diff --git "a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py" "b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py" @@ -0,0 +1,2682 @@ +# coding=utf-8 +# Copyright 2020 The Trax Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch REFORMER model.""" + +import sys +from collections import namedtuple +from dataclasses import dataclass +from functools import reduce +from operator import mul +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +from torch import nn +from torch.autograd.function import Function +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_reformer import ReformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/reformer-crime-and-punishment" +_CONFIG_FOR_DOC = "ReformerConfig" + +REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/reformer-crime-and-punishment", + "google/reformer-enwik8", + # See all Reformer models at https://huggingface.co/models?filter=reformer +] + + +# Define named tuples for nn.Modules here +LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"]) +LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"]) +AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"]) +ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"]) +ReformerBackwardOutput = namedtuple( + "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"] +) +ReformerEncoderOutput = namedtuple( + "ReformerEncoderOutput", + ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"], +) + + +def _stable_argsort(vector, dim): + # this function scales the vector so that torch.argsort is stable. + # torch.argsort is not stable on its own + scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1) + scale_offset = scale_offset.expand(vector.shape) + scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim]) + return torch.argsort(scaled_vector, dim=dim) + + +def _get_least_common_mult_chunk_len(config): + attn_types = config.attn_layers + attn_types_set = set(attn_types) + if len(attn_types_set) == 1 and attn_types[0] == "lsh": + return config.lsh_attn_chunk_length + elif len(attn_types_set) == 1 and attn_types[0] == "local": + return config.local_attn_chunk_length + elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: + return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length) + else: + raise NotImplementedError( + f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " + "attn layer types from ['lsh', 'local'] only." + ) + + +def _get_min_chunk_len(config): + attn_types = config.attn_layers + attn_types_set = set(attn_types) + if len(attn_types_set) == 1 and attn_types[0] == "lsh": + return config.lsh_attn_chunk_length + elif len(attn_types_set) == 1 and attn_types[0] == "local": + return config.local_attn_chunk_length + elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: + return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length) + else: + raise NotImplementedError( + f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " + "attn layer types from ['lsh', 'local'] only." + ) + + +class AxialPositionEmbeddings(nn.Module): + """ + Constructs axial position embeddings. Useful for very long input sequences to save memory and time. + """ + + def __init__(self, config): + super().__init__() + self.axial_pos_shape = config.axial_pos_shape + self.axial_pos_embds_dim = config.axial_pos_embds_dim + self.dropout = config.hidden_dropout_prob + + self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config) + self.weights = nn.ParameterList() + + if sum(self.axial_pos_embds_dim) != config.hidden_size: + raise ValueError( + f"Make sure that config.axial_pos_embds factors: {self.axial_pos_embds_dim} sum to " + f"config.hidden_size: {config.hidden_size}" + ) + + # create weights + for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim): + # create expanded shapes + ax_shape = [1] * len(self.axial_pos_shape) + ax_shape[axis] = self.axial_pos_shape[axis] + ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,) + + # create tensor and init + self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32))) + + def forward(self, position_ids): + # broadcast weights to correct shape + batch_size = position_ids.shape[0] + sequence_length = position_ids.shape[1] + + broadcasted_weights = [ + weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights + ] + + if self.training is True: + if reduce(mul, self.axial_pos_shape) != sequence_length: + raise ValueError( + f"If training, make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply to " + f"sequence length. Got prod({self.axial_pos_shape}) != sequence_length: {sequence_length}. " + f"You might want to consider padding your sequence length to {reduce(mul, self.axial_pos_shape)} " + "or changing config.axial_pos_shape." + ) + + if self.dropout > 0: + weights = torch.cat(broadcasted_weights, dim=-1) + # permute weights so that 2D correctly drops dims 1 and 2 + transposed_weights = weights.transpose(2, 1) + # drop entire matrix of last two dims (prev dims 1 and 2) + dropped_transposed_weights = nn.functional.dropout2d( + transposed_weights, p=self.dropout, training=self.training + ) + dropped_weights = dropped_transposed_weights.transpose(2, 1) + + position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1)) + + else: + position_encodings = torch.cat( + [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights], + dim=-1, + ) + + else: + if reduce(mul, self.axial_pos_shape) < sequence_length: + raise ValueError( + f"Make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply at least to " + f"max(sequence_length, least_common_mult_chunk_length): max({sequence_length}, " + f"{self.least_common_mult_chunk_length})." + ) + + # compute how many columns are needed + max_position_id = position_ids.max().item() + required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1]) + + # cut to columns that are needed + position_encodings = torch.cat( + [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1 + ) + position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1])) + + # select correct position encodings + position_encodings = torch.cat( + [ + torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0) + for i in range(batch_size) + ], + dim=0, + ) + + return position_encodings + + +class PositionEmbeddings(nn.Module): + """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`.""" + + def __init__(self, config): + super().__init__() + self.dropout = config.hidden_dropout_prob + self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size) + + def forward(self, position_ids): + position_embeddings = self.embedding(position_ids) + position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training) + return position_embeddings + + +class ReformerEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.max_position_embeddings = config.max_position_embeddings + self.dropout = config.hidden_dropout_prob + + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) + self.position_embeddings = ( + AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config) + ) + + def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0): + if input_ids is not None: + input_shape = input_ids.size() + device = input_ids.device + else: + input_shape = inputs_embeds.size()[:-1] + device = inputs_embeds.device + + seq_length = input_shape[1] + if position_ids is None: + position_ids = torch.arange( + start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).expand(input_shape) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + if position_ids.shape[-1] > self.max_position_embeddings: + raise ValueError( + f"Sequence Length: {position_ids.shape[-1]} has to be less or equal than " + f"config.max_position_embeddings {self.max_position_embeddings}." + ) + + # dropout + embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training) + + # add positional embeddings + position_embeddings = self.position_embeddings(position_ids) + embeddings = embeddings + position_embeddings + return embeddings + + +class EfficientAttentionMixin: + """ + A few utilities for nn.Modules in Reformer, to be used as a mixin. + """ + + def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after): + """ + Used to implement attention between consecutive chunks. + + Args: + vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...] + num_chunks_before: chunks before current chunk to include in attention + num_chunks_after: chunks after current chunk to include in attention + + Returns: + tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after). + """ + if num_chunks_before == 0 and num_chunks_after == 0: + return vectors + + slices = [] + for i in range(-num_chunks_before, num_chunks_after + 1): + if i == 0: + slices.append(vectors) + else: + slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2)) + return torch.cat(slices, dim=3) + + def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size): + """ + splits hidden_size dim into attn_head_size and num_attn_heads + """ + new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size) + x = x.view(*new_x_shape) + return x.transpose(2, 1) + + def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size): + """ + merges attn_head_size dim and num_attn_heads dim into hidden_size + """ + x = x.permute(0, 2, 1, 3) + return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size)) + + def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None): + """ + splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims + """ + batch_size = vectors.shape[0] + split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2) + + if len(vectors.shape) == 4: + return torch.reshape(vectors, split_dim_shape + (attn_head_size,)) + elif len(vectors.shape) == 3: + return torch.reshape(vectors, split_dim_shape) + else: + raise ValueError(f"Input vector rank should be one of [3, 4], but is: {len(vectors.shape)}") + + +class LSHSelfAttention(nn.Module, EfficientAttentionMixin): + def __init__(self, config): + super().__init__() + self.config = config + + self.chunk_length = config.lsh_attn_chunk_length + self.num_hashes = config.num_hashes + self.num_buckets = config.num_buckets + self.num_chunks_before = config.lsh_num_chunks_before + self.num_chunks_after = config.lsh_num_chunks_after + self.hash_seed = config.hash_seed + self.is_decoder = config.is_decoder + self.max_position_embeddings = config.max_position_embeddings + + self.dropout = config.lsh_attention_probs_dropout_prob + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = config.attention_head_size + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.hidden_size = config.hidden_size + + # projection matrices + self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) + self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) + + # save mask value here. Need fp32 and fp16 mask values + self.register_buffer("self_mask_value_float16", torch.tensor(-1e3), persistent=False) + self.register_buffer("self_mask_value_float32", torch.tensor(-1e5), persistent=False) + self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) + self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + num_hashes=None, + buckets=None, + past_buckets_states=None, + use_cache=False, + output_attentions=False, + **kwargs, + ): + sequence_length = hidden_states.shape[1] + batch_size = hidden_states.shape[0] + + # num hashes can optionally be overwritten by user + num_hashes = num_hashes if num_hashes is not None else self.num_hashes + + do_cached_attention = use_cache and past_buckets_states[1] is not None + + # check if cache shall be used and that hidden states are already cached + if do_cached_attention: + assert sequence_length == 1, ( + "At the moment, auto-regressive language generation is only possible one word at a time. Make sure" + f" that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed." + ) + past_buckets = past_buckets_states[0] + past_states = past_buckets_states[1] + + # get query vector + query_vectors = self.query_key(hidden_states) + query_vectors = self._split_hidden_size_dim( + query_vectors, self.num_attention_heads, self.attention_head_size + ) + + if past_buckets is not None: + key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets( + query_vectors=query_vectors, + attention_mask=attention_mask, + num_hashes=num_hashes, + hidden_states=hidden_states, + past_states=past_states, + past_buckets=past_buckets, + ) + + query_key_vectors = self._query_per_attn_head(key_value_hidden_states) + value_vectors = self._value_per_attn_head(key_value_hidden_states) + + # split key & value vectors by num hashes to apply + # self attention on each separately + query_key_vectors = self._split_seq_length_dim_to( + query_key_vectors, + num_hashes, + -1, + self.num_attention_heads, + self.attention_head_size, + ) + value_vectors = self._split_seq_length_dim_to( + value_vectors, + num_hashes, + -1, + self.num_attention_heads, + self.attention_head_size, + ) + # repeat query vectors across hash dimension + query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1) + else: + key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1) + + query_key_vectors = self.query_key(key_value_hidden_states) + value_vectors = self.value(key_value_hidden_states) + + else: + # project hidden_states to query_key and value + query_vectors = None + query_key_vectors = self.query_key(hidden_states) + value_vectors = self.value(hidden_states) + + # if query key is not already split + if not do_cached_attention or past_buckets is None: + query_key_vectors = self._split_hidden_size_dim( + query_key_vectors, self.num_attention_heads, self.attention_head_size + ) + value_vectors = self._split_hidden_size_dim( + value_vectors, self.num_attention_heads, self.attention_head_size + ) + + # cache buckets for next incremental decoding + if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length: + buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) + + # free memory + del hidden_states + + assert ( + query_key_vectors.shape[-1] == self.attention_head_size + ), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}." + assert ( + value_vectors.shape[-1] == self.attention_head_size + ), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." + + do_standard_self_attention = (sequence_length <= self.chunk_length) or ( + use_cache and past_buckets_states[1] is not None + ) + # LSH attention only makes sense if chunked attention should be performed + if not do_standard_self_attention: + # set `num_buckets` on the fly, recommended way to do it + if self.num_buckets is None: + self._set_num_buckets(sequence_length) + + # use cached buckets for backprop only + if buckets is None: + # hash query key vectors into buckets + buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) + else: + # make sure buckets has correct shape for LSH attention + buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length) + + assert ( + int(buckets.shape[-1]) == num_hashes * sequence_length + ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}" + + sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( + sequence_length, buckets, num_hashes + ) + + # make sure bucket idx is not longer then sequence length + sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length + + # cluster query key value vectors according to hashed buckets + query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes) + value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes) + query_key_vectors = self._split_seq_length_dim_to( + query_key_vectors, + -1, + self.chunk_length, + self.num_attention_heads, + self.attention_head_size, + ) + value_vectors = self._split_seq_length_dim_to( + value_vectors, + -1, + self.chunk_length, + self.num_attention_heads, + self.attention_head_size, + ) + + if self.chunk_length is None: + assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( + "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" + " `config.num_chunks_before` are set to 0." + ) + elif do_cached_attention and past_buckets is not None: + # use max sequence length + sorted_bucket_idx_per_hash = sorted_bucket_idx + else: + # get sequence length indices + sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat( + batch_size, self.num_attention_heads, 1 + ) + + # scale key vectors + sqrt_num = np.sqrt(self.attention_head_size) + key_vectors = self._len_and_dim_norm(query_key_vectors, sqrt_num) + + # set query_vectors to query key vectors if LSH self attention + query_vectors = query_vectors if query_vectors is not None else query_key_vectors + + # free memory + del query_key_vectors + + # get attention probs + out_vectors, logits, attention_probs = self._attend( + query_vectors=query_vectors, + key_vectors=key_vectors, + value_vectors=value_vectors, + sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, + attention_mask=attention_mask, + head_mask=head_mask, + do_standard_self_attention=do_standard_self_attention, + do_cached_attention=do_cached_attention, + ) + + # free memory + del key_vectors, value_vectors + + # re-order out_vectors and logits + if not do_standard_self_attention: + # sort clusters back to correct ordering + out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) + + if not do_standard_self_attention or (do_cached_attention and past_buckets is not None): + # sum up all hash rounds + if num_hashes > 1: + out_vectors = self._split_seq_length_dim_to( + out_vectors, + num_hashes, + sequence_length, + self.num_attention_heads, + self.attention_head_size, + ) + logits = self._split_seq_length_dim_to( + logits, + num_hashes, + sequence_length, + self.num_attention_heads, + self.attention_head_size, + ).unsqueeze(-1) + + probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) + out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) + # free memory + del probs_vectors + + # free memory + del logits + + assert out_vectors.shape == ( + batch_size, + self.num_attention_heads, + sequence_length, + self.attention_head_size, + ), ( + "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length," + " config.attention_head_size]`." + ) + + out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) + + if output_attentions is False: + attention_probs = () + + if buckets is not None: + buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1) + + return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets) + + def _query_per_attn_head(self, hidden_states): + per_head_query_key = self.query_key.weight.reshape( + self.num_attention_heads, self.attention_head_size, self.hidden_size + ).transpose(-2, -1) + # only relevant for inference and no bias => we can use einsum here + query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key) + return query_key_vectors + + def _value_per_attn_head(self, hidden_states): + per_head_value = self.value.weight.reshape( + self.num_attention_heads, self.attention_head_size, self.hidden_size + ).transpose(-2, -1) + # only relevant for inference and no bias => we can use einsum here + value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value) + return value_vectors + + def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False): + batch_size = vectors.shape[0] + + # See https://arxiv.org/pdf/1509.02897.pdf + # We sample a different random rotation for each round of hashing to + # decrease the probability of hash misses. + if isinstance(self.num_buckets, int): + assert ( + self.num_buckets % 2 == 0 + ), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}" + rotation_size = self.num_buckets + num_buckets = self.num_buckets + else: + # Factorize the hash if self.num_buckets is a list or tuple + rotation_size, num_buckets = 0, 1 + for bucket_factor in self.num_buckets: + assert ( + bucket_factor % 2 == 0 + ), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}" + rotation_size = rotation_size + bucket_factor + num_buckets = num_buckets * bucket_factor + + # remove gradient + vectors = vectors.detach() + + if self.hash_seed is not None: + # for determinism + torch.manual_seed(self.hash_seed) + + rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2) + # create a random self.attention_head_size x num_hashes x num_buckets/2 + random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype) + # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2 + rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations) + + if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1: + rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1) + buckets = torch.argmax(rotated_vectors, dim=-1) + else: + # Get the buckets for them and combine. + buckets, cur_sum, cur_product = None, 0, 1 + for bucket_factor in self.num_buckets: + rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)] + cur_sum = cur_sum + bucket_factor // 2 + rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1) + if buckets is None: + buckets = torch.argmax(rotated_vectors_factor, dim=-1) + else: + buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1)) + + cur_product = cur_product * bucket_factor + + if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]): + # add an extra bucket for padding tokens only + num_buckets = num_buckets + 1 + # assign padding tokens extra bucket + buckets_mask = attention_mask.to(torch.bool)[:, None, None, :].expand(buckets.shape) + buckets = torch.where( + buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device) + ) + elif increase_num_buckets: + num_buckets = num_buckets + 1 + + # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len). + # Next we add offsets so that bucket numbers from different hashing rounds don't overlap. + offsets = torch.arange(num_hashes, device=vectors.device) + offsets = (offsets * num_buckets).view((1, 1, -1, 1)) + + # expand to batch size and num attention heads + offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:]) + offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3) + + return offset_buckets + + def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes): + # no gradients are needed + with torch.no_grad(): + # hash-based sort + sorted_bucket_idx = _stable_argsort(buckets, dim=-1) + + # create simple indices to scatter to, to have undo sort + indices = ( + torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device) + .view(1, 1, -1) + .expand(sorted_bucket_idx.shape) + ) + + # get undo sort + undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size()) + undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices) + + return sorted_bucket_idx, undo_sorted_bucket_idx + + def _set_num_buckets(self, sequence_length): + # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper + num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1 + # make sure buckets are power of 2 + num_buckets = 2**num_buckets_pow_2 + + # factorize `num_buckets` if `num_buckets` becomes too large + num_buckets_limit = 2 * max( + int((self.max_position_embeddings // self.chunk_length) ** (0.5)), + self.chunk_length, + ) + if num_buckets > num_buckets_limit: + num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)] + + logger.warning(f"config.num_buckets is not set. Setting config.num_buckets to {num_buckets}...") + + # set num buckets in config to be properly saved + self.config.num_buckets = num_buckets + self.num_buckets = num_buckets + + def _attend( + self, + query_vectors, + key_vectors, + value_vectors, + sorted_bucket_idx_per_hash, + attention_mask, + head_mask, + do_standard_self_attention, + do_cached_attention, + ): + # look at previous and following chunks if chunked attention + if not do_standard_self_attention: + key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) + value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) + + # get logits and dots + # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft)) + query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) + + # free memory + del query_vectors, key_vectors + + # if chunked attention split bucket idxs to query and key + if not do_standard_self_attention: + query_bucket_idx = self._split_seq_length_dim_to( + sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads + ) + key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after) + elif do_cached_attention and query_key_dots.ndim > 4: + key_value_bucket_idx = sorted_bucket_idx_per_hash + query_bucket_idx = ( + key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max() + ) + elif do_cached_attention and query_key_dots.ndim <= 4: + query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1] + key_value_bucket_idx = torch.arange( + query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device + )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,)) + else: + query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash + + # get correct mask values depending on precision + if query_key_dots.dtype == torch.float16: + self_mask_value = self.self_mask_value_float16.half() + mask_value = self.mask_value_float16.half() + else: + self_mask_value = self.self_mask_value_float32 + mask_value = self.mask_value_float32 + + if not do_cached_attention: + mask = self._compute_attn_mask( + query_bucket_idx, + key_value_bucket_idx, + attention_mask, + query_key_dots.shape, + do_standard_self_attention, + ) + + if mask is not None: + query_key_dots = torch.where(mask, query_key_dots, mask_value) + + # free memory + del mask + + # Self mask is ALWAYS applied. + # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf): + # " While attention to the future is not allowed, typical implementations of the + # Transformer do allow a position to attend to itself. + # Such behavior is undesirable in a shared-QK formulation because the dot-product + # of a query vector with itself will almost always be greater than the dot product of a + # query vector with a vector at another position. We therefore modify the masking + # to forbid a token from attending to itself, except in situations + # where a token has no other valid attention targets (e.g. the first token in a sequence) " + + self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to( + query_bucket_idx.device + ) + + # apply self_mask + query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value) + + # free memory + del self_mask + + logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) + # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]` + attention_probs = torch.exp(query_key_dots - logits) + + # free memory + del query_key_dots + + # dropout + attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + # attend values + out_vectors = torch.matmul(attention_probs, value_vectors) + + # free memory + del value_vectors + + # merge chunk length + if out_vectors.ndim > 4: + logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1) + out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) + + return out_vectors, logits, attention_probs + + def _compute_attn_mask( + self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention + ): + # attention mask for LSH + if attention_mask is not None: + # if chunked attention, the attention mask has to correspond to LSH order + attention_mask = attention_mask.to(torch.bool)[:, None, :] + if not do_standard_self_attention: + # expand attn_mask to fit with key_value_bucket_idx shape + attention_mask = attention_mask[:, None, :] + attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,)) + # extract attention mask from LSH sorted key_indices + attention_mask = torch.gather(attention_mask, -1, key_indices) + + attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape) + + # Causal mask + if self.is_decoder is True: + causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) + + # add attention mask if not None + if attention_mask is not None: + attention_mask = causal_mask * attention_mask + else: + attention_mask = causal_mask + + return attention_mask + + def _get_relevant_hid_states_and_buckets( + self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets + ): + # concat hidden states + hidden_states = torch.cat([past_states, hidden_states], dim=1) + + # batch_size hidden + batch_size = hidden_states.shape[0] + sequence_length = hidden_states.shape[1] + + # check if cached buckets include pad bucket + max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets) + + # if pad bucket was cached => need to increase num buckets for caching + increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1 + + # retrieve query buckets + query_buckets = self._hash_vectors( + query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets + ) + + # concat buckets + concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1) + + # hash-based sort + bucket_idx = _stable_argsort(concat_buckets, dim=-1) + + # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength + assert bucket_idx.shape == ( + batch_size, + self.num_attention_heads, + num_hashes, + sequence_length, + ), ( + f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but" + f" has shape {bucket_idx.shape}." + ) + + # find indices of new bucket indices + relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero() + + # expand relevant bucket indices to its chunks + relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length) + relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))] + + # adapt bucket_idx for batch and hidden states for index select + offset = torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long) + bucket_idx_batch_offset = sequence_length * ( + batch_size * torch.div(offset, relevant_bucket_idx_chunk.shape[-1], rounding_mode="floor") + ) + + # add batch offset + relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset + hidden_states = hidden_states.reshape((-1, self.hidden_size)) + + # select all relevant hidden states + relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch) + + # reshape hidden states and bucket_idx to correct output + relevant_hidden_states = relevant_hidden_states.reshape( + batch_size, self.num_attention_heads, -1, self.hidden_size + ) + relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape( + batch_size, self.num_attention_heads, num_hashes, -1 + ) + + assert ( + relevant_hidden_states.shape[2] + == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes + ), ( + "There should be" + f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`," + f" there are {relevant_hidden_states.shape[2]} `hidden_states`." + ) + + assert ( + relevant_bucket_idx_chunk.shape[-1] + == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length + ), ( + "There should be" + f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are" + f" {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`." + ) + + return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets + + def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length): + # get relevant indices of where chunk starts and its size + start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length + total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after) + + # expand start indices and add correct chunk offset via arange + expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size) + chunk_sequence_indices = expanded_start_indices + torch.arange( + total_chunk_size, device=indices.device, dtype=torch.long + ).unsqueeze(0).expand(indices.shape[0], total_chunk_size) + + # make sure that circular logic holds via % seq len + chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length + + # expand indices and set indices correctly + indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone() + indices[:, -1] = chunk_sequence_indices + + return indices + + def _len_and_dim_norm(self, vectors, sqrt_num): + """ + length and attention head size dim normalization + """ + vectors = self._len_norm(vectors) + vectors = vectors / sqrt_num + return vectors + + def _len_norm(self, x, epsilon=1e-6): + """ + length normalization + """ + variance = torch.mean(x**2, -1, keepdim=True) + norm_x = x * torch.rsqrt(variance + epsilon) + return norm_x + + def _gather_by_expansion(self, vectors, idxs, num_hashes): + """ + expand dims of idxs and vectors for all hashes and gather + """ + expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size) + vectors = vectors.repeat(1, 1, num_hashes, 1) + return torch.gather(vectors, 2, expanded_idxs) + + +class ReverseSort(Function): + """ + After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized + backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here. + """ + + @staticmethod + def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx): + # save sorted_bucket_idx for backprop + with torch.no_grad(): + ctx.sorted_bucket_idx = sorted_bucket_idx + + # undo sort to have correct order for next layer + expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape) + out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices) + logits = torch.gather(logits, 2, undo_sorted_bucket_idx) + return out_vectors, logits + + @staticmethod + def backward(ctx, grad_out_vectors, grad_logits): + # get parameters saved in ctx + sorted_bucket_idx = ctx.sorted_bucket_idx + + expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape) + # reverse sort of forward + grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices) + grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx) + + # return grad and `None` fillers for last 2 forward args + return grad_out_vectors, grad_logits, None, None + + +class LocalSelfAttention(nn.Module, EfficientAttentionMixin): + def __init__(self, config): + super().__init__() + + self.num_attention_heads = config.num_attention_heads + self.chunk_length = config.local_attn_chunk_length + self.num_chunks_before = config.local_num_chunks_before + self.num_chunks_after = config.local_num_chunks_after + self.is_decoder = config.is_decoder + self.pad_token_id = config.pad_token_id + + self.attention_head_size = config.attention_head_size + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.hidden_size = config.hidden_size + + # projection matrices + self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False) + self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) + self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) + + self.dropout = config.local_attention_probs_dropout_prob + + # save mask value here + self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) + self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + past_buckets_states=None, + use_cache=False, + output_attentions=False, + **kwargs, + ): + sequence_length = hidden_states.shape[1] + batch_size = hidden_states.shape[0] + + # check if cache shall be used and that hidden states are already cached + if use_cache and past_buckets_states[1] is not None: + assert past_buckets_states[0] is None, ( + "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching" + " hidden_states_and_buckets." + ) + key_value_hidden_states = self._retrieve_relevant_hidden_states( + past_buckets_states[1], self.chunk_length, self.num_chunks_before + ) + key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1) + + # only query vector for last token + query_vectors = self.query(hidden_states) + # compute key and value for relevant chunk + key_vectors = self.key(key_value_hidden_states) + value_vectors = self.value(key_value_hidden_states) + + # free memory + del key_value_hidden_states + else: + # project hidden_states to query, key and value + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + + # split last dim into `config.num_attention_heads` and `config.attention_head_size` + query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size) + key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size) + value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size) + + assert ( + query_vectors.shape[-1] == self.attention_head_size + ), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}." + assert ( + key_vectors.shape[-1] == self.attention_head_size + ), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}." + assert ( + value_vectors.shape[-1] == self.attention_head_size + ), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." + + if self.chunk_length is None: + assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( + "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" + " `config.num_chunks_before` are set to 0." + ) + + # normalize key vectors + key_vectors = key_vectors / np.sqrt(self.attention_head_size) + + # get sequence length indices + indices = torch.arange(sequence_length, device=query_vectors.device).repeat( + batch_size, self.num_attention_heads, 1 + ) + + # if one should do normal n^2 self-attention + do_standard_self_attention = sequence_length <= self.chunk_length + + # if input should be chunked + if not do_standard_self_attention: + # chunk vectors + # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size + query_vectors = self._split_seq_length_dim_to( + query_vectors, + -1, + self.chunk_length, + self.num_attention_heads, + self.attention_head_size, + ) + key_vectors = self._split_seq_length_dim_to( + key_vectors, + -1, + self.chunk_length, + self.num_attention_heads, + self.attention_head_size, + ) + value_vectors = self._split_seq_length_dim_to( + value_vectors, + -1, + self.chunk_length, + self.num_attention_heads, + self.attention_head_size, + ) + + # chunk indices + query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) + key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) + + # append chunks before and after + key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) + value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) + key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after) + else: + query_indices = key_indices = indices + + # query-key matmul: QK^T + query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) + + # free memory + del query_vectors, key_vectors + + mask = self._compute_attn_mask( + query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention + ) + + if mask is not None: + # get mask tensor depending on half precision or not + if query_key_dots.dtype == torch.float16: + mask_value = self.mask_value_float16.half() + else: + mask_value = self.mask_value_float32 + + query_key_dots = torch.where(mask, query_key_dots, mask_value) + + # free memory + del mask + + # softmax + logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) + attention_probs = torch.exp(query_key_dots - logits) + + # free memory + del logits + + # dropout + attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + # attend values + out_vectors = torch.matmul(attention_probs, value_vectors) + + # free memory + del value_vectors + + # merge chunk length + if not do_standard_self_attention: + out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) + + assert out_vectors.shape == ( + batch_size, + self.num_attention_heads, + sequence_length, + self.attention_head_size, + ) + + out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) + + if output_attentions is False: + attention_probs = () + + return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs) + + def _compute_attn_mask( + self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention + ): + # chunk attention mask and look before and after + if attention_mask is not None: + attention_mask = attention_mask.to(torch.bool)[:, None, :] + + if not do_standard_self_attention: + attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1) + attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after) + # create attn_mask + attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape) + + # Causal mask + if self.is_decoder is True: + causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) + + # add attention mask if not None + if attention_mask is not None: + attention_mask = causal_mask * attention_mask + else: + attention_mask = causal_mask + + return attention_mask + + @staticmethod + def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before): + start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length + return previous_hidden_states[:, start_position:] + + +class ReformerSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + all_head_size = config.num_attention_heads * config.attention_head_size + self.dropout = config.hidden_dropout_prob + + self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + return hidden_states + + +class ReformerAttention(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.layer_id = layer_id + self.attn_layers = config.attn_layers + + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh": + self.self_attention = LSHSelfAttention(config) + elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local": + self.self_attention = LocalSelfAttention(config) + elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == {"lsh", "local"}: + # get correct attn layers + if self.attn_layers[self.layer_id] == "lsh": + self.self_attention = LSHSelfAttention(config) + else: + self.self_attention = LocalSelfAttention(config) + else: + raise NotImplementedError( + f"Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {self.attn_layers}. " + "Select attn layer types from ['lsh', 'local'] only." + ) + self.output = ReformerSelfOutput(config) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + num_hashes=None, + past_buckets_states=None, + use_cache=False, + orig_sequence_length=None, + output_attentions=False, + buckets=None, + ): + hidden_states = self.layer_norm(hidden_states) + + # make sure cached hidden states is set to None for backward pass + if past_buckets_states is not None: + past_buckets_states_layer = past_buckets_states[self.layer_id] + else: + past_buckets_states_layer = None + + # use cached buckets for backprob if buckets not None for LSHSelfAttention + self_attention_outputs = self.self_attention( + hidden_states=hidden_states, + head_mask=head_mask, + attention_mask=attention_mask, + num_hashes=num_hashes, + past_buckets_states=past_buckets_states_layer, + use_cache=use_cache, + output_attentions=output_attentions, + buckets=buckets, + ) + + # add buckets if necessary + if hasattr(self_attention_outputs, "buckets"): + buckets = self_attention_outputs.buckets + else: + buckets = None + + # cache hidden states for future use + if use_cache: + if past_buckets_states[self.layer_id][0] is None: + # padded input should not be cached + past_buckets = ( + buckets[:, :, :, :orig_sequence_length] + if (buckets is not None and orig_sequence_length > 1) + else buckets + ) + else: + past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1) + + if past_buckets_states[self.layer_id][1] is None: + # padded input should not be cached + past_states = hidden_states[:, :orig_sequence_length] + else: + past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1) + + past_buckets_states[self.layer_id] = (past_buckets, past_states) + # compute attention feed forward output + attention_output = self.output(self_attention_outputs.hidden_states) + + return AttentionOutput( + hidden_states=attention_output, + attention_probs=self_attention_outputs.attention_probs, + buckets=buckets, + ) + + +class ReformerFeedForwardDense(nn.Module): + def __init__(self, config): + super().__init__() + self.dropout = config.hidden_dropout_prob + + if isinstance(config.hidden_act, str): + self.act_fn = ACT2FN[config.hidden_act] + else: + self.act_fn = config.hidden_act + + self.dense = nn.Linear(config.hidden_size, config.feed_forward_size) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = self.act_fn(hidden_states) + return hidden_states + + +class ReformerFeedForwardOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dropout = config.hidden_dropout_prob + + self.dense = nn.Linear(config.feed_forward_size, config.hidden_size) + + def forward(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + return hidden_states + + +class ChunkReformerFeedForward(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dense = ReformerFeedForwardDense(config) + self.output = ReformerFeedForwardOutput(config) + + def forward(self, attention_output): + return apply_chunking_to_forward( + self.forward_chunk, + self.chunk_size_feed_forward, + self.seq_len_dim, + attention_output, + ) + + def forward_chunk(self, hidden_states): + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dense(hidden_states) + return self.output(hidden_states) + + +class ReformerLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.attention = ReformerAttention(config, layer_id) + # dropout requires to have the same + # seed for forward and backward pass + self.attention_seed = None + self.feed_forward_seed = None + + self.feed_forward = ChunkReformerFeedForward(config) + + def _init_attention_seed(self): + """ + This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1 + normal forward call and 1 forward call in backward to recalculate activations. + """ + + # randomize seeds + # use cuda generator if available + if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: + # GPU + device_idx = torch.cuda.current_device() + self.attention_seed = torch.cuda.default_generators[device_idx].seed() + else: + # CPU + self.attention_seed = int(torch.seed() % sys.maxsize) + + torch.manual_seed(self.attention_seed) + + def _init_feed_forward_seed(self): + """ + This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls: + 1 normal forward call and 1 forward call in backward to recalculate activations. + """ + # randomize seeds + # use cuda generator if available + if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: + # GPU + device_idx = torch.cuda.current_device() + self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed() + else: + # CPU + self.feed_forward_seed = int(torch.seed() % sys.maxsize) + + torch.manual_seed(self.feed_forward_seed) + + def forward( + self, + prev_attn_output, + hidden_states, + attention_mask=None, + head_mask=None, + num_hashes=None, + past_buckets_states=None, + use_cache=False, + orig_sequence_length=None, + output_attentions=False, + ): + with torch.no_grad(): + # every forward pass we sample a different seed + # for dropout and save for forward fn in backward pass + # to have correct dropout + if self.training: + self._init_attention_seed() + + attn_outputs = self.attention( + hidden_states=hidden_states, + head_mask=head_mask, + attention_mask=attention_mask, + num_hashes=num_hashes, + past_buckets_states=past_buckets_states, + use_cache=use_cache, + orig_sequence_length=orig_sequence_length, + output_attentions=output_attentions, + ) + attn_output = attn_outputs.hidden_states + + # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) + # Y_1 = X_1 + f(X_2) + attn_output = prev_attn_output + attn_output + + # free memory + del prev_attn_output + + # every forward pass we sample a different seed + # for dropout and save seed for forward fn in backward + # to have correct dropout + if self.training: + self._init_feed_forward_seed() + # Y_2 = X_2 + g(Y_1) + hidden_states = hidden_states + self.feed_forward(attn_output) + + return ReformerOutput( + attn_output=attn_output, + hidden_states=hidden_states, + attention_probs=attn_outputs.attention_probs, + buckets=attn_outputs.buckets, + ) + + def backward_pass( + self, + next_attn_output, + hidden_states, + grad_attn_output, + grad_hidden_states, + attention_mask=None, + head_mask=None, + buckets=None, + ): + # Implements the backward pass for reversible ResNets. + # A good blog post on how this works can be found here: + # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) + # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py + + assert self.training, ( + "If you want to train `ReformerModel` and its variations, make sure to use `model.train()` to put the" + " model into training mode." + ) + + with torch.enable_grad(): + next_attn_output.requires_grad = True + + # set seed to have correct dropout + torch.manual_seed(self.feed_forward_seed) + # g(Y_1) + res_hidden_states = self.feed_forward(next_attn_output) + res_hidden_states.backward(grad_hidden_states, retain_graph=True) + + with torch.no_grad(): + # X_2 = Y_2 - g(Y_1) + hidden_states = hidden_states - res_hidden_states + del res_hidden_states + + grad_attn_output = grad_attn_output + next_attn_output.grad + next_attn_output.grad = None + + with torch.enable_grad(): + hidden_states.requires_grad = True + + # set seed to have correct dropout + torch.manual_seed(self.attention_seed) + # f(X_2) + # use cached buckets for backprob if buckets not None for LSHSelfAttention + output = self.attention( + hidden_states=hidden_states, + head_mask=head_mask, + attention_mask=attention_mask, + buckets=buckets, + ).hidden_states + output.backward(grad_attn_output, retain_graph=True) + + with torch.no_grad(): + # X_1 = Y_1 - f(X_2) + attn_output = next_attn_output - output + del output, next_attn_output + + grad_hidden_states = grad_hidden_states + hidden_states.grad + hidden_states.grad = None + hidden_states = hidden_states.detach() + + return ReformerBackwardOutput( + attn_output=attn_output, + hidden_states=hidden_states, + grad_attn_output=grad_attn_output, + grad_hidden_states=grad_hidden_states, + ) + + +class _ReversibleFunction(Function): + """ + To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here. + This way it is made sure that no memory expensive activations are saved during the forward pass. This function is + heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py + """ + + @staticmethod + def forward( + ctx, + hidden_states, + layers, + attention_mask, + head_mask, + num_hashes, + all_hidden_states, + all_attentions, + past_buckets_states, + use_cache, + orig_sequence_length, + output_hidden_states, + output_attentions, + ): + all_buckets = () + + # split duplicated tensor + hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1) + + for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)): + if output_hidden_states is True: + all_hidden_states.append(hidden_states) + + layer_outputs = layer( + prev_attn_output=attn_output, + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=layer_head_mask, + num_hashes=num_hashes, + past_buckets_states=past_buckets_states, + use_cache=use_cache, + orig_sequence_length=orig_sequence_length, + output_attentions=output_attentions, + ) + + attn_output = layer_outputs.attn_output + hidden_states = layer_outputs.hidden_states + all_buckets = all_buckets + (layer_outputs.buckets,) + + if output_attentions: + all_attentions.append(layer_outputs.attention_probs) + + # Add last layer + if output_hidden_states is True: + all_hidden_states.append(hidden_states) + + # attach params to ctx for backward + ctx.save_for_backward(attn_output.detach(), hidden_states.detach()) + ctx.layers = layers + ctx.all_buckets = all_buckets + ctx.head_mask = head_mask + ctx.attention_mask = attention_mask + + # Concatenate 2 RevNet outputs + return torch.cat([attn_output, hidden_states], dim=-1) + + @staticmethod + def backward(ctx, grad_hidden_states): + grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1) + + # retrieve params from ctx for backward + attn_output, hidden_states = ctx.saved_tensors + + # create tuple + output = ReformerBackwardOutput( + attn_output=attn_output, + hidden_states=hidden_states, + grad_attn_output=grad_attn_output, + grad_hidden_states=grad_hidden_states, + ) + + # free memory + del grad_attn_output, grad_hidden_states, attn_output, hidden_states + + layers = ctx.layers + all_buckets = ctx.all_buckets + head_mask = ctx.head_mask + attention_mask = ctx.attention_mask + + for idx, layer in enumerate(layers[::-1]): + # pop last buckets from stack + buckets = all_buckets[-1] + all_buckets = all_buckets[:-1] + + # backprop + output = layer.backward_pass( + next_attn_output=output.attn_output, + hidden_states=output.hidden_states, + grad_attn_output=output.grad_attn_output, + grad_hidden_states=output.grad_hidden_states, + head_mask=head_mask[len(layers) - idx - 1], + attention_mask=attention_mask, + buckets=buckets, + ) + + assert all_buckets == (), "buckets have to be empty after backpropagation" + grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1) + + # num of return vars has to match num of forward() args + # return gradient for hidden_states arg and None for other args + return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None + + +class ReformerEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.dropout = config.hidden_dropout_prob + + self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)]) + # Reformer is using Rev Nets, thus last layer outputs are concatenated and + # Layer Norm is done over 2 * hidden_size + self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + num_hashes=None, + past_buckets_states=None, + use_cache=False, + orig_sequence_length=None, + output_hidden_states=False, + output_attentions=False, + ): + # hidden_states and attention lists to be filled if wished + all_hidden_states = [] + all_attentions = [] + + # init cached hidden states if necessary + if past_buckets_states is None: + past_buckets_states = [((None), (None)) for i in range(len(self.layers))] + + # concat same tensor for reversible ResNet + hidden_states = torch.cat([hidden_states, hidden_states], dim=-1) + hidden_states = _ReversibleFunction.apply( + hidden_states, + self.layers, + attention_mask, + head_mask, + num_hashes, + all_hidden_states, + all_attentions, + past_buckets_states, + use_cache, + orig_sequence_length, + output_hidden_states, + output_attentions, + ) + + # Apply layer norm to concatenated hidden states + hidden_states = self.layer_norm(hidden_states) + + # Apply dropout + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + return ReformerEncoderOutput( + hidden_states=hidden_states, + all_hidden_states=all_hidden_states, + all_attentions=all_attentions, + past_buckets_states=past_buckets_states, + ) + + +class ReformerOnlyLMHead(nn.Module): + def __init__(self, config): + super().__init__() + # Reformer is using Rev Nets, thus last layer outputs are concatenated and + # Layer Norm is done over 2 * hidden_size + self.seq_len_dim = 1 + self.chunk_size_lm_head = config.chunk_size_lm_head + self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, hidden_states): + return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) + + def forward_chunk(self, hidden_states): + hidden_states = self.decoder(hidden_states) + return hidden_states + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + self.bias = self.decoder.bias + + +class ReformerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ReformerConfig + base_model_prefix = "reformer" + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "input_ids": input_ids, + "attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, AxialPositionEmbeddings): + for weight in module.weights: + nn.init.normal_(weight, std=self.config.axial_norm_std) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class ReformerModelOutput(ModelOutput): + """ + Output type of [`ReformerModel`]. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): + Sequence of hidden-states at the last layer of the model. + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element + being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the + second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). + + Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed + up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: torch.FloatTensor + past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class ReformerModelWithLMHeadOutput(ModelOutput): + """ + Output type of [`ReformerModelWithLMHead`]. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) + Language modeling loss (for next-token prediction). + logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element + being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the + second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). + + Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed + up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + TTuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) + of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +REFORMER_START_DOCSTRING = r""" + Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, + Ɓukasz Kaiser, Anselm Levskaya. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +REFORMER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be + a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices + are automatically padded to be a multiple of the chunk length. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + num_hashes (`int`, *optional*): + The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites + the default defined in `config.num_hashes`. + + For more information, see `num_hashes` in [`ReformerConfig`]. + past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*): + List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element + being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the + second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). + + Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed + up sequential decoding. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top.", + REFORMER_START_DOCSTRING, +) +class ReformerModel(ReformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + assert ( + self.config.num_hidden_layers > 0 + ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']" + + self.embeddings = ReformerEmbeddings(config) + self.encoder = ReformerEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=ReformerModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + num_hashes: Optional[int] = None, + past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ReformerModelOutput]: + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() # noqa: F841 + device = input_ids.device + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] # noqa: F841 + device = inputs_embeds.device + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + assert ( + len(input_shape) == 2 + ), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}" + + if past_buckets_states is not None: + assert not self.training, "`past_buckets_states` can only be used for inference, not for training`." + + # prepare head mask + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True) + + # original sequence length for padding + orig_sequence_length = input_shape[-1] + + # if needs padding + least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config) + min_chunk_length = _get_min_chunk_len(self.config) + + must_pad_to_match_chunk_length = ( + input_shape[-1] % least_common_mult_chunk_length != 0 + and input_shape[-1] > min_chunk_length + and past_buckets_states is None + ) + + if must_pad_to_match_chunk_length: + padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length + + if self.training is True: + raise ValueError( + f"If training, sequence length {input_shape[-1]} has to be a multiple of least common multiple " + f"chunk_length {least_common_mult_chunk_length}. Please consider padding the input to a length " + f"of {input_shape[-1] + padding_length}." + ) + + # pad input + input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length( + input_ids, + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + position_ids=position_ids, + input_shape=input_shape, + padding_length=padding_length, + padded_seq_length=least_common_mult_chunk_length, + device=device, + ) + + # start index for position encoding depends on incremental decoding + if past_buckets_states is not None: + start_idx_pos_encodings = past_buckets_states[0][1].shape[1] + else: + start_idx_pos_encodings = 0 + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + start_idx_pos_encodings=start_idx_pos_encodings, + ) + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + head_mask=head_mask, + attention_mask=attention_mask, + num_hashes=num_hashes, + past_buckets_states=past_buckets_states, + use_cache=use_cache, + orig_sequence_length=orig_sequence_length, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + ) + sequence_output = encoder_outputs.hidden_states + + # if padding was applied + if must_pad_to_match_chunk_length: + sequence_output = sequence_output[:, :orig_sequence_length] + + past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None + hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None + attentions = encoder_outputs.all_attentions if output_attentions else None + + if not return_dict: + return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None) + return ReformerModelOutput( + last_hidden_state=sequence_output, + past_buckets_states=past_buckets_states, + hidden_states=hidden_states, + attentions=attentions, + ) + + def _pad_to_mult_of_chunk_length( + self, + input_ids, + inputs_embeds=None, + attention_mask=None, + position_ids=None, + input_shape=None, + padding_length=None, + padded_seq_length=None, + device=None, + ): + logger.warning_once( + f"Input ids are automatically padded from {input_shape[-1]} to {input_shape[-1] + padding_length} to be a " + f"multiple of `config.chunk_length`: {padded_seq_length}" + ) + + padded_input_ids = torch.full( + (input_shape[0], padding_length), + self.config.pad_token_id, + device=device, + dtype=torch.long, + ) + + # Extend `attention_mask` + if attention_mask is not None: + pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype) + + attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1) + else: + attention_mask = torch.cat( + [ + torch.ones(input_shape, device=device, dtype=torch.bool), + torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.bool), + ], + dim=-1, + ) + + # Extend `input_ids` with padding to match least common multiple chunk_length + if input_ids is not None: + input_ids = torch.cat([input_ids, padded_input_ids], dim=-1) + input_shape = input_ids.size() + + # Pad position ids if given + if position_ids is not None: + padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device) + padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length) + position_ids = torch.cat([position_ids, padded_position_ids], dim=-1) + + # Extend `inputs_embeds` with padding to match least common multiple chunk_length + if inputs_embeds is not None: + padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids) + inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2) + input_shape = inputs_embeds.size() + return input_ids, inputs_embeds, attention_mask, position_ids, input_shape + + +@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) +class ReformerModelWithLMHead(ReformerPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`." + assert "local" not in self.config.attn_layers or config.local_num_chunks_after == 0, ( + "If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not" + f" {config.local_num_chunks_after}." + ) + assert "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0, ( + "If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not" + f" {config.lsh_num_chunks_after}." + ) + + self.reformer = ReformerModel(config) + self.lm_head = ReformerOnlyLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + num_hashes: Optional[int] = None, + past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + reformer_outputs = self.reformer( + input_ids, + position_ids=position_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + num_hashes=num_hashes, + past_buckets_states=past_buckets_states, + use_cache=use_cache, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + sequence_output = reformer_outputs[0] + logits = self.lm_head(sequence_output) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) + + if not return_dict: + output = (logits,) + reformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ReformerModelWithLMHeadOutput( + loss=loss, + logits=logits, + past_buckets_states=reformer_outputs.past_buckets_states, + hidden_states=reformer_outputs.hidden_states, + attentions=reformer_outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs + ): + # only last token for inputs_ids if past is defined in kwargs + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + inputs_dict = { + "input_ids": input_ids, + "past_buckets_states": past_key_values, + "use_cache": use_cache, + "num_hashes": num_hashes, + } + + return inputs_dict + + def _reorder_cache(self, past_key_values, beam_idx): + reord_past_buckets_states = [] + for layer_past in past_key_values: + # buckets + if layer_past[0] is not None: + reord_buckets = layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)) + else: + reord_buckets = None + + # hidden states + reord_hidden_states = layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)) + reord_past_buckets_states.append((reord_buckets, reord_hidden_states)) + return reord_past_buckets_states + + +@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) +class ReformerForMaskedLM(ReformerPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + assert not config.is_decoder, ( + "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional" + " self-attention." + ) + self.reformer = ReformerModel(config) + self.lm_head = ReformerOnlyLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + num_hashes: Optional[int] = None, + labels: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), + the loss is only computed for the tokens with labels + + Returns: + + + + This example uses a false checkpoint since we don't have any available pretrained model for the masked language + modeling task with the Reformer architecture. + + + + Example: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, ReformerForMaskedLM + + >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-reformer") + >>> model = ReformerForMaskedLM.from_pretrained("hf-internal-testing/tiny-random-reformer") + + >>> # add mask_token + >>> tokenizer.add_special_tokens({"mask_token": "[MASK]"}) # doctest: +IGNORE_RESULT + >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") + + >>> # resize model's embedding matrix + >>> model.resize_token_embeddings(new_num_tokens=model.config.vocab_size + 1) # doctest: +IGNORE_RESULT + + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + + >>> # retrieve index of [MASK] + >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] + + >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) + >>> predicted_token = tokenizer.decode(predicted_token_id) + ``` + + ```python + >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] + >>> # mask labels of non-[MASK] tokens + >>> labels = torch.where( + ... inputs.input_ids == tokenizer.mask_token_id, labels[:, : inputs["input_ids"].shape[-1]], -100 + ... ) + + >>> outputs = model(**inputs, labels=labels) + >>> loss = round(outputs.loss.item(), 2) + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + reformer_outputs = self.reformer( + input_ids, + position_ids=position_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + num_hashes=num_hashes, + use_cache=False, # no causal mask + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + sequence_output = reformer_outputs[0] + logits = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + reformer_outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=logits, + hidden_states=reformer_outputs.hidden_states, + attentions=reformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + REFORMER_START_DOCSTRING, +) +class ReformerForSequenceClassification(ReformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.reformer = ReformerModel(config) + self.classifier = ReformerClassificationHead(config) + if config.is_decoder is True: + logger.warning("You might want to disable causal masking for sequence classification") + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + num_hashes: Optional[int] = None, + labels: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Example of single-label classification: + + ```python + >>> import torch + >>> from transformers import AutoTokenizer, ReformerForSequenceClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("google/reformer-crime-and-punishment") + >>> model = ReformerForSequenceClassification.from_pretrained("google/reformer-crime-and-punishment") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + + >>> predicted_class_id = logits.argmax().item() + >>> label = model.config.id2label[predicted_class_id] + ``` + + ```python + >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` + >>> num_labels = len(model.config.id2label) + >>> model = ReformerForSequenceClassification.from_pretrained( + ... "google/reformer-crime-and-punishment", num_labels=num_labels + ... ) + + >>> labels = torch.tensor(1) + >>> loss = model(**inputs, labels=labels).loss + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.reformer( + input_ids, + position_ids=position_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + num_hashes=num_hashes, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class ReformerClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, hidden_states, **kwargs): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +@add_start_docstrings( + """ + Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA + ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`. + """, + REFORMER_START_DOCSTRING, +) +class ReformerForQuestionAnswering(ReformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.reformer = ReformerModel(config) + # 2 * config.hidden_size because we use reversible residual layers + self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + num_hashes: Optional[int] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + reformer_outputs = self.reformer( + input_ids, + position_ids=position_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + num_hashes=num_hashes, + use_cache=False, # no causal mask + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + sequence_output = reformer_outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + reformer_outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=reformer_outputs.hidden_states, + attentions=reformer_outputs.attentions, + )