Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/attr/__init__.pyi +555 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_cmp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_compat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_config.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_funcs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_make.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_next_gen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_version_info.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/converters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/exceptions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/filters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/setters.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/__pycache__/validators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/attr/_cmp.pyi +13 -0
- env-llmeval/lib/python3.10/site-packages/attr/_compat.py +87 -0
- env-llmeval/lib/python3.10/site-packages/attr/_config.py +31 -0
- env-llmeval/lib/python3.10/site-packages/attr/_next_gen.py +229 -0
- env-llmeval/lib/python3.10/site-packages/attr/_typing_compat.pyi +15 -0
- env-llmeval/lib/python3.10/site-packages/attr/_version_info.py +86 -0
- env-llmeval/lib/python3.10/site-packages/attr/converters.py +144 -0
- env-llmeval/lib/python3.10/site-packages/attr/filters.py +66 -0
- env-llmeval/lib/python3.10/site-packages/attr/setters.pyi +19 -0
- env-llmeval/lib/python3.10/site-packages/attr/validators.py +681 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/_login.py +396 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/_tensorboard_logger.py +169 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/_webhooks_server.py +380 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/fastai_utils.py +425 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/hub_mixin.py +704 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/keras_mixin.py +502 -0
- env-llmeval/lib/python3.10/site-packages/huggingface_hub/repocard_data.py +729 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/__init__.py +6 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/__init__.pyi +2 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/more.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/recipes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/more.py +0 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/more.pyi +695 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/py.typed +0 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/recipes.py +1012 -0
- env-llmeval/lib/python3.10/site-packages/more_itertools/recipes.pyi +128 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__init__.py +48 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__init__.pyi +152 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_abc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_compat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_multidict_base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_multidict_py.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/multidict/_abc.py +48 -0
- env-llmeval/lib/python3.10/site-packages/multidict/_compat.py +14 -0
env-llmeval/lib/python3.10/site-packages/attr/__init__.pyi
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
Callable,
|
7 |
+
Dict,
|
8 |
+
Generic,
|
9 |
+
List,
|
10 |
+
Mapping,
|
11 |
+
Optional,
|
12 |
+
Protocol,
|
13 |
+
Sequence,
|
14 |
+
Tuple,
|
15 |
+
Type,
|
16 |
+
TypeVar,
|
17 |
+
Union,
|
18 |
+
overload,
|
19 |
+
)
|
20 |
+
|
21 |
+
# `import X as X` is required to make these public
|
22 |
+
from . import converters as converters
|
23 |
+
from . import exceptions as exceptions
|
24 |
+
from . import filters as filters
|
25 |
+
from . import setters as setters
|
26 |
+
from . import validators as validators
|
27 |
+
from ._cmp import cmp_using as cmp_using
|
28 |
+
from ._typing_compat import AttrsInstance_
|
29 |
+
from ._version_info import VersionInfo
|
30 |
+
|
31 |
+
if sys.version_info >= (3, 10):
|
32 |
+
from typing import TypeGuard
|
33 |
+
else:
|
34 |
+
from typing_extensions import TypeGuard
|
35 |
+
|
36 |
+
if sys.version_info >= (3, 11):
|
37 |
+
from typing import dataclass_transform
|
38 |
+
else:
|
39 |
+
from typing_extensions import dataclass_transform
|
40 |
+
|
41 |
+
__version__: str
|
42 |
+
__version_info__: VersionInfo
|
43 |
+
__title__: str
|
44 |
+
__description__: str
|
45 |
+
__url__: str
|
46 |
+
__uri__: str
|
47 |
+
__author__: str
|
48 |
+
__email__: str
|
49 |
+
__license__: str
|
50 |
+
__copyright__: str
|
51 |
+
|
52 |
+
_T = TypeVar("_T")
|
53 |
+
_C = TypeVar("_C", bound=type)
|
54 |
+
|
55 |
+
_EqOrderType = Union[bool, Callable[[Any], Any]]
|
56 |
+
_ValidatorType = Callable[[Any, "Attribute[_T]", _T], Any]
|
57 |
+
_ConverterType = Callable[[Any], Any]
|
58 |
+
_FilterType = Callable[["Attribute[_T]", _T], bool]
|
59 |
+
_ReprType = Callable[[Any], str]
|
60 |
+
_ReprArgType = Union[bool, _ReprType]
|
61 |
+
_OnSetAttrType = Callable[[Any, "Attribute[Any]", Any], Any]
|
62 |
+
_OnSetAttrArgType = Union[
|
63 |
+
_OnSetAttrType, List[_OnSetAttrType], setters._NoOpType
|
64 |
+
]
|
65 |
+
_FieldTransformer = Callable[
|
66 |
+
[type, List["Attribute[Any]"]], List["Attribute[Any]"]
|
67 |
+
]
|
68 |
+
# FIXME: in reality, if multiple validators are passed they must be in a list
|
69 |
+
# or tuple, but those are invariant and so would prevent subtypes of
|
70 |
+
# _ValidatorType from working when passed in a list or tuple.
|
71 |
+
_ValidatorArgType = Union[_ValidatorType[_T], Sequence[_ValidatorType[_T]]]
|
72 |
+
|
73 |
+
# We subclass this here to keep the protocol's qualified name clean.
|
74 |
+
class AttrsInstance(AttrsInstance_, Protocol):
|
75 |
+
pass
|
76 |
+
|
77 |
+
_A = TypeVar("_A", bound=type[AttrsInstance])
|
78 |
+
|
79 |
+
class _Nothing(enum.Enum):
|
80 |
+
NOTHING = enum.auto()
|
81 |
+
|
82 |
+
NOTHING = _Nothing.NOTHING
|
83 |
+
|
84 |
+
# NOTE: Factory lies about its return type to make this possible:
|
85 |
+
# `x: List[int] # = Factory(list)`
|
86 |
+
# Work around mypy issue #4554 in the common case by using an overload.
|
87 |
+
if sys.version_info >= (3, 8):
|
88 |
+
from typing import Literal
|
89 |
+
@overload
|
90 |
+
def Factory(factory: Callable[[], _T]) -> _T: ...
|
91 |
+
@overload
|
92 |
+
def Factory(
|
93 |
+
factory: Callable[[Any], _T],
|
94 |
+
takes_self: Literal[True],
|
95 |
+
) -> _T: ...
|
96 |
+
@overload
|
97 |
+
def Factory(
|
98 |
+
factory: Callable[[], _T],
|
99 |
+
takes_self: Literal[False],
|
100 |
+
) -> _T: ...
|
101 |
+
|
102 |
+
else:
|
103 |
+
@overload
|
104 |
+
def Factory(factory: Callable[[], _T]) -> _T: ...
|
105 |
+
@overload
|
106 |
+
def Factory(
|
107 |
+
factory: Union[Callable[[Any], _T], Callable[[], _T]],
|
108 |
+
takes_self: bool = ...,
|
109 |
+
) -> _T: ...
|
110 |
+
|
111 |
+
class Attribute(Generic[_T]):
|
112 |
+
name: str
|
113 |
+
default: Optional[_T]
|
114 |
+
validator: Optional[_ValidatorType[_T]]
|
115 |
+
repr: _ReprArgType
|
116 |
+
cmp: _EqOrderType
|
117 |
+
eq: _EqOrderType
|
118 |
+
order: _EqOrderType
|
119 |
+
hash: Optional[bool]
|
120 |
+
init: bool
|
121 |
+
converter: Optional[_ConverterType]
|
122 |
+
metadata: Dict[Any, Any]
|
123 |
+
type: Optional[Type[_T]]
|
124 |
+
kw_only: bool
|
125 |
+
on_setattr: _OnSetAttrType
|
126 |
+
alias: Optional[str]
|
127 |
+
|
128 |
+
def evolve(self, **changes: Any) -> "Attribute[Any]": ...
|
129 |
+
|
130 |
+
# NOTE: We had several choices for the annotation to use for type arg:
|
131 |
+
# 1) Type[_T]
|
132 |
+
# - Pros: Handles simple cases correctly
|
133 |
+
# - Cons: Might produce less informative errors in the case of conflicting
|
134 |
+
# TypeVars e.g. `attr.ib(default='bad', type=int)`
|
135 |
+
# 2) Callable[..., _T]
|
136 |
+
# - Pros: Better error messages than #1 for conflicting TypeVars
|
137 |
+
# - Cons: Terrible error messages for validator checks.
|
138 |
+
# e.g. attr.ib(type=int, validator=validate_str)
|
139 |
+
# -> error: Cannot infer function type argument
|
140 |
+
# 3) type (and do all of the work in the mypy plugin)
|
141 |
+
# - Pros: Simple here, and we could customize the plugin with our own errors.
|
142 |
+
# - Cons: Would need to write mypy plugin code to handle all the cases.
|
143 |
+
# We chose option #1.
|
144 |
+
|
145 |
+
# `attr` lies about its return type to make the following possible:
|
146 |
+
# attr() -> Any
|
147 |
+
# attr(8) -> int
|
148 |
+
# attr(validator=<some callable>) -> Whatever the callable expects.
|
149 |
+
# This makes this type of assignments possible:
|
150 |
+
# x: int = attr(8)
|
151 |
+
#
|
152 |
+
# This form catches explicit None or no default but with no other arguments
|
153 |
+
# returns Any.
|
154 |
+
@overload
|
155 |
+
def attrib(
|
156 |
+
default: None = ...,
|
157 |
+
validator: None = ...,
|
158 |
+
repr: _ReprArgType = ...,
|
159 |
+
cmp: Optional[_EqOrderType] = ...,
|
160 |
+
hash: Optional[bool] = ...,
|
161 |
+
init: bool = ...,
|
162 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
163 |
+
type: None = ...,
|
164 |
+
converter: None = ...,
|
165 |
+
factory: None = ...,
|
166 |
+
kw_only: bool = ...,
|
167 |
+
eq: Optional[_EqOrderType] = ...,
|
168 |
+
order: Optional[_EqOrderType] = ...,
|
169 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
170 |
+
alias: Optional[str] = ...,
|
171 |
+
) -> Any: ...
|
172 |
+
|
173 |
+
# This form catches an explicit None or no default and infers the type from the
|
174 |
+
# other arguments.
|
175 |
+
@overload
|
176 |
+
def attrib(
|
177 |
+
default: None = ...,
|
178 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
179 |
+
repr: _ReprArgType = ...,
|
180 |
+
cmp: Optional[_EqOrderType] = ...,
|
181 |
+
hash: Optional[bool] = ...,
|
182 |
+
init: bool = ...,
|
183 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
184 |
+
type: Optional[Type[_T]] = ...,
|
185 |
+
converter: Optional[_ConverterType] = ...,
|
186 |
+
factory: Optional[Callable[[], _T]] = ...,
|
187 |
+
kw_only: bool = ...,
|
188 |
+
eq: Optional[_EqOrderType] = ...,
|
189 |
+
order: Optional[_EqOrderType] = ...,
|
190 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
191 |
+
alias: Optional[str] = ...,
|
192 |
+
) -> _T: ...
|
193 |
+
|
194 |
+
# This form catches an explicit default argument.
|
195 |
+
@overload
|
196 |
+
def attrib(
|
197 |
+
default: _T,
|
198 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
199 |
+
repr: _ReprArgType = ...,
|
200 |
+
cmp: Optional[_EqOrderType] = ...,
|
201 |
+
hash: Optional[bool] = ...,
|
202 |
+
init: bool = ...,
|
203 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
204 |
+
type: Optional[Type[_T]] = ...,
|
205 |
+
converter: Optional[_ConverterType] = ...,
|
206 |
+
factory: Optional[Callable[[], _T]] = ...,
|
207 |
+
kw_only: bool = ...,
|
208 |
+
eq: Optional[_EqOrderType] = ...,
|
209 |
+
order: Optional[_EqOrderType] = ...,
|
210 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
211 |
+
alias: Optional[str] = ...,
|
212 |
+
) -> _T: ...
|
213 |
+
|
214 |
+
# This form covers type=non-Type: e.g. forward references (str), Any
|
215 |
+
@overload
|
216 |
+
def attrib(
|
217 |
+
default: Optional[_T] = ...,
|
218 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
219 |
+
repr: _ReprArgType = ...,
|
220 |
+
cmp: Optional[_EqOrderType] = ...,
|
221 |
+
hash: Optional[bool] = ...,
|
222 |
+
init: bool = ...,
|
223 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
224 |
+
type: object = ...,
|
225 |
+
converter: Optional[_ConverterType] = ...,
|
226 |
+
factory: Optional[Callable[[], _T]] = ...,
|
227 |
+
kw_only: bool = ...,
|
228 |
+
eq: Optional[_EqOrderType] = ...,
|
229 |
+
order: Optional[_EqOrderType] = ...,
|
230 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
231 |
+
alias: Optional[str] = ...,
|
232 |
+
) -> Any: ...
|
233 |
+
@overload
|
234 |
+
def field(
|
235 |
+
*,
|
236 |
+
default: None = ...,
|
237 |
+
validator: None = ...,
|
238 |
+
repr: _ReprArgType = ...,
|
239 |
+
hash: Optional[bool] = ...,
|
240 |
+
init: bool = ...,
|
241 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
242 |
+
converter: None = ...,
|
243 |
+
factory: None = ...,
|
244 |
+
kw_only: bool = ...,
|
245 |
+
eq: Optional[bool] = ...,
|
246 |
+
order: Optional[bool] = ...,
|
247 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
248 |
+
alias: Optional[str] = ...,
|
249 |
+
type: Optional[type] = ...,
|
250 |
+
) -> Any: ...
|
251 |
+
|
252 |
+
# This form catches an explicit None or no default and infers the type from the
|
253 |
+
# other arguments.
|
254 |
+
@overload
|
255 |
+
def field(
|
256 |
+
*,
|
257 |
+
default: None = ...,
|
258 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
259 |
+
repr: _ReprArgType = ...,
|
260 |
+
hash: Optional[bool] = ...,
|
261 |
+
init: bool = ...,
|
262 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
263 |
+
converter: Optional[_ConverterType] = ...,
|
264 |
+
factory: Optional[Callable[[], _T]] = ...,
|
265 |
+
kw_only: bool = ...,
|
266 |
+
eq: Optional[_EqOrderType] = ...,
|
267 |
+
order: Optional[_EqOrderType] = ...,
|
268 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
269 |
+
alias: Optional[str] = ...,
|
270 |
+
type: Optional[type] = ...,
|
271 |
+
) -> _T: ...
|
272 |
+
|
273 |
+
# This form catches an explicit default argument.
|
274 |
+
@overload
|
275 |
+
def field(
|
276 |
+
*,
|
277 |
+
default: _T,
|
278 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
279 |
+
repr: _ReprArgType = ...,
|
280 |
+
hash: Optional[bool] = ...,
|
281 |
+
init: bool = ...,
|
282 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
283 |
+
converter: Optional[_ConverterType] = ...,
|
284 |
+
factory: Optional[Callable[[], _T]] = ...,
|
285 |
+
kw_only: bool = ...,
|
286 |
+
eq: Optional[_EqOrderType] = ...,
|
287 |
+
order: Optional[_EqOrderType] = ...,
|
288 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
289 |
+
alias: Optional[str] = ...,
|
290 |
+
type: Optional[type] = ...,
|
291 |
+
) -> _T: ...
|
292 |
+
|
293 |
+
# This form covers type=non-Type: e.g. forward references (str), Any
|
294 |
+
@overload
|
295 |
+
def field(
|
296 |
+
*,
|
297 |
+
default: Optional[_T] = ...,
|
298 |
+
validator: Optional[_ValidatorArgType[_T]] = ...,
|
299 |
+
repr: _ReprArgType = ...,
|
300 |
+
hash: Optional[bool] = ...,
|
301 |
+
init: bool = ...,
|
302 |
+
metadata: Optional[Mapping[Any, Any]] = ...,
|
303 |
+
converter: Optional[_ConverterType] = ...,
|
304 |
+
factory: Optional[Callable[[], _T]] = ...,
|
305 |
+
kw_only: bool = ...,
|
306 |
+
eq: Optional[_EqOrderType] = ...,
|
307 |
+
order: Optional[_EqOrderType] = ...,
|
308 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
309 |
+
alias: Optional[str] = ...,
|
310 |
+
type: Optional[type] = ...,
|
311 |
+
) -> Any: ...
|
312 |
+
@overload
|
313 |
+
@dataclass_transform(order_default=True, field_specifiers=(attrib, field))
|
314 |
+
def attrs(
|
315 |
+
maybe_cls: _C,
|
316 |
+
these: Optional[Dict[str, Any]] = ...,
|
317 |
+
repr_ns: Optional[str] = ...,
|
318 |
+
repr: bool = ...,
|
319 |
+
cmp: Optional[_EqOrderType] = ...,
|
320 |
+
hash: Optional[bool] = ...,
|
321 |
+
init: bool = ...,
|
322 |
+
slots: bool = ...,
|
323 |
+
frozen: bool = ...,
|
324 |
+
weakref_slot: bool = ...,
|
325 |
+
str: bool = ...,
|
326 |
+
auto_attribs: bool = ...,
|
327 |
+
kw_only: bool = ...,
|
328 |
+
cache_hash: bool = ...,
|
329 |
+
auto_exc: bool = ...,
|
330 |
+
eq: Optional[_EqOrderType] = ...,
|
331 |
+
order: Optional[_EqOrderType] = ...,
|
332 |
+
auto_detect: bool = ...,
|
333 |
+
collect_by_mro: bool = ...,
|
334 |
+
getstate_setstate: Optional[bool] = ...,
|
335 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
336 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
337 |
+
match_args: bool = ...,
|
338 |
+
unsafe_hash: Optional[bool] = ...,
|
339 |
+
) -> _C: ...
|
340 |
+
@overload
|
341 |
+
@dataclass_transform(order_default=True, field_specifiers=(attrib, field))
|
342 |
+
def attrs(
|
343 |
+
maybe_cls: None = ...,
|
344 |
+
these: Optional[Dict[str, Any]] = ...,
|
345 |
+
repr_ns: Optional[str] = ...,
|
346 |
+
repr: bool = ...,
|
347 |
+
cmp: Optional[_EqOrderType] = ...,
|
348 |
+
hash: Optional[bool] = ...,
|
349 |
+
init: bool = ...,
|
350 |
+
slots: bool = ...,
|
351 |
+
frozen: bool = ...,
|
352 |
+
weakref_slot: bool = ...,
|
353 |
+
str: bool = ...,
|
354 |
+
auto_attribs: bool = ...,
|
355 |
+
kw_only: bool = ...,
|
356 |
+
cache_hash: bool = ...,
|
357 |
+
auto_exc: bool = ...,
|
358 |
+
eq: Optional[_EqOrderType] = ...,
|
359 |
+
order: Optional[_EqOrderType] = ...,
|
360 |
+
auto_detect: bool = ...,
|
361 |
+
collect_by_mro: bool = ...,
|
362 |
+
getstate_setstate: Optional[bool] = ...,
|
363 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
364 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
365 |
+
match_args: bool = ...,
|
366 |
+
unsafe_hash: Optional[bool] = ...,
|
367 |
+
) -> Callable[[_C], _C]: ...
|
368 |
+
@overload
|
369 |
+
@dataclass_transform(field_specifiers=(attrib, field))
|
370 |
+
def define(
|
371 |
+
maybe_cls: _C,
|
372 |
+
*,
|
373 |
+
these: Optional[Dict[str, Any]] = ...,
|
374 |
+
repr: bool = ...,
|
375 |
+
unsafe_hash: Optional[bool] = ...,
|
376 |
+
hash: Optional[bool] = ...,
|
377 |
+
init: bool = ...,
|
378 |
+
slots: bool = ...,
|
379 |
+
frozen: bool = ...,
|
380 |
+
weakref_slot: bool = ...,
|
381 |
+
str: bool = ...,
|
382 |
+
auto_attribs: bool = ...,
|
383 |
+
kw_only: bool = ...,
|
384 |
+
cache_hash: bool = ...,
|
385 |
+
auto_exc: bool = ...,
|
386 |
+
eq: Optional[bool] = ...,
|
387 |
+
order: Optional[bool] = ...,
|
388 |
+
auto_detect: bool = ...,
|
389 |
+
getstate_setstate: Optional[bool] = ...,
|
390 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
391 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
392 |
+
match_args: bool = ...,
|
393 |
+
) -> _C: ...
|
394 |
+
@overload
|
395 |
+
@dataclass_transform(field_specifiers=(attrib, field))
|
396 |
+
def define(
|
397 |
+
maybe_cls: None = ...,
|
398 |
+
*,
|
399 |
+
these: Optional[Dict[str, Any]] = ...,
|
400 |
+
repr: bool = ...,
|
401 |
+
unsafe_hash: Optional[bool] = ...,
|
402 |
+
hash: Optional[bool] = ...,
|
403 |
+
init: bool = ...,
|
404 |
+
slots: bool = ...,
|
405 |
+
frozen: bool = ...,
|
406 |
+
weakref_slot: bool = ...,
|
407 |
+
str: bool = ...,
|
408 |
+
auto_attribs: bool = ...,
|
409 |
+
kw_only: bool = ...,
|
410 |
+
cache_hash: bool = ...,
|
411 |
+
auto_exc: bool = ...,
|
412 |
+
eq: Optional[bool] = ...,
|
413 |
+
order: Optional[bool] = ...,
|
414 |
+
auto_detect: bool = ...,
|
415 |
+
getstate_setstate: Optional[bool] = ...,
|
416 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
417 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
418 |
+
match_args: bool = ...,
|
419 |
+
) -> Callable[[_C], _C]: ...
|
420 |
+
|
421 |
+
mutable = define
|
422 |
+
|
423 |
+
@overload
|
424 |
+
@dataclass_transform(frozen_default=True, field_specifiers=(attrib, field))
|
425 |
+
def frozen(
|
426 |
+
maybe_cls: _C,
|
427 |
+
*,
|
428 |
+
these: Optional[Dict[str, Any]] = ...,
|
429 |
+
repr: bool = ...,
|
430 |
+
unsafe_hash: Optional[bool] = ...,
|
431 |
+
hash: Optional[bool] = ...,
|
432 |
+
init: bool = ...,
|
433 |
+
slots: bool = ...,
|
434 |
+
frozen: bool = ...,
|
435 |
+
weakref_slot: bool = ...,
|
436 |
+
str: bool = ...,
|
437 |
+
auto_attribs: bool = ...,
|
438 |
+
kw_only: bool = ...,
|
439 |
+
cache_hash: bool = ...,
|
440 |
+
auto_exc: bool = ...,
|
441 |
+
eq: Optional[bool] = ...,
|
442 |
+
order: Optional[bool] = ...,
|
443 |
+
auto_detect: bool = ...,
|
444 |
+
getstate_setstate: Optional[bool] = ...,
|
445 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
446 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
447 |
+
match_args: bool = ...,
|
448 |
+
) -> _C: ...
|
449 |
+
@overload
|
450 |
+
@dataclass_transform(frozen_default=True, field_specifiers=(attrib, field))
|
451 |
+
def frozen(
|
452 |
+
maybe_cls: None = ...,
|
453 |
+
*,
|
454 |
+
these: Optional[Dict[str, Any]] = ...,
|
455 |
+
repr: bool = ...,
|
456 |
+
unsafe_hash: Optional[bool] = ...,
|
457 |
+
hash: Optional[bool] = ...,
|
458 |
+
init: bool = ...,
|
459 |
+
slots: bool = ...,
|
460 |
+
frozen: bool = ...,
|
461 |
+
weakref_slot: bool = ...,
|
462 |
+
str: bool = ...,
|
463 |
+
auto_attribs: bool = ...,
|
464 |
+
kw_only: bool = ...,
|
465 |
+
cache_hash: bool = ...,
|
466 |
+
auto_exc: bool = ...,
|
467 |
+
eq: Optional[bool] = ...,
|
468 |
+
order: Optional[bool] = ...,
|
469 |
+
auto_detect: bool = ...,
|
470 |
+
getstate_setstate: Optional[bool] = ...,
|
471 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
472 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
473 |
+
match_args: bool = ...,
|
474 |
+
) -> Callable[[_C], _C]: ...
|
475 |
+
def fields(cls: Type[AttrsInstance]) -> Any: ...
|
476 |
+
def fields_dict(cls: Type[AttrsInstance]) -> Dict[str, Attribute[Any]]: ...
|
477 |
+
def validate(inst: AttrsInstance) -> None: ...
|
478 |
+
def resolve_types(
|
479 |
+
cls: _A,
|
480 |
+
globalns: Optional[Dict[str, Any]] = ...,
|
481 |
+
localns: Optional[Dict[str, Any]] = ...,
|
482 |
+
attribs: Optional[List[Attribute[Any]]] = ...,
|
483 |
+
include_extras: bool = ...,
|
484 |
+
) -> _A: ...
|
485 |
+
|
486 |
+
# TODO: add support for returning a proper attrs class from the mypy plugin
|
487 |
+
# we use Any instead of _CountingAttr so that e.g. `make_class('Foo',
|
488 |
+
# [attr.ib()])` is valid
|
489 |
+
def make_class(
|
490 |
+
name: str,
|
491 |
+
attrs: Union[List[str], Tuple[str, ...], Dict[str, Any]],
|
492 |
+
bases: Tuple[type, ...] = ...,
|
493 |
+
class_body: Optional[Dict[str, Any]] = ...,
|
494 |
+
repr_ns: Optional[str] = ...,
|
495 |
+
repr: bool = ...,
|
496 |
+
cmp: Optional[_EqOrderType] = ...,
|
497 |
+
hash: Optional[bool] = ...,
|
498 |
+
init: bool = ...,
|
499 |
+
slots: bool = ...,
|
500 |
+
frozen: bool = ...,
|
501 |
+
weakref_slot: bool = ...,
|
502 |
+
str: bool = ...,
|
503 |
+
auto_attribs: bool = ...,
|
504 |
+
kw_only: bool = ...,
|
505 |
+
cache_hash: bool = ...,
|
506 |
+
auto_exc: bool = ...,
|
507 |
+
eq: Optional[_EqOrderType] = ...,
|
508 |
+
order: Optional[_EqOrderType] = ...,
|
509 |
+
collect_by_mro: bool = ...,
|
510 |
+
on_setattr: Optional[_OnSetAttrArgType] = ...,
|
511 |
+
field_transformer: Optional[_FieldTransformer] = ...,
|
512 |
+
) -> type: ...
|
513 |
+
|
514 |
+
# _funcs --
|
515 |
+
|
516 |
+
# TODO: add support for returning TypedDict from the mypy plugin
|
517 |
+
# FIXME: asdict/astuple do not honor their factory args. Waiting on one of
|
518 |
+
# these:
|
519 |
+
# https://github.com/python/mypy/issues/4236
|
520 |
+
# https://github.com/python/typing/issues/253
|
521 |
+
# XXX: remember to fix attrs.asdict/astuple too!
|
522 |
+
def asdict(
|
523 |
+
inst: AttrsInstance,
|
524 |
+
recurse: bool = ...,
|
525 |
+
filter: Optional[_FilterType[Any]] = ...,
|
526 |
+
dict_factory: Type[Mapping[Any, Any]] = ...,
|
527 |
+
retain_collection_types: bool = ...,
|
528 |
+
value_serializer: Optional[
|
529 |
+
Callable[[type, Attribute[Any], Any], Any]
|
530 |
+
] = ...,
|
531 |
+
tuple_keys: Optional[bool] = ...,
|
532 |
+
) -> Dict[str, Any]: ...
|
533 |
+
|
534 |
+
# TODO: add support for returning NamedTuple from the mypy plugin
|
535 |
+
def astuple(
|
536 |
+
inst: AttrsInstance,
|
537 |
+
recurse: bool = ...,
|
538 |
+
filter: Optional[_FilterType[Any]] = ...,
|
539 |
+
tuple_factory: Type[Sequence[Any]] = ...,
|
540 |
+
retain_collection_types: bool = ...,
|
541 |
+
) -> Tuple[Any, ...]: ...
|
542 |
+
def has(cls: type) -> TypeGuard[Type[AttrsInstance]]: ...
|
543 |
+
def assoc(inst: _T, **changes: Any) -> _T: ...
|
544 |
+
def evolve(inst: _T, **changes: Any) -> _T: ...
|
545 |
+
|
546 |
+
# _config --
|
547 |
+
|
548 |
+
def set_run_validators(run: bool) -> None: ...
|
549 |
+
def get_run_validators() -> bool: ...
|
550 |
+
|
551 |
+
# aliases --
|
552 |
+
|
553 |
+
s = attributes = attrs
|
554 |
+
ib = attr = attrib
|
555 |
+
dataclass = attrs # Technically, partial(attrs, auto_attribs=True) ;)
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_cmp.cpython-310.pyc
ADDED
Binary file (3.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_compat.cpython-310.pyc
ADDED
Binary file (2.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_config.cpython-310.pyc
ADDED
Binary file (1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_funcs.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_make.cpython-310.pyc
ADDED
Binary file (75.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_next_gen.cpython-310.pyc
ADDED
Binary file (5.42 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/_version_info.cpython-310.pyc
ADDED
Binary file (2.32 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/converters.cpython-310.pyc
ADDED
Binary file (3.54 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (3.16 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/filters.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/setters.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/__pycache__/validators.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/attr/_cmp.pyi
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Optional, Type
|
2 |
+
|
3 |
+
_CompareWithType = Callable[[Any, Any], bool]
|
4 |
+
|
5 |
+
def cmp_using(
|
6 |
+
eq: Optional[_CompareWithType] = ...,
|
7 |
+
lt: Optional[_CompareWithType] = ...,
|
8 |
+
le: Optional[_CompareWithType] = ...,
|
9 |
+
gt: Optional[_CompareWithType] = ...,
|
10 |
+
ge: Optional[_CompareWithType] = ...,
|
11 |
+
require_same_type: bool = ...,
|
12 |
+
class_name: str = ...,
|
13 |
+
) -> Type: ...
|
env-llmeval/lib/python3.10/site-packages/attr/_compat.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
import platform
|
5 |
+
import sys
|
6 |
+
import threading
|
7 |
+
|
8 |
+
from collections.abc import Mapping, Sequence # noqa: F401
|
9 |
+
from typing import _GenericAlias
|
10 |
+
|
11 |
+
|
12 |
+
PYPY = platform.python_implementation() == "PyPy"
|
13 |
+
PY_3_8_PLUS = sys.version_info[:2] >= (3, 8)
|
14 |
+
PY_3_9_PLUS = sys.version_info[:2] >= (3, 9)
|
15 |
+
PY310 = sys.version_info[:2] >= (3, 10)
|
16 |
+
PY_3_12_PLUS = sys.version_info[:2] >= (3, 12)
|
17 |
+
|
18 |
+
|
19 |
+
if sys.version_info < (3, 8):
|
20 |
+
try:
|
21 |
+
from typing_extensions import Protocol
|
22 |
+
except ImportError: # pragma: no cover
|
23 |
+
Protocol = object
|
24 |
+
else:
|
25 |
+
from typing import Protocol # noqa: F401
|
26 |
+
|
27 |
+
|
28 |
+
class _AnnotationExtractor:
|
29 |
+
"""
|
30 |
+
Extract type annotations from a callable, returning None whenever there
|
31 |
+
is none.
|
32 |
+
"""
|
33 |
+
|
34 |
+
__slots__ = ["sig"]
|
35 |
+
|
36 |
+
def __init__(self, callable):
|
37 |
+
try:
|
38 |
+
self.sig = inspect.signature(callable)
|
39 |
+
except (ValueError, TypeError): # inspect failed
|
40 |
+
self.sig = None
|
41 |
+
|
42 |
+
def get_first_param_type(self):
|
43 |
+
"""
|
44 |
+
Return the type annotation of the first argument if it's not empty.
|
45 |
+
"""
|
46 |
+
if not self.sig:
|
47 |
+
return None
|
48 |
+
|
49 |
+
params = list(self.sig.parameters.values())
|
50 |
+
if params and params[0].annotation is not inspect.Parameter.empty:
|
51 |
+
return params[0].annotation
|
52 |
+
|
53 |
+
return None
|
54 |
+
|
55 |
+
def get_return_type(self):
|
56 |
+
"""
|
57 |
+
Return the return type if it's not empty.
|
58 |
+
"""
|
59 |
+
if (
|
60 |
+
self.sig
|
61 |
+
and self.sig.return_annotation is not inspect.Signature.empty
|
62 |
+
):
|
63 |
+
return self.sig.return_annotation
|
64 |
+
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
# Thread-local global to track attrs instances which are already being repr'd.
|
69 |
+
# This is needed because there is no other (thread-safe) way to pass info
|
70 |
+
# about the instances that are already being repr'd through the call stack
|
71 |
+
# in order to ensure we don't perform infinite recursion.
|
72 |
+
#
|
73 |
+
# For instance, if an instance contains a dict which contains that instance,
|
74 |
+
# we need to know that we're already repr'ing the outside instance from within
|
75 |
+
# the dict's repr() call.
|
76 |
+
#
|
77 |
+
# This lives here rather than in _make.py so that the functions in _make.py
|
78 |
+
# don't have a direct reference to the thread-local in their globals dict.
|
79 |
+
# If they have such a reference, it breaks cloudpickle.
|
80 |
+
repr_context = threading.local()
|
81 |
+
|
82 |
+
|
83 |
+
def get_generic_base(cl):
|
84 |
+
"""If this is a generic class (A[str]), return the generic base for it."""
|
85 |
+
if cl.__class__ is _GenericAlias:
|
86 |
+
return cl.__origin__
|
87 |
+
return None
|
env-llmeval/lib/python3.10/site-packages/attr/_config.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
__all__ = ["set_run_validators", "get_run_validators"]
|
4 |
+
|
5 |
+
_run_validators = True
|
6 |
+
|
7 |
+
|
8 |
+
def set_run_validators(run):
|
9 |
+
"""
|
10 |
+
Set whether or not validators are run. By default, they are run.
|
11 |
+
|
12 |
+
.. deprecated:: 21.3.0 It will not be removed, but it also will not be
|
13 |
+
moved to new ``attrs`` namespace. Use `attrs.validators.set_disabled()`
|
14 |
+
instead.
|
15 |
+
"""
|
16 |
+
if not isinstance(run, bool):
|
17 |
+
msg = "'run' must be bool."
|
18 |
+
raise TypeError(msg)
|
19 |
+
global _run_validators
|
20 |
+
_run_validators = run
|
21 |
+
|
22 |
+
|
23 |
+
def get_run_validators():
|
24 |
+
"""
|
25 |
+
Return whether or not validators are run.
|
26 |
+
|
27 |
+
.. deprecated:: 21.3.0 It will not be removed, but it also will not be
|
28 |
+
moved to new ``attrs`` namespace. Use `attrs.validators.get_disabled()`
|
29 |
+
instead.
|
30 |
+
"""
|
31 |
+
return _run_validators
|
env-llmeval/lib/python3.10/site-packages/attr/_next_gen.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
"""
|
4 |
+
These are keyword-only APIs that call `attr.s` and `attr.ib` with different
|
5 |
+
default values.
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from . import setters
|
12 |
+
from ._funcs import asdict as _asdict
|
13 |
+
from ._funcs import astuple as _astuple
|
14 |
+
from ._make import (
|
15 |
+
NOTHING,
|
16 |
+
_frozen_setattrs,
|
17 |
+
_ng_default_on_setattr,
|
18 |
+
attrib,
|
19 |
+
attrs,
|
20 |
+
)
|
21 |
+
from .exceptions import UnannotatedAttributeError
|
22 |
+
|
23 |
+
|
24 |
+
def define(
|
25 |
+
maybe_cls=None,
|
26 |
+
*,
|
27 |
+
these=None,
|
28 |
+
repr=None,
|
29 |
+
unsafe_hash=None,
|
30 |
+
hash=None,
|
31 |
+
init=None,
|
32 |
+
slots=True,
|
33 |
+
frozen=False,
|
34 |
+
weakref_slot=True,
|
35 |
+
str=False,
|
36 |
+
auto_attribs=None,
|
37 |
+
kw_only=False,
|
38 |
+
cache_hash=False,
|
39 |
+
auto_exc=True,
|
40 |
+
eq=None,
|
41 |
+
order=False,
|
42 |
+
auto_detect=True,
|
43 |
+
getstate_setstate=None,
|
44 |
+
on_setattr=None,
|
45 |
+
field_transformer=None,
|
46 |
+
match_args=True,
|
47 |
+
):
|
48 |
+
r"""
|
49 |
+
Define an *attrs* class.
|
50 |
+
|
51 |
+
Differences to the classic `attr.s` that it uses underneath:
|
52 |
+
|
53 |
+
- Automatically detect whether or not *auto_attribs* should be `True` (c.f.
|
54 |
+
*auto_attribs* parameter).
|
55 |
+
- Converters and validators run when attributes are set by default -- if
|
56 |
+
*frozen* is `False`.
|
57 |
+
- *slots=True*
|
58 |
+
|
59 |
+
.. caution::
|
60 |
+
|
61 |
+
Usually this has only upsides and few visible effects in everyday
|
62 |
+
programming. But it *can* lead to some surprising behaviors, so please
|
63 |
+
make sure to read :term:`slotted classes`.
|
64 |
+
- *auto_exc=True*
|
65 |
+
- *auto_detect=True*
|
66 |
+
- *order=False*
|
67 |
+
- Some options that were only relevant on Python 2 or were kept around for
|
68 |
+
backwards-compatibility have been removed.
|
69 |
+
|
70 |
+
Please note that these are all defaults and you can change them as you
|
71 |
+
wish.
|
72 |
+
|
73 |
+
:param Optional[bool] auto_attribs: If set to `True` or `False`, it behaves
|
74 |
+
exactly like `attr.s`. If left `None`, `attr.s` will try to guess:
|
75 |
+
|
76 |
+
1. If any attributes are annotated and no unannotated `attrs.fields`\ s
|
77 |
+
are found, it assumes *auto_attribs=True*.
|
78 |
+
2. Otherwise it assumes *auto_attribs=False* and tries to collect
|
79 |
+
`attrs.fields`\ s.
|
80 |
+
|
81 |
+
For now, please refer to `attr.s` for the rest of the parameters.
|
82 |
+
|
83 |
+
.. versionadded:: 20.1.0
|
84 |
+
.. versionchanged:: 21.3.0 Converters are also run ``on_setattr``.
|
85 |
+
.. versionadded:: 22.2.0
|
86 |
+
*unsafe_hash* as an alias for *hash* (for :pep:`681` compliance).
|
87 |
+
"""
|
88 |
+
|
89 |
+
def do_it(cls, auto_attribs):
|
90 |
+
return attrs(
|
91 |
+
maybe_cls=cls,
|
92 |
+
these=these,
|
93 |
+
repr=repr,
|
94 |
+
hash=hash,
|
95 |
+
unsafe_hash=unsafe_hash,
|
96 |
+
init=init,
|
97 |
+
slots=slots,
|
98 |
+
frozen=frozen,
|
99 |
+
weakref_slot=weakref_slot,
|
100 |
+
str=str,
|
101 |
+
auto_attribs=auto_attribs,
|
102 |
+
kw_only=kw_only,
|
103 |
+
cache_hash=cache_hash,
|
104 |
+
auto_exc=auto_exc,
|
105 |
+
eq=eq,
|
106 |
+
order=order,
|
107 |
+
auto_detect=auto_detect,
|
108 |
+
collect_by_mro=True,
|
109 |
+
getstate_setstate=getstate_setstate,
|
110 |
+
on_setattr=on_setattr,
|
111 |
+
field_transformer=field_transformer,
|
112 |
+
match_args=match_args,
|
113 |
+
)
|
114 |
+
|
115 |
+
def wrap(cls):
|
116 |
+
"""
|
117 |
+
Making this a wrapper ensures this code runs during class creation.
|
118 |
+
|
119 |
+
We also ensure that frozen-ness of classes is inherited.
|
120 |
+
"""
|
121 |
+
nonlocal frozen, on_setattr
|
122 |
+
|
123 |
+
had_on_setattr = on_setattr not in (None, setters.NO_OP)
|
124 |
+
|
125 |
+
# By default, mutable classes convert & validate on setattr.
|
126 |
+
if frozen is False and on_setattr is None:
|
127 |
+
on_setattr = _ng_default_on_setattr
|
128 |
+
|
129 |
+
# However, if we subclass a frozen class, we inherit the immutability
|
130 |
+
# and disable on_setattr.
|
131 |
+
for base_cls in cls.__bases__:
|
132 |
+
if base_cls.__setattr__ is _frozen_setattrs:
|
133 |
+
if had_on_setattr:
|
134 |
+
msg = "Frozen classes can't use on_setattr (frozen-ness was inherited)."
|
135 |
+
raise ValueError(msg)
|
136 |
+
|
137 |
+
on_setattr = setters.NO_OP
|
138 |
+
break
|
139 |
+
|
140 |
+
if auto_attribs is not None:
|
141 |
+
return do_it(cls, auto_attribs)
|
142 |
+
|
143 |
+
try:
|
144 |
+
return do_it(cls, True)
|
145 |
+
except UnannotatedAttributeError:
|
146 |
+
return do_it(cls, False)
|
147 |
+
|
148 |
+
# maybe_cls's type depends on the usage of the decorator. It's a class
|
149 |
+
# if it's used as `@attrs` but ``None`` if used as `@attrs()`.
|
150 |
+
if maybe_cls is None:
|
151 |
+
return wrap
|
152 |
+
|
153 |
+
return wrap(maybe_cls)
|
154 |
+
|
155 |
+
|
156 |
+
mutable = define
|
157 |
+
frozen = partial(define, frozen=True, on_setattr=None)
|
158 |
+
|
159 |
+
|
160 |
+
def field(
|
161 |
+
*,
|
162 |
+
default=NOTHING,
|
163 |
+
validator=None,
|
164 |
+
repr=True,
|
165 |
+
hash=None,
|
166 |
+
init=True,
|
167 |
+
metadata=None,
|
168 |
+
type=None,
|
169 |
+
converter=None,
|
170 |
+
factory=None,
|
171 |
+
kw_only=False,
|
172 |
+
eq=None,
|
173 |
+
order=None,
|
174 |
+
on_setattr=None,
|
175 |
+
alias=None,
|
176 |
+
):
|
177 |
+
"""
|
178 |
+
Identical to `attr.ib`, except keyword-only and with some arguments
|
179 |
+
removed.
|
180 |
+
|
181 |
+
.. versionadded:: 23.1.0
|
182 |
+
The *type* parameter has been re-added; mostly for `attrs.make_class`.
|
183 |
+
Please note that type checkers ignore this metadata.
|
184 |
+
.. versionadded:: 20.1.0
|
185 |
+
"""
|
186 |
+
return attrib(
|
187 |
+
default=default,
|
188 |
+
validator=validator,
|
189 |
+
repr=repr,
|
190 |
+
hash=hash,
|
191 |
+
init=init,
|
192 |
+
metadata=metadata,
|
193 |
+
type=type,
|
194 |
+
converter=converter,
|
195 |
+
factory=factory,
|
196 |
+
kw_only=kw_only,
|
197 |
+
eq=eq,
|
198 |
+
order=order,
|
199 |
+
on_setattr=on_setattr,
|
200 |
+
alias=alias,
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
def asdict(inst, *, recurse=True, filter=None, value_serializer=None):
|
205 |
+
"""
|
206 |
+
Same as `attr.asdict`, except that collections types are always retained
|
207 |
+
and dict is always used as *dict_factory*.
|
208 |
+
|
209 |
+
.. versionadded:: 21.3.0
|
210 |
+
"""
|
211 |
+
return _asdict(
|
212 |
+
inst=inst,
|
213 |
+
recurse=recurse,
|
214 |
+
filter=filter,
|
215 |
+
value_serializer=value_serializer,
|
216 |
+
retain_collection_types=True,
|
217 |
+
)
|
218 |
+
|
219 |
+
|
220 |
+
def astuple(inst, *, recurse=True, filter=None):
|
221 |
+
"""
|
222 |
+
Same as `attr.astuple`, except that collections types are always retained
|
223 |
+
and `tuple` is always used as the *tuple_factory*.
|
224 |
+
|
225 |
+
.. versionadded:: 21.3.0
|
226 |
+
"""
|
227 |
+
return _astuple(
|
228 |
+
inst=inst, recurse=recurse, filter=filter, retain_collection_types=True
|
229 |
+
)
|
env-llmeval/lib/python3.10/site-packages/attr/_typing_compat.pyi
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, ClassVar, Protocol
|
2 |
+
|
3 |
+
# MYPY is a special constant in mypy which works the same way as `TYPE_CHECKING`.
|
4 |
+
MYPY = False
|
5 |
+
|
6 |
+
if MYPY:
|
7 |
+
# A protocol to be able to statically accept an attrs class.
|
8 |
+
class AttrsInstance_(Protocol):
|
9 |
+
__attrs_attrs__: ClassVar[Any]
|
10 |
+
|
11 |
+
else:
|
12 |
+
# For type checkers without plug-in support use an empty protocol that
|
13 |
+
# will (hopefully) be combined into a union.
|
14 |
+
class AttrsInstance_(Protocol):
|
15 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/attr/_version_info.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
|
4 |
+
from functools import total_ordering
|
5 |
+
|
6 |
+
from ._funcs import astuple
|
7 |
+
from ._make import attrib, attrs
|
8 |
+
|
9 |
+
|
10 |
+
@total_ordering
|
11 |
+
@attrs(eq=False, order=False, slots=True, frozen=True)
|
12 |
+
class VersionInfo:
|
13 |
+
"""
|
14 |
+
A version object that can be compared to tuple of length 1--4:
|
15 |
+
|
16 |
+
>>> attr.VersionInfo(19, 1, 0, "final") <= (19, 2)
|
17 |
+
True
|
18 |
+
>>> attr.VersionInfo(19, 1, 0, "final") < (19, 1, 1)
|
19 |
+
True
|
20 |
+
>>> vi = attr.VersionInfo(19, 2, 0, "final")
|
21 |
+
>>> vi < (19, 1, 1)
|
22 |
+
False
|
23 |
+
>>> vi < (19,)
|
24 |
+
False
|
25 |
+
>>> vi == (19, 2,)
|
26 |
+
True
|
27 |
+
>>> vi == (19, 2, 1)
|
28 |
+
False
|
29 |
+
|
30 |
+
.. versionadded:: 19.2
|
31 |
+
"""
|
32 |
+
|
33 |
+
year = attrib(type=int)
|
34 |
+
minor = attrib(type=int)
|
35 |
+
micro = attrib(type=int)
|
36 |
+
releaselevel = attrib(type=str)
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def _from_version_string(cls, s):
|
40 |
+
"""
|
41 |
+
Parse *s* and return a _VersionInfo.
|
42 |
+
"""
|
43 |
+
v = s.split(".")
|
44 |
+
if len(v) == 3:
|
45 |
+
v.append("final")
|
46 |
+
|
47 |
+
return cls(
|
48 |
+
year=int(v[0]), minor=int(v[1]), micro=int(v[2]), releaselevel=v[3]
|
49 |
+
)
|
50 |
+
|
51 |
+
def _ensure_tuple(self, other):
|
52 |
+
"""
|
53 |
+
Ensure *other* is a tuple of a valid length.
|
54 |
+
|
55 |
+
Returns a possibly transformed *other* and ourselves as a tuple of
|
56 |
+
the same length as *other*.
|
57 |
+
"""
|
58 |
+
|
59 |
+
if self.__class__ is other.__class__:
|
60 |
+
other = astuple(other)
|
61 |
+
|
62 |
+
if not isinstance(other, tuple):
|
63 |
+
raise NotImplementedError
|
64 |
+
|
65 |
+
if not (1 <= len(other) <= 4):
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
return astuple(self)[: len(other)], other
|
69 |
+
|
70 |
+
def __eq__(self, other):
|
71 |
+
try:
|
72 |
+
us, them = self._ensure_tuple(other)
|
73 |
+
except NotImplementedError:
|
74 |
+
return NotImplemented
|
75 |
+
|
76 |
+
return us == them
|
77 |
+
|
78 |
+
def __lt__(self, other):
|
79 |
+
try:
|
80 |
+
us, them = self._ensure_tuple(other)
|
81 |
+
except NotImplementedError:
|
82 |
+
return NotImplemented
|
83 |
+
|
84 |
+
# Since alphabetically "dev0" < "final" < "post1" < "post2", we don't
|
85 |
+
# have to do anything special with releaselevel for now.
|
86 |
+
return us < them
|
env-llmeval/lib/python3.10/site-packages/attr/converters.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
"""
|
4 |
+
Commonly useful converters.
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
import typing
|
9 |
+
|
10 |
+
from ._compat import _AnnotationExtractor
|
11 |
+
from ._make import NOTHING, Factory, pipe
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"default_if_none",
|
16 |
+
"optional",
|
17 |
+
"pipe",
|
18 |
+
"to_bool",
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
def optional(converter):
|
23 |
+
"""
|
24 |
+
A converter that allows an attribute to be optional. An optional attribute
|
25 |
+
is one which can be set to ``None``.
|
26 |
+
|
27 |
+
Type annotations will be inferred from the wrapped converter's, if it
|
28 |
+
has any.
|
29 |
+
|
30 |
+
:param callable converter: the converter that is used for non-``None``
|
31 |
+
values.
|
32 |
+
|
33 |
+
.. versionadded:: 17.1.0
|
34 |
+
"""
|
35 |
+
|
36 |
+
def optional_converter(val):
|
37 |
+
if val is None:
|
38 |
+
return None
|
39 |
+
return converter(val)
|
40 |
+
|
41 |
+
xtr = _AnnotationExtractor(converter)
|
42 |
+
|
43 |
+
t = xtr.get_first_param_type()
|
44 |
+
if t:
|
45 |
+
optional_converter.__annotations__["val"] = typing.Optional[t]
|
46 |
+
|
47 |
+
rt = xtr.get_return_type()
|
48 |
+
if rt:
|
49 |
+
optional_converter.__annotations__["return"] = typing.Optional[rt]
|
50 |
+
|
51 |
+
return optional_converter
|
52 |
+
|
53 |
+
|
54 |
+
def default_if_none(default=NOTHING, factory=None):
|
55 |
+
"""
|
56 |
+
A converter that allows to replace ``None`` values by *default* or the
|
57 |
+
result of *factory*.
|
58 |
+
|
59 |
+
:param default: Value to be used if ``None`` is passed. Passing an instance
|
60 |
+
of `attrs.Factory` is supported, however the ``takes_self`` option
|
61 |
+
is *not*.
|
62 |
+
:param callable factory: A callable that takes no parameters whose result
|
63 |
+
is used if ``None`` is passed.
|
64 |
+
|
65 |
+
:raises TypeError: If **neither** *default* or *factory* is passed.
|
66 |
+
:raises TypeError: If **both** *default* and *factory* are passed.
|
67 |
+
:raises ValueError: If an instance of `attrs.Factory` is passed with
|
68 |
+
``takes_self=True``.
|
69 |
+
|
70 |
+
.. versionadded:: 18.2.0
|
71 |
+
"""
|
72 |
+
if default is NOTHING and factory is None:
|
73 |
+
msg = "Must pass either `default` or `factory`."
|
74 |
+
raise TypeError(msg)
|
75 |
+
|
76 |
+
if default is not NOTHING and factory is not None:
|
77 |
+
msg = "Must pass either `default` or `factory` but not both."
|
78 |
+
raise TypeError(msg)
|
79 |
+
|
80 |
+
if factory is not None:
|
81 |
+
default = Factory(factory)
|
82 |
+
|
83 |
+
if isinstance(default, Factory):
|
84 |
+
if default.takes_self:
|
85 |
+
msg = "`takes_self` is not supported by default_if_none."
|
86 |
+
raise ValueError(msg)
|
87 |
+
|
88 |
+
def default_if_none_converter(val):
|
89 |
+
if val is not None:
|
90 |
+
return val
|
91 |
+
|
92 |
+
return default.factory()
|
93 |
+
|
94 |
+
else:
|
95 |
+
|
96 |
+
def default_if_none_converter(val):
|
97 |
+
if val is not None:
|
98 |
+
return val
|
99 |
+
|
100 |
+
return default
|
101 |
+
|
102 |
+
return default_if_none_converter
|
103 |
+
|
104 |
+
|
105 |
+
def to_bool(val):
|
106 |
+
"""
|
107 |
+
Convert "boolean" strings (e.g., from env. vars.) to real booleans.
|
108 |
+
|
109 |
+
Values mapping to :code:`True`:
|
110 |
+
|
111 |
+
- :code:`True`
|
112 |
+
- :code:`"true"` / :code:`"t"`
|
113 |
+
- :code:`"yes"` / :code:`"y"`
|
114 |
+
- :code:`"on"`
|
115 |
+
- :code:`"1"`
|
116 |
+
- :code:`1`
|
117 |
+
|
118 |
+
Values mapping to :code:`False`:
|
119 |
+
|
120 |
+
- :code:`False`
|
121 |
+
- :code:`"false"` / :code:`"f"`
|
122 |
+
- :code:`"no"` / :code:`"n"`
|
123 |
+
- :code:`"off"`
|
124 |
+
- :code:`"0"`
|
125 |
+
- :code:`0`
|
126 |
+
|
127 |
+
:raises ValueError: for any other value.
|
128 |
+
|
129 |
+
.. versionadded:: 21.3.0
|
130 |
+
"""
|
131 |
+
if isinstance(val, str):
|
132 |
+
val = val.lower()
|
133 |
+
truthy = {True, "true", "t", "yes", "y", "on", "1", 1}
|
134 |
+
falsy = {False, "false", "f", "no", "n", "off", "0", 0}
|
135 |
+
try:
|
136 |
+
if val in truthy:
|
137 |
+
return True
|
138 |
+
if val in falsy:
|
139 |
+
return False
|
140 |
+
except TypeError:
|
141 |
+
# Raised when "val" is not hashable (e.g., lists)
|
142 |
+
pass
|
143 |
+
msg = f"Cannot convert value to bool: {val}"
|
144 |
+
raise ValueError(msg)
|
env-llmeval/lib/python3.10/site-packages/attr/filters.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
"""
|
4 |
+
Commonly useful filters for `attr.asdict`.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from ._make import Attribute
|
8 |
+
|
9 |
+
|
10 |
+
def _split_what(what):
|
11 |
+
"""
|
12 |
+
Returns a tuple of `frozenset`s of classes and attributes.
|
13 |
+
"""
|
14 |
+
return (
|
15 |
+
frozenset(cls for cls in what if isinstance(cls, type)),
|
16 |
+
frozenset(cls for cls in what if isinstance(cls, str)),
|
17 |
+
frozenset(cls for cls in what if isinstance(cls, Attribute)),
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def include(*what):
|
22 |
+
"""
|
23 |
+
Include *what*.
|
24 |
+
|
25 |
+
:param what: What to include.
|
26 |
+
:type what: `list` of classes `type`, field names `str` or
|
27 |
+
`attrs.Attribute`\\ s
|
28 |
+
|
29 |
+
:rtype: `callable`
|
30 |
+
|
31 |
+
.. versionchanged:: 23.1.0 Accept strings with field names.
|
32 |
+
"""
|
33 |
+
cls, names, attrs = _split_what(what)
|
34 |
+
|
35 |
+
def include_(attribute, value):
|
36 |
+
return (
|
37 |
+
value.__class__ in cls
|
38 |
+
or attribute.name in names
|
39 |
+
or attribute in attrs
|
40 |
+
)
|
41 |
+
|
42 |
+
return include_
|
43 |
+
|
44 |
+
|
45 |
+
def exclude(*what):
|
46 |
+
"""
|
47 |
+
Exclude *what*.
|
48 |
+
|
49 |
+
:param what: What to exclude.
|
50 |
+
:type what: `list` of classes `type`, field names `str` or
|
51 |
+
`attrs.Attribute`\\ s.
|
52 |
+
|
53 |
+
:rtype: `callable`
|
54 |
+
|
55 |
+
.. versionchanged:: 23.3.0 Accept field name string as input argument
|
56 |
+
"""
|
57 |
+
cls, names, attrs = _split_what(what)
|
58 |
+
|
59 |
+
def exclude_(attribute, value):
|
60 |
+
return not (
|
61 |
+
value.__class__ in cls
|
62 |
+
or attribute.name in names
|
63 |
+
or attribute in attrs
|
64 |
+
)
|
65 |
+
|
66 |
+
return exclude_
|
env-llmeval/lib/python3.10/site-packages/attr/setters.pyi
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, NewType, NoReturn, TypeVar
|
2 |
+
|
3 |
+
from . import Attribute, _OnSetAttrType
|
4 |
+
|
5 |
+
_T = TypeVar("_T")
|
6 |
+
|
7 |
+
def frozen(
|
8 |
+
instance: Any, attribute: Attribute[Any], new_value: Any
|
9 |
+
) -> NoReturn: ...
|
10 |
+
def pipe(*setters: _OnSetAttrType) -> _OnSetAttrType: ...
|
11 |
+
def validate(instance: Any, attribute: Attribute[_T], new_value: _T) -> _T: ...
|
12 |
+
|
13 |
+
# convert is allowed to return Any, because they can be chained using pipe.
|
14 |
+
def convert(
|
15 |
+
instance: Any, attribute: Attribute[Any], new_value: Any
|
16 |
+
) -> Any: ...
|
17 |
+
|
18 |
+
_NoOpType = NewType("_NoOpType", object)
|
19 |
+
NO_OP: _NoOpType
|
env-llmeval/lib/python3.10/site-packages/attr/validators.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-License-Identifier: MIT
|
2 |
+
|
3 |
+
"""
|
4 |
+
Commonly useful validators.
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
import operator
|
9 |
+
import re
|
10 |
+
|
11 |
+
from contextlib import contextmanager
|
12 |
+
from re import Pattern
|
13 |
+
|
14 |
+
from ._config import get_run_validators, set_run_validators
|
15 |
+
from ._make import _AndValidator, and_, attrib, attrs
|
16 |
+
from .converters import default_if_none
|
17 |
+
from .exceptions import NotCallableError
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
"and_",
|
22 |
+
"deep_iterable",
|
23 |
+
"deep_mapping",
|
24 |
+
"disabled",
|
25 |
+
"ge",
|
26 |
+
"get_disabled",
|
27 |
+
"gt",
|
28 |
+
"in_",
|
29 |
+
"instance_of",
|
30 |
+
"is_callable",
|
31 |
+
"le",
|
32 |
+
"lt",
|
33 |
+
"matches_re",
|
34 |
+
"max_len",
|
35 |
+
"min_len",
|
36 |
+
"not_",
|
37 |
+
"optional",
|
38 |
+
"provides",
|
39 |
+
"set_disabled",
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
def set_disabled(disabled):
|
44 |
+
"""
|
45 |
+
Globally disable or enable running validators.
|
46 |
+
|
47 |
+
By default, they are run.
|
48 |
+
|
49 |
+
:param disabled: If ``True``, disable running all validators.
|
50 |
+
:type disabled: bool
|
51 |
+
|
52 |
+
.. warning::
|
53 |
+
|
54 |
+
This function is not thread-safe!
|
55 |
+
|
56 |
+
.. versionadded:: 21.3.0
|
57 |
+
"""
|
58 |
+
set_run_validators(not disabled)
|
59 |
+
|
60 |
+
|
61 |
+
def get_disabled():
|
62 |
+
"""
|
63 |
+
Return a bool indicating whether validators are currently disabled or not.
|
64 |
+
|
65 |
+
:return: ``True`` if validators are currently disabled.
|
66 |
+
:rtype: bool
|
67 |
+
|
68 |
+
.. versionadded:: 21.3.0
|
69 |
+
"""
|
70 |
+
return not get_run_validators()
|
71 |
+
|
72 |
+
|
73 |
+
@contextmanager
|
74 |
+
def disabled():
|
75 |
+
"""
|
76 |
+
Context manager that disables running validators within its context.
|
77 |
+
|
78 |
+
.. warning::
|
79 |
+
|
80 |
+
This context manager is not thread-safe!
|
81 |
+
|
82 |
+
.. versionadded:: 21.3.0
|
83 |
+
"""
|
84 |
+
set_run_validators(False)
|
85 |
+
try:
|
86 |
+
yield
|
87 |
+
finally:
|
88 |
+
set_run_validators(True)
|
89 |
+
|
90 |
+
|
91 |
+
@attrs(repr=False, slots=True, hash=True)
|
92 |
+
class _InstanceOfValidator:
|
93 |
+
type = attrib()
|
94 |
+
|
95 |
+
def __call__(self, inst, attr, value):
|
96 |
+
"""
|
97 |
+
We use a callable class to be able to change the ``__repr__``.
|
98 |
+
"""
|
99 |
+
if not isinstance(value, self.type):
|
100 |
+
msg = "'{name}' must be {type!r} (got {value!r} that is a {actual!r}).".format(
|
101 |
+
name=attr.name,
|
102 |
+
type=self.type,
|
103 |
+
actual=value.__class__,
|
104 |
+
value=value,
|
105 |
+
)
|
106 |
+
raise TypeError(
|
107 |
+
msg,
|
108 |
+
attr,
|
109 |
+
self.type,
|
110 |
+
value,
|
111 |
+
)
|
112 |
+
|
113 |
+
def __repr__(self):
|
114 |
+
return f"<instance_of validator for type {self.type!r}>"
|
115 |
+
|
116 |
+
|
117 |
+
def instance_of(type):
|
118 |
+
"""
|
119 |
+
A validator that raises a `TypeError` if the initializer is called
|
120 |
+
with a wrong type for this particular attribute (checks are performed using
|
121 |
+
`isinstance` therefore it's also valid to pass a tuple of types).
|
122 |
+
|
123 |
+
:param type: The type to check for.
|
124 |
+
:type type: type or tuple of type
|
125 |
+
|
126 |
+
:raises TypeError: With a human readable error message, the attribute
|
127 |
+
(of type `attrs.Attribute`), the expected type, and the value it
|
128 |
+
got.
|
129 |
+
"""
|
130 |
+
return _InstanceOfValidator(type)
|
131 |
+
|
132 |
+
|
133 |
+
@attrs(repr=False, frozen=True, slots=True)
|
134 |
+
class _MatchesReValidator:
|
135 |
+
pattern = attrib()
|
136 |
+
match_func = attrib()
|
137 |
+
|
138 |
+
def __call__(self, inst, attr, value):
|
139 |
+
"""
|
140 |
+
We use a callable class to be able to change the ``__repr__``.
|
141 |
+
"""
|
142 |
+
if not self.match_func(value):
|
143 |
+
msg = "'{name}' must match regex {pattern!r} ({value!r} doesn't)".format(
|
144 |
+
name=attr.name, pattern=self.pattern.pattern, value=value
|
145 |
+
)
|
146 |
+
raise ValueError(
|
147 |
+
msg,
|
148 |
+
attr,
|
149 |
+
self.pattern,
|
150 |
+
value,
|
151 |
+
)
|
152 |
+
|
153 |
+
def __repr__(self):
|
154 |
+
return f"<matches_re validator for pattern {self.pattern!r}>"
|
155 |
+
|
156 |
+
|
157 |
+
def matches_re(regex, flags=0, func=None):
|
158 |
+
r"""
|
159 |
+
A validator that raises `ValueError` if the initializer is called
|
160 |
+
with a string that doesn't match *regex*.
|
161 |
+
|
162 |
+
:param regex: a regex string or precompiled pattern to match against
|
163 |
+
:param int flags: flags that will be passed to the underlying re function
|
164 |
+
(default 0)
|
165 |
+
:param callable func: which underlying `re` function to call. Valid options
|
166 |
+
are `re.fullmatch`, `re.search`, and `re.match`; the default ``None``
|
167 |
+
means `re.fullmatch`. For performance reasons, the pattern is always
|
168 |
+
precompiled using `re.compile`.
|
169 |
+
|
170 |
+
.. versionadded:: 19.2.0
|
171 |
+
.. versionchanged:: 21.3.0 *regex* can be a pre-compiled pattern.
|
172 |
+
"""
|
173 |
+
valid_funcs = (re.fullmatch, None, re.search, re.match)
|
174 |
+
if func not in valid_funcs:
|
175 |
+
msg = "'func' must be one of {}.".format(
|
176 |
+
", ".join(
|
177 |
+
sorted(e and e.__name__ or "None" for e in set(valid_funcs))
|
178 |
+
)
|
179 |
+
)
|
180 |
+
raise ValueError(msg)
|
181 |
+
|
182 |
+
if isinstance(regex, Pattern):
|
183 |
+
if flags:
|
184 |
+
msg = "'flags' can only be used with a string pattern; pass flags to re.compile() instead"
|
185 |
+
raise TypeError(msg)
|
186 |
+
pattern = regex
|
187 |
+
else:
|
188 |
+
pattern = re.compile(regex, flags)
|
189 |
+
|
190 |
+
if func is re.match:
|
191 |
+
match_func = pattern.match
|
192 |
+
elif func is re.search:
|
193 |
+
match_func = pattern.search
|
194 |
+
else:
|
195 |
+
match_func = pattern.fullmatch
|
196 |
+
|
197 |
+
return _MatchesReValidator(pattern, match_func)
|
198 |
+
|
199 |
+
|
200 |
+
@attrs(repr=False, slots=True, hash=True)
|
201 |
+
class _ProvidesValidator:
|
202 |
+
interface = attrib()
|
203 |
+
|
204 |
+
def __call__(self, inst, attr, value):
|
205 |
+
"""
|
206 |
+
We use a callable class to be able to change the ``__repr__``.
|
207 |
+
"""
|
208 |
+
if not self.interface.providedBy(value):
|
209 |
+
msg = "'{name}' must provide {interface!r} which {value!r} doesn't.".format(
|
210 |
+
name=attr.name, interface=self.interface, value=value
|
211 |
+
)
|
212 |
+
raise TypeError(
|
213 |
+
msg,
|
214 |
+
attr,
|
215 |
+
self.interface,
|
216 |
+
value,
|
217 |
+
)
|
218 |
+
|
219 |
+
def __repr__(self):
|
220 |
+
return f"<provides validator for interface {self.interface!r}>"
|
221 |
+
|
222 |
+
|
223 |
+
def provides(interface):
|
224 |
+
"""
|
225 |
+
A validator that raises a `TypeError` if the initializer is called
|
226 |
+
with an object that does not provide the requested *interface* (checks are
|
227 |
+
performed using ``interface.providedBy(value)`` (see `zope.interface
|
228 |
+
<https://zopeinterface.readthedocs.io/en/latest/>`_).
|
229 |
+
|
230 |
+
:param interface: The interface to check for.
|
231 |
+
:type interface: ``zope.interface.Interface``
|
232 |
+
|
233 |
+
:raises TypeError: With a human readable error message, the attribute
|
234 |
+
(of type `attrs.Attribute`), the expected interface, and the
|
235 |
+
value it got.
|
236 |
+
|
237 |
+
.. deprecated:: 23.1.0
|
238 |
+
"""
|
239 |
+
import warnings
|
240 |
+
|
241 |
+
warnings.warn(
|
242 |
+
"attrs's zope-interface support is deprecated and will be removed in, "
|
243 |
+
"or after, April 2024.",
|
244 |
+
DeprecationWarning,
|
245 |
+
stacklevel=2,
|
246 |
+
)
|
247 |
+
return _ProvidesValidator(interface)
|
248 |
+
|
249 |
+
|
250 |
+
@attrs(repr=False, slots=True, hash=True)
|
251 |
+
class _OptionalValidator:
|
252 |
+
validator = attrib()
|
253 |
+
|
254 |
+
def __call__(self, inst, attr, value):
|
255 |
+
if value is None:
|
256 |
+
return
|
257 |
+
|
258 |
+
self.validator(inst, attr, value)
|
259 |
+
|
260 |
+
def __repr__(self):
|
261 |
+
return f"<optional validator for {self.validator!r} or None>"
|
262 |
+
|
263 |
+
|
264 |
+
def optional(validator):
|
265 |
+
"""
|
266 |
+
A validator that makes an attribute optional. An optional attribute is one
|
267 |
+
which can be set to ``None`` in addition to satisfying the requirements of
|
268 |
+
the sub-validator.
|
269 |
+
|
270 |
+
:param Callable | tuple[Callable] | list[Callable] validator: A validator
|
271 |
+
(or validators) that is used for non-``None`` values.
|
272 |
+
|
273 |
+
.. versionadded:: 15.1.0
|
274 |
+
.. versionchanged:: 17.1.0 *validator* can be a list of validators.
|
275 |
+
.. versionchanged:: 23.1.0 *validator* can also be a tuple of validators.
|
276 |
+
"""
|
277 |
+
if isinstance(validator, (list, tuple)):
|
278 |
+
return _OptionalValidator(_AndValidator(validator))
|
279 |
+
|
280 |
+
return _OptionalValidator(validator)
|
281 |
+
|
282 |
+
|
283 |
+
@attrs(repr=False, slots=True, hash=True)
|
284 |
+
class _InValidator:
|
285 |
+
options = attrib()
|
286 |
+
|
287 |
+
def __call__(self, inst, attr, value):
|
288 |
+
try:
|
289 |
+
in_options = value in self.options
|
290 |
+
except TypeError: # e.g. `1 in "abc"`
|
291 |
+
in_options = False
|
292 |
+
|
293 |
+
if not in_options:
|
294 |
+
msg = f"'{attr.name}' must be in {self.options!r} (got {value!r})"
|
295 |
+
raise ValueError(
|
296 |
+
msg,
|
297 |
+
attr,
|
298 |
+
self.options,
|
299 |
+
value,
|
300 |
+
)
|
301 |
+
|
302 |
+
def __repr__(self):
|
303 |
+
return f"<in_ validator with options {self.options!r}>"
|
304 |
+
|
305 |
+
|
306 |
+
def in_(options):
|
307 |
+
"""
|
308 |
+
A validator that raises a `ValueError` if the initializer is called
|
309 |
+
with a value that does not belong in the options provided. The check is
|
310 |
+
performed using ``value in options``.
|
311 |
+
|
312 |
+
:param options: Allowed options.
|
313 |
+
:type options: list, tuple, `enum.Enum`, ...
|
314 |
+
|
315 |
+
:raises ValueError: With a human readable error message, the attribute (of
|
316 |
+
type `attrs.Attribute`), the expected options, and the value it
|
317 |
+
got.
|
318 |
+
|
319 |
+
.. versionadded:: 17.1.0
|
320 |
+
.. versionchanged:: 22.1.0
|
321 |
+
The ValueError was incomplete until now and only contained the human
|
322 |
+
readable error message. Now it contains all the information that has
|
323 |
+
been promised since 17.1.0.
|
324 |
+
"""
|
325 |
+
return _InValidator(options)
|
326 |
+
|
327 |
+
|
328 |
+
@attrs(repr=False, slots=False, hash=True)
|
329 |
+
class _IsCallableValidator:
|
330 |
+
def __call__(self, inst, attr, value):
|
331 |
+
"""
|
332 |
+
We use a callable class to be able to change the ``__repr__``.
|
333 |
+
"""
|
334 |
+
if not callable(value):
|
335 |
+
message = (
|
336 |
+
"'{name}' must be callable "
|
337 |
+
"(got {value!r} that is a {actual!r})."
|
338 |
+
)
|
339 |
+
raise NotCallableError(
|
340 |
+
msg=message.format(
|
341 |
+
name=attr.name, value=value, actual=value.__class__
|
342 |
+
),
|
343 |
+
value=value,
|
344 |
+
)
|
345 |
+
|
346 |
+
def __repr__(self):
|
347 |
+
return "<is_callable validator>"
|
348 |
+
|
349 |
+
|
350 |
+
def is_callable():
|
351 |
+
"""
|
352 |
+
A validator that raises a `attrs.exceptions.NotCallableError` if the
|
353 |
+
initializer is called with a value for this particular attribute
|
354 |
+
that is not callable.
|
355 |
+
|
356 |
+
.. versionadded:: 19.1.0
|
357 |
+
|
358 |
+
:raises attrs.exceptions.NotCallableError: With a human readable error
|
359 |
+
message containing the attribute (`attrs.Attribute`) name,
|
360 |
+
and the value it got.
|
361 |
+
"""
|
362 |
+
return _IsCallableValidator()
|
363 |
+
|
364 |
+
|
365 |
+
@attrs(repr=False, slots=True, hash=True)
|
366 |
+
class _DeepIterable:
|
367 |
+
member_validator = attrib(validator=is_callable())
|
368 |
+
iterable_validator = attrib(
|
369 |
+
default=None, validator=optional(is_callable())
|
370 |
+
)
|
371 |
+
|
372 |
+
def __call__(self, inst, attr, value):
|
373 |
+
"""
|
374 |
+
We use a callable class to be able to change the ``__repr__``.
|
375 |
+
"""
|
376 |
+
if self.iterable_validator is not None:
|
377 |
+
self.iterable_validator(inst, attr, value)
|
378 |
+
|
379 |
+
for member in value:
|
380 |
+
self.member_validator(inst, attr, member)
|
381 |
+
|
382 |
+
def __repr__(self):
|
383 |
+
iterable_identifier = (
|
384 |
+
""
|
385 |
+
if self.iterable_validator is None
|
386 |
+
else f" {self.iterable_validator!r}"
|
387 |
+
)
|
388 |
+
return (
|
389 |
+
f"<deep_iterable validator for{iterable_identifier}"
|
390 |
+
f" iterables of {self.member_validator!r}>"
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
def deep_iterable(member_validator, iterable_validator=None):
|
395 |
+
"""
|
396 |
+
A validator that performs deep validation of an iterable.
|
397 |
+
|
398 |
+
:param member_validator: Validator(s) to apply to iterable members
|
399 |
+
:param iterable_validator: Validator to apply to iterable itself
|
400 |
+
(optional)
|
401 |
+
|
402 |
+
.. versionadded:: 19.1.0
|
403 |
+
|
404 |
+
:raises TypeError: if any sub-validators fail
|
405 |
+
"""
|
406 |
+
if isinstance(member_validator, (list, tuple)):
|
407 |
+
member_validator = and_(*member_validator)
|
408 |
+
return _DeepIterable(member_validator, iterable_validator)
|
409 |
+
|
410 |
+
|
411 |
+
@attrs(repr=False, slots=True, hash=True)
|
412 |
+
class _DeepMapping:
|
413 |
+
key_validator = attrib(validator=is_callable())
|
414 |
+
value_validator = attrib(validator=is_callable())
|
415 |
+
mapping_validator = attrib(default=None, validator=optional(is_callable()))
|
416 |
+
|
417 |
+
def __call__(self, inst, attr, value):
|
418 |
+
"""
|
419 |
+
We use a callable class to be able to change the ``__repr__``.
|
420 |
+
"""
|
421 |
+
if self.mapping_validator is not None:
|
422 |
+
self.mapping_validator(inst, attr, value)
|
423 |
+
|
424 |
+
for key in value:
|
425 |
+
self.key_validator(inst, attr, key)
|
426 |
+
self.value_validator(inst, attr, value[key])
|
427 |
+
|
428 |
+
def __repr__(self):
|
429 |
+
return (
|
430 |
+
"<deep_mapping validator for objects mapping {key!r} to {value!r}>"
|
431 |
+
).format(key=self.key_validator, value=self.value_validator)
|
432 |
+
|
433 |
+
|
434 |
+
def deep_mapping(key_validator, value_validator, mapping_validator=None):
|
435 |
+
"""
|
436 |
+
A validator that performs deep validation of a dictionary.
|
437 |
+
|
438 |
+
:param key_validator: Validator to apply to dictionary keys
|
439 |
+
:param value_validator: Validator to apply to dictionary values
|
440 |
+
:param mapping_validator: Validator to apply to top-level mapping
|
441 |
+
attribute (optional)
|
442 |
+
|
443 |
+
.. versionadded:: 19.1.0
|
444 |
+
|
445 |
+
:raises TypeError: if any sub-validators fail
|
446 |
+
"""
|
447 |
+
return _DeepMapping(key_validator, value_validator, mapping_validator)
|
448 |
+
|
449 |
+
|
450 |
+
@attrs(repr=False, frozen=True, slots=True)
|
451 |
+
class _NumberValidator:
|
452 |
+
bound = attrib()
|
453 |
+
compare_op = attrib()
|
454 |
+
compare_func = attrib()
|
455 |
+
|
456 |
+
def __call__(self, inst, attr, value):
|
457 |
+
"""
|
458 |
+
We use a callable class to be able to change the ``__repr__``.
|
459 |
+
"""
|
460 |
+
if not self.compare_func(value, self.bound):
|
461 |
+
msg = f"'{attr.name}' must be {self.compare_op} {self.bound}: {value}"
|
462 |
+
raise ValueError(msg)
|
463 |
+
|
464 |
+
def __repr__(self):
|
465 |
+
return f"<Validator for x {self.compare_op} {self.bound}>"
|
466 |
+
|
467 |
+
|
468 |
+
def lt(val):
|
469 |
+
"""
|
470 |
+
A validator that raises `ValueError` if the initializer is called
|
471 |
+
with a number larger or equal to *val*.
|
472 |
+
|
473 |
+
:param val: Exclusive upper bound for values
|
474 |
+
|
475 |
+
.. versionadded:: 21.3.0
|
476 |
+
"""
|
477 |
+
return _NumberValidator(val, "<", operator.lt)
|
478 |
+
|
479 |
+
|
480 |
+
def le(val):
|
481 |
+
"""
|
482 |
+
A validator that raises `ValueError` if the initializer is called
|
483 |
+
with a number greater than *val*.
|
484 |
+
|
485 |
+
:param val: Inclusive upper bound for values
|
486 |
+
|
487 |
+
.. versionadded:: 21.3.0
|
488 |
+
"""
|
489 |
+
return _NumberValidator(val, "<=", operator.le)
|
490 |
+
|
491 |
+
|
492 |
+
def ge(val):
|
493 |
+
"""
|
494 |
+
A validator that raises `ValueError` if the initializer is called
|
495 |
+
with a number smaller than *val*.
|
496 |
+
|
497 |
+
:param val: Inclusive lower bound for values
|
498 |
+
|
499 |
+
.. versionadded:: 21.3.0
|
500 |
+
"""
|
501 |
+
return _NumberValidator(val, ">=", operator.ge)
|
502 |
+
|
503 |
+
|
504 |
+
def gt(val):
|
505 |
+
"""
|
506 |
+
A validator that raises `ValueError` if the initializer is called
|
507 |
+
with a number smaller or equal to *val*.
|
508 |
+
|
509 |
+
:param val: Exclusive lower bound for values
|
510 |
+
|
511 |
+
.. versionadded:: 21.3.0
|
512 |
+
"""
|
513 |
+
return _NumberValidator(val, ">", operator.gt)
|
514 |
+
|
515 |
+
|
516 |
+
@attrs(repr=False, frozen=True, slots=True)
|
517 |
+
class _MaxLengthValidator:
|
518 |
+
max_length = attrib()
|
519 |
+
|
520 |
+
def __call__(self, inst, attr, value):
|
521 |
+
"""
|
522 |
+
We use a callable class to be able to change the ``__repr__``.
|
523 |
+
"""
|
524 |
+
if len(value) > self.max_length:
|
525 |
+
msg = f"Length of '{attr.name}' must be <= {self.max_length}: {len(value)}"
|
526 |
+
raise ValueError(msg)
|
527 |
+
|
528 |
+
def __repr__(self):
|
529 |
+
return f"<max_len validator for {self.max_length}>"
|
530 |
+
|
531 |
+
|
532 |
+
def max_len(length):
|
533 |
+
"""
|
534 |
+
A validator that raises `ValueError` if the initializer is called
|
535 |
+
with a string or iterable that is longer than *length*.
|
536 |
+
|
537 |
+
:param int length: Maximum length of the string or iterable
|
538 |
+
|
539 |
+
.. versionadded:: 21.3.0
|
540 |
+
"""
|
541 |
+
return _MaxLengthValidator(length)
|
542 |
+
|
543 |
+
|
544 |
+
@attrs(repr=False, frozen=True, slots=True)
|
545 |
+
class _MinLengthValidator:
|
546 |
+
min_length = attrib()
|
547 |
+
|
548 |
+
def __call__(self, inst, attr, value):
|
549 |
+
"""
|
550 |
+
We use a callable class to be able to change the ``__repr__``.
|
551 |
+
"""
|
552 |
+
if len(value) < self.min_length:
|
553 |
+
msg = f"Length of '{attr.name}' must be >= {self.min_length}: {len(value)}"
|
554 |
+
raise ValueError(msg)
|
555 |
+
|
556 |
+
def __repr__(self):
|
557 |
+
return f"<min_len validator for {self.min_length}>"
|
558 |
+
|
559 |
+
|
560 |
+
def min_len(length):
|
561 |
+
"""
|
562 |
+
A validator that raises `ValueError` if the initializer is called
|
563 |
+
with a string or iterable that is shorter than *length*.
|
564 |
+
|
565 |
+
:param int length: Minimum length of the string or iterable
|
566 |
+
|
567 |
+
.. versionadded:: 22.1.0
|
568 |
+
"""
|
569 |
+
return _MinLengthValidator(length)
|
570 |
+
|
571 |
+
|
572 |
+
@attrs(repr=False, slots=True, hash=True)
|
573 |
+
class _SubclassOfValidator:
|
574 |
+
type = attrib()
|
575 |
+
|
576 |
+
def __call__(self, inst, attr, value):
|
577 |
+
"""
|
578 |
+
We use a callable class to be able to change the ``__repr__``.
|
579 |
+
"""
|
580 |
+
if not issubclass(value, self.type):
|
581 |
+
msg = f"'{attr.name}' must be a subclass of {self.type!r} (got {value!r})."
|
582 |
+
raise TypeError(
|
583 |
+
msg,
|
584 |
+
attr,
|
585 |
+
self.type,
|
586 |
+
value,
|
587 |
+
)
|
588 |
+
|
589 |
+
def __repr__(self):
|
590 |
+
return f"<subclass_of validator for type {self.type!r}>"
|
591 |
+
|
592 |
+
|
593 |
+
def _subclass_of(type):
|
594 |
+
"""
|
595 |
+
A validator that raises a `TypeError` if the initializer is called
|
596 |
+
with a wrong type for this particular attribute (checks are performed using
|
597 |
+
`issubclass` therefore it's also valid to pass a tuple of types).
|
598 |
+
|
599 |
+
:param type: The type to check for.
|
600 |
+
:type type: type or tuple of types
|
601 |
+
|
602 |
+
:raises TypeError: With a human readable error message, the attribute
|
603 |
+
(of type `attrs.Attribute`), the expected type, and the value it
|
604 |
+
got.
|
605 |
+
"""
|
606 |
+
return _SubclassOfValidator(type)
|
607 |
+
|
608 |
+
|
609 |
+
@attrs(repr=False, slots=True, hash=True)
|
610 |
+
class _NotValidator:
|
611 |
+
validator = attrib()
|
612 |
+
msg = attrib(
|
613 |
+
converter=default_if_none(
|
614 |
+
"not_ validator child '{validator!r}' "
|
615 |
+
"did not raise a captured error"
|
616 |
+
)
|
617 |
+
)
|
618 |
+
exc_types = attrib(
|
619 |
+
validator=deep_iterable(
|
620 |
+
member_validator=_subclass_of(Exception),
|
621 |
+
iterable_validator=instance_of(tuple),
|
622 |
+
),
|
623 |
+
)
|
624 |
+
|
625 |
+
def __call__(self, inst, attr, value):
|
626 |
+
try:
|
627 |
+
self.validator(inst, attr, value)
|
628 |
+
except self.exc_types:
|
629 |
+
pass # suppress error to invert validity
|
630 |
+
else:
|
631 |
+
raise ValueError(
|
632 |
+
self.msg.format(
|
633 |
+
validator=self.validator,
|
634 |
+
exc_types=self.exc_types,
|
635 |
+
),
|
636 |
+
attr,
|
637 |
+
self.validator,
|
638 |
+
value,
|
639 |
+
self.exc_types,
|
640 |
+
)
|
641 |
+
|
642 |
+
def __repr__(self):
|
643 |
+
return (
|
644 |
+
"<not_ validator wrapping {what!r}, capturing {exc_types!r}>"
|
645 |
+
).format(
|
646 |
+
what=self.validator,
|
647 |
+
exc_types=self.exc_types,
|
648 |
+
)
|
649 |
+
|
650 |
+
|
651 |
+
def not_(validator, *, msg=None, exc_types=(ValueError, TypeError)):
|
652 |
+
"""
|
653 |
+
A validator that wraps and logically 'inverts' the validator passed to it.
|
654 |
+
It will raise a `ValueError` if the provided validator *doesn't* raise a
|
655 |
+
`ValueError` or `TypeError` (by default), and will suppress the exception
|
656 |
+
if the provided validator *does*.
|
657 |
+
|
658 |
+
Intended to be used with existing validators to compose logic without
|
659 |
+
needing to create inverted variants, for example, ``not_(in_(...))``.
|
660 |
+
|
661 |
+
:param validator: A validator to be logically inverted.
|
662 |
+
:param msg: Message to raise if validator fails.
|
663 |
+
Formatted with keys ``exc_types`` and ``validator``.
|
664 |
+
:type msg: str
|
665 |
+
:param exc_types: Exception type(s) to capture.
|
666 |
+
Other types raised by child validators will not be intercepted and
|
667 |
+
pass through.
|
668 |
+
|
669 |
+
:raises ValueError: With a human readable error message,
|
670 |
+
the attribute (of type `attrs.Attribute`),
|
671 |
+
the validator that failed to raise an exception,
|
672 |
+
the value it got,
|
673 |
+
and the expected exception types.
|
674 |
+
|
675 |
+
.. versionadded:: 22.2.0
|
676 |
+
"""
|
677 |
+
try:
|
678 |
+
exc_types = tuple(exc_types)
|
679 |
+
except TypeError:
|
680 |
+
exc_types = (exc_types,)
|
681 |
+
return _NotValidator(validator, msg, exc_types)
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/_login.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Contains methods to login to the Hub."""
|
15 |
+
|
16 |
+
import os
|
17 |
+
import subprocess
|
18 |
+
from functools import partial
|
19 |
+
from getpass import getpass
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Optional
|
22 |
+
|
23 |
+
from . import constants
|
24 |
+
from .commands._cli_utils import ANSI
|
25 |
+
from .utils import (
|
26 |
+
capture_output,
|
27 |
+
get_token,
|
28 |
+
is_google_colab,
|
29 |
+
is_notebook,
|
30 |
+
list_credential_helpers,
|
31 |
+
logging,
|
32 |
+
run_subprocess,
|
33 |
+
set_git_credential,
|
34 |
+
unset_git_credential,
|
35 |
+
)
|
36 |
+
from .utils._token import _get_token_from_environment, _get_token_from_google_colab
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
_HF_LOGO_ASCII = """
|
42 |
+
_| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|
|
43 |
+
_| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|
|
44 |
+
_|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|
|
45 |
+
_| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|
|
46 |
+
_| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|
|
47 |
+
"""
|
48 |
+
|
49 |
+
|
50 |
+
def login(
|
51 |
+
token: Optional[str] = None,
|
52 |
+
add_to_git_credential: bool = False,
|
53 |
+
new_session: bool = True,
|
54 |
+
write_permission: bool = False,
|
55 |
+
) -> None:
|
56 |
+
"""Login the machine to access the Hub.
|
57 |
+
|
58 |
+
The `token` is persisted in cache and set as a git credential. Once done, the machine
|
59 |
+
is logged in and the access token will be available across all `huggingface_hub`
|
60 |
+
components. If `token` is not provided, it will be prompted to the user either with
|
61 |
+
a widget (in a notebook) or via the terminal.
|
62 |
+
|
63 |
+
To login from outside of a script, one can also use `huggingface-cli login` which is
|
64 |
+
a cli command that wraps [`login`].
|
65 |
+
|
66 |
+
<Tip>
|
67 |
+
|
68 |
+
[`login`] is a drop-in replacement method for [`notebook_login`] as it wraps and
|
69 |
+
extends its capabilities.
|
70 |
+
|
71 |
+
</Tip>
|
72 |
+
|
73 |
+
<Tip>
|
74 |
+
|
75 |
+
When the token is not passed, [`login`] will automatically detect if the script runs
|
76 |
+
in a notebook or not. However, this detection might not be accurate due to the
|
77 |
+
variety of notebooks that exists nowadays. If that is the case, you can always force
|
78 |
+
the UI by using [`notebook_login`] or [`interpreter_login`].
|
79 |
+
|
80 |
+
</Tip>
|
81 |
+
|
82 |
+
Args:
|
83 |
+
token (`str`, *optional*):
|
84 |
+
User access token to generate from https://huggingface.co/settings/token.
|
85 |
+
add_to_git_credential (`bool`, defaults to `False`):
|
86 |
+
If `True`, token will be set as git credential. If no git credential helper
|
87 |
+
is configured, a warning will be displayed to the user. If `token` is `None`,
|
88 |
+
the value of `add_to_git_credential` is ignored and will be prompted again
|
89 |
+
to the end user.
|
90 |
+
new_session (`bool`, defaults to `True`):
|
91 |
+
If `True`, will request a token even if one is already saved on the machine.
|
92 |
+
write_permission (`bool`, defaults to `False`):
|
93 |
+
If `True`, requires a token with write permission.
|
94 |
+
Raises:
|
95 |
+
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
|
96 |
+
If an organization token is passed. Only personal account tokens are valid
|
97 |
+
to login.
|
98 |
+
[`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
|
99 |
+
If token is invalid.
|
100 |
+
[`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
|
101 |
+
If running in a notebook but `ipywidgets` is not installed.
|
102 |
+
"""
|
103 |
+
if token is not None:
|
104 |
+
if not add_to_git_credential:
|
105 |
+
print(
|
106 |
+
"Token has not been saved to git credential helper. Pass"
|
107 |
+
" `add_to_git_credential=True` if you want to set the git"
|
108 |
+
" credential as well."
|
109 |
+
)
|
110 |
+
_login(token, add_to_git_credential=add_to_git_credential, write_permission=write_permission)
|
111 |
+
elif is_notebook():
|
112 |
+
notebook_login(new_session=new_session, write_permission=write_permission)
|
113 |
+
else:
|
114 |
+
interpreter_login(new_session=new_session, write_permission=write_permission)
|
115 |
+
|
116 |
+
|
117 |
+
def logout() -> None:
|
118 |
+
"""Logout the machine from the Hub.
|
119 |
+
|
120 |
+
Token is deleted from the machine and removed from git credential.
|
121 |
+
"""
|
122 |
+
if get_token() is None:
|
123 |
+
print("Not logged in!")
|
124 |
+
return
|
125 |
+
|
126 |
+
# Delete token from git credentials
|
127 |
+
unset_git_credential()
|
128 |
+
|
129 |
+
# Delete token file
|
130 |
+
try:
|
131 |
+
Path(constants.HF_TOKEN_PATH).unlink()
|
132 |
+
except FileNotFoundError:
|
133 |
+
pass
|
134 |
+
|
135 |
+
# Check if still logged in
|
136 |
+
if _get_token_from_google_colab() is not None:
|
137 |
+
raise EnvironmentError(
|
138 |
+
"You are automatically logged in using a Google Colab secret.\n"
|
139 |
+
"To log out, you must unset the `HF_TOKEN` secret in your Colab settings."
|
140 |
+
)
|
141 |
+
if _get_token_from_environment() is not None:
|
142 |
+
raise EnvironmentError(
|
143 |
+
"Token has been deleted from your machine but you are still logged in.\n"
|
144 |
+
"To log out, you must clear out both `HF_TOKEN` and `HUGGING_FACE_HUB_TOKEN` environment variables."
|
145 |
+
)
|
146 |
+
|
147 |
+
print("Successfully logged out.")
|
148 |
+
|
149 |
+
|
150 |
+
###
|
151 |
+
# Interpreter-based login (text)
|
152 |
+
###
|
153 |
+
|
154 |
+
|
155 |
+
def interpreter_login(new_session: bool = True, write_permission: bool = False) -> None:
|
156 |
+
"""
|
157 |
+
Displays a prompt to login to the HF website and store the token.
|
158 |
+
|
159 |
+
This is equivalent to [`login`] without passing a token when not run in a notebook.
|
160 |
+
[`interpreter_login`] is useful if you want to force the use of the terminal prompt
|
161 |
+
instead of a notebook widget.
|
162 |
+
|
163 |
+
For more details, see [`login`].
|
164 |
+
|
165 |
+
Args:
|
166 |
+
new_session (`bool`, defaults to `True`):
|
167 |
+
If `True`, will request a token even if one is already saved on the machine.
|
168 |
+
write_permission (`bool`, defaults to `False`):
|
169 |
+
If `True`, requires a token with write permission.
|
170 |
+
|
171 |
+
"""
|
172 |
+
if not new_session and _current_token_okay(write_permission=write_permission):
|
173 |
+
print("User is already logged in.")
|
174 |
+
return
|
175 |
+
|
176 |
+
from .commands.delete_cache import _ask_for_confirmation_no_tui
|
177 |
+
|
178 |
+
print(_HF_LOGO_ASCII)
|
179 |
+
if get_token() is not None:
|
180 |
+
print(
|
181 |
+
" A token is already saved on your machine. Run `huggingface-cli"
|
182 |
+
" whoami` to get more information or `huggingface-cli logout` if you want"
|
183 |
+
" to log out."
|
184 |
+
)
|
185 |
+
print(" Setting a new token will erase the existing one.")
|
186 |
+
|
187 |
+
print(" To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .")
|
188 |
+
if os.name == "nt":
|
189 |
+
print("Token can be pasted using 'Right-Click'.")
|
190 |
+
token = getpass("Enter your token (input will not be visible): ")
|
191 |
+
add_to_git_credential = _ask_for_confirmation_no_tui("Add token as git credential?")
|
192 |
+
|
193 |
+
_login(token=token, add_to_git_credential=add_to_git_credential, write_permission=write_permission)
|
194 |
+
|
195 |
+
|
196 |
+
###
|
197 |
+
# Notebook-based login (widget)
|
198 |
+
###
|
199 |
+
|
200 |
+
NOTEBOOK_LOGIN_PASSWORD_HTML = """<center> <img
|
201 |
+
src=https://huggingface.co/front/assets/huggingface_logo-noborder.svg
|
202 |
+
alt='Hugging Face'> <br> Immediately click login after typing your password or
|
203 |
+
it might be stored in plain text in this notebook file. </center>"""
|
204 |
+
|
205 |
+
|
206 |
+
NOTEBOOK_LOGIN_TOKEN_HTML_START = """<center> <img
|
207 |
+
src=https://huggingface.co/front/assets/huggingface_logo-noborder.svg
|
208 |
+
alt='Hugging Face'> <br> Copy a token from <a
|
209 |
+
href="https://huggingface.co/settings/tokens" target="_blank">your Hugging Face
|
210 |
+
tokens page</a> and paste it below. <br> Immediately click login after copying
|
211 |
+
your token or it might be stored in plain text in this notebook file. </center>"""
|
212 |
+
|
213 |
+
|
214 |
+
NOTEBOOK_LOGIN_TOKEN_HTML_END = """
|
215 |
+
<b>Pro Tip:</b> If you don't already have one, you can create a dedicated
|
216 |
+
'notebooks' token with 'write' access, that you can then easily reuse for all
|
217 |
+
notebooks. </center>"""
|
218 |
+
|
219 |
+
|
220 |
+
def notebook_login(new_session: bool = True, write_permission: bool = False) -> None:
|
221 |
+
"""
|
222 |
+
Displays a widget to login to the HF website and store the token.
|
223 |
+
|
224 |
+
This is equivalent to [`login`] without passing a token when run in a notebook.
|
225 |
+
[`notebook_login`] is useful if you want to force the use of the notebook widget
|
226 |
+
instead of a prompt in the terminal.
|
227 |
+
|
228 |
+
For more details, see [`login`].
|
229 |
+
|
230 |
+
Args:
|
231 |
+
new_session (`bool`, defaults to `True`):
|
232 |
+
If `True`, will request a token even if one is already saved on the machine.
|
233 |
+
write_permission (`bool`, defaults to `False`):
|
234 |
+
If `True`, requires a token with write permission.
|
235 |
+
"""
|
236 |
+
try:
|
237 |
+
import ipywidgets.widgets as widgets # type: ignore
|
238 |
+
from IPython.display import display # type: ignore
|
239 |
+
except ImportError:
|
240 |
+
raise ImportError(
|
241 |
+
"The `notebook_login` function can only be used in a notebook (Jupyter or"
|
242 |
+
" Colab) and you need the `ipywidgets` module: `pip install ipywidgets`."
|
243 |
+
)
|
244 |
+
if not new_session and _current_token_okay(write_permission=write_permission):
|
245 |
+
print("User is already logged in.")
|
246 |
+
return
|
247 |
+
|
248 |
+
box_layout = widgets.Layout(display="flex", flex_flow="column", align_items="center", width="50%")
|
249 |
+
|
250 |
+
token_widget = widgets.Password(description="Token:")
|
251 |
+
git_checkbox_widget = widgets.Checkbox(value=True, description="Add token as git credential?")
|
252 |
+
token_finish_button = widgets.Button(description="Login")
|
253 |
+
|
254 |
+
login_token_widget = widgets.VBox(
|
255 |
+
[
|
256 |
+
widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_START),
|
257 |
+
token_widget,
|
258 |
+
git_checkbox_widget,
|
259 |
+
token_finish_button,
|
260 |
+
widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_END),
|
261 |
+
],
|
262 |
+
layout=box_layout,
|
263 |
+
)
|
264 |
+
display(login_token_widget)
|
265 |
+
|
266 |
+
# On click events
|
267 |
+
def login_token_event(t, write_permission: bool = False):
|
268 |
+
"""
|
269 |
+
Event handler for the login button.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
write_permission (`bool`, defaults to `False`):
|
273 |
+
If `True`, requires a token with write permission.
|
274 |
+
"""
|
275 |
+
token = token_widget.value
|
276 |
+
add_to_git_credential = git_checkbox_widget.value
|
277 |
+
# Erase token and clear value to make sure it's not saved in the notebook.
|
278 |
+
token_widget.value = ""
|
279 |
+
# Hide inputs
|
280 |
+
login_token_widget.children = [widgets.Label("Connecting...")]
|
281 |
+
try:
|
282 |
+
with capture_output() as captured:
|
283 |
+
_login(token, add_to_git_credential=add_to_git_credential, write_permission=write_permission)
|
284 |
+
message = captured.getvalue()
|
285 |
+
except Exception as error:
|
286 |
+
message = str(error)
|
287 |
+
# Print result (success message or error)
|
288 |
+
login_token_widget.children = [widgets.Label(line) for line in message.split("\n") if line.strip()]
|
289 |
+
|
290 |
+
token_finish_button.on_click(partial(login_token_event, write_permission=write_permission))
|
291 |
+
|
292 |
+
|
293 |
+
###
|
294 |
+
# Login private helpers
|
295 |
+
###
|
296 |
+
|
297 |
+
|
298 |
+
def _login(token: str, add_to_git_credential: bool, write_permission: bool = False) -> None:
|
299 |
+
from .hf_api import get_token_permission # avoid circular import
|
300 |
+
|
301 |
+
if token.startswith("api_org"):
|
302 |
+
raise ValueError("You must use your personal account token, not an organization token.")
|
303 |
+
|
304 |
+
permission = get_token_permission(token)
|
305 |
+
if permission is None:
|
306 |
+
raise ValueError("Invalid token passed!")
|
307 |
+
elif write_permission and permission != "write":
|
308 |
+
raise ValueError(
|
309 |
+
"Token is valid but is 'read-only' and a 'write' token is required.\nPlease provide a new token with"
|
310 |
+
" correct permission."
|
311 |
+
)
|
312 |
+
print(f"Token is valid (permission: {permission}).")
|
313 |
+
|
314 |
+
if add_to_git_credential:
|
315 |
+
if _is_git_credential_helper_configured():
|
316 |
+
set_git_credential(token)
|
317 |
+
print(
|
318 |
+
"Your token has been saved in your configured git credential helpers"
|
319 |
+
+ f" ({','.join(list_credential_helpers())})."
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
print("Token has not been saved to git credential helper.")
|
323 |
+
|
324 |
+
# Save token
|
325 |
+
path = Path(constants.HF_TOKEN_PATH)
|
326 |
+
path.parent.mkdir(parents=True, exist_ok=True)
|
327 |
+
path.write_text(token)
|
328 |
+
print(f"Your token has been saved to {constants.HF_TOKEN_PATH}")
|
329 |
+
print("Login successful")
|
330 |
+
|
331 |
+
|
332 |
+
def _current_token_okay(write_permission: bool = False):
|
333 |
+
"""Check if the current token is valid.
|
334 |
+
|
335 |
+
Args:
|
336 |
+
write_permission (`bool`, defaults to `False`):
|
337 |
+
If `True`, requires a token with write permission.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
`bool`: `True` if the current token is valid, `False` otherwise.
|
341 |
+
"""
|
342 |
+
from .hf_api import get_token_permission # avoid circular import
|
343 |
+
|
344 |
+
permission = get_token_permission()
|
345 |
+
if permission is None or (write_permission and permission != "write"):
|
346 |
+
return False
|
347 |
+
return True
|
348 |
+
|
349 |
+
|
350 |
+
def _is_git_credential_helper_configured() -> bool:
|
351 |
+
"""Check if a git credential helper is configured.
|
352 |
+
|
353 |
+
Warns user if not the case (except for Google Colab where "store" is set by default
|
354 |
+
by `huggingface_hub`).
|
355 |
+
"""
|
356 |
+
helpers = list_credential_helpers()
|
357 |
+
if len(helpers) > 0:
|
358 |
+
return True # Do not warn: at least 1 helper is set
|
359 |
+
|
360 |
+
# Only in Google Colab to avoid the warning message
|
361 |
+
# See https://github.com/huggingface/huggingface_hub/issues/1043#issuecomment-1247010710
|
362 |
+
if is_google_colab():
|
363 |
+
_set_store_as_git_credential_helper_globally()
|
364 |
+
return True # Do not warn: "store" is used by default in Google Colab
|
365 |
+
|
366 |
+
# Otherwise, warn user
|
367 |
+
print(
|
368 |
+
ANSI.red(
|
369 |
+
"Cannot authenticate through git-credential as no helper is defined on your"
|
370 |
+
" machine.\nYou might have to re-authenticate when pushing to the Hugging"
|
371 |
+
" Face Hub.\nRun the following command in your terminal in case you want to"
|
372 |
+
" set the 'store' credential helper as default.\n\ngit config --global"
|
373 |
+
" credential.helper store\n\nRead"
|
374 |
+
" https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more"
|
375 |
+
" details."
|
376 |
+
)
|
377 |
+
)
|
378 |
+
return False
|
379 |
+
|
380 |
+
|
381 |
+
def _set_store_as_git_credential_helper_globally() -> None:
|
382 |
+
"""Set globally the credential.helper to `store`.
|
383 |
+
|
384 |
+
To be used only in Google Colab as we assume the user doesn't care about the git
|
385 |
+
credential config. It is the only particular case where we don't want to display the
|
386 |
+
warning message in [`notebook_login()`].
|
387 |
+
|
388 |
+
Related:
|
389 |
+
- https://github.com/huggingface/huggingface_hub/issues/1043
|
390 |
+
- https://github.com/huggingface/huggingface_hub/issues/1051
|
391 |
+
- https://git-scm.com/docs/git-credential-store
|
392 |
+
"""
|
393 |
+
try:
|
394 |
+
run_subprocess("git config --global credential.helper store")
|
395 |
+
except subprocess.CalledProcessError as exc:
|
396 |
+
raise EnvironmentError(exc.stderr)
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/_tensorboard_logger.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Contains a logger to push training logs to the Hub, using Tensorboard."""
|
15 |
+
|
16 |
+
from pathlib import Path
|
17 |
+
from typing import TYPE_CHECKING, List, Optional, Union
|
18 |
+
|
19 |
+
from huggingface_hub._commit_scheduler import CommitScheduler
|
20 |
+
|
21 |
+
from .utils import experimental, is_tensorboard_available
|
22 |
+
|
23 |
+
|
24 |
+
if is_tensorboard_available():
|
25 |
+
from tensorboardX import SummaryWriter
|
26 |
+
|
27 |
+
# TODO: clarify: should we import from torch.utils.tensorboard ?
|
28 |
+
|
29 |
+
else:
|
30 |
+
SummaryWriter = object # Dummy class to avoid failing at import. Will raise on instance creation.
|
31 |
+
|
32 |
+
if TYPE_CHECKING:
|
33 |
+
from tensorboardX import SummaryWriter
|
34 |
+
|
35 |
+
|
36 |
+
class HFSummaryWriter(SummaryWriter):
|
37 |
+
"""
|
38 |
+
Wrapper around the tensorboard's `SummaryWriter` to push training logs to the Hub.
|
39 |
+
|
40 |
+
Data is logged locally and then pushed to the Hub asynchronously. Pushing data to the Hub is done in a separate
|
41 |
+
thread to avoid blocking the training script. In particular, if the upload fails for any reason (e.g. a connection
|
42 |
+
issue), the main script will not be interrupted. Data is automatically pushed to the Hub every `commit_every`
|
43 |
+
minutes (default to every 5 minutes).
|
44 |
+
|
45 |
+
<Tip warning={true}>
|
46 |
+
|
47 |
+
`HFSummaryWriter` is experimental. Its API is subject to change in the future without prior notice.
|
48 |
+
|
49 |
+
</Tip>
|
50 |
+
|
51 |
+
Args:
|
52 |
+
repo_id (`str`):
|
53 |
+
The id of the repo to which the logs will be pushed.
|
54 |
+
logdir (`str`, *optional*):
|
55 |
+
The directory where the logs will be written. If not specified, a local directory will be created by the
|
56 |
+
underlying `SummaryWriter` object.
|
57 |
+
commit_every (`int` or `float`, *optional*):
|
58 |
+
The frequency (in minutes) at which the logs will be pushed to the Hub. Defaults to 5 minutes.
|
59 |
+
squash_history (`bool`, *optional*):
|
60 |
+
Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is
|
61 |
+
useful to avoid degraded performances on the repo when it grows too large.
|
62 |
+
repo_type (`str`, *optional*):
|
63 |
+
The type of the repo to which the logs will be pushed. Defaults to "model".
|
64 |
+
repo_revision (`str`, *optional*):
|
65 |
+
The revision of the repo to which the logs will be pushed. Defaults to "main".
|
66 |
+
repo_private (`bool`, *optional*):
|
67 |
+
Whether to create a private repo or not. Defaults to False. This argument is ignored if the repo already
|
68 |
+
exists.
|
69 |
+
path_in_repo (`str`, *optional*):
|
70 |
+
The path to the folder in the repo where the logs will be pushed. Defaults to "tensorboard/".
|
71 |
+
repo_allow_patterns (`List[str]` or `str`, *optional*):
|
72 |
+
A list of patterns to include in the upload. Defaults to `"*.tfevents.*"`. Check out the
|
73 |
+
[upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details.
|
74 |
+
repo_ignore_patterns (`List[str]` or `str`, *optional*):
|
75 |
+
A list of patterns to exclude in the upload. Check out the
|
76 |
+
[upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details.
|
77 |
+
token (`str`, *optional*):
|
78 |
+
Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
|
79 |
+
details
|
80 |
+
kwargs:
|
81 |
+
Additional keyword arguments passed to `SummaryWriter`.
|
82 |
+
|
83 |
+
Examples:
|
84 |
+
```py
|
85 |
+
>>> from huggingface_hub import HFSummaryWriter
|
86 |
+
|
87 |
+
# Logs are automatically pushed every 15 minutes
|
88 |
+
>>> logger = HFSummaryWriter(repo_id="test_hf_logger", commit_every=15)
|
89 |
+
>>> logger.add_scalar("a", 1)
|
90 |
+
>>> logger.add_scalar("b", 2)
|
91 |
+
...
|
92 |
+
|
93 |
+
# You can also trigger a push manually
|
94 |
+
>>> logger.scheduler.trigger()
|
95 |
+
```
|
96 |
+
|
97 |
+
```py
|
98 |
+
>>> from huggingface_hub import HFSummaryWriter
|
99 |
+
|
100 |
+
# Logs are automatically pushed every 5 minutes (default) + when exiting the context manager
|
101 |
+
>>> with HFSummaryWriter(repo_id="test_hf_logger") as logger:
|
102 |
+
... logger.add_scalar("a", 1)
|
103 |
+
... logger.add_scalar("b", 2)
|
104 |
+
```
|
105 |
+
"""
|
106 |
+
|
107 |
+
@experimental
|
108 |
+
def __new__(cls, *args, **kwargs) -> "HFSummaryWriter":
|
109 |
+
if not is_tensorboard_available():
|
110 |
+
raise ImportError(
|
111 |
+
"You must have `tensorboard` installed to use `HFSummaryWriter`. Please run `pip install --upgrade"
|
112 |
+
" tensorboardX` first."
|
113 |
+
)
|
114 |
+
return super().__new__(cls)
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
repo_id: str,
|
119 |
+
*,
|
120 |
+
logdir: Optional[str] = None,
|
121 |
+
commit_every: Union[int, float] = 5,
|
122 |
+
squash_history: bool = False,
|
123 |
+
repo_type: Optional[str] = None,
|
124 |
+
repo_revision: Optional[str] = None,
|
125 |
+
repo_private: bool = False,
|
126 |
+
path_in_repo: Optional[str] = "tensorboard",
|
127 |
+
repo_allow_patterns: Optional[Union[List[str], str]] = "*.tfevents.*",
|
128 |
+
repo_ignore_patterns: Optional[Union[List[str], str]] = None,
|
129 |
+
token: Optional[str] = None,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
# Initialize SummaryWriter
|
133 |
+
super().__init__(logdir=logdir, **kwargs)
|
134 |
+
|
135 |
+
# Check logdir has been correctly initialized and fail early otherwise. In practice, SummaryWriter takes care of it.
|
136 |
+
if not isinstance(self.logdir, str):
|
137 |
+
raise ValueError(f"`self.logdir` must be a string. Got '{self.logdir}' of type {type(self.logdir)}.")
|
138 |
+
|
139 |
+
# Append logdir name to `path_in_repo`
|
140 |
+
if path_in_repo is None or path_in_repo == "":
|
141 |
+
path_in_repo = Path(self.logdir).name
|
142 |
+
else:
|
143 |
+
path_in_repo = path_in_repo.strip("/") + "/" + Path(self.logdir).name
|
144 |
+
|
145 |
+
# Initialize scheduler
|
146 |
+
self.scheduler = CommitScheduler(
|
147 |
+
folder_path=self.logdir,
|
148 |
+
path_in_repo=path_in_repo,
|
149 |
+
repo_id=repo_id,
|
150 |
+
repo_type=repo_type,
|
151 |
+
revision=repo_revision,
|
152 |
+
private=repo_private,
|
153 |
+
token=token,
|
154 |
+
allow_patterns=repo_allow_patterns,
|
155 |
+
ignore_patterns=repo_ignore_patterns,
|
156 |
+
every=commit_every,
|
157 |
+
squash_history=squash_history,
|
158 |
+
)
|
159 |
+
|
160 |
+
# Exposing some high-level info at root level
|
161 |
+
self.repo_id = self.scheduler.repo_id
|
162 |
+
self.repo_type = self.scheduler.repo_type
|
163 |
+
self.repo_revision = self.scheduler.revision
|
164 |
+
|
165 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
166 |
+
"""Push to hub in a non-blocking way when exiting the logger's context manager."""
|
167 |
+
super().__exit__(exc_type, exc_val, exc_tb)
|
168 |
+
future = self.scheduler.trigger()
|
169 |
+
future.result()
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/_webhooks_server.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present, the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Contains `WebhooksServer` and `webhook_endpoint` to create a webhook server easily."""
|
16 |
+
|
17 |
+
import atexit
|
18 |
+
import inspect
|
19 |
+
import os
|
20 |
+
from functools import wraps
|
21 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional
|
22 |
+
|
23 |
+
from .utils import experimental, is_gradio_available
|
24 |
+
from .utils._deprecation import _deprecate_method
|
25 |
+
|
26 |
+
|
27 |
+
if TYPE_CHECKING:
|
28 |
+
import gradio as gr
|
29 |
+
|
30 |
+
|
31 |
+
from fastapi import FastAPI, Request
|
32 |
+
from fastapi.responses import JSONResponse
|
33 |
+
|
34 |
+
|
35 |
+
_global_app: Optional["WebhooksServer"] = None
|
36 |
+
_is_local = os.getenv("SYSTEM") != "spaces"
|
37 |
+
|
38 |
+
|
39 |
+
@experimental
|
40 |
+
class WebhooksServer:
|
41 |
+
"""
|
42 |
+
The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks.
|
43 |
+
These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to
|
44 |
+
the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `run` method has to be
|
45 |
+
called to start the app.
|
46 |
+
|
47 |
+
It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic
|
48 |
+
model that contains all the information about the webhook event. The data will be parsed automatically for you.
|
49 |
+
|
50 |
+
Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your
|
51 |
+
WebhooksServer and deploy it on a Space.
|
52 |
+
|
53 |
+
<Tip warning={true}>
|
54 |
+
|
55 |
+
`WebhooksServer` is experimental. Its API is subject to change in the future.
|
56 |
+
|
57 |
+
</Tip>
|
58 |
+
|
59 |
+
<Tip warning={true}>
|
60 |
+
|
61 |
+
You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`).
|
62 |
+
|
63 |
+
</Tip>
|
64 |
+
|
65 |
+
Args:
|
66 |
+
ui (`gradio.Blocks`, optional):
|
67 |
+
A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions
|
68 |
+
about the configured webhooks is created.
|
69 |
+
webhook_secret (`str`, optional):
|
70 |
+
A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as
|
71 |
+
you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You
|
72 |
+
can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the
|
73 |
+
webhook endpoints are opened without any security.
|
74 |
+
|
75 |
+
Example:
|
76 |
+
|
77 |
+
```python
|
78 |
+
import gradio as gr
|
79 |
+
from huggingface_hub import WebhooksServer, WebhookPayload
|
80 |
+
|
81 |
+
with gr.Blocks() as ui:
|
82 |
+
...
|
83 |
+
|
84 |
+
app = WebhooksServer(ui=ui, webhook_secret="my_secret_key")
|
85 |
+
|
86 |
+
@app.add_webhook("/say_hello")
|
87 |
+
async def hello(payload: WebhookPayload):
|
88 |
+
return {"message": "hello"}
|
89 |
+
|
90 |
+
app.run()
|
91 |
+
```
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __new__(cls, *args, **kwargs) -> "WebhooksServer":
|
95 |
+
if not is_gradio_available():
|
96 |
+
raise ImportError(
|
97 |
+
"You must have `gradio` installed to use `WebhooksServer`. Please run `pip install --upgrade gradio`"
|
98 |
+
" first."
|
99 |
+
)
|
100 |
+
return super().__new__(cls)
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
ui: Optional["gr.Blocks"] = None,
|
105 |
+
webhook_secret: Optional[str] = None,
|
106 |
+
) -> None:
|
107 |
+
self._ui = ui
|
108 |
+
|
109 |
+
self.webhook_secret = webhook_secret or os.getenv("WEBHOOK_SECRET")
|
110 |
+
self.registered_webhooks: Dict[str, Callable] = {}
|
111 |
+
_warn_on_empty_secret(self.webhook_secret)
|
112 |
+
|
113 |
+
def add_webhook(self, path: Optional[str] = None) -> Callable:
|
114 |
+
"""
|
115 |
+
Decorator to add a webhook to the [`WebhooksServer`] server.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
path (`str`, optional):
|
119 |
+
The URL path to register the webhook function. If not provided, the function name will be used as the
|
120 |
+
path. In any case, all webhooks are registered under `/webhooks`.
|
121 |
+
|
122 |
+
Raises:
|
123 |
+
ValueError: If the provided path is already registered as a webhook.
|
124 |
+
|
125 |
+
Example:
|
126 |
+
```python
|
127 |
+
from huggingface_hub import WebhooksServer, WebhookPayload
|
128 |
+
|
129 |
+
app = WebhooksServer()
|
130 |
+
|
131 |
+
@app.add_webhook
|
132 |
+
async def trigger_training(payload: WebhookPayload):
|
133 |
+
if payload.repo.type == "dataset" and payload.event.action == "update":
|
134 |
+
# Trigger a training job if a dataset is updated
|
135 |
+
...
|
136 |
+
|
137 |
+
app.run()
|
138 |
+
```
|
139 |
+
"""
|
140 |
+
# Usage: directly as decorator. Example: `@app.add_webhook`
|
141 |
+
if callable(path):
|
142 |
+
# If path is a function, it means it was used as a decorator without arguments
|
143 |
+
return self.add_webhook()(path)
|
144 |
+
|
145 |
+
# Usage: provide a path. Example: `@app.add_webhook(...)`
|
146 |
+
@wraps(FastAPI.post)
|
147 |
+
def _inner_post(*args, **kwargs):
|
148 |
+
func = args[0]
|
149 |
+
abs_path = f"/webhooks/{(path or func.__name__).strip('/')}"
|
150 |
+
if abs_path in self.registered_webhooks:
|
151 |
+
raise ValueError(f"Webhook {abs_path} already exists.")
|
152 |
+
self.registered_webhooks[abs_path] = func
|
153 |
+
|
154 |
+
return _inner_post
|
155 |
+
|
156 |
+
def launch(self, prevent_thread_lock: bool = False, **launch_kwargs: Any) -> None:
|
157 |
+
"""Launch the Gradio app and register webhooks to the underlying FastAPI server.
|
158 |
+
|
159 |
+
Input parameters are forwarded to Gradio when launching the app.
|
160 |
+
"""
|
161 |
+
ui = self._ui or self._get_default_ui()
|
162 |
+
|
163 |
+
# Start Gradio App
|
164 |
+
# - as non-blocking so that webhooks can be added afterwards
|
165 |
+
# - as shared if launch locally (to debug webhooks)
|
166 |
+
launch_kwargs.setdefault("share", _is_local)
|
167 |
+
self.fastapi_app, _, _ = ui.launch(prevent_thread_lock=True, **launch_kwargs)
|
168 |
+
|
169 |
+
# Register webhooks to FastAPI app
|
170 |
+
for path, func in self.registered_webhooks.items():
|
171 |
+
# Add secret check if required
|
172 |
+
if self.webhook_secret is not None:
|
173 |
+
func = _wrap_webhook_to_check_secret(func, webhook_secret=self.webhook_secret)
|
174 |
+
|
175 |
+
# Add route to FastAPI app
|
176 |
+
self.fastapi_app.post(path)(func)
|
177 |
+
|
178 |
+
# Print instructions and block main thread
|
179 |
+
url = (ui.share_url or ui.local_url).strip("/")
|
180 |
+
message = "\nWebhooks are correctly setup and ready to use:"
|
181 |
+
message += "\n" + "\n".join(f" - POST {url}{webhook}" for webhook in self.registered_webhooks)
|
182 |
+
message += "\nGo to https://huggingface.co/settings/webhooks to setup your webhooks."
|
183 |
+
print(message)
|
184 |
+
|
185 |
+
if not prevent_thread_lock:
|
186 |
+
ui.block_thread()
|
187 |
+
|
188 |
+
@_deprecate_method(version="0.23", message="Use `WebhooksServer.launch` instead.")
|
189 |
+
def run(self) -> None:
|
190 |
+
return self.launch()
|
191 |
+
|
192 |
+
def _get_default_ui(self) -> "gr.Blocks":
|
193 |
+
"""Default UI if not provided (lists webhooks and provides basic instructions)."""
|
194 |
+
import gradio as gr
|
195 |
+
|
196 |
+
with gr.Blocks() as ui:
|
197 |
+
gr.Markdown("# This is an app to process 🤗 Webhooks")
|
198 |
+
gr.Markdown(
|
199 |
+
"Webhooks are a foundation for MLOps-related features. They allow you to listen for new changes on"
|
200 |
+
" specific repos or to all repos belonging to particular set of users/organizations (not just your"
|
201 |
+
" repos, but any repo). Check out this [guide](https://huggingface.co/docs/hub/webhooks) to get to"
|
202 |
+
" know more about webhooks on the Huggingface Hub."
|
203 |
+
)
|
204 |
+
gr.Markdown(
|
205 |
+
f"{len(self.registered_webhooks)} webhook(s) are registered:"
|
206 |
+
+ "\n\n"
|
207 |
+
+ "\n ".join(
|
208 |
+
f"- [{webhook_path}]({_get_webhook_doc_url(webhook.__name__, webhook_path)})"
|
209 |
+
for webhook_path, webhook in self.registered_webhooks.items()
|
210 |
+
)
|
211 |
+
)
|
212 |
+
gr.Markdown(
|
213 |
+
"Go to https://huggingface.co/settings/webhooks to setup your webhooks."
|
214 |
+
+ "\nYou app is running locally. Please look at the logs to check the full URL you need to set."
|
215 |
+
if _is_local
|
216 |
+
else (
|
217 |
+
"\nThis app is running on a Space. You can find the corresponding URL in the options menu"
|
218 |
+
" (top-right) > 'Embed the Space'. The URL looks like 'https://{username}-{repo_name}.hf.space'."
|
219 |
+
)
|
220 |
+
)
|
221 |
+
return ui
|
222 |
+
|
223 |
+
|
224 |
+
@experimental
|
225 |
+
def webhook_endpoint(path: Optional[str] = None) -> Callable:
|
226 |
+
"""Decorator to start a [`WebhooksServer`] and register the decorated function as a webhook endpoint.
|
227 |
+
|
228 |
+
This is a helper to get started quickly. If you need more flexibility (custom landing page or webhook secret),
|
229 |
+
you can use [`WebhooksServer`] directly. You can register multiple webhook endpoints (to the same server) by using
|
230 |
+
this decorator multiple times.
|
231 |
+
|
232 |
+
Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your
|
233 |
+
server and deploy it on a Space.
|
234 |
+
|
235 |
+
<Tip warning={true}>
|
236 |
+
|
237 |
+
`webhook_endpoint` is experimental. Its API is subject to change in the future.
|
238 |
+
|
239 |
+
</Tip>
|
240 |
+
|
241 |
+
<Tip warning={true}>
|
242 |
+
|
243 |
+
You must have `gradio` installed to use `webhook_endpoint` (`pip install --upgrade gradio`).
|
244 |
+
|
245 |
+
</Tip>
|
246 |
+
|
247 |
+
Args:
|
248 |
+
path (`str`, optional):
|
249 |
+
The URL path to register the webhook function. If not provided, the function name will be used as the path.
|
250 |
+
In any case, all webhooks are registered under `/webhooks`.
|
251 |
+
|
252 |
+
Examples:
|
253 |
+
The default usage is to register a function as a webhook endpoint. The function name will be used as the path.
|
254 |
+
The server will be started automatically at exit (i.e. at the end of the script).
|
255 |
+
|
256 |
+
```python
|
257 |
+
from huggingface_hub import webhook_endpoint, WebhookPayload
|
258 |
+
|
259 |
+
@webhook_endpoint
|
260 |
+
async def trigger_training(payload: WebhookPayload):
|
261 |
+
if payload.repo.type == "dataset" and payload.event.action == "update":
|
262 |
+
# Trigger a training job if a dataset is updated
|
263 |
+
...
|
264 |
+
|
265 |
+
# Server is automatically started at the end of the script.
|
266 |
+
```
|
267 |
+
|
268 |
+
Advanced usage: register a function as a webhook endpoint and start the server manually. This is useful if you
|
269 |
+
are running it in a notebook.
|
270 |
+
|
271 |
+
```python
|
272 |
+
from huggingface_hub import webhook_endpoint, WebhookPayload
|
273 |
+
|
274 |
+
@webhook_endpoint
|
275 |
+
async def trigger_training(payload: WebhookPayload):
|
276 |
+
if payload.repo.type == "dataset" and payload.event.action == "update":
|
277 |
+
# Trigger a training job if a dataset is updated
|
278 |
+
...
|
279 |
+
|
280 |
+
# Start the server manually
|
281 |
+
trigger_training.run()
|
282 |
+
```
|
283 |
+
"""
|
284 |
+
if callable(path):
|
285 |
+
# If path is a function, it means it was used as a decorator without arguments
|
286 |
+
return webhook_endpoint()(path)
|
287 |
+
|
288 |
+
@wraps(WebhooksServer.add_webhook)
|
289 |
+
def _inner(func: Callable) -> Callable:
|
290 |
+
app = _get_global_app()
|
291 |
+
app.add_webhook(path)(func)
|
292 |
+
if len(app.registered_webhooks) == 1:
|
293 |
+
# Register `app.run` to run at exit (only once)
|
294 |
+
atexit.register(app.run)
|
295 |
+
|
296 |
+
@wraps(app.run)
|
297 |
+
def _run_now():
|
298 |
+
# Run the app directly (without waiting atexit)
|
299 |
+
atexit.unregister(app.run)
|
300 |
+
app.run()
|
301 |
+
|
302 |
+
func.run = _run_now # type: ignore
|
303 |
+
return func
|
304 |
+
|
305 |
+
return _inner
|
306 |
+
|
307 |
+
|
308 |
+
def _get_global_app() -> WebhooksServer:
|
309 |
+
global _global_app
|
310 |
+
if _global_app is None:
|
311 |
+
_global_app = WebhooksServer()
|
312 |
+
return _global_app
|
313 |
+
|
314 |
+
|
315 |
+
def _warn_on_empty_secret(webhook_secret: Optional[str]) -> None:
|
316 |
+
if webhook_secret is None:
|
317 |
+
print("Webhook secret is not defined. This means your webhook endpoints will be open to everyone.")
|
318 |
+
print(
|
319 |
+
"To add a secret, set `WEBHOOK_SECRET` as environment variable or pass it at initialization: "
|
320 |
+
"\n\t`app = WebhooksServer(webhook_secret='my_secret', ...)`"
|
321 |
+
)
|
322 |
+
print(
|
323 |
+
"For more details about webhook secrets, please refer to"
|
324 |
+
" https://huggingface.co/docs/hub/webhooks#webhook-secret."
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
print("Webhook secret is correctly defined.")
|
328 |
+
|
329 |
+
|
330 |
+
def _get_webhook_doc_url(webhook_name: str, webhook_path: str) -> str:
|
331 |
+
"""Returns the anchor to a given webhook in the docs (experimental)"""
|
332 |
+
return "/docs#/default/" + webhook_name + webhook_path.replace("/", "_") + "_post"
|
333 |
+
|
334 |
+
|
335 |
+
def _wrap_webhook_to_check_secret(func: Callable, webhook_secret: str) -> Callable:
|
336 |
+
"""Wraps a webhook function to check the webhook secret before calling the function.
|
337 |
+
|
338 |
+
This is a hacky way to add the `request` parameter to the function signature. Since FastAPI based itself on route
|
339 |
+
parameters to inject the values to the function, we need to hack the function signature to retrieve the `Request`
|
340 |
+
object (and hence the headers). A far cleaner solution would be to use a middleware. However, since
|
341 |
+
`fastapi==0.90.1`, a middleware cannot be added once the app has started. And since the FastAPI app is started by
|
342 |
+
Gradio internals (and not by us), we cannot add a middleware.
|
343 |
+
|
344 |
+
This method is called only when a secret has been defined by the user. If a request is sent without the
|
345 |
+
"x-webhook-secret", the function will return a 401 error (unauthorized). If the header is sent but is incorrect,
|
346 |
+
the function will return a 403 error (forbidden).
|
347 |
+
|
348 |
+
Inspired by https://stackoverflow.com/a/33112180.
|
349 |
+
"""
|
350 |
+
initial_sig = inspect.signature(func)
|
351 |
+
|
352 |
+
@wraps(func)
|
353 |
+
async def _protected_func(request: Request, **kwargs):
|
354 |
+
request_secret = request.headers.get("x-webhook-secret")
|
355 |
+
if request_secret is None:
|
356 |
+
return JSONResponse({"error": "x-webhook-secret header not set."}, status_code=401)
|
357 |
+
if request_secret != webhook_secret:
|
358 |
+
return JSONResponse({"error": "Invalid webhook secret."}, status_code=403)
|
359 |
+
|
360 |
+
# Inject `request` in kwargs if required
|
361 |
+
if "request" in initial_sig.parameters:
|
362 |
+
kwargs["request"] = request
|
363 |
+
|
364 |
+
# Handle both sync and async routes
|
365 |
+
if inspect.iscoroutinefunction(func):
|
366 |
+
return await func(**kwargs)
|
367 |
+
else:
|
368 |
+
return func(**kwargs)
|
369 |
+
|
370 |
+
# Update signature to include request
|
371 |
+
if "request" not in initial_sig.parameters:
|
372 |
+
_protected_func.__signature__ = initial_sig.replace( # type: ignore
|
373 |
+
parameters=(
|
374 |
+
inspect.Parameter(name="request", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=Request),
|
375 |
+
)
|
376 |
+
+ tuple(initial_sig.parameters.values())
|
377 |
+
)
|
378 |
+
|
379 |
+
# Return protected route
|
380 |
+
return _protected_func
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/fastai_utils.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from pickle import DEFAULT_PROTOCOL, PicklingError
|
5 |
+
from typing import Any, Dict, List, Optional, Union
|
6 |
+
|
7 |
+
from packaging import version
|
8 |
+
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from huggingface_hub.constants import CONFIG_NAME
|
11 |
+
from huggingface_hub.hf_api import HfApi
|
12 |
+
from huggingface_hub.utils import (
|
13 |
+
SoftTemporaryDirectory,
|
14 |
+
get_fastai_version,
|
15 |
+
get_fastcore_version,
|
16 |
+
get_python_version,
|
17 |
+
)
|
18 |
+
|
19 |
+
from .utils import logging, validate_hf_hub_args
|
20 |
+
from .utils._runtime import _PY_VERSION # noqa: F401 # for backward compatibility...
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
def _check_fastai_fastcore_versions(
|
27 |
+
fastai_min_version: str = "2.4",
|
28 |
+
fastcore_min_version: str = "1.3.27",
|
29 |
+
):
|
30 |
+
"""
|
31 |
+
Checks that the installed fastai and fastcore versions are compatible for pickle serialization.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
fastai_min_version (`str`, *optional*):
|
35 |
+
The minimum fastai version supported.
|
36 |
+
fastcore_min_version (`str`, *optional*):
|
37 |
+
The minimum fastcore version supported.
|
38 |
+
|
39 |
+
<Tip>
|
40 |
+
Raises the following error:
|
41 |
+
|
42 |
+
- [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
|
43 |
+
if the fastai or fastcore libraries are not available or are of an invalid version.
|
44 |
+
|
45 |
+
</Tip>
|
46 |
+
"""
|
47 |
+
|
48 |
+
if (get_fastcore_version() or get_fastai_version()) == "N/A":
|
49 |
+
raise ImportError(
|
50 |
+
f"fastai>={fastai_min_version} and fastcore>={fastcore_min_version} are"
|
51 |
+
f" required. Currently using fastai=={get_fastai_version()} and"
|
52 |
+
f" fastcore=={get_fastcore_version()}."
|
53 |
+
)
|
54 |
+
|
55 |
+
current_fastai_version = version.Version(get_fastai_version())
|
56 |
+
current_fastcore_version = version.Version(get_fastcore_version())
|
57 |
+
|
58 |
+
if current_fastai_version < version.Version(fastai_min_version):
|
59 |
+
raise ImportError(
|
60 |
+
"`push_to_hub_fastai` and `from_pretrained_fastai` require a"
|
61 |
+
f" fastai>={fastai_min_version} version, but you are using fastai version"
|
62 |
+
f" {get_fastai_version()} which is incompatible. Upgrade with `pip install"
|
63 |
+
" fastai==2.5.6`."
|
64 |
+
)
|
65 |
+
|
66 |
+
if current_fastcore_version < version.Version(fastcore_min_version):
|
67 |
+
raise ImportError(
|
68 |
+
"`push_to_hub_fastai` and `from_pretrained_fastai` require a"
|
69 |
+
f" fastcore>={fastcore_min_version} version, but you are using fastcore"
|
70 |
+
f" version {get_fastcore_version()} which is incompatible. Upgrade with"
|
71 |
+
" `pip install fastcore==1.3.27`."
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def _check_fastai_fastcore_pyproject_versions(
|
76 |
+
storage_folder: str,
|
77 |
+
fastai_min_version: str = "2.4",
|
78 |
+
fastcore_min_version: str = "1.3.27",
|
79 |
+
):
|
80 |
+
"""
|
81 |
+
Checks that the `pyproject.toml` file in the directory `storage_folder` has fastai and fastcore versions
|
82 |
+
that are compatible with `from_pretrained_fastai` and `push_to_hub_fastai`. If `pyproject.toml` does not exist
|
83 |
+
or does not contain versions for fastai and fastcore, then it logs a warning.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
storage_folder (`str`):
|
87 |
+
Folder to look for the `pyproject.toml` file.
|
88 |
+
fastai_min_version (`str`, *optional*):
|
89 |
+
The minimum fastai version supported.
|
90 |
+
fastcore_min_version (`str`, *optional*):
|
91 |
+
The minimum fastcore version supported.
|
92 |
+
|
93 |
+
<Tip>
|
94 |
+
Raises the following errors:
|
95 |
+
|
96 |
+
- [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
|
97 |
+
if the `toml` module is not installed.
|
98 |
+
- [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError)
|
99 |
+
if the `pyproject.toml` indicates a lower than minimum supported version of fastai or fastcore.
|
100 |
+
|
101 |
+
</Tip>
|
102 |
+
"""
|
103 |
+
|
104 |
+
try:
|
105 |
+
import toml
|
106 |
+
except ModuleNotFoundError:
|
107 |
+
raise ImportError(
|
108 |
+
"`push_to_hub_fastai` and `from_pretrained_fastai` require the toml module."
|
109 |
+
" Install it with `pip install toml`."
|
110 |
+
)
|
111 |
+
|
112 |
+
# Checks that a `pyproject.toml`, with `build-system` and `requires` sections, exists in the repository. If so, get a list of required packages.
|
113 |
+
if not os.path.isfile(f"{storage_folder}/pyproject.toml"):
|
114 |
+
logger.warning(
|
115 |
+
"There is no `pyproject.toml` in the repository that contains the fastai"
|
116 |
+
" `Learner`. The `pyproject.toml` would allow us to verify that your fastai"
|
117 |
+
" and fastcore versions are compatible with those of the model you want to"
|
118 |
+
" load."
|
119 |
+
)
|
120 |
+
return
|
121 |
+
pyproject_toml = toml.load(f"{storage_folder}/pyproject.toml")
|
122 |
+
|
123 |
+
if "build-system" not in pyproject_toml.keys():
|
124 |
+
logger.warning(
|
125 |
+
"There is no `build-system` section in the pyproject.toml of the repository"
|
126 |
+
" that contains the fastai `Learner`. The `build-system` would allow us to"
|
127 |
+
" verify that your fastai and fastcore versions are compatible with those"
|
128 |
+
" of the model you want to load."
|
129 |
+
)
|
130 |
+
return
|
131 |
+
build_system_toml = pyproject_toml["build-system"]
|
132 |
+
|
133 |
+
if "requires" not in build_system_toml.keys():
|
134 |
+
logger.warning(
|
135 |
+
"There is no `requires` section in the pyproject.toml of the repository"
|
136 |
+
" that contains the fastai `Learner`. The `requires` would allow us to"
|
137 |
+
" verify that your fastai and fastcore versions are compatible with those"
|
138 |
+
" of the model you want to load."
|
139 |
+
)
|
140 |
+
return
|
141 |
+
package_versions = build_system_toml["requires"]
|
142 |
+
|
143 |
+
# Extracts contains fastai and fastcore versions from `pyproject.toml` if available.
|
144 |
+
# If the package is specified but not the version (e.g. "fastai" instead of "fastai=2.4"), the default versions are the highest.
|
145 |
+
fastai_packages = [pck for pck in package_versions if pck.startswith("fastai")]
|
146 |
+
if len(fastai_packages) == 0:
|
147 |
+
logger.warning("The repository does not have a fastai version specified in the `pyproject.toml`.")
|
148 |
+
# fastai_version is an empty string if not specified
|
149 |
+
else:
|
150 |
+
fastai_version = str(fastai_packages[0]).partition("=")[2]
|
151 |
+
if fastai_version != "" and version.Version(fastai_version) < version.Version(fastai_min_version):
|
152 |
+
raise ImportError(
|
153 |
+
"`from_pretrained_fastai` requires"
|
154 |
+
f" fastai>={fastai_min_version} version but the model to load uses"
|
155 |
+
f" {fastai_version} which is incompatible."
|
156 |
+
)
|
157 |
+
|
158 |
+
fastcore_packages = [pck for pck in package_versions if pck.startswith("fastcore")]
|
159 |
+
if len(fastcore_packages) == 0:
|
160 |
+
logger.warning("The repository does not have a fastcore version specified in the `pyproject.toml`.")
|
161 |
+
# fastcore_version is an empty string if not specified
|
162 |
+
else:
|
163 |
+
fastcore_version = str(fastcore_packages[0]).partition("=")[2]
|
164 |
+
if fastcore_version != "" and version.Version(fastcore_version) < version.Version(fastcore_min_version):
|
165 |
+
raise ImportError(
|
166 |
+
"`from_pretrained_fastai` requires"
|
167 |
+
f" fastcore>={fastcore_min_version} version, but you are using fastcore"
|
168 |
+
f" version {fastcore_version} which is incompatible."
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
+
README_TEMPLATE = """---
|
173 |
+
tags:
|
174 |
+
- fastai
|
175 |
+
---
|
176 |
+
|
177 |
+
# Amazing!
|
178 |
+
|
179 |
+
🥳 Congratulations on hosting your fastai model on the Hugging Face Hub!
|
180 |
+
|
181 |
+
# Some next steps
|
182 |
+
1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))!
|
183 |
+
|
184 |
+
2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)).
|
185 |
+
|
186 |
+
3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)!
|
187 |
+
|
188 |
+
Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card.
|
189 |
+
|
190 |
+
|
191 |
+
---
|
192 |
+
|
193 |
+
|
194 |
+
# Model card
|
195 |
+
|
196 |
+
## Model description
|
197 |
+
More information needed
|
198 |
+
|
199 |
+
## Intended uses & limitations
|
200 |
+
More information needed
|
201 |
+
|
202 |
+
## Training and evaluation data
|
203 |
+
More information needed
|
204 |
+
"""
|
205 |
+
|
206 |
+
PYPROJECT_TEMPLATE = f"""[build-system]
|
207 |
+
requires = ["setuptools>=40.8.0", "wheel", "python={get_python_version()}", "fastai={get_fastai_version()}", "fastcore={get_fastcore_version()}"]
|
208 |
+
build-backend = "setuptools.build_meta:__legacy__"
|
209 |
+
"""
|
210 |
+
|
211 |
+
|
212 |
+
def _create_model_card(repo_dir: Path):
|
213 |
+
"""
|
214 |
+
Creates a model card for the repository.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
repo_dir (`Path`):
|
218 |
+
Directory where model card is created.
|
219 |
+
"""
|
220 |
+
readme_path = repo_dir / "README.md"
|
221 |
+
|
222 |
+
if not readme_path.exists():
|
223 |
+
with readme_path.open("w", encoding="utf-8") as f:
|
224 |
+
f.write(README_TEMPLATE)
|
225 |
+
|
226 |
+
|
227 |
+
def _create_model_pyproject(repo_dir: Path):
|
228 |
+
"""
|
229 |
+
Creates a `pyproject.toml` for the repository.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
repo_dir (`Path`):
|
233 |
+
Directory where `pyproject.toml` is created.
|
234 |
+
"""
|
235 |
+
pyproject_path = repo_dir / "pyproject.toml"
|
236 |
+
|
237 |
+
if not pyproject_path.exists():
|
238 |
+
with pyproject_path.open("w", encoding="utf-8") as f:
|
239 |
+
f.write(PYPROJECT_TEMPLATE)
|
240 |
+
|
241 |
+
|
242 |
+
def _save_pretrained_fastai(
|
243 |
+
learner,
|
244 |
+
save_directory: Union[str, Path],
|
245 |
+
config: Optional[Dict[str, Any]] = None,
|
246 |
+
):
|
247 |
+
"""
|
248 |
+
Saves a fastai learner to `save_directory` in pickle format using the default pickle protocol for the version of python used.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
learner (`Learner`):
|
252 |
+
The `fastai.Learner` you'd like to save.
|
253 |
+
save_directory (`str` or `Path`):
|
254 |
+
Specific directory in which you want to save the fastai learner.
|
255 |
+
config (`dict`, *optional*):
|
256 |
+
Configuration object. Will be uploaded as a .json file. Example: 'https://huggingface.co/espejelomar/fastai-pet-breeds-classification/blob/main/config.json'.
|
257 |
+
|
258 |
+
<Tip>
|
259 |
+
|
260 |
+
Raises the following error:
|
261 |
+
|
262 |
+
- [`RuntimeError`](https://docs.python.org/3/library/exceptions.html#RuntimeError)
|
263 |
+
if the config file provided is not a dictionary.
|
264 |
+
|
265 |
+
</Tip>
|
266 |
+
"""
|
267 |
+
_check_fastai_fastcore_versions()
|
268 |
+
|
269 |
+
os.makedirs(save_directory, exist_ok=True)
|
270 |
+
|
271 |
+
# if the user provides config then we update it with the fastai and fastcore versions in CONFIG_TEMPLATE.
|
272 |
+
if config is not None:
|
273 |
+
if not isinstance(config, dict):
|
274 |
+
raise RuntimeError(f"Provided config should be a dict. Got: '{type(config)}'")
|
275 |
+
path = os.path.join(save_directory, CONFIG_NAME)
|
276 |
+
with open(path, "w") as f:
|
277 |
+
json.dump(config, f)
|
278 |
+
|
279 |
+
_create_model_card(Path(save_directory))
|
280 |
+
_create_model_pyproject(Path(save_directory))
|
281 |
+
|
282 |
+
# learner.export saves the model in `self.path`.
|
283 |
+
learner.path = Path(save_directory)
|
284 |
+
os.makedirs(save_directory, exist_ok=True)
|
285 |
+
try:
|
286 |
+
learner.export(
|
287 |
+
fname="model.pkl",
|
288 |
+
pickle_protocol=DEFAULT_PROTOCOL,
|
289 |
+
)
|
290 |
+
except PicklingError:
|
291 |
+
raise PicklingError(
|
292 |
+
"You are using a lambda function, i.e., an anonymous function. `pickle`"
|
293 |
+
" cannot pickle function objects and requires that all functions have"
|
294 |
+
" names. One possible solution is to name the function."
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
@validate_hf_hub_args
|
299 |
+
def from_pretrained_fastai(
|
300 |
+
repo_id: str,
|
301 |
+
revision: Optional[str] = None,
|
302 |
+
):
|
303 |
+
"""
|
304 |
+
Load pretrained fastai model from the Hub or from a local directory.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
repo_id (`str`):
|
308 |
+
The location where the pickled fastai.Learner is. It can be either of the two:
|
309 |
+
- Hosted on the Hugging Face Hub. E.g.: 'espejelomar/fatai-pet-breeds-classification' or 'distilgpt2'.
|
310 |
+
You can add a `revision` by appending `@` at the end of `repo_id`. E.g.: `dbmdz/bert-base-german-cased@main`.
|
311 |
+
Revision is the specific model version to use. Since we use a git-based system for storing models and other
|
312 |
+
artifacts on the Hugging Face Hub, it can be a branch name, a tag name, or a commit id.
|
313 |
+
- Hosted locally. `repo_id` would be a directory containing the pickle and a pyproject.toml
|
314 |
+
indicating the fastai and fastcore versions used to build the `fastai.Learner`. E.g.: `./my_model_directory/`.
|
315 |
+
revision (`str`, *optional*):
|
316 |
+
Revision at which the repo's files are downloaded. See documentation of `snapshot_download`.
|
317 |
+
|
318 |
+
Returns:
|
319 |
+
The `fastai.Learner` model in the `repo_id` repo.
|
320 |
+
"""
|
321 |
+
_check_fastai_fastcore_versions()
|
322 |
+
|
323 |
+
# Load the `repo_id` repo.
|
324 |
+
# `snapshot_download` returns the folder where the model was stored.
|
325 |
+
# `cache_dir` will be the default '/root/.cache/huggingface/hub'
|
326 |
+
if not os.path.isdir(repo_id):
|
327 |
+
storage_folder = snapshot_download(
|
328 |
+
repo_id=repo_id,
|
329 |
+
revision=revision,
|
330 |
+
library_name="fastai",
|
331 |
+
library_version=get_fastai_version(),
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
storage_folder = repo_id
|
335 |
+
|
336 |
+
_check_fastai_fastcore_pyproject_versions(storage_folder)
|
337 |
+
|
338 |
+
from fastai.learner import load_learner # type: ignore
|
339 |
+
|
340 |
+
return load_learner(os.path.join(storage_folder, "model.pkl"))
|
341 |
+
|
342 |
+
|
343 |
+
@validate_hf_hub_args
|
344 |
+
def push_to_hub_fastai(
|
345 |
+
learner,
|
346 |
+
*,
|
347 |
+
repo_id: str,
|
348 |
+
commit_message: str = "Push FastAI model using huggingface_hub.",
|
349 |
+
private: bool = False,
|
350 |
+
token: Optional[str] = None,
|
351 |
+
config: Optional[dict] = None,
|
352 |
+
branch: Optional[str] = None,
|
353 |
+
create_pr: Optional[bool] = None,
|
354 |
+
allow_patterns: Optional[Union[List[str], str]] = None,
|
355 |
+
ignore_patterns: Optional[Union[List[str], str]] = None,
|
356 |
+
delete_patterns: Optional[Union[List[str], str]] = None,
|
357 |
+
api_endpoint: Optional[str] = None,
|
358 |
+
):
|
359 |
+
"""
|
360 |
+
Upload learner checkpoint files to the Hub.
|
361 |
+
|
362 |
+
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
|
363 |
+
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
|
364 |
+
details.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
learner (`Learner`):
|
368 |
+
The `fastai.Learner' you'd like to push to the Hub.
|
369 |
+
repo_id (`str`):
|
370 |
+
The repository id for your model in Hub in the format of "namespace/repo_name". The namespace can be your individual account or an organization to which you have write access (for example, 'stanfordnlp/stanza-de').
|
371 |
+
commit_message (`str`, *optional*):
|
372 |
+
Message to commit while pushing. Will default to :obj:`"add model"`.
|
373 |
+
private (`bool`, *optional*, defaults to `False`):
|
374 |
+
Whether or not the repository created should be private.
|
375 |
+
token (`str`, *optional*):
|
376 |
+
The Hugging Face account token to use as HTTP bearer authorization for remote files. If :obj:`None`, the token will be asked by a prompt.
|
377 |
+
config (`dict`, *optional*):
|
378 |
+
Configuration object to be saved alongside the model weights.
|
379 |
+
branch (`str`, *optional*):
|
380 |
+
The git branch on which to push the model. This defaults to
|
381 |
+
the default branch as specified in your repository, which
|
382 |
+
defaults to `"main"`.
|
383 |
+
create_pr (`boolean`, *optional*):
|
384 |
+
Whether or not to create a Pull Request from `branch` with that commit.
|
385 |
+
Defaults to `False`.
|
386 |
+
api_endpoint (`str`, *optional*):
|
387 |
+
The API endpoint to use when pushing the model to the hub.
|
388 |
+
allow_patterns (`List[str]` or `str`, *optional*):
|
389 |
+
If provided, only files matching at least one pattern are pushed.
|
390 |
+
ignore_patterns (`List[str]` or `str`, *optional*):
|
391 |
+
If provided, files matching any of the patterns are not pushed.
|
392 |
+
delete_patterns (`List[str]` or `str`, *optional*):
|
393 |
+
If provided, remote files matching any of the patterns will be deleted from the repo.
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
The url of the commit of your model in the given repository.
|
397 |
+
|
398 |
+
<Tip>
|
399 |
+
|
400 |
+
Raises the following error:
|
401 |
+
|
402 |
+
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
|
403 |
+
if the user is not log on to the Hugging Face Hub.
|
404 |
+
|
405 |
+
</Tip>
|
406 |
+
"""
|
407 |
+
_check_fastai_fastcore_versions()
|
408 |
+
api = HfApi(endpoint=api_endpoint)
|
409 |
+
repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id
|
410 |
+
|
411 |
+
# Push the files to the repo in a single commit
|
412 |
+
with SoftTemporaryDirectory() as tmp:
|
413 |
+
saved_path = Path(tmp) / repo_id
|
414 |
+
_save_pretrained_fastai(learner, saved_path, config=config)
|
415 |
+
return api.upload_folder(
|
416 |
+
repo_id=repo_id,
|
417 |
+
token=token,
|
418 |
+
folder_path=saved_path,
|
419 |
+
commit_message=commit_message,
|
420 |
+
revision=branch,
|
421 |
+
create_pr=create_pr,
|
422 |
+
allow_patterns=allow_patterns,
|
423 |
+
ignore_patterns=ignore_patterns,
|
424 |
+
delete_patterns=delete_patterns,
|
425 |
+
)
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/hub_mixin.py
ADDED
@@ -0,0 +1,704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from dataclasses import asdict, dataclass, is_dataclass
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, TypeVar, Union, get_args
|
7 |
+
|
8 |
+
from .constants import CONFIG_NAME, PYTORCH_WEIGHTS_NAME, SAFETENSORS_SINGLE_FILE
|
9 |
+
from .file_download import hf_hub_download
|
10 |
+
from .hf_api import HfApi
|
11 |
+
from .repocard import ModelCard, ModelCardData
|
12 |
+
from .utils import (
|
13 |
+
EntryNotFoundError,
|
14 |
+
HfHubHTTPError,
|
15 |
+
SoftTemporaryDirectory,
|
16 |
+
is_jsonable,
|
17 |
+
is_safetensors_available,
|
18 |
+
is_torch_available,
|
19 |
+
logging,
|
20 |
+
validate_hf_hub_args,
|
21 |
+
)
|
22 |
+
from .utils._deprecation import _deprecate_arguments
|
23 |
+
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from _typeshed import DataclassInstance
|
27 |
+
|
28 |
+
if is_torch_available():
|
29 |
+
import torch # type: ignore
|
30 |
+
|
31 |
+
if is_safetensors_available():
|
32 |
+
from safetensors.torch import load_model as load_model_as_safetensor
|
33 |
+
from safetensors.torch import save_model as save_model_as_safetensor
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
# Generic variable that is either ModelHubMixin or a subclass thereof
|
39 |
+
T = TypeVar("T", bound="ModelHubMixin")
|
40 |
+
|
41 |
+
DEFAULT_MODEL_CARD = """
|
42 |
+
---
|
43 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
44 |
+
# Doc / guide: https://huggingface.co/docs/hub/model-cards
|
45 |
+
{{ card_data }}
|
46 |
+
---
|
47 |
+
|
48 |
+
This model has been pushed to the Hub using **{{ library_name }}**:
|
49 |
+
- Repo: {{ repo_url | default("[More Information Needed]", true) }}
|
50 |
+
- Docs: {{ docs_url | default("[More Information Needed]", true) }}
|
51 |
+
"""
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass
|
55 |
+
class MixinInfo:
|
56 |
+
library_name: Optional[str] = None
|
57 |
+
tags: Optional[List[str]] = None
|
58 |
+
repo_url: Optional[str] = None
|
59 |
+
docs_url: Optional[str] = None
|
60 |
+
|
61 |
+
|
62 |
+
class ModelHubMixin:
|
63 |
+
"""
|
64 |
+
A generic mixin to integrate ANY machine learning framework with the Hub.
|
65 |
+
|
66 |
+
To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models
|
67 |
+
have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example
|
68 |
+
of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions.
|
69 |
+
|
70 |
+
When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to
|
71 |
+
`__init__` but to the class definition itself. This is useful to define metadata about the library integrating
|
72 |
+
[`ModelHubMixin`].
|
73 |
+
|
74 |
+
Args:
|
75 |
+
library_name (`str`, *optional*):
|
76 |
+
Name of the library integrating ModelHubMixin. Used to generate model card.
|
77 |
+
tags (`List[str]`, *optional*):
|
78 |
+
Tags to be added to the model card. Used to generate model card.
|
79 |
+
repo_url (`str`, *optional*):
|
80 |
+
URL of the library repository. Used to generate model card.
|
81 |
+
docs_url (`str`, *optional*):
|
82 |
+
URL of the library documentation. Used to generate model card.
|
83 |
+
|
84 |
+
Example:
|
85 |
+
|
86 |
+
```python
|
87 |
+
>>> from huggingface_hub import ModelHubMixin
|
88 |
+
|
89 |
+
# Inherit from ModelHubMixin
|
90 |
+
>>> class MyCustomModel(
|
91 |
+
... ModelHubMixin,
|
92 |
+
... library_name="my-library",
|
93 |
+
... tags=["x-custom-tag"],
|
94 |
+
... repo_url="https://github.com/huggingface/my-cool-library",
|
95 |
+
... docs_url="https://huggingface.co/docs/my-cool-library",
|
96 |
+
... # ^ optional metadata to generate model card
|
97 |
+
... ):
|
98 |
+
... def __init__(self, size: int = 512, device: str = "cpu"):
|
99 |
+
... # define how to initialize your model
|
100 |
+
... super().__init__()
|
101 |
+
... ...
|
102 |
+
...
|
103 |
+
... def _save_pretrained(self, save_directory: Path) -> None:
|
104 |
+
... # define how to serialize your model
|
105 |
+
... ...
|
106 |
+
...
|
107 |
+
... @classmethod
|
108 |
+
... def from_pretrained(
|
109 |
+
... cls: Type[T],
|
110 |
+
... pretrained_model_name_or_path: Union[str, Path],
|
111 |
+
... *,
|
112 |
+
... force_download: bool = False,
|
113 |
+
... resume_download: bool = False,
|
114 |
+
... proxies: Optional[Dict] = None,
|
115 |
+
... token: Optional[Union[str, bool]] = None,
|
116 |
+
... cache_dir: Optional[Union[str, Path]] = None,
|
117 |
+
... local_files_only: bool = False,
|
118 |
+
... revision: Optional[str] = None,
|
119 |
+
... **model_kwargs,
|
120 |
+
... ) -> T:
|
121 |
+
... # define how to deserialize your model
|
122 |
+
... ...
|
123 |
+
|
124 |
+
>>> model = MyCustomModel(size=256, device="gpu")
|
125 |
+
|
126 |
+
# Save model weights to local directory
|
127 |
+
>>> model.save_pretrained("my-awesome-model")
|
128 |
+
|
129 |
+
# Push model weights to the Hub
|
130 |
+
>>> model.push_to_hub("my-awesome-model")
|
131 |
+
|
132 |
+
# Download and initialize weights from the Hub
|
133 |
+
>>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model")
|
134 |
+
>>> reloaded_model._hub_mixin_config
|
135 |
+
{"size": 256, "device": "gpu"}
|
136 |
+
|
137 |
+
# Model card has been correctly populated
|
138 |
+
>>> from huggingface_hub import ModelCard
|
139 |
+
>>> card = ModelCard.load("username/my-awesome-model")
|
140 |
+
>>> card.data.tags
|
141 |
+
["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"]
|
142 |
+
>>> card.data.library_name
|
143 |
+
"my-library"
|
144 |
+
```
|
145 |
+
"""
|
146 |
+
|
147 |
+
_hub_mixin_config: Optional[Union[dict, "DataclassInstance"]] = None
|
148 |
+
# ^ optional config attribute automatically set in `from_pretrained`
|
149 |
+
_hub_mixin_info: MixinInfo
|
150 |
+
# ^ information about the library integrating ModelHubMixin (used to generate model card)
|
151 |
+
_hub_mixin_init_parameters: Dict[str, inspect.Parameter]
|
152 |
+
_hub_mixin_jsonable_default_values: Dict[str, Any]
|
153 |
+
_hub_mixin_inject_config: bool
|
154 |
+
# ^ internal values to handle config
|
155 |
+
|
156 |
+
def __init_subclass__(
|
157 |
+
cls,
|
158 |
+
*,
|
159 |
+
library_name: Optional[str] = None,
|
160 |
+
tags: Optional[List[str]] = None,
|
161 |
+
repo_url: Optional[str] = None,
|
162 |
+
docs_url: Optional[str] = None,
|
163 |
+
) -> None:
|
164 |
+
"""Inspect __init__ signature only once when subclassing + handle modelcard."""
|
165 |
+
super().__init_subclass__()
|
166 |
+
|
167 |
+
# Will be reused when creating modelcard
|
168 |
+
tags = tags or []
|
169 |
+
tags.append("model_hub_mixin")
|
170 |
+
cls._hub_mixin_info = MixinInfo(
|
171 |
+
library_name=library_name,
|
172 |
+
tags=tags,
|
173 |
+
repo_url=repo_url,
|
174 |
+
docs_url=docs_url,
|
175 |
+
)
|
176 |
+
|
177 |
+
# Inspect __init__ signature to handle config
|
178 |
+
cls._hub_mixin_init_parameters = dict(inspect.signature(cls.__init__).parameters)
|
179 |
+
cls._hub_mixin_jsonable_default_values = {
|
180 |
+
param.name: param.default
|
181 |
+
for param in cls._hub_mixin_init_parameters.values()
|
182 |
+
if param.default is not inspect.Parameter.empty and is_jsonable(param.default)
|
183 |
+
}
|
184 |
+
cls._hub_mixin_inject_config = "config" in inspect.signature(cls._from_pretrained).parameters
|
185 |
+
|
186 |
+
def __new__(cls, *args, **kwargs) -> "ModelHubMixin":
|
187 |
+
"""Create a new instance of the class and handle config.
|
188 |
+
|
189 |
+
3 cases:
|
190 |
+
- If `self._hub_mixin_config` is already set, do nothing.
|
191 |
+
- If `config` is passed as a dataclass, set it as `self._hub_mixin_config`.
|
192 |
+
- Otherwise, build `self._hub_mixin_config` from default values and passed values.
|
193 |
+
"""
|
194 |
+
instance = super().__new__(cls)
|
195 |
+
|
196 |
+
# If `config` is already set, return early
|
197 |
+
if instance._hub_mixin_config is not None:
|
198 |
+
return instance
|
199 |
+
|
200 |
+
# Infer passed values
|
201 |
+
passed_values = {
|
202 |
+
**{
|
203 |
+
key: value
|
204 |
+
for key, value in zip(
|
205 |
+
# [1:] to skip `self` parameter
|
206 |
+
list(cls._hub_mixin_init_parameters)[1:],
|
207 |
+
args,
|
208 |
+
)
|
209 |
+
},
|
210 |
+
**kwargs,
|
211 |
+
}
|
212 |
+
|
213 |
+
# If config passed as dataclass => set it and return early
|
214 |
+
if is_dataclass(passed_values.get("config")):
|
215 |
+
instance._hub_mixin_config = passed_values["config"]
|
216 |
+
return instance
|
217 |
+
|
218 |
+
# Otherwise, build config from default + passed values
|
219 |
+
init_config = {
|
220 |
+
# default values
|
221 |
+
**cls._hub_mixin_jsonable_default_values,
|
222 |
+
# passed values
|
223 |
+
**{key: value for key, value in passed_values.items() if is_jsonable(value)},
|
224 |
+
}
|
225 |
+
init_config.pop("config", {})
|
226 |
+
|
227 |
+
# Populate `init_config` with provided config
|
228 |
+
provided_config = passed_values.get("config")
|
229 |
+
if isinstance(provided_config, dict):
|
230 |
+
init_config.update(provided_config)
|
231 |
+
|
232 |
+
# Set `config` attribute and return
|
233 |
+
if init_config != {}:
|
234 |
+
instance._hub_mixin_config = init_config
|
235 |
+
return instance
|
236 |
+
|
237 |
+
def save_pretrained(
|
238 |
+
self,
|
239 |
+
save_directory: Union[str, Path],
|
240 |
+
*,
|
241 |
+
config: Optional[Union[dict, "DataclassInstance"]] = None,
|
242 |
+
repo_id: Optional[str] = None,
|
243 |
+
push_to_hub: bool = False,
|
244 |
+
**push_to_hub_kwargs,
|
245 |
+
) -> Optional[str]:
|
246 |
+
"""
|
247 |
+
Save weights in local directory.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
save_directory (`str` or `Path`):
|
251 |
+
Path to directory in which the model weights and configuration will be saved.
|
252 |
+
config (`dict` or `DataclassInstance`, *optional*):
|
253 |
+
Model configuration specified as a key/value dictionary or a dataclass instance.
|
254 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
255 |
+
Whether or not to push your model to the Huggingface Hub after saving it.
|
256 |
+
repo_id (`str`, *optional*):
|
257 |
+
ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if
|
258 |
+
not provided.
|
259 |
+
kwargs:
|
260 |
+
Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method.
|
261 |
+
"""
|
262 |
+
save_directory = Path(save_directory)
|
263 |
+
save_directory.mkdir(parents=True, exist_ok=True)
|
264 |
+
|
265 |
+
# Remove config.json if already exists. After `_save_pretrained` we don't want to overwrite config.json
|
266 |
+
# as it might have been saved by the custom `_save_pretrained` already. However we do want to overwrite
|
267 |
+
# an existing config.json if it was not saved by `_save_pretrained`.
|
268 |
+
config_path = save_directory / CONFIG_NAME
|
269 |
+
config_path.unlink(missing_ok=True)
|
270 |
+
|
271 |
+
# save model weights/files (framework-specific)
|
272 |
+
self._save_pretrained(save_directory)
|
273 |
+
|
274 |
+
# save config (if provided and if not serialized yet in `_save_pretrained`)
|
275 |
+
if config is None:
|
276 |
+
config = self._hub_mixin_config
|
277 |
+
if config is not None:
|
278 |
+
if is_dataclass(config):
|
279 |
+
config = asdict(config) # type: ignore[arg-type]
|
280 |
+
if not config_path.exists():
|
281 |
+
config_str = json.dumps(config, sort_keys=True, indent=2)
|
282 |
+
config_path.write_text(config_str)
|
283 |
+
|
284 |
+
# save model card
|
285 |
+
model_card_path = save_directory / "README.md"
|
286 |
+
if not model_card_path.exists(): # do not overwrite if already exists
|
287 |
+
self.generate_model_card().save(save_directory / "README.md")
|
288 |
+
|
289 |
+
# push to the Hub if required
|
290 |
+
if push_to_hub:
|
291 |
+
kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input
|
292 |
+
if config is not None: # kwarg for `push_to_hub`
|
293 |
+
kwargs["config"] = config
|
294 |
+
if repo_id is None:
|
295 |
+
repo_id = save_directory.name # Defaults to `save_directory` name
|
296 |
+
return self.push_to_hub(repo_id=repo_id, **kwargs)
|
297 |
+
return None
|
298 |
+
|
299 |
+
def _save_pretrained(self, save_directory: Path) -> None:
|
300 |
+
"""
|
301 |
+
Overwrite this method in subclass to define how to save your model.
|
302 |
+
Check out our [integration guide](../guides/integrations) for instructions.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
save_directory (`str` or `Path`):
|
306 |
+
Path to directory in which the model weights and configuration will be saved.
|
307 |
+
"""
|
308 |
+
raise NotImplementedError
|
309 |
+
|
310 |
+
@classmethod
|
311 |
+
@validate_hf_hub_args
|
312 |
+
def from_pretrained(
|
313 |
+
cls: Type[T],
|
314 |
+
pretrained_model_name_or_path: Union[str, Path],
|
315 |
+
*,
|
316 |
+
force_download: bool = False,
|
317 |
+
resume_download: bool = False,
|
318 |
+
proxies: Optional[Dict] = None,
|
319 |
+
token: Optional[Union[str, bool]] = None,
|
320 |
+
cache_dir: Optional[Union[str, Path]] = None,
|
321 |
+
local_files_only: bool = False,
|
322 |
+
revision: Optional[str] = None,
|
323 |
+
**model_kwargs,
|
324 |
+
) -> T:
|
325 |
+
"""
|
326 |
+
Download a model from the Huggingface Hub and instantiate it.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
pretrained_model_name_or_path (`str`, `Path`):
|
330 |
+
- Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`.
|
331 |
+
- Or a path to a `directory` containing model weights saved using
|
332 |
+
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`.
|
333 |
+
revision (`str`, *optional*):
|
334 |
+
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id.
|
335 |
+
Defaults to the latest commit on `main` branch.
|
336 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
337 |
+
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
|
338 |
+
the existing cache.
|
339 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
340 |
+
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
|
341 |
+
proxies (`Dict[str, str]`, *optional*):
|
342 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
343 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request.
|
344 |
+
token (`str` or `bool`, *optional*):
|
345 |
+
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
|
346 |
+
cached when running `huggingface-cli login`.
|
347 |
+
cache_dir (`str`, `Path`, *optional*):
|
348 |
+
Path to the folder where cached files are stored.
|
349 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
350 |
+
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
351 |
+
model_kwargs (`Dict`, *optional*):
|
352 |
+
Additional kwargs to pass to the model during initialization.
|
353 |
+
"""
|
354 |
+
model_id = str(pretrained_model_name_or_path)
|
355 |
+
config_file: Optional[str] = None
|
356 |
+
if os.path.isdir(model_id):
|
357 |
+
if CONFIG_NAME in os.listdir(model_id):
|
358 |
+
config_file = os.path.join(model_id, CONFIG_NAME)
|
359 |
+
else:
|
360 |
+
logger.warning(f"{CONFIG_NAME} not found in {Path(model_id).resolve()}")
|
361 |
+
else:
|
362 |
+
try:
|
363 |
+
config_file = hf_hub_download(
|
364 |
+
repo_id=model_id,
|
365 |
+
filename=CONFIG_NAME,
|
366 |
+
revision=revision,
|
367 |
+
cache_dir=cache_dir,
|
368 |
+
force_download=force_download,
|
369 |
+
proxies=proxies,
|
370 |
+
resume_download=resume_download,
|
371 |
+
token=token,
|
372 |
+
local_files_only=local_files_only,
|
373 |
+
)
|
374 |
+
except HfHubHTTPError as e:
|
375 |
+
logger.info(f"{CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}")
|
376 |
+
|
377 |
+
# Read config
|
378 |
+
config = None
|
379 |
+
if config_file is not None:
|
380 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
381 |
+
config = json.load(f)
|
382 |
+
|
383 |
+
# Populate model_kwargs from config
|
384 |
+
for param in cls._hub_mixin_init_parameters.values():
|
385 |
+
if param.name not in model_kwargs and param.name in config:
|
386 |
+
model_kwargs[param.name] = config[param.name]
|
387 |
+
|
388 |
+
# Check if `config` argument was passed at init
|
389 |
+
if "config" in cls._hub_mixin_init_parameters:
|
390 |
+
# Check if `config` argument is a dataclass
|
391 |
+
config_annotation = cls._hub_mixin_init_parameters["config"].annotation
|
392 |
+
if config_annotation is inspect.Parameter.empty:
|
393 |
+
pass # no annotation
|
394 |
+
elif is_dataclass(config_annotation):
|
395 |
+
config = _load_dataclass(config_annotation, config)
|
396 |
+
else:
|
397 |
+
# if Optional/Union annotation => check if a dataclass is in the Union
|
398 |
+
for _sub_annotation in get_args(config_annotation):
|
399 |
+
if is_dataclass(_sub_annotation):
|
400 |
+
config = _load_dataclass(_sub_annotation, config)
|
401 |
+
break
|
402 |
+
|
403 |
+
# Forward config to model initialization
|
404 |
+
model_kwargs["config"] = config
|
405 |
+
|
406 |
+
# Inject config if `**kwargs` are expected
|
407 |
+
if is_dataclass(cls):
|
408 |
+
for key in cls.__dataclass_fields__:
|
409 |
+
if key not in model_kwargs and key in config:
|
410 |
+
model_kwargs[key] = config[key]
|
411 |
+
elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in cls._hub_mixin_init_parameters.values()):
|
412 |
+
for key, value in config.items():
|
413 |
+
if key not in model_kwargs:
|
414 |
+
model_kwargs[key] = value
|
415 |
+
|
416 |
+
# Finally, also inject if `_from_pretrained` expects it
|
417 |
+
if cls._hub_mixin_inject_config:
|
418 |
+
model_kwargs["config"] = config
|
419 |
+
|
420 |
+
instance = cls._from_pretrained(
|
421 |
+
model_id=str(model_id),
|
422 |
+
revision=revision,
|
423 |
+
cache_dir=cache_dir,
|
424 |
+
force_download=force_download,
|
425 |
+
proxies=proxies,
|
426 |
+
resume_download=resume_download,
|
427 |
+
local_files_only=local_files_only,
|
428 |
+
token=token,
|
429 |
+
**model_kwargs,
|
430 |
+
)
|
431 |
+
|
432 |
+
# Implicitly set the config as instance attribute if not already set by the class
|
433 |
+
# This way `config` will be available when calling `save_pretrained` or `push_to_hub`.
|
434 |
+
if config is not None and (getattr(instance, "_hub_mixin_config", None) in (None, {})):
|
435 |
+
instance._hub_mixin_config = config
|
436 |
+
|
437 |
+
return instance
|
438 |
+
|
439 |
+
@classmethod
|
440 |
+
def _from_pretrained(
|
441 |
+
cls: Type[T],
|
442 |
+
*,
|
443 |
+
model_id: str,
|
444 |
+
revision: Optional[str],
|
445 |
+
cache_dir: Optional[Union[str, Path]],
|
446 |
+
force_download: bool,
|
447 |
+
proxies: Optional[Dict],
|
448 |
+
resume_download: bool,
|
449 |
+
local_files_only: bool,
|
450 |
+
token: Optional[Union[str, bool]],
|
451 |
+
**model_kwargs,
|
452 |
+
) -> T:
|
453 |
+
"""Overwrite this method in subclass to define how to load your model from pretrained.
|
454 |
+
|
455 |
+
Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most
|
456 |
+
args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this
|
457 |
+
method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location`
|
458 |
+
parameter to set on which device the model should be loaded.
|
459 |
+
|
460 |
+
Check out our [integration guide](../guides/integrations) for more instructions.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
model_id (`str`):
|
464 |
+
ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`).
|
465 |
+
revision (`str`, *optional*):
|
466 |
+
Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the
|
467 |
+
latest commit on `main` branch.
|
468 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
469 |
+
Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding
|
470 |
+
the existing cache.
|
471 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
472 |
+
Whether to delete incompletely received files. Will attempt to resume the download if such a file exists.
|
473 |
+
proxies (`Dict[str, str]`, *optional*):
|
474 |
+
A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128',
|
475 |
+
'http://hostname': 'foo.bar:4012'}`).
|
476 |
+
token (`str` or `bool`, *optional*):
|
477 |
+
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
|
478 |
+
cached when running `huggingface-cli login`.
|
479 |
+
cache_dir (`str`, `Path`, *optional*):
|
480 |
+
Path to the folder where cached files are stored.
|
481 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
482 |
+
If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
483 |
+
model_kwargs:
|
484 |
+
Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method.
|
485 |
+
"""
|
486 |
+
raise NotImplementedError
|
487 |
+
|
488 |
+
@_deprecate_arguments(
|
489 |
+
version="0.23.0",
|
490 |
+
deprecated_args=["api_endpoint"],
|
491 |
+
custom_message="Use `HF_ENDPOINT` environment variable instead.",
|
492 |
+
)
|
493 |
+
@validate_hf_hub_args
|
494 |
+
def push_to_hub(
|
495 |
+
self,
|
496 |
+
repo_id: str,
|
497 |
+
*,
|
498 |
+
config: Optional[Union[dict, "DataclassInstance"]] = None,
|
499 |
+
commit_message: str = "Push model using huggingface_hub.",
|
500 |
+
private: bool = False,
|
501 |
+
token: Optional[str] = None,
|
502 |
+
branch: Optional[str] = None,
|
503 |
+
create_pr: Optional[bool] = None,
|
504 |
+
allow_patterns: Optional[Union[List[str], str]] = None,
|
505 |
+
ignore_patterns: Optional[Union[List[str], str]] = None,
|
506 |
+
delete_patterns: Optional[Union[List[str], str]] = None,
|
507 |
+
# TODO: remove once deprecated
|
508 |
+
api_endpoint: Optional[str] = None,
|
509 |
+
) -> str:
|
510 |
+
"""
|
511 |
+
Upload model checkpoint to the Hub.
|
512 |
+
|
513 |
+
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
|
514 |
+
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
|
515 |
+
details.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
repo_id (`str`):
|
519 |
+
ID of the repository to push to (example: `"username/my-model"`).
|
520 |
+
config (`dict` or `DataclassInstance`, *optional*):
|
521 |
+
Model configuration specified as a key/value dictionary or a dataclass instance.
|
522 |
+
commit_message (`str`, *optional*):
|
523 |
+
Message to commit while pushing.
|
524 |
+
private (`bool`, *optional*, defaults to `False`):
|
525 |
+
Whether the repository created should be private.
|
526 |
+
api_endpoint (`str`, *optional*):
|
527 |
+
The API endpoint to use when pushing the model to the hub.
|
528 |
+
token (`str`, *optional*):
|
529 |
+
The token to use as HTTP bearer authorization for remote files. By default, it will use the token
|
530 |
+
cached when running `huggingface-cli login`.
|
531 |
+
branch (`str`, *optional*):
|
532 |
+
The git branch on which to push the model. This defaults to `"main"`.
|
533 |
+
create_pr (`boolean`, *optional*):
|
534 |
+
Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`.
|
535 |
+
allow_patterns (`List[str]` or `str`, *optional*):
|
536 |
+
If provided, only files matching at least one pattern are pushed.
|
537 |
+
ignore_patterns (`List[str]` or `str`, *optional*):
|
538 |
+
If provided, files matching any of the patterns are not pushed.
|
539 |
+
delete_patterns (`List[str]` or `str`, *optional*):
|
540 |
+
If provided, remote files matching any of the patterns will be deleted from the repo.
|
541 |
+
|
542 |
+
Returns:
|
543 |
+
The url of the commit of your model in the given repository.
|
544 |
+
"""
|
545 |
+
api = HfApi(endpoint=api_endpoint, token=token)
|
546 |
+
repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id
|
547 |
+
|
548 |
+
# Push the files to the repo in a single commit
|
549 |
+
with SoftTemporaryDirectory() as tmp:
|
550 |
+
saved_path = Path(tmp) / repo_id
|
551 |
+
self.save_pretrained(saved_path, config=config)
|
552 |
+
return api.upload_folder(
|
553 |
+
repo_id=repo_id,
|
554 |
+
repo_type="model",
|
555 |
+
folder_path=saved_path,
|
556 |
+
commit_message=commit_message,
|
557 |
+
revision=branch,
|
558 |
+
create_pr=create_pr,
|
559 |
+
allow_patterns=allow_patterns,
|
560 |
+
ignore_patterns=ignore_patterns,
|
561 |
+
delete_patterns=delete_patterns,
|
562 |
+
)
|
563 |
+
|
564 |
+
def generate_model_card(self, *args, **kwargs) -> ModelCard:
|
565 |
+
card = ModelCard.from_template(
|
566 |
+
card_data=ModelCardData(**asdict(self._hub_mixin_info)),
|
567 |
+
template_str=DEFAULT_MODEL_CARD,
|
568 |
+
)
|
569 |
+
return card
|
570 |
+
|
571 |
+
|
572 |
+
class PyTorchModelHubMixin(ModelHubMixin):
|
573 |
+
"""
|
574 |
+
Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model
|
575 |
+
is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model,
|
576 |
+
you should first set it back in training mode with `model.train()`.
|
577 |
+
|
578 |
+
Example:
|
579 |
+
|
580 |
+
```python
|
581 |
+
>>> import torch
|
582 |
+
>>> import torch.nn as nn
|
583 |
+
>>> from huggingface_hub import PyTorchModelHubMixin
|
584 |
+
|
585 |
+
>>> class MyModel(
|
586 |
+
... nn.Module,
|
587 |
+
... PyTorchModelHubMixin,
|
588 |
+
... library_name="keras-nlp",
|
589 |
+
... repo_url="https://github.com/keras-team/keras-nlp",
|
590 |
+
... docs_url="https://keras.io/keras_nlp/",
|
591 |
+
... # ^ optional metadata to generate model card
|
592 |
+
... ):
|
593 |
+
... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4):
|
594 |
+
... super().__init__()
|
595 |
+
... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size))
|
596 |
+
... self.linear = nn.Linear(output_size, vocab_size)
|
597 |
+
|
598 |
+
... def forward(self, x):
|
599 |
+
... return self.linear(x + self.param)
|
600 |
+
>>> model = MyModel(hidden_size=256)
|
601 |
+
|
602 |
+
# Save model weights to local directory
|
603 |
+
>>> model.save_pretrained("my-awesome-model")
|
604 |
+
|
605 |
+
# Push model weights to the Hub
|
606 |
+
>>> model.push_to_hub("my-awesome-model")
|
607 |
+
|
608 |
+
# Download and initialize weights from the Hub
|
609 |
+
>>> model = MyModel.from_pretrained("username/my-awesome-model")
|
610 |
+
>>> model.hidden_size
|
611 |
+
256
|
612 |
+
```
|
613 |
+
"""
|
614 |
+
|
615 |
+
def __init_subclass__(cls, *args, tags: Optional[List[str]] = None, **kwargs) -> None:
|
616 |
+
tags = tags or []
|
617 |
+
tags.append("pytorch_model_hub_mixin")
|
618 |
+
kwargs["tags"] = tags
|
619 |
+
return super().__init_subclass__(*args, **kwargs)
|
620 |
+
|
621 |
+
def _save_pretrained(self, save_directory: Path) -> None:
|
622 |
+
"""Save weights from a Pytorch model to a local directory."""
|
623 |
+
model_to_save = self.module if hasattr(self, "module") else self # type: ignore
|
624 |
+
save_model_as_safetensor(model_to_save, str(save_directory / SAFETENSORS_SINGLE_FILE))
|
625 |
+
|
626 |
+
@classmethod
|
627 |
+
def _from_pretrained(
|
628 |
+
cls,
|
629 |
+
*,
|
630 |
+
model_id: str,
|
631 |
+
revision: Optional[str],
|
632 |
+
cache_dir: Optional[Union[str, Path]],
|
633 |
+
force_download: bool,
|
634 |
+
proxies: Optional[Dict],
|
635 |
+
resume_download: bool,
|
636 |
+
local_files_only: bool,
|
637 |
+
token: Union[str, bool, None],
|
638 |
+
map_location: str = "cpu",
|
639 |
+
strict: bool = False,
|
640 |
+
**model_kwargs,
|
641 |
+
):
|
642 |
+
"""Load Pytorch pretrained weights and return the loaded model."""
|
643 |
+
model = cls(**model_kwargs)
|
644 |
+
if os.path.isdir(model_id):
|
645 |
+
print("Loading weights from local directory")
|
646 |
+
model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE)
|
647 |
+
return cls._load_as_safetensor(model, model_file, map_location, strict)
|
648 |
+
else:
|
649 |
+
try:
|
650 |
+
model_file = hf_hub_download(
|
651 |
+
repo_id=model_id,
|
652 |
+
filename=SAFETENSORS_SINGLE_FILE,
|
653 |
+
revision=revision,
|
654 |
+
cache_dir=cache_dir,
|
655 |
+
force_download=force_download,
|
656 |
+
proxies=proxies,
|
657 |
+
resume_download=resume_download,
|
658 |
+
token=token,
|
659 |
+
local_files_only=local_files_only,
|
660 |
+
)
|
661 |
+
return cls._load_as_safetensor(model, model_file, map_location, strict)
|
662 |
+
except EntryNotFoundError:
|
663 |
+
model_file = hf_hub_download(
|
664 |
+
repo_id=model_id,
|
665 |
+
filename=PYTORCH_WEIGHTS_NAME,
|
666 |
+
revision=revision,
|
667 |
+
cache_dir=cache_dir,
|
668 |
+
force_download=force_download,
|
669 |
+
proxies=proxies,
|
670 |
+
resume_download=resume_download,
|
671 |
+
token=token,
|
672 |
+
local_files_only=local_files_only,
|
673 |
+
)
|
674 |
+
return cls._load_as_pickle(model, model_file, map_location, strict)
|
675 |
+
|
676 |
+
@classmethod
|
677 |
+
def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
|
678 |
+
state_dict = torch.load(model_file, map_location=torch.device(map_location))
|
679 |
+
model.load_state_dict(state_dict, strict=strict) # type: ignore
|
680 |
+
model.eval() # type: ignore
|
681 |
+
return model
|
682 |
+
|
683 |
+
@classmethod
|
684 |
+
def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T:
|
685 |
+
load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type]
|
686 |
+
if map_location != "cpu":
|
687 |
+
# TODO: remove this once https://github.com/huggingface/safetensors/pull/449 is merged.
|
688 |
+
logger.warning(
|
689 |
+
"Loading model weights on other devices than 'cpu' is not supported natively."
|
690 |
+
" This means that the model is loaded on 'cpu' first and then copied to the device."
|
691 |
+
" This leads to a slower loading time."
|
692 |
+
" Support for loading directly on other devices is planned to be added in future releases."
|
693 |
+
" See https://github.com/huggingface/huggingface_hub/pull/2086 for more details."
|
694 |
+
)
|
695 |
+
model.to(map_location) # type: ignore [attr-defined]
|
696 |
+
return model
|
697 |
+
|
698 |
+
|
699 |
+
def _load_dataclass(datacls: Type["DataclassInstance"], data: dict) -> "DataclassInstance":
|
700 |
+
"""Load a dataclass instance from a dictionary.
|
701 |
+
|
702 |
+
Fields not expected by the dataclass are ignored.
|
703 |
+
"""
|
704 |
+
return datacls(**{k: v for k, v in data.items() if k in datacls.__dataclass_fields__})
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/keras_mixin.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections.abc as collections
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import warnings
|
5 |
+
from functools import wraps
|
6 |
+
from pathlib import Path
|
7 |
+
from shutil import copytree
|
8 |
+
from typing import Any, Dict, List, Optional, Union
|
9 |
+
|
10 |
+
from huggingface_hub import ModelHubMixin, snapshot_download
|
11 |
+
from huggingface_hub.utils import (
|
12 |
+
get_tf_version,
|
13 |
+
is_graphviz_available,
|
14 |
+
is_pydot_available,
|
15 |
+
is_tf_available,
|
16 |
+
yaml_dump,
|
17 |
+
)
|
18 |
+
|
19 |
+
from .constants import CONFIG_NAME
|
20 |
+
from .hf_api import HfApi
|
21 |
+
from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args
|
22 |
+
from .utils._typing import CallableT
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
keras = None
|
28 |
+
if is_tf_available():
|
29 |
+
# Depending on which version of TensorFlow is installed, we need to import
|
30 |
+
# keras from the correct location.
|
31 |
+
# See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1.
|
32 |
+
# Note: saving a keras model only works with Keras<3.0.
|
33 |
+
try:
|
34 |
+
import tf_keras as keras # type: ignore
|
35 |
+
except ImportError:
|
36 |
+
import tensorflow as tf # type: ignore
|
37 |
+
|
38 |
+
keras = tf.keras
|
39 |
+
|
40 |
+
|
41 |
+
def _requires_keras_2_model(fn: CallableT) -> CallableT:
|
42 |
+
# Wrapper to raise if user tries to save a Keras 3.x model
|
43 |
+
@wraps(fn)
|
44 |
+
def _inner(model, *args, **kwargs):
|
45 |
+
if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x
|
46 |
+
raise NotImplementedError(
|
47 |
+
f"Cannot use '{fn.__name__}': Keras 3.x is not supported."
|
48 |
+
" Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`."
|
49 |
+
)
|
50 |
+
return fn(model, *args, **kwargs)
|
51 |
+
|
52 |
+
return _inner # type: ignore [return-value]
|
53 |
+
|
54 |
+
|
55 |
+
def _flatten_dict(dictionary, parent_key=""):
|
56 |
+
"""Flatten a nested dictionary.
|
57 |
+
Reference: https://stackoverflow.com/a/6027615/10319735
|
58 |
+
|
59 |
+
Args:
|
60 |
+
dictionary (`dict`):
|
61 |
+
The nested dictionary to be flattened.
|
62 |
+
parent_key (`str`):
|
63 |
+
The parent key to be prefixed to the children keys.
|
64 |
+
Necessary for recursing over the nested dictionary.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
The flattened dictionary.
|
68 |
+
"""
|
69 |
+
items = []
|
70 |
+
for key, value in dictionary.items():
|
71 |
+
new_key = f"{parent_key}.{key}" if parent_key else key
|
72 |
+
if isinstance(value, collections.MutableMapping):
|
73 |
+
items.extend(
|
74 |
+
_flatten_dict(
|
75 |
+
value,
|
76 |
+
new_key,
|
77 |
+
).items()
|
78 |
+
)
|
79 |
+
else:
|
80 |
+
items.append((new_key, value))
|
81 |
+
return dict(items)
|
82 |
+
|
83 |
+
|
84 |
+
def _create_hyperparameter_table(model):
|
85 |
+
"""Parse hyperparameter dictionary into a markdown table."""
|
86 |
+
table = None
|
87 |
+
if model.optimizer is not None:
|
88 |
+
optimizer_params = model.optimizer.get_config()
|
89 |
+
# flatten the configuration
|
90 |
+
optimizer_params = _flatten_dict(optimizer_params)
|
91 |
+
optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name
|
92 |
+
table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
|
93 |
+
for key, value in optimizer_params.items():
|
94 |
+
table += f"| {key} | {value} |\n"
|
95 |
+
return table
|
96 |
+
|
97 |
+
|
98 |
+
def _plot_network(model, save_directory):
|
99 |
+
keras.utils.plot_model(
|
100 |
+
model,
|
101 |
+
to_file=f"{save_directory}/model.png",
|
102 |
+
show_shapes=False,
|
103 |
+
show_dtype=False,
|
104 |
+
show_layer_names=True,
|
105 |
+
rankdir="TB",
|
106 |
+
expand_nested=False,
|
107 |
+
dpi=96,
|
108 |
+
layer_range=None,
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def _create_model_card(
|
113 |
+
model,
|
114 |
+
repo_dir: Path,
|
115 |
+
plot_model: bool = True,
|
116 |
+
metadata: Optional[dict] = None,
|
117 |
+
):
|
118 |
+
"""
|
119 |
+
Creates a model card for the repository.
|
120 |
+
|
121 |
+
Do not overwrite an existing README.md file.
|
122 |
+
"""
|
123 |
+
readme_path = repo_dir / "README.md"
|
124 |
+
if readme_path.exists():
|
125 |
+
return
|
126 |
+
|
127 |
+
hyperparameters = _create_hyperparameter_table(model)
|
128 |
+
if plot_model and is_graphviz_available() and is_pydot_available():
|
129 |
+
_plot_network(model, repo_dir)
|
130 |
+
if metadata is None:
|
131 |
+
metadata = {}
|
132 |
+
metadata["library_name"] = "keras"
|
133 |
+
model_card: str = "---\n"
|
134 |
+
model_card += yaml_dump(metadata, default_flow_style=False)
|
135 |
+
model_card += "---\n"
|
136 |
+
model_card += "\n## Model description\n\nMore information needed\n"
|
137 |
+
model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
|
138 |
+
model_card += "\n## Training and evaluation data\n\nMore information needed\n"
|
139 |
+
if hyperparameters is not None:
|
140 |
+
model_card += "\n## Training procedure\n"
|
141 |
+
model_card += "\n### Training hyperparameters\n"
|
142 |
+
model_card += "\nThe following hyperparameters were used during training:\n\n"
|
143 |
+
model_card += hyperparameters
|
144 |
+
model_card += "\n"
|
145 |
+
if plot_model and os.path.exists(f"{repo_dir}/model.png"):
|
146 |
+
model_card += "\n ## Model Plot\n"
|
147 |
+
model_card += "\n<details>"
|
148 |
+
model_card += "\n<summary>View Model Plot</summary>\n"
|
149 |
+
path_to_plot = "./model.png"
|
150 |
+
model_card += f"\n\n"
|
151 |
+
model_card += "\n</details>"
|
152 |
+
|
153 |
+
readme_path.write_text(model_card)
|
154 |
+
|
155 |
+
|
156 |
+
@_requires_keras_2_model
|
157 |
+
def save_pretrained_keras(
|
158 |
+
model,
|
159 |
+
save_directory: Union[str, Path],
|
160 |
+
config: Optional[Dict[str, Any]] = None,
|
161 |
+
include_optimizer: bool = False,
|
162 |
+
plot_model: bool = True,
|
163 |
+
tags: Optional[Union[list, str]] = None,
|
164 |
+
**model_save_kwargs,
|
165 |
+
):
|
166 |
+
"""
|
167 |
+
Saves a Keras model to save_directory in SavedModel format. Use this if
|
168 |
+
you're using the Functional or Sequential APIs.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
model (`Keras.Model`):
|
172 |
+
The [Keras
|
173 |
+
model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
|
174 |
+
you'd like to save. The model must be compiled and built.
|
175 |
+
save_directory (`str` or `Path`):
|
176 |
+
Specify directory in which you want to save the Keras model.
|
177 |
+
config (`dict`, *optional*):
|
178 |
+
Configuration object to be saved alongside the model weights.
|
179 |
+
include_optimizer(`bool`, *optional*, defaults to `False`):
|
180 |
+
Whether or not to include optimizer in serialization.
|
181 |
+
plot_model (`bool`, *optional*, defaults to `True`):
|
182 |
+
Setting this to `True` will plot the model and put it in the model
|
183 |
+
card. Requires graphviz and pydot to be installed.
|
184 |
+
tags (Union[`str`,`list`], *optional*):
|
185 |
+
List of tags that are related to model or string of a single tag. See example tags
|
186 |
+
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
|
187 |
+
model_save_kwargs(`dict`, *optional*):
|
188 |
+
model_save_kwargs will be passed to
|
189 |
+
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
|
190 |
+
"""
|
191 |
+
if keras is None:
|
192 |
+
raise ImportError("Called a Tensorflow-specific function but could not import it.")
|
193 |
+
|
194 |
+
if not model.built:
|
195 |
+
raise ValueError("Model should be built before trying to save")
|
196 |
+
|
197 |
+
save_directory = Path(save_directory)
|
198 |
+
save_directory.mkdir(parents=True, exist_ok=True)
|
199 |
+
|
200 |
+
# saving config
|
201 |
+
if config:
|
202 |
+
if not isinstance(config, dict):
|
203 |
+
raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'")
|
204 |
+
|
205 |
+
with (save_directory / CONFIG_NAME).open("w") as f:
|
206 |
+
json.dump(config, f)
|
207 |
+
|
208 |
+
metadata = {}
|
209 |
+
if isinstance(tags, list):
|
210 |
+
metadata["tags"] = tags
|
211 |
+
elif isinstance(tags, str):
|
212 |
+
metadata["tags"] = [tags]
|
213 |
+
|
214 |
+
task_name = model_save_kwargs.pop("task_name", None)
|
215 |
+
if task_name is not None:
|
216 |
+
warnings.warn(
|
217 |
+
"`task_name` input argument is deprecated. Pass `tags` instead.",
|
218 |
+
FutureWarning,
|
219 |
+
)
|
220 |
+
if "tags" in metadata:
|
221 |
+
metadata["tags"].append(task_name)
|
222 |
+
else:
|
223 |
+
metadata["tags"] = [task_name]
|
224 |
+
|
225 |
+
if model.history is not None:
|
226 |
+
if model.history.history != {}:
|
227 |
+
path = save_directory / "history.json"
|
228 |
+
if path.exists():
|
229 |
+
warnings.warn(
|
230 |
+
"`history.json` file already exists, it will be overwritten by the history of this version.",
|
231 |
+
UserWarning,
|
232 |
+
)
|
233 |
+
with path.open("w", encoding="utf-8") as f:
|
234 |
+
json.dump(model.history.history, f, indent=2, sort_keys=True)
|
235 |
+
|
236 |
+
_create_model_card(model, save_directory, plot_model, metadata)
|
237 |
+
keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs)
|
238 |
+
|
239 |
+
|
240 |
+
def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin":
|
241 |
+
r"""
|
242 |
+
Instantiate a pretrained Keras model from a pre-trained model from the Hub.
|
243 |
+
The model is expected to be in `SavedModel` format.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
247 |
+
Can be either:
|
248 |
+
- A string, the `model id` of a pretrained model hosted inside a
|
249 |
+
model repo on huggingface.co. Valid model ids can be located
|
250 |
+
at the root-level, like `bert-base-uncased`, or namespaced
|
251 |
+
under a user or organization name, like
|
252 |
+
`dbmdz/bert-base-german-cased`.
|
253 |
+
- You can add `revision` by appending `@` at the end of model_id
|
254 |
+
simply like this: `dbmdz/bert-base-german-cased@main` Revision
|
255 |
+
is the specific model version to use. It can be a branch name,
|
256 |
+
a tag name, or a commit id, since we use a git-based system
|
257 |
+
for storing models and other artifacts on huggingface.co, so
|
258 |
+
`revision` can be any identifier allowed by git.
|
259 |
+
- A path to a `directory` containing model weights saved using
|
260 |
+
[`~transformers.PreTrainedModel.save_pretrained`], e.g.,
|
261 |
+
`./my_model_directory/`.
|
262 |
+
- `None` if you are both providing the configuration and state
|
263 |
+
dictionary (resp. with keyword arguments `config` and
|
264 |
+
`state_dict`).
|
265 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
266 |
+
Whether to force the (re-)download of the model weights and
|
267 |
+
configuration files, overriding the cached versions if they exist.
|
268 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
269 |
+
Whether to delete incompletely received files. Will attempt to
|
270 |
+
resume the download if such a file exists.
|
271 |
+
proxies (`Dict[str, str]`, *optional*):
|
272 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g.,
|
273 |
+
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
|
274 |
+
proxies are used on each request.
|
275 |
+
token (`str` or `bool`, *optional*):
|
276 |
+
The token to use as HTTP bearer authorization for remote files. If
|
277 |
+
`True`, will use the token generated when running `transformers-cli
|
278 |
+
login` (stored in `~/.huggingface`).
|
279 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
280 |
+
Path to a directory in which a downloaded pretrained model
|
281 |
+
configuration should be cached if the standard cache should not be
|
282 |
+
used.
|
283 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
284 |
+
Whether to only look at local files (i.e., do not try to download
|
285 |
+
the model).
|
286 |
+
model_kwargs (`Dict`, *optional*):
|
287 |
+
model_kwargs will be passed to the model during initialization
|
288 |
+
|
289 |
+
<Tip>
|
290 |
+
|
291 |
+
Passing `token=True` is required when you want to use a private
|
292 |
+
model.
|
293 |
+
|
294 |
+
</Tip>
|
295 |
+
"""
|
296 |
+
return KerasModelHubMixin.from_pretrained(*args, **kwargs)
|
297 |
+
|
298 |
+
|
299 |
+
@validate_hf_hub_args
|
300 |
+
@_requires_keras_2_model
|
301 |
+
def push_to_hub_keras(
|
302 |
+
model,
|
303 |
+
repo_id: str,
|
304 |
+
*,
|
305 |
+
config: Optional[dict] = None,
|
306 |
+
commit_message: str = "Push Keras model using huggingface_hub.",
|
307 |
+
private: bool = False,
|
308 |
+
api_endpoint: Optional[str] = None,
|
309 |
+
token: Optional[str] = None,
|
310 |
+
branch: Optional[str] = None,
|
311 |
+
create_pr: Optional[bool] = None,
|
312 |
+
allow_patterns: Optional[Union[List[str], str]] = None,
|
313 |
+
ignore_patterns: Optional[Union[List[str], str]] = None,
|
314 |
+
delete_patterns: Optional[Union[List[str], str]] = None,
|
315 |
+
log_dir: Optional[str] = None,
|
316 |
+
include_optimizer: bool = False,
|
317 |
+
tags: Optional[Union[list, str]] = None,
|
318 |
+
plot_model: bool = True,
|
319 |
+
**model_save_kwargs,
|
320 |
+
):
|
321 |
+
"""
|
322 |
+
Upload model checkpoint to the Hub.
|
323 |
+
|
324 |
+
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
|
325 |
+
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
|
326 |
+
details.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
model (`Keras.Model`):
|
330 |
+
The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the
|
331 |
+
Hub. The model must be compiled and built.
|
332 |
+
repo_id (`str`):
|
333 |
+
ID of the repository to push to (example: `"username/my-model"`).
|
334 |
+
commit_message (`str`, *optional*, defaults to "Add Keras model"):
|
335 |
+
Message to commit while pushing.
|
336 |
+
private (`bool`, *optional*, defaults to `False`):
|
337 |
+
Whether the repository created should be private.
|
338 |
+
api_endpoint (`str`, *optional*):
|
339 |
+
The API endpoint to use when pushing the model to the hub.
|
340 |
+
token (`str`, *optional*):
|
341 |
+
The token to use as HTTP bearer authorization for remote files. If
|
342 |
+
not set, will use the token set when logging in with
|
343 |
+
`huggingface-cli login` (stored in `~/.huggingface`).
|
344 |
+
branch (`str`, *optional*):
|
345 |
+
The git branch on which to push the model. This defaults to
|
346 |
+
the default branch as specified in your repository, which
|
347 |
+
defaults to `"main"`.
|
348 |
+
create_pr (`boolean`, *optional*):
|
349 |
+
Whether or not to create a Pull Request from `branch` with that commit.
|
350 |
+
Defaults to `False`.
|
351 |
+
config (`dict`, *optional*):
|
352 |
+
Configuration object to be saved alongside the model weights.
|
353 |
+
allow_patterns (`List[str]` or `str`, *optional*):
|
354 |
+
If provided, only files matching at least one pattern are pushed.
|
355 |
+
ignore_patterns (`List[str]` or `str`, *optional*):
|
356 |
+
If provided, files matching any of the patterns are not pushed.
|
357 |
+
delete_patterns (`List[str]` or `str`, *optional*):
|
358 |
+
If provided, remote files matching any of the patterns will be deleted from the repo.
|
359 |
+
log_dir (`str`, *optional*):
|
360 |
+
TensorBoard logging directory to be pushed. The Hub automatically
|
361 |
+
hosts and displays a TensorBoard instance if log files are included
|
362 |
+
in the repository.
|
363 |
+
include_optimizer (`bool`, *optional*, defaults to `False`):
|
364 |
+
Whether or not to include optimizer during serialization.
|
365 |
+
tags (Union[`list`, `str`], *optional*):
|
366 |
+
List of tags that are related to model or string of a single tag. See example tags
|
367 |
+
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
|
368 |
+
plot_model (`bool`, *optional*, defaults to `True`):
|
369 |
+
Setting this to `True` will plot the model and put it in the model
|
370 |
+
card. Requires graphviz and pydot to be installed.
|
371 |
+
model_save_kwargs(`dict`, *optional*):
|
372 |
+
model_save_kwargs will be passed to
|
373 |
+
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
The url of the commit of your model in the given repository.
|
377 |
+
"""
|
378 |
+
api = HfApi(endpoint=api_endpoint)
|
379 |
+
repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id
|
380 |
+
|
381 |
+
# Push the files to the repo in a single commit
|
382 |
+
with SoftTemporaryDirectory() as tmp:
|
383 |
+
saved_path = Path(tmp) / repo_id
|
384 |
+
save_pretrained_keras(
|
385 |
+
model,
|
386 |
+
saved_path,
|
387 |
+
config=config,
|
388 |
+
include_optimizer=include_optimizer,
|
389 |
+
tags=tags,
|
390 |
+
plot_model=plot_model,
|
391 |
+
**model_save_kwargs,
|
392 |
+
)
|
393 |
+
|
394 |
+
# If `log_dir` provided, delete remote logs and upload new ones
|
395 |
+
if log_dir is not None:
|
396 |
+
delete_patterns = (
|
397 |
+
[]
|
398 |
+
if delete_patterns is None
|
399 |
+
else (
|
400 |
+
[delete_patterns] # convert `delete_patterns` to a list
|
401 |
+
if isinstance(delete_patterns, str)
|
402 |
+
else delete_patterns
|
403 |
+
)
|
404 |
+
)
|
405 |
+
delete_patterns.append("logs/*")
|
406 |
+
copytree(log_dir, saved_path / "logs")
|
407 |
+
|
408 |
+
return api.upload_folder(
|
409 |
+
repo_type="model",
|
410 |
+
repo_id=repo_id,
|
411 |
+
folder_path=saved_path,
|
412 |
+
commit_message=commit_message,
|
413 |
+
token=token,
|
414 |
+
revision=branch,
|
415 |
+
create_pr=create_pr,
|
416 |
+
allow_patterns=allow_patterns,
|
417 |
+
ignore_patterns=ignore_patterns,
|
418 |
+
delete_patterns=delete_patterns,
|
419 |
+
)
|
420 |
+
|
421 |
+
|
422 |
+
class KerasModelHubMixin(ModelHubMixin):
|
423 |
+
"""
|
424 |
+
Implementation of [`ModelHubMixin`] to provide model Hub upload/download
|
425 |
+
capabilities to Keras models.
|
426 |
+
|
427 |
+
|
428 |
+
```python
|
429 |
+
>>> import tensorflow as tf
|
430 |
+
>>> from huggingface_hub import KerasModelHubMixin
|
431 |
+
|
432 |
+
|
433 |
+
>>> class MyModel(tf.keras.Model, KerasModelHubMixin):
|
434 |
+
... def __init__(self, **kwargs):
|
435 |
+
... super().__init__()
|
436 |
+
... self.config = kwargs.pop("config", None)
|
437 |
+
... self.dummy_inputs = ...
|
438 |
+
... self.layer = ...
|
439 |
+
|
440 |
+
... def call(self, *args):
|
441 |
+
... return ...
|
442 |
+
|
443 |
+
|
444 |
+
>>> # Initialize and compile the model as you normally would
|
445 |
+
>>> model = MyModel()
|
446 |
+
>>> model.compile(...)
|
447 |
+
>>> # Build the graph by training it or passing dummy inputs
|
448 |
+
>>> _ = model(model.dummy_inputs)
|
449 |
+
>>> # Save model weights to local directory
|
450 |
+
>>> model.save_pretrained("my-awesome-model")
|
451 |
+
>>> # Push model weights to the Hub
|
452 |
+
>>> model.push_to_hub("my-awesome-model")
|
453 |
+
>>> # Download and initialize weights from the Hub
|
454 |
+
>>> model = MyModel.from_pretrained("username/super-cool-model")
|
455 |
+
```
|
456 |
+
"""
|
457 |
+
|
458 |
+
def _save_pretrained(self, save_directory):
|
459 |
+
save_pretrained_keras(self, save_directory)
|
460 |
+
|
461 |
+
@classmethod
|
462 |
+
def _from_pretrained(
|
463 |
+
cls,
|
464 |
+
model_id,
|
465 |
+
revision,
|
466 |
+
cache_dir,
|
467 |
+
force_download,
|
468 |
+
proxies,
|
469 |
+
resume_download,
|
470 |
+
local_files_only,
|
471 |
+
token,
|
472 |
+
config: Optional[Dict[str, Any]] = None,
|
473 |
+
**model_kwargs,
|
474 |
+
):
|
475 |
+
"""Here we just call [`from_pretrained_keras`] function so both the mixin and
|
476 |
+
functional APIs stay in sync.
|
477 |
+
|
478 |
+
TODO - Some args above aren't used since we are calling
|
479 |
+
snapshot_download instead of hf_hub_download.
|
480 |
+
"""
|
481 |
+
if keras is None:
|
482 |
+
raise ImportError("Called a TensorFlow-specific function but could not import it.")
|
483 |
+
|
484 |
+
# Root is either a local filepath matching model_id or a cached snapshot
|
485 |
+
if not os.path.isdir(model_id):
|
486 |
+
storage_folder = snapshot_download(
|
487 |
+
repo_id=model_id,
|
488 |
+
revision=revision,
|
489 |
+
cache_dir=cache_dir,
|
490 |
+
library_name="keras",
|
491 |
+
library_version=get_tf_version(),
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
storage_folder = model_id
|
495 |
+
|
496 |
+
# TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here...
|
497 |
+
model = keras.models.load_model(storage_folder)
|
498 |
+
|
499 |
+
# For now, we add a new attribute, config, to store the config loaded from the hub/a local dir.
|
500 |
+
model.config = config
|
501 |
+
|
502 |
+
return model
|
env-llmeval/lib/python3.10/site-packages/huggingface_hub/repocard_data.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from collections import defaultdict
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
from huggingface_hub.utils import logging, yaml_dump
|
7 |
+
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class EvalResult:
|
14 |
+
"""
|
15 |
+
Flattened representation of individual evaluation results found in model-index of Model Cards.
|
16 |
+
|
17 |
+
For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
task_type (`str`):
|
21 |
+
The task identifier. Example: "image-classification".
|
22 |
+
dataset_type (`str`):
|
23 |
+
The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
|
24 |
+
dataset_name (`str`):
|
25 |
+
A pretty name for the dataset. Example: "Common Voice (French)".
|
26 |
+
metric_type (`str`):
|
27 |
+
The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
|
28 |
+
metric_value (`Any`):
|
29 |
+
The metric value. Example: 0.9 or "20.0 ± 1.2".
|
30 |
+
task_name (`str`, *optional*):
|
31 |
+
A pretty name for the task. Example: "Speech Recognition".
|
32 |
+
dataset_config (`str`, *optional*):
|
33 |
+
The name of the dataset configuration used in `load_dataset()`.
|
34 |
+
Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
|
35 |
+
https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
36 |
+
dataset_split (`str`, *optional*):
|
37 |
+
The split used in `load_dataset()`. Example: "test".
|
38 |
+
dataset_revision (`str`, *optional*):
|
39 |
+
The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
|
40 |
+
Example: 5503434ddd753f426f4b38109466949a1217c2bb
|
41 |
+
dataset_args (`Dict[str, Any]`, *optional*):
|
42 |
+
The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
|
43 |
+
metric_name (`str`, *optional*):
|
44 |
+
A pretty name for the metric. Example: "Test WER".
|
45 |
+
metric_config (`str`, *optional*):
|
46 |
+
The name of the metric configuration used in `load_metric()`.
|
47 |
+
Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
|
48 |
+
See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
|
49 |
+
metric_args (`Dict[str, Any]`, *optional*):
|
50 |
+
The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
|
51 |
+
verified (`bool`, *optional*):
|
52 |
+
Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
|
53 |
+
verify_token (`str`, *optional*):
|
54 |
+
A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
|
55 |
+
source_name (`str`, *optional*):
|
56 |
+
The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
|
57 |
+
source_url (`str`, *optional*):
|
58 |
+
The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard".
|
59 |
+
"""
|
60 |
+
|
61 |
+
# Required
|
62 |
+
|
63 |
+
# The task identifier
|
64 |
+
# Example: automatic-speech-recognition
|
65 |
+
task_type: str
|
66 |
+
|
67 |
+
# The dataset identifier
|
68 |
+
# Example: common_voice. Use dataset id from https://hf.co/datasets
|
69 |
+
dataset_type: str
|
70 |
+
|
71 |
+
# A pretty name for the dataset.
|
72 |
+
# Example: Common Voice (French)
|
73 |
+
dataset_name: str
|
74 |
+
|
75 |
+
# The metric identifier
|
76 |
+
# Example: wer. Use metric id from https://hf.co/metrics
|
77 |
+
metric_type: str
|
78 |
+
|
79 |
+
# Value of the metric.
|
80 |
+
# Example: 20.0 or "20.0 ± 1.2"
|
81 |
+
metric_value: Any
|
82 |
+
|
83 |
+
# Optional
|
84 |
+
|
85 |
+
# A pretty name for the task.
|
86 |
+
# Example: Speech Recognition
|
87 |
+
task_name: Optional[str] = None
|
88 |
+
|
89 |
+
# The name of the dataset configuration used in `load_dataset()`.
|
90 |
+
# Example: fr in `load_dataset("common_voice", "fr")`.
|
91 |
+
# See the `datasets` docs for more info:
|
92 |
+
# https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
|
93 |
+
dataset_config: Optional[str] = None
|
94 |
+
|
95 |
+
# The split used in `load_dataset()`.
|
96 |
+
# Example: test
|
97 |
+
dataset_split: Optional[str] = None
|
98 |
+
|
99 |
+
# The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
|
100 |
+
# Example: 5503434ddd753f426f4b38109466949a1217c2bb
|
101 |
+
dataset_revision: Optional[str] = None
|
102 |
+
|
103 |
+
# The arguments passed during `Metric.compute()`.
|
104 |
+
# Example for `bleu`: max_order: 4
|
105 |
+
dataset_args: Optional[Dict[str, Any]] = None
|
106 |
+
|
107 |
+
# A pretty name for the metric.
|
108 |
+
# Example: Test WER
|
109 |
+
metric_name: Optional[str] = None
|
110 |
+
|
111 |
+
# The name of the metric configuration used in `load_metric()`.
|
112 |
+
# Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
|
113 |
+
# See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
|
114 |
+
metric_config: Optional[str] = None
|
115 |
+
|
116 |
+
# The arguments passed during `Metric.compute()`.
|
117 |
+
# Example for `bleu`: max_order: 4
|
118 |
+
metric_args: Optional[Dict[str, Any]] = None
|
119 |
+
|
120 |
+
# Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
|
121 |
+
verified: Optional[bool] = None
|
122 |
+
|
123 |
+
# A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
|
124 |
+
verify_token: Optional[str] = None
|
125 |
+
|
126 |
+
# The name of the source of the evaluation result.
|
127 |
+
# Example: Open LLM Leaderboard
|
128 |
+
source_name: Optional[str] = None
|
129 |
+
|
130 |
+
# The URL of the source of the evaluation result.
|
131 |
+
# Example: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
|
132 |
+
source_url: Optional[str] = None
|
133 |
+
|
134 |
+
@property
|
135 |
+
def unique_identifier(self) -> tuple:
|
136 |
+
"""Returns a tuple that uniquely identifies this evaluation."""
|
137 |
+
return (
|
138 |
+
self.task_type,
|
139 |
+
self.dataset_type,
|
140 |
+
self.dataset_config,
|
141 |
+
self.dataset_split,
|
142 |
+
self.dataset_revision,
|
143 |
+
)
|
144 |
+
|
145 |
+
def is_equal_except_value(self, other: "EvalResult") -> bool:
|
146 |
+
"""
|
147 |
+
Return True if `self` and `other` describe exactly the same metric but with a
|
148 |
+
different value.
|
149 |
+
"""
|
150 |
+
for key, _ in self.__dict__.items():
|
151 |
+
if key == "metric_value":
|
152 |
+
continue
|
153 |
+
# For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
|
154 |
+
# so we exclude it here in the comparison.
|
155 |
+
if key != "verify_token" and getattr(self, key) != getattr(other, key):
|
156 |
+
return False
|
157 |
+
return True
|
158 |
+
|
159 |
+
def __post_init__(self) -> None:
|
160 |
+
if self.source_name is not None and self.source_url is None:
|
161 |
+
raise ValueError("If `source_name` is provided, `source_url` must also be provided.")
|
162 |
+
|
163 |
+
|
164 |
+
@dataclass
|
165 |
+
class CardData:
|
166 |
+
"""Structure containing metadata from a RepoCard.
|
167 |
+
|
168 |
+
[`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].
|
169 |
+
|
170 |
+
Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
|
171 |
+
(example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
|
172 |
+
inherit from `dict` to allow this export step.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
|
176 |
+
self.__dict__.update(kwargs)
|
177 |
+
|
178 |
+
def to_dict(self) -> Dict[str, Any]:
|
179 |
+
"""Converts CardData to a dict.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
`dict`: CardData represented as a dictionary ready to be dumped to a YAML
|
183 |
+
block for inclusion in a README.md file.
|
184 |
+
"""
|
185 |
+
|
186 |
+
data_dict = copy.deepcopy(self.__dict__)
|
187 |
+
self._to_dict(data_dict)
|
188 |
+
return _remove_none(data_dict)
|
189 |
+
|
190 |
+
def _to_dict(self, data_dict):
|
191 |
+
"""Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
data_dict (`dict`): The raw dict representation of the card data.
|
195 |
+
"""
|
196 |
+
pass
|
197 |
+
|
198 |
+
def to_yaml(self, line_break=None) -> str:
|
199 |
+
"""Dumps CardData to a YAML block for inclusion in a README.md file.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
line_break (str, *optional*):
|
203 |
+
The line break to use when dumping to yaml.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`str`: CardData represented as a YAML block.
|
207 |
+
"""
|
208 |
+
return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()
|
209 |
+
|
210 |
+
def __repr__(self):
|
211 |
+
return repr(self.__dict__)
|
212 |
+
|
213 |
+
def __str__(self):
|
214 |
+
return self.to_yaml()
|
215 |
+
|
216 |
+
def get(self, key: str, default: Any = None) -> Any:
|
217 |
+
"""Get value for a given metadata key."""
|
218 |
+
return self.__dict__.get(key, default)
|
219 |
+
|
220 |
+
def pop(self, key: str, default: Any = None) -> Any:
|
221 |
+
"""Pop value for a given metadata key."""
|
222 |
+
return self.__dict__.pop(key, default)
|
223 |
+
|
224 |
+
def __getitem__(self, key: str) -> Any:
|
225 |
+
"""Get value for a given metadata key."""
|
226 |
+
return self.__dict__[key]
|
227 |
+
|
228 |
+
def __setitem__(self, key: str, value: Any) -> None:
|
229 |
+
"""Set value for a given metadata key."""
|
230 |
+
self.__dict__[key] = value
|
231 |
+
|
232 |
+
def __contains__(self, key: str) -> bool:
|
233 |
+
"""Check if a given metadata key is set."""
|
234 |
+
return key in self.__dict__
|
235 |
+
|
236 |
+
def __len__(self) -> int:
|
237 |
+
"""Return the number of metadata keys set."""
|
238 |
+
return len(self.__dict__)
|
239 |
+
|
240 |
+
|
241 |
+
class ModelCardData(CardData):
|
242 |
+
"""Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
243 |
+
|
244 |
+
Args:
|
245 |
+
language (`Union[str, List[str]]`, *optional*):
|
246 |
+
Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
|
247 |
+
639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
|
248 |
+
license (`str`, *optional*):
|
249 |
+
License of this model. Example: apache-2.0 or any license from
|
250 |
+
https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
|
251 |
+
library_name (`str`, *optional*):
|
252 |
+
Name of library used by this model. Example: keras or any library from
|
253 |
+
https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
|
254 |
+
Defaults to None.
|
255 |
+
tags (`List[str]`, *optional*):
|
256 |
+
List of tags to add to your model that can be used when filtering on the Hugging
|
257 |
+
Face Hub. Defaults to None.
|
258 |
+
base_model (`str` or `List[str]`, *optional*):
|
259 |
+
The identifier of the base model from which the model derives. This is applicable for example if your model is a
|
260 |
+
fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
|
261 |
+
if your model derives from multiple models). Defaults to None.
|
262 |
+
datasets (`List[str]`, *optional*):
|
263 |
+
List of datasets that were used to train this model. Should be a dataset ID
|
264 |
+
found on https://hf.co/datasets. Defaults to None.
|
265 |
+
metrics (`List[str]`, *optional*):
|
266 |
+
List of metrics used to evaluate this model. Should be a metric name that can be found
|
267 |
+
at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
|
268 |
+
eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
|
269 |
+
List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
|
270 |
+
`model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
|
271 |
+
model_name (`str`, *optional*):
|
272 |
+
A name for this model. It is used along with
|
273 |
+
`eval_results` to construct the `model-index` within the card's metadata. The name
|
274 |
+
you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
|
275 |
+
then the repo name is used as a default. Defaults to None.
|
276 |
+
ignore_metadata_errors (`str`):
|
277 |
+
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
|
278 |
+
the process. Use it at your own risk.
|
279 |
+
kwargs (`dict`, *optional*):
|
280 |
+
Additional metadata that will be added to the model card. Defaults to None.
|
281 |
+
|
282 |
+
Example:
|
283 |
+
```python
|
284 |
+
>>> from huggingface_hub import ModelCardData
|
285 |
+
>>> card_data = ModelCardData(
|
286 |
+
... language="en",
|
287 |
+
... license="mit",
|
288 |
+
... library_name="timm",
|
289 |
+
... tags=['image-classification', 'resnet'],
|
290 |
+
... )
|
291 |
+
>>> card_data.to_dict()
|
292 |
+
{'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}
|
293 |
+
|
294 |
+
```
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
*,
|
300 |
+
language: Optional[Union[str, List[str]]] = None,
|
301 |
+
license: Optional[str] = None,
|
302 |
+
library_name: Optional[str] = None,
|
303 |
+
tags: Optional[List[str]] = None,
|
304 |
+
base_model: Optional[Union[str, List[str]]] = None,
|
305 |
+
datasets: Optional[List[str]] = None,
|
306 |
+
metrics: Optional[List[str]] = None,
|
307 |
+
eval_results: Optional[List[EvalResult]] = None,
|
308 |
+
model_name: Optional[str] = None,
|
309 |
+
ignore_metadata_errors: bool = False,
|
310 |
+
**kwargs,
|
311 |
+
):
|
312 |
+
self.language = language
|
313 |
+
self.license = license
|
314 |
+
self.library_name = library_name
|
315 |
+
self.tags = _to_unique_list(tags)
|
316 |
+
self.base_model = base_model
|
317 |
+
self.datasets = datasets
|
318 |
+
self.metrics = metrics
|
319 |
+
self.eval_results = eval_results
|
320 |
+
self.model_name = model_name
|
321 |
+
|
322 |
+
model_index = kwargs.pop("model-index", None)
|
323 |
+
if model_index:
|
324 |
+
try:
|
325 |
+
model_name, eval_results = model_index_to_eval_results(model_index)
|
326 |
+
self.model_name = model_name
|
327 |
+
self.eval_results = eval_results
|
328 |
+
except (KeyError, TypeError) as error:
|
329 |
+
if ignore_metadata_errors:
|
330 |
+
logger.warning("Invalid model-index. Not loading eval results into CardData.")
|
331 |
+
else:
|
332 |
+
raise ValueError(
|
333 |
+
f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
|
334 |
+
" `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
|
335 |
+
" some information will be lost. Use it at your own risk."
|
336 |
+
)
|
337 |
+
|
338 |
+
super().__init__(**kwargs)
|
339 |
+
|
340 |
+
if self.eval_results:
|
341 |
+
if type(self.eval_results) == EvalResult:
|
342 |
+
self.eval_results = [self.eval_results]
|
343 |
+
if self.model_name is None:
|
344 |
+
raise ValueError("Passing `eval_results` requires `model_name` to be set.")
|
345 |
+
|
346 |
+
def _to_dict(self, data_dict):
|
347 |
+
"""Format the internal data dict. In this case, we convert eval results to a valid model index"""
|
348 |
+
if self.eval_results is not None:
|
349 |
+
data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
|
350 |
+
del data_dict["eval_results"], data_dict["model_name"]
|
351 |
+
|
352 |
+
|
353 |
+
class DatasetCardData(CardData):
|
354 |
+
"""Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
355 |
+
|
356 |
+
Args:
|
357 |
+
language (`List[str]`, *optional*):
|
358 |
+
Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
|
359 |
+
639-3 code (two/three letters), or a special value like "code", "multilingual".
|
360 |
+
license (`Union[str, List[str]]`, *optional*):
|
361 |
+
License(s) of this dataset. Example: apache-2.0 or any license from
|
362 |
+
https://huggingface.co/docs/hub/repositories-licenses.
|
363 |
+
annotations_creators (`Union[str, List[str]]`, *optional*):
|
364 |
+
How the annotations for the dataset were created.
|
365 |
+
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
|
366 |
+
language_creators (`Union[str, List[str]]`, *optional*):
|
367 |
+
How the text-based data in the dataset was created.
|
368 |
+
Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
|
369 |
+
multilinguality (`Union[str, List[str]]`, *optional*):
|
370 |
+
Whether the dataset is multilingual.
|
371 |
+
Options are: 'monolingual', 'multilingual', 'translation', 'other'.
|
372 |
+
size_categories (`Union[str, List[str]]`, *optional*):
|
373 |
+
The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
|
374 |
+
'100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
|
375 |
+
source_datasets (`List[str]]`, *optional*):
|
376 |
+
Indicates whether the dataset is an original dataset or extended from another existing dataset.
|
377 |
+
Options are: 'original' and 'extended'.
|
378 |
+
task_categories (`Union[str, List[str]]`, *optional*):
|
379 |
+
What categories of task does the dataset support?
|
380 |
+
task_ids (`Union[str, List[str]]`, *optional*):
|
381 |
+
What specific tasks does the dataset support?
|
382 |
+
paperswithcode_id (`str`, *optional*):
|
383 |
+
ID of the dataset on PapersWithCode.
|
384 |
+
pretty_name (`str`, *optional*):
|
385 |
+
A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
|
386 |
+
train_eval_index (`Dict`, *optional*):
|
387 |
+
A dictionary that describes the necessary spec for doing evaluation on the Hub.
|
388 |
+
If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
|
389 |
+
config_names (`Union[str, List[str]]`, *optional*):
|
390 |
+
A list of the available dataset configs for the dataset.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
*,
|
396 |
+
language: Optional[Union[str, List[str]]] = None,
|
397 |
+
license: Optional[Union[str, List[str]]] = None,
|
398 |
+
annotations_creators: Optional[Union[str, List[str]]] = None,
|
399 |
+
language_creators: Optional[Union[str, List[str]]] = None,
|
400 |
+
multilinguality: Optional[Union[str, List[str]]] = None,
|
401 |
+
size_categories: Optional[Union[str, List[str]]] = None,
|
402 |
+
source_datasets: Optional[List[str]] = None,
|
403 |
+
task_categories: Optional[Union[str, List[str]]] = None,
|
404 |
+
task_ids: Optional[Union[str, List[str]]] = None,
|
405 |
+
paperswithcode_id: Optional[str] = None,
|
406 |
+
pretty_name: Optional[str] = None,
|
407 |
+
train_eval_index: Optional[Dict] = None,
|
408 |
+
config_names: Optional[Union[str, List[str]]] = None,
|
409 |
+
ignore_metadata_errors: bool = False,
|
410 |
+
**kwargs,
|
411 |
+
):
|
412 |
+
self.annotations_creators = annotations_creators
|
413 |
+
self.language_creators = language_creators
|
414 |
+
self.language = language
|
415 |
+
self.license = license
|
416 |
+
self.multilinguality = multilinguality
|
417 |
+
self.size_categories = size_categories
|
418 |
+
self.source_datasets = source_datasets
|
419 |
+
self.task_categories = task_categories
|
420 |
+
self.task_ids = task_ids
|
421 |
+
self.paperswithcode_id = paperswithcode_id
|
422 |
+
self.pretty_name = pretty_name
|
423 |
+
self.config_names = config_names
|
424 |
+
|
425 |
+
# TODO - maybe handle this similarly to EvalResult?
|
426 |
+
self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
|
427 |
+
super().__init__(**kwargs)
|
428 |
+
|
429 |
+
def _to_dict(self, data_dict):
|
430 |
+
data_dict["train-eval-index"] = data_dict.pop("train_eval_index")
|
431 |
+
|
432 |
+
|
433 |
+
class SpaceCardData(CardData):
|
434 |
+
"""Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md
|
435 |
+
|
436 |
+
To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.
|
437 |
+
|
438 |
+
Args:
|
439 |
+
title (`str`, *optional*)
|
440 |
+
Title of the Space.
|
441 |
+
sdk (`str`, *optional*)
|
442 |
+
SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
|
443 |
+
sdk_version (`str`, *optional*)
|
444 |
+
Version of the used SDK (if Gradio/Streamlit sdk).
|
445 |
+
python_version (`str`, *optional*)
|
446 |
+
Python version used in the Space (if Gradio/Streamlit sdk).
|
447 |
+
app_file (`str`, *optional*)
|
448 |
+
Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
|
449 |
+
Path is relative to the root of the repository.
|
450 |
+
app_port (`str`, *optional*)
|
451 |
+
Port on which your application is running. Used only if sdk is `docker`.
|
452 |
+
license (`str`, *optional*)
|
453 |
+
License of this model. Example: apache-2.0 or any license from
|
454 |
+
https://huggingface.co/docs/hub/repositories-licenses.
|
455 |
+
duplicated_from (`str`, *optional*)
|
456 |
+
ID of the original Space if this is a duplicated Space.
|
457 |
+
models (List[`str`], *optional*)
|
458 |
+
List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
|
459 |
+
datasets (`List[str]`, *optional*)
|
460 |
+
List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
|
461 |
+
tags (`List[str]`, *optional*)
|
462 |
+
List of tags to add to your Space that can be used when filtering on the Hub.
|
463 |
+
ignore_metadata_errors (`str`):
|
464 |
+
If True, errors while parsing the metadata section will be ignored. Some information might be lost during
|
465 |
+
the process. Use it at your own risk.
|
466 |
+
kwargs (`dict`, *optional*):
|
467 |
+
Additional metadata that will be added to the space card.
|
468 |
+
|
469 |
+
Example:
|
470 |
+
```python
|
471 |
+
>>> from huggingface_hub import SpaceCardData
|
472 |
+
>>> card_data = SpaceCardData(
|
473 |
+
... title="Dreambooth Training",
|
474 |
+
... license="mit",
|
475 |
+
... sdk="gradio",
|
476 |
+
... duplicated_from="multimodalart/dreambooth-training"
|
477 |
+
... )
|
478 |
+
>>> card_data.to_dict()
|
479 |
+
{'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
|
480 |
+
```
|
481 |
+
"""
|
482 |
+
|
483 |
+
def __init__(
|
484 |
+
self,
|
485 |
+
*,
|
486 |
+
title: Optional[str] = None,
|
487 |
+
sdk: Optional[str] = None,
|
488 |
+
sdk_version: Optional[str] = None,
|
489 |
+
python_version: Optional[str] = None,
|
490 |
+
app_file: Optional[str] = None,
|
491 |
+
app_port: Optional[int] = None,
|
492 |
+
license: Optional[str] = None,
|
493 |
+
duplicated_from: Optional[str] = None,
|
494 |
+
models: Optional[List[str]] = None,
|
495 |
+
datasets: Optional[List[str]] = None,
|
496 |
+
tags: Optional[List[str]] = None,
|
497 |
+
ignore_metadata_errors: bool = False,
|
498 |
+
**kwargs,
|
499 |
+
):
|
500 |
+
self.title = title
|
501 |
+
self.sdk = sdk
|
502 |
+
self.sdk_version = sdk_version
|
503 |
+
self.python_version = python_version
|
504 |
+
self.app_file = app_file
|
505 |
+
self.app_port = app_port
|
506 |
+
self.license = license
|
507 |
+
self.duplicated_from = duplicated_from
|
508 |
+
self.models = models
|
509 |
+
self.datasets = datasets
|
510 |
+
self.tags = _to_unique_list(tags)
|
511 |
+
super().__init__(**kwargs)
|
512 |
+
|
513 |
+
|
514 |
+
def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
|
515 |
+
"""Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.
|
516 |
+
|
517 |
+
A detailed spec of the model index can be found here:
|
518 |
+
https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
519 |
+
|
520 |
+
Args:
|
521 |
+
model_index (`List[Dict[str, Any]]`):
|
522 |
+
A model index data structure, likely coming from a README.md file on the
|
523 |
+
Hugging Face Hub.
|
524 |
+
|
525 |
+
Returns:
|
526 |
+
model_name (`str`):
|
527 |
+
The name of the model as found in the model index. This is used as the
|
528 |
+
identifier for the model on leaderboards like PapersWithCode.
|
529 |
+
eval_results (`List[EvalResult]`):
|
530 |
+
A list of `huggingface_hub.EvalResult` objects containing the metrics
|
531 |
+
reported in the provided model_index.
|
532 |
+
|
533 |
+
Example:
|
534 |
+
```python
|
535 |
+
>>> from huggingface_hub.repocard_data import model_index_to_eval_results
|
536 |
+
>>> # Define a minimal model index
|
537 |
+
>>> model_index = [
|
538 |
+
... {
|
539 |
+
... "name": "my-cool-model",
|
540 |
+
... "results": [
|
541 |
+
... {
|
542 |
+
... "task": {
|
543 |
+
... "type": "image-classification"
|
544 |
+
... },
|
545 |
+
... "dataset": {
|
546 |
+
... "type": "beans",
|
547 |
+
... "name": "Beans"
|
548 |
+
... },
|
549 |
+
... "metrics": [
|
550 |
+
... {
|
551 |
+
... "type": "accuracy",
|
552 |
+
... "value": 0.9
|
553 |
+
... }
|
554 |
+
... ]
|
555 |
+
... }
|
556 |
+
... ]
|
557 |
+
... }
|
558 |
+
... ]
|
559 |
+
>>> model_name, eval_results = model_index_to_eval_results(model_index)
|
560 |
+
>>> model_name
|
561 |
+
'my-cool-model'
|
562 |
+
>>> eval_results[0].task_type
|
563 |
+
'image-classification'
|
564 |
+
>>> eval_results[0].metric_type
|
565 |
+
'accuracy'
|
566 |
+
|
567 |
+
```
|
568 |
+
"""
|
569 |
+
|
570 |
+
eval_results = []
|
571 |
+
for elem in model_index:
|
572 |
+
name = elem["name"]
|
573 |
+
results = elem["results"]
|
574 |
+
for result in results:
|
575 |
+
task_type = result["task"]["type"]
|
576 |
+
task_name = result["task"].get("name")
|
577 |
+
dataset_type = result["dataset"]["type"]
|
578 |
+
dataset_name = result["dataset"]["name"]
|
579 |
+
dataset_config = result["dataset"].get("config")
|
580 |
+
dataset_split = result["dataset"].get("split")
|
581 |
+
dataset_revision = result["dataset"].get("revision")
|
582 |
+
dataset_args = result["dataset"].get("args")
|
583 |
+
source_name = result.get("source", {}).get("name")
|
584 |
+
source_url = result.get("source", {}).get("url")
|
585 |
+
|
586 |
+
for metric in result["metrics"]:
|
587 |
+
metric_type = metric["type"]
|
588 |
+
metric_value = metric["value"]
|
589 |
+
metric_name = metric.get("name")
|
590 |
+
metric_args = metric.get("args")
|
591 |
+
metric_config = metric.get("config")
|
592 |
+
verified = metric.get("verified")
|
593 |
+
verify_token = metric.get("verifyToken")
|
594 |
+
|
595 |
+
eval_result = EvalResult(
|
596 |
+
task_type=task_type, # Required
|
597 |
+
dataset_type=dataset_type, # Required
|
598 |
+
dataset_name=dataset_name, # Required
|
599 |
+
metric_type=metric_type, # Required
|
600 |
+
metric_value=metric_value, # Required
|
601 |
+
task_name=task_name,
|
602 |
+
dataset_config=dataset_config,
|
603 |
+
dataset_split=dataset_split,
|
604 |
+
dataset_revision=dataset_revision,
|
605 |
+
dataset_args=dataset_args,
|
606 |
+
metric_name=metric_name,
|
607 |
+
metric_args=metric_args,
|
608 |
+
metric_config=metric_config,
|
609 |
+
verified=verified,
|
610 |
+
verify_token=verify_token,
|
611 |
+
source_name=source_name,
|
612 |
+
source_url=source_url,
|
613 |
+
)
|
614 |
+
eval_results.append(eval_result)
|
615 |
+
return name, eval_results
|
616 |
+
|
617 |
+
|
618 |
+
def _remove_none(obj):
|
619 |
+
"""
|
620 |
+
Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
|
621 |
+
"""
|
622 |
+
if isinstance(obj, (list, tuple, set)):
|
623 |
+
return type(obj)(_remove_none(x) for x in obj if x is not None)
|
624 |
+
elif isinstance(obj, dict):
|
625 |
+
return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
|
626 |
+
else:
|
627 |
+
return obj
|
628 |
+
|
629 |
+
|
630 |
+
def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
|
631 |
+
"""Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
|
632 |
+
valid model-index that will be compatible with the format expected by the
|
633 |
+
Hugging Face Hub.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
model_name (`str`):
|
637 |
+
Name of the model (ex. "my-cool-model"). This is used as the identifier
|
638 |
+
for the model on leaderboards like PapersWithCode.
|
639 |
+
eval_results (`List[EvalResult]`):
|
640 |
+
List of `huggingface_hub.EvalResult` objects containing the metrics to be
|
641 |
+
reported in the model-index.
|
642 |
+
|
643 |
+
Returns:
|
644 |
+
model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.
|
645 |
+
|
646 |
+
Example:
|
647 |
+
```python
|
648 |
+
>>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
|
649 |
+
>>> # Define minimal eval_results
|
650 |
+
>>> eval_results = [
|
651 |
+
... EvalResult(
|
652 |
+
... task_type="image-classification", # Required
|
653 |
+
... dataset_type="beans", # Required
|
654 |
+
... dataset_name="Beans", # Required
|
655 |
+
... metric_type="accuracy", # Required
|
656 |
+
... metric_value=0.9, # Required
|
657 |
+
... )
|
658 |
+
... ]
|
659 |
+
>>> eval_results_to_model_index("my-cool-model", eval_results)
|
660 |
+
[{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]
|
661 |
+
|
662 |
+
```
|
663 |
+
"""
|
664 |
+
|
665 |
+
# Metrics are reported on a unique task-and-dataset basis.
|
666 |
+
# Here, we make a map of those pairs and the associated EvalResults.
|
667 |
+
task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
|
668 |
+
for eval_result in eval_results:
|
669 |
+
task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)
|
670 |
+
|
671 |
+
# Use the map from above to generate the model index data.
|
672 |
+
model_index_data = []
|
673 |
+
for results in task_and_ds_types_map.values():
|
674 |
+
# All items from `results` share same metadata
|
675 |
+
sample_result = results[0]
|
676 |
+
data = {
|
677 |
+
"task": {
|
678 |
+
"type": sample_result.task_type,
|
679 |
+
"name": sample_result.task_name,
|
680 |
+
},
|
681 |
+
"dataset": {
|
682 |
+
"name": sample_result.dataset_name,
|
683 |
+
"type": sample_result.dataset_type,
|
684 |
+
"config": sample_result.dataset_config,
|
685 |
+
"split": sample_result.dataset_split,
|
686 |
+
"revision": sample_result.dataset_revision,
|
687 |
+
"args": sample_result.dataset_args,
|
688 |
+
},
|
689 |
+
"metrics": [
|
690 |
+
{
|
691 |
+
"type": result.metric_type,
|
692 |
+
"value": result.metric_value,
|
693 |
+
"name": result.metric_name,
|
694 |
+
"config": result.metric_config,
|
695 |
+
"args": result.metric_args,
|
696 |
+
"verified": result.verified,
|
697 |
+
"verifyToken": result.verify_token,
|
698 |
+
}
|
699 |
+
for result in results
|
700 |
+
],
|
701 |
+
}
|
702 |
+
if sample_result.source_url is not None:
|
703 |
+
source = {
|
704 |
+
"url": sample_result.source_url,
|
705 |
+
}
|
706 |
+
if sample_result.source_name is not None:
|
707 |
+
source["name"] = sample_result.source_name
|
708 |
+
data["source"] = source
|
709 |
+
model_index_data.append(data)
|
710 |
+
|
711 |
+
# TODO - Check if there cases where this list is longer than one?
|
712 |
+
# Finally, the model index itself is list of dicts.
|
713 |
+
model_index = [
|
714 |
+
{
|
715 |
+
"name": model_name,
|
716 |
+
"results": model_index_data,
|
717 |
+
}
|
718 |
+
]
|
719 |
+
return _remove_none(model_index)
|
720 |
+
|
721 |
+
|
722 |
+
def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]:
|
723 |
+
if tags is None:
|
724 |
+
return tags
|
725 |
+
unique_tags = [] # make tags unique + keep order explicitly
|
726 |
+
for tag in tags:
|
727 |
+
if tag not in unique_tags:
|
728 |
+
unique_tags.append(tag)
|
729 |
+
return unique_tags
|
env-llmeval/lib/python3.10/site-packages/more_itertools/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""More routines for operating on iterables, beyond itertools"""
|
2 |
+
|
3 |
+
from .more import * # noqa
|
4 |
+
from .recipes import * # noqa
|
5 |
+
|
6 |
+
__version__ = '10.2.0'
|
env-llmeval/lib/python3.10/site-packages/more_itertools/__init__.pyi
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .more import *
|
2 |
+
from .recipes import *
|
env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (321 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/more.cpython-310.pyc
ADDED
Binary file (133 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/more_itertools/__pycache__/recipes.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/more_itertools/more.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/more_itertools/more.pyi
ADDED
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Stubs for more_itertools.more"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from types import TracebackType
|
5 |
+
from typing import (
|
6 |
+
Any,
|
7 |
+
Callable,
|
8 |
+
Container,
|
9 |
+
ContextManager,
|
10 |
+
Generic,
|
11 |
+
Hashable,
|
12 |
+
Iterable,
|
13 |
+
Iterator,
|
14 |
+
overload,
|
15 |
+
Reversible,
|
16 |
+
Sequence,
|
17 |
+
Sized,
|
18 |
+
Type,
|
19 |
+
TypeVar,
|
20 |
+
type_check_only,
|
21 |
+
)
|
22 |
+
from typing_extensions import Protocol
|
23 |
+
|
24 |
+
# Type and type variable definitions
|
25 |
+
_T = TypeVar('_T')
|
26 |
+
_T1 = TypeVar('_T1')
|
27 |
+
_T2 = TypeVar('_T2')
|
28 |
+
_U = TypeVar('_U')
|
29 |
+
_V = TypeVar('_V')
|
30 |
+
_W = TypeVar('_W')
|
31 |
+
_T_co = TypeVar('_T_co', covariant=True)
|
32 |
+
_GenFn = TypeVar('_GenFn', bound=Callable[..., Iterator[Any]])
|
33 |
+
_Raisable = BaseException | Type[BaseException]
|
34 |
+
|
35 |
+
@type_check_only
|
36 |
+
class _SizedIterable(Protocol[_T_co], Sized, Iterable[_T_co]): ...
|
37 |
+
|
38 |
+
@type_check_only
|
39 |
+
class _SizedReversible(Protocol[_T_co], Sized, Reversible[_T_co]): ...
|
40 |
+
|
41 |
+
@type_check_only
|
42 |
+
class _SupportsSlicing(Protocol[_T_co]):
|
43 |
+
def __getitem__(self, __k: slice) -> _T_co: ...
|
44 |
+
|
45 |
+
def chunked(
|
46 |
+
iterable: Iterable[_T], n: int | None, strict: bool = ...
|
47 |
+
) -> Iterator[list[_T]]: ...
|
48 |
+
@overload
|
49 |
+
def first(iterable: Iterable[_T]) -> _T: ...
|
50 |
+
@overload
|
51 |
+
def first(iterable: Iterable[_T], default: _U) -> _T | _U: ...
|
52 |
+
@overload
|
53 |
+
def last(iterable: Iterable[_T]) -> _T: ...
|
54 |
+
@overload
|
55 |
+
def last(iterable: Iterable[_T], default: _U) -> _T | _U: ...
|
56 |
+
@overload
|
57 |
+
def nth_or_last(iterable: Iterable[_T], n: int) -> _T: ...
|
58 |
+
@overload
|
59 |
+
def nth_or_last(iterable: Iterable[_T], n: int, default: _U) -> _T | _U: ...
|
60 |
+
|
61 |
+
class peekable(Generic[_T], Iterator[_T]):
|
62 |
+
def __init__(self, iterable: Iterable[_T]) -> None: ...
|
63 |
+
def __iter__(self) -> peekable[_T]: ...
|
64 |
+
def __bool__(self) -> bool: ...
|
65 |
+
@overload
|
66 |
+
def peek(self) -> _T: ...
|
67 |
+
@overload
|
68 |
+
def peek(self, default: _U) -> _T | _U: ...
|
69 |
+
def prepend(self, *items: _T) -> None: ...
|
70 |
+
def __next__(self) -> _T: ...
|
71 |
+
@overload
|
72 |
+
def __getitem__(self, index: int) -> _T: ...
|
73 |
+
@overload
|
74 |
+
def __getitem__(self, index: slice) -> list[_T]: ...
|
75 |
+
|
76 |
+
def consumer(func: _GenFn) -> _GenFn: ...
|
77 |
+
def ilen(iterable: Iterable[_T]) -> int: ...
|
78 |
+
def iterate(func: Callable[[_T], _T], start: _T) -> Iterator[_T]: ...
|
79 |
+
def with_iter(
|
80 |
+
context_manager: ContextManager[Iterable[_T]],
|
81 |
+
) -> Iterator[_T]: ...
|
82 |
+
def one(
|
83 |
+
iterable: Iterable[_T],
|
84 |
+
too_short: _Raisable | None = ...,
|
85 |
+
too_long: _Raisable | None = ...,
|
86 |
+
) -> _T: ...
|
87 |
+
def raise_(exception: _Raisable, *args: Any) -> None: ...
|
88 |
+
def strictly_n(
|
89 |
+
iterable: Iterable[_T],
|
90 |
+
n: int,
|
91 |
+
too_short: _GenFn | None = ...,
|
92 |
+
too_long: _GenFn | None = ...,
|
93 |
+
) -> list[_T]: ...
|
94 |
+
def distinct_permutations(
|
95 |
+
iterable: Iterable[_T], r: int | None = ...
|
96 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
97 |
+
def intersperse(
|
98 |
+
e: _U, iterable: Iterable[_T], n: int = ...
|
99 |
+
) -> Iterator[_T | _U]: ...
|
100 |
+
def unique_to_each(*iterables: Iterable[_T]) -> list[list[_T]]: ...
|
101 |
+
@overload
|
102 |
+
def windowed(
|
103 |
+
seq: Iterable[_T], n: int, *, step: int = ...
|
104 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
105 |
+
@overload
|
106 |
+
def windowed(
|
107 |
+
seq: Iterable[_T], n: int, fillvalue: _U, step: int = ...
|
108 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
109 |
+
def substrings(iterable: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
110 |
+
def substrings_indexes(
|
111 |
+
seq: Sequence[_T], reverse: bool = ...
|
112 |
+
) -> Iterator[tuple[Sequence[_T], int, int]]: ...
|
113 |
+
|
114 |
+
class bucket(Generic[_T, _U], Container[_U]):
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
iterable: Iterable[_T],
|
118 |
+
key: Callable[[_T], _U],
|
119 |
+
validator: Callable[[_U], object] | None = ...,
|
120 |
+
) -> None: ...
|
121 |
+
def __contains__(self, value: object) -> bool: ...
|
122 |
+
def __iter__(self) -> Iterator[_U]: ...
|
123 |
+
def __getitem__(self, value: object) -> Iterator[_T]: ...
|
124 |
+
|
125 |
+
def spy(
|
126 |
+
iterable: Iterable[_T], n: int = ...
|
127 |
+
) -> tuple[list[_T], Iterator[_T]]: ...
|
128 |
+
def interleave(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
129 |
+
def interleave_longest(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
130 |
+
def interleave_evenly(
|
131 |
+
iterables: list[Iterable[_T]], lengths: list[int] | None = ...
|
132 |
+
) -> Iterator[_T]: ...
|
133 |
+
def collapse(
|
134 |
+
iterable: Iterable[Any],
|
135 |
+
base_type: type | None = ...,
|
136 |
+
levels: int | None = ...,
|
137 |
+
) -> Iterator[Any]: ...
|
138 |
+
@overload
|
139 |
+
def side_effect(
|
140 |
+
func: Callable[[_T], object],
|
141 |
+
iterable: Iterable[_T],
|
142 |
+
chunk_size: None = ...,
|
143 |
+
before: Callable[[], object] | None = ...,
|
144 |
+
after: Callable[[], object] | None = ...,
|
145 |
+
) -> Iterator[_T]: ...
|
146 |
+
@overload
|
147 |
+
def side_effect(
|
148 |
+
func: Callable[[list[_T]], object],
|
149 |
+
iterable: Iterable[_T],
|
150 |
+
chunk_size: int,
|
151 |
+
before: Callable[[], object] | None = ...,
|
152 |
+
after: Callable[[], object] | None = ...,
|
153 |
+
) -> Iterator[_T]: ...
|
154 |
+
def sliced(
|
155 |
+
seq: _SupportsSlicing[_T], n: int, strict: bool = ...
|
156 |
+
) -> Iterator[_T]: ...
|
157 |
+
def split_at(
|
158 |
+
iterable: Iterable[_T],
|
159 |
+
pred: Callable[[_T], object],
|
160 |
+
maxsplit: int = ...,
|
161 |
+
keep_separator: bool = ...,
|
162 |
+
) -> Iterator[list[_T]]: ...
|
163 |
+
def split_before(
|
164 |
+
iterable: Iterable[_T], pred: Callable[[_T], object], maxsplit: int = ...
|
165 |
+
) -> Iterator[list[_T]]: ...
|
166 |
+
def split_after(
|
167 |
+
iterable: Iterable[_T], pred: Callable[[_T], object], maxsplit: int = ...
|
168 |
+
) -> Iterator[list[_T]]: ...
|
169 |
+
def split_when(
|
170 |
+
iterable: Iterable[_T],
|
171 |
+
pred: Callable[[_T, _T], object],
|
172 |
+
maxsplit: int = ...,
|
173 |
+
) -> Iterator[list[_T]]: ...
|
174 |
+
def split_into(
|
175 |
+
iterable: Iterable[_T], sizes: Iterable[int | None]
|
176 |
+
) -> Iterator[list[_T]]: ...
|
177 |
+
@overload
|
178 |
+
def padded(
|
179 |
+
iterable: Iterable[_T],
|
180 |
+
*,
|
181 |
+
n: int | None = ...,
|
182 |
+
next_multiple: bool = ...,
|
183 |
+
) -> Iterator[_T | None]: ...
|
184 |
+
@overload
|
185 |
+
def padded(
|
186 |
+
iterable: Iterable[_T],
|
187 |
+
fillvalue: _U,
|
188 |
+
n: int | None = ...,
|
189 |
+
next_multiple: bool = ...,
|
190 |
+
) -> Iterator[_T | _U]: ...
|
191 |
+
@overload
|
192 |
+
def repeat_last(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
193 |
+
@overload
|
194 |
+
def repeat_last(iterable: Iterable[_T], default: _U) -> Iterator[_T | _U]: ...
|
195 |
+
def distribute(n: int, iterable: Iterable[_T]) -> list[Iterator[_T]]: ...
|
196 |
+
@overload
|
197 |
+
def stagger(
|
198 |
+
iterable: Iterable[_T],
|
199 |
+
offsets: _SizedIterable[int] = ...,
|
200 |
+
longest: bool = ...,
|
201 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
202 |
+
@overload
|
203 |
+
def stagger(
|
204 |
+
iterable: Iterable[_T],
|
205 |
+
offsets: _SizedIterable[int] = ...,
|
206 |
+
longest: bool = ...,
|
207 |
+
fillvalue: _U = ...,
|
208 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
209 |
+
|
210 |
+
class UnequalIterablesError(ValueError):
|
211 |
+
def __init__(self, details: tuple[int, int, int] | None = ...) -> None: ...
|
212 |
+
|
213 |
+
@overload
|
214 |
+
def zip_equal(__iter1: Iterable[_T1]) -> Iterator[tuple[_T1]]: ...
|
215 |
+
@overload
|
216 |
+
def zip_equal(
|
217 |
+
__iter1: Iterable[_T1], __iter2: Iterable[_T2]
|
218 |
+
) -> Iterator[tuple[_T1, _T2]]: ...
|
219 |
+
@overload
|
220 |
+
def zip_equal(
|
221 |
+
__iter1: Iterable[_T],
|
222 |
+
__iter2: Iterable[_T],
|
223 |
+
__iter3: Iterable[_T],
|
224 |
+
*iterables: Iterable[_T],
|
225 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
226 |
+
@overload
|
227 |
+
def zip_offset(
|
228 |
+
__iter1: Iterable[_T1],
|
229 |
+
*,
|
230 |
+
offsets: _SizedIterable[int],
|
231 |
+
longest: bool = ...,
|
232 |
+
fillvalue: None = None,
|
233 |
+
) -> Iterator[tuple[_T1 | None]]: ...
|
234 |
+
@overload
|
235 |
+
def zip_offset(
|
236 |
+
__iter1: Iterable[_T1],
|
237 |
+
__iter2: Iterable[_T2],
|
238 |
+
*,
|
239 |
+
offsets: _SizedIterable[int],
|
240 |
+
longest: bool = ...,
|
241 |
+
fillvalue: None = None,
|
242 |
+
) -> Iterator[tuple[_T1 | None, _T2 | None]]: ...
|
243 |
+
@overload
|
244 |
+
def zip_offset(
|
245 |
+
__iter1: Iterable[_T],
|
246 |
+
__iter2: Iterable[_T],
|
247 |
+
__iter3: Iterable[_T],
|
248 |
+
*iterables: Iterable[_T],
|
249 |
+
offsets: _SizedIterable[int],
|
250 |
+
longest: bool = ...,
|
251 |
+
fillvalue: None = None,
|
252 |
+
) -> Iterator[tuple[_T | None, ...]]: ...
|
253 |
+
@overload
|
254 |
+
def zip_offset(
|
255 |
+
__iter1: Iterable[_T1],
|
256 |
+
*,
|
257 |
+
offsets: _SizedIterable[int],
|
258 |
+
longest: bool = ...,
|
259 |
+
fillvalue: _U,
|
260 |
+
) -> Iterator[tuple[_T1 | _U]]: ...
|
261 |
+
@overload
|
262 |
+
def zip_offset(
|
263 |
+
__iter1: Iterable[_T1],
|
264 |
+
__iter2: Iterable[_T2],
|
265 |
+
*,
|
266 |
+
offsets: _SizedIterable[int],
|
267 |
+
longest: bool = ...,
|
268 |
+
fillvalue: _U,
|
269 |
+
) -> Iterator[tuple[_T1 | _U, _T2 | _U]]: ...
|
270 |
+
@overload
|
271 |
+
def zip_offset(
|
272 |
+
__iter1: Iterable[_T],
|
273 |
+
__iter2: Iterable[_T],
|
274 |
+
__iter3: Iterable[_T],
|
275 |
+
*iterables: Iterable[_T],
|
276 |
+
offsets: _SizedIterable[int],
|
277 |
+
longest: bool = ...,
|
278 |
+
fillvalue: _U,
|
279 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
280 |
+
def sort_together(
|
281 |
+
iterables: Iterable[Iterable[_T]],
|
282 |
+
key_list: Iterable[int] = ...,
|
283 |
+
key: Callable[..., Any] | None = ...,
|
284 |
+
reverse: bool = ...,
|
285 |
+
) -> list[tuple[_T, ...]]: ...
|
286 |
+
def unzip(iterable: Iterable[Sequence[_T]]) -> tuple[Iterator[_T], ...]: ...
|
287 |
+
def divide(n: int, iterable: Iterable[_T]) -> list[Iterator[_T]]: ...
|
288 |
+
def always_iterable(
|
289 |
+
obj: object,
|
290 |
+
base_type: type | tuple[type | tuple[Any, ...], ...] | None = ...,
|
291 |
+
) -> Iterator[Any]: ...
|
292 |
+
def adjacent(
|
293 |
+
predicate: Callable[[_T], bool],
|
294 |
+
iterable: Iterable[_T],
|
295 |
+
distance: int = ...,
|
296 |
+
) -> Iterator[tuple[bool, _T]]: ...
|
297 |
+
@overload
|
298 |
+
def groupby_transform(
|
299 |
+
iterable: Iterable[_T],
|
300 |
+
keyfunc: None = None,
|
301 |
+
valuefunc: None = None,
|
302 |
+
reducefunc: None = None,
|
303 |
+
) -> Iterator[tuple[_T, Iterator[_T]]]: ...
|
304 |
+
@overload
|
305 |
+
def groupby_transform(
|
306 |
+
iterable: Iterable[_T],
|
307 |
+
keyfunc: Callable[[_T], _U],
|
308 |
+
valuefunc: None,
|
309 |
+
reducefunc: None,
|
310 |
+
) -> Iterator[tuple[_U, Iterator[_T]]]: ...
|
311 |
+
@overload
|
312 |
+
def groupby_transform(
|
313 |
+
iterable: Iterable[_T],
|
314 |
+
keyfunc: None,
|
315 |
+
valuefunc: Callable[[_T], _V],
|
316 |
+
reducefunc: None,
|
317 |
+
) -> Iterable[tuple[_T, Iterable[_V]]]: ...
|
318 |
+
@overload
|
319 |
+
def groupby_transform(
|
320 |
+
iterable: Iterable[_T],
|
321 |
+
keyfunc: Callable[[_T], _U],
|
322 |
+
valuefunc: Callable[[_T], _V],
|
323 |
+
reducefunc: None,
|
324 |
+
) -> Iterable[tuple[_U, Iterator[_V]]]: ...
|
325 |
+
@overload
|
326 |
+
def groupby_transform(
|
327 |
+
iterable: Iterable[_T],
|
328 |
+
keyfunc: None,
|
329 |
+
valuefunc: None,
|
330 |
+
reducefunc: Callable[[Iterator[_T]], _W],
|
331 |
+
) -> Iterable[tuple[_T, _W]]: ...
|
332 |
+
@overload
|
333 |
+
def groupby_transform(
|
334 |
+
iterable: Iterable[_T],
|
335 |
+
keyfunc: Callable[[_T], _U],
|
336 |
+
valuefunc: None,
|
337 |
+
reducefunc: Callable[[Iterator[_T]], _W],
|
338 |
+
) -> Iterable[tuple[_U, _W]]: ...
|
339 |
+
@overload
|
340 |
+
def groupby_transform(
|
341 |
+
iterable: Iterable[_T],
|
342 |
+
keyfunc: None,
|
343 |
+
valuefunc: Callable[[_T], _V],
|
344 |
+
reducefunc: Callable[[Iterable[_V]], _W],
|
345 |
+
) -> Iterable[tuple[_T, _W]]: ...
|
346 |
+
@overload
|
347 |
+
def groupby_transform(
|
348 |
+
iterable: Iterable[_T],
|
349 |
+
keyfunc: Callable[[_T], _U],
|
350 |
+
valuefunc: Callable[[_T], _V],
|
351 |
+
reducefunc: Callable[[Iterable[_V]], _W],
|
352 |
+
) -> Iterable[tuple[_U, _W]]: ...
|
353 |
+
|
354 |
+
class numeric_range(Generic[_T, _U], Sequence[_T], Hashable, Reversible[_T]):
|
355 |
+
@overload
|
356 |
+
def __init__(self, __stop: _T) -> None: ...
|
357 |
+
@overload
|
358 |
+
def __init__(self, __start: _T, __stop: _T) -> None: ...
|
359 |
+
@overload
|
360 |
+
def __init__(self, __start: _T, __stop: _T, __step: _U) -> None: ...
|
361 |
+
def __bool__(self) -> bool: ...
|
362 |
+
def __contains__(self, elem: object) -> bool: ...
|
363 |
+
def __eq__(self, other: object) -> bool: ...
|
364 |
+
@overload
|
365 |
+
def __getitem__(self, key: int) -> _T: ...
|
366 |
+
@overload
|
367 |
+
def __getitem__(self, key: slice) -> numeric_range[_T, _U]: ...
|
368 |
+
def __hash__(self) -> int: ...
|
369 |
+
def __iter__(self) -> Iterator[_T]: ...
|
370 |
+
def __len__(self) -> int: ...
|
371 |
+
def __reduce__(
|
372 |
+
self,
|
373 |
+
) -> tuple[Type[numeric_range[_T, _U]], tuple[_T, _T, _U]]: ...
|
374 |
+
def __repr__(self) -> str: ...
|
375 |
+
def __reversed__(self) -> Iterator[_T]: ...
|
376 |
+
def count(self, value: _T) -> int: ...
|
377 |
+
def index(self, value: _T) -> int: ... # type: ignore
|
378 |
+
|
379 |
+
def count_cycle(
|
380 |
+
iterable: Iterable[_T], n: int | None = ...
|
381 |
+
) -> Iterable[tuple[int, _T]]: ...
|
382 |
+
def mark_ends(
|
383 |
+
iterable: Iterable[_T],
|
384 |
+
) -> Iterable[tuple[bool, bool, _T]]: ...
|
385 |
+
def locate(
|
386 |
+
iterable: Iterable[_T],
|
387 |
+
pred: Callable[..., Any] = ...,
|
388 |
+
window_size: int | None = ...,
|
389 |
+
) -> Iterator[int]: ...
|
390 |
+
def lstrip(
|
391 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
392 |
+
) -> Iterator[_T]: ...
|
393 |
+
def rstrip(
|
394 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
395 |
+
) -> Iterator[_T]: ...
|
396 |
+
def strip(
|
397 |
+
iterable: Iterable[_T], pred: Callable[[_T], object]
|
398 |
+
) -> Iterator[_T]: ...
|
399 |
+
|
400 |
+
class islice_extended(Generic[_T], Iterator[_T]):
|
401 |
+
def __init__(self, iterable: Iterable[_T], *args: int | None) -> None: ...
|
402 |
+
def __iter__(self) -> islice_extended[_T]: ...
|
403 |
+
def __next__(self) -> _T: ...
|
404 |
+
def __getitem__(self, index: slice) -> islice_extended[_T]: ...
|
405 |
+
|
406 |
+
def always_reversible(iterable: Iterable[_T]) -> Iterator[_T]: ...
|
407 |
+
def consecutive_groups(
|
408 |
+
iterable: Iterable[_T], ordering: Callable[[_T], int] = ...
|
409 |
+
) -> Iterator[Iterator[_T]]: ...
|
410 |
+
@overload
|
411 |
+
def difference(
|
412 |
+
iterable: Iterable[_T],
|
413 |
+
func: Callable[[_T, _T], _U] = ...,
|
414 |
+
*,
|
415 |
+
initial: None = ...,
|
416 |
+
) -> Iterator[_T | _U]: ...
|
417 |
+
@overload
|
418 |
+
def difference(
|
419 |
+
iterable: Iterable[_T], func: Callable[[_T, _T], _U] = ..., *, initial: _U
|
420 |
+
) -> Iterator[_U]: ...
|
421 |
+
|
422 |
+
class SequenceView(Generic[_T], Sequence[_T]):
|
423 |
+
def __init__(self, target: Sequence[_T]) -> None: ...
|
424 |
+
@overload
|
425 |
+
def __getitem__(self, index: int) -> _T: ...
|
426 |
+
@overload
|
427 |
+
def __getitem__(self, index: slice) -> Sequence[_T]: ...
|
428 |
+
def __len__(self) -> int: ...
|
429 |
+
|
430 |
+
class seekable(Generic[_T], Iterator[_T]):
|
431 |
+
def __init__(
|
432 |
+
self, iterable: Iterable[_T], maxlen: int | None = ...
|
433 |
+
) -> None: ...
|
434 |
+
def __iter__(self) -> seekable[_T]: ...
|
435 |
+
def __next__(self) -> _T: ...
|
436 |
+
def __bool__(self) -> bool: ...
|
437 |
+
@overload
|
438 |
+
def peek(self) -> _T: ...
|
439 |
+
@overload
|
440 |
+
def peek(self, default: _U) -> _T | _U: ...
|
441 |
+
def elements(self) -> SequenceView[_T]: ...
|
442 |
+
def seek(self, index: int) -> None: ...
|
443 |
+
def relative_seek(self, count: int) -> None: ...
|
444 |
+
|
445 |
+
class run_length:
|
446 |
+
@staticmethod
|
447 |
+
def encode(iterable: Iterable[_T]) -> Iterator[tuple[_T, int]]: ...
|
448 |
+
@staticmethod
|
449 |
+
def decode(iterable: Iterable[tuple[_T, int]]) -> Iterator[_T]: ...
|
450 |
+
|
451 |
+
def exactly_n(
|
452 |
+
iterable: Iterable[_T], n: int, predicate: Callable[[_T], object] = ...
|
453 |
+
) -> bool: ...
|
454 |
+
def circular_shifts(iterable: Iterable[_T]) -> list[tuple[_T, ...]]: ...
|
455 |
+
def make_decorator(
|
456 |
+
wrapping_func: Callable[..., _U], result_index: int = ...
|
457 |
+
) -> Callable[..., Callable[[Callable[..., Any]], Callable[..., _U]]]: ...
|
458 |
+
@overload
|
459 |
+
def map_reduce(
|
460 |
+
iterable: Iterable[_T],
|
461 |
+
keyfunc: Callable[[_T], _U],
|
462 |
+
valuefunc: None = ...,
|
463 |
+
reducefunc: None = ...,
|
464 |
+
) -> dict[_U, list[_T]]: ...
|
465 |
+
@overload
|
466 |
+
def map_reduce(
|
467 |
+
iterable: Iterable[_T],
|
468 |
+
keyfunc: Callable[[_T], _U],
|
469 |
+
valuefunc: Callable[[_T], _V],
|
470 |
+
reducefunc: None = ...,
|
471 |
+
) -> dict[_U, list[_V]]: ...
|
472 |
+
@overload
|
473 |
+
def map_reduce(
|
474 |
+
iterable: Iterable[_T],
|
475 |
+
keyfunc: Callable[[_T], _U],
|
476 |
+
valuefunc: None = ...,
|
477 |
+
reducefunc: Callable[[list[_T]], _W] = ...,
|
478 |
+
) -> dict[_U, _W]: ...
|
479 |
+
@overload
|
480 |
+
def map_reduce(
|
481 |
+
iterable: Iterable[_T],
|
482 |
+
keyfunc: Callable[[_T], _U],
|
483 |
+
valuefunc: Callable[[_T], _V],
|
484 |
+
reducefunc: Callable[[list[_V]], _W],
|
485 |
+
) -> dict[_U, _W]: ...
|
486 |
+
def rlocate(
|
487 |
+
iterable: Iterable[_T],
|
488 |
+
pred: Callable[..., object] = ...,
|
489 |
+
window_size: int | None = ...,
|
490 |
+
) -> Iterator[int]: ...
|
491 |
+
def replace(
|
492 |
+
iterable: Iterable[_T],
|
493 |
+
pred: Callable[..., object],
|
494 |
+
substitutes: Iterable[_U],
|
495 |
+
count: int | None = ...,
|
496 |
+
window_size: int = ...,
|
497 |
+
) -> Iterator[_T | _U]: ...
|
498 |
+
def partitions(iterable: Iterable[_T]) -> Iterator[list[list[_T]]]: ...
|
499 |
+
def set_partitions(
|
500 |
+
iterable: Iterable[_T], k: int | None = ...
|
501 |
+
) -> Iterator[list[list[_T]]]: ...
|
502 |
+
|
503 |
+
class time_limited(Generic[_T], Iterator[_T]):
|
504 |
+
def __init__(
|
505 |
+
self, limit_seconds: float, iterable: Iterable[_T]
|
506 |
+
) -> None: ...
|
507 |
+
def __iter__(self) -> islice_extended[_T]: ...
|
508 |
+
def __next__(self) -> _T: ...
|
509 |
+
|
510 |
+
@overload
|
511 |
+
def only(
|
512 |
+
iterable: Iterable[_T], *, too_long: _Raisable | None = ...
|
513 |
+
) -> _T | None: ...
|
514 |
+
@overload
|
515 |
+
def only(
|
516 |
+
iterable: Iterable[_T], default: _U, too_long: _Raisable | None = ...
|
517 |
+
) -> _T | _U: ...
|
518 |
+
def ichunked(iterable: Iterable[_T], n: int) -> Iterator[Iterator[_T]]: ...
|
519 |
+
def distinct_combinations(
|
520 |
+
iterable: Iterable[_T], r: int
|
521 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
522 |
+
def filter_except(
|
523 |
+
validator: Callable[[Any], object],
|
524 |
+
iterable: Iterable[_T],
|
525 |
+
*exceptions: Type[BaseException],
|
526 |
+
) -> Iterator[_T]: ...
|
527 |
+
def map_except(
|
528 |
+
function: Callable[[Any], _U],
|
529 |
+
iterable: Iterable[_T],
|
530 |
+
*exceptions: Type[BaseException],
|
531 |
+
) -> Iterator[_U]: ...
|
532 |
+
def map_if(
|
533 |
+
iterable: Iterable[Any],
|
534 |
+
pred: Callable[[Any], bool],
|
535 |
+
func: Callable[[Any], Any],
|
536 |
+
func_else: Callable[[Any], Any] | None = ...,
|
537 |
+
) -> Iterator[Any]: ...
|
538 |
+
def sample(
|
539 |
+
iterable: Iterable[_T],
|
540 |
+
k: int,
|
541 |
+
weights: Iterable[float] | None = ...,
|
542 |
+
) -> list[_T]: ...
|
543 |
+
def is_sorted(
|
544 |
+
iterable: Iterable[_T],
|
545 |
+
key: Callable[[_T], _U] | None = ...,
|
546 |
+
reverse: bool = False,
|
547 |
+
strict: bool = False,
|
548 |
+
) -> bool: ...
|
549 |
+
|
550 |
+
class AbortThread(BaseException):
|
551 |
+
pass
|
552 |
+
|
553 |
+
class callback_iter(Generic[_T], Iterator[_T]):
|
554 |
+
def __init__(
|
555 |
+
self,
|
556 |
+
func: Callable[..., Any],
|
557 |
+
callback_kwd: str = ...,
|
558 |
+
wait_seconds: float = ...,
|
559 |
+
) -> None: ...
|
560 |
+
def __enter__(self) -> callback_iter[_T]: ...
|
561 |
+
def __exit__(
|
562 |
+
self,
|
563 |
+
exc_type: Type[BaseException] | None,
|
564 |
+
exc_value: BaseException | None,
|
565 |
+
traceback: TracebackType | None,
|
566 |
+
) -> bool | None: ...
|
567 |
+
def __iter__(self) -> callback_iter[_T]: ...
|
568 |
+
def __next__(self) -> _T: ...
|
569 |
+
def _reader(self) -> Iterator[_T]: ...
|
570 |
+
@property
|
571 |
+
def done(self) -> bool: ...
|
572 |
+
@property
|
573 |
+
def result(self) -> Any: ...
|
574 |
+
|
575 |
+
def windowed_complete(
|
576 |
+
iterable: Iterable[_T], n: int
|
577 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
578 |
+
def all_unique(
|
579 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
580 |
+
) -> bool: ...
|
581 |
+
def nth_product(index: int, *args: Iterable[_T]) -> tuple[_T, ...]: ...
|
582 |
+
def nth_combination_with_replacement(
|
583 |
+
iterable: Iterable[_T], r: int, index: int
|
584 |
+
) -> tuple[_T, ...]: ...
|
585 |
+
def nth_permutation(
|
586 |
+
iterable: Iterable[_T], r: int, index: int
|
587 |
+
) -> tuple[_T, ...]: ...
|
588 |
+
def value_chain(*args: _T | Iterable[_T]) -> Iterable[_T]: ...
|
589 |
+
def product_index(element: Iterable[_T], *args: Iterable[_T]) -> int: ...
|
590 |
+
def combination_index(
|
591 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
592 |
+
) -> int: ...
|
593 |
+
def combination_with_replacement_index(
|
594 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
595 |
+
) -> int: ...
|
596 |
+
def permutation_index(
|
597 |
+
element: Iterable[_T], iterable: Iterable[_T]
|
598 |
+
) -> int: ...
|
599 |
+
def repeat_each(iterable: Iterable[_T], n: int = ...) -> Iterator[_T]: ...
|
600 |
+
|
601 |
+
class countable(Generic[_T], Iterator[_T]):
|
602 |
+
def __init__(self, iterable: Iterable[_T]) -> None: ...
|
603 |
+
def __iter__(self) -> countable[_T]: ...
|
604 |
+
def __next__(self) -> _T: ...
|
605 |
+
|
606 |
+
def chunked_even(iterable: Iterable[_T], n: int) -> Iterator[list[_T]]: ...
|
607 |
+
def zip_broadcast(
|
608 |
+
*objects: _T | Iterable[_T],
|
609 |
+
scalar_types: type | tuple[type | tuple[Any, ...], ...] | None = ...,
|
610 |
+
strict: bool = ...,
|
611 |
+
) -> Iterable[tuple[_T, ...]]: ...
|
612 |
+
def unique_in_window(
|
613 |
+
iterable: Iterable[_T], n: int, key: Callable[[_T], _U] | None = ...
|
614 |
+
) -> Iterator[_T]: ...
|
615 |
+
def duplicates_everseen(
|
616 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
617 |
+
) -> Iterator[_T]: ...
|
618 |
+
def duplicates_justseen(
|
619 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
620 |
+
) -> Iterator[_T]: ...
|
621 |
+
def classify_unique(
|
622 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
623 |
+
) -> Iterator[tuple[_T, bool, bool]]: ...
|
624 |
+
|
625 |
+
class _SupportsLessThan(Protocol):
|
626 |
+
def __lt__(self, __other: Any) -> bool: ...
|
627 |
+
|
628 |
+
_SupportsLessThanT = TypeVar("_SupportsLessThanT", bound=_SupportsLessThan)
|
629 |
+
|
630 |
+
@overload
|
631 |
+
def minmax(
|
632 |
+
iterable_or_value: Iterable[_SupportsLessThanT], *, key: None = None
|
633 |
+
) -> tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
634 |
+
@overload
|
635 |
+
def minmax(
|
636 |
+
iterable_or_value: Iterable[_T], *, key: Callable[[_T], _SupportsLessThan]
|
637 |
+
) -> tuple[_T, _T]: ...
|
638 |
+
@overload
|
639 |
+
def minmax(
|
640 |
+
iterable_or_value: Iterable[_SupportsLessThanT],
|
641 |
+
*,
|
642 |
+
key: None = None,
|
643 |
+
default: _U,
|
644 |
+
) -> _U | tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
645 |
+
@overload
|
646 |
+
def minmax(
|
647 |
+
iterable_or_value: Iterable[_T],
|
648 |
+
*,
|
649 |
+
key: Callable[[_T], _SupportsLessThan],
|
650 |
+
default: _U,
|
651 |
+
) -> _U | tuple[_T, _T]: ...
|
652 |
+
@overload
|
653 |
+
def minmax(
|
654 |
+
iterable_or_value: _SupportsLessThanT,
|
655 |
+
__other: _SupportsLessThanT,
|
656 |
+
*others: _SupportsLessThanT,
|
657 |
+
) -> tuple[_SupportsLessThanT, _SupportsLessThanT]: ...
|
658 |
+
@overload
|
659 |
+
def minmax(
|
660 |
+
iterable_or_value: _T,
|
661 |
+
__other: _T,
|
662 |
+
*others: _T,
|
663 |
+
key: Callable[[_T], _SupportsLessThan],
|
664 |
+
) -> tuple[_T, _T]: ...
|
665 |
+
def longest_common_prefix(
|
666 |
+
iterables: Iterable[Iterable[_T]],
|
667 |
+
) -> Iterator[_T]: ...
|
668 |
+
def iequals(*iterables: Iterable[Any]) -> bool: ...
|
669 |
+
def constrained_batches(
|
670 |
+
iterable: Iterable[_T],
|
671 |
+
max_size: int,
|
672 |
+
max_count: int | None = ...,
|
673 |
+
get_len: Callable[[_T], object] = ...,
|
674 |
+
strict: bool = ...,
|
675 |
+
) -> Iterator[tuple[_T]]: ...
|
676 |
+
def gray_product(*iterables: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
677 |
+
def partial_product(*iterables: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
678 |
+
def takewhile_inclusive(
|
679 |
+
predicate: Callable[[_T], bool], iterable: Iterable[_T]
|
680 |
+
) -> Iterator[_T]: ...
|
681 |
+
def outer_product(
|
682 |
+
func: Callable[[_T, _U], _V],
|
683 |
+
xs: Iterable[_T],
|
684 |
+
ys: Iterable[_U],
|
685 |
+
*args: Any,
|
686 |
+
**kwargs: Any,
|
687 |
+
) -> Iterator[tuple[_V, ...]]: ...
|
688 |
+
def iter_suppress(
|
689 |
+
iterable: Iterable[_T],
|
690 |
+
*exceptions: Type[BaseException],
|
691 |
+
) -> Iterator[_T]: ...
|
692 |
+
def filter_map(
|
693 |
+
func: Callable[[_T], _V | None],
|
694 |
+
iterable: Iterable[_T],
|
695 |
+
) -> Iterator[_V]: ...
|
env-llmeval/lib/python3.10/site-packages/more_itertools/py.typed
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/more_itertools/recipes.py
ADDED
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Imported from the recipes section of the itertools documentation.
|
2 |
+
|
3 |
+
All functions taken from the recipes section of the itertools library docs
|
4 |
+
[1]_.
|
5 |
+
Some backward-compatible usability improvements have been made.
|
6 |
+
|
7 |
+
.. [1] http://docs.python.org/library/itertools.html#recipes
|
8 |
+
|
9 |
+
"""
|
10 |
+
import math
|
11 |
+
import operator
|
12 |
+
|
13 |
+
from collections import deque
|
14 |
+
from collections.abc import Sized
|
15 |
+
from functools import partial, reduce
|
16 |
+
from itertools import (
|
17 |
+
chain,
|
18 |
+
combinations,
|
19 |
+
compress,
|
20 |
+
count,
|
21 |
+
cycle,
|
22 |
+
groupby,
|
23 |
+
islice,
|
24 |
+
product,
|
25 |
+
repeat,
|
26 |
+
starmap,
|
27 |
+
tee,
|
28 |
+
zip_longest,
|
29 |
+
)
|
30 |
+
from random import randrange, sample, choice
|
31 |
+
from sys import hexversion
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
'all_equal',
|
35 |
+
'batched',
|
36 |
+
'before_and_after',
|
37 |
+
'consume',
|
38 |
+
'convolve',
|
39 |
+
'dotproduct',
|
40 |
+
'first_true',
|
41 |
+
'factor',
|
42 |
+
'flatten',
|
43 |
+
'grouper',
|
44 |
+
'iter_except',
|
45 |
+
'iter_index',
|
46 |
+
'matmul',
|
47 |
+
'ncycles',
|
48 |
+
'nth',
|
49 |
+
'nth_combination',
|
50 |
+
'padnone',
|
51 |
+
'pad_none',
|
52 |
+
'pairwise',
|
53 |
+
'partition',
|
54 |
+
'polynomial_eval',
|
55 |
+
'polynomial_from_roots',
|
56 |
+
'polynomial_derivative',
|
57 |
+
'powerset',
|
58 |
+
'prepend',
|
59 |
+
'quantify',
|
60 |
+
'reshape',
|
61 |
+
'random_combination_with_replacement',
|
62 |
+
'random_combination',
|
63 |
+
'random_permutation',
|
64 |
+
'random_product',
|
65 |
+
'repeatfunc',
|
66 |
+
'roundrobin',
|
67 |
+
'sieve',
|
68 |
+
'sliding_window',
|
69 |
+
'subslices',
|
70 |
+
'sum_of_squares',
|
71 |
+
'tabulate',
|
72 |
+
'tail',
|
73 |
+
'take',
|
74 |
+
'totient',
|
75 |
+
'transpose',
|
76 |
+
'triplewise',
|
77 |
+
'unique_everseen',
|
78 |
+
'unique_justseen',
|
79 |
+
]
|
80 |
+
|
81 |
+
_marker = object()
|
82 |
+
|
83 |
+
|
84 |
+
# zip with strict is available for Python 3.10+
|
85 |
+
try:
|
86 |
+
zip(strict=True)
|
87 |
+
except TypeError:
|
88 |
+
_zip_strict = zip
|
89 |
+
else:
|
90 |
+
_zip_strict = partial(zip, strict=True)
|
91 |
+
|
92 |
+
# math.sumprod is available for Python 3.12+
|
93 |
+
_sumprod = getattr(math, 'sumprod', lambda x, y: dotproduct(x, y))
|
94 |
+
|
95 |
+
|
96 |
+
def take(n, iterable):
|
97 |
+
"""Return first *n* items of the iterable as a list.
|
98 |
+
|
99 |
+
>>> take(3, range(10))
|
100 |
+
[0, 1, 2]
|
101 |
+
|
102 |
+
If there are fewer than *n* items in the iterable, all of them are
|
103 |
+
returned.
|
104 |
+
|
105 |
+
>>> take(10, range(3))
|
106 |
+
[0, 1, 2]
|
107 |
+
|
108 |
+
"""
|
109 |
+
return list(islice(iterable, n))
|
110 |
+
|
111 |
+
|
112 |
+
def tabulate(function, start=0):
|
113 |
+
"""Return an iterator over the results of ``func(start)``,
|
114 |
+
``func(start + 1)``, ``func(start + 2)``...
|
115 |
+
|
116 |
+
*func* should be a function that accepts one integer argument.
|
117 |
+
|
118 |
+
If *start* is not specified it defaults to 0. It will be incremented each
|
119 |
+
time the iterator is advanced.
|
120 |
+
|
121 |
+
>>> square = lambda x: x ** 2
|
122 |
+
>>> iterator = tabulate(square, -3)
|
123 |
+
>>> take(4, iterator)
|
124 |
+
[9, 4, 1, 0]
|
125 |
+
|
126 |
+
"""
|
127 |
+
return map(function, count(start))
|
128 |
+
|
129 |
+
|
130 |
+
def tail(n, iterable):
|
131 |
+
"""Return an iterator over the last *n* items of *iterable*.
|
132 |
+
|
133 |
+
>>> t = tail(3, 'ABCDEFG')
|
134 |
+
>>> list(t)
|
135 |
+
['E', 'F', 'G']
|
136 |
+
|
137 |
+
"""
|
138 |
+
# If the given iterable has a length, then we can use islice to get its
|
139 |
+
# final elements. Note that if the iterable is not actually Iterable,
|
140 |
+
# either islice or deque will throw a TypeError. This is why we don't
|
141 |
+
# check if it is Iterable.
|
142 |
+
if isinstance(iterable, Sized):
|
143 |
+
yield from islice(iterable, max(0, len(iterable) - n), None)
|
144 |
+
else:
|
145 |
+
yield from iter(deque(iterable, maxlen=n))
|
146 |
+
|
147 |
+
|
148 |
+
def consume(iterator, n=None):
|
149 |
+
"""Advance *iterable* by *n* steps. If *n* is ``None``, consume it
|
150 |
+
entirely.
|
151 |
+
|
152 |
+
Efficiently exhausts an iterator without returning values. Defaults to
|
153 |
+
consuming the whole iterator, but an optional second argument may be
|
154 |
+
provided to limit consumption.
|
155 |
+
|
156 |
+
>>> i = (x for x in range(10))
|
157 |
+
>>> next(i)
|
158 |
+
0
|
159 |
+
>>> consume(i, 3)
|
160 |
+
>>> next(i)
|
161 |
+
4
|
162 |
+
>>> consume(i)
|
163 |
+
>>> next(i)
|
164 |
+
Traceback (most recent call last):
|
165 |
+
File "<stdin>", line 1, in <module>
|
166 |
+
StopIteration
|
167 |
+
|
168 |
+
If the iterator has fewer items remaining than the provided limit, the
|
169 |
+
whole iterator will be consumed.
|
170 |
+
|
171 |
+
>>> i = (x for x in range(3))
|
172 |
+
>>> consume(i, 5)
|
173 |
+
>>> next(i)
|
174 |
+
Traceback (most recent call last):
|
175 |
+
File "<stdin>", line 1, in <module>
|
176 |
+
StopIteration
|
177 |
+
|
178 |
+
"""
|
179 |
+
# Use functions that consume iterators at C speed.
|
180 |
+
if n is None:
|
181 |
+
# feed the entire iterator into a zero-length deque
|
182 |
+
deque(iterator, maxlen=0)
|
183 |
+
else:
|
184 |
+
# advance to the empty slice starting at position n
|
185 |
+
next(islice(iterator, n, n), None)
|
186 |
+
|
187 |
+
|
188 |
+
def nth(iterable, n, default=None):
|
189 |
+
"""Returns the nth item or a default value.
|
190 |
+
|
191 |
+
>>> l = range(10)
|
192 |
+
>>> nth(l, 3)
|
193 |
+
3
|
194 |
+
>>> nth(l, 20, "zebra")
|
195 |
+
'zebra'
|
196 |
+
|
197 |
+
"""
|
198 |
+
return next(islice(iterable, n, None), default)
|
199 |
+
|
200 |
+
|
201 |
+
def all_equal(iterable):
|
202 |
+
"""
|
203 |
+
Returns ``True`` if all the elements are equal to each other.
|
204 |
+
|
205 |
+
>>> all_equal('aaaa')
|
206 |
+
True
|
207 |
+
>>> all_equal('aaab')
|
208 |
+
False
|
209 |
+
|
210 |
+
"""
|
211 |
+
g = groupby(iterable)
|
212 |
+
return next(g, True) and not next(g, False)
|
213 |
+
|
214 |
+
|
215 |
+
def quantify(iterable, pred=bool):
|
216 |
+
"""Return the how many times the predicate is true.
|
217 |
+
|
218 |
+
>>> quantify([True, False, True])
|
219 |
+
2
|
220 |
+
|
221 |
+
"""
|
222 |
+
return sum(map(pred, iterable))
|
223 |
+
|
224 |
+
|
225 |
+
def pad_none(iterable):
|
226 |
+
"""Returns the sequence of elements and then returns ``None`` indefinitely.
|
227 |
+
|
228 |
+
>>> take(5, pad_none(range(3)))
|
229 |
+
[0, 1, 2, None, None]
|
230 |
+
|
231 |
+
Useful for emulating the behavior of the built-in :func:`map` function.
|
232 |
+
|
233 |
+
See also :func:`padded`.
|
234 |
+
|
235 |
+
"""
|
236 |
+
return chain(iterable, repeat(None))
|
237 |
+
|
238 |
+
|
239 |
+
padnone = pad_none
|
240 |
+
|
241 |
+
|
242 |
+
def ncycles(iterable, n):
|
243 |
+
"""Returns the sequence elements *n* times
|
244 |
+
|
245 |
+
>>> list(ncycles(["a", "b"], 3))
|
246 |
+
['a', 'b', 'a', 'b', 'a', 'b']
|
247 |
+
|
248 |
+
"""
|
249 |
+
return chain.from_iterable(repeat(tuple(iterable), n))
|
250 |
+
|
251 |
+
|
252 |
+
def dotproduct(vec1, vec2):
|
253 |
+
"""Returns the dot product of the two iterables.
|
254 |
+
|
255 |
+
>>> dotproduct([10, 10], [20, 20])
|
256 |
+
400
|
257 |
+
|
258 |
+
"""
|
259 |
+
return sum(map(operator.mul, vec1, vec2))
|
260 |
+
|
261 |
+
|
262 |
+
def flatten(listOfLists):
|
263 |
+
"""Return an iterator flattening one level of nesting in a list of lists.
|
264 |
+
|
265 |
+
>>> list(flatten([[0, 1], [2, 3]]))
|
266 |
+
[0, 1, 2, 3]
|
267 |
+
|
268 |
+
See also :func:`collapse`, which can flatten multiple levels of nesting.
|
269 |
+
|
270 |
+
"""
|
271 |
+
return chain.from_iterable(listOfLists)
|
272 |
+
|
273 |
+
|
274 |
+
def repeatfunc(func, times=None, *args):
|
275 |
+
"""Call *func* with *args* repeatedly, returning an iterable over the
|
276 |
+
results.
|
277 |
+
|
278 |
+
If *times* is specified, the iterable will terminate after that many
|
279 |
+
repetitions:
|
280 |
+
|
281 |
+
>>> from operator import add
|
282 |
+
>>> times = 4
|
283 |
+
>>> args = 3, 5
|
284 |
+
>>> list(repeatfunc(add, times, *args))
|
285 |
+
[8, 8, 8, 8]
|
286 |
+
|
287 |
+
If *times* is ``None`` the iterable will not terminate:
|
288 |
+
|
289 |
+
>>> from random import randrange
|
290 |
+
>>> times = None
|
291 |
+
>>> args = 1, 11
|
292 |
+
>>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
|
293 |
+
[2, 4, 8, 1, 8, 4]
|
294 |
+
|
295 |
+
"""
|
296 |
+
if times is None:
|
297 |
+
return starmap(func, repeat(args))
|
298 |
+
return starmap(func, repeat(args, times))
|
299 |
+
|
300 |
+
|
301 |
+
def _pairwise(iterable):
|
302 |
+
"""Returns an iterator of paired items, overlapping, from the original
|
303 |
+
|
304 |
+
>>> take(4, pairwise(count()))
|
305 |
+
[(0, 1), (1, 2), (2, 3), (3, 4)]
|
306 |
+
|
307 |
+
On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.
|
308 |
+
|
309 |
+
"""
|
310 |
+
a, b = tee(iterable)
|
311 |
+
next(b, None)
|
312 |
+
return zip(a, b)
|
313 |
+
|
314 |
+
|
315 |
+
try:
|
316 |
+
from itertools import pairwise as itertools_pairwise
|
317 |
+
except ImportError:
|
318 |
+
pairwise = _pairwise
|
319 |
+
else:
|
320 |
+
|
321 |
+
def pairwise(iterable):
|
322 |
+
return itertools_pairwise(iterable)
|
323 |
+
|
324 |
+
pairwise.__doc__ = _pairwise.__doc__
|
325 |
+
|
326 |
+
|
327 |
+
class UnequalIterablesError(ValueError):
|
328 |
+
def __init__(self, details=None):
|
329 |
+
msg = 'Iterables have different lengths'
|
330 |
+
if details is not None:
|
331 |
+
msg += (': index 0 has length {}; index {} has length {}').format(
|
332 |
+
*details
|
333 |
+
)
|
334 |
+
|
335 |
+
super().__init__(msg)
|
336 |
+
|
337 |
+
|
338 |
+
def _zip_equal_generator(iterables):
|
339 |
+
for combo in zip_longest(*iterables, fillvalue=_marker):
|
340 |
+
for val in combo:
|
341 |
+
if val is _marker:
|
342 |
+
raise UnequalIterablesError()
|
343 |
+
yield combo
|
344 |
+
|
345 |
+
|
346 |
+
def _zip_equal(*iterables):
|
347 |
+
# Check whether the iterables are all the same size.
|
348 |
+
try:
|
349 |
+
first_size = len(iterables[0])
|
350 |
+
for i, it in enumerate(iterables[1:], 1):
|
351 |
+
size = len(it)
|
352 |
+
if size != first_size:
|
353 |
+
raise UnequalIterablesError(details=(first_size, i, size))
|
354 |
+
# All sizes are equal, we can use the built-in zip.
|
355 |
+
return zip(*iterables)
|
356 |
+
# If any one of the iterables didn't have a length, start reading
|
357 |
+
# them until one runs out.
|
358 |
+
except TypeError:
|
359 |
+
return _zip_equal_generator(iterables)
|
360 |
+
|
361 |
+
|
362 |
+
def grouper(iterable, n, incomplete='fill', fillvalue=None):
|
363 |
+
"""Group elements from *iterable* into fixed-length groups of length *n*.
|
364 |
+
|
365 |
+
>>> list(grouper('ABCDEF', 3))
|
366 |
+
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
367 |
+
|
368 |
+
The keyword arguments *incomplete* and *fillvalue* control what happens for
|
369 |
+
iterables whose length is not a multiple of *n*.
|
370 |
+
|
371 |
+
When *incomplete* is `'fill'`, the last group will contain instances of
|
372 |
+
*fillvalue*.
|
373 |
+
|
374 |
+
>>> list(grouper('ABCDEFG', 3, incomplete='fill', fillvalue='x'))
|
375 |
+
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
|
376 |
+
|
377 |
+
When *incomplete* is `'ignore'`, the last group will not be emitted.
|
378 |
+
|
379 |
+
>>> list(grouper('ABCDEFG', 3, incomplete='ignore', fillvalue='x'))
|
380 |
+
[('A', 'B', 'C'), ('D', 'E', 'F')]
|
381 |
+
|
382 |
+
When *incomplete* is `'strict'`, a subclass of `ValueError` will be raised.
|
383 |
+
|
384 |
+
>>> it = grouper('ABCDEFG', 3, incomplete='strict')
|
385 |
+
>>> list(it) # doctest: +IGNORE_EXCEPTION_DETAIL
|
386 |
+
Traceback (most recent call last):
|
387 |
+
...
|
388 |
+
UnequalIterablesError
|
389 |
+
|
390 |
+
"""
|
391 |
+
args = [iter(iterable)] * n
|
392 |
+
if incomplete == 'fill':
|
393 |
+
return zip_longest(*args, fillvalue=fillvalue)
|
394 |
+
if incomplete == 'strict':
|
395 |
+
return _zip_equal(*args)
|
396 |
+
if incomplete == 'ignore':
|
397 |
+
return zip(*args)
|
398 |
+
else:
|
399 |
+
raise ValueError('Expected fill, strict, or ignore')
|
400 |
+
|
401 |
+
|
402 |
+
def roundrobin(*iterables):
|
403 |
+
"""Yields an item from each iterable, alternating between them.
|
404 |
+
|
405 |
+
>>> list(roundrobin('ABC', 'D', 'EF'))
|
406 |
+
['A', 'D', 'E', 'B', 'F', 'C']
|
407 |
+
|
408 |
+
This function produces the same output as :func:`interleave_longest`, but
|
409 |
+
may perform better for some inputs (in particular when the number of
|
410 |
+
iterables is small).
|
411 |
+
|
412 |
+
"""
|
413 |
+
# Recipe credited to George Sakkis
|
414 |
+
pending = len(iterables)
|
415 |
+
nexts = cycle(iter(it).__next__ for it in iterables)
|
416 |
+
while pending:
|
417 |
+
try:
|
418 |
+
for next in nexts:
|
419 |
+
yield next()
|
420 |
+
except StopIteration:
|
421 |
+
pending -= 1
|
422 |
+
nexts = cycle(islice(nexts, pending))
|
423 |
+
|
424 |
+
|
425 |
+
def partition(pred, iterable):
|
426 |
+
"""
|
427 |
+
Returns a 2-tuple of iterables derived from the input iterable.
|
428 |
+
The first yields the items that have ``pred(item) == False``.
|
429 |
+
The second yields the items that have ``pred(item) == True``.
|
430 |
+
|
431 |
+
>>> is_odd = lambda x: x % 2 != 0
|
432 |
+
>>> iterable = range(10)
|
433 |
+
>>> even_items, odd_items = partition(is_odd, iterable)
|
434 |
+
>>> list(even_items), list(odd_items)
|
435 |
+
([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
|
436 |
+
|
437 |
+
If *pred* is None, :func:`bool` is used.
|
438 |
+
|
439 |
+
>>> iterable = [0, 1, False, True, '', ' ']
|
440 |
+
>>> false_items, true_items = partition(None, iterable)
|
441 |
+
>>> list(false_items), list(true_items)
|
442 |
+
([0, False, ''], [1, True, ' '])
|
443 |
+
|
444 |
+
"""
|
445 |
+
if pred is None:
|
446 |
+
pred = bool
|
447 |
+
|
448 |
+
t1, t2, p = tee(iterable, 3)
|
449 |
+
p1, p2 = tee(map(pred, p))
|
450 |
+
return (compress(t1, map(operator.not_, p1)), compress(t2, p2))
|
451 |
+
|
452 |
+
|
453 |
+
def powerset(iterable):
|
454 |
+
"""Yields all possible subsets of the iterable.
|
455 |
+
|
456 |
+
>>> list(powerset([1, 2, 3]))
|
457 |
+
[(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
|
458 |
+
|
459 |
+
:func:`powerset` will operate on iterables that aren't :class:`set`
|
460 |
+
instances, so repeated elements in the input will produce repeated elements
|
461 |
+
in the output. Use :func:`unique_everseen` on the input to avoid generating
|
462 |
+
duplicates:
|
463 |
+
|
464 |
+
>>> seq = [1, 1, 0]
|
465 |
+
>>> list(powerset(seq))
|
466 |
+
[(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
|
467 |
+
>>> from more_itertools import unique_everseen
|
468 |
+
>>> list(powerset(unique_everseen(seq)))
|
469 |
+
[(), (1,), (0,), (1, 0)]
|
470 |
+
|
471 |
+
"""
|
472 |
+
s = list(iterable)
|
473 |
+
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
|
474 |
+
|
475 |
+
|
476 |
+
def unique_everseen(iterable, key=None):
|
477 |
+
"""
|
478 |
+
Yield unique elements, preserving order.
|
479 |
+
|
480 |
+
>>> list(unique_everseen('AAAABBBCCDAABBB'))
|
481 |
+
['A', 'B', 'C', 'D']
|
482 |
+
>>> list(unique_everseen('ABBCcAD', str.lower))
|
483 |
+
['A', 'B', 'C', 'D']
|
484 |
+
|
485 |
+
Sequences with a mix of hashable and unhashable items can be used.
|
486 |
+
The function will be slower (i.e., `O(n^2)`) for unhashable items.
|
487 |
+
|
488 |
+
Remember that ``list`` objects are unhashable - you can use the *key*
|
489 |
+
parameter to transform the list to a tuple (which is hashable) to
|
490 |
+
avoid a slowdown.
|
491 |
+
|
492 |
+
>>> iterable = ([1, 2], [2, 3], [1, 2])
|
493 |
+
>>> list(unique_everseen(iterable)) # Slow
|
494 |
+
[[1, 2], [2, 3]]
|
495 |
+
>>> list(unique_everseen(iterable, key=tuple)) # Faster
|
496 |
+
[[1, 2], [2, 3]]
|
497 |
+
|
498 |
+
Similarly, you may want to convert unhashable ``set`` objects with
|
499 |
+
``key=frozenset``. For ``dict`` objects,
|
500 |
+
``key=lambda x: frozenset(x.items())`` can be used.
|
501 |
+
|
502 |
+
"""
|
503 |
+
seenset = set()
|
504 |
+
seenset_add = seenset.add
|
505 |
+
seenlist = []
|
506 |
+
seenlist_add = seenlist.append
|
507 |
+
use_key = key is not None
|
508 |
+
|
509 |
+
for element in iterable:
|
510 |
+
k = key(element) if use_key else element
|
511 |
+
try:
|
512 |
+
if k not in seenset:
|
513 |
+
seenset_add(k)
|
514 |
+
yield element
|
515 |
+
except TypeError:
|
516 |
+
if k not in seenlist:
|
517 |
+
seenlist_add(k)
|
518 |
+
yield element
|
519 |
+
|
520 |
+
|
521 |
+
def unique_justseen(iterable, key=None):
|
522 |
+
"""Yields elements in order, ignoring serial duplicates
|
523 |
+
|
524 |
+
>>> list(unique_justseen('AAAABBBCCDAABBB'))
|
525 |
+
['A', 'B', 'C', 'D', 'A', 'B']
|
526 |
+
>>> list(unique_justseen('ABBCcAD', str.lower))
|
527 |
+
['A', 'B', 'C', 'A', 'D']
|
528 |
+
|
529 |
+
"""
|
530 |
+
if key is None:
|
531 |
+
return map(operator.itemgetter(0), groupby(iterable))
|
532 |
+
|
533 |
+
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
|
534 |
+
|
535 |
+
|
536 |
+
def iter_except(func, exception, first=None):
|
537 |
+
"""Yields results from a function repeatedly until an exception is raised.
|
538 |
+
|
539 |
+
Converts a call-until-exception interface to an iterator interface.
|
540 |
+
Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
|
541 |
+
to end the loop.
|
542 |
+
|
543 |
+
>>> l = [0, 1, 2]
|
544 |
+
>>> list(iter_except(l.pop, IndexError))
|
545 |
+
[2, 1, 0]
|
546 |
+
|
547 |
+
Multiple exceptions can be specified as a stopping condition:
|
548 |
+
|
549 |
+
>>> l = [1, 2, 3, '...', 4, 5, 6]
|
550 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
551 |
+
[7, 6, 5]
|
552 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
553 |
+
[4, 3, 2]
|
554 |
+
>>> list(iter_except(lambda: 1 + l.pop(), (IndexError, TypeError)))
|
555 |
+
[]
|
556 |
+
|
557 |
+
"""
|
558 |
+
try:
|
559 |
+
if first is not None:
|
560 |
+
yield first()
|
561 |
+
while 1:
|
562 |
+
yield func()
|
563 |
+
except exception:
|
564 |
+
pass
|
565 |
+
|
566 |
+
|
567 |
+
def first_true(iterable, default=None, pred=None):
|
568 |
+
"""
|
569 |
+
Returns the first true value in the iterable.
|
570 |
+
|
571 |
+
If no true value is found, returns *default*
|
572 |
+
|
573 |
+
If *pred* is not None, returns the first item for which
|
574 |
+
``pred(item) == True`` .
|
575 |
+
|
576 |
+
>>> first_true(range(10))
|
577 |
+
1
|
578 |
+
>>> first_true(range(10), pred=lambda x: x > 5)
|
579 |
+
6
|
580 |
+
>>> first_true(range(10), default='missing', pred=lambda x: x > 9)
|
581 |
+
'missing'
|
582 |
+
|
583 |
+
"""
|
584 |
+
return next(filter(pred, iterable), default)
|
585 |
+
|
586 |
+
|
587 |
+
def random_product(*args, repeat=1):
|
588 |
+
"""Draw an item at random from each of the input iterables.
|
589 |
+
|
590 |
+
>>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
|
591 |
+
('c', 3, 'Z')
|
592 |
+
|
593 |
+
If *repeat* is provided as a keyword argument, that many items will be
|
594 |
+
drawn from each iterable.
|
595 |
+
|
596 |
+
>>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
|
597 |
+
('a', 2, 'd', 3)
|
598 |
+
|
599 |
+
This equivalent to taking a random selection from
|
600 |
+
``itertools.product(*args, **kwarg)``.
|
601 |
+
|
602 |
+
"""
|
603 |
+
pools = [tuple(pool) for pool in args] * repeat
|
604 |
+
return tuple(choice(pool) for pool in pools)
|
605 |
+
|
606 |
+
|
607 |
+
def random_permutation(iterable, r=None):
|
608 |
+
"""Return a random *r* length permutation of the elements in *iterable*.
|
609 |
+
|
610 |
+
If *r* is not specified or is ``None``, then *r* defaults to the length of
|
611 |
+
*iterable*.
|
612 |
+
|
613 |
+
>>> random_permutation(range(5)) # doctest:+SKIP
|
614 |
+
(3, 4, 0, 1, 2)
|
615 |
+
|
616 |
+
This equivalent to taking a random selection from
|
617 |
+
``itertools.permutations(iterable, r)``.
|
618 |
+
|
619 |
+
"""
|
620 |
+
pool = tuple(iterable)
|
621 |
+
r = len(pool) if r is None else r
|
622 |
+
return tuple(sample(pool, r))
|
623 |
+
|
624 |
+
|
625 |
+
def random_combination(iterable, r):
|
626 |
+
"""Return a random *r* length subsequence of the elements in *iterable*.
|
627 |
+
|
628 |
+
>>> random_combination(range(5), 3) # doctest:+SKIP
|
629 |
+
(2, 3, 4)
|
630 |
+
|
631 |
+
This equivalent to taking a random selection from
|
632 |
+
``itertools.combinations(iterable, r)``.
|
633 |
+
|
634 |
+
"""
|
635 |
+
pool = tuple(iterable)
|
636 |
+
n = len(pool)
|
637 |
+
indices = sorted(sample(range(n), r))
|
638 |
+
return tuple(pool[i] for i in indices)
|
639 |
+
|
640 |
+
|
641 |
+
def random_combination_with_replacement(iterable, r):
|
642 |
+
"""Return a random *r* length subsequence of elements in *iterable*,
|
643 |
+
allowing individual elements to be repeated.
|
644 |
+
|
645 |
+
>>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
|
646 |
+
(0, 0, 1, 2, 2)
|
647 |
+
|
648 |
+
This equivalent to taking a random selection from
|
649 |
+
``itertools.combinations_with_replacement(iterable, r)``.
|
650 |
+
|
651 |
+
"""
|
652 |
+
pool = tuple(iterable)
|
653 |
+
n = len(pool)
|
654 |
+
indices = sorted(randrange(n) for i in range(r))
|
655 |
+
return tuple(pool[i] for i in indices)
|
656 |
+
|
657 |
+
|
658 |
+
def nth_combination(iterable, r, index):
|
659 |
+
"""Equivalent to ``list(combinations(iterable, r))[index]``.
|
660 |
+
|
661 |
+
The subsequences of *iterable* that are of length *r* can be ordered
|
662 |
+
lexicographically. :func:`nth_combination` computes the subsequence at
|
663 |
+
sort position *index* directly, without computing the previous
|
664 |
+
subsequences.
|
665 |
+
|
666 |
+
>>> nth_combination(range(5), 3, 5)
|
667 |
+
(0, 3, 4)
|
668 |
+
|
669 |
+
``ValueError`` will be raised If *r* is negative or greater than the length
|
670 |
+
of *iterable*.
|
671 |
+
``IndexError`` will be raised if the given *index* is invalid.
|
672 |
+
"""
|
673 |
+
pool = tuple(iterable)
|
674 |
+
n = len(pool)
|
675 |
+
if (r < 0) or (r > n):
|
676 |
+
raise ValueError
|
677 |
+
|
678 |
+
c = 1
|
679 |
+
k = min(r, n - r)
|
680 |
+
for i in range(1, k + 1):
|
681 |
+
c = c * (n - k + i) // i
|
682 |
+
|
683 |
+
if index < 0:
|
684 |
+
index += c
|
685 |
+
|
686 |
+
if (index < 0) or (index >= c):
|
687 |
+
raise IndexError
|
688 |
+
|
689 |
+
result = []
|
690 |
+
while r:
|
691 |
+
c, n, r = c * r // n, n - 1, r - 1
|
692 |
+
while index >= c:
|
693 |
+
index -= c
|
694 |
+
c, n = c * (n - r) // n, n - 1
|
695 |
+
result.append(pool[-1 - n])
|
696 |
+
|
697 |
+
return tuple(result)
|
698 |
+
|
699 |
+
|
700 |
+
def prepend(value, iterator):
|
701 |
+
"""Yield *value*, followed by the elements in *iterator*.
|
702 |
+
|
703 |
+
>>> value = '0'
|
704 |
+
>>> iterator = ['1', '2', '3']
|
705 |
+
>>> list(prepend(value, iterator))
|
706 |
+
['0', '1', '2', '3']
|
707 |
+
|
708 |
+
To prepend multiple values, see :func:`itertools.chain`
|
709 |
+
or :func:`value_chain`.
|
710 |
+
|
711 |
+
"""
|
712 |
+
return chain([value], iterator)
|
713 |
+
|
714 |
+
|
715 |
+
def convolve(signal, kernel):
|
716 |
+
"""Convolve the iterable *signal* with the iterable *kernel*.
|
717 |
+
|
718 |
+
>>> signal = (1, 2, 3, 4, 5)
|
719 |
+
>>> kernel = [3, 2, 1]
|
720 |
+
>>> list(convolve(signal, kernel))
|
721 |
+
[3, 8, 14, 20, 26, 14, 5]
|
722 |
+
|
723 |
+
Note: the input arguments are not interchangeable, as the *kernel*
|
724 |
+
is immediately consumed and stored.
|
725 |
+
|
726 |
+
"""
|
727 |
+
# This implementation intentionally doesn't match the one in the itertools
|
728 |
+
# documentation.
|
729 |
+
kernel = tuple(kernel)[::-1]
|
730 |
+
n = len(kernel)
|
731 |
+
window = deque([0], maxlen=n) * n
|
732 |
+
for x in chain(signal, repeat(0, n - 1)):
|
733 |
+
window.append(x)
|
734 |
+
yield _sumprod(kernel, window)
|
735 |
+
|
736 |
+
|
737 |
+
def before_and_after(predicate, it):
|
738 |
+
"""A variant of :func:`takewhile` that allows complete access to the
|
739 |
+
remainder of the iterator.
|
740 |
+
|
741 |
+
>>> it = iter('ABCdEfGhI')
|
742 |
+
>>> all_upper, remainder = before_and_after(str.isupper, it)
|
743 |
+
>>> ''.join(all_upper)
|
744 |
+
'ABC'
|
745 |
+
>>> ''.join(remainder) # takewhile() would lose the 'd'
|
746 |
+
'dEfGhI'
|
747 |
+
|
748 |
+
Note that the first iterator must be fully consumed before the second
|
749 |
+
iterator can generate valid results.
|
750 |
+
"""
|
751 |
+
it = iter(it)
|
752 |
+
transition = []
|
753 |
+
|
754 |
+
def true_iterator():
|
755 |
+
for elem in it:
|
756 |
+
if predicate(elem):
|
757 |
+
yield elem
|
758 |
+
else:
|
759 |
+
transition.append(elem)
|
760 |
+
return
|
761 |
+
|
762 |
+
# Note: this is different from itertools recipes to allow nesting
|
763 |
+
# before_and_after remainders into before_and_after again. See tests
|
764 |
+
# for an example.
|
765 |
+
remainder_iterator = chain(transition, it)
|
766 |
+
|
767 |
+
return true_iterator(), remainder_iterator
|
768 |
+
|
769 |
+
|
770 |
+
def triplewise(iterable):
|
771 |
+
"""Return overlapping triplets from *iterable*.
|
772 |
+
|
773 |
+
>>> list(triplewise('ABCDE'))
|
774 |
+
[('A', 'B', 'C'), ('B', 'C', 'D'), ('C', 'D', 'E')]
|
775 |
+
|
776 |
+
"""
|
777 |
+
for (a, _), (b, c) in pairwise(pairwise(iterable)):
|
778 |
+
yield a, b, c
|
779 |
+
|
780 |
+
|
781 |
+
def sliding_window(iterable, n):
|
782 |
+
"""Return a sliding window of width *n* over *iterable*.
|
783 |
+
|
784 |
+
>>> list(sliding_window(range(6), 4))
|
785 |
+
[(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)]
|
786 |
+
|
787 |
+
If *iterable* has fewer than *n* items, then nothing is yielded:
|
788 |
+
|
789 |
+
>>> list(sliding_window(range(3), 4))
|
790 |
+
[]
|
791 |
+
|
792 |
+
For a variant with more features, see :func:`windowed`.
|
793 |
+
"""
|
794 |
+
it = iter(iterable)
|
795 |
+
window = deque(islice(it, n - 1), maxlen=n)
|
796 |
+
for x in it:
|
797 |
+
window.append(x)
|
798 |
+
yield tuple(window)
|
799 |
+
|
800 |
+
|
801 |
+
def subslices(iterable):
|
802 |
+
"""Return all contiguous non-empty subslices of *iterable*.
|
803 |
+
|
804 |
+
>>> list(subslices('ABC'))
|
805 |
+
[['A'], ['A', 'B'], ['A', 'B', 'C'], ['B'], ['B', 'C'], ['C']]
|
806 |
+
|
807 |
+
This is similar to :func:`substrings`, but emits items in a different
|
808 |
+
order.
|
809 |
+
"""
|
810 |
+
seq = list(iterable)
|
811 |
+
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
|
812 |
+
return map(operator.getitem, repeat(seq), slices)
|
813 |
+
|
814 |
+
|
815 |
+
def polynomial_from_roots(roots):
|
816 |
+
"""Compute a polynomial's coefficients from its roots.
|
817 |
+
|
818 |
+
>>> roots = [5, -4, 3] # (x - 5) * (x + 4) * (x - 3)
|
819 |
+
>>> polynomial_from_roots(roots) # x^3 - 4 * x^2 - 17 * x + 60
|
820 |
+
[1, -4, -17, 60]
|
821 |
+
"""
|
822 |
+
factors = zip(repeat(1), map(operator.neg, roots))
|
823 |
+
return list(reduce(convolve, factors, [1]))
|
824 |
+
|
825 |
+
|
826 |
+
def iter_index(iterable, value, start=0, stop=None):
|
827 |
+
"""Yield the index of each place in *iterable* that *value* occurs,
|
828 |
+
beginning with index *start* and ending before index *stop*.
|
829 |
+
|
830 |
+
See :func:`locate` for a more general means of finding the indexes
|
831 |
+
associated with particular values.
|
832 |
+
|
833 |
+
>>> list(iter_index('AABCADEAF', 'A'))
|
834 |
+
[0, 1, 4, 7]
|
835 |
+
>>> list(iter_index('AABCADEAF', 'A', 1)) # start index is inclusive
|
836 |
+
[1, 4, 7]
|
837 |
+
>>> list(iter_index('AABCADEAF', 'A', 1, 7)) # stop index is not inclusive
|
838 |
+
[1, 4]
|
839 |
+
"""
|
840 |
+
seq_index = getattr(iterable, 'index', None)
|
841 |
+
if seq_index is None:
|
842 |
+
# Slow path for general iterables
|
843 |
+
it = islice(iterable, start, stop)
|
844 |
+
for i, element in enumerate(it, start):
|
845 |
+
if element is value or element == value:
|
846 |
+
yield i
|
847 |
+
else:
|
848 |
+
# Fast path for sequences
|
849 |
+
stop = len(iterable) if stop is None else stop
|
850 |
+
i = start - 1
|
851 |
+
try:
|
852 |
+
while True:
|
853 |
+
yield (i := seq_index(value, i + 1, stop))
|
854 |
+
except ValueError:
|
855 |
+
pass
|
856 |
+
|
857 |
+
|
858 |
+
def sieve(n):
|
859 |
+
"""Yield the primes less than n.
|
860 |
+
|
861 |
+
>>> list(sieve(30))
|
862 |
+
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
|
863 |
+
"""
|
864 |
+
if n > 2:
|
865 |
+
yield 2
|
866 |
+
start = 3
|
867 |
+
data = bytearray((0, 1)) * (n // 2)
|
868 |
+
limit = math.isqrt(n) + 1
|
869 |
+
for p in iter_index(data, 1, start, limit):
|
870 |
+
yield from iter_index(data, 1, start, p * p)
|
871 |
+
data[p * p : n : p + p] = bytes(len(range(p * p, n, p + p)))
|
872 |
+
start = p * p
|
873 |
+
yield from iter_index(data, 1, start)
|
874 |
+
|
875 |
+
|
876 |
+
def _batched(iterable, n, *, strict=False):
|
877 |
+
"""Batch data into tuples of length *n*. If the number of items in
|
878 |
+
*iterable* is not divisible by *n*:
|
879 |
+
* The last batch will be shorter if *strict* is ``False``.
|
880 |
+
* :exc:`ValueError` will be raised if *strict* is ``True``.
|
881 |
+
|
882 |
+
>>> list(batched('ABCDEFG', 3))
|
883 |
+
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G',)]
|
884 |
+
|
885 |
+
On Python 3.13 and above, this is an alias for :func:`itertools.batched`.
|
886 |
+
"""
|
887 |
+
if n < 1:
|
888 |
+
raise ValueError('n must be at least one')
|
889 |
+
it = iter(iterable)
|
890 |
+
while batch := tuple(islice(it, n)):
|
891 |
+
if strict and len(batch) != n:
|
892 |
+
raise ValueError('batched(): incomplete batch')
|
893 |
+
yield batch
|
894 |
+
|
895 |
+
|
896 |
+
if hexversion >= 0x30D00A2:
|
897 |
+
from itertools import batched as itertools_batched
|
898 |
+
|
899 |
+
def batched(iterable, n, *, strict=False):
|
900 |
+
return itertools_batched(iterable, n, strict=strict)
|
901 |
+
|
902 |
+
else:
|
903 |
+
batched = _batched
|
904 |
+
|
905 |
+
batched.__doc__ = _batched.__doc__
|
906 |
+
|
907 |
+
|
908 |
+
def transpose(it):
|
909 |
+
"""Swap the rows and columns of the input matrix.
|
910 |
+
|
911 |
+
>>> list(transpose([(1, 2, 3), (11, 22, 33)]))
|
912 |
+
[(1, 11), (2, 22), (3, 33)]
|
913 |
+
|
914 |
+
The caller should ensure that the dimensions of the input are compatible.
|
915 |
+
If the input is empty, no output will be produced.
|
916 |
+
"""
|
917 |
+
return _zip_strict(*it)
|
918 |
+
|
919 |
+
|
920 |
+
def reshape(matrix, cols):
|
921 |
+
"""Reshape the 2-D input *matrix* to have a column count given by *cols*.
|
922 |
+
|
923 |
+
>>> matrix = [(0, 1), (2, 3), (4, 5)]
|
924 |
+
>>> cols = 3
|
925 |
+
>>> list(reshape(matrix, cols))
|
926 |
+
[(0, 1, 2), (3, 4, 5)]
|
927 |
+
"""
|
928 |
+
return batched(chain.from_iterable(matrix), cols)
|
929 |
+
|
930 |
+
|
931 |
+
def matmul(m1, m2):
|
932 |
+
"""Multiply two matrices.
|
933 |
+
|
934 |
+
>>> list(matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]))
|
935 |
+
[(49, 80), (41, 60)]
|
936 |
+
|
937 |
+
The caller should ensure that the dimensions of the input matrices are
|
938 |
+
compatible with each other.
|
939 |
+
"""
|
940 |
+
n = len(m2[0])
|
941 |
+
return batched(starmap(_sumprod, product(m1, transpose(m2))), n)
|
942 |
+
|
943 |
+
|
944 |
+
def factor(n):
|
945 |
+
"""Yield the prime factors of n.
|
946 |
+
|
947 |
+
>>> list(factor(360))
|
948 |
+
[2, 2, 2, 3, 3, 5]
|
949 |
+
"""
|
950 |
+
for prime in sieve(math.isqrt(n) + 1):
|
951 |
+
while not n % prime:
|
952 |
+
yield prime
|
953 |
+
n //= prime
|
954 |
+
if n == 1:
|
955 |
+
return
|
956 |
+
if n > 1:
|
957 |
+
yield n
|
958 |
+
|
959 |
+
|
960 |
+
def polynomial_eval(coefficients, x):
|
961 |
+
"""Evaluate a polynomial at a specific value.
|
962 |
+
|
963 |
+
Example: evaluating x^3 - 4 * x^2 - 17 * x + 60 at x = 2.5:
|
964 |
+
|
965 |
+
>>> coefficients = [1, -4, -17, 60]
|
966 |
+
>>> x = 2.5
|
967 |
+
>>> polynomial_eval(coefficients, x)
|
968 |
+
8.125
|
969 |
+
"""
|
970 |
+
n = len(coefficients)
|
971 |
+
if n == 0:
|
972 |
+
return x * 0 # coerce zero to the type of x
|
973 |
+
powers = map(pow, repeat(x), reversed(range(n)))
|
974 |
+
return _sumprod(coefficients, powers)
|
975 |
+
|
976 |
+
|
977 |
+
def sum_of_squares(it):
|
978 |
+
"""Return the sum of the squares of the input values.
|
979 |
+
|
980 |
+
>>> sum_of_squares([10, 20, 30])
|
981 |
+
1400
|
982 |
+
"""
|
983 |
+
return _sumprod(*tee(it))
|
984 |
+
|
985 |
+
|
986 |
+
def polynomial_derivative(coefficients):
|
987 |
+
"""Compute the first derivative of a polynomial.
|
988 |
+
|
989 |
+
Example: evaluating the derivative of x^3 - 4 * x^2 - 17 * x + 60
|
990 |
+
|
991 |
+
>>> coefficients = [1, -4, -17, 60]
|
992 |
+
>>> derivative_coefficients = polynomial_derivative(coefficients)
|
993 |
+
>>> derivative_coefficients
|
994 |
+
[3, -8, -17]
|
995 |
+
"""
|
996 |
+
n = len(coefficients)
|
997 |
+
powers = reversed(range(1, n))
|
998 |
+
return list(map(operator.mul, coefficients, powers))
|
999 |
+
|
1000 |
+
|
1001 |
+
def totient(n):
|
1002 |
+
"""Return the count of natural numbers up to *n* that are coprime with *n*.
|
1003 |
+
|
1004 |
+
>>> totient(9)
|
1005 |
+
6
|
1006 |
+
>>> totient(12)
|
1007 |
+
4
|
1008 |
+
"""
|
1009 |
+
for p in unique_justseen(factor(n)):
|
1010 |
+
n = n // p * (p - 1)
|
1011 |
+
|
1012 |
+
return n
|
env-llmeval/lib/python3.10/site-packages/more_itertools/recipes.pyi
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Stubs for more_itertools.recipes"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
Callable,
|
7 |
+
Iterable,
|
8 |
+
Iterator,
|
9 |
+
overload,
|
10 |
+
Sequence,
|
11 |
+
Type,
|
12 |
+
TypeVar,
|
13 |
+
)
|
14 |
+
|
15 |
+
# Type and type variable definitions
|
16 |
+
_T = TypeVar('_T')
|
17 |
+
_T1 = TypeVar('_T1')
|
18 |
+
_T2 = TypeVar('_T2')
|
19 |
+
_U = TypeVar('_U')
|
20 |
+
|
21 |
+
def take(n: int, iterable: Iterable[_T]) -> list[_T]: ...
|
22 |
+
def tabulate(
|
23 |
+
function: Callable[[int], _T], start: int = ...
|
24 |
+
) -> Iterator[_T]: ...
|
25 |
+
def tail(n: int, iterable: Iterable[_T]) -> Iterator[_T]: ...
|
26 |
+
def consume(iterator: Iterable[_T], n: int | None = ...) -> None: ...
|
27 |
+
@overload
|
28 |
+
def nth(iterable: Iterable[_T], n: int) -> _T | None: ...
|
29 |
+
@overload
|
30 |
+
def nth(iterable: Iterable[_T], n: int, default: _U) -> _T | _U: ...
|
31 |
+
def all_equal(iterable: Iterable[_T]) -> bool: ...
|
32 |
+
def quantify(
|
33 |
+
iterable: Iterable[_T], pred: Callable[[_T], bool] = ...
|
34 |
+
) -> int: ...
|
35 |
+
def pad_none(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
|
36 |
+
def padnone(iterable: Iterable[_T]) -> Iterator[_T | None]: ...
|
37 |
+
def ncycles(iterable: Iterable[_T], n: int) -> Iterator[_T]: ...
|
38 |
+
def dotproduct(vec1: Iterable[_T1], vec2: Iterable[_T2]) -> Any: ...
|
39 |
+
def flatten(listOfLists: Iterable[Iterable[_T]]) -> Iterator[_T]: ...
|
40 |
+
def repeatfunc(
|
41 |
+
func: Callable[..., _U], times: int | None = ..., *args: Any
|
42 |
+
) -> Iterator[_U]: ...
|
43 |
+
def pairwise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T]]: ...
|
44 |
+
def grouper(
|
45 |
+
iterable: Iterable[_T],
|
46 |
+
n: int,
|
47 |
+
incomplete: str = ...,
|
48 |
+
fillvalue: _U = ...,
|
49 |
+
) -> Iterator[tuple[_T | _U, ...]]: ...
|
50 |
+
def roundrobin(*iterables: Iterable[_T]) -> Iterator[_T]: ...
|
51 |
+
def partition(
|
52 |
+
pred: Callable[[_T], object] | None, iterable: Iterable[_T]
|
53 |
+
) -> tuple[Iterator[_T], Iterator[_T]]: ...
|
54 |
+
def powerset(iterable: Iterable[_T]) -> Iterator[tuple[_T, ...]]: ...
|
55 |
+
def unique_everseen(
|
56 |
+
iterable: Iterable[_T], key: Callable[[_T], _U] | None = ...
|
57 |
+
) -> Iterator[_T]: ...
|
58 |
+
def unique_justseen(
|
59 |
+
iterable: Iterable[_T], key: Callable[[_T], object] | None = ...
|
60 |
+
) -> Iterator[_T]: ...
|
61 |
+
@overload
|
62 |
+
def iter_except(
|
63 |
+
func: Callable[[], _T],
|
64 |
+
exception: Type[BaseException] | tuple[Type[BaseException], ...],
|
65 |
+
first: None = ...,
|
66 |
+
) -> Iterator[_T]: ...
|
67 |
+
@overload
|
68 |
+
def iter_except(
|
69 |
+
func: Callable[[], _T],
|
70 |
+
exception: Type[BaseException] | tuple[Type[BaseException], ...],
|
71 |
+
first: Callable[[], _U],
|
72 |
+
) -> Iterator[_T | _U]: ...
|
73 |
+
@overload
|
74 |
+
def first_true(
|
75 |
+
iterable: Iterable[_T], *, pred: Callable[[_T], object] | None = ...
|
76 |
+
) -> _T | None: ...
|
77 |
+
@overload
|
78 |
+
def first_true(
|
79 |
+
iterable: Iterable[_T],
|
80 |
+
default: _U,
|
81 |
+
pred: Callable[[_T], object] | None = ...,
|
82 |
+
) -> _T | _U: ...
|
83 |
+
def random_product(
|
84 |
+
*args: Iterable[_T], repeat: int = ...
|
85 |
+
) -> tuple[_T, ...]: ...
|
86 |
+
def random_permutation(
|
87 |
+
iterable: Iterable[_T], r: int | None = ...
|
88 |
+
) -> tuple[_T, ...]: ...
|
89 |
+
def random_combination(iterable: Iterable[_T], r: int) -> tuple[_T, ...]: ...
|
90 |
+
def random_combination_with_replacement(
|
91 |
+
iterable: Iterable[_T], r: int
|
92 |
+
) -> tuple[_T, ...]: ...
|
93 |
+
def nth_combination(
|
94 |
+
iterable: Iterable[_T], r: int, index: int
|
95 |
+
) -> tuple[_T, ...]: ...
|
96 |
+
def prepend(value: _T, iterator: Iterable[_U]) -> Iterator[_T | _U]: ...
|
97 |
+
def convolve(signal: Iterable[_T], kernel: Iterable[_T]) -> Iterator[_T]: ...
|
98 |
+
def before_and_after(
|
99 |
+
predicate: Callable[[_T], bool], it: Iterable[_T]
|
100 |
+
) -> tuple[Iterator[_T], Iterator[_T]]: ...
|
101 |
+
def triplewise(iterable: Iterable[_T]) -> Iterator[tuple[_T, _T, _T]]: ...
|
102 |
+
def sliding_window(
|
103 |
+
iterable: Iterable[_T], n: int
|
104 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
105 |
+
def subslices(iterable: Iterable[_T]) -> Iterator[list[_T]]: ...
|
106 |
+
def polynomial_from_roots(roots: Sequence[_T]) -> list[_T]: ...
|
107 |
+
def iter_index(
|
108 |
+
iterable: Iterable[_T],
|
109 |
+
value: Any,
|
110 |
+
start: int | None = ...,
|
111 |
+
stop: int | None = ...,
|
112 |
+
) -> Iterator[int]: ...
|
113 |
+
def sieve(n: int) -> Iterator[int]: ...
|
114 |
+
def batched(
|
115 |
+
iterable: Iterable[_T], n: int, *, strict: bool = False
|
116 |
+
) -> Iterator[tuple[_T]]: ...
|
117 |
+
def transpose(
|
118 |
+
it: Iterable[Iterable[_T]],
|
119 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
120 |
+
def reshape(
|
121 |
+
matrix: Iterable[Iterable[_T]], cols: int
|
122 |
+
) -> Iterator[tuple[_T, ...]]: ...
|
123 |
+
def matmul(m1: Sequence[_T], m2: Sequence[_T]) -> Iterator[tuple[_T]]: ...
|
124 |
+
def factor(n: int) -> Iterator[int]: ...
|
125 |
+
def polynomial_eval(coefficients: Sequence[_T], x: _U) -> _U: ...
|
126 |
+
def sum_of_squares(it: Iterable[_T]) -> _T: ...
|
127 |
+
def polynomial_derivative(coefficients: Sequence[_T]) -> list[_T]: ...
|
128 |
+
def totient(n: int) -> int: ...
|
env-llmeval/lib/python3.10/site-packages/multidict/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Multidict implementation.
|
2 |
+
|
3 |
+
HTTP Headers and URL query string require specific data structure:
|
4 |
+
multidict. It behaves mostly like a dict but it can have
|
5 |
+
several values for the same key.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from ._abc import MultiMapping, MutableMultiMapping
|
9 |
+
from ._compat import USE_EXTENSIONS
|
10 |
+
|
11 |
+
__all__ = (
|
12 |
+
"MultiMapping",
|
13 |
+
"MutableMultiMapping",
|
14 |
+
"MultiDictProxy",
|
15 |
+
"CIMultiDictProxy",
|
16 |
+
"MultiDict",
|
17 |
+
"CIMultiDict",
|
18 |
+
"upstr",
|
19 |
+
"istr",
|
20 |
+
"getversion",
|
21 |
+
)
|
22 |
+
|
23 |
+
__version__ = "6.0.5"
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
if not USE_EXTENSIONS:
|
28 |
+
raise ImportError
|
29 |
+
from ._multidict import (
|
30 |
+
CIMultiDict,
|
31 |
+
CIMultiDictProxy,
|
32 |
+
MultiDict,
|
33 |
+
MultiDictProxy,
|
34 |
+
getversion,
|
35 |
+
istr,
|
36 |
+
)
|
37 |
+
except ImportError: # pragma: no cover
|
38 |
+
from ._multidict_py import (
|
39 |
+
CIMultiDict,
|
40 |
+
CIMultiDictProxy,
|
41 |
+
MultiDict,
|
42 |
+
MultiDictProxy,
|
43 |
+
getversion,
|
44 |
+
istr,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
upstr = istr
|
env-llmeval/lib/python3.10/site-packages/multidict/__init__.pyi
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
from typing import (
|
3 |
+
Generic,
|
4 |
+
Iterable,
|
5 |
+
Iterator,
|
6 |
+
Mapping,
|
7 |
+
MutableMapping,
|
8 |
+
TypeVar,
|
9 |
+
overload,
|
10 |
+
)
|
11 |
+
|
12 |
+
class istr(str): ...
|
13 |
+
|
14 |
+
upstr = istr
|
15 |
+
|
16 |
+
_S = str | istr
|
17 |
+
|
18 |
+
_T = TypeVar("_T")
|
19 |
+
|
20 |
+
_T_co = TypeVar("_T_co", covariant=True)
|
21 |
+
|
22 |
+
_D = TypeVar("_D")
|
23 |
+
|
24 |
+
class MultiMapping(Mapping[_S, _T_co]):
|
25 |
+
@overload
|
26 |
+
@abc.abstractmethod
|
27 |
+
def getall(self, key: _S) -> list[_T_co]: ...
|
28 |
+
@overload
|
29 |
+
@abc.abstractmethod
|
30 |
+
def getall(self, key: _S, default: _D) -> list[_T_co] | _D: ...
|
31 |
+
@overload
|
32 |
+
@abc.abstractmethod
|
33 |
+
def getone(self, key: _S) -> _T_co: ...
|
34 |
+
@overload
|
35 |
+
@abc.abstractmethod
|
36 |
+
def getone(self, key: _S, default: _D) -> _T_co | _D: ...
|
37 |
+
|
38 |
+
_Arg = (
|
39 |
+
Mapping[str, _T]
|
40 |
+
| Mapping[istr, _T]
|
41 |
+
| dict[str, _T]
|
42 |
+
| dict[istr, _T]
|
43 |
+
| MultiMapping[_T]
|
44 |
+
| Iterable[tuple[str, _T]]
|
45 |
+
| Iterable[tuple[istr, _T]]
|
46 |
+
)
|
47 |
+
|
48 |
+
class MutableMultiMapping(MultiMapping[_T], MutableMapping[_S, _T], Generic[_T]):
|
49 |
+
@abc.abstractmethod
|
50 |
+
def add(self, key: _S, value: _T) -> None: ...
|
51 |
+
@abc.abstractmethod
|
52 |
+
def extend(self, arg: _Arg[_T] = ..., **kwargs: _T) -> None: ...
|
53 |
+
@overload
|
54 |
+
@abc.abstractmethod
|
55 |
+
def popone(self, key: _S) -> _T: ...
|
56 |
+
@overload
|
57 |
+
@abc.abstractmethod
|
58 |
+
def popone(self, key: _S, default: _D) -> _T | _D: ...
|
59 |
+
@overload
|
60 |
+
@abc.abstractmethod
|
61 |
+
def popall(self, key: _S) -> list[_T]: ...
|
62 |
+
@overload
|
63 |
+
@abc.abstractmethod
|
64 |
+
def popall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
65 |
+
|
66 |
+
class MultiDict(MutableMultiMapping[_T], Generic[_T]):
|
67 |
+
def __init__(self, arg: _Arg[_T] = ..., **kwargs: _T) -> None: ...
|
68 |
+
def copy(self) -> MultiDict[_T]: ...
|
69 |
+
def __getitem__(self, k: _S) -> _T: ...
|
70 |
+
def __setitem__(self, k: _S, v: _T) -> None: ...
|
71 |
+
def __delitem__(self, v: _S) -> None: ...
|
72 |
+
def __iter__(self) -> Iterator[_S]: ...
|
73 |
+
def __len__(self) -> int: ...
|
74 |
+
@overload
|
75 |
+
def getall(self, key: _S) -> list[_T]: ...
|
76 |
+
@overload
|
77 |
+
def getall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
78 |
+
@overload
|
79 |
+
def getone(self, key: _S) -> _T: ...
|
80 |
+
@overload
|
81 |
+
def getone(self, key: _S, default: _D) -> _T | _D: ...
|
82 |
+
def add(self, key: _S, value: _T) -> None: ...
|
83 |
+
def extend(self, arg: _Arg[_T] = ..., **kwargs: _T) -> None: ...
|
84 |
+
@overload
|
85 |
+
def popone(self, key: _S) -> _T: ...
|
86 |
+
@overload
|
87 |
+
def popone(self, key: _S, default: _D) -> _T | _D: ...
|
88 |
+
@overload
|
89 |
+
def popall(self, key: _S) -> list[_T]: ...
|
90 |
+
@overload
|
91 |
+
def popall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
92 |
+
|
93 |
+
class CIMultiDict(MutableMultiMapping[_T], Generic[_T]):
|
94 |
+
def __init__(self, arg: _Arg[_T] = ..., **kwargs: _T) -> None: ...
|
95 |
+
def copy(self) -> CIMultiDict[_T]: ...
|
96 |
+
def __getitem__(self, k: _S) -> _T: ...
|
97 |
+
def __setitem__(self, k: _S, v: _T) -> None: ...
|
98 |
+
def __delitem__(self, v: _S) -> None: ...
|
99 |
+
def __iter__(self) -> Iterator[_S]: ...
|
100 |
+
def __len__(self) -> int: ...
|
101 |
+
@overload
|
102 |
+
def getall(self, key: _S) -> list[_T]: ...
|
103 |
+
@overload
|
104 |
+
def getall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
105 |
+
@overload
|
106 |
+
def getone(self, key: _S) -> _T: ...
|
107 |
+
@overload
|
108 |
+
def getone(self, key: _S, default: _D) -> _T | _D: ...
|
109 |
+
def add(self, key: _S, value: _T) -> None: ...
|
110 |
+
def extend(self, arg: _Arg[_T] = ..., **kwargs: _T) -> None: ...
|
111 |
+
@overload
|
112 |
+
def popone(self, key: _S) -> _T: ...
|
113 |
+
@overload
|
114 |
+
def popone(self, key: _S, default: _D) -> _T | _D: ...
|
115 |
+
@overload
|
116 |
+
def popall(self, key: _S) -> list[_T]: ...
|
117 |
+
@overload
|
118 |
+
def popall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
119 |
+
|
120 |
+
class MultiDictProxy(MultiMapping[_T], Generic[_T]):
|
121 |
+
def __init__(self, arg: MultiMapping[_T] | MutableMultiMapping[_T]) -> None: ...
|
122 |
+
def copy(self) -> MultiDict[_T]: ...
|
123 |
+
def __getitem__(self, k: _S) -> _T: ...
|
124 |
+
def __iter__(self) -> Iterator[_S]: ...
|
125 |
+
def __len__(self) -> int: ...
|
126 |
+
@overload
|
127 |
+
def getall(self, key: _S) -> list[_T]: ...
|
128 |
+
@overload
|
129 |
+
def getall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
130 |
+
@overload
|
131 |
+
def getone(self, key: _S) -> _T: ...
|
132 |
+
@overload
|
133 |
+
def getone(self, key: _S, default: _D) -> _T | _D: ...
|
134 |
+
|
135 |
+
class CIMultiDictProxy(MultiMapping[_T], Generic[_T]):
|
136 |
+
def __init__(self, arg: MultiMapping[_T] | MutableMultiMapping[_T]) -> None: ...
|
137 |
+
def __getitem__(self, k: _S) -> _T: ...
|
138 |
+
def __iter__(self) -> Iterator[_S]: ...
|
139 |
+
def __len__(self) -> int: ...
|
140 |
+
@overload
|
141 |
+
def getall(self, key: _S) -> list[_T]: ...
|
142 |
+
@overload
|
143 |
+
def getall(self, key: _S, default: _D) -> list[_T] | _D: ...
|
144 |
+
@overload
|
145 |
+
def getone(self, key: _S) -> _T: ...
|
146 |
+
@overload
|
147 |
+
def getone(self, key: _S, default: _D) -> _T | _D: ...
|
148 |
+
def copy(self) -> CIMultiDict[_T]: ...
|
149 |
+
|
150 |
+
def getversion(
|
151 |
+
md: MultiDict[_T] | CIMultiDict[_T] | MultiDictProxy[_T] | CIMultiDictProxy[_T],
|
152 |
+
) -> int: ...
|
env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (857 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_abc.cpython-310.pyc
ADDED
Binary file (1.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_compat.cpython-310.pyc
ADDED
Binary file (466 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_multidict_base.cpython-310.pyc
ADDED
Binary file (3.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/multidict/__pycache__/_multidict_py.cpython-310.pyc
ADDED
Binary file (16.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/multidict/_abc.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import sys
|
3 |
+
import types
|
4 |
+
from collections.abc import Mapping, MutableMapping
|
5 |
+
|
6 |
+
|
7 |
+
class _TypingMeta(abc.ABCMeta):
|
8 |
+
# A fake metaclass to satisfy typing deps in runtime
|
9 |
+
# basically MultiMapping[str] and other generic-like type instantiations
|
10 |
+
# are emulated.
|
11 |
+
# Note: real type hints are provided by __init__.pyi stub file
|
12 |
+
if sys.version_info >= (3, 9):
|
13 |
+
|
14 |
+
def __getitem__(self, key):
|
15 |
+
return types.GenericAlias(self, key)
|
16 |
+
|
17 |
+
else:
|
18 |
+
|
19 |
+
def __getitem__(self, key):
|
20 |
+
return self
|
21 |
+
|
22 |
+
|
23 |
+
class MultiMapping(Mapping, metaclass=_TypingMeta):
|
24 |
+
@abc.abstractmethod
|
25 |
+
def getall(self, key, default=None):
|
26 |
+
raise KeyError
|
27 |
+
|
28 |
+
@abc.abstractmethod
|
29 |
+
def getone(self, key, default=None):
|
30 |
+
raise KeyError
|
31 |
+
|
32 |
+
|
33 |
+
class MutableMultiMapping(MultiMapping, MutableMapping):
|
34 |
+
@abc.abstractmethod
|
35 |
+
def add(self, key, value):
|
36 |
+
raise NotImplementedError
|
37 |
+
|
38 |
+
@abc.abstractmethod
|
39 |
+
def extend(self, *args, **kwargs):
|
40 |
+
raise NotImplementedError
|
41 |
+
|
42 |
+
@abc.abstractmethod
|
43 |
+
def popone(self, key, default=None):
|
44 |
+
raise KeyError
|
45 |
+
|
46 |
+
@abc.abstractmethod
|
47 |
+
def popall(self, key, default=None):
|
48 |
+
raise KeyError
|
env-llmeval/lib/python3.10/site-packages/multidict/_compat.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
NO_EXTENSIONS = bool(os.environ.get("MULTIDICT_NO_EXTENSIONS"))
|
5 |
+
|
6 |
+
PYPY = platform.python_implementation() == "PyPy"
|
7 |
+
|
8 |
+
USE_EXTENSIONS = not NO_EXTENSIONS and not PYPY
|
9 |
+
|
10 |
+
if USE_EXTENSIONS:
|
11 |
+
try:
|
12 |
+
from . import _multidict # noqa
|
13 |
+
except ImportError:
|
14 |
+
USE_EXTENSIONS = False
|