning(
|
1212 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1213 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1217 |
+
|
1218 |
+
loss = None
|
1219 |
+
if labels is not None:
|
1220 |
+
labels = labels.to(logits.device)
|
1221 |
+
if self.config.problem_type is None:
|
1222 |
+
if self.num_labels == 1:
|
1223 |
+
self.config.problem_type = "regression"
|
1224 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1225 |
+
self.config.problem_type = "single_label_classification"
|
1226 |
+
else:
|
1227 |
+
self.config.problem_type = "multi_label_classification"
|
1228 |
+
|
1229 |
+
if self.config.problem_type == "regression":
|
1230 |
+
loss_fct = MSELoss()
|
1231 |
+
if self.num_labels == 1:
|
1232 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1233 |
+
else:
|
1234 |
+
loss = loss_fct(pooled_logits, labels)
|
1235 |
+
elif self.config.problem_type == "single_label_classification":
|
1236 |
+
loss_fct = CrossEntropyLoss()
|
1237 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1238 |
+
elif self.config.problem_type == "multi_label_classification":
|
1239 |
+
loss_fct = BCEWithLogitsLoss()
|
1240 |
+
loss = loss_fct(pooled_logits, labels)
|
1241 |
+
if not return_dict:
|
1242 |
+
output = (pooled_logits,) + outputs[1:]
|
1243 |
+
return ((loss,) + output) if loss is not None else output
|
1244 |
+
|
1245 |
+
return SequenceClassifierOutputWithPast(
|
1246 |
+
loss=loss,
|
1247 |
+
logits=pooled_logits,
|
1248 |
+
past_key_values=outputs.past_key_values,
|
1249 |
+
hidden_states=outputs.hidden_states,
|
1250 |
+
attentions=outputs.attentions,
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
|
1254 |
+
class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
|
1255 |
+
def __init__(self, config):
|
1256 |
+
super().__init__(config)
|
1257 |
+
self.num_labels = config.num_labels
|
1258 |
+
|
1259 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1260 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
1261 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1262 |
+
|
1263 |
+
# Initialize weights and apply final processing
|
1264 |
+
self.post_init()
|
1265 |
+
|
1266 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
|
1267 |
+
@add_code_sample_docstrings(
|
1268 |
+
checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
|
1269 |
+
output_type=TokenClassifierOutput,
|
1270 |
+
config_class=_CONFIG_FOR_DOC,
|
1271 |
+
expected_loss=0.25,
|
1272 |
+
)
|
1273 |
+
def forward(
|
1274 |
+
self,
|
1275 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1276 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1277 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1278 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1279 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1280 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1281 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1282 |
+
labels: Optional[torch.LongTensor] = None,
|
1283 |
+
use_cache: Optional[bool] = None,
|
1284 |
+
output_attentions: Optional[bool] = None,
|
1285 |
+
output_hidden_states: Optional[bool] = None,
|
1286 |
+
return_dict: Optional[bool] = None,
|
1287 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1288 |
+
r"""
|
1289 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1290 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1291 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1292 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1293 |
+
"""
|
1294 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1295 |
+
|
1296 |
+
outputs = self.gpt_neox(
|
1297 |
+
input_ids,
|
1298 |
+
past_key_values=past_key_values,
|
1299 |
+
attention_mask=attention_mask,
|
1300 |
+
position_ids=position_ids,
|
1301 |
+
head_mask=head_mask,
|
1302 |
+
inputs_embeds=inputs_embeds,
|
1303 |
+
use_cache=use_cache,
|
1304 |
+
output_attentions=output_attentions,
|
1305 |
+
output_hidden_states=output_hidden_states,
|
1306 |
+
return_dict=return_dict,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
hidden_states = outputs[0]
|
1310 |
+
hidden_states = self.dropout(hidden_states)
|
1311 |
+
logits = self.classifier(hidden_states)
|
1312 |
+
|
1313 |
+
loss = None
|
1314 |
+
if labels is not None:
|
1315 |
+
labels = labels.to(logits.device)
|
1316 |
+
loss_fct = CrossEntropyLoss()
|
1317 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1318 |
+
|
1319 |
+
if not return_dict:
|
1320 |
+
output = (logits,) + outputs[2:]
|
1321 |
+
return ((loss,) + output) if loss is not None else output
|
1322 |
+
|
1323 |
+
return TokenClassifierOutput(
|
1324 |
+
loss=loss,
|
1325 |
+
logits=logits,
|
1326 |
+
hidden_states=outputs.hidden_states,
|
1327 |
+
attentions=outputs.attentions,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
|
1331 |
+
@add_start_docstrings(
|
1332 |
+
"""
|
1333 |
+
The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
|
1334 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1335 |
+
""",
|
1336 |
+
GPT_NEOX_START_DOCSTRING,
|
1337 |
+
)
|
1338 |
+
class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
|
1339 |
+
def __init__(self, config):
|
1340 |
+
super().__init__(config)
|
1341 |
+
self.num_labels = config.num_labels
|
1342 |
+
self.gpt_neox = GPTNeoXModel(config)
|
1343 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1344 |
+
|
1345 |
+
# Initialize weights and apply final processing
|
1346 |
+
self.post_init()
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1349 |
+
@add_code_sample_docstrings(
|
1350 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1351 |
+
output_type=QuestionAnsweringModelOutput,
|
1352 |
+
config_class=_CONFIG_FOR_DOC,
|
1353 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1354 |
+
)
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1358 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1359 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1361 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1363 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1364 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
return_dict: Optional[bool] = None,
|
1368 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1369 |
+
r"""
|
1370 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1371 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1372 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1373 |
+
are not taken into account for computing the loss.
|
1374 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
outputs = self.gpt_neox(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
position_ids=position_ids,
|
1385 |
+
head_mask=head_mask,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
output_attentions=output_attentions,
|
1388 |
+
output_hidden_states=output_hidden_states,
|
1389 |
+
return_dict=return_dict,
|
1390 |
+
)
|
1391 |
+
|
1392 |
+
sequence_output = outputs[0]
|
1393 |
+
|
1394 |
+
logits = self.qa_outputs(sequence_output)
|
1395 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1396 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1397 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1398 |
+
|
1399 |
+
total_loss = None
|
1400 |
+
if start_positions is not None and end_positions is not None:
|
1401 |
+
# If we are on multi-GPU, split add a dimension
|
1402 |
+
if len(start_positions.size()) > 1:
|
1403 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1404 |
+
if len(end_positions.size()) > 1:
|
1405 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1406 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1407 |
+
ignored_index = start_logits.size(1)
|
1408 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1409 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1410 |
+
|
1411 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1412 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1413 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1414 |
+
total_loss = (start_loss + end_loss) / 2
|
1415 |
+
|
1416 |
+
if not return_dict:
|
1417 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1418 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1419 |
+
|
1420 |
+
return QuestionAnsweringModelOutput(
|
1421 |
+
loss=total_loss,
|
1422 |
+
start_logits=start_logits,
|
1423 |
+
end_logits=end_logits,
|
1424 |
+
hidden_states=outputs.hidden_states,
|
1425 |
+
attentions=outputs.attentions,
|
1426 |
+
)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for GPTNeoX."""
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import pre_tokenizers, processors
|
20 |
+
|
21 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
28 |
+
|
29 |
+
|
30 |
+
class GPTNeoXTokenizerFast(PreTrainedTokenizerFast):
|
31 |
+
"""
|
32 |
+
Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
33 |
+
Byte-Pair-Encoding.
|
34 |
+
|
35 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
36 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
37 |
+
|
38 |
+
```python
|
39 |
+
>>> from transformers import GPTNeoXTokenizerFast
|
40 |
+
|
41 |
+
>>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2")
|
42 |
+
>>> tokenizer("Hello world")["input_ids"]
|
43 |
+
[15496, 995]
|
44 |
+
|
45 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
46 |
+
[18435, 995]
|
47 |
+
```
|
48 |
+
|
49 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
|
50 |
+
the model was not pretrained this way, it might yield a decrease in performance.
|
51 |
+
|
52 |
+
<Tip>
|
53 |
+
|
54 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
55 |
+
|
56 |
+
</Tip>
|
57 |
+
|
58 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
59 |
+
refer to this superclass for more information regarding those methods.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
vocab_file (`str`):
|
63 |
+
Path to the vocabulary file.
|
64 |
+
merges_file (`str`):
|
65 |
+
Path to the merges file.
|
66 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
67 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
68 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
69 |
+
unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
70 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
71 |
+
token instead.
|
72 |
+
bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
73 |
+
The beginning of sequence token.
|
74 |
+
eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
|
75 |
+
The end of sequence token.
|
76 |
+
pad_token (`str`, *optional*):
|
77 |
+
Token for padding a sequence.
|
78 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
80 |
+
other word. (GPTNeoX tokenizer detect beginning of words by the preceding space).
|
81 |
+
add_bos_token (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether or not to add a `bos_token` at the start of sequences.
|
83 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
85 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
86 |
+
Whether or not the post-processing step should trim offsets to avoid including whitespaces.
|
87 |
+
"""
|
88 |
+
|
89 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
90 |
+
model_input_names = ["input_ids", "attention_mask"]
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
vocab_file=None,
|
95 |
+
merges_file=None,
|
96 |
+
tokenizer_file=None,
|
97 |
+
unk_token="<|endoftext|>",
|
98 |
+
bos_token="<|endoftext|>",
|
99 |
+
eos_token="<|endoftext|>",
|
100 |
+
pad_token=None,
|
101 |
+
add_bos_token=False,
|
102 |
+
add_eos_token=False,
|
103 |
+
add_prefix_space=False,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(
|
107 |
+
vocab_file,
|
108 |
+
merges_file,
|
109 |
+
tokenizer_file=tokenizer_file,
|
110 |
+
unk_token=unk_token,
|
111 |
+
bos_token=bos_token,
|
112 |
+
eos_token=eos_token,
|
113 |
+
pad_token=pad_token,
|
114 |
+
add_bos_token=add_bos_token,
|
115 |
+
add_eos_token=add_eos_token,
|
116 |
+
add_prefix_space=add_prefix_space,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
|
120 |
+
self._add_bos_token = add_bos_token
|
121 |
+
self._add_eos_token = add_eos_token
|
122 |
+
self.update_post_processor()
|
123 |
+
|
124 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
125 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
126 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
127 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
128 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
129 |
+
|
130 |
+
self.add_prefix_space = add_prefix_space
|
131 |
+
|
132 |
+
@property
|
133 |
+
def add_eos_token(self):
|
134 |
+
return self._add_eos_token
|
135 |
+
|
136 |
+
@property
|
137 |
+
def add_bos_token(self):
|
138 |
+
return self._add_bos_token
|
139 |
+
|
140 |
+
@add_eos_token.setter
|
141 |
+
def add_eos_token(self, value):
|
142 |
+
self._add_eos_token = value
|
143 |
+
self.update_post_processor()
|
144 |
+
|
145 |
+
@add_bos_token.setter
|
146 |
+
def add_bos_token(self, value):
|
147 |
+
self._add_bos_token = value
|
148 |
+
self.update_post_processor()
|
149 |
+
|
150 |
+
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
|
151 |
+
def update_post_processor(self):
|
152 |
+
"""
|
153 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
154 |
+
"""
|
155 |
+
bos = self.bos_token
|
156 |
+
bos_token_id = self.bos_token_id
|
157 |
+
if bos is None and self.add_bos_token:
|
158 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
159 |
+
|
160 |
+
eos = self.eos_token
|
161 |
+
eos_token_id = self.eos_token_id
|
162 |
+
if eos is None and self.add_eos_token:
|
163 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
164 |
+
|
165 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
166 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
167 |
+
|
168 |
+
special_tokens = []
|
169 |
+
if self.add_bos_token:
|
170 |
+
special_tokens.append((bos, bos_token_id))
|
171 |
+
if self.add_eos_token:
|
172 |
+
special_tokens.append((eos, eos_token_id))
|
173 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
174 |
+
single=single, pair=pair, special_tokens=special_tokens
|
175 |
+
)
|
176 |
+
|
177 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
|
178 |
+
def get_special_tokens_mask(
|
179 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
180 |
+
) -> List[int]:
|
181 |
+
"""
|
182 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
183 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
token_ids_0 (`List[int]`):
|
187 |
+
List of IDs.
|
188 |
+
token_ids_1 (`List[int]`, *optional*):
|
189 |
+
Optional second list of IDs for sequence pairs.
|
190 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
191 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
195 |
+
"""
|
196 |
+
if already_has_special_tokens:
|
197 |
+
return super().get_special_tokens_mask(
|
198 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
199 |
+
)
|
200 |
+
|
201 |
+
bos_token_id = [1] if self.add_bos_token else []
|
202 |
+
eos_token_id = [1] if self.add_eos_token else []
|
203 |
+
|
204 |
+
if token_ids_1 is None:
|
205 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
206 |
+
return (
|
207 |
+
bos_token_id
|
208 |
+
+ ([0] * len(token_ids_0))
|
209 |
+
+ eos_token_id
|
210 |
+
+ bos_token_id
|
211 |
+
+ ([0] * len(token_ids_1))
|
212 |
+
+ eos_token_id
|
213 |
+
)
|
214 |
+
|
215 |
+
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
|
216 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
217 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
218 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
219 |
+
|
220 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
221 |
+
|
222 |
+
if token_ids_1 is not None:
|
223 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
224 |
+
|
225 |
+
return output
|
226 |
+
|
227 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
228 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
229 |
+
return tuple(files)
|
230 |
+
|
231 |
+
@property
|
232 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
|
233 |
+
def default_chat_template(self):
|
234 |
+
"""
|
235 |
+
A simple chat template that ignores role information and just concatenates messages with EOS tokens.
|
236 |
+
"""
|
237 |
+
logger.warning_once(
|
238 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
239 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
240 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
241 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
242 |
+
)
|
243 |
+
return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_sentencepiece_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
is_vision_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {"processing_layoutxlm": ["LayoutXLMProcessor"]}
|
28 |
+
|
29 |
+
try:
|
30 |
+
if not is_sentencepiece_available():
|
31 |
+
raise OptionalDependencyNotAvailable()
|
32 |
+
except OptionalDependencyNotAvailable:
|
33 |
+
pass
|
34 |
+
else:
|
35 |
+
_import_structure["tokenization_layoutxlm"] = ["LayoutXLMTokenizer"]
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["tokenization_layoutxlm_fast"] = ["LayoutXLMTokenizerFast"]
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from .processing_layoutxlm import LayoutXLMProcessor
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_sentencepiece_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
from .tokenization_layoutxlm import LayoutXLMTokenizer
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_tokenizers_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
|
63 |
+
|
64 |
+
else:
|
65 |
+
import sys
|
66 |
+
|
67 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc
ADDED
Binary file (7.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc
ADDED
Binary file (39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for LayoutXLM.
|
17 |
+
"""
|
18 |
+
import warnings
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...processing_utils import ProcessorMixin
|
22 |
+
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
23 |
+
from ...utils import TensorType
|
24 |
+
|
25 |
+
|
26 |
+
class LayoutXLMProcessor(ProcessorMixin):
|
27 |
+
r"""
|
28 |
+
Constructs a LayoutXLM processor which combines a LayoutXLM image processor and a LayoutXLM tokenizer into a single
|
29 |
+
processor.
|
30 |
+
|
31 |
+
[`LayoutXLMProcessor`] offers all the functionalities you need to prepare data for the model.
|
32 |
+
|
33 |
+
It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to
|
34 |
+
get words and normalized bounding boxes. These are then provided to [`LayoutXLMTokenizer`] or
|
35 |
+
[`LayoutXLMTokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
|
36 |
+
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
|
37 |
+
into token-level `labels` for token classification tasks (such as FUNSD, CORD).
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_processor (`LayoutLMv2ImageProcessor`, *optional*):
|
41 |
+
An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input.
|
42 |
+
tokenizer (`LayoutXLMTokenizer` or `LayoutXLMTokenizerFast`, *optional*):
|
43 |
+
An instance of [`LayoutXLMTokenizer`] or [`LayoutXLMTokenizerFast`]. The tokenizer is a required input.
|
44 |
+
"""
|
45 |
+
|
46 |
+
attributes = ["image_processor", "tokenizer"]
|
47 |
+
image_processor_class = "LayoutLMv2ImageProcessor"
|
48 |
+
tokenizer_class = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
|
49 |
+
|
50 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
51 |
+
if "feature_extractor" in kwargs:
|
52 |
+
warnings.warn(
|
53 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
54 |
+
" instead.",
|
55 |
+
FutureWarning,
|
56 |
+
)
|
57 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
58 |
+
|
59 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
60 |
+
if image_processor is None:
|
61 |
+
raise ValueError("You need to specify an `image_processor`.")
|
62 |
+
if tokenizer is None:
|
63 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
64 |
+
|
65 |
+
super().__init__(image_processor, tokenizer)
|
66 |
+
|
67 |
+
def __call__(
|
68 |
+
self,
|
69 |
+
images,
|
70 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
71 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
72 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
73 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
74 |
+
add_special_tokens: bool = True,
|
75 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
76 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
77 |
+
max_length: Optional[int] = None,
|
78 |
+
stride: int = 0,
|
79 |
+
pad_to_multiple_of: Optional[int] = None,
|
80 |
+
return_token_type_ids: Optional[bool] = None,
|
81 |
+
return_attention_mask: Optional[bool] = None,
|
82 |
+
return_overflowing_tokens: bool = False,
|
83 |
+
return_special_tokens_mask: bool = False,
|
84 |
+
return_offsets_mapping: bool = False,
|
85 |
+
return_length: bool = False,
|
86 |
+
verbose: bool = True,
|
87 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
88 |
+
**kwargs,
|
89 |
+
) -> BatchEncoding:
|
90 |
+
"""
|
91 |
+
This method first forwards the `images` argument to [`~LayoutLMv2ImagePrpcessor.__call__`]. In case
|
92 |
+
[`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
|
93 |
+
bounding boxes along with the additional arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output,
|
94 |
+
together with resized `images`. In case [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to
|
95 |
+
`False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional
|
96 |
+
arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, together with resized `images``.
|
97 |
+
|
98 |
+
Please refer to the docstring of the above two methods for more information.
|
99 |
+
"""
|
100 |
+
# verify input
|
101 |
+
if self.image_processor.apply_ocr and (boxes is not None):
|
102 |
+
raise ValueError(
|
103 |
+
"You cannot provide bounding boxes "
|
104 |
+
"if you initialized the image processor with apply_ocr set to True."
|
105 |
+
)
|
106 |
+
|
107 |
+
if self.image_processor.apply_ocr and (word_labels is not None):
|
108 |
+
raise ValueError(
|
109 |
+
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
|
110 |
+
)
|
111 |
+
|
112 |
+
if return_overflowing_tokens is True and return_offsets_mapping is False:
|
113 |
+
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
|
114 |
+
|
115 |
+
# first, apply the image processor
|
116 |
+
features = self.image_processor(images=images, return_tensors=return_tensors)
|
117 |
+
|
118 |
+
# second, apply the tokenizer
|
119 |
+
if text is not None and self.image_processor.apply_ocr and text_pair is None:
|
120 |
+
if isinstance(text, str):
|
121 |
+
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
|
122 |
+
text_pair = features["words"]
|
123 |
+
|
124 |
+
encoded_inputs = self.tokenizer(
|
125 |
+
text=text if text is not None else features["words"],
|
126 |
+
text_pair=text_pair if text_pair is not None else None,
|
127 |
+
boxes=boxes if boxes is not None else features["boxes"],
|
128 |
+
word_labels=word_labels,
|
129 |
+
add_special_tokens=add_special_tokens,
|
130 |
+
padding=padding,
|
131 |
+
truncation=truncation,
|
132 |
+
max_length=max_length,
|
133 |
+
stride=stride,
|
134 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
135 |
+
return_token_type_ids=return_token_type_ids,
|
136 |
+
return_attention_mask=return_attention_mask,
|
137 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
138 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
139 |
+
return_offsets_mapping=return_offsets_mapping,
|
140 |
+
return_length=return_length,
|
141 |
+
verbose=verbose,
|
142 |
+
return_tensors=return_tensors,
|
143 |
+
**kwargs,
|
144 |
+
)
|
145 |
+
|
146 |
+
# add pixel values
|
147 |
+
images = features.pop("pixel_values")
|
148 |
+
if return_overflowing_tokens is True:
|
149 |
+
images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
|
150 |
+
encoded_inputs["image"] = images
|
151 |
+
|
152 |
+
return encoded_inputs
|
153 |
+
|
154 |
+
def get_overflowing_images(self, images, overflow_to_sample_mapping):
|
155 |
+
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
|
156 |
+
images_with_overflow = []
|
157 |
+
for sample_idx in overflow_to_sample_mapping:
|
158 |
+
images_with_overflow.append(images[sample_idx])
|
159 |
+
|
160 |
+
if len(images_with_overflow) != len(overflow_to_sample_mapping):
|
161 |
+
raise ValueError(
|
162 |
+
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
|
163 |
+
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
|
164 |
+
)
|
165 |
+
|
166 |
+
return images_with_overflow
|
167 |
+
|
168 |
+
def batch_decode(self, *args, **kwargs):
|
169 |
+
"""
|
170 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
171 |
+
refer to the docstring of this method for more information.
|
172 |
+
"""
|
173 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
174 |
+
|
175 |
+
def decode(self, *args, **kwargs):
|
176 |
+
"""
|
177 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
178 |
+
to the docstring of this method for more information.
|
179 |
+
"""
|
180 |
+
return self.tokenizer.decode(*args, **kwargs)
|
181 |
+
|
182 |
+
@property
|
183 |
+
def model_input_names(self):
|
184 |
+
return ["input_ids", "bbox", "attention_mask", "image"]
|
185 |
+
|
186 |
+
@property
|
187 |
+
def feature_extractor_class(self):
|
188 |
+
warnings.warn(
|
189 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
190 |
+
FutureWarning,
|
191 |
+
)
|
192 |
+
return self.image_processor_class
|
193 |
+
|
194 |
+
@property
|
195 |
+
def feature_extractor(self):
|
196 |
+
warnings.warn(
|
197 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
198 |
+
FutureWarning,
|
199 |
+
)
|
200 |
+
return self.image_processor
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py
ADDED
@@ -0,0 +1,1170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for LayoutXLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from ...tokenization_utils_base import (
|
26 |
+
BatchEncoding,
|
27 |
+
EncodedInput,
|
28 |
+
PreTokenizedInput,
|
29 |
+
TextInput,
|
30 |
+
TextInputPair,
|
31 |
+
TruncationStrategy,
|
32 |
+
)
|
33 |
+
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
|
34 |
+
from ..xlm_roberta.tokenization_xlm_roberta import (
|
35 |
+
SPIECE_UNDERLINE,
|
36 |
+
VOCAB_FILES_NAMES,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
|
44 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
45 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
46 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
47 |
+
Activates and controls padding. Accepts the following values:
|
48 |
+
|
49 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
50 |
+
sequence if provided).
|
51 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
52 |
+
acceptable input length for the model if that argument is not provided.
|
53 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
54 |
+
lengths).
|
55 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
56 |
+
Activates and controls truncation. Accepts the following values:
|
57 |
+
|
58 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
59 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
60 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
61 |
+
sequences (or a batch of pairs) is provided.
|
62 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
63 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
64 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
65 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
66 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
67 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
68 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
69 |
+
greater than the model maximum admissible input size).
|
70 |
+
max_length (`int`, *optional*):
|
71 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
72 |
+
|
73 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
74 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
75 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
76 |
+
stride (`int`, *optional*, defaults to 0):
|
77 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
78 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
79 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
80 |
+
argument defines the number of overlapping tokens.
|
81 |
+
pad_to_multiple_of (`int`, *optional*):
|
82 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
83 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
84 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
85 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
86 |
+
|
87 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
88 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
89 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
90 |
+
return_token_type_ids (`bool`, *optional*):
|
91 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
92 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
93 |
+
|
94 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
95 |
+
return_attention_mask (`bool`, *optional*):
|
96 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
97 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
98 |
+
|
99 |
+
[What are attention masks?](../glossary#attention-mask)
|
100 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
101 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
102 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
103 |
+
of returning overflowing tokens.
|
104 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
105 |
+
Whether or not to return special tokens mask information.
|
106 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
107 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
108 |
+
|
109 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
110 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
111 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
112 |
+
Whether or not to return the lengths of the encoded inputs.
|
113 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
114 |
+
Whether or not to print more information and warnings.
|
115 |
+
**kwargs: passed to the `self.tokenize()` method
|
116 |
+
|
117 |
+
Return:
|
118 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
119 |
+
|
120 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
121 |
+
|
122 |
+
[What are input IDs?](../glossary#input-ids)
|
123 |
+
|
124 |
+
- **bbox** -- List of bounding boxes to be fed to a model.
|
125 |
+
|
126 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
127 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
128 |
+
|
129 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
130 |
+
|
131 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
132 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
133 |
+
|
134 |
+
[What are attention masks?](../glossary#attention-mask)
|
135 |
+
|
136 |
+
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
|
137 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
138 |
+
`return_overflowing_tokens=True`).
|
139 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
140 |
+
`return_overflowing_tokens=True`).
|
141 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
142 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
143 |
+
- **length** -- The length of the inputs (when `return_length=True`).
|
144 |
+
"""
|
145 |
+
|
146 |
+
|
147 |
+
class LayoutXLMTokenizer(PreTrainedTokenizer):
|
148 |
+
"""
|
149 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
150 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
151 |
+
|
152 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
153 |
+
this superclass for more information regarding those methods.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
vocab_file (`str`):
|
157 |
+
Path to the vocabulary file.
|
158 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
159 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
160 |
+
|
161 |
+
<Tip>
|
162 |
+
|
163 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
164 |
+
sequence. The token used is the `cls_token`.
|
165 |
+
|
166 |
+
</Tip>
|
167 |
+
|
168 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
169 |
+
The end of sequence token.
|
170 |
+
|
171 |
+
<Tip>
|
172 |
+
|
173 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
174 |
+
The token used is the `sep_token`.
|
175 |
+
|
176 |
+
</Tip>
|
177 |
+
|
178 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
179 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
180 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
181 |
+
token of a sequence built with special tokens.
|
182 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
183 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
184 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
185 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
186 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
187 |
+
token instead.
|
188 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
189 |
+
The token used for padding, for example when batching sequences of different lengths.
|
190 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
191 |
+
The token used for masking values. This is the token used when training this model with masked language
|
192 |
+
modeling. This is the token which the model will try to predict.
|
193 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
194 |
+
The bounding box to use for the special [CLS] token.
|
195 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
|
196 |
+
The bounding box to use for the special [SEP] token.
|
197 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
198 |
+
The bounding box to use for the special [PAD] token.
|
199 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
200 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
201 |
+
CrossEntropyLoss.
|
202 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
203 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
204 |
+
sp_model_kwargs (`dict`, *optional*):
|
205 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
206 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
207 |
+
to set:
|
208 |
+
|
209 |
+
- `enable_sampling`: Enable subword regularization.
|
210 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
211 |
+
|
212 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
213 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
214 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
215 |
+
using forward-filtering-and-backward-sampling algorithm.
|
216 |
+
|
217 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
218 |
+
BPE-dropout.
|
219 |
+
|
220 |
+
Attributes:
|
221 |
+
sp_model (`SentencePieceProcessor`):
|
222 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
223 |
+
"""
|
224 |
+
|
225 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
226 |
+
model_input_names = ["input_ids", "attention_mask"]
|
227 |
+
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
vocab_file,
|
231 |
+
bos_token="<s>",
|
232 |
+
eos_token="</s>",
|
233 |
+
sep_token="</s>",
|
234 |
+
cls_token="<s>",
|
235 |
+
unk_token="<unk>",
|
236 |
+
pad_token="<pad>",
|
237 |
+
mask_token="<mask>",
|
238 |
+
cls_token_box=[0, 0, 0, 0],
|
239 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
240 |
+
pad_token_box=[0, 0, 0, 0],
|
241 |
+
pad_token_label=-100,
|
242 |
+
only_label_first_subword=True,
|
243 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
244 |
+
**kwargs,
|
245 |
+
) -> None:
|
246 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
247 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
248 |
+
|
249 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
250 |
+
|
251 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
252 |
+
self.sp_model.Load(str(vocab_file))
|
253 |
+
self.vocab_file = vocab_file
|
254 |
+
|
255 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
256 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
257 |
+
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
|
258 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
|
259 |
+
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
|
260 |
+
|
261 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
262 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
263 |
+
|
264 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
265 |
+
self.fairseq_offset = 1
|
266 |
+
|
267 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
|
268 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
269 |
+
|
270 |
+
# additional properties
|
271 |
+
self.cls_token_box = cls_token_box
|
272 |
+
self.sep_token_box = sep_token_box
|
273 |
+
self.pad_token_box = pad_token_box
|
274 |
+
self.pad_token_label = pad_token_label
|
275 |
+
self.only_label_first_subword = only_label_first_subword
|
276 |
+
|
277 |
+
super().__init__(
|
278 |
+
bos_token=bos_token,
|
279 |
+
eos_token=eos_token,
|
280 |
+
unk_token=unk_token,
|
281 |
+
sep_token=sep_token,
|
282 |
+
cls_token=cls_token,
|
283 |
+
pad_token=pad_token,
|
284 |
+
mask_token=mask_token,
|
285 |
+
cls_token_box=cls_token_box,
|
286 |
+
sep_token_box=sep_token_box,
|
287 |
+
pad_token_box=pad_token_box,
|
288 |
+
pad_token_label=pad_token_label,
|
289 |
+
only_label_first_subword=only_label_first_subword,
|
290 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
291 |
+
**kwargs,
|
292 |
+
)
|
293 |
+
|
294 |
+
def __getstate__(self):
|
295 |
+
state = self.__dict__.copy()
|
296 |
+
state["sp_model"] = None
|
297 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
298 |
+
return state
|
299 |
+
|
300 |
+
def __setstate__(self, d):
|
301 |
+
self.__dict__ = d
|
302 |
+
|
303 |
+
# for backward compatibility
|
304 |
+
if not hasattr(self, "sp_model_kwargs"):
|
305 |
+
self.sp_model_kwargs = {}
|
306 |
+
|
307 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
308 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
309 |
+
|
310 |
+
def build_inputs_with_special_tokens(
|
311 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
312 |
+
) -> List[int]:
|
313 |
+
"""
|
314 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
315 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
316 |
+
|
317 |
+
- single sequence: `<s> X </s>`
|
318 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
319 |
+
|
320 |
+
Args:
|
321 |
+
token_ids_0 (`List[int]`):
|
322 |
+
List of IDs to which the special tokens will be added.
|
323 |
+
token_ids_1 (`List[int]`, *optional*):
|
324 |
+
Optional second list of IDs for sequence pairs.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
328 |
+
"""
|
329 |
+
|
330 |
+
if token_ids_1 is None:
|
331 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
332 |
+
cls = [self.cls_token_id]
|
333 |
+
sep = [self.sep_token_id]
|
334 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
335 |
+
|
336 |
+
def get_special_tokens_mask(
|
337 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
338 |
+
) -> List[int]:
|
339 |
+
"""
|
340 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
341 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
token_ids_0 (`List[int]`):
|
345 |
+
List of IDs.
|
346 |
+
token_ids_1 (`List[int]`, *optional*):
|
347 |
+
Optional second list of IDs for sequence pairs.
|
348 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
349 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
353 |
+
"""
|
354 |
+
|
355 |
+
if already_has_special_tokens:
|
356 |
+
return super().get_special_tokens_mask(
|
357 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
358 |
+
)
|
359 |
+
|
360 |
+
if token_ids_1 is None:
|
361 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
362 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
363 |
+
|
364 |
+
def create_token_type_ids_from_sequences(
|
365 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
366 |
+
) -> List[int]:
|
367 |
+
"""
|
368 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
369 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
token_ids_0 (`List[int]`):
|
373 |
+
List of IDs.
|
374 |
+
token_ids_1 (`List[int]`, *optional*):
|
375 |
+
Optional second list of IDs for sequence pairs.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
`List[int]`: List of zeros.
|
379 |
+
|
380 |
+
"""
|
381 |
+
|
382 |
+
sep = [self.sep_token_id]
|
383 |
+
cls = [self.cls_token_id]
|
384 |
+
|
385 |
+
if token_ids_1 is None:
|
386 |
+
return len(cls + token_ids_0 + sep) * [0]
|
387 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
388 |
+
|
389 |
+
@property
|
390 |
+
def vocab_size(self):
|
391 |
+
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
|
392 |
+
|
393 |
+
def get_vocab(self):
|
394 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
395 |
+
vocab.update(self.added_tokens_encoder)
|
396 |
+
return vocab
|
397 |
+
|
398 |
+
def _tokenize(self, text: str) -> List[str]:
|
399 |
+
return self.sp_model.encode(text, out_type=str)
|
400 |
+
|
401 |
+
def _convert_token_to_id(self, token):
|
402 |
+
"""Converts a token (str) in an id using the vocab."""
|
403 |
+
if token in self.fairseq_tokens_to_ids:
|
404 |
+
return self.fairseq_tokens_to_ids[token]
|
405 |
+
spm_id = self.sp_model.PieceToId(token)
|
406 |
+
|
407 |
+
# Need to return unknown token if the SP model returned 0
|
408 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
409 |
+
|
410 |
+
def _convert_id_to_token(self, index):
|
411 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
412 |
+
if index in self.fairseq_ids_to_tokens:
|
413 |
+
return self.fairseq_ids_to_tokens[index]
|
414 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
415 |
+
|
416 |
+
def convert_tokens_to_string(self, tokens):
|
417 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
418 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
419 |
+
return out_string
|
420 |
+
|
421 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
422 |
+
if not os.path.isdir(save_directory):
|
423 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
424 |
+
return
|
425 |
+
out_vocab_file = os.path.join(
|
426 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
427 |
+
)
|
428 |
+
|
429 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
430 |
+
copyfile(self.vocab_file, out_vocab_file)
|
431 |
+
elif not os.path.isfile(self.vocab_file):
|
432 |
+
with open(out_vocab_file, "wb") as fi:
|
433 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
434 |
+
fi.write(content_spiece_model)
|
435 |
+
|
436 |
+
return (out_vocab_file,)
|
437 |
+
|
438 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
439 |
+
def __call__(
|
440 |
+
self,
|
441 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
442 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
443 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
444 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
445 |
+
add_special_tokens: bool = True,
|
446 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
447 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
448 |
+
max_length: Optional[int] = None,
|
449 |
+
stride: int = 0,
|
450 |
+
pad_to_multiple_of: Optional[int] = None,
|
451 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
452 |
+
return_token_type_ids: Optional[bool] = None,
|
453 |
+
return_attention_mask: Optional[bool] = None,
|
454 |
+
return_overflowing_tokens: bool = False,
|
455 |
+
return_special_tokens_mask: bool = False,
|
456 |
+
return_offsets_mapping: bool = False,
|
457 |
+
return_length: bool = False,
|
458 |
+
verbose: bool = True,
|
459 |
+
**kwargs,
|
460 |
+
) -> BatchEncoding:
|
461 |
+
"""
|
462 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
463 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
467 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
468 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
469 |
+
words).
|
470 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
471 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
472 |
+
(pretokenized string).
|
473 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
474 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
475 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
476 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
477 |
+
"""
|
478 |
+
|
479 |
+
# Input type checking for clearer error
|
480 |
+
def _is_valid_text_input(t):
|
481 |
+
if isinstance(t, str):
|
482 |
+
# Strings are fine
|
483 |
+
return True
|
484 |
+
elif isinstance(t, (list, tuple)):
|
485 |
+
# List are fine as long as they are...
|
486 |
+
if len(t) == 0:
|
487 |
+
# ... empty
|
488 |
+
return True
|
489 |
+
elif isinstance(t[0], str):
|
490 |
+
# ... list of strings
|
491 |
+
return True
|
492 |
+
elif isinstance(t[0], (list, tuple)):
|
493 |
+
# ... list with an empty list or with a list of strings
|
494 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
495 |
+
else:
|
496 |
+
return False
|
497 |
+
else:
|
498 |
+
return False
|
499 |
+
|
500 |
+
if text_pair is not None:
|
501 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
502 |
+
if not _is_valid_text_input(text):
|
503 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
504 |
+
if not isinstance(text_pair, (list, tuple)):
|
505 |
+
raise ValueError(
|
506 |
+
"words must of type `List[str]` (single pretokenized example), "
|
507 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
508 |
+
)
|
509 |
+
else:
|
510 |
+
# in case only text is provided => must be words
|
511 |
+
if not isinstance(text, (list, tuple)):
|
512 |
+
raise ValueError(
|
513 |
+
"Words must of type `List[str]` (single pretokenized example), "
|
514 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
515 |
+
)
|
516 |
+
|
517 |
+
if text_pair is not None:
|
518 |
+
is_batched = isinstance(text, (list, tuple))
|
519 |
+
else:
|
520 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
521 |
+
|
522 |
+
words = text if text_pair is None else text_pair
|
523 |
+
if boxes is None:
|
524 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
525 |
+
if is_batched:
|
526 |
+
if len(words) != len(boxes):
|
527 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
528 |
+
for words_example, boxes_example in zip(words, boxes):
|
529 |
+
if len(words_example) != len(boxes_example):
|
530 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
531 |
+
else:
|
532 |
+
if len(words) != len(boxes):
|
533 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
534 |
+
|
535 |
+
if is_batched:
|
536 |
+
if text_pair is not None and len(text) != len(text_pair):
|
537 |
+
raise ValueError(
|
538 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
539 |
+
f" {len(text_pair)}."
|
540 |
+
)
|
541 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
542 |
+
is_pair = bool(text_pair is not None)
|
543 |
+
return self.batch_encode_plus(
|
544 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
545 |
+
is_pair=is_pair,
|
546 |
+
boxes=boxes,
|
547 |
+
word_labels=word_labels,
|
548 |
+
add_special_tokens=add_special_tokens,
|
549 |
+
padding=padding,
|
550 |
+
truncation=truncation,
|
551 |
+
max_length=max_length,
|
552 |
+
stride=stride,
|
553 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
554 |
+
return_tensors=return_tensors,
|
555 |
+
return_token_type_ids=return_token_type_ids,
|
556 |
+
return_attention_mask=return_attention_mask,
|
557 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
558 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
559 |
+
return_offsets_mapping=return_offsets_mapping,
|
560 |
+
return_length=return_length,
|
561 |
+
verbose=verbose,
|
562 |
+
**kwargs,
|
563 |
+
)
|
564 |
+
else:
|
565 |
+
return self.encode_plus(
|
566 |
+
text=text,
|
567 |
+
text_pair=text_pair,
|
568 |
+
boxes=boxes,
|
569 |
+
word_labels=word_labels,
|
570 |
+
add_special_tokens=add_special_tokens,
|
571 |
+
padding=padding,
|
572 |
+
truncation=truncation,
|
573 |
+
max_length=max_length,
|
574 |
+
stride=stride,
|
575 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
576 |
+
return_tensors=return_tensors,
|
577 |
+
return_token_type_ids=return_token_type_ids,
|
578 |
+
return_attention_mask=return_attention_mask,
|
579 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
580 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
581 |
+
return_offsets_mapping=return_offsets_mapping,
|
582 |
+
return_length=return_length,
|
583 |
+
verbose=verbose,
|
584 |
+
**kwargs,
|
585 |
+
)
|
586 |
+
|
587 |
+
def _batch_encode_plus(
|
588 |
+
self,
|
589 |
+
batch_text_or_text_pairs: Union[
|
590 |
+
List[TextInput],
|
591 |
+
List[TextInputPair],
|
592 |
+
List[PreTokenizedInput],
|
593 |
+
],
|
594 |
+
is_pair: bool = None,
|
595 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
596 |
+
word_labels: Optional[List[List[int]]] = None,
|
597 |
+
add_special_tokens: bool = True,
|
598 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
599 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
600 |
+
max_length: Optional[int] = None,
|
601 |
+
stride: int = 0,
|
602 |
+
pad_to_multiple_of: Optional[int] = None,
|
603 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
604 |
+
return_token_type_ids: Optional[bool] = None,
|
605 |
+
return_attention_mask: Optional[bool] = None,
|
606 |
+
return_overflowing_tokens: bool = False,
|
607 |
+
return_special_tokens_mask: bool = False,
|
608 |
+
return_offsets_mapping: bool = False,
|
609 |
+
return_length: bool = False,
|
610 |
+
verbose: bool = True,
|
611 |
+
**kwargs,
|
612 |
+
) -> BatchEncoding:
|
613 |
+
if return_offsets_mapping:
|
614 |
+
raise NotImplementedError(
|
615 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
616 |
+
"To use this feature, change your tokenizer to one deriving from "
|
617 |
+
"transformers.PreTrainedTokenizerFast."
|
618 |
+
)
|
619 |
+
|
620 |
+
batch_outputs = self._batch_prepare_for_model(
|
621 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
622 |
+
is_pair=is_pair,
|
623 |
+
boxes=boxes,
|
624 |
+
word_labels=word_labels,
|
625 |
+
add_special_tokens=add_special_tokens,
|
626 |
+
padding_strategy=padding_strategy,
|
627 |
+
truncation_strategy=truncation_strategy,
|
628 |
+
max_length=max_length,
|
629 |
+
stride=stride,
|
630 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
631 |
+
return_attention_mask=return_attention_mask,
|
632 |
+
return_token_type_ids=return_token_type_ids,
|
633 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
634 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
635 |
+
return_length=return_length,
|
636 |
+
return_tensors=return_tensors,
|
637 |
+
verbose=verbose,
|
638 |
+
)
|
639 |
+
|
640 |
+
return BatchEncoding(batch_outputs)
|
641 |
+
|
642 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
643 |
+
def _batch_prepare_for_model(
|
644 |
+
self,
|
645 |
+
batch_text_or_text_pairs,
|
646 |
+
is_pair: bool = None,
|
647 |
+
boxes: Optional[List[List[int]]] = None,
|
648 |
+
word_labels: Optional[List[List[int]]] = None,
|
649 |
+
add_special_tokens: bool = True,
|
650 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
651 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
652 |
+
max_length: Optional[int] = None,
|
653 |
+
stride: int = 0,
|
654 |
+
pad_to_multiple_of: Optional[int] = None,
|
655 |
+
return_tensors: Optional[str] = None,
|
656 |
+
return_token_type_ids: Optional[bool] = None,
|
657 |
+
return_attention_mask: Optional[bool] = None,
|
658 |
+
return_overflowing_tokens: bool = False,
|
659 |
+
return_special_tokens_mask: bool = False,
|
660 |
+
return_length: bool = False,
|
661 |
+
verbose: bool = True,
|
662 |
+
) -> BatchEncoding:
|
663 |
+
"""
|
664 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
665 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
666 |
+
manages a moving window (with user defined stride) for overflowing tokens
|
667 |
+
|
668 |
+
Args:
|
669 |
+
batch_ids_pairs: list of tokenized input ids or input ids pairs
|
670 |
+
"""
|
671 |
+
|
672 |
+
batch_outputs = {}
|
673 |
+
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
|
674 |
+
batch_text_or_text_pair, boxes_example = example
|
675 |
+
outputs = self.prepare_for_model(
|
676 |
+
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
|
677 |
+
batch_text_or_text_pair[1] if is_pair else None,
|
678 |
+
boxes_example,
|
679 |
+
word_labels=word_labels[idx] if word_labels is not None else None,
|
680 |
+
add_special_tokens=add_special_tokens,
|
681 |
+
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
|
682 |
+
truncation=truncation_strategy.value,
|
683 |
+
max_length=max_length,
|
684 |
+
stride=stride,
|
685 |
+
pad_to_multiple_of=None, # we pad in batch afterward
|
686 |
+
return_attention_mask=False, # we pad in batch afterward
|
687 |
+
return_token_type_ids=return_token_type_ids,
|
688 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
689 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
690 |
+
return_length=return_length,
|
691 |
+
return_tensors=None, # We convert the whole batch to tensors at the end
|
692 |
+
prepend_batch_axis=False,
|
693 |
+
verbose=verbose,
|
694 |
+
)
|
695 |
+
|
696 |
+
for key, value in outputs.items():
|
697 |
+
if key not in batch_outputs:
|
698 |
+
batch_outputs[key] = []
|
699 |
+
batch_outputs[key].append(value)
|
700 |
+
|
701 |
+
batch_outputs = self.pad(
|
702 |
+
batch_outputs,
|
703 |
+
padding=padding_strategy.value,
|
704 |
+
max_length=max_length,
|
705 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
706 |
+
return_attention_mask=return_attention_mask,
|
707 |
+
)
|
708 |
+
|
709 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
710 |
+
|
711 |
+
return batch_outputs
|
712 |
+
|
713 |
+
def _encode_plus(
|
714 |
+
self,
|
715 |
+
text: Union[TextInput, PreTokenizedInput],
|
716 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
717 |
+
boxes: Optional[List[List[int]]] = None,
|
718 |
+
word_labels: Optional[List[int]] = None,
|
719 |
+
add_special_tokens: bool = True,
|
720 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
721 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
722 |
+
max_length: Optional[int] = None,
|
723 |
+
stride: int = 0,
|
724 |
+
pad_to_multiple_of: Optional[int] = None,
|
725 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
726 |
+
return_token_type_ids: Optional[bool] = None,
|
727 |
+
return_attention_mask: Optional[bool] = None,
|
728 |
+
return_overflowing_tokens: bool = False,
|
729 |
+
return_special_tokens_mask: bool = False,
|
730 |
+
return_offsets_mapping: bool = False,
|
731 |
+
return_length: bool = False,
|
732 |
+
verbose: bool = True,
|
733 |
+
**kwargs,
|
734 |
+
) -> BatchEncoding:
|
735 |
+
if return_offsets_mapping:
|
736 |
+
raise NotImplementedError(
|
737 |
+
"return_offset_mapping is not available when using Python tokenizers. "
|
738 |
+
"To use this feature, change your tokenizer to one deriving from "
|
739 |
+
"transformers.PreTrainedTokenizerFast. "
|
740 |
+
"More information on available tokenizers at "
|
741 |
+
"https://github.com/huggingface/transformers/pull/2674"
|
742 |
+
)
|
743 |
+
|
744 |
+
return self.prepare_for_model(
|
745 |
+
text=text,
|
746 |
+
text_pair=text_pair,
|
747 |
+
boxes=boxes,
|
748 |
+
word_labels=word_labels,
|
749 |
+
add_special_tokens=add_special_tokens,
|
750 |
+
padding=padding_strategy.value,
|
751 |
+
truncation=truncation_strategy.value,
|
752 |
+
max_length=max_length,
|
753 |
+
stride=stride,
|
754 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
755 |
+
return_tensors=return_tensors,
|
756 |
+
prepend_batch_axis=True,
|
757 |
+
return_attention_mask=return_attention_mask,
|
758 |
+
return_token_type_ids=return_token_type_ids,
|
759 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
760 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
761 |
+
return_length=return_length,
|
762 |
+
verbose=verbose,
|
763 |
+
)
|
764 |
+
|
765 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
766 |
+
def prepare_for_model(
|
767 |
+
self,
|
768 |
+
text: Union[TextInput, PreTokenizedInput],
|
769 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
770 |
+
boxes: Optional[List[List[int]]] = None,
|
771 |
+
word_labels: Optional[List[int]] = None,
|
772 |
+
add_special_tokens: bool = True,
|
773 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
774 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
775 |
+
max_length: Optional[int] = None,
|
776 |
+
stride: int = 0,
|
777 |
+
pad_to_multiple_of: Optional[int] = None,
|
778 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
779 |
+
return_token_type_ids: Optional[bool] = None,
|
780 |
+
return_attention_mask: Optional[bool] = None,
|
781 |
+
return_overflowing_tokens: bool = False,
|
782 |
+
return_special_tokens_mask: bool = False,
|
783 |
+
return_offsets_mapping: bool = False,
|
784 |
+
return_length: bool = False,
|
785 |
+
verbose: bool = True,
|
786 |
+
prepend_batch_axis: bool = False,
|
787 |
+
**kwargs,
|
788 |
+
) -> BatchEncoding:
|
789 |
+
"""
|
790 |
+
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
|
791 |
+
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
|
792 |
+
(with user defined stride) for overflowing tokens.
|
793 |
+
|
794 |
+
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
|
795 |
+
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
|
796 |
+
labeled with -100, such that they will be ignored by the loss function.
|
797 |
+
|
798 |
+
Args:
|
799 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
800 |
+
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
|
801 |
+
text_pair (`List[str]` or `List[int]`, *optional*):
|
802 |
+
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
|
803 |
+
list of list of strings (words of a batch of examples).
|
804 |
+
"""
|
805 |
+
|
806 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
807 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
808 |
+
padding=padding,
|
809 |
+
truncation=truncation,
|
810 |
+
max_length=max_length,
|
811 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
812 |
+
verbose=verbose,
|
813 |
+
**kwargs,
|
814 |
+
)
|
815 |
+
|
816 |
+
tokens = []
|
817 |
+
pair_tokens = []
|
818 |
+
token_boxes = []
|
819 |
+
pair_token_boxes = []
|
820 |
+
labels = []
|
821 |
+
|
822 |
+
if text_pair is None:
|
823 |
+
if word_labels is None:
|
824 |
+
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
|
825 |
+
for word, box in zip(text, boxes):
|
826 |
+
if len(word) < 1: # skip empty words
|
827 |
+
continue
|
828 |
+
word_tokens = self.tokenize(word)
|
829 |
+
tokens.extend(word_tokens)
|
830 |
+
token_boxes.extend([box] * len(word_tokens))
|
831 |
+
else:
|
832 |
+
# CASE 2: token classification (training)
|
833 |
+
for word, box, label in zip(text, boxes, word_labels):
|
834 |
+
if len(word) < 1: # skip empty words
|
835 |
+
continue
|
836 |
+
word_tokens = self.tokenize(word)
|
837 |
+
tokens.extend(word_tokens)
|
838 |
+
token_boxes.extend([box] * len(word_tokens))
|
839 |
+
if self.only_label_first_subword:
|
840 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
841 |
+
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
|
842 |
+
else:
|
843 |
+
labels.extend([label] * len(word_tokens))
|
844 |
+
else:
|
845 |
+
# CASE 3: document visual question answering (inference)
|
846 |
+
# text = question
|
847 |
+
# text_pair = words
|
848 |
+
tokens = self.tokenize(text)
|
849 |
+
token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box]
|
850 |
+
|
851 |
+
for word, box in zip(text_pair, boxes):
|
852 |
+
if len(word) < 1: # skip empty words
|
853 |
+
continue
|
854 |
+
word_tokens = self.tokenize(word)
|
855 |
+
pair_tokens.extend(word_tokens)
|
856 |
+
pair_token_boxes.extend([box] * len(word_tokens))
|
857 |
+
|
858 |
+
# Create ids + pair_ids
|
859 |
+
ids = self.convert_tokens_to_ids(tokens)
|
860 |
+
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
|
861 |
+
|
862 |
+
# Compute the total size of the returned encodings
|
863 |
+
pair = bool(pair_ids is not None)
|
864 |
+
len_ids = len(ids)
|
865 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
866 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
867 |
+
|
868 |
+
# Truncation: Handle max sequence length
|
869 |
+
overflowing_tokens = []
|
870 |
+
overflowing_token_boxes = []
|
871 |
+
overflowing_labels = []
|
872 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
873 |
+
(
|
874 |
+
ids,
|
875 |
+
token_boxes,
|
876 |
+
pair_ids,
|
877 |
+
pair_token_boxes,
|
878 |
+
labels,
|
879 |
+
overflowing_tokens,
|
880 |
+
overflowing_token_boxes,
|
881 |
+
overflowing_labels,
|
882 |
+
) = self.truncate_sequences(
|
883 |
+
ids,
|
884 |
+
token_boxes,
|
885 |
+
pair_ids=pair_ids,
|
886 |
+
pair_token_boxes=pair_token_boxes,
|
887 |
+
labels=labels,
|
888 |
+
num_tokens_to_remove=total_len - max_length,
|
889 |
+
truncation_strategy=truncation_strategy,
|
890 |
+
stride=stride,
|
891 |
+
)
|
892 |
+
|
893 |
+
if return_token_type_ids and not add_special_tokens:
|
894 |
+
raise ValueError(
|
895 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
896 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
897 |
+
"set return_token_type_ids to None."
|
898 |
+
)
|
899 |
+
|
900 |
+
# Load from model defaults
|
901 |
+
if return_token_type_ids is None:
|
902 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
903 |
+
if return_attention_mask is None:
|
904 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
905 |
+
|
906 |
+
encoded_inputs = {}
|
907 |
+
|
908 |
+
if return_overflowing_tokens:
|
909 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
910 |
+
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
|
911 |
+
encoded_inputs["overflowing_labels"] = overflowing_labels
|
912 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
913 |
+
|
914 |
+
# Add special tokens
|
915 |
+
if add_special_tokens:
|
916 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
917 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
918 |
+
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
|
919 |
+
if pair_token_boxes:
|
920 |
+
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
|
921 |
+
if labels:
|
922 |
+
labels = [self.pad_token_label] + labels + [self.pad_token_label]
|
923 |
+
else:
|
924 |
+
sequence = ids + pair_ids if pair else ids
|
925 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
926 |
+
|
927 |
+
# Build output dictionary
|
928 |
+
encoded_inputs["input_ids"] = sequence
|
929 |
+
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
|
930 |
+
if return_token_type_ids:
|
931 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
932 |
+
if return_special_tokens_mask:
|
933 |
+
if add_special_tokens:
|
934 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
935 |
+
else:
|
936 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
937 |
+
|
938 |
+
if labels:
|
939 |
+
encoded_inputs["labels"] = labels
|
940 |
+
|
941 |
+
# Check lengths
|
942 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
943 |
+
|
944 |
+
# Padding
|
945 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
946 |
+
encoded_inputs = self.pad(
|
947 |
+
encoded_inputs,
|
948 |
+
max_length=max_length,
|
949 |
+
padding=padding_strategy.value,
|
950 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
951 |
+
return_attention_mask=return_attention_mask,
|
952 |
+
)
|
953 |
+
|
954 |
+
if return_length:
|
955 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
956 |
+
|
957 |
+
batch_outputs = BatchEncoding(
|
958 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
959 |
+
)
|
960 |
+
|
961 |
+
return batch_outputs
|
962 |
+
|
963 |
+
def truncate_sequences(
|
964 |
+
self,
|
965 |
+
ids: List[int],
|
966 |
+
token_boxes: List[List[int]],
|
967 |
+
pair_ids: Optional[List[int]] = None,
|
968 |
+
pair_token_boxes: Optional[List[List[int]]] = None,
|
969 |
+
labels: Optional[List[int]] = None,
|
970 |
+
num_tokens_to_remove: int = 0,
|
971 |
+
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
|
972 |
+
stride: int = 0,
|
973 |
+
) -> Tuple[List[int], List[int], List[int]]:
|
974 |
+
"""
|
975 |
+
Truncates a sequence pair in-place following the strategy.
|
976 |
+
|
977 |
+
Args:
|
978 |
+
ids (`List[int]`):
|
979 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
980 |
+
`convert_tokens_to_ids` methods.
|
981 |
+
token_boxes (`List[List[int]]`):
|
982 |
+
Bounding boxes of the first sequence.
|
983 |
+
pair_ids (`List[int]`, *optional*):
|
984 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
985 |
+
and `convert_tokens_to_ids` methods.
|
986 |
+
pair_token_boxes (`List[List[int]]`, *optional*):
|
987 |
+
Bounding boxes of the second sequence.
|
988 |
+
labels (`List[int]`, *optional*):
|
989 |
+
Labels of the first sequence (for token classification tasks).
|
990 |
+
num_tokens_to_remove (`int`, *optional*, defaults to 0):
|
991 |
+
Number of tokens to remove using the truncation strategy.
|
992 |
+
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
993 |
+
The strategy to follow for truncation. Can be:
|
994 |
+
|
995 |
+
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
996 |
+
maximum acceptable input length for the model if that argument is not provided. This will truncate
|
997 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
|
998 |
+
batch of pairs) is provided.
|
999 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1000 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1001 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1002 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
1003 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
1004 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
1005 |
+
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
|
1006 |
+
than the model maximum admissible input size).
|
1007 |
+
stride (`int`, *optional*, defaults to 0):
|
1008 |
+
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
|
1009 |
+
sequence returned. The value of this argument defines the number of additional tokens.
|
1010 |
+
|
1011 |
+
Returns:
|
1012 |
+
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
|
1013 |
+
overflowing tokens.
|
1014 |
+
"""
|
1015 |
+
if num_tokens_to_remove <= 0:
|
1016 |
+
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
|
1017 |
+
|
1018 |
+
if not isinstance(truncation_strategy, TruncationStrategy):
|
1019 |
+
truncation_strategy = TruncationStrategy(truncation_strategy)
|
1020 |
+
|
1021 |
+
overflowing_tokens = []
|
1022 |
+
overflowing_token_boxes = []
|
1023 |
+
overflowing_labels = []
|
1024 |
+
if truncation_strategy == TruncationStrategy.LONGEST_FIRST:
|
1025 |
+
for _ in range(num_tokens_to_remove):
|
1026 |
+
if pair_ids is None or len(ids) > len(pair_ids):
|
1027 |
+
if not overflowing_tokens:
|
1028 |
+
window_len = min(len(ids), stride + 1)
|
1029 |
+
else:
|
1030 |
+
window_len = 1
|
1031 |
+
overflowing_tokens.extend(ids[-window_len:])
|
1032 |
+
overflowing_token_boxes.extend(token_boxes[-window_len:])
|
1033 |
+
overflowing_labels.extend(labels[-window_len:])
|
1034 |
+
ids = ids[:-1]
|
1035 |
+
token_boxes = token_boxes[:-1]
|
1036 |
+
labels = labels[:-1]
|
1037 |
+
else:
|
1038 |
+
if not overflowing_tokens:
|
1039 |
+
window_len = min(len(pair_ids), stride + 1)
|
1040 |
+
else:
|
1041 |
+
window_len = 1
|
1042 |
+
overflowing_tokens.extend(pair_ids[-window_len:])
|
1043 |
+
overflowing_token_boxes.extend(pair_token_boxes[-window_len:])
|
1044 |
+
pair_ids = pair_ids[:-1]
|
1045 |
+
pair_token_boxes = pair_token_boxes[:-1]
|
1046 |
+
elif truncation_strategy == TruncationStrategy.ONLY_FIRST:
|
1047 |
+
if len(ids) > num_tokens_to_remove:
|
1048 |
+
window_len = min(len(ids), stride + num_tokens_to_remove)
|
1049 |
+
overflowing_tokens = ids[-window_len:]
|
1050 |
+
overflowing_token_boxes = token_boxes[-window_len:]
|
1051 |
+
overflowing_labels = labels[-window_len:]
|
1052 |
+
ids = ids[:-num_tokens_to_remove]
|
1053 |
+
token_boxes = token_boxes[:-num_tokens_to_remove]
|
1054 |
+
labels = labels[:-num_tokens_to_remove]
|
1055 |
+
else:
|
1056 |
+
logger.error(
|
1057 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1058 |
+
f"but the first sequence has a length {len(ids)}. "
|
1059 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1060 |
+
"for instance 'longest_first' or 'only_second'."
|
1061 |
+
)
|
1062 |
+
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
|
1063 |
+
if len(pair_ids) > num_tokens_to_remove:
|
1064 |
+
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
|
1065 |
+
overflowing_tokens = pair_ids[-window_len:]
|
1066 |
+
overflowing_token_boxes = pair_token_boxes[-window_len:]
|
1067 |
+
pair_ids = pair_ids[:-num_tokens_to_remove]
|
1068 |
+
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
|
1069 |
+
else:
|
1070 |
+
logger.error(
|
1071 |
+
f"We need to remove {num_tokens_to_remove} to truncate the input "
|
1072 |
+
f"but the second sequence has a length {len(pair_ids)}. "
|
1073 |
+
f"Please select another truncation strategy than {truncation_strategy}, "
|
1074 |
+
"for instance 'longest_first' or 'only_first'."
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
return (
|
1078 |
+
ids,
|
1079 |
+
token_boxes,
|
1080 |
+
pair_ids,
|
1081 |
+
pair_token_boxes,
|
1082 |
+
labels,
|
1083 |
+
overflowing_tokens,
|
1084 |
+
overflowing_token_boxes,
|
1085 |
+
overflowing_labels,
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
def _pad(
|
1089 |
+
self,
|
1090 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
1091 |
+
max_length: Optional[int] = None,
|
1092 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
1093 |
+
pad_to_multiple_of: Optional[int] = None,
|
1094 |
+
return_attention_mask: Optional[bool] = None,
|
1095 |
+
) -> dict:
|
1096 |
+
"""
|
1097 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
1098 |
+
|
1099 |
+
Args:
|
1100 |
+
encoded_inputs:
|
1101 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
1102 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
1103 |
+
Will truncate by taking into account the special tokens.
|
1104 |
+
padding_strategy: PaddingStrategy to use for padding.
|
1105 |
+
|
1106 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
1107 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
1108 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
1109 |
+
The tokenizer padding sides are defined in self.padding_side:
|
1110 |
+
|
1111 |
+
- 'left': pads on the left of the sequences
|
1112 |
+
- 'right': pads on the right of the sequences
|
1113 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
1114 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
1115 |
+
`>= 7.5` (Volta).
|
1116 |
+
return_attention_mask:
|
1117 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
1118 |
+
"""
|
1119 |
+
# Load from model defaults
|
1120 |
+
if return_attention_mask is None:
|
1121 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
1122 |
+
|
1123 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
1124 |
+
|
1125 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
1126 |
+
max_length = len(required_input)
|
1127 |
+
|
1128 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
1129 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
1130 |
+
|
1131 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
1132 |
+
|
1133 |
+
# Initialize attention mask if not present.
|
1134 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
1135 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
1136 |
+
|
1137 |
+
if needs_to_be_padded:
|
1138 |
+
difference = max_length - len(required_input)
|
1139 |
+
if self.padding_side == "right":
|
1140 |
+
if return_attention_mask:
|
1141 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
1142 |
+
if "token_type_ids" in encoded_inputs:
|
1143 |
+
encoded_inputs["token_type_ids"] = (
|
1144 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
1145 |
+
)
|
1146 |
+
if "bbox" in encoded_inputs:
|
1147 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
1148 |
+
if "labels" in encoded_inputs:
|
1149 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
1150 |
+
if "special_tokens_mask" in encoded_inputs:
|
1151 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
1152 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
1153 |
+
elif self.padding_side == "left":
|
1154 |
+
if return_attention_mask:
|
1155 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
1156 |
+
if "token_type_ids" in encoded_inputs:
|
1157 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
1158 |
+
"token_type_ids"
|
1159 |
+
]
|
1160 |
+
if "bbox" in encoded_inputs:
|
1161 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
1162 |
+
if "labels" in encoded_inputs:
|
1163 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
1164 |
+
if "special_tokens_mask" in encoded_inputs:
|
1165 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
1166 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
1167 |
+
else:
|
1168 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
1169 |
+
|
1170 |
+
return encoded_inputs
|
llmeval-env/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License
|
15 |
+
""" Tokenization classes for LayoutXLM model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken
|
23 |
+
from ...tokenization_utils_base import (
|
24 |
+
BatchEncoding,
|
25 |
+
EncodedInput,
|
26 |
+
PreTokenizedInput,
|
27 |
+
TextInput,
|
28 |
+
TextInputPair,
|
29 |
+
TruncationStrategy,
|
30 |
+
)
|
31 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
32 |
+
from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging
|
33 |
+
from ..xlm_roberta.tokenization_xlm_roberta_fast import (
|
34 |
+
VOCAB_FILES_NAMES,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
if is_sentencepiece_available():
|
39 |
+
from .tokenization_layoutxlm import LayoutXLMTokenizer
|
40 |
+
else:
|
41 |
+
LayoutXLMTokenizer = None
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r"""
|
47 |
+
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
48 |
+
Whether or not to encode the sequences with the special tokens relative to their model.
|
49 |
+
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
|
50 |
+
Activates and controls padding. Accepts the following values:
|
51 |
+
|
52 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
53 |
+
sequence if provided).
|
54 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
55 |
+
acceptable input length for the model if that argument is not provided.
|
56 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
57 |
+
lengths).
|
58 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
59 |
+
Activates and controls truncation. Accepts the following values:
|
60 |
+
|
61 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
62 |
+
to the maximum acceptable input length for the model if that argument is not provided. This will
|
63 |
+
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
64 |
+
sequences (or a batch of pairs) is provided.
|
65 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
66 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
67 |
+
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
68 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
69 |
+
maximum acceptable input length for the model if that argument is not provided. This will only
|
70 |
+
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
71 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
72 |
+
greater than the model maximum admissible input size).
|
73 |
+
max_length (`int`, *optional*):
|
74 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
75 |
+
|
76 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
77 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
78 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
79 |
+
stride (`int`, *optional*, defaults to 0):
|
80 |
+
If set to a number along with `max_length`, the overflowing tokens returned when
|
81 |
+
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
82 |
+
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
83 |
+
argument defines the number of overlapping tokens.
|
84 |
+
pad_to_multiple_of (`int`, *optional*):
|
85 |
+
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
|
86 |
+
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
|
87 |
+
return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
88 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
89 |
+
|
90 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
91 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
92 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
93 |
+
return_token_type_ids (`bool`, *optional*):
|
94 |
+
Whether to return token type IDs. If left to the default, will return the token type IDs according to
|
95 |
+
the specific tokenizer's default, defined by the `return_outputs` attribute.
|
96 |
+
|
97 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
98 |
+
return_attention_mask (`bool`, *optional*):
|
99 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
100 |
+
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
101 |
+
|
102 |
+
[What are attention masks?](../glossary#attention-mask)
|
103 |
+
return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
|
105 |
+
of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
|
106 |
+
of returning overflowing tokens.
|
107 |
+
return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
|
108 |
+
Whether or not to return special tokens mask information.
|
109 |
+
return_offsets_mapping (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether or not to return `(char_start, char_end)` for each token.
|
111 |
+
|
112 |
+
This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
|
113 |
+
Python's tokenizer, this method will raise `NotImplementedError`.
|
114 |
+
return_length (`bool`, *optional*, defaults to `False`):
|
115 |
+
Whether or not to return the lengths of the encoded inputs.
|
116 |
+
verbose (`bool`, *optional*, defaults to `True`):
|
117 |
+
Whether or not to print more information and warnings.
|
118 |
+
**kwargs: passed to the `self.tokenize()` method
|
119 |
+
|
120 |
+
Return:
|
121 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
122 |
+
|
123 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
124 |
+
|
125 |
+
[What are input IDs?](../glossary#input-ids)
|
126 |
+
|
127 |
+
- **bbox** -- List of bounding boxes to be fed to a model.
|
128 |
+
|
129 |
+
- **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
|
130 |
+
if *"token_type_ids"* is in `self.model_input_names`).
|
131 |
+
|
132 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
133 |
+
|
134 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
135 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
|
136 |
+
|
137 |
+
[What are attention masks?](../glossary#attention-mask)
|
138 |
+
|
139 |
+
- **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
|
140 |
+
- **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
|
141 |
+
`return_overflowing_tokens=True`).
|
142 |
+
- **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
|
143 |
+
`return_overflowing_tokens=True`).
|
144 |
+
- **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
|
145 |
+
regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
|
146 |
+
- **length** -- The length of the inputs (when `return_length=True`).
|
147 |
+
"""
|
148 |
+
|
149 |
+
|
150 |
+
class LayoutXLMTokenizerFast(PreTrainedTokenizerFast):
|
151 |
+
"""
|
152 |
+
Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
|
153 |
+
[`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
154 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
155 |
+
|
156 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
157 |
+
refer to this superclass for more information regarding those methods.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
vocab_file (`str`):
|
161 |
+
Path to the vocabulary file.
|
162 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
163 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
164 |
+
|
165 |
+
<Tip>
|
166 |
+
|
167 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
168 |
+
sequence. The token used is the `cls_token`.
|
169 |
+
|
170 |
+
</Tip>
|
171 |
+
|
172 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
173 |
+
The end of sequence token.
|
174 |
+
|
175 |
+
<Tip>
|
176 |
+
|
177 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
178 |
+
The token used is the `sep_token`.
|
179 |
+
|
180 |
+
</Tip>
|
181 |
+
|
182 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
183 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
184 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
185 |
+
token of a sequence built with special tokens.
|
186 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
187 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
188 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
189 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
190 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
191 |
+
token instead.
|
192 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
193 |
+
The token used for padding, for example when batching sequences of different lengths.
|
194 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
195 |
+
The token used for masking values. This is the token used when training this model with masked language
|
196 |
+
modeling. This is the token which the model will try to predict.
|
197 |
+
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
198 |
+
The bounding box to use for the special [CLS] token.
|
199 |
+
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
|
200 |
+
The bounding box to use for the special [SEP] token.
|
201 |
+
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
|
202 |
+
The bounding box to use for the special [PAD] token.
|
203 |
+
pad_token_label (`int`, *optional*, defaults to -100):
|
204 |
+
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
|
205 |
+
CrossEntropyLoss.
|
206 |
+
only_label_first_subword (`bool`, *optional*, defaults to `True`):
|
207 |
+
Whether or not to only label the first subword, in case word labels are provided.
|
208 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
209 |
+
Additional special tokens used by the tokenizer.
|
210 |
+
"""
|
211 |
+
|
212 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
213 |
+
model_input_names = ["input_ids", "attention_mask"]
|
214 |
+
slow_tokenizer_class = LayoutXLMTokenizer
|
215 |
+
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
vocab_file=None,
|
219 |
+
tokenizer_file=None,
|
220 |
+
bos_token="<s>",
|
221 |
+
eos_token="</s>",
|
222 |
+
sep_token="</s>",
|
223 |
+
cls_token="<s>",
|
224 |
+
unk_token="<unk>",
|
225 |
+
pad_token="<pad>",
|
226 |
+
mask_token="<mask>",
|
227 |
+
cls_token_box=[0, 0, 0, 0],
|
228 |
+
sep_token_box=[1000, 1000, 1000, 1000],
|
229 |
+
pad_token_box=[0, 0, 0, 0],
|
230 |
+
pad_token_label=-100,
|
231 |
+
only_label_first_subword=True,
|
232 |
+
**kwargs,
|
233 |
+
):
|
234 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
235 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
236 |
+
|
237 |
+
super().__init__(
|
238 |
+
vocab_file,
|
239 |
+
tokenizer_file=tokenizer_file,
|
240 |
+
bos_token=bos_token,
|
241 |
+
eos_token=eos_token,
|
242 |
+
sep_token=sep_token,
|
243 |
+
cls_token=cls_token,
|
244 |
+
unk_token=unk_token,
|
245 |
+
pad_token=pad_token,
|
246 |
+
mask_token=mask_token,
|
247 |
+
cls_token_box=cls_token_box,
|
248 |
+
sep_token_box=sep_token_box,
|
249 |
+
pad_token_box=pad_token_box,
|
250 |
+
pad_token_label=pad_token_label,
|
251 |
+
only_label_first_subword=only_label_first_subword,
|
252 |
+
**kwargs,
|
253 |
+
)
|
254 |
+
|
255 |
+
self.vocab_file = vocab_file
|
256 |
+
|
257 |
+
# additional properties
|
258 |
+
self.cls_token_box = cls_token_box
|
259 |
+
self.sep_token_box = sep_token_box
|
260 |
+
self.pad_token_box = pad_token_box
|
261 |
+
self.pad_token_label = pad_token_label
|
262 |
+
self.only_label_first_subword = only_label_first_subword
|
263 |
+
|
264 |
+
@property
|
265 |
+
def can_save_slow_tokenizer(self) -> bool:
|
266 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
267 |
+
|
268 |
+
@add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING)
|
269 |
+
def __call__(
|
270 |
+
self,
|
271 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
272 |
+
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
|
273 |
+
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
|
274 |
+
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
|
275 |
+
add_special_tokens: bool = True,
|
276 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
277 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
278 |
+
max_length: Optional[int] = None,
|
279 |
+
stride: int = 0,
|
280 |
+
pad_to_multiple_of: Optional[int] = None,
|
281 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
282 |
+
return_token_type_ids: Optional[bool] = None,
|
283 |
+
return_attention_mask: Optional[bool] = None,
|
284 |
+
return_overflowing_tokens: bool = False,
|
285 |
+
return_special_tokens_mask: bool = False,
|
286 |
+
return_offsets_mapping: bool = False,
|
287 |
+
return_length: bool = False,
|
288 |
+
verbose: bool = True,
|
289 |
+
**kwargs,
|
290 |
+
) -> BatchEncoding:
|
291 |
+
"""
|
292 |
+
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
|
293 |
+
sequences with word-level normalized bounding boxes and optional labels.
|
294 |
+
|
295 |
+
Args:
|
296 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
297 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
|
298 |
+
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
|
299 |
+
words).
|
300 |
+
text_pair (`List[str]`, `List[List[str]]`):
|
301 |
+
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
|
302 |
+
(pretokenized string).
|
303 |
+
boxes (`List[List[int]]`, `List[List[List[int]]]`):
|
304 |
+
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
|
305 |
+
word_labels (`List[int]`, `List[List[int]]`, *optional*):
|
306 |
+
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
|
307 |
+
"""
|
308 |
+
|
309 |
+
# Input type checking for clearer error
|
310 |
+
def _is_valid_text_input(t):
|
311 |
+
if isinstance(t, str):
|
312 |
+
# Strings are fine
|
313 |
+
return True
|
314 |
+
elif isinstance(t, (list, tuple)):
|
315 |
+
# List are fine as long as they are...
|
316 |
+
if len(t) == 0:
|
317 |
+
# ... empty
|
318 |
+
return True
|
319 |
+
elif isinstance(t[0], str):
|
320 |
+
# ... list of strings
|
321 |
+
return True
|
322 |
+
elif isinstance(t[0], (list, tuple)):
|
323 |
+
# ... list with an empty list or with a list of strings
|
324 |
+
return len(t[0]) == 0 or isinstance(t[0][0], str)
|
325 |
+
else:
|
326 |
+
return False
|
327 |
+
else:
|
328 |
+
return False
|
329 |
+
|
330 |
+
if text_pair is not None:
|
331 |
+
# in case text + text_pair are provided, text = questions, text_pair = words
|
332 |
+
if not _is_valid_text_input(text):
|
333 |
+
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
|
334 |
+
if not isinstance(text_pair, (list, tuple)):
|
335 |
+
raise ValueError(
|
336 |
+
"words must of type `List[str]` (single pretokenized example), "
|
337 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
338 |
+
)
|
339 |
+
else:
|
340 |
+
# in case only text is provided => must be words
|
341 |
+
if not isinstance(text, (list, tuple)):
|
342 |
+
raise ValueError(
|
343 |
+
"Words must of type `List[str]` (single pretokenized example), "
|
344 |
+
"or `List[List[str]]` (batch of pretokenized examples)."
|
345 |
+
)
|
346 |
+
|
347 |
+
if text_pair is not None:
|
348 |
+
is_batched = isinstance(text, (list, tuple))
|
349 |
+
else:
|
350 |
+
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
|
351 |
+
|
352 |
+
words = text if text_pair is None else text_pair
|
353 |
+
if boxes is None:
|
354 |
+
raise ValueError("You must provide corresponding bounding boxes")
|
355 |
+
if is_batched:
|
356 |
+
if len(words) != len(boxes):
|
357 |
+
raise ValueError("You must provide words and boxes for an equal amount of examples")
|
358 |
+
for words_example, boxes_example in zip(words, boxes):
|
359 |
+
if len(words_example) != len(boxes_example):
|
360 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
361 |
+
else:
|
362 |
+
if len(words) != len(boxes):
|
363 |
+
raise ValueError("You must provide as many words as there are bounding boxes")
|
364 |
+
|
365 |
+
if is_batched:
|
366 |
+
if text_pair is not None and len(text) != len(text_pair):
|
367 |
+
raise ValueError(
|
368 |
+
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
|
369 |
+
f" {len(text_pair)}."
|
370 |
+
)
|
371 |
+
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
|
372 |
+
is_pair = bool(text_pair is not None)
|
373 |
+
return self.batch_encode_plus(
|
374 |
+
batch_text_or_text_pairs=batch_text_or_text_pairs,
|
375 |
+
is_pair=is_pair,
|
376 |
+
boxes=boxes,
|
377 |
+
word_labels=word_labels,
|
378 |
+
add_special_tokens=add_special_tokens,
|
379 |
+
padding=padding,
|
380 |
+
truncation=truncation,
|
381 |
+
max_length=max_length,
|
382 |
+
stride=stride,
|
383 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
384 |
+
return_tensors=return_tensors,
|
385 |
+
return_token_type_ids=return_token_type_ids,
|
386 |
+
return_attention_mask=return_attention_mask,
|
387 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
388 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
389 |
+
return_offsets_mapping=return_offsets_mapping,
|
390 |
+
return_length=return_length,
|
391 |
+
verbose=verbose,
|
392 |
+
**kwargs,
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
return self.encode_plus(
|
396 |
+
text=text,
|
397 |
+
text_pair=text_pair,
|
398 |
+
boxes=boxes,
|
399 |
+
word_labels=word_labels,
|
400 |
+
add_special_tokens=add_special_tokens,
|
401 |
+
padding=padding,
|
402 |
+
truncation=truncation,
|
403 |
+
max_length=max_length,
|
404 |
+
stride=stride,
|
405 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
406 |
+
return_tensors=return_tensors,
|
407 |
+
return_token_type_ids=return_token_type_ids,
|
408 |
+
return_attention_mask=return_attention_mask,
|
409 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
410 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
411 |
+
return_offsets_mapping=return_offsets_mapping,
|
412 |
+
return_length=return_length,
|
413 |
+
verbose=verbose,
|
414 |
+
**kwargs,
|
415 |
+
)
|
416 |
+
|
417 |
+
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
418 |
+
batched_input = [(text, pair)] if pair else [text]
|
419 |
+
encodings = self._tokenizer.encode_batch(
|
420 |
+
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
|
421 |
+
)
|
422 |
+
|
423 |
+
return encodings[0].tokens
|
424 |
+
|
425 |
+
def _batch_encode_plus(
|
426 |
+
self,
|
427 |
+
batch_text_or_text_pairs: Union[
|
428 |
+
List[TextInput],
|
429 |
+
List[TextInputPair],
|
430 |
+
List[PreTokenizedInput],
|
431 |
+
],
|
432 |
+
is_pair: bool = None,
|
433 |
+
boxes: Optional[List[List[List[int]]]] = None,
|
434 |
+
word_labels: Optional[List[List[int]]] = None,
|
435 |
+
add_special_tokens: bool = True,
|
436 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
437 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
438 |
+
max_length: Optional[int] = None,
|
439 |
+
stride: int = 0,
|
440 |
+
pad_to_multiple_of: Optional[int] = None,
|
441 |
+
return_tensors: Optional[str] = None,
|
442 |
+
return_token_type_ids: Optional[bool] = None,
|
443 |
+
return_attention_mask: Optional[bool] = None,
|
444 |
+
return_overflowing_tokens: bool = False,
|
445 |
+
return_special_tokens_mask: bool = False,
|
446 |
+
return_offsets_mapping: bool = False,
|
447 |
+
return_length: bool = False,
|
448 |
+
verbose: bool = True,
|
449 |
+
**kwargs,
|
450 |
+
) -> BatchEncoding:
|
451 |
+
if not isinstance(batch_text_or_text_pairs, list):
|
452 |
+
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
|
453 |
+
|
454 |
+
# Set the truncation and padding strategy and restore the initial configuration
|
455 |
+
self.set_truncation_and_padding(
|
456 |
+
padding_strategy=padding_strategy,
|
457 |
+
truncation_strategy=truncation_strategy,
|
458 |
+
max_length=max_length,
|
459 |
+
stride=stride,
|
460 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
461 |
+
)
|
462 |
+
|
463 |
+
if is_pair:
|
464 |
+
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
|
465 |
+
|
466 |
+
encodings = self._tokenizer.encode_batch(
|
467 |
+
batch_text_or_text_pairs,
|
468 |
+
add_special_tokens=add_special_tokens,
|
469 |
+
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
|
470 |
+
)
|
471 |
+
|
472 |
+
# Convert encoding to dict
|
473 |
+
# `Tokens` has type: Tuple[
|
474 |
+
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
|
475 |
+
# List[EncodingFast]
|
476 |
+
# ]
|
477 |
+
# with nested dimensions corresponding to batch, overflows, sequence length
|
478 |
+
tokens_and_encodings = [
|
479 |
+
self._convert_encoding(
|
480 |
+
encoding=encoding,
|
481 |
+
return_token_type_ids=return_token_type_ids,
|
482 |
+
return_attention_mask=return_attention_mask,
|
483 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
484 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
485 |
+
return_offsets_mapping=True
|
486 |
+
if word_labels is not None
|
487 |
+
else return_offsets_mapping, # we use offsets to create the labels
|
488 |
+
return_length=return_length,
|
489 |
+
verbose=verbose,
|
490 |
+
)
|
491 |
+
for encoding in encodings
|
492 |
+
]
|
493 |
+
|
494 |
+
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
|
495 |
+
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
|
496 |
+
# (we say ~ because the number of overflow varies with the example in the batch)
|
497 |
+
#
|
498 |
+
# To match each overflowing sample with the original sample in the batch
|
499 |
+
# we add an overflow_to_sample_mapping array (see below)
|
500 |
+
sanitized_tokens = {}
|
501 |
+
for key in tokens_and_encodings[0][0].keys():
|
502 |
+
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
|
503 |
+
sanitized_tokens[key] = stack
|
504 |
+
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
|
505 |
+
|
506 |
+
# If returning overflowing tokens, we need to return a mapping
|
507 |
+
# from the batch idx to the original sample
|
508 |
+
if return_overflowing_tokens:
|
509 |
+
overflow_to_sample_mapping = []
|
510 |
+
for i, (toks, _) in enumerate(tokens_and_encodings):
|
511 |
+
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
|
512 |
+
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
|
513 |
+
|
514 |
+
for input_ids in sanitized_tokens["input_ids"]:
|
515 |
+
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
|
516 |
+
|
517 |
+
# create the token boxes
|
518 |
+
token_boxes = []
|
519 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
520 |
+
if return_overflowing_tokens:
|
521 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
522 |
+
else:
|
523 |
+
original_index = batch_index
|
524 |
+
token_boxes_example = []
|
525 |
+
for id, sequence_id, word_id in zip(
|
526 |
+
sanitized_tokens["input_ids"][batch_index],
|
527 |
+
sanitized_encodings[batch_index].sequence_ids,
|
528 |
+
sanitized_encodings[batch_index].word_ids,
|
529 |
+
):
|
530 |
+
if word_id is not None:
|
531 |
+
if is_pair and sequence_id == 0:
|
532 |
+
token_boxes_example.append(self.pad_token_box)
|
533 |
+
else:
|
534 |
+
token_boxes_example.append(boxes[original_index][word_id])
|
535 |
+
else:
|
536 |
+
if id == self.cls_token_id:
|
537 |
+
token_boxes_example.append(self.cls_token_box)
|
538 |
+
elif id == self.sep_token_id:
|
539 |
+
token_boxes_example.append(self.sep_token_box)
|
540 |
+
elif id == self.pad_token_id:
|
541 |
+
token_boxes_example.append(self.pad_token_box)
|
542 |
+
else:
|
543 |
+
raise ValueError("Id not recognized")
|
544 |
+
token_boxes.append(token_boxes_example)
|
545 |
+
|
546 |
+
sanitized_tokens["bbox"] = token_boxes
|
547 |
+
|
548 |
+
# optionally, create the labels
|
549 |
+
if word_labels is not None:
|
550 |
+
labels = []
|
551 |
+
for batch_index in range(len(sanitized_tokens["input_ids"])):
|
552 |
+
if return_overflowing_tokens:
|
553 |
+
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
|
554 |
+
else:
|
555 |
+
original_index = batch_index
|
556 |
+
labels_example = []
|
557 |
+
for id, offset, word_id in zip(
|
558 |
+
sanitized_tokens["input_ids"][batch_index],
|
559 |
+
sanitized_tokens["offset_mapping"][batch_index],
|
560 |
+
sanitized_encodings[batch_index].word_ids,
|
561 |
+
):
|
562 |
+
if word_id is not None:
|
563 |
+
if self.only_label_first_subword:
|
564 |
+
if offset[0] == 0:
|
565 |
+
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
|
566 |
+
labels_example.append(word_labels[original_index][word_id])
|
567 |
+
else:
|
568 |
+
labels_example.append(self.pad_token_label)
|
569 |
+
else:
|
570 |
+
labels_example.append(word_labels[original_index][word_id])
|
571 |
+
else:
|
572 |
+
labels_example.append(self.pad_token_label)
|
573 |
+
labels.append(labels_example)
|
574 |
+
|
575 |
+
sanitized_tokens["labels"] = labels
|
576 |
+
# finally, remove offsets if the user didn't want them
|
577 |
+
if not return_offsets_mapping:
|
578 |
+
del sanitized_tokens["offset_mapping"]
|
579 |
+
|
580 |
+
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
|
581 |
+
|
582 |
+
def _encode_plus(
|
583 |
+
self,
|
584 |
+
text: Union[TextInput, PreTokenizedInput],
|
585 |
+
text_pair: Optional[PreTokenizedInput] = None,
|
586 |
+
boxes: Optional[List[List[int]]] = None,
|
587 |
+
word_labels: Optional[List[int]] = None,
|
588 |
+
add_special_tokens: bool = True,
|
589 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
590 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
591 |
+
max_length: Optional[int] = None,
|
592 |
+
stride: int = 0,
|
593 |
+
pad_to_multiple_of: Optional[int] = None,
|
594 |
+
return_tensors: Optional[bool] = None,
|
595 |
+
return_token_type_ids: Optional[bool] = None,
|
596 |
+
return_attention_mask: Optional[bool] = None,
|
597 |
+
return_overflowing_tokens: bool = False,
|
598 |
+
return_special_tokens_mask: bool = False,
|
599 |
+
return_offsets_mapping: bool = False,
|
600 |
+
return_length: bool = False,
|
601 |
+
verbose: bool = True,
|
602 |
+
**kwargs,
|
603 |
+
) -> BatchEncoding:
|
604 |
+
# make it a batched input
|
605 |
+
# 2 options:
|
606 |
+
# 1) only text, in case text must be a list of str
|
607 |
+
# 2) text + text_pair, in which case text = str and text_pair a list of str
|
608 |
+
batched_input = [(text, text_pair)] if text_pair else [text]
|
609 |
+
batched_boxes = [boxes]
|
610 |
+
batched_word_labels = [word_labels] if word_labels is not None else None
|
611 |
+
batched_output = self._batch_encode_plus(
|
612 |
+
batched_input,
|
613 |
+
is_pair=bool(text_pair is not None),
|
614 |
+
boxes=batched_boxes,
|
615 |
+
word_labels=batched_word_labels,
|
616 |
+
add_special_tokens=add_special_tokens,
|
617 |
+
padding_strategy=padding_strategy,
|
618 |
+
truncation_strategy=truncation_strategy,
|
619 |
+
max_length=max_length,
|
620 |
+
stride=stride,
|
621 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
622 |
+
return_tensors=return_tensors,
|
623 |
+
return_token_type_ids=return_token_type_ids,
|
624 |
+
return_attention_mask=return_attention_mask,
|
625 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
626 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
627 |
+
return_offsets_mapping=return_offsets_mapping,
|
628 |
+
return_length=return_length,
|
629 |
+
verbose=verbose,
|
630 |
+
**kwargs,
|
631 |
+
)
|
632 |
+
|
633 |
+
# Return tensor is None, then we can remove the leading batch axis
|
634 |
+
# Overflowing tokens are returned as a batch of output so we keep them in this case
|
635 |
+
if return_tensors is None and not return_overflowing_tokens:
|
636 |
+
batched_output = BatchEncoding(
|
637 |
+
{
|
638 |
+
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
|
639 |
+
for key, value in batched_output.items()
|
640 |
+
},
|
641 |
+
batched_output.encodings,
|
642 |
+
)
|
643 |
+
|
644 |
+
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
|
645 |
+
|
646 |
+
return batched_output
|
647 |
+
|
648 |
+
def _pad(
|
649 |
+
self,
|
650 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
651 |
+
max_length: Optional[int] = None,
|
652 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
653 |
+
pad_to_multiple_of: Optional[int] = None,
|
654 |
+
return_attention_mask: Optional[bool] = None,
|
655 |
+
) -> dict:
|
656 |
+
"""
|
657 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
658 |
+
|
659 |
+
Args:
|
660 |
+
encoded_inputs:
|
661 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
662 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
663 |
+
Will truncate by taking into account the special tokens.
|
664 |
+
padding_strategy: PaddingStrategy to use for padding.
|
665 |
+
|
666 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
667 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
668 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
669 |
+
The tokenizer padding sides are defined in self.padding_side:
|
670 |
+
|
671 |
+
- 'left': pads on the left of the sequences
|
672 |
+
- 'right': pads on the right of the sequences
|
673 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
674 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
675 |
+
`>= 7.5` (Volta).
|
676 |
+
return_attention_mask:
|
677 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
678 |
+
"""
|
679 |
+
# Load from model defaults
|
680 |
+
if return_attention_mask is None:
|
681 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
682 |
+
|
683 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
684 |
+
|
685 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
686 |
+
max_length = len(required_input)
|
687 |
+
|
688 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
689 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
690 |
+
|
691 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
692 |
+
|
693 |
+
# Initialize attention mask if not present.
|
694 |
+
if return_attention_mask and "attention_mask" not in encoded_inputs:
|
695 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
696 |
+
|
697 |
+
if needs_to_be_padded:
|
698 |
+
difference = max_length - len(required_input)
|
699 |
+
if self.padding_side == "right":
|
700 |
+
if return_attention_mask:
|
701 |
+
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
|
702 |
+
if "token_type_ids" in encoded_inputs:
|
703 |
+
encoded_inputs["token_type_ids"] = (
|
704 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
705 |
+
)
|
706 |
+
if "bbox" in encoded_inputs:
|
707 |
+
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
|
708 |
+
if "labels" in encoded_inputs:
|
709 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
|
710 |
+
if "special_tokens_mask" in encoded_inputs:
|
711 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
712 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
713 |
+
elif self.padding_side == "left":
|
714 |
+
if return_attention_mask:
|
715 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
716 |
+
if "token_type_ids" in encoded_inputs:
|
717 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
718 |
+
"token_type_ids"
|
719 |
+
]
|
720 |
+
if "bbox" in encoded_inputs:
|
721 |
+
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
|
722 |
+
if "labels" in encoded_inputs:
|
723 |
+
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
|
724 |
+
if "special_tokens_mask" in encoded_inputs:
|
725 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
726 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
727 |
+
else:
|
728 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
729 |
+
|
730 |
+
return encoded_inputs
|
731 |
+
|
732 |
+
def build_inputs_with_special_tokens(
|
733 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
734 |
+
) -> List[int]:
|
735 |
+
"""
|
736 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
737 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
738 |
+
|
739 |
+
- single sequence: `<s> X </s>`
|
740 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
741 |
+
|
742 |
+
Args:
|
743 |
+
token_ids_0 (`List[int]`):
|
744 |
+
List of IDs to which the special tokens will be added.
|
745 |
+
token_ids_1 (`List[int]`, *optional*):
|
746 |
+
Optional second list of IDs for sequence pairs.
|
747 |
+
|
748 |
+
Returns:
|
749 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
750 |
+
"""
|
751 |
+
|
752 |
+
if token_ids_1 is None:
|
753 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
754 |
+
cls = [self.cls_token_id]
|
755 |
+
sep = [self.sep_token_id]
|
756 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
757 |
+
|
758 |
+
def create_token_type_ids_from_sequences(
|
759 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
760 |
+
) -> List[int]:
|
761 |
+
"""
|
762 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
763 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
764 |
+
|
765 |
+
Args:
|
766 |
+
token_ids_0 (`List[int]`):
|
767 |
+
List of IDs.
|
768 |
+
token_ids_1 (`List[int]`, *optional*):
|
769 |
+
Optional second list of IDs for sequence pairs.
|
770 |
+
|
771 |
+
Returns:
|
772 |
+
`List[int]`: List of zeros.
|
773 |
+
|
774 |
+
"""
|
775 |
+
|
776 |
+
sep = [self.sep_token_id]
|
777 |
+
cls = [self.cls_token_id]
|
778 |
+
|
779 |
+
if token_ids_1 is None:
|
780 |
+
return len(cls + token_ids_0 + sep) * [0]
|
781 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
782 |
+
|
783 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
784 |
+
if not self.can_save_slow_tokenizer:
|
785 |
+
raise ValueError(
|
786 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
787 |
+
"tokenizer."
|
788 |
+
)
|
789 |
+
|
790 |
+
if not os.path.isdir(save_directory):
|
791 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
792 |
+
return
|
793 |
+
out_vocab_file = os.path.join(
|
794 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
795 |
+
)
|
796 |
+
|
797 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
798 |
+
copyfile(self.vocab_file, out_vocab_file)
|
799 |
+
|
800 |
+
return (out_vocab_file,)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpnet/__init__.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_tokenizers_available,
|
23 |
+
is_torch_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig"],
|
29 |
+
"tokenization_mpnet": ["MPNetTokenizer"],
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_tokenizers_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["tokenization_mpnet_fast"] = ["MPNetTokenizerFast"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_mpnet"] = [
|
47 |
+
"MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"MPNetForMaskedLM",
|
49 |
+
"MPNetForMultipleChoice",
|
50 |
+
"MPNetForQuestionAnswering",
|
51 |
+
"MPNetForSequenceClassification",
|
52 |
+
"MPNetForTokenClassification",
|
53 |
+
"MPNetLayer",
|
54 |
+
"MPNetModel",
|
55 |
+
"MPNetPreTrainedModel",
|
56 |
+
]
|
57 |
+
|
58 |
+
try:
|
59 |
+
if not is_tf_available():
|
60 |
+
raise OptionalDependencyNotAvailable()
|
61 |
+
except OptionalDependencyNotAvailable:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
_import_structure["modeling_tf_mpnet"] = [
|
65 |
+
"TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
66 |
+
"TFMPNetEmbeddings",
|
67 |
+
"TFMPNetForMaskedLM",
|
68 |
+
"TFMPNetForMultipleChoice",
|
69 |
+
"TFMPNetForQuestionAnswering",
|
70 |
+
"TFMPNetForSequenceClassification",
|
71 |
+
"TFMPNetForTokenClassification",
|
72 |
+
"TFMPNetMainLayer",
|
73 |
+
"TFMPNetModel",
|
74 |
+
"TFMPNetPreTrainedModel",
|
75 |
+
]
|
76 |
+
|
77 |
+
|
78 |
+
if TYPE_CHECKING:
|
79 |
+
from .configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
|
80 |
+
from .tokenization_mpnet import MPNetTokenizer
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_tokenizers_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .tokenization_mpnet_fast import MPNetTokenizerFast
|
89 |
+
|
90 |
+
try:
|
91 |
+
if not is_torch_available():
|
92 |
+
raise OptionalDependencyNotAvailable()
|
93 |
+
except OptionalDependencyNotAvailable:
|
94 |
+
pass
|
95 |
+
else:
|
96 |
+
from .modeling_mpnet import (
|
97 |
+
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
98 |
+
MPNetForMaskedLM,
|
99 |
+
MPNetForMultipleChoice,
|
100 |
+
MPNetForQuestionAnswering,
|
101 |
+
MPNetForSequenceClassification,
|
102 |
+
MPNetForTokenClassification,
|
103 |
+
MPNetLayer,
|
104 |
+
MPNetModel,
|
105 |
+
MPNetPreTrainedModel,
|
106 |
+
)
|
107 |
+
|
108 |
+
try:
|
109 |
+
if not is_tf_available():
|
110 |
+
raise OptionalDependencyNotAvailable()
|
111 |
+
except OptionalDependencyNotAvailable:
|
112 |
+
pass
|
113 |
+
else:
|
114 |
+
from .modeling_tf_mpnet import (
|
115 |
+
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
116 |
+
TFMPNetEmbeddings,
|
117 |
+
TFMPNetForMaskedLM,
|
118 |
+
TFMPNetForMultipleChoice,
|
119 |
+
TFMPNetForQuestionAnswering,
|
120 |
+
TFMPNetForSequenceClassification,
|
121 |
+
TFMPNetForTokenClassification,
|
122 |
+
TFMPNetMainLayer,
|
123 |
+
TFMPNetModel,
|
124 |
+
TFMPNetPreTrainedModel,
|
125 |
+
)
|
126 |
+
|
127 |
+
else:
|
128 |
+
import sys
|
129 |
+
|
130 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llmeval-env/lib/python3.10/site-packages/transformers/models/mpnet/__pycache__/configuration_mpnet.cpython-310.pyc
ADDED
Binary file (4.65 kB). View file
|
|