diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ec3d6966ac419d648a7d50801414c7ece1f7325d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py @@ -0,0 +1,63 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], + "tokenization_biogpt": ["BioGptTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_biogpt"] = [ + "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "BioGptForCausalLM", + "BioGptForTokenClassification", + "BioGptForSequenceClassification", + "BioGptModel", + "BioGptPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig + from .tokenization_biogpt import BioGptTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_biogpt import ( + BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, + BioGptForCausalLM, + BioGptForSequenceClassification, + BioGptForTokenClassification, + BioGptModel, + BioGptPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4801ef47be6ddde2b99995cc86e2269dfc6b0f7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..565f452309ba44673c343f43bb6a1bb96c86d407 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af1ea6fa97063396d78bdc65f57642a4e4532ae3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9e777e644984bc5b289cab2cc1afadbf931fa98 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0db5a97e7af3607b067c9a67178acd0d929162bc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..1b4155c0aea3bbb20ae2947162440a66336c2db5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py @@ -0,0 +1,134 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BioGPT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BioGptConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an + BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the BioGPT + [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 42384): + Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`BioGptModel`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 4096): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + scale_embedding (`bool`, *optional*, defaults to `True`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + layerdrop (`float`, *optional*, defaults to 0.0): + Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + + Example: + + ```python + >>> from transformers import BioGptModel, BioGptConfig + + >>> # Initializing a BioGPT microsoft/biogpt style configuration + >>> configuration = BioGptConfig() + + >>> # Initializing a model from the microsoft/biogpt style configuration + >>> model = BioGptModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "biogpt" + + def __init__( + self, + vocab_size=42384, + hidden_size=1024, + num_hidden_layers=24, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=1024, + initializer_range=0.02, + layer_norm_eps=1e-12, + scale_embedding=True, + use_cache=True, + layerdrop=0.0, + activation_dropout=0.0, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.scale_embedding = scale_embedding + self.use_cache = use_cache + self.layerdrop = layerdrop + self.activation_dropout = activation_dropout + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..c930a850462c820a0be1bb3fcee197e3f4571c13 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,292 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import json +import os +import re +import shutil + +import torch + +from transformers import BioGptConfig, BioGptForCausalLM +from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES +from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE +from transformers.utils import WEIGHTS_NAME, logging + + +logging.set_verbosity_warning() + +json_indent = 2 + + +# modified from https://github.com/facebookresearch/fairseq/blob/dd74992d0d143155998e9ed4076826bcea80fb06/fairseq/data/dictionary.py#L18 +class Dictionary: + """A mapping from symbols to consecutive integers""" + + def __init__( + self, + *, # begin keyword-only arguments + bos="", + pad="", + eos="", + unk="", + extra_special_symbols=None, + ): + self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos + self.symbols = [] + self.count = [] + self.indices = {} + self.bos_index = self.add_symbol(bos) + self.pad_index = self.add_symbol(pad) + self.eos_index = self.add_symbol(eos) + self.unk_index = self.add_symbol(unk) + if extra_special_symbols: + for s in extra_special_symbols: + self.add_symbol(s) + self.nspecial = len(self.symbols) + + def __eq__(self, other): + return self.indices == other.indices + + def __getitem__(self, idx): + if idx < len(self.symbols): + return self.symbols[idx] + return self.unk_word + + def __len__(self): + """Returns the number of symbols in the dictionary""" + return len(self.symbols) + + def __contains__(self, sym): + return sym in self.indices + + @classmethod + def load(cls, f): + """Loads the dictionary from a text file with the format: + + ``` + + + ... + ``` + """ + d = cls() + d.add_from_file(f) + return d + + def add_symbol(self, word, n=1, overwrite=False): + """Adds a word to the dictionary""" + if word in self.indices and not overwrite: + idx = self.indices[word] + self.count[idx] = self.count[idx] + n + return idx + else: + idx = len(self.symbols) + self.indices[word] = idx + self.symbols.append(word) + self.count.append(n) + return idx + + def _load_meta(self, lines): + return 0 + + def add_from_file(self, f): + """ + Loads a pre-existing dictionary from a text file and adds its symbols to this instance. + """ + if isinstance(f, str): + try: + with open(f, "r", encoding="utf-8") as fd: + self.add_from_file(fd) + except FileNotFoundError as fnfe: + raise fnfe + except UnicodeError: + raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(f)) + return + + lines = f.readlines() + indices_start_line = self._load_meta(lines) + + for line in lines[indices_start_line:]: + try: + line, field = line.rstrip().rsplit(" ", 1) + if field == "#fairseq:overwrite": + overwrite = True + line, field = line.rsplit(" ", 1) + else: + overwrite = False + count = int(field) + word = line + if word in self and not overwrite: + raise RuntimeError( + "Duplicate word found when loading Dictionary: '{}'. " + "Duplicate words can overwrite earlier ones by adding the " + "#fairseq:overwrite flag at the end of the corresponding row " + "in the dictionary file. If using the Camembert model, please " + "download an updated copy of the model file.".format(word) + ) + self.add_symbol(word, n=count, overwrite=overwrite) + except ValueError: + raise ValueError("Incorrect dictionary format, expected ' [flags]'") + + +def rewrite_dict_keys(d): + # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, + # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er': 7} + d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "", k), v) for k, v in d.items()) + keep_keys = " ".split() + # restore the special tokens + for k in keep_keys: + del d2[f"{k}"] + d2[k] = d[k] # restore + return d2 + + +def convert_biogpt_checkpoint_to_pytorch(biogpt_checkpoint_path, pytorch_dump_folder_path): + # prep + if not os.path.exists(biogpt_checkpoint_path): + raise ValueError(f"path {biogpt_checkpoint_path} does not exist!") + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + print(f"Writing results to {pytorch_dump_folder_path}") + + # handle various types of models + + checkpoint_file = os.path.join(biogpt_checkpoint_path, "checkpoint.pt") + if not os.path.isfile(checkpoint_file): + raise ValueError(f"path to the file {checkpoint_file} does not exist!") + chkpt = torch.load(checkpoint_file, map_location="cpu") + + args = chkpt["cfg"]["model"] + + # dicts + dict_file = os.path.join(biogpt_checkpoint_path, "dict.txt") + if not os.path.isfile(dict_file): + raise ValueError(f"path to the file {dict_file} does not exist!") + src_dict = Dictionary.load(dict_file) + src_vocab = rewrite_dict_keys(src_dict.indices) + src_vocab_size = len(src_vocab) + src_vocab_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["vocab_file"]) + print(f"Generating {src_vocab_file} of {src_vocab_size} records") + with open(src_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent)) + + # merges_file (bpecodes) + bpecodes_file = os.path.join(biogpt_checkpoint_path, "bpecodes") + if not os.path.isfile(bpecodes_file): + raise ValueError(f"path to the file {bpecodes_file} does not exist!") + + merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"]) + shutil.copyfile(bpecodes_file, merges_file) + + # model config + biogpt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json") + + model_conf = { + "activation_dropout": args["activation_dropout"], + "architectures": ["BioGptForCausalLM"], + "attention_probs_dropout_prob": args["attention_dropout"], + "bos_token_id": 0, + "eos_token_id": 2, + "hidden_act": args["activation_fn"], + "hidden_dropout_prob": args["dropout"], + "hidden_size": args["decoder_embed_dim"], + "initializer_range": 0.02, + "intermediate_size": args["decoder_ffn_embed_dim"], + "layer_norm_eps": 1e-12, + "layerdrop": args["decoder_layerdrop"], + "max_position_embeddings": args["max_target_positions"], + "model_type": "biogpt", + "num_attention_heads": args["decoder_attention_heads"], + "num_hidden_layers": args["decoder_layers"], + "pad_token_id": 1, + "scale_embedding": not args["no_scale_embedding"], + "tie_word_embeddings": args["share_decoder_input_output_embed"], + "vocab_size": src_vocab_size, + } + + # good hparam defaults to start with + + print(f"Generating {biogpt_model_config_file}") + with open(biogpt_model_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent)) + + # tokenizer config + biogpt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE) + + tokenizer_conf = { + "bos_token": "", + "eos_token": "", + "model_max_length": 1024, + "pad_token": "", + "special_tokens_map_file": None, + "tokenizer_class": "BioGptTokenizer", + "unk_token": "", + } + + print(f"Generating {biogpt_tokenizer_config_file}") + with open(biogpt_tokenizer_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent)) + + # model + model_state_dict = chkpt["model"] + + # remove unneeded keys + ignore_keys = [ + "decoder.version", + ] + for k in ignore_keys: + model_state_dict.pop(k, None) + + layer_names = list(model_state_dict.keys()) + for layer_name in layer_names: + if layer_name.endswith("output_projection.weight"): + model_state_dict[layer_name.replace("decoder.", "")] = model_state_dict.pop(layer_name) + else: + model_state_dict[layer_name.replace("decoder", "biogpt")] = model_state_dict.pop(layer_name) + + config = BioGptConfig.from_pretrained(pytorch_dump_folder_path) + model_new = BioGptForCausalLM(config) + + # check that it loads ok + model_new.load_state_dict(model_state_dict) + + # save + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + print(f"Generating {pytorch_weights_dump_path}") + torch.save(model_state_dict, pytorch_weights_dump_path) + + print("Conversion is done!") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--biogpt_checkpoint_path", + default=None, + type=str, + required=True, + help=( + "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," + " bpecodes, etc." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..30df3e0847a6319acaf3f042eb394bf902b84e8a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py @@ -0,0 +1,924 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BioGPT model.""" + + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_biogpt import BioGptConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/biogpt" +_CONFIG_FOR_DOC = "BioGptConfig" + + +from ..deprecated._archive_maps import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding with OPT->BioGpt +class BioGptLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + # BioGpt is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim) + + def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + attention_mask = attention_mask.long() + + # create positions depending on attention_mask + positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 + + # cut positions if `past_key_values_length` is > 0 + positions = positions[:, past_key_values_length:] + + return super().forward(positions + self.offset) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BioGpt +class BioGptAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[BioGptConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class BioGptDecoderLayer(nn.Module): + def __init__(self, config: BioGptConfig): + super().__init__() + self.embed_dim = config.hidden_size + + self.self_attn = BioGptAttention( + embed_dim=self.embed_dim, + num_heads=config.num_attention_heads, + dropout=config.attention_probs_dropout_prob, + is_decoder=True, + ) + self.dropout = config.hidden_dropout_prob + self.activation_fn = ACT2FN[config.hidden_act] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + + self.fc1 = nn.Linear(self.embed_dim, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + """ + residual = hidden_states + + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class BioGptPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BioGptConfig + base_model_prefix = "biogpt" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +BIOGPT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`~BioGptConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BIOGPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top.", + BIOGPT_START_DOCSTRING, +) +class BioGptModel(BioGptPreTrainedModel): + def __init__(self, config: BioGptConfig): + super().__init__(config) + self.config = config + self.layerdrop = config.layerdrop + self.dropout = config.hidden_dropout_prob + self.embed_dim = config.hidden_size + self.padding_idx = config.pad_token_id + self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, self.embed_dim, self.padding_idx) + self.embed_positions = BioGptLearnedPositionalEmbedding(config.max_position_embeddings, self.embed_dim) + + self.layers = nn.ModuleList([BioGptDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.layer_norm = nn.LayerNorm(self.embed_dim) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input) * self.embed_scale + + if attention_mask is None: + attention_mask = torch.ones( + (inputs_embeds.shape[0], inputs_embeds.shape[1] + past_key_values_length), + dtype=torch.bool, + device=inputs_embeds.device, + ) + elif attention_mask.shape[1] != past_key_values_length + input_shape[1]: + raise ValueError( + f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be " + f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)" + ) + + # embed positions + positions = self.embed_positions(attention_mask, past_key_values_length) + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + hidden_states = self.layer_norm(hidden_states) + + next_cache = next_decoder_cache if use_cache else None + + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + """BioGPT Model with a `language modeling` head on top for CLM fine-tuning.""", BIOGPT_START_DOCSTRING +) +class BioGptForCausalLM(BioGptPreTrainedModel): + _tied_weights_keys = ["output_projection.weight"] + + def __init__(self, config): + super().__init__(config) + + self.biogpt = BioGptModel(config) + self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.output_projection + + def set_output_embeddings(self, new_embeddings): + self.output_projection = new_embeddings + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.biogpt( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.output_projection(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, attention_mask, inputs_embeds=None, past_key_values=None, **kwargs + ): + # only last tokens for inputs_ids if past is defined in kwargs + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + } + ) + + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + BIOGPT_START_DOCSTRING, +) +class BioGptForTokenClassification(BioGptPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.biogpt = BioGptModel(config) + if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: + classifier_dropout = config.classifier_dropout + else: + classifier_dropout = config.hidden_dropout_prob + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + self.post_init() + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.biogpt( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # Only keep active parts of the loss + if attention_mask is not None: + active_loss = attention_mask.view(-1) == 1 + active_logits = logits.view(-1, self.num_labels) + active_labels = torch.where( + active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) + ) + loss = loss_fct(active_logits, active_labels) + else: + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + transformer_outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The BioGpt Model transformer with a sequence classification head on top (linear layer). + + [`BioGptForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it is required to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + BIOGPT_START_DOCSTRING, +) +class BioGptForSequenceClassification(BioGptPreTrainedModel): + def __init__(self, config: BioGptConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.biogpt = BioGptModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.biogpt( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + if self.config.pad_token_id is None: + sequence_length = -1 + else: + if input_ids is not None: + sequence_length = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) + else: + sequence_length = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_length] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.biogpt.embed_tokens + + def set_input_embeddings(self, value): + self.biogpt.embed_tokens = value diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..e16742ec5aa4f0eb2be900aac4c74bb1221761cc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py @@ -0,0 +1,357 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for BioGPT.""" +import json +import os +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length + strings) + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class BioGptTokenizer(PreTrainedTokenizer): + """ + Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Merges file. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + unk_token="", + bos_token="", + eos_token="", + sep_token="", + pad_token="", + **kwargs, + ): + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use BioGptTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.lang = "en" + self.sm = sacremoses + # cache of sm.MosesTokenizer instance + self.cache_moses_tokenizer = {} + self.cache_moses_detokenizer = {} + + """ Initialisation""" + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[:-1] + merges = [tuple(merge.split()[:2]) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + unk_token=unk_token, + pad_token=pad_token, + **kwargs, + ) + + @property + def vocab_size(self): + """Returns vocab size""" + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def moses_tokenize(self, text, lang): + if lang not in self.cache_moses_tokenizer: + moses_tokenizer = self.sm.MosesTokenizer(lang=lang) + self.cache_moses_tokenizer[lang] = moses_tokenizer + return self.cache_moses_tokenizer[lang].tokenize( + text, aggressive_dash_splits=True, return_str=False, escape=True + ) + + def moses_detokenize(self, tokens, lang): + if lang not in self.cache_moses_detokenizer: + moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) + self.cache_moses_detokenizer[lang] = moses_detokenizer + return self.cache_moses_detokenizer[lang].detokenize(tokens) + + def bpe(self, token): + word = tuple(token[:-1]) + (token[-1] + "",) + if token in self.cache: + return self.cache[token] + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + if word == "\n ": + word = "\n" + self.cache[token] = word + return word + + def _tokenize(self, text, bypass_tokenizer=False): + """Returns a tokenized string.""" + if bypass_tokenizer: + text = text.split() + else: + text = self.moses_tokenize(text, self.lang) + + split_tokens = [] + for token in text: + if token: + split_tokens.extend(list(self.bpe(token).split(" "))) + + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + # remove BPE + tokens = [t.replace(" ", "").replace("", " ") for t in tokens] + tokens = "".join(tokens).split() + # detokenize + text = self.moses_detokenize(tokens, self.lang) + return text + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BioGPT sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.sep_token_id] + token_ids_0 + sep = [self.sep_token_id] + return sep + token_ids_0 + sep + token_ids_1 + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + # no bos used in fairseq + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + return [1] + ([0] * len(token_ids_0)) + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ + Transformer sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + + # no bos used in fairseq + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def __getstate__(self): + state = self.__dict__.copy() + state["sm"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9fd7ad647b4978dc333f9842de50a258fe8a07e0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/convbert/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..45522f4ba893a154b3400b76b4bb280fd00b692a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__init__.py @@ -0,0 +1,135 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available + + +_import_structure = { + "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], + "configuration_data2vec_text": [ + "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "Data2VecTextConfig", + "Data2VecTextOnnxConfig", + ], + "configuration_data2vec_vision": [ + "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", + "Data2VecVisionConfig", + "Data2VecVisionOnnxConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_data2vec_audio"] = [ + "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", + "Data2VecAudioForAudioFrameClassification", + "Data2VecAudioForCTC", + "Data2VecAudioForSequenceClassification", + "Data2VecAudioForXVector", + "Data2VecAudioModel", + "Data2VecAudioPreTrainedModel", + ] + _import_structure["modeling_data2vec_text"] = [ + "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", + "Data2VecTextForCausalLM", + "Data2VecTextForMaskedLM", + "Data2VecTextForMultipleChoice", + "Data2VecTextForQuestionAnswering", + "Data2VecTextForSequenceClassification", + "Data2VecTextForTokenClassification", + "Data2VecTextModel", + "Data2VecTextPreTrainedModel", + ] + _import_structure["modeling_data2vec_vision"] = [ + "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", + "Data2VecVisionForImageClassification", + "Data2VecVisionForMaskedImageModeling", + "Data2VecVisionForSemanticSegmentation", + "Data2VecVisionModel", + "Data2VecVisionPreTrainedModel", + ] + +if is_tf_available(): + _import_structure["modeling_tf_data2vec_vision"] = [ + "TFData2VecVisionForImageClassification", + "TFData2VecVisionForSemanticSegmentation", + "TFData2VecVisionModel", + "TFData2VecVisionPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_data2vec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecAudioConfig + from .configuration_data2vec_text import ( + DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, + Data2VecTextConfig, + Data2VecTextOnnxConfig, + ) + from .configuration_data2vec_vision import ( + DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, + Data2VecVisionConfig, + Data2VecVisionOnnxConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_data2vec_audio import ( + DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, + Data2VecAudioForAudioFrameClassification, + Data2VecAudioForCTC, + Data2VecAudioForSequenceClassification, + Data2VecAudioForXVector, + Data2VecAudioModel, + Data2VecAudioPreTrainedModel, + ) + from .modeling_data2vec_text import ( + DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, + Data2VecTextForCausalLM, + Data2VecTextForMaskedLM, + Data2VecTextForMultipleChoice, + Data2VecTextForQuestionAnswering, + Data2VecTextForSequenceClassification, + Data2VecTextForTokenClassification, + Data2VecTextModel, + Data2VecTextPreTrainedModel, + ) + from .modeling_data2vec_vision import ( + DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, + Data2VecVisionForImageClassification, + Data2VecVisionForMaskedImageModeling, + Data2VecVisionForSemanticSegmentation, + Data2VecVisionModel, + Data2VecVisionPreTrainedModel, + ) + if is_tf_available(): + from .modeling_tf_data2vec_vision import ( + TFData2VecVisionForImageClassification, + TFData2VecVisionForSemanticSegmentation, + TFData2VecVisionModel, + TFData2VecVisionPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3322ddcf7897877a0027a9455b29955ca3a2108c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_audio.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_audio.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ef14a6fd8a70f103d1334a2a9e6ae0e7216373d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_audio.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..afd9dc5b5d4bc708d6453fd7c60d617a94518065 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_vision.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_vision.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b80ac85093448fefb9f500dc9dca6939292ee97b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/configuration_data2vec_vision.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18cbf44305d57a41429c22afcc63c6661fc5f92b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc5cb6c3f793eb5516311cd04d222b24d73e0492 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c4685b84249b5c3a7aecfb10dc26f456e267eb5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_audio.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_audio.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e943b5298f4582b6e67aba6e68381b413132d6b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_audio.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4448373054aa8dfd9c03ac4afb310c78c2243a1c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_vision.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_vision.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fec9052f8eb1e70898766b3320ce260acaca5962 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_data2vec_vision.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_tf_data2vec_vision.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_tf_data2vec_vision.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab64a20ee3467876fd3852171ea731c8fc4f5dca Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/__pycache__/modeling_tf_data2vec_vision.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.py new file mode 100644 index 0000000000000000000000000000000000000000..32d505f157d63f628fc10c5226b0c823e843fbb8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_audio.py @@ -0,0 +1,285 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Data2VecText configuration""" + +import math + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class Data2VecAudioConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Data2VecAudioModel`]. It is used to instantiate + an Data2VecAudio model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Data2VecAudio + [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32): + Vocabulary size of the Data2VecAudio model. Defines the number of different tokens that can be represented + by the `inputs_ids` passed when calling [`Data2VecAudioModel`] or [`TFData2VecAudioModel`]. Vocabulary size + of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the + forward method of [`Data2VecAudioModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + final_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the final projection layer of [`Data2VecAudioForCTC`]. + layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more + details. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the feature encoder. + feat_extract_activation (`str, `optional`, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): + A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length + of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The + length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2),: + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0),: + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): + Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an + instance of [`Data2VecAudioForCTC`]. + ctc_zero_infinity (`bool`, *optional*, defaults to `False`): + Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly + occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance + of [`Data2VecAudioForCTC`]. + use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): + Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an + instance of [`Data2VecAudioForSequenceClassification`]. + classifier_proj_size (`int`, *optional*, defaults to 256): + Dimensionality of the projection before token mean-pooling for classification. + tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): + A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* + module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. + tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the + *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. + tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): + A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the + *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. + xvector_output_dim (`int`, *optional*, defaults to 512): + Dimensionality of the *XVector* embedding vectors. + add_adapter (`bool`, *optional*, defaults to `False`): + Whether a convolutional network should be stacked on top of the Data2VecAudio Encoder. Can be very useful + for warm-starting Data2VecAudio for SpeechEncoderDecoder models. + adapter_kernel_size (`int`, *optional*, defaults to 3): + Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. + adapter_stride (`int`, *optional*, defaults to 2): + Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. + num_adapter_layers (`int`, *optional*, defaults to 3): + Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is + True`. + output_hidden_size (`int`, *optional*): + Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant + if `add_adapter is True`. + + Example: + + ```python + >>> from transformers import Data2VecAudioConfig, Data2VecAudioModel + + >>> # Initializing a Data2VecAudio facebook/data2vec-audio-base-960h style configuration + >>> configuration = Data2VecAudioConfig() + + >>> # Initializing a model (with random weights) from the facebook/data2vec-audio-base-960h style configuration + >>> model = Data2VecAudioModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "data2vec-audio" + + def __init__( + self, + vocab_size=32, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout=0.1, + activation_dropout=0.1, + attention_dropout=0.1, + feat_proj_dropout=0.0, + final_dropout=0.1, + layerdrop=0.1, + initializer_range=0.02, + layer_norm_eps=1e-5, + feat_extract_activation="gelu", + conv_dim=(512, 512, 512, 512, 512, 512, 512), + conv_stride=(5, 2, 2, 2, 2, 2, 2), + conv_kernel=(10, 3, 3, 3, 3, 2, 2), + conv_bias=False, + num_conv_pos_embedding_groups=16, + conv_pos_kernel_size=19, + num_conv_pos_embeddings=5, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + ctc_loss_reduction="sum", + ctc_zero_infinity=False, + use_weighted_layer_sum=False, + classifier_proj_size=256, + tdnn_dim=(512, 512, 512, 512, 1500), + tdnn_kernel=(5, 3, 3, 1, 1), + tdnn_dilation=(1, 2, 3, 1, 1), + xvector_output_dim=512, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + add_adapter=False, + adapter_kernel_size=3, + adapter_stride=2, + num_adapter_layers=3, + output_hidden_size=None, + **kwargs, + ): + super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) + self.hidden_size = hidden_size + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.conv_pos_kernel_size = conv_pos_kernel_size + self.num_feat_extract_layers = len(self.conv_dim) + self.num_hidden_layers = num_hidden_layers + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.num_attention_heads = num_attention_heads + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.feat_proj_dropout = feat_proj_dropout + self.final_dropout = final_dropout + self.layerdrop = layerdrop + self.layer_norm_eps = layer_norm_eps + self.initializer_range = initializer_range + self.vocab_size = vocab_size + self.use_weighted_layer_sum = use_weighted_layer_sum + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" + " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" + f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," + f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + # ctc loss + self.ctc_loss_reduction = ctc_loss_reduction + self.ctc_zero_infinity = ctc_zero_infinity + + # adapter + self.add_adapter = add_adapter + self.adapter_kernel_size = adapter_kernel_size + self.adapter_stride = adapter_stride + self.num_adapter_layers = num_adapter_layers + self.output_hidden_size = output_hidden_size or hidden_size + + # SequenceClassification-specific parameter. Feel free to ignore for other classes. + self.classifier_proj_size = classifier_proj_size + + # XVector-specific parameters. Feel free to ignore for other classes. + self.tdnn_dim = list(tdnn_dim) + self.tdnn_kernel = list(tdnn_kernel) + self.tdnn_dilation = list(tdnn_dilation) + self.xvector_output_dim = xvector_output_dim + + @property + def inputs_to_logits_ratio(self): + return math.prod(self.conv_stride) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_text.py new file mode 100644 index 0000000000000000000000000000000000000000..cd52db2d326e9f5a9f7e6392815e5f63185352af --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_text.py @@ -0,0 +1,153 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Data2VecText configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Data2VecTextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Data2VecTextModel`] and [`Data2VecTextModel`]. It + is used to instantiate a Data2VecText model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecText + [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the DATA2VEC model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`Data2VecModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`Data2VecModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import Data2VecTextConfig, Data2VecTextModel + + >>> # Initializing a Data2VecText facebook/data2vec-text-base style configuration + >>> configuration = Data2VecTextConfig() + + >>> # Initializing a model (with random weights) from the facebook/data2vec-text-base style configuration + >>> model = Data2VecTextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "data2vec-text" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + + +class Data2VecTextOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.py new file mode 100644 index 0000000000000000000000000000000000000000..9a9de9c4be5a0dc10dc35598544f3baed29cda62 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/configuration_data2vec_vision.py @@ -0,0 +1,193 @@ +# coding=utf-8 +# Copyright Meta Platforms and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Data2VecVision model configuration""" +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Data2VecVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate + an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Data2VecVision + [facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + use_mask_token (`bool`, *optional*, defaults to `False`): + Whether to use a mask token for masked image modeling. + use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): + Whether to use BERT-style absolute position embeddings. + use_relative_position_bias (`bool`, *optional*, defaults to `False`): + Whether to use T5-style relative position embeddings in the self-attention layers. + use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): + Whether to use the same relative position embeddings across all self-attention layers of the Transformer. + layer_scale_init_value (`float`, *optional*, defaults to 0.1): + Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. + drop_path_rate (`float`, *optional*, defaults to 0.1): + Stochastic depth rate per sample (when applied in the main path of residual layers). + use_mean_pooling (`bool`, *optional*, defaults to `True`): + Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the + CLS token, before applying the classification head. + out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): + Indices of the feature maps to use for semantic segmentation. + pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): + Pooling scales used in Pooling Pyramid Module applied on the last feature map. + use_auxiliary_head (`bool`, *optional*, defaults to `True`): + Whether to use an auxiliary head during training. + auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): + Weight of the cross-entropy loss of the auxiliary head. + auxiliary_channels (`int`, *optional*, defaults to 256): + Number of channels to use in the auxiliary head. + auxiliary_num_convs (`int`, *optional*, defaults to 1): + Number of convolutional layers to use in the auxiliary head. + auxiliary_concat_input (`bool`, *optional*, defaults to `False`): + Whether to concatenate the output of the auxiliary head with the input before the classification layer. + semantic_loss_ignore_index (`int`, *optional*, defaults to 255): + The index that is ignored by the loss function of the semantic segmentation model. + + Example: + + ```python + >>> from transformers import Data2VecVisionConfig, Data2VecVisionModel + + >>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration + >>> configuration = Data2VecVisionConfig() + + >>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration + >>> model = Data2VecVisionModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "data2vec-vision" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + image_size=224, + patch_size=16, + num_channels=3, + use_mask_token=False, + use_absolute_position_embeddings=False, + use_relative_position_bias=False, + use_shared_relative_position_bias=False, + layer_scale_init_value=0.1, + drop_path_rate=0.1, + use_mean_pooling=True, + out_indices=[3, 5, 7, 11], + pool_scales=[1, 2, 3, 6], + use_auxiliary_head=True, + auxiliary_loss_weight=0.4, + auxiliary_channels=256, + auxiliary_num_convs=1, + auxiliary_concat_input=False, + semantic_loss_ignore_index=255, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.use_mask_token = use_mask_token + self.use_absolute_position_embeddings = use_absolute_position_embeddings + self.use_relative_position_bias = use_relative_position_bias + self.use_shared_relative_position_bias = use_shared_relative_position_bias + self.layer_scale_init_value = layer_scale_init_value + self.drop_path_rate = drop_path_rate + self.use_mean_pooling = use_mean_pooling + # decode head attributes (semantic segmentation) + self.out_indices = out_indices + self.pool_scales = pool_scales + # auxiliary head attributes (semantic segmentation) + self.use_auxiliary_head = use_auxiliary_head + self.auxiliary_loss_weight = auxiliary_loss_weight + self.auxiliary_channels = auxiliary_channels + self.auxiliary_num_convs = auxiliary_num_convs + self.auxiliary_concat_input = auxiliary_concat_input + self.semantic_loss_ignore_index = semantic_loss_ignore_index + + +# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig +class Data2VecVisionOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..01c2d8cab27894b8f6cc91572d3c9fdd55aafcab --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,286 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Wav2Vec2 checkpoint.""" + + +import argparse +import os +from functools import reduce + +import fairseq +import torch +from datasets import load_dataset + +from transformers import Wav2Vec2Processor, logging +from transformers.models.data2vec.configuration_data2vec_audio import Data2VecAudioConfig + +# Copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py +from transformers.models.data2vec.data2vec_audio import Data2VecAudioModel as Dummy # noqa: F401 +from transformers.models.data2vec.modeling_data2vec_audio import Data2VecAudioForCTC, Data2VecAudioModel + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +MAPPING = { + "post_extract_proj": "feature_projection.projection", + "models.0.layer_norm": "feature_projection.layer_norm", + "self_attn.k_proj": "encoder.layers.*.attention.k_proj", + "self_attn.v_proj": "encoder.layers.*.attention.v_proj", + "self_attn.q_proj": "encoder.layers.*.attention.q_proj", + "self_attn.out_proj": "encoder.layers.*.attention.out_proj", + "self_attn_layer_norm": "encoder.layers.*.layer_norm", + "fc1": "encoder.layers.*.feed_forward.intermediate_dense", + "fc2": "encoder.layers.*.feed_forward.output_dense", + "final_layer_norm": "encoder.layers.*.final_layer_norm", + "encoder.layer_norm": "encoder.layer_norm", + "w2v_model.layer_norm": "feature_projection.layer_norm", + "w2v_encoder.proj": "lm_head", + "mask_emb": "masked_spec_embed", +} +TOP_LEVEL_KEYS = [ + "lm_head", +] + + +def set_recursively(hf_pointer, key, value, full_name, weight_type): + for attribute in key.split("."): + hf_pointer = getattr(hf_pointer, attribute) + + if weight_type is not None: + hf_shape = getattr(hf_pointer, weight_type).shape + else: + hf_shape = hf_pointer.shape + + if hf_shape != value.shape: + raise ValueError( + f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" + f" {value.shape} for {full_name}" + ) + + if weight_type == "weight": + hf_pointer.weight.data = value + elif weight_type == "weight_g": + hf_pointer.weight_g.data = value + elif weight_type == "weight_v": + hf_pointer.weight_v.data = value + elif weight_type == "bias": + hf_pointer.bias.data = value + else: + hf_pointer.data = value + + logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") + + +def recursively_load_weights(fairseq_model, hf_model, is_headless): + unused_weights = [] + fairseq_dict = fairseq_model.state_dict() + + if not is_headless: + feature_extractor = hf_model.data2vec_audio.feature_extractor + pos_conv_embedding = hf_model.data2vec_audio.encoder.pos_conv_embed + + else: + feature_extractor = hf_model.feature_extractor + pos_conv_embedding = hf_model.encoder.pos_conv_embed + + for name, value in fairseq_dict.items(): + is_used = False + if "conv_layers" in name: + load_conv_layer( + name, + value, + feature_extractor, + unused_weights, + ) + is_used = True + elif "pos_conv" in name: + load_pos_conv_layer( + name, + value, + pos_conv_embedding, + unused_weights, + ) + is_used = True + else: + for key, mapped_key in MAPPING.items(): + if not is_headless: + mapped_key = "data2vec_audio." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key + if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: + is_used = True + if "*" in mapped_key: + layer_index = name.split(key)[0].split(".")[-2] + mapped_key = mapped_key.replace("*", layer_index) + if "weight_g" in name: + weight_type = "weight_g" + elif "weight_v" in name: + weight_type = "weight_v" + elif "bias" in name: + weight_type = "bias" + elif "weight" in name: + # TODO: don't match quantizer.weight_proj + weight_type = "weight" + else: + weight_type = None + set_recursively(hf_model, mapped_key, value, name, weight_type) + continue + if not is_used: + unused_weights.append(name) + + logger.warning(f"Unused weights: {unused_weights}") + + +def access_by_string(module, path): + names = path.split(".") + return reduce(getattr, names, module) + + +def set_weights(full_name, module, fsq_value, hf_weight_path): + hf_weight = access_by_string(module, hf_weight_path) + hf_value = hf_weight.data + + if fsq_value.shape != hf_value.shape: + raise ValueError(f"{full_name} has size {fsq_value.shape}, but {hf_value.shape} was found.") + hf_weight.data = fsq_value + logger.info(f"{full_name} was correctly initialized from {hf_weight_path}.") + + +def load_conv_layer(full_name, value, feature_extractor, unused_weights): + name = full_name.split("conv_layers.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + weight_type = name.split(".")[-1] + if type_id == 0: + layer_type = "conv" + elif type_id == 2: + layer_type = "layer_norm" + else: + unused_weights.append(full_name) + return + + set_weights(full_name, feature_extractor, value, f"conv_layers.{layer_id}.{layer_type}.{weight_type}") + + +def load_pos_conv_layer(full_name, value, pos_conv_embeddings, unused_weights): + name = full_name.split("pos_conv.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + weight_type = name.split(".")[-1] + if type_id != 0: + unused_weights.append(full_name) + return + else: + layer_type = "conv" + + set_weights(full_name, pos_conv_embeddings, value, f"layers.{layer_id}.{layer_type}.{weight_type}") + + +@torch.no_grad() +def convert_wav2vec2_checkpoint( + checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True +): + """ + Copy/paste/tweak model's weights to transformers design. + """ + if config_path is not None: + config = Data2VecAudioConfig.from_pretrained(config_path) + else: + config = Data2VecAudioConfig() + + if not is_finetuned: + # Modify final_proj layer name + hf_wav2vec = Data2VecAudioModel(config) + data2vec_checkpoint_dir = os.path.dirname(checkpoint_path) + + state_dict = torch.load(checkpoint_path) + state_dict["model"]["final_proj.weight"] = state_dict["model"].pop("final_proj.0.weight") + state_dict["model"]["final_proj.bias"] = state_dict["model"].pop("final_proj.0.bias") + converted_ckpt = os.path.join(data2vec_checkpoint_dir, "converted.pt") + torch.save(state_dict, converted_ckpt) + else: + hf_wav2vec = Data2VecAudioForCTC(config) + converted_ckpt = checkpoint_path + + def load_data2vec(path): + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([path]) + return model[0].eval() + + model = load_data2vec(converted_ckpt) + + recursively_load_weights(model, hf_wav2vec, not is_finetuned) + + processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-lv60") + + ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") + input_audio = [x["array"] for x in ds[:4]["audio"]] + + inputs = processor(input_audio, return_tensors="pt", padding=True) + + input_values = inputs.input_values + attention_mask = inputs.attention_mask + # input_values = inputs.input_values[:, :-1] + # attention_mask = inputs.attention_mask[:, :-1] + + hf_wav2vec.eval() + model.eval() + if is_finetuned: + their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ + "encoder_out" + ].transpose(0, 1) + our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["logits"] + + pred_ids = torch.argmax(our_output, dim=-1) + output_string = processor.batch_decode(pred_ids) + + print(f"Expected Output: {ds[:4]['text']}, Pred: {output_string}") + else: + their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ + "layer_results" + ][-1][0].transpose(0, 1) + our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["last_hidden_state"] + + print(our_output.shape, their_output.shape) + max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() + print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 + success = torch.allclose(our_output, their_output, atol=1e-3) + print("Do both models output the same tensors?", "🔥" if success else "💩") + if not success: + raise Exception("Something went wRoNg") + + hf_wav2vec.save_pretrained(pytorch_dump_folder_path) + + if is_finetuned: + processor.save_pretrained(pytorch_dump_folder_path) + else: + processor.feature_extractor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" + ) + args = parser.parse_args() + convert_wav2vec2_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..81f5cd23fb9ef8ba045c1b363bfba3acbcffd876 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,208 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert data2vec checkpoint.""" + + +import argparse +import os +import pathlib + +import fairseq +import torch +from fairseq.modules import TransformerSentenceEncoderLayer +from packaging import version + +from transformers import ( + Data2VecTextConfig, + Data2VecTextForMaskedLM, + Data2VecTextForSequenceClassification, + Data2VecTextModel, +) +from transformers.models.bert.modeling_bert import ( + BertIntermediate, + BertLayer, + BertOutput, + BertSelfAttention, + BertSelfOutput, +) + +# IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz +# File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py +from transformers.utils import logging + + +if version.parse(fairseq.__version__) < version.parse("0.9.0"): + raise Exception("requires fairseq >= 0.9.0") + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +SAMPLE_TEXT = "Hello world! cécé herlolip" + + +def convert_data2vec_checkpoint_to_pytorch( + data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool +): + """ + Copy/paste/tweak data2vec's weights to our BERT structure. + """ + data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path) + data2vec = Data2VecTextModel.from_pretrained( + data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name + ) + data2vec.eval() # disable dropout + data2vec_model = data2vec.models[0] + data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder + config = Data2VecTextConfig( + vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings, + hidden_size=data2vec_model.args.encoder_embed_dim, + num_hidden_layers=data2vec_model.args.encoder_layers, + num_attention_heads=data2vec_model.args.encoder_attention_heads, + intermediate_size=data2vec_model.args.encoder_ffn_embed_dim, + max_position_embeddings=514, + type_vocab_size=1, + layer_norm_eps=1e-5, # PyTorch default used in fairseq + ) + if classification_head: + config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0] + print("Our BERT config:", config) + + model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config) + model.eval() + + # Now let's copy all the weights. + # Embeddings + model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight + model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight + model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like( + model.data2vec_text.embeddings.token_type_embeddings.weight + ) # just zero them out b/c data2vec doesn't use them. + model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight + model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias + + for i in range(config.num_hidden_layers): + # Encoder: start of layer + layer: BertLayer = model.data2vec_text.encoder.layer[i] + data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i] + + # self attention + self_attn: BertSelfAttention = layer.attention.self + assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size( + (config.hidden_size, config.hidden_size) + ), ( + "Shape for data2vec_layer.self_attn.k_proj.weight.data should be" + f" {torch.Size((config.hidden_size, config.hidden_size))}" + ) + assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size( + (config.hidden_size, config.hidden_size) + ), ( + "Shape for data2vec_layer.self_attn.q_proj.weight.data should be" + f" {torch.Size((config.hidden_size, config.hidden_size))}" + ) + assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size( + (config.hidden_size, config.hidden_size) + ), ( + "Shape for data2vec_layer.self_attn.v_proj.weight.data should be" + f" {torch.Size((config.hidden_size, config.hidden_size))}" + ) + + self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight + self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias + self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight + self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias + self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight + self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias + + # self-attention output + self_output: BertSelfOutput = layer.attention.output + assert ( + self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape + ), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}" + self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight + self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias + self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight + self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias + + # intermediate + intermediate: BertIntermediate = layer.intermediate + assert ( + intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape + ), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}" + intermediate.dense.weight = data2vec_layer.fc1.weight + intermediate.dense.bias = data2vec_layer.fc1.bias + + # output + bert_output: BertOutput = layer.output + assert ( + bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape + ), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}" + bert_output.dense.weight = data2vec_layer.fc2.weight + bert_output.dense.bias = data2vec_layer.fc2.bias + bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight + bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias + # end of layer + + if classification_head: + model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight + model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias + model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight + model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias + else: + # LM Head + model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight + model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias + model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight + model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias + model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight + model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias + + # Let's check that we get the same results. + input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1 + + our_output = model(input_ids)[0] + if classification_head: + their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids)) + else: + their_output = data2vec_model(input_ids)[0] + print(our_output.shape, their_output.shape) + max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() + print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 + success = torch.allclose(our_output, their_output, atol=1e-3) + print("Do both models output the same tensors?", "🔥" if success else "💩") + if not success: + raise Exception("Something went wRoNg") + + pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) + print(f"Saving model to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--classification_head", action="store_true", help="Whether to convert a final classification head." + ) + args = parser.parse_args() + convert_data2vec_checkpoint_to_pytorch( + args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..0c6f42f4ba7f1b6a2afea7a9d03b9b89c1a21f25 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,374 @@ +#!/usr/bin/env python3 +import argparse +import json + +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from timm.models import create_model + +from transformers import ( + BeitImageProcessor, + Data2VecVisionConfig, + Data2VecVisionForImageClassification, + Data2VecVisionModel, +) + + +def create_rename_keys(config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec."): + prefix = "backbone." if is_semantic else "" + + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append( + (f"{prefix}blocks.{i}.norm1.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_before.weight") + ) + rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append( + (f"{prefix}blocks.{i}.attn.proj.weight", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.weight") + ) + rename_keys.append( + (f"{prefix}blocks.{i}.attn.proj.bias", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.bias") + ) + rename_keys.append( + (f"{prefix}blocks.{i}.norm2.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_after.weight") + ) + rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append( + (f"{prefix}blocks.{i}.mlp.fc1.weight", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.weight") + ) + rename_keys.append( + (f"{prefix}blocks.{i}.mlp.fc1.bias", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.bias") + ) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"{hf_prefix}encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"{hf_prefix}encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + (f"{prefix}cls_token", f"{hf_prefix}embeddings.cls_token"), + (f"{prefix}patch_embed.proj.weight", f"{hf_prefix}embeddings.patch_embeddings.projection.weight"), + (f"{prefix}patch_embed.proj.bias", f"{hf_prefix}embeddings.patch_embeddings.projection.bias"), + ] + ) + + if has_lm_head: + # mask token + shared relative position bias + layernorm + rename_keys.extend( + [ + ("mask_token", f"{hf_prefix}embeddings.mask_token"), + ( + "rel_pos_bias.relative_position_bias_table", + f"{hf_prefix}encoder.relative_position_bias.relative_position_bias_table", + ), + ( + "rel_pos_bias.relative_position_index", + f"{hf_prefix}encoder.relative_position_bias.relative_position_index", + ), + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + elif is_semantic: + # semantic segmentation classification heads + rename_keys.extend( + [ + ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), + ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), + ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), + ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), + ] + ) + else: + # layernorm + classification head + rename_keys.extend( + [ + ("fc_norm.weight", f"{hf_prefix}pooler.layernorm.weight"), + ("fc_norm.bias", f"{hf_prefix}pooler.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec_vision."): + for i in range(config.num_hidden_layers): + prefix = "backbone." if is_semantic else "" + # queries, keys and values + in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight") + q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias") + v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias") + + state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.bias"] = q_bias + state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.bias"] = v_bias + + # gamma_1 and gamma_2 + # we call them lambda because otherwise they are renamed when using .from_pretrained + gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1") + gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2") + + state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_1"] = gamma_1 + state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_2"] = gamma_2 + + # relative_position bias table + index + if not has_lm_head: + # each layer has its own relative position bias + table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table") + index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index") + + state_dict[ + f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table" + ] = table + state_dict[ + f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index" + ] = index + + +def get_args(): + parser = argparse.ArgumentParser( + "Convert Data2VecVision to HF for image classification and pretraining", add_help=False + ) + parser.add_argument("--hf_checkpoint_name", type=str) + parser.add_argument("--input_size", default=224, type=int, help="images input size") + parser.add_argument("--beit_checkpoint", default="", help="beit checkpoint") + + return parser.parse_args() + + +def load_beit_model(args, is_finetuned, is_large): + def load_state_dict(model, state_dict, prefix="", ignore_missing="relative_position_index"): + missing_keys = [] + unexpected_keys = [] + error_msgs = [] + # copy state_dict so _load_from_state_dict can modify it + metadata = getattr(state_dict, "_metadata", None) + state_dict = state_dict.copy() + if metadata is not None: + state_dict._metadata = metadata + + def load(module, prefix=""): + local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) + module._load_from_state_dict( + state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs + ) + for name, child in module._modules.items(): + if child is not None: + load(child, prefix + name + ".") + + load(model, prefix=prefix) + + warn_missing_keys = [] + ignore_missing_keys = [] + for key in missing_keys: + keep_flag = True + for ignore_key in ignore_missing.split("|"): + if ignore_key in key: + keep_flag = False + break + if keep_flag: + warn_missing_keys.append(key) + else: + ignore_missing_keys.append(key) + + missing_keys = warn_missing_keys + + if len(missing_keys) > 0: + print( + "Weights of {} not initialized from pretrained model: {}".format( + model.__class__.__name__, missing_keys + ) + ) + if len(unexpected_keys) > 0: + print("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)) + if len(ignore_missing_keys) > 0: + print( + "Ignored weights of {} not initialized from pretrained model: {}".format( + model.__class__.__name__, ignore_missing_keys + ) + ) + if len(error_msgs) > 0: + print("\n".join(error_msgs)) + + model_kwargs = { + "pretrained": False, + "use_shared_rel_pos_bias": True, + "use_abs_pos_emb": False, + "init_values": 0.1, + } + + if is_finetuned: + model_kwargs.update( + { + "num_classes": 1000, + "use_mean_pooling": True, + "init_scale": 0.001, + "use_rel_pos_bias": True, + } + ) + + model = create_model( + "beit_large_patch16_224" if is_large else "beit_base_patch16_224", + **model_kwargs, + ) + patch_size = model.patch_embed.patch_size + args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) + checkpoint = torch.load(args.beit_checkpoint, map_location="cpu") + + print(f"Load ckpt from {args.beit_checkpoint}") + checkpoint_model = None + for model_key in ("model", "module"): + if model_key in checkpoint: + checkpoint_model = checkpoint[model_key] + print(f"Load state_dict by model_key = {model_key}") + break + + all_keys = list(checkpoint_model.keys()) + for key in all_keys: + if "relative_position_index" in key: + checkpoint_model.pop(key) + + if "relative_position_bias_table" in key: + rel_pos_bias = checkpoint_model[key] + src_num_pos, num_attn_heads = rel_pos_bias.size() + dst_num_pos, _ = model.state_dict()[key].size() + dst_patch_shape = model.patch_embed.patch_shape + if dst_patch_shape[0] != dst_patch_shape[1]: + raise NotImplementedError() + + load_state_dict(model, checkpoint_model, prefix="") + + return model + + +def main(): + args = get_args() + + is_finetuned = "ft1k" in args.hf_checkpoint_name + is_large = "large" in args.hf_checkpoint_name + + if is_finetuned: + # To convert Beit's data2vec_vision to HF you need to copy + # https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_finetune.py + # into this folder. + import modeling_finetune # noqa: F401 + else: + # To convert Beit's data2vec_vision to HF you need to copy + # https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_cyclical.py + # into this folder + # IMPORTANT: Note that for now we've only converted the down-stream + # model and not the full pretrained model. This means for the integration + # test you need to add a `return x` after the following line: + # https://github.com/facebookresearch/data2vec_vision/blob/af9a36349aaed59ae66e69b5dabeef2d62fdc5da/beit/modeling_cyclical.py#L197 + # to make the integration test pass. + import modeling_cyclical # noqa: F401 + + # 1. Create model config + config = Data2VecVisionConfig() + if is_finetuned: + config.use_relative_position_bias = True + config.use_shared_relative_position_bias = False + config.use_mean_pooling = True + config.num_labels = 1000 + + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + else: + config.use_relative_position_bias = False + config.use_shared_relative_position_bias = True + config.use_mean_pooling = False + + if is_large: + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + + # 2. Load Beit model + orig_model = load_beit_model(args, is_finetuned, is_large) + orig_model.eval() + + # 3. Forward Beit model + image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False) + image = Image.open("../../../../tests/fixtures/tests_samples/COCO/000000039769.png") + encoding = image_processor(images=image, return_tensors="pt") + pixel_values = encoding["pixel_values"] + + orig_args = (pixel_values,) if is_finetuned else (pixel_values, None) + with torch.no_grad(): + orig_model_output = orig_model(*orig_args) + + # 4. Load HF Data2VecVision model + if is_finetuned: + hf_model = Data2VecVisionForImageClassification(config) + hf_model.eval() + has_lm_head = False + hf_prefix = "data2vec_vision." + else: + hf_model = Data2VecVisionModel(config) + hf_model.eval() + has_lm_head = True + hf_prefix = "" + + rename_keys = create_rename_keys(config, hf_prefix=hf_prefix, has_lm_head=has_lm_head) + state_dict = orig_model.state_dict() + for src, dest in rename_keys: + val = state_dict.pop(src) + state_dict[dest] = val + + read_in_q_k_v(state_dict, config, hf_prefix=hf_prefix, has_lm_head=has_lm_head) + missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False) + print("HF missing", missing_keys) + print("HF unexpected_keys", unexpected_keys) + + # 5. Forward HF Data2VecVision model + with torch.no_grad(): + hf_model_output = hf_model(pixel_values) + + hf_output = hf_model_output.logits if is_finetuned else hf_model_output.last_hidden_state + + # 6. Compare + max_absolute_diff = torch.max(torch.abs(hf_output - orig_model_output)).item() + + print(f"max_absolute_diff = {max_absolute_diff}") + success = torch.allclose(hf_output, orig_model_output, atol=1e-3) + print("Do both models output the same tensors?", "🔥" if success else "💩") + if not success: + raise Exception("Something went wRoNg") + + # 7. Save + print(f"Saving to {args.hf_checkpoint_name}") + hf_model.save_pretrained(args.hf_checkpoint_name) + image_processor.save_pretrained(args.hf_checkpoint_name) + + +if __name__ == "__main__": + main() + # Run the following to convert checkpoints + # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ + # --beit_checkpoint ./pretrained_base.pt \ + # --hf_checkpoint_name "./data2vec-vision-base" + # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ + # --beit_checkpoint ./finetuned_base.pt \ + # --hf_checkpoint_name "./data2vec-vision-base-ft1k" + # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ + # --beit_checkpoint ./pretrained_large.pt \ + # --hf_checkpoint_name "./data2vec-vision-large" + # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ + # --beit_checkpoint ./finetuned_large.pt \ + # --hf_checkpoint_name "./data2vec-vision-large-ft1k" diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_audio.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_audio.py new file mode 100644 index 0000000000000000000000000000000000000000..b5300cca084fa6d3c4f86b9154962c38464c1331 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_audio.py @@ -0,0 +1,1514 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Data2VecAudio model.""" + +import math +import warnings +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import ( + BaseModelOutput, + CausalLMOutput, + SequenceClassifierOutput, + TokenClassifierOutput, + Wav2Vec2BaseModelOutput, + XVectorOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_peft_available, + logging, +) +from .configuration_data2vec_audio import Data2VecAudioConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 2 + +# General docstring +_CONFIG_FOR_DOC = "Data2VecAudioConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/data2vec-audio-base-960h" +_EXPECTED_OUTPUT_SHAPE = [1, 292, 768] + +# CTC docstring +_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" +_CTC_EXPECTED_LOSS = 66.95 + + +from ..deprecated._archive_maps import DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +class Data2VecAudioConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Data2VecAudio +class Data2VecAudioPadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +class Data2VecAudioPositionalConvLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.conv_pos_kernel_size, + padding=config.conv_pos_kernel_size // 2, + groups=config.num_conv_pos_embedding_groups, + ) + + self.padding = Data2VecAudioPadLayer(config.conv_pos_kernel_size) + self.activation = ACT2FN[config.feat_extract_activation] + # no learnable parameters + self.layer_norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(1, 2) + hidden_states = self.activation(hidden_states) + return hidden_states + + +class Data2VecAudioPositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.layers = nn.ModuleList( + [Data2VecAudioPositionalConvLayer(config) for _ in range(config.num_conv_pos_embeddings)] + ) + + def forward(self, hidden_states): + hidden_states = hidden_states.transpose(1, 2) + for layer in self.layers: + hidden_states = layer(hidden_states) + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +class Data2VecAudioFeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + self.conv_layers = nn.ModuleList( + [Data2VecAudioConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] + ) + self.gradient_checkpointing = False + self._requires_grad = True + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder._freeze_parameters + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder.forward + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Data2VecAudio +class Data2VecAudioFeatureProjection(nn.Module): + def __init__(self, config): + super().__init__() + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) + self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.dropout = nn.Dropout(config.feat_proj_dropout) + + def forward(self, hidden_states): + # non-projected hidden states are needed for quantization + norm_hidden_states = self.layer_norm(hidden_states) + hidden_states = self.projection(norm_hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states, norm_hidden_states + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Data2VecAudio +class Data2VecAudioAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[Data2VecAudioConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Data2VecAudio +class Data2VecAudioFeedForward(nn.Module): + def __init__(self, config): + super().__init__() + self.intermediate_dropout = nn.Dropout(config.activation_dropout) + + self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.output_dropout = nn.Dropout(config.hidden_dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Data2VecAudio +class Data2VecAudioEncoderLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = Data2VecAudioAttention( + embed_dim=config.hidden_size, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = Data2VecAudioFeedForward(config) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + attn_residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = self.dropout(hidden_states) + hidden_states = attn_residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Data2VecAudio +class Data2VecAudioEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.pos_conv_embed = Data2VecAudioPositionalConvEmbedding(config) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layers = nn.ModuleList([Data2VecAudioEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + if attention_mask is not None: + # make sure padded tokens output 0 + expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) + hidden_states[~expand_attention_mask] = 0 + + # extend attention_mask + attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) + attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min + attention_mask = attention_mask.expand( + attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] + ) + + position_embeddings = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + position_embeddings + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Data2VecAudio +class Data2VecAudioAdapter(nn.Module): + def __init__(self, config): + super().__init__() + + # feature dim might need to be down-projected + if config.output_hidden_size != config.hidden_size: + self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) + self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) + else: + self.proj = self.proj_layer_norm = None + + self.layers = nn.ModuleList(Data2VecAudioAdapterLayer(config) for _ in range(config.num_adapter_layers)) + self.layerdrop = config.layerdrop + + def forward(self, hidden_states): + # down project hidden_states if necessary + if self.proj is not None and self.proj_layer_norm is not None: + hidden_states = self.proj(hidden_states) + hidden_states = self.proj_layer_norm(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + + for layer in self.layers: + layerdrop_prob = np.random.random() + if not self.training or (layerdrop_prob > self.layerdrop): + hidden_states = layer(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Data2VecAudio +class Data2VecAudioAdapterLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.output_hidden_size, + 2 * config.output_hidden_size, + config.adapter_kernel_size, + stride=config.adapter_stride, + padding=1, + ) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = nn.functional.glu(hidden_states, dim=1) + + return hidden_states + + +class Data2VecAudioPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Data2VecAudioConfig + base_model_prefix = "data2vec_audio" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, Data2VecAudioFeatureProjection): + k = math.sqrt(1 / module.projection.in_features) + nn.init.uniform_(module.projection.weight, a=-k, b=k) + nn.init.uniform_(module.projection.bias, a=-k, b=k) + elif isinstance(module, Data2VecAudioPositionalConvLayer): + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + if module.bias is not None: + module.bias.data.zero_() + if module.weight is not None: + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + nn.init.kaiming_normal_(module.weight) + + if module.bias is not None: + k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) + nn.init.uniform_(module.bias, a=-k, b=k) + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feat_extract_output_lengths with + def _get_feat_extract_output_lengths( + self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None + ): + """ + Computes the output length of the convolutional layers + """ + + add_adapter = self.config.add_adapter if add_adapter is None else add_adapter + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + if add_adapter: + for _ in range(self.config.num_adapter_layers): + input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) + + return input_lengths + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feature_vector_attention_mask + def _get_feature_vector_attention_mask( + self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None + ): + # Effectively attention_mask.sum(-1), but not inplace to be able to run + # on inference mode. + non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] + + output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) + output_lengths = output_lengths.to(torch.long) + + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + +DATA2VEC_AUDIO_START_DOCSTRING = r""" + Data2VecAudio was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and + Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and + Michael Auli. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving etc.). + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Data2VecAudioConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +DATA2VEC_AUDIO_INPUTS_DOCSTRING = r""" + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file + into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install + soundfile*). To prepare the array into *input_values*, the [`AutoProcessor`] should be used for padding and + conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + + + `attention_mask` should be passed if the corresponding processor has `config.return_attention_mask == + True`, which is the case for all pre-trained Data2Vec Audio models. Be aware that that even with + `attention_mask`, zero-padded inputs will have slightly different outputs compared to non-padded inputs + because there are more than one convolutional layer in the positional encodings. For a more detailed + explanation, see [here](https://github.com/huggingface/transformers/issues/25621#issuecomment-1713759349). + + + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Data2VecAudio Model transformer outputting raw hidden-states without any specific head on top.", + DATA2VEC_AUDIO_START_DOCSTRING, +) +class Data2VecAudioModel(Data2VecAudioPreTrainedModel): + def __init__(self, config: Data2VecAudioConfig): + super().__init__(config) + self.config = config + self.feature_extractor = Data2VecAudioFeatureEncoder(config) + self.feature_projection = Data2VecAudioFeatureProjection(config) + + # model only needs masking vector if mask prob is > 0.0 + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + self.encoder = Data2VecAudioEncoder(config) + + self.adapter = Data2VecAudioAdapter(config) if config.add_adapter else None + + # Initialize weights and apply final processing + self.post_init() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.feature_extractor._freeze_parameters() + + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Wav2Vec2BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + extract_features = self.feature_extractor(input_values) + extract_features = extract_features.transpose(1, 2) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask( + extract_features.shape[1], attention_mask, add_adapter=False + ) + + hidden_states, extract_features = self.feature_projection(extract_features) + hidden_states = self._mask_hidden_states( + hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask + ) + + encoder_outputs = self.encoder( + hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = encoder_outputs[0] + + if self.adapter is not None: + hidden_states = self.adapter(hidden_states) + + if not return_dict: + return (hidden_states, extract_features) + encoder_outputs[1:] + + return Wav2Vec2BaseModelOutput( + last_hidden_state=hidden_states, + extract_features=extract_features, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """Data2VecAudio Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", + DATA2VEC_AUDIO_START_DOCSTRING, +) +class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.data2vec_audio = Data2VecAudioModel(config) + self.dropout = nn.Dropout(config.final_dropout) + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that " + "does not define the vocabulary size of the language model head. Please " + "instantiate the model as follows: `Data2VecAudioForCTC.from_pretrained(..., vocab_size=vocab_size)`. " + "or define `vocab_size` of your model's configuration." + ) + output_hidden_size = ( + config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size + ) + self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.data2vec_audio.feature_extractor._freeze_parameters() + + @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_CTC_EXPECTED_OUTPUT, + expected_loss=_CTC_EXPECTED_LOSS, + ) + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with wav2vec2->data2vec_audio + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): + Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to + the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. + All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., + config.vocab_size - 1]`. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_audio( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + if labels.max() >= self.config.vocab_size: + raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") + + # retrieve loss input_lengths from attention_mask + attention_mask = ( + attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) + ) + input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + + # assuming that padded tokens are filled with -100 + # when not being attended to + labels_mask = labels >= 0 + target_lengths = labels_mask.sum(-1) + flattened_targets = labels.masked_select(labels_mask) + + # ctc_loss doesn't support fp16 + log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) + + with torch.backends.cudnn.flags(enabled=False): + loss = nn.functional.ctc_loss( + log_probs, + flattened_targets, + input_lengths, + target_lengths, + blank=self.config.pad_token_id, + reduction=self.config.ctc_loss_reduction, + zero_infinity=self.config.ctc_zero_infinity, + ) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + Data2VecAudio Model with a sequence classification head on top (a linear layer over the pooled output) for tasks + like SUPERB Keyword Spotting. + """, + DATA2VEC_AUDIO_START_DOCSTRING, +) +class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + if hasattr(config, "add_adapter") and config.add_adapter: + raise ValueError( + "Sequence classification does not support the use of Data2VecAudio adapters (config.add_adapter=True)" + ) + self.data2vec_audio = Data2VecAudioModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) + self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameters will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.data2vec_audio.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.data2vec_audio.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + ) + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with wav2vec2->data2vec_audio + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.data2vec_audio( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + hidden_states = self.projector(hidden_states) + if attention_mask is None: + pooled_output = hidden_states.mean(dim=1) + else: + padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + hidden_states[~padding_mask] = 0.0 + pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Data2VecAudio Model with a frame classification head on top for tasks like Speaker Diarization. + """, + DATA2VEC_AUDIO_START_DOCSTRING, +) +class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + if hasattr(config, "add_adapter") and config.add_adapter: + raise ValueError( + "Audio frame classification does not support the use of Data2VecAudio adapters" + " (config.add_adapter=True)" + ) + self.data2vec_audio = Data2VecAudioModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + self.num_labels = config.num_labels + + self.init_weights() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.data2vec_audio.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.data2vec_audio.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + ) + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->data2vec_audio + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.data2vec_audio( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss +class AMSoftmaxLoss(nn.Module): + def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): + super(AMSoftmaxLoss, self).__init__() + self.scale = scale + self.margin = margin + self.num_labels = num_labels + self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) + self.loss = nn.CrossEntropyLoss() + + def forward(self, hidden_states, labels): + labels = labels.flatten() + weight = nn.functional.normalize(self.weight, dim=0) + hidden_states = nn.functional.normalize(hidden_states, dim=1) + cos_theta = torch.mm(hidden_states, weight) + psi = cos_theta - self.margin + + onehot = nn.functional.one_hot(labels, self.num_labels) + logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) + loss = self.loss(logits, labels) + + return loss + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer +class TDNNLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] + self.out_conv_dim = config.tdnn_dim[layer_id] + self.kernel_size = config.tdnn_kernel[layer_id] + self.dilation = config.tdnn_dilation[layer_id] + + self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) + self.activation = nn.ReLU() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + if is_peft_available(): + from peft.tuners.lora import LoraLayer + + if isinstance(self.kernel, LoraLayer): + warnings.warn( + "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " + "You should exclude TDNNLayer from LoRA's target modules.", + ) + + # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up + hidden_states = hidden_states.transpose(1, 2) + weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) + hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +@add_start_docstrings( + """ + Data2VecAudio Model with an XVector feature extraction head on top for tasks like Speaker Verification. + """, + DATA2VEC_AUDIO_START_DOCSTRING, +) +class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.data2vec_audio = Data2VecAudioModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) + + tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] + self.tdnn = nn.ModuleList(tdnn_layers) + + self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) + self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) + + self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) + + self.init_weights() + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.data2vec_audio.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.data2vec_audio.parameters(): + param.requires_grad = False + + def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the TDNN layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return (input_length - kernel_size) // stride + 1 + + for kernel_size in self.config.tdnn_kernel: + input_lengths = _conv_out_length(input_lengths, kernel_size, 1) + + return input_lengths + + @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XVectorOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + ) + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with wav2vec2->data2vec_audio + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, XVectorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.data2vec_audio( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + hidden_states = self.projector(hidden_states) + + for tdnn_layer in self.tdnn: + hidden_states = tdnn_layer(hidden_states) + + # Statistic Pooling + if attention_mask is None: + mean_features = hidden_states.mean(dim=1) + std_features = hidden_states.std(dim=1) + else: + feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) + tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) + mean_features = [] + std_features = [] + for i, length in enumerate(tdnn_output_lengths): + mean_features.append(hidden_states[i, :length].mean(dim=0)) + std_features.append(hidden_states[i, :length].std(dim=0)) + mean_features = torch.stack(mean_features) + std_features = torch.stack(std_features) + statistic_pooling = torch.cat([mean_features, std_features], dim=-1) + + output_embeddings = self.feature_extractor(statistic_pooling) + logits = self.classifier(output_embeddings) + + loss = None + if labels is not None: + loss = self.objective(logits, labels) + + if not return_dict: + output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return XVectorOutput( + loss=loss, + logits=logits, + embeddings=output_embeddings, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_text.py new file mode 100644 index 0000000000000000000000000000000000000000..7dcc53e2cc15c81bc83088fd03e7a7f4a29bce2b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_text.py @@ -0,0 +1,1557 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Data2VecText model.""" + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_data2vec_text import Data2VecTextConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 2 + +# General docstring +_CHECKPOINT_FOR_DOC = "facebook/data2vec-text-base" +_CONFIG_FOR_DOC = "Data2VecTextConfig" + + +from ..deprecated._archive_maps import DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Data2VecText +class Data2VecTextForTextEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Data2VecText +class Data2VecTextSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class Data2VecTextSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Data2VecText +class Data2VecTextAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = Data2VecTextSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = Data2VecTextSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class Data2VecTextIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class Data2VecTextOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Data2VecText +class Data2VecTextLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = Data2VecTextAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute") + self.intermediate = Data2VecTextIntermediate(config) + self.output = Data2VecTextOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Data2VecText +class Data2VecTextEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class Data2VecTextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class Data2VecTextPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Data2VecTextConfig + base_model_prefix = "data2vec_text" + supports_gradient_checkpointing = True + _no_split_modules = ["Data2VecTextForTextEmbeddings", "Data2VecTextLayer"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + if hasattr(module, "bias") and module.bias is not None: + module.bias.data.zero_() + if hasattr(module, "weight") and module.weight is not None: + module.weight.data.fill_(1.0) + + +DATA2VECTEXT_START_DOCSTRING = r""" + Data2VecText was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and + Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and + Michael Auli. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Data2VecTextConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DATA2VECTEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.", + DATA2VECTEXT_START_DOCSTRING, +) +class Data2VecTextModel(Data2VecTextPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = Data2VecTextForTextEmbeddings(config) + self.encoder = Data2VecTextEncoder(config) + + self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bert.modeling_bert.BertModel.forward + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """Data2VecText Model with a `language modeling` head on top for CLM fine-tuning.""", DATA2VECTEXT_START_DOCSTRING +) +class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`") + + self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) + self.lm_head = Data2VecTextLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base") + >>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base") + >>> config.is_decoder = True + >>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.data2vec_text( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + + labels = labels.to(shifted_prediction_scores.device) + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings("""data2vec Model with a `language modeling` head on top.""", DATA2VECTEXT_START_DOCSTRING) +class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) + self.lm_head = Data2VecTextLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_text( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(prediction_scores.device) + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Data2VecText +class Data2VecTextLMHead(nn.Module): + """Data2VecText Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +@add_start_docstrings( + """ + Data2VecText Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + DATA2VECTEXT_START_DOCSTRING, +) +class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) + self.classifier = Data2VecTextClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_text( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Data2VecText Model with a multiple choice classification head on top (a linear layer on top of the pooled output + and a softmax) e.g. for RocStories/SWAG tasks. + """, + DATA2VECTEXT_START_DOCSTRING, +) +class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.data2vec_text = Data2VecTextModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.data2vec_text( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(reshaped_logits.device) + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Data2VecText Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + DATA2VECTEXT_START_DOCSTRING, +) +class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_text( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(logits.device) + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Data2VecText +class Data2VecTextClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + Data2VecText Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + DATA2VECTEXT_START_DOCSTRING, +) +class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_text( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_vision.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_vision.py new file mode 100644 index 0000000000000000000000000000000000000000..44088d498f60356890405bb5566fe622b9f86800 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_data2vec_vision.py @@ -0,0 +1,1228 @@ +# coding=utf-8 +# Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Data2VecVision model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, + SemanticSegmenterOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_data2vec_vision import Data2VecVisionConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "Data2VecVisionConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" +_IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" + + +from ..deprecated._archive_maps import DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +# Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision +class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling): + """ + Class for outputs of [`Data2VecVisionModel`]. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if + *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token + will be returned. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision +class Data2VecVisionDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +# Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision +class Data2VecVisionEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + + """ + + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + if config.use_mask_token: + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + else: + self.mask_token = None + self.patch_embeddings = Data2VecVisionPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + if config.use_absolute_position_embeddings: + self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) + else: + self.position_embeddings = None + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: + embeddings, (patch_height, patch_width) = self.patch_embeddings( + pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None + ) + batch_size, seq_len, _ = embeddings.size() + + if bool_masked_pos is not None: + mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) + # replace the masked visual tokens by mask_tokens + w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1 - w) + mask_tokens * w + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + if self.position_embeddings is not None: + cls_tokens = cls_tokens + self.position_embeddings[:, :1, :] + + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + embeddings = self.dropout(embeddings) + + return embeddings, (patch_height, patch_width) + + +# Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision +class Data2VecVisionPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + self.patch_shape = patch_shape + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + + embeddings = self.projection(pixel_values) + patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] + + if position_embedding is not None: + # interpolate the position embedding to the corresponding size + position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute( + 0, 3, 1, 2 + ) + position_embedding = nn.functional.interpolate( + position_embedding, size=(patch_height, patch_width), mode="bicubic" + ) + embeddings = embeddings + position_embedding + + embeddings = embeddings.flatten(2).transpose(1, 2) + + return embeddings, (patch_height, patch_width) + + +# Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision +class Data2VecVisionSelfAttention(nn.Module): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + if window_size: + self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) + else: + self.relative_position_bias = None + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Add relative position bias if present. + if self.relative_position_bias is not None: + attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) + + # Add shared relative position bias if provided. + if relative_position_bias is not None: + attention_scores = attention_scores + relative_position_bias + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision +class Data2VecVisionSelfOutput(nn.Module): + """ + The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision +class Data2VecVisionAttention(nn.Module): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + self.attention = Data2VecVisionSelfAttention(config, window_size=window_size) + self.output = Data2VecVisionSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision +class Data2VecVisionIntermediate(nn.Module): + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision +class Data2VecVisionOutput(nn.Module): + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision +class Data2VecVisionLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__( + self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0 + ) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = Data2VecVisionAttention(config, window_size=window_size) + self.intermediate = Data2VecVisionIntermediate(config) + self.output = Data2VecVisionOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + init_values = config.layer_scale_init_value + if init_values > 0: + self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) + self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) + else: + self.lambda_1, self.lambda_2 = None, None + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + relative_position_bias=relative_position_bias, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # apply lambda_1 if present + if self.lambda_1 is not None: + attention_output = self.lambda_1 * attention_output + + # first residual connection + hidden_states = self.drop_path(attention_output) + hidden_states + + # in Data2VecVision, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + + layer_output = self.intermediate(layer_output) + layer_output = self.output(layer_output) + + if self.lambda_2 is not None: + layer_output = self.lambda_2 * layer_output + + # second residual connection + layer_output = self.drop_path(layer_output) + hidden_states + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision +class Data2VecVisionRelativePositionBias(nn.Module): + def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None: + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, config.num_attention_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = torch.zeros( + size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype + ) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index, persistent=False) + + def forward(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 + ) # Wh*Ww,Wh*Ww,nH + + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +# Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision +class Data2VecVisionEncoder(nn.Module): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + self.config = config + if config.use_shared_relative_position_bias: + self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) + else: + self.relative_position_bias = None + + # stochastic depth decay rule + dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] + self.layer = nn.ModuleList( + [ + Data2VecVisionLayer( + config, + window_size=window_size if config.use_relative_position_bias else None, + drop_path_rate=dpr[i], + ) + for i in range(config.num_hidden_layers) + ] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + relative_position_bias = ( + self.relative_position_bias() if self.relative_position_bias is not None else None + ) + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision +class Data2VecVisionPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Data2VecVisionConfig + base_model_prefix = "data2vec_vision" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +DATA2VEC_VISION_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DATA2VEC_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BeitImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", + DATA2VEC_VISION_START_DOCSTRING, +) +# Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False +class Data2VecVisionModel(Data2VecVisionPreTrainedModel): + def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None: + super().__init__(config) + self.config = config + + self.embeddings = Data2VecVisionEmbeddings(config) + self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) + + self.layernorm = ( + nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + ) + self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Data2VecVisionModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, Data2VecVisionModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return Data2VecVisionModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +# Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision +class Data2VecVisionPooler(nn.Module): + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + self.layernorm = ( + nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None + ) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + if self.layernorm is not None: + # Mean pool the final hidden states of the patch tokens + patch_tokens = hidden_states[:, 1:, :] + pooled_output = self.layernorm(patch_tokens.mean(1)) + else: + # Pool by simply taking the final hidden state of the [CLS] token + pooled_output = hidden_states[:, 0] + + return pooled_output + + +@add_start_docstrings( + """ + Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of + the final hidden states of the patch tokens) e.g. for ImageNet. + """, + DATA2VEC_VISION_START_DOCSTRING, +) +# Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision +class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel): + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + outputs = self.data2vec_vision( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision +class Data2VecVisionConvModule(nn.Module): + """ + A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution + layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int]], + padding: Union[int, Tuple[int, int], str] = 0, + bias: bool = False, + dilation: Union[int, Tuple[int, int]] = 1, + ) -> None: + super().__init__() + self.conv = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + padding=padding, + bias=bias, + dilation=dilation, + ) + self.bn = nn.BatchNorm2d(out_channels) + self.activation = nn.ReLU() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + output = self.conv(input) + output = self.bn(output) + output = self.activation(output) + + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision +class Data2VecVisionPyramidPoolingBlock(nn.Module): + def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: + super().__init__() + self.layers = [ + nn.AdaptiveAvgPool2d(pool_scale), + Data2VecVisionConvModule(in_channels, channels, kernel_size=1), + ] + for i, layer in enumerate(self.layers): + self.add_module(str(i), layer) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + hidden_state = input + for layer in self.layers: + hidden_state = layer(hidden_state) + return hidden_state + + +# Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision +class Data2VecVisionPyramidPoolingModule(nn.Module): + """ + Pyramid Pooling Module (PPM) used in PSPNet. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + align_corners (bool): align_corners argument of F.interpolate. + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: + super().__init__() + self.pool_scales = pool_scales + self.align_corners = align_corners + self.in_channels = in_channels + self.channels = channels + self.blocks = [] + for i, pool_scale in enumerate(pool_scales): + block = Data2VecVisionPyramidPoolingBlock( + pool_scale=pool_scale, in_channels=in_channels, channels=channels + ) + self.blocks.append(block) + self.add_module(str(i), block) + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + ppm_outs = [] + for ppm in self.blocks: + ppm_out = ppm(x) + upsampled_ppm_out = nn.functional.interpolate( + ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners + ) + ppm_outs.append(upsampled_ppm_out) + return ppm_outs + + +# Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision +class Data2VecVisionUperHead(nn.Module): + """ + Unified Perceptual Parsing for Scene Understanding. This head is the implementation of + [UPerNet](https://arxiv.org/abs/1807.10221). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__() + + self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) + self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] + self.channels = config.hidden_size + self.align_corners = False + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + # PSP Module + self.psp_modules = Data2VecVisionPyramidPoolingModule( + self.pool_scales, + self.in_channels[-1], + self.channels, + align_corners=self.align_corners, + ) + self.bottleneck = Data2VecVisionConvModule( + self.in_channels[-1] + len(self.pool_scales) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + # FPN Module + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + for in_channels in self.in_channels[:-1]: # skip the top layer + l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1) + fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + self.fpn_bottleneck = Data2VecVisionConvModule( + len(self.in_channels) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + + def psp_forward(self, inputs): + x = inputs[-1] + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = torch.cat(psp_outs, dim=1) + output = self.bottleneck(psp_outs) + + return output + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # build laterals + laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] + + laterals.append(self.psp_forward(encoder_hidden_states)) + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( + laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners + ) + + # build outputs + fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] + # append psp feature + fpn_outs.append(laterals[-1]) + + for i in range(used_backbone_levels - 1, 0, -1): + fpn_outs[i] = nn.functional.interpolate( + fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners + ) + fpn_outs = torch.cat(fpn_outs, dim=1) + output = self.fpn_bottleneck(fpn_outs) + output = self.classifier(output) + + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision +class Data2VecVisionFCNHead(nn.Module): + """ + Fully Convolution Networks for Semantic Segmentation. This head is implemented of + [FCNNet](https://arxiv.org/abs/1411.4038>). + + Args: + config (Data2VecVisionConfig): Configuration. + in_channels + kernel_size (int): The kernel size for convs in the head. Default: 3. + dilation (int): The dilation rate for convs in the head. Default: 1. + + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, + config: Data2VecVisionConfig, + in_index: int = 2, + kernel_size: int = 3, + dilation: Union[int, Tuple[int, int]] = 1, + ) -> None: + super().__init__() + self.in_channels = config.hidden_size + self.channels = config.auxiliary_channels + self.num_convs = config.auxiliary_num_convs + self.concat_input = config.auxiliary_concat_input + self.in_index = in_index + + conv_padding = (kernel_size // 2) * dilation + convs = [] + convs.append( + Data2VecVisionConvModule( + self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + for i in range(self.num_convs - 1): + convs.append( + Data2VecVisionConvModule( + self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + if self.num_convs == 0: + self.convs = nn.Identity() + else: + self.convs = nn.Sequential(*convs) + if self.concat_input: + self.conv_cat = Data2VecVisionConvModule( + self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 + ) + + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # just take the relevant feature maps + hidden_states = encoder_hidden_states[self.in_index] + output = self.convs(hidden_states) + if self.concat_input: + output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) + output = self.classifier(output) + return output + + +@add_start_docstrings( + """ + Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. + """, + DATA2VEC_VISION_START_DOCSTRING, +) +# Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision +class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel): + def __init__(self, config: Data2VecVisionConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False) + + # FPNs + if len(self.config.out_indices) != 4: + raise ValueError( + "Data2VecVisionForSemanticSegmentation requires config.out_indices to be a list of 4 integers, " + "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " + "a base-sized architecture." + ) + self.fpn1 = nn.Sequential( + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + nn.BatchNorm2d(config.hidden_size), + nn.GELU(), + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + ) + self.fpn2 = nn.Sequential( + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + ) + self.fpn3 = nn.Identity() + self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) + + # Semantic segmentation head(s) + self.decode_head = Data2VecVisionUperHead(config) + self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None + + # Initialize weights and apply final processing + self.post_init() + + def compute_loss(self, logits, auxiliary_logits, labels): + # upsample logits to the images' original size + upsampled_logits = nn.functional.interpolate( + logits, size=labels.shape[-2:], mode="bilinear", align_corners=False + ) + if auxiliary_logits is not None: + upsampled_auxiliary_logits = nn.functional.interpolate( + auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False + ) + # compute weighted loss + loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) + main_loss = loss_fct(upsampled_logits, labels) + loss = main_loss + if auxiliary_logits is not None: + auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) + loss += self.config.auxiliary_loss_weight * auxiliary_loss + + return loss + + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, SemanticSegmenterOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") + >>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + >>> # logits are of shape (batch_size, num_labels, height, width) + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + outputs = self.data2vec_vision( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=True, # we need the intermediate hidden states + return_dict=return_dict, + ) + + encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] + + # only keep certain features, and reshape + # note that we do +1 as the encoder_hidden_states also includes the initial embeddings + features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] + batch_size = pixel_values.shape[0] + patch_resolution = self.config.image_size // self.config.patch_size + features = [ + x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features + ] + + # apply FPNs + ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] + for i in range(len(features)): + features[i] = ops[i](features[i]) + + logits = self.decode_head(features) + + auxiliary_logits = None + if self.auxiliary_head is not None: + auxiliary_logits = self.auxiliary_head(features) + + loss = None + if labels is not None: + if self.config.num_labels == 1: + raise ValueError("The number of labels should be greater than one") + else: + loss = self.compute_loss(logits, auxiliary_logits, labels) + + if not return_dict: + if output_hidden_states: + output = (logits,) + outputs[1:] + else: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SemanticSegmenterOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_tf_data2vec_vision.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_tf_data2vec_vision.py new file mode 100644 index 0000000000000000000000000000000000000000..e65a61fae5f881df1028bb8b23936ff86bb171d0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/data2vec/modeling_tf_data2vec_vision.py @@ -0,0 +1,1717 @@ +# coding=utf-8 +# Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 Data2Vec Vision model.""" + + +from __future__ import annotations + +import collections.abc +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFSemanticSegmenterOutput, + TFSequenceClassifierOutput, +) +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_data2vec_vision import Data2VecVisionConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "Data2VecVisionConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" +_IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" + + +@dataclass +class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): + """ + Class for outputs of [`TFData2VecVisionModel`]. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): + Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if + *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token + will be returned. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: tf.Tensor = None + pooler_output: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +class TFData2VecVisionDropPath(keras.layers.Layer): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + References: + (1) github.com:rwightman/pytorch-image-models + """ + + def __init__(self, drop_path, **kwargs): + super().__init__(**kwargs) + self.drop_path = drop_path + + def call(self, x, training=None): + if training: + keep_prob = 1 - self.drop_path + shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) + random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) + random_tensor = tf.floor(random_tensor) + return (x / keep_prob) * random_tensor + return x + + +class TFData2VecVisionEmbeddings(keras.layers.Layer): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + + """ + + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") + self.num_patches = self.patch_embeddings.num_patches + self.config = config + + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + + def build(self, input_shape=None): + self.cls_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), + trainable=True, + name="cls_token", + ) + if self.config.use_mask_token: + self.mask_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), + trainable=True, + name="mask_token", + ) + else: + self.mask_token = None + + if self.config.use_absolute_position_embeddings: + self.position_embeddings = self.add_weight( + shape=(1, self.num_patches + 1, self.config.hidden_size), + initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), + trainable=True, + name="position_embeddings", + ) + else: + self.position_embeddings = None + + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build(None) + + def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor: + embeddings = self.patch_embeddings(pixel_values) + batch_size, seq_len, projection_dim = shape_list(embeddings) + + cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) + + if bool_masked_pos is not None: + mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) + # replace the masked visual tokens by mask_tokens + w = bool_masked_pos[..., None] + w = tf.cast(w, mask_tokens.dtype) + # since TF doesn't support eager tensor assignment + embeddings = embeddings * (1 - w) + mask_tokens * w + + embeddings = tf.concat([cls_tokens, embeddings], axis=1) + if self.position_embeddings is not None: + embeddings = embeddings + self.position_embeddings + embeddings = self.dropout(embeddings) + + return embeddings + + +class TFData2VecVisionPatchEmbeddings(keras.layers.Layer): + """ + Image to Patch Embedding. + """ + + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) + self.image_size = image_size + self.patch_size = patch_size + self.num_patches = num_patches + self.patch_shape = patch_shape + self.num_channels = num_channels + + self.projection = keras.layers.Conv2D( + filters=hidden_size, + kernel_size=patch_size, + strides=patch_size, + padding="valid", + data_format="channels_last", + kernel_initializer="glorot_uniform", # following torch.nn.Linear + bias_initializer="zeros", + name="projection", + ) + + def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: + batch_size, num_channels, height, width = shape_list(pixel_values) + if tf.executing_eagerly(): + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the" + " configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + + # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. + # So change the input format from `NCHW` to `NHWC`. + # shape = (batch_size, in_height, in_width, in_channels=num_channels) + pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) + + projection = self.projection(pixel_values) + + # Change the 2D spatial dimensions to a single temporal dimension. + # shape = (batch_size, num_patches, out_channels=embed_dim) + num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) + + return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "projection", None) is not None: + with tf.name_scope(self.projection.name): + self.projection.build([None, None, None, self.num_channels]) + + +class TFData2VecVisionSelfAttention(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + use_bias=False, + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + if window_size: + self.relative_position_bias = TFData2VecVisionRelativePositionBias( + config, window_size=window_size, name="relative_position_bias" + ) + else: + self.relative_position_bias = None + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + mixed_key_layer = self.key(inputs=hidden_states) + mixed_value_layer = self.value(inputs=hidden_states) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + attention_scores = attention_scores / self.sqrt_att_head_size + + # Add relative position bias if present. + if self.relative_position_bias is not None: + # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras + # might complain about `Layer.call()` not being invoked properly. In this case this input + # i.e., 0.0 is not going to be used in any calculations so we're safe. + attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] + + # Add shared relative position bias if provided. + if relative_position_bias is not None: + attention_scores = attention_scores + relative_position_bias + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "relative_position_bias", None) is not None: + with tf.name_scope(self.relative_position_bias.name): + self.relative_position_bias.build(None) + + +class TFData2VecVisionSelfOutput(keras.layers.Layer): + """ + The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due + to the layernorm applied before each block. + """ + + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFData2VecVisionAttention(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): + super().__init__(**kwargs) + + self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") + self.dense_output = TFData2VecVisionSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.attention( + hidden_states=input_tensor, + head_mask=head_mask, + output_attentions=output_attentions, + relative_position_bias=relative_position_bias, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision +class TFData2VecVisionIntermediate(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFData2VecVisionOutput(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + + +class TFData2VecVisionLayer(keras.layers.Layer): + """This corresponds to the Block class in the timm implementation.""" + + def __init__( + self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs + ): + super().__init__(**kwargs) + self.config = config + + self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") + self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") + self.data2vec_output = TFData2VecVisionOutput(config, name="output") + + self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") + self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") + # Using `layers.Activation` instead of `tf.identity` to better control `training` + # behaviour. + self.drop_path = ( + TFData2VecVisionDropPath(drop_path_rate, name="drop_path") + if drop_path_rate > 0.0 + else keras.layers.Activation("linear", name="drop_path") + ) + self.init_values = config.layer_scale_init_value + + def build(self, input_shape: tf.TensorShape = None): + if self.init_values > 0: + self.lambda_1 = self.add_weight( + shape=(self.config.hidden_size), + initializer="ones", + trainable=True, + name="lambda_1", + ) + self.lambda_2 = self.add_weight( + shape=(self.config.hidden_size), + initializer="ones", + trainable=True, + name="lambda_2", + ) + self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) + self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) + else: + self.lambda_1, self.lambda_2 = None, None + + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "data2vec_output", None) is not None: + with tf.name_scope(self.data2vec_output.name): + self.data2vec_output.build(None) + if getattr(self, "layernorm_before", None) is not None: + with tf.name_scope(self.layernorm_before.name): + self.layernorm_before.build([None, None, self.config.hidden_size]) + if getattr(self, "layernorm_after", None) is not None: + with tf.name_scope(self.layernorm_after.name): + self.layernorm_after.build([None, None, self.config.hidden_size]) + if getattr(self, "drop_path", None) is not None: + with tf.name_scope(self.drop_path.name): + self.drop_path.build(None) + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_attention_outputs = self.attention( + # in Data2VecVision, layernorm is applied before self-attention + input_tensor=self.layernorm_before(inputs=hidden_states), + head_mask=head_mask, + output_attentions=output_attentions, + relative_position_bias=relative_position_bias, + training=training, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # apply lambda_1 if present + if self.lambda_1 is not None: + attention_output = self.lambda_1 * attention_output + + # first residual connection + hidden_states = self.drop_path(attention_output) + hidden_states + + # in Data2VecVision, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + + layer_output = self.intermediate(layer_output) + layer_output = self.data2vec_output(layer_output) + + if self.lambda_2 is not None: + layer_output = self.lambda_2 * layer_output + + # second residual connection + layer_output = self.drop_path(layer_output) + hidden_states + + outputs = (layer_output,) + outputs + + return outputs + + +# Taken and modified from here: +# https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28 +class TFData2VecVisionRelativePositionBias(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: + super().__init__(**kwargs) + self.config = config + + self.window_size = window_size + # +3 for cls_token_pos_len + # window_size can be something like (14, 14) + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + + self.relative_position_index = self.get_position_index() + + def build(self, input_shape): + self.relative_position_bias_table = self.add_weight( + shape=(self.num_relative_distance, self.config.num_attention_heads), + initializer="zeros", + trainable=True, + name="relative_position_bias_table", + ) # [2*Wh-1 * 2*Ww-1, nH] + # cls to token & token 2 cls & cls to cls + + super().build(input_shape) + + def get_position_index(self): + # get pair-wise relative position index for each token inside the window + xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) + coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] + coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] + + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] + relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] + + xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + yy = relative_coords[:, :, 1] + self.window_size[1] - 1 + relative_coords = tf.stack([xx, yy], axis=-1) + + relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] + + top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( + self.num_relative_distance - 3 + ) + left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( + self.num_relative_distance - 2 + ) + corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) + + left_corner = tf.concat([corner, left], axis=0) + relative_position_index = tf.concat([top, relative_position_index], axis=0) + relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] + return relative_position_index + + def call(self, inputs=None) -> tf.Tensor: + relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) + return tf.transpose(relative_position_bias, [2, 0, 1]) + + +class TFData2VecVisionEncoder(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + if config.use_shared_relative_position_bias: + self.relative_position_bias = TFData2VecVisionRelativePositionBias( + config, window_size=window_size, name="relative_position_bias" + ) + else: + self.relative_position_bias = None + + # stochastic depth decay rule + dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)) + self.layer = [ + TFData2VecVisionLayer( + config, + window_size=window_size if config.use_relative_position_bias else None, + drop_path_rate=dpr[i], + name=f"layer_._{i}", + ) + for i in range(config.num_hidden_layers) + ] + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor | None = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, TFBaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras + # might complain about `Layer.call()` not being invoked properly. In this case this input + # i.e., 0.0 is not going to be used in any calculations so we're safe. + relative_position_bias = ( + self.relative_position_bias(0.0) if self.relative_position_bias is not None else None + ) + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "relative_position_bias", None) is not None: + with tf.name_scope(self.relative_position_bias.name): + self.relative_position_bias.build(None) + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFData2VecVisionMainLayer(keras.layers.Layer): + config_class = Data2VecVisionConfig + + def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.add_pooling_layer = add_pooling_layer + + self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") + self.encoder = TFData2VecVisionEncoder( + config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" + ) + self.layernorm = ( + tf.identity + if config.use_mean_pooling + else keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + ) + + # We are setting the `data_format` like so because from here on we will revert to the + # NCHW output format + self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + pixel_values: tf.Tensor | None = None, + bool_masked_pos: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return TFData2VecVisionModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + if hasattr(self.layernorm, "name"): + with tf.name_scope(self.layernorm.name): + self.layernorm.build((None, self.config.hidden_size)) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFData2VecVisionPooler(keras.layers.Layer): + def __init__(self, config: Data2VecVisionConfig, **kwargs): + super().__init__(**kwargs) + self.layernorm = ( + keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + if config.use_mean_pooling + else None + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + if self.layernorm is not None: + # Mean pool the final hidden states of the patch tokens + patch_tokens = hidden_states[:, 1:, :] + pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) + else: + # Pool by simply taking the final hidden state of the [CLS] token + pooled_output = hidden_states[:, 0] + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layernorm", None) is not None: + if hasattr(self.layernorm, "name"): + with tf.name_scope(self.layernorm.name): + self.layernorm.build((None, self.config.hidden_size)) + + +class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Data2VecVisionConfig + base_model_prefix = "data2vec_vision" + main_input_name = "pixel_values" + _keys_to_ignore_on_load_unexpected = [r"relative_position_index"] + + +DATA2VEC_VISION_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.). + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DATA2VEC_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BeitImageProcessor.__call__`] for details. + + head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + + training (`bool`, *optional*, defaults to `False``): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", + DATA2VEC_VISION_START_DOCSTRING, +) +class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): + def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.config = config + + self.data2vec_vision = TFData2VecVisionMainLayer( + config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" + ) + + def get_input_embeddings(self): + return self.data2vec_vision.get_input_embeddings() + + @unpack_inputs + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFData2VecVisionModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + bool_masked_pos: tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: + r""" + bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + outputs = self.data2vec_vision( + pixel_values=pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "data2vec_vision", None) is not None: + with tf.name_scope(self.data2vec_vision.name): + self.data2vec_vision.build(None) + + +@add_start_docstrings( + """ + Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of + the final hidden states of the patch tokens) e.g. for ImageNet. + """, + DATA2VEC_VISION_START_DOCSTRING, +) +class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") + + # Classifier head + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, tuple]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.data2vec_vision( + pixel_values=pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + logits = self.classifier(pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "data2vec_vision", None) is not None: + with tf.name_scope(self.data2vec_vision.name): + self.data2vec_vision.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +class TFData2VecVisionConvModule(keras.layers.Layer): + """ + A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution + layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int]], + padding: str = "valid", + bias: bool = False, + dilation: Union[int, Tuple[int, int]] = 1, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.conv = keras.layers.Conv2D( + filters=out_channels, + kernel_size=kernel_size, + padding=padding, + use_bias=bias, + dilation_rate=dilation, + name="conv", + ) + self.bn = keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) + self.activation = tf.nn.relu + self.in_channels = in_channels + self.out_channels = out_channels + + def call(self, input: tf.Tensor) -> tf.Tensor: + output = self.conv(input) + output = self.bn(output) + output = self.activation(output) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "conv", None) is not None: + with tf.name_scope(self.conv.name): + self.conv.build([None, None, None, self.in_channels]) + if getattr(self, "bn", None) is not None: + with tf.name_scope(self.bn.name): + self.bn.build((None, None, None, self.out_channels)) + + +class TFAdaptiveAvgPool2D(keras.layers.Layer): + def __init__(self, output_dims: Tuple[int, int], input_ordering: str = "NHWC", **kwargs): + super().__init__(**kwargs) + self.output_dims = output_dims + self.input_ordering = input_ordering + if input_ordering not in ("NCHW", "NHWC"): + raise ValueError("Unrecognized input_ordering, should be 'NCHW' or 'NHWC'!") + self.h_axis = input_ordering.index("H") + self.w_axis = input_ordering.index("W") + + def pseudo_1d_pool(self, inputs: tf.Tensor, h_pooling: bool): + # Figure out which axis we're pooling on + if h_pooling: + axis = self.h_axis + output_dim = self.output_dims[0] + else: + axis = self.w_axis + output_dim = self.output_dims[1] + input_dim = inputs.shape[axis] + + # Figure out the potential pooling windows + # This is the key idea - the torch op always uses only two + # consecutive pooling window sizes, like 3 and 4. Therefore, + # if we pool with both possible sizes, we simply need to gather + # the 'correct' pool at each position to reimplement the torch op. + small_window = math.ceil(input_dim / output_dim) + big_window = small_window + 1 + if h_pooling: + output_dim = self.output_dims[0] + small_window_shape = (small_window, 1) + big_window_shape = (big_window, 1) + else: + output_dim = self.output_dims[1] + small_window_shape = (1, small_window) + big_window_shape = (1, big_window) + + # For resizes to 1, or integer resizes, we can take quick shortcuts + if output_dim == input_dim: + return inputs + elif output_dim == 1: + return tf.reduce_mean(inputs, axis=axis, keepdims=True) + elif input_dim % output_dim == 0: + return tf.nn.avg_pool2d( + inputs, + ksize=small_window_shape, + strides=small_window_shape, + padding="VALID", + data_format=self.input_ordering, + ) + # When upscaling by an integer factor we can also take a quick shortcut + elif output_dim > input_dim and output_dim % input_dim == 0: + return tf.repeat(inputs, repeats=output_dim // input_dim, axis=axis) + + # For non-integer resizes, we pool with both possible window sizes and concatenate them + if output_dim < input_dim: + small_pool = tf.nn.avg_pool2d( + inputs, ksize=small_window_shape, strides=1, padding="VALID", data_format=self.input_ordering + ) + big_pool = tf.nn.avg_pool2d( + inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering + ) + both_pool = tf.concat([small_pool, big_pool], axis=axis) + else: + # When we're actually upscaling instead, then we build the pools a bit differently + small_pool = inputs + big_pool = tf.nn.avg_pool2d( + inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering + ) + both_pool = tf.concat([small_pool, big_pool], axis=axis) + + # We compute vectors of the start and end positions for each pooling window + # Each (start, end) pair here corresponds to a single output position + window_starts = tf.math.floor((tf.range(output_dim, dtype=tf.float32) * input_dim) / output_dim) + window_starts = tf.cast(window_starts, tf.int64) + window_ends = tf.math.ceil((tf.range(1, output_dim + 1, dtype=tf.float32) * input_dim) / output_dim) + window_ends = tf.cast(window_ends, tf.int64) + + # pool_selector is a boolean array of shape (output_dim,) where 1 indicates that output position + # has a big receptive field and 0 indicates that that output position has a small receptive field + pool_selector = tf.cast(window_ends - window_starts - small_window, tf.bool) + + # Since we concatenated the small and big pools, we need to do a bit of + # pointer arithmetic to get the indices of the big pools + small_indices = window_starts + big_indices = window_starts + small_pool.shape[axis] + + # Finally, we use the pool_selector to generate a list of indices, one per output position + gather_indices = tf.where(pool_selector, big_indices, small_indices) + + # Gathering from those indices yields the final, correct pooling + return tf.gather(both_pool, gather_indices, axis=axis) + + def call(self, inputs: tf.Tensor): + if self.input_ordering == "NHWC": + input_shape = inputs.shape[1:3] + else: + input_shape = inputs.shape[2:] + + # We break the task down into each possible case + # Firstly, if we're resizing down to 1, it's just tf.reduce_mean + if self.output_dims[0] == self.output_dims[1] == 1: + if self.input_ordering == "NHWC": + reduce_dims = [1, 2] + else: + reduce_dims = [2, 3] + return tf.reduce_mean(inputs, axis=reduce_dims, keepdims=True) + # Secondly, if we're resizing by an integer factor on both dimensions, we can take a quick shortcut + elif input_shape[0] % self.output_dims[0] == 0 and input_shape[1] % self.output_dims[1] == 0: + h_resize = int(input_shape[0] // self.output_dims[0]) + w_resize = int(input_shape[1] // self.output_dims[1]) + return tf.nn.avg_pool2d( + inputs, + ksize=(h_resize, w_resize), + strides=(h_resize, w_resize), + padding="VALID", + data_format=self.input_ordering, + ) + else: + # Finally, if we can't take the shortcut, we do a 1D pool on each axis. pseudo_1d_pool will take a shortcut + # for dimensions where an integer resize is possible. It can also handle upscaling. + h_pooled = self.pseudo_1d_pool(inputs, h_pooling=True) + return self.pseudo_1d_pool(h_pooled, h_pooling=False) + + +class TFData2VecVisionPyramidPoolingModule(keras.layers.Layer): + """ + Pyramid Pooling Module (PPM) used in PSPNet. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. + channels (int): Channels after modules, before conv_seg. + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, out_channels: int, **kwargs) -> None: + super().__init__(**kwargs) + self.pool_scales = pool_scales + self.in_channels = in_channels + self.out_channels = out_channels + + self.layer_list = [] + for idx, pool_scale in enumerate(pool_scales): + pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) + self.layer_list.append( + [ + TFAdaptiveAvgPool2D(output_dims=pool_scale), + TFData2VecVisionConvModule( + in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, name=f"{idx}.1" + ), + ] + ) + + def call(self, x: tf.Tensor) -> List[tf.Tensor]: + ppm_outs = [] + inputs = x + + for ppm in self.layer_list: + for layer_module in ppm: + ppm_out = layer_module(x) + x = ppm_out + + upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") + ppm_outs.append(upsampled_ppm_out) + return ppm_outs + + def build(self, input_shape=None): + for layer in self.layer_list: + for layer_module in layer: + with tf.name_scope(layer_module.name): + layer_module.build(None) + + +class TFData2VecVisionUperHead(keras.layers.Layer): + """ + Unified Perceptual Parsing for Scene Understanding. This head is the implementation of + [UPerNet](https://arxiv.org/abs/1807.10221). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: + super().__init__(**kwargs) + + self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) + self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] + self.channels = config.hidden_size + self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") + + # PSP Module + self.psp_modules = TFData2VecVisionPyramidPoolingModule( + self.pool_scales, self.in_channels[-1], self.channels, name="psp_modules" + ) + self.bottleneck = TFData2VecVisionConvModule( + self.in_channels[-1] + len(self.pool_scales) * self.channels, + self.channels, + kernel_size=3, + padding="same", + name="bottleneck", + ) + # FPN Module + self.lateral_convs = [] + self.fpn_convs = [] + for idx, in_channels in enumerate(self.in_channels[:-1]): # skip the top layer + l_conv = TFData2VecVisionConvModule( + in_channels, out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}" + ) + fpn_conv = TFData2VecVisionConvModule( + in_channels=self.channels, + out_channels=self.channels, + kernel_size=3, + padding="same", + name=f"fpn_convs.{idx}", + ) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + self.fpn_bottleneck = TFData2VecVisionConvModule( + in_channels=len(self.in_channels) * self.channels, + out_channels=self.channels, + kernel_size=3, + padding="same", + name="fpn_bottleneck", + ) + + def psp_forward(self, inputs): + x = inputs[-1] + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = tf.concat(psp_outs, axis=-1) + output = self.bottleneck(psp_outs) + + return output + + def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: + # build laterals + laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] + + laterals.append(self.psp_forward(encoder_hidden_states)) + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = shape_list(laterals[i - 1])[1:-1] + laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") + + # build outputs + fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] + # append psp feature + fpn_outs.append(laterals[-1]) + + for i in range(used_backbone_levels - 1, 0, -1): + fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") + fpn_outs = tf.concat(fpn_outs, axis=-1) + output = self.fpn_bottleneck(fpn_outs) + output = self.classifier(output) + + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, None, self.channels]) + if getattr(self, "psp_modules", None) is not None: + with tf.name_scope(self.psp_modules.name): + self.psp_modules.build(None) + if getattr(self, "bottleneck", None) is not None: + with tf.name_scope(self.bottleneck.name): + self.bottleneck.build(None) + if getattr(self, "fpn_bottleneck", None) is not None: + with tf.name_scope(self.fpn_bottleneck.name): + self.fpn_bottleneck.build(None) + for layer in self.lateral_convs: + with tf.name_scope(layer.name): + layer.build(None) + for layer in self.fpn_convs: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFData2VecVisionFCNHead(keras.layers.Layer): + """ + Fully Convolution Networks for Semantic Segmentation. This head is implemented from + [FCNNet](https://arxiv.org/abs/1411.4038). + + Args: + config (Data2VecVisionConfig): Configuration. + kernel_size (int): The kernel size for convs in the head. Default: 3. + dilation (int): The dilation rate for convs in the head. Default: 1. + + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, + config: Data2VecVisionConfig, + in_index: int = 2, + kernel_size: int = 3, + dilation: Union[int, Tuple[int, int]] = 1, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.in_channels = config.hidden_size + self.channels = config.auxiliary_channels + self.num_convs = config.auxiliary_num_convs + self.concat_input = config.auxiliary_concat_input + self.in_index = in_index + + convs = [] + convs.append( + TFData2VecVisionConvModule( + in_channels=self.in_channels, + out_channels=self.channels, + kernel_size=kernel_size, + padding="same", + dilation=dilation, + name="convs.0", + ) + ) + for i in range(self.num_convs - 1): + convs.append( + TFData2VecVisionConvModule( + in_channels=self.channels, + out_channels=self.channels, + kernel_size=kernel_size, + padding="same", + dilation=dilation, + name=f"conv_module_{i+2}", + ) + ) + if self.num_convs == 0: + self.convs = [tf.identity] + else: + self.convs = convs + if self.concat_input: + self.conv_cat = TFData2VecVisionConvModule( + self.in_channels + self.channels, + out_channels=self.channels, + kernel_size=kernel_size, + padding="same", + name="conv_cat", + ) + + self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") + + def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: + # just take the relevant feature maps + hidden_states = encoder_hidden_states[self.in_index] + output = hidden_states + for layer_module in self.convs: + output = layer_module(output) + if self.concat_input: + output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) + output = self.classifier(output) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, None, self.channels]) + if getattr(self, "conv_cat", None) is not None: + with tf.name_scope(self.conv_cat.name): + self.conv_cat.build(None) + + +@add_start_docstrings( + """ + Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. + """, + DATA2VEC_VISION_START_DOCSTRING, +) +class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): + def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") + + # FPNs + self.fpn1 = [ + keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), + keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), + keras.layers.Activation("gelu"), + keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), + ] + self.fpn2 = [keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] + + self.fpn3 = tf.identity + self.fpn4 = keras.layers.MaxPool2D(pool_size=2, strides=2) + + # Semantic segmentation head(s) + self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") + self.auxiliary_head = ( + TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None + ) + + def compute_loss(self, logits, auxiliary_logits, labels): + # upsample logits to the images' original size + if len(shape_list(labels)) > 3: + label_interp_shape = shape_list(labels)[1:-1] + else: + label_interp_shape = shape_list(labels)[-2:] + + upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") + if auxiliary_logits is not None: + upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") + # compute weighted loss + loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") + + # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. + # Utility to mask the index to ignore during computing the loss. + def masked_loss(real, pred): + mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) + loss_ = loss_fct(real, pred) + mask = tf.cast(mask, dtype=loss_.dtype) + loss_ *= mask + reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) + return tf.reshape(reduced_masked_loss, (1,)) + + main_loss = masked_loss(labels, upsampled_logits) + auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) + loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss + + return loss + + @unpack_inputs + @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + pixel_values: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + labels: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, TFSemanticSegmenterOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): + Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") + >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + >>> # logits are of shape (batch_size, num_labels, height, width) + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + outputs = self.data2vec_vision( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=True, # we need the intermediate hidden states + return_dict=return_dict, + ) + encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] + + # only keep certain features, and reshape + # note that we do +1 as the encoder_hidden_states also includes the initial embeddings + features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] + patch_resolution = self.config.image_size // self.config.patch_size + + def reshape_features(x): + # We do it this way so TF can always infer the non-batch dims at compile time + x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size)) + return x + + features = [reshape_features(x[:, 1:, :]) for x in features] + + # apply FPNs + ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] + for module in ops[0]: + features[0] = module(features[0]) + features[1] = ops[1][0](features[1]) + for i in range(len(features[2:])): + features[i + 2] = ops[i + 2](features[i + 2]) + + logits = self.decode_head(features) + # Tranpose the logits to maintain consistency in the output formats. + transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) + + auxiliary_logits = None + if self.auxiliary_head is not None: + auxiliary_logits = self.auxiliary_head(features) + + loss = None + if labels is not None: + if self.config.num_labels == 1: + raise ValueError("The number of labels should be greater than one") + else: + loss = self.compute_loss(logits, auxiliary_logits, labels) + + if not return_dict: + if output_hidden_states: + output = (logits,) + outputs[1:] + else: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSemanticSegmenterOutput( + loss=loss, + logits=transposed_logits, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "data2vec_vision", None) is not None: + with tf.name_scope(self.data2vec_vision.name): + self.data2vec_vision.build(None) + if getattr(self, "decode_head", None) is not None: + with tf.name_scope(self.decode_head.name): + self.decode_head.build(None) + if getattr(self, "auxiliary_head", None) is not None: + with tf.name_scope(self.auxiliary_head.name): + self.auxiliary_head.build(None) + if getattr(self, "fpn1", None) is not None: + with tf.name_scope(self.fpn1[0].name): + self.fpn1[0].build([None, None, None, self.config.hidden_size]) + with tf.name_scope(self.fpn1[1].name): + self.fpn1[1].build((None, None, None, self.config.hidden_size)) + with tf.name_scope(self.fpn1[3].name): + self.fpn1[3].build([None, None, None, self.config.hidden_size]) + if getattr(self, "fpn2", None) is not None: + with tf.name_scope(self.fpn2[0].name): + self.fpn2[0].build([None, None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..87806dd60d60c5247554c9458de8fd8ca3f45f0f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__init__.py @@ -0,0 +1,120 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], + "tokenization_deberta": ["DebertaTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_deberta_fast"] = ["DebertaTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_deberta"] = [ + "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", + "DebertaForMaskedLM", + "DebertaForQuestionAnswering", + "DebertaForSequenceClassification", + "DebertaForTokenClassification", + "DebertaModel", + "DebertaPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_deberta"] = [ + "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFDebertaForMaskedLM", + "TFDebertaForQuestionAnswering", + "TFDebertaForSequenceClassification", + "TFDebertaForTokenClassification", + "TFDebertaModel", + "TFDebertaPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig + from .tokenization_deberta import DebertaTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_deberta_fast import DebertaTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_deberta import ( + DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, + DebertaForMaskedLM, + DebertaForQuestionAnswering, + DebertaForSequenceClassification, + DebertaForTokenClassification, + DebertaModel, + DebertaPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_deberta import ( + TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, + TFDebertaForMaskedLM, + TFDebertaForQuestionAnswering, + TFDebertaForSequenceClassification, + TFDebertaForTokenClassification, + TFDebertaModel, + TFDebertaPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d7f7f32db33b5ad833540fc6f5ae097792c0575 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/configuration_deberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/configuration_deberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d2ac80bec84fc1db8ae3848469b396d7a1ffccfd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/configuration_deberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_deberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_deberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..60318af7ea21d0a66040fd601246c9a066d909be Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_deberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_tf_deberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_tf_deberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5488e26797254cac94f0408ca5293c3d3fb16075 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/modeling_tf_deberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a40f0e55a4d338471d234b3ee2222a1455dc7d8c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6fa36774df82e77fca4ef00d1ac830674393230 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/__pycache__/tokenization_deberta_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/configuration_deberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/configuration_deberta.py new file mode 100644 index 0000000000000000000000000000000000000000..5907f0869d6821c49d6cbc417593b4b0a81e4768 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/configuration_deberta.py @@ -0,0 +1,193 @@ +# coding=utf-8 +# Copyright 2020, Microsoft and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DeBERTa model configuration""" +from collections import OrderedDict +from typing import TYPE_CHECKING, Any, Mapping, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +if TYPE_CHECKING: + from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class DebertaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is + used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa + [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Arguments: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` + are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + relative_attention (`bool`, *optional*, defaults to `False`): + Whether use relative position encoding. + max_relative_positions (`int`, *optional*, defaults to 1): + The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value + as `max_position_embeddings`. + pad_token_id (`int`, *optional*, defaults to 0): + The value used to pad input_ids. + position_biased_input (`bool`, *optional*, defaults to `True`): + Whether add absolute position embedding to content embedding. + pos_att_type (`List[str]`, *optional*): + The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, + `["p2c", "c2p"]`. + layer_norm_eps (`float`, optional, defaults to 1e-12): + The epsilon used by the layer normalization layers. + + Example: + + ```python + >>> from transformers import DebertaConfig, DebertaModel + + >>> # Initializing a DeBERTa microsoft/deberta-base style configuration + >>> configuration = DebertaConfig() + + >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration + >>> model = DebertaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "deberta" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=0, + initializer_range=0.02, + layer_norm_eps=1e-7, + relative_attention=False, + max_relative_positions=-1, + pad_token_id=0, + position_biased_input=True, + pos_att_type=None, + pooler_dropout=0, + pooler_hidden_act="gelu", + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.relative_attention = relative_attention + self.max_relative_positions = max_relative_positions + self.pad_token_id = pad_token_id + self.position_biased_input = position_biased_input + + # Backwards compatibility + if isinstance(pos_att_type, str): + pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] + + self.pos_att_type = pos_att_type + self.vocab_size = vocab_size + self.layer_norm_eps = layer_norm_eps + + self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) + self.pooler_dropout = pooler_dropout + self.pooler_hidden_act = pooler_hidden_act + + +# Copied from transformers.models.deberta_v2.configuration_deberta_v2.DebertaV2OnnxConfig +class DebertaOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + if self._config.type_vocab_size > 0: + return OrderedDict( + [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] + ) + else: + return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) + + @property + def default_onnx_opset(self) -> int: + return 12 + + def generate_dummy_inputs( + self, + preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], + batch_size: int = -1, + seq_length: int = -1, + num_choices: int = -1, + is_pair: bool = False, + framework: Optional["TensorType"] = None, + num_channels: int = 3, + image_width: int = 40, + image_height: int = 40, + tokenizer: "PreTrainedTokenizerBase" = None, + ) -> Mapping[str, Any]: + dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) + if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: + del dummy_inputs["token_type_ids"] + return dummy_inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_deberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_deberta.py new file mode 100644 index 0000000000000000000000000000000000000000..42dae5c80894a8ee8265fbb096fa579905aa1bb2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_deberta.py @@ -0,0 +1,1426 @@ +# coding=utf-8 +# Copyright 2020 Microsoft and the Hugging Face Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeBERTa model.""" + +from collections.abc import Sequence +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + MaskedLMOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import softmax_backward_data +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_deberta import DebertaConfig + + +logger = logging.get_logger(__name__) +_CONFIG_FOR_DOC = "DebertaConfig" +_CHECKPOINT_FOR_DOC = "microsoft/deberta-base" + +# Masked LM docstring +_CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback" +_MASKED_LM_EXPECTED_OUTPUT = "' Paris'" +_MASKED_LM_EXPECTED_LOSS = "0.54" + +# QuestionAnswering docstring +_CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad" +_QA_EXPECTED_OUTPUT = "' a nice puppet'" +_QA_EXPECTED_LOSS = 0.14 +_QA_TARGET_START_INDEX = 12 +_QA_TARGET_END_INDEX = 14 + + +from ..deprecated._archive_maps import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class ContextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) + self.dropout = StableDropout(config.pooler_dropout) + self.config = config + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + + context_token = hidden_states[:, 0] + context_token = self.dropout(context_token) + pooled_output = self.dense(context_token) + pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) + return pooled_output + + @property + def output_dim(self): + return self.config.hidden_size + + +class XSoftmax(torch.autograd.Function): + """ + Masked Softmax which is optimized for saving memory + + Args: + input (`torch.tensor`): The input tensor that will apply softmax. + mask (`torch.IntTensor`): + The mask matrix where 0 indicate that element will be ignored in the softmax calculation. + dim (int): The dimension that will apply softmax + + Example: + + ```python + >>> import torch + >>> from transformers.models.deberta.modeling_deberta import XSoftmax + + >>> # Make a tensor + >>> x = torch.randn([4, 20, 100]) + + >>> # Create a mask + >>> mask = (x > 0).int() + + >>> # Specify the dimension to apply softmax + >>> dim = -1 + + >>> y = XSoftmax.apply(x, mask, dim) + ```""" + + @staticmethod + def forward(self, input, mask, dim): + self.dim = dim + rmask = ~(mask.to(torch.bool)) + + output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) + output = torch.softmax(output, self.dim) + output.masked_fill_(rmask, 0) + self.save_for_backward(output) + return output + + @staticmethod + def backward(self, grad_output): + (output,) = self.saved_tensors + inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output) + return inputGrad, None, None + + @staticmethod + def symbolic(g, self, mask, dim): + import torch.onnx.symbolic_helper as sym_help + from torch.onnx.symbolic_opset9 import masked_fill, softmax + + mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) + r_mask = g.op( + "Cast", + g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), + to_i=sym_help.cast_pytorch_to_onnx["Bool"], + ) + output = masked_fill( + g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) + ) + output = softmax(g, output, dim) + return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) + + +class DropoutContext(object): + def __init__(self): + self.dropout = 0 + self.mask = None + self.scale = 1 + self.reuse_mask = True + + +def get_mask(input, local_context): + if not isinstance(local_context, DropoutContext): + dropout = local_context + mask = None + else: + dropout = local_context.dropout + dropout *= local_context.scale + mask = local_context.mask if local_context.reuse_mask else None + + if dropout > 0 and mask is None: + mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) + + if isinstance(local_context, DropoutContext): + if local_context.mask is None: + local_context.mask = mask + + return mask, dropout + + +class XDropout(torch.autograd.Function): + """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" + + @staticmethod + def forward(ctx, input, local_ctx): + mask, dropout = get_mask(input, local_ctx) + ctx.scale = 1.0 / (1 - dropout) + if dropout > 0: + ctx.save_for_backward(mask) + return input.masked_fill(mask, 0) * ctx.scale + else: + return input + + @staticmethod + def backward(ctx, grad_output): + if ctx.scale > 1: + (mask,) = ctx.saved_tensors + return grad_output.masked_fill(mask, 0) * ctx.scale, None + else: + return grad_output, None + + @staticmethod + def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: + from torch.onnx import symbolic_opset12 + + dropout_p = local_ctx + if isinstance(local_ctx, DropoutContext): + dropout_p = local_ctx.dropout + # StableDropout only calls this function when training. + train = True + # TODO: We should check if the opset_version being used to export + # is > 12 here, but there's no good way to do that. As-is, if the + # opset_version < 12, export will fail with a CheckerError. + # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: + # if opset_version < 12: + # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) + return symbolic_opset12.dropout(g, input, dropout_p, train) + + +class StableDropout(nn.Module): + """ + Optimized dropout module for stabilizing the training + + Args: + drop_prob (float): the dropout probabilities + """ + + def __init__(self, drop_prob): + super().__init__() + self.drop_prob = drop_prob + self.count = 0 + self.context_stack = None + + def forward(self, x): + """ + Call the module + + Args: + x (`torch.tensor`): The input tensor to apply dropout + """ + if self.training and self.drop_prob > 0: + return XDropout.apply(x, self.get_context()) + return x + + def clear_context(self): + self.count = 0 + self.context_stack = None + + def init_context(self, reuse_mask=True, scale=1): + if self.context_stack is None: + self.context_stack = [] + self.count = 0 + for c in self.context_stack: + c.reuse_mask = reuse_mask + c.scale = scale + + def get_context(self): + if self.context_stack is not None: + if self.count >= len(self.context_stack): + self.context_stack.append(DropoutContext()) + ctx = self.context_stack[self.count] + ctx.dropout = self.drop_prob + self.count += 1 + return ctx + else: + return self.drop_prob + + +class DebertaLayerNorm(nn.Module): + """LayerNorm module in the TF style (epsilon inside the square root).""" + + def __init__(self, size, eps=1e-12): + super().__init__() + self.weight = nn.Parameter(torch.ones(size)) + self.bias = nn.Parameter(torch.zeros(size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_type = hidden_states.dtype + hidden_states = hidden_states.float() + mean = hidden_states.mean(-1, keepdim=True) + variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) + hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon) + hidden_states = hidden_states.to(input_type) + y = self.weight * hidden_states + self.bias + return y + + +class DebertaSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.hidden_dropout_prob) + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class DebertaAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = DisentangledSelfAttention(config) + self.output = DebertaSelfOutput(config) + self.config = config + + def forward( + self, + hidden_states, + attention_mask, + output_attentions=False, + query_states=None, + relative_pos=None, + rel_embeddings=None, + ): + self_output = self.self( + hidden_states, + attention_mask, + output_attentions, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + ) + if output_attentions: + self_output, att_matrix = self_output + if query_states is None: + query_states = hidden_states + attention_output = self.output(self_output, query_states) + + if output_attentions: + return (attention_output, att_matrix) + else: + return attention_output + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta +class DebertaIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class DebertaOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.hidden_dropout_prob) + self.config = config + + def forward(self, hidden_states, input_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class DebertaLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = DebertaAttention(config) + self.intermediate = DebertaIntermediate(config) + self.output = DebertaOutput(config) + + def forward( + self, + hidden_states, + attention_mask, + query_states=None, + relative_pos=None, + rel_embeddings=None, + output_attentions=False, + ): + attention_output = self.attention( + hidden_states, + attention_mask, + output_attentions=output_attentions, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + ) + if output_attentions: + attention_output, att_matrix = attention_output + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + if output_attentions: + return (layer_output, att_matrix) + else: + return layer_output + + +class DebertaEncoder(nn.Module): + """Modified BertEncoder with relative position bias support""" + + def __init__(self, config): + super().__init__() + self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)]) + self.relative_attention = getattr(config, "relative_attention", False) + if self.relative_attention: + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size) + self.gradient_checkpointing = False + + def get_rel_embedding(self): + rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None + return rel_embeddings + + def get_attention_mask(self, attention_mask): + if attention_mask.dim() <= 2: + extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) + elif attention_mask.dim() == 3: + attention_mask = attention_mask.unsqueeze(1) + + return attention_mask + + def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): + if self.relative_attention and relative_pos is None: + q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) + relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device) + return relative_pos + + def forward( + self, + hidden_states, + attention_mask, + output_hidden_states=True, + output_attentions=False, + query_states=None, + relative_pos=None, + return_dict=True, + ): + attention_mask = self.get_attention_mask(attention_mask) + relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) + + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[0] + else: + next_kv = hidden_states + rel_embeddings = self.get_rel_embedding() + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + layer_module.__call__, + next_kv, + attention_mask, + query_states, + relative_pos, + rel_embeddings, + output_attentions, + ) + else: + hidden_states = layer_module( + next_kv, + attention_mask, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + output_attentions=output_attentions, + ) + + if output_attentions: + hidden_states, att_m = hidden_states + + if query_states is not None: + query_states = hidden_states + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None + else: + next_kv = hidden_states + + if output_attentions: + all_attentions = all_attentions + (att_m,) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +def build_relative_position(query_size, key_size, device): + """ + Build relative position according to the query and key + + We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key + \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - + P_k\\) + + Args: + query_size (int): the length of query + key_size (int): the length of key + + Return: + `torch.LongTensor`: A tensor with shape [1, query_size, key_size] + + """ + + q_ids = torch.arange(query_size, dtype=torch.long, device=device) + k_ids = torch.arange(key_size, dtype=torch.long, device=device) + rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1) + rel_pos_ids = rel_pos_ids[:query_size, :] + rel_pos_ids = rel_pos_ids.unsqueeze(0) + return rel_pos_ids + + +@torch.jit.script +def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): + return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) + + +@torch.jit.script +def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): + return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) + + +@torch.jit.script +def pos_dynamic_expand(pos_index, p2c_att, key_layer): + return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) + + +class DisentangledSelfAttention(nn.Module): + """ + Disentangled self-attention module + + Parameters: + config (`str`): + A model config class instance with the configuration to build a new model. The schema is similar to + *BertConfig*, for more details, please refer [`DebertaConfig`] + + """ + + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False) + self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) + self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) + self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] + + self.relative_attention = getattr(config, "relative_attention", False) + self.talking_head = getattr(config, "talking_head", False) + + if self.talking_head: + self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) + self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) + + if self.relative_attention: + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + self.pos_dropout = StableDropout(config.hidden_dropout_prob) + + if "c2p" in self.pos_att_type: + self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + if "p2c" in self.pos_att_type: + self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = StableDropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask, + output_attentions=False, + query_states=None, + relative_pos=None, + rel_embeddings=None, + ): + """ + Call the module + + Args: + hidden_states (`torch.FloatTensor`): + Input states to the module usually the output from previous layer, it will be the Q,K and V in + *Attention(Q,K,V)* + + attention_mask (`torch.BoolTensor`): + An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum + sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* + th token. + + output_attentions (`bool`, optional): + Whether return the attention matrix. + + query_states (`torch.FloatTensor`, optional): + The *Q* state in *Attention(Q,K,V)*. + + relative_pos (`torch.LongTensor`): + The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with + values ranging in [*-max_relative_positions*, *max_relative_positions*]. + + rel_embeddings (`torch.FloatTensor`): + The embedding of relative distances. It's a tensor of shape [\\(2 \\times + \\text{max_relative_positions}\\), *hidden_size*]. + + + """ + if query_states is None: + qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1) + query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1) + else: + + def linear(w, b, x): + if b is not None: + return torch.matmul(x, w.t()) + b.t() + else: + return torch.matmul(x, w.t()) # + b.t() + + ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0) + qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)] + qkvb = [None] * 3 + + q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype)) + k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)] + query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]] + + query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :]) + value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :]) + + rel_att = None + # Take the dot product between "query" and "key" to get the raw attention scores. + scale_factor = 1 + len(self.pos_att_type) + scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) + query_layer = query_layer / scale.to(dtype=query_layer.dtype) + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + if self.relative_attention: + rel_embeddings = self.pos_dropout(rel_embeddings) + rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) + + if rel_att is not None: + attention_scores = attention_scores + rel_att + + # bxhxlxd + if self.talking_head: + attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + + attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) + attention_probs = self.dropout(attention_probs) + if self.talking_head: + attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (-1,) + context_layer = context_layer.view(new_context_layer_shape) + if output_attentions: + return (context_layer, attention_probs) + else: + return context_layer + + def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): + if relative_pos is None: + q = query_layer.size(-2) + relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device) + if relative_pos.dim() == 2: + relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) + elif relative_pos.dim() == 3: + relative_pos = relative_pos.unsqueeze(1) + # bxhxqxk + elif relative_pos.dim() != 4: + raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") + + att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions) + relative_pos = relative_pos.long().to(query_layer.device) + rel_embeddings = rel_embeddings[ + self.max_relative_positions - att_span : self.max_relative_positions + att_span, : + ].unsqueeze(0) + + score = 0 + + # content->position + if "c2p" in self.pos_att_type: + pos_key_layer = self.pos_proj(rel_embeddings) + pos_key_layer = self.transpose_for_scores(pos_key_layer) + c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2)) + c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) + c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos)) + score += c2p_att + + # position->content + if "p2c" in self.pos_att_type: + pos_query_layer = self.pos_q_proj(rel_embeddings) + pos_query_layer = self.transpose_for_scores(pos_query_layer) + pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) + if query_layer.size(-2) != key_layer.size(-2): + r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device) + else: + r_pos = relative_pos + p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) + p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype)) + p2c_att = torch.gather( + p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer) + ).transpose(-1, -2) + + if query_layer.size(-2) != key_layer.size(-2): + pos_index = relative_pos[:, :, :, 0].unsqueeze(-1) + p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer)) + score += p2c_att + + return score + + +class DebertaEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + pad_token_id = getattr(config, "pad_token_id", 0) + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id) + + self.position_biased_input = getattr(config, "position_biased_input", True) + if not self.position_biased_input: + self.position_embeddings = None + else: + self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size) + + if config.type_vocab_size > 0: + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size) + + if self.embedding_size != config.hidden_size: + self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False) + self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) + self.dropout = StableDropout(config.hidden_dropout_prob) + self.config = config + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + if self.position_embeddings is not None: + position_embeddings = self.position_embeddings(position_ids.long()) + else: + position_embeddings = torch.zeros_like(inputs_embeds) + + embeddings = inputs_embeds + if self.position_biased_input: + embeddings += position_embeddings + if self.config.type_vocab_size > 0: + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings += token_type_embeddings + + if self.embedding_size != self.config.hidden_size: + embeddings = self.embed_proj(embeddings) + + embeddings = self.LayerNorm(embeddings) + + if mask is not None: + if mask.dim() != embeddings.dim(): + if mask.dim() == 4: + mask = mask.squeeze(1).squeeze(1) + mask = mask.unsqueeze(2) + mask = mask.to(embeddings.dtype) + + embeddings = embeddings * mask + + embeddings = self.dropout(embeddings) + return embeddings + + +class DebertaPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DebertaConfig + base_model_prefix = "deberta" + _keys_to_ignore_on_load_unexpected = ["position_embeddings"] + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DEBERTA_START_DOCSTRING = r""" + The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled + Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build + on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two + improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + + Parameters: + config ([`DebertaConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DEBERTA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", + DEBERTA_START_DOCSTRING, +) +class DebertaModel(DebertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.embeddings = DebertaEmbeddings(config) + self.encoder = DebertaEncoder(config) + self.z_steps = 0 + self.config = config + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, new_embeddings): + self.embeddings.word_embeddings = new_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError("The prune function is not implemented in DeBERTa model.") + + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + embedding_output = self.embeddings( + input_ids=input_ids, + token_type_ids=token_type_ids, + position_ids=position_ids, + mask=attention_mask, + inputs_embeds=inputs_embeds, + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask, + output_hidden_states=True, + output_attentions=output_attentions, + return_dict=return_dict, + ) + encoded_layers = encoder_outputs[1] + + if self.z_steps > 1: + hidden_states = encoded_layers[-2] + layers = [self.encoder.layer[-1] for _ in range(self.z_steps)] + query_states = encoded_layers[-1] + rel_embeddings = self.encoder.get_rel_embedding() + attention_mask = self.encoder.get_attention_mask(attention_mask) + rel_pos = self.encoder.get_rel_pos(embedding_output) + for layer in layers[1:]: + query_states = layer( + hidden_states, + attention_mask, + output_attentions=False, + query_states=query_states, + relative_pos=rel_pos, + rel_embeddings=rel_embeddings, + ) + encoded_layers.append(query_states) + + sequence_output = encoded_layers[-1] + + if not return_dict: + return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :] + + return BaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states if output_hidden_states else None, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) +class DebertaForMaskedLM(DebertaPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.deberta = DebertaModel(config) + self.cls = DebertaOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_MASKED_LM, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="[MASK]", + expected_output=_MASKED_LM_EXPECTED_OUTPUT, + expected_loss=_MASKED_LM_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class DebertaPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + + self.dense = nn.Linear(config.hidden_size, self.embedding_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class DebertaLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = DebertaPredictionHeadTransform(config) + + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta +class DebertaOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = DebertaLMPredictionHead(config) + + def forward(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +@add_start_docstrings( + """ + DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + DEBERTA_START_DOCSTRING, +) +class DebertaForSequenceClassification(DebertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + num_labels = getattr(config, "num_labels", 2) + self.num_labels = num_labels + + self.deberta = DebertaModel(config) + self.pooler = ContextPooler(config) + output_dim = self.pooler.output_dim + + self.classifier = nn.Linear(output_dim, num_labels) + drop_out = getattr(config, "cls_dropout", None) + drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out + self.dropout = StableDropout(drop_out) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.deberta.get_input_embeddings() + + def set_input_embeddings(self, new_embeddings): + self.deberta.set_input_embeddings(new_embeddings) + + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deberta( + input_ids, + token_type_ids=token_type_ids, + attention_mask=attention_mask, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + encoder_layer = outputs[0] + pooled_output = self.pooler(encoder_layer) + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + # regression task + loss_fn = nn.MSELoss() + logits = logits.view(-1).to(labels.dtype) + loss = loss_fn(logits, labels.view(-1)) + elif labels.dim() == 1 or labels.size(-1) == 1: + label_index = (labels >= 0).nonzero() + labels = labels.long() + if label_index.size(0) > 0: + labeled_logits = torch.gather( + logits, 0, label_index.expand(label_index.size(0), logits.size(1)) + ) + labels = torch.gather(labels, 0, label_index.view(-1)) + loss_fct = CrossEntropyLoss() + loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1)) + else: + loss = torch.tensor(0).to(logits) + else: + log_softmax = nn.LogSoftmax(-1) + loss = -((log_softmax(logits) * labels).sum(-1)).mean() + elif self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + DEBERTA_START_DOCSTRING, +) +class DebertaForTokenClassification(DebertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.deberta = DebertaModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + DEBERTA_START_DOCSTRING, +) +class DebertaForQuestionAnswering(DebertaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.deberta = DebertaModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_QA, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_QA_EXPECTED_OUTPUT, + expected_loss=_QA_EXPECTED_LOSS, + qa_target_start_index=_QA_TARGET_START_INDEX, + qa_target_end_index=_QA_TARGET_END_INDEX, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deberta( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_tf_deberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_tf_deberta.py new file mode 100644 index 0000000000000000000000000000000000000000..3cef6a50c873f438cd894b8231d890858ada44c2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/modeling_tf_deberta.py @@ -0,0 +1,1644 @@ +# coding=utf-8 +# Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 DeBERTa model.""" + + +from __future__ import annotations + +import math +from typing import Dict, Optional, Sequence, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFMaskedLMOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_deberta import DebertaConfig + + +logger = logging.get_logger(__name__) + + +_CONFIG_FOR_DOC = "DebertaConfig" +_CHECKPOINT_FOR_DOC = "kamalkraj/deberta-base" + + +from ..deprecated._archive_maps import TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFDebertaContextPooler(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense") + self.dropout = TFDebertaStableDropout(config.pooler_dropout, name="dropout") + self.config = config + + def call(self, hidden_states, training: bool = False): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + context_token = hidden_states[:, 0] + context_token = self.dropout(context_token, training=training) + pooled_output = self.dense(context_token) + pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output) + return pooled_output + + @property + def output_dim(self) -> int: + return self.config.hidden_size + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.pooler_hidden_size]) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + + +class TFDebertaXSoftmax(keras.layers.Layer): + """ + Masked Softmax which is optimized for saving memory + + Args: + input (`tf.Tensor`): The input tensor that will apply softmax. + mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. + dim (int): The dimension that will apply softmax + """ + + def __init__(self, axis=-1, **kwargs): + super().__init__(**kwargs) + self.axis = axis + + def call(self, inputs: tf.Tensor, mask: tf.Tensor): + rmask = tf.logical_not(tf.cast(mask, tf.bool)) + output = tf.where(rmask, float("-inf"), inputs) + output = stable_softmax(output, self.axis) + output = tf.where(rmask, 0.0, output) + return output + + +class TFDebertaStableDropout(keras.layers.Layer): + """ + Optimized dropout module for stabilizing the training + + Args: + drop_prob (float): the dropout probabilities + """ + + def __init__(self, drop_prob, **kwargs): + super().__init__(**kwargs) + self.drop_prob = drop_prob + + @tf.custom_gradient + def xdropout(self, inputs): + """ + Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob. + """ + mask = tf.cast( + 1 + - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)), + tf.bool, + ) + scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32) + if self.drop_prob > 0: + inputs = tf.where(mask, 0.0, inputs) * scale + + def grad(upstream): + if self.drop_prob > 0: + return tf.where(mask, 0.0, upstream) * scale + else: + return upstream + + return inputs, grad + + def call(self, inputs: tf.Tensor, training: tf.Tensor = False): + if training: + return self.xdropout(inputs) + return inputs + + +class TFDebertaLayerNorm(keras.layers.Layer): + """LayerNorm module in the TF style (epsilon inside the square root).""" + + def __init__(self, size, eps=1e-12, **kwargs): + super().__init__(**kwargs) + self.size = size + self.eps = eps + + def build(self, input_shape): + self.gamma = self.add_weight(shape=[self.size], initializer=tf.ones_initializer(), name="weight") + self.beta = self.add_weight(shape=[self.size], initializer=tf.zeros_initializer(), name="bias") + return super().build(input_shape) + + def call(self, x: tf.Tensor) -> tf.Tensor: + mean = tf.reduce_mean(x, axis=[-1], keepdims=True) + variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True) + std = tf.math.sqrt(variance + self.eps) + return self.gamma * (x - mean) / std + self.beta + + +class TFDebertaSelfOutput(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.hidden_size, name="dense") + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") + self.config = config + + def call(self, hidden_states, input_tensor, training: bool = False): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + + +class TFDebertaAttention(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + self.self = TFDebertaDisentangledSelfAttention(config, name="self") + self.dense_output = TFDebertaSelfOutput(config, name="output") + self.config = config + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + query_states: tf.Tensor = None, + relative_pos: tf.Tensor = None, + rel_embeddings: tf.Tensor = None, + output_attentions: bool = False, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self( + hidden_states=input_tensor, + attention_mask=attention_mask, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + output_attentions=output_attentions, + training=training, + ) + if query_states is None: + query_states = input_tensor + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=query_states, training=training + ) + + output = (attention_output,) + self_outputs[1:] + + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self", None) is not None: + with tf.name_scope(self.self.name): + self.self.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +class TFDebertaIntermediate(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFDebertaOutput(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + + +class TFDebertaLayer(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFDebertaAttention(config, name="attention") + self.intermediate = TFDebertaIntermediate(config, name="intermediate") + self.bert_output = TFDebertaOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + query_states: tf.Tensor = None, + relative_pos: tf.Tensor = None, + rel_embeddings: tf.Tensor = None, + output_attentions: bool = False, + training: bool = False, + ) -> Tuple[tf.Tensor]: + attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + output_attentions=output_attentions, + training=training, + ) + attention_output = attention_outputs[0] + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + + +class TFDebertaEncoder(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.layer = [TFDebertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + self.relative_attention = getattr(config, "relative_attention", False) + self.config = config + if self.relative_attention: + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if self.relative_attention: + self.rel_embeddings = self.add_weight( + name="rel_embeddings.weight", + shape=[self.max_relative_positions * 2, self.config.hidden_size], + initializer=get_initializer(self.config.initializer_range), + ) + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + def get_rel_embedding(self): + rel_embeddings = self.rel_embeddings if self.relative_attention else None + return rel_embeddings + + def get_attention_mask(self, attention_mask): + if len(shape_list(attention_mask)) <= 2: + extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2) + attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1) + attention_mask = tf.cast(attention_mask, tf.uint8) + elif len(shape_list(attention_mask)) == 3: + attention_mask = tf.expand_dims(attention_mask, 1) + + return attention_mask + + def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): + if self.relative_attention and relative_pos is None: + q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2] + relative_pos = build_relative_position(q, shape_list(hidden_states)[-2]) + return relative_pos + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + query_states: tf.Tensor = None, + relative_pos: tf.Tensor = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + attention_mask = self.get_attention_mask(attention_mask) + relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) + + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[0] + else: + next_kv = hidden_states + + rel_embeddings = self.get_rel_embedding() + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states=next_kv, + attention_mask=attention_mask, + query_states=query_states, + relative_pos=relative_pos, + rel_embeddings=rel_embeddings, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if query_states is not None: + query_states = hidden_states + if isinstance(hidden_states, Sequence): + next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None + else: + next_kv = hidden_states + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +def build_relative_position(query_size, key_size): + """ + Build relative position according to the query and key + + We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key + \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - + P_k\\) + + Args: + query_size (int): the length of query + key_size (int): the length of key + + Return: + `tf.Tensor`: A tensor with shape [1, query_size, key_size] + + """ + q_ids = tf.range(query_size, dtype=tf.int32) + k_ids = tf.range(key_size, dtype=tf.int32) + rel_pos_ids = q_ids[:, None] - tf.tile(tf.reshape(k_ids, [1, -1]), [query_size, 1]) + rel_pos_ids = rel_pos_ids[:query_size, :] + rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0) + return tf.cast(rel_pos_ids, tf.int64) + + +def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): + shapes = [ + shape_list(query_layer)[0], + shape_list(query_layer)[1], + shape_list(query_layer)[2], + shape_list(relative_pos)[-1], + ] + return tf.broadcast_to(c2p_pos, shapes) + + +def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): + shapes = [ + shape_list(query_layer)[0], + shape_list(query_layer)[1], + shape_list(key_layer)[-2], + shape_list(key_layer)[-2], + ] + return tf.broadcast_to(c2p_pos, shapes) + + +def pos_dynamic_expand(pos_index, p2c_att, key_layer): + shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]] + return tf.broadcast_to(pos_index, shapes) + + +def torch_gather(x, indices, gather_axis): + if gather_axis < 0: + gather_axis = tf.rank(x) + gather_axis + + if gather_axis != tf.rank(x) - 1: + pre_roll = tf.rank(x) - 1 - gather_axis + permutation = tf.roll(tf.range(tf.rank(x)), pre_roll, axis=0) + x = tf.transpose(x, perm=permutation) + indices = tf.transpose(indices, perm=permutation) + else: + pre_roll = 0 + + flat_x = tf.reshape(x, (-1, tf.shape(x)[-1])) + flat_indices = tf.reshape(indices, (-1, tf.shape(indices)[-1])) + gathered = tf.gather(flat_x, flat_indices, batch_dims=1) + gathered = tf.reshape(gathered, tf.shape(indices)) + + if pre_roll != 0: + permutation = tf.roll(tf.range(tf.rank(x)), -pre_roll, axis=0) + gathered = tf.transpose(gathered, perm=permutation) + + return gathered + + +class TFDebertaDisentangledSelfAttention(keras.layers.Layer): + """ + Disentangled self-attention module + + Parameters: + config (`str`): + A model config class instance with the configuration to build a new model. The schema is similar to + *BertConfig*, for more details, please refer [`DebertaConfig`] + + """ + + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.in_proj = keras.layers.Dense( + self.all_head_size * 3, + kernel_initializer=get_initializer(config.initializer_range), + name="in_proj", + use_bias=False, + ) + self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] + + self.relative_attention = getattr(config, "relative_attention", False) + self.talking_head = getattr(config, "talking_head", False) + + if self.talking_head: + self.head_logits_proj = keras.layers.Dense( + self.num_attention_heads, + kernel_initializer=get_initializer(config.initializer_range), + name="head_logits_proj", + use_bias=False, + ) + self.head_weights_proj = keras.layers.Dense( + self.num_attention_heads, + kernel_initializer=get_initializer(config.initializer_range), + name="head_weights_proj", + use_bias=False, + ) + + self.softmax = TFDebertaXSoftmax(axis=-1) + + if self.relative_attention: + self.max_relative_positions = getattr(config, "max_relative_positions", -1) + if self.max_relative_positions < 1: + self.max_relative_positions = config.max_position_embeddings + self.pos_dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="pos_dropout") + if "c2p" in self.pos_att_type: + self.pos_proj = keras.layers.Dense( + self.all_head_size, + kernel_initializer=get_initializer(config.initializer_range), + name="pos_proj", + use_bias=False, + ) + if "p2c" in self.pos_att_type: + self.pos_q_proj = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj" + ) + + self.dropout = TFDebertaStableDropout(config.attention_probs_dropout_prob, name="dropout") + self.config = config + + def build(self, input_shape=None): + if self.built: + return + self.built = True + self.q_bias = self.add_weight( + name="q_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros() + ) + self.v_bias = self.add_weight( + name="v_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros() + ) + if getattr(self, "in_proj", None) is not None: + with tf.name_scope(self.in_proj.name): + self.in_proj.build([None, None, self.config.hidden_size]) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + if getattr(self, "head_logits_proj", None) is not None: + with tf.name_scope(self.head_logits_proj.name): + self.head_logits_proj.build(None) + if getattr(self, "head_weights_proj", None) is not None: + with tf.name_scope(self.head_weights_proj.name): + self.head_weights_proj.build(None) + if getattr(self, "pos_dropout", None) is not None: + with tf.name_scope(self.pos_dropout.name): + self.pos_dropout.build(None) + if getattr(self, "pos_proj", None) is not None: + with tf.name_scope(self.pos_proj.name): + self.pos_proj.build([self.config.hidden_size]) + if getattr(self, "pos_q_proj", None) is not None: + with tf.name_scope(self.pos_q_proj.name): + self.pos_q_proj.build([self.config.hidden_size]) + + def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: + shape = shape_list(tensor)[:-1] + [self.num_attention_heads, -1] + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=shape) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + query_states: tf.Tensor = None, + relative_pos: tf.Tensor = None, + rel_embeddings: tf.Tensor = None, + output_attentions: bool = False, + training: bool = False, + ) -> Tuple[tf.Tensor]: + """ + Call the module + + Args: + hidden_states (`tf.Tensor`): + Input states to the module usually the output from previous layer, it will be the Q,K and V in + *Attention(Q,K,V)* + + attention_mask (`tf.Tensor`): + An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum + sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* + th token. + + return_att (`bool`, optional): + Whether return the attention matrix. + + query_states (`tf.Tensor`, optional): + The *Q* state in *Attention(Q,K,V)*. + + relative_pos (`tf.Tensor`): + The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with + values ranging in [*-max_relative_positions*, *max_relative_positions*]. + + rel_embeddings (`tf.Tensor`): + The embedding of relative distances. It's a tensor of shape [\\(2 \\times + \\text{max_relative_positions}\\), *hidden_size*]. + + + """ + if query_states is None: + qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1) + query_layer, key_layer, value_layer = tf.split( + self.transpose_for_scores(qp), num_or_size_splits=3, axis=-1 + ) + else: + + def linear(w, b, x): + out = tf.matmul(x, w, transpose_b=True) + if b is not None: + out += tf.transpose(b) + return out + + ws = tf.split( + tf.transpose(self.in_proj.weight[0]), num_or_size_splits=self.num_attention_heads * 3, axis=0 + ) + qkvw = tf.TensorArray(dtype=tf.float32, size=3) + for k in tf.range(3): + qkvw_inside = tf.TensorArray(dtype=tf.float32, size=self.num_attention_heads) + for i in tf.range(self.num_attention_heads): + qkvw_inside = qkvw_inside.write(i, ws[i * 3 + k]) + qkvw = qkvw.write(k, qkvw_inside.concat()) + qkvb = [None] * 3 + + q = linear(qkvw[0], qkvb[0], query_states) + k = linear(qkvw[1], qkvb[1], hidden_states) + v = linear(qkvw[2], qkvb[2], hidden_states) + query_layer = self.transpose_for_scores(q) + key_layer = self.transpose_for_scores(k) + value_layer = self.transpose_for_scores(v) + + query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :]) + value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :]) + + rel_att = None + # Take the dot product between "query" and "key" to get the raw attention scores. + scale_factor = 1 + len(self.pos_att_type) + scale = math.sqrt(shape_list(query_layer)[-1] * scale_factor) + query_layer = query_layer / scale + + attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 1, 3, 2])) + if self.relative_attention: + rel_embeddings = self.pos_dropout(rel_embeddings, training=training) + rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) + + if rel_att is not None: + attention_scores = attention_scores + rel_att + + if self.talking_head: + attention_scores = tf.transpose( + self.head_logits_proj(tf.transpose(attention_scores, [0, 2, 3, 1])), [0, 3, 1, 2] + ) + + attention_probs = self.softmax(attention_scores, attention_mask) + attention_probs = self.dropout(attention_probs, training=training) + if self.talking_head: + attention_probs = tf.transpose( + self.head_weights_proj(tf.transpose(attention_probs, [0, 2, 3, 1])), [0, 3, 1, 2] + ) + + context_layer = tf.matmul(attention_probs, value_layer) + context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) + context_layer_shape = shape_list(context_layer) + # Set the final dimension here explicitly. + # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing + # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput + # requires final input dimension to be defined + new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]] + context_layer = tf.reshape(context_layer, new_context_layer_shape) + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): + if relative_pos is None: + q = shape_list(query_layer)[-2] + relative_pos = build_relative_position(q, shape_list(key_layer)[-2]) + shape_list_pos = shape_list(relative_pos) + if len(shape_list_pos) == 2: + relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0) + elif len(shape_list_pos) == 3: + relative_pos = tf.expand_dims(relative_pos, 1) + # bxhxqxk + elif len(shape_list_pos) != 4: + raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}") + + att_span = tf.cast( + tf.minimum( + tf.maximum(shape_list(query_layer)[-2], shape_list(key_layer)[-2]), self.max_relative_positions + ), + tf.int64, + ) + rel_embeddings = tf.expand_dims( + rel_embeddings[self.max_relative_positions - att_span : self.max_relative_positions + att_span, :], 0 + ) + + score = 0 + + # content->position + if "c2p" in self.pos_att_type: + pos_key_layer = self.pos_proj(rel_embeddings) + pos_key_layer = self.transpose_for_scores(pos_key_layer) + c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 1, 3, 2])) + c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1) + c2p_att = torch_gather(c2p_att, c2p_dynamic_expand(c2p_pos, query_layer, relative_pos), -1) + score += c2p_att + + # position->content + if "p2c" in self.pos_att_type: + pos_query_layer = self.pos_q_proj(rel_embeddings) + pos_query_layer = self.transpose_for_scores(pos_query_layer) + pos_query_layer /= tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, dtype=tf.float32)) + if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]: + r_pos = build_relative_position(shape_list(key_layer)[-2], shape_list(key_layer)[-2]) + else: + r_pos = relative_pos + p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1) + p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 1, 3, 2])) + p2c_att = tf.transpose( + torch_gather(p2c_att, p2c_dynamic_expand(p2c_pos, query_layer, key_layer), -1), [0, 1, 3, 2] + ) + if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]: + pos_index = tf.expand_dims(relative_pos[:, :, :, 0], -1) + p2c_att = torch_gather(p2c_att, pos_dynamic_expand(pos_index, p2c_att, key_layer), -2) + score += p2c_att + + return score + + +class TFDebertaEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.position_biased_input = getattr(config, "position_biased_input", True) + self.initializer_range = config.initializer_range + if self.embedding_size != config.hidden_size: + self.embed_proj = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="embed_proj", + use_bias=False, + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + if self.config.type_vocab_size > 0: + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.embedding_size], + initializer=get_initializer(self.initializer_range), + ) + else: + self.token_type_embeddings = None + + with tf.name_scope("position_embeddings"): + if self.position_biased_input: + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + else: + self.position_embeddings = None + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + if getattr(self, "embed_proj", None) is not None: + with tf.name_scope(self.embed_proj.name): + self.embed_proj.build([None, None, self.embedding_size]) + + def call( + self, + input_ids: tf.Tensor = None, + position_ids: tf.Tensor = None, + token_type_ids: tf.Tensor = None, + inputs_embeds: tf.Tensor = None, + mask: tf.Tensor = None, + training: bool = False, + ) -> tf.Tensor: + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + if input_ids is None and inputs_embeds is None: + raise ValueError("Need to provide either `input_ids` or `input_embeds`.") + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + final_embeddings = inputs_embeds + if self.position_biased_input: + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + final_embeddings += position_embeds + if self.config.type_vocab_size > 0: + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings += token_type_embeds + + if self.embedding_size != self.hidden_size: + final_embeddings = self.embed_proj(final_embeddings) + + final_embeddings = self.LayerNorm(final_embeddings) + + if mask is not None: + if len(shape_list(mask)) != len(shape_list(final_embeddings)): + if len(shape_list(mask)) == 4: + mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1) + mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32) + + final_embeddings = final_embeddings * mask + + final_embeddings = self.dropout(final_embeddings, training=training) + + return final_embeddings + + +class TFDebertaPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + + self.dense = keras.layers.Dense( + units=self.embedding_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.embedding_size]) + + +class TFDebertaLMPredictionHead(keras.layers.Layer): + def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embedding_size = getattr(config, "embedding_size", config.hidden_size) + + self.transform = TFDebertaPredictionHeadTransform(config, name="transform") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self) -> keras.layers.Layer: + return self.input_embeddings + + def set_output_embeddings(self, value: tf.Variable): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self) -> Dict[str, tf.Variable]: + return {"bias": self.bias} + + def set_bias(self, value: tf.Variable): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.transform(hidden_states=hidden_states) + seq_length = shape_list(hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +class TFDebertaOnlyMLMHead(keras.layers.Layer): + def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + self.predictions = TFDebertaLMPredictionHead(config, input_embeddings, name="predictions") + + def call(self, sequence_output: tf.Tensor) -> tf.Tensor: + prediction_scores = self.predictions(hidden_states=sequence_output) + + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +# @keras_serializable +class TFDebertaMainLayer(keras.layers.Layer): + config_class = DebertaConfig + + def __init__(self, config: DebertaConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFDebertaEmbeddings(config, name="embeddings") + self.encoder = TFDebertaEncoder(config, name="encoder") + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(dims=input_shape, value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + mask=attention_mask, + training=training, + ) + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return TFBaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + + +class TFDebertaPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DebertaConfig + base_model_prefix = "deberta" + + +DEBERTA_START_DOCSTRING = r""" + The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled + Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build + on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two + improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`DebertaConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DEBERTA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", + DEBERTA_START_DOCSTRING, +) +class TFDebertaModel(TFDebertaPreTrainedModel): + def __init__(self, config: DebertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.deberta = TFDebertaMainLayer(config, name="deberta") + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + outputs = self.deberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deberta", None) is not None: + with tf.name_scope(self.deberta.name): + self.deberta.build(None) + + +@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) +class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLoss): + def __init__(self, config: DebertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + if config.is_decoder: + logger.warning( + "If you want to use `TFDebertaForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.deberta = TFDebertaMainLayer(config, name="deberta") + self.mlm = TFDebertaOnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls") + + def get_lm_head(self) -> keras.layers.Layer: + return self.mlm.predictions + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + outputs = self.deberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.mlm(sequence_output=sequence_output, training=training) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deberta", None) is not None: + with tf.name_scope(self.deberta.name): + self.deberta.build(None) + if getattr(self, "mlm", None) is not None: + with tf.name_scope(self.mlm.name): + self.mlm.build(None) + + +@add_start_docstrings( + """ + DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + DEBERTA_START_DOCSTRING, +) +class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: DebertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.deberta = TFDebertaMainLayer(config, name="deberta") + self.pooler = TFDebertaContextPooler(config, name="pooler") + + drop_out = getattr(config, "cls_dropout", None) + drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out + self.dropout = TFDebertaStableDropout(drop_out, name="cls_dropout") + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.output_dim = self.pooler.output_dim + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.deberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + pooled_output = self.pooler(sequence_output, training=training) + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[1:] + + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deberta", None) is not None: + with tf.name_scope(self.deberta.name): + self.deberta.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.output_dim]) + + +@add_start_docstrings( + """ + DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + DEBERTA_START_DOCSTRING, +) +class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassificationLoss): + def __init__(self, config: DebertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.deberta = TFDebertaMainLayer(config, name="deberta") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.deberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(inputs=sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deberta", None) is not None: + with tf.name_scope(self.deberta.name): + self.deberta.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + DEBERTA_START_DOCSTRING, +) +class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnsweringLoss): + def __init__(self, config: DebertaConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.deberta = TFDebertaMainLayer(config, name="deberta") + self.qa_outputs = keras.layers.Dense( + units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.deberta( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.qa_outputs(inputs=sequence_output) + start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) + start_logits = tf.squeeze(input=start_logits, axis=-1) + end_logits = tf.squeeze(input=end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deberta", None) is not None: + with tf.name_scope(self.deberta.name): + self.deberta.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta.py new file mode 100644 index 0000000000000000000000000000000000000000..b846a7891562d6386d40f342c47211a5b53857e4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta.py @@ -0,0 +1,393 @@ +# coding=utf-8 +# Copyright 2020 Microsoft and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model DeBERTa.""" + +import json +import os +from typing import List, Optional, Tuple + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + + +# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class DebertaTokenizer(PreTrainedTokenizer): + """ + Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import DebertaTokenizer + + >>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base") + >>> tokenizer("Hello world")["input_ids"] + [1, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [1, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `"[CLS]"`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `"[SEP]"`): + The end of sequence token. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Deberta tokenizer detect beginning of words by the preceding space). + add_bos_token (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as + any other word. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask", "token_type_ids"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="[CLS]", + eos_token="[SEP]", + sep_token="[SEP]", + cls_token="[CLS]", + unk_token="[UNK]", + pad_token="[PAD]", + mask_token="[MASK]", + add_prefix_space=False, + add_bos_token=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + self.add_bos_token = add_bos_token + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + add_bos_token=add_bos_token, + **kwargs, + ) + + @property + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size + def vocab_size(self): + return len(self.encoder) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A DeBERTa sequence has the following format: + + - single sequence: [CLS] X [SEP] + - pair of sequences: [CLS] A [SEP] B [SEP] + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..07226443d30a9c0cbe3d9f970e32343dac04ca65 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deberta/tokenization_deberta_fast.py @@ -0,0 +1,247 @@ +# coding=utf-8 +# Copyright 2020 Microsoft and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Fast Tokenization class for model DeBERTa.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import pre_tokenizers + +from ...tokenization_utils_base import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_deberta import DebertaTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +class DebertaTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level + Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import DebertaTokenizerFast + + >>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base") + >>> tokenizer("Hello world")["input_ids"] + [1, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [1, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since + the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`, *optional*): + Path to the vocabulary file. + merges_file (`str`, *optional*): + Path to the merges file. + tokenizer_file (`str`, *optional*): + The path to a tokenizer file to use instead of the vocab file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `"[CLS]"`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `"[SEP]"`): + The end of sequence token. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Deberta tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask", "token_type_ids"] + slow_tokenizer_class = DebertaTokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + errors="replace", + bos_token="[CLS]", + eos_token="[SEP]", + sep_token="[SEP]", + cls_token="[CLS]", + unk_token="[UNK]", + pad_token="[PAD]", + mask_token="[MASK]", + add_prefix_space=False, + **kwargs, + ): + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + self.add_bos_token = kwargs.pop("add_bos_token", False) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + @property + def mask_token(self) -> str: + """ + `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not + having been set. + + Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily + comprise the space before the *[MASK]*. + """ + if self._mask_token is None: + if self.verbose: + logger.error("Using mask_token, but it is not set yet.") + return None + return str(self._mask_token) + + @mask_token.setter + def mask_token(self, value): + """ + Overriding the default behavior of the mask token to have it eat the space before it. + """ + # Mask token behave like a normal word, i.e. include the space before it + # So we set lstrip to True + value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value + self._mask_token = value + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A DeBERTa sequence has the following format: + + - single sequence: [CLS] X [SEP] + - pair of sequences: [CLS] A [SEP] B [SEP] + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d6db4a478ac1d8c0e4b668ea071909e094dd23e2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__init__.py @@ -0,0 +1,75 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_mask2former": [ + "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "Mask2FormerConfig", + ], +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_mask2former"] = ["Mask2FormerImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mask2former"] = [ + "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "Mask2FormerForUniversalSegmentation", + "Mask2FormerModel", + "Mask2FormerPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_mask2former import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, Mask2FormerConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_mask2former import Mask2FormerImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mask2former import ( + MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + Mask2FormerForUniversalSegmentation, + Mask2FormerModel, + Mask2FormerPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8aea89c71980611d612b260326552f9d14d78498 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/configuration_mask2former.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/configuration_mask2former.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e4ec51099bf27034571b563ac4929e2876d75b9f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/configuration_mask2former.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/convert_mask2former_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/convert_mask2former_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72244676d213346cdd0748ecb1277a806ae6b179 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/convert_mask2former_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/modeling_mask2former.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/modeling_mask2former.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a93cce77d6c4b7d5c2e328c1e20556ccf447743 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/__pycache__/modeling_mask2former.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/configuration_mask2former.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/configuration_mask2former.py new file mode 100644 index 0000000000000000000000000000000000000000..f0d13b8e030ed1fbcbb799aec9a946f325eeb1cb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/configuration_mask2former.py @@ -0,0 +1,255 @@ +# coding=utf-8 +# Copyright 2022 Meta Platforms, Inc.and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Mask2Former model configuration""" +from typing import Dict, List, Optional + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ..auto import CONFIG_MAPPING +from ..deprecated._archive_maps import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +logger = logging.get_logger(__name__) + + +class Mask2FormerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Mask2FormerModel`]. It is used to instantiate a + Mask2Former model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Mask2Former + [facebook/mask2former-swin-small-coco-instance](https://huggingface.co/facebook/mask2former-swin-small-coco-instance) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Currently, Mask2Former only supports the [Swin Transformer](swin) as backbone. + + Args: + backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `SwinConfig()`): + The configuration of the backbone model. If unset, the configuration corresponding to + `swin-base-patch4-window12-384` will be used. + backbone (`str`, *optional*): + Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this + will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` + is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. + use_pretrained_backbone (`bool`, *optional*, `False`): + Whether to use pretrained weights for the backbone. + use_timm_backbone (`bool`, *optional*, `False`): + Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers + library. + backbone_kwargs (`dict`, *optional*): + Keyword arguments to be passed to AutoBackbone when loading from a checkpoint + e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. + feature_size (`int`, *optional*, defaults to 256): + The features (channels) of the resulting feature maps. + mask_feature_size (`int`, *optional*, defaults to 256): + The masks' features size, this value will also be used to specify the Feature Pyramid Network features' + size. + hidden_dim (`int`, *optional*, defaults to 256): + Dimensionality of the encoder layers. + encoder_feedforward_dim (`int`, *optional*, defaults to 1024): + Dimension of feedforward network for deformable detr encoder used as part of pixel decoder. + encoder_layers (`int`, *optional*, defaults to 6): + Number of layers in the deformable detr encoder used as part of pixel decoder. + decoder_layers (`int`, *optional*, defaults to 10): + Number of layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder. + dim_feedforward (`int`, *optional*, defaults to 2048): + Feature dimension in feedforward network for transformer decoder. + pre_norm (`bool`, *optional*, defaults to `False`): + Whether to use pre-LayerNorm or not for transformer decoder. + enforce_input_projection (`bool`, *optional*, defaults to `False`): + Whether to add an input projection 1x1 convolution even if the input channels and hidden dim are identical + in the Transformer decoder. + common_stride (`int`, *optional*, defaults to 4): + Parameter used for determining number of FPN levels used as part of pixel decoder. + ignore_value (`int`, *optional*, defaults to 255): + Category id to be ignored during training. + num_queries (`int`, *optional*, defaults to 100): + Number of queries for the decoder. + no_object_weight (`int`, *optional*, defaults to 0.1): + The weight to apply to the null (no object) class. + class_weight (`int`, *optional*, defaults to 2.0): + The weight for the cross entropy loss. + mask_weight (`int`, *optional*, defaults to 5.0): + The weight for the mask loss. + dice_weight (`int`, *optional*, defaults to 5.0): + The weight for the dice loss. + train_num_points (`str` or `function`, *optional*, defaults to 12544): + Number of points used for sampling during loss calculation. + oversample_ratio (`float`, *optional*, defaults to 3.0): + Oversampling parameter used for calculating no. of sampled points + importance_sample_ratio (`float`, *optional*, defaults to 0.75): + Ratio of points that are sampled via importance sampling. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + init_xavier_std (`float`, *optional*, defaults to 1.0): + The scaling factor used for the Xavier initialization gain in the HM Attention map module. + use_auxiliary_loss (`boolean``, *optional*, defaults to `True`): + If `True` [`Mask2FormerForUniversalSegmentationOutput`] will contain the auxiliary losses computed using + the logits from each decoder's stage. + feature_strides (`List[int]`, *optional*, defaults to `[4, 8, 16, 32]`): + Feature strides corresponding to features generated from backbone network. + output_auxiliary_logits (`bool`, *optional*): + Should the model output its `auxiliary_logits` or not. + + Examples: + + ```python + >>> from transformers import Mask2FormerConfig, Mask2FormerModel + + >>> # Initializing a Mask2Former facebook/mask2former-swin-small-coco-instance configuration + >>> configuration = Mask2FormerConfig() + + >>> # Initializing a model (with random weights) from the facebook/mask2former-swin-small-coco-instance style configuration + >>> model = Mask2FormerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + + """ + + model_type = "mask2former" + backbones_supported = ["swin"] + attribute_map = {"hidden_size": "hidden_dim"} + + def __init__( + self, + backbone_config: Optional[Dict] = None, + feature_size: int = 256, + mask_feature_size: int = 256, + hidden_dim: int = 256, + encoder_feedforward_dim: int = 1024, + activation_function: str = "relu", + encoder_layers: int = 6, + decoder_layers: int = 10, + num_attention_heads: int = 8, + dropout: float = 0.0, + dim_feedforward: int = 2048, + pre_norm: bool = False, + enforce_input_projection: bool = False, + common_stride: int = 4, + ignore_value: int = 255, + num_queries: int = 100, + no_object_weight: float = 0.1, + class_weight: float = 2.0, + mask_weight: float = 5.0, + dice_weight: float = 5.0, + train_num_points: int = 12544, + oversample_ratio: float = 3.0, + importance_sample_ratio: float = 0.75, + init_std: float = 0.02, + init_xavier_std: float = 1.0, + use_auxiliary_loss: bool = True, + feature_strides: List[int] = [4, 8, 16, 32], + output_auxiliary_logits: bool = None, + backbone: Optional[str] = None, + use_pretrained_backbone: bool = False, + use_timm_backbone: bool = False, + backbone_kwargs: Optional[Dict] = None, + **kwargs, + ): + if use_pretrained_backbone: + raise ValueError("Pretrained backbones are not supported yet.") + + if backbone_config is not None and backbone is not None: + raise ValueError("You can't specify both `backbone` and `backbone_config`.") + + if backbone_config is None and backbone is None: + logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.") + backbone_config = CONFIG_MAPPING["swin"]( + image_size=224, + in_channels=3, + patch_size=4, + embed_dim=96, + depths=[2, 2, 18, 2], + num_heads=[3, 6, 12, 24], + window_size=7, + drop_path_rate=0.3, + use_absolute_embeddings=False, + out_features=["stage1", "stage2", "stage3", "stage4"], + ) + + if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: + raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") + + if isinstance(backbone_config, dict): + backbone_model_type = backbone_config.pop("model_type") + config_class = CONFIG_MAPPING[backbone_model_type] + backbone_config = config_class.from_dict(backbone_config) + + # verify that the backbone is supported + if backbone_config is not None and backbone_config.model_type not in self.backbones_supported: + logger.warning_once( + f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " + f"Supported model types: {','.join(self.backbones_supported)}" + ) + + self.backbone_config = backbone_config + self.feature_size = feature_size + self.mask_feature_size = mask_feature_size + self.hidden_dim = hidden_dim + self.encoder_feedforward_dim = encoder_feedforward_dim + self.activation_function = activation_function + self.encoder_layers = encoder_layers + self.decoder_layers = decoder_layers + self.num_attention_heads = num_attention_heads + self.dropout = dropout + self.dim_feedforward = dim_feedforward + self.pre_norm = pre_norm + self.enforce_input_projection = enforce_input_projection + self.common_stride = common_stride + self.ignore_value = ignore_value + self.num_queries = num_queries + self.no_object_weight = no_object_weight + self.class_weight = class_weight + self.mask_weight = mask_weight + self.dice_weight = dice_weight + self.train_num_points = train_num_points + self.oversample_ratio = oversample_ratio + self.importance_sample_ratio = importance_sample_ratio + self.init_std = init_std + self.init_xavier_std = init_xavier_std + self.use_auxiliary_loss = use_auxiliary_loss + self.feature_strides = feature_strides + self.output_auxiliary_logits = output_auxiliary_logits + self.num_hidden_layers = decoder_layers + self.backbone = backbone + self.use_pretrained_backbone = use_pretrained_backbone + self.use_timm_backbone = use_timm_backbone + self.backbone_kwargs = backbone_kwargs + + super().__init__(**kwargs) + + @classmethod + def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs): + """Instantiate a [`Mask2FormerConfig`] (or a derived class) from a pre-trained backbone model configuration. + + Args: + backbone_config ([`PretrainedConfig`]): + The backbone configuration. + + Returns: + [`Mask2FormerConfig`]: An instance of a configuration object + """ + return cls( + backbone_config=backbone_config, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/convert_mask2former_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/convert_mask2former_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..ea1c578509f60bb6fcb07a373d82635188444dc8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/convert_mask2former_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,1019 @@ +# coding=utf-8 +# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import json +import sys +from argparse import ArgumentParser +from dataclasses import dataclass +from pathlib import Path +from pprint import pformat +from typing import Any, Dict, Iterator, List, Set, Tuple + +import requests +import torch +import torchvision.transforms as T +from detectron2.checkpoint import DetectionCheckpointer +from detectron2.config import get_cfg +from detectron2.projects.deeplab import add_deeplab_config +from huggingface_hub import hf_hub_download +from PIL import Image +from torch import Tensor, nn + +from transformers import ( + Mask2FormerConfig, + Mask2FormerForUniversalSegmentation, + Mask2FormerImageProcessor, + Mask2FormerModel, + SwinConfig, +) +from transformers.models.mask2former.modeling_mask2former import ( + Mask2FormerForUniversalSegmentationOutput, + Mask2FormerModelOutput, +) +from transformers.utils import logging + + +StateDict = Dict[str, Tensor] + +logging.set_verbosity_info() +logger = logging.get_logger() + +torch.manual_seed(0) + + +class TrackedStateDict: + def __init__(self, to_track: Dict): + """This class "tracks" a python dictionary by keeping track of which item is accessed. + + Args: + to_track (Dict): The dictionary we wish to track + """ + self.to_track = to_track + self._seen: Set[str] = set() + + def __getitem__(self, key: str) -> Any: + return self.to_track[key] + + def __setitem__(self, key: str, item: Any): + self._seen.add(key) + self.to_track[key] = item + + def diff(self) -> List[str]: + """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. + This is an effective method to check if we have update all the keys + + Returns: + List[str]: List of keys not yet updated + """ + return set(self.to_track.keys()) - self._seen + + def copy(self) -> Dict: + # proxy the call to the internal dictionary + return self.to_track.copy() + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + img_data = requests.get(url, stream=True).raw + im = Image.open(img_data) + return im + + +@dataclass +class Args: + """Fake command line arguments needed by mask2former/detectron implementation""" + + config_file: str + + +def setup_cfg(args: Args): + # load config from file and command-line arguments + cfg = get_cfg() + add_deeplab_config(cfg) + add_maskformer2_config(cfg) + cfg.merge_from_file(args.config_file) + cfg.freeze() + return cfg + + +class OriginalMask2FormerConfigToOursConverter: + def __call__(self, original_config: object) -> Mask2FormerConfig: + model = original_config.MODEL + + repo_id = "huggingface/label-files" + if model.SEM_SEG_HEAD.NUM_CLASSES == 847: + filename = "mask2former-ade20k-full-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 150: + filename = "ade20k-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 80: + filename = "coco-detection-mmdet-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 171: + filename = "mask2former-coco-stuff-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 133: + filename = "coco-panoptic-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 19: + filename = "cityscapes-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 8: + filename = "cityscapes-instance-id2label.json" + elif model.SEM_SEG_HEAD.NUM_CLASSES == 65: + filename = "mapillary-vistas-id2label.json" + + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + label2id = {label: idx for idx, label in id2label.items()} + + if model.SWIN.EMBED_DIM == 96: + backbone_config = SwinConfig.from_pretrained( + "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"] + ) + elif model.SWIN.EMBED_DIM == 128: + backbone_config = SwinConfig( + embed_dim=128, + window_size=12, + depths=(2, 2, 18, 2), + num_heads=(4, 8, 16, 32), + out_features=["stage1", "stage2", "stage3", "stage4"], + ) + + elif model.SWIN.EMBED_DIM == 192: + backbone_config = SwinConfig.from_pretrained( + "microsoft/swin-large-patch4-window12-384", out_features=["stage1", "stage2", "stage3", "stage4"] + ) + else: + raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!") + + backbone_config.drop_path_rate = model.SWIN.DROP_PATH_RATE + backbone_config.attention_probs_dropout_prob = model.SWIN.ATTN_DROP_RATE + backbone_config.depths = model.SWIN.DEPTHS + + config: Mask2FormerConfig = Mask2FormerConfig( + ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE, + num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, + num_queries=model.MASK_FORMER.NUM_OBJECT_QUERIES, + no_object_weight=model.MASK_FORMER.NO_OBJECT_WEIGHT, + class_weight=model.MASK_FORMER.CLASS_WEIGHT, + mask_weight=model.MASK_FORMER.MASK_WEIGHT, + dice_weight=model.MASK_FORMER.DICE_WEIGHT, + train_num_points=model.MASK_FORMER.TRAIN_NUM_POINTS, + oversample_ratio=model.MASK_FORMER.OVERSAMPLE_RATIO, + importance_sample_ratio=model.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, + init_std=0.02, + init_xavier_std=1.0, + use_auxiliary_loss=model.MASK_FORMER.DEEP_SUPERVISION, + feature_strides=[4, 8, 16, 32], + backbone_config=backbone_config, + id2label=id2label, + label2id=label2id, + feature_size=model.SEM_SEG_HEAD.CONVS_DIM, + mask_feature_size=model.SEM_SEG_HEAD.MASK_DIM, + hidden_dim=model.MASK_FORMER.HIDDEN_DIM, + encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS, + encoder_feedforward_dim=1024, + decoder_layers=model.MASK_FORMER.DEC_LAYERS, + num_attention_heads=model.MASK_FORMER.NHEADS, + dropout=model.MASK_FORMER.DROPOUT, + dim_feedforward=model.MASK_FORMER.DIM_FEEDFORWARD, + pre_norm=model.MASK_FORMER.PRE_NORM, + enforce_input_proj=model.MASK_FORMER.ENFORCE_INPUT_PROJ, + common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE, + ) + return config + + +class OriginalMask2FormerConfigToImageProcessorConverter: + def __call__(self, original_config: object) -> Mask2FormerImageProcessor: + model = original_config.MODEL + model_input = original_config.INPUT + + return Mask2FormerImageProcessor( + image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), + image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), + size=model_input.MIN_SIZE_TEST, + max_size=model_input.MAX_SIZE_TEST, + num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, + ignore_index=model.SEM_SEG_HEAD.IGNORE_VALUE, + size_divisibility=32, + ) + + +class OriginalMask2FormerCheckpointToOursConverter: + def __init__(self, original_model: nn.Module, config: Mask2FormerConfig): + self.original_model = original_model + self.config = config + + def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): + for src_key, dst_key in renamed_keys: + dst_state_dict[dst_key] = src_state_dict.pop(src_key) + + def replace_maskformer_swin_backbone( + self, dst_state_dict: StateDict, src_state_dict: StateDict, config: Mask2FormerConfig + ): + dst_prefix: str = "pixel_level_module.encoder" + src_prefix: str = "backbone" + + renamed_keys = [ + ( + f"{src_prefix}.patch_embed.proj.weight", + f"{dst_prefix}.model.embeddings.patch_embeddings.projection.weight", + ), + (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.model.embeddings.patch_embeddings.projection.bias"), + (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.model.embeddings.norm.weight"), + (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.model.embeddings.norm.bias"), + ] + num_layers = len(config.backbone_config.depths) + for layer_idx in range(num_layers): + for block_idx in range(config.backbone_config.depths[layer_idx]): + renamed_keys.extend( + [ # src, dst + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", + ), + ] + ) + # now we need to handle the attentions + # read in weights + bias of input projection layer of cross-attention + + src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] + src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] + + size = src_att_weight.shape[0] + offset = size // 3 + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" + ] = src_att_weight[:offset, :] + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" + ] = src_att_bias[:offset] + + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" + ] = src_att_weight[offset : offset * 2, :] + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" + ] = src_att_bias[offset : offset * 2] + + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" + ] = src_att_weight[-offset:, :] + dst_state_dict[ + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" + ] = src_att_bias[-offset:] + + # let's pop them + src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") + src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") + # proj + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", + ), + ] + ) + + # second norm + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", + ), + ] + ) + + # mlp + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", + ), + ] + ) + + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", + ) + ] + ) + + if layer_idx < num_layers - 1: + # patch merging + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.reduction.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", + f"{dst_prefix}.model.encoder.layers.{layer_idx}.downsample.norm.bias", + ), + ] + ) + + # hidden states norms + renamed_keys.extend( + [ + ( + f"{src_prefix}.norm{layer_idx}.weight", + f"{dst_prefix}.hidden_states_norms.{layer_idx}.weight", + ), + ( + f"{src_prefix}.norm{layer_idx}.bias", + f"{dst_prefix}.hidden_states_norms.{layer_idx}.bias", + ), + ] + ) + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + + def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: Mask2FormerConfig): + dst_prefix: str = "pixel_level_module.encoder" + src_prefix: str = "backbone" + + renamed_keys = [ + ( + f"{src_prefix}.patch_embed.proj.weight", + f"{dst_prefix}.embeddings.patch_embeddings.projection.weight", + ), + (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"), + (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"), + (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"), + ] + + for layer_idx in range(len(config.backbone_config.depths)): + for block_idx in range(config.backbone_config.depths[layer_idx]): + renamed_keys.extend( + [ # src, dst + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", + ), + ] + ) + # now we need to handle the attentions + # read in weights + bias of input projection layer of cross-attention + + src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] + src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] + + size = src_att_weight.shape[0] + offset = size // 3 + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" + ] = src_att_weight[:offset, :] + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" + ] = src_att_bias[:offset] + + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" + ] = src_att_weight[offset : offset * 2, :] + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" + ] = src_att_bias[offset : offset * 2] + + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" + ] = src_att_weight[-offset:, :] + dst_state_dict[ + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" + ] = src_att_bias[-offset:] + + # let's pop them + src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") + src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") + # proj + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", + ), + ] + ) + + # second norm + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", + ), + ] + ) + + # mlp + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", + ), + ] + ) + + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", + f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", + ) + ] + ) + + if layer_idx < 3: + # patch merging + renamed_keys.extend( + [ + ( + f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", + f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight", + ), + ( + f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", + f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias", + ), + ] + ) + + # hidden states norms + renamed_keys.extend( + [ + ( + f"{src_prefix}.norm{layer_idx}.weight", + f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", + ), + ( + f"{src_prefix}.norm{layer_idx}.bias", + f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", + ), + ] + ) + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + + # Backbone + Pixel Decoder + def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "pixel_level_module.decoder" + src_prefix: str = "sem_seg_head.pixel_decoder" + + self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config) + + def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): + return [ + (f"{src_prefix}.weight", f"{dst_prefix}.weight"), + (f"{src_prefix}.bias", f"{dst_prefix}.bias"), + ] + + def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): + self_attn_keys = [] + self_attn_keys.extend( + rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights") + ) + self_attn_keys.extend( + rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj") + ) + self_attn_keys.extend( + rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets") + ) + self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj")) + + return self_attn_keys + + def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str): + encoder_keys = [] + encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1")) + encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2")) + encoder_keys.extend( + rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm") + ) + encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm")) + encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")) + + return encoder_keys + + # convolution layer for final features + renamed_keys = [ + (f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"), + (f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"), + (f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"), + ] + + renamed_keys.extend( + [ + (f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"), + (f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"), + (f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"), + ] + ) + + # proj layers + for i in range(3): + for j in range(2): + renamed_keys.extend( + [ + (f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"), + (f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"), + ] + ) + + renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")]) + + # layers + for layer_idx in range(self.config.encoder_layers): + renamed_keys.extend( + rename_keys_for_encoder_layer( + f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}" + ) + ) + + # proj + renamed_keys.extend( + [ + (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), + (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), + ] + ) + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + + # Transformer Decoder + def rename_keys_in_masked_attention_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "transformer_module.decoder" + src_prefix: str = "sem_seg_head.predictor" + + rename_keys = [] + for i in range(self.config.decoder_layers - 1): + rename_keys.append( + ( + f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.out_proj.weight", + f"{dst_prefix}.layers.{i}.self_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.out_proj.bias", + f"{dst_prefix}.layers.{i}.self_attn.out_proj.bias", + ) + ) + + rename_keys.append( + ( + f"{src_prefix}.transformer_self_attention_layers.{i}.norm.weight", + f"{dst_prefix}.layers.{i}.self_attn_layer_norm.weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_self_attention_layers.{i}.norm.bias", + f"{dst_prefix}.layers.{i}.self_attn_layer_norm.bias", + ) + ) + + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.in_proj_weight", + f"{dst_prefix}.layers.{i}.cross_attn.in_proj_weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.in_proj_bias", + f"{dst_prefix}.layers.{i}.cross_attn.in_proj_bias", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.out_proj.weight", + f"{dst_prefix}.layers.{i}.cross_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.multihead_attn.out_proj.bias", + f"{dst_prefix}.layers.{i}.cross_attn.out_proj.bias", + ) + ) + + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.norm.weight", + f"{dst_prefix}.layers.{i}.cross_attn_layer_norm.weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_cross_attention_layers.{i}.norm.bias", + f"{dst_prefix}.layers.{i}.cross_attn_layer_norm.bias", + ) + ) + + rename_keys.append( + (f"{src_prefix}.transformer_ffn_layers.{i}.linear1.weight", f"{dst_prefix}.layers.{i}.fc1.weight") + ) + rename_keys.append( + (f"{src_prefix}.transformer_ffn_layers.{i}.linear1.bias", f"{dst_prefix}.layers.{i}.fc1.bias") + ) + rename_keys.append( + (f"{src_prefix}.transformer_ffn_layers.{i}.linear2.weight", f"{dst_prefix}.layers.{i}.fc2.weight") + ) + rename_keys.append( + (f"{src_prefix}.transformer_ffn_layers.{i}.linear2.bias", f"{dst_prefix}.layers.{i}.fc2.bias") + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_ffn_layers.{i}.norm.weight", + f"{dst_prefix}.layers.{i}.final_layer_norm.weight", + ) + ) + rename_keys.append( + ( + f"{src_prefix}.transformer_ffn_layers.{i}.norm.bias", + f"{dst_prefix}.layers.{i}.final_layer_norm.bias", + ) + ) + + return rename_keys + + def replace_masked_attention_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "transformer_module.decoder" + src_prefix: str = "sem_seg_head.predictor" + + renamed_keys = self.rename_keys_in_masked_attention_decoder(dst_state_dict, src_state_dict) + + # add more + renamed_keys.extend( + [ + (f"{src_prefix}.decoder_norm.weight", f"{dst_prefix}.layernorm.weight"), + (f"{src_prefix}.decoder_norm.bias", f"{dst_prefix}.layernorm.bias"), + ] + ) + + mlp_len = 3 + for i in range(mlp_len): + renamed_keys.extend( + [ + ( + f"{src_prefix}.mask_embed.layers.{i}.weight", + f"{dst_prefix}.mask_predictor.mask_embedder.{i}.0.weight", + ), + ( + f"{src_prefix}.mask_embed.layers.{i}.bias", + f"{dst_prefix}.mask_predictor.mask_embedder.{i}.0.bias", + ), + ] + ) + + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + + def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "transformer_module.decoder.layers" + src_prefix: str = "sem_seg_head.predictor" + for i in range(self.config.decoder_layers - 1): + # read in weights + bias of input projection layer of self-attention + in_proj_weight = src_state_dict.pop( + f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight" + ) + in_proj_bias = src_state_dict.pop( + f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias" + ) + # next, add query, keys and values (in that order) to the state dict + dst_state_dict[f"{dst_prefix}.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + dst_state_dict[f"{dst_prefix}.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + dst_state_dict[f"{dst_prefix}.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + dst_state_dict[f"{dst_prefix}.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + dst_state_dict[f"{dst_prefix}.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + dst_state_dict[f"{dst_prefix}.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + + def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "transformer_module" + src_prefix: str = "sem_seg_head.predictor" + + self.replace_masked_attention_decoder(dst_state_dict, src_state_dict) + + renamed_keys = [ + (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), + (f"{src_prefix}.query_feat.weight", f"{dst_prefix}.queries_features.weight"), + (f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"), + ] + + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict) + + def replace_universal_segmentation_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): + dst_prefix: str = "" + src_prefix: str = "sem_seg_head.predictor" + + renamed_keys = [ + (f"{src_prefix}.class_embed.weight", f"{dst_prefix}class_predictor.weight"), + (f"{src_prefix}.class_embed.bias", f"{dst_prefix}class_predictor.bias"), + ] + + logger.info(f"Replacing keys {pformat(renamed_keys)}") + self.pop_all(renamed_keys, dst_state_dict, src_state_dict) + + def convert(self, mask2former: Mask2FormerModel) -> Mask2FormerModel: + dst_state_dict = TrackedStateDict(mask2former.state_dict()) + src_state_dict = self.original_model.state_dict() + + self.replace_pixel_module(dst_state_dict, src_state_dict) + self.replace_transformer_module(dst_state_dict, src_state_dict) + + logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") + logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") + logger.info("🙌 Done") + + state_dict = {key: dst_state_dict[key] for key in dst_state_dict.to_track.keys()} + mask2former.load_state_dict(state_dict) + return mask2former + + def convert_universal_segmentation( + self, mask2former: Mask2FormerForUniversalSegmentation + ) -> Mask2FormerForUniversalSegmentation: + dst_state_dict = TrackedStateDict(mask2former.state_dict()) + src_state_dict = self.original_model.state_dict() + + self.replace_universal_segmentation_module(dst_state_dict, src_state_dict) + + state_dict = {key: dst_state_dict[key] for key in dst_state_dict.to_track.keys()} + mask2former.load_state_dict(state_dict) + + return mask2former + + @staticmethod + def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: + checkpoints: List[Path] = checkpoints_dir.glob("**/*.pkl") + + for checkpoint in checkpoints: + logger.info(f"💪 Converting {checkpoint.stem}") + # find associated config file + + # dataset_name e.g 'coco' + dataset_name = checkpoint.parents[2].stem + if dataset_name == "ade": + dataset_name = dataset_name.replace("ade", "ade20k") + + # task type e.g 'instance-segmentation' + segmentation_task = checkpoint.parents[1].stem + + # config file corresponding to checkpoint + config_file_name = f"{checkpoint.parents[0].stem}.yaml" + + config: Path = config_dir / dataset_name / segmentation_task / "swin" / config_file_name + yield config, checkpoint + + +def test( + original_model, + our_model: Mask2FormerForUniversalSegmentation, + image_processor: Mask2FormerImageProcessor, + tolerance: float, +): + with torch.no_grad(): + original_model = original_model.eval() + our_model = our_model.eval() + + im = prepare_img() + x = image_processor(images=im, return_tensors="pt")["pixel_values"] + + original_model_backbone_features = original_model.backbone(x.clone()) + our_model_output: Mask2FormerModelOutput = our_model.model(x.clone(), output_hidden_states=True) + + # Test backbone + for original_model_feature, our_model_feature in zip( + original_model_backbone_features.values(), our_model_output.encoder_hidden_states + ): + assert torch.allclose( + original_model_feature, our_model_feature, atol=tolerance + ), "The backbone features are not the same." + + # Test pixel decoder + mask_features, _, multi_scale_features = original_model.sem_seg_head.pixel_decoder.forward_features( + original_model_backbone_features + ) + + for original_model_feature, our_model_feature in zip( + multi_scale_features, our_model_output.pixel_decoder_hidden_states + ): + assert torch.allclose( + original_model_feature, our_model_feature, atol=tolerance + ), "The pixel decoder feature are not the same" + + # Let's test the full model + tr_complete = T.Compose( + [T.Resize((384, 384)), T.ToTensor()], + ) + y = (tr_complete(im) * 255.0).to(torch.int).float() + + # modify original Mask2Former code to return mask and class logits + original_class_logits, original_mask_logits = original_model([{"image": y.clone().squeeze(0)}]) + + our_model_out: Mask2FormerForUniversalSegmentationOutput = our_model(x.clone()) + our_mask_logits = our_model_out.masks_queries_logits + our_class_logits = our_model_out.class_queries_logits + + assert original_mask_logits.shape == our_mask_logits.shape, "Output masks shapes are not matching." + assert original_class_logits.shape == our_class_logits.shape, "Output class logits shapes are not matching." + assert torch.allclose( + original_class_logits, our_class_logits, atol=tolerance + ), "The class logits are not the same." + assert torch.allclose( + original_mask_logits, our_mask_logits, atol=tolerance + ), "The predicted masks are not the same." + + logger.info("✅ Test passed!") + + +def get_model_name(checkpoint_file: Path): + # model_name_raw is something like maskformer2_swin_small_bs16_50ep + model_name_raw: str = checkpoint_file.parents[0].stem + + # `segmentation_task_type` must be one of the following: `instance-segmentation`, `panoptic-segmentation`, `semantic-segmentation` + segmentation_task_name: str = checkpoint_file.parents[1].stem + if segmentation_task_name not in ["instance-segmentation", "panoptic-segmentation", "semantic-segmentation"]: + raise ValueError( + f"{segmentation_task_name} must be wrong since acceptable values are: instance-segmentation," + " panoptic-segmentation, semantic-segmentation." + ) + + # dataset name must be one of the following: `coco`, `ade`, `cityscapes`, `mapillary-vistas` + dataset_name: str = checkpoint_file.parents[2].stem + if dataset_name not in ["coco", "ade", "cityscapes", "mapillary-vistas"]: + raise ValueError( + f"{dataset_name} must be wrong since we didn't find 'coco' or 'ade' or 'cityscapes' or 'mapillary-vistas'" + " in it " + ) + + backbone = "swin" + backbone_types = ["tiny", "small", "base_IN21k", "base", "large"] + backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0].replace("_", "-") + + model_name = f"mask2former-{backbone}-{backbone_type}-{dataset_name}-{segmentation_task_name.split('-')[0]}" + + return model_name + + +if __name__ == "__main__": + parser = ArgumentParser( + description="Command line to convert the original mask2formers (with swin backbone) to our implementations." + ) + + parser.add_argument( + "--checkpoints_dir", + type=Path, + help=( + "A directory containing the model's checkpoints. The directory has to have the following structure:" + " ///.pkl" + ), + ) + parser.add_argument( + "--configs_dir", + type=Path, + help=( + "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" + " structure: ///.yaml" + ), + ) + parser.add_argument( + "--mask2former_dir", + required=True, + type=Path, + help=( + "A path to Mask2Former's original implementation directory. You can download from here:" + " https://github.com/facebookresearch/Mask2Former" + ), + ) + + args = parser.parse_args() + + checkpoints_dir: Path = args.checkpoints_dir + config_dir: Path = args.configs_dir + mask2former_dir: Path = args.mask2former_dir + # append the path to the parents to mask2former dir + sys.path.append(str(mask2former_dir.parent)) + # import original Mask2Former config and model from original source code repo + from Mask2Former.mask2former.config import add_maskformer2_config + from Mask2Former.mask2former.maskformer_model import MaskFormer as OriginalMask2Former + + for config_file, checkpoint_file in OriginalMask2FormerCheckpointToOursConverter.using_dirs( + checkpoints_dir, config_dir + ): + model_name = get_model_name(checkpoint_file) + image_processor = OriginalMask2FormerConfigToImageProcessorConverter()( + setup_cfg(Args(config_file=config_file)) + ) + image_processor.size = {"height": 384, "width": 384} + + original_config = setup_cfg(Args(config_file=config_file)) + mask2former_kwargs = OriginalMask2Former.from_config(original_config) + original_model = OriginalMask2Former(**mask2former_kwargs).eval() + + DetectionCheckpointer(original_model).load(str(checkpoint_file)) + + config: Mask2FormerConfig = OriginalMask2FormerConfigToOursConverter()(original_config) + mask2former = Mask2FormerModel(config=config).eval() + + converter = OriginalMask2FormerCheckpointToOursConverter(original_model, config) + mask2former = converter.convert(mask2former) + + mask2former_for_segmentation = Mask2FormerForUniversalSegmentation(config=config).eval() + mask2former_for_segmentation.model = mask2former + + mask2former_for_segmentation = converter.convert_universal_segmentation(mask2former_for_segmentation) + + tolerance = 3e-1 + high_tolerance_models = [ + "mask2former-swin-base-IN21k-coco-instance", + "mask2former-swin-base-coco-instance", + "mask2former-swin-small-cityscapes-semantic", + ] + + if model_name in high_tolerance_models: + tolerance = 3e-1 + + logger.info(f"🪄 Testing {model_name}...") + test(original_model, mask2former_for_segmentation, image_processor, tolerance) + logger.info(f"🪄 Pushing {model_name} to hub...") + + image_processor.push_to_hub(model_name) + mask2former_for_segmentation.push_to_hub(model_name) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/image_processing_mask2former.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/image_processing_mask2former.py new file mode 100644 index 0000000000000000000000000000000000000000..5440584d25f28fb592119227e2d3f355d3c7468b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/image_processing_mask2former.py @@ -0,0 +1,1253 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for Mask2Former.""" + +import math +import warnings +from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + PaddingMode, + get_resize_output_image_size, + pad, + rescale, + resize, + to_channel_dimension_format, +) +from ...image_utils import ( + ChannelDimension, + ImageInput, + PILImageResampling, + get_image_size, + infer_channel_dimension_format, + is_batched, + is_scaled_image, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + TensorType, + is_torch_available, + is_torch_tensor, + logging, +) + + +logger = logging.get_logger(__name__) + + +if is_torch_available(): + import torch + from torch import nn + + +# Copied from transformers.models.detr.image_processing_detr.max_across_indices +def max_across_indices(values: Iterable[Any]) -> List[Any]: + """ + Return the maximum value across all indices of an iterable of values. + """ + return [max(values_i) for values_i in zip(*values)] + + +# Copied from transformers.models.detr.image_processing_detr.get_max_height_width +def get_max_height_width( + images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> List[int]: + """ + Get the maximum height and width across all images in a batch. + """ + if input_data_format is None: + input_data_format = infer_channel_dimension_format(images[0]) + + if input_data_format == ChannelDimension.FIRST: + _, max_height, max_width = max_across_indices([img.shape for img in images]) + elif input_data_format == ChannelDimension.LAST: + max_height, max_width, _ = max_across_indices([img.shape for img in images]) + else: + raise ValueError(f"Invalid channel dimension format: {input_data_format}") + return (max_height, max_width) + + +# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask +def make_pixel_mask( + image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> np.ndarray: + """ + Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. + + Args: + image (`np.ndarray`): + Image to make the pixel mask for. + output_size (`Tuple[int, int]`): + Output size of the mask. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + mask = np.zeros(output_size, dtype=np.int64) + mask[:input_height, :input_width] = 1 + return mask + + +# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle +def binary_mask_to_rle(mask): + """ + Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + mask (`torch.Tensor` or `numpy.array`): + A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target + segment_id or class_id. + Returns: + `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE + format. + """ + if is_torch_tensor(mask): + mask = mask.numpy() + + pixels = mask.flatten() + pixels = np.concatenate([[0], pixels, [0]]) + runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 + runs[1::2] -= runs[::2] + return list(runs) + + +# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle +def convert_segmentation_to_rle(segmentation): + """ + Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + segmentation (`torch.Tensor` or `numpy.array`): + A segmentation map of shape `(height, width)` where each value denotes a segment or class id. + Returns: + `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. + """ + segment_ids = torch.unique(segmentation) + + run_length_encodings = [] + for idx in segment_ids: + mask = torch.where(segmentation == idx, 1, 0) + rle = binary_mask_to_rle(mask) + run_length_encodings.append(rle) + + return run_length_encodings + + +# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects +def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): + """ + Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and + `labels`. + + Args: + masks (`torch.Tensor`): + A tensor of shape `(num_queries, height, width)`. + scores (`torch.Tensor`): + A tensor of shape `(num_queries)`. + labels (`torch.Tensor`): + A tensor of shape `(num_queries)`. + object_mask_threshold (`float`): + A number between 0 and 1 used to binarize the masks. + Raises: + `ValueError`: Raised when the first dimension doesn't match in all input tensors. + Returns: + `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region + < `object_mask_threshold`. + """ + if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): + raise ValueError("mask, scores and labels must have the same shape!") + + to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) + + return masks[to_keep], scores[to_keep], labels[to_keep] + + +# Copied from transformers.models.detr.image_processing_detr.check_segment_validity +def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): + # Get the mask associated with the k class + mask_k = mask_labels == k + mask_k_area = mask_k.sum() + + # Compute the area of all the stuff in query k + original_area = (mask_probs[k] >= mask_threshold).sum() + mask_exists = mask_k_area > 0 and original_area > 0 + + # Eliminate disconnected tiny segments + if mask_exists: + area_ratio = mask_k_area / original_area + if not area_ratio.item() > overlap_mask_area_threshold: + mask_exists = False + + return mask_exists, mask_k + + +# Copied from transformers.models.detr.image_processing_detr.compute_segments +def compute_segments( + mask_probs, + pred_scores, + pred_labels, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + label_ids_to_fuse: Optional[Set[int]] = None, + target_size: Tuple[int, int] = None, +): + height = mask_probs.shape[1] if target_size is None else target_size[0] + width = mask_probs.shape[2] if target_size is None else target_size[1] + + segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) + segments: List[Dict] = [] + + if target_size is not None: + mask_probs = nn.functional.interpolate( + mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False + )[0] + + current_segment_id = 0 + + # Weigh each mask by its prediction score + mask_probs *= pred_scores.view(-1, 1, 1) + mask_labels = mask_probs.argmax(0) # [height, width] + + # Keep track of instances of each class + stuff_memory_list: Dict[str, int] = {} + for k in range(pred_labels.shape[0]): + pred_class = pred_labels[k].item() + should_fuse = pred_class in label_ids_to_fuse + + # Check if mask exists and large enough to be a segment + mask_exists, mask_k = check_segment_validity( + mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold + ) + + if mask_exists: + if pred_class in stuff_memory_list: + current_segment_id = stuff_memory_list[pred_class] + else: + current_segment_id += 1 + + # Add current object segment to final segmentation map + segmentation[mask_k] = current_segment_id + segment_score = round(pred_scores[k].item(), 6) + segments.append( + { + "id": current_segment_id, + "label_id": pred_class, + "was_fused": should_fuse, + "score": segment_score, + } + ) + if should_fuse: + stuff_memory_list[pred_class] = current_segment_id + + return segmentation, segments + + +# TODO: (Amy) Move to image_transforms +# Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks +def convert_segmentation_map_to_binary_masks( + segmentation_map: "np.ndarray", + instance_id_to_semantic_id: Optional[Dict[int, int]] = None, + ignore_index: Optional[int] = None, + reduce_labels: bool = False, +): + if reduce_labels and ignore_index is None: + raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.") + + if reduce_labels: + segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) + + # Get unique ids (class or instance ids based on input) + all_labels = np.unique(segmentation_map) + + # Drop background label if applicable + if ignore_index is not None: + all_labels = all_labels[all_labels != ignore_index] + + # Generate a binary mask for each object instance + binary_masks = [(segmentation_map == i) for i in all_labels] + binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width) + + # Convert instance ids to class ids + if instance_id_to_semantic_id is not None: + labels = np.zeros(all_labels.shape[0]) + + for label in all_labels: + class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label] + labels[all_labels == label] = class_id - 1 if reduce_labels else class_id + else: + labels = all_labels + + return binary_masks.astype(np.float32), labels.astype(np.int64) + + +# Copied from transformers.models.maskformer.image_processing_maskformer.get_maskformer_resize_output_image_size with maskformer->mask2former +def get_mask2former_resize_output_image_size( + image: np.ndarray, + size: Union[int, Tuple[int, int], List[int], Tuple[int]], + max_size: Optional[int] = None, + size_divisor: int = 0, + default_to_square: bool = True, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +) -> Tuple[int, int]: + """ + Computes the output size given the desired size. + + Args: + image (`np.ndarray`): + The input image. + size (`int` or `Tuple[int, int]` or `List[int]` or `Tuple[int]`): + The size of the output image. + max_size (`int`, *optional*): + The maximum size of the output image. + size_divisor (`int`, *optional*, defaults to 0): + If `size_divisor` is given, the output image size will be divisible by the number. + default_to_square (`bool`, *optional*, defaults to `True`): + Whether to default to square if no size is provided. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If unset, will use the inferred format from the input. + + Returns: + `Tuple[int, int]`: The output size. + """ + output_size = get_resize_output_image_size( + input_image=image, + size=size, + default_to_square=default_to_square, + max_size=max_size, + input_data_format=input_data_format, + ) + + if size_divisor > 0: + height, width = output_size + height = int(math.ceil(height / size_divisor) * size_divisor) + width = int(math.ceil(width / size_divisor) * size_divisor) + output_size = (height, width) + + return output_size + + +class Mask2FormerImageProcessor(BaseImageProcessor): + r""" + Constructs a Mask2Former image processor. The image processor can be used to prepare image(s) and optional targets + for the model. + + This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the input to a certain `size`. + size (`int`, *optional*, defaults to 800): + Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a + sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of + the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * + height / width, size)`. + size_divisor (`int`, *optional*, defaults to 32): + Some backbones need images divisible by a certain number. If not passed, it defaults to the value used in + Swin Transformer. + resample (`int`, *optional*, defaults to `Resampling.BILINEAR`): + An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, + `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, + `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set + to `True`. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the input to a certain `scale`. + rescale_factor (`float`, *optional*, defaults to `1/ 255`): + Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether or not to normalize the input with mean and standard deviation. + image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): + The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. + image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): + The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the + ImageNet std. + ignore_index (`int`, *optional*): + Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels + denoted with 0 (background) will be replaced with `ignore_index`. + reduce_labels (`bool`, *optional*, defaults to `False`): + Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 + is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). + The background label will be replaced by `ignore_index`. + + """ + + model_input_names = ["pixel_values", "pixel_mask"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + size_divisor: int = 32, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_rescale: bool = True, + rescale_factor: float = 1 / 255, + do_normalize: bool = True, + image_mean: Union[float, List[float]] = None, + image_std: Union[float, List[float]] = None, + ignore_index: Optional[int] = None, + reduce_labels: bool = False, + **kwargs, + ): + if "size_divisibility" in kwargs: + warnings.warn( + "The `size_divisibility` argument is deprecated and will be removed in v4.27. Please use " + "`size_divisor` instead.", + FutureWarning, + ) + size_divisor = kwargs.pop("size_divisibility") + if "max_size" in kwargs: + warnings.warn( + "The `max_size` argument is deprecated and will be removed in v4.27. Please use size['longest_edge']" + " instead.", + FutureWarning, + ) + # We make max_size a private attribute so we can pass it as a default value in the preprocess method whilst + # `size` can still be pass in as an int + self._max_size = kwargs.pop("max_size") + else: + self._max_size = 1333 + + size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} + size = get_size_dict(size, max_size=self._max_size, default_to_square=False) + + super().__init__(**kwargs) + self.do_resize = do_resize + self.size = size + self.resample = resample + self.size_divisor = size_divisor + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self.ignore_index = ignore_index + self.reduce_labels = reduce_labels + self._valid_processor_keys = [ + "images", + "segmentation_maps", + "instance_id_to_semantic_id", + "do_resize", + "size", + "size_divisor", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "ignore_index", + "reduce_labels", + "return_tensors", + "data_format", + "input_data_format", + ] + + @classmethod + def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): + """ + Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is + created using from_dict and kwargs e.g. `Mask2FormerImageProcessor.from_pretrained(checkpoint, max_size=800)` + """ + image_processor_dict = image_processor_dict.copy() + if "max_size" in kwargs: + image_processor_dict["max_size"] = kwargs.pop("max_size") + if "size_divisibility" in kwargs: + image_processor_dict["size_divisibility"] = kwargs.pop("size_divisibility") + return super().from_dict(image_processor_dict, **kwargs) + + # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.resize with get_maskformer_resize_output_image_size->get_mask2former_resize_output_image_size + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + size_divisor: int = 0, + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format=None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an + int, smaller edge of the image will be matched to this number. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + The size of the output image. + size_divisor (`int`, *optional*, defaults to 0): + If `size_divisor` is given, the output image size will be divisible by the number. + resample (`PILImageResampling` resampling filter, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use when resizing the image. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + if "max_size" in kwargs: + warnings.warn( + "The `max_size` parameter is deprecated and will be removed in v4.27. " + "Please specify in `size['longest_edge'] instead`.", + FutureWarning, + ) + max_size = kwargs.pop("max_size") + else: + max_size = None + size = get_size_dict(size, max_size=max_size, default_to_square=False) + if "shortest_edge" in size and "longest_edge" in size: + size, max_size = size["shortest_edge"], size["longest_edge"] + elif "height" in size and "width" in size: + size = (size["height"], size["width"]) + max_size = None + else: + raise ValueError( + "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" + f" {size.keys()}." + ) + size = get_mask2former_resize_output_image_size( + image=image, + size=size, + max_size=max_size, + size_divisor=size_divisor, + default_to_square=False, + input_data_format=input_data_format, + ) + image = resize( + image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs + ) + return image + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale + def rescale( + self, + image: np.ndarray, + rescale_factor: float, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """ + Rescale the image by the given factor. image = image * rescale_factor. + + Args: + image (`np.ndarray`): + Image to rescale. + rescale_factor (`float`): + The value to use for rescaling. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the input image. If unset, is inferred from the input image. Can be + one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + """ + return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) + + # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks + def convert_segmentation_map_to_binary_masks( + self, + segmentation_map: "np.ndarray", + instance_id_to_semantic_id: Optional[Dict[int, int]] = None, + ignore_index: Optional[int] = None, + reduce_labels: bool = False, + ): + reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels + ignore_index = ignore_index if ignore_index is not None else self.ignore_index + return convert_segmentation_map_to_binary_masks( + segmentation_map=segmentation_map, + instance_id_to_semantic_id=instance_id_to_semantic_id, + ignore_index=ignore_index, + reduce_labels=reduce_labels, + ) + + def __call__(self, images, segmentation_maps=None, **kwargs) -> BatchFeature: + return self.preprocess(images, segmentation_maps=segmentation_maps, **kwargs) + + def _preprocess( + self, + image: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + size_divisor: int = None, + resample: PILImageResampling = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + if do_resize: + image = self.resize( + image, size=size, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format + ) + if do_rescale: + image = self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format) + if do_normalize: + image = self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format) + return image + + def _preprocess_image( + self, + image: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + size_divisor: int = None, + resample: PILImageResampling = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """Preprocesses a single image.""" + # All transformations expect numpy arrays. + image = to_numpy_array(image) + if is_scaled_image(image) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + if input_data_format is None: + input_data_format = infer_channel_dimension_format(image) + image = self._preprocess( + image=image, + do_resize=do_resize, + size=size, + size_divisor=size_divisor, + resample=resample, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + input_data_format=input_data_format, + ) + if data_format is not None: + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + return image + + def _preprocess_mask( + self, + segmentation_map: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + size_divisor: int = 0, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """Preprocesses a single mask.""" + segmentation_map = to_numpy_array(segmentation_map) + # Add channel dimension if missing - needed for certain transformations + if segmentation_map.ndim == 2: + added_channel_dim = True + segmentation_map = segmentation_map[None, ...] + input_data_format = ChannelDimension.FIRST + else: + added_channel_dim = False + if input_data_format is None: + input_data_format = infer_channel_dimension_format(segmentation_map) + # TODO: (Amy) + # Remork segmentation map processing to include reducing labels and resizing which doesn't + # drop segment IDs > 255. + segmentation_map = self._preprocess( + image=segmentation_map, + do_resize=do_resize, + resample=PILImageResampling.NEAREST, + size=size, + size_divisor=size_divisor, + do_rescale=False, + do_normalize=False, + input_data_format=input_data_format, + ) + # Remove extra channel dimension if added for processing + if added_channel_dim: + segmentation_map = segmentation_map.squeeze(0) + return segmentation_map + + def preprocess( + self, + images: ImageInput, + segmentation_maps: Optional[ImageInput] = None, + instance_id_to_semantic_id: Optional[Dict[int, int]] = None, + do_resize: Optional[bool] = None, + size: Optional[Dict[str, int]] = None, + size_divisor: Optional[int] = None, + resample: PILImageResampling = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + ignore_index: Optional[int] = None, + reduce_labels: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> BatchFeature: + if "pad_and_return_pixel_mask" in kwargs: + warnings.warn( + "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version", + FutureWarning, + ) + + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False, max_size=self._max_size) + size_divisor = size_divisor if size_divisor is not None else self.size_divisor + resample = resample if resample is not None else self.resample + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + ignore_index = ignore_index if ignore_index is not None else self.ignore_index + reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_resize=do_resize, + size=size, + resample=resample, + ) + + if segmentation_maps is not None and not valid_images(segmentation_maps): + raise ValueError( + "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + if not is_batched(images): + images = [images] + segmentation_maps = [segmentation_maps] if segmentation_maps is not None else None + + if segmentation_maps is not None and len(images) != len(segmentation_maps): + raise ValueError("Images and segmentation maps must have the same length.") + + images = [ + self._preprocess_image( + image, + do_resize=do_resize, + size=size, + size_divisor=size_divisor, + resample=resample, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + data_format=data_format, + input_data_format=input_data_format, + ) + for image in images + ] + + if segmentation_maps is not None: + segmentation_maps = [ + self._preprocess_mask( + segmentation_map, do_resize, size, size_divisor, input_data_format=input_data_format + ) + for segmentation_map in segmentation_maps + ] + encoded_inputs = self.encode_inputs( + images, + segmentation_maps, + instance_id_to_semantic_id, + ignore_index, + reduce_labels, + return_tensors, + input_data_format=input_data_format, + ) + return encoded_inputs + + # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor._pad_image + def _pad_image( + self, + image: np.ndarray, + output_size: Tuple[int, int], + constant_values: Union[float, Iterable[float]] = 0, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """ + Pad an image with zeros to the given size. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + output_height, output_width = output_size + + pad_bottom = output_height - input_height + pad_right = output_width - input_width + padding = ((0, pad_bottom), (0, pad_right)) + padded_image = pad( + image, + padding, + mode=PaddingMode.CONSTANT, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + ) + return padded_image + + # Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.pad + def pad( + self, + images: List[np.ndarray], + constant_values: Union[float, Iterable[float]] = 0, + return_pixel_mask: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> BatchFeature: + """ + Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width + in the batch and optionally returns their corresponding pixel mask. + + Args: + image (`np.ndarray`): + Image to pad. + constant_values (`float` or `Iterable[float]`, *optional*): + The value to use for the padding if `mode` is `"constant"`. + return_pixel_mask (`bool`, *optional*, defaults to `True`): + Whether to return a pixel mask. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + pad_size = get_max_height_width(images, input_data_format=input_data_format) + + padded_images = [ + self._pad_image( + image, + pad_size, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + ) + for image in images + ] + data = {"pixel_values": padded_images} + + if return_pixel_mask: + masks = [ + make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) + for image in images + ] + data["pixel_mask"] = masks + + return BatchFeature(data=data, tensor_type=return_tensors) + + def encode_inputs( + self, + pixel_values_list: List[ImageInput], + segmentation_maps: ImageInput = None, + instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, + ignore_index: Optional[int] = None, + reduce_labels: bool = False, + return_tensors: Optional[Union[str, TensorType]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """ + Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. + + Mask2Former addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps + will be converted to lists of binary masks and their respective labels. Let's see an example, assuming + `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = + [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for + each mask. + + Args: + pixel_values_list (`List[ImageInput]`): + List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, + width)`. + + segmentation_maps (`ImageInput`, *optional*): + The corresponding semantic segmentation maps with the pixel-wise annotations. + + (`bool`, *optional*, defaults to `True`): + Whether or not to pad images up to the largest image in a batch and create a pixel mask. + + If left to the default, will return a pixel mask that is: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): + A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an + instance segmentation map where each pixel represents an instance id. Can be provided as a single + dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map + instance ids in each image separately. + + return_tensors (`str` or [`~file_utils.TensorType`], *optional*): + If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` + objects. + + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + + Returns: + [`BatchFeature`]: A [`BatchFeature`] with the following fields: + + - **pixel_values** -- Pixel values to be fed to a model. + - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in + `self.model_input_names`). + - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model + (when `annotations` are provided). + - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when + `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of + `mask_labels[i][j]` if `class_labels[i][j]`. + """ + ignore_index = self.ignore_index if ignore_index is None else ignore_index + reduce_labels = self.reduce_labels if reduce_labels is None else reduce_labels + + pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] + + if input_data_format is None: + input_data_format = infer_channel_dimension_format(pixel_values_list[0]) + + encoded_inputs = self.pad( + pixel_values_list, return_tensors=return_tensors, input_data_format=input_data_format + ) + + if segmentation_maps is not None: + mask_labels = [] + class_labels = [] + pad_size = get_max_height_width(pixel_values_list) + # Convert to list of binary masks and labels + for idx, segmentation_map in enumerate(segmentation_maps): + segmentation_map = to_numpy_array(segmentation_map) + if isinstance(instance_id_to_semantic_id, list): + instance_id = instance_id_to_semantic_id[idx] + else: + instance_id = instance_id_to_semantic_id + # Use instance2class_id mapping per image + masks, classes = self.convert_segmentation_map_to_binary_masks( + segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels + ) + # We add an axis to make them compatible with the transformations library + # this will be removed in the future + masks = [mask[None, ...] for mask in masks] + masks = [ + self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks + ] + masks = np.concatenate(masks, axis=0) + mask_labels.append(torch.from_numpy(masks)) + class_labels.append(torch.from_numpy(classes)) + + # we cannot batch them since they don't share a common class size + encoded_inputs["mask_labels"] = mask_labels + encoded_inputs["class_labels"] = class_labels + + return encoded_inputs + + def post_process_semantic_segmentation( + self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None + ) -> "torch.Tensor": + """ + Converts the output of [`Mask2FormerForUniversalSegmentation`] into semantic segmentation maps. Only supports + PyTorch. + + Args: + outputs ([`Mask2FormerForUniversalSegmentation`]): + Raw outputs of the model. + target_sizes (`List[Tuple[int, int]]`, *optional*): + List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested + final size (height, width) of each prediction. If left to None, predictions will not be resized. + Returns: + `List[torch.Tensor]`: + A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) + corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each + `torch.Tensor` correspond to a semantic class id. + """ + class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] + masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] + + # Scale back to preprocessed image size - (384, 384) for all models + masks_queries_logits = torch.nn.functional.interpolate( + masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False + ) + + # Remove the null class `[..., :-1]` + masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] + masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] + + # Semantic segmentation logits of shape (batch_size, num_classes, height, width) + segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) + batch_size = class_queries_logits.shape[0] + + # Resize logits and compute semantic segmentation maps + if target_sizes is not None: + if batch_size != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + semantic_segmentation = [] + for idx in range(batch_size): + resized_logits = torch.nn.functional.interpolate( + segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False + ) + semantic_map = resized_logits[0].argmax(dim=0) + semantic_segmentation.append(semantic_map) + else: + semantic_segmentation = segmentation.argmax(dim=1) + semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] + + return semantic_segmentation + + def post_process_instance_segmentation( + self, + outputs, + threshold: float = 0.5, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + target_sizes: Optional[List[Tuple[int, int]]] = None, + return_coco_annotation: Optional[bool] = False, + return_binary_maps: Optional[bool] = False, + ) -> List[Dict]: + """ + Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into instance segmentation predictions. + Only supports PyTorch. + + Args: + outputs ([`Mask2FormerForUniversalSegmentation`]): + Raw outputs of the model. + threshold (`float`, *optional*, defaults to 0.5): + The probability score threshold to keep predicted instance masks. + mask_threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): + The overlap mask area threshold to merge or discard small disconnected parts within each binary + instance mask. + target_sizes (`List[Tuple]`, *optional*): + List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested + final size (height, width) of each prediction. If left to None, predictions will not be resized. + return_coco_annotation (`bool`, *optional*, defaults to `False`): + If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. + return_binary_maps (`bool`, *optional*, defaults to `False`): + If set to `True`, segmentation maps are returned as a concatenated tensor of binary segmentation maps + (one per detected instance). + Returns: + `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: + - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or + `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to + `True`. Set to `None` if no mask if found above `threshold`. + - **segments_info** -- A dictionary that contains additional information on each segment. + - **id** -- An integer representing the `segment_id`. + - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. + - **score** -- Prediction score of segment with `segment_id`. + """ + if return_coco_annotation and return_binary_maps: + raise ValueError("return_coco_annotation and return_binary_maps can not be both set to True.") + + # [batch_size, num_queries, num_classes+1] + class_queries_logits = outputs.class_queries_logits + # [batch_size, num_queries, height, width] + masks_queries_logits = outputs.masks_queries_logits + + # Scale back to preprocessed image size - (384, 384) for all models + masks_queries_logits = torch.nn.functional.interpolate( + masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False + ) + + device = masks_queries_logits.device + num_classes = class_queries_logits.shape[-1] - 1 + num_queries = class_queries_logits.shape[-2] + + # Loop over items in batch size + results: List[Dict[str, TensorType]] = [] + + for i in range(class_queries_logits.shape[0]): + mask_pred = masks_queries_logits[i] + mask_cls = class_queries_logits[i] + + scores = torch.nn.functional.softmax(mask_cls, dim=-1)[:, :-1] + labels = torch.arange(num_classes, device=device).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) + + scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) + labels_per_image = labels[topk_indices] + + topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") + mask_pred = mask_pred[topk_indices] + pred_masks = (mask_pred > 0).float() + + # Calculate average mask prob + mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * pred_masks.flatten(1)).sum(1) / ( + pred_masks.flatten(1).sum(1) + 1e-6 + ) + pred_scores = scores_per_image * mask_scores_per_image + pred_classes = labels_per_image + + segmentation = torch.zeros((384, 384)) - 1 + if target_sizes is not None: + segmentation = torch.zeros(target_sizes[i]) - 1 + pred_masks = torch.nn.functional.interpolate( + pred_masks.unsqueeze(0), size=target_sizes[i], mode="nearest" + )[0] + + instance_maps, segments = [], [] + current_segment_id = 0 + for j in range(num_queries): + score = pred_scores[j].item() + + if not torch.all(pred_masks[j] == 0) and score >= threshold: + segmentation[pred_masks[j] == 1] = current_segment_id + segments.append( + { + "id": current_segment_id, + "label_id": pred_classes[j].item(), + "was_fused": False, + "score": round(score, 6), + } + ) + current_segment_id += 1 + instance_maps.append(pred_masks[j]) + + # Return segmentation map in run-length encoding (RLE) format + if return_coco_annotation: + segmentation = convert_segmentation_to_rle(segmentation) + + # Return a concatenated tensor of binary instance maps + if return_binary_maps and len(instance_maps) != 0: + segmentation = torch.stack(instance_maps, dim=0) + + results.append({"segmentation": segmentation, "segments_info": segments}) + return results + + def post_process_panoptic_segmentation( + self, + outputs, + threshold: float = 0.5, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + label_ids_to_fuse: Optional[Set[int]] = None, + target_sizes: Optional[List[Tuple[int, int]]] = None, + ) -> List[Dict]: + """ + Converts the output of [`Mask2FormerForUniversalSegmentationOutput`] into image panoptic segmentation + predictions. Only supports PyTorch. + + Args: + outputs ([`Mask2FormerForUniversalSegmentationOutput`]): + The outputs from [`Mask2FormerForUniversalSegmentation`]. + threshold (`float`, *optional*, defaults to 0.5): + The probability score threshold to keep predicted instance masks. + mask_threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): + The overlap mask area threshold to merge or discard small disconnected parts within each binary + instance mask. + label_ids_to_fuse (`Set[int]`, *optional*): + The labels in this state will have all their instances be fused together. For instance we could say + there can only be one sky in an image, but several persons, so the label ID for sky would be in that + set, but not the one for person. + target_sizes (`List[Tuple]`, *optional*): + List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested + final size (height, width) of each prediction in batch. If left to None, predictions will not be + resized. + + Returns: + `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: + - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set + to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized + to the corresponding `target_sizes` entry. + - **segments_info** -- A dictionary that contains additional information on each segment. + - **id** -- an integer representing the `segment_id`. + - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. + - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. + Multiple instances of the same class / label were fused and assigned a single `segment_id`. + - **score** -- Prediction score of segment with `segment_id`. + """ + + if label_ids_to_fuse is None: + logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") + label_ids_to_fuse = set() + + class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] + masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] + + # Scale back to preprocessed image size - (384, 384) for all models + masks_queries_logits = torch.nn.functional.interpolate( + masks_queries_logits, size=(384, 384), mode="bilinear", align_corners=False + ) + + batch_size = class_queries_logits.shape[0] + num_labels = class_queries_logits.shape[-1] - 1 + + mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] + + # Predicted label and score of each query (batch_size, num_queries) + pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) + + # Loop over items in batch size + results: List[Dict[str, TensorType]] = [] + + for i in range(batch_size): + mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( + mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels + ) + + # No mask found + if mask_probs_item.shape[0] <= 0: + height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] + segmentation = torch.zeros((height, width)) - 1 + results.append({"segmentation": segmentation, "segments_info": []}) + continue + + # Get segmentation map and segment information of batch item + target_size = target_sizes[i] if target_sizes is not None else None + segmentation, segments = compute_segments( + mask_probs=mask_probs_item, + pred_scores=pred_scores_item, + pred_labels=pred_labels_item, + mask_threshold=mask_threshold, + overlap_mask_area_threshold=overlap_mask_area_threshold, + label_ids_to_fuse=label_ids_to_fuse, + target_size=target_size, + ) + + results.append({"segmentation": segmentation, "segments_info": segments}) + return results diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/modeling_mask2former.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/modeling_mask2former.py new file mode 100644 index 0000000000000000000000000000000000000000..3a9a74345363a6fb6e23e12f21c49b043fc484af --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mask2former/modeling_mask2former.py @@ -0,0 +1,2563 @@ +# coding=utf-8 +# Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Mask2Former model.""" + +import math +import warnings +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple + +import numpy as np +import torch +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...file_utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_scipy_available, + replace_return_docstrings, + requires_backends, +) +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import is_torch_greater_or_equal_than_2_1 +from ...utils import is_accelerate_available, logging +from ...utils.backbone_utils import load_backbone +from .configuration_mask2former import Mask2FormerConfig + + +if is_scipy_available(): + from scipy.optimize import linear_sum_assignment + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import reduce + +logger = logging.get_logger(__name__) + + +_CONFIG_FOR_DOC = "Mask2FormerConfig" +_CHECKPOINT_FOR_DOC = "facebook/mask2former-swin-small-coco-instance" +_IMAGE_PROCESSOR_FOR_DOC = "Mask2FormerImageProcessor" + + +from ..deprecated._archive_maps import MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class Mask2FormerPixelDecoderOutput(ModelOutput): + """ + Mask2Former's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns + the mask features and the multiscale features. + + Args: + multi_scale_features (`tuple(torch.FloatTensor)`): + Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height, + width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder. + mask_features (`torch.FloatTensor`): + Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder + Layer. + attentions (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed + or when `config.output_attentions=True` + """ + + multi_scale_features: Tuple[torch.FloatTensor] = None + mask_features: torch.FloatTensor = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class Mask2FormerMaskedAttentionDecoderOutput(BaseModelOutputWithCrossAttentions): + """ + Base class for outputs of the Transformer decoder. This class adds two attributes to + BaseModelOutputWithCrossAttentions for mask predictions logits and a tuple of intermediate decoder activations, + i.e. the output of each decoder layer, each of them gone through a layernorm. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. Returned when `output_hidden_states=True`. + attentions (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. Returned when `output_attentions=True`. + masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`): + Tuple of mask predictions from all layers of the transformer decoder. + intermediate_hidden_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[torch.FloatTensor] = None + masks_queries_logits: Tuple[torch.FloatTensor] = None + intermediate_hidden_states: Tuple[torch.FloatTensor] = None + + +@dataclass +class Mask2FormerPixelLevelModuleOutput(ModelOutput): + """ + Mask2Former's pixel level module output. It returns the output of the encoder (optional) and all hidden states + (multi-scale features) from the `decoder`. By default, the `encoder` is a Swin Backbone and the `decoder` is a + Multi-Scale Deformable Attention based decoder. + + The `decoder_last_hidden_state` are the **per-pixel embeddings** while `decoder_hidden_states` refer to multi-scale + feature maps produced using **multi-scaling strategy** defined in the paper. + + Args: + encoder_last_hidden_state (`torch.FloatTensor`): + Last hidden states (final feature map of shape `(batch_size, num_channels, height, width)`) of the last + stage of the encoder. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also + called feature maps) of the model at the output of each stage. Returned if output_hidden_states is set to + True. + decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)): + 1/4 scale features from the last Pixel Decoder Layer. + decoder_hidden_states (`tuple(torch.FloatTensor)`): + Tuple of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden states (also + called feature maps) of the model at the output of each stage. + """ + + encoder_last_hidden_state: torch.FloatTensor = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_last_hidden_state: torch.FloatTensor = None + decoder_hidden_states: Tuple[torch.FloatTensor] = None + + +@dataclass +class Mask2FormerModelOutput(ModelOutput): + """ + Class for outputs of [`Mask2FormerModel`]. This class returns all the needed hidden states to compute the logits. + + Args: + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*): + Last hidden states (final feature map) of the last stage of the encoder model (backbone). Returned when + `output_hidden_states=True` is passed. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder + model at the output of each stage. Returned when `output_hidden_states=True` is passed. + pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, *optional*): + Last hidden states (final feature map) of the last stage of the pixel decoder model. + pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, , *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel + decoder model at the output of each stage. Returned when `output_hidden_states=True` is passed. + transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`): + Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`. + transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the + transformer decoder at the output of each stage. Returned when `output_hidden_states=True` is passed. + transformer_decoder_intermediate_states (`tuple(torch.FloatTensor)` of shape `(num_queries, 1, hidden_size)`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + masks_queries_logits (`tuple(torch.FloatTensor)` of shape `(batch_size, num_queries, height, width)`) + Mask Predictions from each layer in the transformer decoder. + attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed): + Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Self attentions weights from transformer decoder. + """ + + encoder_last_hidden_state: torch.FloatTensor = None + pixel_decoder_last_hidden_state: torch.FloatTensor = None + transformer_decoder_last_hidden_state: torch.FloatTensor = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + transformer_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + transformer_decoder_intermediate_states: Tuple[torch.FloatTensor] = None + masks_queries_logits: Tuple[torch.FloatTensor] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class Mask2FormerForUniversalSegmentationOutput(ModelOutput): + """ + Class for outputs of [`Mask2FormerForUniversalSegmentationOutput`]. + + This output can be directly passed to [`~Mask2FormerImageProcessor.post_process_semantic_segmentation`] or + [`~Mask2FormerImageProcessor.post_process_instance_segmentation`] or + [`~Mask2FormerImageProcessor.post_process_panoptic_segmentation`] to compute final segmentation maps. Please, see + [`~Mask2FormerImageProcessor] for details regarding usage. + + Args: + loss (`torch.Tensor`, *optional*): + The computed loss, returned when labels are present. + class_queries_logits (`torch.FloatTensor`): + A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each + query. Note the `+ 1` is needed because we incorporate the null class. + masks_queries_logits (`torch.FloatTensor`): + A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each + query. + auxiliary_logits (`List[Dict(str, torch.FloatTensor)]`, *optional*): + List of class and mask predictions from each layer of the transformer decoder. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Last hidden states (final feature map) of the last stage of the encoder model (backbone). + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder + model at the output of each stage. + pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Last hidden states (final feature map) of the last stage of the pixel decoder model. + pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel + decoder model at the output of each stage. + transformer_decoder_last_hidden_state (`tuple(torch.FloatTensor)`): + Final output of the transformer decoder `(batch_size, sequence_length, hidden_size)`. + transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the + transformer decoder at the output of each stage. + attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Self and Cross Attentions weights from transformer decoder. + """ + + loss: Optional[torch.FloatTensor] = None + class_queries_logits: torch.FloatTensor = None + masks_queries_logits: torch.FloatTensor = None + auxiliary_logits: Optional[List[Dict[str, torch.FloatTensor]]] = None + encoder_last_hidden_state: torch.FloatTensor = None + pixel_decoder_last_hidden_state: torch.FloatTensor = None + transformer_decoder_last_hidden_state: torch.FloatTensor = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# Adapted from https://github.com/facebookresearch/detectron2/blob/main/projects/PointRend/point_rend/point_features.py +def sample_point( + input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs +) -> torch.Tensor: + """ + A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors. + + Args: + input_features (`torch.Tensor` of shape (batch_size, channels, height, width)): + A tensor that contains features map on a height * width grid + point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,: + 2)): + A tensor that contains [0, 1] * [0, 1] normalized point coordinates + add_dim (`bool`): + boolean value to keep track of added dimension + + Returns: + point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels, + height_grid, width_grid): + A tensor that contains features for points in `point_coordinates`. + """ + if point_coordinates.dim() == 3: + add_dim = True + point_coordinates = point_coordinates.unsqueeze(2) + + # use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation + point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs) + if add_dim: + point_features = point_features.squeeze(3) + + return point_features + + +# Copied from transformers.models.maskformer.modeling_maskformer.dice_loss +def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor: + r""" + Compute the DICE loss, similar to generalized IOU for masks as follows: + + $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$ + + In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow + + $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$ + + Args: + inputs (`torch.Tensor`): + A tensor representing a mask. + labels (`torch.Tensor`): + A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs + (0 for the negative class and 1 for the positive class). + num_masks (`int`): + The number of masks present in the current batch, used for normalization. + + Returns: + `torch.Tensor`: The computed loss. + """ + probs = inputs.sigmoid().flatten(1) + numerator = 2 * (probs * labels).sum(-1) + denominator = probs.sum(-1) + labels.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + loss = loss.sum() / num_masks + return loss + + +def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor: + r""" + Args: + inputs (`torch.Tensor`): + A float tensor of arbitrary shape. + labels (`torch.Tensor`): + A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs + (0 for the negative class and 1 for the positive class). + + Returns: + loss (`torch.Tensor`): The computed loss. + """ + criterion = nn.BCEWithLogitsLoss(reduction="none") + cross_entropy_loss = criterion(inputs, labels) + + loss = cross_entropy_loss.mean(1).sum() / num_masks + return loss + + +# Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss +def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor: + """ + A pair wise version of the dice loss, see `dice_loss` for usage. + + Args: + inputs (`torch.Tensor`): + A tensor representing a mask + labels (`torch.Tensor`): + A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs + (0 for the negative class and 1 for the positive class). + + Returns: + `torch.Tensor`: The computed loss between each pairs. + """ + inputs = inputs.sigmoid().flatten(1) + numerator = 2 * torch.matmul(inputs, labels.T) + # using broadcasting to get a [num_queries, NUM_CLASSES] matrix + denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :] + loss = 1 - (numerator + 1) / (denominator + 1) + return loss + + +def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: + r""" + A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage. + + Args: + inputs (`torch.Tensor`): + A tensor representing a mask. + labels (`torch.Tensor`): + A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs + (0 for the negative class and 1 for the positive class). + + Returns: + loss (`torch.Tensor`): The computed loss between each pairs. + """ + + height_and_width = inputs.shape[1] + + criterion = nn.BCEWithLogitsLoss(reduction="none") + cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs)) + cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs)) + + loss_pos = torch.matmul(cross_entropy_loss_pos / height_and_width, labels.T) + loss_neg = torch.matmul(cross_entropy_loss_neg / height_and_width, (1 - labels).T) + loss = loss_pos + loss_neg + return loss + + +# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/matcher.py +class Mask2FormerHungarianMatcher(nn.Module): + """This class computes an assignment between the labels and the predictions of the network. + + For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more + predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are + un-matched (and thus treated as non-objects). + """ + + def __init__( + self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544 + ): + """Creates the matcher + + Params: + cost_class (`float`, *optional*, defaults to 1.0): + Relative weight of the classification error in the matching cost. + cost_mask (`float`, *optional*, defaults to 1.0): + This is the relative weight of the focal loss of the binary mask in the matching cost. + cost_dice (`float`, *optional*, defaults to 1.0): + This is the relative weight of the dice loss of the binary mask in the matching cost. + num_points (`int`, *optional*, defaults to 12544): + No. of points to sample on which the mask loss will be calculated. The same set of K points are + uniformly sampled for all prediction and ground truth masks to construct the cost matrix for bipartite + matching. + """ + super().__init__() + if cost_class == 0 and cost_mask == 0 and cost_dice == 0: + raise ValueError("All costs cant be 0") + + self.num_points = num_points + self.cost_class = cost_class + self.cost_mask = cost_mask + self.cost_dice = cost_dice + + @torch.no_grad() + def forward( + self, + masks_queries_logits: torch.Tensor, + class_queries_logits: torch.Tensor, + mask_labels: torch.Tensor, + class_labels: torch.Tensor, + ) -> List[Tuple[Tensor]]: + """ + Params: + masks_queries_logits (`torch.Tensor`): + A tensor of dim `batch_size, num_queries, num_labels` with the classification logits. + class_queries_logits (`torch.Tensor`): + A tensor of dim `batch_size, num_queries, height, width` with the predicted masks. + class_labels (`torch.Tensor`): + A tensor of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the + target) containing the class labels. + mask_labels (`torch.Tensor`): + A tensor of dim `num_target_boxes, height, width` containing the target masks. + + Returns: + matched_indices (`List[Tuple[Tensor]]`): A list of size batch_size, containing tuples of (index_i, index_j) + where: + - index_i is the indices of the selected predictions (in order) + - index_j is the indices of the corresponding selected labels (in order) + For each batch element, it holds: + len(index_i) = len(index_j) = min(num_queries, num_target_boxes). + """ + indices: List[Tuple[np.array]] = [] + + # iterate through batch size + batch_size = masks_queries_logits.shape[0] + for i in range(batch_size): + pred_probs = class_queries_logits[i].softmax(-1) + pred_mask = masks_queries_logits[i] + + # Compute the classification cost. Contrary to the loss, we don't use the NLL, but approximate it in 1 - proba[target class]. The 1 is a constant that doesn't change the matching, it can be ommitted. + cost_class = -pred_probs[:, class_labels[i]] + target_mask = mask_labels[i].to(pred_mask) + target_mask = target_mask[:, None] + pred_mask = pred_mask[:, None] + + # Sample ground truth and predicted masks + point_coordinates = torch.rand(1, self.num_points, 2, device=pred_mask.device) + + target_coordinates = point_coordinates.repeat(target_mask.shape[0], 1, 1) + target_mask = sample_point(target_mask, target_coordinates, align_corners=False).squeeze(1) + + pred_coordinates = point_coordinates.repeat(pred_mask.shape[0], 1, 1) + pred_mask = sample_point(pred_mask, pred_coordinates, align_corners=False).squeeze(1) + + # compute the cross entropy loss between each mask pairs -> shape (num_queries, num_labels) + cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask) + # Compute the dice loss betwen each mask pairs -> shape (num_queries, num_labels) + cost_dice = pair_wise_dice_loss(pred_mask, target_mask) + # final cost matrix + cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice + # eliminate infinite values in cost_matrix to avoid the error ``ValueError: cost matrix is infeasible`` + cost_matrix = torch.minimum(cost_matrix, torch.tensor(1e10)) + cost_matrix = torch.maximum(cost_matrix, torch.tensor(-1e10)) + # do the assigmented using the hungarian algorithm in scipy + assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu()) + indices.append(assigned_indices) + + # It could be stacked in one tensor + matched_indices = [ + (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices + ] + return matched_indices + + +# Adapted from https://github.com/facebookresearch/Mask2Former/blob/main/mask2former/modeling/criterion.py +class Mask2FormerLoss(nn.Module): + def __init__(self, config: Mask2FormerConfig, weight_dict: Dict[str, float]): + """ + The Mask2Former Loss. The loss is computed very similar to DETR. The process happens in two steps: 1) we + compute hungarian assignment between ground truth masks and the outputs of the model 2) we supervise each pair + of matched ground-truth / prediction (supervise class and mask) + + Args: + config (`Mask2FormerConfig`): + The configuration for Mask2Former model also containing loss calculation specific parameters. + weight_dict (`Dict[str, float]`): + A dictionary of weights to be applied to the different losses. + """ + super().__init__() + requires_backends(self, ["scipy"]) + self.num_labels = config.num_labels + self.weight_dict = weight_dict + + # Weight to apply to the null class + self.eos_coef = config.no_object_weight + empty_weight = torch.ones(self.num_labels + 1) + empty_weight[-1] = self.eos_coef + self.register_buffer("empty_weight", empty_weight) + + # pointwise mask loss parameters + self.num_points = config.train_num_points + self.oversample_ratio = config.oversample_ratio + self.importance_sample_ratio = config.importance_sample_ratio + + self.matcher = Mask2FormerHungarianMatcher( + cost_class=1.0, + cost_dice=config.dice_weight, + cost_mask=config.mask_weight, + num_points=self.num_points, + ) + + def _max_by_axis(self, sizes: List[List[int]]) -> List[int]: + maxes = sizes[0] + for sublist in sizes[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + # Adapted from nested_tensor_from_tensor_list() in original implementation + def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]: + # get the maximum size in the batch + max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors]) + # compute final size + batch_shape = [len(tensors)] + max_size + batch_size, _, height, width = batch_shape + dtype = tensors[0].dtype + device = tensors[0].device + padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device) + padding_masks = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) + # pad the tensors to the size of the biggest one + for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks): + padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor) + padding_mask[: tensor.shape[1], : tensor.shape[2]] = False + + return padded_tensors, padding_masks + + def loss_labels( + self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array] + ) -> Dict[str, Tensor]: + """Compute the losses related to the labels using cross entropy. + + Args: + class_queries_logits (`torch.Tensor`): + A tensor of shape `batch_size, num_queries, num_labels` + class_labels (`List[torch.Tensor]`): + List of class labels of shape `(labels)`. + indices (`Tuple[np.array])`: + The indices computed by the Hungarian matcher. + + Returns: + `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: + - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. + """ + pred_logits = class_queries_logits + batch_size, num_queries, _ = pred_logits.shape + criterion = nn.CrossEntropyLoss(weight=self.empty_weight) + idx = self._get_predictions_permutation_indices(indices) # shape of (batch_size, num_queries) + target_classes_o = torch.cat( + [target[j] for target, (_, j) in zip(class_labels, indices)] + ) # shape of (batch_size, num_queries) + target_classes = torch.full( + (batch_size, num_queries), fill_value=self.num_labels, dtype=torch.int64, device=pred_logits.device + ) + target_classes[idx] = target_classes_o + # Permute target_classes (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries) + pred_logits_transposed = pred_logits.transpose(1, 2) + loss_ce = criterion(pred_logits_transposed, target_classes) + losses = {"loss_cross_entropy": loss_ce} + return losses + + def loss_masks( + self, + masks_queries_logits: torch.Tensor, + mask_labels: List[torch.Tensor], + indices: Tuple[np.array], + num_masks: int, + ) -> Dict[str, torch.Tensor]: + """Compute the losses related to the masks using sigmoid_cross_entropy_loss and dice loss. + + Args: + masks_queries_logits (`torch.Tensor`): + A tensor of shape `(batch_size, num_queries, height, width)`. + mask_labels (`torch.Tensor`): + List of mask labels of shape `(labels, height, width)`. + indices (`Tuple[np.array])`: + The indices computed by the Hungarian matcher. + num_masks (`int)`: + The number of masks, used for normalization. + + Returns: + losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing two keys: + - **loss_mask** -- The loss computed using sigmoid cross entropy loss on the predicted and ground truth. + masks. + - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth, + masks. + """ + src_idx = self._get_predictions_permutation_indices(indices) + tgt_idx = self._get_targets_permutation_indices(indices) + # shape (batch_size * num_queries, height, width) + pred_masks = masks_queries_logits[src_idx] + # shape (batch_size, num_queries, height, width) + # pad all and stack the targets to the num_labels dimension + target_masks, _ = self._pad_images_to_max_in_batch(mask_labels) + target_masks = target_masks[tgt_idx] + + # No need to upsample predictions as we are using normalized coordinates + pred_masks = pred_masks[:, None] + target_masks = target_masks[:, None] + + # Sample point coordinates + with torch.no_grad(): + point_coordinates = self.sample_points_using_uncertainty( + pred_masks, + lambda logits: self.calculate_uncertainty(logits), + self.num_points, + self.oversample_ratio, + self.importance_sample_ratio, + ) + + point_labels = sample_point(target_masks, point_coordinates, align_corners=False).squeeze(1) + + point_logits = sample_point(pred_masks, point_coordinates, align_corners=False).squeeze(1) + + losses = { + "loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks), + "loss_dice": dice_loss(point_logits, point_labels, num_masks), + } + + del pred_masks + del target_masks + return losses + + def _get_predictions_permutation_indices(self, indices): + # Permute predictions following indices + batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) + predictions_indices = torch.cat([src for (src, _) in indices]) + return batch_indices, predictions_indices + + def _get_targets_permutation_indices(self, indices): + # Permute labels following indices + batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) + target_indices = torch.cat([tgt for (_, tgt) in indices]) + return batch_indices, target_indices + + def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor: + """ + In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits' + for the foreground class in `classes`. + + Args: + logits (`torch.Tensor`): + A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is: + the number of foreground classes. The values are logits. + + Returns: + scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most + uncertain locations having the highest uncertainty score. + """ + uncertainty_scores = -(torch.abs(logits)) + return uncertainty_scores + + def sample_points_using_uncertainty( + self, + logits: torch.Tensor, + uncertainty_function, + num_points: int, + oversample_ratio: int, + importance_sample_ratio: float, + ) -> torch.Tensor: + """ + This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The + uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit + prediction as input. + + Args: + logits (`float`): + Logit predictions for P points. + uncertainty_function: + A function that takes logit predictions for P points and returns their uncertainties. + num_points (`int`): + The number of points P to sample. + oversample_ratio (`int`): + Oversampling parameter. + importance_sample_ratio (`float`): + Ratio of points that are sampled via importance sampling. + + Returns: + point_coordinates (`torch.Tensor`): + Coordinates for P sampled points. + """ + + num_boxes = logits.shape[0] + num_points_sampled = int(num_points * oversample_ratio) + + # Get random point coordinates + point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device) + # Get sampled prediction value for the point coordinates + point_logits = sample_point(logits, point_coordinates, align_corners=False) + # Calculate the uncertainties based on the sampled prediction values of the points + point_uncertainties = uncertainty_function(point_logits) + + num_uncertain_points = int(importance_sample_ratio * num_points) + num_random_points = num_points - num_uncertain_points + + idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] + shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device) + idx += shift[:, None] + point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2) + + if num_random_points > 0: + point_coordinates = torch.cat( + [point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)], + dim=1, + ) + return point_coordinates + + def forward( + self, + masks_queries_logits: torch.Tensor, + class_queries_logits: torch.Tensor, + mask_labels: List[torch.Tensor], + class_labels: List[torch.Tensor], + auxiliary_predictions: Optional[Dict[str, torch.Tensor]] = None, + ) -> Dict[str, torch.Tensor]: + """ + This performs the loss computation. + + Args: + masks_queries_logits (`torch.Tensor`): + A tensor of shape `(batch_size, num_queries, height, width)`. + class_queries_logits (`torch.Tensor`): + A tensor of shape `(batch_size, num_queries, num_labels)`. + mask_labels (`torch.Tensor`): + List of mask labels of shape `(labels, height, width)`. + class_labels (`List[torch.Tensor]`): + List of class labels of shape `(labels)`. + auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*): + if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], then it contains the logits from + the inner layers of the Mask2FormerMaskedAttentionDecoder. + + Returns: + losses (`Dict[str, Tensor]`): A dict of `torch.Tensor` containing three keys: + - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. + - **loss_mask** -- The loss computed using sigmoid cross_entropy loss on the predicted and ground truth + masks. + - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth + masks. + if `use_auxiliary_loss` was set to `true` in [`Mask2FormerConfig`], the dictionary contains additional + losses for each auxiliary predictions. + """ + + # retrieve the matching between the outputs of the last layer and the labels + indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels) + # compute the average number of target masks for normalization purposes + num_masks = self.get_num_masks(class_labels, device=class_labels[0].device) + # get all the losses + losses: Dict[str, Tensor] = { + **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks), + **self.loss_labels(class_queries_logits, class_labels, indices), + } + # in case of auxiliary losses, we repeat this process with the output of each intermediate layer. + if auxiliary_predictions is not None: + for idx, aux_outputs in enumerate(auxiliary_predictions): + masks_queries_logits = aux_outputs["masks_queries_logits"] + class_queries_logits = aux_outputs["class_queries_logits"] + loss_dict = self.forward(masks_queries_logits, class_queries_logits, mask_labels, class_labels) + loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()} + losses.update(loss_dict) + + return losses + + def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor: + """ + Computes the average number of target masks across the batch, for normalization purposes. + """ + num_masks = sum([len(classes) for classes in class_labels]) + num_masks = torch.as_tensor(num_masks, dtype=torch.float, device=device) + world_size = 1 + if is_accelerate_available(): + if PartialState._shared_state != {}: + num_masks = reduce(num_masks) + world_size = PartialState().num_processes + + num_masks = torch.clamp(num_masks / world_size, min=1) + return num_masks + + +# Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention +def multi_scale_deformable_attention( + value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor +) -> Tensor: + batch_size, _, num_heads, hidden_dim = value.shape + _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape + value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1) + sampling_grids = 2 * sampling_locations - 1 + sampling_value_list = [] + for level_id, (height, width) in enumerate(value_spatial_shapes): + # batch_size, height*width, num_heads, hidden_dim + # -> batch_size, height*width, num_heads*hidden_dim + # -> batch_size, num_heads*hidden_dim, height*width + # -> batch_size*num_heads, hidden_dim, height, width + value_l_ = ( + value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width) + ) + # batch_size, num_queries, num_heads, num_points, 2 + # -> batch_size, num_heads, num_queries, num_points, 2 + # -> batch_size*num_heads, num_queries, num_points, 2 + sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1) + # batch_size*num_heads, hidden_dim, num_queries, num_points + sampling_value_l_ = nn.functional.grid_sample( + value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False + ) + sampling_value_list.append(sampling_value_l_) + # (batch_size, num_queries, num_heads, num_levels, num_points) + # -> (batch_size, num_heads, num_queries, num_levels, num_points) + # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points) + attention_weights = attention_weights.transpose(1, 2).reshape( + batch_size * num_heads, 1, num_queries, num_levels * num_points + ) + output = ( + (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) + .sum(-1) + .view(batch_size, num_heads * hidden_dim, num_queries) + ) + return output.transpose(1, 2).contiguous() + + +# Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with MaskFormer->Mask2Former +class Mask2FormerSinePositionEmbedding(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one used by the Attention is all you + need paper, generalized to work on images. + """ + + def __init__( + self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None + ): + super().__init__() + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + self.scale = 2 * math.pi if scale is None else scale + + def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: + if mask is None: + mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) + not_mask = (~mask).to(x.dtype) + y_embed = not_mask.cumsum(1) + x_embed = not_mask.cumsum(2) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.int64, device=x.device).type_as(x) + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +# Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention +class Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module): + """ + Multiscale deformable attention as proposed in Deformable DETR. + """ + + def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int): + super().__init__() + if embed_dim % num_heads != 0: + raise ValueError( + f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}" + ) + dim_per_head = embed_dim // num_heads + # check if dim_per_head is power of 2 + if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0): + warnings.warn( + "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the" + " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA" + " implementation." + ) + + self.im2col_step = 128 + + self.d_model = embed_dim + self.n_levels = n_levels + self.n_heads = num_heads + self.n_points = n_points + + self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2) + self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points) + self.value_proj = nn.Linear(embed_dim, embed_dim) + self.output_proj = nn.Linear(embed_dim, embed_dim) + + def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): + return tensor if position_embeddings is None else tensor + position_embeddings + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states=None, + encoder_attention_mask=None, + position_embeddings: Optional[torch.Tensor] = None, + reference_points=None, + spatial_shapes=None, + level_start_index=None, + output_attentions: bool = False, + ): + # add position embeddings to the hidden states before projecting to queries and keys + if position_embeddings is not None: + hidden_states = self.with_pos_embed(hidden_states, position_embeddings) + + batch_size, num_queries, _ = hidden_states.shape + batch_size, sequence_length, _ = encoder_hidden_states.shape + if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length: + raise ValueError( + "Make sure to align the spatial shapes with the sequence length of the encoder hidden states" + ) + + value = self.value_proj(encoder_hidden_states) + if attention_mask is not None: + # we invert the attention_mask + value = value.masked_fill(attention_mask[..., None], float(0)) + value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads) + sampling_offsets = self.sampling_offsets(hidden_states).view( + batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2 + ) + attention_weights = self.attention_weights(hidden_states).view( + batch_size, num_queries, self.n_heads, self.n_levels * self.n_points + ) + attention_weights = nn.functional.softmax(attention_weights, -1).view( + batch_size, num_queries, self.n_heads, self.n_levels, self.n_points + ) + # batch_size, num_queries, n_heads, n_levels, n_points, 2 + if reference_points.shape[-1] == 2: + offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) + sampling_locations = ( + reference_points[:, :, None, :, None, :] + + sampling_offsets / offset_normalizer[None, None, None, :, None, :] + ) + elif reference_points.shape[-1] == 4: + sampling_locations = ( + reference_points[:, :, None, :, None, :2] + + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 + ) + else: + raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}") + + output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights) + output = self.output_proj(output) + + return output, attention_weights + + +class Mask2FormerPixelDecoderEncoderLayer(nn.Module): + def __init__(self, config: Mask2FormerConfig): + super().__init__() + self.embed_dim = config.feature_size + self.self_attn = Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention( + embed_dim=self.embed_dim, + num_heads=config.num_attention_heads, + n_levels=3, + n_points=4, + ) + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = nn.functional.relu + self.activation_dropout = config.dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim) + self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + position_embeddings: torch.Tensor = None, + reference_points=None, + spatial_shapes=None, + level_start_index=None, + output_attentions: bool = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Input to the layer. + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Attention mask. + position_embeddings (`torch.FloatTensor`, *optional*): + Position embeddings, to be added to `hidden_states`. + reference_points (`torch.FloatTensor`, *optional*): + Reference points. + spatial_shapes (`torch.LongTensor`, *optional*): + Spatial shapes of the backbone feature maps. + level_start_index (`torch.LongTensor`, *optional*): + Level start index. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps. + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + position_embeddings=position_embeddings, + reference_points=reference_points, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if self.training: + if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights.transpose(1, 0),) + + return outputs + + +# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->Mask2FormerPixelDecoderEncoderOnly +class Mask2FormerPixelDecoderEncoderOnly(nn.Module): + """ + Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a + [`Mask2FormerPixelDecoderEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through + multiple deformable attention layers. + + Args: + config: Mask2FormerConfig + """ + + def __init__(self, config: Mask2FormerConfig): + super().__init__() + + self.config = config + self.dropout = config.dropout + self.layers = nn.ModuleList( + [Mask2FormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)] + ) + + @staticmethod + def get_reference_points(spatial_shapes, valid_ratios, device): + """ + Get reference points for each feature map. Used in decoder. + + Args: + spatial_shapes (`torch.LongTensor`): + Spatial shapes of each feature map, has shape of `(num_feature_levels, 2)`. + valid_ratios (`torch.FloatTensor`): + Valid ratios of each feature map, has shape of `(batch_size, num_feature_levels, 2)`. + device (`torch.device`): + Device on which to create the tensors. + Returns: + `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)` + """ + reference_points_list = [] + for lvl, (height, width) in enumerate(spatial_shapes): + ref_y, ref_x = torch.meshgrid( + torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device), + torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device), + indexing="ij", + ) + ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height) + ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width) + ref = torch.stack((ref_x, ref_y), -1) + reference_points_list.append(ref) + + reference_points = torch.cat(reference_points_list, 1) + reference_points = reference_points[:, :, None] * valid_ratios[:, None] + + return reference_points + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + position_embeddings=None, + spatial_shapes=None, + level_start_index=None, + valid_ratios=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: + - 1 for pixel features that are real (i.e. **not masked**), + - 0 for pixel features that are padding (i.e. **masked**). + [What are attention masks?](../glossary#attention-mask) + position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Position embeddings that are added to the queries and keys in each self-attention layer. + spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): + Spatial shapes of each feature map. + level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`): + Starting index of each feature map. + valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): + Ratio of valid area in each feature level. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + hidden_states = inputs_embeds + reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device) + + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for i, encoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states.transpose(1, 0),) + + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + position_embeddings=position_embeddings, + reference_points=reference_points, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states.transpose(1, 0),) + + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +# Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrModel with DeformableDetrModel->Mask2FormerPixelDecoder +class Mask2FormerPixelDecoder(nn.Module): + def __init__(self, config: Mask2FormerConfig, feature_channels): + super().__init__() + + self.config = config + + feature_dim = config.feature_size + mask_dim = config.mask_feature_size + num_pos_features = feature_dim // 2 + + self.position_embedding = Mask2FormerSinePositionEmbedding(num_pos_feats=num_pos_features, normalize=True) + self.num_feature_levels = 3 + transformer_in_channels = feature_channels[-self.num_feature_levels :] + + self.transformer_feature_strides = config.feature_strides[-self.num_feature_levels :] + self.feature_channels = feature_channels + self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, feature_dim)) + + # Create input projection layers + if self.num_feature_levels > 1: + input_projections_list = [] + for in_channels in transformer_in_channels[::-1]: + input_projections_list.append( + nn.Sequential( + nn.Conv2d(in_channels, feature_dim, kernel_size=1), + nn.GroupNorm(32, feature_dim), + ) + ) + self.input_projections = nn.ModuleList(input_projections_list) + else: + self.input_projections = nn.ModuleList( + [ + nn.Sequential( + nn.Conv2d(transformer_in_channels[-1], feature_dim, kernel_size=1), + nn.GroupNorm(32, feature_dim), + ) + ] + ) + + self.encoder = Mask2FormerPixelDecoderEncoderOnly(config) + self.mask_projection = nn.Conv2d(feature_dim, mask_dim, kernel_size=1, stride=1, padding=0) + + # Extra FPN levels + stride = min(self.transformer_feature_strides) + self.common_stride = config.common_stride + self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride)) + + lateral_convs = [] + output_convs = [] + + for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]): + lateral_conv = nn.Sequential( + nn.Conv2d(in_channels, feature_dim, kernel_size=1, bias=False), + nn.GroupNorm(32, feature_dim), + ) + + output_conv = nn.Sequential( + nn.Conv2d(feature_dim, feature_dim, kernel_size=3, stride=1, padding=1, bias=False), + nn.GroupNorm(32, feature_dim), + nn.ReLU(), + ) + self.add_module("adapter_{}".format(idx + 1), lateral_conv) + self.add_module("layer_{}".format(idx + 1), output_conv) + + lateral_convs.append(lateral_conv) + output_convs.append(output_conv) + + # Order convolutional layers from low to high resolution + self.lateral_convolutions = lateral_convs[::-1] + self.output_convolutions = output_convs[::-1] + + def get_valid_ratio(self, mask, dtype=torch.float32): + """Get the valid ratio of all feature maps.""" + + _, height, width = mask.shape + valid_height = torch.sum(~mask[:, :, 0], 1) + valid_width = torch.sum(~mask[:, 0, :], 1) + valid_ratio_heigth = valid_height.to(dtype) / height + valid_ratio_width = valid_width.to(dtype) / width + valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1) + return valid_ratio + + def forward( + self, + features, + encoder_outputs=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + # Apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + input_embeds = [] + position_embeddings = [] + for level, x in enumerate(features[::-1][: self.num_feature_levels]): + input_embeds.append(self.input_projections[level](x)) + position_embeddings.append(self.position_embedding(x)) + + masks = [ + torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in input_embeds + ] + + # Prepare encoder inputs (by flattening) + spatial_shapes = [(embed.shape[2], embed.shape[3]) for embed in input_embeds] + input_embeds_flat = torch.cat([embed.flatten(2).transpose(1, 2) for embed in input_embeds], 1) + spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=input_embeds_flat.device) + masks_flat = torch.cat([mask.flatten(1) for mask in masks], 1) + + position_embeddings = [embed.flatten(2).transpose(1, 2) for embed in position_embeddings] + level_pos_embed_flat = [x + self.level_embed[i].view(1, 1, -1) for i, x in enumerate(position_embeddings)] + level_pos_embed_flat = torch.cat(level_pos_embed_flat, 1) + + level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) + valid_ratios = torch.stack([self.get_valid_ratio(mask, dtype=input_embeds_flat.dtype) for mask in masks], 1) + + # Send input_embeds_flat + masks_flat + level_pos_embed_flat (backbone + proj layer output) through encoder + if encoder_outputs is None: + encoder_outputs = self.encoder( + inputs_embeds=input_embeds_flat, + attention_mask=masks_flat, + position_embeddings=level_pos_embed_flat, + spatial_shapes=spatial_shapes, + level_start_index=level_start_index, + valid_ratios=valid_ratios, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs.last_hidden_state + batch_size = last_hidden_state.shape[0] + + split_sizes = [None] * self.num_feature_levels + for i in range(self.num_feature_levels): + if i < self.num_feature_levels - 1: + split_sizes[i] = level_start_index[i + 1] - level_start_index[i] + else: + split_sizes[i] = last_hidden_state.shape[1] - level_start_index[i] + + encoder_output = torch.split(last_hidden_state, [size.item() for size in split_sizes], dim=1) + + # Compute final features + outputs = [ + x.transpose(1, 2).view(batch_size, -1, spatial_shapes[i][0], spatial_shapes[i][1]) + for i, x in enumerate(encoder_output) + ] + + # Append extra FPN levels to outputs, ordered from low to high resolution + for idx, feature in enumerate(features[: self.num_fpn_levels][::-1]): + lateral_conv = self.lateral_convolutions[idx] + output_conv = self.output_convolutions[idx] + current_fpn = lateral_conv(feature) + + # Following FPN implementation, we use nearest upsampling here + out = current_fpn + nn.functional.interpolate( + outputs[-1], size=current_fpn.shape[-2:], mode="bilinear", align_corners=False + ) + out = output_conv(out) + outputs.append(out) + + num_cur_levels = 0 + multi_scale_features = [] + + for out in outputs: + if num_cur_levels < self.num_feature_levels: + multi_scale_features.append(out) + num_cur_levels += 1 + + return Mask2FormerPixelDecoderOutput( + mask_features=self.mask_projection(outputs[-1]), + multi_scale_features=tuple(multi_scale_features), + attentions=encoder_outputs.attentions, + ) + + +class Mask2FormerPixelLevelModule(nn.Module): + def __init__(self, config: Mask2FormerConfig): + """ + Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image + Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel + decoder, generating multi-scale feature maps and pixel embeddings. + + Args: + config ([`Mask2FormerConfig`]): + The configuration used to instantiate this model. + """ + super().__init__() + + self.encoder = load_backbone(config) + self.decoder = Mask2FormerPixelDecoder(config, feature_channels=self.encoder.channels) + + def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> Mask2FormerPixelLevelModuleOutput: + backbone_features = self.encoder(pixel_values).feature_maps + decoder_output = self.decoder(backbone_features, output_hidden_states=output_hidden_states) + + return Mask2FormerPixelLevelModuleOutput( + encoder_last_hidden_state=backbone_features[-1], + encoder_hidden_states=tuple(backbone_features) if output_hidden_states else None, + decoder_last_hidden_state=decoder_output.mask_features, + decoder_hidden_states=decoder_output.multi_scale_features, + ) + + +# Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->Mask2Former +class Mask2FormerAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and + keys (as explained in the DETR paper). + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): + return tensor if position_embeddings is None else tensor + position_embeddings + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_embeddings: Optional[torch.Tensor] = None, + key_value_states: Optional[torch.Tensor] = None, + key_value_position_embeddings: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None + position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None + key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None + key_value_position_embeddings = ( + key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None + ) + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size, target_len, embed_dim = hidden_states.size() + + # add position embeddings to the hidden states before projecting to queries and keys + if position_embeddings is not None: + hidden_states_original = hidden_states + hidden_states = self.with_pos_embed(hidden_states, position_embeddings) + + # add key-value position embeddings to the key value states + if key_value_position_embeddings is not None: + key_value_states_original = key_value_states + key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) + + proj_shape = (batch_size * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + source_len = key_states.size(1) + + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is" + f" {attention_mask.size()}" + ) + attn_weights += attention_mask + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, target_len, embed_dim) + + attn_output = self.out_proj(attn_output).permute(1, 0, 2) + + return attn_output, attn_weights_reshaped + + +class Mask2FormerMaskedAttentionDecoderLayer(nn.Module): + """ + The Mask2FormerMaskedAttentionDecoderLayer is made up of self-attention, cross (masked) attention as well as FFN + blocks. The cross attention block used as part of `Mask2FormerMaskedAttentionDecoderLayer` is actually a `masked + attention` block that restricts the attention to localized features centered around predicted segments which leads + to faster convergence and improved performance. The order of self and cross (i.e. masked) attention blocks have + also been swapped in Mask2FormerMaskedAttentionDecoder compared to a standard DetrDecoder as an optimization + improvement. + + Args: + config (`Mask2FormerConfig`): + The configuration used to initialize the Mask2FormerMaskedAttentionDecoder. + """ + + def __init__(self, config: Mask2FormerConfig): + super().__init__() + self.config = config + self.embed_dim = self.config.hidden_dim + self.pre_norm = self.config.pre_norm + self.self_attn = Mask2FormerAttention( + embed_dim=self.embed_dim, + num_heads=config.num_attention_heads, + dropout=config.dropout, + is_decoder=True, + ) + + self.dropout = self.config.dropout + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout = self.config.dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.cross_attn = nn.MultiheadAttention(self.embed_dim, self.config.num_attention_heads, self.config.dropout) + self.cross_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, self.config.dim_feedforward) + self.fc2 = nn.Linear(self.config.dim_feedforward, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward_post( + self, + hidden_states: torch.Tensor, + level_index: int = None, + attention_mask: Optional[torch.Tensor] = None, + position_embeddings: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ): + # Masked(Cross)-Attention Block + cross_attn_weights = None + self_attn_weights = None + + residual = hidden_states + + hidden_states, cross_attn_weights = self.cross_attn( + query=self.with_pos_embed(hidden_states, query_position_embeddings), + key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]), + value=encoder_hidden_states[level_index], + attn_mask=encoder_attention_mask, + key_padding_mask=None, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.cross_attn_layer_norm(hidden_states) + + # Self Attention Block + residual = hidden_states + + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + position_embeddings=query_position_embeddings, + attention_mask=None, + output_attentions=True, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + def forward_pre( + self, + hidden_states: torch.Tensor, + level_index: int = None, + attention_mask: Optional[torch.Tensor] = None, + position_embeddings: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ): + # Masked(Cross)-Attention Block + cross_attn_weights = None + self_attn_weights = None + + residual = hidden_states + + hidden_states = self.cross_attn_layer_norm(hidden_states) + + hidden_states, cross_attn_weights = self.cross_attn( + query=self.with_pos_embed(hidden_states, query_position_embeddings), + key=self.with_pos_embed(encoder_hidden_states[level_index], position_embeddings[level_index]), + value=encoder_hidden_states[level_index], + attn_mask=encoder_attention_mask, + key_padding_mask=None, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Self Attention Block + residual = hidden_states + + hidden_states = self.self_attn_layer_norm(hidden_states) + + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + position_embeddings=query_position_embeddings, + attention_mask=None, + output_attentions=True, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + def forward( + self, + hidden_states: torch.Tensor, + level_index: int = None, + attention_mask: Optional[torch.Tensor] = None, + position_embeddings: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): + Input to the layer of shape `(seq_len, batch, embed_dim)`. + attention_mask (`torch.FloatTensor`): + Attention mask of shape `(1, seq_len, tgt_len, src_len)`. + position_embeddings (`torch.FloatTensor`, *optional*): + Position embeddings that are added to the keys in the masked-attention layer. + query_position_embeddings (`torch.FloatTensor`, *optional*): + Position embeddings that are added to the queries and keys in the self-attention layer. + encoder_hidden_states (`torch.FloatTensor`): + Cross attention input to the layer of shape `(seq_len, batch, embed_dim)`. + encoder_attention_mask (`torch.FloatTensor`): + Encoder attention mask of size`(1, seq_len, tgt_len, src_len)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + + if self.pre_norm: + outputs = self.forward_pre( + hidden_states=hidden_states, + level_index=level_index, + position_embeddings=position_embeddings, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + ) + else: + outputs = self.forward_post( + hidden_states=hidden_states, + level_index=level_index, + position_embeddings=position_embeddings, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + ) + + return outputs + + +class Mask2FormerMaskedAttentionDecoder(nn.Module): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a + [`Mask2FormerMaskedAttentionDecoderLayer`]. The decoder updates the query embeddings through multiple cross + (masked) and self-attention layers. The decoder uses a new **masked attention** mechanism instead of the standard + cross-attention, which extracts localized features by constraining cross-attention to within the foreground region + of the predicted mask for each query, instead of attending to the full feature map. + + Args: + config (`Mask2FormerConfig`): + Configuration used to instantiate Mask2FormerMaskedAttentionDecoder. + """ + + def __init__(self, config: Mask2FormerConfig): + super().__init__() + + self.config = config + self.mask_feature_size = config.mask_feature_size + self.dropout = config.dropout + self.layerdrop = config.dropout + self.num_feature_levels = 3 # level embedding (3 scales) + self.decoder_layers = config.decoder_layers - 1 + + self.layers = nn.ModuleList( + [Mask2FormerMaskedAttentionDecoderLayer(self.config) for _ in range(self.decoder_layers)] + ) + self.layernorm = nn.LayerNorm(config.hidden_dim) + + self.mask_predictor = Mask2FormerMaskPredictor( + hidden_size=config.hidden_dim, + num_heads=config.num_attention_heads, + mask_feature_size=self.mask_feature_size, + ) + + self.gradient_checkpointing = False + + def forward( + self, + inputs_embeds: torch.Tensor = None, + multi_stage_positional_embeddings: torch.Tensor = None, + pixel_embeddings: torch.Tensor = None, + encoder_hidden_states: torch.Tensor = None, + query_position_embeddings: torch.Tensor = None, + feature_size_list: List = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`): + The query embeddings that are passed into the decoder. + multi_stage_positional_embeddings (`torch.FloatTensor` of shape `(height*width, batch_size, num_channels)`): + Position embeddings that are added to the keys in each cross(masked)-attention layer. + pixel_embeddings (`torch.FloatTensor`): + Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel + Decoder. + query_position_embeddings (`torch.FloatTensor` of shape `(num_queries, batch_size, hidden_size)`): + , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross(masked)-attention of the decoder. + feature_size_list (`List[torch.Size]` ): + This is a list containing shapes (height & width) of multi-scale features from the Pixel Decoder. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is not None: + hidden_states = inputs_embeds + + # intermediate hidden states with layernorm applied - required for predicting class logits + intermediate = () + + # decoder layers + all_hidden_states = () if output_hidden_states else None + attentions = () if output_attentions else None + + # intermediate mask predictions from transformer decoder layers + intermediate_mask_predictions = () + + intermediate_hidden_states = self.layernorm(inputs_embeds) + intermediate += (intermediate_hidden_states,) + + predicted_mask, attention_mask = self.mask_predictor( + intermediate_hidden_states, pixel_embeddings, feature_size_list[0] + ) + intermediate_mask_predictions += (predicted_mask,) + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + dropout_probability = torch.rand([]) + + if self.training and (dropout_probability < self.layerdrop): + continue + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + None, + None, + output_attentions, + ) + + else: + level_index = idx % self.num_feature_levels + + attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False + + layer_outputs = decoder_layer( + hidden_states, + level_index=level_index, + position_embeddings=multi_stage_positional_embeddings, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + ) + + intermediate_hidden_states = self.layernorm(layer_outputs[0]) + + predicted_mask, attention_mask = self.mask_predictor( + intermediate_hidden_states, + pixel_embeddings, + feature_size_list[(idx + 1) % self.num_feature_levels], + ) + + intermediate_mask_predictions += (predicted_mask,) + + # add intermediate hidden states with layer norm applied which will be used for predicting class logits + intermediate += (intermediate_hidden_states,) + + hidden_states = layer_outputs[0] + + if output_attentions: + attentions += (layer_outputs[1],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + hidden_states = hidden_states.transpose(1, 0) + if not return_dict: + outputs = [hidden_states, all_hidden_states, attentions, intermediate, intermediate_mask_predictions] + return tuple(v for v in outputs if v is not None) + + return Mask2FormerMaskedAttentionDecoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=attentions, + intermediate_hidden_states=intermediate, + masks_queries_logits=intermediate_mask_predictions, + ) + + +# Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock with MaskFormer->Mask2Former +class Mask2FormerPredictionBlock(nn.Module): + def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None: + super().__init__() + self.layers = [nn.Linear(in_dim, out_dim), activation] + # Maintain submodule indexing as if part of a Sequential block + for i, layer in enumerate(self.layers): + self.add_module(str(i), layer) + + def forward(self, input: Tensor) -> Tensor: + hidden_state = input + for layer in self.layers: + hidden_state = layer(hidden_state) + return hidden_state + + +class Mask2FormerMLPPredictionHead(nn.Module): + def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3): + """ + A classic Multi Layer Perceptron (MLP). + + Args: + input_dim (`int`): + The input dimensions. + hidden_dim (`int`): + The hidden dimensions. + output_dim (`int`): + The output dimensions. + num_layers (int, *optional*, defaults to 3): + The number of layers. + """ + super().__init__() + in_dims = [input_dim] + [hidden_dim] * (num_layers - 1) + out_dims = [hidden_dim] * (num_layers - 1) + [output_dim] + + self.layers = [] + for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)): + activation = nn.ReLU() if i < num_layers - 1 else nn.Identity() + layer = Mask2FormerPredictionBlock(in_dim, out_dim, activation=activation) + self.layers.append(layer) + # Provide backwards compatibility from when the class inherited from nn.Sequential + # In nn.Sequential subclasses, the name given to the layer is its index in the sequence. + # In nn.Module subclasses they derived from the instance attribute they are assigned to e.g. + # self.my_layer_name = Layer() + # We can't give instance attributes integer names i.e. self.0 is not permitted and so need to register + # explicitly + self.add_module(str(i), layer) + + def forward(self, input: Tensor) -> Tensor: + hidden_state = input + for layer in self.layers: + hidden_state = layer(hidden_state) + return hidden_state + + +class Mask2FormerMaskPredictor(nn.Module): + def __init__(self, hidden_size: int, num_heads: int, mask_feature_size: torch.Tensor): + """ + This class is used to get the predicted mask for a given Mask2FormerMaskedAttentionDecoder layer. It also + generates the binarized attention mask associated with the given predicted mask. The attention mask obtained + using predicted mask of the (l-1)th decoder layer is fed to the cross(masked)-attention block of the next + decoder layer as input. + + Args: + hidden_size (`int`): + The feature dimension of the Mask2FormerMaskedAttentionDecoder + num_heads (`int`): + The number of heads used in the Mask2FormerMaskedAttentionDecoder + mask_feature_size (`torch.Tensor`): + one of the output dimensions of the predicted masks for each query + """ + super().__init__() + self.hidden_size = hidden_size + self.num_heads = num_heads + + self.mask_embedder = Mask2FormerMLPPredictionHead(self.hidden_size, self.hidden_size, mask_feature_size) + + def forward(self, outputs: torch.Tensor, pixel_embeddings: torch.Tensor, attention_mask_target_size: int = None): + mask_embeddings = self.mask_embedder(outputs.transpose(0, 1)) + + is_tracing = ( + torch.jit.is_tracing() + or isinstance(outputs, torch.fx.Proxy) + or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) + ) + # Sum up over the channels + if is_tracing and not is_torch_greater_or_equal_than_2_1: + # Equivalent to einsum('bqc, bchw -> bqhw') but jit friendly + batch_size, num_queries, num_channels = mask_embeddings.shape + _, _, height, width = pixel_embeddings.shape + outputs_mask = torch.zeros((batch_size, num_queries, height, width), device=mask_embeddings.device) + for c in range(num_channels): + outputs_mask += mask_embeddings[..., c][..., None, None] * pixel_embeddings[:, None, c] + + else: + outputs_mask = torch.einsum("bqc, bchw -> bqhw", mask_embeddings, pixel_embeddings) + + attention_mask = nn.functional.interpolate( + outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False + ) + + attention_mask = attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1) + attention_mask = (attention_mask.flatten(0, 1) < 0.5).bool() + attention_mask = attention_mask.detach() + + return outputs_mask, attention_mask + + +class Mask2FormerTransformerModule(nn.Module): + """ + The Mask2Former's transformer module. + """ + + def __init__(self, in_features: int, config: Mask2FormerConfig): + super().__init__() + hidden_dim = config.hidden_dim + self.num_feature_levels = 3 + self.position_embedder = Mask2FormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True) + self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim) + self.queries_features = nn.Embedding(config.num_queries, hidden_dim) + self.input_projections = [] + + for _ in range(self.num_feature_levels): + if in_features != hidden_dim or config.enforce_input_projection: + self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1)) + else: + self.input_projections.append(nn.Sequential()) + + self.decoder = Mask2FormerMaskedAttentionDecoder(config=config) + self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) + + def forward( + self, + multi_scale_features: List[Tensor], + mask_features: Tensor, + output_hidden_states: bool = False, + output_attentions: bool = False, + ) -> Mask2FormerMaskedAttentionDecoderOutput: + multi_stage_features = [] + multi_stage_positional_embeddings = [] + size_list = [] + + for i in range(self.num_feature_levels): + size_list.append(multi_scale_features[i].shape[-2:]) + multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2)) + multi_stage_features.append( + self.input_projections[i](multi_scale_features[i]).flatten(2) + + self.level_embed.weight[i][None, :, None] + ) + + # Flatten (batch_size, num_channels, height, width) -> (height*width, batch_size, num_channels) + multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1) + multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1) + + _, batch_size, _ = multi_stage_features[0].shape + + # [num_queries, batch_size, num_channels] + query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1) + query_features = self.queries_features.weight.unsqueeze(1).repeat(1, batch_size, 1) + + decoder_output = self.decoder( + inputs_embeds=query_features, + multi_stage_positional_embeddings=multi_stage_positional_embeddings, + pixel_embeddings=mask_features, + encoder_hidden_states=multi_stage_features, + query_position_embeddings=query_embeddings, + feature_size_list=size_list, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=True, + ) + + return decoder_output + + +MASK2FORMER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Mask2FormerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MASK2FORMER_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`AutoImageProcessor.preprocess`] for details. + pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of Detr's decoder attention layers. + return_dict (`bool`, *optional*): + Whether or not to return a [`~Mask2FormerModelOutput`] instead of a plain tuple. +""" + + +class Mask2FormerPreTrainedModel(PreTrainedModel): + config_class = Mask2FormerConfig + base_model_prefix = "model" + main_input_name = "pixel_values" + + def _init_weights(self, module: nn.Module): + xavier_std = self.config.init_xavier_std + std = self.config.init_std + + if isinstance(module, Mask2FormerTransformerModule): + if module.input_projections is not None: + for input_projection in module.input_projections: + if not isinstance(input_projection, nn.Sequential): + nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std) + nn.init.constant_(input_projection.bias, 0) + + elif isinstance(module, Mask2FormerPixelDecoderEncoderMultiscaleDeformableAttention): + nn.init.constant_(module.sampling_offsets.weight.data, 0.0) + thetas = torch.arange(module.n_heads, dtype=torch.int64).float() * (2.0 * math.pi / module.n_heads) + grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) + grid_init = ( + (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) + .view(module.n_heads, 1, 1, 2) + .repeat(1, module.n_levels, module.n_points, 1) + ) + for i in range(module.n_points): + grid_init[:, :, i, :] *= i + 1 + with torch.no_grad(): + module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) + + nn.init.constant_(module.attention_weights.weight.data, 0.0) + nn.init.constant_(module.attention_weights.bias.data, 0.0) + nn.init.xavier_uniform_(module.value_proj.weight.data) + nn.init.constant_(module.value_proj.bias.data, 0.0) + nn.init.xavier_uniform_(module.output_proj.weight.data) + nn.init.constant_(module.output_proj.bias.data, 0.0) + + elif isinstance(module, Mask2FormerMaskedAttentionDecoderLayer): + for p in module.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p, gain=xavier_std) + + elif isinstance(module, Mask2FormerPixelLevelModule): + for submodule in module.modules(): + if isinstance(submodule, (nn.Conv2d, nn.Linear)): + submodule.weight.data.normal_(mean=0.0, std=std) + if submodule.bias is not None: + submodule.bias.data.zero_() + + elif isinstance(module, Mask2FormerPixelDecoder): + for p in module.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + nn.init.normal_(module.level_embed, std=0) + + elif isinstance(module, Mask2FormerPixelDecoderEncoderOnly): + for p in module.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + if hasattr(module, "reference_points"): + nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0) + nn.init.constant_(module.reference_points.bias.data, 0.0) + + +@add_start_docstrings( + "The bare Mask2Former Model outputting raw hidden-states without any specific head on top.", + MASK2FORMER_START_DOCSTRING, +) +class Mask2FormerModel(Mask2FormerPreTrainedModel): + main_input_name = "pixel_values" + + def __init__(self, config: Mask2FormerConfig): + super().__init__(config) + self.pixel_level_module = Mask2FormerPixelLevelModule(config) + self.transformer_module = Mask2FormerTransformerModule(in_features=config.feature_size, config=config) + + self.post_init() + + @add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Mask2FormerModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Tensor, + pixel_mask: Optional[Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Mask2FormerModelOutput: + r""" + Returns: + `Mask2FormerModelOutput` + + Examples: + ```python + >>> import torch + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoImageProcessor, Mask2FormerModel + + >>> # load image + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> # load image preprocessor and Mask2FormerModel trained on COCO instance segmentation dataset + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance") + >>> model = Mask2FormerModel.from_pretrained("facebook/mask2former-swin-small-coco-instance") + >>> inputs = image_processor(image, return_tensors="pt") + + >>> # forward pass + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> # model outputs last hidden states of shape (batch_size, num_queries, hidden_size) + >>> print(outputs.transformer_decoder_last_hidden_state.shape) + torch.Size([1, 100, 256]) + ``` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, _, height, width = pixel_values.shape + + if pixel_mask is None: + pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device) + + pixel_level_module_output = self.pixel_level_module( + pixel_values=pixel_values, output_hidden_states=output_hidden_states + ) + + transformer_module_output = self.transformer_module( + multi_scale_features=pixel_level_module_output.decoder_hidden_states, + mask_features=pixel_level_module_output.decoder_last_hidden_state, + output_hidden_states=True, + output_attentions=output_attentions, + ) + + encoder_hidden_states = None + pixel_decoder_hidden_states = None + transformer_decoder_hidden_states = None + transformer_decoder_intermediate_states = None + + if output_hidden_states: + encoder_hidden_states = pixel_level_module_output.encoder_hidden_states + pixel_decoder_hidden_states = pixel_level_module_output.decoder_hidden_states + transformer_decoder_hidden_states = transformer_module_output.hidden_states + transformer_decoder_intermediate_states = transformer_module_output.intermediate_hidden_states + + output = Mask2FormerModelOutput( + encoder_last_hidden_state=pixel_level_module_output.encoder_last_hidden_state, + pixel_decoder_last_hidden_state=pixel_level_module_output.decoder_last_hidden_state, + transformer_decoder_last_hidden_state=transformer_module_output.last_hidden_state, + encoder_hidden_states=encoder_hidden_states, + pixel_decoder_hidden_states=pixel_decoder_hidden_states, + transformer_decoder_hidden_states=transformer_decoder_hidden_states, + transformer_decoder_intermediate_states=transformer_decoder_intermediate_states, + attentions=transformer_module_output.attentions, + masks_queries_logits=transformer_module_output.masks_queries_logits, + ) + + if not return_dict: + output = tuple(v for v in output.values() if v is not None) + + return output + + +@add_start_docstrings( + "The Mask2Former Model with heads on top for instance/semantic/panoptic segmentation.", + MASK2FORMER_START_DOCSTRING, +) +class Mask2FormerForUniversalSegmentation(Mask2FormerPreTrainedModel): + main_input_name = "pixel_values" + + def __init__(self, config: Mask2FormerConfig): + super().__init__(config) + self.model = Mask2FormerModel(config) + + self.weight_dict: Dict[str, float] = { + "loss_cross_entropy": config.class_weight, + "loss_mask": config.mask_weight, + "loss_dice": config.dice_weight, + } + + self.class_predictor = nn.Linear(config.hidden_dim, config.num_labels + 1) + + self.criterion = Mask2FormerLoss(config=config, weight_dict=self.weight_dict) + self.post_init() + + def get_loss_dict( + self, + masks_queries_logits: Tensor, + class_queries_logits: Tensor, + mask_labels: Tensor, + class_labels: Tensor, + auxiliary_predictions: Dict[str, Tensor], + ) -> Dict[str, Tensor]: + loss_dict: Dict[str, Tensor] = self.criterion( + masks_queries_logits=masks_queries_logits, + class_queries_logits=class_queries_logits, + mask_labels=mask_labels, + class_labels=class_labels, + auxiliary_predictions=auxiliary_predictions, + ) + + # weight each loss by `self.weight_dict[]` including auxiliary losses + for key, weight in self.weight_dict.items(): + for loss_key, loss in loss_dict.items(): + if key in loss_key: + loss *= weight + + return loss_dict + + def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor: + return sum(loss_dict.values()) + + def get_auxiliary_logits(self, classes: torch.Tensor, output_masks: torch.Tensor): + auxiliary_logits: List[Dict(str, Tensor)] = [] + + for aux_binary_masks, aux_classes in zip(output_masks[:-1], classes[:-1]): + auxiliary_logits.append({"masks_queries_logits": aux_binary_masks, "class_queries_logits": aux_classes}) + + return auxiliary_logits + + @add_start_docstrings_to_model_forward(MASK2FORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Mask2FormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Tensor, + mask_labels: Optional[List[Tensor]] = None, + class_labels: Optional[List[Tensor]] = None, + pixel_mask: Optional[Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_auxiliary_logits: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Mask2FormerForUniversalSegmentationOutput: + r""" + mask_labels (`List[torch.Tensor]`, *optional*): + List of mask labels of shape `(num_labels, height, width)` to be fed to a model + class_labels (`List[torch.LongTensor]`, *optional*): + list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the + labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. + + Returns: + `Mask2FormerUniversalSegmentationOutput` + + Examples: + + Instance segmentation example: + + ```python + >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation + >>> from PIL import Image + >>> import requests + >>> import torch + + >>> # Load Mask2Former trained on COCO instance segmentation dataset + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance") + >>> model = Mask2FormerForUniversalSegmentation.from_pretrained( + ... "facebook/mask2former-swin-small-coco-instance" + ... ) + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = image_processor(image, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` + >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` + >>> class_queries_logits = outputs.class_queries_logits + >>> masks_queries_logits = outputs.masks_queries_logits + + >>> # Perform post-processing to get instance segmentation map + >>> pred_instance_map = image_processor.post_process_semantic_segmentation( + ... outputs, target_sizes=[image.size[::-1]] + ... )[0] + >>> print(pred_instance_map.shape) + torch.Size([480, 640]) + ``` + + Semantic segmentation example: + ```python + >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation + >>> from PIL import Image + >>> import requests + >>> import torch + + >>> # Load Mask2Former trained on ADE20k semantic segmentation dataset + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-ade-semantic") + >>> model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-ade-semantic") + + >>> url = ( + ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" + ... ) + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = image_processor(image, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` + >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` + >>> class_queries_logits = outputs.class_queries_logits + >>> masks_queries_logits = outputs.masks_queries_logits + + >>> # Perform post-processing to get semantic segmentation map + >>> pred_semantic_map = image_processor.post_process_semantic_segmentation( + ... outputs, target_sizes=[image.size[::-1]] + ... )[0] + >>> print(pred_semantic_map.shape) + torch.Size([512, 683]) + ``` + + Panoptic segmentation example: + + ```python + >>> from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation + >>> from PIL import Image + >>> import requests + >>> import torch + + >>> # Load Mask2Former trained on CityScapes panoptic segmentation dataset + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-cityscapes-panoptic") + >>> model = Mask2FormerForUniversalSegmentation.from_pretrained( + ... "facebook/mask2former-swin-small-cityscapes-panoptic" + ... ) + + >>> url = "https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = image_processor(image, return_tensors="pt") + + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> # Model predicts class_queries_logits of shape `(batch_size, num_queries)` + >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` + >>> class_queries_logits = outputs.class_queries_logits + >>> masks_queries_logits = outputs.masks_queries_logits + + >>> # Perform post-processing to get panoptic segmentation map + >>> pred_panoptic_map = image_processor.post_process_panoptic_segmentation( + ... outputs, target_sizes=[image.size[::-1]] + ... )[0]["segmentation"] + >>> print(pred_panoptic_map.shape) + torch.Size([338, 676]) + ``` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + pixel_values=pixel_values, + pixel_mask=pixel_mask, + output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss, + output_attentions=output_attentions, + return_dict=True, + ) + + loss, loss_dict, auxiliary_logits = None, None, None + class_queries_logits = () + + for decoder_output in outputs.transformer_decoder_intermediate_states: + class_prediction = self.class_predictor(decoder_output.transpose(0, 1)) + class_queries_logits += (class_prediction,) + + masks_queries_logits = outputs.masks_queries_logits + + auxiliary_logits = self.get_auxiliary_logits(class_queries_logits, masks_queries_logits) + + if mask_labels is not None and class_labels is not None: + loss_dict = self.get_loss_dict( + masks_queries_logits=masks_queries_logits[-1], + class_queries_logits=class_queries_logits[-1], + mask_labels=mask_labels, + class_labels=class_labels, + auxiliary_predictions=auxiliary_logits, + ) + loss = self.get_loss(loss_dict) + + encoder_hidden_states = None + pixel_decoder_hidden_states = None + transformer_decoder_hidden_states = None + + if output_hidden_states: + encoder_hidden_states = outputs.encoder_hidden_states + pixel_decoder_hidden_states = outputs.pixel_decoder_hidden_states + transformer_decoder_hidden_states = outputs.transformer_decoder_hidden_states + + output_auxiliary_logits = ( + self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits + ) + if not output_auxiliary_logits: + auxiliary_logits = None + + output = Mask2FormerForUniversalSegmentationOutput( + loss=loss, + class_queries_logits=class_queries_logits[-1], + masks_queries_logits=masks_queries_logits[-1], + auxiliary_logits=auxiliary_logits, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + pixel_decoder_last_hidden_state=outputs.pixel_decoder_last_hidden_state, + transformer_decoder_last_hidden_state=outputs.transformer_decoder_last_hidden_state, + encoder_hidden_states=encoder_hidden_states, + pixel_decoder_hidden_states=pixel_decoder_hidden_states, + transformer_decoder_hidden_states=transformer_decoder_hidden_states, + attentions=outputs.attentions, + ) + + if not return_dict: + output = tuple(v for v in output.values() if v is not None) + if loss is not None: + output = (loss) + output + return output diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be9997a1997f940534aad1f6366a1f9977cbad9f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ba488df3d8ab0126cdc92b5b8607caadd19e62b5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/convert_mluke_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17c6c9b2bb53f6c8f47fc2366ddd90fb76a0e2d8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mluke/__pycache__/tokenization_mluke.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8c7db64c198406d458aa6451284249745aa9667f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__init__.py @@ -0,0 +1,66 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +# rely on isort to merge the imports +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_patchtst": [ + "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP", + "PatchTSTConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_patchtst"] = [ + "PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST", + "PatchTSTModel", + "PatchTSTPreTrainedModel", + "PatchTSTForPrediction", + "PatchTSTForPretraining", + "PatchTSTForRegression", + "PatchTSTForClassification", + ] + + +if TYPE_CHECKING: + from .configuration_patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_patchtst import ( + PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST, + PatchTSTForClassification, + PatchTSTForPrediction, + PatchTSTForPretraining, + PatchTSTForRegression, + PatchTSTModel, + PatchTSTPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc9b33e449157ba1bd25d07cb423fd02cc095d16 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/configuration_patchtst.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/configuration_patchtst.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..24db17a25b23a83df8872b6d78357d1df76d3457 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/configuration_patchtst.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/modeling_patchtst.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/modeling_patchtst.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6f9b45062ba188b3133adf41d6d6ed6f0fe6c77e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/__pycache__/modeling_patchtst.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/configuration_patchtst.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/configuration_patchtst.py new file mode 100644 index 0000000000000000000000000000000000000000..dc95429d90995a386ec121beb897434ea6aa8d00 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/configuration_patchtst.py @@ -0,0 +1,260 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PatchTST model configuration""" + +from typing import List, Optional, Union + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class PatchTSTConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an + PatchTST model according to the specified arguments, defining the model architecture. + [ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture. + + Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_input_channels (`int`, *optional*, defaults to 1): + The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of + multivariate targets. + context_length (`int`, *optional*, defaults to 32): + The context length of the input sequence. + distribution_output (`str`, *optional*, defaults to `"student_t"`): + The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or + "negative_binomial". + loss (`str`, *optional*, defaults to `"mse"`): + The loss function for the model corresponding to the `distribution_output` head. For parametric + distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared + error "mse". + patch_length (`int`, *optional*, defaults to 1): + Define the patch length of the patchification process. + patch_stride (`int`, *optional*, defaults to 1): + Define the stride of the patchification process. + num_hidden_layers (`int`, *optional*, defaults to 3): + Number of hidden layers. + d_model (`int`, *optional*, defaults to 128): + Dimensionality of the transformer layers. + num_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer encoder. + share_embedding (`bool`, *optional*, defaults to `True`): + Sharing the input embedding across all channels. + channel_attention (`bool`, *optional*, defaults to `False`): + Activate channel attention block in the Transformer to allow channels to attend each other. + ffn_dim (`int`, *optional*, defaults to 512): + Dimension of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + norm_type (`str` , *optional*, defaults to `"batchnorm"`): + Normalization at each Transformer layer. Can be `"batchnorm"` or `"layernorm"`. + norm_eps (`float`, *optional*, defaults to 1e-05): + A value added to the denominator for numerical stability of normalization. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for the attention probabilities. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the Transformer. + positional_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability in the positional embedding layer. + path_dropout (`float`, *optional*, defaults to 0.0): + The dropout path in the residual block. + ff_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability used between the two layers of the feed-forward networks. + bias (`bool`, *optional*, defaults to `True`): + Whether to add bias in the feed-forward networks. + activation_function (`str`, *optional*, defaults to `"gelu"`): + The non-linear activation function (string) in the Transformer.`"gelu"` and `"relu"` are supported. + pre_norm (`bool`, *optional*, defaults to `True`): + Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is + applied after residual block. + positional_encoding_type (`str`, *optional*, defaults to `"sincos"`): + Positional encodings. Options `"random"` and `"sincos"` are supported. + use_cls_token (`bool`, *optional*, defaults to `False`): + Whether cls token is used. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated normal weight initialization distribution. + share_projection (`bool`, *optional*, defaults to `True`): + Sharing the projection layer across different channels in the forecast head. + scaling (`Union`, *optional*, defaults to `"std"`): + Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the + scaler is set to "mean". + do_mask_input (`bool`, *optional*): + Apply masking during the pretraining. + mask_type (`str`, *optional*, defaults to `"random"`): + Masking type. Only `"random"` and `"forecast"` are currently supported. + random_mask_ratio (`float`, *optional*, defaults to 0.5): + Masking ratio applied to mask the input data during random pretraining. + num_forecast_mask_patches (`int` or `list`, *optional*, defaults to `[2]`): + Number of patches to be masked at the end of each batch sample. If it is an integer, + all the samples in the batch will have the same number of masked patches. If it is a list, + samples in the batch will be randomly masked by numbers defined in the list. This argument is only used + for forecast pretraining. + channel_consistent_masking (`bool`, *optional*, defaults to `False`): + If channel consistent masking is True, all the channels will have the same masking pattern. + unmasked_channel_indices (`list`, *optional*): + Indices of channels that are not masked during pretraining. Values in the list are number between 1 and + `num_input_channels` + mask_value (`int`, *optional*, defaults to 0): + Values in the masked patches will be filled by `mask_value`. + pooling_type (`str`, *optional*, defaults to `"mean"`): + Pooling of the embedding. `"mean"`, `"max"` and `None` are supported. + head_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for head. + prediction_length (`int`, *optional*, defaults to 24): + The prediction horizon that the model will output. + num_targets (`int`, *optional*, defaults to 1): + Number of targets for regression and classification tasks. For classification, it is the number of + classes. + output_range (`list`, *optional*): + Output range for regression task. The range of output values can be set to enforce the model to produce + values within a range. + num_parallel_samples (`int`, *optional*, defaults to 100): + The number of samples is generated in parallel for probabilistic prediction. + + + ```python + >>> from transformers import PatchTSTConfig, PatchTSTModel + + >>> # Initializing an PatchTST configuration with 12 time steps for prediction + >>> configuration = PatchTSTConfig(prediction_length=12) + + >>> # Randomly initializing a model (with random weights) from the configuration + >>> model = PatchTSTModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "patchtst" + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "num_attention_heads", + "num_hidden_layers": "num_hidden_layers", + } + + def __init__( + self, + # time series specific configuration + num_input_channels: int = 1, + context_length: int = 32, + distribution_output: str = "student_t", + loss: str = "mse", + # PatchTST arguments + patch_length: int = 1, + patch_stride: int = 1, + # Transformer architecture configuration + num_hidden_layers: int = 3, + d_model: int = 128, + num_attention_heads: int = 4, + share_embedding: bool = True, + channel_attention: bool = False, + ffn_dim: int = 512, + norm_type: str = "batchnorm", + norm_eps: float = 1e-05, + attention_dropout: float = 0.0, + dropout: float = 0.0, + positional_dropout: float = 0.0, + path_dropout: float = 0.0, + ff_dropout: float = 0.0, + bias: bool = True, + activation_function: str = "gelu", + pre_norm: bool = True, + positional_encoding_type: str = "sincos", + use_cls_token: bool = False, + init_std: float = 0.02, + share_projection: bool = True, + scaling: Optional[Union[str, bool]] = "std", + # mask pretraining + do_mask_input: Optional[bool] = None, + mask_type: str = "random", + random_mask_ratio: float = 0.5, + num_forecast_mask_patches: Optional[Union[List[int], int]] = [2], + channel_consistent_masking: Optional[bool] = False, + unmasked_channel_indices: Optional[List[int]] = None, + mask_value: int = 0, + # head + pooling_type: str = "mean", + head_dropout: float = 0.0, + prediction_length: int = 24, + num_targets: int = 1, + output_range: Optional[List] = None, + # distribution head + num_parallel_samples: int = 100, + **kwargs, + ): + # time series specific configuration + self.context_length = context_length + self.num_input_channels = num_input_channels # n_vars + self.loss = loss + self.distribution_output = distribution_output + self.num_parallel_samples = num_parallel_samples + + # Transformer architecture configuration + self.d_model = d_model + self.num_attention_heads = num_attention_heads + self.ffn_dim = ffn_dim + self.num_hidden_layers = num_hidden_layers + self.dropout = dropout + self.attention_dropout = attention_dropout + self.share_embedding = share_embedding + self.channel_attention = channel_attention + self.norm_type = norm_type + self.norm_eps = norm_eps + self.positional_dropout = positional_dropout + self.path_dropout = path_dropout + self.ff_dropout = ff_dropout + self.bias = bias + self.activation_function = activation_function + self.pre_norm = pre_norm + self.positional_encoding_type = positional_encoding_type + self.use_cls_token = use_cls_token + self.init_std = init_std + self.scaling = scaling + + # PatchTST parameters + self.patch_length = patch_length + self.patch_stride = patch_stride + + # Mask pretraining + self.do_mask_input = do_mask_input + self.mask_type = mask_type + self.random_mask_ratio = random_mask_ratio # for random masking + self.num_forecast_mask_patches = num_forecast_mask_patches # for forecast masking + self.channel_consistent_masking = channel_consistent_masking + self.unmasked_channel_indices = unmasked_channel_indices + self.mask_value = mask_value + + # general head params + self.pooling_type = pooling_type + self.head_dropout = head_dropout + + # For prediction head + self.share_projection = share_projection + self.prediction_length = prediction_length + + # For prediction and regression head + self.num_parallel_samples = num_parallel_samples + + # Regression + self.num_targets = num_targets + self.output_range = output_range + + super().__init__(**kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/modeling_patchtst.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/modeling_patchtst.py new file mode 100644 index 0000000000000000000000000000000000000000..22b206726e16d30a7376fa0d178055a6758ceea8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/patchtst/modeling_patchtst.py @@ -0,0 +1,2035 @@ +# coding=utf-8 +# Copyright 2023 IBM & Hugging Face. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch PatchTST model.""" + +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +from torch import nn + +from ...activations import ACT2CLS +from ...modeling_outputs import BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput +from ...utils import ModelOutput, add_start_docstrings, logging +from .configuration_patchtst import PatchTSTConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "PatchTSTConfig" + + +from ..deprecated._archive_maps import PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->PatchTST +class PatchTSTAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[PatchTSTConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class PatchTSTBatchNorm(nn.Module): + """ + Compute batch normalization over the sequence length (time) dimension. + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.batchnorm = nn.BatchNorm1d(config.d_model, eps=config.norm_eps) + + def forward(self, inputs: torch.Tensor): + """ + Parameters: + inputs (`torch.Tensor` of shape `(batch_size, sequence_length, d_model)`): + input for Batch norm calculation + Returns: + `torch.Tensor` of shape `(batch_size, sequence_length, d_model)` + """ + output = inputs.transpose(1, 2) # output: (batch_size, d_model, sequence_length) + output = self.batchnorm(output) + return output.transpose(1, 2) + + +def random_masking( + inputs: torch.Tensor, + mask_ratio: float, + unmasked_channel_indices: list = None, + channel_consistent_masking: bool = False, + mask_value: int = 0, +): + """random_masking: Mask the input considering the control variables. + + Args: + inputs (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, num_features)`): + The input tensor to mask. + mask_ratio (`float`): + Masking ratio applied to mask the input data during random pretraining. It is the number between 0 and 1. + unmasked_channel_indices (list, *optional*): + Indices of channels that will not be masked. + channel_consistent_masking (bool, *optional*, defaults to `False`): + When true, masking will be same across all channels of a timeseries. Otherwise, masking positions will vary + across channels. + mask_value (int, *optional*, defaults to 0): + Define the value of masked patches for pretraining. + + Returns: + `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as input Tensor and mask tensor of shape [bs x c x + n] + """ + if mask_ratio < 0 or mask_ratio >= 1: + raise ValueError(f"Mask ratio {mask_ratio} has to be between 0 and 1.") + + batch_size, num_channels, sequence_length, num_features = inputs.shape + device = inputs.device + + len_keep = int(sequence_length * (1 - mask_ratio)) + + if channel_consistent_masking: + noise = torch.rand(batch_size, 1, sequence_length, device=device) # noise in [0, 1], bs x 1 x L + noise = noise.repeat(1, num_channels, 1) # bs x num_channels x time + else: + # noise in [0, 1], bs x num_channels x L + noise = torch.rand(batch_size, num_channels, sequence_length, device=device) + + # mask: [bs x num_channels x num_patch] + mask = torch.ones(batch_size, num_channels, sequence_length, device=device) + mask[:, :, :len_keep] = 0 + + # sort noise for each sample + ids_shuffle = torch.argsort(noise, dim=-1) # ascend: small is keep, large is remove + ids_restore = torch.argsort(ids_shuffle, dim=-1) # ids_restore: [bs x num_channels x L] + + mask = torch.gather(mask, dim=-1, index=ids_restore) + mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patches x patch_length] + if unmasked_channel_indices is not None: + mask[:, unmasked_channel_indices, :, :] = 0 + + inputs_mask = inputs.masked_fill(mask.bool(), mask_value) + return inputs_mask, mask[..., 0] + + +def forecast_masking( + inputs: torch.Tensor, + num_forecast_mask_patches: Union[list, int], + unmasked_channel_indices: list = None, + mask_value: int = 0, +): + """Forecast masking that masks the last K patches where K is from the num_forecast_mask_patches. + If num_forecast_mask_patches is a list, samples in the batch will be randomly masked by numbers defined in the list. + + Parameters: + inputs (`torch.Tensor`): + Input of shape `(bs, num_channels, num_patch, patch_length)` + num_forecast_mask_patches (`list`): + Number of patches to be masked at the end of each batch sample. e.g. 4 or [3, 5]. + unmasked_channel_indices (`list`, *optional*): + Indices of channels that are not masked. + mask_value (`int`, *optional*, defaults to 0): + Values in the masked patches will be filled by `mask_value`. + + Returns: + `tuple(torch.Tensor)`: inputs_mask, masked input, same shape as inputs Tensor and Mask tensor of shape `(bs, + num_channels , num_patch)` or `(bs, tsg1, tsg2, num_channels, num_patch)` + """ + + if isinstance(num_forecast_mask_patches, int): + num_forecast_mask_patches = [num_forecast_mask_patches] + forecast_mask_ratios = [1 for _ in num_forecast_mask_patches] + + batch_size, num_channels, sequence_length, num_features = inputs.shape + mask = torch.zeros(batch_size, num_channels, sequence_length, device=inputs.device) + + t_list = [] + total_length = 0 + total_ratio = sum(forecast_mask_ratios) + + for patch_length, ratio in zip(num_forecast_mask_patches, forecast_mask_ratios): + if patch_length <= 0 or patch_length >= sequence_length: + raise ValueError( + f"num_forecast_mask_patches {patch_length} should be greater than 0 and less than total patches." + ) + temp_len = int(batch_size * ratio / total_ratio) + t_list.append([patch_length, ratio, temp_len]) + total_length += temp_len + + t_list = sorted(t_list, key=lambda x: x[2]) + + if total_length < batch_size: + t_list[0][2] = t_list[0][2] + (batch_size - total_length) + elif total_length > batch_size: + t_list[-1][2] = t_list[-1][2] + (total_length - batch_size) + + batch1 = 0 + for patch_len, _, temp_len in t_list: + batch2 = batch1 + temp_len + mask[batch1:batch2, :, -patch_len:] = 1 + batch1 = batch2 + + perm = torch.randperm(mask.shape[0]) + mask = mask[perm] + + mask = mask.unsqueeze(-1).repeat(1, 1, 1, num_features) # mask: [bs x num_channels x num_patch x patch_len] + if unmasked_channel_indices is not None: + mask[:, unmasked_channel_indices, :, :] = 0 + + inputs_mask = inputs.masked_fill(mask.bool(), mask_value) + return inputs_mask, mask[..., 0] + + +class PatchTSTPatchify(nn.Module): + """ + A class to patchify the time series sequence into different patches + + Returns: + `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + + self.sequence_length = config.context_length + self.patch_length = config.patch_length + self.patch_stride = config.patch_stride + + if self.sequence_length <= self.patch_length: + raise ValueError( + f"Sequence length ({self.sequence_length}) has to be greater than the patch length ({self.patch_length})" + ) + + # get the number of patches + self.num_patches = (max(self.sequence_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 + new_sequence_length = self.patch_length + self.patch_stride * (self.num_patches - 1) + self.sequence_start = self.sequence_length - new_sequence_length + + def forward(self, past_values: torch.Tensor): + """ + Parameters: + past_values (`torch.Tensor` of shape `(batch_size, sequence_length, num_channels)`, *required*): + Input for patchification + + Returns: + `torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)` + """ + sequence_length = past_values.shape[-2] + if sequence_length != self.sequence_length: + raise ValueError( + f"Input sequence length ({sequence_length}) doesn't match model configuration ({self.sequence_length})." + ) + # output: [bs x new_sequence_length x num_channels] + output = past_values[:, self.sequence_start :, :] + # output: [bs x num_patches x num_input_channels x patch_length] + output = output.unfold(dimension=-2, size=self.patch_length, step=self.patch_stride) + # output: [bs x num_input_channels x num_patches x patch_length] + output = output.transpose(-2, -3).contiguous() + return output + + +class PatchTSTMasking(nn.Module): + """ + Class to perform random or forecast masking. + + Parameters: + config (`PatchTSTConfig`): model config + Returns: + x_mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) + Masked patched input + mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) + Bool tensor indicating True on masked points + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.random_mask_ratio = config.random_mask_ratio + self.channel_consistent_masking = config.channel_consistent_masking + self.mask_type = config.mask_type + self.num_forecast_mask_patches = config.num_forecast_mask_patches + self.unmasked_channel_indices = config.unmasked_channel_indices + self.mask_value = config.mask_value + if self.unmasked_channel_indices is not None: + self.unmasked_channel_indices = sorted(self.unmasked_channel_indices) + + def forward(self, patch_input: torch.Tensor): + """ + Parameters: + patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): + Patch input + + Return: + masked_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`) + Masked patched input + mask (`torch.Tensor` of shape `(batch_size, num_channels, num_patches)`) + Bool tensor indicating True on masked points + + """ + if self.mask_type == "random": + masked_input, mask = random_masking( + inputs=patch_input, + mask_ratio=self.random_mask_ratio, + unmasked_channel_indices=self.unmasked_channel_indices, + channel_consistent_masking=self.channel_consistent_masking, + mask_value=self.mask_value, + ) + elif self.mask_type == "forecast": + masked_input, mask = forecast_masking( + inputs=patch_input, + num_forecast_mask_patches=self.num_forecast_mask_patches, + unmasked_channel_indices=self.unmasked_channel_indices, + mask_value=self.mask_value, + ) + else: + raise ValueError(f"Invalid mask type {self.mask_type}.") + + # mask: [bs x num_input_channels x num_patch] + mask = mask.bool() + return masked_input, mask + + +class PatchTSTEncoderLayer(nn.Module): + """ + PatchTST encoder layer + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + + self.channel_attention = config.channel_attention + # Multi-Head attention + self.self_attn = PatchTSTAttention( + embed_dim=config.d_model, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + ) + + # Add & Norm of the sublayer 1 + self.dropout_path1 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() + if config.norm_type == "batchnorm": + self.norm_sublayer1 = PatchTSTBatchNorm(config) + elif config.norm_type == "layernorm": + self.norm_sublayer1 = nn.LayerNorm(config.d_model, eps=config.norm_eps) + else: + raise ValueError(f"{config.norm_type} is not a supported norm layer type.") + + # Add & Norm of the sublayer 2 + if self.channel_attention: + self.dropout_path2 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() + if config.norm_type == "batchnorm": + self.norm_sublayer2 = PatchTSTBatchNorm(config) + elif config.norm_type == "layernorm": + self.norm_sublayer2 = nn.LayerNorm(config.d_model, eps=config.norm_eps) + else: + raise ValueError(f"{config.norm_type} is not a supported norm layer type.") + + # Position-wise Feed-Forward + self.ff = nn.Sequential( + nn.Linear(config.d_model, config.ffn_dim, bias=config.bias), + ACT2CLS[config.activation_function](), + nn.Dropout(config.ff_dropout) if config.ff_dropout > 0 else nn.Identity(), + nn.Linear(config.ffn_dim, config.d_model, bias=config.bias), + ) + + # Add & Norm of sublayer 3 + self.dropout_path3 = nn.Dropout(config.path_dropout) if config.path_dropout > 0 else nn.Identity() + if config.norm_type == "batchnorm": + self.norm_sublayer3 = PatchTSTBatchNorm(config) + elif config.norm_type == "layernorm": + self.norm_sublayer3 = nn.LayerNorm(config.d_model, eps=config.norm_eps) + else: + raise ValueError(f"{config.norm_type} is not a supported norm layer type.") + + self.pre_norm = config.pre_norm + + def forward(self, hidden_state: torch.Tensor, output_attentions: Optional[bool] = None): + """ + Parameters: + hidden_state (`torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)`, *required*): + Past values of the time series + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + Return: + `torch.Tensor` of shape `(batch_size, num_channels, sequence_length, d_model)` + + """ + batch_size, num_input_channels, sequence_length, d_model = hidden_state.shape + + # First sublayer: attention across time + # hidden_states: [(bs*num_channels) x sequence_length x d_model] + hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model) + + if self.pre_norm: + ## Norm and Multi-Head attention and Add residual connection + attn_output, attn_weights, _ = self.self_attn( + hidden_states=self.norm_sublayer1(hidden_state), output_attentions=output_attentions + ) + # Add: residual connection with residual dropout + hidden_state = hidden_state + self.dropout_path1(attn_output) + else: + ## Multi-Head attention and Add residual connection and Norm - Standard Transformer from BERT + attn_output, attn_weights, _ = self.self_attn( + hidden_states=hidden_state, output_attentions=output_attentions + ) + # hidden_states: [(bs*num_channels) x sequence_length x d_model] + hidden_state = self.norm_sublayer1(hidden_state + self.dropout_path1(attn_output)) + + # hidden_state: [bs x num_channels x sequence_length x d_model] + hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model) + + # second sublayer: attention across variable at any given time + if self.channel_attention: + # hidden_state: [bs x sequence_length x num_channels x d_model] + hidden_state = hidden_state.transpose(2, 1).contiguous() + # hidden_state: [(bs*sequence_length) x num_channels x d_model] + hidden_state = hidden_state.view(batch_size * sequence_length, num_input_channels, d_model) + if self.pre_norm: + ## Norm and Multi-Head attention and Add residual connection + attn_output, channel_attn_weights, _ = self.self_attn( + hidden_states=self.norm_sublayer2(hidden_state), output_attentions=output_attentions + ) + # Add: residual connection with residual dropout + hidden_state = hidden_state + self.dropout_path2(attn_output) + else: + ## Multi-Head attention and Add residual connection and Norm + attn_output, channel_attn_weights, _ = self.self_attn( + hidden_states=hidden_state, output_attentions=output_attentions + ) + # hidden_states: [(bs*sequence_length) x num_channels x d_model] + hidden_state = self.norm_sublayer2(hidden_state + self.dropout_path2(attn_output)) + + # Reshape hidden state + # hidden_state: [bs x sequence_length x num_channels x d_model] + hidden_state = hidden_state.reshape(batch_size, sequence_length, num_input_channels, d_model) + # hidden_state: [bs x num_channels x sequence_length x d_model] + hidden_state = hidden_state.transpose(1, 2).contiguous() + + # Third sublayer: mixing across hidden + # hidden_state: [(batch_size*num_channels) x sequence_length x d_model] + hidden_state = hidden_state.view(batch_size * num_input_channels, sequence_length, d_model) + if self.pre_norm: + ## Norm and Position-wise Feed-Forward and Add residual connection + # Add: residual connection with residual dropout + hidden_state = hidden_state + self.dropout_path3(self.ff(self.norm_sublayer3(hidden_state))) + else: + ## Position-wise Feed-Forward and Add residual connection and Norm + # Add: residual connection with residual dropout + hidden_state = self.norm_sublayer3(hidden_state + self.dropout_path3(self.ff(hidden_state))) + + # [bs x num_channels x sequence_length x d_model] + hidden_state = hidden_state.reshape(batch_size, num_input_channels, sequence_length, d_model) + + outputs = (hidden_state,) + if output_attentions: + outputs += (attn_weights, channel_attn_weights) if self.channel_attention else (attn_weights,) + + return outputs + + +class PatchTSTPreTrainedModel(PreTrainedModel): + config_class = PatchTSTConfig + base_model_prefix = "model" + main_input_name = "past_values" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """ + Initialize weights + """ + if isinstance(module, PatchTSTPositionalEncoding): + # initialize cls_token + if self.config.use_cls_token: + nn.init.normal_(module.cls_token, std=0.02) + # initialize positional encoding + if self.config.positional_encoding_type == "random": + nn.init.normal_(module.position_enc, mean=0.0, std=0.1) + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, PatchTSTBatchNorm): + module.batchnorm.bias.data.zero_() + module.batchnorm.weight.data.fill_(1.0) + elif isinstance(module, (nn.Linear, nn.Conv1d)): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.bias is not None: + module.bias.data.zero_() + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, (PatchTSTEncoder)): + module.gradient_checkpointing = value + + +class PatchTSTEmbedding(nn.Module): + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.num_input_channels = config.num_input_channels + self.share_embedding = config.share_embedding + # Input encoding: projection of feature vectors onto a d-dim vector space + if self.share_embedding: + self.input_embedding = nn.Linear(config.patch_length, config.d_model) + else: + self.input_embedding = nn.ModuleList() + for _ in range(config.num_input_channels): + self.input_embedding.append(nn.Linear(config.patch_length, config.d_model)) + + def forward(self, patch_input: torch.Tensor): + """ + Parameters: + patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): + Patch input for embedding + return: + `torch.Tensor` of shape `(batch_size, num_channels, num_patches, d_model)` + """ + # Input encoding + num_input_channels = patch_input.shape[1] + if num_input_channels != self.num_input_channels: + raise ValueError( + f"The defined number of input channels ({self.num_input_channels}) in the config " + f"has to be the same as the number of channels in the batch input ({num_input_channels})" + ) + if self.share_embedding: + embeddings = self.input_embedding(patch_input) # x: [bs x num_channels x num_patches x d_model] + else: + embeddings = [self.input_embedding[i](patch_input[:, i, :, :]) for i in range(num_input_channels)] + embeddings = torch.stack(embeddings, dim=1) + return embeddings + + +class PatchTSTPositionalEncoding(nn.Module): + """ + Class for positional encoding + """ + + def __init__(self, config: PatchTSTConfig, num_patches: int): + super().__init__() + self.use_cls_token = config.use_cls_token + self.num_input_channels = config.num_input_channels + if config.use_cls_token: + # cls_token: [1 x num_input_channels x 1 x d_model] + self.cls_token = nn.Parameter(torch.zeros(1, 1, 1, config.d_model)) + num_patches += 1 + # postional encoding: [num_patches x d_model] + self.position_enc = self._init_pe(config, num_patches) + # Positional dropout + self.positional_dropout = ( + nn.Dropout(config.positional_dropout) if config.positional_dropout > 0 else nn.Identity() + ) + + @staticmethod + def _init_pe(config: PatchTSTConfig, num_patches: int) -> nn.Parameter: + # Positional encoding + if config.positional_encoding_type == "random": + position_enc = nn.Parameter(torch.randn(num_patches, config.d_model), requires_grad=True) + elif config.positional_encoding_type == "sincos": + position_enc = torch.zeros(num_patches, config.d_model) + position = torch.arange(0, num_patches).unsqueeze(1) + div_term = torch.exp(torch.arange(0, config.d_model, 2) * -(math.log(10000.0) / config.d_model)) + position_enc[:, 0::2] = torch.sin(position * div_term) + position_enc[:, 1::2] = torch.cos(position * div_term) + position_enc = position_enc - position_enc.mean() + position_enc = position_enc / (position_enc.std() * 10) + position_enc = nn.Parameter(position_enc, requires_grad=False) + else: + raise ValueError( + f"{config.positional_encoding_type} is not a valid positional encoder. Available types are 'random' and 'sincos'." + ) + return position_enc + + def forward(self, patch_input: torch.Tensor): + if self.use_cls_token: + # patch_input: [bs x num_channels x num_patches x d_model] + patch_input = self.positional_dropout(patch_input + self.position_enc[1:, :]) + # append cls token where cls_token: [1 x num_channels x 1 x d_model] + cls_token = self.cls_token + self.position_enc[:1, :] + # get the same copy of cls_token for all the samples in batch: [bs x num_channels x 1 x d_model] + cls_tokens = cls_token.expand(patch_input.shape[0], self.num_input_channels, -1, -1) + # hidden_state: [bs x num_channels x (num_patches+1) x d_model] + hidden_state = torch.cat((cls_tokens, patch_input), dim=2) + else: + # hidden_state: [bs x num_channels x num_patches x d_model] + hidden_state = self.positional_dropout(patch_input + self.position_enc) + return hidden_state + + +class PatchTSTEncoder(PatchTSTPreTrainedModel): + """ + PatchTST Encoder + """ + + def __init__(self, config: PatchTSTConfig, num_patches: int): + super().__init__(config) + self.gradient_checkpointing = False + + # Input embedding: projection of feature vectors onto a d-dim vector space + self.embedder = PatchTSTEmbedding(config) + # Positional encoding + self.positional_encoder = PatchTSTPositionalEncoding(config, num_patches) + # Encoder + self.layers = nn.ModuleList([PatchTSTEncoderLayer(config) for i in range(config.num_hidden_layers)]) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + patch_input: torch.Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + ) -> BaseModelOutput: + """ + Parameters: + patch_input (`torch.Tensor` of shape `(batch_size, num_channels, num_patches, patch_length)`, *required*): + Past values of the time series + output_hidden_states (bool, optional): Indicates if hidden states should be outputted. + output_attentions (bool, optional): Indicates if attentions should be outputted. + + return: + `BaseModelOutput` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + # Input embedding + patch_input = self.embedder(patch_input) + # Positional encoding + hidden_state = self.positional_encoder(patch_input) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for encoder_layer in self.layers: + if output_hidden_states: + encoder_states = encoder_states + (hidden_state,) + + layer_outputs = encoder_layer(hidden_state=hidden_state, output_attentions=output_attentions) + # get hidden state. hidden_state shape is [bs x num_channels x num_patches x d_model] + # or [bs x num_channels x (num_patches+1) x d_model] if use cls_token + hidden_state = layer_outputs[0] + # append attention matrix at each layer + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + # return past_values, hidden_states + return BaseModelOutput(last_hidden_state=hidden_state, hidden_states=encoder_states, attentions=all_attentions) + + +PATCHTST_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`PatchTSTConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@dataclass +class PatchTSTModelOutput(ModelOutput): + """ + Base class for model's outputs, with potential hidden states. + + Parameters: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, num_channels, height, width)`. Hidden-states of + the model at the output of each layer plus the optional initial embedding outputs. + mask: (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches)`, *optional*) + Bool masked tensor indicating which patches are masked + loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) + Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length + scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) + Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length + patch_input (`torch.FloatTensor` of shape `(batch_size, num_channels, num_patches, patch_length)`): + Patched input to the Transformer + """ + + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + mask: torch.FloatTensor = None + loc: torch.FloatTensor = None + scale: torch.FloatTensor = None + patch_input: torch.FloatTensor = None + + +@dataclass +class PatchTSTForPretrainingOutput(ModelOutput): + """ + Output type of [`PatchTSTForPretraining`]. + + Parameters: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + MSE loss. + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction outputs of the time series modeling heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_output: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class PatchTSTForRegressionOutput(ModelOutput): + """ + Output type of [`PatchTSTForRegression`]. + + Parameters: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + MSE loss. + regression_outputs (`torch.FloatTensor` of shape `(batch_size, num_targets)`): + Regression outputs of the time series modeling heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + regression_outputs: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class PatchTSTForPredictionOutput(ModelOutput): + """ + Output type of [`PatchTSTForPrediction`]. + + Parameters: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + MSE loss. + prediction_outputs (`torch.FloatTensor` of shape `(batch_size, prediction_length, -1)`): + Prediction outputs of the time series modeling heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + loc: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) + Mean of the input data (batch_size, sequence_length, num_channels) over the sequence_length + scale: (`torch.FloatTensor` of shape `(batch_size, 1, num_channels)`, *optional*) + Std of the input data (batch_size, sequence_length, num_channels) over the sequence_length + """ + + loss: Optional[torch.FloatTensor] = None + prediction_outputs: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + loc: torch.FloatTensor = None + scale: torch.FloatTensor = None + + +@dataclass +class PatchTSTForClassificationOutput(ModelOutput): + """ + Output type of [`PatchTSTForClassification`]. + + Parameters: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, num_targets)`): + Prediction scores of the PatchTST modeling head (scores before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class SamplePatchTSTOutput(ModelOutput): + """ + Base class for time series model's predictions outputs that contains the sampled values from the chosen + distribution. + + Parameters: + sequences `(batch_size, num_samples, prediction_length, num_targets)`): + Sampled values from the chosen distribution. + """ + + sequences: torch.FloatTensor = None + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll +def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor: + """ + Computes the negative log likelihood loss from input distribution with respect to target. + """ + return -input.log_prob(target) + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average +def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor: + """ + Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, + meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. + + Args: + input_tensor (`torch.FloatTensor`): + Input tensor, of which the average must be computed. + weights (`torch.FloatTensor`, *optional*): + Weights tensor, of the same shape as `input_tensor`. + dim (`int`, *optional*): + The dim along which to average `input_tensor`. + + Returns: + `torch.FloatTensor`: The tensor with values averaged along the specified `dim`. + """ + if weights is not None: + weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) + sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) + return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights + else: + return input_tensor.mean(dim=dim) + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST +class PatchTSTStdScaler(nn.Module): + """ + Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by + subtracting from the mean and dividing by the standard deviation. + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Calculating the scale on the observed indicator. + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) + denominator = denominator.clamp_min(1.0) + loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator + + variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator + scale = torch.sqrt(variance + self.minimum_scale) + return (data - loc) / scale, loc, scale + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST +class PatchTSTMeanScaler(nn.Module): + """ + Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data + accordingly. + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 + self.default_scale = config.default_scale if hasattr(config, "default_scale") else None + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Calculating the scale on the observed indicator. + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) + num_observed = observed_indicator.sum(self.dim, keepdim=True) + + scale = ts_sum / torch.clamp(num_observed, min=1) + + # If `default_scale` is provided, we use it, otherwise we use the scale + # of the batch. + if self.default_scale is None: + batch_sum = ts_sum.sum(dim=0) + batch_observations = torch.clamp(num_observed.sum(0), min=1) + default_scale = torch.squeeze(batch_sum / batch_observations) + else: + default_scale = self.default_scale * torch.ones_like(scale) + + # apply default scale where there are no observations + scale = torch.where(num_observed > 0, scale, default_scale) + + # ensure the scale is at least `self.minimum_scale` + scale = torch.clamp(scale, min=self.minimum_scale) + scaled_data = data / scale + + if not self.keepdim: + scale = scale.squeeze(dim=self.dim) + + return scaled_data, torch.zeros_like(scale), scale + + +# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->PatchTST,TimeSeries->PatchTST +class PatchTSTNOPScaler(nn.Module): + """ + Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 + self.keepdim = config.keepdim if hasattr(config, "keepdim") else True + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor = None + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + input for Batch norm calculation + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, num_input_channels)`) + """ + scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) + loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) + return data, loc, scale + + +class PatchTSTScaler(nn.Module): + def __init__(self, config: PatchTSTConfig): + super().__init__() + if config.scaling == "mean" or config.scaling is True: + self.scaler = PatchTSTMeanScaler(config) + elif config.scaling == "std": + self.scaler = PatchTSTStdScaler(config) + else: + self.scaler = PatchTSTNOPScaler(config) + + def forward( + self, data: torch.Tensor, observed_indicator: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Parameters: + data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Input for scaler calculation + observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Calculating the scale on the observed indicator. + Returns: + tuple of `torch.Tensor` of shapes + (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, + `(batch_size, 1, um_input_channels)`) + """ + data, loc, scale = self.scaler(data, observed_indicator) + return data, loc, scale + + +@add_start_docstrings( + "The bare PatchTST Model outputting raw hidden-states without any specific head.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTModel(PatchTSTPreTrainedModel): + def __init__(self, config: PatchTSTConfig): + super().__init__(config) + + self.scaler = PatchTSTScaler(config) + self.patchifier = PatchTSTPatchify(config) + self.do_mask_input = config.do_mask_input + # get num_patches information from PatchTSTPatchify + num_patches = self.patchifier.num_patches + + if self.do_mask_input: + self.masking = PatchTSTMasking(config) + else: + self.masking = nn.Identity() + self.encoder = PatchTSTEncoder(config, num_patches=num_patches) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + past_values: torch.Tensor, + past_observed_mask: Optional[torch.Tensor] = None, + future_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PatchTSTModelOutput]: + r""" + Parameters: + past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): + Input sequence to the model + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + future_values (`torch.BoolTensor` of shape `(batch_size, prediction_length, num_input_channels)`, *optional*): + Future target values associated with the `past_values` + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + return_dict (`bool`, *optional*): + Whether or not to return a `ModelOutput` instead of a plain tuple. + + Returns: + `PatchTSTModelOutput` or tuple of `torch.Tensor` (if `return_dict`=False or `config.return_dict`=False) + + Examples: + + ```python + >>> from huggingface_hub import hf_hub_download + >>> import torch + >>> from transformers import PatchTSTModel + + >>> file = hf_hub_download( + ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" + ... ) + >>> batch = torch.load(file) + + >>> model = PatchTSTModel.from_pretrained("namctin/patchtst_etth1_pretrain") + + >>> # during training, one provides both past and future values + >>> outputs = model( + ... past_values=batch["past_values"], + ... future_values=batch["future_values"], + ... ) + + >>> last_hidden_state = outputs.last_hidden_state + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if past_observed_mask is None: + past_observed_mask = torch.ones_like(past_values) + + # x: tensor [bs x sequence_length x num_input_channels] + scaled_past_values, loc, scale = self.scaler(past_values, past_observed_mask) + + # patched_values: [bs x num_input_channels x num_patches x patch_length] for pretrain + patched_values = self.patchifier(scaled_past_values) + if self.do_mask_input: + masked_values, mask = self.masking(patched_values) + else: + masked_values, mask = self.masking(patched_values), None + + encoder_output = self.encoder( + patch_input=masked_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions + ) + + if not return_dict: + outputs = (encoder_output.last_hidden_state, encoder_output.hidden_states, encoder_output.attentions) + outputs = outputs + (mask, loc, scale, patched_values) + return tuple(v for v in outputs if v is not None) + + return PatchTSTModelOutput( + last_hidden_state=encoder_output.last_hidden_state, + hidden_states=encoder_output.hidden_states, + attentions=encoder_output.attentions, + mask=mask, + loc=loc, + scale=scale, + patch_input=patched_values, + ) + + +class PatchTSTMaskPretrainHead(nn.Module): + """ + Pretraining head for mask modelling + """ + + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.dropout = nn.Dropout(config.dropout) + self.linear = nn.Linear(config.d_model, config.patch_length) + self.use_cls_token = config.use_cls_token + + def forward(self, embedding: torch.Tensor) -> torch.Tensor: + """ + Parameters: + embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or + `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): + Embedding from the model + Returns: + `torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or + `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True + + """ + embedding = self.linear(self.dropout(embedding)) # [bs x num_channels x num_patches x patch_length] + if self.use_cls_token: + embedding = embedding[:, :, 1:, :] # remove the first cls token + return embedding + + +@add_start_docstrings( + "The PatchTST for pretrain model.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTForPretraining(PatchTSTPreTrainedModel): + def __init__(self, config: PatchTSTConfig): + super().__init__(config) + + config.do_mask_input = True + self.model = PatchTSTModel(config=config) + self.head = PatchTSTMaskPretrainHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + past_values: torch.Tensor, + past_observed_mask: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PatchTSTForPretrainingOutput]: + r""" + Parameters: + past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): + Input sequence to the model + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + return_dict (`bool`, *optional*): Whether or not to return a `ModelOutput` instead of a plain tuple. + + Returns: + `PatchTSTForPretrainingOutput` or tuple of `torch.Tensor` (if `return_dict`=False or + `config.return_dict`=False) + + Examples: + + ```python + >>> from huggingface_hub import hf_hub_download + >>> import torch + >>> from transformers import PatchTSTConfig, PatchTSTForPretraining + + >>> file = hf_hub_download( + ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" + ... ) + >>> batch = torch.load(file) + + >>> # Config for random mask pretraining + >>> config = PatchTSTConfig( + ... num_input_channels=7, + ... context_length=512, + ... patch_length=12, + ... stride=12, + ... mask_type='random', + ... random_mask_ratio=0.4, + ... use_cls_token=True, + ... ) + >>> # Config for forecast mask pretraining + >>> config = PatchTSTConfig( + ... num_input_channels=7, + ... context_length=512, + ... patch_length=12, + ... stride=12, + ... mask_type='forecast', + ... num_forecast_mask_patches=5, + ... use_cls_token=True, + ... ) + >>> model = PatchTSTForPretraining(config) + + >>> # during training, one provides both past and future values + >>> outputs = model(past_values=batch["past_values"]) + + >>> loss = outputs.loss + >>> loss.backward() + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # past_values: [bs x num_channels x num_patches x d_model] or + # [bs x num_channels x (num_patches+1) x d_model] if use cls_token + model_output = self.model( + past_values=past_values, + past_observed_mask=past_observed_mask, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=True, + ) + + # last_hidden_state: [bs x num_channels x num_patches x patch_length] or + # [bs x num_channels x (num_patches+1) x patch_length] if use cls_token + x_hat = self.head(model_output.last_hidden_state) + + # calculate masked_loss + loss = nn.MSELoss(reduction="none") + loss_val = loss(x_hat, model_output.patch_input) + masked_loss = (loss_val.mean(dim=-1) * model_output.mask).sum() / (model_output.mask.sum() + 1e-10) + + encoder_states = model_output.hidden_states + if not return_dict: + outputs = (x_hat,) + model_output[1:-4] + outputs = (masked_loss,) + outputs if masked_loss is not None else outputs + return outputs + return PatchTSTForPretrainingOutput( + loss=masked_loss, prediction_output=x_hat, hidden_states=encoder_states, attentions=model_output.attentions + ) + + +class PatchTSTClassificationHead(nn.Module): + def __init__(self, config: PatchTSTConfig): + super().__init__() + self.use_cls_token = config.use_cls_token + self.pooling_type = config.pooling_type + self.flatten = nn.Flatten(start_dim=1) + self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() + self.linear = nn.Linear(config.num_input_channels * config.d_model, config.num_targets) + + def forward(self, embedding: torch.Tensor): + """ + Parameters: + embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or + `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): + Embedding from the model + Returns: + `torch.Tensor` of shape `(bs, num_targets)` + + """ + if self.use_cls_token: + # use the first output token, pooled_embedding: bs x num_channels x d_model + pooled_embedding = embedding[:, :, 0, :] + elif self.pooling_type == "mean": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.mean(dim=2) + elif self.pooling_type == "max": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.max(dim=2).values + else: + raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") + # pooled_embedding: bs x num_channels * d_model + pooled_embedding = self.flatten(pooled_embedding) + # output: bs x n_classes + output = self.linear(self.dropout(pooled_embedding)) + return output + + +@add_start_docstrings( + "The PatchTST for classification model.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTForClassification(PatchTSTPreTrainedModel): + def __init__(self, config: PatchTSTConfig): + super().__init__(config) + + # Turn off masking + if config.do_mask_input: + logger.warning("Setting `do_mask_input` parameter to False.") + config.do_mask_input = False + + self.model = PatchTSTModel(config) + self.head = PatchTSTClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + past_values: torch.Tensor, + target_values: torch.Tensor = None, + past_observed_mask: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, PatchTSTForClassificationOutput]: + r""" + Parameters: + past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): + Input sequence to the model + target_values (`torch.Tensor`, *optional*): + Labels associates with the `past_values` + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + return_dict (`bool`, *optional*): + Whether or not to return a `ModelOutput` instead of a plain tuple. + + Returns: + `PatchTSTForClassificationOutput` or tuple of `torch.Tensor` (if `return_dict`=False or + `config.return_dict`=False) + + Examples: + + ```python + >>> from transformers import PatchTSTConfig, PatchTSTForClassification + + >>> # classification task with two input channel2 and 3 classes + >>> config = PatchTSTConfig( + ... num_input_channels=2, + ... num_targets=3, + ... context_length=512, + ... patch_length=12, + ... stride=12, + ... use_cls_token=True, + ... ) + >>> model = PatchTSTForClassification(config=config) + + >>> # during inference, one only provides past values + >>> past_values = torch.randn(20, 512, 2) + >>> outputs = model(past_values=past_values) + >>> labels = outputs.prediction_logits + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + model_output = self.model( + past_values=past_values, + past_observed_mask=past_observed_mask, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=True, + ) + y_hat = self.head(model_output.last_hidden_state) + + loss_val = None + if target_values is not None: + loss = nn.CrossEntropyLoss() + loss_val = loss(y_hat, target_values) + + if not return_dict: + outputs = (y_hat,) + model_output[1:-3] + outputs = (loss_val,) + outputs if loss_val is not None else outputs + return outputs + return PatchTSTForClassificationOutput( + loss=loss_val, + prediction_logits=y_hat, + hidden_states=model_output.hidden_states, + attentions=model_output.attentions, + ) + + +@add_start_docstrings( + "The PatchTST for regression Model.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTPredictionHead(nn.Module): + def __init__(self, config: PatchTSTConfig, num_patches, distribution_output=None): + super().__init__() + + self.share_projection = config.share_projection + self.num_input_channels = config.num_input_channels + self.use_cls_token = config.use_cls_token + self.pooling_type = config.pooling_type + if self.pooling_type or self.use_cls_token: + head_dim = config.d_model + else: + head_dim = config.d_model * num_patches + + if not self.share_projection: + # if each channel has its own head + self.projections = nn.ModuleList() + self.dropouts = nn.ModuleList() + self.flattens = nn.ModuleList() + for i in range(self.num_input_channels): + self.flattens.append(nn.Flatten(start_dim=2)) + if distribution_output is None: + # use linear head + self.projections.append(nn.Linear(head_dim, config.prediction_length)) + else: + # use distribution head + self.projections.append(distribution_output.get_parameter_projection(head_dim)) + self.dropouts.append(nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity()) + else: + # all the channels share the same head + self.flatten = nn.Flatten(start_dim=2) + if distribution_output is None: + # use linear head + self.projection = nn.Linear(head_dim, config.prediction_length) + else: + # use distribution head + self.projection = distribution_output.get_parameter_projection(head_dim) + self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() + + def forward(self, embedding: torch.Tensor): + """ + Parameters: + embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or + `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): + Embedding from the model + Returns: + `torch.Tensor` of shape `(bs, forecast_len, num_channels)` + + """ + if self.use_cls_token: + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding[:, :, 0, :] + else: + if self.pooling_type == "mean": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.mean(dim=2) + elif self.pooling_type == "max": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.max(dim=2).values + else: + # pooled_embedding: [bs x num_channels x num_patches x d_model] + pooled_embedding = embedding + + if not self.share_projection: + output = [] + for i in range(self.num_input_channels): + # pooled_embedding: [bs x (d_model * num_patches)] or [bs x d_model)] + pooled_embedding = self.flattens[i](pooled_embedding[:, i, :]) + pooled_embedding = self.dropouts[i](pooled_embedding) + # pooled_embedding: [bs x forecast_len] + # or tuple ([bs x forecast_len], [bs x forecast_len]) if using distribution head + pooled_embedding = self.projections[i](pooled_embedding) + output.append(pooled_embedding) + # output: [bs x num_channels x forecast_len] + output = torch.stack(output, dim=1) + else: + # pooled_embedding: [bs x num_channels x (d_model * num_patches)] or [bs x num_channels x d_model)] + pooled_embedding = self.flatten(pooled_embedding) + pooled_embedding = self.dropout(pooled_embedding) + # output: [bs x num_channels x forecast_len] or + # tuple ([bs x num_channels x forecast_len], [bs x num_channels x forecast_len]) if using distribution head + output = self.projection(pooled_embedding) + + if isinstance(output, tuple): + # output: ([bs x forecast_len x num_channels], [bs x forecast_len x num_channels]) + output = tuple(z.transpose(2, 1) for z in output) + else: + output = output.transpose(2, 1) # [bs x forecast_len x num_channels] + return output + + +@add_start_docstrings( + "The PatchTST for prediction model.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTForPrediction(PatchTSTPreTrainedModel): + def __init__(self, config: PatchTSTConfig): + super().__init__(config) + + # Turn off masking + if config.do_mask_input: + logger.warning("Setting `do_mask_input` parameter to False.") + config.do_mask_input = False + + self.model = PatchTSTModel(config) + + if config.loss == "mse": + self.distribution_output = None + else: + if config.distribution_output == "student_t": + self.distribution_output = StudentTOutput(dim=config.prediction_length) + elif config.distribution_output == "normal": + self.distribution_output = NormalOutput(dim=config.prediction_length) + elif config.distribution_output == "negative_binomial": + self.distribution_output = NegativeBinomialOutput(dim=config.prediction_length) + else: + raise ValueError(f"Unknown distribution output {config.distribution_output}") + + self.head = PatchTSTPredictionHead( + config, self.model.patchifier.num_patches, distribution_output=self.distribution_output + ) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + past_values: torch.Tensor, + past_observed_mask: Optional[torch.Tensor] = None, + future_values: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PatchTSTForPredictionOutput]: + r""" + Parameters: + past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): + Input sequence to the model + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + future_values (`torch.Tensor` of shape `(bs, forecast_len, num_input_channels)`, *optional*): + Future target values associated with the `past_values` + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + return_dict (`bool`, *optional*): + Whether or not to return a `ModelOutput` instead of a plain tuple. + + Returns: + `PatchTSTForPredictionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or + `config.return_dict`=False) + + Examples: + + ```python + >>> from huggingface_hub import hf_hub_download + >>> import torch + >>> from transformers import PatchTSTConfig, PatchTSTForPrediction + + >>> file = hf_hub_download( + ... repo_id="hf-internal-testing/etth1-hourly-batch", filename="train-batch.pt", repo_type="dataset" + ... ) + >>> batch = torch.load(file) + + >>> # Prediction task with 7 input channels and prediction length is 96 + >>> model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast") + + >>> # during training, one provides both past and future values + >>> outputs = model( + ... past_values=batch["past_values"], + ... future_values=batch["future_values"], + ... ) + + >>> loss = outputs.loss + >>> loss.backward() + + >>> # during inference, one only provides past values, the model outputs future values + >>> outputs = model(past_values=batch["past_values"]) + >>> prediction_outputs = outputs.prediction_outputs + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # get model output + model_output = self.model( + past_values=past_values, + past_observed_mask=past_observed_mask, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=True, + ) + # get output head + y_hat = self.head(model_output.last_hidden_state) + + loss_val = None + + if self.distribution_output: + y_hat_out = y_hat + else: + y_hat_out = y_hat * model_output.scale + model_output.loc + + if future_values is not None: + if self.distribution_output: + distribution = self.distribution_output.distribution( + y_hat, loc=model_output.loc, scale=model_output.scale + ) + loss_val = nll(distribution, future_values) + # take average of the loss + loss_val = weighted_average(loss_val) + else: + loss = nn.MSELoss(reduction="mean") + loss_val = loss(y_hat_out, future_values) + + loc = model_output.loc + scale = model_output.scale + + if not return_dict: + outputs = (y_hat_out,) + model_output[1:-1] + outputs = (loss_val,) + outputs if loss_val is not None else outputs + return outputs + return PatchTSTForPredictionOutput( + loss=loss_val, + prediction_outputs=y_hat_out, + hidden_states=model_output.hidden_states, + attentions=model_output.attentions, + loc=loc, + scale=scale, + ) + + def generate( + self, + past_values: torch.Tensor, + past_observed_mask: Optional[torch.Tensor] = None, + ) -> SamplePatchTSTOutput: + """ + Generate sequences of sample predictions from a model with a probability distribution head. + + Parameters: + past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Past values of the time series that serves as context in order to predict the future. + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + + Return: + [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of + samples, prediction_length, 1)` or `(batch_size, number of samples, prediction_length, num_input_channels)` + for multivariate predictions. + """ + # get number of samples + num_parallel_samples = self.config.num_parallel_samples + + # get model output + outputs = self( + past_values=past_values, + future_values=None, + past_observed_mask=past_observed_mask, + output_hidden_states=False, + ) + if self.distribution_output: + # get distribution + distribution = self.distribution_output.distribution( + outputs.prediction_outputs, loc=outputs.loc, scale=outputs.scale + ) + # get samples: list of [bs x forecast_len x num_channels] + samples = [distribution.sample() for _ in range(num_parallel_samples)] + # samples: [bs x num_samples x forecast_len x num_channels] + samples = torch.stack(samples, dim=1) + else: + samples = outputs.prediction_outputs.unsqueeze(1) + + return SamplePatchTSTOutput(sequences=samples) + + +class PatchTSTRegressionHead(nn.Module): + """ + Regression head + """ + + def __init__(self, config: PatchTSTConfig, distribution_output=None): + super().__init__() + self.y_range = config.output_range + self.use_cls_token = config.use_cls_token + self.pooling_type = config.pooling_type + self.distribution_output = distribution_output + + head_dim = config.num_input_channels * config.d_model + + self.flatten = nn.Flatten(start_dim=1) + self.dropout = nn.Dropout(config.head_dropout) if config.head_dropout > 0 else nn.Identity() + + if distribution_output is None: + self.projection = nn.Linear(head_dim, config.num_targets) + else: + self.projection = distribution_output.get_parameter_projection(head_dim) + + def forward(self, embedding: torch.Tensor): + """ + Parameters: + embedding (`torch.Tensor` of shape `(bs, num_channels, num_patches, d_model)` or + `(bs, num_channels, num_patches+1, d_model)` if `cls_token` is set to True, *required*): + Embedding from the model + Returns: + `torch.Tensor` of shape `(bs, output_dim)` + + """ + if self.use_cls_token: + # use the first output token, pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding[:, :, 0, :] + elif self.pooling_type == "mean": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.mean(dim=2) + elif self.pooling_type == "max": + # pooled_embedding: [bs x num_channels x d_model] + pooled_embedding = embedding.max(dim=2).values + else: + raise ValueError(f"pooling operator {self.pooling_type} is not implemented yet") + # flatten the input + # pooled_embedding: bs x (num_channels * d_model) + pooled_embedding = self.dropout(self.flatten(pooled_embedding)) + # projection + # output: bs x output_dim or a tuple of this shape for distribution head + output = self.projection(pooled_embedding) + # apply sigmoid to bound the output if required + if (self.distribution_output is None) & (self.y_range is not None): # linear head + output = torch.sigmoid(output) * (self.y_range[1] - self.y_range[0]) + self.y_range[0] + return output + + +@add_start_docstrings( + "The PatchTST for regression model.", + PATCHTST_START_DOCSTRING, +) +class PatchTSTForRegression(PatchTSTPreTrainedModel): + def __init__(self, config: PatchTSTConfig): + super().__init__(config) + + # Turn off masking + if config.do_mask_input: + logger.warning("Setting `do_mask_input` parameter to False.") + config.do_mask_input = False + + self.model = PatchTSTModel(config) + if config.loss == "mse": + self.distribution_output = None + else: + if config.distribution_output == "student_t": + self.distribution_output = StudentTOutput(dim=config.num_targets) + elif config.distribution_output == "normal": + self.distribution_output = NormalOutput(dim=config.num_targets) + elif config.distribution_output == "negative_binomial": + self.distribution_output = NegativeBinomialOutput(dim=config.num_targets) + else: + raise ValueError(f"Unknown distribution output {config.distribution_output}") + + self.head = PatchTSTRegressionHead(config, self.distribution_output) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + past_values: torch.Tensor, + target_values: torch.Tensor = None, + past_observed_mask: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, PatchTSTForRegressionOutput]: + r""" + Parameters: + past_values (`torch.Tensor` of shape `(bs, sequence_length, num_input_channels)`, *required*): + Input sequence to the model + target_values (`torch.Tensor` of shape `(bs, num_input_channels)`): + Target values associates with the `past_values` + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers + output_attentions (`bool`, *optional*): + Whether or not to return the output attention of all layers + return_dict (`bool`, *optional*): + Whether or not to return a `ModelOutput` instead of a plain tuple. + + Returns: + `PatchTSTForRegressionOutput` or tuple of `torch.Tensor` (if `return_dict`=False or + `config.return_dict`=False) + + Examples: + + ```python + >>> from transformers import PatchTSTConfig, PatchTSTForRegression + + >>> # Regression task with 6 input channels and regress 2 targets + >>> model = PatchTSTForRegression.from_pretrained("namctin/patchtst_etth1_regression") + + >>> # during inference, one only provides past values, the model outputs future values + >>> past_values = torch.randn(20, 512, 6) + >>> outputs = model(past_values=past_values) + >>> regression_outputs = outputs.regression_outputs + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + model_output = self.model( + past_values=past_values, + past_observed_mask=past_observed_mask, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=True, + ) + # get output head. y_hat is of shape [bs x num_targets] or tuple of this shape + y_hat = self.head(model_output.last_hidden_state) + + loss = None + if target_values is not None: + if self.distribution_output: + distribution = self.distribution_output.distribution(y_hat) + # y_hat should be a 2-tuple, each with dimension [bs, num_targets] + y_hat = tuple([item.view(-1, self.config.num_targets) for item in y_hat]) + loss = nll(distribution, target_values) + # take average of the loss + loss = weighted_average(loss) + else: + loss = nn.MSELoss(reduction="mean") + loss = loss(y_hat, target_values) + + if not return_dict: + # hidden_states, attentions, mask + outputs = (y_hat,) + model_output[1:-3] + outputs = (loss,) + outputs if loss is not None else outputs + return outputs + return PatchTSTForRegressionOutput( + loss=loss, + regression_outputs=y_hat, + hidden_states=model_output.hidden_states, + attentions=model_output.attentions, + ) + + def generate( + self, + past_values: torch.Tensor, + past_observed_mask: Optional[torch.Tensor] = None, + ) -> SamplePatchTSTOutput: + """ + Generate sequences of sample predictions from a model with a probability distribution head. + + Parameters: + past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_input_channels)`): + Past values of the time series that serves as context in order to predict the future. + past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`, *optional*): + Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected + in `[0, 1]`: + + - 1 for values that are **observed**, + - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). + + Return: + [`SamplePatchTSTOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of + samples, num_targets)`. + """ + # get number of samples + num_parallel_samples = self.config.num_parallel_samples + + # get model output + outputs = self( + past_values=past_values, + target_values=None, + past_observed_mask=past_observed_mask, + output_hidden_states=False, + ) + + # get distribution + distribution = self.distribution_output.distribution(outputs.regression_outputs) + # get samples: list of [bs x num_targets] + samples = [distribution.sample() for _ in range(num_parallel_samples)] + # samples: [bs x num_samples x num_targets] + samples = torch.stack(samples, dim=1).view(-1, num_parallel_samples, self.config.num_targets) + return SamplePatchTSTOutput(sequences=samples) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2800fa17076e6ea069eb943c558678e7cf4c61b5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/__init__.py @@ -0,0 +1,63 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_torch_available, +) + + +_import_structure = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_unispeech"] = [ + "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", + "UniSpeechForCTC", + "UniSpeechForPreTraining", + "UniSpeechForSequenceClassification", + "UniSpeechModel", + "UniSpeechPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_unispeech import ( + UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, + UniSpeechForCTC, + UniSpeechForPreTraining, + UniSpeechForSequenceClassification, + UniSpeechModel, + UniSpeechPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/configuration_unispeech.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/configuration_unispeech.py new file mode 100644 index 0000000000000000000000000000000000000000..25a003ae9f5f9a3f9c4716ccbf330b1a827a1db9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/configuration_unispeech.py @@ -0,0 +1,309 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" UniSpeech model configuration""" + +import functools +import operator + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class UniSpeechConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an + UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the UniSpeech + [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32): + Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`UniSpeechModel`]. Vocabulary size of the model. Defines the + different tokens that can be represented by the *inputs_ids* passed to the forward method of + [`UniSpeechModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the feature encoder. + feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for the output of the feature encoder that's used by the quantizer. + final_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the final projection layer of [`UniSpeechForCTC`]. + layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more + details. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + feat_extract_norm (`str`, *optional*, defaults to `"group"`): + The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group + normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D + convolutional layers. + feat_extract_activation (`str, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): + A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length + of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The + length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + do_stable_layer_norm (`bool`, *optional*, defaults to `False`): + Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is + True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is + False` corresponds to applying layer norm after the attention layer. + apply_spec_augment (`bool`, *optional*, defaults to `True`): + Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see + [SpecAugment: A Simple Data Augmentation Method for Automatic Speech + Recognition](https://arxiv.org/abs/1904.08779). + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2): + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0): + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + num_codevectors_per_group (`int`, *optional*, defaults to 320): + Number of entries in each quantization codebook (group). + num_codevector_groups (`int`, *optional*, defaults to 2): + Number of codevector groups for product codevector quantization. + contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): + The temperature *kappa* in the contrastive loss. + num_negatives (`int`, *optional*, defaults to 100): + Number of negative samples for the contrastive loss. + codevector_dim (`int`, *optional*, defaults to 256): + Dimensionality of the quantized feature vectors. + proj_codevector_dim (`int`, *optional*, defaults to 256): + Dimensionality of the final projection of both the quantized and the transformer features. + diversity_loss_weight (`int`, *optional*, defaults to 0.1): + The weight of the codebook diversity loss component. + ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`): + Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an + instance of [`UniSpeechForCTC`]. + ctc_zero_infinity (`bool`, *optional*, defaults to `False`): + Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly + occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance + of [`UniSpeechForCTC`]. + use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): + Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an + instance of [`UniSpeechForSequenceClassification`]. + classifier_proj_size (`int`, *optional*, defaults to 256): + Dimensionality of the projection before token mean-pooling for classification. + num_ctc_classes (`int`, *optional*, defaults to 80): + Specifies the number of classes (phoneme tokens and blank token) for phoneme-level CTC loss. Only relevant + when using an instance of [`UniSpeechForPreTraining`]. + pad_token_id (`int`, *optional*, defaults to 0): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + replace_prob (`float`, *optional*, defaults to 0.5): + Propability that transformer feature is replaced by quantized feature for pretraining. + + Example: + + ```python + >>> from transformers import UniSpeechConfig, UniSpeechModel + + >>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration + >>> configuration = UniSpeechConfig() + + >>> # Initializing a model (with random weights) from the facebook/unispeech-base-960h style configuration + >>> model = UniSpeechModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "unispeech" + + def __init__( + self, + vocab_size=32, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout=0.1, + activation_dropout=0.1, + attention_dropout=0.1, + feat_proj_dropout=0.0, + feat_quantizer_dropout=0.0, + final_dropout=0.1, + layerdrop=0.1, + initializer_range=0.02, + layer_norm_eps=1e-5, + feat_extract_norm="group", + feat_extract_activation="gelu", + conv_dim=(512, 512, 512, 512, 512, 512, 512), + conv_stride=(5, 2, 2, 2, 2, 2, 2), + conv_kernel=(10, 3, 3, 3, 3, 2, 2), + conv_bias=False, + num_conv_pos_embeddings=128, + num_conv_pos_embedding_groups=16, + do_stable_layer_norm=False, + apply_spec_augment=True, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + num_codevectors_per_group=320, + num_codevector_groups=2, + contrastive_logits_temperature=0.1, + num_negatives=100, + codevector_dim=256, + proj_codevector_dim=256, + diversity_loss_weight=0.1, + ctc_loss_reduction="mean", + ctc_zero_infinity=False, + use_weighted_layer_sum=False, + classifier_proj_size=256, + num_ctc_classes=80, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + replace_prob=0.5, + **kwargs, + ): + super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) + self.hidden_size = hidden_size + self.feat_extract_norm = feat_extract_norm + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.num_feat_extract_layers = len(self.conv_dim) + self.num_hidden_layers = num_hidden_layers + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.num_attention_heads = num_attention_heads + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.feat_proj_dropout = feat_proj_dropout + self.final_dropout = final_dropout + self.layerdrop = layerdrop + self.layer_norm_eps = layer_norm_eps + self.initializer_range = initializer_range + self.num_ctc_classes = num_ctc_classes + self.vocab_size = vocab_size + self.do_stable_layer_norm = do_stable_layer_norm + self.use_weighted_layer_sum = use_weighted_layer_sum + self.classifier_proj_size = classifier_proj_size + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" + " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" + f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," + f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.apply_spec_augment = apply_spec_augment + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + # parameters for pretraining with codevector quantized representations + self.num_codevectors_per_group = num_codevectors_per_group + self.num_codevector_groups = num_codevector_groups + self.contrastive_logits_temperature = contrastive_logits_temperature + self.feat_quantizer_dropout = feat_quantizer_dropout + self.num_negatives = num_negatives + self.codevector_dim = codevector_dim + self.proj_codevector_dim = proj_codevector_dim + self.diversity_loss_weight = diversity_loss_weight + + # ctc loss + self.ctc_loss_reduction = ctc_loss_reduction + self.ctc_zero_infinity = ctc_zero_infinity + + # pretraining loss + self.replace_prob = replace_prob + + @property + def inputs_to_logits_ratio(self): + return functools.reduce(operator.mul, self.conv_stride, 1) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/convert_unispeech_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/convert_unispeech_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..bf729309515eac5a5132e415de301495d9cca085 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/convert_unispeech_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,274 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert UniSpeech checkpoint.""" + + +import argparse +import json +import os + +import fairseq +import torch +from fairseq.data import Dictionary + +from transformers import ( + UniSpeechConfig, + UniSpeechForCTC, + UniSpeechForPreTraining, + Wav2Vec2FeatureExtractor, + Wav2Vec2PhonemeCTCTokenizer, + Wav2Vec2Processor, + logging, +) + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +MAPPING = { + "post_extract_proj": "feature_projection.projection", + "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", + "self_attn.k_proj": "encoder.layers.*.attention.k_proj", + "self_attn.v_proj": "encoder.layers.*.attention.v_proj", + "self_attn.q_proj": "encoder.layers.*.attention.q_proj", + "self_attn.out_proj": "encoder.layers.*.attention.out_proj", + "self_attn_layer_norm": "encoder.layers.*.layer_norm", + "fc1": "encoder.layers.*.feed_forward.intermediate_dense", + "fc2": "encoder.layers.*.feed_forward.output_dense", + "final_layer_norm": "encoder.layers.*.final_layer_norm", + "encoder.layer_norm": "encoder.layer_norm", + "w2v_model.layer_norm": "feature_projection.layer_norm", + "quantizer.weight_proj": "quantizer.weight_proj", + "quantizer.vars": "quantizer.codevectors", + "project_q": "project_q", + "final_proj": "project_hid", + "w2v_encoder.proj": "ctc_proj", + "mask_emb": "masked_spec_embed", +} +TOP_LEVEL_KEYS = [ + "ctc_proj", + "quantizer.weight_proj", + "quantizer.codevectors", + "project_q", + "project_hid", +] + + +def set_recursively(hf_pointer, key, value, full_name, weight_type, is_finetuned): + for attribute in key.split("."): + if is_finetuned: + if attribute in ["quantizer", "project_q", "project_hid"]: + # those layers are only relevant for pretraining and should be dropped + return + + if attribute == "ctc_proj": + # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models + attribute = "lm_head" + + hf_pointer = getattr(hf_pointer, attribute) + + if weight_type is not None: + hf_shape = getattr(hf_pointer, weight_type).shape + else: + hf_shape = hf_pointer.shape + + assert hf_shape == value.shape, ( + f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" + f" {value.shape} for {full_name}" + ) + + if weight_type == "weight": + hf_pointer.weight.data = value + elif weight_type == "weight_g": + hf_pointer.weight_g.data = value + elif weight_type == "weight_v": + hf_pointer.weight_v.data = value + elif weight_type == "bias": + hf_pointer.bias.data = value + else: + hf_pointer.data = value + + logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") + + +def recursively_load_weights(fairseq_model, hf_model, is_finetuned): + unused_weights = [] + fairseq_dict = fairseq_model.state_dict() + + feature_extractor = hf_model.unispeech.feature_extractor + + for name, value in fairseq_dict.items(): + is_used = False + if "conv_layers" in name: + load_conv_layer( + name, + value, + feature_extractor, + unused_weights, + hf_model.config.feat_extract_norm == "group", + ) + is_used = True + else: + for key, mapped_key in MAPPING.items(): + mapped_key = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key + if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: + is_used = True + if "*" in mapped_key: + layer_index = name.split(key)[0].split(".")[-2] + mapped_key = mapped_key.replace("*", layer_index) + if "weight_g" in name: + weight_type = "weight_g" + elif "weight_v" in name: + weight_type = "weight_v" + elif "bias" in name: + weight_type = "bias" + elif "weight" in name: + # TODO: don't match quantizer.weight_proj + weight_type = "weight" + else: + weight_type = None + set_recursively(hf_model, mapped_key, value, name, weight_type, is_finetuned) + continue + if not is_used: + unused_weights.append(name) + + logger.warning(f"Unused weights: {unused_weights}") + + +def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): + name = full_name.split("conv_layers.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + if type_id == 0: + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.bias.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.weight.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): + if "bias" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( + f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" + " found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + else: + unused_weights.append(full_name) + + +@torch.no_grad() +def convert_unispeech_checkpoint( + checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True +): + """ + Copy/paste/tweak model's weights to transformers design. + """ + if config_path is not None: + config = UniSpeechConfig.from_pretrained(config_path) + else: + config = UniSpeechConfig() + + if is_finetuned: + if dict_path: + target_dict = Dictionary.load_from_json(dict_path) + + # important change bos & pad token id since CTC symbol is and + # not as in fairseq + config.bos_token_id = target_dict.pad_index + config.pad_token_id = target_dict.bos_index + config.eos_token_id = target_dict.eos_index + config.vocab_size = len(target_dict.symbols) + vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") + if not os.path.isdir(pytorch_dump_folder_path): + logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) + return + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + vocab_dict = target_dict.indices + + # fairseq has the and switched + vocab_dict[""] = 42 + vocab_dict[""] = 43 + with open(vocab_path, "w", encoding="utf-8") as vocab_handle: + json.dump(vocab_dict, vocab_handle) + tokenizer = Wav2Vec2PhonemeCTCTokenizer( + vocab_path, + unk_token=target_dict.unk_word, + pad_token=target_dict.pad_word, + bos_token=target_dict.bos_word, + eos_token=target_dict.eos_word, + word_delimiter_token="|", + do_lower_case=False, + ) + return_attention_mask = True if config.feat_extract_norm == "layer" else False + feature_extractor = Wav2Vec2FeatureExtractor( + feature_size=1, + sampling_rate=16000, + padding_value=0, + do_normalize=True, + return_attention_mask=return_attention_mask, + ) + processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) + processor.save_pretrained(pytorch_dump_folder_path) + + hf_unispeech = UniSpeechForCTC(config) + else: + hf_unispeech = UniSpeechForPreTraining(config) + + if is_finetuned: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( + [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path} + ) + else: + model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) + + model = model[0].eval() + + recursively_load_weights(model, hf_unispeech, is_finetuned) + + hf_unispeech.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" + ) + args = parser.parse_args() + convert_unispeech_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/modeling_unispeech.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/modeling_unispeech.py new file mode 100644 index 0000000000000000000000000000000000000000..473bc7d4ff12e41f985c77ecd948061382e53101 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/unispeech/modeling_unispeech.py @@ -0,0 +1,1637 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch UniSpeech model.""" + +import math +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_unispeech import UniSpeechConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 2 + +# General docstring +_CONFIG_FOR_DOC = "UniSpeechConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" +_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] + +# CTC docstring +_CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" +_CTC_EXPECTED_LOSS = 17.17 + + +from ..deprecated._archive_maps import UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class UniSpeechForPreTrainingOutput(ModelOutput): + """ + Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. + + Args: + loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official + paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. + projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): + Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked + projected quantized states. + projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): + Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive + target vectors for contrastive loss. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + projected_states: torch.FloatTensor = None + projected_quantized_states: torch.FloatTensor = None + codevector_perplexity: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech +class UniSpeechNoLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech +class UniSpeechLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech +class UniSpeechGroupNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech +class UniSpeechPositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.num_conv_pos_embeddings, + padding=config.num_conv_pos_embeddings // 2, + groups=config.num_conv_pos_embedding_groups, + ) + + weight_norm = nn.utils.weight_norm + if hasattr(nn.utils.parametrizations, "weight_norm"): + weight_norm = nn.utils.parametrizations.weight_norm + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = weight_norm(self.conv, name="weight", dim=2) + + self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech +class UniSpeechSamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech +class UniSpeechFeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + + if config.feat_extract_norm == "group": + conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ + UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) + for i in range(config.num_feat_extract_layers - 1) + ] + elif config.feat_extract_norm == "layer": + conv_layers = [ + UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) + ] + else: + raise ValueError( + f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" + ) + self.conv_layers = nn.ModuleList(conv_layers) + self.gradient_checkpointing = False + self._requires_grad = True + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): + def __init__(self, config): + super().__init__(config) + warnings.warn( + f"The class `{self.__class__.__name__}` has been depreciated " + "and will be removed in Transformers v5. " + f"Use `{self.__class__.__bases__[0].__name__}` instead.", + FutureWarning, + ) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech +class UniSpeechFeatureProjection(nn.Module): + def __init__(self, config): + super().__init__() + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) + self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.dropout = nn.Dropout(config.feat_proj_dropout) + + def forward(self, hidden_states): + # non-projected hidden states are needed for quantization + norm_hidden_states = self.layer_norm(hidden_states) + hidden_states = self.projection(norm_hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states, norm_hidden_states + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech +class UniSpeechAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[UniSpeechConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech +class UniSpeechFeedForward(nn.Module): + def __init__(self, config): + super().__init__() + self.intermediate_dropout = nn.Dropout(config.activation_dropout) + + self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.output_dropout = nn.Dropout(config.hidden_dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech +class UniSpeechEncoderLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = UniSpeechAttention( + embed_dim=config.hidden_size, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = UniSpeechFeedForward(config) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + attn_residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = self.dropout(hidden_states) + hidden_states = attn_residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech +class UniSpeechAttnAdapterLayer(nn.Module): + def __init__(self, config): + """ + Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed + up training throughput. + """ + super().__init__() + self.input_dim = config.adapter_attn_dim + self.hidden_dim = config.hidden_size + + self.norm = nn.LayerNorm(self.hidden_dim) + self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) + self.act_fn = nn.ReLU() + self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) + + def forward(self, hidden_states: torch.FloatTensor): + hidden_states = self.norm(hidden_states) + + hidden_states = self.linear_1(hidden_states) + hidden_states = self.act_fn(hidden_states) + hidden_states = self.linear_2(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech +class UniSpeechEncoderLayerStableLayerNorm(nn.Module): + def __init__(self, config): + super().__init__() + self.attention = UniSpeechAttention( + embed_dim=config.hidden_size, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = UniSpeechFeedForward(config) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + if getattr(config, "adapter_attn_dim", None) is not None: + self.adapter_layer = UniSpeechAttnAdapterLayer(config) + else: + self.adapter_layer = None + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ): + attn_residual = hidden_states + hidden_states = self.layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.attention( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = self.dropout(hidden_states) + hidden_states = attn_residual + hidden_states + hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) + + if self.adapter_layer is not None: + hidden_states = hidden_states + self.adapter_layer(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech +class UniSpeechEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.tensor, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + if attention_mask is not None: + # make sure padded tokens output 0 + expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) + hidden_states[~expand_attention_mask] = 0 + + # extend attention_mask + attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) + attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min + attention_mask = attention_mask.expand( + attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] + ) + + position_embeddings = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + position_embeddings + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech +class UniSpeechEncoderStableLayerNorm(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layers = nn.ModuleList( + [UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + if attention_mask is not None: + # make sure padded tokens are not attended to + expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) + hidden_states[~expand_attention_mask] = 0 + + # extend attention_mask + attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) + attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min + attention_mask = attention_mask.expand( + attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] + ) + + position_embeddings = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + position_embeddings + hidden_states = self.dropout(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer( + hidden_states, attention_mask=attention_mask, output_attentions=output_attentions + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class UniSpeechGumbelVectorQuantizer(nn.Module): + """ + Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH + GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. + """ + + def __init__(self, config): + super().__init__() + self.num_groups = config.num_codevector_groups + self.num_vars = config.num_codevectors_per_group + + if config.codevector_dim % self.num_groups != 0: + raise ValueError( + f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" + f" {self.num_groups} for concatenation" + ) + + # storage for codebook variables (codewords) + self.codevectors = nn.Parameter( + torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) + ) + self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) + + # can be decayed for training + self.temperature = 2 + + @staticmethod + def _compute_perplexity(probs): + marginal_probs = probs.mean(dim=0) + perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() + return perplexity + + def forward(self, hidden_states): + batch_size, sequence_length, hidden_size = hidden_states.shape + + # project to codevector dim + hidden_states = self.weight_proj(hidden_states) + hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) + + if self.training: + # sample code vector probs via gumbel in differentiateable way + codevector_probs = nn.functional.gumbel_softmax( + hidden_states.float(), tau=self.temperature, hard=True + ).type_as(hidden_states) + + # compute perplexity + codevector_soft_dist = torch.softmax( + hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 + ) + perplexity = self._compute_perplexity(codevector_soft_dist) + else: + # take argmax in non-differentiable way + # comptute hard codevector distribution (one hot) + codevector_idx = hidden_states.argmax(dim=-1) + codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( + -1, codevector_idx.view(-1, 1), 1.0 + ) + codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) + + perplexity = self._compute_perplexity(codevector_probs) + + codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) + # use probs to retrieve codevectors + codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors + codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) + codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) + + return codevectors, perplexity + + +class UniSpeechPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = UniSpeechConfig + base_model_prefix = "unispeech" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + # gumbel softmax requires special init + if isinstance(module, UniSpeechGumbelVectorQuantizer): + module.weight_proj.weight.data.normal_(mean=0.0, std=1) + module.weight_proj.bias.data.zero_() + nn.init.uniform_(module.codevectors) + elif isinstance(module, UniSpeechPositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, UniSpeechFeatureProjection): + k = math.sqrt(1 / module.projection.in_features) + nn.init.uniform_(module.projection.weight, a=-k, b=k) + nn.init.uniform_(module.projection.bias, a=-k, b=k) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + nn.init.kaiming_normal_(module.weight) + + if module.bias is not None: + k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) + nn.init.uniform_(module.bias, a=-k, b=k) + + def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the convolutional layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + return input_lengths + + def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): + # Effectively attention_mask.sum(-1), but not inplace to be able to run + # on inference mode. + non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] + output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + +UNISPEECH_START_DOCSTRING = r""" + UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled + Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, + Michael Zeng, Xuedong Huang. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving etc.). + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +UNISPEECH_INPUTS_DOCSTRING = r""" + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install + soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and + conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + + + `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == + True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should + **not** be passed to avoid degraded performance when doing batched inference. For such models + `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these + models also yield slightly different results depending on whether `input_values` is padded or not. + + + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", + UNISPEECH_START_DOCSTRING, +) +class UniSpeechModel(UniSpeechPreTrainedModel): + def __init__(self, config: UniSpeechConfig): + super().__init__(config) + self.config = config + self.feature_extractor = UniSpeechFeatureEncoder(config) + self.feature_projection = UniSpeechFeatureProjection(config) + + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + if config.do_stable_layer_norm: + self.encoder = UniSpeechEncoderStableLayerNorm(config) + else: + self.encoder = UniSpeechEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Wav2Vec2BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + extract_features = self.feature_extractor(input_values) + extract_features = extract_features.transpose(1, 2) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) + + hidden_states, extract_features = self.feature_projection(extract_features) + hidden_states = self._mask_hidden_states( + hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask + ) + + encoder_outputs = self.encoder( + hidden_states, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = encoder_outputs[0] + + if not return_dict: + return (hidden_states, extract_features) + encoder_outputs[1:] + + return Wav2Vec2BaseModelOutput( + last_hidden_state=hidden_states, + extract_features=extract_features, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING +) +class UniSpeechForPreTraining(UniSpeechPreTrainedModel): + def __init__(self, config: UniSpeechConfig): + super().__init__(config) + self.unispeech = UniSpeechModel(config) + self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) + + self.quantizer = UniSpeechGumbelVectorQuantizer(config) + self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) + self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) + + self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) + self.dropout = nn.Dropout(config.final_dropout) + + # Initialize weights and apply final processing + self.post_init() + + def set_gumbel_temperature(self, temperature: int): + """ + Set the Gumbel softmax temperature to a given value. Only necessary for training + """ + self.quantizer.temperature = temperature + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameters will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.unispeech.feature_extractor._freeze_parameters() + + @staticmethod + def compute_contrastive_logits( + target_features: torch.FloatTensor, + negative_features: torch.FloatTensor, + predicted_features: torch.FloatTensor, + temperature: int = 1, + ): + """ + Compute logits for contrastive loss based using cosine similarity as the distance measure between + `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. + """ + target_features = torch.cat([target_features, negative_features], dim=0) + + logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) + logits = logits.type_as(target_features) + + # apply temperature + logits = logits / temperature + return logits + + @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: + r""" + mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict + masked extracted features in *config.proj_codevector_dim* space. + sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): + Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. + Required input for pre-training. + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining + + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") + >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") + >>> # TODO: Add full pretraining example + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.unispeech( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + transformer_features = outputs[0] + + # quantize all (unmasked) extracted features and project to final vq dim + extract_features = self.dropout_features(outputs[1]) + quantized_features, codevector_perplexity = self.quantizer(extract_features) + + # project quantized features twice + quantized_features = self.project_q(quantized_features) + quantized_features = self.project_hid(quantized_features) + + prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( + self.config.replace_prob + ) + prob_replace_matrix = prob_replace_matrix.transpose(0, 1) + sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) + sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) + sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) + logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( + quantized_features.masked_fill(~sampled_replace_matrix, 0.0) + ) + + # project to ctc units + logits = self.dropout(logits) + logits = self.ctc_proj(logits) + + # TODO(PVP) - add negative sampling & loss computation + loss = None + if not return_dict: + if loss is not None: + return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] + return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] + + return UniSpeechForPreTrainingOutput( + loss=loss, + projected_states=transformer_features, + projected_quantized_states=quantized_features, + codevector_perplexity=codevector_perplexity, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", + UNISPEECH_START_DOCSTRING, + """ + target_lang (`str`, *optional*): + Language id of adapter weights. Adapter weights are stored in the format adapter..safetensors or + adapter..bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng' + by default. + """, +) +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH +class UniSpeechForCTC(UniSpeechPreTrainedModel): + def __init__(self, config, target_lang: Optional[str] = None): + super().__init__(config) + + self.unispeech = UniSpeechModel(config) + self.dropout = nn.Dropout(config.final_dropout) + + self.target_lang = target_lang + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that " + "does not define the vocabulary size of the language model head. Please " + "instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " + "or define `vocab_size` of your model's configuration." + ) + output_hidden_size = ( + config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size + ) + self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + """ + This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when + passing `target_lang=...` to `from_pretrained(...)`. + + This method is **not** supposed to be called by the user and is prone to be changed in the future. + """ + + # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to + # correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to + # [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is + # ok to repurpose this function here. + target_lang = self.target_lang + + if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: + raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") + elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: + logger.info("By default `target_lang` is set to 'eng'.") + elif target_lang is not None: + self.load_adapter(target_lang, force_load=True) + + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.unispeech.feature_extractor._freeze_parameters() + + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.unispeech.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_CTC_EXPECTED_OUTPUT, + expected_loss=_CTC_EXPECTED_LOSS, + ) + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): + Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to + the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. + All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., + config.vocab_size - 1]`. + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.unispeech( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + if labels.max() >= self.config.vocab_size: + raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") + + # retrieve loss input_lengths from attention_mask + attention_mask = ( + attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) + ) + input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) + + # assuming that padded tokens are filled with -100 + # when not being attended to + labels_mask = labels >= 0 + target_lengths = labels_mask.sum(-1) + flattened_targets = labels.masked_select(labels_mask) + + # ctc_loss doesn't support fp16 + log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) + + with torch.backends.cudnn.flags(enabled=False): + loss = nn.functional.ctc_loss( + log_probs, + flattened_targets, + input_lengths, + target_lengths, + blank=self.config.pad_token_id, + reduction=self.config.ctc_loss_reduction, + zero_infinity=self.config.ctc_zero_infinity, + ) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutput( + loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions + ) + + +@add_start_docstrings( + """ + UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like + SUPERB Keyword Spotting. + """, + UNISPEECH_START_DOCSTRING, +) +class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + if hasattr(config, "add_adapter") and config.add_adapter: + raise ValueError( + "Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" + ) + self.unispeech = UniSpeechModel(config) + num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings + if config.use_weighted_layer_sum: + self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) + self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) + self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor + def freeze_feature_extractor(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameters will + not be updated during training. + """ + warnings.warn( + "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " + "Please use the equivalent `freeze_feature_encoder` method instead.", + FutureWarning, + ) + self.freeze_feature_encoder() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.unispeech.feature_extractor._freeze_parameters() + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech + def freeze_base_model(self): + """ + Calling this function will disable the gradient computation for the base model so that its parameters will not + be updated during training. Only the classification head will be updated. + """ + for param in self.unispeech.parameters(): + param.requires_grad = False + + @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + modality="audio", + ) + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech + def forward( + self, + input_values: Optional[torch.Tensor], + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states + + outputs = self.unispeech( + input_values, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if self.config.use_weighted_layer_sum: + hidden_states = outputs[_HIDDEN_STATES_START_POSITION] + hidden_states = torch.stack(hidden_states, dim=1) + norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) + hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) + else: + hidden_states = outputs[0] + + hidden_states = self.projector(hidden_states) + if attention_mask is None: + pooled_output = hidden_states.mean(dim=1) + else: + padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) + hidden_states[~padding_mask] = 0.0 + pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c36cb750cfa4e6273de0a8a2646236ee14b516d1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__init__.py @@ -0,0 +1,53 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_vit_msn"] = [ + "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", + "ViTMSNModel", + "ViTMSNForImageClassification", + "ViTMSNPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_vit_msn import ( + VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, + ViTMSNForImageClassification, + ViTMSNModel, + ViTMSNPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2be01bb2dabc962f9a76f55338a28e6d6ca73ae7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/configuration_vit_msn.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/configuration_vit_msn.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ee90571a2555a1d79b68d71ac280f10482af875 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/configuration_vit_msn.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/convert_msn_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/convert_msn_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14c54e935df22a59b6df4bd97409bc93da6c53b8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/convert_msn_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/modeling_vit_msn.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/modeling_vit_msn.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..821bcad0282e9a56fa2e1d61a0c676dc72f618ea Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/__pycache__/modeling_vit_msn.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/configuration_vit_msn.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/configuration_vit_msn.py new file mode 100644 index 0000000000000000000000000000000000000000..296434346625f56e265787ad7e567188d45d02dc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/configuration_vit_msn.py @@ -0,0 +1,116 @@ +# coding=utf-8 +# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ViT MSN model configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class ViTMSNConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ViTMSNModel`]. It is used to instantiate an ViT + MSN model according to the specified arguments, defining the model architecture. Instantiating a configuration with + the defaults will yield a similar configuration to that of the ViT + [facebook/vit_msn_base](https://huggingface.co/facebook/vit_msn_base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + + Example: + + ```python + >>> from transformers import ViTMSNModel, ViTMSNConfig + + >>> # Initializing a ViT MSN vit-msn-base style configuration + >>> configuration = ViTConfig() + + >>> # Initializing a model from the vit-msn-base style configuration + >>> model = ViTMSNModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "vit_msn" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-06, + image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/convert_msn_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/convert_msn_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..899c74f183205e9fdc18984a1f15e877bc64fe31 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/convert_msn_to_pytorch.py @@ -0,0 +1,245 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ViT MSN checkpoints from the original repository: https://github.com/facebookresearch/msn""" + +import argparse +import json + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel +from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD + + +torch.set_grad_enabled(False) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append( + (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") + ) + rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("module.cls_token", "vit.embeddings.cls_token"), + ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), + ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), + ("module.pos_embed", "vit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + pooler + rename_keys.extend( + [ + ("module.norm.weight", "layernorm.weight"), + ("module.norm.bias", "layernorm.bias"), + ] + ) + + # if just the base model, we should remove "vit" from all keys that start with "vit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] + else: + # layernorm + classification head + rename_keys.extend( + [ + ("norm.weight", "vit.layernorm.weight"), + ("norm.bias", "vit.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "vit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def remove_classification_head_(state_dict): + ignore_keys = ["head.weight", "head.bias"] + for k in ignore_keys: + state_dict.pop(k, None) + + +def remove_projection_head(state_dict): + # projection head is used in the self-supervised pre-training in MSN, + # for downstream task it's not needed. + ignore_keys = [ + "module.fc.fc1.weight", + "module.fc.fc1.bias", + "module.fc.bn1.weight", + "module.fc.bn1.bias", + "module.fc.bn1.running_mean", + "module.fc.bn1.running_var", + "module.fc.bn1.num_batches_tracked", + "module.fc.fc2.weight", + "module.fc.fc2.bias", + "module.fc.bn2.weight", + "module.fc.bn2.bias", + "module.fc.bn2.running_mean", + "module.fc.bn2.running_var", + "module.fc.bn2.num_batches_tracked", + "module.fc.fc3.weight", + "module.fc.fc3.bias", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +def convert_vit_msn_checkpoint(checkpoint_url, pytorch_dump_folder_path): + config = ViTMSNConfig() + config.num_labels = 1000 + + repo_id = "datasets/huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + if "s16" in checkpoint_url: + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_attention_heads = 6 + elif "l16" in checkpoint_url: + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + config.hidden_dropout_prob = 0.1 + elif "b4" in checkpoint_url: + config.patch_size = 4 + elif "l7" in checkpoint_url: + config.patch_size = 7 + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + config.hidden_dropout_prob = 0.1 + + model = ViTMSNModel(config) + + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["target_encoder"] + + image_processor = ViTImageProcessor(size=config.image_size) + + remove_projection_head(state_dict) + rename_keys = create_rename_keys(config, base_model=True) + + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model=True) + + model.load_state_dict(state_dict) + model.eval() + + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + + image = Image.open(requests.get(url, stream=True).raw) + image_processor = ViTImageProcessor( + size=config.image_size, image_mean=IMAGENET_DEFAULT_MEAN, image_std=IMAGENET_DEFAULT_STD + ) + inputs = image_processor(images=image, return_tensors="pt") + + # forward pass + torch.manual_seed(2) + outputs = model(**inputs) + last_hidden_state = outputs.last_hidden_state + + # The following Colab Notebook was used to generate these outputs: + # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb + if "s16" in checkpoint_url: + expected_slice = torch.tensor([[-1.0915, -1.4876, -1.1809]]) + elif "b16" in checkpoint_url: + expected_slice = torch.tensor([[14.2889, -18.9045, 11.7281]]) + elif "l16" in checkpoint_url: + expected_slice = torch.tensor([[41.5028, -22.8681, 45.6475]]) + elif "b4" in checkpoint_url: + expected_slice = torch.tensor([[-4.3868, 5.2932, -0.4137]]) + else: + expected_slice = torch.tensor([[-0.1792, -0.6465, 2.4263]]) + + # verify logits + assert torch.allclose(last_hidden_state[:, 0, :3], expected_slice, atol=1e-4) + + print(f"Saving model to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint_url", + default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", + type=str, + help="URL of the checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + + args = parser.parse_args() + convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/modeling_vit_msn.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/modeling_vit_msn.py new file mode 100644 index 0000000000000000000000000000000000000000..9c2269a3ae546fde6b04d05350b9c7b33481aa54 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vit_msn/modeling_vit_msn.py @@ -0,0 +1,688 @@ +# coding=utf-8 +# Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViT MSN (masked siamese network) model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_vit_msn import ViTMSNConfig + + +logger = logging.get_logger(__name__) + + +_CONFIG_FOR_DOC = "ViTMSNConfig" +_CHECKPOINT_FOR_DOC = "facebook/vit-msn-small" + +from ..deprecated._archive_maps import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class ViTMSNEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = ViTMSNPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + patch_window_height = height // self.config.patch_size + patch_window_width = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + patch_window_height, patch_window_width = patch_window_height + 0.1, patch_window_width + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=( + patch_window_height / math.sqrt(num_positions), + patch_window_width / math.sqrt(num_positions), + ), + mode="bicubic", + align_corners=False, + ) + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward( + self, + pixel_values: torch.Tensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + if bool_masked_pos is not None: + seq_length = embeddings.shape[1] + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +# Copied from transformers.models.vit.modeling_vit.ViTPatchEmbeddings with ViT->ViTMSN +class ViTMSNPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->ViTMSN +class ViTMSNSelfAttention(nn.Module): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTMSN +class ViTMSNSelfOutput(nn.Module): + """ + The residual connection is defined in ViTMSNLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMSN +class ViTMSNAttention(nn.Module): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.attention = ViTMSNSelfAttention(config) + self.output = ViTMSNSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->ViTMSN +class ViTMSNIntermediate(nn.Module): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->ViTMSN +class ViTMSNOutput(nn.Module): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTMSN +class ViTMSNLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ViTMSNAttention(config) + self.intermediate = ViTMSNIntermediate(config) + self.output = ViTMSNOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViTMSN, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViTMSN, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMSN +class ViTMSNEncoder(nn.Module): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([ViTMSNLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class ViTMSNPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTMSNConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + # todo: Resort to https://github.com/facebookresearch/msn/blob/main/src/deit.py#L200-#L211 + # when creating pre-training scripts. + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +VIT_MSN_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`ViTMSNConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIT_MSN_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ViTMSN Model outputting raw hidden-states without any specific head on top.", + VIT_MSN_START_DOCSTRING, +) +class ViTMSNModel(ViTMSNPreTrainedModel): + def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False): + super().__init__(config) + self.config = config + + self.embeddings = ViTMSNEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = ViTMSNEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> ViTMSNPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, BaseModelOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, ViTMSNModel + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") + >>> model = ViTMSNModel.from_pretrained("facebook/vit-msn-small") + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> with torch.no_grad(): + ... outputs = model(**inputs) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding + ) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + + if not return_dict: + head_outputs = (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutput( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +# Caution: We don't have the weights for the classification head yet. This class +# is here for the users that are interested to fine-tune the base model (ViTMSNModel). +@add_start_docstrings( + """ + ViTMSN Model with an image classification head on top e.g. for ImageNet. + """, + VIT_MSN_START_DOCSTRING, +) +class ViTMSNForImageClassification(ViTMSNPreTrainedModel): + def __init__(self, config: ViTMSNConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.vit = ViTMSNModel(config) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, ViTMSNForImageClassification + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> torch.manual_seed(2) # doctest: +IGNORE_RESULT + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") + >>> model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_label = logits.argmax(-1).item() + >>> print(model.config.id2label[predicted_label]) + tusker + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output[:, 0, :]) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )