diff --git "a/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py" "b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/transformers/models/led/modeling_tf_led.py" @@ -0,0 +1,2664 @@ +# coding=utf-8 +# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 LED model.""" + + +from __future__ import annotations + +import random +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutputWithPastAndCrossAttentions + +# Public API +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_led import LEDConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/led-base-16384" +_CONFIG_FOR_DOC = "LEDConfig" + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +class TFLEDLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + super().__init__(num_embeddings, embedding_dim, **kwargs) + + def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): + """Input is expected to be of size [bsz x seqlen].""" + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + return super().call(tf.cast(position_ids, dtype=tf.int32)) + + +# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerSelfAttention with TFLongformer->TFLEDEncoder +class TFLEDEncoderSelfAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.config = config + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + self.query = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query", + ) + self.key = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + ) + self.value = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value", + ) + + # separate projection layers for tokens with global attention + self.query_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query_global", + ) + self.key_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key_global", + ) + self.value_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value_global", + ) + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + def build(self, input_shape=None): + if not self.built: + with tf.name_scope("query_global"): + self.query_global.build((self.config.hidden_size,)) + with tf.name_scope("key_global"): + self.key_global.build((self.config.hidden_size,)) + with tf.name_scope("value_global"): + self.value_global.build((self.config.hidden_size,)) + + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "query_global", None) is not None: + with tf.name_scope(self.query_global.name): + self.query_global.build([None, None, self.config.hidden_size]) + if getattr(self, "key_global", None) is not None: + with tf.name_scope(self.key_global.name): + self.key_global.build([None, None, self.config.hidden_size]) + if getattr(self, "value_global", None) is not None: + with tf.name_scope(self.value_global.name): + self.value_global.build([None, None, self.config.hidden_size]) + + def call( + self, + inputs, + training=False, + ): + """ + LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + # retrieve input args + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + batch_size, seq_len, embed_dim = shape_list(hidden_states) + + tf.debugging.assert_equal( + embed_dim, + self.embed_dim, + message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", + ) + + # normalize query + query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) + query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # attn_probs = (batch_size, seq_len, num_heads, window*2+1) + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = attention_mask != 0 + # cast to fp32/fp16 then replace 1's with -inf + float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE + + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + tf.ones(shape_list(attention_mask)), + float_mask, + self.one_sided_attn_window_size, + ) + + # pad local attention probs + attn_scores += diagonal_mask + + tf.debugging.assert_equal( + shape_list(attn_scores), + [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], + message=( + f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}" + ), + ) + + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + + # this function is only relevant for global attention + if is_global_attn: + attn_scores = self._concat_with_global_key_attn_probs( + attn_scores=attn_scores, + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + + attn_probs = stable_softmax(attn_scores, axis=-1) + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_index, + tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), + attn_probs, + ) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs + + # apply dropout + attn_probs = self.dropout(attn_probs, training=training) + value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # if global attention, compute sum of global and local attn + + if is_global_attn: + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + tf.debugging.assert_equal( + shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size" + ) + + attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) + + # compute value for global attention and overwrite to attention output + if is_global_attn: + attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + attn_output=attn_output, + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + training=training, + ) + else: + # Leave attn_output unchanged + global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len)) + + # make sure that local attention probabilities are set to 0 for indices of global attn + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_global_attn_index, + tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), + attn_probs, + ) + + outputs = (attn_output, attn_probs, global_attn_probs) + + return outputs + + def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = shape_list(query) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), + 0, + message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", + ) + tf.debugging.assert_equal( + shape_list(query), + shape_list(key), + message=( + f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:" + f" {shape_list(key)}" + ), + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = tf.reshape( + tf.transpose(query, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) + chunked_query = self._chunk(query, window_overlap) + chunked_key = self._chunk(key, window_overlap) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) + chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply + + # convert diagonals into columns + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + # TODO: This code is most likely not very efficient and should be improved + diagonal_attn_scores_up_triang = tf.concat( + [ + diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], + diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], + ], + axis=1, + ) + + # - copying the lower triangle + diagonal_attn_scores_low_triang = tf.concat( + [ + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], + ], + axis=1, + ) + diagonal_attn_scores_first_chunk = tf.concat( + [ + tf.roll( + diagonal_chunked_attention_scores, + shift=[1, window_overlap], + axis=[2, 3], + )[:, :, :window_overlap, :window_overlap], + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + ], + axis=1, + ) + first_chunk_mask = ( + tf.tile( + tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None], + (batch_size * num_heads, 1, window_overlap, window_overlap), + ) + < 1 + ) + diagonal_attn_scores_low_triang = tf.where( + first_chunk_mask, + diagonal_attn_scores_first_chunk, + diagonal_attn_scores_low_triang, + ) + + # merging upper and lower triangle + diagonal_attention_scores = tf.concat( + [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 + ) + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = tf.transpose( + tf.reshape( + diagonal_attention_scores, + (batch_size, num_heads, seq_len, 2 * window_overlap + 1), + ), + (0, 2, 1, 3), + ) + + diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + + return diagonal_attention_scores + + @staticmethod + def _mask_invalid_locations(input_tensor, window_overlap): + # create correct upper triangle bool mask + mask_2d_upper = tf.reverse( + tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), + axis=[0], + ) + + # pad to full matrix + padding = tf.convert_to_tensor( + [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] + ) + + # create lower mask + mask_2d = tf.pad(mask_2d_upper, padding) + + # combine with upper mask + mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) + + # broadcast to full matrix + mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) + + # inf tensor used for masking + inf_tensor = -float("inf") * tf.ones_like(input_tensor) + + # mask + input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) + + return input_tensor + + def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + + batch_size, seq_len, num_heads, head_dim = shape_list(value) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap" + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[:3], + shape_list(value)[:3], + message="value and attn_probs must have same dims (except head_dim)", + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[3], + 2 * window_overlap + 1, + message="attn_probs last dim has to be 2 * window_overlap + 1", + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + chunked_attn_probs = tf.reshape( + tf.transpose(attn_probs, (0, 2, 1, 3)), + ( + batch_size * num_heads, + seq_len // window_overlap, + window_overlap, + 2 * window_overlap + 1, + ), + ) + + # group batch_size and num_heads dimensions into one + value = tf.reshape( + tf.transpose(value, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) + padded_value = tf.pad(value, paddings, constant_values=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + frame_size = 3 * window_overlap * head_dim + frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count + chunked_value = tf.signal.frame( + tf.reshape(padded_value, (batch_size * num_heads, -1)), + frame_size, + frame_hop_size, + ) + chunked_value = tf.reshape( + chunked_value, + (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), + ) + + tf.debugging.assert_equal( + shape_list(chunked_value), + [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], + message="Chunked value has the wrong shape", + ) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) + context = tf.transpose( + tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), + (0, 2, 1, 3), + ) + + return context + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): + """pads rows and then flips rows and columns""" + hidden_states_padded = tf.pad( + hidden_states_padded, paddings + ) # padding value is not important because it will be overwritten + batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) + hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) + + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) + chunked_hidden_states = tf.pad( + chunked_hidden_states, paddings + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = tf.reshape( + chunked_hidden_states, (total_num_heads, num_chunks, -1) + ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), + ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + batch_size, seq_length, hidden_dim = shape_list(hidden_states) + num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 + + # define frame size and frame stride (similar to convolution) + frame_hop_size = window_overlap * hidden_dim + frame_size = 2 * frame_hop_size + hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) + + # chunk with overlap + chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) + + tf.debugging.assert_equal( + shape_list(chunked_hidden_states), + [batch_size, num_output_chunks, frame_size], + message=( + "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension" + f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}." + ), + ) + + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), + ) + + return chunked_hidden_states + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) + num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) + + # max number of global attn indices in batch + max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) + + # indices of global attn + is_index_global_attn_nonzero = tf.where(is_index_global_attn) + + # helper variable + is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( + num_global_attn_indices, axis=-1 + ) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) + + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + attn_scores, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = shape_list(key_vectors)[0] + + # select global key vectors + global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) + + # create only global key vectors + key_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_key_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) + + # (batch_size, max_num_global_attn_indices, seq_len, num_heads) + attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(attn_probs_from_global_key_trans)[-2:] + ) + mask = tf.ones(mask_shape) * -10000.0 + mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) + + # scatter mask + attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( + attn_probs_from_global_key_trans, + is_local_index_no_global_attn_nonzero, + mask, + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) + + # concat to attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) + + return attn_scores + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = shape_list(attn_probs)[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] + + # select global value vectors + global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) + + # create only global value vectors + value_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_value_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # compute attn output only global + attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) + + # reshape attn probs + attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + attn_output, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + training, + ): + batch_size, seq_len = shape_list(hidden_states)[:2] + + # prepare global hidden states + global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) + global_attn_hidden_states = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_attn_hidden_states, + shape=(batch_size, max_num_global_attn_indices, self.embed_dim), + ) + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= tf.math.sqrt( + tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) + ) + global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) + global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) + global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) + + # compute attn scores + global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(global_attn_scores), + [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], + message=( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {shape_list(global_attn_scores)}." + ), + ) + + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), + ) + global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(global_attn_scores_trans)[-2:] + ) + global_attn_mask = tf.ones(mask_shape) * -10000.0 + global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) + + # scatter mask + global_attn_scores_trans = tf.tensor_scatter_nd_update( + global_attn_scores_trans, + is_local_index_no_global_attn_nonzero, + global_attn_mask, + ) + global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) + + # mask global attn scores + attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) + global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), + ) + + # compute global attn probs + global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1) + + # apply layer head masking + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + global_attn_probs_float = tf.reshape( + global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + ) + + # dropout + global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) + + # global attn output + global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) + + tf.debugging.assert_equal( + shape_list(global_attn_output), + [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], + message=( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {shape_list(global_attn_output)}." + ), + ) + + global_attn_output = tf.reshape( + global_attn_output, + (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), + ) + + # get only non zero global attn output + nonzero_global_attn_output = tf.gather_nd( + tf.transpose(global_attn_output, (0, 2, 1, 3)), + is_local_index_global_attn_nonzero, + ) + nonzero_global_attn_output = tf.reshape( + nonzero_global_attn_output, + (shape_list(is_local_index_global_attn_nonzero)[0], -1), + ) + + # overwrite values with global attention + attn_output = tf.tensor_scatter_nd_update( + attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output + ) + + global_attn_probs = tf.reshape( + global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + + return attn_output, global_attn_probs + + def reshape_and_transpose(self, vector, batch_size): + return tf.reshape( + tf.transpose( + tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), + (0, 2, 1, 3), + ), + (batch_size * self.num_heads, -1, self.head_dim), + ) + + +class TFLEDEncoderAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.longformer_self_attn = TFLEDEncoderSelfAttention(config, layer_id=layer_id, name="longformer_self_attn") + self.output_dense = keras.layers.Dense(config.d_model, use_bias=True, name="output") + self.config = config + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + self_outputs = self.longformer_self_attn( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + + attention_output = self.output_dense(self_outputs[0], training=training) + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer_self_attn", None) is not None: + with tf.name_scope(self.longformer_self_attn.name): + self.longformer_self_attn.build(None) + if getattr(self, "output_dense", None) is not None: + with tf.name_scope(self.output_dense.name): + self.output_dense.build([None, None, self.config.d_model]) + + +class TFLEDDecoderAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training=False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + tf.cast( + attention_mask, dtype=attn_weights.dtype + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFLEDEncoderLayer(keras.layers.Layer): + def __init__(self, config: LEDConfig, layer_id: int, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFLEDEncoderAttention(config, layer_id, name="self_attn") + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + layer_head_mask: tf.Tensor, + is_index_masked: tf.Tensor, + is_index_global_attn: tf.Tensor, + is_global_attn: bool, + training=False, + ): + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(config.encoder_attention_heads,)*. + """ + residual = hidden_states + layer_outputs = self.self_attn( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + + hidden_states = layer_outputs[0] + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return (hidden_states,) + layer_outputs[1:] + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFLEDDecoderLayer(keras.layers.Layer): + def __init__(self, config: LEDConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFLEDDecoderAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFLEDDecoderAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + encoder_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training=False, + ) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(config.encoder_attention_heads,)*. + encoder_layer_head_mask (`tf.Tensor`): mask for encoder attention heads in a given layer of + size *(config.encoder_attention_heads,)*. + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + + # Self-Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=encoder_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFLEDPreTrainedModel(TFPreTrainedModel): + config_class = LEDConfig + base_model_prefix = "led" + + @property + def input_signature(self): + sig = super().input_signature + sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask") + return sig + + +@dataclass +# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutput with TFLongformer->TFLEDEncoder +class TFLEDEncoderBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLEDSeq2SeqModelOutput(ModelOutput): + """ + Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential + decoding. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, + sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + past_key_values: List[tf.Tensor] | None = None + decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + decoder_attentions: Tuple[tf.Tensor, ...] | None = None + cross_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_last_hidden_state: tf.Tensor | None = None + encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + encoder_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLEDSeq2SeqLMOutput(ModelOutput): + """ + Base class for sequence-to-sequence language models outputs. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, + sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. + decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the + weighted average in the cross-attention heads. + encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + encoder_global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + past_key_values: List[tf.Tensor] | None = None + decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + decoder_attentions: Tuple[tf.Tensor, ...] | None = None + cross_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_last_hidden_state: tf.Tensor | None = None + encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None + encoder_attentions: Tuple[tf.Tensor, ...] | None = None + encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None + + +LED_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`LEDConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LED_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + + LED uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.Tensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFLEDEncoder(keras.layers.Layer): + config_class = LEDConfig + """ + Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a + [`TFLEDEncoderLayer`]. + + Args: + config: LEDConfig + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + if config.encoder_layerdrop > 0: + logger.warning("Layerdrop is currently disabled in TFLED models.") + self.layerdrop = 0.0 + self.padding_idx = config.pad_token_id + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.attention_window = config.attention_window + self.embed_tokens = embed_tokens + self.embed_positions = TFLEDLearnedPositionalEmbedding( + config.max_encoder_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFLEDEncoderLayer(config, i, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + global_attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = attention_mask * tf.cast((global_attention_mask + 1), dtype=attention_mask.dtype) + + padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + pad_token_id=self.padding_idx, + ) + + input_shape = shape_list(attention_mask) + # is index masked or global attention + is_index_masked = tf.math.less(tf.cast(attention_mask, tf.int8), 1) + is_index_global_attn = tf.math.greater(tf.cast(attention_mask, tf.int8), 1) + is_global_attn = tf.math.reduce_any(is_index_global_attn) + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask)[:, 0, 0, :] + attention_mask = attention_mask[:, :, None, None] + + encoder_states = () if output_hidden_states else None + all_attentions = all_global_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + hidden_states_to_add = self.compute_hidden_states(hidden_states, padding_len) + encoder_states = encoder_states + (hidden_states_to_add,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + layer_outputs = encoder_layer( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) + + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),) + + # undo padding + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = self.compute_hidden_states(hidden_states, padding_len) + + # undo padding + if output_attentions: + all_attentions = ( + tuple([state[:, :, :-padding_len, :] for state in all_attentions]) + if padding_len > 0 + else all_attentions + ) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFLEDEncoderBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=encoder_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + @tf.function + def compute_hidden_states(self, hidden_states, padding_len): + return hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + + def _pad_to_window_size( + self, + input_ids, + attention_mask, + inputs_embeds, + pad_token_id, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" + # padding + attention_window = ( + self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + + input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) + batch_size, seq_len = input_shape[:2] + padding_len = (attention_window - seq_len % attention_window) % attention_window + + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.attention_window`: {attention_window}" + ) + + paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) + + if input_ids is not None: + input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) + + if inputs_embeds is not None: + if padding_len > 0: + input_ids_padding = tf.fill((batch_size, padding_len), pad_token_id) + inputs_embeds_padding = self.embed_tokens(input_ids_padding) + inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) + + attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens + + return ( + padding_len, + input_ids, + attention_mask, + inputs_embeds, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLEDDecoder(keras.layers.Layer): + config_class = LEDConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFLEDDecoderLayer`] + + Args: + config: LEDConfig + embed_tokens: output embedding + """ + + def __init__(self, config: LEDConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + if config.decoder_layerdrop > 0: + logger.warning("Layerdrop is currently disabled in TFLED models.") + self.layerdrop = 0.0 + self.embed_positions = TFLEDLearnedPositionalEmbedding( + config.max_decoder_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFLEDDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + + self.dropout = keras.layers.Dropout(config.dropout) + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + encoder_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention + on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. If `past_key_values` are used, the user can optionally input only the last + `decoder_input_ids` (those that don't have their past key value states given to this model) of shape + `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + # embed positions + positions = self.embed_positions(input_shape, past_key_values_length) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) + + hidden_states = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None and input_shape[-1] > 1: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + hidden_states = self.layernorm_embedding(hidden_states + positions) + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () + all_self_attns = () + all_cross_attentions = () + present_key_values = () + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + encoder_layer_head_mask=encoder_head_mask[idx] if encoder_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + all_cross_attentions += (layer_cross_attn,) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + else: + all_hidden_states = None + + all_self_attns = all_self_attns if output_attentions else None + all_cross_attentions = all_cross_attentions if output_attentions else None + + present_key_values = present_key_values if use_cache else None + + if not return_dict: + return tuple( + v + for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLEDMainLayer(keras.layers.Layer): + config_class = LEDConfig + + def __init__(self, config: LEDConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="led.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "led.shared" + + self.encoder = TFLEDEncoder(config, self.shared, name="encoder") + self.decoder = TFLEDDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None, + global_attention_mask=None, + past_key_values=None, + inputs_embeds=None, + decoder_inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + **kwargs, + ): + if decoder_input_ids is None and decoder_inputs_embeds is None: + use_cache = False + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFLEDEncoderBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFLEDEncoderBaseModelOutput): + encoder_outputs = TFLEDEncoderBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFLEDEncoderBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + encoder_head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFLEDSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + encoder_global_attentions=encoder_outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare LED Model outputting raw hidden-states without any specific head on top.", + LED_START_DOCSTRING, +) +class TFLEDModel(TFLEDPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.led = TFLEDMainLayer(config, name="led") + + def get_encoder(self): + return self.led.encoder + + def get_decoder(self): + return self.led.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLEDSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + encoder_outputs: tf.Tensor | None = None, + global_attention_mask: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + **kwargs, + ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqModelOutput: + outputs = self.led( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None + + return TFLEDSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + encoder_global_attentions=enc_g_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "led", None) is not None: + with tf.name_scope(self.led.name): + self.led.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The LED Model with a language modeling head. Can be used for summarization.", + LED_START_DOCSTRING, +) +class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): + _keys_to_ignore_on_load_unexpected = [ + r"led.encoder.embed_tokens.weight", + r"led.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.led = TFLEDMainLayer(config, name="led") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + # TODO (Joao): investigate why LED has numerical issues in XLA generate + self.supports_xla_generation = False + + def get_decoder(self): + return self.led.decoder + + def get_encoder(self): + return self.led.encoder + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + @unpack_inputs + @add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: TFLEDEncoderBaseModelOutput | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Tuple[tf.Tensor] | TFLEDSeq2SeqLMOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFLEDForConditionalGeneration + >>> import tensorflow as tf + + >>> mname = "allenai/led-base-16384" + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + >>> TXT = "My friends are but they eat too many carbs." + >>> model = TFLEDForConditionalGeneration.from_pretrained(mname) + >>> batch = tokenizer([TXT], return_tensors="tf") + >>> logits = model(inputs=batch.input_ids).logits + >>> probs = tf.nn.softmax(logits[0]) + >>> # probs[5] is associated with the mask token + ```""" + + if labels is not None: + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.led( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.led.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFLEDSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + encoder_global_attentions=outputs.encoder_global_attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None + + return TFLEDSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + encoder_global_attentions=enc_g_attns, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def hf_compute_loss(self, labels, logits): + """CrossEntropyLoss that ignores pad tokens""" + loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) + if self.config.tf_legacy_loss: + melted_labels = tf.reshape(labels, (-1,)) + active_loss = tf.not_equal(melted_labels, self.config.pad_token_id) + reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) + labels = tf.boolean_mask(melted_labels, active_loss) + return loss_fn(labels, reduced_logits) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_loss = loss_fn(tf.nn.relu(labels), logits) + # make sure only non-padding labels affect the loss + loss_mask = tf.cast(labels != self.config.pad_token_id, dtype=unmasked_loss.dtype) + masked_loss = unmasked_loss * loss_mask + reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask) + return tf.reshape(reduced_masked_loss, (1,)) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "led", None) is not None: + with tf.name_scope(self.led.name): + self.led.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None)