diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..580161c5031a70a21f3d54bd971472981463c86a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..73069b91273d06936ab597b10b778ae556ce98ff
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/configuration_autoformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ef646d82b277ec041e63a3adc7c9310596bc518b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/__pycache__/modeling_autoformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7604233e327369188e13cb6d6226dace786443ef
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/configuration_autoformer.py
@@ -0,0 +1,246 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Autoformer model configuration"""
+
+from typing import List, Optional
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
+}
+
+
+class AutoformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of an [`AutoformerModel`]. It is used to instantiate an
+ Autoformer model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Autoformer
+ [huggingface/autoformer-tourism-monthly](https://huggingface.co/huggingface/autoformer-tourism-monthly)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ prediction_length (`int`):
+ The prediction length for the decoder. In other words, the prediction horizon of the model.
+ context_length (`int`, *optional*, defaults to `prediction_length`):
+ The context length for the encoder. If unset, the context length will be the same as the
+ `prediction_length`.
+ distribution_output (`string`, *optional*, defaults to `"student_t"`):
+ The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial".
+ loss (`string`, *optional*, defaults to `"nll"`):
+ The loss function for the model corresponding to the `distribution_output` head. For parametric
+ distributions it is the negative log likelihood (nll) - which currently is the only supported one.
+ input_size (`int`, *optional*, defaults to 1):
+ The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
+ multivariate targets.
+ lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`):
+ The lags of the input time series as covariates often dictated by the frequency. Default is `[1, 2, 3, 4,
+ 5, 6, 7]`.
+ scaling (`bool`, *optional* defaults to `True`):
+ Whether to scale the input targets.
+ num_time_features (`int`, *optional*, defaults to 0):
+ The number of time features in the input time series.
+ num_dynamic_real_features (`int`, *optional*, defaults to 0):
+ The number of dynamic real valued features.
+ num_static_categorical_features (`int`, *optional*, defaults to 0):
+ The number of static categorical features.
+ num_static_real_features (`int`, *optional*, defaults to 0):
+ The number of static real valued features.
+ cardinality (`list[int]`, *optional*):
+ The cardinality (number of different values) for each of the static categorical features. Should be a list
+ of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ embedding_dimension (`list[int]`, *optional*):
+ The dimension of the embedding for each of the static categorical features. Should be a list of integers,
+ having the same length as `num_static_categorical_features`. Cannot be `None` if
+ `num_static_categorical_features` is > 0.
+ d_model (`int`, *optional*, defaults to 64):
+ Dimensionality of the transformer layers.
+ encoder_layers (`int`, *optional*, defaults to 2):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 2):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 2):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in encoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 32):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and
+ `"relu"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the encoder, and decoder.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each encoder layer.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention and fully connected layers for each decoder layer.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability used between the two layers of the feed-forward networks.
+ num_parallel_samples (`int`, *optional*, defaults to 100):
+ The number of samples to generate in parallel for each time step of inference.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated normal weight initialization distribution.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether to use the past key/values attentions (if applicable to the model) to speed up decoding.
+ label_length (`int`, *optional*, defaults to 10):
+ Start token length of the Autoformer decoder, which is used for direct multi-step prediction (i.e.
+ non-autoregressive generation).
+ moving_average (`int`, defaults to 25):
+ The window size of the moving average. In practice, it's the kernel size in AvgPool1d of the Decomposition
+ Layer.
+ autocorrelation_factor (`int`, defaults to 3):
+ "Attention" (i.e. AutoCorrelation mechanism) factor which is used to find top k autocorrelations delays.
+ It's recommended in the paper to set it to a number between 1 and 5.
+
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoformerConfig, AutoformerModel
+
+ >>> # Initializing a default Autoformer configuration
+ >>> configuration = AutoformerConfig()
+
+ >>> # Randomly initializing a model (with random weights) from the configuration
+ >>> model = AutoformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "autoformer"
+ attribute_map = {
+ "hidden_size": "d_model",
+ "num_attention_heads": "encoder_attention_heads",
+ "num_hidden_layers": "encoder_layers",
+ }
+
+ def __init__(
+ self,
+ prediction_length: Optional[int] = None,
+ context_length: Optional[int] = None,
+ distribution_output: str = "student_t",
+ loss: str = "nll",
+ input_size: int = 1,
+ lags_sequence: List[int] = [1, 2, 3, 4, 5, 6, 7],
+ scaling: bool = True,
+ num_time_features: int = 0,
+ num_dynamic_real_features: int = 0,
+ num_static_categorical_features: int = 0,
+ num_static_real_features: int = 0,
+ cardinality: Optional[List[int]] = None,
+ embedding_dimension: Optional[List[int]] = None,
+ d_model: int = 64,
+ encoder_attention_heads: int = 2,
+ decoder_attention_heads: int = 2,
+ encoder_layers: int = 2,
+ decoder_layers: int = 2,
+ encoder_ffn_dim: int = 32,
+ decoder_ffn_dim: int = 32,
+ activation_function: str = "gelu",
+ dropout: float = 0.1,
+ encoder_layerdrop: float = 0.1,
+ decoder_layerdrop: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ num_parallel_samples: int = 100,
+ init_std: float = 0.02,
+ use_cache: bool = True,
+ is_encoder_decoder=True,
+ # Autoformer arguments
+ label_length: int = 10,
+ moving_average: int = 25,
+ autocorrelation_factor: int = 3,
+ **kwargs,
+ ):
+ # time series specific configuration
+ self.prediction_length = prediction_length
+ self.context_length = context_length if context_length is not None else prediction_length
+ self.distribution_output = distribution_output
+ self.loss = loss
+ self.input_size = input_size
+ self.num_time_features = num_time_features
+ self.lags_sequence = lags_sequence
+ self.scaling = scaling
+ self.num_dynamic_real_features = num_dynamic_real_features
+ self.num_static_real_features = num_static_real_features
+ self.num_static_categorical_features = num_static_categorical_features
+ if cardinality is not None and num_static_categorical_features > 0:
+ if len(cardinality) != num_static_categorical_features:
+ raise ValueError(
+ "The cardinality should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.cardinality = cardinality
+ else:
+ self.cardinality = [0]
+ if embedding_dimension is not None and num_static_categorical_features > 0:
+ if len(embedding_dimension) != num_static_categorical_features:
+ raise ValueError(
+ "The embedding dimension should be a list of the same length as `num_static_categorical_features`"
+ )
+ self.embedding_dimension = embedding_dimension
+ else:
+ self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality]
+ self.num_parallel_samples = num_parallel_samples
+
+ # Transformer architecture configuration
+ self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features
+ self.d_model = d_model
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_attention_heads = decoder_attention_heads
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.decoder_layers = decoder_layers
+
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+
+ self.activation_function = activation_function
+ self.init_std = init_std
+
+ self.use_cache = use_cache
+
+ # Autoformer
+ self.label_length = label_length
+ self.moving_average = moving_average
+ self.autocorrelation_factor = autocorrelation_factor
+
+ super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ @property
+ def _number_of_features(self) -> int:
+ return (
+ sum(self.embedding_dimension)
+ + self.num_dynamic_real_features
+ + self.num_time_features
+ + self.num_static_real_features
+ + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..78dbb8a5de5f419acba769ea62f0a39b2446418c
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/autoformer/modeling_autoformer.py
@@ -0,0 +1,2158 @@
+# coding=utf-8
+# Copyright (c) 2021 THUML @ Tsinghua University
+# Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Autoformer model."""
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ ModelOutput,
+ SampleTSPredictionOutput,
+ Seq2SeqTSPredictionOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_autoformer import AutoformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "AutoformerConfig"
+
+
+@dataclass
+class AutoFormerDecoderOutput(ModelOutput):
+ """
+ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
+ hidden_size)` is output.
+ trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Trend tensor for each time series.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
+ `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
+ encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
+ `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
+ input) to speed up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ trend: torch.FloatTensor = None
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class AutoformerModelOutput(ModelOutput):
+ """
+ Autoformer model output that contains the additional trend output.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
+ hidden_size)` is output.
+ trend (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Trend tensor for each time series.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
+ self-attention heads.
+ loc (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
+ Shift values of each time series' context window which is used to give the model inputs of the same
+ magnitude and then used to shift back to the original magnitude.
+ scale (`torch.FloatTensor` of shape `(batch_size,)` or `(batch_size, input_size)`, *optional*):
+ Scaling values of each time series' context window which is used to give the model inputs of the same
+ magnitude and then used to rescale back to the original magnitude.
+ static_features: (`torch.FloatTensor` of shape `(batch_size, feature size)`, *optional*):
+ Static features of each time series' in a batch which are copied to the covariates at inference time.
+ """
+
+ last_hidden_state: torch.FloatTensor = None
+ trend: torch.FloatTensor = None
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ loc: Optional[torch.FloatTensor] = None
+ scale: Optional[torch.FloatTensor] = None
+ static_features: Optional[torch.FloatTensor] = None
+
+
+AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "huggingface/autoformer-tourism-monthly",
+ # See all Autoformer models at https://huggingface.co/models?filter=autoformer
+]
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesFeatureEmbedder with TimeSeries->Autoformer
+class AutoformerFeatureEmbedder(nn.Module):
+ """
+ Embed a sequence of categorical features.
+
+ Args:
+ cardinalities (`list[int]`):
+ List of cardinalities of the categorical features.
+ embedding_dims (`list[int]`):
+ List of embedding dimensions of the categorical features.
+ """
+
+ def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None:
+ super().__init__()
+
+ self.num_features = len(cardinalities)
+ self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)])
+
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
+ if self.num_features > 1:
+ # we slice the last dimension, giving an array of length
+ # self.num_features with shape (N,T) or (N)
+ cat_feature_slices = torch.chunk(features, self.num_features, dim=-1)
+ else:
+ cat_feature_slices = [features]
+
+ return torch.cat(
+ [
+ embed(cat_feature_slice.squeeze(-1))
+ for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices)
+ ],
+ dim=-1,
+ )
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerStdScaler(nn.Module):
+ """
+ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
+ subtracting from the mean and dividing by the standard deviation.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+ self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ Calculating the scale on the observed indicator.
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
+ denominator = denominator.clamp_min(1.0)
+ loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
+
+ variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
+ scale = torch.sqrt(variance + self.minimum_scale)
+ return (data - loc) / scale, loc, scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerMeanScaler(nn.Module):
+ """
+ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
+ accordingly.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+ self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
+ self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ Calculating the scale on the observed indicator.
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
+ num_observed = observed_indicator.sum(self.dim, keepdim=True)
+
+ scale = ts_sum / torch.clamp(num_observed, min=1)
+
+ # If `default_scale` is provided, we use it, otherwise we use the scale
+ # of the batch.
+ if self.default_scale is None:
+ batch_sum = ts_sum.sum(dim=0)
+ batch_observations = torch.clamp(num_observed.sum(0), min=1)
+ default_scale = torch.squeeze(batch_sum / batch_observations)
+ else:
+ default_scale = self.default_scale * torch.ones_like(scale)
+
+ # apply default scale where there are no observations
+ scale = torch.where(num_observed > 0, scale, default_scale)
+
+ # ensure the scale is at least `self.minimum_scale`
+ scale = torch.clamp(scale, min=self.minimum_scale)
+ scaled_data = data / scale
+
+ if not self.keepdim:
+ scale = scale.squeeze(dim=self.dim)
+
+ return scaled_data, torch.zeros_like(scale), scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerNOPScaler(nn.Module):
+ """
+ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
+ self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
+
+ def forward(
+ self, data: torch.Tensor, observed_indicator: torch.Tensor = None
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Parameters:
+ data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
+ input for Batch norm calculation
+ Returns:
+ tuple of `torch.Tensor` of shapes
+ (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
+ `(batch_size, 1, num_input_channels)`)
+ """
+ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
+ loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
+ return data, loc, scale
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.weighted_average
+def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor] = None, dim=None) -> torch.Tensor:
+ """
+ Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero,
+ meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`.
+
+ Args:
+ input_tensor (`torch.FloatTensor`):
+ Input tensor, of which the average must be computed.
+ weights (`torch.FloatTensor`, *optional*):
+ Weights tensor, of the same shape as `input_tensor`.
+ dim (`int`, *optional*):
+ The dim along which to average `input_tensor`.
+
+ Returns:
+ `torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
+ """
+ if weights is not None:
+ weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor))
+ sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0)
+ return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights
+ else:
+ return input_tensor.mean(dim=dim)
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.nll
+def nll(input: torch.distributions.Distribution, target: torch.Tensor) -> torch.Tensor:
+ """
+ Computes the negative log likelihood loss from input distribution with respect to target.
+ """
+ return -input.log_prob(target)
+
+
+# Copied from transformers.models.marian.modeling_marian.MarianSinusoidalPositionalEmbedding with Marian->Autoformer
+class AutoformerSinusoidalPositionalEmbedding(nn.Embedding):
+ """This module produces sinusoidal positional embeddings of any length."""
+
+ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None:
+ super().__init__(num_positions, embedding_dim)
+ self.weight = self._init_weight(self.weight)
+
+ @staticmethod
+ def _init_weight(out: nn.Parameter) -> nn.Parameter:
+ """
+ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in
+ the 2nd half of the vector. [dim // 2:]
+ """
+ n_pos, dim = out.shape
+ position_enc = np.array(
+ [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]
+ )
+ out.requires_grad = False # set early to avoid an error in pytorch-1.8+
+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1
+ out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
+ out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
+ out.detach_()
+ return out
+
+ @torch.no_grad()
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor:
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesValueEmbedding with TimeSeries->Autoformer
+class AutoformerValueEmbedding(nn.Module):
+ def __init__(self, feature_size, d_model):
+ super().__init__()
+ self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False)
+
+ def forward(self, x):
+ return self.value_projection(x)
+
+
+# Class based on
+# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L39
+# where AutoformerSeriesDecompositionLayer is series_decomp + moving_average
+class AutoformerSeriesDecompositionLayer(nn.Module):
+ """
+ Returns the trend and the seasonal parts of the time series. Calculated as:
+
+ x_trend = AvgPool(Padding(X)) and x_seasonal = X - x_trend
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.kernel_size = config.moving_average
+ self.avg = nn.AvgPool1d(kernel_size=self.kernel_size, stride=1, padding=0)
+
+ def forward(self, x):
+ """Input shape: Batch x Time x EMBED_DIM"""
+ # padding on the both ends of time series
+ num_of_pads = (self.kernel_size - 1) // 2
+ front = x[:, 0:1, :].repeat(1, num_of_pads, 1)
+ end = x[:, -1:, :].repeat(1, num_of_pads, 1)
+ x_padded = torch.cat([front, x, end], dim=1)
+
+ # calculate the trend and seasonal part of the series
+ x_trend = self.avg(x_padded.permute(0, 2, 1)).permute(0, 2, 1)
+ x_seasonal = x - x_trend
+ return x_seasonal, x_trend
+
+
+# Class based on
+# https://github.com/thuml/Autoformer/blob/c6a0694ff484753f2d986cc0bb1f99ee850fc1a8/layers/Autoformer_EncDec.py#L6
+# where AutoformerLayernorm is my_Layernorm
+class AutoformerLayernorm(nn.Module):
+ """
+ Special designed layer normalization for the seasonal part, calculated as: AutoformerLayernorm(x) = nn.LayerNorm(x)
+ - torch.mean(nn.LayerNorm(x))
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.layernorm = nn.LayerNorm(config.d_model)
+
+ def forward(self, x):
+ x_hat = self.layernorm(x)
+ bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
+ return x_hat - bias
+
+
+class AutoformerAttention(nn.Module):
+ """
+ AutoCorrelation Mechanism with the following two phases:
+ (1) period-based dependencies discovery (2) time delay aggregation
+ This block replace the canonical self-attention mechanism.
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ autocorrelation_factor: int = 3,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ self.autocorrelation_factor = autocorrelation_factor
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ # (1) period-based dependencies discovery
+ # Resize (truncation or zero filling)
+ queries_time_length = query_states.size(1)
+ values_time_length = value_states.size(1)
+ if queries_time_length > values_time_length:
+ query_states = query_states[:, : (queries_time_length - values_time_length), :]
+ zeros = torch.zeros_like(query_states).float()
+ value_states = torch.cat([value_states, zeros], dim=1)
+ key_states = torch.cat([key_states, zeros], dim=1)
+ else:
+ value_states = value_states[:, :queries_time_length, :]
+ key_states = key_states[:, :queries_time_length, :]
+
+ query_states_fft = torch.fft.rfft(query_states, n=tgt_len, dim=1)
+ key_states_fft = torch.fft.rfft(key_states, n=tgt_len, dim=1)
+ attn_weights = query_states_fft * torch.conj(key_states_fft)
+ attn_weights = torch.fft.irfft(attn_weights, n=tgt_len, dim=1) # Autocorrelation(Q,K)
+
+ src_len = key_states.size(1)
+ channel = key_states.size(2)
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, channel):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, channel)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, channel)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, channel)
+ else:
+ attn_weights_reshaped = None
+
+ # time delay aggregation
+ time_length = value_states.size(1)
+ autocorrelations = attn_weights.view(bsz, self.num_heads, tgt_len, channel)
+
+ # find top k autocorrelations delays
+ top_k = int(self.autocorrelation_factor * math.log(time_length))
+ autocorrelations_mean_on_head_channel = torch.mean(autocorrelations, dim=(1, -1)) # bsz x tgt_len
+ if self.training:
+ autocorrelations_mean_on_bsz = torch.mean(autocorrelations_mean_on_head_channel, dim=0)
+ _, top_k_delays_index = torch.topk(autocorrelations_mean_on_bsz, top_k)
+ top_k_autocorrelations = torch.stack(
+ [autocorrelations_mean_on_head_channel[:, top_k_delays_index[i]] for i in range(top_k)], dim=-1
+ )
+ else:
+ top_k_autocorrelations, top_k_delays_index = torch.topk(
+ autocorrelations_mean_on_head_channel, top_k, dim=1
+ )
+
+ top_k_autocorrelations = torch.softmax(top_k_autocorrelations, dim=-1) # bsz x top_k
+
+ # compute aggregation: value_states.roll(delay) * top_k_autocorrelations(delay)
+ if not self.training:
+ # used for compute values_states.roll(delay) in inference
+ tmp_values = value_states.repeat(1, 2, 1)
+ init_index = (
+ torch.arange(time_length)
+ .view(1, -1, 1)
+ .repeat(bsz * self.num_heads, 1, channel)
+ .to(value_states.device)
+ )
+
+ delays_agg = torch.zeros_like(value_states).float() # bsz x time_length x channel
+ for i in range(top_k):
+ # compute value_states roll delay
+ if not self.training:
+ tmp_delay = init_index + top_k_delays_index[:, i].view(-1, 1, 1).repeat(
+ self.num_heads, tgt_len, channel
+ )
+ value_states_roll_delay = torch.gather(tmp_values, dim=1, index=tmp_delay)
+ else:
+ value_states_roll_delay = value_states.roll(shifts=-int(top_k_delays_index[i]), dims=1)
+
+ # aggregation
+ top_k_autocorrelations_at_delay = (
+ top_k_autocorrelations[:, i].view(-1, 1, 1).repeat(self.num_heads, tgt_len, channel)
+ )
+ delays_agg += value_states_roll_delay * top_k_autocorrelations_at_delay
+
+ attn_output = delays_agg.contiguous()
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+class AutoformerEncoderLayer(nn.Module):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+ self.self_attn = AutoformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = AutoformerLayernorm(config)
+ self.decomp1 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp2 = AutoformerSeriesDecompositionLayer(config)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: torch.FloatTensor,
+ layer_head_mask: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ # added layer norm here as an improvement
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, _ = self.decomp1(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, _ = self.decomp2(hidden_states)
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class AutoformerDecoderLayer(nn.Module):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = AutoformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = AutoformerAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ autocorrelation_factor=config.autocorrelation_factor,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = AutoformerLayernorm(config)
+
+ self.decomp1 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp2 = AutoformerSeriesDecompositionLayer(config)
+ self.decomp3 = AutoformerSeriesDecompositionLayer(config)
+
+ # source: https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/layers/Autoformer_EncDec.py#L128
+ self.trend_projection = nn.Conv1d(
+ in_channels=self.embed_dim,
+ out_channels=config.feature_size,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ padding_mode="circular",
+ bias=False,
+ )
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ use_cache: (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the `present_key_value` state to be used for subsequent
+ decoding.
+ """
+ residual = hidden_states
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend1 = self.decomp1(hidden_states)
+ # added layer norm here as an improvement
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend2 = self.decomp2(hidden_states)
+ # added layer norm here as an improvement
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states, trend3 = self.decomp3(hidden_states)
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if encoder_hidden_states is not None:
+ residual_trend = trend1 + trend2 + trend3
+ else:
+ residual_trend = trend1 + trend3
+ residual_trend = self.trend_projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
+ outputs = ((hidden_states, residual_trend),)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class AutoformerPreTrainedModel(PreTrainedModel):
+ config_class = AutoformerConfig
+ base_model_prefix = "model"
+ main_input_name = "past_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, (nn.Linear, nn.Conv1d)):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, AutoformerSinusoidalPositionalEmbedding):
+ pass
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+AUTOFORMER_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`AutoformerConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+AUTOFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Past values of the time series, that serve as context in order to predict the future. These values may
+ contain lags, i.e. additional values from the past which are added in order to serve as "extra context".
+ The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as
+ `static_categorical_features`, `static_real_features`, `past_time_features`).
+
+ The sequence length here is equal to `context_length` + `max(config.lags_sequence)`.
+
+ Missing values need to be replaced with zeros.
+
+ past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`, *optional*):
+ Optional time features, which the model internally will add to `past_values`. These could be things like
+ "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
+ could also be so-called "age" features, which basically help the model know "at which point in life" a
+ time-series is. Age features have small values for distant past time steps and increase monotonically the
+ more we approach the current time step.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
+ the position encodings are learned from scratch internally as parameters of the model, the Time Series
+ Transformer requires to provide additional time features.
+
+ The Autoformer only learns additional embeddings for `static_categorical_features`.
+
+ past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in
+ `[0, 1]`:
+
+ - 1 for values that are **observed**,
+ - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
+
+ static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
+ Optional static categorical features for which the model will learn an embedding, which it will add to the
+ values of the time series.
+
+ Static categorical features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static categorical feature is a time series ID.
+
+ static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
+ Optional static real features which the model will add to the values of the time series.
+
+ Static real features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static real feature is promotion information.
+
+ future_values (`torch.FloatTensor` of shape `(batch_size, prediction_length)`):
+ Future values of the time series, that serve as labels for the model. The `future_values` is what the
+ Transformer needs to learn to output, given the `past_values`.
+
+ See the demo notebook and code snippets for details.
+
+ Missing values need to be replaced with zeros.
+
+ future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`, *optional*):
+ Optional time features, which the model internally will add to `future_values`. These could be things like
+ "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These
+ could also be so-called "age" features, which basically help the model know "at which point in life" a
+ time-series is. Age features have small values for distant past time steps and increase monotonically the
+ more we approach the current time step.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where
+ the position encodings are learned from scratch internally as parameters of the model, the Time Series
+ Transformer requires to provide additional features.
+
+ The Autoformer only learns additional embeddings for `static_categorical_features`.
+
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on certain token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Mask to avoid performing attention on certain token indices. By default, a causal mask will be used, to
+ make sure the model can only look at previous inputs in order to predict the future.
+
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of `last_hidden_state`, `hidden_states` (*optional*) and `attentions` (*optional*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` (*optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
+class AutoformerEncoder(AutoformerPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`AutoformerEncoderLayer`].
+
+ Args:
+ config: AutoformerConfig
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+ if config.prediction_length is None:
+ raise ValueError("The `prediction_length` config needs to be specified.")
+
+ self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
+ self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
+ config.context_length + config.prediction_length, config.d_model
+ )
+ self.layers = nn.ModuleList([AutoformerEncoderLayer(config) for _ in range(config.encoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = self.value_embedding(inputs_embeds)
+ embed_pos = self.embed_positions(inputs_embeds.size())
+
+ hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class AutoformerDecoder(AutoformerPreTrainedModel):
+ """
+ Transformer decoder consisting of `config.decoder_layers` layers. Each layer is a [`AutoformerDecoderLayer`]
+
+ Args:
+ config: AutoformerConfig
+ """
+
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ if config.prediction_length is None:
+ raise ValueError("The `prediction_length` config needs to be specified.")
+
+ self.value_embedding = AutoformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model)
+ self.embed_positions = AutoformerSinusoidalPositionalEmbedding(
+ config.context_length + config.prediction_length, config.d_model
+ )
+ self.layers = nn.ModuleList([AutoformerDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ # https://github.com/thuml/Autoformer/blob/e6371e24f2ae2dd53e472edefdd5814c5176f864/models/Autoformer.py#L74
+ self.seasonality_projection = nn.Linear(config.d_model, config.feature_size)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ trend: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, AutoFormerDecoderOutput]:
+ r"""
+ Args:
+ trend (`torch.FloatTensor` of shape `(batch_size, prediction_length, feature_size)`, *optional*):
+ The trend sequence to be fed to the decoder.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ use_cache (`bool`, *optional*):
+ If `use_cache` is True, `past_key_values` key value states are returned and can be used to speed up
+ decoding (see `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ input_shape = inputs_embeds.size()[:-1]
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ hidden_states = self.value_embedding(inputs_embeds)
+ embed_pos = self.embed_positions(
+ inputs_embeds.size(), past_key_values_length=self.config.context_length - self.config.label_length
+ )
+ hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != (len(self.layers)):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ (hidden_states, residual_trend) = layer_outputs[0]
+ trend = trend + residual_trend
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # project seasonality representation
+ hidden_states = self.seasonality_projection(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, trend, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return AutoFormerDecoderOutput(
+ last_hidden_state=hidden_states,
+ trend=trend,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare Autoformer Model outputting raw hidden-states without any specific head on top.",
+ AUTOFORMER_START_DOCSTRING,
+)
+class AutoformerModel(AutoformerPreTrainedModel):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+
+ if config.scaling == "mean" or config.scaling is True:
+ self.scaler = AutoformerMeanScaler(config)
+ elif config.scaling == "std":
+ self.scaler = AutoformerStdScaler(config)
+ else:
+ self.scaler = AutoformerNOPScaler(config)
+
+ if config.num_static_categorical_features > 0:
+ self.embedder = AutoformerFeatureEmbedder(
+ cardinalities=config.cardinality, embedding_dims=config.embedding_dimension
+ )
+
+ # transformer encoder-decoder and mask initializer
+ self.encoder = AutoformerEncoder(config)
+ self.decoder = AutoformerDecoder(config)
+
+ # used for decoder seasonal and trend initialization
+ self.decomposition_layer = AutoformerSeriesDecompositionLayer(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @property
+ def _past_length(self) -> int:
+ return self.config.context_length + max(self.config.lags_sequence)
+
+ def get_lagged_subsequences(
+ self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0
+ ) -> torch.Tensor:
+ """
+ Returns lagged subsequences of a given sequence. Returns a tensor of shape (batch_size, subsequences_length,
+ feature_size, indices_length), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i,
+ -indices[k]-subsequences_length+j, :].
+
+ Args:
+ sequence (`torch.Tensor` or shape `(batch_size, context_length,
+ feature_size)`): The sequence from which lagged subsequences should be extracted.
+ subsequences_length (`int`):
+ Length of the subsequences to be extracted.
+ shift (`int`, *optional* defaults to 0):
+ Shift the lags by this amount back in the time index.
+ """
+
+ # calculates the indices of the lags by subtracting the shift value from the given lags_sequence
+ indices = [lag - shift for lag in self.config.lags_sequence]
+
+ # checks if the maximum lag plus the length of the subsequences exceeds the length of the input sequence
+ sequence_length = sequence.shape[1]
+ if max(indices) + subsequences_length > sequence_length:
+ raise ValueError(
+ f"lags cannot go further than history length, found lag {max(indices)} "
+ f"while history length is only {sequence_length}"
+ )
+
+ # extracts the lagged subsequences from the input sequence using the calculated indices
+ lagged_values = []
+ for lag_index in indices:
+ begin_index = -lag_index - subsequences_length
+ end_index = -lag_index if lag_index > 0 else None
+ lagged_values.append(sequence[:, begin_index:end_index, ...])
+
+ # return as stacked tensor in the feature dimension
+ return torch.stack(lagged_values, dim=-1)
+
+ def create_network_inputs(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ past_observed_mask: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Creates the inputs for the network given the past and future values, time features, and static features.
+
+ Args:
+ past_values (`torch.Tensor`):
+ A tensor of shape `(batch_size, past_length, input_size)` containing the past values.
+ past_time_features (`torch.Tensor`):
+ A tensor of shape `(batch_size, past_length, num_features)` containing the past time features.
+ static_categorical_features (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, num_categorical_features)` containing the static categorical
+ features.
+ static_real_features (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, num_real_features)` containing the static real features.
+ past_observed_mask (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, past_length, input_size)` containing the mask of observed
+ values in the past.
+ future_values (`Optional[torch.Tensor]`):
+ An optional tensor of shape `(batch_size, future_length, input_size)` containing the future values.
+
+ Returns:
+ A tuple containing the following tensors:
+ - reshaped_lagged_sequence (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_lags *
+ input_size)` containing the lagged subsequences of the inputs.
+ - features (`torch.Tensor`): A tensor of shape `(batch_size, sequence_length, num_features)` containing the
+ concatenated static and time features.
+ - loc (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the mean of the input
+ values.
+ - scale (`torch.Tensor`): A tensor of shape `(batch_size, input_size)` containing the std of the input
+ values.
+ - static_feat (`torch.Tensor`): A tensor of shape `(batch_size, num_static_features)` containing the
+ concatenated static features.
+ """
+ # time feature
+ time_feat = (
+ torch.cat(
+ (
+ past_time_features[:, self._past_length - self.config.context_length :, ...],
+ future_time_features,
+ ),
+ dim=1,
+ )
+ if future_values is not None
+ else past_time_features[:, self._past_length - self.config.context_length :, ...]
+ )
+
+ # target
+ if past_observed_mask is None:
+ past_observed_mask = torch.ones_like(past_values)
+
+ context = past_values[:, -self.config.context_length :]
+ observed_context = past_observed_mask[:, -self.config.context_length :]
+ _, loc, scale = self.scaler(context, observed_context)
+
+ inputs = (
+ (torch.cat((past_values, future_values), dim=1) - loc) / scale
+ if future_values is not None
+ else (past_values - loc) / scale
+ )
+
+ # static features
+ log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p()
+ log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log()
+ static_feat = torch.cat((log_abs_loc, log_scale), dim=1)
+
+ if static_real_features is not None:
+ static_feat = torch.cat((static_real_features, static_feat), dim=1)
+ if static_categorical_features is not None:
+ embedded_cat = self.embedder(static_categorical_features)
+ static_feat = torch.cat((embedded_cat, static_feat), dim=1)
+ expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1)
+
+ # all features
+ features = torch.cat((expanded_static_feat, time_feat), dim=-1)
+
+ # lagged features
+ subsequences_length = (
+ self.config.context_length + self.config.prediction_length
+ if future_values is not None
+ else self.config.context_length
+ )
+ lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length)
+ lags_shape = lagged_sequence.shape
+ reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
+
+ if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]:
+ raise ValueError(
+ f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match"
+ )
+ return reshaped_lagged_sequence, features, loc, scale, static_feat
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=AutoformerModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ past_observed_mask: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ use_cache: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[AutoformerModelOutput, Tuple]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerModel
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly")
+
+ >>> # during training, one provides both past and future values
+ >>> # as well as possible additional features
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> last_hidden_state = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_inputs, temporal_features, loc, scale, static_feat = self.create_network_inputs(
+ past_values=past_values,
+ past_time_features=past_time_features,
+ past_observed_mask=past_observed_mask,
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ future_values=future_values,
+ future_time_features=future_time_features,
+ )
+
+ if encoder_outputs is None:
+ enc_input = torch.cat(
+ (
+ transformer_inputs[:, : self.config.context_length, ...],
+ temporal_features[:, : self.config.context_length, ...],
+ ),
+ dim=-1,
+ )
+ encoder_outputs = self.encoder(
+ inputs_embeds=enc_input,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ if future_values is not None:
+ # Decoder inputs
+ # seasonality and trend from context length
+ seasonal_input, trend_input = self.decomposition_layer(
+ transformer_inputs[:, : self.config.context_length, ...]
+ )
+ mean = (
+ torch.mean(transformer_inputs[:, : self.config.context_length, ...], dim=1)
+ .unsqueeze(1)
+ .repeat(1, self.config.prediction_length, 1)
+ )
+ zeros = torch.zeros(
+ [transformer_inputs.shape[0], self.config.prediction_length, transformer_inputs.shape[2]],
+ device=enc_input.device,
+ )
+
+ decoder_input = torch.cat(
+ (
+ torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
+ temporal_features[:, self.config.context_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ trend_init = torch.cat(
+ (
+ torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
+ temporal_features[:, self.config.context_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+
+ decoder_outputs = self.decoder(
+ trend=trend_init,
+ inputs_embeds=decoder_input,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ else:
+ decoder_outputs = AutoFormerDecoderOutput()
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs + (loc, scale, static_feat)
+
+ return AutoformerModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ trend=decoder_outputs.trend,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ loc=loc,
+ scale=scale,
+ static_features=static_feat,
+ )
+
+
+@add_start_docstrings(
+ "The Autoformer Model with a distribution head on top for time-series forecasting.",
+ AUTOFORMER_START_DOCSTRING,
+)
+class AutoformerForPrediction(AutoformerPreTrainedModel):
+ def __init__(self, config: AutoformerConfig):
+ super().__init__(config)
+ self.model = AutoformerModel(config)
+ if config.distribution_output == "student_t":
+ self.distribution_output = StudentTOutput(dim=config.input_size)
+ elif config.distribution_output == "normal":
+ self.distribution_output = NormalOutput(dim=config.input_size)
+ elif config.distribution_output == "negative_binomial":
+ self.distribution_output = NegativeBinomialOutput(dim=config.input_size)
+ else:
+ raise ValueError(f"Unknown distribution output {config.distribution_output}")
+
+ self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.feature_size)
+ self.target_shape = self.distribution_output.event_shape
+
+ if config.loss == "nll":
+ self.loss = nll
+ else:
+ raise ValueError(f"Unknown loss function {config.loss}")
+
+ # Initialize weights of distribution_output and apply final processing
+ self.post_init()
+
+ def output_params(self, decoder_output):
+ return self.parameter_projection(decoder_output[:, -self.config.prediction_length :, :])
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ @torch.jit.ignore
+ def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution:
+ sliced_params = params
+ if trailing_n is not None:
+ sliced_params = [p[:, -trailing_n:] for p in params]
+ return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale)
+
+ @add_start_docstrings_to_model_forward(AUTOFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqTSPredictionOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ past_observed_mask: torch.Tensor,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ future_values: Optional[torch.Tensor] = None,
+ future_time_features: Optional[torch.Tensor] = None,
+ future_observed_mask: Optional[torch.Tensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ use_cache: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Seq2SeqTSPredictionOutput, Tuple]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerForPrediction
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly")
+
+ >>> # during training, one provides both past and future values
+ >>> # as well as possible additional features
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> loss = outputs.loss
+ >>> loss.backward()
+
+ >>> # during inference, one only provides past values
+ >>> # as well as possible additional features
+ >>> # the model autoregressively generates future values
+ >>> outputs = model.generate(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+
+ >>> mean_prediction = outputs.sequences.mean(dim=1)
+ ```
+
+
+
+ The AutoformerForPrediction can also use static_real_features. To do so, set num_static_real_features in
+ AutoformerConfig based on number of such features in the dataset (in case of tourism_monthly dataset it
+ is equal to 1), initialize the model and call as shown below:
+
+ ```
+ >>> from huggingface_hub import hf_hub_download
+ >>> import torch
+ >>> from transformers import AutoformerConfig, AutoformerForPrediction
+
+ >>> file = hf_hub_download(
+ ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset"
+ ... )
+ >>> batch = torch.load(file)
+
+ >>> # check number of static real features
+ >>> num_static_real_features = batch["static_real_features"].shape[-1]
+
+ >>> # load configuration of pretrained model and override num_static_real_features
+ >>> configuration = AutoformerConfig.from_pretrained(
+ ... "huggingface/autoformer-tourism-monthly",
+ ... num_static_real_features=num_static_real_features,
+ ... )
+ >>> # we also need to update feature_size as it is not recalculated
+ >>> configuration.feature_size += num_static_real_features
+
+ >>> model = AutoformerForPrediction(configuration)
+
+ >>> outputs = model(
+ ... past_values=batch["past_values"],
+ ... past_time_features=batch["past_time_features"],
+ ... past_observed_mask=batch["past_observed_mask"],
+ ... static_categorical_features=batch["static_categorical_features"],
+ ... static_real_features=batch["static_real_features"],
+ ... future_values=batch["future_values"],
+ ... future_time_features=batch["future_time_features"],
+ ... )
+ ```
+
+
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if future_values is not None:
+ use_cache = False
+
+ outputs = self.model(
+ past_values=past_values,
+ past_time_features=past_time_features,
+ past_observed_mask=past_observed_mask,
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ future_values=future_values,
+ future_time_features=future_time_features,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ return_dict=return_dict,
+ )
+
+ prediction_loss = None
+ params = None
+ if future_values is not None:
+ # outputs.last_hidden_state and trend
+ # loc is 4rd last and scale is 3rd last output
+ params = self.output_params(outputs[0] + outputs[1])
+ distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2])
+
+ loss = self.loss(distribution, future_values)
+
+ if future_observed_mask is None:
+ future_observed_mask = torch.ones_like(future_values)
+
+ if len(self.target_shape) == 0:
+ loss_weights = future_observed_mask
+ else:
+ loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False)
+
+ prediction_loss = weighted_average(loss, weights=loss_weights)
+
+ if not return_dict:
+ outputs = ((params,) + outputs[2:]) if params is not None else outputs[2:]
+ return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs
+
+ return Seq2SeqTSPredictionOutput(
+ loss=prediction_loss,
+ params=params,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ loc=outputs.loc,
+ scale=outputs.scale,
+ static_features=outputs.static_features,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ past_values: torch.Tensor,
+ past_time_features: torch.Tensor,
+ future_time_features: torch.Tensor,
+ past_observed_mask: Optional[torch.Tensor] = None,
+ static_categorical_features: Optional[torch.Tensor] = None,
+ static_real_features: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ ) -> SampleTSPredictionOutput:
+ r"""
+ Greedily generate sequences of sample predictions from a model with a probability distribution head.
+
+ Parameters:
+ past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`):
+ Past values of the time series, that serve as context in order to predict the future. The sequence size
+ of this tensor must be larger than the `context_length` of the model, since the model will use the
+ larger size to construct lag features, i.e. additional values from the past which are added in order to
+ serve as "extra context".
+
+ The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if
+ no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest
+ look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length
+ of the past.
+
+ The `past_values` is what the Transformer encoder gets as input (with optional additional features,
+ such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags).
+
+ Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`.
+
+ For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number
+ of variates in the time series per time step.
+ past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`):
+ Required time features, which the model internally will add to `past_values`. These could be things
+ like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features).
+ These could also be so-called "age" features, which basically help the model know "at which point in
+ life" a time-series is. Age features have small values for distant past time steps and increase
+ monotonically the more we approach the current time step. Holiday features are also a good example of
+ time features.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
+ where the position encodings are learned from scratch internally as parameters of the model, the Time
+ Series Transformer requires to provide additional time features. The Time Series Transformer only
+ learns additional embeddings for `static_categorical_features`.
+
+ Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
+ features must but known at prediction time.
+
+ The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
+ future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`):
+ Required time features for the prediction window, which the model internally will add to sampled
+ predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors
+ (for instance as Fourier features). These could also be so-called "age" features, which basically help
+ the model know "at which point in life" a time-series is. Age features have small values for distant
+ past time steps and increase monotonically the more we approach the current time step. Holiday features
+ are also a good example of time features.
+
+ These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT,
+ where the position encodings are learned from scratch internally as parameters of the model, the Time
+ Series Transformer requires to provide additional time features. The Time Series Transformer only
+ learns additional embeddings for `static_categorical_features`.
+
+ Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these
+ features must but known at prediction time.
+
+ The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`.
+ past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*):
+ Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected
+ in `[0, 1]`:
+
+ - 1 for values that are **observed**,
+ - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros).
+
+ static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*):
+ Optional static categorical features for which the model will learn an embedding, which it will add to
+ the values of the time series.
+
+ Static categorical features are features which have the same value for all time steps (static over
+ time).
+
+ A typical example of a static categorical feature is a time series ID.
+ static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*):
+ Optional static real features which the model will add to the values of the time series.
+
+ Static real features are features which have the same value for all time steps (static over time).
+
+ A typical example of a static real feature is promotion information.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers.
+
+ Return:
+ [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of
+ samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for
+ multivariate predictions.
+ """
+ outputs = self(
+ static_categorical_features=static_categorical_features,
+ static_real_features=static_real_features,
+ past_time_features=past_time_features,
+ past_values=past_values,
+ past_observed_mask=past_observed_mask,
+ future_time_features=None,
+ future_values=None,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=True,
+ use_cache=False,
+ )
+
+ decoder = self.model.get_decoder()
+ enc_last_hidden = outputs.encoder_last_hidden_state
+ loc = outputs.loc
+ scale = outputs.scale
+ static_feat = outputs.static_features
+
+ num_parallel_samples = self.config.num_parallel_samples
+ repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0)
+ repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ repeated_past_values = (
+ past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc
+ ) / repeated_scale
+
+ time_features = torch.cat((past_time_features, future_time_features), dim=1)
+
+ expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_features.shape[1], -1)
+ features = torch.cat((expanded_static_feat, time_features), dim=-1)
+ repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0)
+
+ lagged_sequence = self.model.get_lagged_subsequences(
+ sequence=repeated_past_values, subsequences_length=self.config.context_length
+ )
+ lags_shape = lagged_sequence.shape
+ reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1)
+ seasonal_input, trend_input = self.model.decomposition_layer(reshaped_lagged_sequence)
+
+ mean = torch.mean(reshaped_lagged_sequence, dim=1).unsqueeze(1).repeat(1, self.config.prediction_length, 1)
+ zeros = torch.zeros(
+ [reshaped_lagged_sequence.shape[0], self.config.prediction_length, reshaped_lagged_sequence.shape[2]],
+ device=reshaped_lagged_sequence.device,
+ )
+
+ decoder_input = torch.cat(
+ (
+ torch.cat((seasonal_input[:, -self.config.label_length :, ...], zeros), dim=1),
+ repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ trend_init = torch.cat(
+ (
+ torch.cat((trend_input[:, -self.config.label_length :, ...], mean), dim=1),
+ repeated_features[:, -self.config.prediction_length - self.config.label_length :, ...],
+ ),
+ dim=-1,
+ )
+ decoder_outputs = decoder(
+ trend=trend_init, inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden
+ )
+ decoder_last_hidden = decoder_outputs.last_hidden_state
+ trend = decoder_outputs.trend
+ params = self.output_params(decoder_last_hidden + trend)
+ distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale)
+ future_samples = distr.sample()
+
+ return SampleTSPredictionOutput(
+ sequences=future_samples.reshape(
+ (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape,
+ )
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b08d55836488a01a3a9c1d180b23850d300113d1
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__init__.py
@@ -0,0 +1,77 @@
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_bros": ["BROS_PRETRAINED_CONFIG_ARCHIVE_MAP", "BrosConfig"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["processing_bros"] = ["BrosProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_bros"] = [
+ "BROS_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "BrosPreTrainedModel",
+ "BrosModel",
+ "BrosForTokenClassification",
+ "BrosSpadeEEForTokenClassification",
+ "BrosSpadeELForTokenClassification",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_bros import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP, BrosConfig
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .processing_bros import BrosProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_bros import (
+ BROS_PRETRAINED_MODEL_ARCHIVE_LIST,
+ BrosForTokenClassification,
+ BrosModel,
+ BrosPreTrainedModel,
+ BrosSpadeEEForTokenClassification,
+ BrosSpadeELForTokenClassification,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..083eea83f91fd2ab9a4c89171eb99174cc058100
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e16920f9835e38033557e93e587d2a1b46ac9048
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/configuration_bros.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a80312af5b308319dbbba03fbad9cb5494ab7f90
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/convert_bros_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..221a42681fe751ea1e72e1fcf584b0ffcac98d00
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/modeling_bros.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..921a0e897617770d208d28c1c7a05ae2bfa9173f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/__pycache__/processing_bros.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..4384810a55a013c120d62ecddae82a7897cb1e34
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/configuration_bros.py
@@ -0,0 +1,140 @@
+# coding=utf-8
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Bros model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+BROS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "jinho8345/bros-base-uncased": "https://huggingface.co/jinho8345/bros-base-uncased/blob/main/config.json",
+ "jinho8345/bros-large-uncased": "https://huggingface.co/jinho8345/bros-large-uncased/blob/main/config.json",
+}
+
+
+class BrosConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to
+ instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Bros
+ [jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The index of the padding token in the token vocabulary.
+ dim_bbox (`int`, *optional*, defaults to 8):
+ The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1)
+ bbox_scale (`float`, *optional*, defaults to 100.0):
+ The scale factor of the bounding box coordinates.
+ n_relations (`int`, *optional*, defaults to 1):
+ The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head.
+ classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the classifier head.
+
+
+ Examples:
+
+ ```python
+ >>> from transformers import BrosConfig, BrosModel
+
+ >>> # Initializing a BROS jinho8345/bros-base-uncased style configuration
+ >>> configuration = BrosConfig()
+
+ >>> # Initializing a model from the jinho8345/bros-base-uncased style configuration
+ >>> model = BrosModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "bros"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ dim_bbox=8,
+ bbox_scale=100.0,
+ n_relations=1,
+ classifier_dropout_prob=0.1,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_size=vocab_size,
+ hidden_size=hidden_size,
+ num_hidden_layers=num_hidden_layers,
+ num_attention_heads=num_attention_heads,
+ intermediate_size=intermediate_size,
+ hidden_act=hidden_act,
+ hidden_dropout_prob=hidden_dropout_prob,
+ attention_probs_dropout_prob=attention_probs_dropout_prob,
+ max_position_embeddings=max_position_embeddings,
+ type_vocab_size=type_vocab_size,
+ initializer_range=initializer_range,
+ layer_norm_eps=layer_norm_eps,
+ pad_token_id=pad_token_id,
+ **kwargs,
+ )
+
+ self.dim_bbox = dim_bbox
+ self.bbox_scale = bbox_scale
+ self.n_relations = n_relations
+ self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4
+ self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox
+ self.dim_bbox_projection = self.hidden_size // self.num_attention_heads
+ self.classifier_dropout_prob = classifier_dropout_prob
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0984f2c74b20cc61a02f616815d59b79d5a2afb
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/convert_bros_to_pytorch.py
@@ -0,0 +1,145 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Bros checkpoints."""
+
+import argparse
+
+import bros # original repo
+import torch
+
+from transformers import BrosConfig, BrosModel, BrosProcessor
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def get_configs(model_name):
+ bros_config = BrosConfig.from_pretrained(model_name)
+ return bros_config
+
+
+def remove_ignore_keys_(state_dict):
+ ignore_keys = [
+ "embeddings.bbox_sinusoid_emb.inv_freq",
+ ]
+ for k in ignore_keys:
+ state_dict.pop(k, None)
+
+
+def rename_key(name):
+ if name == "embeddings.bbox_projection.weight":
+ name = "bbox_embeddings.bbox_projection.weight"
+
+ if name == "embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq":
+ name = "bbox_embeddings.bbox_sinusoid_emb.x_pos_emb.inv_freq"
+
+ if name == "embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq":
+ name = "bbox_embeddings.bbox_sinusoid_emb.y_pos_emb.inv_freq"
+
+ return name
+
+
+def convert_state_dict(orig_state_dict, model):
+ # rename keys
+ for key in orig_state_dict.copy().keys():
+ val = orig_state_dict.pop(key)
+ orig_state_dict[rename_key(key)] = val
+
+ # remove ignore keys
+ remove_ignore_keys_(orig_state_dict)
+
+ return orig_state_dict
+
+
+def convert_bros_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False):
+ # load original model
+ original_model = bros.BrosModel.from_pretrained(model_name).eval()
+
+ # load HuggingFace Model
+ bros_config = get_configs(model_name)
+ model = BrosModel.from_pretrained(model_name, config=bros_config)
+ model.eval()
+
+ state_dict = original_model.state_dict()
+ new_state_dict = convert_state_dict(state_dict, model)
+ model.load_state_dict(new_state_dict)
+
+ # verify results
+
+ # original BROS model require 4 points (8 float values) for each bbox, prepare bbox with [batch_size, seq_len, 8] shape
+ bbox = torch.tensor(
+ [
+ [
+ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
+ [0.4396, 0.6720, 0.4659, 0.6720, 0.4659, 0.6850, 0.4396, 0.6850],
+ [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
+ [0.4698, 0.6720, 0.4843, 0.6720, 0.4843, 0.6850, 0.4698, 0.6850],
+ [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
+ [0.2047, 0.6870, 0.2730, 0.6870, 0.2730, 0.7000, 0.2047, 0.7000],
+ [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
+ ]
+ ]
+ )
+
+ processor = BrosProcessor.from_pretrained(model_name)
+
+ encoding = processor("His name is Rocco.", return_tensors="pt")
+ encoding["bbox"] = bbox
+
+ original_hidden_states = original_model(**encoding).last_hidden_state
+ # pixel_values = processor(image, return_tensors="pt").pixel_values
+
+ last_hidden_states = model(**encoding).last_hidden_state
+
+ assert torch.allclose(original_hidden_states, last_hidden_states, atol=1e-4)
+
+ if pytorch_dump_folder_path is not None:
+ print(f"Saving model and processor to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ model.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
+ processor.push_to_hub("jinho8345/" + model_name.split("/")[-1], commit_message="Update model")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="jinho8345/bros-base-uncased",
+ required=False,
+ type=str,
+ help="Name of the original model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ required=False,
+ type=str,
+ help="Path to the output PyTorch model directory.",
+ )
+ parser.add_argument(
+ "--push_to_hub",
+ action="store_true",
+ help="Whether or not to push the converted model and processor to the 🤗 hub.",
+ )
+
+ args = parser.parse_args()
+ convert_bros_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3a17b23c94d48424c014520c49a30cefb4cc9f7
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/modeling_bros.py
@@ -0,0 +1,1320 @@
+# coding=utf-8
+# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Bros model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_bros import BrosConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased"
+_CONFIG_FOR_DOC = "BrosConfig"
+
+BROS_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "jinho8345/bros-base-uncased",
+ "jinho8345/bros-large-uncased",
+ # See all Bros models at https://huggingface.co/models?filter=bros
+]
+
+BROS_START_DOCSTRING = r"""
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BrosConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BROS_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
+ Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
+ (x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
+ bounding box.
+
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@dataclass
+class BrosSpadeOutput(ModelOutput):
+ """
+ Base class for outputs of token classification models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
+ Classification loss.
+ initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
+ Classification scores for entity initial tokens (before SoftMax).
+ subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
+ Classification scores for entity sequence tokens (before SoftMax).
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ initial_token_logits: torch.FloatTensor = None
+ subsequent_token_logits: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+class BrosPositionalEmbedding1D(nn.Module):
+ # Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
+
+ def __init__(self, config):
+ super(BrosPositionalEmbedding1D, self).__init__()
+
+ self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
+
+ inv_freq = 1 / (
+ 10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d)
+ )
+ self.register_buffer("inv_freq", inv_freq)
+
+ def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
+ seq_size = pos_seq.size()
+ b1, b2, b3 = seq_size
+ sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2)
+ pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
+ return pos_emb
+
+
+class BrosPositionalEmbedding2D(nn.Module):
+ def __init__(self, config):
+ super(BrosPositionalEmbedding2D, self).__init__()
+
+ self.dim_bbox = config.dim_bbox
+ self.x_pos_emb = BrosPositionalEmbedding1D(config)
+ self.y_pos_emb = BrosPositionalEmbedding1D(config)
+
+ def forward(self, bbox: torch.Tensor) -> torch.Tensor:
+ stack = []
+ for i in range(self.dim_bbox):
+ if i % 2 == 0:
+ stack.append(self.x_pos_emb(bbox[..., i]))
+ else:
+ stack.append(self.y_pos_emb(bbox[..., i]))
+ bbox_pos_emb = torch.cat(stack, dim=-1)
+ return bbox_pos_emb
+
+
+class BrosBboxEmbeddings(nn.Module):
+ def __init__(self, config):
+ super(BrosBboxEmbeddings, self).__init__()
+ self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
+ self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)
+
+ def forward(self, bbox: torch.Tensor):
+ bbox_t = bbox.transpose(0, 1)
+ bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :]
+ bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos)
+ bbox_pos_emb = self.bbox_projection(bbox_pos_emb)
+
+ return bbox_pos_emb
+
+
+class BrosTextEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
+ self.register_buffer(
+ "token_type_ids",
+ torch.zeros(
+ self.position_ids.size(),
+ dtype=torch.long,
+ device=self.position_ids.device,
+ ),
+ persistent=False,
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class BrosSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor):
+ new_x_shape = x.size()[:-1] + (
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[torch.Tensor] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ # bbox positional encoding
+ batch_size, n_head, seq_length, d_head = query_layer.shape
+ bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head)
+ bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3])
+ bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb))
+
+ attention_scores = attention_scores + bbox_pos_scores
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BrosModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros
+class BrosSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BrosAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = BrosSelfAttention(config)
+ self.output = BrosSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads,
+ self.self.num_attention_heads,
+ self.self.attention_head_size,
+ self.pruned_heads,
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states=hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros
+class BrosIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+class BrosOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class BrosLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = BrosAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise Exception(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = BrosAttention(config)
+ self.intermediate = BrosIntermediate(config)
+ self.output = BrosOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if hasattr(self, "crossattention"):
+ raise Exception(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output,
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class BrosEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)])
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ bbox_pos_emb: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if getattr(self.config, "gradient_checkpointing", False) and self.training:
+ if use_cache:
+ logger.warning(
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
+ "`use_cache=False`..."
+ )
+ use_cache = False
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ bbox_pos_emb,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states=hidden_states,
+ bbox_pos_emb=bbox_pos_emb,
+ attention_mask=attention_mask,
+ head_mask=layer_head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros
+class BrosPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class BrosRelationExtractor(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+ self.head_hidden_size = config.hidden_size
+ self.classifier_dropout_prob = config.classifier_dropout_prob
+
+ self.drop = nn.Dropout(self.classifier_dropout_prob)
+ self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
+
+ self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
+
+ self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size))
+
+ def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor):
+ query_layer = self.query(self.drop(query_layer))
+
+ dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1)
+ key_layer = torch.cat([key_layer, dummy_vec], axis=0)
+ key_layer = self.key(self.drop(key_layer))
+
+ query_layer = query_layer.view(
+ query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size
+ )
+ key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size)
+
+ relation_score = torch.matmul(
+ query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0)
+ ) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer))
+
+ return relation_score
+
+
+class BrosPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BrosConfig
+ base_model_prefix = "bros"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@add_start_docstrings(
+ "The bare Bros Model transformer outputting raw hidden-states without any specific head on top.",
+ BROS_START_DOCSTRING,
+)
+class BrosModel(BrosPreTrainedModel):
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = BrosTextEmbeddings(config)
+ self.bbox_embeddings = BrosBboxEmbeddings(config)
+ self.encoder = BrosEncoder(config)
+
+ self.pooler = BrosPooler(config) if add_pooling_layer else None
+
+ self.init_weights()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosModel
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if bbox is None:
+ raise ValueError("You have to specify bbox")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ # if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token
+ if bbox.shape[-1] == 4:
+ bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]]
+ scaled_bbox = bbox * self.config.bbox_scale
+ bbox_position_embeddings = self.bbox_embeddings(scaled_bbox)
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ bbox_pos_emb=bbox_position_embeddings,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.bros = BrosModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ if bbox_first_token_mask is not None:
+ bbox_first_token_mask = bbox_first_token_mask.view(-1)
+ loss = loss_fct(
+ logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask]
+ )
+ else:
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the
+ hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to
+ predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent
+ tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors
+ since it predicts next token from one token.
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosSpadeEEForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.num_labels = config.num_labels
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+
+ self.bros = BrosModel(config)
+ classifier_dropout = (
+ config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
+ )
+
+ # Initial token classification for Entity Extraction (NER)
+ self.initial_token_classifier = nn.Sequential(
+ nn.Dropout(classifier_dropout),
+ nn.Linear(config.hidden_size, config.hidden_size),
+ nn.Dropout(classifier_dropout),
+ nn.Linear(config.hidden_size, config.num_labels),
+ )
+
+ # Subsequent token classification for Entity Extraction (NER)
+ self.subsequent_token_classifier = BrosRelationExtractor(config)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ initial_token_labels: Optional[torch.Tensor] = None,
+ subsequent_token_labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids=input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_states = outputs[0]
+ last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
+ initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous()
+ subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0)
+
+ # make subsequent token (sequence token classification) mask
+ inv_attention_mask = 1 - attention_mask
+ batch_size, max_seq_length = inv_attention_mask.shape
+ device = inv_attention_mask.device
+ invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool()
+ subsequent_token_logits = subsequent_token_logits.masked_fill(
+ invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min
+ )
+ self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
+ subsequent_token_logits = subsequent_token_logits.masked_fill(
+ self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min
+ )
+ subsequent_token_mask = attention_mask.view(-1).bool()
+
+ loss = None
+ if initial_token_labels is not None and subsequent_token_labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ # get initial token loss
+ initial_token_labels = initial_token_labels.view(-1)
+ if bbox_first_token_mask is not None:
+ bbox_first_token_mask = bbox_first_token_mask.view(-1)
+ initial_token_loss = loss_fct(
+ initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask],
+ initial_token_labels[bbox_first_token_mask],
+ )
+ else:
+ initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels)
+
+ subsequent_token_labels = subsequent_token_labels.view(-1)
+ subsequent_token_loss = loss_fct(
+ subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask],
+ subsequent_token_labels[subsequent_token_mask],
+ )
+
+ loss = initial_token_loss + subsequent_token_loss
+
+ if not return_dict:
+ output = (initial_token_logits, subsequent_token_logits) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return BrosSpadeOutput(
+ loss=loss,
+ initial_token_logits=initial_token_logits,
+ subsequent_token_logits=subsequent_token_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g.
+ for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity).
+ """,
+ BROS_START_DOCSTRING,
+)
+class BrosSpadeELForTokenClassification(BrosPreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ self.num_labels = config.num_labels
+ self.n_relations = config.n_relations
+ self.backbone_hidden_size = config.hidden_size
+
+ self.bros = BrosModel(config)
+ (config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob)
+
+ self.entity_linker = BrosRelationExtractor(config)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ bbox: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ bbox_first_token_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> import torch
+ >>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification
+
+ >>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
+
+ >>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
+ >>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
+ >>> encoding["bbox"] = bbox
+
+ >>> outputs = model(**encoding)
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.bros(
+ input_ids=input_ids,
+ bbox=bbox,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_states = outputs[0]
+ last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
+
+ logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ batch_size, max_seq_length = attention_mask.shape
+ device = attention_mask.device
+
+ self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool()
+
+ mask = bbox_first_token_mask.view(-1)
+ bbox_first_token_mask = torch.cat(
+ [
+ ~bbox_first_token_mask,
+ torch.zeros([batch_size, 1], dtype=torch.bool).to(device),
+ ],
+ axis=1,
+ )
+ logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min)
+ logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min)
+
+ loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask])
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py
new file mode 100644
index 0000000000000000000000000000000000000000..9c2e0642d8cdc4625da7d111457f7830fb4b75df
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bros/processing_bros.py
@@ -0,0 +1,109 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for Bros.
+"""
+
+from typing import List, Optional, Union
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class BrosProcessor(ProcessorMixin):
+ r"""
+ Constructs a Bros processor which wraps a BERT tokenizer.
+
+ [`BrosProcessor`] offers all the functionalities of [`BertTokenizerFast`]. See the docstring of
+ [`~BrosProcessor.__call__`] and [`~BrosProcessor.decode`] for more information.
+
+ Args:
+ tokenizer (`BertTokenizerFast`, *optional*):
+ An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
+ """
+
+ attributes = ["tokenizer"]
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
+
+ def __init__(self, tokenizer=None, **kwargs):
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(tokenizer)
+
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method uses [`BertTokenizerFast.__call__`] to prepare text for the model.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ encoding = self.tokenizer(
+ text=text,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ return encoding
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names))
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..662a427383ff693bde17e96b0f74264442a1cc0f
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__init__.py
@@ -0,0 +1,28 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import _LazyModule
+
+
+_import_structure = {"tokenization_byt5": ["ByT5Tokenizer"]}
+
+
+if TYPE_CHECKING:
+ from .tokenization_byt5 import ByT5Tokenizer
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ee32addb597bc317c350e3b25622f33ca9d0e8c1
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..62bb45d94fd5d560ec24c88e7c9f3bb7c19204ad
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/convert_byt5_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..63f056ed38c530150901d35740453b2ccfaf5472
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d9a20f3b0b395ffd31a2e8445d94aedb6036a6e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# Copyright 2018 The T5 authors and HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert T5 checkpoint."""
+
+
+import argparse
+
+from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
+ # Initialise PyTorch model
+ config = T5Config.from_json_file(config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+ model = T5ForConditionalGeneration(config)
+
+ # Load weights from tf checkpoint
+ load_tf_weights_in_t5(model, config, tf_checkpoint_path)
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ model.save_pretrained(pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py
new file mode 100644
index 0000000000000000000000000000000000000000..68c70db0d18d65e25bf60a672615f833bd5e504b
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/byt5/tokenization_byt5.py
@@ -0,0 +1,234 @@
+# coding=utf-8
+# Copyright 2021 T5 Authors and HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model ByT5."""
+
+
+import warnings
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class ByT5Tokenizer(PreTrainedTokenizer):
+ """
+ Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ extra_ids (`int`, *optional*, defaults to 125):
+ Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are
+ accessible as "" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are
+ indexed from the end of the vocabulary up to beginning ("" is the last token in the vocabulary
+ like in ByT5 preprocessing see
+ [here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)).
+ additional_special_tokens (`List[str]`, *optional*):
+ Additional special tokens used by the tokenizer.
+ """
+
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ eos_token="",
+ unk_token="",
+ pad_token="",
+ extra_ids=125,
+ additional_special_tokens=None,
+ **kwargs,
+ ) -> None:
+ # Add extra_ids to the special token list
+ if extra_ids > 0 and additional_special_tokens is None:
+ additional_special_tokens = [f"" for i in range(extra_ids)]
+ elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0:
+ # Check that we have the right number of extra_id special tokens
+ extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens)))
+ if extra_tokens != extra_ids:
+ raise ValueError(
+ f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
+ " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
+ " extra_ids tokens"
+ )
+
+ pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token
+ # we force left and right stripping for backward compatibility. The byt5tests depend on this.
+ eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token
+ # unk token needs to be in the vocab with correct index
+ self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token}
+ self.offset = len(self._added_tokens_decoder)
+ self._utf_vocab_size = 2**8 # utf is 8 bits
+ super().__init__(
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ extra_ids=0,
+ additional_special_tokens=additional_special_tokens, # TODO extra ids are not used :sweatywmile:
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return self._utf_vocab_size
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ # normal case: some special tokens
+ if token_ids_1 is None:
+ return ([0] * len(token_ids_0)) + [1]
+ return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+
+ def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
+ """Do not add eos again if user already added it."""
+ if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
+ warnings.warn(
+ f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
+ " eos tokens being added."
+ )
+ return token_ids
+ else:
+ return token_ids + [self.eos_token_id]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not
+ make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ eos = [self.eos_token_id]
+
+ if token_ids_1 is None:
+ return len(token_ids_0 + eos) * [0]
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A sequence has the following format:
+
+ - single sequence: `X `
+ - pair of sequences: `A B `
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ token_ids_0 = self._add_eos_if_not_present(token_ids_0)
+ if token_ids_1 is None:
+ return token_ids_0
+ else:
+ token_ids_1 = self._add_eos_if_not_present(token_ids_1)
+ return token_ids_0 + token_ids_1
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ tokens = [chr(i) for i in text.encode("utf-8")]
+ return tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+
+ if len(token) != 1:
+ token_id = None
+ else:
+ token_id = ord(token) + self.offset
+
+ return token_id
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = chr(index - self.offset)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ bstring = b""
+ for token in tokens:
+ if token in self.added_tokens_decoder:
+ tok_string = self.added_tokens_decoder[token].encode("utf-8")
+ elif token in self.added_tokens_encoder:
+ tok_string = token.encode("utf-8")
+ else:
+ tok_string = bytes([ord(token)])
+ bstring += tok_string
+ string = bstring.decode("utf-8", errors="ignore")
+ return string
+
+ # ByT5Tokenizer has no vocab file
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ return ()
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb88e24171c369babcd650f77dd61f0a0e9c3497
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__init__.py
@@ -0,0 +1,83 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_clvp": [
+ "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "ClvpConfig",
+ "ClvpDecoderConfig",
+ "ClvpEncoderConfig",
+ ],
+ "feature_extraction_clvp": ["ClvpFeatureExtractor"],
+ "processing_clvp": ["ClvpProcessor"],
+ "tokenization_clvp": ["ClvpTokenizer"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_clvp"] = [
+ "CLVP_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ClvpModelForConditionalGeneration",
+ "ClvpForCausalLM",
+ "ClvpModel",
+ "ClvpPreTrainedModel",
+ "ClvpEncoder",
+ "ClvpDecoder",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_clvp import (
+ CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ ClvpConfig,
+ ClvpDecoderConfig,
+ ClvpEncoderConfig,
+ )
+ from .feature_extraction_clvp import ClvpFeatureExtractor
+ from .processing_clvp import ClvpProcessor
+ from .tokenization_clvp import ClvpTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_clvp import (
+ CLVP_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ClvpDecoder,
+ ClvpEncoder,
+ ClvpForCausalLM,
+ ClvpModel,
+ ClvpModelForConditionalGeneration,
+ ClvpPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0d68be13c2337af6e39801a76175c501789c957b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/processing_clvp.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..3d20b5c16d5d1010f898ec1279f6f2a563fe0f67
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.py
@@ -0,0 +1,457 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" CLVP model configuration"""
+
+
+import os
+from typing import TYPE_CHECKING, Union
+
+
+if TYPE_CHECKING:
+ pass
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "susnato/clvp_dev": "https://huggingface.co/susnato/clvp_dev/resolve/main/config.json",
+}
+
+
+class ClvpEncoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
+ text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
+ will yield a similar configuration to that of the encoder of the CLVP
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 256):
+ Vocabulary size of the CLVP Encoder model.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 1536):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ projection_dim (`int`, *optional*, defaults to 768):
+ Dimensionality of the projection vector.
+ num_hidden_layers (`int`, *optional*, defaults to 20):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
+ use_rotary_embedding (`bool`, *optional*, defaults to `True`):
+ Whether to use rotary_embedding or not.
+ use_attention_bias (`bool`, *optional*, defaults to `False`):
+ Whether to use bias in Query, Key and Value layers during self attention.
+ summary_type (`str`, *optional*, defaults to `"mean"`):
+ What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
+ `"cls_index"` are supported.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ bos_token_id (`int`, *optional*, defaults to 255):
+ Beginning of sequence token id.
+ eos_token_id (`int`, *optional*, defaults to 0):
+ End of sequence token id.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpEncoderConfig, ClvpEncoder
+
+ >>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
+ >>> encoder_configuration = ClvpEncoderConfig()
+
+ >>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpEncoder(encoder_configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clvp_encoder"
+
+ def __init__(
+ self,
+ vocab_size=256,
+ hidden_size=768,
+ intermediate_size=1536,
+ projection_dim=768,
+ num_hidden_layers=20,
+ num_attention_heads=12,
+ hidden_act="gelu",
+ layer_norm_eps=1e-5,
+ attention_dropout=0.1,
+ dropout=0.1,
+ use_rotary_embedding=True,
+ use_attention_bias=False,
+ summary_type="mean",
+ initializer_factor=1.0,
+ bos_token_id=255,
+ eos_token_id=0,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.projection_dim = projection_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+ self.dropout = dropout
+ self.use_rotary_embedding = use_rotary_embedding
+ self.use_attention_bias = use_attention_bias
+ self.summary_type = summary_type
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @classmethod
+ def from_pretrained(
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
+ ) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # make sure to have the config_type be either "text_config" or "speech_config"
+ # this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
+ if config_type not in ["text_config", "speech_config"]:
+ raise ValueError(
+ f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
+ )
+
+ # get the text config dict if we are loading from ClvpConfig
+ if config_dict.get("model_type") == "clvp":
+ config_dict = config_dict[config_type]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ClvpDecoderConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
+ Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
+ [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ The architecture is similar to GPT2.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 8194):
+ Vocabulary size of the model.
+ max_position_embeddings (`int`, *optional*, defaults to 608):
+ The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
+ in `GPT2Config`.
+ max_text_tokens (`int`, *optional*, defaults to 404):
+ The maximum sequence length of text tokens that this model might ever be used with. Similar to
+ `n_positions` in `GPT2Config`.
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the embeddings and hidden states.
+ num_hidden_layers (`int`, *optional*, defaults to 30):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ n_inner (`int`, *optional*):
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
+ num_mel_attn_blocks (`int`, *optional*, defaults to 6):
+ Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
+ activation_function (`str`, *optional*, defaults to `"gelu_new"`):
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the embeddings.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
+ The epsilon to use in the layer normalization layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
+ Argument used when doing sequence summary.
+
+ Has to be one of the following options:
+
+ - `"last"`: Take the last token hidden state (like XLNet).
+ - `"first"`: Take the first token hidden state (like BERT).
+ - `"mean"`: Take the mean of all tokens hidden states.
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
+ - `"attn"`: Not implemented now, use multi-head attention.
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
+ Whether or not to add a projection after the vector extraction.
+ summary_activation (`str`, *optional*):
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout ratio to be used after the projection and activation.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ bos_token_id (`int`, *optional*, defaults to 8192):
+ Beginning of sequence token id, used at the start of the generation.
+ eos_token_id (`int`, *optional*, defaults to 8193):
+ End of sequence token id, used in the method
+ [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
+ feature_size (`int`, *optional*, defaults to 80):
+ The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
+ use_attention_bias (`bool`, *optional*, defaults to `True`):
+ Whether to use bias in Query, Key and Value layers during self attention.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
+ These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpDecoderConfig, ClvpDecoder
+
+ >>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
+ >>> decoder_configuration = ClvpDecoderConfig()
+
+ >>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpDecoder(decoder_configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "clvp_decoder"
+
+ def __init__(
+ self,
+ vocab_size=8194,
+ max_position_embeddings=608,
+ max_text_tokens=404,
+ hidden_size=1024,
+ num_hidden_layers=30,
+ num_attention_heads=16,
+ n_inner=None,
+ num_mel_attn_blocks=6,
+ activation_function="gelu_new",
+ resid_pdrop=0.1,
+ embd_pdrop=0.1,
+ attention_dropout=0.1,
+ layer_norm_epsilon=1e-5,
+ initializer_range=0.02,
+ summary_type="cls_index",
+ summary_use_proj=True,
+ summary_activation=None,
+ summary_proj_to_labels=True,
+ summary_first_dropout=0.1,
+ use_cache=True,
+ bos_token_id=8192,
+ eos_token_id=8193,
+ feature_size=80,
+ use_attention_bias=True,
+ initializer_factor=1.0,
+ decoder_fixing_codes=[83, 45, 45, 248],
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.max_text_tokens = max_text_tokens
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.n_inner = n_inner
+ self.num_mel_attn_blocks = num_mel_attn_blocks
+ self.activation_function = activation_function
+ self.resid_pdrop = resid_pdrop
+ self.embd_pdrop = embd_pdrop
+ self.attention_dropout = attention_dropout
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_range = initializer_range
+ self.summary_type = summary_type
+ self.summary_use_proj = summary_use_proj
+ self.summary_activation = summary_activation
+ self.summary_first_dropout = summary_first_dropout
+ self.summary_proj_to_labels = summary_proj_to_labels
+ self.use_cache = use_cache
+ self.feature_size = feature_size
+ self.use_attention_bias = use_attention_bias
+ self.initializer_factor = initializer_factor
+ self.decoder_fixing_codes = decoder_fixing_codes
+
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the speech config dict if we are loading from ClvpConfig
+ if config_dict.get("model_type") == "clvp":
+ config_dict = config_dict["decoder_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ClvpConfig(PretrainedConfig):
+ r"""
+ [`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
+ is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
+ decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
+ of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize the CLVP text encoder.
+ speech_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize CLVP speech encoder.
+ decoder_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
+ projection_dim (`int`, *optional*, defaults to 768):
+ Dimentionality of text and speech projection layers.
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLVP implementation.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
+ testing).
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
+
+ >>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
+ >>> configuration = ClvpConfig()
+
+ >>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
+ >>> model = ClvpModelForConditionalGeneration(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
+ >>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
+
+ >>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
+ >>> config_text = ClvpEncoderConfig()
+ >>> config_speech = ClvpEncoderConfig()
+ >>> decoder_config = ClvpDecoderConfig()
+
+ >>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
+ ```"""
+
+ model_type = "clvp"
+ is_composition = True
+
+ def __init__(
+ self,
+ text_config=None,
+ speech_config=None,
+ decoder_config=None,
+ projection_dim=768,
+ logit_scale_init_value=2.6592,
+ initializer_factor=1.0,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ if text_config is None:
+ text_config = {}
+ logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
+
+ if speech_config is None:
+ speech_config = {}
+ logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
+
+ if decoder_config is None:
+ decoder_config = {}
+ logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
+
+ self.text_config = ClvpEncoderConfig(**text_config)
+ self.speech_config = ClvpEncoderConfig(**speech_config)
+ self.decoder_config = ClvpDecoderConfig(**decoder_config)
+
+ self.projection_dim = projection_dim
+ self.logit_scale_init_value = logit_scale_init_value
+ self.initializer_factor = initializer_factor
+
+ @classmethod
+ def from_sub_model_configs(
+ cls,
+ text_config: ClvpEncoderConfig,
+ speech_config: ClvpEncoderConfig,
+ decoder_config: ClvpDecoderConfig,
+ **kwargs,
+ ):
+ r"""
+ Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
+ configuration and CLVP decoder model configuration.
+
+ Args:
+ text_config (`ClvpEncoderConfig`):
+ Text model configuration of type [`ClvpEncoderConfig`].
+ speech_config (`ClvpEncoderConfig`):
+ Speech model configuration of type [`ClvpEncoderConfig`].
+ decoder_config (`ClvpDecoderConfig`):
+ Decoder model configuration of type [`ClvpDecoderConfig`].
+
+ Returns:
+ [`ClvpConfig`]: An instance of a configuration object
+ """
+
+ return cls(
+ text_config=text_config.to_dict(),
+ speech_config=speech_config.to_dict(),
+ decoder_config=decoder_config.to_dict(),
+ **kwargs,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..69741a03f575b8b5900be4b83e9a59e33536789e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/feature_extraction_clvp.py
@@ -0,0 +1,238 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Feature extractor class for CLVP
+"""
+
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...audio_utils import mel_filter_bank, spectrogram, window_function
+from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
+from ...feature_extraction_utils import BatchFeature
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class ClvpFeatureExtractor(SequenceFeatureExtractor):
+ r"""
+ Constructs a CLVP feature extractor.
+
+ This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
+ most of the main methods. Users should refer to this superclass for more information regarding those methods.
+
+ This class extracts log-mel-spectrogram features from raw speech using a custom numpy implementation of the `Short
+ Time Fourier Transform` which should match pytorch's `torch.stft` equivalent.
+
+ Args:
+ feature_size (`int`, *optional*, defaults to 80):
+ The feature dimension of the extracted features.
+ sampling_rate (`int`, *optional*, defaults to 22050):
+ The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
+ default_audio_length (`int`, *optional*, defaults to 6):
+ The default length of raw audio in seconds. If `max_length` is not set during `__call__` then it will
+ automatically be set to default_audio_length * `self.sampling_rate`.
+ hop_length (`int`, *optional*, defaults to 256):
+ Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
+ chunk_length (`int`, *optional*, defaults to 30):
+ The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio
+ sequences.
+ n_fft (`int`, *optional*, defaults to 1024):
+ Size of the Fourier transform.
+ padding_value (`float`, *optional*, defaults to 0.0):
+ Padding value used to pad the audio. Should correspond to silences.
+ mel_norms (`list` of length `feature_size`, *optional*):
+ If `mel_norms` is provided then it will be used to normalize the log-mel spectrograms along each
+ mel-filter.
+ return_attention_mask (`bool`, *optional*, defaults to `False`):
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
+
+ [What are attention masks?](../glossary#attention-mask)
+ """
+
+ model_input_names = ["input_features", "attention_mask"]
+
+ def __init__(
+ self,
+ feature_size=80,
+ sampling_rate=22050,
+ default_audio_length=6,
+ hop_length=256,
+ chunk_length=30,
+ n_fft=1024,
+ padding_value=0.0,
+ mel_norms=None,
+ return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask
+ **kwargs,
+ ):
+ super().__init__(
+ feature_size=feature_size,
+ sampling_rate=sampling_rate,
+ padding_value=padding_value,
+ return_attention_mask=return_attention_mask,
+ **kwargs,
+ )
+ self.n_fft = n_fft
+ self.hop_length = hop_length
+ self.chunk_length = chunk_length
+ self.n_samples = chunk_length * sampling_rate
+ self.nb_max_frames = self.n_samples // hop_length
+ self.sampling_rate = sampling_rate
+ self.default_audio_length = default_audio_length
+ self.mel_norms = mel_norms
+ self.mel_filters = mel_filter_bank(
+ num_frequency_bins=1 + (n_fft // 2),
+ num_mel_filters=feature_size,
+ min_frequency=0.0,
+ max_frequency=8000.0,
+ sampling_rate=sampling_rate,
+ norm="slaney",
+ mel_scale="htk",
+ )
+
+ def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
+ """
+ This method first computes the log-mel spectrogram of the provided audio then applies normalization along the
+ each mel-filterbank, if `mel_norms` is provided.
+ """
+ log_spec = spectrogram(
+ waveform,
+ window_function(self.n_fft, "hann"),
+ frame_length=self.n_fft,
+ hop_length=self.hop_length,
+ power=2.0,
+ mel_filters=self.mel_filters,
+ log_mel=None,
+ )
+
+ log_spec = np.log(np.clip(log_spec, a_min=1e-5, a_max=None))
+
+ if self.mel_norms is not None:
+ log_spec = log_spec / np.array(self.mel_norms)[:, None]
+
+ return log_spec
+
+ def __call__(
+ self,
+ raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
+ sampling_rate: Optional[int] = None,
+ truncation: bool = True,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_attention_mask: Optional[bool] = True,
+ padding: Optional[str] = "max_length",
+ max_length: Optional[int] = None,
+ **kwargs,
+ ) -> BatchFeature:
+ """
+ `ClvpFeatureExtractor` is used to extract various voice specific properties such as the pitch and tone of the
+ voice, speaking speed, and even speaking defects like a lisp or stuttering from a sample voice or `raw_speech`.
+
+ First the voice is padded or truncated in a way such that it becomes a waveform of `self.default_audio_length`
+ seconds long and then the log-mel spectrogram is extracted from it.
+
+ Args:
+ raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
+ The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
+ values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
+ stereo, i.e. single float per timestep.
+ sampling_rate (`int`, *optional*):
+ The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
+ `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
+ pipeline.
+ truncation (`bool`, *optional*, default to `True`):
+ Activates truncation to cut input sequences longer than *max_length* to *max_length*.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value.
+
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
+ return_attention_mask (`bool`, *optional*, defaults to `True`):
+ Whether to return the attention mask. If left to the default, it will return the attention mask.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+ padding_value (`float`, defaults to 0.0):
+ The value that is used to fill the padding values / vectors.
+ max_length (`int`, *optional*):
+ The maximum input length of the inputs.
+ """
+
+ if sampling_rate is not None:
+ if sampling_rate != self.sampling_rate:
+ raise ValueError(
+ f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
+ f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
+ f" was sampled with {self.sampling_rate} and not {sampling_rate}."
+ )
+ else:
+ logger.warning(
+ "It is strongly recommended to pass the `sampling_rate` argument to this function. "
+ "Failing to do so can result in silent errors that might be hard to debug."
+ )
+
+ is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
+ if is_batched_numpy and len(raw_speech.shape) > 2:
+ raise ValueError(f"Only mono-channel audio is supported for input to {self}")
+ is_batched = is_batched_numpy or (
+ isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
+ )
+
+ if is_batched:
+ raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
+ elif not is_batched and not isinstance(raw_speech, np.ndarray):
+ raw_speech = np.asarray(raw_speech, dtype=np.float32)
+ elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
+ raw_speech = raw_speech.astype(np.float32)
+
+ # always return batch
+ if not is_batched:
+ raw_speech = [np.asarray([raw_speech]).T]
+
+ batched_speech = BatchFeature({"input_features": raw_speech})
+
+ max_length = self.default_audio_length * self.sampling_rate if max_length is None else max_length
+
+ padded_inputs = self.pad(
+ batched_speech,
+ padding=padding,
+ max_length=max_length,
+ truncation=truncation,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ # make sure list is in array format
+ input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
+
+ input_features = [
+ self._np_extract_fbank_features(waveform).astype(np.float32) for waveform in input_features[0]
+ ]
+
+ if isinstance(input_features[0], List):
+ padded_inputs["input_features"] = [np.asarray(feature) for feature in input_features]
+ else:
+ padded_inputs["input_features"] = input_features
+
+ return padded_inputs.convert_to_tensors(return_tensors)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..0723986db9757d9ade5719333ad862b09e33685e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/processing_clvp.py
@@ -0,0 +1,91 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Processor class for CLVP
+"""
+
+
+from ...processing_utils import ProcessorMixin
+
+
+class ClvpProcessor(ProcessorMixin):
+ r"""
+ Constructs a CLVP processor which wraps a CLVP Feature Extractor and a CLVP Tokenizer into a single processor.
+
+ [`ClvpProcessor`] offers all the functionalities of [`ClvpFeatureExtractor`] and [`ClvpTokenizer`]. See the
+ [`~ClvpProcessor.__call__`], [`~ClvpProcessor.decode`] and [`~ClvpProcessor.batch_decode`] for more information.
+
+ Args:
+ feature_extractor (`ClvpFeatureExtractor`):
+ An instance of [`ClvpFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer (`ClvpTokenizer`):
+ An instance of [`ClvpTokenizer`]. The tokenizer is a required input.
+ """
+
+ feature_extractor_class = "ClvpFeatureExtractor"
+ tokenizer_class = "ClvpTokenizer"
+ model_input_names = [
+ "input_ids",
+ "input_features",
+ "attention_mask",
+ ]
+
+ def __init__(self, feature_extractor, tokenizer):
+ super().__init__(feature_extractor, tokenizer)
+
+ def __call__(self, *args, **kwargs):
+ """
+ Forwards the `audio` and `sampling_rate` arguments to [`~ClvpFeatureExtractor.__call__`] and the `text`
+ argument to [`~ClvpTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
+ information.
+ """
+
+ raw_speech = kwargs.pop("raw_speech", None)
+ sampling_rate = kwargs.pop("sampling_rate", None)
+ text = kwargs.pop("text", None)
+
+ if raw_speech is None and text is None:
+ raise ValueError("You need to specify either an `raw_speech` or `text` input to process.")
+
+ if raw_speech is not None:
+ inputs = self.feature_extractor(raw_speech, sampling_rate=sampling_rate, **kwargs)
+ if text is not None:
+ encodings = self.tokenizer(text, **kwargs)
+
+ if text is None:
+ return inputs
+ elif raw_speech is None:
+ return encodings
+ else:
+ inputs["input_ids"] = encodings["input_ids"]
+ inputs["attention_mask"] = encodings["attention_mask"]
+ return inputs
+
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.batch_decode with Whisper->Clvp
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ # Copied from transformers.models.whisper.processing_whisper.WhisperProcessor.decode with Whisper->Clvp
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to ClvpTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py
new file mode 100644
index 0000000000000000000000000000000000000000..f09245f94be8c5ee2f35307fb70336c31a3b62c3
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/clvp/tokenization_clvp.py
@@ -0,0 +1,379 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for CLVP."""
+
+import json
+import os
+from functools import lru_cache
+from typing import List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer
+from ...utils import logging
+from .number_normalizer import EnglishNormalizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/vocab.json",
+ },
+ "merges_file": {
+ "clvp_dev": "https://huggingface.co/susnato/clvp_dev/blob/main/merges.txt",
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "clvp_dev": 1024,
+}
+
+
+@lru_cache()
+# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
+def bytes_to_unicode():
+ """
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
+ characters the bpe code barfs on.
+
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
+ tables between utf-8 bytes and unicode strings.
+ """
+ bs = (
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
+ )
+ cs = bs[:]
+ n = 0
+ for b in range(2**8):
+ if b not in bs:
+ bs.append(b)
+ cs.append(2**8 + n)
+ n += 1
+ cs = [chr(n) for n in cs]
+ return dict(zip(bs, cs))
+
+
+# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+ return pairs
+
+
+class ClvpTokenizer(PreTrainedTokenizer):
+ """
+ Construct a CLVP tokenizer. Based on byte-level Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import ClvpTokenizer
+
+ >>> tokenizer = ClvpTokenizer.from_pretrained("susnato/clvp_dev")
+ >>> tokenizer("Hello world")["input_ids"]
+ [62, 84, 28, 2, 179, 79]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [2, 62, 84, 28, 2, 179, 79]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
+ call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
+ The beginning of sequence token.
+ eos_token (`str`, *optional*, defaults to `"[STOP]"`):
+ The end of sequence token.
+ pad_token (`str`, *optional*, defaults to `"[STOP]"`):
+ The pad token of the sequence.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (CLVP tokenizer detect beginning of words by the preceding space).
+ add_bos_token (`bool`, *optional*, defaults to `False`):
+ Whether to add `bos_token` in front of the sequence when add_special_tokens=True.
+ add_eos_token (`bool`, *optional*, defaults to `False`):
+ Whether to add `eos_token` in end of the sequence when add_special_tokens=True.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = [
+ "input_ids",
+ "attention_mask",
+ ]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ errors="replace",
+ unk_token="[UNK]",
+ bos_token="<|endoftext|>",
+ eos_token="[STOP]",
+ pad_token="[STOP]",
+ add_prefix_space=False,
+ add_bos_token=False,
+ add_eos_token=False,
+ **kwargs,
+ ):
+ bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
+ eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
+
+ self.add_bos_token = add_bos_token
+ self.add_eos_token = add_eos_token
+ self._normalizer = None
+
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ self.errors = errors # how to handle errors in decoding
+ self.byte_encoder = bytes_to_unicode()
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ bpe_merges = merges_handle.read().split("\n")[1:-1]
+ bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
+ self.cache = {}
+ self.add_prefix_space = add_prefix_space
+
+ # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
+ self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
+
+ super().__init__(
+ errors=errors,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ add_prefix_space=add_prefix_space,
+ add_bos_token=add_bos_token,
+ add_eos_token=add_eos_token,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return len(self.encoder)
+
+ @property
+ def normalizer(self):
+ if self._normalizer is None:
+ self._normalizer = EnglishNormalizer()
+ return self._normalizer
+
+ def get_vocab(self):
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
+ def bpe(self, token):
+ if token in self.cache:
+ return self.cache[token]
+ word = tuple(token)
+ pairs = get_pairs(word)
+
+ if not pairs:
+ return token
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+ else:
+ new_word.extend(word[i:j])
+ i = j
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = " ".join(word)
+ self.cache[token] = word
+ return word
+
+ # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
+
+ output = bos_token_id + token_ids_0 + eos_token_id
+
+ if token_ids_1 is not None:
+ output = output + bos_token_id + token_ids_1 + eos_token_id
+
+ return output
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_special_tokens_mask
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if not self.add_bos_token:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
+ )
+
+ if token_ids_1 is None:
+ return [1] + ([0] * len(token_ids_0))
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
+
+ def _tokenize(self, text):
+ """Tokenize a string."""
+ bpe_tokens = []
+ text = self.normalizer(text)
+ for token in re.findall(self.pat, text):
+ token = "".join(
+ self.byte_encoder[b] for b in token.encode("utf-8")
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
+
+ # if the token is "Ġ" we replace it with "[SPACE]" (if "[SPACE]" is present in the vocab), otherwise we keep the "Ġ".
+ bpe_tokens.extend(
+ "[SPACE]" if bpe_token == "\u0120" and "[SPACE]" in self.encoder.keys() else bpe_token
+ for bpe_token in self.bpe(token).split(" ")
+ )
+
+ return bpe_tokens
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index)
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ text = "".join(tokens)
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
+ return text
+
+ def clean_up_tokenization(self, text):
+ text = "".join(text)
+ vocab_tokens = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
+
+ text = text.replace("[SPACE]", " ") if "[SPACE]" in vocab_tokens else text
+ text = text.replace("[STOP]", " ") if "[STOP]" in vocab_tokens else text
+
+ text = text.replace(self.unk_token, "").replace(" ", " ").replace(" ", " ")
+ return text
+
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6427aff7be66e83eebc13f6d453fd09fe1d20e13
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/configuration_decision_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/configuration_decision_transformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f52183a3b440816716d0e0fbdcb79981ed0c68c5
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/configuration_decision_transformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/modeling_decision_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/modeling_decision_transformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3b7cf64b8b2e28071944f1f7dc37856717b53ab7
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/decision_transformer/__pycache__/modeling_decision_transformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f7e775431dd0a250dbbb5ca422f1a81be919225
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/__init__.py
@@ -0,0 +1,117 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
+ "tokenization_lxmert": ["LxmertTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_lxmert_fast"] = ["LxmertTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_lxmert"] = [
+ "LxmertEncoder",
+ "LxmertForPreTraining",
+ "LxmertForQuestionAnswering",
+ "LxmertModel",
+ "LxmertPreTrainedModel",
+ "LxmertVisualFeatureEncoder",
+ "LxmertXLayer",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_lxmert"] = [
+ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFLxmertForPreTraining",
+ "TFLxmertMainLayer",
+ "TFLxmertModel",
+ "TFLxmertPreTrainedModel",
+ "TFLxmertVisualFeatureEncoder",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
+ from .tokenization_lxmert import LxmertTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_lxmert_fast import LxmertTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_lxmert import (
+ LxmertEncoder,
+ LxmertForPreTraining,
+ LxmertForQuestionAnswering,
+ LxmertModel,
+ LxmertPreTrainedModel,
+ LxmertVisualFeatureEncoder,
+ LxmertXLayer,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_lxmert import (
+ TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFLxmertForPreTraining,
+ TFLxmertMainLayer,
+ TFLxmertModel,
+ TFLxmertPreTrainedModel,
+ TFLxmertVisualFeatureEncoder,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..226e2e7197a7ee1f14cc104e0a24f3def0fb9688
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_lxmert.py
@@ -0,0 +1,1438 @@
+# coding=utf-8
+# Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch LXMERT model."""
+
+
+import math
+import os
+import warnings
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import CrossEntropyLoss, SmoothL1Loss
+
+from ...activations import ACT2FN, gelu
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_lxmert import LxmertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
+_CONFIG_FOR_DOC = "LxmertConfig"
+
+LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "unc-nlp/lxmert-base-uncased",
+]
+
+
+class GeLU(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x):
+ return gelu(x)
+
+
+@dataclass
+class LxmertModelOutput(ModelOutput):
+ """
+ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
+ visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
+ encoder")
+
+
+ Args:
+ language_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the language encoder.
+ vision_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the visual encoder.
+ pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
+ by a Linear layer and a Tanh activation function. The Linear
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ language_output: Optional[torch.FloatTensor] = None
+ vision_output: Optional[torch.FloatTensor] = None
+ pooled_output: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class LxmertForQuestionAnsweringOutput(ModelOutput):
+ """
+ Output type of [`LxmertForQuestionAnswering`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.k.
+ question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`, *optional*):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ question_answering_score: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class LxmertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`LxmertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ cross_relationship_score (`torch.FloatTensor` of shape `(batch_size, 2)`):
+ Prediction scores of the textual matching objective (classification) head (scores of True/False
+ continuation before SoftMax).
+ question_answering_score (`torch.FloatTensor` of shape `(batch_size, n_qa_answers)`):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for input features + one for the output of each cross-modality layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ prediction_logits: Optional[torch.FloatTensor] = None
+ cross_relationship_score: Optional[torch.FloatTensor] = None
+ question_answering_score: Optional[torch.FloatTensor] = None
+ language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ language_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ vision_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array)
+
+ for name, array in zip(names, arrays):
+ name = name.split("/")
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(
+ n
+ in [
+ "adam_v",
+ "adam_m",
+ "AdamWeightDecayOptimizer",
+ "AdamWeightDecayOptimizer_1",
+ "global_step",
+ ]
+ for n in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ elif scope_names[0] == "output_weights":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "squad":
+ pointer = getattr(pointer, "classifier")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ except AttributeError:
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ if m_name[-11:] == "_embeddings":
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ assert pointer.shape == array.shape
+ except AssertionError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ return model
+
+
+class LxmertEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, input_ids, token_type_ids=None, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ device = input_ids.device
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+ device = inputs_embeds.device
+ seq_length = input_shape[1]
+
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
+ position_ids = position_ids.unsqueeze(0).expand(input_shape)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + position_embeddings + token_type_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class LxmertAttention(nn.Module):
+ def __init__(self, config, ctx_dim=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.head_size = self.num_attention_heads * self.attention_head_size
+
+ # visual_dim = 2048
+ if ctx_dim is None:
+ ctx_dim = config.hidden_size
+ self.query = nn.Linear(config.hidden_size, self.head_size)
+ self.key = nn.Linear(ctx_dim, self.head_size)
+ self.value = nn.Linear(ctx_dim, self.head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(self, hidden_states, context, attention_mask=None, output_attentions=False):
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(context)
+ mixed_value_layer = self.value(context)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+ key_layer = self.transpose_for_scores(mixed_key_layer)
+ value_layer = self.transpose_for_scores(mixed_value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
+ if attention_mask is not None:
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+
+class LxmertAttentionOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LxmertCrossAttentionLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.att = LxmertAttention(config)
+ self.output = LxmertAttentionOutput(config)
+
+ def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False):
+ output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions=output_attentions)
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.output(output[0], input_tensor)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+
+class LxmertSelfAttentionLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = LxmertAttention(config)
+ self.output = LxmertAttentionOutput(config)
+
+ def forward(self, input_tensor, attention_mask, output_attentions=False):
+ # Self attention attends to itself, thus keys and queries are the same (input_tensor).
+ output = self.self(
+ input_tensor,
+ input_tensor,
+ attention_mask,
+ output_attentions=output_attentions,
+ )
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.output(output[0], input_tensor)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+
+class LxmertIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+class LxmertOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LxmertLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.attention = LxmertSelfAttentionLayer(config)
+ self.intermediate = LxmertIntermediate(config)
+ self.output = LxmertOutput(config)
+
+ def forward(self, hidden_states, attention_mask=None, output_attentions=False):
+ outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions)
+ attention_output = outputs[0]
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ outputs = (layer_output,) + outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class LxmertXLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # The cross-attention Layer
+ self.visual_attention = LxmertCrossAttentionLayer(config)
+
+ # Self-attention Layers
+ self.lang_self_att = LxmertSelfAttentionLayer(config)
+ self.visn_self_att = LxmertSelfAttentionLayer(config)
+
+ # Intermediate and Output Layers (FFNs)
+ self.lang_inter = LxmertIntermediate(config)
+ self.lang_output = LxmertOutput(config)
+ self.visn_inter = LxmertIntermediate(config)
+ self.visn_output = LxmertOutput(config)
+
+ def cross_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visual_input,
+ visual_attention_mask,
+ output_x_attentions=False,
+ ):
+ # Cross Attention
+ lang_att_output = self.visual_attention(
+ lang_input,
+ visual_input,
+ ctx_att_mask=visual_attention_mask,
+ output_attentions=output_x_attentions,
+ )
+ visual_att_output = self.visual_attention(
+ visual_input,
+ lang_input,
+ ctx_att_mask=lang_attention_mask,
+ output_attentions=False,
+ )
+ return lang_att_output, visual_att_output
+
+ def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask):
+ # Self Attention
+ lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False)
+ visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False)
+ return lang_att_output[0], visual_att_output[0]
+
+ def output_fc(self, lang_input, visual_input):
+ # FC layers
+ lang_inter_output = self.lang_inter(lang_input)
+ visual_inter_output = self.visn_inter(visual_input)
+
+ # Layer output
+ lang_output = self.lang_output(lang_inter_output, lang_input)
+ visual_output = self.visn_output(visual_inter_output, visual_input)
+
+ return lang_output, visual_output
+
+ def forward(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions=False,
+ ):
+ lang_att_output, visual_att_output = self.cross_att(
+ lang_input=lang_feats,
+ lang_attention_mask=lang_attention_mask,
+ visual_input=visual_feats,
+ visual_attention_mask=visual_attention_mask,
+ output_x_attentions=output_attentions,
+ )
+ attention_probs = lang_att_output[1:]
+ lang_att_output, visual_att_output = self.self_att(
+ lang_att_output[0],
+ lang_attention_mask,
+ visual_att_output[0],
+ visual_attention_mask,
+ )
+
+ lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output)
+ return (
+ (
+ lang_output,
+ visual_output,
+ attention_probs[0],
+ )
+ if output_attentions
+ else (lang_output, visual_output)
+ )
+
+
+class LxmertVisualFeatureEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ feat_dim = config.visual_feat_dim
+ pos_dim = config.visual_pos_dim
+
+ # Object feature encoding
+ self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
+ self.visn_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ # Box position encoding
+ self.box_fc = nn.Linear(pos_dim, config.hidden_size)
+ self.box_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, visual_feats, visual_pos):
+ x = self.visn_fc(visual_feats)
+ x = self.visn_layer_norm(x)
+ y = self.box_fc(visual_pos)
+ y = self.box_layer_norm(y)
+ output = (x + y) / 2
+
+ output = self.dropout(output)
+ return output
+
+
+class LxmertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ # Obj-level image embedding layer
+ self.visn_fc = LxmertVisualFeatureEncoder(config)
+ self.config = config
+
+ # Number of layers
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+
+ # Layers
+ # Using self.layer instead of self.l_layer to support loading BERT weights.
+ self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)])
+ self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)])
+ self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)])
+
+ def forward(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_pos,
+ visual_attention_mask=None,
+ output_attentions=None,
+ ):
+ vision_hidden_states = ()
+ language_hidden_states = ()
+ vision_attentions = () if output_attentions or self.config.output_attentions else None
+ language_attentions = () if output_attentions or self.config.output_attentions else None
+ cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
+
+ visual_feats = self.visn_fc(visual_feats, visual_pos)
+
+ # Run language layers
+ for layer_module in self.layer:
+ l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions)
+ lang_feats = l_outputs[0]
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if language_attentions is not None:
+ language_attentions = language_attentions + (l_outputs[1],)
+
+ # Run relational layers
+ for layer_module in self.r_layers:
+ v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions)
+ visual_feats = v_outputs[0]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ if vision_attentions is not None:
+ vision_attentions = vision_attentions + (v_outputs[1],)
+
+ # Run cross-modality layers
+ for layer_module in self.x_layers:
+ x_outputs = layer_module(
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions=output_attentions,
+ )
+ lang_feats, visual_feats = x_outputs[:2]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if cross_encoder_attentions is not None:
+ cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
+ visual_encoder_outputs = (
+ vision_hidden_states,
+ vision_attentions if output_attentions else None,
+ )
+ lang_encoder_outputs = (
+ language_hidden_states,
+ language_attentions if output_attentions else None,
+ )
+ return (
+ visual_encoder_outputs,
+ lang_encoder_outputs,
+ cross_encoder_attentions if output_attentions else None,
+ )
+
+
+class LxmertPooler(nn.Module):
+ def __init__(self, config):
+ super(LxmertPooler, self).__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class LxmertPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super(LxmertPredictionHeadTransform, self).__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class LxmertLMPredictionHead(nn.Module):
+ def __init__(self, config, lxmert_model_embedding_weights):
+ super(LxmertLMPredictionHead, self).__init__()
+ self.transform = LxmertPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(
+ lxmert_model_embedding_weights.size(1),
+ lxmert_model_embedding_weights.size(0),
+ bias=False,
+ )
+ self.decoder.weight = lxmert_model_embedding_weights
+ self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0)))
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states) + self.bias
+ return hidden_states
+
+
+class LxmertVisualAnswerHead(nn.Module):
+ def __init__(self, config, num_labels):
+ super().__init__()
+ hid_dim = config.hidden_size
+ self.logit_fc = nn.Sequential(
+ nn.Linear(hid_dim, hid_dim * 2),
+ GeLU(),
+ nn.LayerNorm(hid_dim * 2, eps=1e-12),
+ nn.Linear(hid_dim * 2, num_labels),
+ )
+
+ def forward(self, hidden_states):
+ return self.logit_fc(hidden_states)
+
+
+class LxmertVisualObjHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = LxmertPredictionHeadTransform(config)
+ # Decide the use of visual losses
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ }
+ self.visual_losses = visual_losses
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder_dict = nn.ModuleDict(
+ {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses}
+ )
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ output = {}
+ for key in self.visual_losses:
+ output[key] = self.decoder_dict[key](hidden_states)
+ return output
+
+
+class LxmertPreTrainingHeads(nn.Module):
+ def __init__(self, config, lxmert_model_embedding_weights):
+ super(LxmertPreTrainingHeads, self).__init__()
+ self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights)
+ self.seq_relationship = nn.Linear(config.hidden_size, 2)
+
+ def forward(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+
+class LxmertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LxmertConfig
+ load_tf_weights = load_tf_weights_in_lxmert
+ base_model_prefix = "lxmert"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+LXMERT_START_DOCSTRING = r"""
+
+ The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
+ Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
+ model, pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MSCOCO captions, and Visual
+ genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
+ for question answering attribute prediction, and object tag prediction.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LXMERT_INPUTS_DOCSTRING = r"""
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ visual_feats (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents visual features. They ROI pooled object features from bounding boxes using a
+ faster-RCNN model)
+
+ These are currently not provided by the transformers library.
+ visual_pos (`torch.FloatTensor` of shape `(batch_size, num_visual_features, visual_pos_dim)`):
+ This input represents spacial features corresponding to their relative (via index) visual features. The
+ pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
+ 1.
+
+ These are currently not provided by the transformers library.
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ visual_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertModel(LxmertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.embeddings = LxmertEmbeddings(config)
+ self.encoder = LxmertEncoder(config)
+ self.pooler = LxmertPooler(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embeddings.word_embeddings = new_embeddings
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LxmertModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[LxmertModelOutput, Tuple[torch.FloatTensor]]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if visual_feats is None:
+ raise ValueError("`visual_feats` cannot be `None`")
+ if visual_pos is None:
+ raise ValueError("`visual_pos` cannot be `None`")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and the dtype's smallest value for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
+
+ # Process the visual attention mask
+ if visual_attention_mask is not None:
+ extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2)
+ extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype)
+ extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * torch.finfo(self.dtype).min
+ else:
+ extended_visual_attention_mask = None
+
+ # Positional Word Embeddings
+ embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds)
+
+ # Run Lxmert encoder
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ visual_attention_mask=extended_visual_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
+ vision_hidden_states = visual_encoder_outputs[0]
+ language_hidden_states = lang_encoder_outputs[0]
+
+ all_attentions = ()
+ if output_attentions:
+ language_attentions = lang_encoder_outputs[1]
+ vision_attentions = visual_encoder_outputs[1]
+ cross_encoder_attentions = encoder_outputs[2]
+ all_attentions = (
+ language_attentions,
+ vision_attentions,
+ cross_encoder_attentions,
+ )
+
+ hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
+
+ visual_output = vision_hidden_states[-1]
+ lang_output = language_hidden_states[-1]
+ pooled_output = self.pooler(lang_output)
+
+ if not return_dict:
+ return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
+
+ return LxmertModelOutput(
+ pooled_output=pooled_output,
+ language_output=lang_output,
+ vision_output=visual_output,
+ language_hidden_states=language_hidden_states if output_hidden_states else None,
+ vision_hidden_states=vision_hidden_states if output_hidden_states else None,
+ language_attentions=language_attentions if output_attentions else None,
+ vision_attentions=vision_attentions if output_attentions else None,
+ cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
+ )
+
+
+@add_start_docstrings(
+ """Lxmert Model with a specified pretraining head on top.""",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertForPreTraining(LxmertPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ # Configuration
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Use of pretraining tasks
+ self.task_mask_lm = config.task_mask_lm
+ self.task_obj_predict = config.task_obj_predict
+ self.task_matched = config.task_matched
+ self.task_qa = config.task_qa
+
+ # Lxmert backbone
+ self.lxmert = LxmertModel(config)
+
+ # Pre-training heads
+ self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight)
+ if self.task_obj_predict:
+ self.obj_predict_head = LxmertVisualObjHead(config)
+ if self.task_qa:
+ self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
+
+ # Weight initialization
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Loss functions
+ self.loss_fcts = {
+ "l2": SmoothL1Loss(reduction="none"),
+ "visual_ce": CrossEntropyLoss(reduction="none"),
+ "ce": CrossEntropyLoss(),
+ }
+
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {
+ "shape": (-1,),
+ "num": config.num_object_labels,
+ "loss": "visual_ce",
+ }
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {
+ "shape": (-1,),
+ "num": config.num_attr_labels,
+ "loss": "visual_ce",
+ }
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ "loss": "l2",
+ }
+ self.visual_losses = visual_losses
+
+ def resize_num_qa_labels(self, num_labels):
+ """
+ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
+ will add newly initialized weights. Reducing the size will remove weights from the end
+
+ Args:
+ num_labels (`int`, *optional*):
+ New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
+ weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
+ returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
+
+ Return:
+ `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
+ """
+
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ if num_labels is None or cur_qa_logit_layer is None:
+ return
+ new_qa_logit_layer = self._resize_qa_labels(num_labels)
+ self.config.num_qa_labels = num_labels
+ self.num_qa_labels = num_labels
+
+ return new_qa_logit_layer
+
+ def _resize_qa_labels(self, num_labels):
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
+ self._set_qa_logit_layer(new_qa_logit_layer)
+ return self.get_qa_logit_layer()
+
+ def get_qa_logit_layer(self) -> nn.Module:
+ """
+ Returns the linear layer that produces question answering logits.
+
+ Returns:
+ `nn.Module`: A torch module mapping the question answering prediction hidden states or `None` if LXMERT
+ does not have a visual answering head.
+ """
+ if hasattr(self, "answer_head"):
+ return self.answer_head.logit_fc[-1]
+
+ def _set_qa_logit_layer(self, qa_logit_layer):
+ self.answer_head.logit_fc[-1] = qa_logit_layer
+
+ def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
+ if num_labels is None:
+ return cur_qa_logit_layer
+
+ cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
+ if cur_qa_labels == num_labels:
+ return cur_qa_logit_layer
+
+ # Build new linear output
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
+ else:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
+
+ new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
+
+ # initialize all new labels
+ self._init_weights(new_qa_logit_layer)
+
+ # Copy labels from the previous weights
+ num_labels_to_copy = min(cur_qa_labels, num_labels)
+ new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
+
+ return new_qa_logit_layer
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=LxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ obj_labels: Optional[Dict[str, Tuple[torch.FloatTensor, torch.FloatTensor]]] = None,
+ matched_label: Optional[torch.LongTensor] = None,
+ ans: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **kwargs,
+ ) -> Union[LxmertForPreTrainingOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ obj_labels (`Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]`, *optional*):
+ each key is named after each one of the visual losses and each element of the tuple is of the shape
+ `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
+ the label score respectively
+ matched_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the whether or not the text input matches the image (classification) loss. Input
+ should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates that the sentence does not match the image,
+ - 1 indicates that the sentence does match the image.
+ ans (`Torch.Tensor` of shape `(batch_size)`, *optional*):
+ a one hot representation hof the correct answer *optional*
+
+ Returns:
+ """
+
+ if "masked_lm_labels" in kwargs:
+ warnings.warn(
+ "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels`"
+ " instead.",
+ FutureWarning,
+ )
+ labels = kwargs.pop("masked_lm_labels")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+ lxmert_output = self.lxmert(
+ input_ids=input_ids,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ token_type_ids=token_type_ids,
+ attention_mask=attention_mask,
+ visual_attention_mask=visual_attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ lang_output, visual_output, pooled_output = (
+ lxmert_output[0],
+ lxmert_output[1],
+ lxmert_output[2],
+ )
+ lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
+ if self.task_qa:
+ answer_score = self.answer_head(pooled_output)
+ else:
+ answer_score = pooled_output[0][0]
+
+ total_loss = (
+ None
+ if (labels is None and matched_label is None and obj_labels is None and ans is None)
+ else torch.tensor(0.0, device=device)
+ )
+ if labels is not None and self.task_mask_lm:
+ masked_lm_loss = self.loss_fcts["ce"](
+ lang_prediction_scores.view(-1, self.config.vocab_size),
+ labels.view(-1),
+ )
+ total_loss += masked_lm_loss
+ if matched_label is not None and self.task_matched:
+ matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1))
+ total_loss += matched_loss
+ if obj_labels is not None and self.task_obj_predict:
+ total_visual_loss = torch.tensor(0.0, device=input_ids.device)
+ visual_prediction_scores_dict = self.obj_predict_head(visual_output)
+ for key, key_info in self.visual_losses.items():
+ label, mask_conf = obj_labels[key]
+ output_dim = key_info["num"]
+ loss_fct_name = key_info["loss"]
+ label_shape = key_info["shape"]
+ weight = self.visual_loss_normalizer
+ visual_loss_fct = self.loss_fcts[loss_fct_name]
+ visual_prediction_scores = visual_prediction_scores_dict[key]
+ visual_loss = visual_loss_fct(
+ visual_prediction_scores.view(-1, output_dim),
+ label.view(label_shape),
+ )
+ if visual_loss.dim() > 1: # Regression Losses
+ visual_loss = visual_loss.mean(1)
+ visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight
+ total_visual_loss += visual_loss
+ total_loss += total_visual_loss
+ if ans is not None and self.task_qa:
+ answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1))
+ total_loss += answer_loss
+
+ if not return_dict:
+ output = (
+ lang_prediction_scores,
+ cross_relationship_score,
+ answer_score,
+ ) + lxmert_output[3:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return LxmertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=lang_prediction_scores,
+ cross_relationship_score=cross_relationship_score,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ """Lxmert Model with a visual-answering head on top for downstream QA tasks""",
+ LXMERT_START_DOCSTRING,
+)
+class LxmertForQuestionAnswering(LxmertPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ # Configuration
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Lxmert backbone
+ self.lxmert = LxmertModel(config)
+
+ self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels)
+
+ # Weight initialization
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Loss function
+ self.loss = CrossEntropyLoss()
+
+ def resize_num_qa_labels(self, num_labels):
+ """
+ Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size
+ will add newly initialized weights. Reducing the size will remove weights from the end
+
+ Args:
+ num_labels (`int`, *optional*):
+ New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized
+ weights at the end. Reducing the size will remove weights from the end. If not provided or `None`, just
+ returns a pointer to the qa labels ``torch.nn.Linear``` module of the model without doing anything.
+
+ Return:
+ `torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer
+ """
+
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ if num_labels is None or cur_qa_logit_layer is None:
+ return
+ new_qa_logit_layer = self._resize_qa_labels(num_labels)
+ self.config.num_qa_labels = num_labels
+ self.num_qa_labels = num_labels
+
+ return new_qa_logit_layer
+
+ def _resize_qa_labels(self, num_labels):
+ cur_qa_logit_layer = self.get_qa_logit_layer()
+ new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels)
+ self._set_qa_logit_layer(new_qa_logit_layer)
+ return self.get_qa_logit_layer()
+
+ def get_qa_logit_layer(self) -> nn.Module:
+ """
+ Returns the linear layer that produces question answering logits
+
+ Returns:
+ `nn.Module`: A torch module mapping the question answering prediction hidden states. `None`: A NoneType
+ object if Lxmert does not have the visual answering head.
+ """
+
+ if hasattr(self, "answer_head"):
+ return self.answer_head.logit_fc[-1]
+
+ def _set_qa_logit_layer(self, qa_logit_layer):
+ self.answer_head.logit_fc[-1] = qa_logit_layer
+
+ def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels):
+ if num_labels is None:
+ return cur_qa_logit_layer
+
+ cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size()
+ if cur_qa_labels == num_labels:
+ return cur_qa_logit_layer
+
+ # Build new linear output
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels)
+ else:
+ new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False)
+
+ new_qa_logit_layer.to(cur_qa_logit_layer.weight.device)
+
+ # initialize all new labels
+ self._init_weights(new_qa_logit_layer)
+
+ # Copy labels from the previous weights
+ num_labels_to_copy = min(cur_qa_labels, num_labels)
+ new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :]
+ if getattr(cur_qa_logit_layer, "bias", None) is not None:
+ new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy]
+
+ return new_qa_logit_layer
+
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=LxmertForQuestionAnsweringOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ visual_feats: Optional[torch.FloatTensor] = None,
+ visual_pos: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ visual_attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[LxmertForQuestionAnsweringOutput, Tuple[torch.FloatTensor]]:
+ r"""
+ labels (`Torch.Tensor` of shape `(batch_size)`, *optional*):
+ A one-hot representation of the correct answer
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ lxmert_output = self.lxmert(
+ input_ids=input_ids,
+ visual_feats=visual_feats,
+ visual_pos=visual_pos,
+ token_type_ids=token_type_ids,
+ attention_mask=attention_mask,
+ visual_attention_mask=visual_attention_mask,
+ inputs_embeds=inputs_embeds,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ pooled_output = lxmert_output[2]
+ answer_score = self.answer_head(pooled_output)
+ loss = None
+ if labels is not None:
+ loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (answer_score,) + lxmert_output[3:]
+ return (loss,) + output if loss is not None else output
+
+ return LxmertForQuestionAnsweringOutput(
+ loss=loss,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..22ce04a0011bf2724df1779bed03b2b5d18bcd45
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/modeling_tf_lxmert.py
@@ -0,0 +1,1657 @@
+# coding=utf-8
+# Copyright 2018 The Google AI Language Team Authors, The HuggingFace Inc. team, and the
+# Lxmert Authors.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 LXMERT model."""
+
+
+from __future__ import annotations
+
+import warnings
+from dataclasses import dataclass
+from typing import Dict, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_utils import (
+ TFModelInputType,
+ TFPreTrainedModel,
+ get_initializer,
+ keras,
+ keras_serializable,
+ shape_list,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, stable_softmax
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_lxmert import LxmertConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "unc-nlp/lxmert-base-uncased"
+_CONFIG_FOR_DOC = "LxmertConfig"
+
+TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "unc-nlp/lxmert-base-uncased",
+]
+
+
+@dataclass
+class TFLxmertModelOutput(ModelOutput):
+ """
+ Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language,
+ visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship"
+ encoder")
+
+
+ Args:
+ language_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the language encoder.
+ vision_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the visual encoder.
+ pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`):
+ Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed
+ by a Linear layer and a Tanh activation function. The Linear
+ language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ """
+
+ language_output: tf.Tensor | None = None
+ vision_output: tf.Tensor | None = None
+ pooled_output: tf.Tensor | None = None
+ language_hidden_states: Tuple[tf.Tensor] | None = None
+ vision_hidden_states: Tuple[tf.Tensor] | None = None
+ language_attentions: Tuple[tf.Tensor] | None = None
+ vision_attentions: Tuple[tf.Tensor] | None = None
+ cross_encoder_attentions: Tuple[tf.Tensor] | None = None
+
+
+@dataclass
+class TFLxmertForPreTrainingOutput(ModelOutput):
+ """
+ Output type of [`LxmertForPreTraining`].
+
+ Args:
+ loss (*optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
+ Total loss as the sum of the masked language modeling loss and the next sequence prediction
+ (classification) loss.
+ prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+ cross_relationship_score (`tf.Tensor` of shape `(batch_size, 2)`):
+ Prediction scores of the textual matching objective (classification) head (scores of True/False
+ continuation before SoftMax).
+ question_answering_score (`tf.Tensor` of shape `(batch_size, n_qa_answers)`):
+ Prediction scores of question answering objective (classification).
+ language_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `tf.Tensor` (one for input features + one for the output of each cross-modality layer) of shape
+ `(batch_size, sequence_length, hidden_size)`.
+ language_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_encoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+
+ """
+
+ loss: tf.Tensor | None = None
+ prediction_logits: tf.Tensor | None = None
+ cross_relationship_score: tf.Tensor | None = None
+ question_answering_score: tf.Tensor | None = None
+ language_hidden_states: Tuple[tf.Tensor] | None = None
+ vision_hidden_states: Tuple[tf.Tensor] | None = None
+ language_attentions: Tuple[tf.Tensor] | None = None
+ vision_attentions: Tuple[tf.Tensor] | None = None
+ cross_encoder_attentions: Tuple[tf.Tensor] | None = None
+
+
+class TFLxmertVisualFeatureEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ # Object feature encoding
+ self.visn_fc = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="visn_fc",
+ )
+ self.visn_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="visn_layer_norm")
+
+ # Box position encoding
+ self.box_fc = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="box_fc",
+ )
+ self.box_layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="box_layer_norm")
+
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.feat_dim = config.visual_feat_dim
+ self.pos_dim = config.visual_pos_dim
+ self.config = config
+
+ def call(self, visn_input, training=False):
+ feats, boxes = visn_input
+
+ x = self.visn_fc(feats)
+ x = self.visn_layer_norm(x)
+ y = self.box_fc(boxes)
+ y = self.box_layer_norm(y)
+ output = (x + y) / 2
+
+ output = self.dropout(output, training=training)
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visn_fc", None) is not None:
+ with tf.name_scope(self.visn_fc.name):
+ self.visn_fc.build([None, None, self.feat_dim])
+ if getattr(self, "visn_layer_norm", None) is not None:
+ with tf.name_scope(self.visn_layer_norm.name):
+ self.visn_layer_norm.build([None, None, self.config.hidden_size])
+ if getattr(self, "box_fc", None) is not None:
+ with tf.name_scope(self.box_fc.name):
+ self.box_fc.build([None, None, self.pos_dim])
+ if getattr(self, "box_layer_norm", None) is not None:
+ with tf.name_scope(self.box_layer_norm.name):
+ self.box_layer_norm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertEmbeddings(keras.layers.Layer):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+ self.max_position_embeddings = config.max_position_embeddings
+ self.initializer_range = config.initializer_range
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
+
+ def build(self, input_shape=None):
+ with tf.name_scope("word_embeddings"):
+ self.weight = self.add_weight(
+ name="weight",
+ shape=[self.config.vocab_size, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ with tf.name_scope("token_type_embeddings"):
+ self.token_type_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.config.type_vocab_size, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ with tf.name_scope("position_embeddings"):
+ self.position_embeddings = self.add_weight(
+ name="embeddings",
+ shape=[self.max_position_embeddings, self.hidden_size],
+ initializer=get_initializer(initializer_range=self.initializer_range),
+ )
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+ def call(self, input_ids=None, token_type_ids=None, inputs_embeds=None, training=False):
+ """
+ Applies embedding based on inputs tensor.
+
+ Returns:
+ final_embeddings (`tf.Tensor`): output embedding tensor.
+ """
+ assert not (input_ids is None and inputs_embeds is None)
+
+ if input_ids is not None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
+
+ input_shape = shape_list(inputs_embeds)[:-1]
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(dims=input_shape, value=0)
+
+ position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
+ position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
+ token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
+ final_embeddings = inputs_embeds + position_embeds + token_type_embeds
+ final_embeddings = self.LayerNorm(inputs=final_embeddings)
+ final_embeddings = self.dropout(inputs=final_embeddings, training=training)
+
+ return final_embeddings
+
+
+class TFLxmertAttention(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ if config.hidden_size % config.num_attention_heads != 0:
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads}"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ assert config.hidden_size % config.num_attention_heads == 0
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="query",
+ )
+ self.key = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="key",
+ )
+ self.value = keras.layers.Dense(
+ self.all_head_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="value",
+ )
+
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
+ self.ctx_dim = config.hidden_size
+ self.config = config
+
+ def transpose_for_scores(self, x, batch_size):
+ # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
+ x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
+ return tf.transpose(x, perm=[0, 2, 1, 3])
+
+ def call(self, hidden_states, context, attention_mask, output_attentions, training=False):
+ batch_size = shape_list(hidden_states)[0]
+ mixed_query_layer = self.query(hidden_states)
+ mixed_key_layer = self.key(context)
+ mixed_value_layer = self.value(context)
+
+ query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
+ key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
+ value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = tf.matmul(
+ query_layer, key_layer, transpose_b=True
+ ) # (batch size, num_heads, seq_len_q, seq_len_k)
+ dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores
+ attention_scores = attention_scores / tf.math.sqrt(dk)
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in TFLxmertModel call() function)
+ attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs, training=training)
+ context_layer = tf.matmul(attention_probs, value_layer)
+
+ context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
+ context_layer = tf.reshape(
+ context_layer, (batch_size, -1, self.all_head_size)
+ ) # (batch_size, seq_len_q, all_head_size)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.ctx_dim])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.ctx_dim])
+
+
+class TFLxmertIntermediate(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.intermediate_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.intermediate_act_fn = config.hidden_act
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertAttentionOutput(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertSelfAttentionLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.self = TFLxmertAttention(config, name="self")
+ self.attention_output = TFLxmertAttentionOutput(config, name="output")
+
+ def call(self, input_tensor, attention_mask, output_attentions, training=False):
+ # Self attention attends to itself, thus keys and queries are the same (input_tensor).
+ self_output = self.self(input_tensor, input_tensor, attention_mask, output_attentions)
+ if output_attentions:
+ attention_probs = self_output[1]
+ attention_output = self.attention_output(self_output[0], input_tensor)
+ return (attention_output, attention_probs) if output_attentions else (attention_output,)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self", None) is not None:
+ with tf.name_scope(self.self.name):
+ self.self.build(None)
+ if getattr(self, "attention_output", None) is not None:
+ with tf.name_scope(self.attention_output.name):
+ self.attention_output.build(None)
+
+
+class TFLxmertCrossAttentionLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.att = TFLxmertAttention(config, name="att")
+ self.attention_output = TFLxmertAttentionOutput(config, name="output")
+
+ def call(
+ self,
+ input_tensor,
+ ctx_tensor,
+ ctx_att_mask,
+ output_attentions=False,
+ training=False,
+ ):
+ output = self.att(input_tensor, ctx_tensor, ctx_att_mask, output_attentions, training=training)
+ if output_attentions:
+ attention_probs = output[1]
+ attention_output = self.attention_output(output[0], input_tensor, training=training)
+ outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "att", None) is not None:
+ with tf.name_scope(self.att.name):
+ self.att.build(None)
+ if getattr(self, "attention_output", None) is not None:
+ with tf.name_scope(self.attention_output.name):
+ self.attention_output.build(None)
+
+
+class TFLxmertLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.attention = TFLxmertSelfAttentionLayer(config, name="attention")
+ self.intermediate = TFLxmertIntermediate(config, name="intermediate")
+ self.transformer_output = TFLxmertOutput(config, name="output")
+
+ def call(self, hidden_states, attention_mask, output_attentions, training=False):
+ attention_outputs = self.attention(hidden_states, attention_mask, output_attentions, training=training)
+ attention_output = attention_outputs[0]
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.transformer_output(intermediate_output, attention_output, training=training)
+ outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "transformer_output", None) is not None:
+ with tf.name_scope(self.transformer_output.name):
+ self.transformer_output.build(None)
+
+
+class TFLxmertXLayer(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.visual_attention = TFLxmertCrossAttentionLayer(config, name="visual_attention")
+
+ # Self-attention Layers
+ self.lang_self_att = TFLxmertSelfAttentionLayer(config, name="lang_self_att")
+ self.visn_self_att = TFLxmertSelfAttentionLayer(config, name="visn_self_att")
+
+ # Intermediate and Output Layers (FFNs)
+ self.lang_inter = TFLxmertIntermediate(config, name="lang_inter")
+ self.lang_output = TFLxmertOutput(config, name="lang_output")
+ self.visn_inter = TFLxmertIntermediate(config, name="visn_inter")
+ self.visn_output = TFLxmertOutput(config, name="visn_output")
+
+ def cross_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visn_input,
+ visn_attention_mask,
+ output_attentions,
+ training=False,
+ ):
+ # Cross Attention
+
+ # Keras saving and loading model *does not work* with the same inputs for two layers.
+ lang_attention_lang_input = tf.identity(lang_input)
+ visn_attention_lang_input = tf.identity(lang_input)
+ lang_attention_visn_input = tf.identity(visn_input)
+ visn_attention_visn_input = tf.identity(visn_input)
+
+ lang_att_output = self.visual_attention(
+ lang_attention_lang_input,
+ lang_attention_visn_input,
+ visn_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ visn_att_output = self.visual_attention(
+ visn_attention_visn_input,
+ visn_attention_lang_input,
+ lang_attention_mask,
+ output_attentions=output_attentions,
+ training=training,
+ )
+ return lang_att_output, visn_att_output
+
+ def self_att(
+ self,
+ lang_input,
+ lang_attention_mask,
+ visn_input,
+ visn_attention_mask,
+ training=False,
+ ):
+ # Self Attention
+ output_attentions = False
+ lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions, training=training)
+ visn_att_output = self.visn_self_att(visn_input, visn_attention_mask, output_attentions, training=training)
+ return lang_att_output[0], visn_att_output[0]
+
+ def output_fc(self, lang_input, visn_input, training=False):
+ # FC layers
+ lang_inter_output = self.lang_inter(lang_input)
+ visn_inter_output = self.visn_inter(visn_input)
+
+ # Layer output
+ lang_output = self.lang_output(lang_inter_output, lang_input, training)
+ visn_output = self.visn_output(visn_inter_output, visn_input, training)
+ return lang_output, visn_output
+
+ def call(
+ self,
+ lang_feats,
+ lang_attention_mask,
+ visn_feats,
+ visn_attention_mask,
+ output_attentions,
+ training=False,
+ ):
+ lang_att_output = lang_feats
+ visn_att_output = visn_feats
+
+ lang_att_output, visn_att_output = self.cross_att(
+ lang_att_output,
+ lang_attention_mask,
+ visn_att_output,
+ visn_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ attention_probs = lang_att_output[1:]
+ lang_att_output, visn_att_output = self.self_att(
+ lang_att_output[0],
+ lang_attention_mask,
+ visn_att_output[0],
+ visn_attention_mask,
+ training=training,
+ )
+ lang_output, visn_output = self.output_fc(lang_att_output, visn_att_output, training=training)
+
+ return (lang_output, visn_output, attention_probs[0]) if output_attentions else (lang_output, visn_output)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visual_attention", None) is not None:
+ with tf.name_scope(self.visual_attention.name):
+ self.visual_attention.build(None)
+ if getattr(self, "lang_self_att", None) is not None:
+ with tf.name_scope(self.lang_self_att.name):
+ self.lang_self_att.build(None)
+ if getattr(self, "visn_self_att", None) is not None:
+ with tf.name_scope(self.visn_self_att.name):
+ self.visn_self_att.build(None)
+ if getattr(self, "lang_inter", None) is not None:
+ with tf.name_scope(self.lang_inter.name):
+ self.lang_inter.build(None)
+ if getattr(self, "lang_output", None) is not None:
+ with tf.name_scope(self.lang_output.name):
+ self.lang_output.build(None)
+ if getattr(self, "visn_inter", None) is not None:
+ with tf.name_scope(self.visn_inter.name):
+ self.visn_inter.build(None)
+ if getattr(self, "visn_output", None) is not None:
+ with tf.name_scope(self.visn_output.name):
+ self.visn_output.build(None)
+
+
+class TFLxmertEncoder(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.visn_fc = TFLxmertVisualFeatureEncoder(config, name="visn_fc")
+
+ # Number of layers
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+
+ # Layers
+ # Using self.layer instead of self.l_layer to support loading BERT weights.
+ self.layer = [TFLxmertLayer(config, name=f"layer_._{i}") for i in range(self.num_l_layers)]
+ self.x_layers = [TFLxmertXLayer(config, name=f"x_layers_._{i}") for i in range(self.num_x_layers)]
+ self.r_layers = [TFLxmertLayer(config, name=f"r_layers_._{i}") for i in range(self.num_r_layers)]
+ self.config = config
+
+ def call(
+ self,
+ lang_feats=None,
+ lang_attention_mask=None,
+ visual_feats=None,
+ visual_pos=None,
+ visual_attention_mask=None,
+ output_attentions=None,
+ training=False,
+ ):
+ vision_hidden_states = ()
+ language_hidden_states = ()
+ vision_attentions = () if output_attentions or self.config.output_attentions else None
+ language_attentions = () if output_attentions or self.config.output_attentions else None
+ cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None
+
+ visual_feats = self.visn_fc([visual_feats, visual_pos], training=training)
+
+ # Run language layers
+ for layer_module in self.layer:
+ l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions, training=training)
+ lang_feats = l_outputs[0]
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if language_attentions is not None:
+ language_attentions = language_attentions + (l_outputs[1],)
+
+ # Run relational layers
+ for layer_module in self.r_layers:
+ v_outputs = layer_module(
+ visual_feats,
+ visual_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ visual_feats = v_outputs[0]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ if vision_attentions is not None:
+ vision_attentions = vision_attentions + (v_outputs[1],)
+
+ # Run cross-modality layers
+ for layer_module in self.x_layers:
+ x_outputs = layer_module(
+ lang_feats,
+ lang_attention_mask,
+ visual_feats,
+ visual_attention_mask,
+ output_attentions,
+ training=training,
+ )
+ lang_feats, visual_feats = x_outputs[:2]
+ vision_hidden_states = vision_hidden_states + (visual_feats,)
+ language_hidden_states = language_hidden_states + (lang_feats,)
+ if cross_encoder_attentions is not None:
+ cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],)
+
+ visual_encoder_outputs = (
+ vision_hidden_states,
+ vision_attentions if output_attentions else None,
+ )
+ lang_encoder_outputs = (
+ language_hidden_states,
+ language_attentions if output_attentions else None,
+ )
+
+ return (
+ visual_encoder_outputs,
+ lang_encoder_outputs,
+ cross_encoder_attentions if output_attentions else None,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "visn_fc", None) is not None:
+ with tf.name_scope(self.visn_fc.name):
+ self.visn_fc.build(None)
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+ if getattr(self, "x_layers", None) is not None:
+ for layer in self.x_layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+ if getattr(self, "r_layers", None) is not None:
+ for layer in self.r_layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFLxmertMainLayer(keras.layers.Layer):
+ config_class = LxmertConfig
+
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.num_l_layers = config.l_layers
+ self.num_x_layers = config.x_layers
+ self.num_r_layers = config.r_layers
+ self.initializer_range = config.initializer_range
+ self.output_attentions = config.output_attentions
+ self.output_hidden_states = config.output_hidden_states
+ self.return_dict = config.use_return_dict
+ self.embeddings = TFLxmertEmbeddings(config, name="embeddings")
+ self.encoder = TFLxmertEncoder(config, name="encoder")
+ self.pooler = TFLxmertPooler(config, name="pooler")
+ self.config = config
+
+ def get_input_embeddings(self):
+ return self.embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ visual_feats=None,
+ visual_pos=None,
+ attention_mask=None,
+ visual_attention_mask=None,
+ token_type_ids=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+ if visual_pos is None or visual_feats is None:
+ raise ValueError("visual_feats and visual_pos cannot be `None` in LXMERT's `call` method.")
+
+ if attention_mask is None:
+ attention_mask = tf.fill(input_shape, 1)
+
+ if token_type_ids is None:
+ token_type_ids = tf.fill(input_shape, 0)
+
+ # Positional Word Embeddings
+ embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds, training)
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ if visual_attention_mask is not None:
+ extended_visual_attention_mask = tf.reshape(visual_attention_mask, (input_shape[0], 1, 1, input_shape[1]))
+ extended_visual_attention_mask = tf.expand_dims(tf.expand_dims(visual_attention_mask, axis=1), axis=1)
+
+ extended_visual_attention_mask = tf.cast(extended_visual_attention_mask, dtype=embedding_output.dtype)
+ extended_visual_attention_mask = tf.multiply(
+ tf.subtract(one_cst, extended_visual_attention_mask), ten_thousand_cst
+ )
+ else:
+ extended_visual_attention_mask = None
+
+ # Run Lxmert encoder
+ encoder_outputs = self.encoder(
+ embedding_output,
+ extended_attention_mask,
+ visual_feats,
+ visual_pos,
+ extended_visual_attention_mask,
+ output_attentions,
+ training,
+ )
+ visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2]
+ vision_hidden_states = visual_encoder_outputs[0]
+ language_hidden_states = lang_encoder_outputs[0]
+
+ all_attentions = ()
+ if output_attentions:
+ language_attentions = lang_encoder_outputs[1]
+ vision_attentions = visual_encoder_outputs[1]
+ cross_encoder_attentions = encoder_outputs[2]
+ all_attentions = (
+ language_attentions,
+ vision_attentions,
+ cross_encoder_attentions,
+ )
+
+ hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else ()
+
+ visual_output = vision_hidden_states[-1]
+ lang_output = language_hidden_states[-1]
+ pooled_output = self.pooler(lang_output)
+
+ if not return_dict:
+ return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions
+
+ return TFLxmertModelOutput(
+ pooled_output=pooled_output,
+ language_output=lang_output,
+ vision_output=visual_output,
+ language_hidden_states=language_hidden_states if output_hidden_states else None,
+ vision_hidden_states=vision_hidden_states if output_hidden_states else None,
+ language_attentions=language_attentions if output_attentions else None,
+ vision_attentions=vision_attentions if output_attentions else None,
+ cross_encoder_attentions=cross_encoder_attentions if output_attentions else None,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+
+
+class TFLxmertPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LxmertConfig
+ base_model_prefix = "lxmert"
+
+ @property
+ def dummy_inputs(self):
+ """
+ Dummy inputs to build the network.
+
+ Returns:
+ tf.Tensor with dummy inputs
+ """
+ batch_size = 2
+ num_visual_features = 10
+ input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
+ visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
+ visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
+
+ return {
+ "input_ids": input_ids,
+ "visual_feats": visual_feats,
+ "visual_pos": visual_pos,
+ }
+
+ @property
+ def input_signature(self):
+ return {
+ "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
+ "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
+ "visual_feats": tf.TensorSpec((None, None, self.config.visual_feat_dim), tf.float32, name="visual_feats"),
+ "visual_pos": tf.TensorSpec((None, None, 4), tf.float32, name="visual_pos"),
+ "visual_attention_mask": tf.TensorSpec((None, None), tf.int32, name="visual_attention_mask"),
+ "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"),
+ }
+
+
+LXMERT_START_DOCSTRING = r"""
+
+ The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from
+ Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. It's a vision and language transformer
+ model, pre-trained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual
+ genome, using a combination of masked language modeling, region of interest feature regression, cross entropy loss
+ for question answering attribute prediction, and object tag prediction.
+
+ This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Parameters:
+ config ([`LxmertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LXMERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ visual_feats (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents visual features. They ROI pooled object features from bounding boxes using a
+ faster-RCNN model)
+
+ These are currently not provided by the transformers library.
+ visual_pos (`tf.Tensor` of shape `(batch_size, num_visual_features, visual_feat_dim)`):
+ This input represents spacial features corresponding to their relative (via index) visual features. The
+ pre-trained LXMERT model expects these spacial features to be normalized bounding boxes on a scale of 0 to
+ 1.
+
+ These are currently not provided by the transformers library.
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ visual_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ MMask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@add_start_docstrings(
+ "The bare Lxmert Model transformer outputting raw hidden-states without any specific head on top.",
+ LXMERT_START_DOCSTRING,
+)
+class TFLxmertModel(TFLxmertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.lxmert = TFLxmertMainLayer(config, name="lxmert")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFLxmertModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ visual_feats: tf.Tensor | None = None,
+ visual_pos: tf.Tensor | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ visual_attention_mask: np.ndarray | tf.Tensor | None = None,
+ token_type_ids: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[Tuple, TFLxmertModelOutput]:
+ outputs = self.lxmert(
+ input_ids,
+ visual_feats,
+ visual_pos,
+ attention_mask,
+ visual_attention_mask,
+ token_type_ids,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training,
+ )
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "lxmert", None) is not None:
+ with tf.name_scope(self.lxmert.name):
+ self.lxmert.build(None)
+
+
+class TFLxmertPooler(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Lxmert
+class TFLxmertPredictionHeadTransform(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = get_tf_activation(config.hidden_act)
+ else:
+ self.transform_act_fn = config.hidden_act
+
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(inputs=hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Lxmert
+class TFLxmertLMPredictionHead(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.hidden_size = config.hidden_size
+
+ self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.input_embeddings = input_embeddings
+
+ def build(self, input_shape=None):
+ self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
+
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+
+ def get_output_embeddings(self) -> keras.layers.Layer:
+ return self.input_embeddings
+
+ def set_output_embeddings(self, value: tf.Variable):
+ self.input_embeddings.weight = value
+ self.input_embeddings.vocab_size = shape_list(value)[0]
+
+ def get_bias(self) -> Dict[str, tf.Variable]:
+ return {"bias": self.bias}
+
+ def set_bias(self, value: tf.Variable):
+ self.bias = value["bias"]
+ self.config.vocab_size = shape_list(value["bias"])[0]
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.transform(hidden_states=hidden_states)
+ seq_length = shape_list(hidden_states)[1]
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
+ hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
+ hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
+ hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
+
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Lxmert
+class TFLxmertMLMHead(keras.layers.Layer):
+ def __init__(self, config: LxmertConfig, input_embeddings: keras.layers.Layer, **kwargs):
+ super().__init__(**kwargs)
+
+ self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
+
+ def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
+ prediction_scores = self.predictions(hidden_states=sequence_output)
+
+ return prediction_scores
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+
+
+class TFLxmertPreTrainingHeads(keras.layers.Layer):
+ def __init__(self, config, input_embeddings, **kwargs):
+ super().__init__(**kwargs)
+ self.predictions = TFLxmertLMPredictionHead(config, input_embeddings, name="predictions")
+
+ self.seq_relationship = keras.layers.Dense(
+ 2,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="seq_relationship",
+ )
+ self.config = config
+
+ def call(self, sequence_output, pooled_output):
+ prediction_scores = self.predictions(sequence_output)
+ seq_relationship_score = self.seq_relationship(pooled_output)
+ return prediction_scores, seq_relationship_score
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "predictions", None) is not None:
+ with tf.name_scope(self.predictions.name):
+ self.predictions.build(None)
+ if getattr(self, "seq_relationship", None) is not None:
+ with tf.name_scope(self.seq_relationship.name):
+ self.seq_relationship.build([None, None, self.config.hidden_size])
+
+
+class TFLxmertVisualAnswerHead(keras.layers.Layer):
+ def __init__(self, config, num_labels, **kwargs):
+ super().__init__(**kwargs)
+ hid_dim = config.hidden_size
+ self.dense = keras.layers.Dense(
+ hid_dim * 2,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="logit_fc_._0",
+ )
+ self.activation = get_tf_activation("gelu")
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="logit_fc_._2")
+ self.dense_1 = keras.layers.Dense(
+ num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="logit_fc_._3",
+ )
+ self.hid_dim = hid_dim
+
+ def call(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.dense_1(hidden_states)
+
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.hid_dim])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, self.hid_dim * 2])
+ if getattr(self, "dense_1", None) is not None:
+ with tf.name_scope(self.dense_1.name):
+ self.dense_1.build([None, None, self.hid_dim * 2])
+
+
+class TFLxmertVisualObjHead(keras.layers.Layer):
+ def __init__(self, config, **kwargs):
+ super().__init__(**kwargs)
+ self.transform = TFLxmertPredictionHeadTransform(config, name="transform")
+
+ # Decide the use of visual losses
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels}
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels}
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {"shape": (-1, 2048), "num": config.visual_feat_dim}
+ self.visual_losses = visual_losses
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder_dict = {
+ key: keras.layers.Dense(
+ self.visual_losses[key]["num"],
+ kernel_initializer=get_initializer(config.initializer_range),
+ name=f"decoder_dict.{key}",
+ )
+ for key in self.visual_losses
+ }
+ self.config = config
+
+ def call(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ output = {}
+ for key in self.visual_losses:
+ output[key] = self.decoder_dict[key](hidden_states)
+ return output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "transform", None) is not None:
+ with tf.name_scope(self.transform.name):
+ self.transform.build(None)
+ if getattr(self, "decoder_dict", None) is not None:
+ for layer in self.decoder_dict.values():
+ with tf.name_scope(layer.name):
+ layer.build([None, None, self.config.hidden_size])
+
+
+@add_start_docstrings("""Lxmert Model with a `language modeling` head on top.""", LXMERT_START_DOCSTRING)
+class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.config = config
+ self.num_qa_labels = config.num_qa_labels
+ self.visual_loss_normalizer = config.visual_loss_normalizer
+
+ # Use of pretraining tasks
+ self.task_mask_lm = config.task_mask_lm
+ self.task_obj_predict = config.task_obj_predict
+ self.task_matched = config.task_matched
+ self.task_qa = config.task_qa
+
+ # Lxmert backbone
+ self.lxmert = TFLxmertMainLayer(config, name="lxmert")
+
+ # Pre-training heads
+ self.cls = TFLxmertPreTrainingHeads(config, self.lxmert.embeddings, name="cls")
+ if self.task_obj_predict:
+ self.obj_predict_head = TFLxmertVisualObjHead(config, name="obj_predict_head")
+ if self.task_qa:
+ self.answer_head = TFLxmertVisualAnswerHead(config, self.num_qa_labels, name="answer_head")
+
+ # Loss functions
+ self.loss_fcts = {
+ "l2": keras.losses.Huber(delta=1.0, name="huber_loss"),
+ "visn_ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
+ "ce": keras.losses.SparseCategoricalCrossentropy(from_logits=True),
+ }
+
+ visual_losses = {}
+ if config.visual_obj_loss:
+ visual_losses["obj"] = {
+ "shape": (-1,),
+ "num": config.num_object_labels,
+ "loss": "visn_ce",
+ }
+ if config.visual_attr_loss:
+ visual_losses["attr"] = {
+ "shape": (-1,),
+ "num": config.num_attr_labels,
+ "loss": "visn_ce",
+ }
+ if config.visual_feat_loss:
+ visual_losses["feat"] = {
+ "shape": (-1, config.visual_feat_dim),
+ "num": config.visual_feat_dim,
+ "loss": "l2",
+ }
+ self.visual_losses = visual_losses
+
+ @property
+ def dummy_inputs(self):
+ """
+ Dummy inputs to build the network.
+
+ Returns:
+ tf.Tensor with dummy inputs
+ """
+ batch_size = 2
+ num_visual_features = 10
+ input_ids = tf.constant([[3, 5, 6], [2, 3, 4]], dtype=tf.int32)
+ visual_feats = tf.random.uniform((batch_size, num_visual_features, self.config.visual_feat_dim))
+ visual_pos = tf.random.uniform((batch_size, num_visual_features, 4))
+
+ if self.config.task_obj_predict:
+ obj_labels = {}
+ if self.config.visual_attr_loss and self.config.task_obj_predict:
+ obj_labels["attr"] = (
+ tf.ones([batch_size, num_visual_features]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+ if self.config.visual_feat_loss and self.config.task_obj_predict:
+ obj_labels["feat"] = (
+ tf.ones([batch_size, num_visual_features, self.config.visual_feat_dim]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+ if self.config.visual_obj_loss and self.config.task_obj_predict:
+ obj_labels["obj"] = (
+ tf.ones([batch_size, num_visual_features]),
+ tf.ones([batch_size, num_visual_features]),
+ )
+
+ return {
+ **{
+ "input_ids": input_ids,
+ "visual_feats": visual_feats,
+ "visual_pos": visual_pos,
+ },
+ **({"obj_labels": obj_labels} if self.config.task_obj_predict else {}),
+ }
+
+ def get_lm_head(self):
+ return self.cls.predictions
+
+ def get_prefix_bias_name(self):
+ warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
+ return self.name + "/" + self.cls.name + "/" + self.cls.predictions.name
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(LXMERT_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFLxmertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ visual_feats: tf.Tensor | None = None,
+ visual_pos: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ visual_attention_mask: tf.Tensor | None = None,
+ token_type_ids: tf.Tensor | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ masked_lm_labels: tf.Tensor | None = None,
+ obj_labels: Dict[str, Tuple[tf.Tensor, tf.Tensor]] | None = None,
+ matched_label: tf.Tensor | None = None,
+ ans: tf.Tensor | None = None,
+ output_attentions: bool | None = None,
+ output_hidden_states: bool | None = None,
+ return_dict: bool | None = None,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor] | TFLxmertForPreTrainingOutput:
+ r"""
+ masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ obj_labels (`Dict[Str: Tuple[tf.Tensor, tf.Tensor]]`, *optional*, defaults to `None`):
+ each key is named after each one of the visual losses and each element of the tuple is of the shape
+ `(batch_size, num_features)` and `(batch_size, num_features, visual_feature_dim)` for each the label id and
+ the label score respectively
+ matched_label (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the whether or not the text input matches the image (classification) loss. Input
+ should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
+
+ - 0 indicates that the sentence does not match the image,
+ - 1 indicates that the sentence does match the image.
+ ans (`tf.Tensor` of shape `(batch_size)`, *optional*, defaults to `None`):
+ a one hot representation hof the correct answer *optional*
+
+ Returns:
+ """
+
+ lxmert_output = self.lxmert(
+ input_ids,
+ visual_feats,
+ visual_pos,
+ attention_mask,
+ visual_attention_mask,
+ token_type_ids,
+ inputs_embeds,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ training,
+ )
+
+ lang_output, visual_output, pooled_output = (
+ lxmert_output[0],
+ lxmert_output[1],
+ lxmert_output[2],
+ )
+ lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output)
+ if self.task_qa:
+ answer_score = self.answer_head(pooled_output)
+ else:
+ answer_score = pooled_output[0][0]
+
+ total_loss = (
+ None
+ if (masked_lm_labels is None and matched_label is None and obj_labels is None and ans is None)
+ else tf.constant(0.0)
+ )
+ losses = ()
+ if masked_lm_labels is not None and self.task_mask_lm:
+ masked_lm_loss = self.loss_fcts["ce"](
+ tf.reshape(masked_lm_labels, [-1]),
+ tf.reshape(lang_prediction_scores, [-1, self.config.vocab_size]),
+ )
+ total_loss += masked_lm_loss
+ losses += (masked_lm_loss,)
+ if matched_label is not None and self.task_matched:
+ matched_loss = self.loss_fcts["ce"](
+ tf.reshape(matched_label, [-1]),
+ tf.reshape(cross_relationship_score, [-1, 2]),
+ )
+ total_loss += matched_loss
+ losses += (matched_loss,)
+ if obj_labels is not None and self.task_obj_predict:
+ total_visn_loss = 0.0
+ visn_prediction_scores_dict = self.obj_predict_head(visual_output)
+ for key, key_info in self.visual_losses.items():
+ label, mask_conf = obj_labels[key]
+ output_dim = key_info["num"]
+ loss_fct_name = key_info["loss"]
+ label_shape = key_info["shape"]
+ weight = self.visual_loss_normalizer
+ visn_loss_fct = self.loss_fcts[loss_fct_name]
+ visn_prediction_scores = visn_prediction_scores_dict[key]
+ visn_loss = visn_loss_fct(
+ tf.reshape(label, label_shape),
+ tf.reshape(visn_prediction_scores, [-1, output_dim]),
+ )
+
+ if visn_loss.ndim > 1: # Regression Losses
+ visn_loss = tf.reduce_mean(visn_loss)
+ visn_loss = tf.reduce_mean(visn_loss * tf.cast(tf.reshape(mask_conf, [-1]), visn_loss.dtype)) * weight
+ total_visn_loss += visn_loss
+ losses += (visn_loss,)
+ total_loss += total_visn_loss
+ if ans is not None and self.task_qa:
+ answer_loss = self.loss_fcts["ce"](
+ tf.reshape(ans, [-1]), tf.reshape(answer_score, [-1, self.num_qa_labels])
+ )
+ # exclude "*2" here to match the effect of QA losses.
+ # Previous: (loss *0) for 6 epochs, (loss *2) for 6 epochs. (Used 10 instead of 6 in EMNLP paper)
+ # Now : (loss *1) for 12 epochs
+ #
+ # * 2 # Multiply by 2 because > half of the data will not have label
+ total_loss += answer_loss
+ losses += (answer_loss,)
+ # return total_loss, tf.stack(losses)[tf.new_axis, ...], answer_score.detach()
+
+ if not return_dict:
+ output = (
+ lang_prediction_scores,
+ cross_relationship_score,
+ answer_score,
+ ) + lxmert_output[3:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return TFLxmertForPreTrainingOutput(
+ loss=total_loss,
+ prediction_logits=lang_prediction_scores,
+ cross_relationship_score=cross_relationship_score,
+ question_answering_score=answer_score,
+ language_hidden_states=lxmert_output.language_hidden_states,
+ vision_hidden_states=lxmert_output.vision_hidden_states,
+ language_attentions=lxmert_output.language_attentions,
+ vision_attentions=lxmert_output.vision_attentions,
+ cross_encoder_attentions=lxmert_output.cross_encoder_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "lxmert", None) is not None:
+ with tf.name_scope(self.lxmert.name):
+ self.lxmert.build(None)
+ if getattr(self, "cls", None) is not None:
+ with tf.name_scope(self.cls.name):
+ self.cls.build(None)
+ if getattr(self, "obj_predict_head", None) is not None:
+ with tf.name_scope(self.obj_predict_head.name):
+ self.obj_predict_head.build(None)
+ if getattr(self, "answer_head", None) is not None:
+ with tf.name_scope(self.answer_head.name):
+ self.answer_head.build(None)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py
new file mode 100644
index 0000000000000000000000000000000000000000..1557be1add6864dd9ca5309ceae5534966dd2d92
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/lxmert/tokenization_lxmert.py
@@ -0,0 +1,520 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt",
+ }
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "unc-nlp/lxmert-base-uncased": 512,
+}
+
+PRETRAINED_INIT_CONFIGURATION = {
+ "unc-nlp/lxmert-base-uncased": {"do_lower_case": True},
+}
+
+
+# Copied from transformers.models.bert.tokenization_bert.load_vocab
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with bert-base-cased->unc-nlp/lxmert-base-uncased, BERT->Lxmert, BertTokenizer->LxmertTokenizer
+class LxmertTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a Lxmert tokenizer. Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original Lxmert).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = LxmertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text, split_special_tokens=False):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(
+ text, never_split=self.all_special_tokens if not split_special_tokens else None
+ ):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A Lxmert sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Lxmert sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b238c6290832e8ab12de08cb5defb8f6924ad71c
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/__init__.py
@@ -0,0 +1,82 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_rag": ["RagConfig"],
+ "retrieval_rag": ["RagRetriever"],
+ "tokenization_rag": ["RagTokenizer"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_rag"] = [
+ "RagModel",
+ "RagPreTrainedModel",
+ "RagSequenceForGeneration",
+ "RagTokenForGeneration",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_rag"] = [
+ "TFRagModel",
+ "TFRagPreTrainedModel",
+ "TFRagSequenceForGeneration",
+ "TFRagTokenForGeneration",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_rag import RagConfig
+ from .retrieval_rag import RagRetriever
+ from .tokenization_rag import RagTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_rag import (
+ TFRagModel,
+ TFRagPreTrainedModel,
+ TFRagSequenceForGeneration,
+ TFRagTokenForGeneration,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/configuration_rag.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/configuration_rag.py
new file mode 100644
index 0000000000000000000000000000000000000000..2229e485db4ed20c5480c29f369a667aa2390943
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/configuration_rag.py
@@ -0,0 +1,182 @@
+# coding=utf-8
+# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" RAG model configuration"""
+
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import add_start_docstrings
+
+
+RAG_CONFIG_DOC = r"""
+ [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
+ can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ title_sep (`str`, *optional*, defaults to `" / "`):
+ Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
+ doc_sep (`str`, *optional*, defaults to `" // "`):
+ Separator inserted between the text of the retrieved document and the original input when calling
+ [`RagRetriever`].
+ n_docs (`int`, *optional*, defaults to 5):
+ Number of documents to retrieve.
+ max_combined_length (`int`, *optional*, defaults to 300):
+ Max length of contextualized input returned by [`~RagRetriever.__call__`].
+ retrieval_vector_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the document embeddings indexed by [`RagRetriever`].
+ retrieval_batch_size (`int`, *optional*, defaults to 8):
+ Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
+ [`RagRetriever`].
+ dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
+ A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
+ using `datasets.list_datasets()`).
+ dataset_split (`str`, *optional*, defaults to `"train"`)
+ Which split of the `dataset` to load.
+ index_name (`str`, *optional*, defaults to `"compressed"`)
+ The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
+ `"compressed"`.
+ index_path (`str`, *optional*)
+ The path to the serialized faiss index on disk.
+ passages_path (`str`, *optional*):
+ A path to text passages compatible with the faiss index. Required if using
+ [`~models.rag.retrieval_rag.LegacyIndex`]
+ use_dummy_dataset (`bool`, *optional*, defaults to `False`)
+ Whether to load a "dummy" variant of the dataset specified by `dataset`.
+ label_smoothing (`float`, *optional*, defaults to 0.0):
+ Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
+ in the loss calculation. If set to 0, no label smoothing is performed.
+ do_marginalize (`bool`, *optional*, defaults to `False`):
+ If `True`, the logits are marginalized over all documents by making use of
+ `torch.nn.functional.log_softmax`.
+ reduce_loss (`bool`, *optional*, defaults to `False`):
+ Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
+ do_deduplication (`bool`, *optional*, defaults to `True`):
+ Whether or not to deduplicate the generations from different context documents for a given input. Has to be
+ set to `False` if used while training with distributed backend.
+ exclude_bos_score (`bool`, *optional*, defaults to `False`):
+ Whether or not to disregard the BOS token when computing the loss.
+ output_retrieved(`bool`, *optional*, defaults to `False`):
+ If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
+ `context_attention_mask` are returned. See returned tensors for more detail.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ forced_eos_token_id (`int`, *optional*):
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
+ `eos_token_id`.
+"""
+
+
+@add_start_docstrings(RAG_CONFIG_DOC)
+class RagConfig(PretrainedConfig):
+ model_type = "rag"
+ is_composition = True
+
+ def __init__(
+ self,
+ vocab_size=None,
+ is_encoder_decoder=True,
+ prefix=None,
+ bos_token_id=None,
+ pad_token_id=None,
+ eos_token_id=None,
+ decoder_start_token_id=None,
+ title_sep=" / ",
+ doc_sep=" // ",
+ n_docs=5,
+ max_combined_length=300,
+ retrieval_vector_size=768,
+ retrieval_batch_size=8,
+ dataset="wiki_dpr",
+ dataset_split="train",
+ index_name="compressed",
+ index_path=None,
+ passages_path=None,
+ use_dummy_dataset=False,
+ reduce_loss=False,
+ label_smoothing=0.0,
+ do_deduplication=True,
+ exclude_bos_score=False,
+ do_marginalize=False,
+ output_retrieved=False,
+ use_cache=True,
+ forced_eos_token_id=None,
+ dataset_revision=None,
+ **kwargs,
+ ):
+ super().__init__(
+ bos_token_id=bos_token_id,
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ decoder_start_token_id=decoder_start_token_id,
+ forced_eos_token_id=forced_eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ prefix=prefix,
+ vocab_size=vocab_size,
+ **kwargs,
+ )
+ assert (
+ "question_encoder" in kwargs and "generator" in kwargs
+ ), "Config has to be initialized with question_encoder and generator config"
+ question_encoder_config = kwargs.pop("question_encoder")
+ question_encoder_model_type = question_encoder_config.pop("model_type")
+ decoder_config = kwargs.pop("generator")
+ decoder_model_type = decoder_config.pop("model_type")
+
+ from ..auto.configuration_auto import AutoConfig
+
+ self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
+ self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
+
+ self.reduce_loss = reduce_loss
+ self.label_smoothing = label_smoothing
+ self.exclude_bos_score = exclude_bos_score
+ self.do_marginalize = do_marginalize
+
+ self.title_sep = title_sep
+ self.doc_sep = doc_sep
+ self.n_docs = n_docs
+ self.max_combined_length = max_combined_length
+
+ self.dataset = dataset
+ self.dataset_split = dataset_split
+ self.index_name = index_name
+
+ self.retrieval_vector_size = retrieval_vector_size
+ self.retrieval_batch_size = retrieval_batch_size
+ self.passages_path = passages_path
+ self.index_path = index_path
+ self.use_dummy_dataset = use_dummy_dataset
+ self.dataset_revision = dataset_revision
+
+ self.output_retrieved = output_retrieved
+
+ self.do_deduplication = do_deduplication
+
+ self.use_cache = use_cache
+
+ if self.forced_eos_token_id is None:
+ self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
+
+ @classmethod
+ def from_question_encoder_generator_configs(
+ cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
+ ) -> PretrainedConfig:
+ r"""
+ Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
+ decoder model configuration.
+
+ Returns:
+ [`EncoderDecoderConfig`]: An instance of a configuration object
+ """
+ return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/modeling_rag.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/modeling_rag.py
new file mode 100644
index 0000000000000000000000000000000000000000..80dec5bc3dba586f2295753822066d57845f1326
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/modeling_rag.py
@@ -0,0 +1,1628 @@
+# coding=utf-8
+# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""RAG model implementation."""
+
+import copy
+from dataclasses import dataclass
+from typing import Callable, List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+
+from ...configuration_utils import PretrainedConfig
+from ...generation import BeamSearchScorer, GenerationConfig, LogitsProcessorList, StoppingCriteriaList
+from ...modeling_outputs import ModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_rag import RagConfig
+from .retrieval_rag import RagRetriever
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "RagConfig"
+
+
+@dataclass
+class RetrievAugLMMarginOutput(ModelOutput):
+ """
+ Base class for retriever augmented marginalized models outputs.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Language modeling loss.
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
+ each vocabulary token.
+ doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
+ Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
+ `question_encoder_last_hidden_state`.
+ past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
+ num_heads, sequence_length, embed_size_per_head)`).
+
+ Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
+ (see `past_key_values` input) to speed up sequential decoding.
+ retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
+ Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
+ the `doc_scores`.
+ retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
+ The indexes of the embedded documents retrieved by the retriever.
+ context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
+ context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever.
+ question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
+ model.
+ question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
+ question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
+ generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
+ generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
+ generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ doc_scores: torch.FloatTensor = None
+ past_key_values: Optional[List[torch.FloatTensor]] = None
+ retrieved_doc_embeds: Optional[torch.FloatTensor] = None
+ retrieved_doc_ids: Optional[torch.LongTensor] = None
+ context_input_ids: Optional[torch.LongTensor] = None
+ context_attention_mask: Optional[torch.LongTensor] = None
+ question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
+ generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+@dataclass
+class RetrievAugLMOutput(ModelOutput):
+ """
+ Args:
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
+ Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
+ each vocabulary token.
+ doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
+ Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
+ `question_encoder_last_hidden_state`.
+ past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
+ num_heads, sequence_length, embed_size_per_head)`).
+
+ Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
+ (see `past_key_values` input) to speed up sequential decoding.
+ retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
+ Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
+ the `doc_scores`.
+ retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
+ The indexes of the embedded documents retrieved by the retriever.
+ context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
+ context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever.
+ question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
+ model.
+ question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
+ question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
+ generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
+ generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
+ generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
+ average in the self-attention heads.
+ generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
+ weighted average in the cross-attention heads.
+ """
+
+ logits: torch.FloatTensor = None
+ doc_scores: torch.FloatTensor = None
+ past_key_values: Optional[List[torch.FloatTensor]] = None
+ retrieved_doc_embeds: Optional[torch.FloatTensor] = None
+ retrieved_doc_ids: Optional[torch.LongTensor] = None
+ context_input_ids: Optional[torch.LongTensor] = None
+ context_attention_mask: Optional[torch.LongTensor] = None
+ question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
+ generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+ generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
+
+
+class RagPreTrainedModel(PreTrainedModel):
+ r"""
+ RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
+ Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
+
+ RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
+ generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
+
+ """
+
+ config_class = RagConfig
+ base_model_prefix = "rag"
+
+ @classmethod
+ def from_pretrained(cls, *args, **kwargs):
+ # At the moment fast initialization is not supported
+ # for composite models
+ kwargs["_fast_init"] = False
+ return super().from_pretrained(*args, **kwargs)
+
+ @classmethod
+ def from_pretrained_question_encoder_generator(
+ cls,
+ question_encoder_pretrained_model_name_or_path: str = None,
+ generator_pretrained_model_name_or_path: str = None,
+ retriever: RagRetriever = None,
+ **kwargs,
+ ) -> PreTrainedModel:
+ r"""
+ Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
+ model checkpoints.
+
+ The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
+ the model, you need to first set it back in training mode with `model.train()`.
+
+ Params:
+ question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
+ Information necessary to initiate the question encoder. Can be either:
+
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
+ - A path to a *directory* containing model weights saved using
+ [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
+ - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
+ this case, `from_tf` should be set to `True` and a configuration object should be provided as
+ `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
+ PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
+
+ generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
+ Information necessary to initiate the generator. Can be either:
+
+ - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
+ - A path to a *directory* containing model weights saved using
+ [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
+ - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
+ this case, `from_tf` should be set to `True` and a configuration object should be provided as
+ `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
+ PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
+
+ model_args (remaining positional arguments, *optional*):
+ All remaining positional arguments will be passed to the underlying model's `__init__` method.
+ retriever ([`RagRetriever`], *optional*):
+ The retriever to use.
+ kwwargs (remaining dictionary of keyword arguments, *optional*):
+ Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
+ `output_attentions=True`).
+
+ - To update the question_encoder configuration, use the prefix *question_encoder_* for each
+ configuration parameter.
+ - To update the generator configuration, use the prefix *generator_* for each configuration parameter.
+ - To update the parent model configuration, do not use a prefix for each configuration parameter.
+
+ Behaves differently depending on whether a `config` is provided or automatically loaded.
+
+ Example:
+
+ ```python
+ >>> from transformers import RagModel
+
+ >>> # initialize a RAG from two pretrained models.
+ >>> model = RagModel.from_pretrained_question_encoder_generator(
+ ... "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small"
+ ... )
+ >>> # saving model after fine-tuning
+ >>> model.save_pretrained("./rag")
+ >>> # load fine-tuned model
+ >>> model = RagModel.from_pretrained("./rag")
+ ```"""
+
+ kwargs_question_encoder = {
+ argument[len("question_encoder_") :]: value
+ for argument, value in kwargs.items()
+ if argument.startswith("question_encoder_")
+ }
+
+ kwargs_generator = {
+ argument[len("generator_") :]: value
+ for argument, value in kwargs.items()
+ if argument.startswith("generator_")
+ }
+
+ # remove question_encoder, generator kwargs from kwargs
+ for key in kwargs_question_encoder.keys():
+ del kwargs["question_encoder_" + key]
+ for key in kwargs_generator.keys():
+ del kwargs["generator_" + key]
+
+ # Load and initialize the question_encoder and generator
+ # The distinction between question_encoder and generator at the model level is made
+ # by the value of the flag `is_generator` that we need to set correctly.
+ question_encoder = kwargs_question_encoder.pop("model", None)
+ if question_encoder is None:
+ assert question_encoder_pretrained_model_name_or_path is not None, (
+ "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
+ " be defined"
+ )
+ from ..auto.modeling_auto import AutoModel
+
+ if "config" not in kwargs_question_encoder:
+ from ..auto.configuration_auto import AutoConfig
+
+ question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained(
+ question_encoder_pretrained_model_name_or_path,
+ **kwargs_question_encoder,
+ return_unused_kwargs=True,
+ )
+ kwargs_question_encoder["config"] = question_encoder_config
+
+ question_encoder = AutoModel.from_pretrained(
+ question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder
+ )
+
+ generator = kwargs_generator.pop("model", None)
+ if generator is None:
+ assert generator_pretrained_model_name_or_path is not None, (
+ "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
+ " to be defined"
+ )
+ from ..auto.modeling_auto import AutoModelForSeq2SeqLM
+
+ if "config" not in kwargs_generator:
+ from ..auto.configuration_auto import AutoConfig
+
+ generator_config, kwargs_generator = AutoConfig.from_pretrained(
+ generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True
+ )
+
+ kwargs_generator["config"] = generator_config
+
+ generator = AutoModelForSeq2SeqLM.from_pretrained(
+ generator_pretrained_model_name_or_path, **kwargs_generator
+ )
+
+ # instantiate config with corresponding kwargs
+ config = kwargs.get("config", None)
+ if config is None:
+ config = RagConfig.from_question_encoder_generator_configs(
+ question_encoder.config, generator.config, **kwargs
+ )
+
+ return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
+
+
+RAG_START_DOCSTRING = r"""
+
+ RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward
+ pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context
+ documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator.
+
+ The question encoder can be any *autoencoding* model, preferably [`DPRQuestionEncoder`], and the generator can be
+ any *seq2seq* model, preferably [`BartForConditionalGeneration`].
+
+ The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the
+ outputs of a retriever in multiple steps---see examples for more details. The model is compatible any
+ *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`.
+ It has been tested with [`DPRQuestionEncoder`] as the `question_encoder` and [`BartForConditionalGeneration`] or
+ [`T5ForConditionalGeneration`] as the `generator`.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+
+ Args:
+ config ([`RagConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+ question_encoder ([`PreTrainedModel`]):
+ An encoder model compatible with the faiss index encapsulated by the `retriever`.
+ generator ([`PreTrainedModel`]):
+ A seq2seq model used as the generator in the RAG architecture.
+ retriever ([`RagRetriever`]):
+ A retriever class encapsulating a faiss index queried to obtain context documents for current inputs.
+"""
+
+
+RAG_FORWARD_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies
+ which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to
+ obtain the indices.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*)
+ Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`,
+ *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs *
+ sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the
+ generator's encoder.
+
+ Used by the ([`RagModel`]) model during decoding.
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Provide for generation tasks. `None` by default, construct as per instructions for the generator model
+ you're using with your RAG instance.
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`):
+ Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and
+ `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used
+ in the ([`RagTokenForGeneration`]) model during decoding.
+ doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
+ Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
+ `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores`
+ has to be provided to the forward pass. `doc_scores` can be computed via
+ `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information.
+ context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever. If the model was not initialized with a `retriever` ``context_input_ids` has to be provided to
+ the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
+ context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`,*optional*, returned when *output_retrieved=True*):
+ Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be
+ provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`].
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ output_retrieved(`bool`, *optional*):
+ Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
+ `context_attention_mask`. See returned tensors for more detail.
+ n_docs (`int`, *optional*, defaults to `config.n_docs``)
+ Number of documents to retrieve and/or number of documents for which to generate an answer.
+"""
+
+
+@add_start_docstrings_to_model_forward(RAG_START_DOCSTRING)
+class RagModel(RagPreTrainedModel):
+ def __init__(
+ self,
+ config: Optional[PretrainedConfig] = None,
+ question_encoder: Optional[PreTrainedModel] = None,
+ generator: Optional[PreTrainedModel] = None,
+ retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method
+ **kwargs,
+ ):
+ assert config is not None or (
+ question_encoder is not None and generator is not None
+ ), "Either a configuration or an question_encoder and a generator has to be provided."
+
+ if config is None:
+ config = RagConfig.from_question_encoder_generator_configs(
+ question_encoder.config, generator.config, **kwargs
+ )
+ else:
+ assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
+ super().__init__(config)
+ if question_encoder is None:
+ from ..auto.modeling_auto import AutoModel
+
+ question_encoder = AutoModel.from_config(config.question_encoder)
+
+ if generator is None:
+ from ..auto.modeling_auto import AutoModelForSeq2SeqLM
+
+ generator = AutoModelForSeq2SeqLM.from_config(config.generator)
+
+ self.retriever = retriever
+ if self.retriever is not None:
+ assert isinstance(
+ retriever, RagRetriever
+ ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
+ self.retriever = retriever
+
+ self.question_encoder = question_encoder
+ self.generator = generator
+
+ self.ctx_encoder = None
+ self.context_encoder_training = False
+
+ @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ doc_scores: Optional[torch.FloatTensor] = None,
+ context_input_ids: Optional[torch.LongTensor] = None,
+ context_attention_mask: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_retrieved: Optional[bool] = None,
+ n_docs: Optional[int] = None,
+ ) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RagRetriever, RagModel
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base")
+ >>> retriever = RagRetriever.from_pretrained(
+ ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
+ ... )
+ >>> # initialize with RagRetriever to do everything in one forward call
+ >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever)
+
+ >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
+ >>> outputs = model(input_ids=inputs["input_ids"])
+ ```"""
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved
+
+ # whether retriever has to be used
+ has_to_retrieve = (
+ self.retriever is not None
+ and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
+ and encoder_outputs is None
+ )
+ # encoder_outputs are pre-computed during RAG-token generation
+ if encoder_outputs is None:
+ if has_to_retrieve:
+ question_enc_outputs = self.question_encoder(
+ input_ids, attention_mask=attention_mask, return_dict=True
+ )
+ question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder
+
+ retriever_outputs = self.retriever(
+ input_ids,
+ question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(),
+ prefix=self.generator.config.prefix,
+ n_docs=n_docs,
+ return_tensors="pt",
+ )
+ if self.context_encoder_training:
+ (
+ context_input_ids,
+ context_attention_mask,
+ retrieved_doc_embeds,
+ retrived_doc_input_ids,
+ retrived_doc_attention_mask,
+ retrieved_doc_ids,
+ ) = (
+ retriever_outputs["context_input_ids"],
+ retriever_outputs["context_attention_mask"],
+ retriever_outputs["retrieved_doc_embeds"],
+ retriever_outputs["tokenized_doc_ids"],
+ retriever_outputs["tokenized_doc_attention_mask"],
+ retriever_outputs["doc_ids"],
+ )
+
+ context_input_ids = context_input_ids.to(input_ids)
+ context_attention_mask = context_attention_mask.to(input_ids)
+
+ retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids)
+ retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids)
+ retrieved_doc_embeds = self.ctx_encoder(
+ retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True
+ ).pooler_output
+ retrieved_doc_embeds = retrieved_doc_embeds.view(
+ -1, n_docs, question_encoder_last_hidden_state.shape[1]
+ ) # reshaping
+
+ # compute doc_scores involving ctx_encoder
+ doc_scores = torch.bmm(
+ question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
+ ).squeeze(1)
+
+ else:
+ context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
+ retriever_outputs["context_input_ids"],
+ retriever_outputs["context_attention_mask"],
+ retriever_outputs["retrieved_doc_embeds"],
+ retriever_outputs["doc_ids"],
+ )
+
+ # set to correct device
+ retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state)
+ context_input_ids = context_input_ids.to(input_ids)
+ context_attention_mask = context_attention_mask.to(input_ids)
+
+ # compute doc_scores
+ doc_scores = torch.bmm(
+ question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
+ ).squeeze(1)
+ else:
+ assert context_input_ids is not None, (
+ "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
+ " set a retriever using the `set_retriever(...)` function."
+ )
+ assert context_attention_mask is not None, (
+ "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
+ " can set a retriever using the `set_retriever(...)` function."
+ )
+ assert doc_scores is not None, (
+ "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
+ " retriever using the `set_retriever(...)` function."
+ )
+
+ assert (
+ doc_scores is not None
+ ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
+
+ assert (doc_scores.shape[1] % n_docs) == 0, (
+ f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
+ f" {context_input_ids.shape[0]}."
+ )
+
+ # Decoder input without context documents
+ if decoder_input_ids is not None:
+ decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0)
+
+ if decoder_attention_mask is not None:
+ decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0)
+
+ gen_outputs = self.generator(
+ input_ids=context_input_ids,
+ attention_mask=context_attention_mask,
+ encoder_outputs=encoder_outputs,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ return_dict=True,
+ )
+
+ if not has_to_retrieve:
+ question_encoder_last_hidden_state = None
+ question_enc_hidden_states = None
+ question_enc_attentions = None
+ retrieved_doc_embeds = None
+ retrieved_doc_ids = None
+ else:
+ question_enc_hidden_states = question_enc_outputs.hidden_states
+ question_enc_attentions = question_enc_outputs.attentions
+
+ if not has_to_retrieve or not output_retrieved:
+ # don't output retrieved docs
+ context_input_ids = (None,)
+ context_attention_mask = None
+ retrieved_doc_embeds = None
+ retrieved_doc_ids = None
+
+ return RetrievAugLMOutput(
+ logits=gen_outputs.logits,
+ doc_scores=doc_scores,
+ past_key_values=gen_outputs.past_key_values,
+ context_input_ids=context_input_ids,
+ context_attention_mask=context_attention_mask,
+ retrieved_doc_embeds=retrieved_doc_embeds,
+ retrieved_doc_ids=retrieved_doc_ids,
+ question_encoder_last_hidden_state=question_encoder_last_hidden_state,
+ question_enc_hidden_states=question_enc_hidden_states,
+ question_enc_attentions=question_enc_attentions,
+ generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
+ generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
+ generator_enc_attentions=gen_outputs.encoder_attentions,
+ generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
+ generator_dec_attentions=gen_outputs.decoder_attentions,
+ generator_cross_attentions=gen_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings_to_model_forward(
+ """
+ A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass.
+ """,
+ RAG_START_DOCSTRING,
+)
+class RagSequenceForGeneration(RagPreTrainedModel):
+ def __init__(
+ self,
+ config: Optional[PretrainedConfig] = None,
+ question_encoder: Optional[PreTrainedModel] = None,
+ generator: Optional[PreTrainedModel] = None,
+ retriever: Optional[RagRetriever] = None,
+ **kwargs,
+ ):
+ assert config is not None or (
+ question_encoder is not None and generator is not None
+ ), "Either a configuration or an encoder and a generator has to be provided."
+
+ if config is None:
+ config = RagConfig.from_question_encoder_generator_configs(
+ question_encoder.config, generator.config, **kwargs
+ )
+ super().__init__(config)
+
+ # instantiate model
+ self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
+
+ def set_retriever(self, retriever: RagRetriever):
+ self.rag.retriever = retriever
+
+ def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
+ self.rag.context_encoder_training = True
+ self.rag.ctx_encoder = ctx_encoder
+
+ @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ context_input_ids: Optional[torch.LongTensor] = None,
+ context_attention_mask: Optional[torch.LongTensor] = None,
+ doc_scores: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_retrieved: Optional[bool] = None,
+ exclude_bos_score: Optional[bool] = None,
+ reduce_loss: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ n_docs: Optional[int] = None,
+ **kwargs, # needs kwargs for generation
+ ) -> RetrievAugLMMarginOutput:
+ r"""
+ exclude_bos_score (`bool`, *optional*):
+ Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
+ the loss.
+ reduce_loss (`bool`, *optional*):
+ Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
+ operation.
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Legacy dictionary, which is required so that model can use *generate()* function.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
+ >>> retriever = RagRetriever.from_pretrained(
+ ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
+ ... )
+ >>> # initialize with RagRetriever to do everything in one forward call
+ >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
+
+ >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
+ >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
+ >>> input_ids = inputs["input_ids"]
+ >>> labels = targets["input_ids"]
+ >>> outputs = model(input_ids=input_ids, labels=labels)
+
+ >>> # or use retriever separately
+ >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
+ >>> # 1. Encode
+ >>> question_hidden_states = model.question_encoder(input_ids)[0]
+ >>> # 2. Retrieve
+ >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
+ >>> doc_scores = torch.bmm(
+ ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
+ ... ).squeeze(1)
+ >>> # 3. Forward to generator
+ >>> outputs = model(
+ ... context_input_ids=docs_dict["context_input_ids"],
+ ... context_attention_mask=docs_dict["context_attention_mask"],
+ ... doc_scores=doc_scores,
+ ... decoder_input_ids=labels,
+ ... )
+ ```"""
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+ exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score
+ reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
+
+ if labels is not None:
+ if decoder_input_ids is None:
+ decoder_input_ids = labels
+ use_cache = False
+
+ outputs = self.rag(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ encoder_outputs=encoder_outputs,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ context_input_ids=context_input_ids,
+ context_attention_mask=context_attention_mask,
+ doc_scores=doc_scores,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ output_retrieved=output_retrieved,
+ n_docs=n_docs,
+ )
+
+ loss = None
+ if labels is not None:
+ loss = self.get_nll(
+ outputs.logits,
+ outputs.doc_scores,
+ decoder_input_ids,
+ reduce_loss=reduce_loss,
+ epsilon=self.config.label_smoothing,
+ exclude_bos_score=exclude_bos_score,
+ n_docs=n_docs,
+ )
+
+ return RetrievAugLMMarginOutput(
+ loss=loss,
+ logits=outputs.logits,
+ doc_scores=outputs.doc_scores,
+ past_key_values=outputs.past_key_values,
+ context_input_ids=outputs.context_input_ids,
+ context_attention_mask=outputs.context_attention_mask,
+ retrieved_doc_embeds=outputs.retrieved_doc_embeds,
+ retrieved_doc_ids=outputs.retrieved_doc_ids,
+ question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
+ question_enc_hidden_states=outputs.question_enc_hidden_states,
+ question_enc_attentions=outputs.question_enc_attentions,
+ generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
+ generator_enc_hidden_states=outputs.generator_enc_hidden_states,
+ generator_enc_attentions=outputs.generator_enc_attentions,
+ generator_dec_hidden_states=outputs.generator_dec_hidden_states,
+ generator_dec_attentions=outputs.generator_dec_attentions,
+ generator_cross_attentions=outputs.generator_cross_attentions,
+ )
+
+ @property
+ def retriever(self):
+ return self.rag.retriever
+
+ @property
+ def generator(self):
+ return self.rag.generator
+
+ @property
+ def question_encoder(self):
+ return self.rag.question_encoder
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ context_input_ids: Optional[torch.LongTensor] = None,
+ context_attention_mask: Optional[torch.LongTensor] = None,
+ doc_scores: Optional[torch.FloatTensor] = None,
+ do_deduplication: Optional[bool] = None, # defaults to True
+ num_return_sequences: Optional[int] = None, # defaults to 1
+ num_beams: Optional[int] = None, # defaults to 1
+ n_docs: Optional[int] = None,
+ **model_kwargs,
+ ) -> torch.LongTensor:
+ """
+ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
+ for more information on how to set other generate input parameters.
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ The sequence used as a prompt for the generation. If `input_ids` is not passed, then
+ `context_input_ids` has to be provided.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
+ retriever.
+ context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever.
+
+ If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and
+ `context_attention_mask` have to be provided to the forward pass. They are returned by
+ [`~RagRetriever.__call__`].
+ doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
+ Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
+ `question_encoder_last_hidden_state`.
+
+ If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be
+ provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`].
+ do_deduplication (`bool`, *optional*):
+ Whether or not to deduplicate the generations from different context documents for a given input. Has
+ to be set to `False` if used while training with distributed backend.
+ num_return_sequences(`int`, *optional*, defaults to 1):
+ The number of independently computed returned sequences for each element in the batch. Note that this
+ is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
+ where we set `num_return_sequences` to `num_beams`.
+ num_beams (`int`, *optional*, defaults to 1):
+ Number of beams for beam search. 1 means no beam search.
+ n_docs (`int`, *optional*, defaults to `config.n_docs`)
+ Number of documents to retrieve and/or number of documents for which to generate an answer.
+ kwargs (`Dict[str, Any]`, *optional*):
+ Additional kwargs will be passed to [`~generation.GenerationMixin.generate`].
+
+ Return:
+ `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
+ sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches
+ finished early due to the `eos_token_id`.
+ """
+
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+ do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
+ num_doc_return_sequences = (
+ num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
+ )
+ num_beams = num_beams if num_beams is not None else self.config.num_beams
+
+ assert (
+ input_ids is not None or context_input_ids is not None
+ ), " At least one of input_ids or context_input_ids must be given"
+
+ if self.retriever is not None and context_input_ids is None:
+ question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
+ context_input_ids = self.retriever(
+ input_ids,
+ question_hidden_states.cpu().detach().to(torch.float32).numpy(),
+ prefix=self.generator.config.prefix,
+ n_docs=n_docs,
+ return_tensors="pt",
+ )["context_input_ids"]
+
+ # set to correct device
+ context_input_ids = context_input_ids.to(input_ids)
+
+ hypos = []
+ model_kwargs["num_beams"] = num_beams
+ model_kwargs["num_return_sequences"] = num_beams
+ model_kwargs["attention_mask"] = None
+
+ batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
+
+ for index in range(batch_size):
+ # first, generate beams from documents:
+ generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
+
+ output_sequences = self.generator.generate(
+ generator_input_ids,
+ **model_kwargs,
+ ) # n_docs * n_beam, tgt_len
+ if do_deduplication:
+ # do_deduplication, max_output_len
+ output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values()))
+
+ num_candidates = output_sequences.shape[
+ 0
+ ] # after deduplication, this number can be less than n_docs*n_beam
+
+ # then, run model forwards to get nll scores:
+ if input_ids is not None:
+ new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1)
+ outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
+ else: # input_ids is None, need context_input_ids/mask and doc_scores
+ assert context_attention_mask is not None, (
+ "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
+ " can set a retriever using the `set_retriever(...)` function."
+ )
+ assert doc_scores is not None, (
+ "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
+ " retriever using the `set_retriever(...)` function."
+ )
+
+ individual_input_ids = generator_input_ids.repeat(
+ num_candidates, 1
+ ) # (num_candidates*n_docs, max_len)
+
+ individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
+ individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1)
+
+ individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
+ individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs]
+
+ outputs = self(
+ context_input_ids=individual_input_ids,
+ context_attention_mask=individual_attention_mask,
+ doc_scores=individual_doc_scores,
+ labels=output_sequences,
+ exclude_bos_score=True,
+ )
+
+ top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1]
+
+ # add hypothesis
+ hypos.append(output_sequences[top_cand_inds])
+
+ return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
+
+ def get_nll(
+ self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
+ ):
+ # shift tokens left
+ target = torch.cat(
+ [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
+ )
+
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+
+ # bos_token_id is None for T5
+ bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
+ use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all()
+
+ def _mask_pads(ll, smooth_obj):
+ pad_mask = target.eq(self.config.generator.pad_token_id)
+ if pad_mask.any():
+ ll.masked_fill_(pad_mask, 0.0)
+ smooth_obj.masked_fill_(pad_mask, 0.0)
+ return ll.squeeze(-1), smooth_obj.squeeze(-1)
+
+ # seq_logits dim = (batch*n_docs, tgt_len , #vocabs)
+ seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
+ seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
+ ) # batch_size x n_docs x tgt_len x #vocab_size
+ doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1)
+
+ # RAG-sequence marginalization
+ first_token_scores = seq_logprobs[:, :, :1, :]
+ second_token_scores = seq_logprobs[:, :, 1:2, :]
+ remainder = seq_logprobs[:, :, 2:, :]
+ rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2)
+
+ # calculate loss
+ target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1)
+ assert target.dim() == rag_logprobs.dim()
+
+ ll = rag_logprobs.gather(dim=-1, index=target)
+ smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
+
+ ll, smooth_obj = _mask_pads(ll, smooth_obj)
+
+ # sum over tokens, exclude bos while scoring
+ ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2)
+ smooth_obj = smooth_obj.sum(2)
+ ll = ll.logsumexp(1) # logsumexp over docs
+ smooth_obj = smooth_obj.logsumexp(1)
+
+ nll_loss = -ll
+ smooth_loss = -smooth_obj
+
+ if reduce_loss:
+ nll_loss = nll_loss.sum()
+ smooth_loss = smooth_loss.sum()
+
+ eps_i = epsilon / rag_logprobs.size(-1)
+ loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
+ return loss
+
+ @staticmethod
+ def _cat_and_pad(tensors, pad_token_id):
+ output = (
+ tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id)
+ )
+ ind = 0
+ for t in tensors:
+ output[ind : ind + t.shape[0], : t.shape[1]] = t
+ ind += t.shape[0]
+ return output
+
+
+@add_start_docstrings_to_model_forward(
+ """
+ A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass.
+ """,
+ RAG_START_DOCSTRING,
+)
+class RagTokenForGeneration(RagPreTrainedModel):
+ def __init__(
+ self,
+ config: Optional[PretrainedConfig] = None,
+ question_encoder: Optional[PreTrainedModel] = None,
+ generator: Optional[PreTrainedModel] = None,
+ retriever: Optional[RagRetriever] = None,
+ **kwargs,
+ ):
+ assert config is not None or (
+ question_encoder is not None and generator is not None
+ ), "Either a configuration or an encoder and a generator has to be provided."
+
+ if config is None:
+ config = RagConfig.from_question_encoder_generator_configs(
+ question_encoder.config, generator.config, **kwargs
+ )
+
+ super().__init__(config)
+
+ # instantiate model
+ self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
+
+ def set_retriever(self, retriever: RagRetriever):
+ self.rag.retriever = retriever
+
+ def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
+ self.rag.context_encoder_training = True
+ self.rag.ctx_encoder = ctx_encoder
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ doc_scores=None,
+ n_docs=None,
+ **kwargs,
+ ):
+ if past_key_values is not None:
+ # if past is defined use only last decoder_input_ids
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ return {
+ "input_ids": None,
+ "encoder_outputs": encoder_outputs,
+ "doc_scores": doc_scores,
+ "context_attention_mask": attention_mask,
+ "decoder_input_ids": decoder_input_ids,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ "do_marginalize": True,
+ "n_docs": n_docs,
+ }
+
+ @property
+ def retriever(self):
+ return self.rag.retriever
+
+ @property
+ def generator(self):
+ return self.rag.generator
+
+ @property
+ def question_encoder(self):
+ return self.rag.question_encoder
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ """Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""
+
+ def _reorder_stacked(hidden_states, new_order):
+ n_docs = hidden_states.shape[0] // new_order.shape[0]
+ hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:])
+ hidden_states = hidden_states.index_select(0, new_order)
+ result = hidden_states.view(-1, *hidden_states.shape[2:])
+ return result
+
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # get the correct batch idx from decoder layer's batch dim for cross and self-attn
+ reordered_past += (
+ tuple(_reorder_stacked(past_state, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+
+ return reordered_past
+
+ def marginalize(self, seq_logits, doc_scores, n_docs=None):
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+
+ # RAG-token marginalization
+ seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
+ seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
+ )
+ doc_logprobs = torch.log_softmax(doc_scores, dim=1)
+ log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1)
+ return torch.logsumexp(log_prob_sum, dim=1)
+
+ @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ context_input_ids: Optional[torch.LongTensor] = None,
+ context_attention_mask: Optional[torch.LongTensor] = None,
+ doc_scores: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_retrieved: Optional[bool] = None,
+ do_marginalize: Optional[bool] = None,
+ reduce_loss: Optional[bool] = None,
+ labels: Optional[torch.LongTensor] = None,
+ n_docs: Optional[int] = None,
+ **kwargs, # needs kwargs for generation
+ ) -> RetrievAugLMMarginOutput:
+ r"""
+ do_marginalize (`bool`, *optional*):
+ If `True`, the logits are marginalized over all documents by making use of
+ `torch.nn.functional.log_softmax`.
+ reduce_loss (`bool`, *optional*):
+ Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
+ operation.
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Legacy dictionary, which is required so that model can use *generate()* function.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq")
+ >>> retriever = RagRetriever.from_pretrained(
+ ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
+ ... )
+ >>> # initialize with RagRetriever to do everything in one forward call
+ >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
+
+ >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
+ >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
+ >>> input_ids = inputs["input_ids"]
+ >>> labels = targets["input_ids"]
+ >>> outputs = model(input_ids=input_ids, labels=labels)
+
+ >>> # or use retriever separately
+ >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
+ >>> # 1. Encode
+ >>> question_hidden_states = model.question_encoder(input_ids)[0]
+ >>> # 2. Retrieve
+ >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
+ >>> doc_scores = torch.bmm(
+ ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
+ ... ).squeeze(1)
+ >>> # 3. Forward to generator
+ >>> outputs = model(
+ ... context_input_ids=docs_dict["context_input_ids"],
+ ... context_attention_mask=docs_dict["context_attention_mask"],
+ ... doc_scores=doc_scores,
+ ... decoder_input_ids=labels,
+ ... )
+
+ >>> # or directly generate
+ >>> generated = model.generate(
+ ... context_input_ids=docs_dict["context_input_ids"],
+ ... context_attention_mask=docs_dict["context_attention_mask"],
+ ... doc_scores=doc_scores,
+ ... )
+ >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
+ ```"""
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+ do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize
+ reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
+
+ if labels is not None:
+ if decoder_input_ids is None:
+ decoder_input_ids = labels
+ use_cache = False
+
+ outputs = self.rag(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ encoder_outputs=encoder_outputs,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ context_input_ids=context_input_ids,
+ context_attention_mask=context_attention_mask,
+ doc_scores=doc_scores,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ output_retrieved=output_retrieved,
+ n_docs=n_docs,
+ )
+
+ loss = None
+ logits = outputs.logits
+ if labels is not None:
+ assert decoder_input_ids is not None
+ loss = self.get_nll(
+ outputs.logits,
+ outputs.doc_scores,
+ labels,
+ reduce_loss=reduce_loss,
+ epsilon=self.config.label_smoothing,
+ n_docs=n_docs,
+ )
+
+ if do_marginalize:
+ logits = self.marginalize(logits, outputs.doc_scores, n_docs)
+
+ return RetrievAugLMMarginOutput(
+ loss=loss,
+ logits=logits,
+ doc_scores=outputs.doc_scores,
+ past_key_values=outputs.past_key_values,
+ context_input_ids=outputs.context_input_ids,
+ context_attention_mask=outputs.context_attention_mask,
+ retrieved_doc_embeds=outputs.retrieved_doc_embeds,
+ retrieved_doc_ids=outputs.retrieved_doc_ids,
+ question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
+ question_enc_hidden_states=outputs.question_enc_hidden_states,
+ question_enc_attentions=outputs.question_enc_attentions,
+ generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
+ generator_enc_hidden_states=outputs.generator_enc_hidden_states,
+ generator_enc_attentions=outputs.generator_enc_attentions,
+ generator_dec_hidden_states=outputs.generator_dec_hidden_states,
+ generator_dec_attentions=outputs.generator_dec_attentions,
+ generator_cross_attentions=outputs.generator_cross_attentions,
+ )
+
+ @torch.no_grad()
+ def generate(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ context_input_ids: Optional[torch.LongTensor] = None,
+ context_attention_mask: Optional[torch.LongTensor] = None,
+ doc_scores: Optional[torch.FloatTensor] = None,
+ n_docs: Optional[int] = None,
+ generation_config: Optional[GenerationConfig] = None,
+ prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None,
+ logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
+ stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
+ **kwargs,
+ ) -> torch.LongTensor:
+ """
+ Implements RAG token decoding.
+
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ The sequence used as a prompt for the generation. If `input_ids` is not passed, then
+ `context_input_ids` has to be provided.
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever.
+
+ If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
+ forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
+ context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
+ Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
+ retriever.
+
+ If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
+ forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
+ doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
+ Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
+ `question_encoder_last_hidden_state`.
+
+ If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
+ forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
+ n_docs (`int`, *optional*, defaults to `config.n_docs`)
+ Number of documents to retrieve and/or number of documents for which to generate an answer.
+ generation_config (`~generation.GenerationConfig`, *optional*):
+ The generation configuration to be used as base parametrization for the generation call. `**kwargs`
+ passed to generate matching the attributes of `generation_config` will override them. If
+ `generation_config` is not provided, the default will be used, which has the following loading
+ priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
+ configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
+ default values, whose documentation should be checked to parameterize generation.
+ prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
+ If provided, this function constraints the beam search to allowed tokens only at each step. If not
+ provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID
+ `batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on
+ the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for
+ constrained generation conditioned on the prefix, as described in [Autoregressive Entity
+ Retrieval](https://arxiv.org/abs/2010.00904).
+ logits_processor (`LogitsProcessorList`, *optional*):
+ Custom logits processors that complement the default logits processors built from arguments and a
+ model's config. If a logit processor is passed that is already created with the arguments or a model's
+ config an error is thrown.
+ stopping_criteria (`StoppingCriteriaList`, *optional*):
+ Custom stopping criteria that complement the default stopping criteria built from arguments and a
+ model's config. If a stopping criteria is passed that is already created with the arguments or a
+ model's config an error is thrown.
+ kwargs (`Dict[str, Any]`, *optional*):
+ Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
+ forwarded to the `forward` function of the model.
+
+ Return:
+ `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
+ sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches
+ finished early due to the `eos_token_id`.
+ """
+ # Handle `generation_config` and kwargs that might update it
+ if generation_config is None:
+ generation_config = self.generation_config
+ generation_config = copy.deepcopy(generation_config)
+ model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
+
+ # set default parameters
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+
+ # retrieve docs
+ if self.retriever is not None and context_input_ids is None:
+ question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
+ out = self.retriever(
+ input_ids,
+ question_hidden_states.cpu().detach().to(torch.float32).numpy(),
+ prefix=self.generator.config.prefix,
+ n_docs=n_docs,
+ return_tensors="pt",
+ )
+ context_input_ids, context_attention_mask, retrieved_doc_embeds = (
+ out["context_input_ids"],
+ out["context_attention_mask"],
+ out["retrieved_doc_embeds"],
+ )
+
+ # set to correct device
+ retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
+ context_input_ids = context_input_ids.to(input_ids)
+ context_attention_mask = context_attention_mask.to(input_ids)
+
+ # compute doc_scores
+ doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
+ 1
+ )
+
+ assert (context_input_ids.shape[0] % n_docs) == 0, (
+ f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
+ f" {context_input_ids.shape[0]}."
+ )
+
+ # batch_size
+ batch_size = context_input_ids.shape[0] // n_docs
+
+ encoder = self.rag.generator.get_encoder()
+ encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True)
+
+ input_ids = torch.full(
+ (batch_size * generation_config.num_beams, 1),
+ generation_config.decoder_start_token_id,
+ dtype=torch.long,
+ device=next(self.parameters()).device,
+ )
+ input_ids_seq_length = input_ids.shape[-1]
+ last_hidden_state = encoder_outputs["last_hidden_state"]
+
+ def extend_enc_output(tensor, num_beams=None):
+ # split into `batch_size`, `num_beams`, `num_docs`
+ tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:])
+ # repeat same last hidden states over `num_beams` dimension
+ tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:])
+ # merge `batch_size`, `num_beams`, `num_docs` dims again
+ return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:])
+
+ # correctly extend last_hidden_state and attention mask
+ context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams)
+ encoder_outputs["last_hidden_state"] = extend_enc_output(
+ last_hidden_state, num_beams=generation_config.num_beams
+ )
+
+ doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0)
+
+ # define start_len & additional parameters
+ model_kwargs["doc_scores"] = doc_scores
+ model_kwargs["encoder_outputs"] = encoder_outputs
+ model_kwargs["attention_mask"] = context_attention_mask
+ model_kwargs["n_docs"] = n_docs
+
+ pre_processor = self._get_logits_processor(
+ generation_config=generation_config,
+ input_ids_seq_length=input_ids_seq_length,
+ encoder_input_ids=context_input_ids,
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
+ logits_processor=logits_processor,
+ )
+
+ if generation_config.num_beams == 1:
+ if generation_config.num_return_sequences > 1:
+ raise ValueError(
+ f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
+ " greedy search."
+ )
+ return self._greedy_search(
+ input_ids,
+ logits_processor=pre_processor,
+ max_length=generation_config.max_length,
+ pad_token_id=generation_config.pad_token_id,
+ eos_token_id=generation_config.eos_token_id,
+ **model_kwargs,
+ )
+ elif generation_config.num_beams > 1:
+ if generation_config.num_return_sequences > generation_config.num_beams:
+ raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
+ beam_scorer = BeamSearchScorer(
+ batch_size=batch_size,
+ num_beams=generation_config.num_beams,
+ device=self.device,
+ length_penalty=generation_config.length_penalty,
+ do_early_stopping=generation_config.early_stopping,
+ num_beam_hyps_to_keep=generation_config.num_return_sequences,
+ max_length=generation_config.max_length,
+ )
+ return self._beam_search(
+ input_ids,
+ beam_scorer,
+ logits_processor=pre_processor,
+ max_length=generation_config.max_length,
+ pad_token_id=generation_config.pad_token_id,
+ eos_token_id=generation_config.eos_token_id,
+ **model_kwargs,
+ )
+ else:
+ raise ValueError(
+ f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}"
+ )
+
+ def get_input_embeddings(self):
+ return self.rag.generator.get_input_embeddings()
+
+ def get_output_embeddings(self):
+ return self.rag.generator.get_output_embeddings()
+
+ def set_output_embeddings(self, new_embeddings):
+ return self.rag.generator.set_output_embeddings(new_embeddings)
+
+ def shift_tokens_right(self, input_ids, start_token_id=None):
+ """Shift input ids one token to the right, and pad with start_token_id"""
+ if start_token_id is None:
+ start_token_id = self.config.decoder_start_token_id
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = start_token_id
+ return shifted_input_ids
+
+ def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
+ n_docs = n_docs if n_docs is not None else self.config.n_docs
+ # shift tokens left
+ target = torch.cat(
+ [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
+ )
+
+ def _mask_pads(ll, smooth_obj):
+ pad_mask = target.eq(self.config.generator.pad_token_id)
+ if pad_mask.any():
+ ll.masked_fill_(pad_mask, 0.0)
+ smooth_obj.masked_fill_(pad_mask, 0.0)
+ return ll.squeeze(-1), smooth_obj.squeeze(-1)
+
+ rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
+
+ target = target.unsqueeze(-1)
+ assert target.dim() == rag_logprobs.dim()
+
+ ll = rag_logprobs.gather(dim=-1, index=target)
+ smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
+ ll, smooth_obj = _mask_pads(ll, smooth_obj)
+ ll = ll.sum(1) # sum over tokens
+ smooth_obj = smooth_obj.sum(1)
+
+ nll_loss = -ll
+ smooth_loss = -smooth_obj
+
+ if reduce_loss:
+ nll_loss = nll_loss.sum()
+ smooth_loss = smooth_loss.sum()
+
+ eps_i = epsilon / rag_logprobs.size(-1)
+ loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
+ return loss
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/retrieval_rag.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/retrieval_rag.py
new file mode 100644
index 0000000000000000000000000000000000000000..a448132300d338c13351d9d4a7c1eb285c263e7d
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/retrieval_rag.py
@@ -0,0 +1,674 @@
+# coding=utf-8
+# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""RAG Retriever model implementation."""
+
+import os
+import pickle
+import time
+from typing import Iterable, List, Optional, Tuple
+
+import numpy as np
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...tokenization_utils_base import BatchEncoding
+from ...utils import cached_file, is_datasets_available, is_faiss_available, logging, requires_backends, strtobool
+from .configuration_rag import RagConfig
+from .tokenization_rag import RagTokenizer
+
+
+if is_datasets_available():
+ from datasets import Dataset, load_dataset, load_from_disk
+
+if is_faiss_available():
+ import faiss
+
+
+logger = logging.get_logger(__name__)
+
+
+LEGACY_INDEX_PATH = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/"
+
+
+class Index:
+ """
+ A base class for the Indices encapsulated by the [`RagRetriever`].
+ """
+
+ def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
+ """
+ Returns a list of dictionaries, containing titles and text of the retrieved documents.
+
+ Args:
+ doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`):
+ A tensor of document indices.
+ """
+ raise NotImplementedError
+
+ def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
+ """
+ For each query in the batch, retrieves `n_docs` documents.
+
+ Args:
+ question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
+ An array of query vectors.
+ n_docs (`int`):
+ The number of docs retrieved per query.
+
+ Returns:
+ `np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of
+ shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents.
+ """
+ raise NotImplementedError
+
+ def is_initialized(self):
+ """
+ Returns `True` if index is already initialized.
+ """
+ raise NotImplementedError
+
+ def init_index(self):
+ """
+ A function responsible for loading the index into memory. Should be called only once per training run of a RAG
+ model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load
+ the index.
+ """
+ raise NotImplementedError
+
+
+class LegacyIndex(Index):
+ """
+ An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use
+ default faiss index parameters as specified in that repository.
+
+ Args:
+ vector_size (`int`):
+ The dimension of indexed vectors.
+ index_path (`str`):
+ A path to a *directory* containing index files compatible with [`~models.rag.retrieval_rag.LegacyIndex`]
+ """
+
+ INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index"
+ PASSAGE_FILENAME = "psgs_w100.tsv.pkl"
+
+ def __init__(self, vector_size, index_path):
+ self.index_id_to_db_id = []
+ self.index_path = index_path
+ self.passages = self._load_passages()
+ self.vector_size = vector_size
+ self.index = None
+ self._index_initialized = False
+
+ def _resolve_path(self, index_path, filename):
+ is_local = os.path.isdir(index_path)
+ try:
+ # Load from URL or cache if already cached
+ resolved_archive_file = cached_file(index_path, filename)
+ except EnvironmentError:
+ msg = (
+ f"Can't load '{filename}'. Make sure that:\n\n"
+ f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}\n\n"
+ f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n"
+ )
+ raise EnvironmentError(msg)
+ if is_local:
+ logger.info(f"loading file {resolved_archive_file}")
+ else:
+ logger.info(f"loading file {filename} from cache at {resolved_archive_file}")
+ return resolved_archive_file
+
+ def _load_passages(self):
+ logger.info(f"Loading passages from {self.index_path}")
+ passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME)
+ if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
+ raise ValueError(
+ "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
+ "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
+ "that could have been tampered with. If you already verified the pickle data and decided to use it, "
+ "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
+ )
+ with open(passages_path, "rb") as passages_file:
+ passages = pickle.load(passages_file)
+ return passages
+
+ def _deserialize_index(self):
+ logger.info(f"Loading index from {self.index_path}")
+ resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr")
+ self.index = faiss.read_index(resolved_index_path)
+ resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr")
+ if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
+ raise ValueError(
+ "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
+ "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
+ "that could have been tampered with. If you already verified the pickle data and decided to use it, "
+ "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
+ )
+ with open(resolved_meta_path, "rb") as metadata_file:
+ self.index_id_to_db_id = pickle.load(metadata_file)
+ assert (
+ len(self.index_id_to_db_id) == self.index.ntotal
+ ), "Deserialized index_id_to_db_id should match faiss index size"
+
+ def is_initialized(self):
+ return self._index_initialized
+
+ def init_index(self):
+ index = faiss.IndexHNSWFlat(self.vector_size + 1, 512)
+ index.hnsw.efSearch = 128
+ index.hnsw.efConstruction = 200
+ self.index = index
+ self._deserialize_index()
+ self._index_initialized = True
+
+ def get_doc_dicts(self, doc_ids: np.array):
+ doc_list = []
+ for doc_ids_i in doc_ids:
+ ids = [str(int(doc_id)) for doc_id in doc_ids_i]
+ docs = [self.passages[doc_id] for doc_id in ids]
+ doc_list.append(docs)
+ doc_dicts = []
+ for docs in doc_list:
+ doc_dict = {}
+ doc_dict["title"] = [doc[1] for doc in docs]
+ doc_dict["text"] = [doc[0] for doc in docs]
+ doc_dicts.append(doc_dict)
+ return doc_dicts
+
+ def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
+ aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1)
+ query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim))
+ _, docs_ids = self.index.search(query_nhsw_vectors, n_docs)
+ vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids]
+ ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids]
+ return np.array(ids), np.array(vectors)
+
+
+class HFIndexBase(Index):
+ def __init__(self, vector_size, dataset, index_initialized=False):
+ self.vector_size = vector_size
+ self.dataset = dataset
+ self._index_initialized = index_initialized
+ self._check_dataset_format(with_index=index_initialized)
+ dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32")
+
+ def _check_dataset_format(self, with_index: bool):
+ if not isinstance(self.dataset, Dataset):
+ raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
+ if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
+ raise ValueError(
+ "Dataset should be a dataset with the following columns: "
+ "title (str), text (str) and embeddings (arrays of dimension vector_size), "
+ f"but got columns {self.dataset.column_names}"
+ )
+ if with_index and "embeddings" not in self.dataset.list_indexes():
+ raise ValueError(
+ "Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it "
+ "or `dataset.load_faiss_index` to load one from the disk."
+ )
+
+ def init_index(self):
+ raise NotImplementedError()
+
+ def is_initialized(self):
+ return self._index_initialized
+
+ def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
+ return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])]
+
+ def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
+ _, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs)
+ docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids]
+ vectors = [doc["embeddings"] for doc in docs]
+ for i in range(len(vectors)):
+ if len(vectors[i]) < n_docs:
+ vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))])
+ return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
+
+
+class CanonicalHFIndex(HFIndexBase):
+ """
+ A wrapper around an instance of [`~datasets.Datasets`]. If `index_path` is set to `None`, we load the pre-computed
+ index available with the [`~datasets.arrow_dataset.Dataset`], otherwise, we load the index from the indicated path
+ on disk.
+
+ Args:
+ vector_size (`int`): the dimension of the passages embeddings used by the index
+ dataset_name (`str`, optional, defaults to `wiki_dpr`):
+ A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids
+ with `datasets.list_datasets()`).
+ dataset_split (`str`, optional, defaults to `train`)
+ Which split of the `dataset` to load.
+ index_name (`str`, optional, defaults to `train`)
+ The index_name of the index associated with the `dataset`. The index loaded from `index_path` will be saved
+ under this name.
+ index_path (`str`, optional, defaults to `None`)
+ The path to the serialized faiss index on disk.
+ use_dummy_dataset (`bool`, optional, defaults to `False`):
+ If True, use the dummy configuration of the dataset for tests.
+ """
+
+ def __init__(
+ self,
+ vector_size: int,
+ dataset_name: str = "wiki_dpr",
+ dataset_split: str = "train",
+ index_name: Optional[str] = None,
+ index_path: Optional[str] = None,
+ use_dummy_dataset=False,
+ dataset_revision=None,
+ ):
+ if int(index_path is None) + int(index_name is None) != 1:
+ raise ValueError("Please provide `index_name` or `index_path`.")
+ self.dataset_name = dataset_name
+ self.dataset_split = dataset_split
+ self.index_name = index_name
+ self.index_path = index_path
+ self.use_dummy_dataset = use_dummy_dataset
+ self.dataset_revision = dataset_revision
+ logger.info(f"Loading passages from {self.dataset_name}")
+ dataset = load_dataset(
+ self.dataset_name,
+ with_index=False,
+ split=self.dataset_split,
+ dummy=self.use_dummy_dataset,
+ revision=dataset_revision,
+ )
+ super().__init__(vector_size, dataset, index_initialized=False)
+
+ def init_index(self):
+ if self.index_path is not None:
+ logger.info(f"Loading index from {self.index_path}")
+ self.dataset.load_faiss_index("embeddings", file=self.index_path)
+ else:
+ logger.info(f"Loading index from {self.dataset_name} with index name {self.index_name}")
+ self.dataset = load_dataset(
+ self.dataset_name,
+ with_embeddings=True,
+ with_index=True,
+ split=self.dataset_split,
+ index_name=self.index_name,
+ dummy=self.use_dummy_dataset,
+ revision=self.dataset_revision,
+ )
+ self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True)
+ self._index_initialized = True
+
+
+class CustomHFIndex(HFIndexBase):
+ """
+ A wrapper around an instance of [`~datasets.Datasets`]. The dataset and the index are both loaded from the
+ indicated paths on disk.
+
+ Args:
+ vector_size (`int`): the dimension of the passages embeddings used by the index
+ dataset_path (`str`):
+ The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and
+ embeddings (arrays of dimension vector_size)
+ index_path (`str`)
+ The path to the serialized faiss index on disk.
+ """
+
+ def __init__(self, vector_size: int, dataset, index_path=None):
+ super().__init__(vector_size, dataset, index_initialized=index_path is None)
+ self.index_path = index_path
+
+ @classmethod
+ def load_from_disk(cls, vector_size, dataset_path, index_path):
+ logger.info(f"Loading passages from {dataset_path}")
+ if dataset_path is None or index_path is None:
+ raise ValueError(
+ "Please provide `dataset_path` and `index_path` after calling `dataset.save_to_disk(dataset_path)` "
+ "and `dataset.get_index('embeddings').save(index_path)`."
+ )
+ dataset = load_from_disk(dataset_path)
+ return cls(vector_size=vector_size, dataset=dataset, index_path=index_path)
+
+ def init_index(self):
+ if not self.is_initialized():
+ logger.info(f"Loading index from {self.index_path}")
+ self.dataset.load_faiss_index("embeddings", file=self.index_path)
+ self._index_initialized = True
+
+
+class RagRetriever:
+ """
+ Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents
+ contents, and it formats them to be used with a RagModel.
+
+ Args:
+ config ([`RagConfig`]):
+ The configuration of the RAG model this Retriever is used with. Contains parameters indicating which
+ `Index` to build. You can load your own custom dataset with `config.index_name="custom"` or use a canonical
+ one (default) from the datasets library with `config.index_name="wiki_dpr"` for example.
+ question_encoder_tokenizer ([`PreTrainedTokenizer`]):
+ The tokenizer that was used to tokenize the question. It is used to decode the question and then use the
+ generator_tokenizer.
+ generator_tokenizer ([`PreTrainedTokenizer`]):
+ The tokenizer used for the generator part of the RagModel.
+ index ([`~models.rag.retrieval_rag.Index`], optional, defaults to the one defined by the configuration):
+ If specified, use this index instead of the one built using the configuration
+
+ Examples:
+
+ ```python
+ >>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact')
+ >>> from transformers import RagRetriever
+
+ >>> retriever = RagRetriever.from_pretrained(
+ ... "facebook/dpr-ctx_encoder-single-nq-base", dataset="wiki_dpr", index_name="compressed"
+ ... )
+
+ >>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py
+ >>> from transformers import RagRetriever
+
+ >>> dataset = (
+ ... ...
+ ... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index
+ >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset)
+
+ >>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py
+ >>> from transformers import RagRetriever
+
+ >>> dataset_path = "path/to/my/dataset" # dataset saved via *dataset.save_to_disk(...)*
+ >>> index_path = "path/to/my/index.faiss" # faiss index saved via *dataset.get_index("embeddings").save(...)*
+ >>> retriever = RagRetriever.from_pretrained(
+ ... "facebook/dpr-ctx_encoder-single-nq-base",
+ ... index_name="custom",
+ ... passages_path=dataset_path,
+ ... index_path=index_path,
+ ... )
+
+ >>> # To load the legacy index built originally for Rag's paper
+ >>> from transformers import RagRetriever
+
+ >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", index_name="legacy")
+ ```"""
+
+ def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True):
+ self._init_retrieval = init_retrieval
+ requires_backends(self, ["datasets", "faiss"])
+ super().__init__()
+ self.index = index or self._build_index(config)
+ self.generator_tokenizer = generator_tokenizer
+ self.question_encoder_tokenizer = question_encoder_tokenizer
+
+ self.n_docs = config.n_docs
+ self.batch_size = config.retrieval_batch_size
+
+ self.config = config
+ if self._init_retrieval:
+ self.init_retrieval()
+
+ self.ctx_encoder_tokenizer = None
+ self.return_tokenized_docs = False
+
+ @staticmethod
+ def _build_index(config):
+ if config.index_name == "legacy":
+ return LegacyIndex(
+ config.retrieval_vector_size,
+ config.index_path or LEGACY_INDEX_PATH,
+ )
+ elif config.index_name == "custom":
+ return CustomHFIndex.load_from_disk(
+ vector_size=config.retrieval_vector_size,
+ dataset_path=config.passages_path,
+ index_path=config.index_path,
+ )
+ else:
+ return CanonicalHFIndex(
+ vector_size=config.retrieval_vector_size,
+ dataset_name=config.dataset,
+ dataset_split=config.dataset_split,
+ index_name=config.index_name,
+ index_path=config.index_path,
+ use_dummy_dataset=config.use_dummy_dataset,
+ dataset_revision=config.dataset_revision,
+ )
+
+ @classmethod
+ def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
+ requires_backends(cls, ["datasets", "faiss"])
+ config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
+ rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
+ question_encoder_tokenizer = rag_tokenizer.question_encoder
+ generator_tokenizer = rag_tokenizer.generator
+ if indexed_dataset is not None:
+ config.index_name = "custom"
+ index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
+ else:
+ index = cls._build_index(config)
+ return cls(
+ config,
+ question_encoder_tokenizer=question_encoder_tokenizer,
+ generator_tokenizer=generator_tokenizer,
+ index=index,
+ )
+
+ def save_pretrained(self, save_directory):
+ if isinstance(self.index, CustomHFIndex):
+ if self.config.index_path is None:
+ index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
+ self.index.dataset.get_index("embeddings").save(index_path)
+ self.config.index_path = index_path
+ if self.config.passages_path is None:
+ passages_path = os.path.join(save_directory, "hf_dataset")
+ # datasets don't support save_to_disk with indexes right now
+ faiss_index = self.index.dataset._indexes.pop("embeddings")
+ self.index.dataset.save_to_disk(passages_path)
+ self.index.dataset._indexes["embeddings"] = faiss_index
+ self.config.passages_path = passages_path
+ self.config.save_pretrained(save_directory)
+ rag_tokenizer = RagTokenizer(
+ question_encoder=self.question_encoder_tokenizer,
+ generator=self.generator_tokenizer,
+ )
+ rag_tokenizer.save_pretrained(save_directory)
+
+ def init_retrieval(self):
+ """
+ Retriever initialization function. It loads the index into memory.
+ """
+
+ logger.info("initializing retrieval")
+ self.index.init_index()
+
+ def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None):
+ r"""
+ Postprocessing retrieved `docs` and combining them with `input_strings`.
+
+ Args:
+ docs (`dict`):
+ Retrieved documents.
+ input_strings (`str`):
+ Input strings decoded by `preprocess_query`.
+ prefix (`str`):
+ Prefix added at the beginning of each input, typically used with T5-based models.
+
+ Return:
+ `tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible
+ `attention_mask`.
+ """
+
+ def cat_input_and_doc(doc_title, doc_text, input_string, prefix):
+ # TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation
+ # TODO(piktus): better handling of truncation
+ if doc_title.startswith('"'):
+ doc_title = doc_title[1:]
+ if doc_title.endswith('"'):
+ doc_title = doc_title[:-1]
+ if prefix is None:
+ prefix = ""
+ out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace(
+ " ", " "
+ )
+ return out
+
+ rag_input_strings = [
+ cat_input_and_doc(
+ docs[i]["title"][j],
+ docs[i]["text"][j],
+ input_strings[i],
+ prefix,
+ )
+ for i in range(len(docs))
+ for j in range(n_docs)
+ ]
+
+ contextualized_inputs = self.generator_tokenizer.batch_encode_plus(
+ rag_input_strings,
+ max_length=self.config.max_combined_length,
+ return_tensors=return_tensors,
+ padding="max_length",
+ truncation=True,
+ )
+
+ return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"]
+
+ def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]:
+ return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)]
+
+ def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]:
+ question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size)
+ ids_batched = []
+ vectors_batched = []
+ for question_hidden_states in question_hidden_states_batched:
+ start_time = time.time()
+ ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs)
+ logger.debug(
+ f"index search time: {time.time() - start_time} sec, batch size {question_hidden_states.shape}"
+ )
+ ids_batched.extend(ids)
+ vectors_batched.extend(vectors)
+ return (
+ np.array(ids_batched),
+ np.array(vectors_batched),
+ ) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
+
+ def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]:
+ """
+ Retrieves documents for specified `question_hidden_states`.
+
+ Args:
+ question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
+ A batch of query vectors to retrieve with.
+ n_docs (`int`):
+ The number of docs retrieved per query.
+
+ Return:
+ `Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects:
+
+ - **retrieved_doc_embeds** (`np.ndarray` of shape `(batch_size, n_docs, dim)`) -- The retrieval embeddings
+ of the retrieved docs per query.
+ - **doc_ids** (`np.ndarray` of shape `(batch_size, n_docs)`) -- The ids of the documents in the index
+ - **doc_dicts** (`List[dict]`): The `retrieved_doc_embeds` examples per query.
+ """
+
+ doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
+ return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
+
+ def set_ctx_encoder_tokenizer(self, ctx_encoder_tokenizer: PreTrainedTokenizer):
+ # used in end2end retriever training
+ self.ctx_encoder_tokenizer = ctx_encoder_tokenizer
+ self.return_tokenized_docs = True
+
+ def __call__(
+ self,
+ question_input_ids: List[List[int]],
+ question_hidden_states: np.ndarray,
+ prefix=None,
+ n_docs=None,
+ return_tensors=None,
+ ) -> BatchEncoding:
+ """
+ Retrieves documents for specified `question_hidden_states`.
+
+ Args:
+ question_input_ids (`List[List[int]]`) batch of input ids
+ question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`:
+ A batch of query vectors to retrieve with.
+ prefix (`str`, *optional*):
+ The prefix used by the generator's tokenizer.
+ n_docs (`int`, *optional*):
+ The number of docs retrieved per query.
+ return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to "pt"):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+
+ Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **context_input_ids** -- List of token ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model
+ (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **retrieved_doc_embeds** -- List of embeddings of the retrieved documents
+ - **doc_ids** -- List of ids of the retrieved documents
+ """
+
+ n_docs = n_docs if n_docs is not None else self.n_docs
+ prefix = prefix if prefix is not None else self.config.generator.prefix
+ retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs)
+
+ input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True)
+ context_input_ids, context_attention_mask = self.postprocess_docs(
+ docs, input_strings, prefix, n_docs, return_tensors=return_tensors
+ )
+
+ if self.return_tokenized_docs:
+ retrieved_doc_text = []
+ retrieved_doc_title = []
+
+ for b_idx in range(len(docs)):
+ for doc_idx in range(n_docs):
+ retrieved_doc_text.append(docs[b_idx]["text"][doc_idx])
+ retrieved_doc_title.append(docs[b_idx]["title"][doc_idx])
+
+ tokenized_docs = self.ctx_encoder_tokenizer(
+ retrieved_doc_title,
+ retrieved_doc_text,
+ truncation=True,
+ padding="longest",
+ return_tensors=return_tensors,
+ )
+
+ return BatchEncoding(
+ {
+ "context_input_ids": context_input_ids,
+ "context_attention_mask": context_attention_mask,
+ "retrieved_doc_embeds": retrieved_doc_embeds,
+ "doc_ids": doc_ids,
+ "tokenized_doc_ids": tokenized_docs["input_ids"],
+ "tokenized_doc_attention_mask": tokenized_docs["attention_mask"],
+ },
+ tensor_type=return_tensors,
+ )
+
+ else:
+ return BatchEncoding(
+ {
+ "context_input_ids": context_input_ids,
+ "context_attention_mask": context_attention_mask,
+ "retrieved_doc_embeds": retrieved_doc_embeds,
+ "doc_ids": doc_ids,
+ },
+ tensor_type=return_tensors,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/tokenization_rag.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/tokenization_rag.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b6ec67e6bf879edeb2ead9045fab52507706d65
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/rag/tokenization_rag.py
@@ -0,0 +1,120 @@
+# coding=utf-8
+# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for RAG."""
+import os
+import warnings
+from typing import List, Optional
+
+from ...tokenization_utils_base import BatchEncoding
+from ...utils import logging
+from .configuration_rag import RagConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+class RagTokenizer:
+ def __init__(self, question_encoder, generator):
+ self.question_encoder = question_encoder
+ self.generator = generator
+ self.current_tokenizer = self.question_encoder
+
+ def save_pretrained(self, save_directory):
+ if os.path.isfile(save_directory):
+ raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
+ os.makedirs(save_directory, exist_ok=True)
+ question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer")
+ generator_path = os.path.join(save_directory, "generator_tokenizer")
+ self.question_encoder.save_pretrained(question_encoder_path)
+ self.generator.save_pretrained(generator_path)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
+ # dynamically import AutoTokenizer
+ from ..auto.tokenization_auto import AutoTokenizer
+
+ config = kwargs.pop("config", None)
+
+ if config is None:
+ config = RagConfig.from_pretrained(pretrained_model_name_or_path)
+
+ question_encoder = AutoTokenizer.from_pretrained(
+ pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer"
+ )
+ generator = AutoTokenizer.from_pretrained(
+ pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer"
+ )
+ return cls(question_encoder=question_encoder, generator=generator)
+
+ def __call__(self, *args, **kwargs):
+ return self.current_tokenizer(*args, **kwargs)
+
+ def batch_decode(self, *args, **kwargs):
+ return self.generator.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ return self.generator.decode(*args, **kwargs)
+
+ def _switch_to_input_mode(self):
+ self.current_tokenizer = self.question_encoder
+
+ def _switch_to_target_mode(self):
+ self.current_tokenizer = self.generator
+
+ def prepare_seq2seq_batch(
+ self,
+ src_texts: List[str],
+ tgt_texts: Optional[List[str]] = None,
+ max_length: Optional[int] = None,
+ max_target_length: Optional[int] = None,
+ padding: str = "longest",
+ return_tensors: str = None,
+ truncation: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ warnings.warn(
+ "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
+ "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
+ "context manager to prepare your targets. See the documentation of your specific tokenizer for more "
+ "details",
+ FutureWarning,
+ )
+ if max_length is None:
+ max_length = self.current_tokenizer.model_max_length
+ model_inputs = self(
+ src_texts,
+ add_special_tokens=True,
+ return_tensors=return_tensors,
+ max_length=max_length,
+ padding=padding,
+ truncation=truncation,
+ **kwargs,
+ )
+ if tgt_texts is None:
+ return model_inputs
+ # Process tgt_texts
+ if max_target_length is None:
+ max_target_length = self.current_tokenizer.model_max_length
+ labels = self(
+ text_target=tgt_texts,
+ add_special_tokens=True,
+ return_tensors=return_tensors,
+ padding=padding,
+ max_length=max_target_length,
+ truncation=truncation,
+ **kwargs,
+ )
+ model_inputs["labels"] = labels["input_ids"]
+ return model_inputs
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..37508ef808e08365185d4b087ea468b5ffa23785
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__init__.py
@@ -0,0 +1,103 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_sentencepiece_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_reformer"] = ["ReformerTokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_reformer_fast"] = ["ReformerTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_reformer"] = [
+ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ReformerAttention",
+ "ReformerForMaskedLM",
+ "ReformerForQuestionAnswering",
+ "ReformerForSequenceClassification",
+ "ReformerLayer",
+ "ReformerModel",
+ "ReformerModelWithLMHead",
+ "ReformerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_reformer import ReformerTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_reformer_fast import ReformerTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_reformer import (
+ REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ReformerAttention,
+ ReformerForMaskedLM,
+ ReformerForQuestionAnswering,
+ ReformerForSequenceClassification,
+ ReformerLayer,
+ ReformerModel,
+ ReformerModelWithLMHead,
+ ReformerPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d284a318f170930fb5abe279c36fbb3c4df4b5f7
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/configuration_reformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/configuration_reformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cddd712f1363c23a5d9c00d63fe59985a66ab155
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/configuration_reformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/convert_reformer_trax_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/convert_reformer_trax_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3087aedece62b6b855cfd8a59f5b1ce2ae65496b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/convert_reformer_trax_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/modeling_reformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/modeling_reformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4fbf6326a448380470f1fcf7c9db37c20227ec92
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/modeling_reformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..08ec0a8c592eaaf335d3b030e2b7eaf96d2e169a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f93226b3b97ac1830d27ffefbd4ad7d32944311d
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/__pycache__/tokenization_reformer_fast.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..e01f25a5fbfe8fc2592f21ddeaafd6cb7e4aff49
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/configuration_reformer.py
@@ -0,0 +1,239 @@
+# coding=utf-8
+# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Reformer model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "google/reformer-crime-and-punishment": (
+ "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json"
+ ),
+ "google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json",
+}
+
+
+class ReformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a
+ Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration
+ with the defaults will yield a similar configuration to that of the ReFormer
+ [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ attention_head_size (`int`, *optional*, defaults to 64):
+ Dimensionality of the projected key, query and value vectors
+ attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`):
+ List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer
+ (`"lsh"`) and a LocalSelfAttention layer (`"local"`).
+
+ For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For
+ more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention).
+ axial_pos_embds (`bool`, *optional*, defaults to `True`):
+ Whether or not to use axial position embeddings. For more information on how axial position embeddings
+ work, see [Axial Position Encodings](reformer#axial-positional-encodings).
+ axial_norm_std (`float`, *optional*, defaults to 1.0):
+ The standard deviation of the normal_initializer for initializing the weight matrices of the axial
+ positional encodings.
+ axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`):
+ The position dims of the axial position encodings. During training, the product of the position dims has to
+ be equal to the sequence length.
+
+ For more information on how axial position embeddings work, see [Axial Position
+ Encodings](reformer#axial-positional-encodings).
+ axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`):
+ The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the
+ hidden size.
+
+ For more information on how axial position embeddings work, see [Axial Position
+ Encodings](reformer#axial-positional-encodings).
+ chunk_size_lm_head (`int`, *optional*, defaults to 0):
+ The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed
+ forward layer is not chunked. A chunk size of n means that the feed forward layer processes n <
+ sequence_length embeddings at a time.
+
+ For more information on feed forward chunking, see [How does Feed Forward Chunking
+ work?](../glossary#feed-forward-chunking).
+ eos_token_id (`int`, *optional*, defaults to 2):
+ The token id for the end-of-sentence token.
+ feed_forward_size (`int`, *optional*, defaults to 512):
+ Dimensionality of the feed_forward layer in the residual attention block.
+ hash_seed (`int`, *optional*):
+ Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only
+ be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to
+ ensure fully random rotations in local sensitive hashing scheme.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the feed forward layer in the residual attention
+ block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.05):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ hidden_size (`int`, *optional*, defaults to 256):
+ Dimensionality of the output hidden states of the residual attention blocks.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ is_decoder (`bool`, *optional*, defaults to `False`):
+ Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When
+ using the Reformer for causal language modeling, this argument should be set to `True`.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ local_chunk_length (`int`, *optional*, defaults to 64):
+ Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from
+ sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
+ length (chunked self attention).
+ local_num_chunks_before (`int`, *optional*, defaults to 1):
+ Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself.
+ local_num_chunks_after (`int`, *optional*, defaults to 0):
+ Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself.
+ local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities in `LocalSelfAttention`.
+ lsh_attn_chunk_length (`int`, *optional*, defaults to 64):
+ Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from
+ sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk
+ length (chunked self attention).
+ lsh_num_chunks_before (`int`, *optional*, defaults to 1):
+ Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself.
+ lsh_num_chunks_after (`int`, *optional*, defaults to 0):
+ Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself.
+ lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities in `LSHSelfAttention`.
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_buckets (`int` or `List[int]`, *optional*):
+ Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme.
+ Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be
+ factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a
+ hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is
+ factorized into two factors. The number of buckets (or the product the factors) should approximately equal
+ sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly.
+ num_hashes (`int`, *optional*, defaults to 1):
+ Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher
+ `num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive
+ the hashing becomes.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ The token id for the padding token.
+ vocab_size (`int`, *optional*, defaults to 320):\
+ Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`ReformerModel`].
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
+ Whether to tie input and output embeddings.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Examples:
+
+ ```python
+ >>> from transformers import ReformerConfig, ReformerModel
+
+ >>> # Initializing a Reformer configuration
+ >>> configuration = ReformerConfig()
+
+ >>> # Initializing a Reformer model (with random weights)
+ >>> model = ReformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+"""
+
+ model_type = "reformer"
+ keys_to_ignore_at_inference = ["past_buckets_states"]
+ attribute_map = {}
+
+ def __init__(
+ self,
+ attention_head_size=64,
+ attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"],
+ axial_norm_std=1.0,
+ axial_pos_embds=True,
+ axial_pos_shape=[64, 64],
+ axial_pos_embds_dim=[64, 192],
+ chunk_size_lm_head=0,
+ eos_token_id=2,
+ feed_forward_size=512,
+ hash_seed=None,
+ hidden_act="relu",
+ hidden_dropout_prob=0.05,
+ hidden_size=256,
+ initializer_range=0.02,
+ is_decoder=False,
+ layer_norm_eps=1e-12,
+ local_num_chunks_before=1,
+ local_num_chunks_after=0,
+ local_attention_probs_dropout_prob=0.05,
+ local_attn_chunk_length=64,
+ lsh_attn_chunk_length=64,
+ lsh_attention_probs_dropout_prob=0.0,
+ lsh_num_chunks_before=1,
+ lsh_num_chunks_after=0,
+ max_position_embeddings=4096,
+ num_attention_heads=12,
+ num_buckets=None,
+ num_hashes=1,
+ pad_token_id=0,
+ vocab_size=320,
+ tie_word_embeddings=False,
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ self.hash_seed = hash_seed
+ self.vocab_size = vocab_size
+ self.attention_head_size = attention_head_size
+ self.hidden_size = hidden_size
+ self.num_attention_heads = num_attention_heads
+ self.num_hashes = num_hashes
+ self.num_hidden_layers = len(attn_layers)
+ self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
+ self.lsh_attn_chunk_length = lsh_attn_chunk_length
+ self.local_attn_chunk_length = local_attn_chunk_length
+ self.lsh_num_chunks_after = lsh_num_chunks_after
+ self.lsh_num_chunks_before = lsh_num_chunks_before
+ self.local_num_chunks_after = local_num_chunks_after
+ self.local_num_chunks_before = local_num_chunks_before
+ self.hidden_act = hidden_act
+ self.feed_forward_size = feed_forward_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
+ self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.axial_pos_embds = axial_pos_embds
+ self.axial_pos_shape = tuple(axial_pos_shape)
+ self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
+ self.axial_norm_std = axial_norm_std
+ self.chunk_size_lm_head = chunk_size_lm_head
+ self.attn_layers = attn_layers
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+ super().__init__(
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ is_decoder=is_decoder,
+ tie_word_embeddings=tie_word_embeddings,
+ **kwargs,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..f25e166ef917cbb45a9531099508e24825eb533a
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
@@ -0,0 +1,222 @@
+# coding=utf-8
+# Copyright 2020 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Reformer checkpoint."""
+
+
+import argparse
+import pickle
+
+import numpy as np
+import torch
+from torch import nn
+
+from transformers import ReformerConfig, ReformerModelWithLMHead
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def set_param(torch_layer, weight, bias=None):
+ # set parameter of one layer
+ assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match"
+ torch_layer.weight = nn.Parameter(weight)
+ if bias is not None:
+ assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match"
+ torch_layer.bias = nn.Parameter(bias)
+
+
+def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size):
+ # set torch weights for 1-to-1 comparison
+ np_query_key = np.asarray(weights[0])
+ np_value = np.asarray(weights[1])
+ np_dense = np.asarray(weights[2])
+
+ set_param(
+ torch_layer.self_attention.query_key,
+ torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size),
+ )
+ set_param(
+ torch_layer.self_attention.value,
+ torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
+ )
+ set_param(
+ torch_layer.output.dense,
+ torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
+ )
+
+
+def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size):
+ # set torch weights for 1-to-1 comparison
+ np_query = np.asarray(weights[0])
+ np_key = np.asarray(weights[1])
+ np_value = np.asarray(weights[2])
+ np_dense = np.asarray(weights[3])
+
+ set_param(
+ torch_layer.self_attention.query,
+ torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size),
+ )
+ set_param(
+ torch_layer.self_attention.key,
+ torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size),
+ )
+ set_param(
+ torch_layer.self_attention.value,
+ torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
+ )
+ set_param(
+ torch_layer.output.dense,
+ torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
+ )
+
+
+def set_block_weights_in_torch(weights, torch_block, hidden_size):
+ # layernorm 1
+ layer_norm_1 = weights[0][0][0]
+ layer_norm_1_weight = np.asarray(layer_norm_1[0])
+ layer_norm_1_bias = np.asarray(layer_norm_1[1])
+ set_param(
+ torch_block.attention.layer_norm,
+ torch.tensor(layer_norm_1_weight),
+ torch.tensor(layer_norm_1_bias),
+ )
+
+ # lsh weights + output
+ attn_weights = weights[0][1]
+ if len(attn_weights) < 4:
+ set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size)
+ else:
+ set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size)
+
+ # intermediate weighs
+ intermediate_weights = weights[2][0][1][2]
+
+ # Chunked Feed Forward
+ if len(intermediate_weights) == 4:
+ intermediate_weights = intermediate_weights[2]
+
+ # layernorm 2
+ layer_norm_2_weight = np.asarray(intermediate_weights[0][0])
+ layer_norm_2_bias = np.asarray(intermediate_weights[0][1])
+ set_param(
+ torch_block.feed_forward.layer_norm,
+ torch.tensor(layer_norm_2_weight),
+ torch.tensor(layer_norm_2_bias),
+ )
+
+ # intermediate dense
+ inter_dense_weight = np.asarray(intermediate_weights[1][0])
+ inter_dense_bias = np.asarray(intermediate_weights[1][1])
+ set_param(
+ torch_block.feed_forward.dense.dense,
+ torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(),
+ torch.tensor(inter_dense_bias),
+ )
+
+ # intermediate out
+ out_dense_weight = np.asarray(intermediate_weights[4][0])
+ out_dense_bias = np.asarray(intermediate_weights[4][1])
+ set_param(
+ torch_block.feed_forward.output.dense,
+ torch.tensor(out_dense_weight).transpose(0, 1).contiguous(),
+ torch.tensor(out_dense_bias),
+ )
+
+
+def set_model_weights_in_torch(weights, torch_model, hidden_size):
+ # reformer model
+ torch_model_reformer = torch_model.reformer
+
+ # word embeds
+ word_embeddings = np.asarray(weights[1])
+ set_param(
+ torch_model_reformer.embeddings.word_embeddings,
+ torch.tensor(word_embeddings),
+ )
+
+ if isinstance(weights[3], tuple):
+ position_embeddings = torch_model_reformer.embeddings.position_embeddings
+ for emb_idx in range(len(position_embeddings.weights)):
+ emb_weights = np.asarray(weights[3][emb_idx][0])
+ assert (
+ position_embeddings.weights[emb_idx].shape == emb_weights.shape
+ ), f"{position_embeddings[emb_idx]} emb does not match"
+ position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights))
+
+ trax_layer_weights = weights[5]
+ assert len(torch_model_reformer.encoder.layers) * 4 == len(
+ trax_layer_weights
+ ), "HF and trax model do not have the same number of layers"
+ for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers):
+ block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
+ set_block_weights_in_torch(block_weights, layer, hidden_size)
+
+ # output layer norm
+ layer_norm_out_weight = np.asarray(weights[7][0])
+ layer_norm_out_bias = np.asarray(weights[7][1])
+ set_param(
+ torch_model_reformer.encoder.layer_norm,
+ torch.tensor(layer_norm_out_weight),
+ torch.tensor(layer_norm_out_bias),
+ )
+
+ # output embeddings
+ output_embed_weights = np.asarray(weights[9][0])
+ output_embed_bias = np.asarray(weights[9][1])
+ set_param(
+ torch_model.lm_head.decoder,
+ torch.tensor(output_embed_weights).transpose(0, 1).contiguous(),
+ torch.tensor(output_embed_bias),
+ )
+
+
+def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path):
+ # Initialise PyTorch model
+ config = ReformerConfig.from_json_file(config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+ model = ReformerModelWithLMHead(config)
+
+ with open(trax_model_pkl_path, "rb") as f:
+ model_weights = pickle.load(f)["weights"]
+
+ set_model_weights_in_torch(model_weights, model, config.hidden_size)
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ torch.save(model.state_dict(), pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained Reformer model. \n"
+ "This specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7096a57d0fa4ee3069f1f2590835d37b64305fb0
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py
@@ -0,0 +1,2682 @@
+# coding=utf-8
+# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch REFORMER model."""
+
+import sys
+from collections import namedtuple
+from dataclasses import dataclass
+from functools import reduce
+from operator import mul
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+from torch import nn
+from torch.autograd.function import Function
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ DUMMY_INPUTS,
+ DUMMY_MASK,
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_reformer import ReformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/reformer-crime-and-punishment"
+_CONFIG_FOR_DOC = "ReformerConfig"
+
+REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "google/reformer-crime-and-punishment",
+ "google/reformer-enwik8",
+ # See all Reformer models at https://huggingface.co/models?filter=reformer
+]
+
+
+# Define named tuples for nn.Modules here
+LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"])
+LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"])
+AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"])
+ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"])
+ReformerBackwardOutput = namedtuple(
+ "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"]
+)
+ReformerEncoderOutput = namedtuple(
+ "ReformerEncoderOutput",
+ ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"],
+)
+
+
+def _stable_argsort(vector, dim):
+ # this function scales the vector so that torch.argsort is stable.
+ # torch.argsort is not stable on its own
+ scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1)
+ scale_offset = scale_offset.expand(vector.shape)
+ scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim])
+ return torch.argsort(scaled_vector, dim=dim)
+
+
+def _get_least_common_mult_chunk_len(config):
+ attn_types = config.attn_layers
+ attn_types_set = set(attn_types)
+ if len(attn_types_set) == 1 and attn_types[0] == "lsh":
+ return config.lsh_attn_chunk_length
+ elif len(attn_types_set) == 1 and attn_types[0] == "local":
+ return config.local_attn_chunk_length
+ elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}:
+ return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select "
+ "attn layer types from ['lsh', 'local'] only."
+ )
+
+
+def _get_min_chunk_len(config):
+ attn_types = config.attn_layers
+ attn_types_set = set(attn_types)
+ if len(attn_types_set) == 1 and attn_types[0] == "lsh":
+ return config.lsh_attn_chunk_length
+ elif len(attn_types_set) == 1 and attn_types[0] == "local":
+ return config.local_attn_chunk_length
+ elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}:
+ return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select "
+ "attn layer types from ['lsh', 'local'] only."
+ )
+
+
+class AxialPositionEmbeddings(nn.Module):
+ """
+ Constructs axial position embeddings. Useful for very long input sequences to save memory and time.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.axial_pos_shape = config.axial_pos_shape
+ self.axial_pos_embds_dim = config.axial_pos_embds_dim
+ self.dropout = config.hidden_dropout_prob
+
+ self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config)
+ self.weights = nn.ParameterList()
+
+ if sum(self.axial_pos_embds_dim) != config.hidden_size:
+ raise ValueError(
+ f"Make sure that config.axial_pos_embds factors: {self.axial_pos_embds_dim} sum to "
+ f"config.hidden_size: {config.hidden_size}"
+ )
+
+ # create weights
+ for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim):
+ # create expanded shapes
+ ax_shape = [1] * len(self.axial_pos_shape)
+ ax_shape[axis] = self.axial_pos_shape[axis]
+ ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,)
+
+ # create tensor and init
+ self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32)))
+
+ def forward(self, position_ids):
+ # broadcast weights to correct shape
+ batch_size = position_ids.shape[0]
+ sequence_length = position_ids.shape[1]
+
+ broadcasted_weights = [
+ weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights
+ ]
+
+ if self.training is True:
+ if reduce(mul, self.axial_pos_shape) != sequence_length:
+ raise ValueError(
+ f"If training, make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply to "
+ f"sequence length. Got prod({self.axial_pos_shape}) != sequence_length: {sequence_length}. "
+ f"You might want to consider padding your sequence length to {reduce(mul, self.axial_pos_shape)} "
+ "or changing config.axial_pos_shape."
+ )
+
+ if self.dropout > 0:
+ weights = torch.cat(broadcasted_weights, dim=-1)
+ # permute weights so that 2D correctly drops dims 1 and 2
+ transposed_weights = weights.transpose(2, 1)
+ # drop entire matrix of last two dims (prev dims 1 and 2)
+ dropped_transposed_weights = nn.functional.dropout2d(
+ transposed_weights, p=self.dropout, training=self.training
+ )
+ dropped_weights = dropped_transposed_weights.transpose(2, 1)
+
+ position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1))
+
+ else:
+ position_encodings = torch.cat(
+ [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights],
+ dim=-1,
+ )
+
+ else:
+ if reduce(mul, self.axial_pos_shape) < sequence_length:
+ raise ValueError(
+ f"Make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply at least to "
+ f"max(sequence_length, least_common_mult_chunk_length): max({sequence_length}, "
+ f"{self.least_common_mult_chunk_length})."
+ )
+
+ # compute how many columns are needed
+ max_position_id = position_ids.max().item()
+ required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1])
+
+ # cut to columns that are needed
+ position_encodings = torch.cat(
+ [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1
+ )
+ position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1]))
+
+ # select correct position encodings
+ position_encodings = torch.cat(
+ [
+ torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0)
+ for i in range(batch_size)
+ ],
+ dim=0,
+ )
+
+ return position_encodings
+
+
+class PositionEmbeddings(nn.Module):
+ """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+ self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+
+ def forward(self, position_ids):
+ position_embeddings = self.embedding(position_ids)
+ position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training)
+ return position_embeddings
+
+
+class ReformerEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.max_position_embeddings = config.max_position_embeddings
+ self.dropout = config.hidden_dropout_prob
+
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
+ self.position_embeddings = (
+ AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config)
+ )
+
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ device = input_ids.device
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+ device = inputs_embeds.device
+
+ seq_length = input_shape[1]
+ if position_ids is None:
+ position_ids = torch.arange(
+ start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).expand(input_shape)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if position_ids.shape[-1] > self.max_position_embeddings:
+ raise ValueError(
+ f"Sequence Length: {position_ids.shape[-1]} has to be less or equal than "
+ f"config.max_position_embeddings {self.max_position_embeddings}."
+ )
+
+ # dropout
+ embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training)
+
+ # add positional embeddings
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings = embeddings + position_embeddings
+ return embeddings
+
+
+class EfficientAttentionMixin:
+ """
+ A few utilities for nn.Modules in Reformer, to be used as a mixin.
+ """
+
+ def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after):
+ """
+ Used to implement attention between consecutive chunks.
+
+ Args:
+ vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...]
+ num_chunks_before: chunks before current chunk to include in attention
+ num_chunks_after: chunks after current chunk to include in attention
+
+ Returns:
+ tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after).
+ """
+ if num_chunks_before == 0 and num_chunks_after == 0:
+ return vectors
+
+ slices = []
+ for i in range(-num_chunks_before, num_chunks_after + 1):
+ if i == 0:
+ slices.append(vectors)
+ else:
+ slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2))
+ return torch.cat(slices, dim=3)
+
+ def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size):
+ """
+ splits hidden_size dim into attn_head_size and num_attn_heads
+ """
+ new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size)
+ x = x.view(*new_x_shape)
+ return x.transpose(2, 1)
+
+ def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size):
+ """
+ merges attn_head_size dim and num_attn_heads dim into hidden_size
+ """
+ x = x.permute(0, 2, 1, 3)
+ return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size))
+
+ def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None):
+ """
+ splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims
+ """
+ batch_size = vectors.shape[0]
+ split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2)
+
+ if len(vectors.shape) == 4:
+ return torch.reshape(vectors, split_dim_shape + (attn_head_size,))
+ elif len(vectors.shape) == 3:
+ return torch.reshape(vectors, split_dim_shape)
+ else:
+ raise ValueError(f"Input vector rank should be one of [3, 4], but is: {len(vectors.shape)}")
+
+
+class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ self.chunk_length = config.lsh_attn_chunk_length
+ self.num_hashes = config.num_hashes
+ self.num_buckets = config.num_buckets
+ self.num_chunks_before = config.lsh_num_chunks_before
+ self.num_chunks_after = config.lsh_num_chunks_after
+ self.hash_seed = config.hash_seed
+ self.is_decoder = config.is_decoder
+ self.max_position_embeddings = config.max_position_embeddings
+
+ self.dropout = config.lsh_attention_probs_dropout_prob
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = config.attention_head_size
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.hidden_size = config.hidden_size
+
+ # projection matrices
+ self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+
+ # save mask value here. Need fp32 and fp16 mask values
+ self.register_buffer("self_mask_value_float16", torch.tensor(-1e3), persistent=False)
+ self.register_buffer("self_mask_value_float32", torch.tensor(-1e5), persistent=False)
+ self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False)
+ self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ buckets=None,
+ past_buckets_states=None,
+ use_cache=False,
+ output_attentions=False,
+ **kwargs,
+ ):
+ sequence_length = hidden_states.shape[1]
+ batch_size = hidden_states.shape[0]
+
+ # num hashes can optionally be overwritten by user
+ num_hashes = num_hashes if num_hashes is not None else self.num_hashes
+
+ do_cached_attention = use_cache and past_buckets_states[1] is not None
+
+ # check if cache shall be used and that hidden states are already cached
+ if do_cached_attention:
+ assert sequence_length == 1, (
+ "At the moment, auto-regressive language generation is only possible one word at a time. Make sure"
+ f" that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed."
+ )
+ past_buckets = past_buckets_states[0]
+ past_states = past_buckets_states[1]
+
+ # get query vector
+ query_vectors = self.query_key(hidden_states)
+ query_vectors = self._split_hidden_size_dim(
+ query_vectors, self.num_attention_heads, self.attention_head_size
+ )
+
+ if past_buckets is not None:
+ key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets(
+ query_vectors=query_vectors,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ hidden_states=hidden_states,
+ past_states=past_states,
+ past_buckets=past_buckets,
+ )
+
+ query_key_vectors = self._query_per_attn_head(key_value_hidden_states)
+ value_vectors = self._value_per_attn_head(key_value_hidden_states)
+
+ # split key & value vectors by num hashes to apply
+ # self attention on each separately
+ query_key_vectors = self._split_seq_length_dim_to(
+ query_key_vectors,
+ num_hashes,
+ -1,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ num_hashes,
+ -1,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ # repeat query vectors across hash dimension
+ query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1)
+ else:
+ key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1)
+
+ query_key_vectors = self.query_key(key_value_hidden_states)
+ value_vectors = self.value(key_value_hidden_states)
+
+ else:
+ # project hidden_states to query_key and value
+ query_vectors = None
+ query_key_vectors = self.query_key(hidden_states)
+ value_vectors = self.value(hidden_states)
+
+ # if query key is not already split
+ if not do_cached_attention or past_buckets is None:
+ query_key_vectors = self._split_hidden_size_dim(
+ query_key_vectors, self.num_attention_heads, self.attention_head_size
+ )
+ value_vectors = self._split_hidden_size_dim(
+ value_vectors, self.num_attention_heads, self.attention_head_size
+ )
+
+ # cache buckets for next incremental decoding
+ if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length:
+ buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask)
+
+ # free memory
+ del hidden_states
+
+ assert (
+ query_key_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ value_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
+
+ do_standard_self_attention = (sequence_length <= self.chunk_length) or (
+ use_cache and past_buckets_states[1] is not None
+ )
+ # LSH attention only makes sense if chunked attention should be performed
+ if not do_standard_self_attention:
+ # set `num_buckets` on the fly, recommended way to do it
+ if self.num_buckets is None:
+ self._set_num_buckets(sequence_length)
+
+ # use cached buckets for backprop only
+ if buckets is None:
+ # hash query key vectors into buckets
+ buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask)
+ else:
+ # make sure buckets has correct shape for LSH attention
+ buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length)
+
+ assert (
+ int(buckets.shape[-1]) == num_hashes * sequence_length
+ ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}"
+
+ sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx(
+ sequence_length, buckets, num_hashes
+ )
+
+ # make sure bucket idx is not longer then sequence length
+ sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length
+
+ # cluster query key value vectors according to hashed buckets
+ query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes)
+ value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes)
+ query_key_vectors = self._split_seq_length_dim_to(
+ query_key_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+
+ if self.chunk_length is None:
+ assert self.num_chunks_before == 0 and self.num_chunks_after == 0, (
+ "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and"
+ " `config.num_chunks_before` are set to 0."
+ )
+ elif do_cached_attention and past_buckets is not None:
+ # use max sequence length
+ sorted_bucket_idx_per_hash = sorted_bucket_idx
+ else:
+ # get sequence length indices
+ sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat(
+ batch_size, self.num_attention_heads, 1
+ )
+
+ # scale key vectors
+ sqrt_num = np.sqrt(self.attention_head_size)
+ key_vectors = self._len_and_dim_norm(query_key_vectors, sqrt_num)
+
+ # set query_vectors to query key vectors if LSH self attention
+ query_vectors = query_vectors if query_vectors is not None else query_key_vectors
+
+ # free memory
+ del query_key_vectors
+
+ # get attention probs
+ out_vectors, logits, attention_probs = self._attend(
+ query_vectors=query_vectors,
+ key_vectors=key_vectors,
+ value_vectors=value_vectors,
+ sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ do_standard_self_attention=do_standard_self_attention,
+ do_cached_attention=do_cached_attention,
+ )
+
+ # free memory
+ del key_vectors, value_vectors
+
+ # re-order out_vectors and logits
+ if not do_standard_self_attention:
+ # sort clusters back to correct ordering
+ out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx)
+
+ if not do_standard_self_attention or (do_cached_attention and past_buckets is not None):
+ # sum up all hash rounds
+ if num_hashes > 1:
+ out_vectors = self._split_seq_length_dim_to(
+ out_vectors,
+ num_hashes,
+ sequence_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ logits = self._split_seq_length_dim_to(
+ logits,
+ num_hashes,
+ sequence_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ ).unsqueeze(-1)
+
+ probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True))
+ out_vectors = torch.sum(out_vectors * probs_vectors, dim=2)
+ # free memory
+ del probs_vectors
+
+ # free memory
+ del logits
+
+ assert out_vectors.shape == (
+ batch_size,
+ self.num_attention_heads,
+ sequence_length,
+ self.attention_head_size,
+ ), (
+ "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length,"
+ " config.attention_head_size]`."
+ )
+
+ out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size)
+
+ if output_attentions is False:
+ attention_probs = ()
+
+ if buckets is not None:
+ buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1)
+
+ return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets)
+
+ def _query_per_attn_head(self, hidden_states):
+ per_head_query_key = self.query_key.weight.reshape(
+ self.num_attention_heads, self.attention_head_size, self.hidden_size
+ ).transpose(-2, -1)
+ # only relevant for inference and no bias => we can use einsum here
+ query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key)
+ return query_key_vectors
+
+ def _value_per_attn_head(self, hidden_states):
+ per_head_value = self.value.weight.reshape(
+ self.num_attention_heads, self.attention_head_size, self.hidden_size
+ ).transpose(-2, -1)
+ # only relevant for inference and no bias => we can use einsum here
+ value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value)
+ return value_vectors
+
+ def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False):
+ batch_size = vectors.shape[0]
+
+ # See https://arxiv.org/pdf/1509.02897.pdf
+ # We sample a different random rotation for each round of hashing to
+ # decrease the probability of hash misses.
+ if isinstance(self.num_buckets, int):
+ assert (
+ self.num_buckets % 2 == 0
+ ), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}"
+ rotation_size = self.num_buckets
+ num_buckets = self.num_buckets
+ else:
+ # Factorize the hash if self.num_buckets is a list or tuple
+ rotation_size, num_buckets = 0, 1
+ for bucket_factor in self.num_buckets:
+ assert (
+ bucket_factor % 2 == 0
+ ), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}"
+ rotation_size = rotation_size + bucket_factor
+ num_buckets = num_buckets * bucket_factor
+
+ # remove gradient
+ vectors = vectors.detach()
+
+ if self.hash_seed is not None:
+ # for determinism
+ torch.manual_seed(self.hash_seed)
+
+ rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2)
+ # create a random self.attention_head_size x num_hashes x num_buckets/2
+ random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype)
+ # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2
+ rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations)
+
+ if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1:
+ rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1)
+ buckets = torch.argmax(rotated_vectors, dim=-1)
+ else:
+ # Get the buckets for them and combine.
+ buckets, cur_sum, cur_product = None, 0, 1
+ for bucket_factor in self.num_buckets:
+ rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)]
+ cur_sum = cur_sum + bucket_factor // 2
+ rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1)
+ if buckets is None:
+ buckets = torch.argmax(rotated_vectors_factor, dim=-1)
+ else:
+ buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1))
+
+ cur_product = cur_product * bucket_factor
+
+ if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]):
+ # add an extra bucket for padding tokens only
+ num_buckets = num_buckets + 1
+ # assign padding tokens extra bucket
+ buckets_mask = attention_mask.to(torch.bool)[:, None, None, :].expand(buckets.shape)
+ buckets = torch.where(
+ buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device)
+ )
+ elif increase_num_buckets:
+ num_buckets = num_buckets + 1
+
+ # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len).
+ # Next we add offsets so that bucket numbers from different hashing rounds don't overlap.
+ offsets = torch.arange(num_hashes, device=vectors.device)
+ offsets = (offsets * num_buckets).view((1, 1, -1, 1))
+
+ # expand to batch size and num attention heads
+ offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:])
+ offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3)
+
+ return offset_buckets
+
+ def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes):
+ # no gradients are needed
+ with torch.no_grad():
+ # hash-based sort
+ sorted_bucket_idx = _stable_argsort(buckets, dim=-1)
+
+ # create simple indices to scatter to, to have undo sort
+ indices = (
+ torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device)
+ .view(1, 1, -1)
+ .expand(sorted_bucket_idx.shape)
+ )
+
+ # get undo sort
+ undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size())
+ undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices)
+
+ return sorted_bucket_idx, undo_sorted_bucket_idx
+
+ def _set_num_buckets(self, sequence_length):
+ # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper
+ num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1
+ # make sure buckets are power of 2
+ num_buckets = 2**num_buckets_pow_2
+
+ # factorize `num_buckets` if `num_buckets` becomes too large
+ num_buckets_limit = 2 * max(
+ int((self.max_position_embeddings // self.chunk_length) ** (0.5)),
+ self.chunk_length,
+ )
+ if num_buckets > num_buckets_limit:
+ num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)]
+
+ logger.warning(f"config.num_buckets is not set. Setting config.num_buckets to {num_buckets}...")
+
+ # set num buckets in config to be properly saved
+ self.config.num_buckets = num_buckets
+ self.num_buckets = num_buckets
+
+ def _attend(
+ self,
+ query_vectors,
+ key_vectors,
+ value_vectors,
+ sorted_bucket_idx_per_hash,
+ attention_mask,
+ head_mask,
+ do_standard_self_attention,
+ do_cached_attention,
+ ):
+ # look at previous and following chunks if chunked attention
+ if not do_standard_self_attention:
+ key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after)
+ value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after)
+
+ # get logits and dots
+ # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft))
+ query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2))
+
+ # free memory
+ del query_vectors, key_vectors
+
+ # if chunked attention split bucket idxs to query and key
+ if not do_standard_self_attention:
+ query_bucket_idx = self._split_seq_length_dim_to(
+ sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads
+ )
+ key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after)
+ elif do_cached_attention and query_key_dots.ndim > 4:
+ key_value_bucket_idx = sorted_bucket_idx_per_hash
+ query_bucket_idx = (
+ key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max()
+ )
+ elif do_cached_attention and query_key_dots.ndim <= 4:
+ query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1]
+ key_value_bucket_idx = torch.arange(
+ query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device
+ )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,))
+ else:
+ query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash
+
+ # get correct mask values depending on precision
+ if query_key_dots.dtype == torch.float16:
+ self_mask_value = self.self_mask_value_float16.half()
+ mask_value = self.mask_value_float16.half()
+ else:
+ self_mask_value = self.self_mask_value_float32
+ mask_value = self.mask_value_float32
+
+ if not do_cached_attention:
+ mask = self._compute_attn_mask(
+ query_bucket_idx,
+ key_value_bucket_idx,
+ attention_mask,
+ query_key_dots.shape,
+ do_standard_self_attention,
+ )
+
+ if mask is not None:
+ query_key_dots = torch.where(mask, query_key_dots, mask_value)
+
+ # free memory
+ del mask
+
+ # Self mask is ALWAYS applied.
+ # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf):
+ # " While attention to the future is not allowed, typical implementations of the
+ # Transformer do allow a position to attend to itself.
+ # Such behavior is undesirable in a shared-QK formulation because the dot-product
+ # of a query vector with itself will almost always be greater than the dot product of a
+ # query vector with a vector at another position. We therefore modify the masking
+ # to forbid a token from attending to itself, except in situations
+ # where a token has no other valid attention targets (e.g. the first token in a sequence) "
+
+ self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to(
+ query_bucket_idx.device
+ )
+
+ # apply self_mask
+ query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value)
+
+ # free memory
+ del self_mask
+
+ logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True)
+ # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]`
+ attention_probs = torch.exp(query_key_dots - logits)
+
+ # free memory
+ del query_key_dots
+
+ # dropout
+ attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ # attend values
+ out_vectors = torch.matmul(attention_probs, value_vectors)
+
+ # free memory
+ del value_vectors
+
+ # merge chunk length
+ if out_vectors.ndim > 4:
+ logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1)
+ out_vectors = out_vectors.flatten(start_dim=2, end_dim=3)
+
+ return out_vectors, logits, attention_probs
+
+ def _compute_attn_mask(
+ self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention
+ ):
+ # attention mask for LSH
+ if attention_mask is not None:
+ # if chunked attention, the attention mask has to correspond to LSH order
+ attention_mask = attention_mask.to(torch.bool)[:, None, :]
+ if not do_standard_self_attention:
+ # expand attn_mask to fit with key_value_bucket_idx shape
+ attention_mask = attention_mask[:, None, :]
+ attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,))
+ # extract attention mask from LSH sorted key_indices
+ attention_mask = torch.gather(attention_mask, -1, key_indices)
+
+ attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape)
+
+ # Causal mask
+ if self.is_decoder is True:
+ causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device)
+
+ # add attention mask if not None
+ if attention_mask is not None:
+ attention_mask = causal_mask * attention_mask
+ else:
+ attention_mask = causal_mask
+
+ return attention_mask
+
+ def _get_relevant_hid_states_and_buckets(
+ self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets
+ ):
+ # concat hidden states
+ hidden_states = torch.cat([past_states, hidden_states], dim=1)
+
+ # batch_size hidden
+ batch_size = hidden_states.shape[0]
+ sequence_length = hidden_states.shape[1]
+
+ # check if cached buckets include pad bucket
+ max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets)
+
+ # if pad bucket was cached => need to increase num buckets for caching
+ increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1
+
+ # retrieve query buckets
+ query_buckets = self._hash_vectors(
+ query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets
+ )
+
+ # concat buckets
+ concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1)
+
+ # hash-based sort
+ bucket_idx = _stable_argsort(concat_buckets, dim=-1)
+
+ # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength
+ assert bucket_idx.shape == (
+ batch_size,
+ self.num_attention_heads,
+ num_hashes,
+ sequence_length,
+ ), (
+ f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but"
+ f" has shape {bucket_idx.shape}."
+ )
+
+ # find indices of new bucket indices
+ relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero()
+
+ # expand relevant bucket indices to its chunks
+ relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length)
+ relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))]
+
+ # adapt bucket_idx for batch and hidden states for index select
+ offset = torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long)
+ bucket_idx_batch_offset = sequence_length * (
+ batch_size * torch.div(offset, relevant_bucket_idx_chunk.shape[-1], rounding_mode="floor")
+ )
+
+ # add batch offset
+ relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset
+ hidden_states = hidden_states.reshape((-1, self.hidden_size))
+
+ # select all relevant hidden states
+ relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch)
+
+ # reshape hidden states and bucket_idx to correct output
+ relevant_hidden_states = relevant_hidden_states.reshape(
+ batch_size, self.num_attention_heads, -1, self.hidden_size
+ )
+ relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape(
+ batch_size, self.num_attention_heads, num_hashes, -1
+ )
+
+ assert (
+ relevant_hidden_states.shape[2]
+ == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes
+ ), (
+ "There should be"
+ f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`,"
+ f" there are {relevant_hidden_states.shape[2]} `hidden_states`."
+ )
+
+ assert (
+ relevant_bucket_idx_chunk.shape[-1]
+ == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length
+ ), (
+ "There should be"
+ f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are"
+ f" {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`."
+ )
+
+ return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets
+
+ def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length):
+ # get relevant indices of where chunk starts and its size
+ start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length
+ total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after)
+
+ # expand start indices and add correct chunk offset via arange
+ expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size)
+ chunk_sequence_indices = expanded_start_indices + torch.arange(
+ total_chunk_size, device=indices.device, dtype=torch.long
+ ).unsqueeze(0).expand(indices.shape[0], total_chunk_size)
+
+ # make sure that circular logic holds via % seq len
+ chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length
+
+ # expand indices and set indices correctly
+ indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone()
+ indices[:, -1] = chunk_sequence_indices
+
+ return indices
+
+ def _len_and_dim_norm(self, vectors, sqrt_num):
+ """
+ length and attention head size dim normalization
+ """
+ vectors = self._len_norm(vectors)
+ vectors = vectors / sqrt_num
+ return vectors
+
+ def _len_norm(self, x, epsilon=1e-6):
+ """
+ length normalization
+ """
+ variance = torch.mean(x**2, -1, keepdim=True)
+ norm_x = x * torch.rsqrt(variance + epsilon)
+ return norm_x
+
+ def _gather_by_expansion(self, vectors, idxs, num_hashes):
+ """
+ expand dims of idxs and vectors for all hashes and gather
+ """
+ expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size)
+ vectors = vectors.repeat(1, 1, num_hashes, 1)
+ return torch.gather(vectors, 2, expanded_idxs)
+
+
+class ReverseSort(Function):
+ """
+ After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized
+ backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here.
+ """
+
+ @staticmethod
+ def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx):
+ # save sorted_bucket_idx for backprop
+ with torch.no_grad():
+ ctx.sorted_bucket_idx = sorted_bucket_idx
+
+ # undo sort to have correct order for next layer
+ expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape)
+ out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices)
+ logits = torch.gather(logits, 2, undo_sorted_bucket_idx)
+ return out_vectors, logits
+
+ @staticmethod
+ def backward(ctx, grad_out_vectors, grad_logits):
+ # get parameters saved in ctx
+ sorted_bucket_idx = ctx.sorted_bucket_idx
+
+ expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape)
+ # reverse sort of forward
+ grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices)
+ grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx)
+
+ # return grad and `None` fillers for last 2 forward args
+ return grad_out_vectors, grad_logits, None, None
+
+
+class LocalSelfAttention(nn.Module, EfficientAttentionMixin):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_attention_heads = config.num_attention_heads
+ self.chunk_length = config.local_attn_chunk_length
+ self.num_chunks_before = config.local_num_chunks_before
+ self.num_chunks_after = config.local_num_chunks_after
+ self.is_decoder = config.is_decoder
+ self.pad_token_id = config.pad_token_id
+
+ self.attention_head_size = config.attention_head_size
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.hidden_size = config.hidden_size
+
+ # projection matrices
+ self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+
+ self.dropout = config.local_attention_probs_dropout_prob
+
+ # save mask value here
+ self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False)
+ self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ past_buckets_states=None,
+ use_cache=False,
+ output_attentions=False,
+ **kwargs,
+ ):
+ sequence_length = hidden_states.shape[1]
+ batch_size = hidden_states.shape[0]
+
+ # check if cache shall be used and that hidden states are already cached
+ if use_cache and past_buckets_states[1] is not None:
+ assert past_buckets_states[0] is None, (
+ "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching"
+ " hidden_states_and_buckets."
+ )
+ key_value_hidden_states = self._retrieve_relevant_hidden_states(
+ past_buckets_states[1], self.chunk_length, self.num_chunks_before
+ )
+ key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1)
+
+ # only query vector for last token
+ query_vectors = self.query(hidden_states)
+ # compute key and value for relevant chunk
+ key_vectors = self.key(key_value_hidden_states)
+ value_vectors = self.value(key_value_hidden_states)
+
+ # free memory
+ del key_value_hidden_states
+ else:
+ # project hidden_states to query, key and value
+ query_vectors = self.query(hidden_states)
+ key_vectors = self.key(hidden_states)
+ value_vectors = self.value(hidden_states)
+
+ # split last dim into `config.num_attention_heads` and `config.attention_head_size`
+ query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size)
+ key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size)
+ value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size)
+
+ assert (
+ query_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ key_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ value_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
+
+ if self.chunk_length is None:
+ assert self.num_chunks_before == 0 and self.num_chunks_after == 0, (
+ "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and"
+ " `config.num_chunks_before` are set to 0."
+ )
+
+ # normalize key vectors
+ key_vectors = key_vectors / np.sqrt(self.attention_head_size)
+
+ # get sequence length indices
+ indices = torch.arange(sequence_length, device=query_vectors.device).repeat(
+ batch_size, self.num_attention_heads, 1
+ )
+
+ # if one should do normal n^2 self-attention
+ do_standard_self_attention = sequence_length <= self.chunk_length
+
+ # if input should be chunked
+ if not do_standard_self_attention:
+ # chunk vectors
+ # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size
+ query_vectors = self._split_seq_length_dim_to(
+ query_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ key_vectors = self._split_seq_length_dim_to(
+ key_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+
+ # chunk indices
+ query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads)
+ key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads)
+
+ # append chunks before and after
+ key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after)
+ value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after)
+ key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after)
+ else:
+ query_indices = key_indices = indices
+
+ # query-key matmul: QK^T
+ query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2))
+
+ # free memory
+ del query_vectors, key_vectors
+
+ mask = self._compute_attn_mask(
+ query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention
+ )
+
+ if mask is not None:
+ # get mask tensor depending on half precision or not
+ if query_key_dots.dtype == torch.float16:
+ mask_value = self.mask_value_float16.half()
+ else:
+ mask_value = self.mask_value_float32
+
+ query_key_dots = torch.where(mask, query_key_dots, mask_value)
+
+ # free memory
+ del mask
+
+ # softmax
+ logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True)
+ attention_probs = torch.exp(query_key_dots - logits)
+
+ # free memory
+ del logits
+
+ # dropout
+ attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ # attend values
+ out_vectors = torch.matmul(attention_probs, value_vectors)
+
+ # free memory
+ del value_vectors
+
+ # merge chunk length
+ if not do_standard_self_attention:
+ out_vectors = out_vectors.flatten(start_dim=2, end_dim=3)
+
+ assert out_vectors.shape == (
+ batch_size,
+ self.num_attention_heads,
+ sequence_length,
+ self.attention_head_size,
+ )
+
+ out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size)
+
+ if output_attentions is False:
+ attention_probs = ()
+
+ return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs)
+
+ def _compute_attn_mask(
+ self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention
+ ):
+ # chunk attention mask and look before and after
+ if attention_mask is not None:
+ attention_mask = attention_mask.to(torch.bool)[:, None, :]
+
+ if not do_standard_self_attention:
+ attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1)
+ attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after)
+ # create attn_mask
+ attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape)
+
+ # Causal mask
+ if self.is_decoder is True:
+ causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device)
+
+ # add attention mask if not None
+ if attention_mask is not None:
+ attention_mask = causal_mask * attention_mask
+ else:
+ attention_mask = causal_mask
+
+ return attention_mask
+
+ @staticmethod
+ def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before):
+ start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length
+ return previous_hidden_states[:, start_position:]
+
+
+class ReformerSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ all_head_size = config.num_attention_heads * config.attention_head_size
+ self.dropout = config.hidden_dropout_prob
+
+ self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ return hidden_states
+
+
+class ReformerAttention(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.layer_id = layer_id
+ self.attn_layers = config.attn_layers
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh":
+ self.self_attention = LSHSelfAttention(config)
+ elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local":
+ self.self_attention = LocalSelfAttention(config)
+ elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == {"lsh", "local"}:
+ # get correct attn layers
+ if self.attn_layers[self.layer_id] == "lsh":
+ self.self_attention = LSHSelfAttention(config)
+ else:
+ self.self_attention = LocalSelfAttention(config)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {self.attn_layers}. "
+ "Select attn layer types from ['lsh', 'local'] only."
+ )
+ self.output = ReformerSelfOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_attentions=False,
+ buckets=None,
+ ):
+ hidden_states = self.layer_norm(hidden_states)
+
+ # make sure cached hidden states is set to None for backward pass
+ if past_buckets_states is not None:
+ past_buckets_states_layer = past_buckets_states[self.layer_id]
+ else:
+ past_buckets_states_layer = None
+
+ # use cached buckets for backprob if buckets not None for LSHSelfAttention
+ self_attention_outputs = self.self_attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states_layer,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ buckets=buckets,
+ )
+
+ # add buckets if necessary
+ if hasattr(self_attention_outputs, "buckets"):
+ buckets = self_attention_outputs.buckets
+ else:
+ buckets = None
+
+ # cache hidden states for future use
+ if use_cache:
+ if past_buckets_states[self.layer_id][0] is None:
+ # padded input should not be cached
+ past_buckets = (
+ buckets[:, :, :, :orig_sequence_length]
+ if (buckets is not None and orig_sequence_length > 1)
+ else buckets
+ )
+ else:
+ past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1)
+
+ if past_buckets_states[self.layer_id][1] is None:
+ # padded input should not be cached
+ past_states = hidden_states[:, :orig_sequence_length]
+ else:
+ past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1)
+
+ past_buckets_states[self.layer_id] = (past_buckets, past_states)
+ # compute attention feed forward output
+ attention_output = self.output(self_attention_outputs.hidden_states)
+
+ return AttentionOutput(
+ hidden_states=attention_output,
+ attention_probs=self_attention_outputs.attention_probs,
+ buckets=buckets,
+ )
+
+
+class ReformerFeedForwardDense(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ if isinstance(config.hidden_act, str):
+ self.act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.act_fn = config.hidden_act
+
+ self.dense = nn.Linear(config.hidden_size, config.feed_forward_size)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = self.act_fn(hidden_states)
+ return hidden_states
+
+
+class ReformerFeedForwardOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ self.dense = nn.Linear(config.feed_forward_size, config.hidden_size)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ return hidden_states
+
+
+class ChunkReformerFeedForward(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dense = ReformerFeedForwardDense(config)
+ self.output = ReformerFeedForwardOutput(config)
+
+ def forward(self, attention_output):
+ return apply_chunking_to_forward(
+ self.forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output,
+ )
+
+ def forward_chunk(self, hidden_states):
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ return self.output(hidden_states)
+
+
+class ReformerLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.attention = ReformerAttention(config, layer_id)
+ # dropout requires to have the same
+ # seed for forward and backward pass
+ self.attention_seed = None
+ self.feed_forward_seed = None
+
+ self.feed_forward = ChunkReformerFeedForward(config)
+
+ def _init_attention_seed(self):
+ """
+ This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1
+ normal forward call and 1 forward call in backward to recalculate activations.
+ """
+
+ # randomize seeds
+ # use cuda generator if available
+ if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0:
+ # GPU
+ device_idx = torch.cuda.current_device()
+ self.attention_seed = torch.cuda.default_generators[device_idx].seed()
+ else:
+ # CPU
+ self.attention_seed = int(torch.seed() % sys.maxsize)
+
+ torch.manual_seed(self.attention_seed)
+
+ def _init_feed_forward_seed(self):
+ """
+ This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls:
+ 1 normal forward call and 1 forward call in backward to recalculate activations.
+ """
+ # randomize seeds
+ # use cuda generator if available
+ if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0:
+ # GPU
+ device_idx = torch.cuda.current_device()
+ self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed()
+ else:
+ # CPU
+ self.feed_forward_seed = int(torch.seed() % sys.maxsize)
+
+ torch.manual_seed(self.feed_forward_seed)
+
+ def forward(
+ self,
+ prev_attn_output,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_attentions=False,
+ ):
+ with torch.no_grad():
+ # every forward pass we sample a different seed
+ # for dropout and save for forward fn in backward pass
+ # to have correct dropout
+ if self.training:
+ self._init_attention_seed()
+
+ attn_outputs = self.attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs.hidden_states
+
+ # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0)
+ # Y_1 = X_1 + f(X_2)
+ attn_output = prev_attn_output + attn_output
+
+ # free memory
+ del prev_attn_output
+
+ # every forward pass we sample a different seed
+ # for dropout and save seed for forward fn in backward
+ # to have correct dropout
+ if self.training:
+ self._init_feed_forward_seed()
+ # Y_2 = X_2 + g(Y_1)
+ hidden_states = hidden_states + self.feed_forward(attn_output)
+
+ return ReformerOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ attention_probs=attn_outputs.attention_probs,
+ buckets=attn_outputs.buckets,
+ )
+
+ def backward_pass(
+ self,
+ next_attn_output,
+ hidden_states,
+ grad_attn_output,
+ grad_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ buckets=None,
+ ):
+ # Implements the backward pass for reversible ResNets.
+ # A good blog post on how this works can be found here:
+ # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0)
+ # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py
+
+ assert self.training, (
+ "If you want to train `ReformerModel` and its variations, make sure to use `model.train()` to put the"
+ " model into training mode."
+ )
+
+ with torch.enable_grad():
+ next_attn_output.requires_grad = True
+
+ # set seed to have correct dropout
+ torch.manual_seed(self.feed_forward_seed)
+ # g(Y_1)
+ res_hidden_states = self.feed_forward(next_attn_output)
+ res_hidden_states.backward(grad_hidden_states, retain_graph=True)
+
+ with torch.no_grad():
+ # X_2 = Y_2 - g(Y_1)
+ hidden_states = hidden_states - res_hidden_states
+ del res_hidden_states
+
+ grad_attn_output = grad_attn_output + next_attn_output.grad
+ next_attn_output.grad = None
+
+ with torch.enable_grad():
+ hidden_states.requires_grad = True
+
+ # set seed to have correct dropout
+ torch.manual_seed(self.attention_seed)
+ # f(X_2)
+ # use cached buckets for backprob if buckets not None for LSHSelfAttention
+ output = self.attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ buckets=buckets,
+ ).hidden_states
+ output.backward(grad_attn_output, retain_graph=True)
+
+ with torch.no_grad():
+ # X_1 = Y_1 - f(X_2)
+ attn_output = next_attn_output - output
+ del output, next_attn_output
+
+ grad_hidden_states = grad_hidden_states + hidden_states.grad
+ hidden_states.grad = None
+ hidden_states = hidden_states.detach()
+
+ return ReformerBackwardOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ grad_attn_output=grad_attn_output,
+ grad_hidden_states=grad_hidden_states,
+ )
+
+
+class _ReversibleFunction(Function):
+ """
+ To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here.
+ This way it is made sure that no memory expensive activations are saved during the forward pass. This function is
+ heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py
+ """
+
+ @staticmethod
+ def forward(
+ ctx,
+ hidden_states,
+ layers,
+ attention_mask,
+ head_mask,
+ num_hashes,
+ all_hidden_states,
+ all_attentions,
+ past_buckets_states,
+ use_cache,
+ orig_sequence_length,
+ output_hidden_states,
+ output_attentions,
+ ):
+ all_buckets = ()
+
+ # split duplicated tensor
+ hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1)
+
+ for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)):
+ if output_hidden_states is True:
+ all_hidden_states.append(hidden_states)
+
+ layer_outputs = layer(
+ prev_attn_output=attn_output,
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=layer_head_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_attentions=output_attentions,
+ )
+
+ attn_output = layer_outputs.attn_output
+ hidden_states = layer_outputs.hidden_states
+ all_buckets = all_buckets + (layer_outputs.buckets,)
+
+ if output_attentions:
+ all_attentions.append(layer_outputs.attention_probs)
+
+ # Add last layer
+ if output_hidden_states is True:
+ all_hidden_states.append(hidden_states)
+
+ # attach params to ctx for backward
+ ctx.save_for_backward(attn_output.detach(), hidden_states.detach())
+ ctx.layers = layers
+ ctx.all_buckets = all_buckets
+ ctx.head_mask = head_mask
+ ctx.attention_mask = attention_mask
+
+ # Concatenate 2 RevNet outputs
+ return torch.cat([attn_output, hidden_states], dim=-1)
+
+ @staticmethod
+ def backward(ctx, grad_hidden_states):
+ grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1)
+
+ # retrieve params from ctx for backward
+ attn_output, hidden_states = ctx.saved_tensors
+
+ # create tuple
+ output = ReformerBackwardOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ grad_attn_output=grad_attn_output,
+ grad_hidden_states=grad_hidden_states,
+ )
+
+ # free memory
+ del grad_attn_output, grad_hidden_states, attn_output, hidden_states
+
+ layers = ctx.layers
+ all_buckets = ctx.all_buckets
+ head_mask = ctx.head_mask
+ attention_mask = ctx.attention_mask
+
+ for idx, layer in enumerate(layers[::-1]):
+ # pop last buckets from stack
+ buckets = all_buckets[-1]
+ all_buckets = all_buckets[:-1]
+
+ # backprop
+ output = layer.backward_pass(
+ next_attn_output=output.attn_output,
+ hidden_states=output.hidden_states,
+ grad_attn_output=output.grad_attn_output,
+ grad_hidden_states=output.grad_hidden_states,
+ head_mask=head_mask[len(layers) - idx - 1],
+ attention_mask=attention_mask,
+ buckets=buckets,
+ )
+
+ assert all_buckets == (), "buckets have to be empty after backpropagation"
+ grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1)
+
+ # num of return vars has to match num of forward() args
+ # return gradient for hidden_states arg and None for other args
+ return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None
+
+
+class ReformerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)])
+ # Reformer is using Rev Nets, thus last layer outputs are concatenated and
+ # Layer Norm is done over 2 * hidden_size
+ self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_hidden_states=False,
+ output_attentions=False,
+ ):
+ # hidden_states and attention lists to be filled if wished
+ all_hidden_states = []
+ all_attentions = []
+
+ # init cached hidden states if necessary
+ if past_buckets_states is None:
+ past_buckets_states = [((None), (None)) for i in range(len(self.layers))]
+
+ # concat same tensor for reversible ResNet
+ hidden_states = torch.cat([hidden_states, hidden_states], dim=-1)
+ hidden_states = _ReversibleFunction.apply(
+ hidden_states,
+ self.layers,
+ attention_mask,
+ head_mask,
+ num_hashes,
+ all_hidden_states,
+ all_attentions,
+ past_buckets_states,
+ use_cache,
+ orig_sequence_length,
+ output_hidden_states,
+ output_attentions,
+ )
+
+ # Apply layer norm to concatenated hidden states
+ hidden_states = self.layer_norm(hidden_states)
+
+ # Apply dropout
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ return ReformerEncoderOutput(
+ hidden_states=hidden_states,
+ all_hidden_states=all_hidden_states,
+ all_attentions=all_attentions,
+ past_buckets_states=past_buckets_states,
+ )
+
+
+class ReformerOnlyLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # Reformer is using Rev Nets, thus last layer outputs are concatenated and
+ # Layer Norm is done over 2 * hidden_size
+ self.seq_len_dim = 1
+ self.chunk_size_lm_head = config.chunk_size_lm_head
+ self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
+
+ def forward_chunk(self, hidden_states):
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ self.bias = self.decoder.bias
+
+
+class ReformerPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ReformerConfig
+ base_model_prefix = "reformer"
+
+ @property
+ def dummy_inputs(self):
+ input_ids = torch.tensor(DUMMY_INPUTS)
+ input_mask = torch.tensor(DUMMY_MASK)
+ dummy_inputs = {
+ "input_ids": input_ids,
+ "attention_mask": input_mask,
+ }
+ return dummy_inputs
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, AxialPositionEmbeddings):
+ for weight in module.weights:
+ nn.init.normal_(weight, std=self.config.axial_norm_std)
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@dataclass
+class ReformerModelOutput(ModelOutput):
+ """
+ Output type of [`ReformerModel`].
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
+ Sequence of hidden-states at the last layer of the model.
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed
+ up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ last_hidden_state: torch.FloatTensor
+ past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class ReformerModelWithLMHeadOutput(ModelOutput):
+ """
+ Output type of [`ReformerModelWithLMHead`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
+ Language modeling loss (for next-token prediction).
+ logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed
+ up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ TTuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer)
+ of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+REFORMER_START_DOCSTRING = r"""
+ Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev,
+ Łukasz Kaiser, Anselm Levskaya.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`ReformerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+REFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be
+ a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices
+ are automatically padded to be a multiple of the chunk length.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ num_hashes (`int`, *optional*):
+ The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites
+ the default defined in `config.num_hashes`.
+
+ For more information, see `num_hashes` in [`ReformerConfig`].
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed
+ up sequential decoding.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top.",
+ REFORMER_START_DOCSTRING,
+)
+class ReformerModel(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ assert (
+ self.config.num_hidden_layers > 0
+ ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']"
+
+ self.embeddings = ReformerEmbeddings(config)
+ self.encoder = ReformerEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=ReformerModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ReformerModelOutput]:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size() # noqa: F841
+ device = input_ids.device
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1] # noqa: F841
+ device = inputs_embeds.device
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ assert (
+ len(input_shape) == 2
+ ), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}"
+
+ if past_buckets_states is not None:
+ assert not self.training, "`past_buckets_states` can only be used for inference, not for training`."
+
+ # prepare head mask
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True)
+
+ # original sequence length for padding
+ orig_sequence_length = input_shape[-1]
+
+ # if needs padding
+ least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config)
+ min_chunk_length = _get_min_chunk_len(self.config)
+
+ must_pad_to_match_chunk_length = (
+ input_shape[-1] % least_common_mult_chunk_length != 0
+ and input_shape[-1] > min_chunk_length
+ and past_buckets_states is None
+ )
+
+ if must_pad_to_match_chunk_length:
+ padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length
+
+ if self.training is True:
+ raise ValueError(
+ f"If training, sequence length {input_shape[-1]} has to be a multiple of least common multiple "
+ f"chunk_length {least_common_mult_chunk_length}. Please consider padding the input to a length "
+ f"of {input_shape[-1] + padding_length}."
+ )
+
+ # pad input
+ input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length(
+ input_ids,
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ input_shape=input_shape,
+ padding_length=padding_length,
+ padded_seq_length=least_common_mult_chunk_length,
+ device=device,
+ )
+
+ # start index for position encoding depends on incremental decoding
+ if past_buckets_states is not None:
+ start_idx_pos_encodings = past_buckets_states[0][1].shape[1]
+ else:
+ start_idx_pos_encodings = 0
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ start_idx_pos_encodings=start_idx_pos_encodings,
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ )
+ sequence_output = encoder_outputs.hidden_states
+
+ # if padding was applied
+ if must_pad_to_match_chunk_length:
+ sequence_output = sequence_output[:, :orig_sequence_length]
+
+ past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None
+ hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None
+ attentions = encoder_outputs.all_attentions if output_attentions else None
+
+ if not return_dict:
+ return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None)
+ return ReformerModelOutput(
+ last_hidden_state=sequence_output,
+ past_buckets_states=past_buckets_states,
+ hidden_states=hidden_states,
+ attentions=attentions,
+ )
+
+ def _pad_to_mult_of_chunk_length(
+ self,
+ input_ids,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_ids=None,
+ input_shape=None,
+ padding_length=None,
+ padded_seq_length=None,
+ device=None,
+ ):
+ logger.warning_once(
+ f"Input ids are automatically padded from {input_shape[-1]} to {input_shape[-1] + padding_length} to be a "
+ f"multiple of `config.chunk_length`: {padded_seq_length}"
+ )
+
+ padded_input_ids = torch.full(
+ (input_shape[0], padding_length),
+ self.config.pad_token_id,
+ device=device,
+ dtype=torch.long,
+ )
+
+ # Extend `attention_mask`
+ if attention_mask is not None:
+ pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype)
+
+ attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1)
+ else:
+ attention_mask = torch.cat(
+ [
+ torch.ones(input_shape, device=device, dtype=torch.bool),
+ torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.bool),
+ ],
+ dim=-1,
+ )
+
+ # Extend `input_ids` with padding to match least common multiple chunk_length
+ if input_ids is not None:
+ input_ids = torch.cat([input_ids, padded_input_ids], dim=-1)
+ input_shape = input_ids.size()
+
+ # Pad position ids if given
+ if position_ids is not None:
+ padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device)
+ padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length)
+ position_ids = torch.cat([position_ids, padded_position_ids], dim=-1)
+
+ # Extend `inputs_embeds` with padding to match least common multiple chunk_length
+ if inputs_embeds is not None:
+ padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids)
+ inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2)
+ input_shape = inputs_embeds.size()
+ return input_ids, inputs_embeds, attention_mask, position_ids, input_shape
+
+
+@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING)
+class ReformerModelWithLMHead(ReformerPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`."
+ assert "local" not in self.config.attn_layers or config.local_num_chunks_after == 0, (
+ "If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not"
+ f" {config.local_num_chunks_after}."
+ )
+ assert "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0, (
+ "If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not"
+ f" {config.lsh_num_chunks_after}."
+ )
+
+ self.reformer = ReformerModel(config)
+ self.lm_head = ReformerOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
+ labels in `[0, ..., config.vocab_size]`
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+ logits = self.lm_head(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + reformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ReformerModelWithLMHeadOutput(
+ loss=loss,
+ logits=logits,
+ past_buckets_states=reformer_outputs.past_buckets_states,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs
+ ):
+ # only last token for inputs_ids if past is defined in kwargs
+ if past_key_values is not None:
+ input_ids = input_ids[:, -1:]
+
+ inputs_dict = {
+ "input_ids": input_ids,
+ "past_buckets_states": past_key_values,
+ "use_cache": use_cache,
+ "num_hashes": num_hashes,
+ }
+
+ return inputs_dict
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reord_past_buckets_states = []
+ for layer_past in past_key_values:
+ # buckets
+ if layer_past[0] is not None:
+ reord_buckets = layer_past[0].index_select(0, beam_idx.to(layer_past[0].device))
+ else:
+ reord_buckets = None
+
+ # hidden states
+ reord_hidden_states = layer_past[1].index_select(0, beam_idx.to(layer_past[1].device))
+ reord_past_buckets_states.append((reord_buckets, reord_hidden_states))
+ return reord_past_buckets_states
+
+
+@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING)
+class ReformerForMaskedLM(ReformerPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ assert not config.is_decoder, (
+ "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional"
+ " self-attention."
+ )
+ self.reformer = ReformerModel(config)
+ self.lm_head = ReformerOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
+ the loss is only computed for the tokens with labels
+
+ Returns:
+
+
+
+ This example uses a false checkpoint since we don't have any available pretrained model for the masked language
+ modeling task with the Reformer architecture.
+
+
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, ReformerForMaskedLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-reformer")
+ >>> model = ReformerForMaskedLM.from_pretrained("hf-internal-testing/tiny-random-reformer")
+
+ >>> # add mask_token
+ >>> tokenizer.add_special_tokens({"mask_token": "[MASK]"}) # doctest: +IGNORE_RESULT
+ >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
+
+ >>> # resize model's embedding matrix
+ >>> model.resize_token_embeddings(new_num_tokens=model.config.vocab_size + 1) # doctest: +IGNORE_RESULT
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+
+ >>> # retrieve index of [MASK]
+ >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
+
+ >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
+ >>> predicted_token = tokenizer.decode(predicted_token_id)
+ ```
+
+ ```python
+ >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
+ >>> # mask labels of non-[MASK] tokens
+ >>> labels = torch.where(
+ ... inputs.input_ids == tokenizer.mask_token_id, labels[:, : inputs["input_ids"].shape[-1]], -100
+ ... )
+
+ >>> outputs = model(**inputs, labels=labels)
+ >>> loss = round(outputs.loss.item(), 2)
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ use_cache=False, # no causal mask
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+ logits = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + reformer_outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=logits,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ REFORMER_START_DOCSTRING,
+)
+class ReformerForSequenceClassification(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.reformer = ReformerModel(config)
+ self.classifier = ReformerClassificationHead(config)
+ if config.is_decoder is True:
+ logger.warning("You might want to disable causal masking for sequence classification")
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Example of single-label classification:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, ReformerForSequenceClassification
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/reformer-crime-and-punishment")
+ >>> model = ReformerForSequenceClassification.from_pretrained("google/reformer-crime-and-punishment")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+
+ >>> predicted_class_id = logits.argmax().item()
+ >>> label = model.config.id2label[predicted_class_id]
+ ```
+
+ ```python
+ >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
+ >>> num_labels = len(model.config.id2label)
+ >>> model = ReformerForSequenceClassification.from_pretrained(
+ ... "google/reformer-crime-and-punishment", num_labels=num_labels
+ ... )
+
+ >>> labels = torch.tensor(1)
+ >>> loss = model(**inputs, labels=labels).loss
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class ReformerClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, hidden_states, **kwargs):
+ hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA
+ ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`.
+ """,
+ REFORMER_START_DOCSTRING,
+)
+class ReformerForQuestionAnswering(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.reformer = ReformerModel(config)
+ # 2 * config.hidden_size because we use reversible residual layers
+ self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ use_cache=False, # no causal mask
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + reformer_outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..364a2d42edfff008e62b48892e904bf53b54f3a5
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer.py
@@ -0,0 +1,186 @@
+# coding=utf-8
+# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model Reformer."""
+
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "google/reformer-crime-and-punishment": (
+ "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
+ )
+ }
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "google/reformer-crime-and-punishment": 524288,
+}
+
+
+class ReformerTokenizer(PreTrainedTokenizer):
+ """
+ Construct a Reformer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece) .
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ additional_special_tokens (`List[str]`, *optional*, defaults to `[]`):
+ Additional special tokens used by the tokenizer.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ eos_token="",
+ unk_token="",
+ additional_special_tokens=[],
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.vocab_file = vocab_file
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ super().__init__(
+ eos_token=eos_token,
+ unk_token=unk_token,
+ additional_special_tokens=additional_special_tokens,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self) -> Dict[str, int]:
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ if index < self.sp_model.get_piece_size():
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..eb8c86b3cd1221ceddfda6684fc2526f4cf4a41c
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/tokenization_reformer_fast.py
@@ -0,0 +1,135 @@
+# coding=utf-8
+# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model Reformer."""
+
+
+import os
+from shutil import copyfile
+from typing import Optional, Tuple
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_reformer import ReformerTokenizer
+else:
+ ReformerTokenizer = None
+
+
+logger = logging.get_logger(__name__)
+
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "google/reformer-crime-and-punishment": (
+ "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
+ )
+ },
+ "tokenizer_file": {
+ "google/reformer-crime-and-punishment": (
+ "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/tokenizer.json"
+ )
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "google/reformer-crime-and-punishment": 524288,
+}
+
+
+class ReformerTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on
+ [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ additional_special_tokens (`List[str]`, *optional*):
+ Additional special tokens used by the tokenizer.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = ReformerTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ eos_token="",
+ unk_token="",
+ additional_special_tokens=[],
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..346bc9ef9caaa6412a5402016b9ed9bfec48c04b
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py
@@ -0,0 +1,65 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_table_transformer": [
+ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "TableTransformerConfig",
+ "TableTransformerOnnxConfig",
+ ]
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_table_transformer"] = [
+ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TableTransformerForObjectDetection",
+ "TableTransformerModel",
+ "TableTransformerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_table_transformer import (
+ TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ TableTransformerConfig,
+ TableTransformerOnnxConfig,
+ )
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_table_transformer import (
+ TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TableTransformerForObjectDetection,
+ TableTransformerModel,
+ TableTransformerPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6c3c0393dd5ef556afa5202512be65f24591eb9b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3b314420b543d22812b79da4fb5d9da889225dc
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3f7bb31b78410a277187e156044f9c1da5fc2bc
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6e9739ee8636bb50c0160d15570a8b13501f1b0
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..62f1bef6f2e5333e5dd95360608330ff903ec50d
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..12b62ee9736c7f05da94ec28e9c0bdb8af4dc474
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py
@@ -0,0 +1,276 @@
+# coding=utf-8
+# Copyright The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Table Transformer model configuration"""
+from collections import OrderedDict
+from typing import Mapping
+
+from packaging import version
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+from ..auto import CONFIG_MAPPING
+
+
+logger = logging.get_logger(__name__)
+
+TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "microsoft/table-transformer-detection": (
+ "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
+ ),
+}
+
+
+class TableTransformerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`TableTransformerModel`]. It is used to
+ instantiate a Table Transformer model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformer
+ [microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ use_timm_backbone (`bool`, *optional*, defaults to `True`):
+ Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
+ API.
+ backbone_config (`PretrainedConfig` or `dict`, *optional*):
+ The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
+ case it will default to `ResNetConfig()`.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ num_queries (`int`, *optional*, defaults to 100):
+ Number of object queries, i.e. detection slots. This is the maximal number of objects
+ [`TableTransformerModel`] can detect in a single image. For COCO, we recommend 100 queries.
+ d_model (`int`, *optional*, defaults to 256):
+ Dimension of the layers.
+ encoder_layers (`int`, *optional*, defaults to 6):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 6):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 2048):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 2048):
+ Dimension of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ init_xavier_std (`float`, *optional*, defaults to 1):
+ The scaling factor used for the Xavier initialization gain in the HM Attention map module.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ auxiliary_loss (`bool`, *optional*, defaults to `False`):
+ Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
+ position_embedding_type (`str`, *optional*, defaults to `"sine"`):
+ Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
+ backbone (`str`, *optional*):
+ Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
+ will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
+ is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
+ use_pretrained_backbone (`bool`, *optional*, `True`):
+ Whether to use pretrained weights for the backbone.
+ backbone_kwargs (`dict`, *optional*):
+ Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
+ e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
+ dilation (`bool`, *optional*, defaults to `False`):
+ Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
+ `use_timm_backbone` = `True`.
+ class_cost (`float`, *optional*, defaults to 1):
+ Relative weight of the classification error in the Hungarian matching cost.
+ bbox_cost (`float`, *optional*, defaults to 5):
+ Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
+ giou_cost (`float`, *optional*, defaults to 2):
+ Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
+ mask_loss_coefficient (`float`, *optional*, defaults to 1):
+ Relative weight of the Focal loss in the panoptic segmentation loss.
+ dice_loss_coefficient (`float`, *optional*, defaults to 1):
+ Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
+ bbox_loss_coefficient (`float`, *optional*, defaults to 5):
+ Relative weight of the L1 bounding box loss in the object detection loss.
+ giou_loss_coefficient (`float`, *optional*, defaults to 2):
+ Relative weight of the generalized IoU loss in the object detection loss.
+ eos_coefficient (`float`, *optional*, defaults to 0.1):
+ Relative classification weight of the 'no-object' class in the object detection loss.
+
+ Examples:
+
+ ```python
+ >>> from transformers import TableTransformerModel, TableTransformerConfig
+
+ >>> # Initializing a Table Transformer microsoft/table-transformer-detection style configuration
+ >>> configuration = TableTransformerConfig()
+
+ >>> # Initializing a model from the microsoft/table-transformer-detection style configuration
+ >>> model = TableTransformerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "table-transformer"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {
+ "hidden_size": "d_model",
+ "num_attention_heads": "encoder_attention_heads",
+ }
+
+ # Copied from transformers.models.detr.configuration_detr.DetrConfig.__init__
+ def __init__(
+ self,
+ use_timm_backbone=True,
+ backbone_config=None,
+ num_channels=3,
+ num_queries=100,
+ encoder_layers=6,
+ encoder_ffn_dim=2048,
+ encoder_attention_heads=8,
+ decoder_layers=6,
+ decoder_ffn_dim=2048,
+ decoder_attention_heads=8,
+ encoder_layerdrop=0.0,
+ decoder_layerdrop=0.0,
+ is_encoder_decoder=True,
+ activation_function="relu",
+ d_model=256,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ init_xavier_std=1.0,
+ auxiliary_loss=False,
+ position_embedding_type="sine",
+ backbone="resnet50",
+ use_pretrained_backbone=True,
+ backbone_kwargs=None,
+ dilation=False,
+ class_cost=1,
+ bbox_cost=5,
+ giou_cost=2,
+ mask_loss_coefficient=1,
+ dice_loss_coefficient=1,
+ bbox_loss_coefficient=5,
+ giou_loss_coefficient=2,
+ eos_coefficient=0.1,
+ **kwargs,
+ ):
+ if not use_timm_backbone and use_pretrained_backbone:
+ raise ValueError(
+ "Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`"
+ )
+
+ if backbone_config is not None and backbone is not None:
+ raise ValueError("You can't specify both `backbone` and `backbone_config`.")
+
+ if backbone_config is not None and use_timm_backbone:
+ raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.")
+
+ if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None:
+ raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.")
+
+ if not use_timm_backbone:
+ if backbone_config is None:
+ logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
+ backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
+ elif isinstance(backbone_config, dict):
+ backbone_model_type = backbone_config.get("model_type")
+ config_class = CONFIG_MAPPING[backbone_model_type]
+ backbone_config = config_class.from_dict(backbone_config)
+ # set timm attributes to None
+ dilation, backbone, use_pretrained_backbone = None, None, None
+
+ self.use_timm_backbone = use_timm_backbone
+ self.backbone_config = backbone_config
+ self.num_channels = num_channels
+ self.num_queries = num_queries
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.init_xavier_std = init_xavier_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.num_hidden_layers = encoder_layers
+ self.auxiliary_loss = auxiliary_loss
+ self.position_embedding_type = position_embedding_type
+ self.backbone = backbone
+ self.use_pretrained_backbone = use_pretrained_backbone
+ self.backbone_kwargs = backbone_kwargs
+ self.dilation = dilation
+ # Hungarian matcher
+ self.class_cost = class_cost
+ self.bbox_cost = bbox_cost
+ self.giou_cost = giou_cost
+ # Loss coefficients
+ self.mask_loss_coefficient = mask_loss_coefficient
+ self.dice_loss_coefficient = dice_loss_coefficient
+ self.bbox_loss_coefficient = bbox_loss_coefficient
+ self.giou_loss_coefficient = giou_loss_coefficient
+ self.eos_coefficient = eos_coefficient
+ super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
+
+ @property
+ def num_attention_heads(self) -> int:
+ return self.encoder_attention_heads
+
+ @property
+ def hidden_size(self) -> int:
+ return self.d_model
+
+
+# Copied from transformers.models.detr.configuration_detr.DetrOnnxConfig
+class TableTransformerOnnxConfig(OnnxConfig):
+ torch_onnx_minimum_version = version.parse("1.11")
+
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ("pixel_mask", {0: "batch"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-5
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 12
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..d06c3eb26b616929bf7a9f0c8b2fe7f7ac89dbe9
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py
@@ -0,0 +1,318 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Table Transformer checkpoints with timm-backbone.
+
+URL: https://github.com/microsoft/table-transformer
+"""
+
+
+import argparse
+from collections import OrderedDict
+from pathlib import Path
+
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+from torchvision.transforms import functional as F
+
+from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+rename_keys = []
+for i in range(6):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
+ )
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
+ )
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
+ )
+ rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
+ # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
+ )
+ rename_keys.append(
+ (
+ f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
+ f"decoder.layers.{i}.encoder_attn.out_proj.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
+ f"decoder.layers.{i}.encoder_attn.out_proj.bias",
+ )
+ )
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
+ )
+ rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
+ )
+ rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
+
+# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
+rename_keys.extend(
+ [
+ ("input_proj.weight", "input_projection.weight"),
+ ("input_proj.bias", "input_projection.bias"),
+ ("query_embed.weight", "query_position_embeddings.weight"),
+ ("transformer.encoder.norm.weight", "encoder.layernorm.weight"),
+ ("transformer.encoder.norm.bias", "encoder.layernorm.bias"),
+ ("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
+ ("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
+ ("class_embed.weight", "class_labels_classifier.weight"),
+ ("class_embed.bias", "class_labels_classifier.bias"),
+ ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
+ ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
+ ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
+ ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
+ ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
+ ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
+ ]
+)
+
+
+def rename_key(state_dict, old, new):
+ val = state_dict.pop(old)
+ state_dict[new] = val
+
+
+def rename_backbone_keys(state_dict):
+ new_state_dict = OrderedDict()
+ for key, value in state_dict.items():
+ if "backbone.0.body" in key:
+ new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model")
+ new_state_dict[new_key] = value
+ else:
+ new_state_dict[key] = value
+
+ return new_state_dict
+
+
+def read_in_q_k_v(state_dict):
+ prefix = ""
+
+ # first: transformer encoder
+ for i in range(6):
+ # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
+ in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+ # next: transformer decoder (which is a bit more complex because it also includes cross-attention)
+ for i in range(6):
+ # read in weights + bias of input projection layer of self-attention
+ in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
+ in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+ # read in weights + bias of input projection layer of cross-attention
+ in_proj_weight_cross_attn = state_dict.pop(
+ f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
+ )
+ in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) of cross-attention to the state dict
+ state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
+ state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
+ state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
+
+
+def resize(image, checkpoint_url):
+ width, height = image.size
+ current_max_size = max(width, height)
+ target_max_size = 800 if "detection" in checkpoint_url else 1000
+ scale = target_max_size / current_max_size
+ resized_image = image.resize((int(round(scale * width)), int(round(scale * height))))
+
+ return resized_image
+
+
+def normalize(image):
+ image = F.to_tensor(image)
+ image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+ return image
+
+
+@torch.no_grad()
+def convert_table_transformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub):
+ """
+ Copy/paste/tweak model's weights to our DETR structure.
+ """
+
+ logger.info("Converting model...")
+
+ # load original state dict
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
+ # rename keys
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+ state_dict = rename_backbone_keys(state_dict)
+ # query, key and value matrices need special treatment
+ read_in_q_k_v(state_dict)
+ # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
+ prefix = "model."
+ for key in state_dict.copy().keys():
+ if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
+ val = state_dict.pop(key)
+ state_dict[prefix + key] = val
+ # create HuggingFace model and load state dict
+ config = TableTransformerConfig(
+ backbone="resnet18",
+ mask_loss_coefficient=1,
+ dice_loss_coefficient=1,
+ ce_loss_coefficient=1,
+ bbox_loss_coefficient=5,
+ giou_loss_coefficient=2,
+ eos_coefficient=0.4,
+ class_cost=1,
+ bbox_cost=5,
+ giou_cost=2,
+ )
+
+ if "detection" in checkpoint_url:
+ config.num_queries = 15
+ config.num_labels = 2
+ id2label = {0: "table", 1: "table rotated"}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+ else:
+ config.num_queries = 125
+ config.num_labels = 6
+ id2label = {
+ 0: "table",
+ 1: "table column",
+ 2: "table row",
+ 3: "table column header",
+ 4: "table projected row header",
+ 5: "table spanning cell",
+ }
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+
+ image_processor = DetrImageProcessor(
+ format="coco_detection", max_size=800 if "detection" in checkpoint_url else 1000
+ )
+ model = TableTransformerForObjectDetection(config)
+ model.load_state_dict(state_dict)
+ model.eval()
+
+ # verify our conversion
+ filename = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png"
+ file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=filename)
+ image = Image.open(file_path).convert("RGB")
+ pixel_values = normalize(resize(image, checkpoint_url)).unsqueeze(0)
+
+ outputs = model(pixel_values)
+
+ if "detection" in checkpoint_url:
+ expected_shape = (1, 15, 3)
+ expected_logits = torch.tensor(
+ [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]]
+ )
+ expected_boxes = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]])
+
+ else:
+ expected_shape = (1, 125, 7)
+ expected_logits = torch.tensor(
+ [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]]
+ )
+ expected_boxes = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]])
+
+ assert outputs.logits.shape == expected_shape
+ assert torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)
+ assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)
+ print("Looks ok!")
+
+ if pytorch_dump_folder_path is not None:
+ # Save model and image processor
+ logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ # Push model to HF hub
+ logger.info("Pushing model to the hub...")
+ model_name = (
+ "microsoft/table-transformer-detection"
+ if "detection" in checkpoint_url
+ else "microsoft/table-transformer-structure-recognition"
+ )
+ model.push_to_hub(model_name)
+ image_processor.push_to_hub(model_name)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--checkpoint_url",
+ default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
+ type=str,
+ choices=[
+ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
+ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth",
+ ],
+ help="URL of the Table Transformer checkpoint you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
+ )
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+ args = parser.parse_args()
+ convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py
new file mode 100644
index 0000000000000000000000000000000000000000..0a2b7b87fe972a4c79a4c573b52164eb7e01d0ad
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py
@@ -0,0 +1,435 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Table Transformer checkpoints with native (Transformers) backbone.
+
+URL: https://github.com/microsoft/table-transformer
+"""
+
+
+import argparse
+from pathlib import Path
+
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+from torchvision.transforms import functional as F
+
+from transformers import DetrImageProcessor, ResNetConfig, TableTransformerConfig, TableTransformerForObjectDetection
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+def create_rename_keys(config):
+ # here we list all keys to be renamed (original name on the left, our name on the right)
+ rename_keys = []
+
+ # stem
+ # fmt: off
+ rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight"))
+ rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight"))
+ rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias"))
+ rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean"))
+ rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var"))
+ # stages
+ for stage_idx in range(len(config.backbone_config.depths)):
+ for layer_idx in range(config.backbone_config.depths[stage_idx]):
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv1.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.convolution.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.bias",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.bias",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.running_mean",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.running_mean",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.running_var",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.running_var",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv2.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.convolution.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.bias",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.bias",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.running_mean",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.running_mean",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.running_var",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.running_var",
+ )
+ )
+ # all ResNet stages except the first one have a downsample as first layer
+ if stage_idx != 0 and layer_idx == 0:
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias",
+ )
+ )
+ rename_keys.append(
+ (
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean",
+ )
+ )
+ rename_keys.append(
+ (
+ # "backbone.conv_encoder.model.encoder.stages.3.layers.0.shortcut.normalization.running_var"
+ f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var",
+ f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var",
+ )
+ )
+ # fmt: on
+
+ for i in range(config.encoder_layers):
+ # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
+ rename_keys.append(
+ (
+ f"transformer.encoder.layers.{i}.self_attn.out_proj.weight",
+ f"encoder.layers.{i}.self_attn.out_proj.weight",
+ )
+ )
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
+ )
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
+ rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
+ )
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")
+ )
+ rename_keys.append(
+ (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")
+ )
+ rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
+ # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
+ rename_keys.append(
+ (
+ f"transformer.decoder.layers.{i}.self_attn.out_proj.weight",
+ f"decoder.layers.{i}.self_attn.out_proj.weight",
+ )
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
+ )
+ rename_keys.append(
+ (
+ f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
+ f"decoder.layers.{i}.encoder_attn.out_proj.weight",
+ )
+ )
+ rename_keys.append(
+ (
+ f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
+ f"decoder.layers.{i}.encoder_attn.out_proj.bias",
+ )
+ )
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
+ rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
+ )
+ rename_keys.append(
+ (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")
+ )
+ rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
+
+ # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
+ rename_keys.extend(
+ [
+ ("input_proj.weight", "input_projection.weight"),
+ ("input_proj.bias", "input_projection.bias"),
+ ("query_embed.weight", "query_position_embeddings.weight"),
+ ("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
+ ("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
+ ("class_embed.weight", "class_labels_classifier.weight"),
+ ("class_embed.bias", "class_labels_classifier.bias"),
+ ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
+ ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
+ ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
+ ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
+ ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
+ ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
+ ("transformer.encoder.norm.weight", "encoder.layernorm.weight"),
+ ("transformer.encoder.norm.bias", "encoder.layernorm.bias"),
+ ]
+ )
+
+ return rename_keys
+
+
+def rename_key(state_dict, old, new):
+ val = state_dict.pop(old)
+ state_dict[new] = val
+
+
+def read_in_q_k_v(state_dict, is_panoptic=False):
+ prefix = ""
+ if is_panoptic:
+ prefix = "detr."
+
+ # first: transformer encoder
+ for i in range(6):
+ # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
+ in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
+ in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+ # next: transformer decoder (which is a bit more complex because it also includes cross-attention)
+ for i in range(6):
+ # read in weights + bias of input projection layer of self-attention
+ in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
+ in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) to the state dict
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
+ state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
+ state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
+ state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
+ # read in weights + bias of input projection layer of cross-attention
+ in_proj_weight_cross_attn = state_dict.pop(
+ f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
+ )
+ in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
+ # next, add query, keys and values (in that order) of cross-attention to the state dict
+ state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
+ state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
+ state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
+ state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
+
+
+def resize(image, checkpoint_url):
+ width, height = image.size
+ current_max_size = max(width, height)
+ target_max_size = 800 if "detection" in checkpoint_url else 1000
+ scale = target_max_size / current_max_size
+ resized_image = image.resize((int(round(scale * width)), int(round(scale * height))))
+
+ return resized_image
+
+
+def normalize(image):
+ image = F.to_tensor(image)
+ image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+ return image
+
+
+@torch.no_grad()
+def convert_table_transformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub):
+ """
+ Copy/paste/tweak model's weights to our DETR structure.
+ """
+
+ logger.info("Converting model...")
+
+ # create HuggingFace model and load state dict
+ backbone_config = ResNetConfig.from_pretrained(
+ "microsoft/resnet-18", out_features=["stage1", "stage2", "stage3", "stage4"]
+ )
+
+ config = TableTransformerConfig(
+ backbone_config=backbone_config,
+ use_timm_backbone=False,
+ mask_loss_coefficient=1,
+ dice_loss_coefficient=1,
+ ce_loss_coefficient=1,
+ bbox_loss_coefficient=5,
+ giou_loss_coefficient=2,
+ eos_coefficient=0.4,
+ class_cost=1,
+ bbox_cost=5,
+ giou_cost=2,
+ )
+
+ # load original state dict
+ state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
+
+ # rename keys
+ for src, dest in create_rename_keys(config):
+ rename_key(state_dict, src, dest)
+ # query, key and value matrices need special treatment
+ read_in_q_k_v(state_dict)
+ # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
+ prefix = "model."
+ for key in state_dict.copy().keys():
+ if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
+ val = state_dict.pop(key)
+ state_dict[prefix + key] = val
+
+ if "detection" in checkpoint_url:
+ config.num_queries = 15
+ config.num_labels = 2
+ id2label = {0: "table", 1: "table rotated"}
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+ else:
+ config.num_queries = 125
+ config.num_labels = 6
+ id2label = {
+ 0: "table",
+ 1: "table column",
+ 2: "table row",
+ 3: "table column header",
+ 4: "table projected row header",
+ 5: "table spanning cell",
+ }
+ config.id2label = id2label
+ config.label2id = {v: k for k, v in id2label.items()}
+
+ image_processor = DetrImageProcessor(format="coco_detection", size={"longest_edge": 800})
+ model = TableTransformerForObjectDetection(config)
+ model.load_state_dict(state_dict)
+ model.eval()
+
+ # verify our conversion
+ filename = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png"
+ file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=filename)
+ image = Image.open(file_path).convert("RGB")
+ pixel_values = normalize(resize(image, checkpoint_url)).unsqueeze(0)
+
+ outputs = model(pixel_values)
+
+ if "detection" in checkpoint_url:
+ expected_shape = (1, 15, 3)
+ expected_logits = torch.tensor(
+ [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]]
+ )
+ expected_boxes = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]])
+
+ else:
+ expected_shape = (1, 125, 7)
+ expected_logits = torch.tensor(
+ [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]]
+ )
+ expected_boxes = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]])
+
+ assert outputs.logits.shape == expected_shape
+ assert torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)
+ assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)
+ print("Looks ok!")
+
+ if pytorch_dump_folder_path is not None:
+ # Save model and image processor
+ logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...")
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
+ model.save_pretrained(pytorch_dump_folder_path)
+ image_processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ # Push model to HF hub
+ logger.info("Pushing model to the hub...")
+ model_name = (
+ "microsoft/table-transformer-detection"
+ if "detection" in checkpoint_url
+ else "microsoft/table-transformer-structure-recognition"
+ )
+ model.push_to_hub(model_name, revision="no_timm")
+ image_processor.push_to_hub(model_name, revision="no_timm")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--checkpoint_url",
+ default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
+ type=str,
+ choices=[
+ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
+ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth",
+ ],
+ help="URL of the Table Transformer checkpoint you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
+ )
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+ args = parser.parse_args()
+ convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f86b0ab53320b6e7f9b931e7a2491d2958c6b04
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py
@@ -0,0 +1,2002 @@
+# coding=utf-8
+# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Table Transformer model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import Dict, List, Optional, Tuple, Union
+
+import torch
+from torch import Tensor, nn
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
+from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_accelerate_available,
+ is_scipy_available,
+ is_timm_available,
+ is_vision_available,
+ logging,
+ replace_return_docstrings,
+ requires_backends,
+)
+from ...utils.backbone_utils import load_backbone
+from .configuration_table_transformer import TableTransformerConfig
+
+
+if is_scipy_available():
+ from scipy.optimize import linear_sum_assignment
+
+if is_timm_available():
+ from timm import create_model
+
+if is_vision_available():
+ from transformers.image_transforms import center_to_corners_format
+
+if is_accelerate_available():
+ from accelerate import PartialState
+ from accelerate.utils import reduce
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "TableTransformerConfig"
+_CHECKPOINT_FOR_DOC = "microsoft/table-transformer-detection"
+
+TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "microsoft/table-transformer-detection",
+ # See all Table Transformer models at https://huggingface.co/models?filter=table-transformer
+]
+
+
+@dataclass
+# Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput with DETR->TABLE_TRANSFORMER,Detr->TableTransformer
+class TableTransformerDecoderOutput(BaseModelOutputWithCrossAttentions):
+ """
+ Base class for outputs of the TABLE_TRANSFORMER decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions,
+ namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
+ gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the model.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
+ plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
+ the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
+ used to compute the weighted average in the cross-attention heads.
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
+ Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
+ layernorm.
+ """
+
+ intermediate_hidden_states: Optional[torch.FloatTensor] = None
+
+
+@dataclass
+# Copied from transformers.models.detr.modeling_detr.DetrModelOutput with DETR->TABLE_TRANSFORMER,Detr->TableTransformer
+class TableTransformerModelOutput(Seq2SeqModelOutput):
+ """
+ Base class for outputs of the TABLE_TRANSFORMER encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput,
+ namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them
+ gone through a layernorm. This is useful when training the model with auxiliary decoding losses.
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
+ layer plus the initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
+ weighted average in the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
+ used to compute the weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
+ layer plus the initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
+ weighted average in the self-attention heads.
+ intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
+ Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
+ layernorm.
+ """
+
+ intermediate_hidden_states: Optional[torch.FloatTensor] = None
+
+
+@dataclass
+# Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->TableTransformer,DetrImageProcessor->DetrImageProcessor
+class TableTransformerObjectDetectionOutput(ModelOutput):
+ """
+ Output type of [`TableTransformerForObjectDetection`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
+ Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
+ bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
+ scale-invariant IoU loss.
+ loss_dict (`Dict`, *optional*):
+ A dictionary containing the individual losses. Useful for logging.
+ logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
+ Classification logits (including no-object) for all queries.
+ pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
+ Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
+ values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
+ possible padding). You can use [`~TableTransformerImageProcessor.post_process_object_detection`] to retrieve the
+ unnormalized bounding boxes.
+ auxiliary_outputs (`list[Dict]`, *optional*):
+ Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
+ and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
+ `pred_boxes`) for each decoder layer.
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the decoder of the model.
+ decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
+ layer plus the initial embedding outputs.
+ decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
+ weighted average in the self-attention heads.
+ cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
+ used to compute the weighted average in the cross-attention heads.
+ encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder of the model.
+ encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
+ layer plus the initial embedding outputs.
+ encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
+ weighted average in the self-attention heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ loss_dict: Optional[Dict] = None
+ logits: torch.FloatTensor = None
+ pred_boxes: torch.FloatTensor = None
+ auxiliary_outputs: Optional[List[Dict]] = None
+ last_hidden_state: Optional[torch.FloatTensor] = None
+ decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_last_hidden_state: Optional[torch.FloatTensor] = None
+ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->TableTransformer
+class TableTransformerFrozenBatchNorm2d(nn.Module):
+ """
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
+
+ Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
+ torchvision.models.resnet[18,34,50,101] produce nans.
+ """
+
+ def __init__(self, n):
+ super().__init__()
+ self.register_buffer("weight", torch.ones(n))
+ self.register_buffer("bias", torch.zeros(n))
+ self.register_buffer("running_mean", torch.zeros(n))
+ self.register_buffer("running_var", torch.ones(n))
+
+ def _load_from_state_dict(
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ ):
+ num_batches_tracked_key = prefix + "num_batches_tracked"
+ if num_batches_tracked_key in state_dict:
+ del state_dict[num_batches_tracked_key]
+
+ super()._load_from_state_dict(
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ )
+
+ def forward(self, x):
+ # move reshapes to the beginning
+ # to make it user-friendly
+ weight = self.weight.reshape(1, -1, 1, 1)
+ bias = self.bias.reshape(1, -1, 1, 1)
+ running_var = self.running_var.reshape(1, -1, 1, 1)
+ running_mean = self.running_mean.reshape(1, -1, 1, 1)
+ epsilon = 1e-5
+ scale = weight * (running_var + epsilon).rsqrt()
+ bias = bias - running_mean * scale
+ return x * scale + bias
+
+
+# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->TableTransformer
+def replace_batch_norm(model):
+ r"""
+ Recursively replace all `torch.nn.BatchNorm2d` with `TableTransformerFrozenBatchNorm2d`.
+
+ Args:
+ model (torch.nn.Module):
+ input model
+ """
+ for name, module in model.named_children():
+ if isinstance(module, nn.BatchNorm2d):
+ new_module = TableTransformerFrozenBatchNorm2d(module.num_features)
+
+ if not module.weight.device == torch.device("meta"):
+ new_module.weight.data.copy_(module.weight)
+ new_module.bias.data.copy_(module.bias)
+ new_module.running_mean.data.copy_(module.running_mean)
+ new_module.running_var.data.copy_(module.running_var)
+
+ model._modules[name] = new_module
+
+ if len(list(module.children())) > 0:
+ replace_batch_norm(module)
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrConvEncoder with Detr->TableTransformer
+class TableTransformerConvEncoder(nn.Module):
+ """
+ Convolutional backbone, using either the AutoBackbone API or one from the timm library.
+
+ nn.BatchNorm2d layers are replaced by TableTransformerFrozenBatchNorm2d as defined above.
+
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.config = config
+
+ if config.use_timm_backbone:
+ requires_backends(self, ["timm"])
+ kwargs = {}
+ if config.dilation:
+ kwargs["output_stride"] = 16
+ backbone = create_model(
+ config.backbone,
+ pretrained=config.use_pretrained_backbone,
+ features_only=True,
+ out_indices=(1, 2, 3, 4),
+ in_chans=config.num_channels,
+ **kwargs,
+ )
+ else:
+ backbone = load_backbone(config)
+
+ # replace batch norm by frozen batch norm
+ with torch.no_grad():
+ replace_batch_norm(backbone)
+ self.model = backbone
+ self.intermediate_channel_sizes = (
+ self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
+ )
+
+ backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type
+ if "resnet" in backbone_model_type:
+ for name, parameter in self.model.named_parameters():
+ if config.use_timm_backbone:
+ if "layer2" not in name and "layer3" not in name and "layer4" not in name:
+ parameter.requires_grad_(False)
+ else:
+ if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
+ parameter.requires_grad_(False)
+
+ def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
+ # send pixel_values through the model to get list of feature maps
+ features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
+
+ out = []
+ for feature_map in features:
+ # downsample pixel_mask to match shape of corresponding feature_map
+ mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
+ out.append((feature_map, mask))
+ return out
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->TableTransformer
+class TableTransformerConvModel(nn.Module):
+ """
+ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
+ """
+
+ def __init__(self, conv_encoder, position_embedding):
+ super().__init__()
+ self.conv_encoder = conv_encoder
+ self.position_embedding = position_embedding
+
+ def forward(self, pixel_values, pixel_mask):
+ # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
+ out = self.conv_encoder(pixel_values, pixel_mask)
+ pos = []
+ for feature_map, mask in out:
+ # position encoding
+ pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
+
+ return out, pos
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrSinePositionEmbedding with Detr->TableTransformer
+class TableTransformerSinePositionEmbedding(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
+ need paper, generalized to work on images.
+ """
+
+ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
+ super().__init__()
+ self.embedding_dim = embedding_dim
+ self.temperature = temperature
+ self.normalize = normalize
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ if scale is None:
+ scale = 2 * math.pi
+ self.scale = scale
+
+ def forward(self, pixel_values, pixel_mask):
+ if pixel_mask is None:
+ raise ValueError("No pixel mask provided")
+ y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
+ x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
+ if self.normalize:
+ y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
+ x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
+
+ dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
+ dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
+
+ pos_x = x_embed[:, :, :, None] / dim_t
+ pos_y = y_embed[:, :, :, None] / dim_t
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+ return pos
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding with Detr->TableTransformer
+class TableTransformerLearnedPositionEmbedding(nn.Module):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, embedding_dim=256):
+ super().__init__()
+ self.row_embeddings = nn.Embedding(50, embedding_dim)
+ self.column_embeddings = nn.Embedding(50, embedding_dim)
+
+ def forward(self, pixel_values, pixel_mask=None):
+ height, width = pixel_values.shape[-2:]
+ width_values = torch.arange(width, device=pixel_values.device)
+ height_values = torch.arange(height, device=pixel_values.device)
+ x_emb = self.column_embeddings(width_values)
+ y_emb = self.row_embeddings(height_values)
+ pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
+ pos = pos.permute(2, 0, 1)
+ pos = pos.unsqueeze(0)
+ pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
+ return pos
+
+
+# Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->TableTransformer
+def build_position_encoding(config):
+ n_steps = config.d_model // 2
+ if config.position_embedding_type == "sine":
+ # TODO find a better way of exposing other arguments
+ position_embedding = TableTransformerSinePositionEmbedding(n_steps, normalize=True)
+ elif config.position_embedding_type == "learned":
+ position_embedding = TableTransformerLearnedPositionEmbedding(n_steps)
+ else:
+ raise ValueError(f"Not supported {config.position_embedding_type}")
+
+ return position_embedding
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrAttention with DETR->TABLE_TRANSFORMER,Detr->TableTransformer
+class TableTransformerAttention(nn.Module):
+ """
+ Multi-headed attention from 'Attention Is All You Need' paper.
+
+ Here, we add position embeddings to the queries and keys (as explained in the TABLE_TRANSFORMER paper).
+ """
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ bias: bool = True,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ if self.head_dim * num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
+ return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs):
+ position_embeddings = kwargs.pop("position_embeddings", None)
+
+ if kwargs:
+ raise ValueError(f"Unexpected arguments {kwargs.keys()}")
+
+ if position_embeddings is not None and object_queries is not None:
+ raise ValueError(
+ "Cannot specify both position_embeddings and object_queries. Please use just object_queries"
+ )
+
+ if position_embeddings is not None:
+ logger.warning_once(
+ "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
+ )
+ object_queries = position_embeddings
+
+ return tensor if object_queries is None else tensor + object_queries
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ object_queries: Optional[torch.Tensor] = None,
+ key_value_states: Optional[torch.Tensor] = None,
+ spatial_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ **kwargs,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ position_embeddings = kwargs.pop("position_ebmeddings", None)
+ key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None)
+
+ if kwargs:
+ raise ValueError(f"Unexpected arguments {kwargs.keys()}")
+
+ if position_embeddings is not None and object_queries is not None:
+ raise ValueError(
+ "Cannot specify both position_embeddings and object_queries. Please use just object_queries"
+ )
+
+ if key_value_position_embeddings is not None and spatial_position_embeddings is not None:
+ raise ValueError(
+ "Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings"
+ )
+
+ if position_embeddings is not None:
+ logger.warning_once(
+ "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
+ )
+ object_queries = position_embeddings
+
+ if key_value_position_embeddings is not None:
+ logger.warning_once(
+ "key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead"
+ )
+ spatial_position_embeddings = key_value_position_embeddings
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size, target_len, embed_dim = hidden_states.size()
+
+ # add position embeddings to the hidden states before projecting to queries and keys
+ if object_queries is not None:
+ hidden_states_original = hidden_states
+ hidden_states = self.with_pos_embed(hidden_states, object_queries)
+
+ # add key-value position embeddings to the key value states
+ if spatial_position_embeddings is not None:
+ key_value_states_original = key_value_states
+ key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
+ value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
+ value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
+
+ proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ source_len = key_states.size(1)
+
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
+ raise ValueError(
+ f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (batch_size, 1, target_len, source_len):
+ raise ValueError(
+ f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
+ f" {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
+ attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
+ attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped
+
+
+class TableTransformerEncoderLayer(nn.Module):
+ # Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer.__init__ with Detr->TableTransformer
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+ self.self_attn = TableTransformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: torch.Tensor,
+ object_queries: torch.Tensor = None,
+ output_attentions: bool = False,
+ ):
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
+ values.
+ object_queries (`torch.FloatTensor`, *optional*): object queries, to be added to hidden_states.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ object_queries=object_queries,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ hidden_states = residual + hidden_states
+
+ if self.training:
+ if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+class TableTransformerDecoderLayer(nn.Module):
+ # Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer.__init__ with Detr->TableTransformer
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = TableTransformerAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = TableTransformerAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ object_queries: Optional[torch.Tensor] = None,
+ query_position_embeddings: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = False,
+ ):
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
+ values.
+ object_queries (`torch.FloatTensor`, *optional*):
+ object queries that are added to the queries and keys
+ in the cross-attention layer.
+ query_position_embeddings (`torch.FloatTensor`, *optional*):
+ object queries that are added to the queries and keys
+ in the self-attention layer.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
+ values.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ object_queries=query_position_embeddings,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ hidden_states, cross_attn_weights = self.encoder_attn(
+ hidden_states=hidden_states,
+ object_queries=query_position_embeddings,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ spatial_position_embeddings=object_queries,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ # Fully Connected
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrClassificationHead with Detr->TableTransformer
+class TableTransformerClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float):
+ super().__init__()
+ self.dense = nn.Linear(input_dim, inner_dim)
+ self.dropout = nn.Dropout(p=pooler_dropout)
+ self.out_proj = nn.Linear(inner_dim, num_classes)
+
+ def forward(self, hidden_states: torch.Tensor):
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+class TableTransformerPreTrainedModel(PreTrainedModel):
+ config_class = TableTransformerConfig
+ base_model_prefix = "model"
+ main_input_name = "pixel_values"
+ _no_split_modules = [
+ r"TableTransformerConvEncoder",
+ r"TableTransformerEncoderLayer",
+ r"TableTransformerDecoderLayer",
+ ]
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+
+ if isinstance(module, TableTransformerLearnedPositionEmbedding):
+ nn.init.uniform_(module.row_embeddings.weight)
+ nn.init.uniform_(module.column_embeddings.weight)
+ if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+
+TABLE_TRANSFORMER_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`TableTransformerConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+TABLE_TRANSFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it.
+
+ Pixel values can be obtained using [`DetrImageProcessor`]. See [`DetrImageProcessor.__call__`] for details.
+
+ pixel_mask (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
+ Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
+ Not used by default. Can be used to mask object queries.
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
+ can choose to directly pass a flattened representation of an image.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
+ Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
+ embedded representation.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class TableTransformerEncoder(TableTransformerPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`TableTransformerEncoderLayer`].
+
+ The encoder updates the flattened feature map through multiple self-attention layers.
+
+ Small tweak for Table Transformer:
+
+ - object_queries are added to the forward pass.
+
+ Args:
+ config: TableTransformerConfig
+ """
+
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+
+ self.layers = nn.ModuleList([TableTransformerEncoderLayer(config) for _ in range(config.encoder_layers)])
+
+ self.layernorm = nn.LayerNorm(config.d_model)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ inputs_embeds=None,
+ attention_mask=None,
+ object_queries=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
+
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
+
+ - 1 for pixel features that are real (i.e. **not masked**),
+ - 0 for pixel features that are padding (i.e. **masked**).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Position embeddings that are added to the queries and keys in each self-attention layer.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states = inputs_embeds
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ for encoder_layer in self.layers:
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ # we add object_queries as extra input to the encoder_layer
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ object_queries=object_queries,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ hidden_states = self.layernorm(hidden_states)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrDecoder with DETR->TABLE_TRANSFORMER,Detr->TableTransformer
+class TableTransformerDecoder(TableTransformerPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TableTransformerDecoderLayer`].
+
+ The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
+
+ Some small tweaks for TABLE_TRANSFORMER:
+
+ - object_queries and query_position_embeddings are added to the forward pass.
+ - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
+
+ Args:
+ config: TableTransformerConfig
+ """
+
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+
+ self.layers = nn.ModuleList([TableTransformerDecoderLayer(config) for _ in range(config.decoder_layers)])
+ # in TABLE_TRANSFORMER, the decoder uses layernorm after the last decoder layer output
+ self.layernorm = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ inputs_embeds=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ object_queries=None,
+ query_position_embeddings=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ **kwargs,
+ ):
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ The query embeddings that are passed into the decoder.
+
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
+
+ - 1 for queries that are **not masked**,
+ - 0 for queries that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
+ in `[0, 1]`:
+
+ - 1 for pixels that are real (i.e. **not masked**),
+ - 0 for pixels that are padding (i.e. **masked**).
+
+ object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Object queries that are added to the queries and keys in each cross-attention layer.
+ query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
+ , *optional*): Position embeddings that are added to the values and keys in each self-attention layer.
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ position_embeddings = kwargs.pop("position_embeddings", None)
+
+ if kwargs:
+ raise ValueError(f"Unexpected arguments {kwargs.keys()}")
+
+ if position_embeddings is not None and object_queries is not None:
+ raise ValueError(
+ "Cannot specify both position_embeddings and object_queries. Please use just object_queries"
+ )
+
+ if position_embeddings is not None:
+ logger.warning_once(
+ "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead"
+ )
+ object_queries = position_embeddings
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if inputs_embeds is not None:
+ hidden_states = inputs_embeds
+ input_shape = inputs_embeds.size()[:-1]
+
+ combined_attention_mask = None
+
+ if attention_mask is not None and combined_attention_mask is not None:
+ # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
+ combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask(
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # optional intermediate hidden states
+ intermediate = () if self.config.auxiliary_loss else None
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ combined_attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ None,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=combined_attention_mask,
+ object_queries=object_queries,
+ query_position_embeddings=query_position_embeddings,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if self.config.auxiliary_loss:
+ hidden_states = self.layernorm(hidden_states)
+ intermediate += (hidden_states,)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # finally, apply layernorm
+ hidden_states = self.layernorm(hidden_states)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ # stack intermediate decoder activations
+ if self.config.auxiliary_loss:
+ intermediate = torch.stack(intermediate)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate]
+ if v is not None
+ )
+ return TableTransformerDecoderOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ intermediate_hidden_states=intermediate,
+ )
+
+
+@add_start_docstrings(
+ """
+ The bare Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
+ hidden-states without any specific head on top.
+ """,
+ TABLE_TRANSFORMER_START_DOCSTRING,
+)
+class TableTransformerModel(TableTransformerPreTrainedModel):
+ # Copied from transformers.models.detr.modeling_detr.DetrModel.__init__ with Detr->TableTransformer
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__(config)
+
+ # Create backbone + positional encoding
+ backbone = TableTransformerConvEncoder(config)
+ object_queries = build_position_encoding(config)
+ self.backbone = TableTransformerConvModel(backbone, object_queries)
+
+ # Create projection layer
+ self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
+
+ self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
+
+ self.encoder = TableTransformerEncoder(config)
+ self.decoder = TableTransformerDecoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ def freeze_backbone(self):
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
+ param.requires_grad_(False)
+
+ def unfreeze_backbone(self):
+ for name, param in self.backbone.conv_encoder.model.named_parameters():
+ param.requires_grad_(True)
+
+ @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TableTransformerModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.FloatTensor] = None,
+ decoder_attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_outputs: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], TableTransformerModelOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoImageProcessor, TableTransformerModel
+ >>> from huggingface_hub import hf_hub_download
+ >>> from PIL import Image
+
+ >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
+ >>> image = Image.open(file_path).convert("RGB")
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
+ >>> model = TableTransformerModel.from_pretrained("microsoft/table-transformer-detection")
+
+ >>> # prepare image for the model
+ >>> inputs = image_processor(images=image, return_tensors="pt")
+
+ >>> # forward pass
+ >>> outputs = model(**inputs)
+
+ >>> # the last hidden states are the final query embeddings of the Transformer decoder
+ >>> # these are of shape (batch_size, num_queries, hidden_size)
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 15, 256]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, num_channels, height, width = pixel_values.shape
+ device = pixel_values.device
+
+ if pixel_mask is None:
+ pixel_mask = torch.ones(((batch_size, height, width)), device=device)
+
+ # First, sent pixel_values + pixel_mask through Backbone to obtain the features
+ # pixel_values should be of shape (batch_size, num_channels, height, width)
+ # pixel_mask should be of shape (batch_size, height, width)
+ features, position_embeddings_list = self.backbone(pixel_values, pixel_mask)
+
+ # get final feature map and downsampled mask
+ feature_map, mask = features[-1]
+
+ if mask is None:
+ raise ValueError("Backbone does not return downsampled pixel mask")
+
+ # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
+ projected_feature_map = self.input_projection(feature_map)
+
+ # Third, flatten the feature map + object queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
+ # In other words, turn their shape into (batch_size, sequence_length, hidden_size)
+ flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
+ object_queries = position_embeddings_list[-1].flatten(2).permute(0, 2, 1)
+
+ flattened_mask = mask.flatten(1)
+
+ # Fourth, sent flattened_features + flattened_mask + object queries through encoder
+ # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
+ # flattened_mask is a Tensor of shape (batch_size, heigth*width)
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ inputs_embeds=flattened_features,
+ attention_mask=flattened_mask,
+ object_queries=object_queries,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # Fifth, sent query embeddings + object queries through the decoder (which is conditioned on the encoder output)
+ query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
+ queries = torch.zeros_like(query_position_embeddings)
+
+ # decoder outputs consists of (dec_features, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ inputs_embeds=queries,
+ attention_mask=None,
+ object_queries=object_queries,
+ query_position_embeddings=query_position_embeddings,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=flattened_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return TableTransformerModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
+ )
+
+
+@add_start_docstrings(
+ """
+ Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on
+ top, for tasks such as COCO detection.
+ """,
+ TABLE_TRANSFORMER_START_DOCSTRING,
+)
+class TableTransformerForObjectDetection(TableTransformerPreTrainedModel):
+ # Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection.__init__ with Detr->TableTransformer
+ def __init__(self, config: TableTransformerConfig):
+ super().__init__(config)
+
+ # DETR encoder-decoder model
+ self.model = TableTransformerModel(config)
+
+ # Object detection heads
+ self.class_labels_classifier = nn.Linear(
+ config.d_model, config.num_labels + 1
+ ) # We add one for the "no object" class
+ self.bbox_predictor = TableTransformerMLPPredictionHead(
+ input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @torch.jit.unused
+ # Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection._set_aux_loss
+ def _set_aux_loss(self, outputs_class, outputs_coord):
+ # this is a workaround to make torchscript happy, as torchscript
+ # doesn't support dictionary with non-homogeneous values, such
+ # as a dict having both a Tensor and a list.
+ return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
+
+ @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TableTransformerObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: torch.FloatTensor,
+ pixel_mask: Optional[torch.FloatTensor] = None,
+ decoder_attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_outputs: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[List[Dict]] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], TableTransformerObjectDetectionOutput]:
+ r"""
+ labels (`List[Dict]` of len `(batch_size,)`, *optional*):
+ Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
+ following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
+ respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
+ in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from huggingface_hub import hf_hub_download
+ >>> from transformers import AutoImageProcessor, TableTransformerForObjectDetection
+ >>> import torch
+ >>> from PIL import Image
+
+ >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png")
+ >>> image = Image.open(file_path).convert("RGB")
+
+ >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection")
+ >>> model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection")
+
+ >>> inputs = image_processor(images=image, return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
+ >>> target_sizes = torch.tensor([image.size[::-1]])
+ >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[
+ ... 0
+ ... ]
+
+ >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
+ ... box = [round(i, 2) for i in box.tolist()]
+ ... print(
+ ... f"Detected {model.config.id2label[label.item()]} with confidence "
+ ... f"{round(score.item(), 3)} at location {box}"
+ ... )
+ Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09]
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # First, sent images through TABLE_TRANSFORMER base model to obtain encoder + decoder outputs
+ outputs = self.model(
+ pixel_values,
+ pixel_mask=pixel_mask,
+ decoder_attention_mask=decoder_attention_mask,
+ encoder_outputs=encoder_outputs,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ # class logits + predicted bounding boxes
+ logits = self.class_labels_classifier(sequence_output)
+ pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
+
+ loss, loss_dict, auxiliary_outputs = None, None, None
+ if labels is not None:
+ # First: create the matcher
+ matcher = TableTransformerHungarianMatcher(
+ class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost
+ )
+ # Second: create the criterion
+ losses = ["labels", "boxes", "cardinality"]
+ criterion = TableTransformerLoss(
+ matcher=matcher,
+ num_classes=self.config.num_labels,
+ eos_coef=self.config.eos_coefficient,
+ losses=losses,
+ )
+ criterion.to(self.device)
+ # Third: compute the losses, based on outputs and labels
+ outputs_loss = {}
+ outputs_loss["logits"] = logits
+ outputs_loss["pred_boxes"] = pred_boxes
+ if self.config.auxiliary_loss:
+ intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
+ outputs_class = self.class_labels_classifier(intermediate)
+ outputs_coord = self.bbox_predictor(intermediate).sigmoid()
+ auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord)
+ outputs_loss["auxiliary_outputs"] = auxiliary_outputs
+
+ loss_dict = criterion(outputs_loss, labels)
+ # Fourth: compute total loss, as a weighted sum of the various losses
+ weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient}
+ weight_dict["loss_giou"] = self.config.giou_loss_coefficient
+ if self.config.auxiliary_loss:
+ aux_weight_dict = {}
+ for i in range(self.config.decoder_layers - 1):
+ aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
+ weight_dict.update(aux_weight_dict)
+ loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
+
+ if not return_dict:
+ if auxiliary_outputs is not None:
+ output = (logits, pred_boxes) + auxiliary_outputs + outputs
+ else:
+ output = (logits, pred_boxes) + outputs
+ return ((loss, loss_dict) + output) if loss is not None else output
+
+ return TableTransformerObjectDetectionOutput(
+ loss=loss,
+ loss_dict=loss_dict,
+ logits=logits,
+ pred_boxes=pred_boxes,
+ auxiliary_outputs=auxiliary_outputs,
+ last_hidden_state=outputs.last_hidden_state,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+
+# Copied from transformers.models.detr.modeling_detr.dice_loss
+def dice_loss(inputs, targets, num_boxes):
+ """
+ Compute the DICE loss, similar to generalized IOU for masks
+
+ Args:
+ inputs: A float tensor of arbitrary shape.
+ The predictions for each example.
+ targets: A float tensor with the same shape as inputs. Stores the binary
+ classification label for each element in inputs (0 for the negative class and 1 for the positive
+ class).
+ """
+ inputs = inputs.sigmoid()
+ inputs = inputs.flatten(1)
+ numerator = 2 * (inputs * targets).sum(1)
+ denominator = inputs.sum(-1) + targets.sum(-1)
+ loss = 1 - (numerator + 1) / (denominator + 1)
+ return loss.sum() / num_boxes
+
+
+# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss
+def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
+ """
+ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
+
+ Args:
+ inputs (`torch.FloatTensor` of arbitrary shape):
+ The predictions for each example.
+ targets (`torch.FloatTensor` with the same shape as `inputs`)
+ A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class
+ and 1 for the positive class).
+ alpha (`float`, *optional*, defaults to `0.25`):
+ Optional weighting factor in the range (0,1) to balance positive vs. negative examples.
+ gamma (`int`, *optional*, defaults to `2`):
+ Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples.
+
+ Returns:
+ Loss tensor
+ """
+ prob = inputs.sigmoid()
+ ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
+ # add modulating factor
+ p_t = prob * targets + (1 - prob) * (1 - targets)
+ loss = ce_loss * ((1 - p_t) ** gamma)
+
+ if alpha >= 0:
+ alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
+ loss = alpha_t * loss
+
+ return loss.mean(1).sum() / num_boxes
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->TableTransformer,detr->table_transformer
+class TableTransformerLoss(nn.Module):
+ """
+ This class computes the losses for TableTransformerForObjectDetection/TableTransformerForSegmentation. The process happens in two steps: 1)
+ we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
+ of matched ground-truth / prediction (supervise class and box).
+
+ A note on the `num_classes` argument (copied from original repo in table_transformer.py): "the naming of the `num_classes`
+ parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
+ the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
+ be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
+ (`max_obj_id` + 1). For more details on this, check the following discussion
+ https://github.com/facebookresearch/table_transformer/issues/108#issuecomment-650269223"
+
+
+ Args:
+ matcher (`TableTransformerHungarianMatcher`):
+ Module able to compute a matching between targets and proposals.
+ num_classes (`int`):
+ Number of object categories, omitting the special no-object category.
+ eos_coef (`float`):
+ Relative classification weight applied to the no-object category.
+ losses (`List[str]`):
+ List of all the losses to be applied. See `get_loss` for a list of all available losses.
+ """
+
+ def __init__(self, matcher, num_classes, eos_coef, losses):
+ super().__init__()
+ self.matcher = matcher
+ self.num_classes = num_classes
+ self.eos_coef = eos_coef
+ self.losses = losses
+ empty_weight = torch.ones(self.num_classes + 1)
+ empty_weight[-1] = self.eos_coef
+ self.register_buffer("empty_weight", empty_weight)
+
+ # removed logging parameter, which was part of the original implementation
+ def loss_labels(self, outputs, targets, indices, num_boxes):
+ """
+ Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
+ [nb_target_boxes]
+ """
+ if "logits" not in outputs:
+ raise KeyError("No logits were found in the outputs")
+ source_logits = outputs["logits"]
+
+ idx = self._get_source_permutation_idx(indices)
+ target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
+ target_classes = torch.full(
+ source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
+ )
+ target_classes[idx] = target_classes_o
+
+ loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
+ losses = {"loss_ce": loss_ce}
+
+ return losses
+
+ @torch.no_grad()
+ def loss_cardinality(self, outputs, targets, indices, num_boxes):
+ """
+ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
+
+ This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
+ """
+ logits = outputs["logits"]
+ device = logits.device
+ target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
+ # Count the number of predictions that are NOT "no-object" (which is the last class)
+ card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
+ card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
+ losses = {"cardinality_error": card_err}
+ return losses
+
+ def loss_boxes(self, outputs, targets, indices, num_boxes):
+ """
+ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
+
+ Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
+ are expected in format (center_x, center_y, w, h), normalized by the image size.
+ """
+ if "pred_boxes" not in outputs:
+ raise KeyError("No predicted boxes found in outputs")
+ idx = self._get_source_permutation_idx(indices)
+ source_boxes = outputs["pred_boxes"][idx]
+ target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
+
+ loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
+
+ losses = {}
+ losses["loss_bbox"] = loss_bbox.sum() / num_boxes
+
+ loss_giou = 1 - torch.diag(
+ generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
+ )
+ losses["loss_giou"] = loss_giou.sum() / num_boxes
+ return losses
+
+ def loss_masks(self, outputs, targets, indices, num_boxes):
+ """
+ Compute the losses related to the masks: the focal loss and the dice loss.
+
+ Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
+ """
+ if "pred_masks" not in outputs:
+ raise KeyError("No predicted masks found in outputs")
+
+ source_idx = self._get_source_permutation_idx(indices)
+ target_idx = self._get_target_permutation_idx(indices)
+ source_masks = outputs["pred_masks"]
+ source_masks = source_masks[source_idx]
+ masks = [t["masks"] for t in targets]
+ # TODO use valid to mask invalid areas due to padding in loss
+ target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
+ target_masks = target_masks.to(source_masks)
+ target_masks = target_masks[target_idx]
+
+ # upsample predictions to the target size
+ source_masks = nn.functional.interpolate(
+ source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
+ )
+ source_masks = source_masks[:, 0].flatten(1)
+
+ target_masks = target_masks.flatten(1)
+ target_masks = target_masks.view(source_masks.shape)
+ losses = {
+ "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
+ "loss_dice": dice_loss(source_masks, target_masks, num_boxes),
+ }
+ return losses
+
+ def _get_source_permutation_idx(self, indices):
+ # permute predictions following indices
+ batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
+ source_idx = torch.cat([source for (source, _) in indices])
+ return batch_idx, source_idx
+
+ def _get_target_permutation_idx(self, indices):
+ # permute targets following indices
+ batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
+ target_idx = torch.cat([target for (_, target) in indices])
+ return batch_idx, target_idx
+
+ def get_loss(self, loss, outputs, targets, indices, num_boxes):
+ loss_map = {
+ "labels": self.loss_labels,
+ "cardinality": self.loss_cardinality,
+ "boxes": self.loss_boxes,
+ "masks": self.loss_masks,
+ }
+ if loss not in loss_map:
+ raise ValueError(f"Loss {loss} not supported")
+ return loss_map[loss](outputs, targets, indices, num_boxes)
+
+ def forward(self, outputs, targets):
+ """
+ This performs the loss computation.
+
+ Args:
+ outputs (`dict`, *optional*):
+ Dictionary of tensors, see the output specification of the model for the format.
+ targets (`List[dict]`, *optional*):
+ List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
+ losses applied, see each loss' doc.
+ """
+ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
+
+ # Retrieve the matching between the outputs of the last layer and the targets
+ indices = self.matcher(outputs_without_aux, targets)
+
+ # Compute the average number of target boxes across all nodes, for normalization purposes
+ num_boxes = sum(len(t["class_labels"]) for t in targets)
+ num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
+ world_size = 1
+ if is_accelerate_available():
+ if PartialState._shared_state != {}:
+ num_boxes = reduce(num_boxes)
+ world_size = PartialState().num_processes
+ num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
+
+ # Compute all the requested losses
+ losses = {}
+ for loss in self.losses:
+ losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
+
+ # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
+ if "auxiliary_outputs" in outputs:
+ for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
+ indices = self.matcher(auxiliary_outputs, targets)
+ for loss in self.losses:
+ if loss == "masks":
+ # Intermediate masks losses are too costly to compute, we ignore them.
+ continue
+ l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
+ l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
+ losses.update(l_dict)
+
+ return losses
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->TableTransformer,detr->table_transformer
+class TableTransformerMLPPredictionHead(nn.Module):
+ """
+ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
+ height and width of a bounding box w.r.t. an image.
+
+ Copied from https://github.com/facebookresearch/table_transformer/blob/master/models/table_transformer.py
+
+ """
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->TableTransformer
+class TableTransformerHungarianMatcher(nn.Module):
+ """
+ This class computes an assignment between the targets and the predictions of the network.
+
+ For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
+ predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
+ un-matched (and thus treated as non-objects).
+
+ Args:
+ class_cost:
+ The relative weight of the classification error in the matching cost.
+ bbox_cost:
+ The relative weight of the L1 error of the bounding box coordinates in the matching cost.
+ giou_cost:
+ The relative weight of the giou loss of the bounding box in the matching cost.
+ """
+
+ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
+ super().__init__()
+ requires_backends(self, ["scipy"])
+
+ self.class_cost = class_cost
+ self.bbox_cost = bbox_cost
+ self.giou_cost = giou_cost
+ if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
+ raise ValueError("All costs of the Matcher can't be 0")
+
+ @torch.no_grad()
+ def forward(self, outputs, targets):
+ """
+ Args:
+ outputs (`dict`):
+ A dictionary that contains at least these entries:
+ * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
+ * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
+ targets (`List[dict]`):
+ A list of targets (len(targets) = batch_size), where each target is a dict containing:
+ * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
+ ground-truth
+ objects in the target) containing the class labels
+ * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
+
+ Returns:
+ `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
+ - index_i is the indices of the selected predictions (in order)
+ - index_j is the indices of the corresponding selected targets (in order)
+ For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
+ """
+ batch_size, num_queries = outputs["logits"].shape[:2]
+
+ # We flatten to compute the cost matrices in a batch
+ out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
+ out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
+
+ # Also concat the target labels and boxes
+ target_ids = torch.cat([v["class_labels"] for v in targets])
+ target_bbox = torch.cat([v["boxes"] for v in targets])
+
+ # Compute the classification cost. Contrary to the loss, we don't use the NLL,
+ # but approximate it in 1 - proba[target class].
+ # The 1 is a constant that doesn't change the matching, it can be ommitted.
+ class_cost = -out_prob[:, target_ids]
+
+ # Compute the L1 cost between boxes
+ bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
+
+ # Compute the giou cost between boxes
+ giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
+
+ # Final cost matrix
+ cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
+ cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
+
+ sizes = [len(v["boxes"]) for v in targets]
+ indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
+ return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
+
+
+# Copied from transformers.models.detr.modeling_detr._upcast
+def _upcast(t: Tensor) -> Tensor:
+ # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
+ if t.is_floating_point():
+ return t if t.dtype in (torch.float32, torch.float64) else t.float()
+ else:
+ return t if t.dtype in (torch.int32, torch.int64) else t.int()
+
+
+# Copied from transformers.models.detr.modeling_detr.box_area
+def box_area(boxes: Tensor) -> Tensor:
+ """
+ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
+
+ Args:
+ boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
+ Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
+ < x2` and `0 <= y1 < y2`.
+
+ Returns:
+ `torch.FloatTensor`: a tensor containing the area for each box.
+ """
+ boxes = _upcast(boxes)
+ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
+
+
+# Copied from transformers.models.detr.modeling_detr.box_iou
+def box_iou(boxes1, boxes2):
+ area1 = box_area(boxes1)
+ area2 = box_area(boxes2)
+
+ left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
+ right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
+
+ width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
+ inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
+
+ union = area1[:, None] + area2 - inter
+
+ iou = inter / union
+ return iou, union
+
+
+# Copied from transformers.models.detr.modeling_detr.generalized_box_iou
+def generalized_box_iou(boxes1, boxes2):
+ """
+ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format.
+
+ Returns:
+ `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)
+ """
+ # degenerate boxes gives inf / nan results
+ # so do an early check
+ if not (boxes1[:, 2:] >= boxes1[:, :2]).all():
+ raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}")
+ if not (boxes2[:, 2:] >= boxes2[:, :2]).all():
+ raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}")
+ iou, union = box_iou(boxes1, boxes2)
+
+ top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2])
+ bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
+
+ width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2]
+ area = width_height[:, :, 0] * width_height[:, :, 1]
+
+ return iou - (area - union) / area
+
+
+# Copied from transformers.models.detr.modeling_detr._max_by_axis
+def _max_by_axis(the_list):
+ # type: (List[List[int]]) -> List[int]
+ maxes = the_list[0]
+ for sublist in the_list[1:]:
+ for index, item in enumerate(sublist):
+ maxes[index] = max(maxes[index], item)
+ return maxes
+
+
+# Copied from transformers.models.detr.modeling_detr.NestedTensor
+class NestedTensor(object):
+ def __init__(self, tensors, mask: Optional[Tensor]):
+ self.tensors = tensors
+ self.mask = mask
+
+ def to(self, device):
+ cast_tensor = self.tensors.to(device)
+ mask = self.mask
+ if mask is not None:
+ cast_mask = mask.to(device)
+ else:
+ cast_mask = None
+ return NestedTensor(cast_tensor, cast_mask)
+
+ def decompose(self):
+ return self.tensors, self.mask
+
+ def __repr__(self):
+ return str(self.tensors)
+
+
+# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list
+def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
+ if tensor_list[0].ndim == 3:
+ max_size = _max_by_axis([list(img.shape) for img in tensor_list])
+ batch_shape = [len(tensor_list)] + max_size
+ batch_size, num_channels, height, width = batch_shape
+ dtype = tensor_list[0].dtype
+ device = tensor_list[0].device
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+ mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device)
+ for img, pad_img, m in zip(tensor_list, tensor, mask):
+ pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ m[: img.shape[1], : img.shape[2]] = False
+ else:
+ raise ValueError("Only 3-dimensional tensors are supported")
+ return NestedTensor(tensor, mask)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f82387b020ef683a7bd017b534515ccb6bc30153
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a6e82d1b053456f271ef25fd8f89b6a6a59c39b
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..798ee3100d7a2f7c023e7829777d4d555940dc58
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ccc1365820d6923f17d3e72cc80868590801f5e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/vitdet/__init__.py
@@ -0,0 +1,57 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_torch_available,
+)
+
+
+_import_structure = {"configuration_vitdet": ["VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP", "VitDetConfig"]}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_vitdet"] = [
+ "VITDET_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "VitDetModel",
+ "VitDetPreTrainedModel",
+ "VitDetBackbone",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_vitdet import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP, VitDetConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_vitdet import (
+ VITDET_PRETRAINED_MODEL_ARCHIVE_LIST,
+ VitDetBackbone,
+ VitDetModel,
+ VitDetPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..594f108bcaad969b69904b3b21d101be6a7484c3
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__init__.py
@@ -0,0 +1,70 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {
+ "configuration_wav2vec2_bert": [
+ "WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "Wav2Vec2BertConfig",
+ ],
+ "processing_wav2vec2_bert": ["Wav2Vec2BertProcessor"],
+}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_wav2vec2_bert"] = [
+ "WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "Wav2Vec2BertForAudioFrameClassification",
+ "Wav2Vec2BertForCTC",
+ "Wav2Vec2BertForSequenceClassification",
+ "Wav2Vec2BertForXVector",
+ "Wav2Vec2BertModel",
+ "Wav2Vec2BertPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_wav2vec2_bert import (
+ WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ Wav2Vec2BertConfig,
+ )
+ from .processing_wav2vec2_bert import Wav2Vec2BertProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_wav2vec2_bert import (
+ WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
+ Wav2Vec2BertForAudioFrameClassification,
+ Wav2Vec2BertForCTC,
+ Wav2Vec2BertForSequenceClassification,
+ Wav2Vec2BertForXVector,
+ Wav2Vec2BertModel,
+ Wav2Vec2BertPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..00067f83fb74ae3e9b3c69982ff549fa6c510608
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/__init__.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/configuration_wav2vec2_bert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/configuration_wav2vec2_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8a27d5ba403381291365c0a700a5e2bed9f86d5f
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/configuration_wav2vec2_bert.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/convert_wav2vec2_seamless_checkpoint.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/convert_wav2vec2_seamless_checkpoint.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..56723a36126797fc91dc22195998c14565285b16
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/convert_wav2vec2_seamless_checkpoint.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/modeling_wav2vec2_bert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/modeling_wav2vec2_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6100b33e44777597012c5f20b5a151efaad9e284
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/modeling_wav2vec2_bert.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/processing_wav2vec2_bert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/processing_wav2vec2_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ea122ca0e8e1cabcaaa2c257879b46e9fc37052a
Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/__pycache__/processing_wav2vec2_bert.cpython-310.pyc differ
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..621aede3e3f1c3c5fdf715be695387dd941e08a7
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py
@@ -0,0 +1,315 @@
+# coding=utf-8
+# Copyright 2024 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Wav2Vec2Bert model configuration"""
+
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "facebook/w2v-bert-2.0": "https://huggingface.co/facebook/w2v-bert-2.0/resolve/main/config.json",
+}
+
+
+class Wav2Vec2BertConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`Wav2Vec2BertModel`]. It is used to
+ instantiate an Wav2Vec2Bert model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Bert
+ [facebook/wav2vec2-bert-rel-pos-large](https://huggingface.co/facebook/wav2vec2-bert-rel-pos-large)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*):
+ Vocabulary size of the Wav2Vec2Bert model. Defines the number of different tokens that can be
+ represented by the `inputs_ids` passed when calling [`Wav2Vec2BertModel`]. Vocabulary size of the
+ model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
+ method of [`Wav2Vec2BertModel`].
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ feature_projection_input_dim (`int`, *optional*, defaults to 160):
+ Input dimension of this model, i.e the dimension after processing input audios with [`SeamlessM4TFeatureExtractor`] or [`Wav2Vec2BertProcessor`].
+ hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ feat_proj_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout probability for the feature projection.
+ final_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the final projection layer of [`Wav2Vec2BertForCTC`].
+ layerdrop (`float`, *optional*, defaults to 0.1):
+ The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
+ details.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ apply_spec_augment (`bool`, *optional*, defaults to `True`):
+ Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
+ [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
+ Recognition](https://arxiv.org/abs/1904.08779).
+ mask_time_prob (`float`, *optional*, defaults to 0.05):
+ Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
+ procecure generates `mask_time_prob*len(time_axis)/mask_time_length ``independent masks over the axis. If
+ reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
+ masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
+ actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
+ mask_time_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the time axis.
+ mask_time_min_masks (`int`, *optional*, defaults to 2):
+ The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
+ irrespectively of `mask_feature_prob`. Only relevant if `mask_time_prob*len(time_axis)/mask_time_length <
+ mask_time_min_masks`.
+ mask_feature_prob (`float`, *optional*, defaults to 0.0):
+ Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
+ masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
+ the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
+ span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
+ may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
+ True`.
+ mask_feature_length (`int`, *optional*, defaults to 10):
+ Length of vector span along the feature axis.
+ mask_feature_min_masks (`int`, *optional*, defaults to 0):
+ The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
+ step, irrespectively of `mask_feature_prob`. Only relevant if
+ `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
+ ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
+ Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
+ instance of [`Wav2Vec2BertForCTC`].
+ ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
+ Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
+ occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
+ of [`Wav2Vec2BertForCTC`].
+ use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
+ Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
+ instance of [`Wav2Vec2BertForSequenceClassification`].
+ classifier_proj_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the projection before token mean-pooling for classification.
+ tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
+ A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
+ module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
+ tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
+ *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
+ tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
+ A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
+ *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
+ xvector_output_dim (`int`, *optional*, defaults to 512):
+ Dimensionality of the *XVector* embedding vectors.
+ pad_token_id (`int`, *optional*, defaults to 0): The id of the _beginning-of-stream_ token.
+ bos_token_id (`int`, *optional*, defaults to 1): The id of the _padding_ token.
+ eos_token_id (`int`, *optional*, defaults to 2): The id of the _end-of-stream_ token.
+ add_adapter (`bool`, *optional*, defaults to `False`):
+ Whether a convolutional attention network should be stacked on top of the Wav2Vec2Bert Encoder. Can be very
+ useful for warm-starting Wav2Vec2Bert for SpeechEncoderDecoder models.
+ adapter_kernel_size (`int`, *optional*, defaults to 3):
+ Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ adapter_stride (`int`, *optional*, defaults to 2):
+ Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
+ num_adapter_layers (`int`, *optional*, defaults to 1):
+ Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
+ True`.
+ adapter_act (`str` or `function`, *optional*, defaults to `"relu"`):
+ The non-linear activation function (function or string) in the adapter layers. If string, `"gelu"`,
+ `"relu"`, `"selu"`, `"swish"` and `"gelu_new"` are supported.
+ use_intermediate_ffn_before_adapter (`bool`, *optional*, defaults to `False`):
+ Whether an intermediate feed-forward block should be stacked on top of the Wav2Vec2Bert Encoder and before the adapter network.
+ Only relevant if `add_adapter is True`.
+ output_hidden_size (`int`, *optional*):
+ Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
+ if `add_adapter is True`.
+ position_embeddings_type (`str`, *optional*, defaults to `"relative_key"`):
+ Can be specified to :
+ - `rotary`, for rotary position embeddings.
+ - `relative`, for relative position embeddings.
+ - `relative_key`, for relative position embeddings as defined by Shaw in [Self-Attention
+ with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ If left to `None`, no relative position embeddings is applied.
+ rotary_embedding_base (`int`, *optional*, defaults to 10000):
+ If `"rotary"` position embeddings are used, defines the size of the embedding base.
+ max_source_positions (`int`, *optional*, defaults to 5000):
+ if `"relative"` position embeddings are used, defines the maximum source input positions.
+ left_max_position_embeddings (`int`, *optional*, defaults to 64):
+ If `"relative_key"` (aka Shaw) position embeddings are used, defines the left clipping value for relative positions.
+ right_max_position_embeddings (`int`, *optional*, defaults to 8):
+ If `"relative_key"` (aka Shaw) position embeddings are used, defines the right clipping value for relative positions.
+ conv_depthwise_kernel_size (`int`, *optional*, defaults to 31):
+ Kernel size of convolutional depthwise 1D layer in Conformer blocks.
+ conformer_conv_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all convolutional layers in Conformer blocks.
+ Example:
+
+ ```python
+ >>> from transformers import Wav2Vec2BertConfig, Wav2Vec2BertModel
+
+ >>> # Initializing a Wav2Vec2Bert facebook/wav2vec2-bert-rel-pos-large style configuration
+ >>> configuration = Wav2Vec2BertConfig()
+
+ >>> # Initializing a model (with random weights) from the facebook/wav2vec2-bert-rel-pos-large style configuration
+ >>> model = Wav2Vec2BertModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "wav2vec2-bert"
+
+ def __init__(
+ self,
+ vocab_size=None,
+ hidden_size=1024,
+ num_hidden_layers=24,
+ num_attention_heads=16,
+ intermediate_size=4096,
+ feature_projection_input_dim=160,
+ hidden_act="swish",
+ hidden_dropout=0.0,
+ activation_dropout=0.0,
+ attention_dropout=0.0,
+ feat_proj_dropout=0.0,
+ final_dropout=0.1,
+ layerdrop=0.1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-5,
+ apply_spec_augment=True,
+ mask_time_prob=0.05,
+ mask_time_length=10,
+ mask_time_min_masks=2,
+ mask_feature_prob=0.0,
+ mask_feature_length=10,
+ mask_feature_min_masks=0,
+ ctc_loss_reduction="sum",
+ ctc_zero_infinity=False,
+ use_weighted_layer_sum=False,
+ classifier_proj_size=768,
+ tdnn_dim=(512, 512, 512, 512, 1500),
+ tdnn_kernel=(5, 3, 3, 1, 1),
+ tdnn_dilation=(1, 2, 3, 1, 1),
+ xvector_output_dim=512,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ add_adapter=False,
+ adapter_kernel_size=3,
+ adapter_stride=2,
+ num_adapter_layers=1,
+ adapter_act="relu",
+ use_intermediate_ffn_before_adapter=False,
+ output_hidden_size=None,
+ position_embeddings_type="relative_key",
+ rotary_embedding_base=10000,
+ max_source_positions=5000,
+ left_max_position_embeddings=64,
+ right_max_position_embeddings=8,
+ conv_depthwise_kernel_size=31,
+ conformer_conv_dropout=0.1,
+ **kwargs,
+ ):
+ super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.num_attention_heads = num_attention_heads
+ self.feature_projection_input_dim = feature_projection_input_dim
+ self.hidden_dropout = hidden_dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.feat_proj_dropout = feat_proj_dropout
+ self.final_dropout = final_dropout
+ self.layerdrop = layerdrop
+ self.layer_norm_eps = layer_norm_eps
+ self.initializer_range = initializer_range
+ self.vocab_size = vocab_size
+ self.use_weighted_layer_sum = use_weighted_layer_sum
+ self.max_source_positions = max_source_positions
+
+ if position_embeddings_type is not None and position_embeddings_type not in [
+ "rotary",
+ "relative",
+ "relative_key",
+ ]:
+ raise ValueError(
+ """
+ `position_embeddings_type` is not valid. It must be one of the following values:
+ `["rotary", "relative", "relative_key"]` or left as `None`.
+ """
+ )
+ self.position_embeddings_type = position_embeddings_type
+ self.rotary_embedding_base = rotary_embedding_base
+ self.left_max_position_embeddings = left_max_position_embeddings
+ self.right_max_position_embeddings = right_max_position_embeddings
+
+ # Conformer-block related
+ self.conv_depthwise_kernel_size = conv_depthwise_kernel_size
+ self.conformer_conv_dropout = conformer_conv_dropout
+
+ # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
+ self.apply_spec_augment = apply_spec_augment
+ self.mask_time_prob = mask_time_prob
+ self.mask_time_length = mask_time_length
+ self.mask_time_min_masks = mask_time_min_masks
+ self.mask_feature_prob = mask_feature_prob
+ self.mask_feature_length = mask_feature_length
+ self.mask_feature_min_masks = mask_feature_min_masks
+
+ # ctc loss
+ self.ctc_loss_reduction = ctc_loss_reduction
+ self.ctc_zero_infinity = ctc_zero_infinity
+
+ # adapter
+ self.add_adapter = add_adapter
+ self.adapter_kernel_size = adapter_kernel_size
+ self.adapter_stride = adapter_stride
+ self.num_adapter_layers = num_adapter_layers
+ self.adapter_act = adapter_act
+ self.output_hidden_size = output_hidden_size if output_hidden_size is not None else hidden_size
+ if use_intermediate_ffn_before_adapter and not add_adapter:
+ raise ValueError("`use_intermediate_ffn_before_adapter` is `True` but `add_adapter` is `False`.")
+ self.use_intermediate_ffn_before_adapter = use_intermediate_ffn_before_adapter
+
+ # SequenceClassification-specific parameter. Feel free to ignore for other classes.
+ self.classifier_proj_size = classifier_proj_size
+
+ # XVector-specific parameters. Feel free to ignore for other classes.
+ self.tdnn_dim = list(tdnn_dim)
+ self.tdnn_kernel = list(tdnn_kernel)
+ self.tdnn_dilation = list(tdnn_dilation)
+ self.xvector_output_dim = xvector_output_dim
+
+ @property
+ def inputs_to_logits_ratio(self):
+ ratio = self.feature_projection_input_dim * 2
+ if self.add_adapter:
+ ratio = ratio * (self.adapter_stride**self.num_adapter_layers)
+ return ratio
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b77cd71f7f7e0513ae1a74eb3947dca1353659e
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/convert_wav2vec2_seamless_checkpoint.py
@@ -0,0 +1,218 @@
+# coding=utf-8
+# Copyright 2024 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert Wav2Vec2Bert BERT checkpoint."""
+
+
+import argparse
+
+import torch
+import torchaudio
+from fairseq2.data import Collater
+from fairseq2.data.audio import WaveformToFbankConverter
+from fairseq2.nn.padding import get_seqs_and_padding_mask
+from seamless_communication.models.conformer_shaw import load_conformer_shaw_model
+
+from transformers import (
+ SeamlessM4TFeatureExtractor,
+ Wav2Vec2BertConfig,
+ Wav2Vec2BertModel,
+ logging,
+)
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+
+wav2vec_convert_list = [
+ ("encoder_frontend.model_dim_proj", "feature_projection.projection"),
+ ("encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"),
+ ("encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"),
+ ("encoder.inner.layers", "encoder.layers"),
+ ("encoder.inner_layer_norm", "encoder.layer_norm"),
+ ("encoder.adaptor_layers", "adapter.layers"),
+ ("inner_proj", "intermediate_dense"),
+ ("self_attn.output_proj", "self_attn.linear_out"),
+ ("output_proj", "output_dense"),
+ ("self_attn.k_proj", "self_attn.linear_k"),
+ ("self_attn.v_proj", "self_attn.linear_v"),
+ ("self_attn.q_proj", "self_attn.linear_q"),
+ ("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"),
+ ("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"),
+ ("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"),
+ ("self_attn.sdpa.r_proj", "self_attn.linear_pos"),
+ ("conv.pointwise_conv1", "conv_module.pointwise_conv1"),
+ ("conv.pointwise_conv2", "conv_module.pointwise_conv2"),
+ ("conv.depthwise_conv", "conv_module.depthwise_conv"),
+ ("conv.layer_norm", "conv_module.depthwise_layer_norm"),
+ ("conv_layer_norm", "conv_module.layer_norm"),
+ ("encoder.proj1", "intermediate_ffn.intermediate_dense"),
+ ("encoder.proj2", "intermediate_ffn.output_dense"),
+ ("encoder.layer_norm", "inner_layer_norm"),
+ ("masker.temporal_mask_embed", "masked_spec_embed"),
+]
+
+keys_to_remove = {
+ "quantizer.entry_proj",
+ "final_proj",
+ "final_target_proj",
+ "quantizer.entries",
+ "quantizer.num_updates",
+}
+
+
+def param_count(model):
+ return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0])
+
+
+def _convert_model(
+ original_model,
+ hf_model,
+ convert_list,
+):
+ state_dict = original_model.state_dict()
+
+ for k, v in list(state_dict.items()):
+ new_key = k
+ for old_layer_name, new_layer_name in convert_list:
+ if old_layer_name in new_key:
+ new_key = new_key.replace(old_layer_name, new_layer_name)
+
+ # must do it by hand
+ if ".layer_norm" in new_key and new_key.split(".layer_norm")[0][-1].isnumeric():
+ new_key = new_key.replace("layer_norm", "final_layer_norm")
+
+ add_key = True
+ for key in keys_to_remove:
+ if key in new_key:
+ state_dict.pop(k)
+ add_key = False
+ break
+
+ if add_key:
+ state_dict[new_key] = state_dict.pop(k)
+
+ extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys())
+ extra_keys = set({k for k in extra_keys if "num_updates" not in k}) # filter unecessary param
+ missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys())
+ if len(extra_keys) != 0:
+ raise ValueError(f"extra keys found: {extra_keys}")
+ if len(missing_keys) != 0:
+ raise ValueError(f"missing keys: {missing_keys}")
+ hf_model.load_state_dict(state_dict, strict=True)
+ n_params = param_count(hf_model)
+
+ logger.info(f"model loaded: {round(n_params/1e6,1)}M params")
+
+ hf_model.eval()
+ del state_dict
+
+ return hf_model
+
+
+@torch.no_grad()
+def convert_wav2vec2_bert_checkpoint(
+ checkpoint_path,
+ pytorch_dump_folder_path,
+ config_path=None,
+ repo_id=None,
+):
+ """
+ Copy/paste/tweak model's weights to transformers design.
+ """
+ if config_path is not None:
+ config = Wav2Vec2BertConfig.from_pretrained(config_path, hidden_act="swish")
+ else:
+ config = Wav2Vec2BertConfig(apply_spec_augment=False)
+
+ hf_wav2vec = Wav2Vec2BertModel(config)
+
+ model = load_conformer_shaw_model(checkpoint_path, dtype=torch.float32)
+ model.eval()
+
+ hf_wav2vec = _convert_model(model, hf_wav2vec, wav2vec_convert_list)
+
+ hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
+
+ if repo_id:
+ hf_wav2vec.push_to_hub(repo_id, create_pr=True)
+
+ # save feature extractor
+ fe = SeamlessM4TFeatureExtractor(padding_value=1)
+ fe._set_processor_class("Wav2Vec2BertProcessor")
+ fe.save_pretrained(pytorch_dump_folder_path)
+
+ if repo_id:
+ fe.push_to_hub(repo_id, create_pr=True)
+
+ if args.audio_path:
+ waveform, sample_rate = torchaudio.load(args.audio_path)
+ waveform = torchaudio.functional.resample(waveform, sample_rate, fe.sampling_rate)
+
+ fbank_converter = WaveformToFbankConverter(
+ num_mel_bins=80,
+ waveform_scale=2**15,
+ channel_last=True,
+ standardize=True,
+ dtype=torch.float32,
+ )
+ collater = Collater(pad_value=1)
+
+ decoded_audio = {"waveform": waveform.T, "sample_rate": fe.sampling_rate, "format": -1}
+ src = collater(fbank_converter(decoded_audio))["fbank"]
+ seqs, padding_mask = get_seqs_and_padding_mask(src)
+
+ with torch.inference_mode():
+ seqs, padding_mask = model.encoder_frontend(seqs, padding_mask)
+ original_output, padding_mask = model.encoder(seqs, padding_mask)
+
+ hf_wav2vec.eval()
+
+ inputs = fe(waveform, return_tensors="pt", padding=True)
+ with torch.no_grad():
+ outputs = hf_wav2vec(**inputs)
+
+ torch.testing.assert_close(original_output, outputs.last_hidden_state, atol=5e-3, rtol=5e-3)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--pytorch_dump_folder_path",
+ default=None,
+ type=str,
+ help="Path to the output PyTorch model.",
+ )
+ parser.add_argument(
+ "--checkpoint_path", default="conformer_shaw", type=str, help="Path to seamless communication checkpoint"
+ )
+ parser.add_argument(
+ "--config_path",
+ default=None,
+ type=str,
+ help="Path to hf config.json of model to convert",
+ )
+ parser.add_argument("--repo_id", default=None, type=str, help="Push to this repo id if precised.")
+ parser.add_argument(
+ "--audio_path",
+ default=None,
+ type=str,
+ help="If specified, check that the original model and the converted model produce the same outputs.",
+ )
+
+ args = parser.parse_args()
+ convert_wav2vec2_bert_checkpoint(
+ args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.repo_id
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..858f270a87f138a723dcbf2ec96ccfec9ee9a1b5
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py
@@ -0,0 +1,1674 @@
+# coding=utf-8
+# Copyright 2024 The Seamless Authors and the HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Wav2Vec2-BERT model."""
+
+import math
+import warnings
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...integrations.deepspeed import is_deepspeed_zero3_enabled
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ CausalLMOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+ Wav2Vec2BaseModelOutput,
+ XVectorOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_peft_available,
+ logging,
+)
+from .configuration_wav2vec2_bert import Wav2Vec2BertConfig
+
+
+logger = logging.get_logger(__name__)
+
+
+_HIDDEN_STATES_START_POSITION = 2
+
+# General docstring
+_CONFIG_FOR_DOC = "Wav2Vec2BertConfig"
+
+# Base docstring
+_BASE_CHECKPOINT_FOR_DOC = "facebook/w2v-bert-2.0"
+_PRETRAINED_CHECKPOINT_FOR_DOC = "hf-audio/wav2vec2-bert-CV16-en"
+_EXPECTED_OUTPUT_SHAPE = [1, 146, 1024]
+
+# CTC docstring
+_CTC_EXPECTED_OUTPUT = "'mr quilter is the apostle of the middle classes and we are glad to welcome his gospel'"
+_CTC_EXPECTED_LOSS = 17.04
+
+
+WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "facebook/w2v-bert-2.0",
+ # See all Wav2Vec2-BERT models at https://huggingface.co/models?filter=wav2vec2-bert
+]
+
+
+# Copied from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2._compute_new_attention_mask
+def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
+ """
+ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
+ stops at the corresponding element in `seq_lens`.
+ Args:
+ hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
+ The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
+ seq_lens (`torch.Tensor` of shape `(batch)`:
+ Each element represents the length of the sequence at the same index in `hidden_states`
+ Returns:
+ `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
+ """
+ batch_size, mask_seq_len = hidden_states.shape[:2]
+
+ indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
+
+ bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
+
+ mask = hidden_states.new_ones((batch_size, mask_seq_len))
+
+ mask = mask.masked_fill(bool_mask, 0)
+
+ return mask
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
+def _compute_mask_indices(
+ shape: Tuple[int, int],
+ mask_prob: float,
+ mask_length: int,
+ attention_mask: Optional[torch.LongTensor] = None,
+ min_masks: int = 0,
+) -> np.ndarray:
+ """
+ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
+ ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
+ CPU as part of the preprocessing during training.
+
+ Args:
+ shape: The shape for which to compute masks. This should be of a tuple of size 2 where
+ the first element is the batch size and the second element is the length of the axis to span.
+ mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
+ independently generated mask spans of length `mask_length` is computed by
+ `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
+ actual percentage will be smaller.
+ mask_length: size of the mask
+ min_masks: minimum number of masked spans
+ attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
+ each batch dimension.
+ """
+ batch_size, sequence_length = shape
+
+ if mask_length < 1:
+ raise ValueError("`mask_length` has to be bigger than 0.")
+
+ if mask_length > sequence_length:
+ raise ValueError(
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
+ f" and `sequence_length`: {sequence_length}`"
+ )
+
+ # epsilon is used for probabilistic rounding
+ epsilon = np.random.rand(1).item()
+
+ def compute_num_masked_span(input_length):
+ """Given input length, compute how many spans should be masked"""
+ num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
+ num_masked_span = max(num_masked_span, min_masks)
+
+ # make sure num masked span <= sequence_length
+ if num_masked_span * mask_length > sequence_length:
+ num_masked_span = sequence_length // mask_length
+
+ # make sure num_masked span is also <= input_length - (mask_length - 1)
+ if input_length - (mask_length - 1) < num_masked_span:
+ num_masked_span = max(input_length - (mask_length - 1), 0)
+
+ return num_masked_span
+
+ # compute number of masked spans in batch
+ input_lengths = (
+ attention_mask.sum(-1).detach().tolist()
+ if attention_mask is not None
+ else [sequence_length for _ in range(batch_size)]
+ )
+
+ # SpecAugment mask to fill
+ spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
+ spec_aug_mask_idxs = []
+
+ max_num_masked_span = compute_num_masked_span(sequence_length)
+
+ if max_num_masked_span == 0:
+ return spec_aug_mask
+
+ for input_length in input_lengths:
+ # compute num of masked spans for this input
+ num_masked_span = compute_num_masked_span(input_length)
+
+ # get random indices to mask
+ spec_aug_mask_idx = np.random.choice(
+ np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
+ )
+
+ # pick first sampled index that will serve as a dummy index to pad vector
+ # to ensure same dimension for all batches due to probabilistic rounding
+ # Picking first sample just pads those vectors twice.
+ if len(spec_aug_mask_idx) == 0:
+ # this case can only happen if `input_length` is strictly smaller then
+ # `sequence_length` in which case the last token has to be a padding
+ # token which we can use as a dummy mask id
+ dummy_mask_idx = sequence_length - 1
+ else:
+ dummy_mask_idx = spec_aug_mask_idx[0]
+
+ spec_aug_mask_idx = np.concatenate(
+ [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
+ )
+ spec_aug_mask_idxs.append(spec_aug_mask_idx)
+
+ spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
+
+ # expand masked indices to masked spans
+ spec_aug_mask_idxs = np.broadcast_to(
+ spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
+
+ # add offset to the starting indexes so that indexes now create a span
+ offsets = np.arange(mask_length)[None, None, :]
+ offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
+ batch_size, max_num_masked_span * mask_length
+ )
+ spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
+
+ # ensure that we cannot have indices larger than sequence_length
+ if spec_aug_mask_idxs.max() > sequence_length - 1:
+ spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
+
+ # scatter indices to mask
+ np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
+
+ return spec_aug_mask
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices
+def _sample_negative_indices(
+ features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
+):
+ """
+ Sample `num_negatives` vectors from feature vectors.
+ """
+ batch_size, sequence_length = features_shape
+
+ # generate indices of the positive vectors themselves, repeat them `num_negatives` times
+ sequence_length_range = np.arange(sequence_length)
+
+ # get `num_negatives` random vector indices from the same utterance
+ sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
+
+ mask_time_indices = (
+ mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
+ )
+
+ for batch_idx in range(batch_size):
+ high = mask_time_indices[batch_idx].sum() - 1
+ mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
+
+ feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
+ sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
+ # avoid sampling the same positive vector, but keep the distribution uniform
+ sampled_indices[sampled_indices >= feature_indices] += 1
+
+ # remap to actual indices
+ sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
+
+ # correct for batch size
+ sampled_negative_indices[batch_idx] += batch_idx * sequence_length
+
+ return sampled_negative_indices
+
+
+# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
+class Wav2Vec2BertRotaryPositionalEmbedding(nn.Module):
+ """Rotary positional embedding
+ Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ dim = config.hidden_size // config.num_attention_heads
+ base = config.rotary_embedding_base
+
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
+ # Ignore copy
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
+ self.cached_sequence_length = None
+ self.cached_rotary_positional_embedding = None
+
+ def forward(self, hidden_states):
+ sequence_length = hidden_states.shape[1]
+
+ if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
+ return self.cached_rotary_positional_embedding
+
+ self.cached_sequence_length = sequence_length
+ # Embeddings are computed in the dtype of the inv_freq constant
+ time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
+ freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
+ embeddings = torch.cat((freqs, freqs), dim=-1)
+
+ cos_embeddings = embeddings.cos()[:, None, None, :]
+ sin_embeddings = embeddings.sin()[:, None, None, :]
+ # Computed embeddings are cast to the dtype of the hidden state inputs
+ self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
+ return self.cached_rotary_positional_embedding
+
+
+# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
+class Wav2Vec2BertRelPositionalEmbedding(nn.Module):
+ """Relative positional encoding module."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.max_len = config.max_source_positions
+ self.d_model = config.hidden_size
+ self.pe = None
+ self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
+
+ def extend_pe(self, x):
+ # Reset the positional encodings
+ if self.pe is not None:
+ # self.pe contains both positive and negative parts
+ # the length of self.pe is 2 * input_len - 1
+ if self.pe.size(1) >= x.size(1) * 2 - 1:
+ if self.pe.dtype != x.dtype or self.pe.device != x.device:
+ self.pe = self.pe.to(dtype=x.dtype, device=x.device)
+ return
+ # Suppose `i` is the position of query vector and `j` is the
+ # position of key vector. We use positive relative positions when keys
+ # are to the left (i>j) and negative relative positions otherwise (i (batch, 2*channel, dim)
+ hidden_states = self.pointwise_conv1(hidden_states)
+ # => (batch, channel, dim)
+ hidden_states = self.glu(hidden_states)
+
+ # Pad the sequence entirely on the left because of causal convolution.
+ hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0))
+
+ # 1D Depthwise Conv
+ hidden_states = self.depthwise_conv(hidden_states)
+
+ hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
+
+ hidden_states = self.activation(hidden_states)
+
+ hidden_states = self.pointwise_conv2(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = hidden_states.transpose(1, 2)
+ return hidden_states
+
+
+class Wav2Vec2BertSelfAttention(nn.Module):
+ """Construct an Wav2Vec2BertSelfAttention object.
+ Can be enhanced with rotary or relative position embeddings.
+ """
+
+ def __init__(self, config, is_adapter_attention=False):
+ super().__init__()
+ hidden_size = config.hidden_size if not is_adapter_attention else config.output_hidden_size
+
+ self.head_size = hidden_size // config.num_attention_heads
+ self.num_heads = config.num_attention_heads
+ self.position_embeddings_type = config.position_embeddings_type if not is_adapter_attention else None
+
+ self.linear_q = nn.Linear(hidden_size, hidden_size)
+ self.linear_k = nn.Linear(hidden_size, hidden_size)
+ self.linear_v = nn.Linear(hidden_size, hidden_size)
+ self.linear_out = nn.Linear(hidden_size, hidden_size)
+
+ self.dropout = nn.Dropout(p=config.attention_dropout)
+
+ if self.position_embeddings_type == "relative":
+ # linear transformation for positional encoding
+ self.linear_pos = nn.Linear(hidden_size, hidden_size, bias=False)
+ # these two learnable bias are used in matrix c and matrix d
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+ self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
+
+ if self.position_embeddings_type == "relative_key":
+ self.left_max_position_embeddings = config.left_max_position_embeddings
+ self.right_max_position_embeddings = config.right_max_position_embeddings
+ num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1
+ self.distance_embedding = nn.Embedding(num_positions, self.head_size)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ # self-attention mechanism
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ # make sure query/key states can be != value states
+ query_key_states = hidden_states
+ value_states = hidden_states
+
+ if self.position_embeddings_type == "rotary":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
+ )
+ query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
+
+ # project query_key_states and value_states
+ query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
+ value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
+
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ key = key.transpose(1, 2)
+ value = value.transpose(1, 2)
+
+ if self.position_embeddings_type == "relative":
+ if relative_position_embeddings is None:
+ raise ValueError(
+ "`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
+ " 'relative'"
+ )
+ # apply relative_position_embeddings to qk scores
+ # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
+ scores = self._apply_relative_embeddings(
+ query=query, key=key, relative_position_embeddings=relative_position_embeddings
+ )
+ else:
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
+
+ if self.position_embeddings_type == "relative_key":
+ query_length, key_length = query.shape[2], key.shape[2]
+
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_r - position_ids_l
+ distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings)
+
+ positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings)
+ positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility
+
+ relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding)
+ scores = scores + (relative_position_attn_weights / math.sqrt(self.head_size))
+
+ # apply attention_mask if necessary
+ if attention_mask is not None:
+ scores = scores + attention_mask
+
+ # => (batch, head, time1, time2)
+ probs = torch.softmax(scores, dim=-1)
+ probs = self.dropout(probs)
+
+ # => (batch, head, time1, d_k)
+ hidden_states = torch.matmul(probs, value)
+
+ # => (batch, time1, hidden_size)
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
+ hidden_states = self.linear_out(hidden_states)
+
+ return hidden_states, probs
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
+ def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
+
+ cos = relative_position_embeddings[0, :sequence_length, ...]
+ sin = relative_position_embeddings[1, :sequence_length, ...]
+
+ # rotate hidden_states with rotary embeddings
+ hidden_states = hidden_states.transpose(0, 1)
+ rotated_states_begin = hidden_states[..., : self.head_size // 2]
+ rotated_states_end = hidden_states[..., self.head_size // 2 :]
+ rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
+ hidden_states = (hidden_states * cos) + (rotated_states * sin)
+ hidden_states = hidden_states.transpose(0, 1)
+
+ hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
+
+ return hidden_states
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
+ def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
+ # 1. project positional embeddings
+ # => (batch, head, 2*time1-1, d_k)
+ proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.view(
+ relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
+ )
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
+ proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
+
+ # 2. Add bias to query
+ # => (batch, head, time1, d_k)
+ query = query.transpose(1, 2)
+ q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
+ q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
+
+ # 3. attention score: first compute matrix a and matrix c
+ # as described in https://arxiv.org/abs/1901.02860 Section 3.3
+ # => (batch, head, time1, time2)
+ scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
+
+ # 4. then compute matrix b and matrix d
+ # => (batch, head, time1, 2*time1-1)
+ scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
+
+ # 5. shift matrix b and matrix d
+ zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
+ scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
+ scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
+ scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
+ scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
+ scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
+
+ # 6. sum matrices
+ # => (batch, head, time1, time2)
+ scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
+
+ return scores
+
+
+class Wav2Vec2BertEncoderLayer(nn.Module):
+ """Conformer block based on https://arxiv.org/abs/2005.08100."""
+
+ def __init__(self, config):
+ super().__init__()
+ embed_dim = config.hidden_size
+ dropout = config.attention_dropout
+
+ # Feed-forward 1
+ self.ffn1_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.ffn1 = Wav2Vec2BertFeedForward(config)
+
+ # Self-Attention
+ self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.self_attn_dropout = nn.Dropout(dropout)
+ self.self_attn = Wav2Vec2BertSelfAttention(config)
+
+ # Conformer Convolution
+ self.conv_module = Wav2Vec2BertConvolutionModule(config)
+
+ # Feed-forward 2
+ self.ffn2_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.ffn2 = Wav2Vec2BertFeedForward(config)
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask: Optional[torch.Tensor] = None,
+ relative_position_embeddings: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ conv_attention_mask: Optional[torch.Tensor] = None,
+ ):
+ hidden_states = hidden_states
+
+ # 1. Feed-Forward 1 layer
+ residual = hidden_states
+ hidden_states = self.ffn1_layer_norm(hidden_states)
+ hidden_states = self.ffn1(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ residual = hidden_states
+
+ # 2. Self-Attention layer
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ hidden_states, attn_weigts = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.self_attn_dropout(hidden_states)
+ hidden_states = hidden_states + residual
+
+ # 3. Convolutional Layer
+ residual = hidden_states
+ hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
+ hidden_states = residual + hidden_states
+
+ # 4. Feed-Forward 2 Layer
+ residual = hidden_states
+ hidden_states = self.ffn2_layer_norm(hidden_states)
+ hidden_states = self.ffn2(hidden_states)
+ hidden_states = hidden_states * 0.5 + residual
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return hidden_states, attn_weigts
+
+
+class Wav2Vec2BertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ if config.position_embeddings_type == "relative":
+ self.embed_positions = Wav2Vec2BertRelPositionalEmbedding(config)
+ elif config.position_embeddings_type == "rotary":
+ self.embed_positions = Wav2Vec2BertRotaryPositionalEmbedding(config)
+ else:
+ self.embed_positions = None
+
+ self.dropout = nn.Dropout(config.hidden_dropout)
+ self.layers = nn.ModuleList([Wav2Vec2BertEncoderLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ conv_attention_mask = attention_mask
+ if attention_mask is not None:
+ # make sure padded tokens output 0
+ hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
+
+ # extend attention_mask
+ attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
+ attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
+ attention_mask = attention_mask.expand(
+ attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
+ )
+
+ hidden_states = self.dropout(hidden_states)
+
+ if self.embed_positions is not None:
+ relative_position_embeddings = self.embed_positions(hidden_states)
+ else:
+ relative_position_embeddings = None
+
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
+
+ for i, layer in enumerate(self.layers):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = torch.rand([])
+
+ skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
+ # under deepspeed zero3 all gpus must run in sync
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer.__call__,
+ hidden_states,
+ attention_mask,
+ relative_position_embeddings,
+ output_attentions,
+ conv_attention_mask,
+ )
+ else:
+ layer_outputs = layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ relative_position_embeddings=relative_position_embeddings,
+ output_attentions=output_attentions,
+ conv_attention_mask=conv_attention_mask,
+ )
+ hidden_states = layer_outputs[0]
+
+ if skip_the_layer:
+ layer_outputs = (None, None)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class Wav2Vec2BertAdapter(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # feature dim might need to be down-projected
+ if config.output_hidden_size != config.hidden_size:
+ self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
+ self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size, eps=config.layer_norm_eps)
+ else:
+ self.proj = self.proj_layer_norm = None
+ self.layers = nn.ModuleList(Wav2Vec2BertAdapterLayer(config) for _ in range(config.num_adapter_layers))
+ self.layerdrop = config.layerdrop
+
+ self.kernel_size = config.adapter_kernel_size
+ self.stride = config.adapter_stride
+
+ def _compute_sub_sample_lengths_from_attention_mask(self, seq_lens):
+ if seq_lens is None:
+ return seq_lens
+ pad = self.kernel_size // 2
+ seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
+ return seq_lens.floor()
+
+ def forward(self, hidden_states, attention_mask=None):
+ # down project hidden_states if necessary
+ if self.proj is not None and self.proj_layer_norm is not None:
+ hidden_states = self.proj(hidden_states)
+ hidden_states = self.proj_layer_norm(hidden_states)
+
+ sub_sampled_lengths = None
+ if attention_mask is not None:
+ sub_sampled_lengths = (attention_mask.size(1) - (1 - attention_mask.int()).sum(1)).to(hidden_states.device)
+
+ for layer in self.layers:
+ layerdrop_prob = torch.rand([])
+ sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(sub_sampled_lengths)
+ if not self.training or (layerdrop_prob > self.layerdrop):
+ hidden_states = layer(
+ hidden_states, attention_mask=attention_mask, sub_sampled_lengths=sub_sampled_lengths
+ )
+
+ return hidden_states
+
+
+class Wav2Vec2BertAdapterLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ embed_dim = config.output_hidden_size
+ dropout = config.conformer_conv_dropout
+
+ self.kernel_size = config.adapter_kernel_size
+ self.stride = config.adapter_stride
+
+ # 1. residual convolution
+ self.residual_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.residual_conv = nn.Conv1d(
+ embed_dim,
+ 2 * embed_dim,
+ self.kernel_size,
+ stride=self.stride,
+ padding=self.stride // 2,
+ )
+ self.activation = nn.GLU(dim=1)
+
+ # Self-Attention
+ self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.self_attn_conv = nn.Conv1d(
+ embed_dim,
+ 2 * embed_dim,
+ self.kernel_size,
+ stride=self.stride,
+ padding=self.stride // 2,
+ )
+ self.self_attn = Wav2Vec2BertSelfAttention(config, is_adapter_attention=True)
+ self.self_attn_dropout = nn.Dropout(dropout)
+
+ # Feed-forward
+ self.ffn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.ffn = Wav2Vec2BertFeedForward(config, act_fn=config.adapter_act, hidden_size=embed_dim)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ sub_sampled_lengths: Optional[torch.Tensor] = None,
+ ):
+ residual = self.residual_layer_norm(hidden_states)
+
+ # Apply pooling to the residual to match the sequence length of the
+ # multi-head attention output.
+ # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
+ residual = residual.transpose(1, 2)
+ residual = self.residual_conv(residual)
+ residual = self.activation(residual)
+ # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
+ residual = residual.transpose(1, 2)
+
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+ # Apply pooling before feeding to the multihead-attention layer.
+ # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
+ hidden_states = hidden_states.transpose(1, 2)
+ hidden_states = self.self_attn_conv(hidden_states)
+ hidden_states = self.activation(hidden_states)
+ # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
+ hidden_states = hidden_states.transpose(1, 2)
+
+ if attention_mask is not None:
+ attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
+ attention_mask = _prepare_4d_attention_mask(
+ attention_mask,
+ hidden_states.dtype,
+ )
+
+ # The rest of the computation is identical to a vanilla Transformer
+ # encoder layer.
+ hidden_states, attn_weigths = self.self_attn(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = self.self_attn_dropout(hidden_states)
+ hidden_states = hidden_states + residual
+
+ residual = hidden_states
+
+ hidden_states = self.ffn_layer_norm(hidden_states)
+ hidden_states = self.ffn(hidden_states) + residual
+
+ return hidden_states
+
+
+# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel with Wav2Vec2Conformer->Wav2Vec2Bert,wav2vec2_conformer->wav2vec2_bert, input_values->input_features
+class Wav2Vec2BertPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = Wav2Vec2BertConfig
+ base_model_prefix = "wav2vec2_bert"
+ main_input_name = "input_features"
+ supports_gradient_checkpointing = True
+
+ # Ignore copy
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, Wav2Vec2BertSelfAttention):
+ if hasattr(module, "pos_bias_u"):
+ nn.init.xavier_uniform_(module.pos_bias_u)
+ if hasattr(module, "pos_bias_v"):
+ nn.init.xavier_uniform_(module.pos_bias_v)
+ elif isinstance(module, Wav2Vec2BertFeatureProjection):
+ k = math.sqrt(1 / module.projection.in_features)
+ nn.init.uniform_(module.projection.weight, a=-k, b=k)
+ nn.init.uniform_(module.projection.bias, a=-k, b=k)
+ elif isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ elif isinstance(module, nn.Conv1d):
+ nn.init.kaiming_normal_(module.weight)
+
+ if module.bias is not None:
+ k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
+ nn.init.uniform_(module.bias, a=-k, b=k)
+
+ # Ignore copy
+ def _get_feat_extract_output_lengths(
+ self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
+ ):
+ """
+ Computes the output length of the convolutional layers
+ """
+
+ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
+
+ def _conv_out_length(input_length, kernel_size, stride, padding):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return torch.div(input_length + 2 * padding - kernel_size, stride, rounding_mode="floor") + 1
+
+ if add_adapter:
+ padding = self.config.adapter_kernel_size // 2
+ for _ in range(self.config.num_adapter_layers):
+ input_lengths = _conv_out_length(
+ input_lengths, self.config.adapter_kernel_size, self.config.adapter_stride, padding
+ )
+
+ return input_lengths
+
+ def _get_feature_vector_attention_mask(
+ self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
+ ):
+ # Effectively attention_mask.sum(-1), but not inplace to be able to run
+ # on inference mode.
+ non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
+
+ output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
+ output_lengths = output_lengths.to(torch.long)
+
+ batch_size = attention_mask.shape[0]
+
+ attention_mask = torch.zeros(
+ (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
+ )
+ # these two operations makes sure that all values before the output lengths idxs are attended to
+ attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
+ attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
+ return attention_mask
+
+
+WAV2VEC2_BERT_START_DOCSTRING = r"""
+ Wav2Vec2Bert was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
+ Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
+ Auli.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving etc.).
+
+ This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a
+ regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
+
+ Parameters:
+ config ([`Wav2Vec2BertConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+
+WAV2VEC2_BERT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
+ Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
+ into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
+ soundfile`). To prepare the array into `input_features`, the [`AutoProcessor`] should be used for padding and
+ conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2BertProcessor.__call__`] for details.
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
+ 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Wav2Vec2Bert Model transformer outputting raw hidden-states without any specific head on top.",
+ WAV2VEC2_BERT_START_DOCSTRING,
+)
+class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel):
+ def __init__(self, config: Wav2Vec2BertConfig):
+ super().__init__(config)
+ self.config = config
+ self.feature_projection = Wav2Vec2BertFeatureProjection(config)
+
+ # model only needs masking vector if mask prob is > 0.0
+ if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
+
+ self.encoder = Wav2Vec2BertEncoder(config)
+
+ self.adapter = Wav2Vec2BertAdapter(config) if config.add_adapter else None
+
+ self.intermediate_ffn = None
+ if config.use_intermediate_ffn_before_adapter:
+ self.intermediate_ffn = Wav2Vec2BertFeedForward(config, act_fn="relu")
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
+ def _mask_hidden_states(
+ self,
+ hidden_states: torch.FloatTensor,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.LongTensor] = None,
+ ):
+ """
+ Masks extracted features along time axis and/or along feature axis according to
+ [SpecAugment](https://arxiv.org/abs/1904.08779).
+ """
+
+ # `config.apply_spec_augment` can set masking to False
+ if not getattr(self.config, "apply_spec_augment", True):
+ return hidden_states
+
+ # generate indices & apply SpecAugment along time axis
+ batch_size, sequence_length, hidden_size = hidden_states.size()
+
+ if mask_time_indices is not None:
+ # apply SpecAugment along time axis with given mask_time_indices
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+ elif self.config.mask_time_prob > 0 and self.training:
+ mask_time_indices = _compute_mask_indices(
+ (batch_size, sequence_length),
+ mask_prob=self.config.mask_time_prob,
+ mask_length=self.config.mask_time_length,
+ attention_mask=attention_mask,
+ min_masks=self.config.mask_time_min_masks,
+ )
+ mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
+ hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
+
+ if self.config.mask_feature_prob > 0 and self.training:
+ # generate indices & apply SpecAugment along feature axis
+ mask_feature_indices = _compute_mask_indices(
+ (batch_size, hidden_size),
+ mask_prob=self.config.mask_feature_prob,
+ mask_length=self.config.mask_feature_length,
+ min_masks=self.config.mask_feature_min_masks,
+ )
+ mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
+ mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
+ hidden_states[mask_feature_indices] = 0
+
+ return hidden_states
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
+ output_type=Wav2Vec2BaseModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
+ )
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ mask_time_indices: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ hidden_states, extract_features = self.feature_projection(input_features)
+ hidden_states = self._mask_hidden_states(
+ hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if self.intermediate_ffn:
+ expanded_hidden_states = self.intermediate_ffn(hidden_states)
+ hidden_states = hidden_states + 0.5 * expanded_hidden_states
+
+ if self.adapter is not None:
+ hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
+
+ if not return_dict:
+ return (hidden_states, extract_features) + encoder_outputs[1:]
+
+ return Wav2Vec2BaseModelOutput(
+ last_hidden_state=hidden_states,
+ extract_features=extract_features,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """Wav2Vec2Bert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
+ WAV2VEC2_BERT_START_DOCSTRING,
+)
+class Wav2Vec2BertForCTC(Wav2Vec2BertPreTrainedModel):
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
+ def __init__(self, config, target_lang: Optional[str] = None):
+ super().__init__(config)
+
+ self.wav2vec2_bert = Wav2Vec2BertModel(config)
+ self.dropout = nn.Dropout(config.final_dropout)
+
+ self.target_lang = target_lang
+
+ if config.vocab_size is None:
+ raise ValueError(
+ f"You are trying to instantiate {self.__class__} with a configuration that "
+ "does not define the vocabulary size of the language model head. Please "
+ "instantiate the model as follows: `Wav2Vec2BertForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
+ "or define `vocab_size` of your model's configuration."
+ )
+ output_hidden_size = (
+ config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
+ )
+ self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ expected_output=_CTC_EXPECTED_OUTPUT,
+ expected_loss=_CTC_EXPECTED_LOSS,
+ )
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
+ Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
+ the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
+ All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
+ config.vocab_size - 1]`.
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.wav2vec2_bert(
+ input_features,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states)
+
+ logits = self.lm_head(hidden_states)
+
+ loss = None
+ if labels is not None:
+ if labels.max() >= self.config.vocab_size:
+ raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
+
+ # retrieve loss input_lengths from attention_mask
+ attention_mask = (
+ attention_mask
+ if attention_mask is not None
+ else torch.ones(input_features.shape[:2], device=input_features.device, dtype=torch.long)
+ )
+ input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum([-1])).to(torch.long)
+
+ # assuming that padded tokens are filled with -100
+ # when not being attended to
+ labels_mask = labels >= 0
+ target_lengths = labels_mask.sum(-1)
+ flattened_targets = labels.masked_select(labels_mask)
+
+ # ctc_loss doesn't support fp16
+ log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
+
+ with torch.backends.cudnn.flags(enabled=False):
+ loss = nn.functional.ctc_loss(
+ log_probs,
+ flattened_targets,
+ input_lengths,
+ target_lengths,
+ blank=self.config.pad_token_id,
+ reduction=self.config.ctc_loss_reduction,
+ zero_infinity=self.config.ctc_zero_infinity,
+ )
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutput(
+ loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
+ )
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Bert Model with a sequence classification head on top (a linear layer over the pooled output) for
+ tasks like SUPERB Keyword Spotting.
+ """,
+ WAV2VEC2_BERT_START_DOCSTRING,
+)
+class Wav2Vec2BertForSequenceClassification(Wav2Vec2BertPreTrainedModel):
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Sequence classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
+ )
+ self.wav2vec2_bert = Wav2Vec2BertModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
+ self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_bert.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_BASE_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert,WAV_2_VEC_2->WAV2VEC2_BERT, input_values->input_features
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_bert(
+ input_features,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+ if attention_mask is None:
+ pooled_output = hidden_states.mean(dim=1)
+ else:
+ padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
+ hidden_states[~padding_mask] = 0.0
+ pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
+
+ logits = self.classifier(pooled_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Bert Model with a frame classification head on top for tasks like Speaker Diarization.
+ """,
+ WAV2VEC2_BERT_START_DOCSTRING,
+)
+class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel):
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
+ def __init__(self, config):
+ super().__init__(config)
+
+ if hasattr(config, "add_adapter") and config.add_adapter:
+ raise ValueError(
+ "Audio frame classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
+ )
+ self.wav2vec2_bert = Wav2Vec2BertModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+ self.num_labels = config.num_labels
+
+ self.init_weights()
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_bert.parameters():
+ param.requires_grad = False
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_BASE_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_bert(
+ input_features,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ logits = self.classifier(hidden_states)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
+
+ if not return_dict:
+ output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
+class AMSoftmaxLoss(nn.Module):
+ def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
+ super(AMSoftmaxLoss, self).__init__()
+ self.scale = scale
+ self.margin = margin
+ self.num_labels = num_labels
+ self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
+ self.loss = nn.CrossEntropyLoss()
+
+ def forward(self, hidden_states, labels):
+ labels = labels.flatten()
+ weight = nn.functional.normalize(self.weight, dim=0)
+ hidden_states = nn.functional.normalize(hidden_states, dim=1)
+ cos_theta = torch.mm(hidden_states, weight)
+ psi = cos_theta - self.margin
+
+ onehot = nn.functional.one_hot(labels, self.num_labels)
+ logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
+ loss = self.loss(logits, labels)
+
+ return loss
+
+
+# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
+class TDNNLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
+ self.out_conv_dim = config.tdnn_dim[layer_id]
+ self.kernel_size = config.tdnn_kernel[layer_id]
+ self.dilation = config.tdnn_dilation[layer_id]
+
+ self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
+ self.activation = nn.ReLU()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ if is_peft_available():
+ from peft.tuners.lora import LoraLayer
+
+ if isinstance(self.kernel, LoraLayer):
+ warnings.warn(
+ "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
+ "You should exclude TDNNLayer from LoRA's target modules.",
+ )
+
+ # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
+ hidden_states = hidden_states.transpose(1, 2)
+ weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
+ hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
+ hidden_states = hidden_states.transpose(1, 2)
+
+ hidden_states = self.activation(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Wav2Vec2Bert Model with an XVector feature extraction head on top for tasks like Speaker Verification.
+ """,
+ WAV2VEC2_BERT_START_DOCSTRING,
+)
+class Wav2Vec2BertForXVector(Wav2Vec2BertPreTrainedModel):
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.wav2vec2_bert = Wav2Vec2BertModel(config)
+ num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
+ if config.use_weighted_layer_sum:
+ self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
+ self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
+
+ tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
+ self.tdnn = nn.ModuleList(tdnn_layers)
+
+ self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
+ self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
+
+ self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
+
+ self.init_weights()
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
+ def freeze_base_model(self):
+ """
+ Calling this function will disable the gradient computation for the base model so that its parameters will not
+ be updated during training. Only the classification head will be updated.
+ """
+ for param in self.wav2vec2_bert.parameters():
+ param.requires_grad = False
+
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector._get_tdnn_output_lengths
+ def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
+ """
+ Computes the output length of the TDNN layers
+ """
+
+ def _conv_out_length(input_length, kernel_size, stride):
+ # 1D convolutional layer output length formula taken
+ # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
+ return (input_length - kernel_size) // stride + 1
+
+ for kernel_size in self.config.tdnn_kernel:
+ input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
+
+ return input_lengths
+
+ @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_BASE_CHECKPOINT_FOR_DOC,
+ output_type=XVectorOutput,
+ config_class=_CONFIG_FOR_DOC,
+ modality="audio",
+ )
+ # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
+ def forward(
+ self,
+ input_features: Optional[torch.Tensor],
+ attention_mask: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, XVectorOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
+
+ outputs = self.wav2vec2_bert(
+ input_features,
+ attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if self.config.use_weighted_layer_sum:
+ hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
+ hidden_states = torch.stack(hidden_states, dim=1)
+ norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
+ hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
+ else:
+ hidden_states = outputs[0]
+
+ hidden_states = self.projector(hidden_states)
+
+ for tdnn_layer in self.tdnn:
+ hidden_states = tdnn_layer(hidden_states)
+
+ # Statistic Pooling
+ if attention_mask is None:
+ mean_features = hidden_states.mean(dim=1)
+ std_features = hidden_states.std(dim=1)
+ else:
+ feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
+ tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
+ mean_features = []
+ std_features = []
+ for i, length in enumerate(tdnn_output_lengths):
+ mean_features.append(hidden_states[i, :length].mean(dim=0))
+ std_features.append(hidden_states[i, :length].std(dim=0))
+ mean_features = torch.stack(mean_features)
+ std_features = torch.stack(std_features)
+ statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
+
+ output_embeddings = self.feature_extractor(statistic_pooling)
+ logits = self.classifier(output_embeddings)
+
+ loss = None
+ if labels is not None:
+ loss = self.objective(logits, labels)
+
+ if not return_dict:
+ output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
+ return ((loss,) + output) if loss is not None else output
+
+ return XVectorOutput(
+ loss=loss,
+ logits=logits,
+ embeddings=output_embeddings,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec792ce75a024807ac0d3fba8ee23e70c1deaef3
--- /dev/null
+++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py
@@ -0,0 +1,145 @@
+# coding=utf-8
+# Copyright 2024 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Speech processor class for Wav2Vec2-BERT
+"""
+import warnings
+
+from ...processing_utils import ProcessorMixin
+from ..seamless_m4t.feature_extraction_seamless_m4t import SeamlessM4TFeatureExtractor
+from ..wav2vec2.tokenization_wav2vec2 import Wav2Vec2CTCTokenizer
+
+
+class Wav2Vec2BertProcessor(ProcessorMixin):
+ r"""
+ Constructs a Wav2Vec2-BERT processor which wraps a Wav2Vec2-BERT feature extractor and a Wav2Vec2 CTC tokenizer into a single
+ processor.
+
+ [`Wav2Vec2Processor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and [`PreTrainedTokenizer`].
+ See the docstring of [`~Wav2Vec2Processor.__call__`] and [`~Wav2Vec2Processor.decode`] for more information.
+
+ Args:
+ feature_extractor (`SeamlessM4TFeatureExtractor`):
+ An instance of [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input.
+ tokenizer ([`PreTrainedTokenizer`]):
+ An instance of [`PreTrainedTokenizer`]. The tokenizer is a required input.
+ """
+
+ feature_extractor_class = "SeamlessM4TFeatureExtractor"
+ tokenizer_class = "AutoTokenizer"
+
+ def __init__(self, feature_extractor, tokenizer):
+ super().__init__(feature_extractor, tokenizer)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
+ try:
+ return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
+ except OSError:
+ warnings.warn(
+ f"Loading a tokenizer inside {cls.__name__} from a config that does not"
+ " include a `tokenizer_class` attribute is deprecated and will be "
+ "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"
+ " attribute to either your `config.json` or `tokenizer_config.json` "
+ "file to suppress this warning: ",
+ FutureWarning,
+ )
+
+ feature_extractor = SeamlessM4TFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
+ tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
+
+ return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
+
+ def __call__(self, audio=None, text=None, **kwargs):
+ """
+ Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `audio`
+ and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audio` is not
+ `None` to pre-process the audio. To prepare the target sequences(s), this method forwards the `text` and `kwargs` arguments to
+ PreTrainedTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not `None`. Please refer to the doctsring of the above two methods for more information.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
+ The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
+ of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
+ and T the sample length of the audio.
+ kwargs (*optional*):
+ Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
+ tokenizer.
+ Returns:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+ - **input_features** -- Audio input features to be fed to a model. Returned when `audio` is not `None`.
+ - **attention_mask** -- List of indices specifying which timestamps should be attended to by the model when `audio` is not `None`.
+ When only `text` is specified, returns the token attention mask.
+ - **labels** -- List of token ids to be fed to a model. Returned when both `text` and `audio` are not `None`.
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None` and `audio` is `None`.
+ """
+
+ sampling_rate = kwargs.pop("sampling_rate", None)
+
+ if audio is None and text is None:
+ raise ValueError("You need to specify either an `audio` or `text` input to process.")
+
+ if audio is not None:
+ inputs = self.feature_extractor(audio, sampling_rate=sampling_rate, **kwargs)
+ if text is not None:
+ encodings = self.tokenizer(text, **kwargs)
+
+ if text is None:
+ return inputs
+ elif audio is None:
+ return encodings
+ else:
+ inputs["labels"] = encodings["input_ids"]
+ return inputs
+
+ def pad(self, input_features=None, labels=None, **kwargs):
+ """
+ If `input_features` is not `None`, this method forwards the `input_features` and `kwargs` arguments to SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.pad`] to pad the input features.
+ If `labels` is not `None`, this method forwards the `labels` and `kwargs` arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.pad`] to pad the label(s).
+ Please refer to the doctsring of the above two methods for more information.
+ """
+ if input_features is None and labels is None:
+ raise ValueError("You need to specify either an `input_features` or `labels` input to pad.")
+
+ if input_features is not None:
+ input_features = self.feature_extractor.pad(input_features, **kwargs)
+ if labels is not None:
+ labels = self.tokenizer.pad(labels, **kwargs)
+
+ if labels is None:
+ return input_features
+ elif input_features is None:
+ return labels
+ else:
+ input_features["labels"] = labels["input_ids"]
+ return input_features
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
+ to the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)