diff --git "a/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py" "b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py"
new file mode 100644--- /dev/null
+++ "b/env-llmeval/lib/python3.10/site-packages/transformers/models/reformer/modeling_reformer.py"
@@ -0,0 +1,2682 @@
+# coding=utf-8
+# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
+# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch REFORMER model."""
+
+import sys
+from collections import namedtuple
+from dataclasses import dataclass
+from functools import reduce
+from operator import mul
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+from torch import nn
+from torch.autograd.function import Function
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ DUMMY_INPUTS,
+ DUMMY_MASK,
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_reformer import ReformerConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/reformer-crime-and-punishment"
+_CONFIG_FOR_DOC = "ReformerConfig"
+
+REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "google/reformer-crime-and-punishment",
+ "google/reformer-enwik8",
+ # See all Reformer models at https://huggingface.co/models?filter=reformer
+]
+
+
+# Define named tuples for nn.Modules here
+LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"])
+LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"])
+AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"])
+ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"])
+ReformerBackwardOutput = namedtuple(
+ "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"]
+)
+ReformerEncoderOutput = namedtuple(
+ "ReformerEncoderOutput",
+ ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"],
+)
+
+
+def _stable_argsort(vector, dim):
+ # this function scales the vector so that torch.argsort is stable.
+ # torch.argsort is not stable on its own
+ scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1)
+ scale_offset = scale_offset.expand(vector.shape)
+ scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim])
+ return torch.argsort(scaled_vector, dim=dim)
+
+
+def _get_least_common_mult_chunk_len(config):
+ attn_types = config.attn_layers
+ attn_types_set = set(attn_types)
+ if len(attn_types_set) == 1 and attn_types[0] == "lsh":
+ return config.lsh_attn_chunk_length
+ elif len(attn_types_set) == 1 and attn_types[0] == "local":
+ return config.local_attn_chunk_length
+ elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}:
+ return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select "
+ "attn layer types from ['lsh', 'local'] only."
+ )
+
+
+def _get_min_chunk_len(config):
+ attn_types = config.attn_layers
+ attn_types_set = set(attn_types)
+ if len(attn_types_set) == 1 and attn_types[0] == "lsh":
+ return config.lsh_attn_chunk_length
+ elif len(attn_types_set) == 1 and attn_types[0] == "local":
+ return config.local_attn_chunk_length
+ elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}:
+ return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select "
+ "attn layer types from ['lsh', 'local'] only."
+ )
+
+
+class AxialPositionEmbeddings(nn.Module):
+ """
+ Constructs axial position embeddings. Useful for very long input sequences to save memory and time.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.axial_pos_shape = config.axial_pos_shape
+ self.axial_pos_embds_dim = config.axial_pos_embds_dim
+ self.dropout = config.hidden_dropout_prob
+
+ self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config)
+ self.weights = nn.ParameterList()
+
+ if sum(self.axial_pos_embds_dim) != config.hidden_size:
+ raise ValueError(
+ f"Make sure that config.axial_pos_embds factors: {self.axial_pos_embds_dim} sum to "
+ f"config.hidden_size: {config.hidden_size}"
+ )
+
+ # create weights
+ for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim):
+ # create expanded shapes
+ ax_shape = [1] * len(self.axial_pos_shape)
+ ax_shape[axis] = self.axial_pos_shape[axis]
+ ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,)
+
+ # create tensor and init
+ self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32)))
+
+ def forward(self, position_ids):
+ # broadcast weights to correct shape
+ batch_size = position_ids.shape[0]
+ sequence_length = position_ids.shape[1]
+
+ broadcasted_weights = [
+ weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights
+ ]
+
+ if self.training is True:
+ if reduce(mul, self.axial_pos_shape) != sequence_length:
+ raise ValueError(
+ f"If training, make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply to "
+ f"sequence length. Got prod({self.axial_pos_shape}) != sequence_length: {sequence_length}. "
+ f"You might want to consider padding your sequence length to {reduce(mul, self.axial_pos_shape)} "
+ "or changing config.axial_pos_shape."
+ )
+
+ if self.dropout > 0:
+ weights = torch.cat(broadcasted_weights, dim=-1)
+ # permute weights so that 2D correctly drops dims 1 and 2
+ transposed_weights = weights.transpose(2, 1)
+ # drop entire matrix of last two dims (prev dims 1 and 2)
+ dropped_transposed_weights = nn.functional.dropout2d(
+ transposed_weights, p=self.dropout, training=self.training
+ )
+ dropped_weights = dropped_transposed_weights.transpose(2, 1)
+
+ position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1))
+
+ else:
+ position_encodings = torch.cat(
+ [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights],
+ dim=-1,
+ )
+
+ else:
+ if reduce(mul, self.axial_pos_shape) < sequence_length:
+ raise ValueError(
+ f"Make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply at least to "
+ f"max(sequence_length, least_common_mult_chunk_length): max({sequence_length}, "
+ f"{self.least_common_mult_chunk_length})."
+ )
+
+ # compute how many columns are needed
+ max_position_id = position_ids.max().item()
+ required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1])
+
+ # cut to columns that are needed
+ position_encodings = torch.cat(
+ [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1
+ )
+ position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1]))
+
+ # select correct position encodings
+ position_encodings = torch.cat(
+ [
+ torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0)
+ for i in range(batch_size)
+ ],
+ dim=0,
+ )
+
+ return position_encodings
+
+
+class PositionEmbeddings(nn.Module):
+ """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+ self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+
+ def forward(self, position_ids):
+ position_embeddings = self.embedding(position_ids)
+ position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training)
+ return position_embeddings
+
+
+class ReformerEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.max_position_embeddings = config.max_position_embeddings
+ self.dropout = config.hidden_dropout_prob
+
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
+ self.position_embeddings = (
+ AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config)
+ )
+
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ device = input_ids.device
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+ device = inputs_embeds.device
+
+ seq_length = input_shape[1]
+ if position_ids is None:
+ position_ids = torch.arange(
+ start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device
+ )
+ position_ids = position_ids.unsqueeze(0).expand(input_shape)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ if position_ids.shape[-1] > self.max_position_embeddings:
+ raise ValueError(
+ f"Sequence Length: {position_ids.shape[-1]} has to be less or equal than "
+ f"config.max_position_embeddings {self.max_position_embeddings}."
+ )
+
+ # dropout
+ embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training)
+
+ # add positional embeddings
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings = embeddings + position_embeddings
+ return embeddings
+
+
+class EfficientAttentionMixin:
+ """
+ A few utilities for nn.Modules in Reformer, to be used as a mixin.
+ """
+
+ def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after):
+ """
+ Used to implement attention between consecutive chunks.
+
+ Args:
+ vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...]
+ num_chunks_before: chunks before current chunk to include in attention
+ num_chunks_after: chunks after current chunk to include in attention
+
+ Returns:
+ tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after).
+ """
+ if num_chunks_before == 0 and num_chunks_after == 0:
+ return vectors
+
+ slices = []
+ for i in range(-num_chunks_before, num_chunks_after + 1):
+ if i == 0:
+ slices.append(vectors)
+ else:
+ slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2))
+ return torch.cat(slices, dim=3)
+
+ def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size):
+ """
+ splits hidden_size dim into attn_head_size and num_attn_heads
+ """
+ new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size)
+ x = x.view(*new_x_shape)
+ return x.transpose(2, 1)
+
+ def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size):
+ """
+ merges attn_head_size dim and num_attn_heads dim into hidden_size
+ """
+ x = x.permute(0, 2, 1, 3)
+ return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size))
+
+ def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None):
+ """
+ splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims
+ """
+ batch_size = vectors.shape[0]
+ split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2)
+
+ if len(vectors.shape) == 4:
+ return torch.reshape(vectors, split_dim_shape + (attn_head_size,))
+ elif len(vectors.shape) == 3:
+ return torch.reshape(vectors, split_dim_shape)
+ else:
+ raise ValueError(f"Input vector rank should be one of [3, 4], but is: {len(vectors.shape)}")
+
+
+class LSHSelfAttention(nn.Module, EfficientAttentionMixin):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ self.chunk_length = config.lsh_attn_chunk_length
+ self.num_hashes = config.num_hashes
+ self.num_buckets = config.num_buckets
+ self.num_chunks_before = config.lsh_num_chunks_before
+ self.num_chunks_after = config.lsh_num_chunks_after
+ self.hash_seed = config.hash_seed
+ self.is_decoder = config.is_decoder
+ self.max_position_embeddings = config.max_position_embeddings
+
+ self.dropout = config.lsh_attention_probs_dropout_prob
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = config.attention_head_size
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.hidden_size = config.hidden_size
+
+ # projection matrices
+ self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+
+ # save mask value here. Need fp32 and fp16 mask values
+ self.register_buffer("self_mask_value_float16", torch.tensor(-1e3), persistent=False)
+ self.register_buffer("self_mask_value_float32", torch.tensor(-1e5), persistent=False)
+ self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False)
+ self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ buckets=None,
+ past_buckets_states=None,
+ use_cache=False,
+ output_attentions=False,
+ **kwargs,
+ ):
+ sequence_length = hidden_states.shape[1]
+ batch_size = hidden_states.shape[0]
+
+ # num hashes can optionally be overwritten by user
+ num_hashes = num_hashes if num_hashes is not None else self.num_hashes
+
+ do_cached_attention = use_cache and past_buckets_states[1] is not None
+
+ # check if cache shall be used and that hidden states are already cached
+ if do_cached_attention:
+ assert sequence_length == 1, (
+ "At the moment, auto-regressive language generation is only possible one word at a time. Make sure"
+ f" that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed."
+ )
+ past_buckets = past_buckets_states[0]
+ past_states = past_buckets_states[1]
+
+ # get query vector
+ query_vectors = self.query_key(hidden_states)
+ query_vectors = self._split_hidden_size_dim(
+ query_vectors, self.num_attention_heads, self.attention_head_size
+ )
+
+ if past_buckets is not None:
+ key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets(
+ query_vectors=query_vectors,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ hidden_states=hidden_states,
+ past_states=past_states,
+ past_buckets=past_buckets,
+ )
+
+ query_key_vectors = self._query_per_attn_head(key_value_hidden_states)
+ value_vectors = self._value_per_attn_head(key_value_hidden_states)
+
+ # split key & value vectors by num hashes to apply
+ # self attention on each separately
+ query_key_vectors = self._split_seq_length_dim_to(
+ query_key_vectors,
+ num_hashes,
+ -1,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ num_hashes,
+ -1,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ # repeat query vectors across hash dimension
+ query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1)
+ else:
+ key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1)
+
+ query_key_vectors = self.query_key(key_value_hidden_states)
+ value_vectors = self.value(key_value_hidden_states)
+
+ else:
+ # project hidden_states to query_key and value
+ query_vectors = None
+ query_key_vectors = self.query_key(hidden_states)
+ value_vectors = self.value(hidden_states)
+
+ # if query key is not already split
+ if not do_cached_attention or past_buckets is None:
+ query_key_vectors = self._split_hidden_size_dim(
+ query_key_vectors, self.num_attention_heads, self.attention_head_size
+ )
+ value_vectors = self._split_hidden_size_dim(
+ value_vectors, self.num_attention_heads, self.attention_head_size
+ )
+
+ # cache buckets for next incremental decoding
+ if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length:
+ buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask)
+
+ # free memory
+ del hidden_states
+
+ assert (
+ query_key_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ value_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
+
+ do_standard_self_attention = (sequence_length <= self.chunk_length) or (
+ use_cache and past_buckets_states[1] is not None
+ )
+ # LSH attention only makes sense if chunked attention should be performed
+ if not do_standard_self_attention:
+ # set `num_buckets` on the fly, recommended way to do it
+ if self.num_buckets is None:
+ self._set_num_buckets(sequence_length)
+
+ # use cached buckets for backprop only
+ if buckets is None:
+ # hash query key vectors into buckets
+ buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask)
+ else:
+ # make sure buckets has correct shape for LSH attention
+ buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length)
+
+ assert (
+ int(buckets.shape[-1]) == num_hashes * sequence_length
+ ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}"
+
+ sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx(
+ sequence_length, buckets, num_hashes
+ )
+
+ # make sure bucket idx is not longer then sequence length
+ sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length
+
+ # cluster query key value vectors according to hashed buckets
+ query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes)
+ value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes)
+ query_key_vectors = self._split_seq_length_dim_to(
+ query_key_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+
+ if self.chunk_length is None:
+ assert self.num_chunks_before == 0 and self.num_chunks_after == 0, (
+ "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and"
+ " `config.num_chunks_before` are set to 0."
+ )
+ elif do_cached_attention and past_buckets is not None:
+ # use max sequence length
+ sorted_bucket_idx_per_hash = sorted_bucket_idx
+ else:
+ # get sequence length indices
+ sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat(
+ batch_size, self.num_attention_heads, 1
+ )
+
+ # scale key vectors
+ sqrt_num = np.sqrt(self.attention_head_size)
+ key_vectors = self._len_and_dim_norm(query_key_vectors, sqrt_num)
+
+ # set query_vectors to query key vectors if LSH self attention
+ query_vectors = query_vectors if query_vectors is not None else query_key_vectors
+
+ # free memory
+ del query_key_vectors
+
+ # get attention probs
+ out_vectors, logits, attention_probs = self._attend(
+ query_vectors=query_vectors,
+ key_vectors=key_vectors,
+ value_vectors=value_vectors,
+ sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ do_standard_self_attention=do_standard_self_attention,
+ do_cached_attention=do_cached_attention,
+ )
+
+ # free memory
+ del key_vectors, value_vectors
+
+ # re-order out_vectors and logits
+ if not do_standard_self_attention:
+ # sort clusters back to correct ordering
+ out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx)
+
+ if not do_standard_self_attention or (do_cached_attention and past_buckets is not None):
+ # sum up all hash rounds
+ if num_hashes > 1:
+ out_vectors = self._split_seq_length_dim_to(
+ out_vectors,
+ num_hashes,
+ sequence_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ logits = self._split_seq_length_dim_to(
+ logits,
+ num_hashes,
+ sequence_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ ).unsqueeze(-1)
+
+ probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True))
+ out_vectors = torch.sum(out_vectors * probs_vectors, dim=2)
+ # free memory
+ del probs_vectors
+
+ # free memory
+ del logits
+
+ assert out_vectors.shape == (
+ batch_size,
+ self.num_attention_heads,
+ sequence_length,
+ self.attention_head_size,
+ ), (
+ "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length,"
+ " config.attention_head_size]`."
+ )
+
+ out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size)
+
+ if output_attentions is False:
+ attention_probs = ()
+
+ if buckets is not None:
+ buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1)
+
+ return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets)
+
+ def _query_per_attn_head(self, hidden_states):
+ per_head_query_key = self.query_key.weight.reshape(
+ self.num_attention_heads, self.attention_head_size, self.hidden_size
+ ).transpose(-2, -1)
+ # only relevant for inference and no bias => we can use einsum here
+ query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key)
+ return query_key_vectors
+
+ def _value_per_attn_head(self, hidden_states):
+ per_head_value = self.value.weight.reshape(
+ self.num_attention_heads, self.attention_head_size, self.hidden_size
+ ).transpose(-2, -1)
+ # only relevant for inference and no bias => we can use einsum here
+ value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value)
+ return value_vectors
+
+ def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False):
+ batch_size = vectors.shape[0]
+
+ # See https://arxiv.org/pdf/1509.02897.pdf
+ # We sample a different random rotation for each round of hashing to
+ # decrease the probability of hash misses.
+ if isinstance(self.num_buckets, int):
+ assert (
+ self.num_buckets % 2 == 0
+ ), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}"
+ rotation_size = self.num_buckets
+ num_buckets = self.num_buckets
+ else:
+ # Factorize the hash if self.num_buckets is a list or tuple
+ rotation_size, num_buckets = 0, 1
+ for bucket_factor in self.num_buckets:
+ assert (
+ bucket_factor % 2 == 0
+ ), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}"
+ rotation_size = rotation_size + bucket_factor
+ num_buckets = num_buckets * bucket_factor
+
+ # remove gradient
+ vectors = vectors.detach()
+
+ if self.hash_seed is not None:
+ # for determinism
+ torch.manual_seed(self.hash_seed)
+
+ rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2)
+ # create a random self.attention_head_size x num_hashes x num_buckets/2
+ random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype)
+ # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2
+ rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations)
+
+ if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1:
+ rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1)
+ buckets = torch.argmax(rotated_vectors, dim=-1)
+ else:
+ # Get the buckets for them and combine.
+ buckets, cur_sum, cur_product = None, 0, 1
+ for bucket_factor in self.num_buckets:
+ rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)]
+ cur_sum = cur_sum + bucket_factor // 2
+ rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1)
+ if buckets is None:
+ buckets = torch.argmax(rotated_vectors_factor, dim=-1)
+ else:
+ buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1))
+
+ cur_product = cur_product * bucket_factor
+
+ if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]):
+ # add an extra bucket for padding tokens only
+ num_buckets = num_buckets + 1
+ # assign padding tokens extra bucket
+ buckets_mask = attention_mask.to(torch.bool)[:, None, None, :].expand(buckets.shape)
+ buckets = torch.where(
+ buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device)
+ )
+ elif increase_num_buckets:
+ num_buckets = num_buckets + 1
+
+ # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len).
+ # Next we add offsets so that bucket numbers from different hashing rounds don't overlap.
+ offsets = torch.arange(num_hashes, device=vectors.device)
+ offsets = (offsets * num_buckets).view((1, 1, -1, 1))
+
+ # expand to batch size and num attention heads
+ offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:])
+ offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3)
+
+ return offset_buckets
+
+ def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes):
+ # no gradients are needed
+ with torch.no_grad():
+ # hash-based sort
+ sorted_bucket_idx = _stable_argsort(buckets, dim=-1)
+
+ # create simple indices to scatter to, to have undo sort
+ indices = (
+ torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device)
+ .view(1, 1, -1)
+ .expand(sorted_bucket_idx.shape)
+ )
+
+ # get undo sort
+ undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size())
+ undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices)
+
+ return sorted_bucket_idx, undo_sorted_bucket_idx
+
+ def _set_num_buckets(self, sequence_length):
+ # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper
+ num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1
+ # make sure buckets are power of 2
+ num_buckets = 2**num_buckets_pow_2
+
+ # factorize `num_buckets` if `num_buckets` becomes too large
+ num_buckets_limit = 2 * max(
+ int((self.max_position_embeddings // self.chunk_length) ** (0.5)),
+ self.chunk_length,
+ )
+ if num_buckets > num_buckets_limit:
+ num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)]
+
+ logger.warning(f"config.num_buckets is not set. Setting config.num_buckets to {num_buckets}...")
+
+ # set num buckets in config to be properly saved
+ self.config.num_buckets = num_buckets
+ self.num_buckets = num_buckets
+
+ def _attend(
+ self,
+ query_vectors,
+ key_vectors,
+ value_vectors,
+ sorted_bucket_idx_per_hash,
+ attention_mask,
+ head_mask,
+ do_standard_self_attention,
+ do_cached_attention,
+ ):
+ # look at previous and following chunks if chunked attention
+ if not do_standard_self_attention:
+ key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after)
+ value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after)
+
+ # get logits and dots
+ # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft))
+ query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2))
+
+ # free memory
+ del query_vectors, key_vectors
+
+ # if chunked attention split bucket idxs to query and key
+ if not do_standard_self_attention:
+ query_bucket_idx = self._split_seq_length_dim_to(
+ sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads
+ )
+ key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after)
+ elif do_cached_attention and query_key_dots.ndim > 4:
+ key_value_bucket_idx = sorted_bucket_idx_per_hash
+ query_bucket_idx = (
+ key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max()
+ )
+ elif do_cached_attention and query_key_dots.ndim <= 4:
+ query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1]
+ key_value_bucket_idx = torch.arange(
+ query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device
+ )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,))
+ else:
+ query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash
+
+ # get correct mask values depending on precision
+ if query_key_dots.dtype == torch.float16:
+ self_mask_value = self.self_mask_value_float16.half()
+ mask_value = self.mask_value_float16.half()
+ else:
+ self_mask_value = self.self_mask_value_float32
+ mask_value = self.mask_value_float32
+
+ if not do_cached_attention:
+ mask = self._compute_attn_mask(
+ query_bucket_idx,
+ key_value_bucket_idx,
+ attention_mask,
+ query_key_dots.shape,
+ do_standard_self_attention,
+ )
+
+ if mask is not None:
+ query_key_dots = torch.where(mask, query_key_dots, mask_value)
+
+ # free memory
+ del mask
+
+ # Self mask is ALWAYS applied.
+ # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf):
+ # " While attention to the future is not allowed, typical implementations of the
+ # Transformer do allow a position to attend to itself.
+ # Such behavior is undesirable in a shared-QK formulation because the dot-product
+ # of a query vector with itself will almost always be greater than the dot product of a
+ # query vector with a vector at another position. We therefore modify the masking
+ # to forbid a token from attending to itself, except in situations
+ # where a token has no other valid attention targets (e.g. the first token in a sequence) "
+
+ self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to(
+ query_bucket_idx.device
+ )
+
+ # apply self_mask
+ query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value)
+
+ # free memory
+ del self_mask
+
+ logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True)
+ # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]`
+ attention_probs = torch.exp(query_key_dots - logits)
+
+ # free memory
+ del query_key_dots
+
+ # dropout
+ attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ # attend values
+ out_vectors = torch.matmul(attention_probs, value_vectors)
+
+ # free memory
+ del value_vectors
+
+ # merge chunk length
+ if out_vectors.ndim > 4:
+ logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1)
+ out_vectors = out_vectors.flatten(start_dim=2, end_dim=3)
+
+ return out_vectors, logits, attention_probs
+
+ def _compute_attn_mask(
+ self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention
+ ):
+ # attention mask for LSH
+ if attention_mask is not None:
+ # if chunked attention, the attention mask has to correspond to LSH order
+ attention_mask = attention_mask.to(torch.bool)[:, None, :]
+ if not do_standard_self_attention:
+ # expand attn_mask to fit with key_value_bucket_idx shape
+ attention_mask = attention_mask[:, None, :]
+ attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,))
+ # extract attention mask from LSH sorted key_indices
+ attention_mask = torch.gather(attention_mask, -1, key_indices)
+
+ attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape)
+
+ # Causal mask
+ if self.is_decoder is True:
+ causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device)
+
+ # add attention mask if not None
+ if attention_mask is not None:
+ attention_mask = causal_mask * attention_mask
+ else:
+ attention_mask = causal_mask
+
+ return attention_mask
+
+ def _get_relevant_hid_states_and_buckets(
+ self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets
+ ):
+ # concat hidden states
+ hidden_states = torch.cat([past_states, hidden_states], dim=1)
+
+ # batch_size hidden
+ batch_size = hidden_states.shape[0]
+ sequence_length = hidden_states.shape[1]
+
+ # check if cached buckets include pad bucket
+ max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets)
+
+ # if pad bucket was cached => need to increase num buckets for caching
+ increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1
+
+ # retrieve query buckets
+ query_buckets = self._hash_vectors(
+ query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets
+ )
+
+ # concat buckets
+ concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1)
+
+ # hash-based sort
+ bucket_idx = _stable_argsort(concat_buckets, dim=-1)
+
+ # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength
+ assert bucket_idx.shape == (
+ batch_size,
+ self.num_attention_heads,
+ num_hashes,
+ sequence_length,
+ ), (
+ f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but"
+ f" has shape {bucket_idx.shape}."
+ )
+
+ # find indices of new bucket indices
+ relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero()
+
+ # expand relevant bucket indices to its chunks
+ relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length)
+ relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))]
+
+ # adapt bucket_idx for batch and hidden states for index select
+ offset = torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long)
+ bucket_idx_batch_offset = sequence_length * (
+ batch_size * torch.div(offset, relevant_bucket_idx_chunk.shape[-1], rounding_mode="floor")
+ )
+
+ # add batch offset
+ relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset
+ hidden_states = hidden_states.reshape((-1, self.hidden_size))
+
+ # select all relevant hidden states
+ relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch)
+
+ # reshape hidden states and bucket_idx to correct output
+ relevant_hidden_states = relevant_hidden_states.reshape(
+ batch_size, self.num_attention_heads, -1, self.hidden_size
+ )
+ relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape(
+ batch_size, self.num_attention_heads, num_hashes, -1
+ )
+
+ assert (
+ relevant_hidden_states.shape[2]
+ == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes
+ ), (
+ "There should be"
+ f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`,"
+ f" there are {relevant_hidden_states.shape[2]} `hidden_states`."
+ )
+
+ assert (
+ relevant_bucket_idx_chunk.shape[-1]
+ == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length
+ ), (
+ "There should be"
+ f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are"
+ f" {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`."
+ )
+
+ return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets
+
+ def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length):
+ # get relevant indices of where chunk starts and its size
+ start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length
+ total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after)
+
+ # expand start indices and add correct chunk offset via arange
+ expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size)
+ chunk_sequence_indices = expanded_start_indices + torch.arange(
+ total_chunk_size, device=indices.device, dtype=torch.long
+ ).unsqueeze(0).expand(indices.shape[0], total_chunk_size)
+
+ # make sure that circular logic holds via % seq len
+ chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length
+
+ # expand indices and set indices correctly
+ indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone()
+ indices[:, -1] = chunk_sequence_indices
+
+ return indices
+
+ def _len_and_dim_norm(self, vectors, sqrt_num):
+ """
+ length and attention head size dim normalization
+ """
+ vectors = self._len_norm(vectors)
+ vectors = vectors / sqrt_num
+ return vectors
+
+ def _len_norm(self, x, epsilon=1e-6):
+ """
+ length normalization
+ """
+ variance = torch.mean(x**2, -1, keepdim=True)
+ norm_x = x * torch.rsqrt(variance + epsilon)
+ return norm_x
+
+ def _gather_by_expansion(self, vectors, idxs, num_hashes):
+ """
+ expand dims of idxs and vectors for all hashes and gather
+ """
+ expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size)
+ vectors = vectors.repeat(1, 1, num_hashes, 1)
+ return torch.gather(vectors, 2, expanded_idxs)
+
+
+class ReverseSort(Function):
+ """
+ After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized
+ backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here.
+ """
+
+ @staticmethod
+ def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx):
+ # save sorted_bucket_idx for backprop
+ with torch.no_grad():
+ ctx.sorted_bucket_idx = sorted_bucket_idx
+
+ # undo sort to have correct order for next layer
+ expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape)
+ out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices)
+ logits = torch.gather(logits, 2, undo_sorted_bucket_idx)
+ return out_vectors, logits
+
+ @staticmethod
+ def backward(ctx, grad_out_vectors, grad_logits):
+ # get parameters saved in ctx
+ sorted_bucket_idx = ctx.sorted_bucket_idx
+
+ expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape)
+ # reverse sort of forward
+ grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices)
+ grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx)
+
+ # return grad and `None` fillers for last 2 forward args
+ return grad_out_vectors, grad_logits, None, None
+
+
+class LocalSelfAttention(nn.Module, EfficientAttentionMixin):
+ def __init__(self, config):
+ super().__init__()
+
+ self.num_attention_heads = config.num_attention_heads
+ self.chunk_length = config.local_attn_chunk_length
+ self.num_chunks_before = config.local_num_chunks_before
+ self.num_chunks_after = config.local_num_chunks_after
+ self.is_decoder = config.is_decoder
+ self.pad_token_id = config.pad_token_id
+
+ self.attention_head_size = config.attention_head_size
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+ self.hidden_size = config.hidden_size
+
+ # projection matrices
+ self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+ self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False)
+
+ self.dropout = config.local_attention_probs_dropout_prob
+
+ # save mask value here
+ self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False)
+ self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ past_buckets_states=None,
+ use_cache=False,
+ output_attentions=False,
+ **kwargs,
+ ):
+ sequence_length = hidden_states.shape[1]
+ batch_size = hidden_states.shape[0]
+
+ # check if cache shall be used and that hidden states are already cached
+ if use_cache and past_buckets_states[1] is not None:
+ assert past_buckets_states[0] is None, (
+ "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching"
+ " hidden_states_and_buckets."
+ )
+ key_value_hidden_states = self._retrieve_relevant_hidden_states(
+ past_buckets_states[1], self.chunk_length, self.num_chunks_before
+ )
+ key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1)
+
+ # only query vector for last token
+ query_vectors = self.query(hidden_states)
+ # compute key and value for relevant chunk
+ key_vectors = self.key(key_value_hidden_states)
+ value_vectors = self.value(key_value_hidden_states)
+
+ # free memory
+ del key_value_hidden_states
+ else:
+ # project hidden_states to query, key and value
+ query_vectors = self.query(hidden_states)
+ key_vectors = self.key(hidden_states)
+ value_vectors = self.value(hidden_states)
+
+ # split last dim into `config.num_attention_heads` and `config.attention_head_size`
+ query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size)
+ key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size)
+ value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size)
+
+ assert (
+ query_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ key_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}."
+ assert (
+ value_vectors.shape[-1] == self.attention_head_size
+ ), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}."
+
+ if self.chunk_length is None:
+ assert self.num_chunks_before == 0 and self.num_chunks_after == 0, (
+ "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and"
+ " `config.num_chunks_before` are set to 0."
+ )
+
+ # normalize key vectors
+ key_vectors = key_vectors / np.sqrt(self.attention_head_size)
+
+ # get sequence length indices
+ indices = torch.arange(sequence_length, device=query_vectors.device).repeat(
+ batch_size, self.num_attention_heads, 1
+ )
+
+ # if one should do normal n^2 self-attention
+ do_standard_self_attention = sequence_length <= self.chunk_length
+
+ # if input should be chunked
+ if not do_standard_self_attention:
+ # chunk vectors
+ # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size
+ query_vectors = self._split_seq_length_dim_to(
+ query_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ key_vectors = self._split_seq_length_dim_to(
+ key_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+ value_vectors = self._split_seq_length_dim_to(
+ value_vectors,
+ -1,
+ self.chunk_length,
+ self.num_attention_heads,
+ self.attention_head_size,
+ )
+
+ # chunk indices
+ query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads)
+ key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads)
+
+ # append chunks before and after
+ key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after)
+ value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after)
+ key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after)
+ else:
+ query_indices = key_indices = indices
+
+ # query-key matmul: QK^T
+ query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2))
+
+ # free memory
+ del query_vectors, key_vectors
+
+ mask = self._compute_attn_mask(
+ query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention
+ )
+
+ if mask is not None:
+ # get mask tensor depending on half precision or not
+ if query_key_dots.dtype == torch.float16:
+ mask_value = self.mask_value_float16.half()
+ else:
+ mask_value = self.mask_value_float32
+
+ query_key_dots = torch.where(mask, query_key_dots, mask_value)
+
+ # free memory
+ del mask
+
+ # softmax
+ logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True)
+ attention_probs = torch.exp(query_key_dots - logits)
+
+ # free memory
+ del logits
+
+ # dropout
+ attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ # attend values
+ out_vectors = torch.matmul(attention_probs, value_vectors)
+
+ # free memory
+ del value_vectors
+
+ # merge chunk length
+ if not do_standard_self_attention:
+ out_vectors = out_vectors.flatten(start_dim=2, end_dim=3)
+
+ assert out_vectors.shape == (
+ batch_size,
+ self.num_attention_heads,
+ sequence_length,
+ self.attention_head_size,
+ )
+
+ out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size)
+
+ if output_attentions is False:
+ attention_probs = ()
+
+ return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs)
+
+ def _compute_attn_mask(
+ self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention
+ ):
+ # chunk attention mask and look before and after
+ if attention_mask is not None:
+ attention_mask = attention_mask.to(torch.bool)[:, None, :]
+
+ if not do_standard_self_attention:
+ attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1)
+ attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after)
+ # create attn_mask
+ attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape)
+
+ # Causal mask
+ if self.is_decoder is True:
+ causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device)
+
+ # add attention mask if not None
+ if attention_mask is not None:
+ attention_mask = causal_mask * attention_mask
+ else:
+ attention_mask = causal_mask
+
+ return attention_mask
+
+ @staticmethod
+ def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before):
+ start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length
+ return previous_hidden_states[:, start_position:]
+
+
+class ReformerSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ all_head_size = config.num_attention_heads * config.attention_head_size
+ self.dropout = config.hidden_dropout_prob
+
+ self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ return hidden_states
+
+
+class ReformerAttention(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.layer_id = layer_id
+ self.attn_layers = config.attn_layers
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh":
+ self.self_attention = LSHSelfAttention(config)
+ elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local":
+ self.self_attention = LocalSelfAttention(config)
+ elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == {"lsh", "local"}:
+ # get correct attn layers
+ if self.attn_layers[self.layer_id] == "lsh":
+ self.self_attention = LSHSelfAttention(config)
+ else:
+ self.self_attention = LocalSelfAttention(config)
+ else:
+ raise NotImplementedError(
+ f"Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {self.attn_layers}. "
+ "Select attn layer types from ['lsh', 'local'] only."
+ )
+ self.output = ReformerSelfOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_attentions=False,
+ buckets=None,
+ ):
+ hidden_states = self.layer_norm(hidden_states)
+
+ # make sure cached hidden states is set to None for backward pass
+ if past_buckets_states is not None:
+ past_buckets_states_layer = past_buckets_states[self.layer_id]
+ else:
+ past_buckets_states_layer = None
+
+ # use cached buckets for backprob if buckets not None for LSHSelfAttention
+ self_attention_outputs = self.self_attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states_layer,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ buckets=buckets,
+ )
+
+ # add buckets if necessary
+ if hasattr(self_attention_outputs, "buckets"):
+ buckets = self_attention_outputs.buckets
+ else:
+ buckets = None
+
+ # cache hidden states for future use
+ if use_cache:
+ if past_buckets_states[self.layer_id][0] is None:
+ # padded input should not be cached
+ past_buckets = (
+ buckets[:, :, :, :orig_sequence_length]
+ if (buckets is not None and orig_sequence_length > 1)
+ else buckets
+ )
+ else:
+ past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1)
+
+ if past_buckets_states[self.layer_id][1] is None:
+ # padded input should not be cached
+ past_states = hidden_states[:, :orig_sequence_length]
+ else:
+ past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1)
+
+ past_buckets_states[self.layer_id] = (past_buckets, past_states)
+ # compute attention feed forward output
+ attention_output = self.output(self_attention_outputs.hidden_states)
+
+ return AttentionOutput(
+ hidden_states=attention_output,
+ attention_probs=self_attention_outputs.attention_probs,
+ buckets=buckets,
+ )
+
+
+class ReformerFeedForwardDense(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ if isinstance(config.hidden_act, str):
+ self.act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.act_fn = config.hidden_act
+
+ self.dense = nn.Linear(config.hidden_size, config.feed_forward_size)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = self.act_fn(hidden_states)
+ return hidden_states
+
+
+class ReformerFeedForwardOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ self.dense = nn.Linear(config.feed_forward_size, config.hidden_size)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ return hidden_states
+
+
+class ChunkReformerFeedForward(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dense = ReformerFeedForwardDense(config)
+ self.output = ReformerFeedForwardOutput(config)
+
+ def forward(self, attention_output):
+ return apply_chunking_to_forward(
+ self.forward_chunk,
+ self.chunk_size_feed_forward,
+ self.seq_len_dim,
+ attention_output,
+ )
+
+ def forward_chunk(self, hidden_states):
+ hidden_states = self.layer_norm(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ return self.output(hidden_states)
+
+
+class ReformerLayer(nn.Module):
+ def __init__(self, config, layer_id=0):
+ super().__init__()
+ self.attention = ReformerAttention(config, layer_id)
+ # dropout requires to have the same
+ # seed for forward and backward pass
+ self.attention_seed = None
+ self.feed_forward_seed = None
+
+ self.feed_forward = ChunkReformerFeedForward(config)
+
+ def _init_attention_seed(self):
+ """
+ This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1
+ normal forward call and 1 forward call in backward to recalculate activations.
+ """
+
+ # randomize seeds
+ # use cuda generator if available
+ if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0:
+ # GPU
+ device_idx = torch.cuda.current_device()
+ self.attention_seed = torch.cuda.default_generators[device_idx].seed()
+ else:
+ # CPU
+ self.attention_seed = int(torch.seed() % sys.maxsize)
+
+ torch.manual_seed(self.attention_seed)
+
+ def _init_feed_forward_seed(self):
+ """
+ This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls:
+ 1 normal forward call and 1 forward call in backward to recalculate activations.
+ """
+ # randomize seeds
+ # use cuda generator if available
+ if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0:
+ # GPU
+ device_idx = torch.cuda.current_device()
+ self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed()
+ else:
+ # CPU
+ self.feed_forward_seed = int(torch.seed() % sys.maxsize)
+
+ torch.manual_seed(self.feed_forward_seed)
+
+ def forward(
+ self,
+ prev_attn_output,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_attentions=False,
+ ):
+ with torch.no_grad():
+ # every forward pass we sample a different seed
+ # for dropout and save for forward fn in backward pass
+ # to have correct dropout
+ if self.training:
+ self._init_attention_seed()
+
+ attn_outputs = self.attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_attentions=output_attentions,
+ )
+ attn_output = attn_outputs.hidden_states
+
+ # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0)
+ # Y_1 = X_1 + f(X_2)
+ attn_output = prev_attn_output + attn_output
+
+ # free memory
+ del prev_attn_output
+
+ # every forward pass we sample a different seed
+ # for dropout and save seed for forward fn in backward
+ # to have correct dropout
+ if self.training:
+ self._init_feed_forward_seed()
+ # Y_2 = X_2 + g(Y_1)
+ hidden_states = hidden_states + self.feed_forward(attn_output)
+
+ return ReformerOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ attention_probs=attn_outputs.attention_probs,
+ buckets=attn_outputs.buckets,
+ )
+
+ def backward_pass(
+ self,
+ next_attn_output,
+ hidden_states,
+ grad_attn_output,
+ grad_hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ buckets=None,
+ ):
+ # Implements the backward pass for reversible ResNets.
+ # A good blog post on how this works can be found here:
+ # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0)
+ # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py
+
+ assert self.training, (
+ "If you want to train `ReformerModel` and its variations, make sure to use `model.train()` to put the"
+ " model into training mode."
+ )
+
+ with torch.enable_grad():
+ next_attn_output.requires_grad = True
+
+ # set seed to have correct dropout
+ torch.manual_seed(self.feed_forward_seed)
+ # g(Y_1)
+ res_hidden_states = self.feed_forward(next_attn_output)
+ res_hidden_states.backward(grad_hidden_states, retain_graph=True)
+
+ with torch.no_grad():
+ # X_2 = Y_2 - g(Y_1)
+ hidden_states = hidden_states - res_hidden_states
+ del res_hidden_states
+
+ grad_attn_output = grad_attn_output + next_attn_output.grad
+ next_attn_output.grad = None
+
+ with torch.enable_grad():
+ hidden_states.requires_grad = True
+
+ # set seed to have correct dropout
+ torch.manual_seed(self.attention_seed)
+ # f(X_2)
+ # use cached buckets for backprob if buckets not None for LSHSelfAttention
+ output = self.attention(
+ hidden_states=hidden_states,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ buckets=buckets,
+ ).hidden_states
+ output.backward(grad_attn_output, retain_graph=True)
+
+ with torch.no_grad():
+ # X_1 = Y_1 - f(X_2)
+ attn_output = next_attn_output - output
+ del output, next_attn_output
+
+ grad_hidden_states = grad_hidden_states + hidden_states.grad
+ hidden_states.grad = None
+ hidden_states = hidden_states.detach()
+
+ return ReformerBackwardOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ grad_attn_output=grad_attn_output,
+ grad_hidden_states=grad_hidden_states,
+ )
+
+
+class _ReversibleFunction(Function):
+ """
+ To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here.
+ This way it is made sure that no memory expensive activations are saved during the forward pass. This function is
+ heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py
+ """
+
+ @staticmethod
+ def forward(
+ ctx,
+ hidden_states,
+ layers,
+ attention_mask,
+ head_mask,
+ num_hashes,
+ all_hidden_states,
+ all_attentions,
+ past_buckets_states,
+ use_cache,
+ orig_sequence_length,
+ output_hidden_states,
+ output_attentions,
+ ):
+ all_buckets = ()
+
+ # split duplicated tensor
+ hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1)
+
+ for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)):
+ if output_hidden_states is True:
+ all_hidden_states.append(hidden_states)
+
+ layer_outputs = layer(
+ prev_attn_output=attn_output,
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ head_mask=layer_head_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_attentions=output_attentions,
+ )
+
+ attn_output = layer_outputs.attn_output
+ hidden_states = layer_outputs.hidden_states
+ all_buckets = all_buckets + (layer_outputs.buckets,)
+
+ if output_attentions:
+ all_attentions.append(layer_outputs.attention_probs)
+
+ # Add last layer
+ if output_hidden_states is True:
+ all_hidden_states.append(hidden_states)
+
+ # attach params to ctx for backward
+ ctx.save_for_backward(attn_output.detach(), hidden_states.detach())
+ ctx.layers = layers
+ ctx.all_buckets = all_buckets
+ ctx.head_mask = head_mask
+ ctx.attention_mask = attention_mask
+
+ # Concatenate 2 RevNet outputs
+ return torch.cat([attn_output, hidden_states], dim=-1)
+
+ @staticmethod
+ def backward(ctx, grad_hidden_states):
+ grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1)
+
+ # retrieve params from ctx for backward
+ attn_output, hidden_states = ctx.saved_tensors
+
+ # create tuple
+ output = ReformerBackwardOutput(
+ attn_output=attn_output,
+ hidden_states=hidden_states,
+ grad_attn_output=grad_attn_output,
+ grad_hidden_states=grad_hidden_states,
+ )
+
+ # free memory
+ del grad_attn_output, grad_hidden_states, attn_output, hidden_states
+
+ layers = ctx.layers
+ all_buckets = ctx.all_buckets
+ head_mask = ctx.head_mask
+ attention_mask = ctx.attention_mask
+
+ for idx, layer in enumerate(layers[::-1]):
+ # pop last buckets from stack
+ buckets = all_buckets[-1]
+ all_buckets = all_buckets[:-1]
+
+ # backprop
+ output = layer.backward_pass(
+ next_attn_output=output.attn_output,
+ hidden_states=output.hidden_states,
+ grad_attn_output=output.grad_attn_output,
+ grad_hidden_states=output.grad_hidden_states,
+ head_mask=head_mask[len(layers) - idx - 1],
+ attention_mask=attention_mask,
+ buckets=buckets,
+ )
+
+ assert all_buckets == (), "buckets have to be empty after backpropagation"
+ grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1)
+
+ # num of return vars has to match num of forward() args
+ # return gradient for hidden_states arg and None for other args
+ return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None
+
+
+class ReformerEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dropout = config.hidden_dropout_prob
+
+ self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)])
+ # Reformer is using Rev Nets, thus last layer outputs are concatenated and
+ # Layer Norm is done over 2 * hidden_size
+ self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ num_hashes=None,
+ past_buckets_states=None,
+ use_cache=False,
+ orig_sequence_length=None,
+ output_hidden_states=False,
+ output_attentions=False,
+ ):
+ # hidden_states and attention lists to be filled if wished
+ all_hidden_states = []
+ all_attentions = []
+
+ # init cached hidden states if necessary
+ if past_buckets_states is None:
+ past_buckets_states = [((None), (None)) for i in range(len(self.layers))]
+
+ # concat same tensor for reversible ResNet
+ hidden_states = torch.cat([hidden_states, hidden_states], dim=-1)
+ hidden_states = _ReversibleFunction.apply(
+ hidden_states,
+ self.layers,
+ attention_mask,
+ head_mask,
+ num_hashes,
+ all_hidden_states,
+ all_attentions,
+ past_buckets_states,
+ use_cache,
+ orig_sequence_length,
+ output_hidden_states,
+ output_attentions,
+ )
+
+ # Apply layer norm to concatenated hidden states
+ hidden_states = self.layer_norm(hidden_states)
+
+ # Apply dropout
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ return ReformerEncoderOutput(
+ hidden_states=hidden_states,
+ all_hidden_states=all_hidden_states,
+ all_attentions=all_attentions,
+ past_buckets_states=past_buckets_states,
+ )
+
+
+class ReformerOnlyLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ # Reformer is using Rev Nets, thus last layer outputs are concatenated and
+ # Layer Norm is done over 2 * hidden_size
+ self.seq_len_dim = 1
+ self.chunk_size_lm_head = config.chunk_size_lm_head
+ self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
+
+ def forward_chunk(self, hidden_states):
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ self.bias = self.decoder.bias
+
+
+class ReformerPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ReformerConfig
+ base_model_prefix = "reformer"
+
+ @property
+ def dummy_inputs(self):
+ input_ids = torch.tensor(DUMMY_INPUTS)
+ input_mask = torch.tensor(DUMMY_MASK)
+ dummy_inputs = {
+ "input_ids": input_ids,
+ "attention_mask": input_mask,
+ }
+ return dummy_inputs
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, AxialPositionEmbeddings):
+ for weight in module.weights:
+ nn.init.normal_(weight, std=self.config.axial_norm_std)
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+@dataclass
+class ReformerModelOutput(ModelOutput):
+ """
+ Output type of [`ReformerModel`].
+
+ Args:
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`):
+ Sequence of hidden-states at the last layer of the model.
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed
+ up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ last_hidden_state: torch.FloatTensor
+ past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class ReformerModelWithLMHeadOutput(ModelOutput):
+ """
+ Output type of [`ReformerModelWithLMHead`].
+
+ Args:
+ loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided)
+ Language modeling loss (for next-token prediction).
+ logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`):
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
+
+ `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict`
+ corresponds to `sequence_length`.
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed
+ up sequential decoding.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ TTuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer)
+ of shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits: torch.FloatTensor = None
+ past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+REFORMER_START_DOCSTRING = r"""
+ Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev,
+ Ćukasz Kaiser, Anselm Levskaya.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`ReformerConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+REFORMER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be
+ a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices
+ are automatically padded to be a multiple of the chunk length.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ num_hashes (`int`, *optional*):
+ The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites
+ the default defined in `config.num_hashes`.
+
+ For more information, see `num_hashes` in [`ReformerConfig`].
+ past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*):
+ List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element
+ being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the
+ second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`).
+
+ Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed
+ up sequential decoding.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top.",
+ REFORMER_START_DOCSTRING,
+)
+class ReformerModel(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+ assert (
+ self.config.num_hidden_layers > 0
+ ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']"
+
+ self.embeddings = ReformerEmbeddings(config)
+ self.encoder = ReformerEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=ReformerModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ReformerModelOutput]:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size() # noqa: F841
+ device = input_ids.device
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1] # noqa: F841
+ device = inputs_embeds.device
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ assert (
+ len(input_shape) == 2
+ ), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}"
+
+ if past_buckets_states is not None:
+ assert not self.training, "`past_buckets_states` can only be used for inference, not for training`."
+
+ # prepare head mask
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True)
+
+ # original sequence length for padding
+ orig_sequence_length = input_shape[-1]
+
+ # if needs padding
+ least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config)
+ min_chunk_length = _get_min_chunk_len(self.config)
+
+ must_pad_to_match_chunk_length = (
+ input_shape[-1] % least_common_mult_chunk_length != 0
+ and input_shape[-1] > min_chunk_length
+ and past_buckets_states is None
+ )
+
+ if must_pad_to_match_chunk_length:
+ padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length
+
+ if self.training is True:
+ raise ValueError(
+ f"If training, sequence length {input_shape[-1]} has to be a multiple of least common multiple "
+ f"chunk_length {least_common_mult_chunk_length}. Please consider padding the input to a length "
+ f"of {input_shape[-1] + padding_length}."
+ )
+
+ # pad input
+ input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length(
+ input_ids,
+ inputs_embeds=inputs_embeds,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ input_shape=input_shape,
+ padding_length=padding_length,
+ padded_seq_length=least_common_mult_chunk_length,
+ device=device,
+ )
+
+ # start index for position encoding depends on incremental decoding
+ if past_buckets_states is not None:
+ start_idx_pos_encodings = past_buckets_states[0][1].shape[1]
+ else:
+ start_idx_pos_encodings = 0
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ start_idx_pos_encodings=start_idx_pos_encodings,
+ )
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ head_mask=head_mask,
+ attention_mask=attention_mask,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ orig_sequence_length=orig_sequence_length,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ )
+ sequence_output = encoder_outputs.hidden_states
+
+ # if padding was applied
+ if must_pad_to_match_chunk_length:
+ sequence_output = sequence_output[:, :orig_sequence_length]
+
+ past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None
+ hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None
+ attentions = encoder_outputs.all_attentions if output_attentions else None
+
+ if not return_dict:
+ return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None)
+ return ReformerModelOutput(
+ last_hidden_state=sequence_output,
+ past_buckets_states=past_buckets_states,
+ hidden_states=hidden_states,
+ attentions=attentions,
+ )
+
+ def _pad_to_mult_of_chunk_length(
+ self,
+ input_ids,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_ids=None,
+ input_shape=None,
+ padding_length=None,
+ padded_seq_length=None,
+ device=None,
+ ):
+ logger.warning_once(
+ f"Input ids are automatically padded from {input_shape[-1]} to {input_shape[-1] + padding_length} to be a "
+ f"multiple of `config.chunk_length`: {padded_seq_length}"
+ )
+
+ padded_input_ids = torch.full(
+ (input_shape[0], padding_length),
+ self.config.pad_token_id,
+ device=device,
+ dtype=torch.long,
+ )
+
+ # Extend `attention_mask`
+ if attention_mask is not None:
+ pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype)
+
+ attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1)
+ else:
+ attention_mask = torch.cat(
+ [
+ torch.ones(input_shape, device=device, dtype=torch.bool),
+ torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.bool),
+ ],
+ dim=-1,
+ )
+
+ # Extend `input_ids` with padding to match least common multiple chunk_length
+ if input_ids is not None:
+ input_ids = torch.cat([input_ids, padded_input_ids], dim=-1)
+ input_shape = input_ids.size()
+
+ # Pad position ids if given
+ if position_ids is not None:
+ padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device)
+ padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length)
+ position_ids = torch.cat([position_ids, padded_position_ids], dim=-1)
+
+ # Extend `inputs_embeds` with padding to match least common multiple chunk_length
+ if inputs_embeds is not None:
+ padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids)
+ inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2)
+ input_shape = inputs_embeds.size()
+ return input_ids, inputs_embeds, attention_mask, position_ids, input_shape
+
+
+@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING)
+class ReformerModelWithLMHead(ReformerPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`."
+ assert "local" not in self.config.attn_layers or config.local_num_chunks_after == 0, (
+ "If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not"
+ f" {config.local_num_chunks_after}."
+ )
+ assert "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0, (
+ "If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not"
+ f" {config.lsh_num_chunks_after}."
+ )
+
+ self.reformer = ReformerModel(config)
+ self.lm_head = ReformerOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ ) -> Union[Tuple, CausalLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
+ labels in `[0, ..., config.vocab_size]`
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ past_buckets_states=past_buckets_states,
+ use_cache=use_cache,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+ logits = self.lm_head(sequence_output)
+
+ loss = None
+ if labels is not None:
+ # Shift so that tokens < n predict n
+ shift_logits = logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + reformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ReformerModelWithLMHeadOutput(
+ loss=loss,
+ logits=logits,
+ past_buckets_states=reformer_outputs.past_buckets_states,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs
+ ):
+ # only last token for inputs_ids if past is defined in kwargs
+ if past_key_values is not None:
+ input_ids = input_ids[:, -1:]
+
+ inputs_dict = {
+ "input_ids": input_ids,
+ "past_buckets_states": past_key_values,
+ "use_cache": use_cache,
+ "num_hashes": num_hashes,
+ }
+
+ return inputs_dict
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reord_past_buckets_states = []
+ for layer_past in past_key_values:
+ # buckets
+ if layer_past[0] is not None:
+ reord_buckets = layer_past[0].index_select(0, beam_idx.to(layer_past[0].device))
+ else:
+ reord_buckets = None
+
+ # hidden states
+ reord_hidden_states = layer_past[1].index_select(0, beam_idx.to(layer_past[1].device))
+ reord_past_buckets_states.append((reord_buckets, reord_hidden_states))
+ return reord_past_buckets_states
+
+
+@add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING)
+class ReformerForMaskedLM(ReformerPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ assert not config.is_decoder, (
+ "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional"
+ " self-attention."
+ )
+ self.reformer = ReformerModel(config)
+ self.lm_head = ReformerOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
+ the loss is only computed for the tokens with labels
+
+ Returns:
+
+
+
+ This example uses a false checkpoint since we don't have any available pretrained model for the masked language
+ modeling task with the Reformer architecture.
+
+
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, ReformerForMaskedLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-reformer")
+ >>> model = ReformerForMaskedLM.from_pretrained("hf-internal-testing/tiny-random-reformer")
+
+ >>> # add mask_token
+ >>> tokenizer.add_special_tokens({"mask_token": "[MASK]"}) # doctest: +IGNORE_RESULT
+ >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
+
+ >>> # resize model's embedding matrix
+ >>> model.resize_token_embeddings(new_num_tokens=model.config.vocab_size + 1) # doctest: +IGNORE_RESULT
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+
+ >>> # retrieve index of [MASK]
+ >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
+
+ >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
+ >>> predicted_token = tokenizer.decode(predicted_token_id)
+ ```
+
+ ```python
+ >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
+ >>> # mask labels of non-[MASK] tokens
+ >>> labels = torch.where(
+ ... inputs.input_ids == tokenizer.mask_token_id, labels[:, : inputs["input_ids"].shape[-1]], -100
+ ... )
+
+ >>> outputs = model(**inputs, labels=labels)
+ >>> loss = round(outputs.loss.item(), 2)
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ use_cache=False, # no causal mask
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+ logits = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss() # -100 index = padding token
+ masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + reformer_outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=logits,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the
+ pooled output) e.g. for GLUE tasks.
+ """,
+ REFORMER_START_DOCSTRING,
+)
+class ReformerForSequenceClassification(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.reformer = ReformerModel(config)
+ self.classifier = ReformerClassificationHead(config)
+ if config.is_decoder is True:
+ logger.warning("You might want to disable causal masking for sequence classification")
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Example of single-label classification:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, ReformerForSequenceClassification
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/reformer-crime-and-punishment")
+ >>> model = ReformerForSequenceClassification.from_pretrained("google/reformer-crime-and-punishment")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... logits = model(**inputs).logits
+
+ >>> predicted_class_id = logits.argmax().item()
+ >>> label = model.config.id2label[predicted_class_id]
+ ```
+
+ ```python
+ >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
+ >>> num_labels = len(model.config.id2label)
+ >>> model = ReformerForSequenceClassification.from_pretrained(
+ ... "google/reformer-crime-and-punishment", num_labels=num_labels
+ ... )
+
+ >>> labels = torch.tensor(1)
+ >>> loss = model(**inputs, labels=labels).loss
+ ```
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class ReformerClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size)
+ classifier_dropout = (
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
+ )
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, hidden_states, **kwargs):
+ hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS])
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+@add_start_docstrings(
+ """
+ Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA
+ ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`.
+ """,
+ REFORMER_START_DOCSTRING,
+)
+class ReformerForQuestionAnswering(ReformerPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.reformer = ReformerModel(config)
+ # 2 * config.hidden_size because we use reversible residual layers
+ self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=QuestionAnsweringModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ num_hashes: Optional[int] = None,
+ start_positions: Optional[torch.Tensor] = None,
+ end_positions: Optional[torch.Tensor] = None,
+ output_hidden_states: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ reformer_outputs = self.reformer(
+ input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ num_hashes=num_hashes,
+ use_cache=False, # no causal mask
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ return_dict=return_dict,
+ )
+
+ sequence_output = reformer_outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + reformer_outputs[1:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=reformer_outputs.hidden_states,
+ attentions=reformer_outputs.attentions,
+ )