diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..57e39b6e1fa66085b4571324ee61e35468204b7e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__init__.py @@ -0,0 +1,76 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_clap": [ + "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", + "ClapAudioConfig", + "ClapConfig", + "ClapTextConfig", + ], + "processing_clap": ["ClapProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_clap"] = [ + "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", + "ClapModel", + "ClapPreTrainedModel", + "ClapTextModel", + "ClapTextModelWithProjection", + "ClapAudioModel", + "ClapAudioModelWithProjection", + ] + _import_structure["feature_extraction_clap"] = ["ClapFeatureExtractor"] + +if TYPE_CHECKING: + from .configuration_clap import ( + CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, + ClapAudioConfig, + ClapConfig, + ClapTextConfig, + ) + from .processing_clap import ClapProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_clap import ClapFeatureExtractor + from .modeling_clap import ( + CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, + ClapAudioModel, + ClapAudioModelWithProjection, + ClapModel, + ClapPreTrainedModel, + ClapTextModel, + ClapTextModelWithProjection, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f2eda51150adda1dac7bb104bbe81735c9835a0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..42709f66f9009a7dd8ec412d97b11ab015e99952 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/configuration_clap.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..841784b6cb8fd131691679752018849077274f2b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/convert_clap_original_pytorch_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0cc0b952d7ea572ab5fe37e0d22f87213baad280 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/feature_extraction_clap.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a32917e39edbd02be27dc4dcf4df75820e260176 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/modeling_clap.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..269cb8b61f727bb6fc56faa0fc3f855d977b6761 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/__pycache__/processing_clap.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..0a36402249e21096c1a65e68de77c1a4bab73028 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/configuration_clap.py @@ -0,0 +1,427 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" CLAP model configuration""" + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class ClapTextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the CLAP + [calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`ClapTextModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`, + `"relu"`, `"silu"` and `"relu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`]. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + projection_dim (`int`, *optional*, defaults to 512) + Dimension of the projection head of the `ClapTextModelWithProjection`. + + Examples: + + ```python + >>> from transformers import ClapTextConfig, ClapTextModel + + >>> # Initializing a CLAP text configuration + >>> configuration = ClapTextConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = ClapTextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clap_text_model" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=514, + type_vocab_size=1, + initializer_factor=1.0, + layer_norm_eps=1e-12, + projection_dim=512, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + position_embedding_type="absolute", + use_cache=True, + projection_hidden_act="relu", + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_factor = initializer_factor + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache + self.projection_hidden_act = projection_hidden_act + self.projection_dim = projection_dim + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the text config dict if we are loading from ClapConfig + if config_dict.get("model_type") == "clap": + config_dict = config_dict["text_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class ClapAudioConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a + CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP + [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + window_size (`int`, *optional*, defaults to 8): + Image size of the spectrogram + num_mel_bins (`int`, *optional*, defaults to 64): + Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class. + spec_size (`int`, *optional*, defaults to 256): + Desired input size of the spectrogram that the model supports. It can be different from the output of the + `ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size` + of the audio models. + hidden_act (`str`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + patch_size (`int`, *optional*, defaults to 4): + Patch size for the audio spectrogram + patch_stride (`list`, *optional*, defaults to `[4, 4]`): + Patch stride for the audio spectrogram + num_classes (`int`, *optional*, defaults to 527): + Number of classes used for the head training + hidden_size (`int`, *optional*, defaults to 768): + Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's + output,which is sent to the projection MLP layer. + projection_dim (`int`, *optional*, defaults to 512): + Hidden size of the projection layer. + depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): + Depths used for the Swin Layers of the audio model + num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`): + Number of attention heads used for the Swin Layers of the audio model + enable_fusion (`bool`, *optional*, defaults to `False`): + Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the + best results. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the encoder. + fusion_type (`[type]`, *optional*): + Fusion type used for the patch fusion. + patch_embed_input_channels (`int`, *optional*, defaults to 1): + Number of channels used for the input spectrogram + flatten_patch_embeds (`bool`, *optional*, defaults to `True`): + Whether or not to flatten the patch embeddings + patch_embeds_hidden_size (`int`, *optional*, defaults to 96): + Hidden size of the patch embeddings. It is used as the number of output channels. + enable_patch_layer_norm (`bool`, *optional*, defaults to `True`): + Whether or not to enable layer normalization for the patch embeddings + drop_path_rate (`float`, *optional*, defaults to 0.0): + Drop path rate for the patch fusion + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether or not to add a bias to the query, key, value projections. + mlp_ratio (`float`, *optional*, defaults to 4.0): + Ratio of the mlp hidden dim to embedding dim. + aff_block_r (`int`, *optional*, defaults to 4): + downsize_ratio used in the AudioFF block + num_hidden_layers (`int`, *optional*, defaults to 4): + Number of hidden layers in the Transformer encoder. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + layer_norm_eps (`[type]`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + + Example: + + ```python + >>> from transformers import ClapAudioConfig, ClapAudioModel + + >>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration + >>> configuration = ClapAudioConfig() + + >>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration + >>> model = ClapAudioModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clap_audio_model" + + def __init__( + self, + window_size=8, + num_mel_bins=64, + spec_size=256, + hidden_act="gelu", + patch_size=4, + patch_stride=[4, 4], + num_classes=527, + hidden_size=768, + projection_dim=512, + depths=[2, 2, 6, 2], + num_attention_heads=[4, 8, 16, 32], + enable_fusion=False, + hidden_dropout_prob=0.1, + fusion_type=None, + patch_embed_input_channels=1, + flatten_patch_embeds=True, + patch_embeds_hidden_size=96, + enable_patch_layer_norm=True, + drop_path_rate=0.0, + attention_probs_dropout_prob=0.0, + qkv_bias=True, + mlp_ratio=4.0, + aff_block_r=4, + num_hidden_layers=4, + projection_hidden_act="relu", + layer_norm_eps=1e-5, + initializer_factor=1.0, + **kwargs, + ): + super().__init__(**kwargs) + self.window_size = window_size + self.num_mel_bins = num_mel_bins + self.spec_size = spec_size + self.patch_size = patch_size + self.patch_stride = patch_stride + self.num_classes = num_classes + self.hidden_size = hidden_size + self.depths = depths + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.window_size = window_size + self.enable_fusion = enable_fusion + self.fusion_type = fusion_type + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.projection_dim = projection_dim + self.flatten_patch_embeds = flatten_patch_embeds + self.patch_embeds_hidden_size = patch_embeds_hidden_size + self.enable_patch_layer_norm = enable_patch_layer_norm + self.drop_path_rate = drop_path_rate + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.qkv_bias = qkv_bias + self.mlp_ratio = mlp_ratio + self.patch_embed_input_channels = patch_embed_input_channels + self.aff_block_r = aff_block_r + self.layer_norm_eps = layer_norm_eps + self.initializer_factor = initializer_factor + self.projection_hidden_act = projection_hidden_act + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the audio config dict if we are loading from ClapConfig + if config_dict.get("model_type") == "clap": + config_dict = config_dict["audio_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class ClapConfig(PretrainedConfig): + r""" + [`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate + a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a + configuration with the defaults will yield a similar configuration to that of the CLAP + [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + text_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`ClapTextConfig`]. + audio_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`ClapAudioConfig`]. + logit_scale_init_value (`float`, *optional*, defaults to 14.29): + The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation. + projection_dim (`int`, *optional*, defaults to 512): + Dimentionality of text and audio projection layers. + projection_hidden_act (`str`, *optional*, defaults to `"relu"`): + Activation function for the projection layers. + initializer_factor (`float`, *optional*, defaults to 1.0): + Factor to scale the initialization of the model weights. + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import ClapConfig, ClapModel + + >>> # Initializing a ClapConfig with laion-ai/base style configuration + >>> configuration = ClapConfig() + + >>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration + >>> model = ClapModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig + >>> from transformers import ClapTextConfig, ClapAudioConfig + + >>> # Initializing a ClapText and ClapAudioConfig configuration + >>> config_text = ClapTextConfig() + >>> config_audio = ClapAudioConfig() + + >>> config = ClapConfig.from_text_audio_configs(config_text, config_audio) + ```""" + + model_type = "clap" + + def __init__( + self, + text_config=None, + audio_config=None, + logit_scale_init_value=(1 / 0.07), + projection_dim=512, + projection_hidden_act="relu", + initializer_factor=1.0, + **kwargs, + ): + super().__init__(**kwargs) + + if text_config is None: + text_config = {} + logger.info("text_config is None. Initializing the ClapTextConfig with default values.") + + if audio_config is None: + audio_config = {} + logger.info("audio_config is None. initializing the ClapAudioConfig with default values.") + + self.text_config = ClapTextConfig(**text_config) + self.audio_config = ClapAudioConfig(**audio_config) + self.text_config.projection_dim = projection_dim + self.audio_config.projection_dim = projection_dim + + self.text_config.projection_hidden_act = projection_hidden_act + self.audio_config.projection_hidden_act = projection_hidden_act + + self.projection_dim = projection_dim + self.projection_hidden_act = projection_hidden_act + self.hidden_size = self.text_config.hidden_size + + self.logit_scale_init_value = logit_scale_init_value + self.initializer_factor = initializer_factor + self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths) + + @classmethod + def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs): + r""" + Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model + configuration. + + Returns: + [`ClapConfig`]: An instance of a configuration object + """ + + return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..d422bc45ab3de00cd6df4de21ff6c7012ebb6559 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/convert_clap_original_pytorch_to_hf.py @@ -0,0 +1,133 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import re + +from laion_clap import CLAP_Module + +from transformers import AutoFeatureExtractor, ClapConfig, ClapModel + + +KEYS_TO_MODIFY_MAPPING = { + "text_branch": "text_model", + "audio_branch": "audio_model.audio_encoder", + "attn": "attention.self", + "self.proj": "output.dense", + "attention.self_mask": "attn_mask", + "mlp.fc1": "intermediate.dense", + "mlp.fc2": "output.dense", + "norm1": "layernorm_before", + "norm2": "layernorm_after", + "bn0": "batch_norm", +} + +processor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") + + +def init_clap(checkpoint_path, model_type, enable_fusion=False): + model = CLAP_Module( + amodel=model_type, + enable_fusion=enable_fusion, + ) + model.load_ckpt(checkpoint_path) + return model + + +def get_config_from_original(clap_model): + audio_config = { + "patch_embeds_hidden_size": clap_model.model.audio_branch.embed_dim, + "depths": clap_model.model.audio_branch.depths, + "hidden_size": clap_model.model.audio_projection[0].in_features, + } + + text_config = {"hidden_size": clap_model.model.text_branch.pooler.dense.in_features} + + return ClapConfig(audio_config=audio_config, text_config=text_config) + + +def rename_state_dict(state_dict): + model_state_dict = {} + + sequential_layers_pattern = r".*sequential.(\d+).*" + text_projection_pattern = r".*_projection.(\d+).*" + + for key, value in state_dict.items(): + # check if any key needs to be modified + for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): + if key_to_modify in key: + key = key.replace(key_to_modify, new_key) + + if re.match(sequential_layers_pattern, key): + # replace sequential layers with list + sequential_layer = re.match(sequential_layers_pattern, key).group(1) + + key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.") + elif re.match(text_projection_pattern, key): + projecton_layer = int(re.match(text_projection_pattern, key).group(1)) + + # Because in CLAP they use `nn.Sequential`... + transformers_projection_layer = 1 if projecton_layer == 0 else 2 + + key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.") + + if "audio" and "qkv" in key: + # split qkv into query key and value + mixed_qkv = value + qkv_dim = mixed_qkv.size(0) // 3 + + query_layer = mixed_qkv[:qkv_dim] + key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] + value_layer = mixed_qkv[qkv_dim * 2 :] + + model_state_dict[key.replace("qkv", "query")] = query_layer + model_state_dict[key.replace("qkv", "key")] = key_layer + model_state_dict[key.replace("qkv", "value")] = value_layer + else: + model_state_dict[key] = value + + return model_state_dict + + +def convert_clap_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, model_type, enable_fusion=False): + clap_model = init_clap(checkpoint_path, model_type, enable_fusion=enable_fusion) + + clap_model.eval() + state_dict = clap_model.model.state_dict() + state_dict = rename_state_dict(state_dict) + + transformers_config = get_config_from_original(clap_model) + transformers_config.audio_config.enable_fusion = enable_fusion + model = ClapModel(transformers_config) + + # ignore the spectrogram embedding layer + model.load_state_dict(state_dict, strict=False) + + model.save_pretrained(pytorch_dump_folder_path) + transformers_config.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") + parser.add_argument("--model_type", default="HTSAT-tiny", type=str, help="Whether to enable fusion or not") + args = parser.parse_args() + + convert_clap_checkpoint( + args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.model_type, args.enable_fusion + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..ce18fedd19b109ee9af3b6c7de964e6a217abeef --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/feature_extraction_clap.py @@ -0,0 +1,363 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for CLAP.""" + + +import copy +from typing import Any, Dict, List, Optional, Union + +import numpy as np +import torch + +from ...audio_utils import mel_filter_bank, spectrogram, window_function +from ...feature_extraction_sequence_utils import SequenceFeatureExtractor +from ...feature_extraction_utils import BatchFeature +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + + +class ClapFeatureExtractor(SequenceFeatureExtractor): + r""" + Constructs a CLAP feature extractor. + + This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains + most of the main methods. Users should refer to this superclass for more information regarding those methods. + + This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the *Short Time + Fourier Transform* (STFT) which should match pytorch's `torch.stft` equivalent. + + Args: + feature_size (`int`, *optional*, defaults to 64): + The feature dimension of the extracted Mel spectrograms. This corresponds to the number of mel filters + (`n_mels`). + sampling_rate (`int`, *optional*, defaults to 48000): + The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). This only serves + to warn users if the audio fed to the feature extractor does not have the same sampling rate. + hop_length (`int`,*optional*, defaults to 480): + Length of the overlaping windows for the STFT used to obtain the Mel Spectrogram. The audio will be split + in smaller `frames` with a step of `hop_length` between each frame. + max_length_s (`int`, *optional*, defaults to 10): + The maximum input length of the model in seconds. This is used to pad the audio. + fft_window_size (`int`, *optional*, defaults to 1024): + Size of the window (in samples) on which the Fourier transform is applied. This controls the frequency + resolution of the spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. + padding_value (`float`, *optional*, defaults to 0.0): + Padding value used to pad the audio. Should correspond to silences. + return_attention_mask (`bool`, *optional*, defaults to `False`): + Whether or not the model should return the attention masks coresponding to the input. + frequency_min (`float`, *optional*, defaults to 0): + The lowest frequency of interest. The STFT will not be computed for values below this. + frequency_max (`float`, *optional*, defaults to 14000): + The highest frequency of interest. The STFT will not be computed for values above this. + top_db (`float`, *optional*): + The highest decibel value used to convert the mel spectrogram to the log scale. For more details see the + `audio_utils.power_to_db` function + truncation (`str`, *optional*, defaults to `"fusion"`): + Truncation pattern for long audio inputs. Two patterns are available: + - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and a + downsampled version of the entire mel spectrogram. + If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a copy + of the original mel obtained from the padded audio. + - `rand_trunc` will select a random crop of the mel spectrogram. + padding (`str`, *optional*, defaults to `"repeatpad"`): + Padding pattern for shorter audio inputs. Three patterns were originally implemented: + - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. + - `repeat`: the audio is repeated and then cut to fit the `max_length` + - `pad`: the audio is padded. + """ + + model_input_names = ["input_features", "is_longer"] + + def __init__( + self, + feature_size=64, + sampling_rate=48_000, + hop_length=480, + max_length_s=10, + fft_window_size=1024, + padding_value=0.0, + return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask + frequency_min: float = 0, + frequency_max: float = 14_000, + top_db: int = None, + truncation: str = "fusion", + padding: str = "repeatpad", + **kwargs, + ): + super().__init__( + feature_size=feature_size, + sampling_rate=sampling_rate, + padding_value=padding_value, + return_attention_mask=return_attention_mask, + **kwargs, + ) + self.top_db = top_db + self.truncation = truncation + self.padding = padding + self.fft_window_size = fft_window_size + self.nb_frequency_bins = (fft_window_size >> 1) + 1 + self.hop_length = hop_length + self.max_length_s = max_length_s + self.nb_max_samples = max_length_s * sampling_rate + self.sampling_rate = sampling_rate + self.frequency_min = frequency_min + self.frequency_max = frequency_max + self.mel_filters = mel_filter_bank( + num_frequency_bins=self.nb_frequency_bins, + num_mel_filters=feature_size, + min_frequency=frequency_min, + max_frequency=frequency_max, + sampling_rate=sampling_rate, + norm=None, + mel_scale="htk", + ) + self.mel_filters_slaney = mel_filter_bank( + num_frequency_bins=self.nb_frequency_bins, + num_mel_filters=feature_size, + min_frequency=frequency_min, + max_frequency=frequency_max, + sampling_rate=sampling_rate, + norm="slaney", + mel_scale="slaney", + ) + + def to_dict(self) -> Dict[str, Any]: + """ + Serializes this instance to a Python dictionary. + + Returns: + `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, excpet for the + mel filter banks, which do not need to be saved or printed as they are too long. + """ + output = copy.deepcopy(self.__dict__) + output["feature_extractor_type"] = self.__class__.__name__ + if "mel_filters" in output: + del output["mel_filters"] + if "mel_filters_slaney" in output: + del output["mel_filters_slaney"] + return output + + def _np_extract_fbank_features(self, waveform: np.array, mel_filters: Optional[np.array] = None) -> np.ndarray: + """ + Compute the log-mel spectrogram of the provided `waveform` using the Hann window. In CLAP, two different filter + banks are used depending on the truncation pattern: + - `self.mel_filters`: they correspond to the default parameters of `torchaudio` which can be obtained from + calling `torchaudio.transforms.MelSpectrogram().mel_scale.fb`. These filters are used when `truncation` + is set to `"fusion"`. + - `self.mel_filteres_slaney` : they correspond to the default parameters of `librosa` which used + `librosa.filters.mel` when computing the mel spectrogram. These filters were only used in the original + implementation when the truncation mode is not `"fusion"`. + """ + log_mel_spectrogram = spectrogram( + waveform, + window_function(self.fft_window_size, "hann"), + frame_length=self.fft_window_size, + hop_length=self.hop_length, + power=2.0, + mel_filters=mel_filters, + log_mel="dB", + ) + return log_mel_spectrogram.T + + def _random_mel_fusion(self, mel, total_frames, chunk_frames): + ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) + if len(ranges[1]) == 0: + # if the audio is too short, we just use the first chunk + ranges[1] = [0] + if len(ranges[2]) == 0: + # if the audio is too short, we just use the first chunk + ranges[2] = [0] + # randomly choose index for each part + idx_front = np.random.choice(ranges[0]) + idx_middle = np.random.choice(ranges[1]) + idx_back = np.random.choice(ranges[2]) + + mel_chunk_front = mel[idx_front : idx_front + chunk_frames, :] + mel_chunk_middle = mel[idx_middle : idx_middle + chunk_frames, :] + mel_chunk_back = mel[idx_back : idx_back + chunk_frames, :] + + mel = torch.tensor(mel[None, None, :]) + mel_shrink = torch.nn.functional.interpolate( + mel, size=[chunk_frames, 64], mode="bilinear", align_corners=False + ) + mel_shrink = mel_shrink[0][0].numpy() + mel_fusion = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0) + return mel_fusion + + def _get_input_mel(self, waveform: np.array, max_length, truncation, padding) -> np.array: + """ + Extracts the mel spectrogram and prepares it for the mode based on the `truncation` and `padding` arguments. + Four different path are possible: + - `truncation="fusion"` and the length of the waveform is greater than the max length: the mel spectrogram + will be computed on the entire audio. 3 random crops and a dowsampled version of the full mel spectrogram + are then stacked together. They will later be used for `feature_fusion`. + - `truncation="rand_trunc"` and the length of the waveform is smaller than the max length: the audio is + padded based on `padding`. + - `truncation="fusion"` and the length of the waveform is smaller than the max length: the audio is padded + based on `padding`, and is repeated `4` times. + - `truncation="rand_trunc"` and the length of the waveform is greater than the max length: the mel + spectrogram will be computed on a random crop of the waveform. + + """ + if waveform.shape[0] > max_length: + if truncation == "rand_trunc": + longer = True + # random crop to max_length (for compatibility) -> this should be handled by self.pad + overflow = len(waveform) - max_length + idx = np.random.randint(0, overflow + 1) + waveform = waveform[idx : idx + max_length] + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] + elif truncation == "fusion": + mel = self._np_extract_fbank_features(waveform, self.mel_filters) + chunk_frames = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed + total_frames = mel.shape[0] + if chunk_frames == total_frames: + # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. + # In this case, we just use the whole audio. + input_mel = np.stack([mel, mel, mel, mel], axis=0) + longer = False + else: + input_mel = self._random_mel_fusion(mel, total_frames, chunk_frames) + longer = True + else: + raise NotImplementedError(f"data_truncating {truncation} not implemented") + + else: + longer = False + # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding + if waveform.shape[0] < max_length: + if padding == "repeat": + n_repeat = int(max_length / len(waveform)) + waveform = np.tile(waveform, n_repeat + 1)[:max_length] + if padding == "repeatpad": + n_repeat = int(max_length / len(waveform)) + waveform = np.tile(waveform, n_repeat) + waveform = np.pad(waveform, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0) + + if truncation == "fusion": + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters) + input_mel = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0) + else: + input_mel = self._np_extract_fbank_features(waveform, self.mel_filters_slaney)[None, :] + + return input_mel, longer + + def __call__( + self, + raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], + truncation: str = None, + padding: Optional[str] = None, + max_length: Optional[int] = None, + sampling_rate: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchFeature: + """ + Main method to featurize and prepare for the model one or several sequence(s). + + Args: + raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): + The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float + values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not + stereo, i.e. single float per timestep. + truncation (`str`, *optional*): + Truncation pattern for long audio inputs. Two patterns are available: + - `fusion` will use `_random_mel_fusion`, which stacks 3 random crops from the mel spectrogram and + a downsampled version of the entire mel spectrogram. + If `config.fusion` is set to True, shorter audios also need to to return 4 mels, which will just be a + copy of the original mel obtained from the padded audio. + - `rand_trunc` will select a random crop of the mel spectrogram. + padding (`str`, *optional*): + Padding pattern for shorter audio inputs. Three patterns were originally implemented: + - `repeatpad`: the audio is repeated, and then padded to fit the `max_length`. + - `repeat`: the audio is repeated and then cut to fit the `max_length` + - `pad`: the audio is padded. + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.np.array` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + sampling_rate (`int`, *optional*): + The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass + `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition + pipeline. + """ + truncation = truncation if truncation is not None else self.truncation + padding = padding if padding else self.padding + + if sampling_rate is not None: + if sampling_rate != self.sampling_rate: + raise ValueError( + f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" + f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" + f" was sampled with {self.sampling_rate} and not {sampling_rate}." + ) + else: + logger.warning( + "It is strongly recommended to pass the `sampling_rate` argument to this function. " + "Failing to do so can result in silent errors that might be hard to debug." + ) + + is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 + if is_batched_numpy and len(raw_speech.shape) > 2: + raise ValueError(f"Only mono-channel audio is supported for input to {self}") + is_batched = is_batched_numpy or ( + isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) + ) + + if is_batched: + raw_speech = [np.asarray(speech, dtype=np.float64) for speech in raw_speech] + elif not is_batched and not isinstance(raw_speech, np.ndarray): + raw_speech = np.asarray(raw_speech, dtype=np.float64) + elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): + raw_speech = raw_speech.astype(np.float64) + + # always return batch + if not is_batched: + raw_speech = [np.asarray(raw_speech)] + + # convert to mel spectrogram, truncate and pad if needed. + padded_inputs = [ + self._get_input_mel(waveform, max_length if max_length else self.nb_max_samples, truncation, padding) + for waveform in raw_speech + ] + + input_mel = [] + is_longer = [] + for mel, longer in padded_inputs: + input_mel.append(mel) + is_longer.append(longer) + + if truncation == "fusion" and sum(is_longer) == 0: + # if no audio is longer than 10s, then randomly select one audio to be longer + rand_idx = np.random.randint(0, len(input_mel)) + is_longer[rand_idx] = True + + if isinstance(input_mel[0], List): + input_mel = [np.asarray(feature, dtype=np.float64) for feature in input_mel] + + # is_longer is a list of bool + is_longer = [[longer] for longer in is_longer] + + input_features = {"input_features": input_mel, "is_longer": is_longer} + input_features = BatchFeature(input_features) + + if return_tensors is not None: + input_features = input_features.convert_to_tensors(return_tensors) + + return input_features diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..7b20b30137d2cb7cd06eb86ea2a8c72a8da1c599 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py @@ -0,0 +1,2297 @@ +# coding=utf-8 +# Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CLAP model.""" +import collections +import math +from dataclasses import dataclass +from typing import Any, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPooling, + BaseModelOutputWithPoolingAndCrossAttentions, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" + + +from ..deprecated._archive_maps import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191 +def interpolate(hidden_states, ratio): + """ + Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. + + Args: + hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): + Input hidden states + ratio (`int`): + The ratio of the length of the output to the length of the input. + """ + (batch_size, time_length, classes_num) = hidden_states.shape + upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) + upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) + return upsampled + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249 +def window_partition(hidden_states, window_size): + """ + Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, + num_channels)` + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): + Input hidden states + window_size (`int`): + Window size + """ + batch_size, height, width, num_channels = hidden_states.shape + + hidden_states = hidden_states.view( + batch_size, height // window_size, window_size, width // window_size, window_size, num_channels + ) + windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) + return windows + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263 +def window_reverse(windows, window_size, height, width): + """ + Merges windows to produce higher resolution features. + Args: + windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): + Input windows + window_size (`int`): + Window size + height (`int`): + Height of the resized audio + width (`int`): + Width of the resized audio + """ + num_channels = windows.shape[-1] + windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) + windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) + return windows + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# contrastive loss function, adapted from +# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function +def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: + labels = torch.arange(len(logits), device=logits.device) + return nn.functional.cross_entropy(logits, labels) + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap +class ClapTextModelOutput(ModelOutput): + """ + Base class for text model's outputs that also contains a pooling of the last hidden states. + + Args: + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The text embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + text_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class ClapAudioModelOutput(ModelOutput): + """ + ClapAudio model output to mimic the output of the original implementation. + + Args: + audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + The Audio embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + """ + + audio_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio +class ClapOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for audio-text similarity. + logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): + The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text + similarity scores. + logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): + The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio + similarity scores. + text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. + audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. + text_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapTextModel`]. + audio_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapAudioModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_audio: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + audio_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + audio_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +# Adapted from transformers.models.swin.modeling_swin.SwinDropPath +class ClapDropPath(nn.Module): + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly + refactored version of the `SwinDropPath` implementation. + """ + + def __init__(self, drop_prob=None): + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states): + if self.drop_prob == 0.0 or not self.training: + return hidden_states + + keep_prob = 1 - self.drop_prob + # work with diff dim tensors, not just 2D ConvNets + shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) + + random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) + random_tensor.floor_() # binarize + output = hidden_states.div(keep_prob) * random_tensor + return output + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133 +class ClapAudioAFFBlock(nn.Module): + r""" + ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement + the 1D version. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + channels = config.patch_embeds_hidden_size + downsize_ratio = config.aff_block_r + inter_channels = int(channels // downsize_ratio) + + self.local_att = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + + self.sigmoid = nn.Sigmoid() + + def forward(self, hidden_states, residual): + attention_input = hidden_states + residual + + fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) + fused_layer_output = self.sigmoid(fused_layer_output) + + output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) + return output + + +class ClapAudioPatchEmbed(nn.Module): + """ + This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the + Transformer block. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size + patch_size = ( + (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size + ) + patch_stride = ( + (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride + ) + + self.img_size = img_size + self.patch_stride = patch_stride + + self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + + self.flatten = config.flatten_patch_embeds + self.enable_fusion = config.enable_fusion + + padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) + + scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 + + self.proj = nn.Conv2d( + config.patch_embed_input_channels * scale_factor, + config.patch_embeds_hidden_size, + kernel_size=patch_size, + stride=patch_stride, + padding=padding, + ) + + self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() + if self.enable_fusion: + self.fusion_model = ClapAudioAFFBlock(config) + self.mel_conv2d = nn.Conv2d( + config.patch_embed_input_channels, + config.patch_embeds_hidden_size, + kernel_size=(patch_size[0], patch_size[1] * 3), + stride=(patch_stride[0], patch_stride[1] * 3), + padding=padding, + ) + + def forward(self, hidden_states, is_longer_idx=None): + if self.enable_fusion: + # retrieve the last mel as we have transposed the input + global_hidden_states = hidden_states[:, 0:1, :, :] + + # global processing + batch_size, num_channels, height, width = global_hidden_states.shape + + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + + global_hidden_states = self.proj(global_hidden_states) + output_width = global_hidden_states.size(-1) + if len(is_longer_idx) > 0: + # local processing + local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() + batch_size, num_channels, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) + + local_hidden_states = self.mel_conv2d(local_hidden_states) + + _, features, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) + local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) + + local_width = local_hidden_states.size(-1) + local_hidden_states = torch.nn.functional.pad( + local_hidden_states, (0, output_width - local_width), "constant", 0 + ) + + global_hidden_states[is_longer_idx] = self.fusion_model( + global_hidden_states[is_longer_idx], local_hidden_states + ) + hidden_states = global_hidden_states + else: + _, _, height, width = hidden_states.shape + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + hidden_states = self.proj(hidden_states) + + if self.flatten: + hidden_states = hidden_states.flatten(2).transpose(1, 2) + hidden_states = self.norm(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio +class ClapAudioSelfAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + if dim % num_heads != 0: + raise ValueError( + f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" + ) + + self.num_attention_heads = num_heads + self.attention_head_size = int(dim / num_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.window_size = ( + window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) + ) + + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) + ) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.window_size[0] - 1 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer("relative_position_index", relative_position_index) + + self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + batch_size, dim, num_channels = hidden_states.shape + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] + relative_position_bias = relative_position_bias.view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 + ) + + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + attention_scores = attention_scores + relative_position_bias.unsqueeze(0) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) + mask_shape = attention_mask.shape[0] + attention_scores = attention_scores.view( + batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim + ) + attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) + attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio +class ClapAudioSelfOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, dim) + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio +class ClapAudioAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) + self.output = ClapAudioSelfOutput(config, dim) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio +class ClapAudioIntermediate(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio +class ClapAudioOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio +class ClapAudioLayer(nn.Module): + def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.shift_size = shift_size + self.window_size = config.window_size + self.input_resolution = input_resolution + self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) + self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() + self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.intermediate = ClapAudioIntermediate(config, dim) + self.output = ClapAudioOutput(config, dim) + + def set_shift_and_window_size(self, input_resolution): + if min(input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(input_resolution) + + def get_attn_mask(self, height, width, dtype): + if self.shift_size > 0: + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, height, width, 1), dtype=dtype) + height_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + width_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + count = 0 + for height_slice in height_slices: + for width_slice in width_slices: + img_mask[:, height_slice, width_slice, :] = count + count += 1 + + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def maybe_pad(self, hidden_states, height, width): + pad_right = (self.window_size - width % self.window_size) % self.window_size + pad_bottom = (self.window_size - height % self.window_size) % self.window_size + pad_values = (0, 0, 0, pad_right, 0, pad_bottom) + hidden_states = nn.functional.pad(hidden_states, pad_values) + return hidden_states, pad_values + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + if not always_partition: + self.set_shift_and_window_size(input_dimensions) + else: + pass + height, width = input_dimensions + batch_size, _, channels = hidden_states.size() + shortcut = hidden_states + + hidden_states = self.layernorm_before(hidden_states) + + hidden_states = hidden_states.view(batch_size, height, width, channels) + + # pad hidden_states to multiples of window size + hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) + + _, height_pad, width_pad, _ = hidden_states.shape + # cyclic shift + if self.shift_size > 0: + shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_hidden_states = hidden_states + + # partition windows + hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) + hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) + attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) + if attn_mask is not None: + attn_mask = attn_mask.to(hidden_states_windows.device) + + attention_outputs = self.attention( + hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions + ) + + attention_output = attention_outputs[0] + + attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) + shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) + + # reverse cyclic shift + if self.shift_size > 0: + attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + attention_windows = shifted_windows + + was_padded = pad_values[3] > 0 or pad_values[5] > 0 + if was_padded: + attention_windows = attention_windows[:, :height, :width, :].contiguous() + + attention_windows = attention_windows.view(batch_size, height * width, channels) + + hidden_states = shortcut + self.drop_path(attention_windows) + + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + layer_output = hidden_states + self.output(layer_output) + + layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) + return layer_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio +class ClapAudioStage(nn.Module): + def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): + super().__init__() + self.config = config + self.dim = dim + self.blocks = nn.ModuleList( + [ + ClapAudioLayer( + config=config, + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + shift_size=0 if (i % 2 == 0) else config.window_size // 2, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) + else: + self.downsample = None + + self.pointing = False + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + height, width = input_dimensions + for i, layer_module in enumerate(self.blocks): + layer_head_mask = head_mask[i] if head_mask is not None else None + + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = hidden_states + if self.downsample is not None: + height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 + output_dimensions = (height, width, height_downsampled, width_downsampled) + hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) + else: + output_dimensions = (height, width, height, width) + + stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) + + if output_attentions: + stage_outputs += layer_outputs[1:] + return stage_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio +class ClapAudioPatchMerging(nn.Module): + """ + Patch Merging Layer. + + Args: + input_resolution (`Tuple[int]`): + Resolution of input feature. + dim (`int`): + Number of input channels. + norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): + Normalization layer class. + """ + + def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def maybe_pad(self, input_feature, height, width): + should_pad = (height % 2 == 1) or (width % 2 == 1) + if should_pad: + pad_values = (0, 0, 0, width % 2, 0, height % 2) + input_feature = nn.functional.pad(input_feature, pad_values) + + return input_feature + + def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: + height, width = input_dimensions + # `dim` is height * width + batch_size, dim, num_channels = input_feature.shape + + input_feature = input_feature.view(batch_size, height, width, num_channels) + # pad input to be disible by width and height, if needed + input_feature = self.maybe_pad(input_feature, height, width) + # [batch_size, height/2, width/2, num_channels] + input_feature_0 = input_feature[:, 0::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_1 = input_feature[:, 1::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_2 = input_feature[:, 0::2, 1::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_3 = input_feature[:, 1::2, 1::2, :] + # batch_size height/2 width/2 4*num_channels + input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) + input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C + + input_feature = self.norm(input_feature) + input_feature = self.reduction(input_feature) + + return input_feature + + +class ClapAudioEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.num_layers = len(config.depths) + + self.config = config + self.patch_embed = ClapAudioPatchEmbed(config) + self.enable_fusion = config.enable_fusion + self.patch_stride = self.patch_embed.patch_stride + self.spec_size = config.spec_size + self.freq_ratio = config.spec_size // config.num_mel_bins + + self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) + + drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + + grid_size = self.patch_embed.grid_size + self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] + + self.layers = nn.ModuleList( + [ + ClapAudioStage( + config=config, + dim=int(config.patch_embeds_hidden_size * 2**i_layer), + input_resolution=self.input_resolutions[i_layer], + depth=config.depths[i_layer], + num_heads=config.num_attention_heads[i_layer], + drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], + downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, + ) + for i_layer in range(self.num_layers) + ] + ) + + self.gradient_checkpointing = False + + self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) + self.norm = nn.LayerNorm(self.num_features) + self.depths = config.depths + self.avgpool = nn.AdaptiveAvgPool1d(1) + + def reshape_mel2img(self, normalized_input_features): + """ + The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel + should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. + """ + _, _, time_length, freq_length = normalized_input_features.shape + + spec_width = int(self.spec_size * self.freq_ratio) + spec_heigth = self.spec_size // self.freq_ratio + + if time_length > spec_width or freq_length > spec_heigth: + raise ValueError("the wav size should be less than or equal to the swin input size") + + # to avoid bicubic zero error + if time_length < spec_width: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True + ) + if freq_length < spec_heigth: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True + ) + + batch, channels, time, freq = normalized_input_features.shape + + # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio + normalized_input_features = normalized_input_features.reshape( + batch, channels * self.freq_ratio, time // self.freq_ratio, freq + ) + normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() + normalized_input_features = normalized_input_features.reshape( + batch, channels, freq * self.freq_ratio, time // self.freq_ratio + ) + + return normalized_input_features + + def forward( + self, + input_features, + is_longer: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + output_hidden_states_before_downsampling: Optional[bool] = False, + always_partition: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, ClapAudioModelOutput]: + input_features = input_features.transpose(1, 3) + normalized_input_features = self.batch_norm(input_features) + normalized_input_features = normalized_input_features.transpose(1, 3) + + is_longer_list_idx = None + if self.enable_fusion: + is_longer_list = is_longer.to(input_features.device) + is_longer_list_idx = torch.where(is_longer_list == 1)[0] + + hidden_states = self.reshape_mel2img(normalized_input_features) + + frames_num = hidden_states.shape[2] + + hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) + + all_hidden_states = () if output_hidden_states else None + all_reshaped_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + input_dimensions = self.input_resolutions[0] + + if output_hidden_states: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + for i, layer_module in enumerate(self.layers): + layer_head_mask = head_mask[i] if head_mask is not None else None + + input_dimensions = self.input_resolutions[i] + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions + ) + else: + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = layer_outputs[1] + output_dimensions = layer_outputs[2] + + input_dimensions = (output_dimensions[-2], output_dimensions[-1]) + + if output_hidden_states and output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states_before_downsampling.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + # here we use the original (not downsampled) height and width + reshaped_hidden_state = hidden_states_before_downsampling.view( + batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size + ) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states_before_downsampling,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + elif output_hidden_states and not output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + if output_attentions: + all_self_attentions += layer_outputs[3:] + + last_hidden_state = self.norm(hidden_states) + + batch_size, _, n_channels = last_hidden_state.shape + + freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] + temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] + + last_hidden_state = ( + last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) + ) + + batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape + # group 2D CNN + c_freq_bin = n_frequencies // self.freq_ratio + last_hidden_state = last_hidden_state.reshape( + batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp + ) + last_hidden_state = ( + last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) + ) + latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) + latent_output = torch.flatten(latent_output, 1) + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + latent_output, + all_reshaped_hidden_states, + all_self_attentions, + ] + if v is not None + ) + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=latent_output, + hidden_states=all_reshaped_hidden_states, + attentions=all_self_attentions, + ) + + +CLAP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ClapConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CLAP_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_AUDIO_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): + Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance + the features. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class ClapProjectionLayer(nn.Module): + def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): + super().__init__() + self.config = config + hidden_size = config.hidden_size + projection_dim = config.projection_dim + + self.linear1 = nn.Linear(hidden_size, projection_dim) + self.activation = ACT2FN[config.projection_hidden_act] + self.linear2 = nn.Linear(projection_dim, projection_dim) + + def forward(self, hidden_states): + hidden_states = self.linear1(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.linear2(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True +class ClapTextEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText +class ClapTextSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class ClapTextSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText +class ClapTextAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = ClapTextSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class ClapTextIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class ClapTextOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText +class ClapTextLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ClapTextAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") + self.intermediate = ClapTextIntermediate(config) + self.output = ClapTextOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText +class ClapTextEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class ClapTextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class ClapPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ClapConfig + base_model_prefix = "clap" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor + + if isinstance(module, ClapTextEmbeddings): + module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + elif isinstance(module, ClapModel): + nn.init.normal_(module.logit_scale_a, std=factor * 0.02) + nn.init.normal_(module.logit_scale_t, std=factor * 0.02) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=factor * 0.02) + + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, (nn.Conv2d, nn.Linear)): + in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor + nn.init.normal_(module.weight, std=in_proj_std) + if module.bias is not None: + module.bias.data.zero_() + + +class ClapAudioModel(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_encoder = ClapAudioEncoder(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapAudioModel + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + return self.audio_encoder( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class ClapTextModel(ClapPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + config_class = ClapTextConfig + + # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = ClapTextEmbeddings(config) + self.encoder = ClapTextEncoder(config) + + self.pooler = ClapTextPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + # Copied from transformers.models.bert.modeling_bert.BertModel.forward + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings(CLAP_START_DOCSTRING) +class ClapModel(ClapPreTrainedModel): + config_class = ClapConfig + + def __init__(self, config: ClapConfig): + super().__init__(config) + + if not isinstance(config.text_config, ClapTextConfig): + raise ValueError( + "config.text_config is expected to be of type ClapTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.audio_config, ClapAudioConfig): + raise ValueError( + "config.audio_config is expected to be of type ClapAudioConfig but is of type" + f" {type(config.audio_config)}." + ) + + text_config = config.text_config + audio_config = config.audio_config + + self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + + self.projection_dim = config.projection_dim + + self.text_model = ClapTextModel(text_config) + self.text_projection = ClapProjectionLayer(text_config) + + self.audio_model = ClapAudioModel(audio_config) + self.audio_projection = ClapProjectionLayer(audio_config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`ClapTextModel`]. + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapModel + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output + text_features = self.text_projection(pooled_output) + text_features = F.normalize(text_features, dim=-1) + + return text_features + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + def get_audio_features( + self, + input_features: Optional[torch.Tensor] = None, + is_longer: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by + applying the projection layer to the pooled output of [`ClapAudioModel`]. + + Examples: + + ```python + >>> from transformers import AutoFeatureExtractor, ClapModel + >>> import torch + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") + >>> random_audio = torch.rand((16_000)) + >>> inputs = feature_extractor(random_audio, return_tensors="pt") + >>> audio_features = model.get_audio_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_features = self.audio_projection(pooled_output) + audio_features = F.normalize(audio_features, dim=-1) + + return audio_features + + @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapModel + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") + + >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] + + >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) + + >>> outputs = model(**inputs) + >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score + >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + audio_embeds = self.audio_projection(audio_embeds) + + text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output + text_embeds = self.text_projection(text_embeds) + + # normalized features + audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale_text = self.logit_scale_t.exp() + logit_scale_audio = self.logit_scale_a.exp() + logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text + logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio + + loss = None + if return_loss: + caption_loss = contrastive_loss(logits_per_text) + audio_loss = contrastive_loss(logits_per_audio.t()) + loss = (caption_loss + audio_loss) / 2.0 + + if not return_dict: + output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) + return ((loss,) + output) if loss is not None else output + + return ClapOutput( + loss=loss, + logits_per_audio=logits_per_audio, + logits_per_text=logits_per_text, + text_embeds=text_embeds, + audio_embeds=audio_embeds, + text_model_output=text_outputs, + audio_model_output=audio_outputs, + ) + + +@add_start_docstrings( + """ + CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapTextModelWithProjection(ClapPreTrainedModel): + config_class = ClapTextConfig + + def __init__(self, config: ClapTextConfig): + super().__init__(config) + self.text_model = ClapTextModel(config) + self.text_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.text_model.embeddings.word_embeddings = value + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapTextModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapTextModelWithProjection + + >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> text_embeds = outputs.text_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output + + text_embeds = self.text_projection(pooled_output) + + if not return_dict: + outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapTextModelOutput( + text_embeds=text_embeds, + last_hidden_state=text_outputs.last_hidden_state, + hidden_states=text_outputs.hidden_states, + attentions=text_outputs.attentions, + ) + + +@add_start_docstrings( + """ + CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapAudioModelWithProjection(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_model = ClapAudioModel(config) + self.audio_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_model.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapAudioModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import ClapAudioModelWithProjection, ClapProcessor + + >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") + >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + >>> outputs = model(**inputs) + >>> audio_embeds = outputs.audio_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_embeds = self.audio_projection(pooled_output) + + if not return_dict: + outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapAudioModelOutput( + audio_embeds=audio_embeds, + last_hidden_state=audio_outputs.last_hidden_state, + attentions=audio_outputs.attentions, + hidden_states=audio_outputs.hidden_states, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..87799899945fa669d3980e8cc6c15192cf7a2ba5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py @@ -0,0 +1,117 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Audio/Text processor class for CLAP +""" + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding + + +class ClapProcessor(ProcessorMixin): + r""" + Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. + + [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the + [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. + + Args: + feature_extractor ([`ClapFeatureExtractor`]): + The audio processor is a required input. + tokenizer ([`RobertaTokenizerFast`]): + The tokenizer is a required input. + """ + + feature_extractor_class = "ClapFeatureExtractor" + tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + + def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): + """ + Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` + and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to + encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to + ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the + doctsring of the above two methods for more information. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): + The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case + of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, + and T the sample length of the audio. + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. + """ + sampling_rate = kwargs.pop("sampling_rate", None) + + if text is None and audios is None: + raise ValueError("You have to specify either text or audios. Both cannot be none.") + + if text is not None: + encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) + + if audios is not None: + audio_features = self.feature_extractor( + audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs + ) + + if text is not None and audios is not None: + encoding["input_features"] = audio_features.input_features + return encoding + elif text is not None: + return encoding + else: + return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + feature_extractor_input_names = self.feature_extractor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d6f69d1e496d0e616b185c819fd847fcc019fc39 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__init__.py @@ -0,0 +1,77 @@ +# Copyright 2024 Cohere and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_cohere": ["COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CohereConfig"], +} + + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_cohere_fast"] = ["CohereTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_cohere"] = [ + "CohereForCausalLM", + "CohereModel", + "CoherePreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_cohere import COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP, CohereConfig + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_cohere_fast import CohereTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_cohere import ( + CohereForCausalLM, + CohereModel, + CoherePreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..197648ad8574b4b9754310c407d2e657364e00b0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/configuration_cohere.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/configuration_cohere.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da31aff73de4893a9e4d284d43bf02bd819cc69d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/configuration_cohere.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/modeling_cohere.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/modeling_cohere.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..122ff1e74b11e3451828a5728ddb1b3813802bcf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/modeling_cohere.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/tokenization_cohere_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/tokenization_cohere_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..306efef371d0a565d977016af0bb5bee41a6e7c9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/__pycache__/tokenization_cohere_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/configuration_cohere.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/configuration_cohere.py new file mode 100644 index 0000000000000000000000000000000000000000..7ceca2b887af7d6529bb9a8ee3a8e65b25a8fe1f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/configuration_cohere.py @@ -0,0 +1,159 @@ +# coding=utf-8 +# Copyright 2024 Cohere team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Cohere model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP = {} + + +class CohereConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere + model according to the specified arguments, defining the model architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. Instantiating a configuration + with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model. + + + Args: + vocab_size (`int`, *optional*, defaults to 256000): + Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`CohereModel`] + hidden_size (`int`, *optional*, defaults to 8192): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 22528): + Dimension of the MLP representations. + logit_scale (`float`, *optional*, defaults to 0.0625): + The scaling factor for the output logits. + num_hidden_layers (`int`, *optional*, defaults to 40): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 64): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 8192): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 5): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 255001): + End of stream token id. + tie_word_embeddings (`bool`, *optional*, defaults to `True`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + use_qk_norm (`bool`, *optional*, defaults to `False`): + Whether to use query-key normalization in the attention + + ```python + >>> from transformers import CohereModel, CohereConfig + + >>> # Initializing a Cohere model configuration + >>> configuration = CohereConfig() + + >>> # Initializing a model from the Cohere configuration + >>> model = CohereModel(configuration) # doctest: +SKIP + + >>> # Accessing the model configuration + >>> configuration = model.config # doctest: +SKIP + ```""" + + model_type = "cohere" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=256000, + hidden_size=8192, + intermediate_size=22528, + logit_scale=0.0625, + num_hidden_layers=40, + num_attention_heads=64, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=8192, + initializer_range=0.02, + layer_norm_eps=1e-5, + use_cache=True, + pad_token_id=0, + bos_token_id=5, + eos_token_id=255001, + tie_word_embeddings=True, + rope_theta=10000.0, + attention_bias=False, + attention_dropout=0.0, + use_qk_norm=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.logit_scale = logit_scale + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + self.use_qk_norm = use_qk_norm + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/modeling_cohere.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/modeling_cohere.py new file mode 100644 index 0000000000000000000000000000000000000000..950d45ea867a3080bb804565edff1b2bb0e09e97 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/modeling_cohere.py @@ -0,0 +1,1266 @@ +# coding=utf-8 +# Copyright 2024 Cohere team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This file is based on the LLama model definition file in transformers + +"""PyTorch Cohere model.""" + +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache, StaticCache +from ...modeling_attn_mask_utils import AttentionMaskConverter +from ...modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_cohere import CohereConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "CohereConfig" + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class CohereLayerNorm(nn.Module): + def __init__(self, hidden_size=None, eps=1e-5, bias=False): + """The hidden size can be a tuple or an int. The tuple is used for QKNorm to normalize across head_dim""" + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + mean = hidden_states.mean(-1, keepdim=True) + variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) + hidden_states = (hidden_states - mean) * torch.rsqrt(variance + self.variance_epsilon) + hidden_states = self.weight.to(torch.float32) * hidden_states + return hidden_states.to(input_dtype) + + +ALL_LAYERNORM_LAYERS.append(CohereLayerNorm) + + +class CohereRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + super().__init__() + self.scaling_factor = scaling_factor + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + @torch.no_grad() + def forward(self, x, position_ids): + # x: [bs, num_attention_heads, seq_len, head_size] + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) + position_ids_expanded = position_ids[:, None, :].float() + + # Force float32 since bfloat16 loses precision on long contexts + # See https://github.com/huggingface/transformers/pull/29285 + device_type = x.device.type + device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = torch.repeat_interleave(freqs, 2, dim=-1) + cos = emb.cos() + sin = emb.sin() + return cos, sin + + +def rotate_half(x): + # Split and rotate + x1 = x[..., ::2] + x2 = x[..., 1::2] + rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2) + return rot_x + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`, *optional*): + Deprecated and unused. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + dtype = q.dtype + q = q.float() + k = k.float() + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed.to(dtype=dtype), k_embed.to(dtype=dtype) + + +# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere +class CohereMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + # Ignore copy + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +class CohereAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: CohereConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " + "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + self.use_qk_norm = config.use_qk_norm + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + + if self.use_qk_norm: + # When sharding the model using Tensor Parallelism, need to be careful to use n_local_heads + self.q_norm = CohereLayerNorm(hidden_size=(self.num_heads, self.head_dim), eps=config.layer_norm_eps) + self.k_norm = CohereLayerNorm( + hidden_size=(self.num_key_value_heads, self.head_dim), eps=config.layer_norm_eps + ) + + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) + self._init_rope() + + # Ignore copy + def _init_rope(self): + self.rotary_emb = CohereRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + + # Ignore copy + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) + if self.use_qk_norm: + query_states = self.q_norm(query_states) + key_states = self.k_norm(key_states) + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + past_key_value = getattr(self, "past_key_value", past_key_value) + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; position_ids needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 Llama->Cohere +class CohereFlashAttention2(CohereAttention): + """ + Cohere flash attention module. This module inherits from `CohereAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) + if self.use_qk_norm: + query_states = self.q_norm(query_states) + key_states = self.k_norm(key_states) + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + past_key_value = getattr(self, "past_key_value", past_key_value) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; position_ids needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # Ignore copy + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (CohereLayerNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in CohereFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention Llama->Cohere +class CohereSdpaAttention(CohereAttention): + """ + Cohere attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `CohereAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Ignore copy + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "CohereModel is using CohereSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim) + if self.use_qk_norm: + query_states = self.q_norm(query_states) + key_states = self.k_norm(key_states) + + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + # In case static cache is used, it is an instance attribute. + past_key_value = getattr(self, "past_key_value", past_key_value) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + causal_mask = attention_mask + # if attention_mask is not None and cache_position is not None: + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and causal_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + # In case we are not compiling, we may set `causal_mask` to None, which is required to dispatch to SDPA's Flash Attention 2 backend, rather + # relying on the `is_causal` argument. + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + is_causal=causal_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +COHERE_ATTENTION_CLASSES = { + "eager": CohereAttention, + "flash_attention_2": CohereFlashAttention2, + "sdpa": CohereSdpaAttention, +} + + +class CohereDecoderLayer(nn.Module): + def __init__(self, config: CohereConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = COHERE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) + + self.mlp = CohereMLP(config) + self.input_layernorm = CohereLayerNorm(hidden_size=(config.hidden_size), eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states_attention, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + **kwargs, + ) + + # Fully Connected + hidden_states_mlp = self.mlp(hidden_states) + + # Add everything together + hidden_states = residual + hidden_states_attention + hidden_states_mlp + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +COHERE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`CohereConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Cohere Model outputting raw hidden-states without any specific head on top.", + COHERE_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Cohere +class CoherePreTrainedModel(PreTrainedModel): + config_class = CohereConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["CohereDecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None): + if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache: + raise ValueError( + "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " + "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" + ) + + for layer in self.model.layers: + device = layer.input_layernorm.weight.device + if hasattr(self.config, "_pre_quantization_dtype"): + dtype = self.config._pre_quantization_dtype + else: + dtype = layer.self_attn.o_proj.weight.dtype + layer.self_attn.past_key_value = cache_cls( + self.config, max_batch_size, max_cache_len, device=device, dtype=dtype + ) + + def _reset_cache(self): + for layer in self.model.layers: + layer.self_attn.past_key_value = None + + +COHERE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Cohere Model outputting raw hidden-states without any specific head on top.", + COHERE_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaModel with Llama->Cohere +class CohereModel(CoherePreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`CohereDecoderLayer`] + + Args: + config: CohereConfig + """ + + # Ignore copy + def __init__(self, config: CohereConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [CohereDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = CohereLayerNorm(hidden_size=(config.hidden_size), eps=config.layer_norm_eps) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + # Ignore copy + @add_start_docstrings_to_model_forward(COHERE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if self.gradient_checkpointing and self.training and use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + past_seen_tokens = 0 + if use_cache: # kept for BC (cache positions) + if not isinstance(past_key_values, StaticCache): + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_seen_tokens = past_key_values.get_seq_length() + + if cache_position is None: + if isinstance(past_key_values, StaticCache): + raise ValueError("cache_position is a required argument when using StaticCache.") + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = ( + next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache + ) + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def _update_causal_mask( + self, + attention_mask: torch.Tensor, + input_tensor: torch.Tensor, + cache_position: torch.Tensor, + past_seen_tokens: int, + ): + # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static + # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. + # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using + # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 + + if self.config._attn_implementation == "flash_attention_2": + if attention_mask is not None and 0.0 in attention_mask: + return attention_mask + return None + + if self.config._attn_implementation == "sdpa": + # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, + # in order to dispatch on Flash Attention 2. + if AttentionMaskConverter._ignore_causal_mask_sdpa( + attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens + ): + return None + + dtype, device = input_tensor.dtype, input_tensor.device + min_dtype = torch.finfo(dtype).min + sequence_length = input_tensor.shape[1] + if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache + target_length = self.config.max_position_embeddings + else: # dynamic cache + target_length = ( + attention_mask.shape[-1] + if isinstance(attention_mask, torch.Tensor) + else past_seen_tokens + sequence_length + 1 + ) + + causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) + if attention_mask is not None: + causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit + if attention_mask.dim() == 2: + mask_length = attention_mask.shape[-1] + padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) + causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) + elif attention_mask.dim() == 4: + # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with + # cache. In that case, the 4D attention mask attends to the newest tokens only. + if attention_mask.shape[-2] < cache_position[0] + sequence_length: + offset = cache_position[0] + else: + offset = 0 + mask_shape = attention_mask.shape + mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype + causal_mask[ + : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3] + ] = mask_slice + + if ( + self.config._attn_implementation == "sdpa" + and attention_mask is not None + and attention_mask.device.type == "cuda" + ): + # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # Details: https://github.com/pytorch/pytorch/issues/110213 + causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) + + return causal_mask + + +# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with Llama->Cohere +class CohereForCausalLM(CoherePreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + # Ignore copy + def __init__(self, config): + super().__init__(config) + self.model = CohereModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.logit_scale = config.logit_scale + self.tie_word_embeddings = config.tie_word_embeddings + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + # Ignore copy + @add_start_docstrings_to_model_forward(COHERE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >> from transformers import AutoTokenizer, CohereForCausalLM + + >> model = CohereForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01") + >> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") + + >> prompt = "Hey, are you conscious? Can you talk to me?" + >> inputs = tokenizer(prompt, return_tensors="pt") + + >> # Generate + >> generate_ids = model.generate(inputs.input_ids, max_length=30) + >> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + cache_position=cache_position, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits * self.logit_scale + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs + ): + # With static cache, the `past_key_values` is None + # TODO joao: standardize interface for the different Cache classes and remove of this if + has_static_cache = False + if past_key_values is None: + past_key_values = getattr(getattr(self.model.layers[0], "self_attn", {}), "past_key_value", None) + has_static_cache = past_key_values is not None + + past_length = 0 + if past_key_values is not None: + if isinstance(past_key_values, Cache): + past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() + max_cache_length = ( + torch.tensor(past_key_values.get_max_length(), device=input_ids.device) + if past_key_values.get_max_length() is not None + else None + ) + cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) + # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise + # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 + # TODO: use `next_tokens` directly instead. + model_inputs = {"input_ids": input_ids.contiguous()} + + input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] + if cache_position is None: + cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) + else: + cache_position = cache_position[-input_length:] + + if has_static_cache: + past_key_values = None + + model_inputs.update( + { + "position_ids": position_ids, + "cache_position": cache_position, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/tokenization_cohere_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/tokenization_cohere_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e733a6dfd09541c9e536e377fd0846e3e8da63fb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/cohere/tokenization_cohere_fast.py @@ -0,0 +1,701 @@ +# coding=utf-8 +# Copyright 2024 Cohere team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This file is based on the tokenization_llama_fast.py file in transformers + +import pickle +from typing import Dict, List, Literal, Union + +from tokenizers import processors + +from ...pipelines.conversational import Conversation +from ...tokenization_utils_base import BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from ...utils.versions import require_version + + +require_version("tokenizers>=0.13.3") + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "tokenizer_file": { + "Cohere/Command-nightly": "https://huggingface.co/Cohere/Command-nightly/blob/main/tokenizer.json", + }, +} + +# fmt: off +DEFAULT_SYSTEM_PROMPT = "You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere." +DEFAULT_RAG_PREAMBLE = """## Task and Context +You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. + +## Style Guide +Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.""" +# fmt: on + + +class CohereTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a Cohere tokenizer. Based on byte-level Byte-Pair-Encoding. + + This uses notably ByteFallback and NFC normalization. + + ```python + >>> from transformers import AutoTokenizer + + >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") + >>> tokenizer.encode("Hello this is a test") + [5, 28339, 2075, 1801, 1671, 3282] + ``` + + If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or + call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the + values of the first token and final token of an encoded sequence will not be correct). For more details, checkout + [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since + the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`, *optional*): + Path to the vocabulary file. + merges_file (`str`, *optional*): + Path to the merges file. + tokenizer_file (`str`, *optional*): + [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that + contains everything needed to load the tokenizer. + clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): + Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like + extra spaces. + unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|END_OF_TURN_TOKEN|>"`): + The end of sequence token. + add_bos_token (`bool`, *optional*, defaults to `True`): + Whether or not to add an `bos_token` at the start of sequences. + add_eos_token (`bool`, *optional*, defaults to `False`): + Whether or not to add an `eos_token` at the end of sequences. + use_default_system_prompt (`bool`, *optional*, defaults to `False`): + Whether or not the default system prompt for Cohere tokenizer should be used. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not the tokenizer should automatically add a prefix space + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + padding_side = "left" + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = None + # No `max_model_input_sizes` + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + clean_up_tokenization_spaces=False, + unk_token="", + bos_token="", + eos_token="<|END_OF_TURN_TOKEN|>", + add_bos_token=True, + add_eos_token=False, + use_default_system_prompt=False, + add_prefix_space=False, + **kwargs, + ): + super().__init__( + vocab_file=vocab_file, + merges_file=merges_file, + tokenizer_file=tokenizer_file, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + add_bos_token=add_bos_token, + add_eos_token=add_eos_token, + use_default_system_prompt=use_default_system_prompt, + add_prefix_space=add_prefix_space, + **kwargs, + ) + self._add_bos_token = add_bos_token + self._add_eos_token = add_eos_token + self.update_post_processor() + self.use_default_system_prompt = use_default_system_prompt + self.vocab_file = vocab_file + self.grounded_generation_template = kwargs.pop("grounded_generation_template", None) + self.tool_use_template = kwargs.pop("tool_use_template", None) + + # TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly + # check this as they were green before. + pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer) + decoder_state = pickle.dumps(self.backend_tokenizer.decoder) + + if add_prefix_space: + pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') + decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') + self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state) + self.backend_tokenizer.decoder = pickle.loads(decoder_state) + + self.add_prefix_space = add_prefix_space + + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + if not (self.add_prefix_space or not is_split_into_words): + raise Exception( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" + " pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + if not (self.add_prefix_space or not is_split_into_words): + raise Exception( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" + " pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + def update_post_processor(self): + """ + Updates the underlying post processor with the current `bos_token` and `eos_token`. + """ + bos = self.bos_token + bos_token_id = self.bos_token_id + if bos is None and self.add_bos_token: + raise ValueError("add_bos_token = True but bos_token = None") + + eos = self.eos_token + eos_token_id = self.eos_token_id + if eos is None and self.add_eos_token: + raise ValueError("add_eos_token = True but eos_token = None") + + single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" + pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" + + special_tokens = [] + if self.add_bos_token: + special_tokens.append((bos, bos_token_id)) + if self.add_eos_token: + special_tokens.append((eos, eos_token_id)) + self._tokenizer.post_processor = processors.TemplateProcessing( + single=single, pair=pair, special_tokens=special_tokens + ) + + @property + def add_eos_token(self): + return self._add_eos_token + + @property + def add_bos_token(self): + return self._add_bos_token + + @add_eos_token.setter + def add_eos_token(self, value): + self._add_eos_token = value + self.update_post_processor() + + @add_bos_token.setter + def add_bos_token(self, value): + self._add_bos_token = value + self.update_post_processor() + + @property + def default_chat_template(self): + """ + Cohere Tokenizer uses <|START_OF_TURN_TOKEN|> and <|END_OF_TURN_TOKEN|> to indicate each turn in a chat. + Additioanlly, to indicate the source of the message, <|USER_TOKEN|>, <|CHATBOT_TOKEN|> and <|SYSTEM_TOKEN|> + for user, assitant and system messages respectively. + + The output should look something like: + <|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{ preamble }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{ How are you? }}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>{{ I am doing well! }}<|END_OF_TURN_TOKEN|> + + Use add_generation_prompt to add a prompt for the model to generate a response: + >>> from transformers import AutoTokenizer + >>> tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-v01") + >>> messages = [{"role": "user", "content": "Hello, how are you?"}] + >>> tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) + '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + default_template = ( + "{{ bos_token }}" + "{% if messages[0]['role'] == 'system' %}" + "{% set loop_messages = messages[1:] %}" # Extract system message if it's present + "{% set system_message = messages[0]['content'] %}" + "{% elif USE_DEFAULT_PROMPT == true %}" + "{% set loop_messages = messages %}" # Or use the default system message if the flag is set + "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" + "{% else %}" + "{% set loop_messages = messages %}" + "{% set system_message = false %}" + "{% endif %}" + "{% if system_message != false %}" # Start with system message + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}" + "{% endif %}" + "{% for message in loop_messages %}" # Loop over all non-system messages + "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" + "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" + "{% endif %}" + "{% set content = message['content'] %}" + "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way + "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% elif message['role'] == 'assistant' %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% endif %}" + "{% endfor %}" + "{% if add_generation_prompt %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" + "{% endif %}" + ) + default_template = default_template.replace( + "USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false" + ) + default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") + default_template = default_template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) + + tool_use_template = ( + "{{ bos_token }}" + "{% if messages[0]['role'] == 'system' %}" + "{% set loop_messages = messages[1:] %}" # Extract system message if it's present + "{% set system_message = messages[0]['content'] %}" + "{% else %}" + "{% set loop_messages = messages %}" + "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" + "{% endif %}" + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" + "{{ '# Safety Preamble' }}" + "{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}" + "{{ '\n\n# System Preamble' }}" + "{{ '\n## Basic Rules' }}" + "{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}" + "{{ '\n\n# User Preamble' }}" + "{{ '\n' + system_message }}" + "{{'\n\n## Available Tools\nHere is a list of tools that you have available to you:\n\n'}}" + "{% for tool in tools %}" + "{% if loop.index0 != 0 %}" + "{{ '\n\n'}}" + "{% endif %}" + "{{'```python\ndef ' + tool.name + '('}}" + "{% for param_name, param_fields in tool.parameter_definitions.items() %}" + "{% if loop.index0 != 0 %}" + "{{ ', '}}" + "{% endif %}" + "{{param_name}}: " + "{% if not param_fields.required %}" + "{{'Optional[' + param_fields.type + '] = None'}}" + "{% else %}" + "{{ param_fields.type }}" + "{% endif %}" + "{% endfor %}" + '{{ \') -> List[Dict]:\n """\'}}' + "{{ tool.description }}" + "{% if tool.parameter_definitions|length != 0 %}" + "{{ '\n\n Args:\n '}}" + "{% for param_name, param_fields in tool.parameter_definitions.items() %}" + "{% if loop.index0 != 0 %}" + "{{ '\n ' }}" + "{% endif %}" + "{{ param_name + ' ('}}" + "{% if not param_fields.required %}" + "{{'Optional[' + param_fields.type + ']'}}" + "{% else %}" + "{{ param_fields.type }}" + "{% endif %}" + "{{ '): ' + param_fields.description }}" + "{% endfor %}" + "{% endif %}" + '{{ \'\n """\n pass\n```\' }}' + "{% endfor %}" + "{{ '<|END_OF_TURN_TOKEN|>'}}" + "{% for message in loop_messages %}" + "{% set content = message['content'] %}" + "{% if message['role'] == 'user' %}" + "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% elif message['role'] == 'system' %}" + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% elif message['role'] == 'assistant' %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% endif %}" + "{% endfor %}" + "{{'<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write \\'Action:\\' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user\\'s last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example:\n```json\n[\n {\n \"tool_name\": title of the tool in the specification,\n \"parameters\": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters\n }\n]```<|END_OF_TURN_TOKEN|>'}}" + "{% if add_generation_prompt %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" + "{% endif %}" + ) + default_tool_message = DEFAULT_RAG_PREAMBLE.replace("\n", "\\n").replace("'", "\\'") + tool_use_template = tool_use_template.replace("DEFAULT_SYSTEM_MESSAGE", default_tool_message) + + rag_template = ( + "{{ bos_token }}" + "{% if messages[0]['role'] == 'system' %}" + "{% set loop_messages = messages[1:] %}" # Extract system message if it's present + "{% set system_message = messages[0]['content'] %}" + "{% else %}" + "{% set loop_messages = messages %}" + "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" + "{% endif %}" + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" + "{{ '# Safety Preamble' }}" + "{{ '\nThe instructions in this section override those in the task description and style guide sections. Don\\'t answer questions that are harmful or immoral.' }}" + "{{ '\n\n# System Preamble' }}" + "{{ '\n## Basic Rules' }}" + "{{ '\nYou are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user\\'s requests, you cite your sources in your answers, according to those instructions.' }}" + "{{ '\n\n# User Preamble' }}" + "{{ '\n' + system_message }}" + "{{ '<|END_OF_TURN_TOKEN|>'}}" + "{% for message in loop_messages %}" # Loop over all non-system messages + "{% set content = message['content'] %}" + "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way + "{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% elif message['role'] == 'system' %}" + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% elif message['role'] == 'assistant' %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}" + "{% endif %}" + "{% endfor %}" + "{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>'}}" + "{{ '' }}" + "{% for document in documents %}" # Loop over all non-system messages + "{{ '\nDocument: ' }}" + "{{ loop.index0 }}\n" + "{% for key, value in document.items() %}" + "{{ key }}: {{value}}\n" + "{% endfor %}" + "{% endfor %}" + "{{ ''}}" + "{{ '<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' }}" + "{{ 'Carefully perform the following instructions, in order, starting each with a new line.\n' }}" + "{{ 'Firstly, Decide which of the retrieved documents are relevant to the user\\'s last input by writing \\'Relevant Documents:\\' followed by comma-separated list of document numbers. If none are relevant, you should instead write \\'None\\'.\n' }}" + "{{ 'Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user\\'s last input by writing \\'Cited Documents:\\' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write \\'None\\'.\n' }}" + "{% if citation_mode=='accurate' %}" + "{{ 'Thirdly, Write \\'Answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup.\n' }}" + "{% endif %}" + "{{ 'Finally, Write \\'Grounded answer:\\' followed by a response to the user\\'s last input in high quality natural english. Use the symbols and to indicate when a fact comes from a document in the search result, e.g my fact for a fact from document 0.' }}" + "{{ '<|END_OF_TURN_TOKEN|>' }}" + "{% if add_generation_prompt %}" + "{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}" + "{% endif %}" + ) + default_rag_message = DEFAULT_RAG_PREAMBLE.replace("\n", "\\n").replace("'", "\\'") + rag_template = rag_template.replace("DEFAULT_SYSTEM_MESSAGE", default_rag_message) + + return {"default": default_template, "tool_use": tool_use_template, "rag": rag_template} + + def apply_tool_use_template( + self, + conversation: Union[List[Dict[str, str]], "Conversation"], + tools: List[Dict], + **kwargs, + ) -> Union[str, List[int]]: + """Create a Command-R tool-use prompt. + + Once rendered, the prompt instructs the model to generate a list of actions to perform on a set of user supplied tools + to help carry out the user's requests. + + Conceptually, this works in the same way as `apply_chat_format`, but takes an additional `tools` parameter. + + Converts a Conversation object or a list of dictionaries with `"role"` and `"content"` keys and a list of available + tools for the model to use into a prompt string, or a list of token ids. + This method will use the tokenizer's `default_tool_use_template` template specified at the class level. + You can override the default template using the `tool_use_template` kwarg but the quality of your results may decrease. + + Args: + conversation (Union[List[Dict[str, str]], "Conversation"]): A Conversation object or list of dicts + with "role" and "content" keys, representing the chat history so far. + tools (List[Dict]): a list of tools to render into the prompt for the model to choose from. + See an example at the bottom of the docstring. + The format should be: + * name (str): The name of the tool to be called. Valid names contain only the characters a-z, + A-Z, 0-9, _ and must not begin with a digit. + * description (str): The description of what the tool does, the model uses the description to + choose when and how to call the function. + * parameter_definitions (List[Dict]): The input parameters of the tool. Accepts a dictionary + where the key is the name of the parameter and the value is the parameter spec. + Valid parameter names contain only the characters a-z, A-Z, 0-9, _ and must not begin with a digit. + Parameter specs are as follows: + * description (str): The description of the parameter. + * type (str): the type of the parameter - most effective for python builtin data types, such as 'str', 'bool' + * required: boolean: Denotes whether the parameter is always present (required) or not. Defaults to not required. + add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate + the start of an assistant message. This is useful when you want to generate a response from the model. + Note that this argument will be passed to the chat template, and so it must be supported in the + template for this argument to have any effect. + tokenize (`bool`, defaults to `True`): + Whether to tokenize the output. If `False`, the output will be a string. + padding (`bool`, defaults to `False`): + Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. + truncation (`bool`, defaults to `False`): + Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. + max_length (`int`, *optional*): + Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If + not specified, the tokenizer's `max_length` attribute will be used as a default. + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable + values are: + - `'tf'`: Return TensorFlow `tf.Tensor` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + return_dict (`bool`, *optional*, defaults to `False`): + Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. + **tokenizer_kwargs: Additional kwargs to pass to the tokenizer. + + Returns: + `str`: A rendered prompt string. + or if tokenize=True: + `List[int]`: A list of token ids representing the tokenized chat so far, including control tokens. This + output is ready to pass to the model, either directly or via methods like `generate()`. + + Examples: + + ```python + >> tokenizer = CohereTokenizerFast.from_pretrained("CohereForAI/c4ai-command-r-v01") + >> tools = [ + { + "name": "internet_search", + "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", + "parameter_definitions": { + "query": { + "description": "Query to search the internet with", + "type": "str", + "required": True + } + } + }, + { + "name': "directly_answer", + "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", + "parameter_definitions": {} + } + ] + >> conversation = [ + {"role": "user", "content": "Whats the biggest penguin in the world?"} + ] + >> # render the prompt, ready for user to inspect, or for input into the model: + >> prompt = tokenizer.apply_tool_use_template(conversation, tools=tools, tokenize=False, add_generation_prompt=True) + >> print(prompt) + <|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble + The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. + + # System Preamble + ## Basic Rules + You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. + + # User Preamble + ## Task and Context + You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. + + ## Style Guide + Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. + + ## Available Tools + Here is a list of tools that you have available to you: + + \\`\\`\\`python + def internet_search(query: str) -> List[Dict]: + \"\"\"Returns a list of relevant document snippets for a textual query retrieved from the internet + + Args: + query (str): Query to search the internet with + \"\"\" + pass + \\`\\`\\` + + \\`\\`\\`python + def directly_answer() -> List[Dict]: + \"\"\"Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history + \"\"\" + pass + \\`\\`\\`<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: + \\`\\`\\`json + [ + { + "tool_name": title of the tool in the specification, + "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters + } + ]\\`\\`\\`<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> + ``` + >> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') + >> outputs = model.generate(inputs, max_new_tokens=128) + >> print(tokenizer.decode(outputs[0])) + Action: ```json + [ + { + "tool_name": "internet_search", + "parameters": { + "query": "biggest penguin in the world" + } + } + ] + ``` + """ + return self.apply_chat_template( + conversation, + chat_template="tool_use", + tools=tools, + **kwargs, + ) + + def apply_grounded_generation_template( + self, + conversation: Union[List[Dict[str, str]], "Conversation"], + documents: List[Dict], + citation_mode: Literal["fast", "accurate"] = "accurate", + **kwargs, + ) -> Union[str, List[int]]: + """Create a Command-R grounded generation (aka RAG) prompt. + + Once rendered, the prompt instructs the model to generate a response with citations in, based on supplied documents. + + Conceptually, this works in the same way as `apply_chat_format`, but takes additional `documents` + and parameter `citation_mode` parameters. + + Converts a Conversation object or a list of dictionaries with `"role"` and `"content"` keys and a list of + documents for the model to ground its response on into a prompt string, or a list of token ids. + This method will use the tokenizer's `grounded_generation_template` template specified at the class level. + You can override the default template using the `grounded_generation_template` kwarg but the quality of your results may decrease. + + Args: + conversation (Union[List[Dict[str, str]], "Conversation"]): A Conversation object or list of dicts + with "role" and "content" keys, representing the chat history so far. + documents (List[Dict[str, str]): A list of dicts, representing documents or tool outputs to ground your + generation on. A document is a semistructured dict, wiht a string to string mapping. Common fields are + `url`, `title`, `snippet` etc but should be descriptive of the key. They will get rendered into the prompt. + citation_mode: either "accurate" (prompt the model to generate an answer first, then rewrite it with citation + spans in) or "fast", where the prompt instructs the model to generate an answer with citations in directly. + The former has higher quality citations, the latter requires fewer tokens to be generated. + add_generation_prompt (bool, *optional*): Whether to end the prompt with the token(s) that indicate + the start of an assistant message. This is useful when you want to generate a response from the model. + Note that this argument will be passed to the chat template, and so it must be supported in the + template for this argument to have any effect. + tokenize (`bool`, defaults to `True`): + Whether to tokenize the output. If `False`, the output will be a string. + padding (`bool`, defaults to `False`): + Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`. + truncation (`bool`, defaults to `False`): + Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`. + max_length (`int`, *optional*): + Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If + not specified, the tokenizer's `max_length` attribute will be used as a default. + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable + values are: + - `'tf'`: Return TensorFlow `tf.Tensor` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + return_dict (`bool`, *optional*, defaults to `False`): + Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`. + **tokenizer_kwargs: Additional kwargs to pass to the tokenizer. + + Returns: + `str`: A rendered prompt string. + or if tokenize=True: + `List[int]`: A list of token ids representing the tokenized chat so far, including control tokens. This + output is ready to pass to the model, either directly or via methods like `generate()`. + + Examples: + + ```python + >> tokenizer = CohereTokenizerFast.from_pretrained('CohereForAI/c4ai-command-r-v01') + + >> # define documents: + >> documents = [ + { "title": "Tall penguins", "text": "Emperor penguins are the tallest." }, + { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} + ] + >> # define a conversation: + >> conversation = [ + {"role": "user", "content": "Whats the biggest penguin in the world?"} + ] + >> # render the prompt, ready for user to inspect, or for input into the model: + >> grounded_generation_prompt = tokenizer.apply_grounded_generation_template(conversation, documents=documents, tokenize=False, add_generation_prompt=True) + >> print(grounded_generation_prompt) + <|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble + The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. + + ## Basic Rules + You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. + + # User Preamble + ## Task and Context + You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. + + ## Style Guide + Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> + Document: 0 + title: Tall penguins + text: Emperor penguins are the tallest. + + Document: 1 + title: Penguin habitats + text: Emperor penguins only live in Antarctica. + <|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. + Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. + Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. + Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. + Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols and to indicate when a fact comes from a document in the search result, e.g my fact for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>''' + ``` + >> inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors='pt') + >> outputs = model.generate(inputs, max_new_tokens=128) + >> print(tokenizer.decode(outputs[0])) + Relevant Documents: 0,1 + Cited Documents: 0,1 + Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. + Grounded answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. + """ + return self.apply_chat_template( + conversation, + chat_template="rag", + documents=documents, + citation_mode=citation_mode, + **kwargs, + ) + + # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + bos_token_id = [self.bos_token_id] if self.add_bos_token else [] + eos_token_id = [self.eos_token_id] if self.add_eos_token else [] + + output = bos_token_id + token_ids_0 + eos_token_id + + if token_ids_1 is not None: + output = output + bos_token_id + token_ids_1 + eos_token_id + + return output diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b043a006f9376609c774e84f5376323f48f2cae7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/__init__.py @@ -0,0 +1,59 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +# rely on isort to merge the imports +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_focalnet"] = [ + "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "FocalNetForImageClassification", + "FocalNetForMaskedImageModeling", + "FocalNetBackbone", + "FocalNetModel", + "FocalNetPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_focalnet import ( + FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, + FocalNetBackbone, + FocalNetForImageClassification, + FocalNetForMaskedImageModeling, + FocalNetModel, + FocalNetPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/configuration_focalnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/configuration_focalnet.py new file mode 100644 index 0000000000000000000000000000000000000000..7f590b9c2c00a40dafaf54f6ae2131316b6674bb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/configuration_focalnet.py @@ -0,0 +1,164 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" FocalNet model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class FocalNetConfig(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`FocalNetModel`]. It is used to instantiate a + FocalNet model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the FocalNet + [microsoft/focalnet-tiny](https://huggingface.co/microsoft/focalnet-tiny) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 4): + The size (resolution) of each patch in the embeddings layer. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + embed_dim (`int`, *optional*, defaults to 96): + Dimensionality of patch embedding. + use_conv_embed (`bool`, *optional*, defaults to `False`): + Whether to use convolutional embedding. The authors noted that using convolutional embedding usually + improve the performance, but it's not used by default. + hidden_sizes (`List[int]`, *optional*, defaults to `[192, 384, 768, 768]`): + Dimensionality (hidden size) at each stage. + depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`): + Depth (number of layers) of each stage in the encoder. + focal_levels (`list(int)`, *optional*, defaults to `[2, 2, 2, 2]`): + Number of focal levels in each layer of the respective stages in the encoder. + focal_windows (`list(int)`, *optional*, defaults to `[3, 3, 3, 3]`): + Focal window size in each layer of the respective stages in the encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, + `"selu"` and `"gelu_new"` are supported. + mlp_ratio (`float`, *optional*, defaults to 4.0): + Ratio of MLP hidden dimensionality to embedding dimensionality. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings and encoder. + drop_path_rate (`float`, *optional*, defaults to 0.1): + Stochastic depth rate. + use_layerscale (`bool`, *optional*, defaults to `False`): + Whether to use layer scale in the encoder. + layerscale_value (`float`, *optional*, defaults to 0.0001): + The initial value of the layer scale. + use_post_layernorm (`bool`, *optional*, defaults to `False`): + Whether to use post layer normalization in the encoder. + use_post_layernorm_in_modulation (`bool`, *optional*, defaults to `False`): + Whether to use post layer normalization in the modulation layer. + normalize_modulator (`bool`, *optional*, defaults to `False`): + Whether to normalize the modulator. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + encoder_stride (`int`, *optional*, defaults to 32): + Factor to increase the spatial resolution by in the decoder head for masked image modeling. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + + Example: + + ```python + >>> from transformers import FocalNetConfig, FocalNetModel + + >>> # Initializing a FocalNet microsoft/focalnet-tiny style configuration + >>> configuration = FocalNetConfig() + + >>> # Initializing a model (with random weights) from the microsoft/focalnet-tiny style configuration + >>> model = FocalNetModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "focalnet" + + def __init__( + self, + image_size=224, + patch_size=4, + num_channels=3, + embed_dim=96, + use_conv_embed=False, + hidden_sizes=[192, 384, 768, 768], + depths=[2, 2, 6, 2], + focal_levels=[2, 2, 2, 2], + focal_windows=[3, 3, 3, 3], + hidden_act="gelu", + mlp_ratio=4.0, + hidden_dropout_prob=0.0, + drop_path_rate=0.1, + use_layerscale=False, + layerscale_value=1e-4, + use_post_layernorm=False, + use_post_layernorm_in_modulation=False, + normalize_modulator=False, + initializer_range=0.02, + layer_norm_eps=1e-5, + encoder_stride=32, + out_features=None, + out_indices=None, + **kwargs, + ): + super().__init__(**kwargs) + + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.embed_dim = embed_dim + self.use_conv_embed = use_conv_embed + self.hidden_sizes = hidden_sizes + self.depths = depths + self.focal_levels = focal_levels + self.focal_windows = focal_windows + self.hidden_act = hidden_act + self.mlp_ratio = mlp_ratio + self.hidden_dropout_prob = hidden_dropout_prob + self.drop_path_rate = drop_path_rate + self.use_layerscale = use_layerscale + self.layerscale_value = layerscale_value + self.use_post_layernorm = use_post_layernorm + self.use_post_layernorm_in_modulation = use_post_layernorm_in_modulation + self.normalize_modulator = normalize_modulator + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.encoder_stride = encoder_stride + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/convert_focalnet_to_hf_format.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/convert_focalnet_to_hf_format.py new file mode 100644 index 0000000000000000000000000000000000000000..4aed15928062976c5f9589e2e6896e4e028b4eea --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/convert_focalnet_to_hf_format.py @@ -0,0 +1,237 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert FocalNet checkpoints from the original repository. URL: https://github.com/microsoft/FocalNet/tree/main""" + +import argparse +import json + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from torchvision import transforms + +from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification +from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling + + +def get_focalnet_config(model_name): + depths = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] + use_conv_embed = True if "large" in model_name or "huge" in model_name else False + use_post_layernorm = True if "large" in model_name or "huge" in model_name else False + use_layerscale = True if "large" in model_name or "huge" in model_name else False + + if "large" in model_name or "xlarge" in model_name or "huge" in model_name: + if "fl3" in model_name: + focal_levels = [3, 3, 3, 3] + focal_windows = [5, 5, 5, 5] + elif "fl4" in model_name: + focal_levels = [4, 4, 4, 4] + focal_windows = [3, 3, 3, 3] + + if "tiny" in model_name or "small" in model_name or "base" in model_name: + focal_windows = [3, 3, 3, 3] + if "lrf" in model_name: + focal_levels = [3, 3, 3, 3] + else: + focal_levels = [2, 2, 2, 2] + + if "tiny" in model_name: + embed_dim = 96 + elif "small" in model_name: + embed_dim = 96 + elif "base" in model_name: + embed_dim = 128 + elif "large" in model_name: + embed_dim = 192 + elif "xlarge" in model_name: + embed_dim = 256 + elif "huge" in model_name: + embed_dim = 352 + + # set label information + repo_id = "huggingface/label-files" + if "large" in model_name or "huge" in model_name: + filename = "imagenet-22k-id2label.json" + else: + filename = "imagenet-1k-id2label.json" + + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + label2id = {v: k for k, v in id2label.items()} + + config = FocalNetConfig( + embed_dim=embed_dim, + depths=depths, + focal_levels=focal_levels, + focal_windows=focal_windows, + use_conv_embed=use_conv_embed, + id2label=id2label, + label2id=label2id, + use_post_layernorm=use_post_layernorm, + use_layerscale=use_layerscale, + ) + + return config + + +def rename_key(name): + if "patch_embed.proj" in name: + name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") + if "patch_embed.norm" in name: + name = name.replace("patch_embed.norm", "embeddings.norm") + if "layers" in name: + name = "encoder." + name + if "encoder.layers" in name: + name = name.replace("encoder.layers", "encoder.stages") + if "downsample.proj" in name: + name = name.replace("downsample.proj", "downsample.projection") + if "blocks" in name: + name = name.replace("blocks", "layers") + if "modulation.f.weight" in name or "modulation.f.bias" in name: + name = name.replace("modulation.f", "modulation.projection_in") + if "modulation.h.weight" in name or "modulation.h.bias" in name: + name = name.replace("modulation.h", "modulation.projection_context") + if "modulation.proj.weight" in name or "modulation.proj.bias" in name: + name = name.replace("modulation.proj", "modulation.projection_out") + + if name == "norm.weight": + name = "layernorm.weight" + if name == "norm.bias": + name = "layernorm.bias" + + if "head" in name: + name = name.replace("head", "classifier") + else: + name = "focalnet." + name + + return name + + +def convert_focalnet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False): + # fmt: off + model_name_to_url = { + "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", + "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", + "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", + "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", + "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", + "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", + "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", + "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", + "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", + "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", + } + # fmt: on + + checkpoint_url = model_name_to_url[model_name] + print("Checkpoint URL: ", checkpoint_url) + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"] + + # rename keys + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + state_dict[rename_key(key)] = val + + config = get_focalnet_config(model_name) + model = FocalNetForImageClassification(config) + model.eval() + + # load state dict + model.load_state_dict(state_dict) + + # verify conversion + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + + processor = BitImageProcessor( + do_resize=True, + size={"shortest_edge": 256}, + resample=PILImageResampling.BILINEAR, + do_center_crop=True, + crop_size=224, + do_normalize=True, + image_mean=IMAGENET_DEFAULT_MEAN, + image_std=IMAGENET_DEFAULT_STD, + ) + image = Image.open(requests.get(url, stream=True).raw) + inputs = processor(images=image, return_tensors="pt") + + image_transforms = transforms.Compose( + [ + transforms.Resize(256), + transforms.CenterCrop(224), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), + ] + ) + + original_pixel_values = image_transforms(image).unsqueeze(0) + + # verify pixel_values + assert torch.allclose(inputs.pixel_values, original_pixel_values, atol=1e-4) + + outputs = model(**inputs) + + predicted_class_idx = outputs.logits.argmax(-1).item() + print("Predicted class:", model.config.id2label[predicted_class_idx]) + + print("First values of logits:", outputs.logits[0, :3]) + + if model_name == "focalnet-tiny": + expected_slice = torch.tensor([0.2166, -0.4368, 0.2191]) + elif model_name == "focalnet-tiny-lrf": + expected_slice = torch.tensor([1.1669, 0.0125, -0.1695]) + elif model_name == "focalnet-small": + expected_slice = torch.tensor([0.4917, -0.0430, 0.1341]) + elif model_name == "focalnet-small-lrf": + expected_slice = torch.tensor([-0.2588, -0.5342, -0.2331]) + elif model_name == "focalnet-base": + expected_slice = torch.tensor([-0.1655, -0.4090, -0.1730]) + elif model_name == "focalnet-base-lrf": + expected_slice = torch.tensor([0.5306, -0.0483, -0.3928]) + assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model and processor of {model_name} to the hub...") + model.push_to_hub(f"{model_name}") + processor.push_to_hub(f"{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="focalnet-tiny", + type=str, + help="Name of the FocalNet model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", + action="store_true", + help="Whether to push the model and processor to the hub.", + ) + + args = parser.parse_args() + convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/modeling_focalnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/modeling_focalnet.py new file mode 100644 index 0000000000000000000000000000000000000000..a452f4171d1b6a65671a2592a76f74c6c8d07ebe --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/focalnet/modeling_focalnet.py @@ -0,0 +1,1032 @@ +# coding=utf-8 +# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch FocalNet model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BackboneOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_focalnet import FocalNetConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "FocalNetConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny" +_EXPECTED_OUTPUT_SHAPE = [1, 49, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class FocalNetEncoderOutput(ModelOutput): + """ + FocalNet encoder's outputs, with potential hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + + reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, hidden_size, height, width)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to + include the spatial dimensions. + """ + + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class FocalNetModelOutput(ModelOutput): + """ + FocalNet model's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): + Average pooling of the last layer hidden-state. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, hidden_size, height, width)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to + include the spatial dimensions. + """ + + last_hidden_state: torch.FloatTensor = None + pooler_output: Optional[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class FocalNetMaskedImageModelingOutput(ModelOutput): + """ + FocalNet masked image model outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): + Masked image modeling (MLM) loss. + reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Reconstructed pixel values. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, hidden_size, height, width)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to + include the spatial dimensions. + """ + + loss: Optional[torch.FloatTensor] = None + reconstruction: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class FocalNetImageClassifierOutput(ModelOutput): + """ + FocalNet outputs for image classification. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of + shape `(batch_size, hidden_size, height, width)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to + include the spatial dimensions. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class FocalNetEmbeddings(nn.Module): + """ + Construct the patch embeddings and layernorm. Optionally, also the mask token. + """ + + def __init__(self, config, use_mask_token=False): + super().__init__() + + self.patch_embeddings = FocalNetPatchEmbeddings( + config=config, + image_size=config.image_size, + patch_size=config.patch_size, + num_channels=config.num_channels, + embed_dim=config.embed_dim, + use_conv_embed=config.use_conv_embed, + is_stem=True, + ) + self.patch_grid = self.patch_embeddings.grid_size + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None + + self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None + ) -> Tuple[torch.Tensor]: + embeddings, output_dimensions = self.patch_embeddings(pixel_values) + embeddings = self.norm(embeddings) + batch_size, seq_len, _ = embeddings.size() + + if bool_masked_pos is not None: + mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + embeddings = self.dropout(embeddings) + return embeddings, output_dimensions + + +class FocalNetPatchEmbeddings(nn.Module): + def __init__( + self, + config, + image_size, + patch_size, + num_channels, + embed_dim, + add_norm=False, + use_conv_embed=False, + is_stem=False, + ): + super().__init__() + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) + + if use_conv_embed: + # if we choose to use conv embedding, then we treat the stem and non-stem differently + if is_stem: + kernel_size = 7 + padding = 2 + stride = 4 + else: + kernel_size = 3 + padding = 1 + stride = 2 + self.projection = nn.Conv2d( + num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding + ) + else: + self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) + + if add_norm: + self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + else: + self.norm = None + + def maybe_pad(self, pixel_values, height, width): + if width % self.patch_size[1] != 0: + pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) + pixel_values = nn.functional.pad(pixel_values, pad_values) + if height % self.patch_size[0] != 0: + pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) + pixel_values = nn.functional.pad(pixel_values, pad_values) + return pixel_values + + def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: + _, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + # pad the input to be divisible by self.patch_size, if needed + pixel_values = self.maybe_pad(pixel_values, height, width) + embeddings = self.projection(pixel_values) + _, _, height, width = embeddings.shape + output_dimensions = (height, width) + embeddings = embeddings.flatten(2).transpose(1, 2) + + if self.norm is not None: + embeddings = self.norm(embeddings) + + return embeddings, output_dimensions + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet +class FocalNetDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class FocalNetModulation(nn.Module): + def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0): + super().__init__() + + self.dim = dim + self.focal_window = config.focal_windows[index] + self.focal_level = config.focal_levels[index] + self.focal_factor = focal_factor + self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation + self.normalize_modulator = config.normalize_modulator + + self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias) + self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) + + self.activation = nn.GELU() + self.projection_out = nn.Linear(dim, dim) + self.projection_dropout = nn.Dropout(projection_dropout) + self.focal_layers = nn.ModuleList() + + self.kernel_sizes = [] + for k in range(self.focal_level): + kernel_size = self.focal_factor * k + self.focal_window + self.focal_layers.append( + nn.Sequential( + nn.Conv2d( + dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False + ), + nn.GELU(), + ) + ) + self.kernel_sizes.append(kernel_size) + if self.use_post_layernorm_in_modulation: + self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps) + + def forward(self, hidden_state): + """ + Args: + hidden_state: + Input features with shape of (batch_size, height, width, num_channels) + """ + num_channels = hidden_state.shape[-1] + + # pre linear projection + x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous() + q, ctx, self.gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1) + + # context aggreation + ctx_all = 0 + for level in range(self.focal_level): + ctx = self.focal_layers[level](ctx) + ctx_all = ctx_all + ctx * self.gates[:, level : level + 1] + ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) + ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level :] + + # normalize context + if self.normalize_modulator: + ctx_all = ctx_all / (self.focal_level + 1) + + # focal modulation + self.modulator = self.projection_context(ctx_all) + x_out = q * self.modulator + x_out = x_out.permute(0, 2, 3, 1).contiguous() + if self.use_post_layernorm_in_modulation: + x_out = self.layernorm(x_out) + + # post linear porjection + x_out = self.projection_out(x_out) + x_out = self.projection_dropout(x_out) + return x_out + + +class FocalNetMlp(nn.Module): + def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.activation = ACT2FN[config.hidden_act] + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, hidden_state): + hidden_state = self.fc1(hidden_state) + hidden_state = self.activation(hidden_state) + hidden_state = self.drop(hidden_state) + hidden_state = self.fc2(hidden_state) + hidden_state = self.drop(hidden_state) + return hidden_state + + +class FocalNetLayer(nn.Module): + r"""Focal Modulation Network layer (block). + + Args: + config (`FocalNetConfig`): + Model config. + index (`int`): + Layer index. + dim (`int`): + Number of input channels. + input_resolution (`Tuple[int]`): + Input resulotion. + drop_path (`float`, *optional*, defaults to 0.0): + Stochastic depth rate. + """ + + def __init__(self, config, index, dim, input_resolution, drop_path=0.0): + super().__init__() + + self.config = config + + # layer-specific attributes + self.dim = dim + self.input_resolution = input_resolution + + # general attributes + self.drop = config.hidden_dropout_prob + self.use_post_layernorm = config.use_post_layernorm + + self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.modulation = FocalNetModulation( + config=config, + index=index, + dim=dim, + projection_dropout=self.drop, + ) + + self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity() + self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) + mlp_hidden_dim = int(dim * config.mlp_ratio) + self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop) + + self.gamma_1 = 1.0 + self.gamma_2 = 1.0 + if config.use_layerscale: + self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) + self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) + + def forward(self, hidden_state, input_dimensions): + height, width = input_dimensions + batch_size, _, num_channels = hidden_state.shape + shortcut = hidden_state + + # Focal Modulation + hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state) + hidden_state = hidden_state.view(batch_size, height, width, num_channels) + hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels) + hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state) + + # FFN + hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state) + hidden_state = hidden_state + self.drop_path( + self.gamma_2 + * (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state))) + ) + + return hidden_state + + +class FocalNetStage(nn.Module): + def __init__(self, config, index, input_resolution): + super().__init__() + + self.config = config + self.num_stages = len(config.depths) + + embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)] + dim = embed_dim[index] + out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None + downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None + + # stochastic depth decay rule + dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])] + + self.layers = nn.ModuleList( + [ + FocalNetLayer( + config=config, + index=index, + dim=dim, + input_resolution=input_resolution, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + ) + for i in range(config.depths[index]) + ] + ) + + if downsample is not None: + self.downsample = downsample( + config=config, + image_size=input_resolution, + patch_size=2, + num_channels=dim, + embed_dim=out_dim, + add_norm=True, + use_conv_embed=config.use_conv_embed, + is_stem=False, + ) + else: + self.downsample = None + + self.pointing = False + + def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]: + height, width = input_dimensions + for layer_module in self.layers: + hidden_states = layer_module(hidden_states, input_dimensions) + + hidden_states_before_downsampling = hidden_states + if self.downsample is not None: + height, width = input_dimensions + hidden_states = hidden_states.transpose(1, 2).reshape( + hidden_states_before_downsampling.shape[0], -1, height, width + ) + hidden_states, output_dimensions = self.downsample(hidden_states) + + else: + output_dimensions = (height, width, height, width) + + stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) + + return stage_outputs + + +class FocalNetEncoder(nn.Module): + def __init__(self, config, grid_size): + super().__init__() + self.num_stages = len(config.depths) + self.config = config + + self.stages = nn.ModuleList( + [ + FocalNetStage( + config=config, + index=i_layer, + input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), + ) + for i_layer in range(self.num_stages) + ] + ) + + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + output_hidden_states: Optional[bool] = False, + output_hidden_states_before_downsampling: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, FocalNetEncoderOutput]: + all_hidden_states = () if output_hidden_states else None + all_reshaped_hidden_states = () if output_hidden_states else None + + if output_hidden_states: + batch_size, _, hidden_size = hidden_states.shape + # rearrange b (h w) c -> b c h w + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + for i, stage_module in enumerate(self.stages): + if self.gradient_checkpointing and self.training: + stage_outputs = self._gradient_checkpointing_func( + stage_module.__call__, + hidden_states, + input_dimensions, + ) + else: + stage_outputs = stage_module(hidden_states, input_dimensions) + + hidden_states = stage_outputs[0] + hidden_states_before_downsampling = stage_outputs[1] + output_dimensions = stage_outputs[2] + + input_dimensions = (output_dimensions[-2], output_dimensions[-1]) + + if output_hidden_states and output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states_before_downsampling.shape + # rearrange b (h w) c -> b c h w + # here we use the original (not downsampled) height and width + reshaped_hidden_state = hidden_states_before_downsampling.view( + batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size + ) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states_before_downsampling,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + elif output_hidden_states and not output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states.shape + # rearrange b (h w) c -> b c h w + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return FocalNetEncoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + reshaped_hidden_states=all_reshaped_hidden_states, + ) + + +# Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->FocalNet,swin->focalnet +class FocalNetPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = FocalNetConfig + base_model_prefix = "focalnet" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +FOCALNET_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +FOCALNET_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`AutoImageProcessor.__call__`] for details. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare FocalNet Model outputting raw hidden-states without any specific head on top.", + FOCALNET_START_DOCSTRING, +) +class FocalNetModel(FocalNetPreTrainedModel): + def __init__(self, config, add_pooling_layer=True, use_mask_token=False): + super().__init__(config) + self.config = config + self.num_stages = len(config.depths) + self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) + + self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid) + + self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) + self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=FocalNetModelOutput, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, FocalNetModelOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + input_dimensions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + + pooled_output = None + if self.pooler is not None: + pooled_output = self.pooler(sequence_output.transpose(1, 2)) + pooled_output = torch.flatten(pooled_output, 1) + + if not return_dict: + output = (sequence_output, pooled_output) + encoder_outputs[1:] + + return output + + return FocalNetModelOutput( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, + ) + + +@add_start_docstrings( + """FocalNet Model with a decoder on top for masked image modeling. + + This follows the same implementation as in [SimMIM](https://arxiv.org/abs/2111.09886). + + + + Note that we provide a script to pre-train this model on custom data in our [examples + directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). + + + """, + FOCALNET_START_DOCSTRING, +) +class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True) + + self.num_stages = len(config.depths) + num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) + self.decoder = nn.Sequential( + nn.Conv2d( + in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 + ), + nn.PixelShuffle(config.encoder_stride), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FocalNetMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, FocalNetMaskedImageModelingOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192") + >>> config = FocalNetConfig() + >>> model = FocalNetForMaskedImageModeling(config) + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits + >>> list(reconstructed_pixel_values.shape) + [1, 3, 192, 192] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.focalnet( + pixel_values, + bool_masked_pos=bool_masked_pos, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + # Reshape to (batch_size, num_channels, height, width) + sequence_output = sequence_output.transpose(1, 2) + batch_size, num_channels, sequence_length = sequence_output.shape + height = width = math.floor(sequence_length**0.5) + sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) + + # Reconstruct pixel values + reconstructed_pixel_values = self.decoder(sequence_output) + + masked_im_loss = None + if bool_masked_pos is not None: + size = self.config.image_size // self.config.patch_size + bool_masked_pos = bool_masked_pos.reshape(-1, size, size) + mask = ( + bool_masked_pos.repeat_interleave(self.config.patch_size, 1) + .repeat_interleave(self.config.patch_size, 2) + .unsqueeze(1) + .contiguous() + ) + reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") + masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels + + if not return_dict: + output = (reconstructed_pixel_values,) + outputs[2:] + return ((masked_im_loss,) + output) if masked_im_loss is not None else output + + return FocalNetMaskedImageModelingOutput( + loss=masked_im_loss, + reconstruction=reconstructed_pixel_values, + hidden_states=outputs.hidden_states, + reshaped_hidden_states=outputs.reshaped_hidden_states, + ) + + +@add_start_docstrings( + """ + FocalNet Model with an image classification head on top (a linear layer on top of the pooled output) e.g. for + ImageNet. + """, + FOCALNET_START_DOCSTRING, +) +class FocalNetForImageClassification(FocalNetPreTrainedModel): + # Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.focalnet = FocalNetModel(config) + + # Classifier head + self.classifier = ( + nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=FocalNetImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, FocalNetImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.focalnet( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return FocalNetImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + reshaped_hidden_states=outputs.reshaped_hidden_states, + ) + + +@add_start_docstrings( + """ + FocalNet backbone, to be used with frameworks like X-Decoder. + """, + FOCALNET_START_DOCSTRING, +) +class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin): + def __init__(self, config: FocalNetConfig): + super().__init__(config) + super()._init_backbone(config) + + self.num_features = [config.embed_dim] + config.hidden_sizes + self.focalnet = FocalNetModel(config) + + # initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf") + >>> model = AutoBackbone.from_pretrained("microsoft/focalnet-tiny-lrf") + + >>> inputs = processor(image, return_tensors="pt") + >>> outputs = model(**inputs) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + outputs = self.focalnet(pixel_values, output_hidden_states=True, return_dict=True) + + hidden_states = outputs.reshaped_hidden_states + + feature_maps = () + for idx, stage in enumerate(self.stage_names): + if stage in self.out_features: + feature_maps += (hidden_states[idx],) + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output += (outputs.hidden_states,) + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=None, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dd1c53b886eb37e821e0833284d876541c4dec83 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/__init__.py @@ -0,0 +1,101 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_led": ["LED_PRETRAINED_CONFIG_ARCHIVE_MAP", "LEDConfig"], + "tokenization_led": ["LEDTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_led_fast"] = ["LEDTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_led"] = [ + "LED_PRETRAINED_MODEL_ARCHIVE_LIST", + "LEDForConditionalGeneration", + "LEDForQuestionAnswering", + "LEDForSequenceClassification", + "LEDModel", + "LEDPreTrainedModel", + ] + + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_led"] = ["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"] + + +if TYPE_CHECKING: + from .configuration_led import LED_PRETRAINED_CONFIG_ARCHIVE_MAP, LEDConfig + from .tokenization_led import LEDTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_led_fast import LEDTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_led import ( + LED_PRETRAINED_MODEL_ARCHIVE_LIST, + LEDForConditionalGeneration, + LEDForQuestionAnswering, + LEDForSequenceClassification, + LEDModel, + LEDPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_led import TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/configuration_led.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/configuration_led.py new file mode 100644 index 0000000000000000000000000000000000000000..59a2793cc89e08502bc48351a06af088d5ad685c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/configuration_led.py @@ -0,0 +1,165 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" LED model configuration""" + +from typing import List, Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import LED_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class LEDConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LEDModel`]. It is used to instantiate an LED + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the LED + [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`LEDModel`] or [`TFLEDModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + max_encoder_position_embeddings (`int`, *optional*, defaults to 16384): + The maximum sequence length that the encoder might ever be used with. + max_decoder_position_embeddings (`int`, *optional*, defaults to 16384): + The maximum sequence length that the decoder might ever be used with. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + + Example: + + ```python + >>> from transformers import LEDModel, LEDConfig + + >>> # Initializing a LED allenai/led-base-16384 style configuration + >>> configuration = LEDConfig() + + >>> # Initializing a model from the allenai/led-base-16384 style configuration + >>> model = LEDModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "led" + attribute_map = { + "num_attention_heads": "encoder_attention_heads", + "hidden_size": "d_model", + "attention_probs_dropout_prob": "attention_dropout", + "initializer_range": "init_std", + } + + def __init__( + self, + vocab_size=50265, + max_encoder_position_embeddings=16384, + max_decoder_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=2, + classifier_dropout=0.0, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + attention_window: Union[List[int], int] = 512, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_encoder_position_embeddings = max_encoder_position_embeddings + self.max_decoder_position_embeddings = max_decoder_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.attention_window = attention_window + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_led.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_led.py new file mode 100644 index 0000000000000000000000000000000000000000..b2a5f440e0f25d5f02e2fe1e0d3c5ee8ca54a170 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_led.py @@ -0,0 +1,2747 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch LED model.""" + + +import math +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqQuestionAnsweringModelOutput, + Seq2SeqSequenceClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_led import LEDConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/led-base-16384" +_CONFIG_FOR_DOC = "LEDConfig" + + +from ..deprecated._archive_maps import LED_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +def _prepare_4d_attention_mask_inverted(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + bsz, src_len = mask.size() + tgt_len = tgt_len if tgt_len is not None else src_len + + expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) + + inverted_mask = 1.0 - expanded_mask + expanded_attention_mask = inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) + + # make sure that global_attn_mask is positive + expanded_attention_mask = expanded_attention_mask * inverted_mask + + return expanded_attention_mask + + +class LEDLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + super().__init__(num_embeddings, embedding_dim) + + def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + bsz, seq_len = input_ids_shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device + ) + return super().forward(positions) + + +# Copied from transformers.models.longformer.modeling_longformer.LongformerSelfAttention with Longformer->LEDEncoder +class LEDEncoderSelfAttention(nn.Module): + def __init__(self, config, layer_id): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + + self.query = nn.Linear(config.hidden_size, self.embed_dim) + self.key = nn.Linear(config.hidden_size, self.embed_dim) + self.value = nn.Linear(config.hidden_size, self.embed_dim) + + # separate projection layers for tokens with global attention + self.query_global = nn.Linear(config.hidden_size, self.embed_dim) + self.key_global = nn.Linear(config.hidden_size, self.embed_dim) + self.value_global = nn.Linear(config.hidden_size, self.embed_dim) + + self.dropout = config.attention_probs_dropout_prob + + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + self.config = config + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + """ + [`LEDEncoderSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in [`LEDEncoderModel.forward`] to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LEDEncoderModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + hidden_states = hidden_states.transpose(0, 1) + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + + seq_len, batch_size, embed_dim = hidden_states.size() + assert ( + embed_dim == self.embed_dim + ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" + + # normalize query + query_vectors /= math.sqrt(self.head_dim) + + query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None] + + # cast to fp32/fp16 then replace 1's with -inf + float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( + remove_from_windowed_attention_mask, torch.finfo(query_vectors.dtype).min + ) + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size + ) + + # pad local attention probs + attn_scores += diagonal_mask + + assert list(attn_scores.size()) == [ + batch_size, + seq_len, + self.num_heads, + self.one_sided_attn_window_size * 2 + 1, + ], ( + f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" + ) + + # compute local attention probs from global attention keys and contact over window dim + if is_global_attn: + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + # calculate global attn probs from global key + + global_key_attn_scores = self._concat_with_global_key_attn_probs( + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + # concat to local_attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1) + + # free memory + del global_key_attn_scores + + attn_probs = nn.functional.softmax( + attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0) + attn_probs = attn_probs.type_as(attn_scores) + + # free memory + del attn_scores + + # apply dropout + attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) + + value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + # compute local attention output with global attention value and add + if is_global_attn: + # compute sum of global and local attn + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + # compute local attn only + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size" + attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous() + + # compute value for global attention and overwrite to attention output + # TODO: remove the redundant computation + if is_global_attn: + global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + ) + + # get only non zero global attn output + nonzero_global_attn_output = global_attn_output[ + is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] + ] + + # overwrite values with global attention + attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( + len(is_local_index_global_attn_nonzero[0]), -1 + ) + # The attention weights for tokens with global attention are + # just filler values, they were never used to compute the output. + # Fill with 0 now, the correct values are in 'global_attn_probs'. + attn_probs[is_index_global_attn_nonzero] = 0 + + outputs = (attn_output.transpose(0, 1),) + + if output_attentions: + outputs += (attn_probs,) + + return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): + """pads rows and then flips rows and columns""" + hidden_states_padded = nn.functional.pad( + hidden_states_padded, padding + ) # padding value is not important because it will be overwritten + hidden_states_padded = hidden_states_padded.view( + *hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) + ) + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() + chunked_hidden_states = nn.functional.pad( + chunked_hidden_states, (0, window_overlap + 1) + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, -1 + ) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlap*window_overlap + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim + ) + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap, onnx_export: bool = False): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + if not onnx_export: + # non-overlapping chunks of size = 2w + hidden_states = hidden_states.view( + hidden_states.size(0), + torch.div(hidden_states.size(1), (window_overlap * 2), rounding_mode="trunc"), + window_overlap * 2, + hidden_states.size(2), + ) + # use `as_strided` to make the chunks overlap with an overlap size = window_overlap + chunk_size = list(hidden_states.size()) + chunk_size[1] = chunk_size[1] * 2 - 1 + + chunk_stride = list(hidden_states.stride()) + chunk_stride[1] = chunk_stride[1] // 2 + return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) + + # When exporting to ONNX, use this separate logic + # have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export + + # TODO replace this with + # > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).transpose(2, 3) + # once `unfold` is supported + # the case hidden_states.size(1) == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow + + chunk_size = [ + hidden_states.size(0), + torch.div(hidden_states.size(1), window_overlap, rounding_mode="trunc") - 1, + window_overlap * 2, + hidden_states.size(2), + ] + + overlapping_chunks = torch.empty(chunk_size, device=hidden_states.device) + for chunk in range(chunk_size[1]): + overlapping_chunks[:, chunk, :, :] = hidden_states[ + :, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, : + ] + return overlapping_chunks + + @staticmethod + def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: + beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) + beginning_mask = beginning_mask_2d[None, :, None, :] + ending_mask = beginning_mask.flip(dims=(1, 3)) + beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] + beginning_mask = beginning_mask.expand(beginning_input.size()) + input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = torch.full_like( + beginning_input, -float("inf") + ).where(beginning_mask.bool(), beginning_input) + ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] + ending_mask = ending_mask.expand(ending_input.size()) + input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = torch.full_like( + ending_input, -float("inf") + ).where(ending_mask.bool(), ending_input) + + def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained LEDEncoder) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = query.size() + assert ( + seq_len % (window_overlap * 2) == 0 + ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" + assert query.size() == key.size() + + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False)) + key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False)) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply + + # convert diagonals into columns + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( + diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) + ) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros( + (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) + ) + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, :, :window_overlap, : window_overlap + 1 + ] + diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, -1, window_overlap:, : window_overlap + 1 + ] + # - copying the lower triangle + diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ + :, :, -(window_overlap + 1) : -1, window_overlap + 1 : + ] + + diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ + :, 0, : window_overlap - 1, 1 - window_overlap : + ] + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = diagonal_attention_scores.view( + batch_size, num_heads, seq_len, 2 * window_overlap + 1 + ).transpose(2, 1) + + self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + return diagonal_attention_scores + + def _sliding_chunks_matmul_attn_probs_value( + self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int + ): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + batch_size, seq_len, num_heads, head_dim = value.size() + + assert seq_len % (window_overlap * 2) == 0 + assert attn_probs.size()[:3] == value.size()[:3] + assert attn_probs.size(3) == 2 * window_overlap + 1 + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + + chunked_attn_probs = attn_probs.transpose(1, 2).reshape( + batch_size * num_heads, + torch.div(seq_len, window_overlap, rounding_mode="trunc"), + window_overlap, + 2 * window_overlap + 1, + ) + + # group batch_size and num_heads dimensions into one + value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) + chunked_value_stride = padded_value.stride() + chunked_value_stride = ( + chunked_value_stride[0], + window_overlap * chunked_value_stride[1], + chunked_value_stride[1], + chunked_value_stride[2], + ) + chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + + context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) + return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = is_index_global_attn.long().sum(dim=1) + + # max number of global attn indices in batch + max_num_global_attn_indices = num_global_attn_indices.max() + + # indices of global attn + is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True) + + # helper variable + is_local_index_global_attn = torch.arange( + max_num_global_attn_indices, device=is_index_global_attn.device + ) < num_global_attn_indices.unsqueeze(dim=-1) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True) + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = key_vectors.shape[0] + + # create only global key vectors + key_vectors_only_global = key_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + + key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + attn_probs_from_global_key[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(attn_probs_from_global_key.dtype).min + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + + return attn_probs_from_global_key + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = attn_probs.shape[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices) + # get value vectors for global only + value_vectors_only_global = value_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] + + # use `matmul` because `einsum` crashes sometimes with fp16 + # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) + # compute attn output only global + attn_output_only_global = torch.matmul( + attn_probs_only_global.transpose(1, 2).clone(), value_vectors_only_global.transpose(1, 2).clone() + ).transpose(1, 2) + + # reshape attn probs + attn_probs_without_global = attn_probs.narrow( + -1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices + ).contiguous() + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + ): + seq_len, batch_size = hidden_states.shape[:2] + + # prepare global hidden states + global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim) + global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[ + is_index_global_attn_nonzero[::-1] + ] + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= math.sqrt(self.head_dim) + + # reshape + global_query_vectors_only_global = ( + global_query_vectors_only_global.contiguous() + .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) + .transpose(0, 1) + ) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) + global_key_vectors = ( + global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + global_value_vectors = ( + global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + + # compute attn scores + global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) + + assert list(global_attn_scores.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + seq_len, + ], ( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {global_attn_scores.size()}." + ) + + global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + global_attn_scores = global_attn_scores.transpose(1, 2) + global_attn_scores[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(global_attn_scores.dtype).min + global_attn_scores = global_attn_scores.transpose(1, 2) + + global_attn_scores = global_attn_scores.masked_fill( + is_index_masked[:, None, None, :], + torch.finfo(global_attn_scores.dtype).min, + ) + + global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + + # compute global attn probs + global_attn_probs_float = nn.functional.softmax( + global_attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + # apply layer head masking + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( + batch_size, self.num_heads, max_num_global_attn_indices, seq_len + ) + global_attn_probs_float = global_attn_probs_float.view( + batch_size * self.num_heads, max_num_global_attn_indices, seq_len + ) + + global_attn_probs = nn.functional.dropout( + global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training + ) + + # global attn output + global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) + + assert list(global_attn_output.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + self.head_dim, + ], ( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {global_attn_output.size()}." + ) + + global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + global_attn_output = global_attn_output.view( + batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim + ) + return global_attn_output, global_attn_probs + + +class LEDEncoderAttention(nn.Module): + def __init__(self, config, layer_id): + super().__init__() + self.longformer_self_attn = LEDEncoderSelfAttention(config, layer_id=layer_id) + self.output = nn.Linear(config.d_model, config.d_model) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + is_index_masked: Optional[torch.Tensor] = None, + is_index_global_attn: Optional[torch.Tensor] = None, + is_global_attn: Optional[bool] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + self_outputs = self.longformer_self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + + attn_output = self.output(self_outputs[0]) + outputs = (attn_output,) + self_outputs[1:] + + return outputs + + +class LEDDecoderAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = ( + attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + .transpose(1, 2) + .reshape(bsz, tgt_len, embed_dim) + ) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class LEDEncoderLayer(nn.Module): + def __init__(self, config: LEDConfig, layer_id: int): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = LEDEncoderAttention(config, layer_id) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`torch.FloatTensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + *(encoder_attention_heads,)*. + """ + residual = hidden_states + attn_outputs = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + hidden_states = attn_outputs[0] + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + return (hidden_states,) + attn_outputs[1:] + + +class LEDDecoderLayer(nn.Module): + def __init__(self, config: LEDConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = LEDDecoderAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = LEDDecoderAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`torch.FloatTensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + *(decoder_attention_heads,)*. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for encoder attention heads in a given layer of + size *(decoder_attention_heads,)*. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`): Whether the base model outputs attentions. + This requires the attentions tensor to be reshaped in this function. + """ + residual = hidden_states + + # Self-Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class LEDClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__( + self, + input_dim: int, + inner_dim: int, + num_classes: int, + pooler_dropout: float, + ): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class LEDPreTrainedModel(PreTrainedModel): + config_class = LEDConfig + base_model_prefix = "led" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + } + return dummy_inputs + + +@dataclass +# Copied from transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput with Longformer->LEDEncoder +class LEDEncoderBaseModelOutput(ModelOutput): + """ + Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LEDSeq2SeqModelOutput(ModelOutput): + """ + Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential + decoding. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_heads, sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor = None + past_key_values: Optional[List[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LEDSeq2SeqLMOutput(ModelOutput): + """ + Base class for sequence-to-sequence language models outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_heads, sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + past_key_values: Optional[List[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LEDSeq2SeqSequenceClassifierOutput(ModelOutput): + """ + Base class for outputs of sequence-to-sequence sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_heads, sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + past_key_values: Optional[List[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of sequence-to-sequence question answering models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_heads, sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + past_key_values: Optional[List[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +LED_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. See the superclass documentation for the generic methods the library + implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior. + + Parameters: + config ([`LEDConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LED_GENERATION_EXAMPLE = r""" + Summarization example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, LEDForConditionalGeneration + + >>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-large-16384-arxiv") + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-large-16384-arxiv") + + >>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art + ... results in a wide range of natural language tasks including generative language modeling + ... (Dai et al., 2019; Radford et al., 2019) and discriminative ... language understanding (Devlin et al., 2019). + ... This success is partly due to the self-attention component which enables the network to capture contextual + ... information from the entire sequence. While powerful, the memory and computational requirements of + ... self-attention grow quadratically with sequence length, making it infeasible (or very expensive) to + ... process long sequences. To address this limitation, we present Longformer, a modified Transformer + ... architecture with a self-attention operation that scales linearly with the sequence length, making it + ... versatile for processing long documents (Fig 1). This is an advantage for natural language tasks such as + ... long document classification, question answering (QA), and coreference resolution, where existing approaches + ... partition or shorten the long context into smaller sequences that fall within the typical 512 token limit + ... of BERT-style pretrained models. Such partitioning could potentially result in loss of important + ... cross-partition information, and to mitigate this problem, existing methods often rely on complex + ... architectures to address such interactions. On the other hand, our proposed Longformer is able to build + ... contextual representations of the entire context using multiple layers of attention, reducing the need for + ... task-specific architectures.''' + >>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors="pt") + + >>> # Global attention on the first token (cf. Beltagy et al. 2020) + >>> global_attention_mask = torch.zeros_like(inputs) + >>> global_attention_mask[:, 0] = 1 + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask, num_beams=3, max_length=32) + >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) + ``` +""" + +LED_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + LED uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should read [`modeling_led._prepare_decoder_inputs`] and modify + to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the + default strategy. + global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to decide the attention given on each token, local attention or global attention for the encoder. + Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is + important for task-specific finetuning because it makes the model more flexible at representing the task. + For example, for classification, the token should be given global attention. For QA, all question + tokens should also have global attention. Please refer to the [Longformer + paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class LEDEncoder(LEDPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a + [`LEDEncoderLayer`]. + + Args: + config: LEDConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_encoder_position_embeddings + + if isinstance(config.attention_window, int): + if config.attention_window % 2 != 0: + raise ValueError("`config.attention_window` has to be an even value") + if config.attention_window <= 0: + raise ValueError("`config.attention_window` has to be positive") + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + if len(config.attention_window) != config.num_hidden_layers: + raise ValueError( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + self.embed_positions = LEDLearnedPositionalEmbedding( + self.max_source_positions, + embed_dim, + ) + self.layers = nn.ModuleList([LEDEncoderLayer(config, i) for i in range(config.encoder_layers)]) + self.layernorm_embedding = nn.LayerNorm(embed_dim) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): + # longformer self-attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) + # (global_attention_mask + 1) => 1 for local attention, 2 for global attention + # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention + if attention_mask is not None: + attention_mask = attention_mask * (global_attention_mask + 1) + else: + # simply use `global_attention_mask` as `attention_mask` + # if no `attention_mask` is given + attention_mask = global_attention_mask + 1 + return attention_mask + + def _pad_to_window_size( + self, + input_ids: torch.Tensor, + attention_mask: torch.Tensor, + inputs_embeds: torch.Tensor, + pad_token_id: int, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" + # padding + attention_window = ( + self.config.attention_window + if isinstance(self.config.attention_window, int) + else max(self.config.attention_window) + ) + + if attention_window % 2 != 0: + raise ValueError(f"`attention_window` should be an even value. Given {attention_window}") + input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape + batch_size, seq_len = input_shape[:2] + + padding_len = (attention_window - seq_len % attention_window) % attention_window + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.attention_window`: {attention_window}" + ) + if input_ids is not None: + input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) + if inputs_embeds is not None: + input_ids_padding = inputs_embeds.new_full( + (batch_size, padding_len), + self.config.pad_token_id, + dtype=torch.long, + ) + inputs_embeds_padding = self.embed_tokens(input_ids_padding) + inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) + + attention_mask = nn.functional.pad( + attention_mask, (0, padding_len), value=False + ) # no attention on the padding tokens + + return padding_len, input_ids, attention_mask, inputs_embeds + + def forward( + self, + input_ids=None, + attention_mask=None, + global_attention_mask=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to decide the attention given on each token, local attention or global attention for the encoder. + Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is + important for task-specific finetuning because it makes the model more flexible at representing the + task. For example, for classification, the token should be given global attention. For QA, all + question tokens should also have global attention. Please refer to the [Longformer + paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # check input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is None and inputs_embeds is None: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + # create default attention_mask + if attention_mask is None: + attention_mask = torch.ones(inputs_embeds.size()[:-1], device=inputs_embeds.device, dtype=torch.long) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) + + # pad input if necessary + padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + pad_token_id=self.config.pad_token_id, + ) + + # retrieve input_shape + if input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + + # convert attention_mask to float + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, seq_len]; 1 -> 0.0; 0 -> "-inf" + attention_mask = _prepare_4d_attention_mask_inverted(attention_mask, inputs_embeds.dtype)[:, 0, 0, :] + + # get masking tensors + is_index_masked = attention_mask < 0 + is_index_global_attn = attention_mask > 0 + is_global_attn = is_index_global_attn.flatten().any().item() + + embed_pos = self.embed_positions(input_shape) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_global_attentions = () if (output_attentions and is_global_attn) else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + if self.training and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + is_index_masked, + is_index_global_attn, + is_global_attn, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),) + + if is_global_attn: + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + # undo padding + if padding_len > 0: + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = hidden_states[:, :-padding_len] + if output_hidden_states: + encoder_states = tuple([state[:, :-padding_len] for state in encoder_states]) + + if output_attentions: + all_attentions = tuple([state[:, :, :-padding_len, :] for state in all_attentions]) + + if not return_dict: + return tuple( + v for v in [hidden_states, encoder_states, all_attentions, all_global_attentions] if v is not None + ) + return LEDEncoderBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + +class LEDDecoder(LEDPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`LEDDecoderLayer`] + + Args: + config: LEDConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_decoder_position_embeddings + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + self.embed_positions = LEDLearnedPositionalEmbedding( + self.max_target_positions, + config.d_model, + ) + self.layers = nn.ModuleList([LEDDecoderLayer(config) for _ in range(config.decoder_layers)]) + self.layernorm_embedding = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids=None, + attention_mask=None, + global_attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to decide the attention given on each token, local attention or global attention. Tokens with + global attention attends to all other tokens, and all other tokens attend to them. This is important + for task-specific finetuning because it makes the model more flexible at representing the task. For + example, for classification, the token should be given global attention. For QA, all question + tokens should also have global attention. Please refer to the [Longformer + paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = None + if input_shape[-1] > 1: + combined_attention_mask = _create_4d_causal_attention_mask( + input_shape, inputs_embeds.dtype, inputs_embeds.device, past_key_values_length=past_key_values_length + ) + + if attention_mask is not None and combined_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask_inverted( + attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask_inverted( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input_shape, past_key_values_length) + + hidden_states = inputs_embeds + positions + hidden_states = self.layernorm_embedding(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + combined_attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare LED Model outputting raw hidden-states without any specific head on top.", + LED_START_DOCSTRING, +) +class LEDModel(LEDPreTrainedModel): + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] + + def __init__(self, config: LEDConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + + self.encoder = LEDEncoder(config, self.shared) + self.decoder = LEDDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + global_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], LEDSeq2SeqModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Using this like Bart, as LED is derived from it. So far + # No checkpoint on the hub exists that uses that in practice. + # https://github.com/huggingface/transformers/blob/ac3cb660cad283163f7c73cad511124e845ca388/src/transformers/models/bart/modeling_bart.py#L1153 + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + input_ids, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a LEDEncoderBaseModelOutput when return_dict=False + elif return_dict and not isinstance(encoder_outputs, LEDEncoderBaseModelOutput): + encoder_outputs = LEDEncoderBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + global_attentions=encoder_outputs[3] if len(encoder_outputs) > 3 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return LEDSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + encoder_global_attentions=encoder_outputs.global_attentions, + ) + + +@add_start_docstrings( + "The LED Model with a language modeling head. Can be used for summarization.", LED_START_DOCSTRING +) +class LEDForConditionalGeneration(LEDPreTrainedModel): + base_model_prefix = "led" + _keys_to_ignore_on_load_missing = ["final_logits_bias"] + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: LEDConfig): + super().__init__(config) + self.led = LEDModel(config) + self.register_buffer("final_logits_bias", torch.zeros((1, self.led.shared.num_embeddings))) + self.lm_head = nn.Linear(config.d_model, self.led.shared.num_embeddings, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.led.get_encoder() + + def get_decoder(self): + return self.led.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self._resize_final_logits_bias(new_embeddings.weight.shape[0]) + return new_embeddings + + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(LED_GENERATION_EXAMPLE) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + global_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], LEDSeq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Conditional generation example: + + ```python + >>> from transformers import AutoTokenizer, LEDForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384") + >>> TXT = "My friends are but they eat too many carbs." + + >>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384") + >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] + + >>> prediction = model.generate(input_ids)[0] + >>> print(tokenizer.decode(prediction, skip_special_tokens=True)) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.led( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return LEDSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + encoder_global_attentions=outputs.encoder_global_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + global_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "global_attention_mask": global_attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +@add_start_docstrings( + """ + LED model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + LED_START_DOCSTRING, +) +class LEDForSequenceClassification(LEDPreTrainedModel): + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] + + def __init__(self, config: LEDConfig, **kwargs): + warnings.warn( + "The `transformers.LEDForSequenceClassification` class is deprecated and will be removed in version 5 of" + " Transformers. No actual method were provided in the original paper on how to perfom" + " sequence classification.", + FutureWarning, + ) + super().__init__(config, **kwargs) + self.led = LEDModel(config) + self.classification_head = LEDClassificationHead( + config.d_model, + config.d_model, + config.num_labels, + config.classifier_dropout, + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + global_attention_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], LEDSeq2SeqSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + if input_ids is None and inputs_embeds is not None: + raise NotImplementedError( + f"Passing input embeddings is currently not supported for {self.__class__.__name__}" + ) + + outputs = self.led( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] # last hidden state + + eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) + + if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ + :, -1, : + ] + logits = self.classification_head(sentence_representation) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return LEDSeq2SeqSequenceClassifierOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + encoder_global_attentions=outputs.encoder_global_attentions, + ) + + +@add_start_docstrings( + """ + LED Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer + on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LED_START_DOCSTRING, +) +class LEDForQuestionAnswering(LEDPreTrainedModel): + _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] + + def __init__(self, config): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + + self.led = LEDModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + global_attention_mask: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], LEDSeq2SeqQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if start_positions is not None and end_positions is not None: + use_cache = False + + outputs = self.led( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = ( + start_logits, + end_logits, + ) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return LEDSeq2SeqQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + encoder_global_attentions=outputs.encoder_global_attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py new file mode 100644 index 0000000000000000000000000000000000000000..f64ed7758db0b15146bb3e7c015326fcb8557a1c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py @@ -0,0 +1,2664 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 LED model.""" + + +from __future__ import annotations + +import random +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions + +# Public API +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_led import LEDConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/led-base-16384" +_CONFIG_FOR_DOC = "LEDConfig" + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +class TFLEDLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + super().__init__(num_embeddings, embedding_dim, **kwargs) + + def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): + """Input is expected to be of size [bsz x seqlen].""" + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + return super().call(tf.cast(position_ids, dtype=tf.int32)) + + +# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerSelfAttention with TFLongformer->TFLEDEncoder +class TFLEDEncoderSelfAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.config = config + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + self.query = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query", + ) + self.key = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + ) + self.value = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value", + ) + + # separate projection layers for tokens with global attention + self.query_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query_global", + ) + self.key_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key_global", + ) + self.value_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value_global", + ) + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + def build(self, input_shape=None): + if not self.built: + with tf.name_scope("query_global"): + self.query_global.build((self.config.hidden_size,)) + with tf.name_scope("key_global"): + self.key_global.build((self.config.hidden_size,)) + with tf.name_scope("value_global"): + self.value_global.build((self.config.hidden_size,)) + + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "query_global", None) is not None: + with tf.name_scope(self.query_global.name): + self.query_global.build([None, None, self.config.hidden_size]) + if getattr(self, "key_global", None) is not None: + with tf.name_scope(self.key_global.name): + self.key_global.build([None, None, self.config.hidden_size]) + if getattr(self, "value_global", None) is not None: + with tf.name_scope(self.value_global.name): + self.value_global.build([None, None, self.config.hidden_size]) + + def call( + self, + inputs, + training=False, + ): + """ + LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + # retrieve input args + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + batch_size, seq_len, embed_dim = shape_list(hidden_states) + + tf.debugging.assert_equal( + embed_dim, + self.embed_dim, + message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", + ) + + # normalize query + query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) + query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # attn_probs = (batch_size, seq_len, num_heads, window*2+1) + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = attention_mask != 0 + # cast to fp32/fp16 then replace 1's with -inf + float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE + + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + tf.ones(shape_list(attention_mask)), + float_mask, + self.one_sided_attn_window_size, + ) + + # pad local attention probs + attn_scores += diagonal_mask + + tf.debugging.assert_equal( + shape_list(attn_scores), + [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], + message=( + f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}" + ), + ) + + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + + # this function is only relevant for global attention + if is_global_attn: + attn_scores = self._concat_with_global_key_attn_probs( + attn_scores=attn_scores, + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + + attn_probs = stable_softmax(attn_scores, axis=-1) + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_index, + tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), + attn_probs, + ) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs + + # apply dropout + attn_probs = self.dropout(attn_probs, training=training) + value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # if global attention, compute sum of global and local attn + + if is_global_attn: + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + tf.debugging.assert_equal( + shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size" + ) + + attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) + + # compute value for global attention and overwrite to attention output + if is_global_attn: + attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + attn_output=attn_output, + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + training=training, + ) + else: + # Leave attn_output unchanged + global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len)) + + # make sure that local attention probabilities are set to 0 for indices of global attn + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_global_attn_index, + tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), + attn_probs, + ) + + outputs = (attn_output, attn_probs, global_attn_probs) + + return outputs + + def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = shape_list(query) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), + 0, + message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", + ) + tf.debugging.assert_equal( + shape_list(query), + shape_list(key), + message=( + f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:" + f" {shape_list(key)}" + ), + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = tf.reshape( + tf.transpose(query, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) + chunked_query = self._chunk(query, window_overlap) + chunked_key = self._chunk(key, window_overlap) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) + chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply + + # convert diagonals into columns + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + # TODO: This code is most likely not very efficient and should be improved + diagonal_attn_scores_up_triang = tf.concat( + [ + diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], + diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], + ], + axis=1, + ) + + # - copying the lower triangle + diagonal_attn_scores_low_triang = tf.concat( + [ + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], + ], + axis=1, + ) + diagonal_attn_scores_first_chunk = tf.concat( + [ + tf.roll( + diagonal_chunked_attention_scores, + shift=[1, window_overlap], + axis=[2, 3], + )[:, :, :window_overlap, :window_overlap], + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + ], + axis=1, + ) + first_chunk_mask = ( + tf.tile( + tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None], + (batch_size * num_heads, 1, window_overlap, window_overlap), + ) + < 1 + ) + diagonal_attn_scores_low_triang = tf.where( + first_chunk_mask, + diagonal_attn_scores_first_chunk, + diagonal_attn_scores_low_triang, + ) + + # merging upper and lower triangle + diagonal_attention_scores = tf.concat( + [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 + ) + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = tf.transpose( + tf.reshape( + diagonal_attention_scores, + (batch_size, num_heads, seq_len, 2 * window_overlap + 1), + ), + (0, 2, 1, 3), + ) + + diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + + return diagonal_attention_scores + + @staticmethod + def _mask_invalid_locations(input_tensor, window_overlap): + # create correct upper triangle bool mask + mask_2d_upper = tf.reverse( + tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), + axis=[0], + ) + + # pad to full matrix + padding = tf.convert_to_tensor( + [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] + ) + + # create lower mask + mask_2d = tf.pad(mask_2d_upper, padding) + + # combine with upper mask + mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) + + # broadcast to full matrix + mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) + + # inf tensor used for masking + inf_tensor = -float("inf") * tf.ones_like(input_tensor) + + # mask + input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) + + return input_tensor + + def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + + batch_size, seq_len, num_heads, head_dim = shape_list(value) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap" + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[:3], + shape_list(value)[:3], + message="value and attn_probs must have same dims (except head_dim)", + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[3], + 2 * window_overlap + 1, + message="attn_probs last dim has to be 2 * window_overlap + 1", + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + chunked_attn_probs = tf.reshape( + tf.transpose(attn_probs, (0, 2, 1, 3)), + ( + batch_size * num_heads, + seq_len // window_overlap, + window_overlap, + 2 * window_overlap + 1, + ), + ) + + # group batch_size and num_heads dimensions into one + value = tf.reshape( + tf.transpose(value, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) + padded_value = tf.pad(value, paddings, constant_values=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + frame_size = 3 * window_overlap * head_dim + frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count + chunked_value = tf.signal.frame( + tf.reshape(padded_value, (batch_size * num_heads, -1)), + frame_size, + frame_hop_size, + ) + chunked_value = tf.reshape( + chunked_value, + (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), + ) + + tf.debugging.assert_equal( + shape_list(chunked_value), + [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], + message="Chunked value has the wrong shape", + ) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) + context = tf.transpose( + tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), + (0, 2, 1, 3), + ) + + return context + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): + """pads rows and then flips rows and columns""" + hidden_states_padded = tf.pad( + hidden_states_padded, paddings + ) # padding value is not important because it will be overwritten + batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) + hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) + + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) + chunked_hidden_states = tf.pad( + chunked_hidden_states, paddings + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = tf.reshape( + chunked_hidden_states, (total_num_heads, num_chunks, -1) + ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), + ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + batch_size, seq_length, hidden_dim = shape_list(hidden_states) + num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 + + # define frame size and frame stride (similar to convolution) + frame_hop_size = window_overlap * hidden_dim + frame_size = 2 * frame_hop_size + hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) + + # chunk with overlap + chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) + + tf.debugging.assert_equal( + shape_list(chunked_hidden_states), + [batch_size, num_output_chunks, frame_size], + message=( + "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension" + f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}." + ), + ) + + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), + ) + + return chunked_hidden_states + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) + num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) + + # max number of global attn indices in batch + max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) + + # indices of global attn + is_index_global_attn_nonzero = tf.where(is_index_global_attn) + + # helper variable + is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( + num_global_attn_indices, axis=-1 + ) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) + + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + attn_scores, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = shape_list(key_vectors)[0] + + # select global key vectors + global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) + + # create only global key vectors + key_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_key_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) + + # (batch_size, max_num_global_attn_indices, seq_len, num_heads) + attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(attn_probs_from_global_key_trans)[-2:] + ) + mask = tf.ones(mask_shape) * -10000.0 + mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) + + # scatter mask + attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( + attn_probs_from_global_key_trans, + is_local_index_no_global_attn_nonzero, + mask, + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) + + # concat to attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) + + return attn_scores + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = shape_list(attn_probs)[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] + + # select global value vectors + global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) + + # create only global value vectors + value_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_value_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # compute attn output only global + attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) + + # reshape attn probs + attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + attn_output, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + training, + ): + batch_size, seq_len = shape_list(hidden_states)[:2] + + # prepare global hidden states + global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) + global_attn_hidden_states = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_attn_hidden_states, + shape=(batch_size, max_num_global_attn_indices, self.embed_dim), + ) + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= tf.math.sqrt( + tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) + ) + global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) + global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) + global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) + + # compute attn scores + global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(global_attn_scores), + [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], + message=( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {shape_list(global_attn_scores)}." + ), + ) + + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), + ) + global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(global_attn_scores_trans)[-2:] + ) + global_attn_mask = tf.ones(mask_shape) * -10000.0 + global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) + + # scatter mask + global_attn_scores_trans = tf.tensor_scatter_nd_update( + global_attn_scores_trans, + is_local_index_no_global_attn_nonzero, + global_attn_mask, + ) + global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) + + # mask global attn scores + attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) + global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), + ) + + # compute global attn probs + global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1) + + # apply layer head masking + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + global_attn_probs_float = tf.reshape( + global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + ) + + # dropout + global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) + + # global attn output + global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) + + tf.debugging.assert_equal( + shape_list(global_attn_output), + [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], + message=( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {shape_list(global_attn_output)}." + ), + ) + + global_attn_output = tf.reshape( + global_attn_output, + (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), + ) + + # get only non zero global attn output + nonzero_global_attn_output = tf.gather_nd( + tf.transpose(global_attn_output, (0, 2, 1, 3)), + is_local_index_global_attn_nonzero, + ) + nonzero_global_attn_output = tf.reshape( + nonzero_global_attn_output, + (shape_list(is_local_index_global_attn_nonzero)[0], -1), + ) + + # overwrite values with global attention + attn_output = tf.tensor_scatter_nd_update( + attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output + ) + + global_attn_probs = tf.reshape( + global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + + return attn_output, global_attn_probs + + def reshape_and_transpose(self, vector, batch_size): + return tf.reshape( + tf.transpose( + tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), + (0, 2, 1, 3), + ), + (batch_size * self.num_heads, -1, self.head_dim), + ) + + +class TFLEDEncoderAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.longformer_self_attn = TFLEDEncoderSelfAttention(config, layer_id=layer_id, name="longformer_self_attn") + self.output_dense = keras.layers.Dense(config.d_model, use_bias=True, name="output") + self.config = config + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + self_outputs = self.longformer_self_attn( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + + attention_output = self.output_dense(self_outputs[0], training=training) + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer_self_attn", None) is not None: + with tf.name_scope(self.longformer_self_attn.name): + self.longformer_self_attn.build(None) + if getattr(self, "output_dense", None) is not None: + with tf.name_scope(self.output_dense.name): + self.output_dense.build([None, None, self.config.d_model]) + + +class TFLEDDecoderAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training=False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + tf.cast( + attention_mask, dtype=attn_weights.dtype + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFLEDEncoderLayer(keras.layers.Layer): + def __init__(self, config: LEDConfig, layer_id: int, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFLEDEncoderAttention(config, layer_id, name="self_attn") + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + layer_head_mask: tf.Tensor, + is_index_masked: tf.Tensor, + is_index_global_attn: tf.Tensor, + is_global_attn: bool, + training=False, + ): + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(config.encoder_attention_heads,)*. + """ + residual = hidden_states + layer_outputs = self.self_attn( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + + hidden_states = layer_outputs[0] + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return (hidden_states,) + layer_outputs[1:] + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFLEDDecoderLayer(keras.layers.Layer): + def __init__(self, config: LEDConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFLEDDecoderAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFLEDDecoderAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + encoder_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training=False, + ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(config.encoder_attention_heads,)*. + encoder_layer_head_mask (`tf.Tensor`): mask for encoder attention heads in a given layer of + size *(config.encoder_attention_heads,)*. + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + + # Self-Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=encoder_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFLEDPreTrainedModel(TFPreTrainedModel): + config_class = LEDConfig + base_model_prefix = "led" + + @property + def input_signature(self): + sig = super().input_signature + sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask") + return sig + + +@dataclass +# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutput with TFLongformer->TFLEDEncoder +class TFLEDEncoderBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLEDSeq2SeqModelOutput(ModelOutput): + """ + Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential + decoding. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, + sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + past_key_values: List[tf.Tensor] | None = None + decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + decoder_attentions: Tuple[tf.Tensor, ...] | None = None + cross_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_last_hidden_state: tf.Tensor | None = None + encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + encoder_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLEDSeq2SeqLMOutput(ModelOutput): + """ + Base class for sequence-to-sequence language models outputs. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, + sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + past_key_values: List[tf.Tensor] | None = None + decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + decoder_attentions: Tuple[tf.Tensor, ...] | None = None + cross_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_last_hidden_state: tf.Tensor | None = None + encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + encoder_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None + + +LED_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`LEDConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LED_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + LED uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.Tensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFLEDEncoder(keras.layers.Layer): + config_class = LEDConfig + """ + Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a + [`TFLEDEncoderLayer`]. + + Args: + config: LEDConfig + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + if config.encoder_layerdrop > 0: + logger.warning("Layerdrop is currently disabled in TFLED models.") + self.layerdrop = 0.0 + self.padding_idx = config.pad_token_id + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.attention_window = config.attention_window + self.embed_tokens = embed_tokens + self.embed_positions = TFLEDLearnedPositionalEmbedding( + config.max_encoder_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFLEDEncoderLayer(config, i, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + global_attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = attention_mask * tf.cast((global_attention_mask + 1), dtype=attention_mask.dtype) + + padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + pad_token_id=self.padding_idx, + ) + + input_shape = shape_list(attention_mask) + # is index masked or global attention + is_index_masked = tf.math.less(tf.cast(attention_mask, tf.int8), 1) + is_index_global_attn = tf.math.greater(tf.cast(attention_mask, tf.int8), 1) + is_global_attn = tf.math.reduce_any(is_index_global_attn) + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask)[:, 0, 0, :] + attention_mask = attention_mask[:, :, None, None] + + encoder_states = () if output_hidden_states else None + all_attentions = all_global_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + hidden_states_to_add = self.compute_hidden_states(hidden_states, padding_len) + encoder_states = encoder_states + (hidden_states_to_add,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + layer_outputs = encoder_layer( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) + + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),) + + # undo padding + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = self.compute_hidden_states(hidden_states, padding_len) + + # undo padding + if output_attentions: + all_attentions = ( + tuple([state[:, :, :-padding_len, :] for state in all_attentions]) + if padding_len > 0 + else all_attentions + ) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFLEDEncoderBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + @tf.function + def compute_hidden_states(self, hidden_states, padding_len): + return hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + + def _pad_to_window_size( + self, + input_ids, + attention_mask, + inputs_embeds, + pad_token_id, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" + # padding + attention_window = ( + self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + + input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) + batch_size, seq_len = input_shape[:2] + padding_len = (attention_window - seq_len % attention_window) % attention_window + + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.attention_window`: {attention_window}" + ) + + paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) + + if input_ids is not None: + input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) + + if inputs_embeds is not None: + if padding_len > 0: + input_ids_padding = tf.fill((batch_size, padding_len), pad_token_id) + inputs_embeds_padding = self.embed_tokens(input_ids_padding) + inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) + + attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens + + return ( + padding_len, + input_ids, + attention_mask, + inputs_embeds, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLEDDecoder(keras.layers.Layer): + config_class = LEDConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFLEDDecoderLayer`] + + Args: + config: LEDConfig + embed_tokens: output embedding + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + if config.decoder_layerdrop > 0: + logger.warning("Layerdrop is currently disabled in TFLED models.") + self.layerdrop = 0.0 + self.embed_positions = TFLEDLearnedPositionalEmbedding( + config.max_decoder_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFLEDDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + + self.dropout = keras.layers.Dropout(config.dropout) + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + encoder_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention + on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. If `past_key_values` are used, the user can optionally input only the last + `decoder_input_ids` (those that don't have their past key value states given to this model) of shape + `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + # embed positions + positions = self.embed_positions(input_shape, past_key_values_length) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) + + hidden_states = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None and input_shape[-1] > 1: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + hidden_states = self.layernorm_embedding(hidden_states + positions) + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () + all_self_attns = () + all_cross_attentions = () + present_key_values = () + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + encoder_layer_head_mask=encoder_head_mask[idx] if encoder_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + all_cross_attentions += (layer_cross_attn,) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + else: + all_hidden_states = None + + all_self_attns = all_self_attns if output_attentions else None + all_cross_attentions = all_cross_attentions if output_attentions else None + + present_key_values = present_key_values if use_cache else None + + if not return_dict: + return tuple( + v + for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLEDMainLayer(keras.layers.Layer): + config_class = LEDConfig + + def __init__(self, config: LEDConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="led.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "led.shared" + + self.encoder = TFLEDEncoder(config, self.shared, name="encoder") + self.decoder = TFLEDDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None, + global_attention_mask=None, + past_key_values=None, + inputs_embeds=None, + decoder_inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + **kwargs, + ): + if decoder_input_ids is None and decoder_inputs_embeds is None: + use_cache = False + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFLEDEncoderBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFLEDEncoderBaseModelOutput): + encoder_outputs = TFLEDEncoderBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFLEDEncoderBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + encoder_head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFLEDSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + encoder_global_attentions=encoder_outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare LED Model outputting raw hidden-states without any specific head on top.", + LED_START_DOCSTRING, +) +class TFLEDModel(TFLEDPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.led = TFLEDMainLayer(config, name="led") + + def get_encoder(self): + return self.led.encoder + + def get_decoder(self): + return self.led.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLEDSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + encoder_outputs: tf.Tensor | None = None, + global_attention_mask: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + **kwargs, + ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqModelOutput: + outputs = self.led( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None + + return TFLEDSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + encoder_global_attentions=enc_g_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "led", None) is not None: + with tf.name_scope(self.led.name): + self.led.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The LED Model with a language modeling head. Can be used for summarization.", + LED_START_DOCSTRING, +) +class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): + _keys_to_ignore_on_load_unexpected = [ + r"led.encoder.embed_tokens.weight", + r"led.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.led = TFLEDMainLayer(config, name="led") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + # TODO (Joao): investigate why LED has numerical issues in XLA generate + self.supports_xla_generation = False + + def get_decoder(self): + return self.led.decoder + + def get_encoder(self): + return self.led.encoder + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + @unpack_inputs + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: TFLEDEncoderBaseModelOutput | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqLMOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFLEDForConditionalGeneration + >>> import tensorflow as tf + + >>> mname = "allenai/led-base-16384" + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + >>> TXT = "My friends are but they eat too many carbs." + >>> model = TFLEDForConditionalGeneration.from_pretrained(mname) + >>> batch = tokenizer([TXT], return_tensors="tf") + >>> logits = model(inputs=batch.input_ids).logits + >>> probs = tf.nn.softmax(logits[0]) + >>> # probs[5] is associated with the mask token + ```""" + + if labels is not None: + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.led( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.led.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFLEDSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + encoder_global_attentions=outputs.encoder_global_attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None + + return TFLEDSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + encoder_global_attentions=enc_g_attns, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def hf_compute_loss(self, labels, logits): + """CrossEntropyLoss that ignores pad tokens""" + loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) + if self.config.tf_legacy_loss: + melted_labels = tf.reshape(labels, (-1,)) + active_loss = tf.not_equal(melted_labels, self.config.pad_token_id) + reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) + labels = tf.boolean_mask(melted_labels, active_loss) + return loss_fn(labels, reduced_logits) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_loss = loss_fn(tf.nn.relu(labels), logits) + # make sure only non-padding labels affect the loss + loss_mask = tf.cast(labels != self.config.pad_token_id, dtype=unmasked_loss.dtype) + masked_loss = unmasked_loss * loss_mask + reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) + return tf.reshape(reduced_masked_loss, (1,)) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "led", None) is not None: + with tf.name_scope(self.led.name): + self.led.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led.py new file mode 100644 index 0000000000000000000000000000000000000000..aaf09e6d149eb10983848be5f32e6fd0c0baf3c3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led.py @@ -0,0 +1,449 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for LED.""" + +import json +import os +from functools import lru_cache +from typing import Dict, List, Optional, Tuple, Union + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...tokenization_utils_base import BatchEncoding, EncodedInput +from ...utils import PaddingStrategy, logging + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + +# See all LED models at https://huggingface.co/models?filter=LED + + +@lru_cache() +# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +# Copied from transformers.models.bart.tokenization_bart.get_pairs +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class LEDTokenizer(PreTrainedTokenizer): + """ + Constructs a LED tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LEDTokenizer + + >>> tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (BART tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.__init__ + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + @property + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size + def vocab_size(self): + return len(self.encoder) + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.get_vocab + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.bpe + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._tokenize + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.build_inputs_with_special_tokens with BART->LED + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A LED sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.get_special_tokens_mask + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.create_token_type_ids_from_sequences with BART->LED + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.prepare_for_tokenization + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + encoded_inputs = super()._pad( + encoded_inputs=encoded_inputs, + max_length=max_length, + padding_strategy=padding_strategy, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + if return_attention_mask and "global_attention_mask" in encoded_inputs: + required_input = encoded_inputs[self.model_input_names[0]] + # `global_attention_mask` need to have the same length as other (sequential) inputs. + needs_to_be_padded = len(encoded_inputs["global_attention_mask"]) != len(required_input) + + if needs_to_be_padded: + difference = len(required_input) - len(encoded_inputs["global_attention_mask"]) + + if self.padding_side == "right": + # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` + encoded_inputs["global_attention_mask"] = ( + encoded_inputs["global_attention_mask"] + [-1] * difference + ) + elif self.padding_side == "left": + encoded_inputs["global_attention_mask"] = [-1] * difference + encoded_inputs[ + "global_attention_mask" + ] + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..ca15eb997bed5b07b94eeaf81220bcabb427679b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/tokenization_led_fast.py @@ -0,0 +1,325 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for LED.""" + +import json +from typing import Dict, List, Optional, Tuple, Union + +from tokenizers import pre_tokenizers, processors + +from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import PaddingStrategy, logging +from .tokenization_led import LEDTokenizer + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +class LEDTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" LED tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, + using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LEDTokenizerFast + + >>> tokenizer = LEDTokenizerFast.from_pretrained("allenai/led-base-16384") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (LED tokenizer detect beginning of words by the preceding space). + trim_offsets (`bool`, *optional*, defaults to `True`): + Whether the post processing step should trim offsets to avoid including whitespaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = LEDTokenizer + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.__init__ + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + trim_offsets=True, + **kwargs, + ): + # we have to specify that this tokens is special otherwise adding it will reset the normalized flag to `False` in `add_special_tokens` + mask_token = ( + AddedToken(mask_token, lstrip=True, normalized=True, special=True) + if isinstance(mask_token, str) + else mask_token + ) + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + trim_offsets=trim_offsets, + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` + tokenizer_component = "post_processor" + tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) + if tokenizer_component_instance: + state = json.loads(tokenizer_component_instance.__getstate__()) + + # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` + if "sep" in state: + state["sep"] = tuple(state["sep"]) + if "cls" in state: + state["cls"] = tuple(state["cls"]) + + changes_to_apply = False + + if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + state["add_prefix_space"] = add_prefix_space + changes_to_apply = True + + if state.get("trim_offsets", trim_offsets) != trim_offsets: + state["trim_offsets"] = trim_offsets + changes_to_apply = True + + if changes_to_apply: + component_class = getattr(processors, state.pop("type")) + new_value = component_class(**state) + setattr(self.backend_tokenizer, tokenizer_component, new_value) + + @property + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED + def mask_token(self) -> str: + """ + `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not + having been set. + + LED tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily + comprise the space before the **. + """ + if self._mask_token is None: + if self.verbose: + logger.error("Using mask_token, but it is not set yet.") + return None + return str(self._mask_token) + + @mask_token.setter + def mask_token(self, value): + """ + Overriding the default behavior of the mask token to have it eat the space before it. + + This is needed to preserve backward compatibility with all the previously used models based on LED. + """ + # Mask token behave like a normal word, i.e. include the space before it + # So we set lstrip to True + value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value + self._mask_token = value + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast._batch_encode_plus + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + if is_split_into_words and not self.add_prefix_space: + raise ValueError( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast._encode_plus + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + if is_split_into_words and not self.add_prefix_space: + raise ValueError( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.build_inputs_with_special_tokens + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return output + + return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] + + # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.create_token_type_ids_from_sequences with BART->LED + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + # Copied from transformers.models.led.tokenization_led.LEDTokenizer._pad + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + encoded_inputs = super()._pad( + encoded_inputs=encoded_inputs, + max_length=max_length, + padding_strategy=padding_strategy, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + if return_attention_mask and "global_attention_mask" in encoded_inputs: + required_input = encoded_inputs[self.model_input_names[0]] + # `global_attention_mask` need to have the same length as other (sequential) inputs. + needs_to_be_padded = len(encoded_inputs["global_attention_mask"]) != len(required_input) + + if needs_to_be_padded: + difference = len(required_input) - len(encoded_inputs["global_attention_mask"]) + + if self.padding_side == "right": + # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` + encoded_inputs["global_attention_mask"] = ( + encoded_inputs["global_attention_mask"] + [-1] * difference + ) + elif self.padding_side == "left": + encoded_inputs["global_attention_mask"] = [-1] * difference + encoded_inputs[ + "global_attention_mask" + ] + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0d202eb4d4234f2f1615cb3ff6eba885532bbeae --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py @@ -0,0 +1,145 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_mobilebert": [ + "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileBertConfig", + "MobileBertOnnxConfig", + ], + "tokenization_mobilebert": ["MobileBertTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mobilebert_fast"] = ["MobileBertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mobilebert"] = [ + "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "MobileBertForMaskedLM", + "MobileBertForMultipleChoice", + "MobileBertForNextSentencePrediction", + "MobileBertForPreTraining", + "MobileBertForQuestionAnswering", + "MobileBertForSequenceClassification", + "MobileBertForTokenClassification", + "MobileBertLayer", + "MobileBertModel", + "MobileBertPreTrainedModel", + "load_tf_weights_in_mobilebert", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mobilebert"] = [ + "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFMobileBertForMaskedLM", + "TFMobileBertForMultipleChoice", + "TFMobileBertForNextSentencePrediction", + "TFMobileBertForPreTraining", + "TFMobileBertForQuestionAnswering", + "TFMobileBertForSequenceClassification", + "TFMobileBertForTokenClassification", + "TFMobileBertMainLayer", + "TFMobileBertModel", + "TFMobileBertPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mobilebert import ( + MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileBertConfig, + MobileBertOnnxConfig, + ) + from .tokenization_mobilebert import MobileBertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mobilebert_fast import MobileBertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mobilebert import ( + MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + MobileBertForMaskedLM, + MobileBertForMultipleChoice, + MobileBertForNextSentencePrediction, + MobileBertForPreTraining, + MobileBertForQuestionAnswering, + MobileBertForSequenceClassification, + MobileBertForTokenClassification, + MobileBertLayer, + MobileBertModel, + MobileBertPreTrainedModel, + load_tf_weights_in_mobilebert, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mobilebert import ( + TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFMobileBertForMaskedLM, + TFMobileBertForMultipleChoice, + TFMobileBertForNextSentencePrediction, + TFMobileBertForPreTraining, + TFMobileBertForQuestionAnswering, + TFMobileBertForSequenceClassification, + TFMobileBertForTokenClassification, + TFMobileBertMainLayer, + TFMobileBertModel, + TFMobileBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..227295f807ad86ee6b02da68be4cfa4430fdefa6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..132b970fe5c2d48acbc171d4158706911f462a00 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3bb55ed5bb397ad420bc7989e8cadde2ea6624bd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf8470ce602d5084c2fef8eb6ec9e8eb7d131eff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa6ee5dadf63dac1c8f6e2ff4c87e4dc7c00308a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5b081c3144dd0f151c88948f35815851f222d2e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6a9560df56ad71c35569a3076eae0c02a4764a2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..022a9d036cdb24558142222a6aec5fd3ed65afd7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,58 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +import torch + +from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path): + # Initialise PyTorch model + config = MobileBertConfig.from_json_file(mobilebert_config_file) + print(f"Building PyTorch model from configuration: {config}") + model = MobileBertForPreTraining(config) + # Load weights from tf checkpoint + model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path) + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + torch.save(model.state_dict(), pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--mobilebert_config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained MobileBERT model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..8dc0aafa70fc2562c4ee1fa9fb3e0f1a6f23f8f1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py @@ -0,0 +1,1617 @@ +# MIT License +# +# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mobilebert import MobileBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" +_CONFIG_FOR_DOC = "MobileBertConfig" + +# TokenClassification docstring +_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" +_TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" +_TOKEN_CLASS_EXPECTED_LOSS = 0.03 + +# QuestionAnswering docstring +_CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" +_QA_EXPECTED_OUTPUT = "'a nice puppet'" +_QA_EXPECTED_LOSS = 3.98 +_QA_TARGET_START_INDEX = 12 +_QA_TARGET_END_INDEX = 13 + +# SequenceClassification docstring +_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" +_SEQ_CLASS_EXPECTED_OUTPUT = "'others'" +_SEQ_CLASS_EXPECTED_LOSS = "4.72" + + +from ..deprecated._archive_maps import MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.replace("ffn_layer", "ffn") + name = name.replace("FakeLayerNorm", "LayerNorm") + name = name.replace("extra_output_weights", "dense/kernel") + name = name.replace("bert", "mobilebert") + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +class NoNorm(nn.Module): + def __init__(self, feat_size, eps=None): + super().__init__() + self.bias = nn.Parameter(torch.zeros(feat_size)) + self.weight = nn.Parameter(torch.ones(feat_size)) + + def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: + return input_tensor * self.weight + self.bias + + +NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} + + +class MobileBertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.trigram_input = config.trigram_input + self.embedding_size = config.embedding_size + self.hidden_size = config.hidden_size + + self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + embed_dim_multiplier = 3 if self.trigram_input else 1 + embedded_input_size = self.embedding_size * embed_dim_multiplier + self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) + + self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + if self.trigram_input: + # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited + # Devices (https://arxiv.org/abs/2004.02984) + # + # The embedding table in BERT models accounts for a substantial proportion of model size. To compress + # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. + # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 + # dimensional output. + inputs_embeds = torch.cat( + [ + nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), + inputs_embeds, + nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), + ], + dim=2, + ) + if self.trigram_input or self.embedding_size != self.hidden_size: + inputs_embeds = self.embedding_transformation(inputs_embeds) + + # Add positional embeddings and token type embeddings, then layer + # normalize and perform dropout. + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class MobileBertSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.true_hidden_size, self.all_head_size) + self.key = nn.Linear(config.true_hidden_size, self.all_head_size) + self.value = nn.Linear( + config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size + ) + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + query_tensor: torch.Tensor, + key_tensor: torch.Tensor, + value_tensor: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(query_tensor) + mixed_key_layer = self.key(key_tensor) + mixed_value_layer = self.value(value_tensor) + + query_layer = self.transpose_for_scores(mixed_query_layer) + key_layer = self.transpose_for_scores(mixed_key_layer) + value_layer = self.transpose_for_scores(mixed_value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + +class MobileBertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) + if not self.use_bottleneck: + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + if not self.use_bottleneck: + layer_outputs = self.dropout(layer_outputs) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class MobileBertAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = MobileBertSelfAttention(config) + self.output = MobileBertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + query_tensor: torch.Tensor, + key_tensor: torch.Tensor, + value_tensor: torch.Tensor, + layer_input: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + query_tensor, + key_tensor, + value_tensor, + attention_mask, + head_mask, + output_attentions, + ) + # Run a linear projection of `hidden_size` then add a residual + # with `layer_input`. + attention_output = self.output(self_outputs[0], layer_input) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class MobileBertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class OutputBottleneck(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + layer_outputs = self.dropout(layer_outputs) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class MobileBertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) + if not self.use_bottleneck: + self.dropout = nn.Dropout(config.hidden_dropout_prob) + else: + self.bottleneck = OutputBottleneck(config) + + def forward( + self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor + ) -> torch.Tensor: + layer_output = self.dense(intermediate_states) + if not self.use_bottleneck: + layer_output = self.dropout(layer_output) + layer_output = self.LayerNorm(layer_output + residual_tensor_1) + else: + layer_output = self.LayerNorm(layer_output + residual_tensor_1) + layer_output = self.bottleneck(layer_output, residual_tensor_2) + return layer_output + + +class BottleneckLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + layer_input = self.dense(hidden_states) + layer_input = self.LayerNorm(layer_input) + return layer_input + + +class Bottleneck(nn.Module): + def __init__(self, config): + super().__init__() + self.key_query_shared_bottleneck = config.key_query_shared_bottleneck + self.use_bottleneck_attention = config.use_bottleneck_attention + self.input = BottleneckLayer(config) + if self.key_query_shared_bottleneck: + self.attention = BottleneckLayer(config) + + def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: + # This method can return three different tuples of values. These different values make use of bottlenecks, + # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory + # usage. These linear layer have weights that are learned during training. + # + # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the + # key, query, value, and "layer input" to be used by the attention layer. + # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor + # in the attention self output, after the attention scores have been computed. + # + # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return + # four values, three of which have been passed through a bottleneck: the query and key, passed through the same + # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. + # + # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, + # and the residual layer will be this value passed through a bottleneck. + + bottlenecked_hidden_states = self.input(hidden_states) + if self.use_bottleneck_attention: + return (bottlenecked_hidden_states,) * 4 + elif self.key_query_shared_bottleneck: + shared_attention_input = self.attention(hidden_states) + return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) + else: + return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) + + +class FFNOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class FFNLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.intermediate = MobileBertIntermediate(config) + self.output = FFNOutput(config) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + intermediate_output = self.intermediate(hidden_states) + layer_outputs = self.output(intermediate_output, hidden_states) + return layer_outputs + + +class MobileBertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.num_feedforward_networks = config.num_feedforward_networks + + self.attention = MobileBertAttention(config) + self.intermediate = MobileBertIntermediate(config) + self.output = MobileBertOutput(config) + if self.use_bottleneck: + self.bottleneck = Bottleneck(config) + if config.num_feedforward_networks > 1: + self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + if self.use_bottleneck: + query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) + else: + query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 + + self_attention_outputs = self.attention( + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + s = (attention_output,) + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + if self.num_feedforward_networks != 1: + for i, ffn_module in enumerate(self.ffn): + attention_output = ffn_module(attention_output) + s += (attention_output,) + + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output, hidden_states) + outputs = ( + (layer_output,) + + outputs + + ( + torch.tensor(1000), + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_output, + intermediate_output, + ) + + s + ) + return outputs + + +class MobileBertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + head_mask[i], + output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class MobileBertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.do_activate = config.classifier_activation + if self.do_activate: + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + if not self.do_activate: + return first_token_tensor + else: + pooled_output = self.dense(first_token_tensor) + pooled_output = torch.tanh(pooled_output) + return pooled_output + + +class MobileBertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class MobileBertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = MobileBertPredictionHeadTransform(config) + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) + self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.transform(hidden_states) + hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) + hidden_states += self.decoder.bias + return hidden_states + + +class MobileBertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MobileBertLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class MobileBertPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MobileBertLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class MobileBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileBertConfig + load_tf_weights = load_tf_weights_in_mobilebert + base_model_prefix = "mobilebert" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, (nn.LayerNorm, NoNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class MobileBertForPreTrainingOutput(ModelOutput): + """ + Output type of [`MobileBertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +MOBILEBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILEBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", + MOBILEBERT_START_DOCSTRING, +) +class MobileBertModel(MobileBertPreTrainedModel): + """ + https://arxiv.org/pdf/2004.02984.pdf + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + self.embeddings = MobileBertEmbeddings(config) + self.encoder = MobileBertEncoder(config) + + self.pooler = MobileBertPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `next sentence prediction (classification)` head. + """, + MOBILEBERT_START_DOCSTRING, +) +class MobileBertForPreTraining(MobileBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + self.mobilebert = MobileBertModel(config) + self.cls = MobileBertPreTrainingHeads(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddigs): + self.cls.predictions.decoder = new_embeddigs + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: + # resize dense output embedings at first + self.cls.predictions.dense = self._get_resized_lm_head( + self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True + ) + + return super().resize_token_embeddings(new_num_tokens=new_num_tokens) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + next_sentence_label: Optional[torch.LongTensor] = None, + output_attentions: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[torch.FloatTensor] = None, + return_dict: Optional[torch.FloatTensor] = None, + ) -> Union[Tuple, MobileBertForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MobileBertForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") + + >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) + >>> # Batch size 1 + >>> outputs = model(input_ids) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output, pooled_output = outputs[:2] + prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) + total_loss = masked_lm_loss + next_sentence_loss + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return MobileBertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) +class MobileBertForMaskedLM(MobileBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + self.cls = MobileBertOnlyMLMHead(config) + self.config = config + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddigs): + self.cls.predictions.decoder = new_embeddigs + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: + # resize dense output embedings at first + self.cls.predictions.dense = self._get_resized_lm_head( + self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True + ) + return super().resize_token_embeddings(new_num_tokens=new_num_tokens) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'paris'", + expected_loss=0.57, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class MobileBertOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +@add_start_docstrings( + """MobileBert Model with a `next sentence prediction (classification)` head on top.""", + MOBILEBERT_START_DOCSTRING, +) +class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mobilebert = MobileBertModel(config) + self.cls = MobileBertOnlyNSPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, NextSentencePredictorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`. + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") + + >>> outputs = model(**encoding, labels=torch.LongTensor([1])) + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + + if "next_sentence_label" in kwargs: + warnings.warn( + "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" + " `labels` instead.", + FutureWarning, + ) + labels = kwargs.pop("next_sentence_label") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + seq_relationship_score = self.cls(pooled_output) + + next_sentence_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) + + if not return_dict: + output = (seq_relationship_score,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return NextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing +class MobileBertForSequenceClassification(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.mobilebert = MobileBertModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing +class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_QA, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=_QA_TARGET_START_INDEX, + qa_target_end_index=_QA_TARGET_END_INDEX, + expected_output=_QA_EXPECTED_OUTPUT, + expected_loss=_QA_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing +class MobileBertForMultipleChoice(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mobilebert = MobileBertModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing +class MobileBertForTokenClassification(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, + expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..8526e636a2ac4821142deffff5df78c7a0209ca5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py @@ -0,0 +1,1970 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 MobileBERT model.""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFNextSentencePredictorOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFNextSentencePredictionLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mobilebert import MobileBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" +_CONFIG_FOR_DOC = "MobileBertConfig" + +# TokenClassification docstring +_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" +_TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" +_TOKEN_CLASS_EXPECTED_LOSS = 0.03 + +# QuestionAnswering docstring +_CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" +_QA_EXPECTED_OUTPUT = "'a nice puppet'" +_QA_EXPECTED_LOSS = 3.98 +_QA_TARGET_START_INDEX = 12 +_QA_TARGET_END_INDEX = 13 + +# SequenceClassification docstring +_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" +_SEQ_CLASS_EXPECTED_OUTPUT = "'others'" +_SEQ_CLASS_EXPECTED_LOSS = "4.72" + + +from ..deprecated._archive_maps import TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss +class TFMobileBertPreTrainingLoss: + """ + Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining + NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss + computation. + """ + + def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: + loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) + # make sure only labels that are not equal to -100 + # are taken into account for the loss computation + lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) + masked_lm_losses = unmasked_lm_losses * lm_loss_mask + reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) + ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) + masked_ns_loss = unmasked_ns_loss * ns_loss_mask + + reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) + + return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) + + +class TFMobileBertIntermediate(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense(config.intermediate_size, name="dense") + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + + +class TFLayerNorm(keras.layers.LayerNormalization): + def __init__(self, feat_size, *args, **kwargs): + self.feat_size = feat_size + super().__init__(*args, **kwargs) + + def build(self, input_shape=None): + super().build([None, None, self.feat_size]) + + +class TFNoNorm(keras.layers.Layer): + def __init__(self, feat_size, epsilon=None, **kwargs): + super().__init__(**kwargs) + self.feat_size = feat_size + + def build(self, input_shape): + self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") + self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") + super().build(input_shape) + + def call(self, inputs: tf.Tensor): + return inputs * self.weight + self.bias + + +NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} + + +class TFMobileBertEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.trigram_input = config.trigram_input + self.embedding_size = config.embedding_size + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation") + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = NORM2FN[config.normalization_type]( + config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.embedding_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "embedding_transformation", None) is not None: + with tf.name_scope(self.embedding_transformation.name): + self.embedding_transformation.build([None, None, self.embedded_input_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if self.trigram_input: + # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited + # Devices (https://arxiv.org/abs/2004.02984) + # + # The embedding table in BERT models accounts for a substantial proportion of model size. To compress + # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. + # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 + # dimensional output. + inputs_embeds = tf.concat( + [ + tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), + inputs_embeds, + tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), + ], + axis=2, + ) + + if self.trigram_input or self.embedding_size != self.hidden_size: + inputs_embeds = self.embedding_transformation(inputs_embeds) + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFMobileBertSelfAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + self.output_attentions = config.output_attentions + assert config.hidden_size % config.num_attention_heads == 0 + self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, x, batch_size): + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) + return tf.transpose(x, perm=[0, 2, 1, 3]) + + def call( + self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False + ): + batch_size = shape_list(attention_mask)[0] + mixed_query_layer = self.query(query_tensor) + mixed_key_layer = self.key(key_tensor) + mixed_value_layer = self.value(value_tensor) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = tf.matmul( + query_layer, key_layer, transpose_b=True + ) # (batch size, num_heads, seq_len_q, seq_len_k) + dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores + attention_scores = attention_scores / tf.math.sqrt(dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) + attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = tf.matmul(attention_probs, value_layer) + + context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) + context_layer = tf.reshape( + context_layer, (batch_size, -1, self.all_head_size) + ) # (batch_size, seq_len_q, all_head_size) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.true_hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.true_hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build( + [ + None, + None, + self.config.true_hidden_size + if self.config.use_bottleneck_attention + else self.config.hidden_size, + ] + ) + + +class TFMobileBertSelfOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.dense = keras.layers.Dense( + config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + if not self.use_bottleneck: + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, residual_tensor, training=False): + hidden_states = self.dense(hidden_states) + if not self.use_bottleneck: + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + residual_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.self = TFMobileBertSelfAttention(config, name="self") + self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions, + training=False, + ): + self_outputs = self.self( + query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training + ) + + attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self", None) is not None: + with tf.name_scope(self.self.name): + self.self.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + + +class TFOutputBottleneck(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.hidden_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, residual_tensor, training=False): + layer_outputs = self.dense(hidden_states) + layer_outputs = self.dropout(layer_outputs, training=training) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.dense = keras.layers.Dense( + config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + if not self.use_bottleneck: + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + else: + self.bottleneck = TFOutputBottleneck(config, name="bottleneck") + self.config = config + + def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): + hidden_states = self.dense(hidden_states) + if not self.use_bottleneck: + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) + else: + hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) + hidden_states = self.bottleneck(hidden_states, residual_tensor_2) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + if getattr(self, "bottleneck", None) is not None: + with tf.name_scope(self.bottleneck.name): + self.bottleneck.build(None) + + +class TFBottleneckLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.config = config + + def call(self, inputs): + hidden_states = self.dense(inputs) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFBottleneck(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.key_query_shared_bottleneck = config.key_query_shared_bottleneck + self.use_bottleneck_attention = config.use_bottleneck_attention + self.bottleneck_input = TFBottleneckLayer(config, name="input") + if self.key_query_shared_bottleneck: + self.attention = TFBottleneckLayer(config, name="attention") + + def call(self, hidden_states): + # This method can return three different tuples of values. These different values make use of bottlenecks, + # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory + # usage. These linear layer have weights that are learned during training. + # + # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the + # key, query, value, and "layer input" to be used by the attention layer. + # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor + # in the attention self output, after the attention scores have been computed. + # + # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return + # four values, three of which have been passed through a bottleneck: the query and key, passed through the same + # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. + # + # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, + # and the residual layer will be this value passed through a bottleneck. + + bottlenecked_hidden_states = self.bottleneck_input(hidden_states) + if self.use_bottleneck_attention: + return (bottlenecked_hidden_states,) * 4 + elif self.key_query_shared_bottleneck: + shared_attention_input = self.attention(hidden_states) + return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) + else: + return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "bottleneck_input", None) is not None: + with tf.name_scope(self.bottleneck_input.name): + self.bottleneck_input.build(None) + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + + +class TFFFNOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.true_hidden_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.config = config + + def call(self, hidden_states, residual_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.LayerNorm(hidden_states + residual_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFFFNLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.intermediate = TFMobileBertIntermediate(config, name="intermediate") + self.mobilebert_output = TFFFNOutput(config, name="output") + + def call(self, hidden_states): + intermediate_output = self.intermediate(hidden_states) + layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) + return layer_outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + + +class TFMobileBertLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.num_feedforward_networks = config.num_feedforward_networks + self.attention = TFMobileBertAttention(config, name="attention") + self.intermediate = TFMobileBertIntermediate(config, name="intermediate") + self.mobilebert_output = TFMobileBertOutput(config, name="output") + + if self.use_bottleneck: + self.bottleneck = TFBottleneck(config, name="bottleneck") + if config.num_feedforward_networks > 1: + self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] + + def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): + if self.use_bottleneck: + query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) + else: + query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 + + attention_outputs = self.attention( + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions, + training=training, + ) + + attention_output = attention_outputs[0] + s = (attention_output,) + + if self.num_feedforward_networks != 1: + for i, ffn_module in enumerate(self.ffn): + attention_output = ffn_module(attention_output) + s += (attention_output,) + + intermediate_output = self.intermediate(attention_output) + layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) + + outputs = ( + (layer_output,) + + attention_outputs[1:] + + ( + tf.constant(0), + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_output, + intermediate_output, + ) + + s + ) # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + if getattr(self, "bottleneck", None) is not None: + with tf.name_scope(self.bottleneck.name): + self.bottleneck.build(None) + if getattr(self, "ffn", None) is not None: + for layer in self.ffn: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFMobileBertEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states, + attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=False, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, attention_mask, head_mask[i], output_attentions, training=training + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFMobileBertPooler(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.do_activate = config.classifier_activation + if self.do_activate: + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + if not self.do_activate: + return first_token_tensor + else: + pooled_output = self.dense(first_token_tensor) + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFMobileBertPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertLMPredictionHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") + self.config = config + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + self.dense = self.add_weight( + shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), + initializer="zeros", + trainable=True, + name="dense/weight", + ) + self.decoder = self.add_weight( + shape=(self.config.vocab_size, self.config.embedding_size), + initializer="zeros", + trainable=True, + name="decoder/weight", + ) + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self): + return self + + def set_output_embeddings(self, value): + self.decoder = value + self.config.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) + hidden_states = hidden_states + self.bias + return hidden_states + + +class TFMobileBertMLMHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") + + def call(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +@keras_serializable +class TFMobileBertMainLayer(keras.layers.Layer): + config_class = MobileBertConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + + self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") + self.encoder = TFMobileBertEncoder(config, name="encoder") + self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + if token_type_ids is None: + token_type_ids = tf.fill(input_shape, 0) + + embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.num_hidden_layers + + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFMobileBertPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileBertConfig + base_model_prefix = "mobilebert" + + +@dataclass +class TFMobileBertForPreTrainingOutput(ModelOutput): + """ + Output type of [`TFMobileBertForPreTraining`]. + + Args: + prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + prediction_logits: tf.Tensor = None + seq_relationship_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +MOBILEBERT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILEBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertModel(TFMobileBertPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutputWithPooling]: + outputs = self.mobilebert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + + +@add_start_docstrings( + """ + MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `next sentence prediction (classification)` head. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") + self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") + + def get_lm_head(self): + return self.predictions.predictions + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + next_sentence_label: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: + r""" + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") + >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 + >>> outputs = model(input_ids) + >>> prediction_scores, seq_relationship_scores = outputs[:2] + ```""" + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output, pooled_output = outputs[:2] + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + d_labels = {"labels": labels} + d_labels["next_sentence_label"] = next_sentence_label + total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return TFMobileBertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + if getattr(self, "seq_relationship", None) is not None: + with tf.name_scope(self.seq_relationship.name): + self.seq_relationship.build(None) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "cls.predictions.decoder.weight": + return tf_weight, "mobilebert.embeddings.word_embeddings.weight" + else: + return (tf_weight,) + + +@add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) +class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"seq_relationship___cls", + r"cls.seq_relationship", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") + + def get_lm_head(self): + return self.predictions.predictions + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'paris'", + expected_loss=0.57, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMaskedLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.predictions(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "cls.predictions.decoder.weight": + return tf_weight, "mobilebert.embeddings.word_embeddings.weight" + else: + return (tf_weight,) + + +class TFMobileBertOnlyNSPHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.seq_relationship = keras.layers.Dense(2, name="seq_relationship") + self.config = config + + def call(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "seq_relationship", None) is not None: + with tf.name_scope(self.seq_relationship.name): + self.seq_relationship.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """MobileBert Model with a `next sentence prediction (classification)` head on top.""", + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + next_sentence_label: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFNextSentencePredictorOutput]: + r""" + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") + + >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] + ```""" + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + seq_relationship_scores = self.cls(pooled_output) + + next_sentence_loss = ( + None + if next_sentence_label is None + else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) + ) + + if not return_dict: + output = (seq_relationship_scores,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return TFNextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "cls", None) is not None: + with tf.name_scope(self.cls.name): + self.cls.build(None) + + +@add_start_docstrings( + """ + MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSequenceClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_QA, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=_QA_TARGET_START_INDEX, + qa_target_end_index=_QA_TARGET_END_INDEX, + expected_output=_QA_EXPECTED_OUTPUT, + expected_loss=_QA_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions, "end_position": end_positions} + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward( + MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMultipleChoiceModelOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + outputs = self.mobilebert( + flat_input_ids, + flat_attention_mask, + flat_token_type_ids, + flat_position_ids, + head_mask, + flat_inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, + expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFTokenClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..ccfdcc31ff9be966e6a5a86c101b6c19bf5e02bb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py @@ -0,0 +1,506 @@ +# coding=utf-8 +# +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for MobileBERT.""" + + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with BERT->MobileBERT,Bert->MobileBert +class MobileBertTokenizer(PreTrainedTokenizer): + r""" + Construct a MobileBERT tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original MobileBERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A MobileBERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1817cd3b64e3654831d4023fe9a6f0af4c9eda9b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2/__pycache__/tokenization_qwen2_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..37508ef808e08365185d4b087ea468b5ffa23785 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/__init__.py @@ -0,0 +1,103 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_reformer"] = ["ReformerTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_reformer_fast"] = ["ReformerTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_reformer"] = [ + "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "ReformerAttention", + "ReformerForMaskedLM", + "ReformerForQuestionAnswering", + "ReformerForSequenceClassification", + "ReformerLayer", + "ReformerModel", + "ReformerModelWithLMHead", + "ReformerPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_reformer import ReformerTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_reformer_fast import ReformerTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_reformer import ( + REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + ReformerAttention, + ReformerForMaskedLM, + ReformerForQuestionAnswering, + ReformerForSequenceClassification, + ReformerLayer, + ReformerModel, + ReformerModelWithLMHead, + ReformerPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py new file mode 100644 index 0000000000000000000000000000000000000000..35e8628ce0fa45083605d53804b60b76eb05751a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py @@ -0,0 +1,235 @@ +# coding=utf-8 +# Copyright 2020 The Trax Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Reformer model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class ReformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a + Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the ReFormer + [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + attention_head_size (`int`, *optional*, defaults to 64): + Dimensionality of the projected key, query and value vectors + attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`): + List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer + (`"lsh"`) and a LocalSelfAttention layer (`"local"`). + + For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For + more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention). + axial_pos_embds (`bool`, *optional*, defaults to `True`): + Whether or not to use axial position embeddings. For more information on how axial position embeddings + work, see [Axial Position Encodings](reformer#axial-positional-encodings). + axial_norm_std (`float`, *optional*, defaults to 1.0): + The standard deviation of the normal_initializer for initializing the weight matrices of the axial + positional encodings. + axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`): + The position dims of the axial position encodings. During training, the product of the position dims has to + be equal to the sequence length. + + For more information on how axial position embeddings work, see [Axial Position + Encodings](reformer#axial-positional-encodings). + axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`): + The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the + hidden size. + + For more information on how axial position embeddings work, see [Axial Position + Encodings](reformer#axial-positional-encodings). + chunk_size_lm_head (`int`, *optional*, defaults to 0): + The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed + forward layer is not chunked. A chunk size of n means that the feed forward layer processes n < + sequence_length embeddings at a time. + + For more information on feed forward chunking, see [How does Feed Forward Chunking + work?](../glossary#feed-forward-chunking). + eos_token_id (`int`, *optional*, defaults to 2): + The token id for the end-of-sentence token. + feed_forward_size (`int`, *optional*, defaults to 512): + Dimensionality of the feed_forward layer in the residual attention block. + hash_seed (`int`, *optional*): + Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only + be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to + ensure fully random rotations in local sensitive hashing scheme. + hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the feed forward layer in the residual attention + block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.05): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + hidden_size (`int`, *optional*, defaults to 256): + Dimensionality of the output hidden states of the residual attention blocks. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + is_decoder (`bool`, *optional*, defaults to `False`): + Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When + using the Reformer for causal language modeling, this argument should be set to `True`. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + local_chunk_length (`int`, *optional*, defaults to 64): + Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from + sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk + length (chunked self attention). + local_num_chunks_before (`int`, *optional*, defaults to 1): + Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself. + local_num_chunks_after (`int`, *optional*, defaults to 0): + Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself. + local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities in `LocalSelfAttention`. + lsh_attn_chunk_length (`int`, *optional*, defaults to 64): + Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from + sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk + length (chunked self attention). + lsh_num_chunks_before (`int`, *optional*, defaults to 1): + Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. + lsh_num_chunks_after (`int`, *optional*, defaults to 0): + Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. + lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities in `LSHSelfAttention`. + max_position_embeddings (`int`, *optional*, defaults to 4096): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_buckets (`int` or `List[int]`, *optional*): + Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme. + Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be + factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a + hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is + factorized into two factors. The number of buckets (or the product the factors) should approximately equal + sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly. + num_hashes (`int`, *optional*, defaults to 1): + Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher + `num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive + the hashing becomes. + pad_token_id (`int`, *optional*, defaults to 0): + The token id for the padding token. + vocab_size (`int`, *optional*, defaults to 320):\ + Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`ReformerModel`]. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie input and output embeddings. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import ReformerConfig, ReformerModel + + >>> # Initializing a Reformer configuration + >>> configuration = ReformerConfig() + + >>> # Initializing a Reformer model (with random weights) + >>> model = ReformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` +""" + + model_type = "reformer" + keys_to_ignore_at_inference = ["past_buckets_states"] + attribute_map = {} + + def __init__( + self, + attention_head_size=64, + attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"], + axial_norm_std=1.0, + axial_pos_embds=True, + axial_pos_shape=[64, 64], + axial_pos_embds_dim=[64, 192], + chunk_size_lm_head=0, + eos_token_id=2, + feed_forward_size=512, + hash_seed=None, + hidden_act="relu", + hidden_dropout_prob=0.05, + hidden_size=256, + initializer_range=0.02, + is_decoder=False, + layer_norm_eps=1e-12, + local_num_chunks_before=1, + local_num_chunks_after=0, + local_attention_probs_dropout_prob=0.05, + local_attn_chunk_length=64, + lsh_attn_chunk_length=64, + lsh_attention_probs_dropout_prob=0.0, + lsh_num_chunks_before=1, + lsh_num_chunks_after=0, + max_position_embeddings=4096, + num_attention_heads=12, + num_buckets=None, + num_hashes=1, + pad_token_id=0, + vocab_size=320, + tie_word_embeddings=False, + use_cache=True, + classifier_dropout=None, + **kwargs, + ): + self.hash_seed = hash_seed + self.vocab_size = vocab_size + self.attention_head_size = attention_head_size + self.hidden_size = hidden_size + self.num_attention_heads = num_attention_heads + self.num_hashes = num_hashes + self.num_hidden_layers = len(attn_layers) + self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets + self.lsh_attn_chunk_length = lsh_attn_chunk_length + self.local_attn_chunk_length = local_attn_chunk_length + self.lsh_num_chunks_after = lsh_num_chunks_after + self.lsh_num_chunks_before = lsh_num_chunks_before + self.local_num_chunks_after = local_num_chunks_after + self.local_num_chunks_before = local_num_chunks_before + self.hidden_act = hidden_act + self.feed_forward_size = feed_forward_size + self.hidden_dropout_prob = hidden_dropout_prob + self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob + self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.axial_pos_embds = axial_pos_embds + self.axial_pos_shape = tuple(axial_pos_shape) + self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) + self.axial_norm_std = axial_norm_std + self.chunk_size_lm_head = chunk_size_lm_head + self.attn_layers = attn_layers + self.use_cache = use_cache + self.classifier_dropout = classifier_dropout + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + is_decoder=is_decoder, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..20606dda51ef8746448a7561baf60555c0192321 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py @@ -0,0 +1,96 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_torch_available, +) + + +_import_structure = { + "configuration_speecht5": [ + "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", + "SpeechT5Config", + "SpeechT5HifiGanConfig", + ], + "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], + "processing_speecht5": ["SpeechT5Processor"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_speecht5"] = ["SpeechT5Tokenizer"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_speecht5"] = [ + "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", + "SpeechT5ForSpeechToText", + "SpeechT5ForSpeechToSpeech", + "SpeechT5ForTextToSpeech", + "SpeechT5Model", + "SpeechT5PreTrainedModel", + "SpeechT5HifiGan", + ] + +if TYPE_CHECKING: + from .configuration_speecht5 import ( + SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, + SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, + SpeechT5Config, + SpeechT5HifiGanConfig, + ) + from .feature_extraction_speecht5 import SpeechT5FeatureExtractor + from .processing_speecht5 import SpeechT5Processor + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_speecht5 import SpeechT5Tokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_speecht5 import ( + SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, + SpeechT5ForSpeechToSpeech, + SpeechT5ForSpeechToText, + SpeechT5ForTextToSpeech, + SpeechT5HifiGan, + SpeechT5Model, + SpeechT5PreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2499cb88e13ce7e2d447cd4eee2a20491e9ec2b6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3c375b6905666b572e60f5734562fd472138e1f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3821ecce6ce73aa0862d9c7d068bfee002927229 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..23a0c845e9e5486f946d40e5d01939a267c5f3a2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..20308bf93d5de2296c7451f64f0240b2855223be Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36c052ed27b1051811b01e2aba1fa5ff986e752c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f7fae2c38c4d4a2e728ca0eb89d768901accef3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b019ec67f4c3e0542fc3ed5d9f3f2a7588c29509 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8098652b8ecefd672fa5a5b205d5dba7eee18244 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..36cb4995a83f0519592a89174f0bd51ecb85deab --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py @@ -0,0 +1,427 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SpeechT5 model configuration""" + +import functools +import operator + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = { + "microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json", +} + + +class SpeechT5Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a + SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the SpeechT5 + [microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 81): + Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed to the forward method of [`SpeechT5Model`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + encoder_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + encoder_ffn_dim (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + encoder_layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layers (`int`, *optional*, defaults to 6): + Number of hidden layers in the Transformer decoder. + decoder_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder. + decoder_layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + positional_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the text position encoding layers. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization layers. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + feat_extract_norm (`str`, *optional*, defaults to `"group"`): + The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group + normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D + convolutional layers. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the speech encoder pre-net. + feat_extract_activation (`str, `optional`, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): + A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The + length of *conv_stride* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net. + The length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + apply_spec_augment (`bool`, *optional*, defaults to `True`): + Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For + reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech + Recognition](https://arxiv.org/abs/1904.08779). + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2),: + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0),: + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + num_mel_bins (`int`, *optional*, defaults to 80): + Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to + the value used in the [`SpeechT5Processor`] class. + speech_decoder_prenet_layers (`int`, *optional*, defaults to 2): + Number of layers in the speech decoder pre-net. + speech_decoder_prenet_units (`int`, *optional*, defaults to 256): + Dimensionality of the layers in the speech decoder pre-net. + speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5): + The dropout probability for the speech decoder pre-net layers. + speaker_embedding_dim (`int`, *optional*, defaults to 512): + Dimensionality of the *XVector* embedding vectors. + speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): + Number of layers in the speech decoder post-net. + speech_decoder_postnet_units (`int`, *optional*, defaults to 256): + Dimensionality of the layers in the speech decoder post-net. + speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): + Number of convolutional filter channels in the speech decoder post-net. + speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): + The dropout probability for the speech decoder post-net layers. + reduction_factor (`int`, *optional*, defaults to 2): + Spectrogram length reduction factor for the speech decoder inputs. + max_speech_positions (`int`, *optional*, defaults to 4000): + The maximum sequence length of speech features that this model might ever be used with. + max_text_positions (`int`, *optional*, defaults to 450): + The maximum sequence length of text features that this model might ever be used with. + encoder_max_relative_position (`int`, *optional*, defaults to 160): + Maximum distance for relative position embedding in the encoder. + use_guided_attention_loss (`bool`, *optional*, defaults to `True`): + Whether to apply guided attention loss while training the TTS model. + guided_attention_loss_num_heads (`int`, *optional*, defaults to 2): + Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all + attention heads. + guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4): + Standard deviation for guided attention loss. + guided_attention_loss_scale (`float`, *optional*, defaults to 10.0): + Scaling coefficient for guided attention loss (also known as lambda). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + + Example: + + ```python + >>> from transformers import SpeechT5Model, SpeechT5Config + + >>> # Initializing a "microsoft/speecht5_asr" style configuration + >>> configuration = SpeechT5Config() + + >>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration + >>> model = SpeechT5Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "speecht5" + attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"} + + def __init__( + self, + vocab_size=81, + hidden_size=768, + encoder_layers=12, + encoder_attention_heads=12, + encoder_ffn_dim=3072, + encoder_layerdrop=0.1, + decoder_layers=6, + decoder_ffn_dim=3072, + decoder_attention_heads=12, + decoder_layerdrop=0.1, + hidden_act="gelu", + positional_dropout=0.1, + hidden_dropout=0.1, + attention_dropout=0.1, + activation_dropout=0.1, + initializer_range=0.02, + layer_norm_eps=1e-5, + scale_embedding=False, + feat_extract_norm="group", + feat_proj_dropout=0.0, + feat_extract_activation="gelu", + conv_dim=(512, 512, 512, 512, 512, 512, 512), + conv_stride=(5, 2, 2, 2, 2, 2, 2), + conv_kernel=(10, 3, 3, 3, 3, 2, 2), + conv_bias=False, + num_conv_pos_embeddings=128, + num_conv_pos_embedding_groups=16, + apply_spec_augment=True, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + decoder_start_token_id=2, + num_mel_bins=80, + speech_decoder_prenet_layers=2, + speech_decoder_prenet_units=256, + speech_decoder_prenet_dropout=0.5, + speaker_embedding_dim=512, + speech_decoder_postnet_layers=5, + speech_decoder_postnet_units=256, + speech_decoder_postnet_kernel=5, + speech_decoder_postnet_dropout=0.5, + reduction_factor=2, + max_speech_positions=4000, + max_text_positions=450, + encoder_max_relative_position=160, + use_guided_attention_loss=True, + guided_attention_loss_num_heads=2, + guided_attention_loss_sigma=0.4, + guided_attention_loss_scale=10.0, + use_cache=True, + is_encoder_decoder=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.encoder_layers = encoder_layers + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_attention_heads = encoder_attention_heads + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layers = decoder_layers + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_attention_heads = decoder_attention_heads + self.decoder_layerdrop = decoder_layerdrop + self.hidden_act = hidden_act + self.positional_dropout = positional_dropout + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.scale_embedding = scale_embedding + + self.feat_extract_norm = feat_extract_norm + self.feat_proj_dropout = feat_proj_dropout + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.num_feat_extract_layers = len(self.conv_dim) + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" + " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" + f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," + f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.apply_spec_augment = apply_spec_augment + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + self.num_mel_bins = num_mel_bins + self.speech_decoder_prenet_layers = speech_decoder_prenet_layers + self.speech_decoder_prenet_units = speech_decoder_prenet_units + self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout + self.speaker_embedding_dim = speaker_embedding_dim + + self.speech_decoder_postnet_layers = speech_decoder_postnet_layers + self.speech_decoder_postnet_units = speech_decoder_postnet_units + self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel + self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout + self.reduction_factor = reduction_factor + + self.max_speech_positions = max_speech_positions + self.max_text_positions = max_text_positions + self.encoder_max_relative_position = encoder_max_relative_position + + self.use_guided_attention_loss = use_guided_attention_loss + self.guided_attention_loss_num_heads = guided_attention_loss_num_heads + self.guided_attention_loss_sigma = guided_attention_loss_sigma + self.guided_attention_loss_scale = guided_attention_loss_scale + + self.use_cache = use_cache + self.is_encoder_decoder = is_encoder_decoder + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) + + def inputs_to_logits_ratio(self): + return functools.reduce(operator.mul, self.conv_stride, 1) + + +class SpeechT5HifiGanConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate + a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 + [microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + model_in_dim (`int`, *optional*, defaults to 80): + The number of frequency bins in the input log-mel spectrogram. + sampling_rate (`int`, *optional*, defaults to 16000): + The sampling rate at which the output audio will be generated, expressed in hertz (Hz). + upsample_initial_channel (`int`, *optional*, defaults to 512): + The number of input channels into the upsampling network. + upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): + A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The + length of *upsample_rates* defines the number of convolutional layers and has to match the length of + *upsample_kernel_sizes*. + upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The + length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of + *upsample_rates*. + resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): + A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field + fusion (MRF) module. + resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): + A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the + multi-receptive field fusion (MRF) module. + initializer_range (`float`, *optional*, defaults to 0.01): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + leaky_relu_slope (`float`, *optional*, defaults to 0.1): + The angle of the negative slope used by the leaky ReLU activation. + normalize_before (`bool`, *optional*, defaults to `True`): + Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. + + Example: + + ```python + >>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig + + >>> # Initializing a "microsoft/speecht5_hifigan" style configuration + >>> configuration = SpeechT5HifiGanConfig() + + >>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration + >>> model = SpeechT5HifiGan(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "hifigan" + + def __init__( + self, + model_in_dim=80, + sampling_rate=16000, + upsample_initial_channel=512, + upsample_rates=[4, 4, 4, 4], + upsample_kernel_sizes=[8, 8, 8, 8], + resblock_kernel_sizes=[3, 7, 11], + resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], + initializer_range=0.01, + leaky_relu_slope=0.1, + normalize_before=True, + **kwargs, + ): + self.model_in_dim = model_in_dim + self.sampling_rate = sampling_rate + self.upsample_initial_channel = upsample_initial_channel + self.upsample_rates = upsample_rates + self.upsample_kernel_sizes = upsample_kernel_sizes + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.initializer_range = initializer_range + self.leaky_relu_slope = leaky_relu_slope + self.normalize_before = normalize_before + super().__init__(**kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..071b987dbb5a478e7eec59e6582678c4ec75c33c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py @@ -0,0 +1,3362 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SpeechT5 model.""" + +import math +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqSpectrogramOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 1 + +# General docstring +_CONFIG_FOR_DOC = "SpeechT5Config" + + +from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +def shift_spectrograms_right(input_values: torch.Tensor, reduction_factor: int = 1): + """ + Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length. + """ + # thin out frames for reduction factor + if reduction_factor > 1: + input_values = input_values[:, reduction_factor - 1 :: reduction_factor] + + shifted_input_values = input_values.new_zeros(input_values.shape) + shifted_input_values[:, 1:] = input_values[:, :-1].clone() + + # replace possible -100 values in labels by zeros + shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0) + + return shifted_input_values + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5NoLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5LayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5GroupNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5 +class SpeechT5SinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__() + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) + + def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) + if hasattr(self, "weights"): + # in forward put the weights on the correct dtype and device of the param + emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) + + self.weights = nn.Parameter(emb_weights) + self.weights.requires_grad = False + self.weights.detach_() + + @staticmethod + def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + """ + Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the + description in Section 3.5 of "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + return emb.to(torch.get_default_dtype()) + + @torch.no_grad() + def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): + bsz, seq_len = input_ids.size() + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( + input_ids.device + ) + + # expand embeddings if needed + max_pos = self.padding_idx + 1 + seq_len + if max_pos > self.weights.size(0): + self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) + + return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() + + def create_position_ids_from_input_ids( + self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 + ): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5 +class SpeechT5PositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.num_conv_pos_embeddings, + padding=config.num_conv_pos_embeddings // 2, + groups=config.num_conv_pos_embedding_groups, + ) + + weight_norm = nn.utils.weight_norm + if hasattr(nn.utils.parametrizations, "weight_norm"): + weight_norm = nn.utils.parametrizations.weight_norm + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = weight_norm(self.conv, name="weight", dim=2) + + self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +class SpeechT5ScaledPositionalEncoding(nn.Module): + """ + Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895 + """ + + def __init__(self, dropout, dim, max_len=5000): + pe = torch.zeros(max_len, dim) + position = torch.arange(0, max_len).unsqueeze(1) + div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))) + pe[:, 0::2] = torch.sin(position.float() * div_term) + pe[:, 1::2] = torch.cos(position.float() * div_term) + pe = pe.unsqueeze(0) + super().__init__() + self.register_buffer("pe", pe, persistent=False) + self.dropout = nn.Dropout(p=dropout) + self.dim = dim + self.alpha = torch.nn.Parameter(torch.tensor(1.0)) + + def forward(self, emb): + emb = emb + self.alpha * self.pe[:, : emb.size(1)] + emb = self.dropout(emb) + return emb + + +class SpeechT5RelativePositionalEncoding(torch.nn.Module): + def __init__(self, dim, max_length=1000): + super().__init__() + self.dim = dim + self.max_length = max_length + self.pe_k = torch.nn.Embedding(2 * max_length, dim) + + def forward(self, hidden_states): + seq_len = hidden_states.shape[1] + pos_seq = torch.arange(0, seq_len).long().to(hidden_states.device) + pos_seq = pos_seq[:, None] - pos_seq[None, :] + + pos_seq[pos_seq < -self.max_length] = -self.max_length + pos_seq[pos_seq >= self.max_length] = self.max_length - 1 + pos_seq = pos_seq + self.max_length + + return self.pe_k(pos_seq) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5 +class SpeechT5SamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5 +class SpeechT5FeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + + if config.feat_extract_norm == "group": + conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [ + SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) + ] + elif config.feat_extract_norm == "layer": + conv_layers = [ + SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) + ] + else: + raise ValueError( + f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" + ) + self.conv_layers = nn.ModuleList(conv_layers) + self.gradient_checkpointing = False + self._requires_grad = True + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5 +class SpeechT5FeatureProjection(nn.Module): + def __init__(self, config): + super().__init__() + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) + self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.dropout = nn.Dropout(config.feat_proj_dropout) + + def forward(self, hidden_states): + # non-projected hidden states are needed for quantization + norm_hidden_states = self.layer_norm(hidden_states) + hidden_states = self.projection(norm_hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states, norm_hidden_states + + +class SpeechT5SpeechEncoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.feature_encoder = SpeechT5FeatureEncoder(config) + self.feature_projection = SpeechT5FeatureProjection(config) + + # model only needs masking vector if mask prob is > 0.0 + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config) + self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding( + config.max_speech_positions + config.pad_token_id + 1, + config.hidden_size, + config.pad_token_id, + ) + + def freeze_feature_encoder(self): + self.feature_encoder._freeze_parameters() + + def forward( + self, + input_values: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + ): + extract_features = self.feature_encoder(input_values) + extract_features = extract_features.transpose(1, 2) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask( + extract_features.shape[1], + attention_mask, + ) + + hidden_states, extract_features = self.feature_projection(extract_features) + hidden_states = self._mask_hidden_states( + hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask + ) + + positional_conv_embedding = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + positional_conv_embedding + + if attention_mask is not None: + padding_mask = attention_mask.ne(1).long() + else: + padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device) + + positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask) + hidden_states = hidden_states + positional_sinusoidal_embeddings + + return hidden_states, attention_mask + + # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask + def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): + # Effectively attention_mask.sum(-1), but not inplace to be able to run + # on inference mode. + non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] + output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths + def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the convolutional layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + return input_lengths + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + +class SpeechT5SpeechDecoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + + self.layers = nn.ModuleList( + [ + nn.Linear( + config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units, + config.speech_decoder_prenet_units, + ) + for i in range(config.speech_decoder_prenet_layers) + ] + ) + + self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size) + self.encode_positions = SpeechT5ScaledPositionalEncoding( + config.positional_dropout, + config.hidden_size, + config.max_speech_positions, + ) + self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size) + + def _consistent_dropout(self, inputs_embeds, p): + mask = torch.bernoulli(inputs_embeds[0], p=p) + all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1) + return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p) + + def forward( + self, + input_values: torch.Tensor, + speaker_embeddings: Optional[torch.Tensor] = None, + ): + # Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884. + + inputs_embeds = input_values + for layer in self.layers: + inputs_embeds = nn.functional.relu(layer(inputs_embeds)) + inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout) + + inputs_embeds = self.final_layer(inputs_embeds) + inputs_embeds = self.encode_positions(inputs_embeds) + + if speaker_embeddings is not None: + speaker_embeddings = nn.functional.normalize(speaker_embeddings) + speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1) + inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1) + inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds)) + + return inputs_embeds + + +class SpeechT5BatchNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + + if layer_id == 0: + in_conv_dim = config.num_mel_bins + else: + in_conv_dim = config.speech_decoder_postnet_units + + if layer_id == config.speech_decoder_postnet_layers - 1: + out_conv_dim = config.num_mel_bins + else: + out_conv_dim = config.speech_decoder_postnet_units + + self.conv = nn.Conv1d( + in_conv_dim, + out_conv_dim, + kernel_size=config.speech_decoder_postnet_kernel, + stride=1, + padding=(config.speech_decoder_postnet_kernel - 1) // 2, + bias=False, + ) + self.batch_norm = nn.BatchNorm1d(out_conv_dim) + + if layer_id < config.speech_decoder_postnet_layers - 1: + self.activation = nn.Tanh() + else: + self.activation = None + + self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.batch_norm(hidden_states) + if self.activation is not None: + hidden_states = self.activation(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +class SpeechT5SpeechDecoderPostnet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + + self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) + self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor) + + self.layers = nn.ModuleList( + [SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] + ) + + def forward(self, hidden_states: torch.Tensor): + outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) + outputs_after_postnet = self.postnet(outputs_before_postnet) + logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1) + return outputs_before_postnet, outputs_after_postnet, logits + + def postnet(self, hidden_states: torch.Tensor): + layer_output = hidden_states.transpose(1, 2) + for layer in self.layers: + layer_output = layer(layer_output) + return hidden_states + layer_output.transpose(1, 2) + + +class SpeechT5TextEncoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) + self.encode_positions = SpeechT5ScaledPositionalEncoding( + config.positional_dropout, + config.hidden_size, + config.max_text_positions, + ) + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward(self, input_ids: torch.Tensor): + inputs_embeds = self.embed_tokens(input_ids) + inputs_embeds = self.encode_positions(inputs_embeds) + return inputs_embeds + + +class SpeechT5TextDecoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.dropout = nn.Dropout(config.positional_dropout) + self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) + + self.embed_positions = SpeechT5SinusoidalPositionalEmbedding( + config.max_text_positions + config.pad_token_id + 1, + config.hidden_size, + config.pad_token_id, + ) + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + ): + if input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + else: + raise ValueError("You have to specify `decoder_input_ids`") + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + positions = self.embed_positions(input_ids, past_key_values_length) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + inputs_embeds += positions + inputs_embeds = self.dropout(inputs_embeds) + + return inputs_embeds, attention_mask + + +class SpeechT5TextDecoderPostnet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + def forward(self, hidden_states: torch.Tensor): + return self.lm_head(hidden_states) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + +class SpeechT5Attention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see + https://aclanthology.org/N18-2074.pdf) + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + position_bias: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + # relative attention bias + if position_bias is not None: + reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1) + rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) + rel_pos_bias = rel_pos_bias.transpose(0, 1).view( + bsz * self.num_heads, position_bias.size(0), position_bias.size(1) + ) + attn_weights += rel_pos_bias + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class SpeechT5FeedForward(nn.Module): + def __init__(self, config, intermediate_size): + super().__init__() + self.intermediate_dropout = nn.Dropout(config.activation_dropout) + + self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + self.output_dense = nn.Linear(intermediate_size, config.hidden_size) + self.output_dropout = nn.Dropout(config.hidden_dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +class SpeechT5EncoderLayer(nn.Module): + def __init__(self, config: SpeechT5Config): + super().__init__() + self.attention = SpeechT5Attention( + embed_dim=config.hidden_size, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + position_bias: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): + input to the layer of shape `(batch, seq_len, hidden_size)` + attention_mask (`torch.FloatTensor`): + attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very + large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(config.encoder_attention_heads,)`. + position_bias (`torch.FloatTensor`): + relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)` + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + position_bias=position_bias, + output_attentions=output_attentions, + ) + + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class SpeechT5DecoderLayer(nn.Module): + def __init__(self, config: SpeechT5Config): + super().__init__() + self.self_attn = SpeechT5Attention( + embed_dim=config.hidden_size, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.encoder_attn = SpeechT5Attention( + config.hidden_size, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, hidden_size)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class SpeechT5PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SpeechT5Config + base_model_prefix = "speecht5" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, SpeechT5PositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, SpeechT5FeatureProjection): + k = math.sqrt(1 / module.projection.in_features) + nn.init.uniform_(module.projection.weight, a=-k, b=k) + nn.init.uniform_(module.projection.bias, a=-k, b=k) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + nn.init.kaiming_normal_(module.weight) + if module.bias is not None: + k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) + nn.init.uniform_(module.bias, a=-k, b=k) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +class SpeechT5Encoder(SpeechT5PreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layerdrop = config.encoder_layerdrop + + self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)]) + + self.embed_positions = SpeechT5RelativePositionalEncoding( + config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position + ) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + """ + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): + Features extracted from the speech or text input by the encoder prenet. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) + + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + position_bias = self.embed_positions(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + skip_the_layer = False + if self.training: + dropout_probability = torch.rand([]) + skip_the_layer = dropout_probability < self.layerdrop + + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + position_bias, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to + hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5SpeechEncoderPrenet(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + hidden_states, attention_mask = self.prenet(input_values, attention_mask) + + outputs = self.wrapped_encoder( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5TextEncoderPrenet(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prenet.get_input_embeddings() + + def set_input_embeddings(self, value): + self.prenet.set_input_embeddings(value) + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + hidden_states = self.prenet(input_values) + + outputs = self.wrapped_encoder( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with + [`SpeechT5Model`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + return self.wrapped_encoder( + hidden_states=input_values, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class SpeechT5Decoder(SpeechT5PreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`] + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.layerdrop = config.decoder_layerdrop + + self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)]) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): + Features extracted from the speech or text input by the decoder prenet. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + input_shape = hidden_states.size()[:-1] + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, hidden_states, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1] + ) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != (len(self.layers)): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + skip_the_layer = False + if self.training: + dropout_probability = torch.rand([]) + skip_the_layer = dropout_probability < self.layerdrop + if skip_the_layer and not deepspeed_zero3_is_enabled: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None + ) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden + features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5SpeechDecoderPrenet(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + speaker_embeddings: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + decoder_hidden_states = self.prenet(input_values, speaker_embeddings) + + outputs = self.wrapped_decoder( + hidden_states=decoder_hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5TextDecoderPrenet(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prenet.get_input_embeddings() + + def set_input_embeddings(self, value): + self.prenet.set_input_embeddings(value) + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values) + + outputs = self.wrapped_decoder( + hidden_states=decoder_hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with + [`SpeechT5Model`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + outputs = self.wrapped_decoder( + hidden_states=input_values, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + return outputs + + +class SpeechT5GuidedMultiheadAttentionLoss(nn.Module): + """ + Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional + Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__() + self.sigma = config.guided_attention_loss_sigma + self.scale = config.guided_attention_loss_scale + + def forward( + self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor + ) -> torch.Tensor: + """ + Compute the attention loss. + + Args: + attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`): + Batch of multi-head attention weights + input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`): + Input attention mask as booleans. + output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`): + Target attention mask as booleans. + + Returns: + `torch.Tensor` with the loss value + """ + guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device) + masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2) + masks = masks.to(attentions.device).unsqueeze(1) + + losses = guided_attn_masks * attentions + loss = torch.mean(losses.masked_select(masks)) + return self.scale * loss + + def _make_guided_attention_masks(self, input_masks, output_masks, device): + input_lengths = input_masks.sum(-1) + output_lengths = output_masks.sum(-1) + + guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device) + + for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)): + guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device) + + return guided_attn_masks.unsqueeze(1) + + @staticmethod + def _make_guided_attention_mask(input_length, output_length, sigma, device): + grid_y, grid_x = torch.meshgrid( + torch.arange(input_length, device=device), + torch.arange(output_length, device=device), + indexing="xy", + ) + grid_x = grid_x.float() / output_length + grid_y = grid_y.float() / input_length + return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2))) + + +class SpeechT5SpectrogramLoss(nn.Module): + """ + Loss computation used by SpeechT5ForTextToSpeech. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__() + self.use_guided_attention_loss = config.use_guided_attention_loss + self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads + self.reduction_factor = config.reduction_factor + + self.l1_criterion = L1Loss() + self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0)) + + if self.use_guided_attention_loss: + self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config) + + def forward( + self, + attention_mask: torch.LongTensor, + outputs_before_postnet: torch.FloatTensor, + outputs_after_postnet: torch.FloatTensor, + logits: torch.FloatTensor, + labels: torch.FloatTensor, + cross_attentions: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + padding_mask = labels != -100.0 + + # mask out the padded portions + labels = labels.masked_select(padding_mask) + outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask) + outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask) + + # spectrogram loss + l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels) + + # construct stop labels from the padding mask + masks = padding_mask[:, :, 0] + stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1) + stop_labels = stop_labels[:, 1:].masked_select(masks) + logits = logits.masked_select(masks) + + # stop token loss + bce_loss = self.bce_criterion(logits, stop_labels) + + # combined loss + loss = l1_loss + bce_loss + + # guided attention loss + if self.use_guided_attention_loss: + attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1) + input_masks = attention_mask == 1 + output_masks = padding_mask[:, :, 0] + if self.reduction_factor > 1: + output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor] + attn_loss = self.attn_criterion(attn, input_masks, output_masks) + loss += attn_loss + + return loss + + +SPEECHT5_BASE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. + encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`): + The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`, + [`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states. + decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`): + The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`, + [`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden + states. +""" + + +SPEECHT5_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SPEECHT5_INPUTS_DOCSTRING = r""" + Args: + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + + + `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == + True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should + **not** be passed to avoid degraded performance when doing batched inference. For such models + `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these + models also yield slightly different results depending on whether `input_values` is padded or not. + + + + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will + also be used by default. + + If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` + of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing + `decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is + used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is + useful if you want more control over how to convert `decoder_input_values` indices into associated vectors + than the model's internal embedding lookup matrix. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.", + SPEECHT5_BASE_START_DOCSTRING, +) +class SpeechT5Model(SpeechT5PreTrainedModel): + def __init__( + self, + config: SpeechT5Config, + encoder: Optional[nn.Module] = None, + decoder: Optional[nn.Module] = None, + ): + super().__init__(config) + self.config = config + self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder + self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): + return self.encoder.get_input_embeddings() + if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): + return self.decoder.get_input_embeddings() + return None + + def set_input_embeddings(self, value): + if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): + self.encoder.set_input_embeddings(value) + if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): + self.decoder.set_input_embeddings(value) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): + self.encoder.prenet.freeze_feature_encoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`): + Depending on which encoder is being used, the `input_values` are either: float values of the input raw + speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states. + + decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel + filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in + the vocabulary, or hidden states. + + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + + Returns: + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_values=input_values, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # downsample encoder attention mask (only for encoders with speech input) + if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): + encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask( + encoder_outputs[0].shape[1], attention_mask + ) + else: + encoder_attention_mask = attention_mask + + if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet): + decoder_args = {"speaker_embeddings": speaker_embeddings} + else: + decoder_args = {} + + decoder_outputs = self.decoder( + input_values=decoder_input_values, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=encoder_attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **decoder_args, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """SpeechT5 Model with a speech encoder and a text decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel): + _tied_weights_keys = ["text_decoder_postnet.lm_head.weight"] + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that does not define the" + " vocabulary size of the language model head. Please instantiate the model as follows:" + " `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" + " your model's configuration." + ) + + speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) + text_decoder = SpeechT5DecoderWithTextPrenet(config) + self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder) + + self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.get_encoder().prenet.freeze_feature_encoder() + + def get_output_embeddings(self): + return self.text_decoder_postnet.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.text_decoder_postnet.set_output_embeddings(new_embeddings) + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, Seq2SeqLMOutput]: + r""" + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install + soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding + and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` + or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is + only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText + >>> from datasets import load_dataset + + >>> dataset = load_dataset( + ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" + ... ) # doctest: +IGNORE_RESULT + >>> dataset = dataset.sort("id") + >>> sampling_rate = dataset.features["audio"].sampling_rate + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") + >>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") + + >>> # audio file is decoded on the fly + >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") + >>> predicted_ids = model.generate(**inputs, max_length=100) + + >>> # transcribe speech + >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) + >>> transcription[0] + 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' + ``` + + ```python + >>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids + + >>> # compute loss + >>> loss = model(**inputs).loss + >>> round(loss.item(), 2) + 19.68 + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.speecht5( + input_values=input_values, + attention_mask=attention_mask, + decoder_input_values=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + logits = self.text_decoder_postnet(outputs[0]) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +def _generate_speech( + model: SpeechT5PreTrainedModel, + input_values: torch.FloatTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, +) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + if speaker_embeddings is None: + raise ValueError( + """`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following + the code snippet provided in this link: + https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors + """ + ) + + if attention_mask is None: + encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int() + else: + encoder_attention_mask = attention_mask + + bsz = input_values.size(0) + + encoder_out = model.speecht5.encoder( + input_values=input_values, + attention_mask=encoder_attention_mask, + return_dict=True, + ) + + encoder_last_hidden_state = encoder_out.last_hidden_state + + # downsample encoder attention mask + if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet): + encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask( + encoder_out[0].shape[1], encoder_attention_mask + ) + + maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor) + minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor) + + # Start the output sequence with a mel spectrum that is all zeros. + output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins) + + spectrogram = [] + cross_attentions = [] + past_key_values = None + idx = 0 + result_spectrogram = {} + + while True: + idx += 1 + + # Run the decoder prenet on the entire output sequence. + decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings) + # Run the decoder layers on the last element of the prenet output. + decoder_out = model.speecht5.decoder.wrapped_decoder( + hidden_states=decoder_hidden_states[:, -1:], + attention_mask=None, + encoder_hidden_states=encoder_last_hidden_state, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=True, + output_attentions=output_cross_attentions, + return_dict=True, + ) + + if output_cross_attentions: + cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0)) + + last_decoder_output = decoder_out.last_hidden_state.squeeze(1) + past_key_values = decoder_out.past_key_values + + # Predict the new mel spectrum for this step in the sequence. + spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output) + spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins) + spectrogram.append(spectrum) + + # Extend the output sequence with the new mel spectrum. + new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins) + output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1) + # Predict the probability that this is the stop token. + prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output)) + + if idx < minlen: + continue + else: + # If the generation loop is less than maximum length time, check the ones in the batch that have met + # the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch. + if idx < maxlen: + meet_thresholds = torch.sum(prob, dim=-1) >= threshold + meet_indexes = torch.where(meet_thresholds)[0].tolist() + else: + meet_indexes = range(len(prob)) + meet_indexes = [i for i in meet_indexes if i not in result_spectrogram] + if len(meet_indexes) > 0: + spectrograms = torch.stack(spectrogram) + spectrograms = spectrograms.transpose(0, 1).flatten(1, 2) + spectrograms = model.speech_decoder_postnet.postnet(spectrograms) + for meet_index in meet_indexes: + result_spectrogram[meet_index] = spectrograms[meet_index] + if len(result_spectrogram) >= bsz: + break + spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))] + if not return_output_lengths: + spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + if vocoder is not None: + outputs = vocoder(spectrogram) + else: + outputs = spectrogram + if output_cross_attentions: + cross_attentions = torch.cat(cross_attentions, dim=2) + if bsz > 1: + cross_attentions = cross_attentions.view( + bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] + ) + outputs = (outputs, cross_attentions) + else: + # batched return values should also include the spectrogram/waveform lengths + spectrogram_lengths = [] + for i in range(bsz): + spectrogram_lengths.append(spectrograms[i].size(0)) + if vocoder is None: + spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + outputs = (spectrograms, spectrogram_lengths) + else: + waveforms = [] + spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + waveforms = vocoder(spectrograms) + waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] + outputs = (waveforms, waveform_lengths) + if output_cross_attentions: + cross_attentions = torch.cat(cross_attentions, dim=2) + cross_attentions = cross_attentions.view( + bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] + ) + outputs = (*outputs, cross_attentions) + return outputs + + +@add_start_docstrings( + """SpeechT5 Model with a text encoder and a speech decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel): + main_input_name = "input_ids" + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that does not define the" + " vocabulary size of the language model head. Please instantiate the model as follows:" + " `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" + " your model's configuration." + ) + + text_encoder = SpeechT5EncoderWithTextPrenet(config) + speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) + self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder) + + self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + stop_labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: + r""" + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): + Float values of input mel spectrogram. + + SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If + `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see + `past_key_values`). + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): + Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss + computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] + for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed + >>> import torch + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") + >>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") + >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") + + >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") + >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file + + >>> set_seed(555) # make deterministic + + >>> # generate speech + >>> speech = model.generate(inputs["input_ids"], speaker_embeddings=speaker_embeddings, vocoder=vocoder) + >>> speech.shape + torch.Size([15872]) + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_values is None: + decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) + if self.config.use_guided_attention_loss: + output_attentions = True + + outputs = self.speecht5( + input_values=input_ids, + attention_mask=attention_mask, + decoder_input_values=decoder_input_values, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + speaker_embeddings=speaker_embeddings, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0]) + + loss = None + if labels is not None: + criterion = SpeechT5SpectrogramLoss(self.config) + loss = criterion( + attention_mask, + outputs_before_postnet, + outputs_after_postnet, + logits, + labels, + outputs.cross_attentions, + ) + + if not return_dict: + output = (outputs_after_postnet,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSpectrogramOutput( + loss=loss, + spectrogram=outputs_after_postnet, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + @torch.no_grad() + def generate( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.LongTensor] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + **kwargs, + ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + r""" + Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a + speech waveform using a vocoder. + + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Attention mask from the tokenizer, required for batched inference to signal to the model where to + ignore padded tokens from the input_ids. + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is not None: + batch_size = input_ids.size(0) + if speaker_embeddings.size(0) != batch_size: + if speaker_embeddings.size(0) == 1: + speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) + else: + raise ValueError( + "The first dimension of speaker_embeddings must be either 1 or the same as batch_size." + ) + + return _generate_speech( + self, + input_ids, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + @torch.no_grad() + def generate_speech( + self, + input_ids: torch.LongTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + r""" + Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a + speech waveform using a vocoder. + + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*, defaults to `None`): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is not None: + batch_size = input_ids.size(0) + if speaker_embeddings.size(0) != batch_size: + if speaker_embeddings.size(0) == 1: + speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) + else: + raise ValueError( + "The first dimension of speaker_embeddings must be either 1 or the same as batch size." + ) + + return _generate_speech( + self, + input_ids, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + +@add_start_docstrings( + """SpeechT5 Model with a speech encoder and a speech decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel): + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) + speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) + self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder) + + self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.get_encoder().prenet.freeze_feature_encoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + stop_labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: + r""" + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install + soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding + and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): + Float values of input mel spectrogram. + + SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If + `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see + `past_key_values`). + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): + Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See + [`SpeechT5Processor.__call__`] for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed + >>> from datasets import load_dataset + >>> import torch + + >>> dataset = load_dataset( + ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" + ... ) # doctest: +IGNORE_RESULT + >>> dataset = dataset.sort("id") + >>> sampling_rate = dataset.features["audio"].sampling_rate + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") + >>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") + >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") + + >>> # audio file is decoded on the fly + >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") + + >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file + + >>> set_seed(555) # make deterministic + + >>> # generate speech + >>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder) + >>> speech.shape + torch.Size([77824]) + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_values is None: + decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) + + outputs = self.speecht5( + input_values=input_values, + attention_mask=attention_mask, + decoder_input_values=decoder_input_values, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + speaker_embeddings=speaker_embeddings, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + _, spectrogram, logits = self.speech_decoder_postnet(outputs[0]) + + loss = None + + if not return_dict: + output = (spectrogram,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSpectrogramOutput( + loss=loss, + spectrogram=spectrogram, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + @torch.no_grad() + def generate_speech( + self, + input_values: torch.FloatTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + ) -> torch.FloatTensor: + r""" + Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a + speech waveform using a vocoder. + + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. + + Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or + a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array + into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor + of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*, defaults to `None`): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is None: + speaker_embeddings = torch.zeros((1, 512), device=input_values.device) + + return _generate_speech( + self, + input_values, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + +HIFIGAN_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5HifiGanConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +class HifiGanResidualBlock(nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): + super().__init__() + self.leaky_relu_slope = leaky_relu_slope + + self.convs1 = nn.ModuleList( + [ + nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + dilation=dilation[i], + padding=self.get_padding(kernel_size, dilation[i]), + ) + for i in range(len(dilation)) + ] + ) + self.convs2 = nn.ModuleList( + [ + nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + dilation=1, + padding=self.get_padding(kernel_size, 1), + ) + for _ in range(len(dilation)) + ] + ) + + def get_padding(self, kernel_size, dilation=1): + return (kernel_size * dilation - dilation) // 2 + + def apply_weight_norm(self): + for layer in self.convs1: + nn.utils.weight_norm(layer) + for layer in self.convs2: + nn.utils.weight_norm(layer) + + def remove_weight_norm(self): + for layer in self.convs1: + nn.utils.remove_weight_norm(layer) + for layer in self.convs2: + nn.utils.remove_weight_norm(layer) + + def forward(self, hidden_states): + for conv1, conv2 in zip(self.convs1, self.convs2): + residual = hidden_states + hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) + hidden_states = conv1(hidden_states) + hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) + hidden_states = conv2(hidden_states) + hidden_states = hidden_states + residual + return hidden_states + + +@add_start_docstrings( + """HiFi-GAN vocoder.""", + HIFIGAN_START_DOCSTRING, +) +class SpeechT5HifiGan(PreTrainedModel): + config_class = SpeechT5HifiGanConfig + main_input_name = "spectrogram" + + def __init__(self, config: SpeechT5HifiGanConfig): + super().__init__(config) + self.num_kernels = len(config.resblock_kernel_sizes) + self.num_upsamples = len(config.upsample_rates) + self.conv_pre = nn.Conv1d( + config.model_in_dim, + config.upsample_initial_channel, + kernel_size=7, + stride=1, + padding=3, + ) + + self.upsampler = nn.ModuleList() + for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): + self.upsampler.append( + nn.ConvTranspose1d( + config.upsample_initial_channel // (2**i), + config.upsample_initial_channel // (2 ** (i + 1)), + kernel_size=kernel_size, + stride=upsample_rate, + padding=(kernel_size - upsample_rate) // 2, + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.upsampler)): + channels = config.upsample_initial_channel // (2 ** (i + 1)) + for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): + self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) + + self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) + + self.register_buffer("mean", torch.zeros(config.model_in_dim)) + self.register_buffer("scale", torch.ones(config.model_in_dim)) + + # Initialize weights and apply final processing + self.post_init() + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear, nn.Conv1d)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + + def apply_weight_norm(self): + nn.utils.weight_norm(self.conv_pre) + for layer in self.upsampler: + nn.utils.weight_norm(layer) + for layer in self.resblocks: + layer.apply_weight_norm() + nn.utils.weight_norm(self.conv_post) + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.conv_pre) + for layer in self.upsampler: + nn.utils.remove_weight_norm(layer) + for layer in self.resblocks: + layer.remove_weight_norm() + nn.utils.remove_weight_norm(self.conv_post) + + def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: + r""" + Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch + of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech + waveform. + + Args: + spectrogram (`torch.FloatTensor`): + Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, + config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. + + Returns: + `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of + shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. + """ + if self.config.normalize_before: + spectrogram = (spectrogram - self.mean) / self.scale + + is_batched = spectrogram.dim() == 3 + if not is_batched: + spectrogram = spectrogram.unsqueeze(0) + + hidden_states = spectrogram.transpose(2, 1) + + hidden_states = self.conv_pre(hidden_states) + for i in range(self.num_upsamples): + hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) + hidden_states = self.upsampler[i](hidden_states) + + res_state = self.resblocks[i * self.num_kernels](hidden_states) + for j in range(1, self.num_kernels): + res_state += self.resblocks[i * self.num_kernels + j](hidden_states) + hidden_states = res_state / self.num_kernels + + hidden_states = nn.functional.leaky_relu(hidden_states) + hidden_states = self.conv_post(hidden_states) + hidden_states = torch.tanh(hidden_states) + + if not is_batched: + # remove batch dim and collapse tensor to 1-d audio waveform + waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) + else: + # remove seq-len dim since this collapses to 1 + waveform = hidden_states.squeeze(1) + + return waveform diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py new file mode 100644 index 0000000000000000000000000000000000000000..eb3314c24f24c1f8b9bc760c4ece69e0a2819888 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py @@ -0,0 +1,192 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Number Normalizer class for SpeechT5.""" + +import re + + +class EnglishNumberNormalizer: + def __init__(self): + self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] + self.teens = [ + "", + "eleven", + "twelve", + "thirteen", + "fourteen", + "fifteen", + "sixteen", + "seventeen", + "eighteen", + "nineteen", + ] + self.tens = ["", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] + self.thousands = [ + "", + "thousand", + "million", + "billion", + "trillion", + "quadrillion", + "quintillion", + "sextillion", + "septillion", + "octillion", + "nonillion", + "decillion", + ] + + # Define a dictionary to map currency symbols to their names + # Top most traded currencies according to + # https://en.wikipedia.org/wiki/Template:Most_traded_currencies + self.currency_symbols = { + "$": " dollars", + "€": " euros", + "£": " pounds", + "¢": " cents", + "¥": " japanese yen", + "﷼": " saudi riyal", + "₹": " indian rupees", + "₽": " russian rubles", + "฿": " thai baht", + "₺": " turkish liras", + "₴": " ukrainian hryvnia", + "₣": " swiss francs", + "₡": " costa rican colon", + "₱": " philippine peso", + "₪": " israeli shekels", + "₮": " mongolian tögrög", + "₩": " south korean won", + "₦": " nigerian naira", + "₫": " vietnamese Đồng", + } + + def spell_number(self, num): + if num == 0: + return "zero" + + parts = [] + for i in range(0, len(self.thousands)): + if num % 1000 != 0: + part = "" + hundreds = num % 1000 // 100 + tens_units = num % 100 + + if hundreds > 0: + part += self.ones[hundreds] + " hundred" + if tens_units > 0: + part += " and " + + if tens_units > 10 and tens_units < 20: + part += self.teens[tens_units - 10] + else: + tens_digit = self.tens[tens_units // 10] + ones_digit = self.ones[tens_units % 10] + if tens_digit: + part += tens_digit + if ones_digit: + if tens_digit: + part += " " + part += ones_digit + + parts.append(part) + + num //= 1000 + + return " ".join(reversed(parts)) + + def convert(self, number): + """ + Converts an individual number passed in string form to spelt-out form + """ + if "." in number: + integer_part, decimal_part = number.split(".") + else: + integer_part, decimal_part = number, "00" + + # Extract currency symbol if present + currency_symbol = "" + for symbol, name in self.currency_symbols.items(): + if integer_part.startswith(symbol): + currency_symbol = name + integer_part = integer_part[len(symbol) :] + break + + if integer_part.startswith("-"): + if integer_part[1:].startswith(symbol): + currency_symbol = name + integer_part = "-" + integer_part[len(symbol) + 1 :] + break + + # Extract 'minus' prefix for negative numbers + minus_prefix = "" + if integer_part.startswith("-"): + minus_prefix = "minus " + integer_part = integer_part[1:] + elif integer_part.startswith("minus"): + minus_prefix = "minus " + integer_part = integer_part[len("minus") :] + + percent_suffix = "" + if "%" in integer_part or "%" in decimal_part: + percent_suffix = " percent" + integer_part = integer_part.replace("%", "") + decimal_part = decimal_part.replace("%", "") + + integer_part = integer_part.zfill(3 * ((len(integer_part) - 1) // 3 + 1)) + + parts = [] + for i in range(0, len(integer_part), 3): + chunk = int(integer_part[i : i + 3]) + if chunk > 0: + part = self.spell_number(chunk) + unit = self.thousands[len(integer_part[i:]) // 3 - 1] + if unit: + part += " " + unit + parts.append(part) + + spelled_integer = " ".join(parts) + + # Format the spelt-out number based on conditions, such as: + # If it has decimal parts, currency symbol, minus prefix, etc + if decimal_part == "00": + return ( + f"{minus_prefix}{spelled_integer}{percent_suffix}{currency_symbol}" + if minus_prefix or currency_symbol + else f"{spelled_integer}{percent_suffix}" + ) + else: + spelled_decimal = " ".join([self.spell_number(int(digit)) for digit in decimal_part]) + return ( + f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}{currency_symbol}" + if minus_prefix or currency_symbol + else f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}" + ) + + def __call__(self, text): + """ + Convert numbers / number-like quantities in a string to their spelt-out counterparts + """ + # Form part of the pattern for all currency symbols + pattern = r"(? 15000, etc) + text = re.sub(r"(\d+,\d+)", lambda match: match.group(1).replace(",", ""), text) + + # Use regex to find and replace numbers in the text + converted_text = re.sub(pattern, lambda match: self.convert(match.group(1)), text) + converted_text = re.sub(" +", " ", converted_text) + + return converted_text diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..41cb296f8f0d08184b1bb2576d066d62ebf74d63 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization class for SpeechT5.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging +from .number_normalizer import EnglishNumberNormalizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"} + + +class SpeechT5Tokenizer(PreTrainedTokenizer): + """ + Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The begin of sequence token. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + normalize (`bool`, *optional*, defaults to `False`): + Whether to convert numeric quantities in the text to their spelt-out english counterparts. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + unk_token="", + pad_token="", + normalize=False, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + self.vocab_file = vocab_file + self.normalize = normalize + self._normalizer = None + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + normalize=normalize, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + normalize = kwargs.pop("normalize", self.normalize) + if is_split_into_words: + text = " " + text + if normalize: + text = self.normalizer(text) + return (text, kwargs) + + @property + def vocab_size(self): + return self.sp_model.get_piece_size() + + @property + def normalizer(self): + if self._normalizer is None: + self._normalizer = EnglishNumberNormalizer() + return self._normalizer + + @normalizer.setter + def normalizer(self, value): + self._normalizer = value + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def _tokenize(self, text: str) -> List[str]: + """Take as input a string and return a list of strings (tokens) for words/sub-words""" + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: + """Build model inputs from a sequence by appending eos_token_id.""" + if token_ids_1 is None: + return token_ids_0 + [self.eos_token_id] + # We don't expect to process pairs, but leave the pair logic for API consistency + return token_ids_0 + token_ids_1 + [self.eos_token_id] + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + suffix_ones = [1] + if token_ids_1 is None: + return ([0] * len(token_ids_0)) + suffix_ones + return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c24c60b4848450a2d3cf5f6269196db4d58037f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d53d38c2e93c55f73f7eb15163c2f9c8c9e804db Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/configuration_vision_encoder_decoder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e99366fe7940df51c9d62d1dfcfea4549f3b3f92 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_flax_vision_encoder_decoder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_tf_vision_encoder_decoder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_tf_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..04ed713b7093ea07b87e22b68126696d2c4d3217 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_tf_vision_encoder_decoder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ffc2de54506b9d1f4510491ccbef207caf9d2e84 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/__pycache__/modeling_vision_encoder_decoder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py new file mode 100644 index 0000000000000000000000000000000000000000..a4aa663f98526fa030f42584ce11da9852d74050 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py @@ -0,0 +1,209 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ..auto.configuration_auto import AutoConfig + + +if TYPE_CHECKING: + from ... import PreTrainedTokenizerBase, TensorType + +logger = logging.get_logger(__name__) + + +class VisionEncoderDecoderConfig(PretrainedConfig): + r""" + [`VisionEncoderDecoderConfig`] is the configuration class to store the configuration of a + [`VisionEncoderDecoderModel`]. It is used to instantiate a Vision-Encoder-Text-Decoder model according to the + specified arguments, defining the encoder and decoder configs. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + kwargs (*optional*): + Dictionary of keyword arguments. Notably: + + - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the encoder config. + - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines + the decoder config. + + Examples: + + ```python + >>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel + + >>> # Initializing a ViT & BERT style configuration + >>> config_encoder = ViTConfig() + >>> config_decoder = BertConfig() + + >>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) + + >>> # Initializing a ViTBert model (with random weights) from a ViT & google-bert/bert-base-uncased style configurations + >>> model = VisionEncoderDecoderModel(config=config) + + >>> # Accessing the model configuration + >>> config_encoder = model.config.encoder + >>> config_decoder = model.config.decoder + >>> # set decoder config to causal lm + >>> config_decoder.is_decoder = True + >>> config_decoder.add_cross_attention = True + + >>> # Saving the model, including its configuration + >>> model.save_pretrained("my-model") + + >>> # loading model and config from pretrained folder + >>> encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model") + >>> model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) + ```""" + + model_type = "vision-encoder-decoder" + is_composition = True + + def __init__(self, **kwargs): + super().__init__(**kwargs) + if "encoder" not in kwargs or "decoder" not in kwargs: + raise ValueError( + f"A configuraton of type {self.model_type} cannot be instantiated because " + f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" + ) + + encoder_config = kwargs.pop("encoder") + encoder_model_type = encoder_config.pop("model_type") + decoder_config = kwargs.pop("decoder") + decoder_model_type = decoder_config.pop("model_type") + + self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) + self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) + self.is_encoder_decoder = True + + @classmethod + def from_encoder_decoder_configs( + cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs + ) -> PretrainedConfig: + r""" + Instantiate a [`VisionEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model + configuration and decoder model configuration. + + Returns: + [`VisionEncoderDecoderConfig`]: An instance of a configuration object + """ + logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") + decoder_config.is_decoder = True + decoder_config.add_cross_attention = True + + return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) + + +class VisionEncoderDecoderEncoderOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}}) + + +class VisionEncoderDecoderDecoderOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = OrderedDict() + common_inputs["input_ids"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + common_inputs["attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + common_inputs["encoder_hidden_states"] = {0: "batch", 1: "encoder_sequence"} + + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: "PreTrainedTokenizerBase", + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional["TensorType"] = None, + ) -> Mapping[str, Any]: + import torch + + common_inputs = OrderedDict() + + dummy_input = super().generate_dummy_inputs( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + batch, encoder_sequence = dummy_input["input_ids"].shape + encoder_hidden_states_shape = (batch, encoder_sequence, self._config.encoder_hidden_size) + common_inputs["input_ids"] = dummy_input.pop("input_ids") + common_inputs["attention_mask"] = dummy_input.pop("attention_mask") + common_inputs["encoder_hidden_states"] = torch.zeros(encoder_hidden_states_shape) + + return common_inputs + + +class VisionEncoderDecoderOnnxConfig(OnnxConfig): + @property + def inputs(self) -> None: + pass + + def get_encoder_config(self, encoder_config: PretrainedConfig) -> OnnxConfig: + r""" + Returns ONNX encoder config for `VisionEncoderDecoder` model. + + Args: + encoder_config (`PretrainedConfig`): + The encoder model's configuration to use when exporting to ONNX. + + Returns: + [`VisionEncoderDecoderEncoderOnnxConfig`]: An instance of the ONNX configuration object + """ + return VisionEncoderDecoderEncoderOnnxConfig(encoder_config) + + def get_decoder_config( + self, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, feature: str = "default" + ) -> OnnxConfig: + r""" + Returns ONNX decoder config for `VisionEncoderDecoder` model. + + Args: + encoder_config (`PretrainedConfig`): + The encoder model's configuration to use when exporting to ONNX. + decoder_config (`PretrainedConfig`): + The decoder model's configuration to use when exporting to ONNX + feature (`str`, *optional*): + The type of feature to export the model with. + + Returns: + [`VisionEncoderDecoderDecoderOnnxConfig`]: An instance of the ONNX configuration object. + """ + decoder_config.encoder_hidden_size = encoder_config.hidden_size + return VisionEncoderDecoderDecoderOnnxConfig(decoder_config, feature) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..747a4ddb4ed9c77048748341446b2eec8227570a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__init__.py @@ -0,0 +1,138 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xglm"] = ["XGLMTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xglm_fast"] = ["XGLMTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_xglm"] = [ + "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", + "XGLMForCausalLM", + "XGLMModel", + "XGLMPreTrainedModel", + ] + + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_xglm"] = [ + "FlaxXGLMForCausalLM", + "FlaxXGLMModel", + "FlaxXGLMPreTrainedModel", + ] + + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_xglm"] = [ + "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFXGLMForCausalLM", + "TFXGLMModel", + "TFXGLMPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xglm import XGLMTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xglm_fast import XGLMTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_xglm import ( + TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, + TFXGLMForCausalLM, + TFXGLMModel, + TFXGLMPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/configuration_xglm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/configuration_xglm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..239f273681fb832ec5f4c47a1709a25aed603ff9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/configuration_xglm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/modeling_tf_xglm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/modeling_tf_xglm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f1f39a8a22385f28b4527af494675cbc99e415e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/__pycache__/modeling_tf_xglm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/configuration_xglm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/configuration_xglm.py new file mode 100644 index 0000000000000000000000000000000000000000..c67c67a4b29073729de46becdc2b5b45a2f20e8c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/configuration_xglm.py @@ -0,0 +1,139 @@ +# coding=utf-8 +# Copyright The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" XGLM model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class XGLMConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the XGLM + [facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 256008): + Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`]. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + d_model (`int`, *optional*, defaults to 1024): + Dimension of the layers and the pooler layer. + ffn_dim (`int`, *optional*, defaults to 4096): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + num_layers (`int`, *optional*, defaults to 24): + Number of hidden layers Transformer decoder. + attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + scale_embedding (`bool`, *optional*, defaults to `True`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + + Example: + + ```python + >>> from transformers import XGLMModel, XGLMConfig + + >>> # Initializing a XGLM facebook/xglm-564M style configuration + >>> configuration = XGLMConfig() + + >>> # Initializing a model from the facebook/xglm-564M style configuration + >>> model = XGLMModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "xglm" + keys_to_ignore_at_inference = ["past_key_values"] + + attribute_map = { + "num_attention_heads": "attention_heads", + "hidden_size": "d_model", + "num_hidden_layers": "num_layers", + } + + def __init__( + self, + vocab_size=256008, + max_position_embeddings=2048, + d_model=1024, + ffn_dim=4096, + num_layers=24, + attention_heads=16, + activation_function="gelu", + dropout=0.1, + attention_dropout=0.1, + activation_dropout=0.0, + layerdrop=0.0, + init_std=0.02, + scale_embedding=True, + use_cache=True, + decoder_start_token_id=2, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.ffn_dim = ffn_dim + self.num_layers = num_layers + self.attention_heads = attention_heads + self.activation_function = activation_function + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.layerdrop = layerdrop + self.init_std = init_std + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + self.use_cache = use_cache + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py new file mode 100644 index 0000000000000000000000000000000000000000..f8b5dba3c1e47bb9cee6c23c4281746c4dde4761 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py @@ -0,0 +1,68 @@ +import argparse +from argparse import Namespace + +import torch +from torch import nn + +from transformers import XGLMConfig, XGLMForCausalLM + + +def remove_ignore_keys_(state_dict): + ignore_keys = [ + "decoder.version", + "decoder.output_projection.weight", + "_float_tensor", + "decoder.embed_positions._float_tensor", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +def convert_fairseq_xglm_checkpoint_from_disk(checkpoint_path): + checkpoint = torch.load(checkpoint_path, map_location="cpu") + args = Namespace(**checkpoint["cfg"]["model"]) + state_dict = checkpoint["model"] + remove_ignore_keys_(state_dict) + vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0] + + state_dict = {key.replace("decoder", "model"): val for key, val in state_dict.items()} + + config = XGLMConfig( + vocab_size=vocab_size, + max_position_embeddings=args.max_target_positions, + num_layers=args.decoder_layers, + attention_heads=args.decoder_attention_heads, + ffn_dim=args.decoder_ffn_embed_dim, + d_model=args.decoder_embed_dim, + layerdrop=args.decoder_layerdrop, + dropout=args.dropout, + attention_dropout=args.attention_dropout, + activation_dropout=args.activation_dropout, + activation_function="gelu", + scale_embedding=not args.no_scale_embedding, + tie_word_embeddings=args.share_decoder_input_output_embed, + ) + + model = XGLMForCausalLM(config) + missing = model.load_state_dict(state_dict, strict=False) + print(missing) + model.lm_head = make_linear_from_emb(model.model.embed_tokens) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") + parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + args = parser.parse_args() + model = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) + model.save_pretrained(args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_flax_xglm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_flax_xglm.py new file mode 100644 index 0000000000000000000000000000000000000000..d6b90a7f00f71e419529b10e9ee1e1bcb43a18ff --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_flax_xglm.py @@ -0,0 +1,801 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax XGLM model.""" + + +import math +import random +from functools import partial +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, +) +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_xglm import XGLMConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/xglm-564M" +_CONFIG_FOR_DOC = "XGLMConfig" + +XGLM_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +XGLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def create_sinusoidal_positions(n_pos, dim, padding_idx=1): + half_dim = dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = np.exp(np.arange(half_dim) * -emb) + emb = np.expand_dims(np.arange(n_pos), 1) * np.expand_dims(emb, 0) + emb = np.concatenate([np.sin(emb), np.cos(emb)], 1) + emb = np.reshape(emb, (n_pos, dim)) + + if padding_idx is not None: + emb[padding_idx, :] = 0 + + return jnp.array(emb) + + +class FlaxXGLMAttention(nn.Module): + config: XGLMConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} " + f"and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend + # to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class FlaxXGLMDecoderLayer(nn.Module): + config: XGLMConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxXGLMAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + if self.config.add_cross_attention: + self.encoder_attn = FlaxXGLMAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + self.fc1 = nn.Dense( + self.config.ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer.__call__ + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states = self.encoder_attn_layer_norm(hidden_states) + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +class FlaxXGLMDecoderLayerCollection(nn.Module): + config: XGLMConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxXGLMDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_layers) + ] + self.layerdrop = self.config.layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_self_attns, all_cross_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +class FlaxXGLMModule(nn.Module): + config: XGLMConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_target_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embed( + self.config.vocab_size, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + # XGLM is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + self.embed_positions = create_sinusoidal_positions( + self.config.max_position_embeddings + self.offset, embed_dim + ) + self.layers = FlaxXGLMDecoderLayerCollection(self.config, self.dtype) + self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # embed positions + position_ids = position_ids + self.offset + positions = jnp.take(self.embed_positions, position_ids, axis=0) + + hidden_states = inputs_embeds + positions + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +class FlaxXGLMPreTrainedModel(FlaxPreTrainedModel): + config_class = XGLMConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: XGLMConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + if self.config.add_cross_attention: + encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,)) + encoder_attention_mask = attention_mask + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states, + encoder_attention_mask, + return_dict=False, + ) + else: + module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False) + + random_params = module_init_outputs["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + past_key_values: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if encoder_hidden_states is not None and encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxXGLMAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + return outputs + + +@add_start_docstrings( + "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", + XGLM_START_DOCSTRING, +) +class FlaxXGLMModel(FlaxXGLMPreTrainedModel): + module_class = FlaxXGLMModule + + +append_call_sample_docstring( + FlaxXGLMModel, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutputWithPastAndCrossAttentions, + _CONFIG_FOR_DOC, +) + + +class FlaxXGLMForCausalLMModule(nn.Module): + config: XGLMConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.model = FlaxXGLMModule(self.config, self.dtype) + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids, + attention_mask, + position_ids, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["embed_tokens"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + outputs[1:] + + return FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + XGLM_START_DOCSTRING, +) +class FlaxXGLMForCausalLM(FlaxXGLMPreTrainedModel): + module_class = FlaxXGLMForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since GPT2 uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxXGLMForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_tf_xglm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_tf_xglm.py new file mode 100644 index 0000000000000000000000000000000000000000..e3003fdbc53ab669059bdaefd31df72c8e0155ad --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_tf_xglm.py @@ -0,0 +1,1009 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 XGLM model.""" + + +from __future__ import annotations + +import math +import random +from typing import Any, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation + +# Public API +from ...file_utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + replace_return_docstrings, +) +from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFSharedEmbeddings, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import logging +from .configuration_xglm import XGLMConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/xglm-564M" +_CONFIG_FOR_DOC = "XGLMConfig" + + +from ..deprecated._archive_maps import TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +LARGE_NEGATIVE = -1e8 + + +def create_sinusoidal_positions(num_positions: int, embedding_dim: int, padding_idx: Optional[int]) -> tf.Tensor: + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = tf.exp(tf.range(half_dim, dtype=tf.float32) * -emb) + emb = tf.expand_dims(tf.range(num_positions, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) + emb = tf.reshape(tf.concat([tf.sin(emb), tf.cos(emb)], axis=1), (num_positions, -1)) + if embedding_dim % 2 == 1: + # zero pad + emb = tf.concat([emb, tf.zeros((num_positions, 1))], axis=1) + if padding_idx is not None: + _padding_mask = tf.concat( + [ + tf.ones((padding_idx, shape_list(emb)[1])), + tf.zeros((1, shape_list(emb)[1])), + tf.ones((shape_list(emb)[0] - padding_idx - 1, shape_list(emb)[1])), + ], + axis=0, + ) + emb *= _padding_mask + + return tf.constant(emb, name="embed_positions") + + +def _create_position_ids_from_input_ids( + input_ids: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int] +) -> tf.Tensor: + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = tf.where(input_ids != padding_idx, 1, 0) + incremental_indices = (tf.cast(tf.cumsum(mask, axis=1), dtype=mask.dtype) + past_key_values_length) * mask + return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx + + +def _create_position_ids_from_inputs_embeds( + inputs_embeds: tf.Tensor, past_key_values_length: int, padding_idx: Optional[int] +) -> tf.Tensor: + """ + Args: + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + inputs_embeds: tf.Tensor + Returns: tf.Tensor + """ + input_shape = shape_list(inputs_embeds)[:-1] + sequence_length = input_shape[1] + + position_ids = tf.range(padding_idx + 1, sequence_length + padding_idx + 1, dtype=tf.int64) + + return tf.broadcast_to(tf.expand_dims(position_ids, axis=0), input_shape) + past_key_values_length + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->XGLM +class TFXGLMAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFXGLMDecoderLayer(keras.layers.Layer): + def __init__(self, config: XGLMConfig, **kwargs: Any) -> None: + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFXGLMAttention( + embed_dim=self.embed_dim, + num_heads=config.attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + name="self_attn", + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + if config.add_cross_attention: + self.encoder_attn = TFXGLMAttention( + embed_dim=self.embed_dim, + num_heads=config.attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + name="encoder_attn", + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization( + epsilon=1e-5, name="encoder_attn_layer_norm" + ) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + # Copied from transformers.models.mbart.modeling_tf_mbart.TFMBartDecoderLayer.call + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(decoder_attention_heads,)* + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + *(decoder_attention_heads,)* + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + + +@keras_serializable +class TFXGLMMainLayer(keras.layers.Layer): + config_class = XGLMConfig + + def __init__( + self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs, **kwargs: Any + ) -> None: + super().__init__(*inputs, **kwargs) + + self.config = config + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = TFSharedEmbeddings( + config.vocab_size, config.d_model, self.padding_idx, name="embed_tokens" + ) + + self.offset = 2 + self._embed_positions_weights = create_sinusoidal_positions( + num_positions=config.max_position_embeddings + self.offset, + embedding_dim=config.d_model, + padding_idx=config.pad_token_id, + ) + + self.dropout = keras.layers.Dropout(config.dropout) + self.layers = [TFXGLMDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_layers)] + self.layerdrop = config.layerdrop + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + + def get_input_embeddings(self) -> TFSharedEmbeddings: + return self.embed_tokens + + def set_input_embeddings(self, value: TFSharedEmbeddings) -> None: + self.embed_tokens = value + + def _prepare_decoder_attention_mask( + self, + attention_mask: tf.Tensor | None, + input_shape: tf.TensorShape, + past_key_values_length: int, + ) -> tf.Tensor: + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length) + combined_attention_mask = tf.cond( + input_shape[-1] > 1, lambda: combined_attention_mask, lambda: tf.ones_like(combined_attention_mask) + ) + if attention_mask is None: + return combined_attention_mask + expand_attention_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) + return expand_attention_mask + combined_attention_mask + + def embed_positions(self, position_ids: np.ndarray | tf.Tensor | None = None) -> tf.Tensor: + position_ids += self.offset + positions = tf.gather(self._embed_positions_weights, position_ids, axis=0) + return positions + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs: Any, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = tf.shape(input_ids) + input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) + elif inputs_embeds is not None: + input_shape = tf.shape(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if position_ids is None: + position_ids = tf.expand_dims( + tf.range(past_key_values_length, input_shape[-1] + past_key_values_length), axis=0 + ) + position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + # embed positions + positions = self.embed_positions(position_ids) + + hidden_states = tf.cast(inputs_embeds, dtype=tf.float32) + positions + + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), + past_key_value=past_key_value, + ) + + if use_cache: + next_decoder_cache += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_cross_attn,) + + hidden_states = self.layer_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "embed_tokens", None) is not None: + with tf.name_scope(self.embed_tokens.name): + self.embed_tokens.build(None) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFXGLMPreTrainedModel(TFPreTrainedModel): + config_class = XGLMConfig + base_model_prefix = "model" + + +XGLM_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`XGLMConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XGLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of + the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(num_layers, attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.num_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", + XGLM_START_DOCSTRING, +) +class TFXGLMModel(TFXGLMPreTrainedModel): + """ + Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`TFXGLMDecoderLayer`] + + Args: + config: XGLMConfig + embed_tokens: [TFSharedEmbeddings]: output embedding + """ + + def __init__( + self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any + ) -> None: + super().__init__(config, *inputs, **kwargs) + + self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") + + @unpack_inputs + @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs: Any, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +@add_start_docstrings( + """ + The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + XGLM_START_DOCSTRING, +) +class TFXGLMForCausalLM(TFXGLMPreTrainedModel, TFCausalLanguageModelingLoss): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = [ + r"model.embed_positions.weights", + r"lm_head.weight", + ] + _keys_to_ignore_on_save = [ + r"model.embed_positions.weights", + ] + + def __init__( + self, config: XGLMConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, *inputs: Any, **kwargs: Any + ) -> None: + super().__init__(config, *inputs, **kwargs) + + self.model = TFXGLMMainLayer(config, embed_tokens=embed_tokens, name="model") + self.lm_head = keras.layers.Dense( + config.vocab_size, + use_bias=False, + kernel_initializer=get_initializer(config.init_std), + name="lm_head", + ) + self.config = config + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + inputs = tf.expand_dims(inputs[:, -1], -1) + + position_ids = kwargs.get("position_ids", None) + attention_mask = kwargs.get("attention_mask", None) + + if attention_mask is not None and position_ids is None: + position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True) + if past_key_values: + position_ids = tf.expand_dims(position_ids[:, -1], -1) + + return { + "input_ids": inputs, + "attention_mask": attention_mask, + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @unpack_inputs + @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFCausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs: Any, + ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: + r""" + labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_states = outputs[0] + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # shift labels to the left and cut last logit token + labels = tf.concat( + [labels[:, 1:], tf.fill((labels.shape[0], 1), tf.cast(self.config.pad_token_id, labels.dtype))], + axis=-1, + ) + loss = self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFCausalLMOutputWithCrossAttentions( + loss=loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build([None, None, self.config.hidden_size]) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "lm_head.weight": + return tf_weight, "model.embed_tokens.weight" + else: + return (tf_weight,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_xglm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_xglm.py new file mode 100644 index 0000000000000000000000000000000000000000..7ec48b6f9d2461b0846e08a646b39847c7736a4d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/modeling_xglm.py @@ -0,0 +1,832 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch XGLM model.""" + + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_xglm import XGLMConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/xglm-564M" +_CONFIG_FOR_DOC = "XGLMConfig" + + +from ..deprecated._archive_maps import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +XGLM_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`XGLMConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XGLM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of + the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class XGLMSinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__() + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) + + def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) + if hasattr(self, "weights"): + # in forward put the weights on the correct dtype and device of the param + emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) + + self.register_buffer("weights", emb_weights, persistent=False) + + @staticmethod + def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + """ + Build sinusoidal embeddings. + + This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of + "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + + return emb.to(torch.get_default_dtype()) + + @torch.no_grad() + def forward(self, position_ids: torch.Tensor = None, past_key_values_length: int = 0): + bsz, seq_len = position_ids.size() + position_ids += self.offset + + # Expand embeddings if needed. `position_ids.max()` is NOT used to keep torch.fx compatibility. + max_pos = 2 + seq_len + past_key_values_length + if max_pos > self.weights.size(0): + self.make_weights(max_pos, self.embedding_dim, self.padding_idx) + + return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() + + +class XGLMAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = torch.max( + attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) + ) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 + if attn_weights.dtype == torch.float16: + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) + else: + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class XGLMDecoderLayer(nn.Module): + def __init__(self, config: XGLMConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = XGLMAttention( + embed_dim=self.embed_dim, + num_heads=config.attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + if config.add_cross_attention: + self.encoder_attn = XGLMAttention( + embed_dim=self.embed_dim, + num_heads=config.attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim) + self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class XGLMPreTrainedModel(PreTrainedModel): + config_class = XGLMConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["XGLMDecoderLayer"] + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +@add_start_docstrings( + "The bare XGLM Model transformer outputting raw hidden-states without any specific head on top.", + XGLM_START_DOCSTRING, +) +class XGLMModel(XGLMPreTrainedModel): + """ + Transformer decoder consisting of *config.num_layers* layers. Each layer is a [`XGLMDecoderLayer`] + + Args: + config: XGLMConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: XGLMConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + self.embed_positions = XGLMSinusoidalPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + config.pad_token_id, + ) + self.layers = nn.ModuleList([XGLMDecoderLayer(config) for _ in range(config.num_layers)]) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if position_ids is None: + position_ids = torch.arange( + past_key_values_length, + input_shape[-1] + past_key_values_length, + dtype=torch.long, + device=input_ids.device if input_ids is not None else inputs_embeds.device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + hidden_states = inputs_embeds + self.embed_positions(position_ids, past_key_values_length) + hidden_states = nn.functional.dropout(hidden_states, p=float(self.dropout), training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache =" + " False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + """ + The XGLM Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + XGLM_START_DOCSTRING, +) +class XGLMForCausalLM(XGLMPreTrainedModel): + base_model_prefix = "model" + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = XGLMModel(config) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(XGLM_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + """ + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + # shift labels and add a pad token to the end + shift_labels = labels.new_zeros(labels.shape) + shift_labels[:, :-1] = labels[:, 1:].clone() + shift_labels[:, -1] = self.config.pad_token_id + + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + else: + position_ids = None + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm.py new file mode 100644 index 0000000000000000000000000000000000000000..818ca163da02af08825952cecf8075be3c026393 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm.py @@ -0,0 +1,296 @@ +# coding=utf-8 +# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for .""" +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + + +class XGLMTokenizer(PreTrainedTokenizer): + """ + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + # Compatibility with the original tokenizer + self.num_madeup_words = 7 + madeup_words = [f"" for i in range(self.num_madeup_words)] + + kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] + kwargs["additional_special_tokens"] += [ + word for word in madeup_words if word not in kwargs["additional_special_tokens"] + ] + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + sp_size = len(self.sp_model) + madeup_words = {f"": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} + self.fairseq_tokens_to_ids.update(madeup_words) + + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.sep_token_id] + token_ids_0 + sep = [self.sep_token_id] + return sep + token_ids_0 + sep + sep + token_ids_1 + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + + if token_ids_1 is None: + return len(sep + token_ids_0) * [0] + return len(sep + token_ids_0 + sep + sep + token_ids_1) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..2f8b0480c82dff1765abca1d52b377e5085ab62f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xglm/tokenization_xglm_fast.py @@ -0,0 +1,193 @@ +# coding=utf-8 +# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for XGLM.""" + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_xglm import XGLMTokenizer +else: + XGLMTokenizer = None + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + + +class XGLMTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" XGLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] + and [`XLNetTokenizer`]. Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = XGLMTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + **kwargs, + ): + # Compatibility with the original tokenizer + self.num_madeup_words = 7 + madeup_words = [f"" for i in range(self.num_madeup_words)] + + kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] + kwargs["additional_special_tokens"] += [ + word for word in madeup_words if word not in kwargs["additional_special_tokens"] + ] + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + **kwargs, + ) + + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.sep_token_id] + token_ids_0 + sep = [self.sep_token_id] + return sep + token_ids_0 + sep + sep + token_ids_1 + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + + if token_ids_1 is None: + return len(sep + token_ids_0) * [0] + return len(sep + token_ids_0 + sep + sep + token_ids_1) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,)