Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_fp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_iv.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_mp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/identification.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/math2.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/rational.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/usertools.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/visualization.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/ctx_base.py +494 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/ctx_mp_python.py +1149 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/identification.py +844 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/calculus.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/linalg.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/matrices.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/calculus.py +531 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/eigen.py +877 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/linalg.py +790 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/matrices/matrices.py +1005 -0
- env-llmeval/lib/python3.10/site-packages/mpmath/visualization.py +313 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/INSTALLER +1 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/LICENSE +29 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/METADATA +530 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/RECORD +66 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/WHEEL +8 -0
- env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/top_level.txt +1 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_cell.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_font.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_style.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_styler.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_styler_interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_theme.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_cell.py +30 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_style.py +376 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_theme.py +101 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_elasticsearch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_msgfy.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_null.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_table_writer.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/_asciidoc.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/_borderless.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (8.28 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_base.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_fp.cpython-310.pyc
ADDED
Binary file (7.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_iv.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/ctx_mp.cpython-310.pyc
ADDED
Binary file (43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/identification.cpython-310.pyc
ADDED
Binary file (28.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/math2.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/rational.cpython-310.pyc
ADDED
Binary file (5.97 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/usertools.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/__pycache__/visualization.cpython-310.pyc
ADDED
Binary file (9.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/ctx_base.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from operator import gt, lt
|
2 |
+
|
3 |
+
from .libmp.backend import xrange
|
4 |
+
|
5 |
+
from .functions.functions import SpecialFunctions
|
6 |
+
from .functions.rszeta import RSCache
|
7 |
+
from .calculus.quadrature import QuadratureMethods
|
8 |
+
from .calculus.inverselaplace import LaplaceTransformInversionMethods
|
9 |
+
from .calculus.calculus import CalculusMethods
|
10 |
+
from .calculus.optimization import OptimizationMethods
|
11 |
+
from .calculus.odes import ODEMethods
|
12 |
+
from .matrices.matrices import MatrixMethods
|
13 |
+
from .matrices.calculus import MatrixCalculusMethods
|
14 |
+
from .matrices.linalg import LinearAlgebraMethods
|
15 |
+
from .matrices.eigen import Eigen
|
16 |
+
from .identification import IdentificationMethods
|
17 |
+
from .visualization import VisualizationMethods
|
18 |
+
|
19 |
+
from . import libmp
|
20 |
+
|
21 |
+
class Context(object):
|
22 |
+
pass
|
23 |
+
|
24 |
+
class StandardBaseContext(Context,
|
25 |
+
SpecialFunctions,
|
26 |
+
RSCache,
|
27 |
+
QuadratureMethods,
|
28 |
+
LaplaceTransformInversionMethods,
|
29 |
+
CalculusMethods,
|
30 |
+
MatrixMethods,
|
31 |
+
MatrixCalculusMethods,
|
32 |
+
LinearAlgebraMethods,
|
33 |
+
Eigen,
|
34 |
+
IdentificationMethods,
|
35 |
+
OptimizationMethods,
|
36 |
+
ODEMethods,
|
37 |
+
VisualizationMethods):
|
38 |
+
|
39 |
+
NoConvergence = libmp.NoConvergence
|
40 |
+
ComplexResult = libmp.ComplexResult
|
41 |
+
|
42 |
+
def __init__(ctx):
|
43 |
+
ctx._aliases = {}
|
44 |
+
# Call those that need preinitialization (e.g. for wrappers)
|
45 |
+
SpecialFunctions.__init__(ctx)
|
46 |
+
RSCache.__init__(ctx)
|
47 |
+
QuadratureMethods.__init__(ctx)
|
48 |
+
LaplaceTransformInversionMethods.__init__(ctx)
|
49 |
+
CalculusMethods.__init__(ctx)
|
50 |
+
MatrixMethods.__init__(ctx)
|
51 |
+
|
52 |
+
def _init_aliases(ctx):
|
53 |
+
for alias, value in ctx._aliases.items():
|
54 |
+
try:
|
55 |
+
setattr(ctx, alias, getattr(ctx, value))
|
56 |
+
except AttributeError:
|
57 |
+
pass
|
58 |
+
|
59 |
+
_fixed_precision = False
|
60 |
+
|
61 |
+
# XXX
|
62 |
+
verbose = False
|
63 |
+
|
64 |
+
def warn(ctx, msg):
|
65 |
+
print("Warning:", msg)
|
66 |
+
|
67 |
+
def bad_domain(ctx, msg):
|
68 |
+
raise ValueError(msg)
|
69 |
+
|
70 |
+
def _re(ctx, x):
|
71 |
+
if hasattr(x, "real"):
|
72 |
+
return x.real
|
73 |
+
return x
|
74 |
+
|
75 |
+
def _im(ctx, x):
|
76 |
+
if hasattr(x, "imag"):
|
77 |
+
return x.imag
|
78 |
+
return ctx.zero
|
79 |
+
|
80 |
+
def _as_points(ctx, x):
|
81 |
+
return x
|
82 |
+
|
83 |
+
def fneg(ctx, x, **kwargs):
|
84 |
+
return -ctx.convert(x)
|
85 |
+
|
86 |
+
def fadd(ctx, x, y, **kwargs):
|
87 |
+
return ctx.convert(x)+ctx.convert(y)
|
88 |
+
|
89 |
+
def fsub(ctx, x, y, **kwargs):
|
90 |
+
return ctx.convert(x)-ctx.convert(y)
|
91 |
+
|
92 |
+
def fmul(ctx, x, y, **kwargs):
|
93 |
+
return ctx.convert(x)*ctx.convert(y)
|
94 |
+
|
95 |
+
def fdiv(ctx, x, y, **kwargs):
|
96 |
+
return ctx.convert(x)/ctx.convert(y)
|
97 |
+
|
98 |
+
def fsum(ctx, args, absolute=False, squared=False):
|
99 |
+
if absolute:
|
100 |
+
if squared:
|
101 |
+
return sum((abs(x)**2 for x in args), ctx.zero)
|
102 |
+
return sum((abs(x) for x in args), ctx.zero)
|
103 |
+
if squared:
|
104 |
+
return sum((x**2 for x in args), ctx.zero)
|
105 |
+
return sum(args, ctx.zero)
|
106 |
+
|
107 |
+
def fdot(ctx, xs, ys=None, conjugate=False):
|
108 |
+
if ys is not None:
|
109 |
+
xs = zip(xs, ys)
|
110 |
+
if conjugate:
|
111 |
+
cf = ctx.conj
|
112 |
+
return sum((x*cf(y) for (x,y) in xs), ctx.zero)
|
113 |
+
else:
|
114 |
+
return sum((x*y for (x,y) in xs), ctx.zero)
|
115 |
+
|
116 |
+
def fprod(ctx, args):
|
117 |
+
prod = ctx.one
|
118 |
+
for arg in args:
|
119 |
+
prod *= arg
|
120 |
+
return prod
|
121 |
+
|
122 |
+
def nprint(ctx, x, n=6, **kwargs):
|
123 |
+
"""
|
124 |
+
Equivalent to ``print(nstr(x, n))``.
|
125 |
+
"""
|
126 |
+
print(ctx.nstr(x, n, **kwargs))
|
127 |
+
|
128 |
+
def chop(ctx, x, tol=None):
|
129 |
+
"""
|
130 |
+
Chops off small real or imaginary parts, or converts
|
131 |
+
numbers close to zero to exact zeros. The input can be a
|
132 |
+
single number or an iterable::
|
133 |
+
|
134 |
+
>>> from mpmath import *
|
135 |
+
>>> mp.dps = 15; mp.pretty = False
|
136 |
+
>>> chop(5+1e-10j, tol=1e-9)
|
137 |
+
mpf('5.0')
|
138 |
+
>>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2]))
|
139 |
+
[1.0, 0.0, 3.0, -4.0, 2.0]
|
140 |
+
|
141 |
+
The tolerance defaults to ``100*eps``.
|
142 |
+
"""
|
143 |
+
if tol is None:
|
144 |
+
tol = 100*ctx.eps
|
145 |
+
try:
|
146 |
+
x = ctx.convert(x)
|
147 |
+
absx = abs(x)
|
148 |
+
if abs(x) < tol:
|
149 |
+
return ctx.zero
|
150 |
+
if ctx._is_complex_type(x):
|
151 |
+
#part_tol = min(tol, absx*tol)
|
152 |
+
part_tol = max(tol, absx*tol)
|
153 |
+
if abs(x.imag) < part_tol:
|
154 |
+
return x.real
|
155 |
+
if abs(x.real) < part_tol:
|
156 |
+
return ctx.mpc(0, x.imag)
|
157 |
+
except TypeError:
|
158 |
+
if isinstance(x, ctx.matrix):
|
159 |
+
return x.apply(lambda a: ctx.chop(a, tol))
|
160 |
+
if hasattr(x, "__iter__"):
|
161 |
+
return [ctx.chop(a, tol) for a in x]
|
162 |
+
return x
|
163 |
+
|
164 |
+
def almosteq(ctx, s, t, rel_eps=None, abs_eps=None):
|
165 |
+
r"""
|
166 |
+
Determine whether the difference between `s` and `t` is smaller
|
167 |
+
than a given epsilon, either relatively or absolutely.
|
168 |
+
|
169 |
+
Both a maximum relative difference and a maximum difference
|
170 |
+
('epsilons') may be specified. The absolute difference is
|
171 |
+
defined as `|s-t|` and the relative difference is defined
|
172 |
+
as `|s-t|/\max(|s|, |t|)`.
|
173 |
+
|
174 |
+
If only one epsilon is given, both are set to the same value.
|
175 |
+
If none is given, both epsilons are set to `2^{-p+m}` where
|
176 |
+
`p` is the current working precision and `m` is a small
|
177 |
+
integer. The default setting typically allows :func:`~mpmath.almosteq`
|
178 |
+
to be used to check for mathematical equality
|
179 |
+
in the presence of small rounding errors.
|
180 |
+
|
181 |
+
**Examples**
|
182 |
+
|
183 |
+
>>> from mpmath import *
|
184 |
+
>>> mp.dps = 15
|
185 |
+
>>> almosteq(3.141592653589793, 3.141592653589790)
|
186 |
+
True
|
187 |
+
>>> almosteq(3.141592653589793, 3.141592653589700)
|
188 |
+
False
|
189 |
+
>>> almosteq(3.141592653589793, 3.141592653589700, 1e-10)
|
190 |
+
True
|
191 |
+
>>> almosteq(1e-20, 2e-20)
|
192 |
+
True
|
193 |
+
>>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0)
|
194 |
+
False
|
195 |
+
|
196 |
+
"""
|
197 |
+
t = ctx.convert(t)
|
198 |
+
if abs_eps is None and rel_eps is None:
|
199 |
+
rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4)
|
200 |
+
if abs_eps is None:
|
201 |
+
abs_eps = rel_eps
|
202 |
+
elif rel_eps is None:
|
203 |
+
rel_eps = abs_eps
|
204 |
+
diff = abs(s-t)
|
205 |
+
if diff <= abs_eps:
|
206 |
+
return True
|
207 |
+
abss = abs(s)
|
208 |
+
abst = abs(t)
|
209 |
+
if abss < abst:
|
210 |
+
err = diff/abst
|
211 |
+
else:
|
212 |
+
err = diff/abss
|
213 |
+
return err <= rel_eps
|
214 |
+
|
215 |
+
def arange(ctx, *args):
|
216 |
+
r"""
|
217 |
+
This is a generalized version of Python's :func:`~mpmath.range` function
|
218 |
+
that accepts fractional endpoints and step sizes and
|
219 |
+
returns a list of ``mpf`` instances. Like :func:`~mpmath.range`,
|
220 |
+
:func:`~mpmath.arange` can be called with 1, 2 or 3 arguments:
|
221 |
+
|
222 |
+
``arange(b)``
|
223 |
+
`[0, 1, 2, \ldots, x]`
|
224 |
+
``arange(a, b)``
|
225 |
+
`[a, a+1, a+2, \ldots, x]`
|
226 |
+
``arange(a, b, h)``
|
227 |
+
`[a, a+h, a+h, \ldots, x]`
|
228 |
+
|
229 |
+
where `b-1 \le x < b` (in the third case, `b-h \le x < b`).
|
230 |
+
|
231 |
+
Like Python's :func:`~mpmath.range`, the endpoint is not included. To
|
232 |
+
produce ranges where the endpoint is included, :func:`~mpmath.linspace`
|
233 |
+
is more convenient.
|
234 |
+
|
235 |
+
**Examples**
|
236 |
+
|
237 |
+
>>> from mpmath import *
|
238 |
+
>>> mp.dps = 15; mp.pretty = False
|
239 |
+
>>> arange(4)
|
240 |
+
[mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')]
|
241 |
+
>>> arange(1, 2, 0.25)
|
242 |
+
[mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')]
|
243 |
+
>>> arange(1, -1, -0.75)
|
244 |
+
[mpf('1.0'), mpf('0.25'), mpf('-0.5')]
|
245 |
+
|
246 |
+
"""
|
247 |
+
if not len(args) <= 3:
|
248 |
+
raise TypeError('arange expected at most 3 arguments, got %i'
|
249 |
+
% len(args))
|
250 |
+
if not len(args) >= 1:
|
251 |
+
raise TypeError('arange expected at least 1 argument, got %i'
|
252 |
+
% len(args))
|
253 |
+
# set default
|
254 |
+
a = 0
|
255 |
+
dt = 1
|
256 |
+
# interpret arguments
|
257 |
+
if len(args) == 1:
|
258 |
+
b = args[0]
|
259 |
+
elif len(args) >= 2:
|
260 |
+
a = args[0]
|
261 |
+
b = args[1]
|
262 |
+
if len(args) == 3:
|
263 |
+
dt = args[2]
|
264 |
+
a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt)
|
265 |
+
assert a + dt != a, 'dt is too small and would cause an infinite loop'
|
266 |
+
# adapt code for sign of dt
|
267 |
+
if a > b:
|
268 |
+
if dt > 0:
|
269 |
+
return []
|
270 |
+
op = gt
|
271 |
+
else:
|
272 |
+
if dt < 0:
|
273 |
+
return []
|
274 |
+
op = lt
|
275 |
+
# create list
|
276 |
+
result = []
|
277 |
+
i = 0
|
278 |
+
t = a
|
279 |
+
while 1:
|
280 |
+
t = a + dt*i
|
281 |
+
i += 1
|
282 |
+
if op(t, b):
|
283 |
+
result.append(t)
|
284 |
+
else:
|
285 |
+
break
|
286 |
+
return result
|
287 |
+
|
288 |
+
def linspace(ctx, *args, **kwargs):
|
289 |
+
"""
|
290 |
+
``linspace(a, b, n)`` returns a list of `n` evenly spaced
|
291 |
+
samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)``
|
292 |
+
is also valid.
|
293 |
+
|
294 |
+
This function is often more convenient than :func:`~mpmath.arange`
|
295 |
+
for partitioning an interval into subintervals, since
|
296 |
+
the endpoint is included::
|
297 |
+
|
298 |
+
>>> from mpmath import *
|
299 |
+
>>> mp.dps = 15; mp.pretty = False
|
300 |
+
>>> linspace(1, 4, 4)
|
301 |
+
[mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')]
|
302 |
+
|
303 |
+
You may also provide the keyword argument ``endpoint=False``::
|
304 |
+
|
305 |
+
>>> linspace(1, 4, 4, endpoint=False)
|
306 |
+
[mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')]
|
307 |
+
|
308 |
+
"""
|
309 |
+
if len(args) == 3:
|
310 |
+
a = ctx.mpf(args[0])
|
311 |
+
b = ctx.mpf(args[1])
|
312 |
+
n = int(args[2])
|
313 |
+
elif len(args) == 2:
|
314 |
+
assert hasattr(args[0], '_mpi_')
|
315 |
+
a = args[0].a
|
316 |
+
b = args[0].b
|
317 |
+
n = int(args[1])
|
318 |
+
else:
|
319 |
+
raise TypeError('linspace expected 2 or 3 arguments, got %i' \
|
320 |
+
% len(args))
|
321 |
+
if n < 1:
|
322 |
+
raise ValueError('n must be greater than 0')
|
323 |
+
if not 'endpoint' in kwargs or kwargs['endpoint']:
|
324 |
+
if n == 1:
|
325 |
+
return [ctx.mpf(a)]
|
326 |
+
step = (b - a) / ctx.mpf(n - 1)
|
327 |
+
y = [i*step + a for i in xrange(n)]
|
328 |
+
y[-1] = b
|
329 |
+
else:
|
330 |
+
step = (b - a) / ctx.mpf(n)
|
331 |
+
y = [i*step + a for i in xrange(n)]
|
332 |
+
return y
|
333 |
+
|
334 |
+
def cos_sin(ctx, z, **kwargs):
|
335 |
+
return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs)
|
336 |
+
|
337 |
+
def cospi_sinpi(ctx, z, **kwargs):
|
338 |
+
return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs)
|
339 |
+
|
340 |
+
def _default_hyper_maxprec(ctx, p):
|
341 |
+
return int(1000 * p**0.25 + 4*p)
|
342 |
+
|
343 |
+
_gcd = staticmethod(libmp.gcd)
|
344 |
+
list_primes = staticmethod(libmp.list_primes)
|
345 |
+
isprime = staticmethod(libmp.isprime)
|
346 |
+
bernfrac = staticmethod(libmp.bernfrac)
|
347 |
+
moebius = staticmethod(libmp.moebius)
|
348 |
+
_ifac = staticmethod(libmp.ifac)
|
349 |
+
_eulernum = staticmethod(libmp.eulernum)
|
350 |
+
_stirling1 = staticmethod(libmp.stirling1)
|
351 |
+
_stirling2 = staticmethod(libmp.stirling2)
|
352 |
+
|
353 |
+
def sum_accurately(ctx, terms, check_step=1):
|
354 |
+
prec = ctx.prec
|
355 |
+
try:
|
356 |
+
extraprec = 10
|
357 |
+
while 1:
|
358 |
+
ctx.prec = prec + extraprec + 5
|
359 |
+
max_mag = ctx.ninf
|
360 |
+
s = ctx.zero
|
361 |
+
k = 0
|
362 |
+
for term in terms():
|
363 |
+
s += term
|
364 |
+
if (not k % check_step) and term:
|
365 |
+
term_mag = ctx.mag(term)
|
366 |
+
max_mag = max(max_mag, term_mag)
|
367 |
+
sum_mag = ctx.mag(s)
|
368 |
+
if sum_mag - term_mag > ctx.prec:
|
369 |
+
break
|
370 |
+
k += 1
|
371 |
+
cancellation = max_mag - sum_mag
|
372 |
+
if cancellation != cancellation:
|
373 |
+
break
|
374 |
+
if cancellation < extraprec or ctx._fixed_precision:
|
375 |
+
break
|
376 |
+
extraprec += min(ctx.prec, cancellation)
|
377 |
+
return s
|
378 |
+
finally:
|
379 |
+
ctx.prec = prec
|
380 |
+
|
381 |
+
def mul_accurately(ctx, factors, check_step=1):
|
382 |
+
prec = ctx.prec
|
383 |
+
try:
|
384 |
+
extraprec = 10
|
385 |
+
while 1:
|
386 |
+
ctx.prec = prec + extraprec + 5
|
387 |
+
max_mag = ctx.ninf
|
388 |
+
one = ctx.one
|
389 |
+
s = one
|
390 |
+
k = 0
|
391 |
+
for factor in factors():
|
392 |
+
s *= factor
|
393 |
+
term = factor - one
|
394 |
+
if (not k % check_step):
|
395 |
+
term_mag = ctx.mag(term)
|
396 |
+
max_mag = max(max_mag, term_mag)
|
397 |
+
sum_mag = ctx.mag(s-one)
|
398 |
+
#if sum_mag - term_mag > ctx.prec:
|
399 |
+
# break
|
400 |
+
if -term_mag > ctx.prec:
|
401 |
+
break
|
402 |
+
k += 1
|
403 |
+
cancellation = max_mag - sum_mag
|
404 |
+
if cancellation != cancellation:
|
405 |
+
break
|
406 |
+
if cancellation < extraprec or ctx._fixed_precision:
|
407 |
+
break
|
408 |
+
extraprec += min(ctx.prec, cancellation)
|
409 |
+
return s
|
410 |
+
finally:
|
411 |
+
ctx.prec = prec
|
412 |
+
|
413 |
+
def power(ctx, x, y):
|
414 |
+
r"""Converts `x` and `y` to mpmath numbers and evaluates
|
415 |
+
`x^y = \exp(y \log(x))`::
|
416 |
+
|
417 |
+
>>> from mpmath import *
|
418 |
+
>>> mp.dps = 30; mp.pretty = True
|
419 |
+
>>> power(2, 0.5)
|
420 |
+
1.41421356237309504880168872421
|
421 |
+
|
422 |
+
This shows the leading few digits of a large Mersenne prime
|
423 |
+
(performing the exact calculation ``2**43112609-1`` and
|
424 |
+
displaying the result in Python would be very slow)::
|
425 |
+
|
426 |
+
>>> power(2, 43112609)-1
|
427 |
+
3.16470269330255923143453723949e+12978188
|
428 |
+
"""
|
429 |
+
return ctx.convert(x) ** ctx.convert(y)
|
430 |
+
|
431 |
+
def _zeta_int(ctx, n):
|
432 |
+
return ctx.zeta(n)
|
433 |
+
|
434 |
+
def maxcalls(ctx, f, N):
|
435 |
+
"""
|
436 |
+
Return a wrapped copy of *f* that raises ``NoConvergence`` when *f*
|
437 |
+
has been called more than *N* times::
|
438 |
+
|
439 |
+
>>> from mpmath import *
|
440 |
+
>>> mp.dps = 15
|
441 |
+
>>> f = maxcalls(sin, 10)
|
442 |
+
>>> print(sum(f(n) for n in range(10)))
|
443 |
+
1.95520948210738
|
444 |
+
>>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL
|
445 |
+
Traceback (most recent call last):
|
446 |
+
...
|
447 |
+
NoConvergence: maxcalls: function evaluated 10 times
|
448 |
+
|
449 |
+
"""
|
450 |
+
counter = [0]
|
451 |
+
def f_maxcalls_wrapped(*args, **kwargs):
|
452 |
+
counter[0] += 1
|
453 |
+
if counter[0] > N:
|
454 |
+
raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N)
|
455 |
+
return f(*args, **kwargs)
|
456 |
+
return f_maxcalls_wrapped
|
457 |
+
|
458 |
+
def memoize(ctx, f):
|
459 |
+
"""
|
460 |
+
Return a wrapped copy of *f* that caches computed values, i.e.
|
461 |
+
a memoized copy of *f*. Values are only reused if the cached precision
|
462 |
+
is equal to or higher than the working precision::
|
463 |
+
|
464 |
+
>>> from mpmath import *
|
465 |
+
>>> mp.dps = 15; mp.pretty = True
|
466 |
+
>>> f = memoize(maxcalls(sin, 1))
|
467 |
+
>>> f(2)
|
468 |
+
0.909297426825682
|
469 |
+
>>> f(2)
|
470 |
+
0.909297426825682
|
471 |
+
>>> mp.dps = 25
|
472 |
+
>>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL
|
473 |
+
Traceback (most recent call last):
|
474 |
+
...
|
475 |
+
NoConvergence: maxcalls: function evaluated 1 times
|
476 |
+
|
477 |
+
"""
|
478 |
+
f_cache = {}
|
479 |
+
def f_cached(*args, **kwargs):
|
480 |
+
if kwargs:
|
481 |
+
key = args, tuple(kwargs.items())
|
482 |
+
else:
|
483 |
+
key = args
|
484 |
+
prec = ctx.prec
|
485 |
+
if key in f_cache:
|
486 |
+
cprec, cvalue = f_cache[key]
|
487 |
+
if cprec >= prec:
|
488 |
+
return +cvalue
|
489 |
+
value = f(*args, **kwargs)
|
490 |
+
f_cache[key] = (prec, value)
|
491 |
+
return value
|
492 |
+
f_cached.__name__ = f.__name__
|
493 |
+
f_cached.__doc__ = f.__doc__
|
494 |
+
return f_cached
|
env-llmeval/lib/python3.10/site-packages/mpmath/ctx_mp_python.py
ADDED
@@ -0,0 +1,1149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from ctx_base import StandardBaseContext
|
2 |
+
|
3 |
+
from .libmp.backend import basestring, exec_
|
4 |
+
|
5 |
+
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
|
6 |
+
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
|
7 |
+
ComplexResult, to_pickable, from_pickable, normalize,
|
8 |
+
from_int, from_float, from_npfloat, from_Decimal, from_str, to_int, to_float, to_str,
|
9 |
+
from_rational, from_man_exp,
|
10 |
+
fone, fzero, finf, fninf, fnan,
|
11 |
+
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
|
12 |
+
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
|
13 |
+
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
|
14 |
+
mpf_hash, mpf_rand,
|
15 |
+
mpf_sum,
|
16 |
+
bitcount, to_fixed,
|
17 |
+
mpc_to_str,
|
18 |
+
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
|
19 |
+
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
|
20 |
+
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
|
21 |
+
mpc_mpf_div,
|
22 |
+
mpf_pow,
|
23 |
+
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
|
24 |
+
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
|
25 |
+
mpf_glaisher, mpf_twinprime, mpf_mertens,
|
26 |
+
int_types)
|
27 |
+
|
28 |
+
from . import rational
|
29 |
+
from . import function_docs
|
30 |
+
|
31 |
+
new = object.__new__
|
32 |
+
|
33 |
+
class mpnumeric(object):
|
34 |
+
"""Base class for mpf and mpc."""
|
35 |
+
__slots__ = []
|
36 |
+
def __new__(cls, val):
|
37 |
+
raise NotImplementedError
|
38 |
+
|
39 |
+
class _mpf(mpnumeric):
|
40 |
+
"""
|
41 |
+
An mpf instance holds a real-valued floating-point number. mpf:s
|
42 |
+
work analogously to Python floats, but support arbitrary-precision
|
43 |
+
arithmetic.
|
44 |
+
"""
|
45 |
+
__slots__ = ['_mpf_']
|
46 |
+
|
47 |
+
def __new__(cls, val=fzero, **kwargs):
|
48 |
+
"""A new mpf can be created from a Python float, an int, a
|
49 |
+
or a decimal string representing a number in floating-point
|
50 |
+
format."""
|
51 |
+
prec, rounding = cls.context._prec_rounding
|
52 |
+
if kwargs:
|
53 |
+
prec = kwargs.get('prec', prec)
|
54 |
+
if 'dps' in kwargs:
|
55 |
+
prec = dps_to_prec(kwargs['dps'])
|
56 |
+
rounding = kwargs.get('rounding', rounding)
|
57 |
+
if type(val) is cls:
|
58 |
+
sign, man, exp, bc = val._mpf_
|
59 |
+
if (not man) and exp:
|
60 |
+
return val
|
61 |
+
v = new(cls)
|
62 |
+
v._mpf_ = normalize(sign, man, exp, bc, prec, rounding)
|
63 |
+
return v
|
64 |
+
elif type(val) is tuple:
|
65 |
+
if len(val) == 2:
|
66 |
+
v = new(cls)
|
67 |
+
v._mpf_ = from_man_exp(val[0], val[1], prec, rounding)
|
68 |
+
return v
|
69 |
+
if len(val) == 4:
|
70 |
+
if val not in (finf, fninf, fnan):
|
71 |
+
sign, man, exp, bc = val
|
72 |
+
val = normalize(sign, MPZ(man), exp, bc, prec, rounding)
|
73 |
+
v = new(cls)
|
74 |
+
v._mpf_ = val
|
75 |
+
return v
|
76 |
+
raise ValueError
|
77 |
+
else:
|
78 |
+
v = new(cls)
|
79 |
+
v._mpf_ = mpf_pos(cls.mpf_convert_arg(val, prec, rounding), prec, rounding)
|
80 |
+
return v
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def mpf_convert_arg(cls, x, prec, rounding):
|
84 |
+
if isinstance(x, int_types): return from_int(x)
|
85 |
+
if isinstance(x, float): return from_float(x)
|
86 |
+
if isinstance(x, basestring): return from_str(x, prec, rounding)
|
87 |
+
if isinstance(x, cls.context.constant): return x.func(prec, rounding)
|
88 |
+
if hasattr(x, '_mpf_'): return x._mpf_
|
89 |
+
if hasattr(x, '_mpmath_'):
|
90 |
+
t = cls.context.convert(x._mpmath_(prec, rounding))
|
91 |
+
if hasattr(t, '_mpf_'):
|
92 |
+
return t._mpf_
|
93 |
+
if hasattr(x, '_mpi_'):
|
94 |
+
a, b = x._mpi_
|
95 |
+
if a == b:
|
96 |
+
return a
|
97 |
+
raise ValueError("can only create mpf from zero-width interval")
|
98 |
+
raise TypeError("cannot create mpf from " + repr(x))
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def mpf_convert_rhs(cls, x):
|
102 |
+
if isinstance(x, int_types): return from_int(x)
|
103 |
+
if isinstance(x, float): return from_float(x)
|
104 |
+
if isinstance(x, complex_types): return cls.context.mpc(x)
|
105 |
+
if isinstance(x, rational.mpq):
|
106 |
+
p, q = x._mpq_
|
107 |
+
return from_rational(p, q, cls.context.prec)
|
108 |
+
if hasattr(x, '_mpf_'): return x._mpf_
|
109 |
+
if hasattr(x, '_mpmath_'):
|
110 |
+
t = cls.context.convert(x._mpmath_(*cls.context._prec_rounding))
|
111 |
+
if hasattr(t, '_mpf_'):
|
112 |
+
return t._mpf_
|
113 |
+
return t
|
114 |
+
return NotImplemented
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def mpf_convert_lhs(cls, x):
|
118 |
+
x = cls.mpf_convert_rhs(x)
|
119 |
+
if type(x) is tuple:
|
120 |
+
return cls.context.make_mpf(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
man_exp = property(lambda self: self._mpf_[1:3])
|
124 |
+
man = property(lambda self: self._mpf_[1])
|
125 |
+
exp = property(lambda self: self._mpf_[2])
|
126 |
+
bc = property(lambda self: self._mpf_[3])
|
127 |
+
|
128 |
+
real = property(lambda self: self)
|
129 |
+
imag = property(lambda self: self.context.zero)
|
130 |
+
|
131 |
+
conjugate = lambda self: self
|
132 |
+
|
133 |
+
def __getstate__(self): return to_pickable(self._mpf_)
|
134 |
+
def __setstate__(self, val): self._mpf_ = from_pickable(val)
|
135 |
+
|
136 |
+
def __repr__(s):
|
137 |
+
if s.context.pretty:
|
138 |
+
return str(s)
|
139 |
+
return "mpf('%s')" % to_str(s._mpf_, s.context._repr_digits)
|
140 |
+
|
141 |
+
def __str__(s): return to_str(s._mpf_, s.context._str_digits)
|
142 |
+
def __hash__(s): return mpf_hash(s._mpf_)
|
143 |
+
def __int__(s): return int(to_int(s._mpf_))
|
144 |
+
def __long__(s): return long(to_int(s._mpf_))
|
145 |
+
def __float__(s): return to_float(s._mpf_, rnd=s.context._prec_rounding[1])
|
146 |
+
def __complex__(s): return complex(float(s))
|
147 |
+
def __nonzero__(s): return s._mpf_ != fzero
|
148 |
+
|
149 |
+
__bool__ = __nonzero__
|
150 |
+
|
151 |
+
def __abs__(s):
|
152 |
+
cls, new, (prec, rounding) = s._ctxdata
|
153 |
+
v = new(cls)
|
154 |
+
v._mpf_ = mpf_abs(s._mpf_, prec, rounding)
|
155 |
+
return v
|
156 |
+
|
157 |
+
def __pos__(s):
|
158 |
+
cls, new, (prec, rounding) = s._ctxdata
|
159 |
+
v = new(cls)
|
160 |
+
v._mpf_ = mpf_pos(s._mpf_, prec, rounding)
|
161 |
+
return v
|
162 |
+
|
163 |
+
def __neg__(s):
|
164 |
+
cls, new, (prec, rounding) = s._ctxdata
|
165 |
+
v = new(cls)
|
166 |
+
v._mpf_ = mpf_neg(s._mpf_, prec, rounding)
|
167 |
+
return v
|
168 |
+
|
169 |
+
def _cmp(s, t, func):
|
170 |
+
if hasattr(t, '_mpf_'):
|
171 |
+
t = t._mpf_
|
172 |
+
else:
|
173 |
+
t = s.mpf_convert_rhs(t)
|
174 |
+
if t is NotImplemented:
|
175 |
+
return t
|
176 |
+
return func(s._mpf_, t)
|
177 |
+
|
178 |
+
def __cmp__(s, t): return s._cmp(t, mpf_cmp)
|
179 |
+
def __lt__(s, t): return s._cmp(t, mpf_lt)
|
180 |
+
def __gt__(s, t): return s._cmp(t, mpf_gt)
|
181 |
+
def __le__(s, t): return s._cmp(t, mpf_le)
|
182 |
+
def __ge__(s, t): return s._cmp(t, mpf_ge)
|
183 |
+
|
184 |
+
def __ne__(s, t):
|
185 |
+
v = s.__eq__(t)
|
186 |
+
if v is NotImplemented:
|
187 |
+
return v
|
188 |
+
return not v
|
189 |
+
|
190 |
+
def __rsub__(s, t):
|
191 |
+
cls, new, (prec, rounding) = s._ctxdata
|
192 |
+
if type(t) in int_types:
|
193 |
+
v = new(cls)
|
194 |
+
v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding)
|
195 |
+
return v
|
196 |
+
t = s.mpf_convert_lhs(t)
|
197 |
+
if t is NotImplemented:
|
198 |
+
return t
|
199 |
+
return t - s
|
200 |
+
|
201 |
+
def __rdiv__(s, t):
|
202 |
+
cls, new, (prec, rounding) = s._ctxdata
|
203 |
+
if isinstance(t, int_types):
|
204 |
+
v = new(cls)
|
205 |
+
v._mpf_ = mpf_rdiv_int(t, s._mpf_, prec, rounding)
|
206 |
+
return v
|
207 |
+
t = s.mpf_convert_lhs(t)
|
208 |
+
if t is NotImplemented:
|
209 |
+
return t
|
210 |
+
return t / s
|
211 |
+
|
212 |
+
def __rpow__(s, t):
|
213 |
+
t = s.mpf_convert_lhs(t)
|
214 |
+
if t is NotImplemented:
|
215 |
+
return t
|
216 |
+
return t ** s
|
217 |
+
|
218 |
+
def __rmod__(s, t):
|
219 |
+
t = s.mpf_convert_lhs(t)
|
220 |
+
if t is NotImplemented:
|
221 |
+
return t
|
222 |
+
return t % s
|
223 |
+
|
224 |
+
def sqrt(s):
|
225 |
+
return s.context.sqrt(s)
|
226 |
+
|
227 |
+
def ae(s, t, rel_eps=None, abs_eps=None):
|
228 |
+
return s.context.almosteq(s, t, rel_eps, abs_eps)
|
229 |
+
|
230 |
+
def to_fixed(self, prec):
|
231 |
+
return to_fixed(self._mpf_, prec)
|
232 |
+
|
233 |
+
def __round__(self, *args):
|
234 |
+
return round(float(self), *args)
|
235 |
+
|
236 |
+
mpf_binary_op = """
|
237 |
+
def %NAME%(self, other):
|
238 |
+
mpf, new, (prec, rounding) = self._ctxdata
|
239 |
+
sval = self._mpf_
|
240 |
+
if hasattr(other, '_mpf_'):
|
241 |
+
tval = other._mpf_
|
242 |
+
%WITH_MPF%
|
243 |
+
ttype = type(other)
|
244 |
+
if ttype in int_types:
|
245 |
+
%WITH_INT%
|
246 |
+
elif ttype is float:
|
247 |
+
tval = from_float(other)
|
248 |
+
%WITH_MPF%
|
249 |
+
elif hasattr(other, '_mpc_'):
|
250 |
+
tval = other._mpc_
|
251 |
+
mpc = type(other)
|
252 |
+
%WITH_MPC%
|
253 |
+
elif ttype is complex:
|
254 |
+
tval = from_float(other.real), from_float(other.imag)
|
255 |
+
mpc = self.context.mpc
|
256 |
+
%WITH_MPC%
|
257 |
+
if isinstance(other, mpnumeric):
|
258 |
+
return NotImplemented
|
259 |
+
try:
|
260 |
+
other = mpf.context.convert(other, strings=False)
|
261 |
+
except TypeError:
|
262 |
+
return NotImplemented
|
263 |
+
return self.%NAME%(other)
|
264 |
+
"""
|
265 |
+
|
266 |
+
return_mpf = "; obj = new(mpf); obj._mpf_ = val; return obj"
|
267 |
+
return_mpc = "; obj = new(mpc); obj._mpc_ = val; return obj"
|
268 |
+
|
269 |
+
mpf_pow_same = """
|
270 |
+
try:
|
271 |
+
val = mpf_pow(sval, tval, prec, rounding) %s
|
272 |
+
except ComplexResult:
|
273 |
+
if mpf.context.trap_complex:
|
274 |
+
raise
|
275 |
+
mpc = mpf.context.mpc
|
276 |
+
val = mpc_pow((sval, fzero), (tval, fzero), prec, rounding) %s
|
277 |
+
""" % (return_mpf, return_mpc)
|
278 |
+
|
279 |
+
def binary_op(name, with_mpf='', with_int='', with_mpc=''):
|
280 |
+
code = mpf_binary_op
|
281 |
+
code = code.replace("%WITH_INT%", with_int)
|
282 |
+
code = code.replace("%WITH_MPC%", with_mpc)
|
283 |
+
code = code.replace("%WITH_MPF%", with_mpf)
|
284 |
+
code = code.replace("%NAME%", name)
|
285 |
+
np = {}
|
286 |
+
exec_(code, globals(), np)
|
287 |
+
return np[name]
|
288 |
+
|
289 |
+
_mpf.__eq__ = binary_op('__eq__',
|
290 |
+
'return mpf_eq(sval, tval)',
|
291 |
+
'return mpf_eq(sval, from_int(other))',
|
292 |
+
'return (tval[1] == fzero) and mpf_eq(tval[0], sval)')
|
293 |
+
|
294 |
+
_mpf.__add__ = binary_op('__add__',
|
295 |
+
'val = mpf_add(sval, tval, prec, rounding)' + return_mpf,
|
296 |
+
'val = mpf_add(sval, from_int(other), prec, rounding)' + return_mpf,
|
297 |
+
'val = mpc_add_mpf(tval, sval, prec, rounding)' + return_mpc)
|
298 |
+
|
299 |
+
_mpf.__sub__ = binary_op('__sub__',
|
300 |
+
'val = mpf_sub(sval, tval, prec, rounding)' + return_mpf,
|
301 |
+
'val = mpf_sub(sval, from_int(other), prec, rounding)' + return_mpf,
|
302 |
+
'val = mpc_sub((sval, fzero), tval, prec, rounding)' + return_mpc)
|
303 |
+
|
304 |
+
_mpf.__mul__ = binary_op('__mul__',
|
305 |
+
'val = mpf_mul(sval, tval, prec, rounding)' + return_mpf,
|
306 |
+
'val = mpf_mul_int(sval, other, prec, rounding)' + return_mpf,
|
307 |
+
'val = mpc_mul_mpf(tval, sval, prec, rounding)' + return_mpc)
|
308 |
+
|
309 |
+
_mpf.__div__ = binary_op('__div__',
|
310 |
+
'val = mpf_div(sval, tval, prec, rounding)' + return_mpf,
|
311 |
+
'val = mpf_div(sval, from_int(other), prec, rounding)' + return_mpf,
|
312 |
+
'val = mpc_mpf_div(sval, tval, prec, rounding)' + return_mpc)
|
313 |
+
|
314 |
+
_mpf.__mod__ = binary_op('__mod__',
|
315 |
+
'val = mpf_mod(sval, tval, prec, rounding)' + return_mpf,
|
316 |
+
'val = mpf_mod(sval, from_int(other), prec, rounding)' + return_mpf,
|
317 |
+
'raise NotImplementedError("complex modulo")')
|
318 |
+
|
319 |
+
_mpf.__pow__ = binary_op('__pow__',
|
320 |
+
mpf_pow_same,
|
321 |
+
'val = mpf_pow_int(sval, other, prec, rounding)' + return_mpf,
|
322 |
+
'val = mpc_pow((sval, fzero), tval, prec, rounding)' + return_mpc)
|
323 |
+
|
324 |
+
_mpf.__radd__ = _mpf.__add__
|
325 |
+
_mpf.__rmul__ = _mpf.__mul__
|
326 |
+
_mpf.__truediv__ = _mpf.__div__
|
327 |
+
_mpf.__rtruediv__ = _mpf.__rdiv__
|
328 |
+
|
329 |
+
|
330 |
+
class _constant(_mpf):
|
331 |
+
"""Represents a mathematical constant with dynamic precision.
|
332 |
+
When printed or used in an arithmetic operation, a constant
|
333 |
+
is converted to a regular mpf at the working precision. A
|
334 |
+
regular mpf can also be obtained using the operation +x."""
|
335 |
+
|
336 |
+
def __new__(cls, func, name, docname=''):
|
337 |
+
a = object.__new__(cls)
|
338 |
+
a.name = name
|
339 |
+
a.func = func
|
340 |
+
a.__doc__ = getattr(function_docs, docname, '')
|
341 |
+
return a
|
342 |
+
|
343 |
+
def __call__(self, prec=None, dps=None, rounding=None):
|
344 |
+
prec2, rounding2 = self.context._prec_rounding
|
345 |
+
if not prec: prec = prec2
|
346 |
+
if not rounding: rounding = rounding2
|
347 |
+
if dps: prec = dps_to_prec(dps)
|
348 |
+
return self.context.make_mpf(self.func(prec, rounding))
|
349 |
+
|
350 |
+
@property
|
351 |
+
def _mpf_(self):
|
352 |
+
prec, rounding = self.context._prec_rounding
|
353 |
+
return self.func(prec, rounding)
|
354 |
+
|
355 |
+
def __repr__(self):
|
356 |
+
return "<%s: %s~>" % (self.name, self.context.nstr(self(dps=15)))
|
357 |
+
|
358 |
+
|
359 |
+
class _mpc(mpnumeric):
|
360 |
+
"""
|
361 |
+
An mpc represents a complex number using a pair of mpf:s (one
|
362 |
+
for the real part and another for the imaginary part.) The mpc
|
363 |
+
class behaves fairly similarly to Python's complex type.
|
364 |
+
"""
|
365 |
+
|
366 |
+
__slots__ = ['_mpc_']
|
367 |
+
|
368 |
+
def __new__(cls, real=0, imag=0):
|
369 |
+
s = object.__new__(cls)
|
370 |
+
if isinstance(real, complex_types):
|
371 |
+
real, imag = real.real, real.imag
|
372 |
+
elif hasattr(real, '_mpc_'):
|
373 |
+
s._mpc_ = real._mpc_
|
374 |
+
return s
|
375 |
+
real = cls.context.mpf(real)
|
376 |
+
imag = cls.context.mpf(imag)
|
377 |
+
s._mpc_ = (real._mpf_, imag._mpf_)
|
378 |
+
return s
|
379 |
+
|
380 |
+
real = property(lambda self: self.context.make_mpf(self._mpc_[0]))
|
381 |
+
imag = property(lambda self: self.context.make_mpf(self._mpc_[1]))
|
382 |
+
|
383 |
+
def __getstate__(self):
|
384 |
+
return to_pickable(self._mpc_[0]), to_pickable(self._mpc_[1])
|
385 |
+
|
386 |
+
def __setstate__(self, val):
|
387 |
+
self._mpc_ = from_pickable(val[0]), from_pickable(val[1])
|
388 |
+
|
389 |
+
def __repr__(s):
|
390 |
+
if s.context.pretty:
|
391 |
+
return str(s)
|
392 |
+
r = repr(s.real)[4:-1]
|
393 |
+
i = repr(s.imag)[4:-1]
|
394 |
+
return "%s(real=%s, imag=%s)" % (type(s).__name__, r, i)
|
395 |
+
|
396 |
+
def __str__(s):
|
397 |
+
return "(%s)" % mpc_to_str(s._mpc_, s.context._str_digits)
|
398 |
+
|
399 |
+
def __complex__(s):
|
400 |
+
return mpc_to_complex(s._mpc_, rnd=s.context._prec_rounding[1])
|
401 |
+
|
402 |
+
def __pos__(s):
|
403 |
+
cls, new, (prec, rounding) = s._ctxdata
|
404 |
+
v = new(cls)
|
405 |
+
v._mpc_ = mpc_pos(s._mpc_, prec, rounding)
|
406 |
+
return v
|
407 |
+
|
408 |
+
def __abs__(s):
|
409 |
+
prec, rounding = s.context._prec_rounding
|
410 |
+
v = new(s.context.mpf)
|
411 |
+
v._mpf_ = mpc_abs(s._mpc_, prec, rounding)
|
412 |
+
return v
|
413 |
+
|
414 |
+
def __neg__(s):
|
415 |
+
cls, new, (prec, rounding) = s._ctxdata
|
416 |
+
v = new(cls)
|
417 |
+
v._mpc_ = mpc_neg(s._mpc_, prec, rounding)
|
418 |
+
return v
|
419 |
+
|
420 |
+
def conjugate(s):
|
421 |
+
cls, new, (prec, rounding) = s._ctxdata
|
422 |
+
v = new(cls)
|
423 |
+
v._mpc_ = mpc_conjugate(s._mpc_, prec, rounding)
|
424 |
+
return v
|
425 |
+
|
426 |
+
def __nonzero__(s):
|
427 |
+
return mpc_is_nonzero(s._mpc_)
|
428 |
+
|
429 |
+
__bool__ = __nonzero__
|
430 |
+
|
431 |
+
def __hash__(s):
|
432 |
+
return mpc_hash(s._mpc_)
|
433 |
+
|
434 |
+
@classmethod
|
435 |
+
def mpc_convert_lhs(cls, x):
|
436 |
+
try:
|
437 |
+
y = cls.context.convert(x)
|
438 |
+
return y
|
439 |
+
except TypeError:
|
440 |
+
return NotImplemented
|
441 |
+
|
442 |
+
def __eq__(s, t):
|
443 |
+
if not hasattr(t, '_mpc_'):
|
444 |
+
if isinstance(t, str):
|
445 |
+
return False
|
446 |
+
t = s.mpc_convert_lhs(t)
|
447 |
+
if t is NotImplemented:
|
448 |
+
return t
|
449 |
+
return s.real == t.real and s.imag == t.imag
|
450 |
+
|
451 |
+
def __ne__(s, t):
|
452 |
+
b = s.__eq__(t)
|
453 |
+
if b is NotImplemented:
|
454 |
+
return b
|
455 |
+
return not b
|
456 |
+
|
457 |
+
def _compare(*args):
|
458 |
+
raise TypeError("no ordering relation is defined for complex numbers")
|
459 |
+
|
460 |
+
__gt__ = _compare
|
461 |
+
__le__ = _compare
|
462 |
+
__gt__ = _compare
|
463 |
+
__ge__ = _compare
|
464 |
+
|
465 |
+
def __add__(s, t):
|
466 |
+
cls, new, (prec, rounding) = s._ctxdata
|
467 |
+
if not hasattr(t, '_mpc_'):
|
468 |
+
t = s.mpc_convert_lhs(t)
|
469 |
+
if t is NotImplemented:
|
470 |
+
return t
|
471 |
+
if hasattr(t, '_mpf_'):
|
472 |
+
v = new(cls)
|
473 |
+
v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding)
|
474 |
+
return v
|
475 |
+
v = new(cls)
|
476 |
+
v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding)
|
477 |
+
return v
|
478 |
+
|
479 |
+
def __sub__(s, t):
|
480 |
+
cls, new, (prec, rounding) = s._ctxdata
|
481 |
+
if not hasattr(t, '_mpc_'):
|
482 |
+
t = s.mpc_convert_lhs(t)
|
483 |
+
if t is NotImplemented:
|
484 |
+
return t
|
485 |
+
if hasattr(t, '_mpf_'):
|
486 |
+
v = new(cls)
|
487 |
+
v._mpc_ = mpc_sub_mpf(s._mpc_, t._mpf_, prec, rounding)
|
488 |
+
return v
|
489 |
+
v = new(cls)
|
490 |
+
v._mpc_ = mpc_sub(s._mpc_, t._mpc_, prec, rounding)
|
491 |
+
return v
|
492 |
+
|
493 |
+
def __mul__(s, t):
|
494 |
+
cls, new, (prec, rounding) = s._ctxdata
|
495 |
+
if not hasattr(t, '_mpc_'):
|
496 |
+
if isinstance(t, int_types):
|
497 |
+
v = new(cls)
|
498 |
+
v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
|
499 |
+
return v
|
500 |
+
t = s.mpc_convert_lhs(t)
|
501 |
+
if t is NotImplemented:
|
502 |
+
return t
|
503 |
+
if hasattr(t, '_mpf_'):
|
504 |
+
v = new(cls)
|
505 |
+
v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding)
|
506 |
+
return v
|
507 |
+
t = s.mpc_convert_lhs(t)
|
508 |
+
v = new(cls)
|
509 |
+
v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding)
|
510 |
+
return v
|
511 |
+
|
512 |
+
def __div__(s, t):
|
513 |
+
cls, new, (prec, rounding) = s._ctxdata
|
514 |
+
if not hasattr(t, '_mpc_'):
|
515 |
+
t = s.mpc_convert_lhs(t)
|
516 |
+
if t is NotImplemented:
|
517 |
+
return t
|
518 |
+
if hasattr(t, '_mpf_'):
|
519 |
+
v = new(cls)
|
520 |
+
v._mpc_ = mpc_div_mpf(s._mpc_, t._mpf_, prec, rounding)
|
521 |
+
return v
|
522 |
+
v = new(cls)
|
523 |
+
v._mpc_ = mpc_div(s._mpc_, t._mpc_, prec, rounding)
|
524 |
+
return v
|
525 |
+
|
526 |
+
def __pow__(s, t):
|
527 |
+
cls, new, (prec, rounding) = s._ctxdata
|
528 |
+
if isinstance(t, int_types):
|
529 |
+
v = new(cls)
|
530 |
+
v._mpc_ = mpc_pow_int(s._mpc_, t, prec, rounding)
|
531 |
+
return v
|
532 |
+
t = s.mpc_convert_lhs(t)
|
533 |
+
if t is NotImplemented:
|
534 |
+
return t
|
535 |
+
v = new(cls)
|
536 |
+
if hasattr(t, '_mpf_'):
|
537 |
+
v._mpc_ = mpc_pow_mpf(s._mpc_, t._mpf_, prec, rounding)
|
538 |
+
else:
|
539 |
+
v._mpc_ = mpc_pow(s._mpc_, t._mpc_, prec, rounding)
|
540 |
+
return v
|
541 |
+
|
542 |
+
__radd__ = __add__
|
543 |
+
|
544 |
+
def __rsub__(s, t):
|
545 |
+
t = s.mpc_convert_lhs(t)
|
546 |
+
if t is NotImplemented:
|
547 |
+
return t
|
548 |
+
return t - s
|
549 |
+
|
550 |
+
def __rmul__(s, t):
|
551 |
+
cls, new, (prec, rounding) = s._ctxdata
|
552 |
+
if isinstance(t, int_types):
|
553 |
+
v = new(cls)
|
554 |
+
v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding)
|
555 |
+
return v
|
556 |
+
t = s.mpc_convert_lhs(t)
|
557 |
+
if t is NotImplemented:
|
558 |
+
return t
|
559 |
+
return t * s
|
560 |
+
|
561 |
+
def __rdiv__(s, t):
|
562 |
+
t = s.mpc_convert_lhs(t)
|
563 |
+
if t is NotImplemented:
|
564 |
+
return t
|
565 |
+
return t / s
|
566 |
+
|
567 |
+
def __rpow__(s, t):
|
568 |
+
t = s.mpc_convert_lhs(t)
|
569 |
+
if t is NotImplemented:
|
570 |
+
return t
|
571 |
+
return t ** s
|
572 |
+
|
573 |
+
__truediv__ = __div__
|
574 |
+
__rtruediv__ = __rdiv__
|
575 |
+
|
576 |
+
def ae(s, t, rel_eps=None, abs_eps=None):
|
577 |
+
return s.context.almosteq(s, t, rel_eps, abs_eps)
|
578 |
+
|
579 |
+
|
580 |
+
complex_types = (complex, _mpc)
|
581 |
+
|
582 |
+
|
583 |
+
class PythonMPContext(object):
|
584 |
+
|
585 |
+
def __init__(ctx):
|
586 |
+
ctx._prec_rounding = [53, round_nearest]
|
587 |
+
ctx.mpf = type('mpf', (_mpf,), {})
|
588 |
+
ctx.mpc = type('mpc', (_mpc,), {})
|
589 |
+
ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
|
590 |
+
ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding]
|
591 |
+
ctx.mpf.context = ctx
|
592 |
+
ctx.mpc.context = ctx
|
593 |
+
ctx.constant = type('constant', (_constant,), {})
|
594 |
+
ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding]
|
595 |
+
ctx.constant.context = ctx
|
596 |
+
|
597 |
+
def make_mpf(ctx, v):
|
598 |
+
a = new(ctx.mpf)
|
599 |
+
a._mpf_ = v
|
600 |
+
return a
|
601 |
+
|
602 |
+
def make_mpc(ctx, v):
|
603 |
+
a = new(ctx.mpc)
|
604 |
+
a._mpc_ = v
|
605 |
+
return a
|
606 |
+
|
607 |
+
def default(ctx):
|
608 |
+
ctx._prec = ctx._prec_rounding[0] = 53
|
609 |
+
ctx._dps = 15
|
610 |
+
ctx.trap_complex = False
|
611 |
+
|
612 |
+
def _set_prec(ctx, n):
|
613 |
+
ctx._prec = ctx._prec_rounding[0] = max(1, int(n))
|
614 |
+
ctx._dps = prec_to_dps(n)
|
615 |
+
|
616 |
+
def _set_dps(ctx, n):
|
617 |
+
ctx._prec = ctx._prec_rounding[0] = dps_to_prec(n)
|
618 |
+
ctx._dps = max(1, int(n))
|
619 |
+
|
620 |
+
prec = property(lambda ctx: ctx._prec, _set_prec)
|
621 |
+
dps = property(lambda ctx: ctx._dps, _set_dps)
|
622 |
+
|
623 |
+
def convert(ctx, x, strings=True):
|
624 |
+
"""
|
625 |
+
Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``,
|
626 |
+
``mpc``, ``int``, ``float``, ``complex``, the conversion
|
627 |
+
will be performed losslessly.
|
628 |
+
|
629 |
+
If *x* is a string, the result will be rounded to the present
|
630 |
+
working precision. Strings representing fractions or complex
|
631 |
+
numbers are permitted.
|
632 |
+
|
633 |
+
>>> from mpmath import *
|
634 |
+
>>> mp.dps = 15; mp.pretty = False
|
635 |
+
>>> mpmathify(3.5)
|
636 |
+
mpf('3.5')
|
637 |
+
>>> mpmathify('2.1')
|
638 |
+
mpf('2.1000000000000001')
|
639 |
+
>>> mpmathify('3/4')
|
640 |
+
mpf('0.75')
|
641 |
+
>>> mpmathify('2+3j')
|
642 |
+
mpc(real='2.0', imag='3.0')
|
643 |
+
|
644 |
+
"""
|
645 |
+
if type(x) in ctx.types: return x
|
646 |
+
if isinstance(x, int_types): return ctx.make_mpf(from_int(x))
|
647 |
+
if isinstance(x, float): return ctx.make_mpf(from_float(x))
|
648 |
+
if isinstance(x, complex):
|
649 |
+
return ctx.make_mpc((from_float(x.real), from_float(x.imag)))
|
650 |
+
if type(x).__module__ == 'numpy': return ctx.npconvert(x)
|
651 |
+
if isinstance(x, numbers.Rational): # e.g. Fraction
|
652 |
+
try: x = rational.mpq(int(x.numerator), int(x.denominator))
|
653 |
+
except: pass
|
654 |
+
prec, rounding = ctx._prec_rounding
|
655 |
+
if isinstance(x, rational.mpq):
|
656 |
+
p, q = x._mpq_
|
657 |
+
return ctx.make_mpf(from_rational(p, q, prec))
|
658 |
+
if strings and isinstance(x, basestring):
|
659 |
+
try:
|
660 |
+
_mpf_ = from_str(x, prec, rounding)
|
661 |
+
return ctx.make_mpf(_mpf_)
|
662 |
+
except ValueError:
|
663 |
+
pass
|
664 |
+
if hasattr(x, '_mpf_'): return ctx.make_mpf(x._mpf_)
|
665 |
+
if hasattr(x, '_mpc_'): return ctx.make_mpc(x._mpc_)
|
666 |
+
if hasattr(x, '_mpmath_'):
|
667 |
+
return ctx.convert(x._mpmath_(prec, rounding))
|
668 |
+
if type(x).__module__ == 'decimal':
|
669 |
+
try: return ctx.make_mpf(from_Decimal(x, prec, rounding))
|
670 |
+
except: pass
|
671 |
+
return ctx._convert_fallback(x, strings)
|
672 |
+
|
673 |
+
def npconvert(ctx, x):
|
674 |
+
"""
|
675 |
+
Converts *x* to an ``mpf`` or ``mpc``. *x* should be a numpy
|
676 |
+
scalar.
|
677 |
+
"""
|
678 |
+
import numpy as np
|
679 |
+
if isinstance(x, np.integer): return ctx.make_mpf(from_int(int(x)))
|
680 |
+
if isinstance(x, np.floating): return ctx.make_mpf(from_npfloat(x))
|
681 |
+
if isinstance(x, np.complexfloating):
|
682 |
+
return ctx.make_mpc((from_npfloat(x.real), from_npfloat(x.imag)))
|
683 |
+
raise TypeError("cannot create mpf from " + repr(x))
|
684 |
+
|
685 |
+
def isnan(ctx, x):
|
686 |
+
"""
|
687 |
+
Return *True* if *x* is a NaN (not-a-number), or for a complex
|
688 |
+
number, whether either the real or complex part is NaN;
|
689 |
+
otherwise return *False*::
|
690 |
+
|
691 |
+
>>> from mpmath import *
|
692 |
+
>>> isnan(3.14)
|
693 |
+
False
|
694 |
+
>>> isnan(nan)
|
695 |
+
True
|
696 |
+
>>> isnan(mpc(3.14,2.72))
|
697 |
+
False
|
698 |
+
>>> isnan(mpc(3.14,nan))
|
699 |
+
True
|
700 |
+
|
701 |
+
"""
|
702 |
+
if hasattr(x, "_mpf_"):
|
703 |
+
return x._mpf_ == fnan
|
704 |
+
if hasattr(x, "_mpc_"):
|
705 |
+
return fnan in x._mpc_
|
706 |
+
if isinstance(x, int_types) or isinstance(x, rational.mpq):
|
707 |
+
return False
|
708 |
+
x = ctx.convert(x)
|
709 |
+
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
|
710 |
+
return ctx.isnan(x)
|
711 |
+
raise TypeError("isnan() needs a number as input")
|
712 |
+
|
713 |
+
def isinf(ctx, x):
|
714 |
+
"""
|
715 |
+
Return *True* if the absolute value of *x* is infinite;
|
716 |
+
otherwise return *False*::
|
717 |
+
|
718 |
+
>>> from mpmath import *
|
719 |
+
>>> isinf(inf)
|
720 |
+
True
|
721 |
+
>>> isinf(-inf)
|
722 |
+
True
|
723 |
+
>>> isinf(3)
|
724 |
+
False
|
725 |
+
>>> isinf(3+4j)
|
726 |
+
False
|
727 |
+
>>> isinf(mpc(3,inf))
|
728 |
+
True
|
729 |
+
>>> isinf(mpc(inf,3))
|
730 |
+
True
|
731 |
+
|
732 |
+
"""
|
733 |
+
if hasattr(x, "_mpf_"):
|
734 |
+
return x._mpf_ in (finf, fninf)
|
735 |
+
if hasattr(x, "_mpc_"):
|
736 |
+
re, im = x._mpc_
|
737 |
+
return re in (finf, fninf) or im in (finf, fninf)
|
738 |
+
if isinstance(x, int_types) or isinstance(x, rational.mpq):
|
739 |
+
return False
|
740 |
+
x = ctx.convert(x)
|
741 |
+
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
|
742 |
+
return ctx.isinf(x)
|
743 |
+
raise TypeError("isinf() needs a number as input")
|
744 |
+
|
745 |
+
def isnormal(ctx, x):
|
746 |
+
"""
|
747 |
+
Determine whether *x* is "normal" in the sense of floating-point
|
748 |
+
representation; that is, return *False* if *x* is zero, an
|
749 |
+
infinity or NaN; otherwise return *True*. By extension, a
|
750 |
+
complex number *x* is considered "normal" if its magnitude is
|
751 |
+
normal::
|
752 |
+
|
753 |
+
>>> from mpmath import *
|
754 |
+
>>> isnormal(3)
|
755 |
+
True
|
756 |
+
>>> isnormal(0)
|
757 |
+
False
|
758 |
+
>>> isnormal(inf); isnormal(-inf); isnormal(nan)
|
759 |
+
False
|
760 |
+
False
|
761 |
+
False
|
762 |
+
>>> isnormal(0+0j)
|
763 |
+
False
|
764 |
+
>>> isnormal(0+3j)
|
765 |
+
True
|
766 |
+
>>> isnormal(mpc(2,nan))
|
767 |
+
False
|
768 |
+
"""
|
769 |
+
if hasattr(x, "_mpf_"):
|
770 |
+
return bool(x._mpf_[1])
|
771 |
+
if hasattr(x, "_mpc_"):
|
772 |
+
re, im = x._mpc_
|
773 |
+
re_normal = bool(re[1])
|
774 |
+
im_normal = bool(im[1])
|
775 |
+
if re == fzero: return im_normal
|
776 |
+
if im == fzero: return re_normal
|
777 |
+
return re_normal and im_normal
|
778 |
+
if isinstance(x, int_types) or isinstance(x, rational.mpq):
|
779 |
+
return bool(x)
|
780 |
+
x = ctx.convert(x)
|
781 |
+
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
|
782 |
+
return ctx.isnormal(x)
|
783 |
+
raise TypeError("isnormal() needs a number as input")
|
784 |
+
|
785 |
+
def isint(ctx, x, gaussian=False):
|
786 |
+
"""
|
787 |
+
Return *True* if *x* is integer-valued; otherwise return
|
788 |
+
*False*::
|
789 |
+
|
790 |
+
>>> from mpmath import *
|
791 |
+
>>> isint(3)
|
792 |
+
True
|
793 |
+
>>> isint(mpf(3))
|
794 |
+
True
|
795 |
+
>>> isint(3.2)
|
796 |
+
False
|
797 |
+
>>> isint(inf)
|
798 |
+
False
|
799 |
+
|
800 |
+
Optionally, Gaussian integers can be checked for::
|
801 |
+
|
802 |
+
>>> isint(3+0j)
|
803 |
+
True
|
804 |
+
>>> isint(3+2j)
|
805 |
+
False
|
806 |
+
>>> isint(3+2j, gaussian=True)
|
807 |
+
True
|
808 |
+
|
809 |
+
"""
|
810 |
+
if isinstance(x, int_types):
|
811 |
+
return True
|
812 |
+
if hasattr(x, "_mpf_"):
|
813 |
+
sign, man, exp, bc = xval = x._mpf_
|
814 |
+
return bool((man and exp >= 0) or xval == fzero)
|
815 |
+
if hasattr(x, "_mpc_"):
|
816 |
+
re, im = x._mpc_
|
817 |
+
rsign, rman, rexp, rbc = re
|
818 |
+
isign, iman, iexp, ibc = im
|
819 |
+
re_isint = (rman and rexp >= 0) or re == fzero
|
820 |
+
if gaussian:
|
821 |
+
im_isint = (iman and iexp >= 0) or im == fzero
|
822 |
+
return re_isint and im_isint
|
823 |
+
return re_isint and im == fzero
|
824 |
+
if isinstance(x, rational.mpq):
|
825 |
+
p, q = x._mpq_
|
826 |
+
return p % q == 0
|
827 |
+
x = ctx.convert(x)
|
828 |
+
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
|
829 |
+
return ctx.isint(x, gaussian)
|
830 |
+
raise TypeError("isint() needs a number as input")
|
831 |
+
|
832 |
+
def fsum(ctx, terms, absolute=False, squared=False):
|
833 |
+
"""
|
834 |
+
Calculates a sum containing a finite number of terms (for infinite
|
835 |
+
series, see :func:`~mpmath.nsum`). The terms will be converted to
|
836 |
+
mpmath numbers. For len(terms) > 2, this function is generally
|
837 |
+
faster and produces more accurate results than the builtin
|
838 |
+
Python function :func:`sum`.
|
839 |
+
|
840 |
+
>>> from mpmath import *
|
841 |
+
>>> mp.dps = 15; mp.pretty = False
|
842 |
+
>>> fsum([1, 2, 0.5, 7])
|
843 |
+
mpf('10.5')
|
844 |
+
|
845 |
+
With squared=True each term is squared, and with absolute=True
|
846 |
+
the absolute value of each term is used.
|
847 |
+
"""
|
848 |
+
prec, rnd = ctx._prec_rounding
|
849 |
+
real = []
|
850 |
+
imag = []
|
851 |
+
for term in terms:
|
852 |
+
reval = imval = 0
|
853 |
+
if hasattr(term, "_mpf_"):
|
854 |
+
reval = term._mpf_
|
855 |
+
elif hasattr(term, "_mpc_"):
|
856 |
+
reval, imval = term._mpc_
|
857 |
+
else:
|
858 |
+
term = ctx.convert(term)
|
859 |
+
if hasattr(term, "_mpf_"):
|
860 |
+
reval = term._mpf_
|
861 |
+
elif hasattr(term, "_mpc_"):
|
862 |
+
reval, imval = term._mpc_
|
863 |
+
else:
|
864 |
+
raise NotImplementedError
|
865 |
+
if imval:
|
866 |
+
if squared:
|
867 |
+
if absolute:
|
868 |
+
real.append(mpf_mul(reval,reval))
|
869 |
+
real.append(mpf_mul(imval,imval))
|
870 |
+
else:
|
871 |
+
reval, imval = mpc_pow_int((reval,imval),2,prec+10)
|
872 |
+
real.append(reval)
|
873 |
+
imag.append(imval)
|
874 |
+
elif absolute:
|
875 |
+
real.append(mpc_abs((reval,imval), prec))
|
876 |
+
else:
|
877 |
+
real.append(reval)
|
878 |
+
imag.append(imval)
|
879 |
+
else:
|
880 |
+
if squared:
|
881 |
+
reval = mpf_mul(reval, reval)
|
882 |
+
elif absolute:
|
883 |
+
reval = mpf_abs(reval)
|
884 |
+
real.append(reval)
|
885 |
+
s = mpf_sum(real, prec, rnd, absolute)
|
886 |
+
if imag:
|
887 |
+
s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
|
888 |
+
else:
|
889 |
+
s = ctx.make_mpf(s)
|
890 |
+
return s
|
891 |
+
|
892 |
+
def fdot(ctx, A, B=None, conjugate=False):
|
893 |
+
r"""
|
894 |
+
Computes the dot product of the iterables `A` and `B`,
|
895 |
+
|
896 |
+
.. math ::
|
897 |
+
|
898 |
+
\sum_{k=0} A_k B_k.
|
899 |
+
|
900 |
+
Alternatively, :func:`~mpmath.fdot` accepts a single iterable of pairs.
|
901 |
+
In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent.
|
902 |
+
The elements are automatically converted to mpmath numbers.
|
903 |
+
|
904 |
+
With ``conjugate=True``, the elements in the second vector
|
905 |
+
will be conjugated:
|
906 |
+
|
907 |
+
.. math ::
|
908 |
+
|
909 |
+
\sum_{k=0} A_k \overline{B_k}
|
910 |
+
|
911 |
+
**Examples**
|
912 |
+
|
913 |
+
>>> from mpmath import *
|
914 |
+
>>> mp.dps = 15; mp.pretty = False
|
915 |
+
>>> A = [2, 1.5, 3]
|
916 |
+
>>> B = [1, -1, 2]
|
917 |
+
>>> fdot(A, B)
|
918 |
+
mpf('6.5')
|
919 |
+
>>> list(zip(A, B))
|
920 |
+
[(2, 1), (1.5, -1), (3, 2)]
|
921 |
+
>>> fdot(_)
|
922 |
+
mpf('6.5')
|
923 |
+
>>> A = [2, 1.5, 3j]
|
924 |
+
>>> B = [1+j, 3, -1-j]
|
925 |
+
>>> fdot(A, B)
|
926 |
+
mpc(real='9.5', imag='-1.0')
|
927 |
+
>>> fdot(A, B, conjugate=True)
|
928 |
+
mpc(real='3.5', imag='-5.0')
|
929 |
+
|
930 |
+
"""
|
931 |
+
if B is not None:
|
932 |
+
A = zip(A, B)
|
933 |
+
prec, rnd = ctx._prec_rounding
|
934 |
+
real = []
|
935 |
+
imag = []
|
936 |
+
hasattr_ = hasattr
|
937 |
+
types = (ctx.mpf, ctx.mpc)
|
938 |
+
for a, b in A:
|
939 |
+
if type(a) not in types: a = ctx.convert(a)
|
940 |
+
if type(b) not in types: b = ctx.convert(b)
|
941 |
+
a_real = hasattr_(a, "_mpf_")
|
942 |
+
b_real = hasattr_(b, "_mpf_")
|
943 |
+
if a_real and b_real:
|
944 |
+
real.append(mpf_mul(a._mpf_, b._mpf_))
|
945 |
+
continue
|
946 |
+
a_complex = hasattr_(a, "_mpc_")
|
947 |
+
b_complex = hasattr_(b, "_mpc_")
|
948 |
+
if a_real and b_complex:
|
949 |
+
aval = a._mpf_
|
950 |
+
bre, bim = b._mpc_
|
951 |
+
if conjugate:
|
952 |
+
bim = mpf_neg(bim)
|
953 |
+
real.append(mpf_mul(aval, bre))
|
954 |
+
imag.append(mpf_mul(aval, bim))
|
955 |
+
elif b_real and a_complex:
|
956 |
+
are, aim = a._mpc_
|
957 |
+
bval = b._mpf_
|
958 |
+
real.append(mpf_mul(are, bval))
|
959 |
+
imag.append(mpf_mul(aim, bval))
|
960 |
+
elif a_complex and b_complex:
|
961 |
+
#re, im = mpc_mul(a._mpc_, b._mpc_, prec+20)
|
962 |
+
are, aim = a._mpc_
|
963 |
+
bre, bim = b._mpc_
|
964 |
+
if conjugate:
|
965 |
+
bim = mpf_neg(bim)
|
966 |
+
real.append(mpf_mul(are, bre))
|
967 |
+
real.append(mpf_neg(mpf_mul(aim, bim)))
|
968 |
+
imag.append(mpf_mul(are, bim))
|
969 |
+
imag.append(mpf_mul(aim, bre))
|
970 |
+
else:
|
971 |
+
raise NotImplementedError
|
972 |
+
s = mpf_sum(real, prec, rnd)
|
973 |
+
if imag:
|
974 |
+
s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd)))
|
975 |
+
else:
|
976 |
+
s = ctx.make_mpf(s)
|
977 |
+
return s
|
978 |
+
|
979 |
+
def _wrap_libmp_function(ctx, mpf_f, mpc_f=None, mpi_f=None, doc="<no doc>"):
|
980 |
+
"""
|
981 |
+
Given a low-level mpf_ function, and optionally similar functions
|
982 |
+
for mpc_ and mpi_, defines the function as a context method.
|
983 |
+
|
984 |
+
It is assumed that the return type is the same as that of
|
985 |
+
the input; the exception is that propagation from mpf to mpc is possible
|
986 |
+
by raising ComplexResult.
|
987 |
+
|
988 |
+
"""
|
989 |
+
def f(x, **kwargs):
|
990 |
+
if type(x) not in ctx.types:
|
991 |
+
x = ctx.convert(x)
|
992 |
+
prec, rounding = ctx._prec_rounding
|
993 |
+
if kwargs:
|
994 |
+
prec = kwargs.get('prec', prec)
|
995 |
+
if 'dps' in kwargs:
|
996 |
+
prec = dps_to_prec(kwargs['dps'])
|
997 |
+
rounding = kwargs.get('rounding', rounding)
|
998 |
+
if hasattr(x, '_mpf_'):
|
999 |
+
try:
|
1000 |
+
return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding))
|
1001 |
+
except ComplexResult:
|
1002 |
+
# Handle propagation to complex
|
1003 |
+
if ctx.trap_complex:
|
1004 |
+
raise
|
1005 |
+
return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding))
|
1006 |
+
elif hasattr(x, '_mpc_'):
|
1007 |
+
return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding))
|
1008 |
+
raise NotImplementedError("%s of a %s" % (name, type(x)))
|
1009 |
+
name = mpf_f.__name__[4:]
|
1010 |
+
f.__doc__ = function_docs.__dict__.get(name, "Computes the %s of x" % doc)
|
1011 |
+
return f
|
1012 |
+
|
1013 |
+
# Called by SpecialFunctions.__init__()
|
1014 |
+
@classmethod
|
1015 |
+
def _wrap_specfun(cls, name, f, wrap):
|
1016 |
+
if wrap:
|
1017 |
+
def f_wrapped(ctx, *args, **kwargs):
|
1018 |
+
convert = ctx.convert
|
1019 |
+
args = [convert(a) for a in args]
|
1020 |
+
prec = ctx.prec
|
1021 |
+
try:
|
1022 |
+
ctx.prec += 10
|
1023 |
+
retval = f(ctx, *args, **kwargs)
|
1024 |
+
finally:
|
1025 |
+
ctx.prec = prec
|
1026 |
+
return +retval
|
1027 |
+
else:
|
1028 |
+
f_wrapped = f
|
1029 |
+
f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__)
|
1030 |
+
setattr(cls, name, f_wrapped)
|
1031 |
+
|
1032 |
+
def _convert_param(ctx, x):
|
1033 |
+
if hasattr(x, "_mpc_"):
|
1034 |
+
v, im = x._mpc_
|
1035 |
+
if im != fzero:
|
1036 |
+
return x, 'C'
|
1037 |
+
elif hasattr(x, "_mpf_"):
|
1038 |
+
v = x._mpf_
|
1039 |
+
else:
|
1040 |
+
if type(x) in int_types:
|
1041 |
+
return int(x), 'Z'
|
1042 |
+
p = None
|
1043 |
+
if isinstance(x, tuple):
|
1044 |
+
p, q = x
|
1045 |
+
elif hasattr(x, '_mpq_'):
|
1046 |
+
p, q = x._mpq_
|
1047 |
+
elif isinstance(x, basestring) and '/' in x:
|
1048 |
+
p, q = x.split('/')
|
1049 |
+
p = int(p)
|
1050 |
+
q = int(q)
|
1051 |
+
if p is not None:
|
1052 |
+
if not p % q:
|
1053 |
+
return p // q, 'Z'
|
1054 |
+
return ctx.mpq(p,q), 'Q'
|
1055 |
+
x = ctx.convert(x)
|
1056 |
+
if hasattr(x, "_mpc_"):
|
1057 |
+
v, im = x._mpc_
|
1058 |
+
if im != fzero:
|
1059 |
+
return x, 'C'
|
1060 |
+
elif hasattr(x, "_mpf_"):
|
1061 |
+
v = x._mpf_
|
1062 |
+
else:
|
1063 |
+
return x, 'U'
|
1064 |
+
sign, man, exp, bc = v
|
1065 |
+
if man:
|
1066 |
+
if exp >= -4:
|
1067 |
+
if sign:
|
1068 |
+
man = -man
|
1069 |
+
if exp >= 0:
|
1070 |
+
return int(man) << exp, 'Z'
|
1071 |
+
if exp >= -4:
|
1072 |
+
p, q = int(man), (1<<(-exp))
|
1073 |
+
return ctx.mpq(p,q), 'Q'
|
1074 |
+
x = ctx.make_mpf(v)
|
1075 |
+
return x, 'R'
|
1076 |
+
elif not exp:
|
1077 |
+
return 0, 'Z'
|
1078 |
+
else:
|
1079 |
+
return x, 'U'
|
1080 |
+
|
1081 |
+
def _mpf_mag(ctx, x):
|
1082 |
+
sign, man, exp, bc = x
|
1083 |
+
if man:
|
1084 |
+
return exp+bc
|
1085 |
+
if x == fzero:
|
1086 |
+
return ctx.ninf
|
1087 |
+
if x == finf or x == fninf:
|
1088 |
+
return ctx.inf
|
1089 |
+
return ctx.nan
|
1090 |
+
|
1091 |
+
def mag(ctx, x):
|
1092 |
+
"""
|
1093 |
+
Quick logarithmic magnitude estimate of a number. Returns an
|
1094 |
+
integer or infinity `m` such that `|x| <= 2^m`. It is not
|
1095 |
+
guaranteed that `m` is an optimal bound, but it will never
|
1096 |
+
be too large by more than 2 (and probably not more than 1).
|
1097 |
+
|
1098 |
+
**Examples**
|
1099 |
+
|
1100 |
+
>>> from mpmath import *
|
1101 |
+
>>> mp.pretty = True
|
1102 |
+
>>> mag(10), mag(10.0), mag(mpf(10)), int(ceil(log(10,2)))
|
1103 |
+
(4, 4, 4, 4)
|
1104 |
+
>>> mag(10j), mag(10+10j)
|
1105 |
+
(4, 5)
|
1106 |
+
>>> mag(0.01), int(ceil(log(0.01,2)))
|
1107 |
+
(-6, -6)
|
1108 |
+
>>> mag(0), mag(inf), mag(-inf), mag(nan)
|
1109 |
+
(-inf, +inf, +inf, nan)
|
1110 |
+
|
1111 |
+
"""
|
1112 |
+
if hasattr(x, "_mpf_"):
|
1113 |
+
return ctx._mpf_mag(x._mpf_)
|
1114 |
+
elif hasattr(x, "_mpc_"):
|
1115 |
+
r, i = x._mpc_
|
1116 |
+
if r == fzero:
|
1117 |
+
return ctx._mpf_mag(i)
|
1118 |
+
if i == fzero:
|
1119 |
+
return ctx._mpf_mag(r)
|
1120 |
+
return 1+max(ctx._mpf_mag(r), ctx._mpf_mag(i))
|
1121 |
+
elif isinstance(x, int_types):
|
1122 |
+
if x:
|
1123 |
+
return bitcount(abs(x))
|
1124 |
+
return ctx.ninf
|
1125 |
+
elif isinstance(x, rational.mpq):
|
1126 |
+
p, q = x._mpq_
|
1127 |
+
if p:
|
1128 |
+
return 1 + bitcount(abs(p)) - bitcount(q)
|
1129 |
+
return ctx.ninf
|
1130 |
+
else:
|
1131 |
+
x = ctx.convert(x)
|
1132 |
+
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
|
1133 |
+
return ctx.mag(x)
|
1134 |
+
else:
|
1135 |
+
raise TypeError("requires an mpf/mpc")
|
1136 |
+
|
1137 |
+
|
1138 |
+
# Register with "numbers" ABC
|
1139 |
+
# We do not subclass, hence we do not use the @abstractmethod checks. While
|
1140 |
+
# this is less invasive it may turn out that we do not actually support
|
1141 |
+
# parts of the expected interfaces. See
|
1142 |
+
# http://docs.python.org/2/library/numbers.html for list of abstract
|
1143 |
+
# methods.
|
1144 |
+
try:
|
1145 |
+
import numbers
|
1146 |
+
numbers.Complex.register(_mpc)
|
1147 |
+
numbers.Real.register(_mpf)
|
1148 |
+
except ImportError:
|
1149 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/mpmath/identification.py
ADDED
@@ -0,0 +1,844 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implements the PSLQ algorithm for integer relation detection,
|
3 |
+
and derivative algorithms for constant recognition.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from .libmp.backend import xrange
|
7 |
+
from .libmp import int_types, sqrt_fixed
|
8 |
+
|
9 |
+
# round to nearest integer (can be done more elegantly...)
|
10 |
+
def round_fixed(x, prec):
|
11 |
+
return ((x + (1<<(prec-1))) >> prec) << prec
|
12 |
+
|
13 |
+
class IdentificationMethods(object):
|
14 |
+
pass
|
15 |
+
|
16 |
+
|
17 |
+
def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False):
|
18 |
+
r"""
|
19 |
+
Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)``
|
20 |
+
uses the PSLQ algorithm to find a list of integers
|
21 |
+
`[c_0, c_1, ..., c_n]` such that
|
22 |
+
|
23 |
+
.. math ::
|
24 |
+
|
25 |
+
|c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol}
|
26 |
+
|
27 |
+
and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector
|
28 |
+
exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to
|
29 |
+
3/4 of the working precision.
|
30 |
+
|
31 |
+
**Examples**
|
32 |
+
|
33 |
+
Find rational approximations for `\pi`::
|
34 |
+
|
35 |
+
>>> from mpmath import *
|
36 |
+
>>> mp.dps = 15; mp.pretty = True
|
37 |
+
>>> pslq([-1, pi], tol=0.01)
|
38 |
+
[22, 7]
|
39 |
+
>>> pslq([-1, pi], tol=0.001)
|
40 |
+
[355, 113]
|
41 |
+
>>> mpf(22)/7; mpf(355)/113; +pi
|
42 |
+
3.14285714285714
|
43 |
+
3.14159292035398
|
44 |
+
3.14159265358979
|
45 |
+
|
46 |
+
Pi is not a rational number with denominator less than 1000::
|
47 |
+
|
48 |
+
>>> pslq([-1, pi])
|
49 |
+
>>>
|
50 |
+
|
51 |
+
To within the standard precision, it can however be approximated
|
52 |
+
by at least one rational number with denominator less than `10^{12}`::
|
53 |
+
|
54 |
+
>>> p, q = pslq([-1, pi], maxcoeff=10**12)
|
55 |
+
>>> print(p); print(q)
|
56 |
+
238410049439
|
57 |
+
75888275702
|
58 |
+
>>> mpf(p)/q
|
59 |
+
3.14159265358979
|
60 |
+
|
61 |
+
The PSLQ algorithm can be applied to long vectors. For example,
|
62 |
+
we can investigate the rational (in)dependence of integer square
|
63 |
+
roots::
|
64 |
+
|
65 |
+
>>> mp.dps = 30
|
66 |
+
>>> pslq([sqrt(n) for n in range(2, 5+1)])
|
67 |
+
>>>
|
68 |
+
>>> pslq([sqrt(n) for n in range(2, 6+1)])
|
69 |
+
>>>
|
70 |
+
>>> pslq([sqrt(n) for n in range(2, 8+1)])
|
71 |
+
[2, 0, 0, 0, 0, 0, -1]
|
72 |
+
|
73 |
+
**Machin formulas**
|
74 |
+
|
75 |
+
A famous formula for `\pi` is Machin's,
|
76 |
+
|
77 |
+
.. math ::
|
78 |
+
|
79 |
+
\frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239
|
80 |
+
|
81 |
+
There are actually infinitely many formulas of this type. Two
|
82 |
+
others are
|
83 |
+
|
84 |
+
.. math ::
|
85 |
+
|
86 |
+
\frac{\pi}{4} = \operatorname{acot} 1
|
87 |
+
|
88 |
+
\frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57
|
89 |
+
+ 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443
|
90 |
+
|
91 |
+
We can easily verify the formulas using the PSLQ algorithm::
|
92 |
+
|
93 |
+
>>> mp.dps = 30
|
94 |
+
>>> pslq([pi/4, acot(1)])
|
95 |
+
[1, -1]
|
96 |
+
>>> pslq([pi/4, acot(5), acot(239)])
|
97 |
+
[1, -4, 1]
|
98 |
+
>>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)])
|
99 |
+
[1, -12, -32, 5, -12]
|
100 |
+
|
101 |
+
We could try to generate a custom Machin-like formula by running
|
102 |
+
the PSLQ algorithm with a few inverse cotangent values, for example
|
103 |
+
acot(2), acot(3) ... acot(10). Unfortunately, there is a linear
|
104 |
+
dependence among these values, resulting in only that dependence
|
105 |
+
being detected, with a zero coefficient for `\pi`::
|
106 |
+
|
107 |
+
>>> pslq([pi] + [acot(n) for n in range(2,11)])
|
108 |
+
[0, 1, -1, 0, 0, 0, -1, 0, 0, 0]
|
109 |
+
|
110 |
+
We get better luck by removing linearly dependent terms::
|
111 |
+
|
112 |
+
>>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)])
|
113 |
+
[1, -8, 0, 0, 4, 0, 0, 0]
|
114 |
+
|
115 |
+
In other words, we found the following formula::
|
116 |
+
|
117 |
+
>>> 8*acot(2) - 4*acot(7)
|
118 |
+
3.14159265358979323846264338328
|
119 |
+
>>> +pi
|
120 |
+
3.14159265358979323846264338328
|
121 |
+
|
122 |
+
**Algorithm**
|
123 |
+
|
124 |
+
This is a fairly direct translation to Python of the pseudocode given by
|
125 |
+
David Bailey, "The PSLQ Integer Relation Algorithm":
|
126 |
+
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html
|
127 |
+
|
128 |
+
The present implementation uses fixed-point instead of floating-point
|
129 |
+
arithmetic, since this is significantly (about 7x) faster.
|
130 |
+
"""
|
131 |
+
|
132 |
+
n = len(x)
|
133 |
+
if n < 2:
|
134 |
+
raise ValueError("n cannot be less than 2")
|
135 |
+
|
136 |
+
# At too low precision, the algorithm becomes meaningless
|
137 |
+
prec = ctx.prec
|
138 |
+
if prec < 53:
|
139 |
+
raise ValueError("prec cannot be less than 53")
|
140 |
+
|
141 |
+
if verbose and prec // max(2,n) < 5:
|
142 |
+
print("Warning: precision for PSLQ may be too low")
|
143 |
+
|
144 |
+
target = int(prec * 0.75)
|
145 |
+
|
146 |
+
if tol is None:
|
147 |
+
tol = ctx.mpf(2)**(-target)
|
148 |
+
else:
|
149 |
+
tol = ctx.convert(tol)
|
150 |
+
|
151 |
+
extra = 60
|
152 |
+
prec += extra
|
153 |
+
|
154 |
+
if verbose:
|
155 |
+
print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol)))
|
156 |
+
|
157 |
+
tol = ctx.to_fixed(tol, prec)
|
158 |
+
assert tol
|
159 |
+
|
160 |
+
# Convert to fixed-point numbers. The dummy None is added so we can
|
161 |
+
# use 1-based indexing. (This just allows us to be consistent with
|
162 |
+
# Bailey's indexing. The algorithm is 100 lines long, so debugging
|
163 |
+
# a single wrong index can be painful.)
|
164 |
+
x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x]
|
165 |
+
|
166 |
+
# Sanity check on magnitudes
|
167 |
+
minx = min(abs(xx) for xx in x[1:])
|
168 |
+
if not minx:
|
169 |
+
raise ValueError("PSLQ requires a vector of nonzero numbers")
|
170 |
+
if minx < tol//100:
|
171 |
+
if verbose:
|
172 |
+
print("STOPPING: (one number is too small)")
|
173 |
+
return None
|
174 |
+
|
175 |
+
g = sqrt_fixed((4<<prec)//3, prec)
|
176 |
+
A = {}
|
177 |
+
B = {}
|
178 |
+
H = {}
|
179 |
+
# Initialization
|
180 |
+
# step 1
|
181 |
+
for i in xrange(1, n+1):
|
182 |
+
for j in xrange(1, n+1):
|
183 |
+
A[i,j] = B[i,j] = (i==j) << prec
|
184 |
+
H[i,j] = 0
|
185 |
+
# step 2
|
186 |
+
s = [None] + [0] * n
|
187 |
+
for k in xrange(1, n+1):
|
188 |
+
t = 0
|
189 |
+
for j in xrange(k, n+1):
|
190 |
+
t += (x[j]**2 >> prec)
|
191 |
+
s[k] = sqrt_fixed(t, prec)
|
192 |
+
t = s[1]
|
193 |
+
y = x[:]
|
194 |
+
for k in xrange(1, n+1):
|
195 |
+
y[k] = (x[k] << prec) // t
|
196 |
+
s[k] = (s[k] << prec) // t
|
197 |
+
# step 3
|
198 |
+
for i in xrange(1, n+1):
|
199 |
+
for j in xrange(i+1, n):
|
200 |
+
H[i,j] = 0
|
201 |
+
if i <= n-1:
|
202 |
+
if s[i]:
|
203 |
+
H[i,i] = (s[i+1] << prec) // s[i]
|
204 |
+
else:
|
205 |
+
H[i,i] = 0
|
206 |
+
for j in range(1, i):
|
207 |
+
sjj1 = s[j]*s[j+1]
|
208 |
+
if sjj1:
|
209 |
+
H[i,j] = ((-y[i]*y[j])<<prec)//sjj1
|
210 |
+
else:
|
211 |
+
H[i,j] = 0
|
212 |
+
# step 4
|
213 |
+
for i in xrange(2, n+1):
|
214 |
+
for j in xrange(i-1, 0, -1):
|
215 |
+
#t = floor(H[i,j]/H[j,j] + 0.5)
|
216 |
+
if H[j,j]:
|
217 |
+
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
|
218 |
+
else:
|
219 |
+
#t = 0
|
220 |
+
continue
|
221 |
+
y[j] = y[j] + (t*y[i] >> prec)
|
222 |
+
for k in xrange(1, j+1):
|
223 |
+
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
|
224 |
+
for k in xrange(1, n+1):
|
225 |
+
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
|
226 |
+
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
|
227 |
+
# Main algorithm
|
228 |
+
for REP in range(maxsteps):
|
229 |
+
# Step 1
|
230 |
+
m = -1
|
231 |
+
szmax = -1
|
232 |
+
for i in range(1, n):
|
233 |
+
h = H[i,i]
|
234 |
+
sz = (g**i * abs(h)) >> (prec*(i-1))
|
235 |
+
if sz > szmax:
|
236 |
+
m = i
|
237 |
+
szmax = sz
|
238 |
+
# Step 2
|
239 |
+
y[m], y[m+1] = y[m+1], y[m]
|
240 |
+
for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i]
|
241 |
+
for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i]
|
242 |
+
for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m]
|
243 |
+
# Step 3
|
244 |
+
if m <= n - 2:
|
245 |
+
t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec)
|
246 |
+
# A zero element probably indicates that the precision has
|
247 |
+
# been exhausted. XXX: this could be spurious, due to
|
248 |
+
# using fixed-point arithmetic
|
249 |
+
if not t0:
|
250 |
+
break
|
251 |
+
t1 = (H[m,m] << prec) // t0
|
252 |
+
t2 = (H[m,m+1] << prec) // t0
|
253 |
+
for i in xrange(m, n+1):
|
254 |
+
t3 = H[i,m]
|
255 |
+
t4 = H[i,m+1]
|
256 |
+
H[i,m] = (t1*t3+t2*t4) >> prec
|
257 |
+
H[i,m+1] = (-t2*t3+t1*t4) >> prec
|
258 |
+
# Step 4
|
259 |
+
for i in xrange(m+1, n+1):
|
260 |
+
for j in xrange(min(i-1, m+1), 0, -1):
|
261 |
+
try:
|
262 |
+
t = round_fixed((H[i,j] << prec)//H[j,j], prec)
|
263 |
+
# Precision probably exhausted
|
264 |
+
except ZeroDivisionError:
|
265 |
+
break
|
266 |
+
y[j] = y[j] + ((t*y[i]) >> prec)
|
267 |
+
for k in xrange(1, j+1):
|
268 |
+
H[i,k] = H[i,k] - (t*H[j,k] >> prec)
|
269 |
+
for k in xrange(1, n+1):
|
270 |
+
A[i,k] = A[i,k] - (t*A[j,k] >> prec)
|
271 |
+
B[k,j] = B[k,j] + (t*B[k,i] >> prec)
|
272 |
+
# Until a relation is found, the error typically decreases
|
273 |
+
# slowly (e.g. a factor 1-10) with each step TODO: we could
|
274 |
+
# compare err from two successive iterations. If there is a
|
275 |
+
# large drop (several orders of magnitude), that indicates a
|
276 |
+
# "high quality" relation was detected. Reporting this to
|
277 |
+
# the user somehow might be useful.
|
278 |
+
best_err = maxcoeff<<prec
|
279 |
+
for i in xrange(1, n+1):
|
280 |
+
err = abs(y[i])
|
281 |
+
# Maybe we are done?
|
282 |
+
if err < tol:
|
283 |
+
# We are done if the coefficients are acceptable
|
284 |
+
vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \
|
285 |
+
range(1,n+1)]
|
286 |
+
if max(abs(v) for v in vec) < maxcoeff:
|
287 |
+
if verbose:
|
288 |
+
print("FOUND relation at iter %i/%i, error: %s" % \
|
289 |
+
(REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1)))
|
290 |
+
return vec
|
291 |
+
best_err = min(err, best_err)
|
292 |
+
# Calculate a lower bound for the norm. We could do this
|
293 |
+
# more exactly (using the Euclidean norm) but there is probably
|
294 |
+
# no practical benefit.
|
295 |
+
recnorm = max(abs(h) for h in H.values())
|
296 |
+
if recnorm:
|
297 |
+
norm = ((1 << (2*prec)) // recnorm) >> prec
|
298 |
+
norm //= 100
|
299 |
+
else:
|
300 |
+
norm = ctx.inf
|
301 |
+
if verbose:
|
302 |
+
print("%i/%i: Error: %8s Norm: %s" % \
|
303 |
+
(REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm))
|
304 |
+
if norm >= maxcoeff:
|
305 |
+
break
|
306 |
+
if verbose:
|
307 |
+
print("CANCELLING after step %i/%i." % (REP, maxsteps))
|
308 |
+
print("Could not find an integer relation. Norm bound: %s" % norm)
|
309 |
+
return None
|
310 |
+
|
311 |
+
def findpoly(ctx, x, n=1, **kwargs):
|
312 |
+
r"""
|
313 |
+
``findpoly(x, n)`` returns the coefficients of an integer
|
314 |
+
polynomial `P` of degree at most `n` such that `P(x) \approx 0`.
|
315 |
+
If no polynomial having `x` as a root can be found,
|
316 |
+
:func:`~mpmath.findpoly` returns ``None``.
|
317 |
+
|
318 |
+
:func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with
|
319 |
+
the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ...,
|
320 |
+
`[1, x, x^2, .., x^n]` as input. Keyword arguments given to
|
321 |
+
:func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In
|
322 |
+
particular, you can specify a tolerance for `P(x)` with ``tol``
|
323 |
+
and a maximum permitted coefficient size with ``maxcoeff``.
|
324 |
+
|
325 |
+
For large values of `n`, it is recommended to run :func:`~mpmath.findpoly`
|
326 |
+
at high precision; preferably 50 digits or more.
|
327 |
+
|
328 |
+
**Examples**
|
329 |
+
|
330 |
+
By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear
|
331 |
+
polynomial with a rational root::
|
332 |
+
|
333 |
+
>>> from mpmath import *
|
334 |
+
>>> mp.dps = 15; mp.pretty = True
|
335 |
+
>>> findpoly(0.7)
|
336 |
+
[-10, 7]
|
337 |
+
|
338 |
+
The generated coefficient list is valid input to ``polyval`` and
|
339 |
+
``polyroots``::
|
340 |
+
|
341 |
+
>>> nprint(polyval(findpoly(phi, 2), phi), 1)
|
342 |
+
-2.0e-16
|
343 |
+
>>> for r in polyroots(findpoly(phi, 2)):
|
344 |
+
... print(r)
|
345 |
+
...
|
346 |
+
-0.618033988749895
|
347 |
+
1.61803398874989
|
348 |
+
|
349 |
+
Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are
|
350 |
+
solutions to quadratic equations. As we find here, `1+\sqrt 2`
|
351 |
+
is a root of the polynomial `x^2 - 2x - 1`::
|
352 |
+
|
353 |
+
>>> findpoly(1+sqrt(2), 2)
|
354 |
+
[1, -2, -1]
|
355 |
+
>>> findroot(lambda x: x**2 - 2*x - 1, 1)
|
356 |
+
2.4142135623731
|
357 |
+
|
358 |
+
Despite only containing square roots, the following number results
|
359 |
+
in a polynomial of degree 4::
|
360 |
+
|
361 |
+
>>> findpoly(sqrt(2)+sqrt(3), 4)
|
362 |
+
[1, 0, -10, 0, 1]
|
363 |
+
|
364 |
+
In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of
|
365 |
+
`r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of
|
366 |
+
lower degree having `r` as a root does not exist. Given sufficient
|
367 |
+
precision, :func:`~mpmath.findpoly` will usually find the correct
|
368 |
+
minimal polynomial of a given algebraic number.
|
369 |
+
|
370 |
+
**Non-algebraic numbers**
|
371 |
+
|
372 |
+
If :func:`~mpmath.findpoly` fails to find a polynomial with given
|
373 |
+
coefficient size and tolerance constraints, that means no such
|
374 |
+
polynomial exists.
|
375 |
+
|
376 |
+
We can verify that `\pi` is not an algebraic number of degree 3 with
|
377 |
+
coefficients less than 1000::
|
378 |
+
|
379 |
+
>>> mp.dps = 15
|
380 |
+
>>> findpoly(pi, 3)
|
381 |
+
>>>
|
382 |
+
|
383 |
+
It is always possible to find an algebraic approximation of a number
|
384 |
+
using one (or several) of the following methods:
|
385 |
+
|
386 |
+
1. Increasing the permitted degree
|
387 |
+
2. Allowing larger coefficients
|
388 |
+
3. Reducing the tolerance
|
389 |
+
|
390 |
+
One example of each method is shown below::
|
391 |
+
|
392 |
+
>>> mp.dps = 15
|
393 |
+
>>> findpoly(pi, 4)
|
394 |
+
[95, -545, 863, -183, -298]
|
395 |
+
>>> findpoly(pi, 3, maxcoeff=10000)
|
396 |
+
[836, -1734, -2658, -457]
|
397 |
+
>>> findpoly(pi, 3, tol=1e-7)
|
398 |
+
[-4, 22, -29, -2]
|
399 |
+
|
400 |
+
It is unknown whether Euler's constant is transcendental (or even
|
401 |
+
irrational). We can use :func:`~mpmath.findpoly` to check that if is
|
402 |
+
an algebraic number, its minimal polynomial must have degree
|
403 |
+
at least 7 and a coefficient of magnitude at least 1000000::
|
404 |
+
|
405 |
+
>>> mp.dps = 200
|
406 |
+
>>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000)
|
407 |
+
>>>
|
408 |
+
|
409 |
+
Note that the high precision and strict tolerance is necessary
|
410 |
+
for such high-degree runs, since otherwise unwanted low-accuracy
|
411 |
+
approximations will be detected. It may also be necessary to set
|
412 |
+
maxsteps high to prevent a premature exit (before the coefficient
|
413 |
+
bound has been reached). Running with ``verbose=True`` to get an
|
414 |
+
idea what is happening can be useful.
|
415 |
+
"""
|
416 |
+
x = ctx.mpf(x)
|
417 |
+
if n < 1:
|
418 |
+
raise ValueError("n cannot be less than 1")
|
419 |
+
if x == 0:
|
420 |
+
return [1, 0]
|
421 |
+
xs = [ctx.mpf(1)]
|
422 |
+
for i in range(1,n+1):
|
423 |
+
xs.append(x**i)
|
424 |
+
a = ctx.pslq(xs, **kwargs)
|
425 |
+
if a is not None:
|
426 |
+
return a[::-1]
|
427 |
+
|
428 |
+
def fracgcd(p, q):
|
429 |
+
x, y = p, q
|
430 |
+
while y:
|
431 |
+
x, y = y, x % y
|
432 |
+
if x != 1:
|
433 |
+
p //= x
|
434 |
+
q //= x
|
435 |
+
if q == 1:
|
436 |
+
return p
|
437 |
+
return p, q
|
438 |
+
|
439 |
+
def pslqstring(r, constants):
|
440 |
+
q = r[0]
|
441 |
+
r = r[1:]
|
442 |
+
s = []
|
443 |
+
for i in range(len(r)):
|
444 |
+
p = r[i]
|
445 |
+
if p:
|
446 |
+
z = fracgcd(-p,q)
|
447 |
+
cs = constants[i][1]
|
448 |
+
if cs == '1':
|
449 |
+
cs = ''
|
450 |
+
else:
|
451 |
+
cs = '*' + cs
|
452 |
+
if isinstance(z, int_types):
|
453 |
+
if z > 0: term = str(z) + cs
|
454 |
+
else: term = ("(%s)" % z) + cs
|
455 |
+
else:
|
456 |
+
term = ("(%s/%s)" % z) + cs
|
457 |
+
s.append(term)
|
458 |
+
s = ' + '.join(s)
|
459 |
+
if '+' in s or '*' in s:
|
460 |
+
s = '(' + s + ')'
|
461 |
+
return s or '0'
|
462 |
+
|
463 |
+
def prodstring(r, constants):
|
464 |
+
q = r[0]
|
465 |
+
r = r[1:]
|
466 |
+
num = []
|
467 |
+
den = []
|
468 |
+
for i in range(len(r)):
|
469 |
+
p = r[i]
|
470 |
+
if p:
|
471 |
+
z = fracgcd(-p,q)
|
472 |
+
cs = constants[i][1]
|
473 |
+
if isinstance(z, int_types):
|
474 |
+
if abs(z) == 1: t = cs
|
475 |
+
else: t = '%s**%s' % (cs, abs(z))
|
476 |
+
([num,den][z<0]).append(t)
|
477 |
+
else:
|
478 |
+
t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1])
|
479 |
+
([num,den][z[0]<0]).append(t)
|
480 |
+
num = '*'.join(num)
|
481 |
+
den = '*'.join(den)
|
482 |
+
if num and den: return "(%s)/(%s)" % (num, den)
|
483 |
+
if num: return num
|
484 |
+
if den: return "1/(%s)" % den
|
485 |
+
|
486 |
+
def quadraticstring(ctx,t,a,b,c):
|
487 |
+
if c < 0:
|
488 |
+
a,b,c = -a,-b,-c
|
489 |
+
u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c)
|
490 |
+
u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c)
|
491 |
+
if abs(u1-t) < abs(u2-t):
|
492 |
+
if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
|
493 |
+
else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c)
|
494 |
+
else:
|
495 |
+
if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c)
|
496 |
+
else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c)
|
497 |
+
return s
|
498 |
+
|
499 |
+
# Transformation y = f(x,c), with inverse function x = f(y,c)
|
500 |
+
# The third entry indicates whether the transformation is
|
501 |
+
# redundant when c = 1
|
502 |
+
transforms = [
|
503 |
+
(lambda ctx,x,c: x*c, '$y/$c', 0),
|
504 |
+
(lambda ctx,x,c: x/c, '$c*$y', 1),
|
505 |
+
(lambda ctx,x,c: c/x, '$c/$y', 0),
|
506 |
+
(lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0),
|
507 |
+
(lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1),
|
508 |
+
(lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0),
|
509 |
+
(lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1),
|
510 |
+
(lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1),
|
511 |
+
(lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1),
|
512 |
+
(lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0),
|
513 |
+
(lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1),
|
514 |
+
(lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0),
|
515 |
+
(lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1),
|
516 |
+
(lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1),
|
517 |
+
(lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1),
|
518 |
+
(lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0),
|
519 |
+
(lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1),
|
520 |
+
(lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0),
|
521 |
+
(lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1),
|
522 |
+
(lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1),
|
523 |
+
(lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0),
|
524 |
+
(lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0),
|
525 |
+
(lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1),
|
526 |
+
(lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0),
|
527 |
+
(lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1),
|
528 |
+
(lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1),
|
529 |
+
(lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0),
|
530 |
+
]
|
531 |
+
|
532 |
+
def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False,
|
533 |
+
verbose=False):
|
534 |
+
r"""
|
535 |
+
Given a real number `x`, ``identify(x)`` attempts to find an exact
|
536 |
+
formula for `x`. This formula is returned as a string. If no match
|
537 |
+
is found, ``None`` is returned. With ``full=True``, a list of
|
538 |
+
matching formulas is returned.
|
539 |
+
|
540 |
+
As a simple example, :func:`~mpmath.identify` will find an algebraic
|
541 |
+
formula for the golden ratio::
|
542 |
+
|
543 |
+
>>> from mpmath import *
|
544 |
+
>>> mp.dps = 15; mp.pretty = True
|
545 |
+
>>> identify(phi)
|
546 |
+
'((1+sqrt(5))/2)'
|
547 |
+
|
548 |
+
:func:`~mpmath.identify` can identify simple algebraic numbers and simple
|
549 |
+
combinations of given base constants, as well as certain basic
|
550 |
+
transformations thereof. More specifically, :func:`~mpmath.identify`
|
551 |
+
looks for the following:
|
552 |
+
|
553 |
+
1. Fractions
|
554 |
+
2. Quadratic algebraic numbers
|
555 |
+
3. Rational linear combinations of the base constants
|
556 |
+
4. Any of the above after first transforming `x` into `f(x)` where
|
557 |
+
`f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either
|
558 |
+
directly or with `x` or `f(x)` multiplied or divided by one of
|
559 |
+
the base constants
|
560 |
+
5. Products of fractional powers of the base constants and
|
561 |
+
small integers
|
562 |
+
|
563 |
+
Base constants can be given as a list of strings representing mpmath
|
564 |
+
expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical
|
565 |
+
values and use the original strings for the output), or as a dict of
|
566 |
+
formula:value pairs.
|
567 |
+
|
568 |
+
In order not to produce spurious results, :func:`~mpmath.identify` should
|
569 |
+
be used with high precision; preferably 50 digits or more.
|
570 |
+
|
571 |
+
**Examples**
|
572 |
+
|
573 |
+
Simple identifications can be performed safely at standard
|
574 |
+
precision. Here the default recognition of rational, algebraic,
|
575 |
+
and exp/log of algebraic numbers is demonstrated::
|
576 |
+
|
577 |
+
>>> mp.dps = 15
|
578 |
+
>>> identify(0.22222222222222222)
|
579 |
+
'(2/9)'
|
580 |
+
>>> identify(1.9662210973805663)
|
581 |
+
'sqrt(((24+sqrt(48))/8))'
|
582 |
+
>>> identify(4.1132503787829275)
|
583 |
+
'exp((sqrt(8)/2))'
|
584 |
+
>>> identify(0.881373587019543)
|
585 |
+
'log(((2+sqrt(8))/2))'
|
586 |
+
|
587 |
+
By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard
|
588 |
+
precision it finds a not too useful approximation. At slightly
|
589 |
+
increased precision, this approximation is no longer accurate
|
590 |
+
enough and :func:`~mpmath.identify` more correctly returns ``None``::
|
591 |
+
|
592 |
+
>>> identify(pi)
|
593 |
+
'(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))'
|
594 |
+
>>> mp.dps = 30
|
595 |
+
>>> identify(pi)
|
596 |
+
>>>
|
597 |
+
|
598 |
+
Numbers such as `\pi`, and simple combinations of user-defined
|
599 |
+
constants, can be identified if they are provided explicitly::
|
600 |
+
|
601 |
+
>>> identify(3*pi-2*e, ['pi', 'e'])
|
602 |
+
'(3*pi + (-2)*e)'
|
603 |
+
|
604 |
+
Here is an example using a dict of constants. Note that the
|
605 |
+
constants need not be "atomic"; :func:`~mpmath.identify` can just
|
606 |
+
as well express the given number in terms of expressions
|
607 |
+
given by formulas::
|
608 |
+
|
609 |
+
>>> identify(pi+e, {'a':pi+2, 'b':2*e})
|
610 |
+
'((-2) + 1*a + (1/2)*b)'
|
611 |
+
|
612 |
+
Next, we attempt some identifications with a set of base constants.
|
613 |
+
It is necessary to increase the precision a bit.
|
614 |
+
|
615 |
+
>>> mp.dps = 50
|
616 |
+
>>> base = ['sqrt(2)','pi','log(2)']
|
617 |
+
>>> identify(0.25, base)
|
618 |
+
'(1/4)'
|
619 |
+
>>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base)
|
620 |
+
'(2*sqrt(2) + 3*pi + (5/7)*log(2))'
|
621 |
+
>>> identify(exp(pi+2), base)
|
622 |
+
'exp((2 + 1*pi))'
|
623 |
+
>>> identify(1/(3+sqrt(2)), base)
|
624 |
+
'((3/7) + (-1/7)*sqrt(2))'
|
625 |
+
>>> identify(sqrt(2)/(3*pi+4), base)
|
626 |
+
'sqrt(2)/(4 + 3*pi)'
|
627 |
+
>>> identify(5**(mpf(1)/3)*pi*log(2)**2, base)
|
628 |
+
'5**(1/3)*pi*log(2)**2'
|
629 |
+
|
630 |
+
An example of an erroneous solution being found when too low
|
631 |
+
precision is used::
|
632 |
+
|
633 |
+
>>> mp.dps = 15
|
634 |
+
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
|
635 |
+
'((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))'
|
636 |
+
>>> mp.dps = 50
|
637 |
+
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)'])
|
638 |
+
'1/(3*pi + (-4)*e + 2*sqrt(2))'
|
639 |
+
|
640 |
+
**Finding approximate solutions**
|
641 |
+
|
642 |
+
The tolerance ``tol`` defaults to 3/4 of the working precision.
|
643 |
+
Lowering the tolerance is useful for finding approximate matches.
|
644 |
+
We can for example try to generate approximations for pi::
|
645 |
+
|
646 |
+
>>> mp.dps = 15
|
647 |
+
>>> identify(pi, tol=1e-2)
|
648 |
+
'(22/7)'
|
649 |
+
>>> identify(pi, tol=1e-3)
|
650 |
+
'(355/113)'
|
651 |
+
>>> identify(pi, tol=1e-10)
|
652 |
+
'(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))'
|
653 |
+
|
654 |
+
With ``full=True``, and by supplying a few base constants,
|
655 |
+
``identify`` can generate almost endless lists of approximations
|
656 |
+
for any number (the output below has been truncated to show only
|
657 |
+
the first few)::
|
658 |
+
|
659 |
+
>>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True):
|
660 |
+
... print(p)
|
661 |
+
... # doctest: +ELLIPSIS
|
662 |
+
e/log((6 + (-4/3)*e))
|
663 |
+
(3**3*5*e*catalan**2)/(2*7**2)
|
664 |
+
sqrt(((-13) + 1*e + 22*catalan))
|
665 |
+
log(((-6) + 24*e + 4*catalan)/e)
|
666 |
+
exp(catalan*((-1/5) + (8/15)*e))
|
667 |
+
catalan*(6 + (-6)*e + 15*catalan)
|
668 |
+
sqrt((5 + 26*e + (-3)*catalan))/e
|
669 |
+
e*sqrt(((-27) + 2*e + 25*catalan))
|
670 |
+
log(((-1) + (-11)*e + 59*catalan))
|
671 |
+
((3/20) + (21/20)*e + (3/20)*catalan)
|
672 |
+
...
|
673 |
+
|
674 |
+
The numerical values are roughly as close to `\pi` as permitted by the
|
675 |
+
specified tolerance:
|
676 |
+
|
677 |
+
>>> e/log(6-4*e/3)
|
678 |
+
3.14157719846001
|
679 |
+
>>> 135*e*catalan**2/98
|
680 |
+
3.14166950419369
|
681 |
+
>>> sqrt(e-13+22*catalan)
|
682 |
+
3.14158000062992
|
683 |
+
>>> log(24*e-6+4*catalan)-1
|
684 |
+
3.14158791577159
|
685 |
+
|
686 |
+
**Symbolic processing**
|
687 |
+
|
688 |
+
The output formula can be evaluated as a Python expression.
|
689 |
+
Note however that if fractions (like '2/3') are present in
|
690 |
+
the formula, Python's :func:`~mpmath.eval()` may erroneously perform
|
691 |
+
integer division. Note also that the output is not necessarily
|
692 |
+
in the algebraically simplest form::
|
693 |
+
|
694 |
+
>>> identify(sqrt(2))
|
695 |
+
'(sqrt(8)/2)'
|
696 |
+
|
697 |
+
As a solution to both problems, consider using SymPy's
|
698 |
+
:func:`~mpmath.sympify` to convert the formula into a symbolic expression.
|
699 |
+
SymPy can be used to pretty-print or further simplify the formula
|
700 |
+
symbolically::
|
701 |
+
|
702 |
+
>>> from sympy import sympify # doctest: +SKIP
|
703 |
+
>>> sympify(identify(sqrt(2))) # doctest: +SKIP
|
704 |
+
2**(1/2)
|
705 |
+
|
706 |
+
Sometimes :func:`~mpmath.identify` can simplify an expression further than
|
707 |
+
a symbolic algorithm::
|
708 |
+
|
709 |
+
>>> from sympy import simplify # doctest: +SKIP
|
710 |
+
>>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP
|
711 |
+
>>> x # doctest: +SKIP
|
712 |
+
(3/2 - 5**(1/2)/2)**(-1/2)
|
713 |
+
>>> x = simplify(x) # doctest: +SKIP
|
714 |
+
>>> x # doctest: +SKIP
|
715 |
+
2/(6 - 2*5**(1/2))**(1/2)
|
716 |
+
>>> mp.dps = 30 # doctest: +SKIP
|
717 |
+
>>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP
|
718 |
+
>>> x # doctest: +SKIP
|
719 |
+
1/2 + 5**(1/2)/2
|
720 |
+
|
721 |
+
(In fact, this functionality is available directly in SymPy as the
|
722 |
+
function :func:`~mpmath.nsimplify`, which is essentially a wrapper for
|
723 |
+
:func:`~mpmath.identify`.)
|
724 |
+
|
725 |
+
**Miscellaneous issues and limitations**
|
726 |
+
|
727 |
+
The input `x` must be a real number. All base constants must be
|
728 |
+
positive real numbers and must not be rationals or rational linear
|
729 |
+
combinations of each other.
|
730 |
+
|
731 |
+
The worst-case computation time grows quickly with the number of
|
732 |
+
base constants. Already with 3 or 4 base constants,
|
733 |
+
:func:`~mpmath.identify` may require several seconds to finish. To search
|
734 |
+
for relations among a large number of constants, you should
|
735 |
+
consider using :func:`~mpmath.pslq` directly.
|
736 |
+
|
737 |
+
The extended transformations are applied to x, not the constants
|
738 |
+
separately. As a result, ``identify`` will for example be able to
|
739 |
+
recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but
|
740 |
+
not ``2*exp(pi)+3``. It will be able to recognize the latter if
|
741 |
+
``exp(pi)`` is given explicitly as a base constant.
|
742 |
+
|
743 |
+
"""
|
744 |
+
|
745 |
+
solutions = []
|
746 |
+
|
747 |
+
def addsolution(s):
|
748 |
+
if verbose: print("Found: ", s)
|
749 |
+
solutions.append(s)
|
750 |
+
|
751 |
+
x = ctx.mpf(x)
|
752 |
+
|
753 |
+
# Further along, x will be assumed positive
|
754 |
+
if x == 0:
|
755 |
+
if full: return ['0']
|
756 |
+
else: return '0'
|
757 |
+
if x < 0:
|
758 |
+
sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose)
|
759 |
+
if sol is None:
|
760 |
+
return sol
|
761 |
+
if full:
|
762 |
+
return ["-(%s)"%s for s in sol]
|
763 |
+
else:
|
764 |
+
return "-(%s)" % sol
|
765 |
+
|
766 |
+
if tol:
|
767 |
+
tol = ctx.mpf(tol)
|
768 |
+
else:
|
769 |
+
tol = ctx.eps**0.7
|
770 |
+
M = maxcoeff
|
771 |
+
|
772 |
+
if constants:
|
773 |
+
if isinstance(constants, dict):
|
774 |
+
constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())]
|
775 |
+
else:
|
776 |
+
namespace = dict((name, getattr(ctx,name)) for name in dir(ctx))
|
777 |
+
constants = [(eval(p, namespace), p) for p in constants]
|
778 |
+
else:
|
779 |
+
constants = []
|
780 |
+
|
781 |
+
# We always want to find at least rational terms
|
782 |
+
if 1 not in [value for (name, value) in constants]:
|
783 |
+
constants = [(ctx.mpf(1), '1')] + constants
|
784 |
+
|
785 |
+
# PSLQ with simple algebraic and functional transformations
|
786 |
+
for ft, ftn, red in transforms:
|
787 |
+
for c, cn in constants:
|
788 |
+
if red and cn == '1':
|
789 |
+
continue
|
790 |
+
t = ft(ctx,x,c)
|
791 |
+
# Prevent exponential transforms from wreaking havoc
|
792 |
+
if abs(t) > M**2 or abs(t) < tol:
|
793 |
+
continue
|
794 |
+
# Linear combination of base constants
|
795 |
+
r = ctx.pslq([t] + [a[0] for a in constants], tol, M)
|
796 |
+
s = None
|
797 |
+
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
|
798 |
+
s = pslqstring(r, constants)
|
799 |
+
# Quadratic algebraic numbers
|
800 |
+
else:
|
801 |
+
q = ctx.pslq([ctx.one, t, t**2], tol, M)
|
802 |
+
if q is not None and len(q) == 3 and q[2]:
|
803 |
+
aa, bb, cc = q
|
804 |
+
if max(abs(aa),abs(bb),abs(cc)) <= M:
|
805 |
+
s = quadraticstring(ctx,t,aa,bb,cc)
|
806 |
+
if s:
|
807 |
+
if cn == '1' and ('/$c' in ftn):
|
808 |
+
s = ftn.replace('$y', s).replace('/$c', '')
|
809 |
+
else:
|
810 |
+
s = ftn.replace('$y', s).replace('$c', cn)
|
811 |
+
addsolution(s)
|
812 |
+
if not full: return solutions[0]
|
813 |
+
|
814 |
+
if verbose:
|
815 |
+
print(".")
|
816 |
+
|
817 |
+
# Check for a direct multiplicative formula
|
818 |
+
if x != 1:
|
819 |
+
# Allow fractional powers of fractions
|
820 |
+
ilogs = [2,3,5,7]
|
821 |
+
# Watch out for existing fractional powers of fractions
|
822 |
+
logs = []
|
823 |
+
for a, s in constants:
|
824 |
+
if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs):
|
825 |
+
logs.append((ctx.ln(a), s))
|
826 |
+
logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs
|
827 |
+
r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M)
|
828 |
+
if r is not None and max(abs(uw) for uw in r) <= M and r[0]:
|
829 |
+
addsolution(prodstring(r, logs))
|
830 |
+
if not full: return solutions[0]
|
831 |
+
|
832 |
+
if full:
|
833 |
+
return sorted(solutions, key=len)
|
834 |
+
else:
|
835 |
+
return None
|
836 |
+
|
837 |
+
IdentificationMethods.pslq = pslq
|
838 |
+
IdentificationMethods.findpoly = findpoly
|
839 |
+
IdentificationMethods.identify = identify
|
840 |
+
|
841 |
+
|
842 |
+
if __name__ == '__main__':
|
843 |
+
import doctest
|
844 |
+
doctest.testmod()
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (248 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/calculus.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (18.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/eigen_symmetric.cpython-310.pyc
ADDED
Binary file (43.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/linalg.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/__pycache__/matrices.cpython-310.pyc
ADDED
Binary file (28.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/calculus.py
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..libmp.backend import xrange
|
2 |
+
|
3 |
+
# TODO: should use diagonalization-based algorithms
|
4 |
+
|
5 |
+
class MatrixCalculusMethods(object):
|
6 |
+
|
7 |
+
def _exp_pade(ctx, a):
|
8 |
+
"""
|
9 |
+
Exponential of a matrix using Pade approximants.
|
10 |
+
|
11 |
+
See G. H. Golub, C. F. van Loan 'Matrix Computations',
|
12 |
+
third Ed., page 572
|
13 |
+
|
14 |
+
TODO:
|
15 |
+
- find a good estimate for q
|
16 |
+
- reduce the number of matrix multiplications to improve
|
17 |
+
performance
|
18 |
+
"""
|
19 |
+
def eps_pade(p):
|
20 |
+
return ctx.mpf(2)**(3-2*p) * \
|
21 |
+
ctx.factorial(p)**2/(ctx.factorial(2*p)**2 * (2*p + 1))
|
22 |
+
q = 4
|
23 |
+
extraq = 8
|
24 |
+
while 1:
|
25 |
+
if eps_pade(q) < ctx.eps:
|
26 |
+
break
|
27 |
+
q += 1
|
28 |
+
q += extraq
|
29 |
+
j = int(max(1, ctx.mag(ctx.mnorm(a,'inf'))))
|
30 |
+
extra = q
|
31 |
+
prec = ctx.prec
|
32 |
+
ctx.dps += extra + 3
|
33 |
+
try:
|
34 |
+
a = a/2**j
|
35 |
+
na = a.rows
|
36 |
+
den = ctx.eye(na)
|
37 |
+
num = ctx.eye(na)
|
38 |
+
x = ctx.eye(na)
|
39 |
+
c = ctx.mpf(1)
|
40 |
+
for k in range(1, q+1):
|
41 |
+
c *= ctx.mpf(q - k + 1)/((2*q - k + 1) * k)
|
42 |
+
x = a*x
|
43 |
+
cx = c*x
|
44 |
+
num += cx
|
45 |
+
den += (-1)**k * cx
|
46 |
+
f = ctx.lu_solve_mat(den, num)
|
47 |
+
for k in range(j):
|
48 |
+
f = f*f
|
49 |
+
finally:
|
50 |
+
ctx.prec = prec
|
51 |
+
return f*1
|
52 |
+
|
53 |
+
def expm(ctx, A, method='taylor'):
|
54 |
+
r"""
|
55 |
+
Computes the matrix exponential of a square matrix `A`, which is defined
|
56 |
+
by the power series
|
57 |
+
|
58 |
+
.. math ::
|
59 |
+
|
60 |
+
\exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots
|
61 |
+
|
62 |
+
With method='taylor', the matrix exponential is computed
|
63 |
+
using the Taylor series. With method='pade', Pade approximants
|
64 |
+
are used instead.
|
65 |
+
|
66 |
+
**Examples**
|
67 |
+
|
68 |
+
Basic examples::
|
69 |
+
|
70 |
+
>>> from mpmath import *
|
71 |
+
>>> mp.dps = 15; mp.pretty = True
|
72 |
+
>>> expm(zeros(3))
|
73 |
+
[1.0 0.0 0.0]
|
74 |
+
[0.0 1.0 0.0]
|
75 |
+
[0.0 0.0 1.0]
|
76 |
+
>>> expm(eye(3))
|
77 |
+
[2.71828182845905 0.0 0.0]
|
78 |
+
[ 0.0 2.71828182845905 0.0]
|
79 |
+
[ 0.0 0.0 2.71828182845905]
|
80 |
+
>>> expm([[1,1,0],[1,0,1],[0,1,0]])
|
81 |
+
[ 3.86814500615414 2.26812870852145 0.841130841230196]
|
82 |
+
[ 2.26812870852145 2.44114713886289 1.42699786729125]
|
83 |
+
[0.841130841230196 1.42699786729125 1.6000162976327]
|
84 |
+
>>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade')
|
85 |
+
[ 3.86814500615414 2.26812870852145 0.841130841230196]
|
86 |
+
[ 2.26812870852145 2.44114713886289 1.42699786729125]
|
87 |
+
[0.841130841230196 1.42699786729125 1.6000162976327]
|
88 |
+
>>> expm([[1+j, 0], [1+j,1]])
|
89 |
+
[(1.46869393991589 + 2.28735528717884j) 0.0]
|
90 |
+
[ (1.03776739863568 + 3.536943175722j) (2.71828182845905 + 0.0j)]
|
91 |
+
|
92 |
+
Matrices with large entries are allowed::
|
93 |
+
|
94 |
+
>>> expm(matrix([[1,2],[2,3]])**25)
|
95 |
+
[5.65024064048415e+2050488462815550 9.14228140091932e+2050488462815550]
|
96 |
+
[9.14228140091932e+2050488462815550 1.47925220414035e+2050488462815551]
|
97 |
+
|
98 |
+
The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for
|
99 |
+
noncommuting matrices::
|
100 |
+
|
101 |
+
>>> A = hilbert(3)
|
102 |
+
>>> B = A + eye(3)
|
103 |
+
>>> chop(mnorm(A*B - B*A))
|
104 |
+
0.0
|
105 |
+
>>> chop(mnorm(expm(A+B) - expm(A)*expm(B)))
|
106 |
+
0.0
|
107 |
+
>>> B = A + ones(3)
|
108 |
+
>>> mnorm(A*B - B*A)
|
109 |
+
1.8
|
110 |
+
>>> mnorm(expm(A+B) - expm(A)*expm(B))
|
111 |
+
42.0927851137247
|
112 |
+
|
113 |
+
"""
|
114 |
+
if method == 'pade':
|
115 |
+
prec = ctx.prec
|
116 |
+
try:
|
117 |
+
A = ctx.matrix(A)
|
118 |
+
ctx.prec += 2*A.rows
|
119 |
+
res = ctx._exp_pade(A)
|
120 |
+
finally:
|
121 |
+
ctx.prec = prec
|
122 |
+
return res
|
123 |
+
A = ctx.matrix(A)
|
124 |
+
prec = ctx.prec
|
125 |
+
j = int(max(1, ctx.mag(ctx.mnorm(A,'inf'))))
|
126 |
+
j += int(0.5*prec**0.5)
|
127 |
+
try:
|
128 |
+
ctx.prec += 10 + 2*j
|
129 |
+
tol = +ctx.eps
|
130 |
+
A = A/2**j
|
131 |
+
T = A
|
132 |
+
Y = A**0 + A
|
133 |
+
k = 2
|
134 |
+
while 1:
|
135 |
+
T *= A * (1/ctx.mpf(k))
|
136 |
+
if ctx.mnorm(T, 'inf') < tol:
|
137 |
+
break
|
138 |
+
Y += T
|
139 |
+
k += 1
|
140 |
+
for k in xrange(j):
|
141 |
+
Y = Y*Y
|
142 |
+
finally:
|
143 |
+
ctx.prec = prec
|
144 |
+
Y *= 1
|
145 |
+
return Y
|
146 |
+
|
147 |
+
def cosm(ctx, A):
|
148 |
+
r"""
|
149 |
+
Gives the cosine of a square matrix `A`, defined in analogy
|
150 |
+
with the matrix exponential.
|
151 |
+
|
152 |
+
Examples::
|
153 |
+
|
154 |
+
>>> from mpmath import *
|
155 |
+
>>> mp.dps = 15; mp.pretty = True
|
156 |
+
>>> X = eye(3)
|
157 |
+
>>> cosm(X)
|
158 |
+
[0.54030230586814 0.0 0.0]
|
159 |
+
[ 0.0 0.54030230586814 0.0]
|
160 |
+
[ 0.0 0.0 0.54030230586814]
|
161 |
+
>>> X = hilbert(3)
|
162 |
+
>>> cosm(X)
|
163 |
+
[ 0.424403834569555 -0.316643413047167 -0.221474945949293]
|
164 |
+
[-0.316643413047167 0.820646708837824 -0.127183694770039]
|
165 |
+
[-0.221474945949293 -0.127183694770039 0.909236687217541]
|
166 |
+
>>> X = matrix([[1+j,-2],[0,-j]])
|
167 |
+
>>> cosm(X)
|
168 |
+
[(0.833730025131149 - 0.988897705762865j) (1.07485840848393 - 0.17192140544213j)]
|
169 |
+
[ 0.0 (1.54308063481524 + 0.0j)]
|
170 |
+
"""
|
171 |
+
B = 0.5 * (ctx.expm(A*ctx.j) + ctx.expm(A*(-ctx.j)))
|
172 |
+
if not sum(A.apply(ctx.im).apply(abs)):
|
173 |
+
B = B.apply(ctx.re)
|
174 |
+
return B
|
175 |
+
|
176 |
+
def sinm(ctx, A):
|
177 |
+
r"""
|
178 |
+
Gives the sine of a square matrix `A`, defined in analogy
|
179 |
+
with the matrix exponential.
|
180 |
+
|
181 |
+
Examples::
|
182 |
+
|
183 |
+
>>> from mpmath import *
|
184 |
+
>>> mp.dps = 15; mp.pretty = True
|
185 |
+
>>> X = eye(3)
|
186 |
+
>>> sinm(X)
|
187 |
+
[0.841470984807897 0.0 0.0]
|
188 |
+
[ 0.0 0.841470984807897 0.0]
|
189 |
+
[ 0.0 0.0 0.841470984807897]
|
190 |
+
>>> X = hilbert(3)
|
191 |
+
>>> sinm(X)
|
192 |
+
[0.711608512150994 0.339783913247439 0.220742837314741]
|
193 |
+
[0.339783913247439 0.244113865695532 0.187231271174372]
|
194 |
+
[0.220742837314741 0.187231271174372 0.155816730769635]
|
195 |
+
>>> X = matrix([[1+j,-2],[0,-j]])
|
196 |
+
>>> sinm(X)
|
197 |
+
[(1.29845758141598 + 0.634963914784736j) (-1.96751511930922 + 0.314700021761367j)]
|
198 |
+
[ 0.0 (0.0 - 1.1752011936438j)]
|
199 |
+
"""
|
200 |
+
B = (-0.5j) * (ctx.expm(A*ctx.j) - ctx.expm(A*(-ctx.j)))
|
201 |
+
if not sum(A.apply(ctx.im).apply(abs)):
|
202 |
+
B = B.apply(ctx.re)
|
203 |
+
return B
|
204 |
+
|
205 |
+
def _sqrtm_rot(ctx, A, _may_rotate):
|
206 |
+
# If the iteration fails to converge, cheat by performing
|
207 |
+
# a rotation by a complex number
|
208 |
+
u = ctx.j**0.3
|
209 |
+
return ctx.sqrtm(u*A, _may_rotate) / ctx.sqrt(u)
|
210 |
+
|
211 |
+
def sqrtm(ctx, A, _may_rotate=2):
|
212 |
+
r"""
|
213 |
+
Computes a square root of the square matrix `A`, i.e. returns
|
214 |
+
a matrix `B = A^{1/2}` such that `B^2 = A`. The square root
|
215 |
+
of a matrix, if it exists, is not unique.
|
216 |
+
|
217 |
+
**Examples**
|
218 |
+
|
219 |
+
Square roots of some simple matrices::
|
220 |
+
|
221 |
+
>>> from mpmath import *
|
222 |
+
>>> mp.dps = 15; mp.pretty = True
|
223 |
+
>>> sqrtm([[1,0], [0,1]])
|
224 |
+
[1.0 0.0]
|
225 |
+
[0.0 1.0]
|
226 |
+
>>> sqrtm([[0,0], [0,0]])
|
227 |
+
[0.0 0.0]
|
228 |
+
[0.0 0.0]
|
229 |
+
>>> sqrtm([[2,0],[0,1]])
|
230 |
+
[1.4142135623731 0.0]
|
231 |
+
[ 0.0 1.0]
|
232 |
+
>>> sqrtm([[1,1],[1,0]])
|
233 |
+
[ (0.920442065259926 - 0.21728689675164j) (0.568864481005783 + 0.351577584254143j)]
|
234 |
+
[(0.568864481005783 + 0.351577584254143j) (0.351577584254143 - 0.568864481005783j)]
|
235 |
+
>>> sqrtm([[1,0],[0,1]])
|
236 |
+
[1.0 0.0]
|
237 |
+
[0.0 1.0]
|
238 |
+
>>> sqrtm([[-1,0],[0,1]])
|
239 |
+
[(0.0 - 1.0j) 0.0]
|
240 |
+
[ 0.0 (1.0 + 0.0j)]
|
241 |
+
>>> sqrtm([[j,0],[0,j]])
|
242 |
+
[(0.707106781186547 + 0.707106781186547j) 0.0]
|
243 |
+
[ 0.0 (0.707106781186547 + 0.707106781186547j)]
|
244 |
+
|
245 |
+
A square root of a rotation matrix, giving the corresponding
|
246 |
+
half-angle rotation matrix::
|
247 |
+
|
248 |
+
>>> t1 = 0.75
|
249 |
+
>>> t2 = t1 * 0.5
|
250 |
+
>>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]])
|
251 |
+
>>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]])
|
252 |
+
>>> sqrtm(A1)
|
253 |
+
[0.930507621912314 -0.366272529086048]
|
254 |
+
[0.366272529086048 0.930507621912314]
|
255 |
+
>>> A2
|
256 |
+
[0.930507621912314 -0.366272529086048]
|
257 |
+
[0.366272529086048 0.930507621912314]
|
258 |
+
|
259 |
+
The identity `(A^2)^{1/2} = A` does not necessarily hold::
|
260 |
+
|
261 |
+
>>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
|
262 |
+
>>> sqrtm(A**2)
|
263 |
+
[ 4.0 1.0 4.0]
|
264 |
+
[ 7.0 8.0 9.0]
|
265 |
+
[10.0 2.0 11.0]
|
266 |
+
>>> sqrtm(A)**2
|
267 |
+
[ 4.0 1.0 4.0]
|
268 |
+
[ 7.0 8.0 9.0]
|
269 |
+
[10.0 2.0 11.0]
|
270 |
+
>>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]])
|
271 |
+
>>> sqrtm(A**2)
|
272 |
+
[ 7.43715112194995 -0.324127569985474 1.8481718827526]
|
273 |
+
[-0.251549715716942 9.32699765900402 2.48221180985147]
|
274 |
+
[ 4.11609388833616 0.775751877098258 13.017955697342]
|
275 |
+
>>> chop(sqrtm(A)**2)
|
276 |
+
[-4.0 1.0 4.0]
|
277 |
+
[ 7.0 -8.0 9.0]
|
278 |
+
[10.0 2.0 11.0]
|
279 |
+
|
280 |
+
For some matrices, a square root does not exist::
|
281 |
+
|
282 |
+
>>> sqrtm([[0,1], [0,0]])
|
283 |
+
Traceback (most recent call last):
|
284 |
+
...
|
285 |
+
ZeroDivisionError: matrix is numerically singular
|
286 |
+
|
287 |
+
Two examples from the documentation for Matlab's ``sqrtm``::
|
288 |
+
|
289 |
+
>>> mp.dps = 15; mp.pretty = True
|
290 |
+
>>> sqrtm([[7,10],[15,22]])
|
291 |
+
[1.56669890360128 1.74077655955698]
|
292 |
+
[2.61116483933547 4.17786374293675]
|
293 |
+
>>>
|
294 |
+
>>> X = matrix(\
|
295 |
+
... [[5,-4,1,0,0],
|
296 |
+
... [-4,6,-4,1,0],
|
297 |
+
... [1,-4,6,-4,1],
|
298 |
+
... [0,1,-4,6,-4],
|
299 |
+
... [0,0,1,-4,5]])
|
300 |
+
>>> Y = matrix(\
|
301 |
+
... [[2,-1,-0,-0,-0],
|
302 |
+
... [-1,2,-1,0,-0],
|
303 |
+
... [0,-1,2,-1,0],
|
304 |
+
... [-0,0,-1,2,-1],
|
305 |
+
... [-0,-0,-0,-1,2]])
|
306 |
+
>>> mnorm(sqrtm(X) - Y)
|
307 |
+
4.53155328326114e-19
|
308 |
+
|
309 |
+
"""
|
310 |
+
A = ctx.matrix(A)
|
311 |
+
# Trivial
|
312 |
+
if A*0 == A:
|
313 |
+
return A
|
314 |
+
prec = ctx.prec
|
315 |
+
if _may_rotate:
|
316 |
+
d = ctx.det(A)
|
317 |
+
if abs(ctx.im(d)) < 16*ctx.eps and ctx.re(d) < 0:
|
318 |
+
return ctx._sqrtm_rot(A, _may_rotate-1)
|
319 |
+
try:
|
320 |
+
ctx.prec += 10
|
321 |
+
tol = ctx.eps * 128
|
322 |
+
Y = A
|
323 |
+
Z = I = A**0
|
324 |
+
k = 0
|
325 |
+
# Denman-Beavers iteration
|
326 |
+
while 1:
|
327 |
+
Yprev = Y
|
328 |
+
try:
|
329 |
+
Y, Z = 0.5*(Y+ctx.inverse(Z)), 0.5*(Z+ctx.inverse(Y))
|
330 |
+
except ZeroDivisionError:
|
331 |
+
if _may_rotate:
|
332 |
+
Y = ctx._sqrtm_rot(A, _may_rotate-1)
|
333 |
+
break
|
334 |
+
else:
|
335 |
+
raise
|
336 |
+
mag1 = ctx.mnorm(Y-Yprev, 'inf')
|
337 |
+
mag2 = ctx.mnorm(Y, 'inf')
|
338 |
+
if mag1 <= mag2*tol:
|
339 |
+
break
|
340 |
+
if _may_rotate and k > 6 and not mag1 < mag2 * 0.001:
|
341 |
+
return ctx._sqrtm_rot(A, _may_rotate-1)
|
342 |
+
k += 1
|
343 |
+
if k > ctx.prec:
|
344 |
+
raise ctx.NoConvergence
|
345 |
+
finally:
|
346 |
+
ctx.prec = prec
|
347 |
+
Y *= 1
|
348 |
+
return Y
|
349 |
+
|
350 |
+
def logm(ctx, A):
|
351 |
+
r"""
|
352 |
+
Computes a logarithm of the square matrix `A`, i.e. returns
|
353 |
+
a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm
|
354 |
+
of a matrix, if it exists, is not unique.
|
355 |
+
|
356 |
+
**Examples**
|
357 |
+
|
358 |
+
Logarithms of some simple matrices::
|
359 |
+
|
360 |
+
>>> from mpmath import *
|
361 |
+
>>> mp.dps = 15; mp.pretty = True
|
362 |
+
>>> X = eye(3)
|
363 |
+
>>> logm(X)
|
364 |
+
[0.0 0.0 0.0]
|
365 |
+
[0.0 0.0 0.0]
|
366 |
+
[0.0 0.0 0.0]
|
367 |
+
>>> logm(2*X)
|
368 |
+
[0.693147180559945 0.0 0.0]
|
369 |
+
[ 0.0 0.693147180559945 0.0]
|
370 |
+
[ 0.0 0.0 0.693147180559945]
|
371 |
+
>>> logm(expm(X))
|
372 |
+
[1.0 0.0 0.0]
|
373 |
+
[0.0 1.0 0.0]
|
374 |
+
[0.0 0.0 1.0]
|
375 |
+
|
376 |
+
A logarithm of a complex matrix::
|
377 |
+
|
378 |
+
>>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]])
|
379 |
+
>>> B = logm(X)
|
380 |
+
>>> nprint(B)
|
381 |
+
[ (0.808757 + 0.107759j) (2.20752 + 0.202762j) (1.07376 - 0.773874j)]
|
382 |
+
[ (0.905709 - 0.107795j) (0.0287395 - 0.824993j) (0.111619 + 0.514272j)]
|
383 |
+
[(-0.930151 + 0.399512j) (-2.06266 - 0.674397j) (0.791552 + 0.519839j)]
|
384 |
+
>>> chop(expm(B))
|
385 |
+
[(2.0 + 1.0j) 1.0 3.0]
|
386 |
+
[(1.0 - 1.0j) (1.0 - 2.0j) 1.0]
|
387 |
+
[ -4.0 -5.0 (0.0 + 1.0j)]
|
388 |
+
|
389 |
+
A matrix `X` close to the identity matrix, for which
|
390 |
+
`\log(\exp(X)) = \exp(\log(X)) = X` holds::
|
391 |
+
|
392 |
+
>>> X = eye(3) + hilbert(3)/4
|
393 |
+
>>> X
|
394 |
+
[ 1.25 0.125 0.0833333333333333]
|
395 |
+
[ 0.125 1.08333333333333 0.0625]
|
396 |
+
[0.0833333333333333 0.0625 1.05]
|
397 |
+
>>> logm(expm(X))
|
398 |
+
[ 1.25 0.125 0.0833333333333333]
|
399 |
+
[ 0.125 1.08333333333333 0.0625]
|
400 |
+
[0.0833333333333333 0.0625 1.05]
|
401 |
+
>>> expm(logm(X))
|
402 |
+
[ 1.25 0.125 0.0833333333333333]
|
403 |
+
[ 0.125 1.08333333333333 0.0625]
|
404 |
+
[0.0833333333333333 0.0625 1.05]
|
405 |
+
|
406 |
+
A logarithm of a rotation matrix, giving back the angle of
|
407 |
+
the rotation::
|
408 |
+
|
409 |
+
>>> t = 3.7
|
410 |
+
>>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]])
|
411 |
+
>>> chop(logm(A))
|
412 |
+
[ 0.0 -2.58318530717959]
|
413 |
+
[2.58318530717959 0.0]
|
414 |
+
>>> (2*pi-t)
|
415 |
+
2.58318530717959
|
416 |
+
|
417 |
+
For some matrices, a logarithm does not exist::
|
418 |
+
|
419 |
+
>>> logm([[1,0], [0,0]])
|
420 |
+
Traceback (most recent call last):
|
421 |
+
...
|
422 |
+
ZeroDivisionError: matrix is numerically singular
|
423 |
+
|
424 |
+
Logarithm of a matrix with large entries::
|
425 |
+
|
426 |
+
>>> logm(hilbert(3) * 10**20).apply(re)
|
427 |
+
[ 45.5597513593433 1.27721006042799 0.317662687717978]
|
428 |
+
[ 1.27721006042799 42.5222778973542 2.24003708791604]
|
429 |
+
[0.317662687717978 2.24003708791604 42.395212822267]
|
430 |
+
|
431 |
+
"""
|
432 |
+
A = ctx.matrix(A)
|
433 |
+
prec = ctx.prec
|
434 |
+
try:
|
435 |
+
ctx.prec += 10
|
436 |
+
tol = ctx.eps * 128
|
437 |
+
I = A**0
|
438 |
+
B = A
|
439 |
+
n = 0
|
440 |
+
while 1:
|
441 |
+
B = ctx.sqrtm(B)
|
442 |
+
n += 1
|
443 |
+
if ctx.mnorm(B-I, 'inf') < 0.125:
|
444 |
+
break
|
445 |
+
T = X = B-I
|
446 |
+
L = X*0
|
447 |
+
k = 1
|
448 |
+
while 1:
|
449 |
+
if k & 1:
|
450 |
+
L += T / k
|
451 |
+
else:
|
452 |
+
L -= T / k
|
453 |
+
T *= X
|
454 |
+
if ctx.mnorm(T, 'inf') < tol:
|
455 |
+
break
|
456 |
+
k += 1
|
457 |
+
if k > ctx.prec:
|
458 |
+
raise ctx.NoConvergence
|
459 |
+
finally:
|
460 |
+
ctx.prec = prec
|
461 |
+
L *= 2**n
|
462 |
+
return L
|
463 |
+
|
464 |
+
def powm(ctx, A, r):
|
465 |
+
r"""
|
466 |
+
Computes `A^r = \exp(A \log r)` for a matrix `A` and complex
|
467 |
+
number `r`.
|
468 |
+
|
469 |
+
**Examples**
|
470 |
+
|
471 |
+
Powers and inverse powers of a matrix::
|
472 |
+
|
473 |
+
>>> from mpmath import *
|
474 |
+
>>> mp.dps = 15; mp.pretty = True
|
475 |
+
>>> A = matrix([[4,1,4],[7,8,9],[10,2,11]])
|
476 |
+
>>> powm(A, 2)
|
477 |
+
[ 63.0 20.0 69.0]
|
478 |
+
[174.0 89.0 199.0]
|
479 |
+
[164.0 48.0 179.0]
|
480 |
+
>>> chop(powm(powm(A, 4), 1/4.))
|
481 |
+
[ 4.0 1.0 4.0]
|
482 |
+
[ 7.0 8.0 9.0]
|
483 |
+
[10.0 2.0 11.0]
|
484 |
+
>>> powm(extraprec(20)(powm)(A, -4), -1/4.)
|
485 |
+
[ 4.0 1.0 4.0]
|
486 |
+
[ 7.0 8.0 9.0]
|
487 |
+
[10.0 2.0 11.0]
|
488 |
+
>>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j)))
|
489 |
+
[ 4.0 1.0 4.0]
|
490 |
+
[ 7.0 8.0 9.0]
|
491 |
+
[10.0 2.0 11.0]
|
492 |
+
>>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5))
|
493 |
+
[ 4.0 1.0 4.0]
|
494 |
+
[ 7.0 8.0 9.0]
|
495 |
+
[10.0 2.0 11.0]
|
496 |
+
|
497 |
+
A Fibonacci-generating matrix::
|
498 |
+
|
499 |
+
>>> powm([[1,1],[1,0]], 10)
|
500 |
+
[89.0 55.0]
|
501 |
+
[55.0 34.0]
|
502 |
+
>>> fib(10)
|
503 |
+
55.0
|
504 |
+
>>> powm([[1,1],[1,0]], 6.5)
|
505 |
+
[(16.5166626964253 - 0.0121089837381789j) (10.2078589271083 + 0.0195927472575932j)]
|
506 |
+
[(10.2078589271083 + 0.0195927472575932j) (6.30880376931698 - 0.0317017309957721j)]
|
507 |
+
>>> (phi**6.5 - (1-phi)**6.5)/sqrt(5)
|
508 |
+
(10.2078589271083 - 0.0195927472575932j)
|
509 |
+
>>> powm([[1,1],[1,0]], 6.2)
|
510 |
+
[ (14.3076953002666 - 0.008222855781077j) (8.81733464837593 + 0.0133048601383712j)]
|
511 |
+
[(8.81733464837593 + 0.0133048601383712j) (5.49036065189071 - 0.0215277159194482j)]
|
512 |
+
>>> (phi**6.2 - (1-phi)**6.2)/sqrt(5)
|
513 |
+
(8.81733464837593 - 0.0133048601383712j)
|
514 |
+
|
515 |
+
"""
|
516 |
+
A = ctx.matrix(A)
|
517 |
+
r = ctx.convert(r)
|
518 |
+
prec = ctx.prec
|
519 |
+
try:
|
520 |
+
ctx.prec += 10
|
521 |
+
if ctx.isint(r):
|
522 |
+
v = A ** int(r)
|
523 |
+
elif ctx.isint(r*2):
|
524 |
+
y = int(r*2)
|
525 |
+
v = ctx.sqrtm(A) ** y
|
526 |
+
else:
|
527 |
+
v = ctx.expm(r*ctx.logm(A))
|
528 |
+
finally:
|
529 |
+
ctx.prec = prec
|
530 |
+
v *= 1
|
531 |
+
return v
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/eigen.py
ADDED
@@ -0,0 +1,877 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
##################################################################################################
|
5 |
+
# module for the eigenvalue problem
|
6 |
+
# Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
|
7 |
+
#
|
8 |
+
# todo:
|
9 |
+
# - implement balancing
|
10 |
+
# - agressive early deflation
|
11 |
+
#
|
12 |
+
##################################################################################################
|
13 |
+
|
14 |
+
"""
|
15 |
+
The eigenvalue problem
|
16 |
+
----------------------
|
17 |
+
|
18 |
+
This file contains routines for the eigenvalue problem.
|
19 |
+
|
20 |
+
high level routines:
|
21 |
+
|
22 |
+
hessenberg : reduction of a real or complex square matrix to upper Hessenberg form
|
23 |
+
schur : reduction of a real or complex square matrix to upper Schur form
|
24 |
+
eig : eigenvalues and eigenvectors of a real or complex square matrix
|
25 |
+
|
26 |
+
low level routines:
|
27 |
+
|
28 |
+
hessenberg_reduce_0 : reduction of a real or complex square matrix to upper Hessenberg form
|
29 |
+
hessenberg_reduce_1 : auxiliary routine to hessenberg_reduce_0
|
30 |
+
qr_step : a single implicitly shifted QR step for an upper Hessenberg matrix
|
31 |
+
hessenberg_qr : Schur decomposition of an upper Hessenberg matrix
|
32 |
+
eig_tr_r : right eigenvectors of an upper triangular matrix
|
33 |
+
eig_tr_l : left eigenvectors of an upper triangular matrix
|
34 |
+
"""
|
35 |
+
|
36 |
+
from ..libmp.backend import xrange
|
37 |
+
|
38 |
+
class Eigen(object):
|
39 |
+
pass
|
40 |
+
|
41 |
+
def defun(f):
|
42 |
+
setattr(Eigen, f.__name__, f)
|
43 |
+
return f
|
44 |
+
|
45 |
+
def hessenberg_reduce_0(ctx, A, T):
|
46 |
+
"""
|
47 |
+
This routine computes the (upper) Hessenberg decomposition of a square matrix A.
|
48 |
+
Given A, an unitary matrix Q is calculated such that
|
49 |
+
|
50 |
+
Q' A Q = H and Q' Q = Q Q' = 1
|
51 |
+
|
52 |
+
where H is an upper Hessenberg matrix, meaning that it only contains zeros
|
53 |
+
below the first subdiagonal. Here ' denotes the hermitian transpose (i.e.
|
54 |
+
transposition and conjugation).
|
55 |
+
|
56 |
+
parameters:
|
57 |
+
A (input/output) On input, A contains the square matrix A of
|
58 |
+
dimension (n,n). On output, A contains a compressed representation
|
59 |
+
of Q and H.
|
60 |
+
T (output) An array of length n containing the first elements of
|
61 |
+
the Householder reflectors.
|
62 |
+
"""
|
63 |
+
|
64 |
+
# internally we work with householder reflections from the right.
|
65 |
+
# let u be a row vector (i.e. u[i]=A[i,:i]). then
|
66 |
+
# Q is build up by reflectors of the type (1-v'v) where v is a suitable
|
67 |
+
# modification of u. these reflectors are applyed to A from the right.
|
68 |
+
# because we work with reflectors from the right we have to start with
|
69 |
+
# the bottom row of A and work then upwards (this corresponds to
|
70 |
+
# some kind of RQ decomposition).
|
71 |
+
# the first part of the vectors v (i.e. A[i,:(i-1)]) are stored as row vectors
|
72 |
+
# in the lower left part of A (excluding the diagonal and subdiagonal).
|
73 |
+
# the last entry of v is stored in T.
|
74 |
+
# the upper right part of A (including diagonal and subdiagonal) becomes H.
|
75 |
+
|
76 |
+
|
77 |
+
n = A.rows
|
78 |
+
if n <= 2: return
|
79 |
+
|
80 |
+
for i in xrange(n-1, 1, -1):
|
81 |
+
|
82 |
+
# scale the vector
|
83 |
+
|
84 |
+
scale = 0
|
85 |
+
for k in xrange(0, i):
|
86 |
+
scale += abs(ctx.re(A[i,k])) + abs(ctx.im(A[i,k]))
|
87 |
+
|
88 |
+
scale_inv = 0
|
89 |
+
if scale != 0:
|
90 |
+
scale_inv = 1 / scale
|
91 |
+
|
92 |
+
if scale == 0 or ctx.isinf(scale_inv):
|
93 |
+
# sadly there are floating point numbers not equal to zero whose reciprocal is infinity
|
94 |
+
T[i] = 0
|
95 |
+
A[i,i-1] = 0
|
96 |
+
continue
|
97 |
+
|
98 |
+
# calculate parameters for housholder transformation
|
99 |
+
|
100 |
+
H = 0
|
101 |
+
for k in xrange(0, i):
|
102 |
+
A[i,k] *= scale_inv
|
103 |
+
rr = ctx.re(A[i,k])
|
104 |
+
ii = ctx.im(A[i,k])
|
105 |
+
H += rr * rr + ii * ii
|
106 |
+
|
107 |
+
F = A[i,i-1]
|
108 |
+
f = abs(F)
|
109 |
+
G = ctx.sqrt(H)
|
110 |
+
A[i,i-1] = - G * scale
|
111 |
+
|
112 |
+
if f == 0:
|
113 |
+
T[i] = G
|
114 |
+
else:
|
115 |
+
ff = F / f
|
116 |
+
T[i] = F + G * ff
|
117 |
+
A[i,i-1] *= ff
|
118 |
+
|
119 |
+
H += G * f
|
120 |
+
H = 1 / ctx.sqrt(H)
|
121 |
+
|
122 |
+
T[i] *= H
|
123 |
+
for k in xrange(0, i - 1):
|
124 |
+
A[i,k] *= H
|
125 |
+
|
126 |
+
for j in xrange(0, i):
|
127 |
+
# apply housholder transformation (from right)
|
128 |
+
|
129 |
+
G = ctx.conj(T[i]) * A[j,i-1]
|
130 |
+
for k in xrange(0, i-1):
|
131 |
+
G += ctx.conj(A[i,k]) * A[j,k]
|
132 |
+
|
133 |
+
A[j,i-1] -= G * T[i]
|
134 |
+
for k in xrange(0, i-1):
|
135 |
+
A[j,k] -= G * A[i,k]
|
136 |
+
|
137 |
+
for j in xrange(0, n):
|
138 |
+
# apply housholder transformation (from left)
|
139 |
+
|
140 |
+
G = T[i] * A[i-1,j]
|
141 |
+
for k in xrange(0, i-1):
|
142 |
+
G += A[i,k] * A[k,j]
|
143 |
+
|
144 |
+
A[i-1,j] -= G * ctx.conj(T[i])
|
145 |
+
for k in xrange(0, i-1):
|
146 |
+
A[k,j] -= G * ctx.conj(A[i,k])
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def hessenberg_reduce_1(ctx, A, T):
|
151 |
+
"""
|
152 |
+
This routine forms the unitary matrix Q described in hessenberg_reduce_0.
|
153 |
+
|
154 |
+
parameters:
|
155 |
+
A (input/output) On input, A is the same matrix as delivered by
|
156 |
+
hessenberg_reduce_0. On output, A is set to Q.
|
157 |
+
|
158 |
+
T (input) On input, T is the same array as delivered by hessenberg_reduce_0.
|
159 |
+
"""
|
160 |
+
|
161 |
+
n = A.rows
|
162 |
+
|
163 |
+
if n == 1:
|
164 |
+
A[0,0] = 1
|
165 |
+
return
|
166 |
+
|
167 |
+
A[0,0] = A[1,1] = 1
|
168 |
+
A[0,1] = A[1,0] = 0
|
169 |
+
|
170 |
+
for i in xrange(2, n):
|
171 |
+
if T[i] != 0:
|
172 |
+
|
173 |
+
for j in xrange(0, i):
|
174 |
+
G = T[i] * A[i-1,j]
|
175 |
+
for k in xrange(0, i-1):
|
176 |
+
G += A[i,k] * A[k,j]
|
177 |
+
|
178 |
+
A[i-1,j] -= G * ctx.conj(T[i])
|
179 |
+
for k in xrange(0, i-1):
|
180 |
+
A[k,j] -= G * ctx.conj(A[i,k])
|
181 |
+
|
182 |
+
A[i,i] = 1
|
183 |
+
for j in xrange(0, i):
|
184 |
+
A[j,i] = A[i,j] = 0
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
@defun
|
189 |
+
def hessenberg(ctx, A, overwrite_a = False):
|
190 |
+
"""
|
191 |
+
This routine computes the Hessenberg decomposition of a square matrix A.
|
192 |
+
Given A, an unitary matrix Q is determined such that
|
193 |
+
|
194 |
+
Q' A Q = H and Q' Q = Q Q' = 1
|
195 |
+
|
196 |
+
where H is an upper right Hessenberg matrix. Here ' denotes the hermitian
|
197 |
+
transpose (i.e. transposition and conjugation).
|
198 |
+
|
199 |
+
input:
|
200 |
+
A : a real or complex square matrix
|
201 |
+
overwrite_a : if true, allows modification of A which may improve
|
202 |
+
performance. if false, A is not modified.
|
203 |
+
|
204 |
+
output:
|
205 |
+
Q : an unitary matrix
|
206 |
+
H : an upper right Hessenberg matrix
|
207 |
+
|
208 |
+
example:
|
209 |
+
>>> from mpmath import mp
|
210 |
+
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
211 |
+
>>> Q, H = mp.hessenberg(A)
|
212 |
+
>>> mp.nprint(H, 3) # doctest:+SKIP
|
213 |
+
[ 3.15 2.23 4.44]
|
214 |
+
[-0.769 4.85 3.05]
|
215 |
+
[ 0.0 3.61 7.0]
|
216 |
+
>>> print(mp.chop(A - Q * H * Q.transpose_conj()))
|
217 |
+
[0.0 0.0 0.0]
|
218 |
+
[0.0 0.0 0.0]
|
219 |
+
[0.0 0.0 0.0]
|
220 |
+
|
221 |
+
return value: (Q, H)
|
222 |
+
"""
|
223 |
+
|
224 |
+
n = A.rows
|
225 |
+
|
226 |
+
if n == 1:
|
227 |
+
return (ctx.matrix([[1]]), A)
|
228 |
+
|
229 |
+
if not overwrite_a:
|
230 |
+
A = A.copy()
|
231 |
+
|
232 |
+
T = ctx.matrix(n, 1)
|
233 |
+
|
234 |
+
hessenberg_reduce_0(ctx, A, T)
|
235 |
+
Q = A.copy()
|
236 |
+
hessenberg_reduce_1(ctx, Q, T)
|
237 |
+
|
238 |
+
for x in xrange(n):
|
239 |
+
for y in xrange(x+2, n):
|
240 |
+
A[y,x] = 0
|
241 |
+
|
242 |
+
return Q, A
|
243 |
+
|
244 |
+
|
245 |
+
###########################################################################
|
246 |
+
|
247 |
+
|
248 |
+
def qr_step(ctx, n0, n1, A, Q, shift):
|
249 |
+
"""
|
250 |
+
This subroutine executes a single implicitly shifted QR step applied to an
|
251 |
+
upper Hessenberg matrix A. Given A and shift as input, first an QR
|
252 |
+
decomposition is calculated:
|
253 |
+
|
254 |
+
Q R = A - shift * 1 .
|
255 |
+
|
256 |
+
The output is then following matrix:
|
257 |
+
|
258 |
+
R Q + shift * 1
|
259 |
+
|
260 |
+
parameters:
|
261 |
+
n0, n1 (input) Two integers which specify the submatrix A[n0:n1,n0:n1]
|
262 |
+
on which this subroutine operators. The subdiagonal elements
|
263 |
+
to the left and below this submatrix must be deflated (i.e. zero).
|
264 |
+
following restriction is imposed: n1>=n0+2
|
265 |
+
A (input/output) On input, A is an upper Hessenberg matrix.
|
266 |
+
On output, A is replaced by "R Q + shift * 1"
|
267 |
+
Q (input/output) The parameter Q is multiplied by the unitary matrix
|
268 |
+
Q arising from the QR decomposition. Q can also be false, in which
|
269 |
+
case the unitary matrix Q is not computated.
|
270 |
+
shift (input) a complex number specifying the shift. idealy close to an
|
271 |
+
eigenvalue of the bottemmost part of the submatrix A[n0:n1,n0:n1].
|
272 |
+
|
273 |
+
references:
|
274 |
+
Stoer, Bulirsch - Introduction to Numerical Analysis.
|
275 |
+
Kresser : Numerical Methods for General and Structured Eigenvalue Problems
|
276 |
+
"""
|
277 |
+
|
278 |
+
# implicitly shifted and bulge chasing is explained at p.398/399 in "Stoer, Bulirsch - Introduction to Numerical Analysis"
|
279 |
+
# for bulge chasing see also "Watkins - The Matrix Eigenvalue Problem" sec.4.5,p.173
|
280 |
+
|
281 |
+
# the Givens rotation we used is determined as follows: let c,s be two complex
|
282 |
+
# numbers. then we have following relation:
|
283 |
+
#
|
284 |
+
# v = sqrt(|c|^2 + |s|^2)
|
285 |
+
#
|
286 |
+
# 1/v [ c~ s~] [c] = [v]
|
287 |
+
# [-s c ] [s] [0]
|
288 |
+
#
|
289 |
+
# the matrix on the left is our Givens rotation.
|
290 |
+
|
291 |
+
n = A.rows
|
292 |
+
|
293 |
+
# first step
|
294 |
+
|
295 |
+
# calculate givens rotation
|
296 |
+
c = A[n0 ,n0] - shift
|
297 |
+
s = A[n0+1,n0]
|
298 |
+
|
299 |
+
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
|
300 |
+
|
301 |
+
if v == 0:
|
302 |
+
v = 1
|
303 |
+
c = 1
|
304 |
+
s = 0
|
305 |
+
else:
|
306 |
+
c /= v
|
307 |
+
s /= v
|
308 |
+
|
309 |
+
cc = ctx.conj(c)
|
310 |
+
cs = ctx.conj(s)
|
311 |
+
|
312 |
+
for k in xrange(n0, n):
|
313 |
+
# apply givens rotation from the left
|
314 |
+
x = A[n0 ,k]
|
315 |
+
y = A[n0+1,k]
|
316 |
+
A[n0 ,k] = cc * x + cs * y
|
317 |
+
A[n0+1,k] = c * y - s * x
|
318 |
+
|
319 |
+
for k in xrange(min(n1, n0+3)):
|
320 |
+
# apply givens rotation from the right
|
321 |
+
x = A[k,n0 ]
|
322 |
+
y = A[k,n0+1]
|
323 |
+
A[k,n0 ] = c * x + s * y
|
324 |
+
A[k,n0+1] = cc * y - cs * x
|
325 |
+
|
326 |
+
if not isinstance(Q, bool):
|
327 |
+
for k in xrange(n):
|
328 |
+
# eigenvectors
|
329 |
+
x = Q[k,n0 ]
|
330 |
+
y = Q[k,n0+1]
|
331 |
+
Q[k,n0 ] = c * x + s * y
|
332 |
+
Q[k,n0+1] = cc * y - cs * x
|
333 |
+
|
334 |
+
# chase the bulge
|
335 |
+
|
336 |
+
for j in xrange(n0, n1 - 2):
|
337 |
+
# calculate givens rotation
|
338 |
+
|
339 |
+
c = A[j+1,j]
|
340 |
+
s = A[j+2,j]
|
341 |
+
|
342 |
+
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
|
343 |
+
|
344 |
+
if v == 0:
|
345 |
+
A[j+1,j] = 0
|
346 |
+
v = 1
|
347 |
+
c = 1
|
348 |
+
s = 0
|
349 |
+
else:
|
350 |
+
A[j+1,j] = v
|
351 |
+
c /= v
|
352 |
+
s /= v
|
353 |
+
|
354 |
+
A[j+2,j] = 0
|
355 |
+
|
356 |
+
cc = ctx.conj(c)
|
357 |
+
cs = ctx.conj(s)
|
358 |
+
|
359 |
+
for k in xrange(j+1, n):
|
360 |
+
# apply givens rotation from the left
|
361 |
+
x = A[j+1,k]
|
362 |
+
y = A[j+2,k]
|
363 |
+
A[j+1,k] = cc * x + cs * y
|
364 |
+
A[j+2,k] = c * y - s * x
|
365 |
+
|
366 |
+
for k in xrange(0, min(n1, j+4)):
|
367 |
+
# apply givens rotation from the right
|
368 |
+
x = A[k,j+1]
|
369 |
+
y = A[k,j+2]
|
370 |
+
A[k,j+1] = c * x + s * y
|
371 |
+
A[k,j+2] = cc * y - cs * x
|
372 |
+
|
373 |
+
if not isinstance(Q, bool):
|
374 |
+
for k in xrange(0, n):
|
375 |
+
# eigenvectors
|
376 |
+
x = Q[k,j+1]
|
377 |
+
y = Q[k,j+2]
|
378 |
+
Q[k,j+1] = c * x + s * y
|
379 |
+
Q[k,j+2] = cc * y - cs * x
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
def hessenberg_qr(ctx, A, Q):
|
384 |
+
"""
|
385 |
+
This routine computes the Schur decomposition of an upper Hessenberg matrix A.
|
386 |
+
Given A, an unitary matrix Q is determined such that
|
387 |
+
|
388 |
+
Q' A Q = R and Q' Q = Q Q' = 1
|
389 |
+
|
390 |
+
where R is an upper right triangular matrix. Here ' denotes the hermitian
|
391 |
+
transpose (i.e. transposition and conjugation).
|
392 |
+
|
393 |
+
parameters:
|
394 |
+
A (input/output) On input, A contains an upper Hessenberg matrix.
|
395 |
+
On output, A is replace by the upper right triangluar matrix R.
|
396 |
+
|
397 |
+
Q (input/output) The parameter Q is multiplied by the unitary
|
398 |
+
matrix Q arising from the Schur decomposition. Q can also be
|
399 |
+
false, in which case the unitary matrix Q is not computated.
|
400 |
+
"""
|
401 |
+
|
402 |
+
n = A.rows
|
403 |
+
|
404 |
+
norm = 0
|
405 |
+
for x in xrange(n):
|
406 |
+
for y in xrange(min(x+2, n)):
|
407 |
+
norm += ctx.re(A[y,x]) ** 2 + ctx.im(A[y,x]) ** 2
|
408 |
+
norm = ctx.sqrt(norm) / n
|
409 |
+
|
410 |
+
if norm == 0:
|
411 |
+
return
|
412 |
+
|
413 |
+
n0 = 0
|
414 |
+
n1 = n
|
415 |
+
|
416 |
+
eps = ctx.eps / (100 * n)
|
417 |
+
maxits = ctx.dps * 4
|
418 |
+
|
419 |
+
its = totalits = 0
|
420 |
+
|
421 |
+
while 1:
|
422 |
+
# kressner p.32 algo 3
|
423 |
+
# the active submatrix is A[n0:n1,n0:n1]
|
424 |
+
|
425 |
+
k = n0
|
426 |
+
|
427 |
+
while k + 1 < n1:
|
428 |
+
s = abs(ctx.re(A[k,k])) + abs(ctx.im(A[k,k])) + abs(ctx.re(A[k+1,k+1])) + abs(ctx.im(A[k+1,k+1]))
|
429 |
+
if s < eps * norm:
|
430 |
+
s = norm
|
431 |
+
if abs(A[k+1,k]) < eps * s:
|
432 |
+
break
|
433 |
+
k += 1
|
434 |
+
|
435 |
+
if k + 1 < n1:
|
436 |
+
# deflation found at position (k+1, k)
|
437 |
+
|
438 |
+
A[k+1,k] = 0
|
439 |
+
n0 = k + 1
|
440 |
+
|
441 |
+
its = 0
|
442 |
+
|
443 |
+
if n0 + 1 >= n1:
|
444 |
+
# block of size at most two has converged
|
445 |
+
n0 = 0
|
446 |
+
n1 = k + 1
|
447 |
+
if n1 < 2:
|
448 |
+
# QR algorithm has converged
|
449 |
+
return
|
450 |
+
else:
|
451 |
+
if (its % 30) == 10:
|
452 |
+
# exceptional shift
|
453 |
+
shift = A[n1-1,n1-2]
|
454 |
+
elif (its % 30) == 20:
|
455 |
+
# exceptional shift
|
456 |
+
shift = abs(A[n1-1,n1-2])
|
457 |
+
elif (its % 30) == 29:
|
458 |
+
# exceptional shift
|
459 |
+
shift = norm
|
460 |
+
else:
|
461 |
+
# A = [ a b ] det(x-A)=x*x-x*tr(A)+det(A)
|
462 |
+
# [ c d ]
|
463 |
+
#
|
464 |
+
# eigenvalues bad: (tr(A)+sqrt((tr(A))**2-4*det(A)))/2
|
465 |
+
# bad because of cancellation if |c| is small and |a-d| is small, too.
|
466 |
+
#
|
467 |
+
# eigenvalues good: (a+d+sqrt((a-d)**2+4*b*c))/2
|
468 |
+
|
469 |
+
t = A[n1-2,n1-2] + A[n1-1,n1-1]
|
470 |
+
s = (A[n1-1,n1-1] - A[n1-2,n1-2]) ** 2 + 4 * A[n1-1,n1-2] * A[n1-2,n1-1]
|
471 |
+
if ctx.re(s) > 0:
|
472 |
+
s = ctx.sqrt(s)
|
473 |
+
else:
|
474 |
+
s = ctx.sqrt(-s) * 1j
|
475 |
+
a = (t + s) / 2
|
476 |
+
b = (t - s) / 2
|
477 |
+
if abs(A[n1-1,n1-1] - a) > abs(A[n1-1,n1-1] - b):
|
478 |
+
shift = b
|
479 |
+
else:
|
480 |
+
shift = a
|
481 |
+
|
482 |
+
its += 1
|
483 |
+
totalits += 1
|
484 |
+
|
485 |
+
qr_step(ctx, n0, n1, A, Q, shift)
|
486 |
+
|
487 |
+
if its > maxits:
|
488 |
+
raise RuntimeError("qr: failed to converge after %d steps" % its)
|
489 |
+
|
490 |
+
|
491 |
+
@defun
|
492 |
+
def schur(ctx, A, overwrite_a = False):
|
493 |
+
"""
|
494 |
+
This routine computes the Schur decomposition of a square matrix A.
|
495 |
+
Given A, an unitary matrix Q is determined such that
|
496 |
+
|
497 |
+
Q' A Q = R and Q' Q = Q Q' = 1
|
498 |
+
|
499 |
+
where R is an upper right triangular matrix. Here ' denotes the
|
500 |
+
hermitian transpose (i.e. transposition and conjugation).
|
501 |
+
|
502 |
+
input:
|
503 |
+
A : a real or complex square matrix
|
504 |
+
overwrite_a : if true, allows modification of A which may improve
|
505 |
+
performance. if false, A is not modified.
|
506 |
+
|
507 |
+
output:
|
508 |
+
Q : an unitary matrix
|
509 |
+
R : an upper right triangular matrix
|
510 |
+
|
511 |
+
return value: (Q, R)
|
512 |
+
|
513 |
+
example:
|
514 |
+
>>> from mpmath import mp
|
515 |
+
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
516 |
+
>>> Q, R = mp.schur(A)
|
517 |
+
>>> mp.nprint(R, 3) # doctest:+SKIP
|
518 |
+
[2.0 0.417 -2.53]
|
519 |
+
[0.0 4.0 -4.74]
|
520 |
+
[0.0 0.0 9.0]
|
521 |
+
>>> print(mp.chop(A - Q * R * Q.transpose_conj()))
|
522 |
+
[0.0 0.0 0.0]
|
523 |
+
[0.0 0.0 0.0]
|
524 |
+
[0.0 0.0 0.0]
|
525 |
+
|
526 |
+
warning: The Schur decomposition is not unique.
|
527 |
+
"""
|
528 |
+
|
529 |
+
n = A.rows
|
530 |
+
|
531 |
+
if n == 1:
|
532 |
+
return (ctx.matrix([[1]]), A)
|
533 |
+
|
534 |
+
if not overwrite_a:
|
535 |
+
A = A.copy()
|
536 |
+
|
537 |
+
T = ctx.matrix(n, 1)
|
538 |
+
|
539 |
+
hessenberg_reduce_0(ctx, A, T)
|
540 |
+
Q = A.copy()
|
541 |
+
hessenberg_reduce_1(ctx, Q, T)
|
542 |
+
|
543 |
+
for x in xrange(n):
|
544 |
+
for y in xrange(x + 2, n):
|
545 |
+
A[y,x] = 0
|
546 |
+
|
547 |
+
hessenberg_qr(ctx, A, Q)
|
548 |
+
|
549 |
+
return Q, A
|
550 |
+
|
551 |
+
|
552 |
+
def eig_tr_r(ctx, A):
|
553 |
+
"""
|
554 |
+
This routine calculates the right eigenvectors of an upper right triangular matrix.
|
555 |
+
|
556 |
+
input:
|
557 |
+
A an upper right triangular matrix
|
558 |
+
|
559 |
+
output:
|
560 |
+
ER a matrix whose columns form the right eigenvectors of A
|
561 |
+
|
562 |
+
return value: ER
|
563 |
+
"""
|
564 |
+
|
565 |
+
# this subroutine is inspired by the lapack routines ctrevc.f,clatrs.f
|
566 |
+
|
567 |
+
n = A.rows
|
568 |
+
|
569 |
+
ER = ctx.eye(n)
|
570 |
+
|
571 |
+
eps = ctx.eps
|
572 |
+
|
573 |
+
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
|
574 |
+
# since mpmath effectively has no limits on the exponent, we simply scale doubles up
|
575 |
+
# original double has prec*20
|
576 |
+
|
577 |
+
smlnum = unfl * (n / eps)
|
578 |
+
simin = 1 / ctx.sqrt(eps)
|
579 |
+
|
580 |
+
rmax = 1
|
581 |
+
|
582 |
+
for i in xrange(1, n):
|
583 |
+
s = A[i,i]
|
584 |
+
|
585 |
+
smin = max(eps * abs(s), smlnum)
|
586 |
+
|
587 |
+
for j in xrange(i - 1, -1, -1):
|
588 |
+
|
589 |
+
r = 0
|
590 |
+
for k in xrange(j + 1, i + 1):
|
591 |
+
r += A[j,k] * ER[k,i]
|
592 |
+
|
593 |
+
t = A[j,j] - s
|
594 |
+
if abs(t) < smin:
|
595 |
+
t = smin
|
596 |
+
|
597 |
+
r = -r / t
|
598 |
+
ER[j,i] = r
|
599 |
+
|
600 |
+
rmax = max(rmax, abs(r))
|
601 |
+
if rmax > simin:
|
602 |
+
for k in xrange(j, i+1):
|
603 |
+
ER[k,i] /= rmax
|
604 |
+
rmax = 1
|
605 |
+
|
606 |
+
if rmax != 1:
|
607 |
+
for k in xrange(0, i + 1):
|
608 |
+
ER[k,i] /= rmax
|
609 |
+
|
610 |
+
return ER
|
611 |
+
|
612 |
+
def eig_tr_l(ctx, A):
|
613 |
+
"""
|
614 |
+
This routine calculates the left eigenvectors of an upper right triangular matrix.
|
615 |
+
|
616 |
+
input:
|
617 |
+
A an upper right triangular matrix
|
618 |
+
|
619 |
+
output:
|
620 |
+
EL a matrix whose rows form the left eigenvectors of A
|
621 |
+
|
622 |
+
return value: EL
|
623 |
+
"""
|
624 |
+
|
625 |
+
n = A.rows
|
626 |
+
|
627 |
+
EL = ctx.eye(n)
|
628 |
+
|
629 |
+
eps = ctx.eps
|
630 |
+
|
631 |
+
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
|
632 |
+
# since mpmath effectively has no limits on the exponent, we simply scale doubles up
|
633 |
+
# original double has prec*20
|
634 |
+
|
635 |
+
smlnum = unfl * (n / eps)
|
636 |
+
simin = 1 / ctx.sqrt(eps)
|
637 |
+
|
638 |
+
rmax = 1
|
639 |
+
|
640 |
+
for i in xrange(0, n - 1):
|
641 |
+
s = A[i,i]
|
642 |
+
|
643 |
+
smin = max(eps * abs(s), smlnum)
|
644 |
+
|
645 |
+
for j in xrange(i + 1, n):
|
646 |
+
|
647 |
+
r = 0
|
648 |
+
for k in xrange(i, j):
|
649 |
+
r += EL[i,k] * A[k,j]
|
650 |
+
|
651 |
+
t = A[j,j] - s
|
652 |
+
if abs(t) < smin:
|
653 |
+
t = smin
|
654 |
+
|
655 |
+
r = -r / t
|
656 |
+
EL[i,j] = r
|
657 |
+
|
658 |
+
rmax = max(rmax, abs(r))
|
659 |
+
if rmax > simin:
|
660 |
+
for k in xrange(i, j + 1):
|
661 |
+
EL[i,k] /= rmax
|
662 |
+
rmax = 1
|
663 |
+
|
664 |
+
if rmax != 1:
|
665 |
+
for k in xrange(i, n):
|
666 |
+
EL[i,k] /= rmax
|
667 |
+
|
668 |
+
return EL
|
669 |
+
|
670 |
+
@defun
|
671 |
+
def eig(ctx, A, left = False, right = True, overwrite_a = False):
|
672 |
+
"""
|
673 |
+
This routine computes the eigenvalues and optionally the left and right
|
674 |
+
eigenvectors of a square matrix A. Given A, a vector E and matrices ER
|
675 |
+
and EL are calculated such that
|
676 |
+
|
677 |
+
A ER[:,i] = E[i] ER[:,i]
|
678 |
+
EL[i,:] A = EL[i,:] E[i]
|
679 |
+
|
680 |
+
E contains the eigenvalues of A. The columns of ER contain the right eigenvectors
|
681 |
+
of A whereas the rows of EL contain the left eigenvectors.
|
682 |
+
|
683 |
+
|
684 |
+
input:
|
685 |
+
A : a real or complex square matrix of shape (n, n)
|
686 |
+
left : if true, the left eigenvectors are calculated.
|
687 |
+
right : if true, the right eigenvectors are calculated.
|
688 |
+
overwrite_a : if true, allows modification of A which may improve
|
689 |
+
performance. if false, A is not modified.
|
690 |
+
|
691 |
+
output:
|
692 |
+
E : a list of length n containing the eigenvalues of A.
|
693 |
+
ER : a matrix whose columns contain the right eigenvectors of A.
|
694 |
+
EL : a matrix whose rows contain the left eigenvectors of A.
|
695 |
+
|
696 |
+
return values:
|
697 |
+
E if left and right are both false.
|
698 |
+
(E, ER) if right is true and left is false.
|
699 |
+
(E, EL) if left is true and right is false.
|
700 |
+
(E, EL, ER) if left and right are true.
|
701 |
+
|
702 |
+
|
703 |
+
examples:
|
704 |
+
>>> from mpmath import mp
|
705 |
+
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
706 |
+
>>> E, ER = mp.eig(A)
|
707 |
+
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
708 |
+
[0.0]
|
709 |
+
[0.0]
|
710 |
+
[0.0]
|
711 |
+
|
712 |
+
>>> E, EL, ER = mp.eig(A,left = True, right = True)
|
713 |
+
>>> E, EL, ER = mp.eig_sort(E, EL, ER)
|
714 |
+
>>> mp.nprint(E)
|
715 |
+
[2.0, 4.0, 9.0]
|
716 |
+
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
717 |
+
[0.0]
|
718 |
+
[0.0]
|
719 |
+
[0.0]
|
720 |
+
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
|
721 |
+
[0.0 0.0 0.0]
|
722 |
+
|
723 |
+
warning:
|
724 |
+
- If there are multiple eigenvalues, the eigenvectors do not necessarily
|
725 |
+
span the whole vectorspace, i.e. ER and EL may have not full rank.
|
726 |
+
Furthermore in that case the eigenvectors are numerical ill-conditioned.
|
727 |
+
- In the general case the eigenvalues have no natural order.
|
728 |
+
|
729 |
+
see also:
|
730 |
+
- eigh (or eigsy, eighe) for the symmetric eigenvalue problem.
|
731 |
+
- eig_sort for sorting of eigenvalues and eigenvectors
|
732 |
+
"""
|
733 |
+
|
734 |
+
n = A.rows
|
735 |
+
|
736 |
+
if n == 1:
|
737 |
+
if left and (not right):
|
738 |
+
return ([A[0]], ctx.matrix([[1]]))
|
739 |
+
|
740 |
+
if right and (not left):
|
741 |
+
return ([A[0]], ctx.matrix([[1]]))
|
742 |
+
|
743 |
+
return ([A[0]], ctx.matrix([[1]]), ctx.matrix([[1]]))
|
744 |
+
|
745 |
+
if not overwrite_a:
|
746 |
+
A = A.copy()
|
747 |
+
|
748 |
+
T = ctx.zeros(n, 1)
|
749 |
+
|
750 |
+
hessenberg_reduce_0(ctx, A, T)
|
751 |
+
|
752 |
+
if left or right:
|
753 |
+
Q = A.copy()
|
754 |
+
hessenberg_reduce_1(ctx, Q, T)
|
755 |
+
else:
|
756 |
+
Q = False
|
757 |
+
|
758 |
+
for x in xrange(n):
|
759 |
+
for y in xrange(x + 2, n):
|
760 |
+
A[y,x] = 0
|
761 |
+
|
762 |
+
hessenberg_qr(ctx, A, Q)
|
763 |
+
|
764 |
+
E = [0 for i in xrange(n)]
|
765 |
+
for i in xrange(n):
|
766 |
+
E[i] = A[i,i]
|
767 |
+
|
768 |
+
if not (left or right):
|
769 |
+
return E
|
770 |
+
|
771 |
+
if left:
|
772 |
+
EL = eig_tr_l(ctx, A)
|
773 |
+
EL = EL * Q.transpose_conj()
|
774 |
+
|
775 |
+
if right:
|
776 |
+
ER = eig_tr_r(ctx, A)
|
777 |
+
ER = Q * ER
|
778 |
+
|
779 |
+
if left and (not right):
|
780 |
+
return (E, EL)
|
781 |
+
|
782 |
+
if right and (not left):
|
783 |
+
return (E, ER)
|
784 |
+
|
785 |
+
return (E, EL, ER)
|
786 |
+
|
787 |
+
@defun
|
788 |
+
def eig_sort(ctx, E, EL = False, ER = False, f = "real"):
|
789 |
+
"""
|
790 |
+
This routine sorts the eigenvalues and eigenvectors delivered by ``eig``.
|
791 |
+
|
792 |
+
parameters:
|
793 |
+
E : the eigenvalues as delivered by eig
|
794 |
+
EL : the left eigenvectors as delivered by eig, or false
|
795 |
+
ER : the right eigenvectors as delivered by eig, or false
|
796 |
+
f : either a string ("real" sort by increasing real part, "imag" sort by
|
797 |
+
increasing imag part, "abs" sort by absolute value) or a function
|
798 |
+
mapping complexs to the reals, i.e. ``f = lambda x: -mp.re(x) ``
|
799 |
+
would sort the eigenvalues by decreasing real part.
|
800 |
+
|
801 |
+
return values:
|
802 |
+
E if EL and ER are both false.
|
803 |
+
(E, ER) if ER is not false and left is false.
|
804 |
+
(E, EL) if EL is not false and right is false.
|
805 |
+
(E, EL, ER) if EL and ER are not false.
|
806 |
+
|
807 |
+
example:
|
808 |
+
>>> from mpmath import mp
|
809 |
+
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
810 |
+
>>> E, EL, ER = mp.eig(A,left = True, right = True)
|
811 |
+
>>> E, EL, ER = mp.eig_sort(E, EL, ER)
|
812 |
+
>>> mp.nprint(E)
|
813 |
+
[2.0, 4.0, 9.0]
|
814 |
+
>>> E, EL, ER = mp.eig_sort(E, EL, ER,f = lambda x: -mp.re(x))
|
815 |
+
>>> mp.nprint(E)
|
816 |
+
[9.0, 4.0, 2.0]
|
817 |
+
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
818 |
+
[0.0]
|
819 |
+
[0.0]
|
820 |
+
[0.0]
|
821 |
+
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
|
822 |
+
[0.0 0.0 0.0]
|
823 |
+
"""
|
824 |
+
|
825 |
+
if isinstance(f, str):
|
826 |
+
if f == "real":
|
827 |
+
f = ctx.re
|
828 |
+
elif f == "imag":
|
829 |
+
f = ctx.im
|
830 |
+
elif f == "abs":
|
831 |
+
f = abs
|
832 |
+
else:
|
833 |
+
raise RuntimeError("unknown function %s" % f)
|
834 |
+
|
835 |
+
n = len(E)
|
836 |
+
|
837 |
+
# Sort eigenvalues (bubble-sort)
|
838 |
+
|
839 |
+
for i in xrange(n):
|
840 |
+
imax = i
|
841 |
+
s = f(E[i]) # s is the current maximal element
|
842 |
+
|
843 |
+
for j in xrange(i + 1, n):
|
844 |
+
c = f(E[j])
|
845 |
+
if c < s:
|
846 |
+
s = c
|
847 |
+
imax = j
|
848 |
+
|
849 |
+
if imax != i:
|
850 |
+
# swap eigenvalues
|
851 |
+
|
852 |
+
z = E[i]
|
853 |
+
E[i] = E[imax]
|
854 |
+
E[imax] = z
|
855 |
+
|
856 |
+
if not isinstance(EL, bool):
|
857 |
+
for j in xrange(n):
|
858 |
+
z = EL[i,j]
|
859 |
+
EL[i,j] = EL[imax,j]
|
860 |
+
EL[imax,j] = z
|
861 |
+
|
862 |
+
if not isinstance(ER, bool):
|
863 |
+
for j in xrange(n):
|
864 |
+
z = ER[j,i]
|
865 |
+
ER[j,i] = ER[j,imax]
|
866 |
+
ER[j,imax] = z
|
867 |
+
|
868 |
+
if isinstance(EL, bool) and isinstance(ER, bool):
|
869 |
+
return E
|
870 |
+
|
871 |
+
if isinstance(EL, bool) and not(isinstance(ER, bool)):
|
872 |
+
return (E, ER)
|
873 |
+
|
874 |
+
if isinstance(ER, bool) and not(isinstance(EL, bool)):
|
875 |
+
return (E, EL)
|
876 |
+
|
877 |
+
return (E, EL, ER)
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/linalg.py
ADDED
@@ -0,0 +1,790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Linear algebra
|
3 |
+
--------------
|
4 |
+
|
5 |
+
Linear equations
|
6 |
+
................
|
7 |
+
|
8 |
+
Basic linear algebra is implemented; you can for example solve the linear
|
9 |
+
equation system::
|
10 |
+
|
11 |
+
x + 2*y = -10
|
12 |
+
3*x + 4*y = 10
|
13 |
+
|
14 |
+
using ``lu_solve``::
|
15 |
+
|
16 |
+
>>> from mpmath import *
|
17 |
+
>>> mp.pretty = False
|
18 |
+
>>> A = matrix([[1, 2], [3, 4]])
|
19 |
+
>>> b = matrix([-10, 10])
|
20 |
+
>>> x = lu_solve(A, b)
|
21 |
+
>>> x
|
22 |
+
matrix(
|
23 |
+
[['30.0'],
|
24 |
+
['-20.0']])
|
25 |
+
|
26 |
+
If you don't trust the result, use ``residual`` to calculate the residual ||A*x-b||::
|
27 |
+
|
28 |
+
>>> residual(A, x, b)
|
29 |
+
matrix(
|
30 |
+
[['3.46944695195361e-18'],
|
31 |
+
['3.46944695195361e-18']])
|
32 |
+
>>> str(eps)
|
33 |
+
'2.22044604925031e-16'
|
34 |
+
|
35 |
+
As you can see, the solution is quite accurate. The error is caused by the
|
36 |
+
inaccuracy of the internal floating point arithmetic. Though, it's even smaller
|
37 |
+
than the current machine epsilon, which basically means you can trust the
|
38 |
+
result.
|
39 |
+
|
40 |
+
If you need more speed, use NumPy, or ``fp.lu_solve`` for a floating-point computation.
|
41 |
+
|
42 |
+
>>> fp.lu_solve(A, b) # doctest: +ELLIPSIS
|
43 |
+
matrix(...)
|
44 |
+
|
45 |
+
``lu_solve`` accepts overdetermined systems. It is usually not possible to solve
|
46 |
+
such systems, so the residual is minimized instead. Internally this is done
|
47 |
+
using Cholesky decomposition to compute a least squares approximation. This means
|
48 |
+
that that ``lu_solve`` will square the errors. If you can't afford this, use
|
49 |
+
``qr_solve`` instead. It is twice as slow but more accurate, and it calculates
|
50 |
+
the residual automatically.
|
51 |
+
|
52 |
+
|
53 |
+
Matrix factorization
|
54 |
+
....................
|
55 |
+
|
56 |
+
The function ``lu`` computes an explicit LU factorization of a matrix::
|
57 |
+
|
58 |
+
>>> P, L, U = lu(matrix([[0,2,3],[4,5,6],[7,8,9]]))
|
59 |
+
>>> print(P)
|
60 |
+
[0.0 0.0 1.0]
|
61 |
+
[1.0 0.0 0.0]
|
62 |
+
[0.0 1.0 0.0]
|
63 |
+
>>> print(L)
|
64 |
+
[ 1.0 0.0 0.0]
|
65 |
+
[ 0.0 1.0 0.0]
|
66 |
+
[0.571428571428571 0.214285714285714 1.0]
|
67 |
+
>>> print(U)
|
68 |
+
[7.0 8.0 9.0]
|
69 |
+
[0.0 2.0 3.0]
|
70 |
+
[0.0 0.0 0.214285714285714]
|
71 |
+
>>> print(P.T*L*U)
|
72 |
+
[0.0 2.0 3.0]
|
73 |
+
[4.0 5.0 6.0]
|
74 |
+
[7.0 8.0 9.0]
|
75 |
+
|
76 |
+
Interval matrices
|
77 |
+
-----------------
|
78 |
+
|
79 |
+
Matrices may contain interval elements. This allows one to perform
|
80 |
+
basic linear algebra operations such as matrix multiplication
|
81 |
+
and equation solving with rigorous error bounds::
|
82 |
+
|
83 |
+
>>> a = iv.matrix([['0.1','0.3','1.0'],
|
84 |
+
... ['7.1','5.5','4.8'],
|
85 |
+
... ['3.2','4.4','5.6']])
|
86 |
+
>>>
|
87 |
+
>>> b = iv.matrix(['4','0.6','0.5'])
|
88 |
+
>>> c = iv.lu_solve(a, b)
|
89 |
+
>>> print(c)
|
90 |
+
[ [5.2582327113062568605927528666, 5.25823271130625686059275702219]]
|
91 |
+
[[-13.1550493962678375411635581388, -13.1550493962678375411635540152]]
|
92 |
+
[ [7.42069154774972557628979076189, 7.42069154774972557628979190734]]
|
93 |
+
>>> print(a*c)
|
94 |
+
[ [3.99999999999999999999999844904, 4.00000000000000000000000155096]]
|
95 |
+
[[0.599999999999999999999968898009, 0.600000000000000000000031763736]]
|
96 |
+
[[0.499999999999999999999979320485, 0.500000000000000000000020679515]]
|
97 |
+
"""
|
98 |
+
|
99 |
+
# TODO:
|
100 |
+
# *implement high-level qr()
|
101 |
+
# *test unitvector
|
102 |
+
# *iterative solving
|
103 |
+
|
104 |
+
from copy import copy
|
105 |
+
|
106 |
+
from ..libmp.backend import xrange
|
107 |
+
|
108 |
+
class LinearAlgebraMethods(object):
|
109 |
+
|
110 |
+
def LU_decomp(ctx, A, overwrite=False, use_cache=True):
|
111 |
+
"""
|
112 |
+
LU-factorization of a n*n matrix using the Gauss algorithm.
|
113 |
+
Returns L and U in one matrix and the pivot indices.
|
114 |
+
|
115 |
+
Use overwrite to specify whether A will be overwritten with L and U.
|
116 |
+
"""
|
117 |
+
if not A.rows == A.cols:
|
118 |
+
raise ValueError('need n*n matrix')
|
119 |
+
# get from cache if possible
|
120 |
+
if use_cache and isinstance(A, ctx.matrix) and A._LU:
|
121 |
+
return A._LU
|
122 |
+
if not overwrite:
|
123 |
+
orig = A
|
124 |
+
A = A.copy()
|
125 |
+
tol = ctx.absmin(ctx.mnorm(A,1) * ctx.eps) # each pivot element has to be bigger
|
126 |
+
n = A.rows
|
127 |
+
p = [None]*(n - 1)
|
128 |
+
for j in xrange(n - 1):
|
129 |
+
# pivoting, choose max(abs(reciprocal row sum)*abs(pivot element))
|
130 |
+
biggest = 0
|
131 |
+
for k in xrange(j, n):
|
132 |
+
s = ctx.fsum([ctx.absmin(A[k,l]) for l in xrange(j, n)])
|
133 |
+
if ctx.absmin(s) <= tol:
|
134 |
+
raise ZeroDivisionError('matrix is numerically singular')
|
135 |
+
current = 1/s * ctx.absmin(A[k,j])
|
136 |
+
if current > biggest: # TODO: what if equal?
|
137 |
+
biggest = current
|
138 |
+
p[j] = k
|
139 |
+
# swap rows according to p
|
140 |
+
ctx.swap_row(A, j, p[j])
|
141 |
+
if ctx.absmin(A[j,j]) <= tol:
|
142 |
+
raise ZeroDivisionError('matrix is numerically singular')
|
143 |
+
# calculate elimination factors and add rows
|
144 |
+
for i in xrange(j + 1, n):
|
145 |
+
A[i,j] /= A[j,j]
|
146 |
+
for k in xrange(j + 1, n):
|
147 |
+
A[i,k] -= A[i,j]*A[j,k]
|
148 |
+
if ctx.absmin(A[n - 1,n - 1]) <= tol:
|
149 |
+
raise ZeroDivisionError('matrix is numerically singular')
|
150 |
+
# cache decomposition
|
151 |
+
if not overwrite and isinstance(orig, ctx.matrix):
|
152 |
+
orig._LU = (A, p)
|
153 |
+
return A, p
|
154 |
+
|
155 |
+
def L_solve(ctx, L, b, p=None):
|
156 |
+
"""
|
157 |
+
Solve the lower part of a LU factorized matrix for y.
|
158 |
+
"""
|
159 |
+
if L.rows != L.cols:
|
160 |
+
raise RuntimeError("need n*n matrix")
|
161 |
+
n = L.rows
|
162 |
+
if len(b) != n:
|
163 |
+
raise ValueError("Value should be equal to n")
|
164 |
+
b = copy(b)
|
165 |
+
if p: # swap b according to p
|
166 |
+
for k in xrange(0, len(p)):
|
167 |
+
ctx.swap_row(b, k, p[k])
|
168 |
+
# solve
|
169 |
+
for i in xrange(1, n):
|
170 |
+
for j in xrange(i):
|
171 |
+
b[i] -= L[i,j] * b[j]
|
172 |
+
return b
|
173 |
+
|
174 |
+
def U_solve(ctx, U, y):
|
175 |
+
"""
|
176 |
+
Solve the upper part of a LU factorized matrix for x.
|
177 |
+
"""
|
178 |
+
if U.rows != U.cols:
|
179 |
+
raise RuntimeError("need n*n matrix")
|
180 |
+
n = U.rows
|
181 |
+
if len(y) != n:
|
182 |
+
raise ValueError("Value should be equal to n")
|
183 |
+
x = copy(y)
|
184 |
+
for i in xrange(n - 1, -1, -1):
|
185 |
+
for j in xrange(i + 1, n):
|
186 |
+
x[i] -= U[i,j] * x[j]
|
187 |
+
x[i] /= U[i,i]
|
188 |
+
return x
|
189 |
+
|
190 |
+
def lu_solve(ctx, A, b, **kwargs):
|
191 |
+
"""
|
192 |
+
Ax = b => x
|
193 |
+
|
194 |
+
Solve a determined or overdetermined linear equations system.
|
195 |
+
Fast LU decomposition is used, which is less accurate than QR decomposition
|
196 |
+
(especially for overdetermined systems), but it's twice as efficient.
|
197 |
+
Use qr_solve if you want more precision or have to solve a very ill-
|
198 |
+
conditioned system.
|
199 |
+
|
200 |
+
If you specify real=True, it does not check for overdeterminded complex
|
201 |
+
systems.
|
202 |
+
"""
|
203 |
+
prec = ctx.prec
|
204 |
+
try:
|
205 |
+
ctx.prec += 10
|
206 |
+
# do not overwrite A nor b
|
207 |
+
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
|
208 |
+
if A.rows < A.cols:
|
209 |
+
raise ValueError('cannot solve underdetermined system')
|
210 |
+
if A.rows > A.cols:
|
211 |
+
# use least-squares method if overdetermined
|
212 |
+
# (this increases errors)
|
213 |
+
AH = A.H
|
214 |
+
A = AH * A
|
215 |
+
b = AH * b
|
216 |
+
if (kwargs.get('real', False) or
|
217 |
+
not sum(type(i) is ctx.mpc for i in A)):
|
218 |
+
# TODO: necessary to check also b?
|
219 |
+
x = ctx.cholesky_solve(A, b)
|
220 |
+
else:
|
221 |
+
x = ctx.lu_solve(A, b)
|
222 |
+
else:
|
223 |
+
# LU factorization
|
224 |
+
A, p = ctx.LU_decomp(A)
|
225 |
+
b = ctx.L_solve(A, b, p)
|
226 |
+
x = ctx.U_solve(A, b)
|
227 |
+
finally:
|
228 |
+
ctx.prec = prec
|
229 |
+
return x
|
230 |
+
|
231 |
+
def improve_solution(ctx, A, x, b, maxsteps=1):
|
232 |
+
"""
|
233 |
+
Improve a solution to a linear equation system iteratively.
|
234 |
+
|
235 |
+
This re-uses the LU decomposition and is thus cheap.
|
236 |
+
Usually 3 up to 4 iterations are giving the maximal improvement.
|
237 |
+
"""
|
238 |
+
if A.rows != A.cols:
|
239 |
+
raise RuntimeError("need n*n matrix") # TODO: really?
|
240 |
+
for _ in xrange(maxsteps):
|
241 |
+
r = ctx.residual(A, x, b)
|
242 |
+
if ctx.norm(r, 2) < 10*ctx.eps:
|
243 |
+
break
|
244 |
+
# this uses cached LU decomposition and is thus cheap
|
245 |
+
dx = ctx.lu_solve(A, -r)
|
246 |
+
x += dx
|
247 |
+
return x
|
248 |
+
|
249 |
+
def lu(ctx, A):
|
250 |
+
"""
|
251 |
+
A -> P, L, U
|
252 |
+
|
253 |
+
LU factorisation of a square matrix A. L is the lower, U the upper part.
|
254 |
+
P is the permutation matrix indicating the row swaps.
|
255 |
+
|
256 |
+
P*A = L*U
|
257 |
+
|
258 |
+
If you need efficiency, use the low-level method LU_decomp instead, it's
|
259 |
+
much more memory efficient.
|
260 |
+
"""
|
261 |
+
# get factorization
|
262 |
+
A, p = ctx.LU_decomp(A)
|
263 |
+
n = A.rows
|
264 |
+
L = ctx.matrix(n)
|
265 |
+
U = ctx.matrix(n)
|
266 |
+
for i in xrange(n):
|
267 |
+
for j in xrange(n):
|
268 |
+
if i > j:
|
269 |
+
L[i,j] = A[i,j]
|
270 |
+
elif i == j:
|
271 |
+
L[i,j] = 1
|
272 |
+
U[i,j] = A[i,j]
|
273 |
+
else:
|
274 |
+
U[i,j] = A[i,j]
|
275 |
+
# calculate permutation matrix
|
276 |
+
P = ctx.eye(n)
|
277 |
+
for k in xrange(len(p)):
|
278 |
+
ctx.swap_row(P, k, p[k])
|
279 |
+
return P, L, U
|
280 |
+
|
281 |
+
def unitvector(ctx, n, i):
|
282 |
+
"""
|
283 |
+
Return the i-th n-dimensional unit vector.
|
284 |
+
"""
|
285 |
+
assert 0 < i <= n, 'this unit vector does not exist'
|
286 |
+
return [ctx.zero]*(i-1) + [ctx.one] + [ctx.zero]*(n-i)
|
287 |
+
|
288 |
+
def inverse(ctx, A, **kwargs):
|
289 |
+
"""
|
290 |
+
Calculate the inverse of a matrix.
|
291 |
+
|
292 |
+
If you want to solve an equation system Ax = b, it's recommended to use
|
293 |
+
solve(A, b) instead, it's about 3 times more efficient.
|
294 |
+
"""
|
295 |
+
prec = ctx.prec
|
296 |
+
try:
|
297 |
+
ctx.prec += 10
|
298 |
+
# do not overwrite A
|
299 |
+
A = ctx.matrix(A, **kwargs).copy()
|
300 |
+
n = A.rows
|
301 |
+
# get LU factorisation
|
302 |
+
A, p = ctx.LU_decomp(A)
|
303 |
+
cols = []
|
304 |
+
# calculate unit vectors and solve corresponding system to get columns
|
305 |
+
for i in xrange(1, n + 1):
|
306 |
+
e = ctx.unitvector(n, i)
|
307 |
+
y = ctx.L_solve(A, e, p)
|
308 |
+
cols.append(ctx.U_solve(A, y))
|
309 |
+
# convert columns to matrix
|
310 |
+
inv = []
|
311 |
+
for i in xrange(n):
|
312 |
+
row = []
|
313 |
+
for j in xrange(n):
|
314 |
+
row.append(cols[j][i])
|
315 |
+
inv.append(row)
|
316 |
+
result = ctx.matrix(inv, **kwargs)
|
317 |
+
finally:
|
318 |
+
ctx.prec = prec
|
319 |
+
return result
|
320 |
+
|
321 |
+
def householder(ctx, A):
|
322 |
+
"""
|
323 |
+
(A|b) -> H, p, x, res
|
324 |
+
|
325 |
+
(A|b) is the coefficient matrix with left hand side of an optionally
|
326 |
+
overdetermined linear equation system.
|
327 |
+
H and p contain all information about the transformation matrices.
|
328 |
+
x is the solution, res the residual.
|
329 |
+
"""
|
330 |
+
if not isinstance(A, ctx.matrix):
|
331 |
+
raise TypeError("A should be a type of ctx.matrix")
|
332 |
+
m = A.rows
|
333 |
+
n = A.cols
|
334 |
+
if m < n - 1:
|
335 |
+
raise RuntimeError("Columns should not be less than rows")
|
336 |
+
# calculate Householder matrix
|
337 |
+
p = []
|
338 |
+
for j in xrange(0, n - 1):
|
339 |
+
s = ctx.fsum(abs(A[i,j])**2 for i in xrange(j, m))
|
340 |
+
if not abs(s) > ctx.eps:
|
341 |
+
raise ValueError('matrix is numerically singular')
|
342 |
+
p.append(-ctx.sign(ctx.re(A[j,j])) * ctx.sqrt(s))
|
343 |
+
kappa = ctx.one / (s - p[j] * A[j,j])
|
344 |
+
A[j,j] -= p[j]
|
345 |
+
for k in xrange(j+1, n):
|
346 |
+
y = ctx.fsum(ctx.conj(A[i,j]) * A[i,k] for i in xrange(j, m)) * kappa
|
347 |
+
for i in xrange(j, m):
|
348 |
+
A[i,k] -= A[i,j] * y
|
349 |
+
# solve Rx = c1
|
350 |
+
x = [A[i,n - 1] for i in xrange(n - 1)]
|
351 |
+
for i in xrange(n - 2, -1, -1):
|
352 |
+
x[i] -= ctx.fsum(A[i,j] * x[j] for j in xrange(i + 1, n - 1))
|
353 |
+
x[i] /= p[i]
|
354 |
+
# calculate residual
|
355 |
+
if not m == n - 1:
|
356 |
+
r = [A[m-1-i, n-1] for i in xrange(m - n + 1)]
|
357 |
+
else:
|
358 |
+
# determined system, residual should be 0
|
359 |
+
r = [0]*m # maybe a bad idea, changing r[i] will change all elements
|
360 |
+
return A, p, x, r
|
361 |
+
|
362 |
+
#def qr(ctx, A):
|
363 |
+
# """
|
364 |
+
# A -> Q, R
|
365 |
+
#
|
366 |
+
# QR factorisation of a square matrix A using Householder decomposition.
|
367 |
+
# Q is orthogonal, this leads to very few numerical errors.
|
368 |
+
#
|
369 |
+
# A = Q*R
|
370 |
+
# """
|
371 |
+
# H, p, x, res = householder(A)
|
372 |
+
# TODO: implement this
|
373 |
+
|
374 |
+
def residual(ctx, A, x, b, **kwargs):
|
375 |
+
"""
|
376 |
+
Calculate the residual of a solution to a linear equation system.
|
377 |
+
|
378 |
+
r = A*x - b for A*x = b
|
379 |
+
"""
|
380 |
+
oldprec = ctx.prec
|
381 |
+
try:
|
382 |
+
ctx.prec *= 2
|
383 |
+
A, x, b = ctx.matrix(A, **kwargs), ctx.matrix(x, **kwargs), ctx.matrix(b, **kwargs)
|
384 |
+
return A*x - b
|
385 |
+
finally:
|
386 |
+
ctx.prec = oldprec
|
387 |
+
|
388 |
+
def qr_solve(ctx, A, b, norm=None, **kwargs):
|
389 |
+
"""
|
390 |
+
Ax = b => x, ||Ax - b||
|
391 |
+
|
392 |
+
Solve a determined or overdetermined linear equations system and
|
393 |
+
calculate the norm of the residual (error).
|
394 |
+
QR decomposition using Householder factorization is applied, which gives very
|
395 |
+
accurate results even for ill-conditioned matrices. qr_solve is twice as
|
396 |
+
efficient.
|
397 |
+
"""
|
398 |
+
if norm is None:
|
399 |
+
norm = ctx.norm
|
400 |
+
prec = ctx.prec
|
401 |
+
try:
|
402 |
+
ctx.prec += 10
|
403 |
+
# do not overwrite A nor b
|
404 |
+
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
|
405 |
+
if A.rows < A.cols:
|
406 |
+
raise ValueError('cannot solve underdetermined system')
|
407 |
+
H, p, x, r = ctx.householder(ctx.extend(A, b))
|
408 |
+
res = ctx.norm(r)
|
409 |
+
# calculate residual "manually" for determined systems
|
410 |
+
if res == 0:
|
411 |
+
res = ctx.norm(ctx.residual(A, x, b))
|
412 |
+
return ctx.matrix(x, **kwargs), res
|
413 |
+
finally:
|
414 |
+
ctx.prec = prec
|
415 |
+
|
416 |
+
def cholesky(ctx, A, tol=None):
|
417 |
+
r"""
|
418 |
+
Cholesky decomposition of a symmetric positive-definite matrix `A`.
|
419 |
+
Returns a lower triangular matrix `L` such that `A = L \times L^T`.
|
420 |
+
More generally, for a complex Hermitian positive-definite matrix,
|
421 |
+
a Cholesky decomposition satisfying `A = L \times L^H` is returned.
|
422 |
+
|
423 |
+
The Cholesky decomposition can be used to solve linear equation
|
424 |
+
systems twice as efficiently as LU decomposition, or to
|
425 |
+
test whether `A` is positive-definite.
|
426 |
+
|
427 |
+
The optional parameter ``tol`` determines the tolerance for
|
428 |
+
verifying positive-definiteness.
|
429 |
+
|
430 |
+
**Examples**
|
431 |
+
|
432 |
+
Cholesky decomposition of a positive-definite symmetric matrix::
|
433 |
+
|
434 |
+
>>> from mpmath import *
|
435 |
+
>>> mp.dps = 25; mp.pretty = True
|
436 |
+
>>> A = eye(3) + hilbert(3)
|
437 |
+
>>> nprint(A)
|
438 |
+
[ 2.0 0.5 0.333333]
|
439 |
+
[ 0.5 1.33333 0.25]
|
440 |
+
[0.333333 0.25 1.2]
|
441 |
+
>>> L = cholesky(A)
|
442 |
+
>>> nprint(L)
|
443 |
+
[ 1.41421 0.0 0.0]
|
444 |
+
[0.353553 1.09924 0.0]
|
445 |
+
[0.235702 0.15162 1.05899]
|
446 |
+
>>> chop(A - L*L.T)
|
447 |
+
[0.0 0.0 0.0]
|
448 |
+
[0.0 0.0 0.0]
|
449 |
+
[0.0 0.0 0.0]
|
450 |
+
|
451 |
+
Cholesky decomposition of a Hermitian matrix::
|
452 |
+
|
453 |
+
>>> A = eye(3) + matrix([[0,0.25j,-0.5j],[-0.25j,0,0],[0.5j,0,0]])
|
454 |
+
>>> L = cholesky(A)
|
455 |
+
>>> nprint(L)
|
456 |
+
[ 1.0 0.0 0.0]
|
457 |
+
[(0.0 - 0.25j) (0.968246 + 0.0j) 0.0]
|
458 |
+
[ (0.0 + 0.5j) (0.129099 + 0.0j) (0.856349 + 0.0j)]
|
459 |
+
>>> chop(A - L*L.H)
|
460 |
+
[0.0 0.0 0.0]
|
461 |
+
[0.0 0.0 0.0]
|
462 |
+
[0.0 0.0 0.0]
|
463 |
+
|
464 |
+
Attempted Cholesky decomposition of a matrix that is not positive
|
465 |
+
definite::
|
466 |
+
|
467 |
+
>>> A = -eye(3) + hilbert(3)
|
468 |
+
>>> L = cholesky(A)
|
469 |
+
Traceback (most recent call last):
|
470 |
+
...
|
471 |
+
ValueError: matrix is not positive-definite
|
472 |
+
|
473 |
+
**References**
|
474 |
+
|
475 |
+
1. [Wikipedia]_ http://en.wikipedia.org/wiki/Cholesky_decomposition
|
476 |
+
|
477 |
+
"""
|
478 |
+
if not isinstance(A, ctx.matrix):
|
479 |
+
raise RuntimeError("A should be a type of ctx.matrix")
|
480 |
+
if not A.rows == A.cols:
|
481 |
+
raise ValueError('need n*n matrix')
|
482 |
+
if tol is None:
|
483 |
+
tol = +ctx.eps
|
484 |
+
n = A.rows
|
485 |
+
L = ctx.matrix(n)
|
486 |
+
for j in xrange(n):
|
487 |
+
c = ctx.re(A[j,j])
|
488 |
+
if abs(c-A[j,j]) > tol:
|
489 |
+
raise ValueError('matrix is not Hermitian')
|
490 |
+
s = c - ctx.fsum((L[j,k] for k in xrange(j)),
|
491 |
+
absolute=True, squared=True)
|
492 |
+
if s < tol:
|
493 |
+
raise ValueError('matrix is not positive-definite')
|
494 |
+
L[j,j] = ctx.sqrt(s)
|
495 |
+
for i in xrange(j, n):
|
496 |
+
it1 = (L[i,k] for k in xrange(j))
|
497 |
+
it2 = (L[j,k] for k in xrange(j))
|
498 |
+
t = ctx.fdot(it1, it2, conjugate=True)
|
499 |
+
L[i,j] = (A[i,j] - t) / L[j,j]
|
500 |
+
return L
|
501 |
+
|
502 |
+
def cholesky_solve(ctx, A, b, **kwargs):
|
503 |
+
"""
|
504 |
+
Ax = b => x
|
505 |
+
|
506 |
+
Solve a symmetric positive-definite linear equation system.
|
507 |
+
This is twice as efficient as lu_solve.
|
508 |
+
|
509 |
+
Typical use cases:
|
510 |
+
* A.T*A
|
511 |
+
* Hessian matrix
|
512 |
+
* differential equations
|
513 |
+
"""
|
514 |
+
prec = ctx.prec
|
515 |
+
try:
|
516 |
+
ctx.prec += 10
|
517 |
+
# do not overwrite A nor b
|
518 |
+
A, b = ctx.matrix(A, **kwargs).copy(), ctx.matrix(b, **kwargs).copy()
|
519 |
+
if A.rows != A.cols:
|
520 |
+
raise ValueError('can only solve determined system')
|
521 |
+
# Cholesky factorization
|
522 |
+
L = ctx.cholesky(A)
|
523 |
+
# solve
|
524 |
+
n = L.rows
|
525 |
+
if len(b) != n:
|
526 |
+
raise ValueError("Value should be equal to n")
|
527 |
+
for i in xrange(n):
|
528 |
+
b[i] -= ctx.fsum(L[i,j] * b[j] for j in xrange(i))
|
529 |
+
b[i] /= L[i,i]
|
530 |
+
x = ctx.U_solve(L.T, b)
|
531 |
+
return x
|
532 |
+
finally:
|
533 |
+
ctx.prec = prec
|
534 |
+
|
535 |
+
def det(ctx, A):
|
536 |
+
"""
|
537 |
+
Calculate the determinant of a matrix.
|
538 |
+
"""
|
539 |
+
prec = ctx.prec
|
540 |
+
try:
|
541 |
+
# do not overwrite A
|
542 |
+
A = ctx.matrix(A).copy()
|
543 |
+
# use LU factorization to calculate determinant
|
544 |
+
try:
|
545 |
+
R, p = ctx.LU_decomp(A)
|
546 |
+
except ZeroDivisionError:
|
547 |
+
return 0
|
548 |
+
z = 1
|
549 |
+
for i, e in enumerate(p):
|
550 |
+
if i != e:
|
551 |
+
z *= -1
|
552 |
+
for i in xrange(A.rows):
|
553 |
+
z *= R[i,i]
|
554 |
+
return z
|
555 |
+
finally:
|
556 |
+
ctx.prec = prec
|
557 |
+
|
558 |
+
def cond(ctx, A, norm=None):
|
559 |
+
"""
|
560 |
+
Calculate the condition number of a matrix using a specified matrix norm.
|
561 |
+
|
562 |
+
The condition number estimates the sensitivity of a matrix to errors.
|
563 |
+
Example: small input errors for ill-conditioned coefficient matrices
|
564 |
+
alter the solution of the system dramatically.
|
565 |
+
|
566 |
+
For ill-conditioned matrices it's recommended to use qr_solve() instead
|
567 |
+
of lu_solve(). This does not help with input errors however, it just avoids
|
568 |
+
to add additional errors.
|
569 |
+
|
570 |
+
Definition: cond(A) = ||A|| * ||A**-1||
|
571 |
+
"""
|
572 |
+
if norm is None:
|
573 |
+
norm = lambda x: ctx.mnorm(x,1)
|
574 |
+
return norm(A) * norm(ctx.inverse(A))
|
575 |
+
|
576 |
+
def lu_solve_mat(ctx, a, b):
|
577 |
+
"""Solve a * x = b where a and b are matrices."""
|
578 |
+
r = ctx.matrix(a.rows, b.cols)
|
579 |
+
for i in range(b.cols):
|
580 |
+
c = ctx.lu_solve(a, b.column(i))
|
581 |
+
for j in range(len(c)):
|
582 |
+
r[j, i] = c[j]
|
583 |
+
return r
|
584 |
+
|
585 |
+
def qr(ctx, A, mode = 'full', edps = 10):
|
586 |
+
"""
|
587 |
+
Compute a QR factorization $A = QR$ where
|
588 |
+
A is an m x n matrix of real or complex numbers where m >= n
|
589 |
+
|
590 |
+
mode has following meanings:
|
591 |
+
(1) mode = 'raw' returns two matrixes (A, tau) in the
|
592 |
+
internal format used by LAPACK
|
593 |
+
(2) mode = 'skinny' returns the leading n columns of Q
|
594 |
+
and n rows of R
|
595 |
+
(3) Any other value returns the leading m columns of Q
|
596 |
+
and m rows of R
|
597 |
+
|
598 |
+
edps is the increase in mp precision used for calculations
|
599 |
+
|
600 |
+
**Examples**
|
601 |
+
|
602 |
+
>>> from mpmath import *
|
603 |
+
>>> mp.dps = 15
|
604 |
+
>>> mp.pretty = True
|
605 |
+
>>> A = matrix([[1, 2], [3, 4], [1, 1]])
|
606 |
+
>>> Q, R = qr(A)
|
607 |
+
>>> Q
|
608 |
+
[-0.301511344577764 0.861640436855329 0.408248290463863]
|
609 |
+
[-0.904534033733291 -0.123091490979333 -0.408248290463863]
|
610 |
+
[-0.301511344577764 -0.492365963917331 0.816496580927726]
|
611 |
+
>>> R
|
612 |
+
[-3.3166247903554 -4.52267016866645]
|
613 |
+
[ 0.0 0.738548945875996]
|
614 |
+
[ 0.0 0.0]
|
615 |
+
>>> Q * R
|
616 |
+
[1.0 2.0]
|
617 |
+
[3.0 4.0]
|
618 |
+
[1.0 1.0]
|
619 |
+
>>> chop(Q.T * Q)
|
620 |
+
[1.0 0.0 0.0]
|
621 |
+
[0.0 1.0 0.0]
|
622 |
+
[0.0 0.0 1.0]
|
623 |
+
>>> B = matrix([[1+0j, 2-3j], [3+j, 4+5j]])
|
624 |
+
>>> Q, R = qr(B)
|
625 |
+
>>> nprint(Q)
|
626 |
+
[ (-0.301511 + 0.0j) (0.0695795 - 0.95092j)]
|
627 |
+
[(-0.904534 - 0.301511j) (-0.115966 + 0.278318j)]
|
628 |
+
>>> nprint(R)
|
629 |
+
[(-3.31662 + 0.0j) (-5.72872 - 2.41209j)]
|
630 |
+
[ 0.0 (3.91965 + 0.0j)]
|
631 |
+
>>> Q * R
|
632 |
+
[(1.0 + 0.0j) (2.0 - 3.0j)]
|
633 |
+
[(3.0 + 1.0j) (4.0 + 5.0j)]
|
634 |
+
>>> chop(Q.T * Q.conjugate())
|
635 |
+
[1.0 0.0]
|
636 |
+
[0.0 1.0]
|
637 |
+
|
638 |
+
"""
|
639 |
+
|
640 |
+
# check values before continuing
|
641 |
+
assert isinstance(A, ctx.matrix)
|
642 |
+
m = A.rows
|
643 |
+
n = A.cols
|
644 |
+
assert n >= 0
|
645 |
+
assert m >= n
|
646 |
+
assert edps >= 0
|
647 |
+
|
648 |
+
# check for complex data type
|
649 |
+
cmplx = any(type(x) is ctx.mpc for x in A)
|
650 |
+
|
651 |
+
# temporarily increase the precision and initialize
|
652 |
+
with ctx.extradps(edps):
|
653 |
+
tau = ctx.matrix(n,1)
|
654 |
+
A = A.copy()
|
655 |
+
|
656 |
+
# ---------------
|
657 |
+
# FACTOR MATRIX A
|
658 |
+
# ---------------
|
659 |
+
if cmplx:
|
660 |
+
one = ctx.mpc('1.0', '0.0')
|
661 |
+
zero = ctx.mpc('0.0', '0.0')
|
662 |
+
rzero = ctx.mpf('0.0')
|
663 |
+
|
664 |
+
# main loop to factor A (complex)
|
665 |
+
for j in xrange(0, n):
|
666 |
+
alpha = A[j,j]
|
667 |
+
alphr = ctx.re(alpha)
|
668 |
+
alphi = ctx.im(alpha)
|
669 |
+
|
670 |
+
if (m-j) >= 2:
|
671 |
+
xnorm = ctx.fsum( A[i,j]*ctx.conj(A[i,j]) for i in xrange(j+1, m) )
|
672 |
+
xnorm = ctx.re( ctx.sqrt(xnorm) )
|
673 |
+
else:
|
674 |
+
xnorm = rzero
|
675 |
+
|
676 |
+
if (xnorm == rzero) and (alphi == rzero):
|
677 |
+
tau[j] = zero
|
678 |
+
continue
|
679 |
+
|
680 |
+
if alphr < rzero:
|
681 |
+
beta = ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
|
682 |
+
else:
|
683 |
+
beta = -ctx.sqrt(alphr**2 + alphi**2 + xnorm**2)
|
684 |
+
|
685 |
+
tau[j] = ctx.mpc( (beta - alphr) / beta, -alphi / beta )
|
686 |
+
t = -ctx.conj(tau[j])
|
687 |
+
za = one / (alpha - beta)
|
688 |
+
|
689 |
+
for i in xrange(j+1, m):
|
690 |
+
A[i,j] *= za
|
691 |
+
|
692 |
+
A[j,j] = one
|
693 |
+
for k in xrange(j+1, n):
|
694 |
+
y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j, m))
|
695 |
+
temp = t * ctx.conj(y)
|
696 |
+
for i in xrange(j, m):
|
697 |
+
A[i,k] += A[i,j] * temp
|
698 |
+
|
699 |
+
A[j,j] = ctx.mpc(beta, '0.0')
|
700 |
+
else:
|
701 |
+
one = ctx.mpf('1.0')
|
702 |
+
zero = ctx.mpf('0.0')
|
703 |
+
|
704 |
+
# main loop to factor A (real)
|
705 |
+
for j in xrange(0, n):
|
706 |
+
alpha = A[j,j]
|
707 |
+
|
708 |
+
if (m-j) > 2:
|
709 |
+
xnorm = ctx.fsum( (A[i,j])**2 for i in xrange(j+1, m) )
|
710 |
+
xnorm = ctx.sqrt(xnorm)
|
711 |
+
elif (m-j) == 2:
|
712 |
+
xnorm = abs( A[m-1,j] )
|
713 |
+
else:
|
714 |
+
xnorm = zero
|
715 |
+
|
716 |
+
if xnorm == zero:
|
717 |
+
tau[j] = zero
|
718 |
+
continue
|
719 |
+
|
720 |
+
if alpha < zero:
|
721 |
+
beta = ctx.sqrt(alpha**2 + xnorm**2)
|
722 |
+
else:
|
723 |
+
beta = -ctx.sqrt(alpha**2 + xnorm**2)
|
724 |
+
|
725 |
+
tau[j] = (beta - alpha) / beta
|
726 |
+
t = -tau[j]
|
727 |
+
da = one / (alpha - beta)
|
728 |
+
|
729 |
+
for i in xrange(j+1, m):
|
730 |
+
A[i,j] *= da
|
731 |
+
|
732 |
+
A[j,j] = one
|
733 |
+
for k in xrange(j+1, n):
|
734 |
+
y = ctx.fsum( A[i,j] * A[i,k] for i in xrange(j, m) )
|
735 |
+
temp = t * y
|
736 |
+
for i in xrange(j,m):
|
737 |
+
A[i,k] += A[i,j] * temp
|
738 |
+
|
739 |
+
A[j,j] = beta
|
740 |
+
|
741 |
+
# return factorization in same internal format as LAPACK
|
742 |
+
if (mode == 'raw') or (mode == 'RAW'):
|
743 |
+
return A, tau
|
744 |
+
|
745 |
+
# ----------------------------------
|
746 |
+
# FORM Q USING BACKWARD ACCUMULATION
|
747 |
+
# ----------------------------------
|
748 |
+
|
749 |
+
# form R before the values are overwritten
|
750 |
+
R = A.copy()
|
751 |
+
for j in xrange(0, n):
|
752 |
+
for i in xrange(j+1, m):
|
753 |
+
R[i,j] = zero
|
754 |
+
|
755 |
+
# set the value of p (number of columns of Q to return)
|
756 |
+
p = m
|
757 |
+
if (mode == 'skinny') or (mode == 'SKINNY'):
|
758 |
+
p = n
|
759 |
+
|
760 |
+
# add columns to A if needed and initialize
|
761 |
+
A.cols += (p-n)
|
762 |
+
for j in xrange(0, p):
|
763 |
+
A[j,j] = one
|
764 |
+
for i in xrange(0, j):
|
765 |
+
A[i,j] = zero
|
766 |
+
|
767 |
+
# main loop to form Q
|
768 |
+
for j in xrange(n-1, -1, -1):
|
769 |
+
t = -tau[j]
|
770 |
+
A[j,j] += t
|
771 |
+
|
772 |
+
for k in xrange(j+1, p):
|
773 |
+
if cmplx:
|
774 |
+
y = ctx.fsum(A[i,j] * ctx.conj(A[i,k]) for i in xrange(j+1, m))
|
775 |
+
temp = t * ctx.conj(y)
|
776 |
+
else:
|
777 |
+
y = ctx.fsum(A[i,j] * A[i,k] for i in xrange(j+1, m))
|
778 |
+
temp = t * y
|
779 |
+
A[j,k] = temp
|
780 |
+
for i in xrange(j+1, m):
|
781 |
+
A[i,k] += A[i,j] * temp
|
782 |
+
|
783 |
+
for i in xrange(j+1, m):
|
784 |
+
A[i, j] *= t
|
785 |
+
|
786 |
+
return A, R[0:p,0:n]
|
787 |
+
|
788 |
+
# ------------------
|
789 |
+
# END OF FUNCTION QR
|
790 |
+
# ------------------
|
env-llmeval/lib/python3.10/site-packages/mpmath/matrices/matrices.py
ADDED
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..libmp.backend import xrange
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
# TODO: interpret list as vectors (for multiplication)
|
5 |
+
|
6 |
+
rowsep = '\n'
|
7 |
+
colsep = ' '
|
8 |
+
|
9 |
+
class _matrix(object):
|
10 |
+
"""
|
11 |
+
Numerical matrix.
|
12 |
+
|
13 |
+
Specify the dimensions or the data as a nested list.
|
14 |
+
Elements default to zero.
|
15 |
+
Use a flat list to create a column vector easily.
|
16 |
+
|
17 |
+
The datatype of the context (mpf for mp, mpi for iv, and float for fp) is used to store the data.
|
18 |
+
|
19 |
+
Creating matrices
|
20 |
+
-----------------
|
21 |
+
|
22 |
+
Matrices in mpmath are implemented using dictionaries. Only non-zero values
|
23 |
+
are stored, so it is cheap to represent sparse matrices.
|
24 |
+
|
25 |
+
The most basic way to create one is to use the ``matrix`` class directly.
|
26 |
+
You can create an empty matrix specifying the dimensions:
|
27 |
+
|
28 |
+
>>> from mpmath import *
|
29 |
+
>>> mp.dps = 15
|
30 |
+
>>> matrix(2)
|
31 |
+
matrix(
|
32 |
+
[['0.0', '0.0'],
|
33 |
+
['0.0', '0.0']])
|
34 |
+
>>> matrix(2, 3)
|
35 |
+
matrix(
|
36 |
+
[['0.0', '0.0', '0.0'],
|
37 |
+
['0.0', '0.0', '0.0']])
|
38 |
+
|
39 |
+
Calling ``matrix`` with one dimension will create a square matrix.
|
40 |
+
|
41 |
+
To access the dimensions of a matrix, use the ``rows`` or ``cols`` keyword:
|
42 |
+
|
43 |
+
>>> A = matrix(3, 2)
|
44 |
+
>>> A
|
45 |
+
matrix(
|
46 |
+
[['0.0', '0.0'],
|
47 |
+
['0.0', '0.0'],
|
48 |
+
['0.0', '0.0']])
|
49 |
+
>>> A.rows
|
50 |
+
3
|
51 |
+
>>> A.cols
|
52 |
+
2
|
53 |
+
|
54 |
+
You can also change the dimension of an existing matrix. This will set the
|
55 |
+
new elements to 0. If the new dimension is smaller than before, the
|
56 |
+
concerning elements are discarded:
|
57 |
+
|
58 |
+
>>> A.rows = 2
|
59 |
+
>>> A
|
60 |
+
matrix(
|
61 |
+
[['0.0', '0.0'],
|
62 |
+
['0.0', '0.0']])
|
63 |
+
|
64 |
+
Internally ``mpmathify`` is used every time an element is set. This
|
65 |
+
is done using the syntax A[row,column], counting from 0:
|
66 |
+
|
67 |
+
>>> A = matrix(2)
|
68 |
+
>>> A[1,1] = 1 + 1j
|
69 |
+
>>> A
|
70 |
+
matrix(
|
71 |
+
[['0.0', '0.0'],
|
72 |
+
['0.0', mpc(real='1.0', imag='1.0')]])
|
73 |
+
|
74 |
+
A more comfortable way to create a matrix lets you use nested lists:
|
75 |
+
|
76 |
+
>>> matrix([[1, 2], [3, 4]])
|
77 |
+
matrix(
|
78 |
+
[['1.0', '2.0'],
|
79 |
+
['3.0', '4.0']])
|
80 |
+
|
81 |
+
Convenient advanced functions are available for creating various standard
|
82 |
+
matrices, see ``zeros``, ``ones``, ``diag``, ``eye``, ``randmatrix`` and
|
83 |
+
``hilbert``.
|
84 |
+
|
85 |
+
Vectors
|
86 |
+
.......
|
87 |
+
|
88 |
+
Vectors may also be represented by the ``matrix`` class (with rows = 1 or cols = 1).
|
89 |
+
For vectors there are some things which make life easier. A column vector can
|
90 |
+
be created using a flat list, a row vectors using an almost flat nested list::
|
91 |
+
|
92 |
+
>>> matrix([1, 2, 3])
|
93 |
+
matrix(
|
94 |
+
[['1.0'],
|
95 |
+
['2.0'],
|
96 |
+
['3.0']])
|
97 |
+
>>> matrix([[1, 2, 3]])
|
98 |
+
matrix(
|
99 |
+
[['1.0', '2.0', '3.0']])
|
100 |
+
|
101 |
+
Optionally vectors can be accessed like lists, using only a single index::
|
102 |
+
|
103 |
+
>>> x = matrix([1, 2, 3])
|
104 |
+
>>> x[1]
|
105 |
+
mpf('2.0')
|
106 |
+
>>> x[1,0]
|
107 |
+
mpf('2.0')
|
108 |
+
|
109 |
+
Other
|
110 |
+
.....
|
111 |
+
|
112 |
+
Like you probably expected, matrices can be printed::
|
113 |
+
|
114 |
+
>>> print randmatrix(3) # doctest:+SKIP
|
115 |
+
[ 0.782963853573023 0.802057689719883 0.427895717335467]
|
116 |
+
[0.0541876859348597 0.708243266653103 0.615134039977379]
|
117 |
+
[ 0.856151514955773 0.544759264818486 0.686210904770947]
|
118 |
+
|
119 |
+
Use ``nstr`` or ``nprint`` to specify the number of digits to print::
|
120 |
+
|
121 |
+
>>> nprint(randmatrix(5), 3) # doctest:+SKIP
|
122 |
+
[2.07e-1 1.66e-1 5.06e-1 1.89e-1 8.29e-1]
|
123 |
+
[6.62e-1 6.55e-1 4.47e-1 4.82e-1 2.06e-2]
|
124 |
+
[4.33e-1 7.75e-1 6.93e-2 2.86e-1 5.71e-1]
|
125 |
+
[1.01e-1 2.53e-1 6.13e-1 3.32e-1 2.59e-1]
|
126 |
+
[1.56e-1 7.27e-2 6.05e-1 6.67e-2 2.79e-1]
|
127 |
+
|
128 |
+
As matrices are mutable, you will need to copy them sometimes::
|
129 |
+
|
130 |
+
>>> A = matrix(2)
|
131 |
+
>>> A
|
132 |
+
matrix(
|
133 |
+
[['0.0', '0.0'],
|
134 |
+
['0.0', '0.0']])
|
135 |
+
>>> B = A.copy()
|
136 |
+
>>> B[0,0] = 1
|
137 |
+
>>> B
|
138 |
+
matrix(
|
139 |
+
[['1.0', '0.0'],
|
140 |
+
['0.0', '0.0']])
|
141 |
+
>>> A
|
142 |
+
matrix(
|
143 |
+
[['0.0', '0.0'],
|
144 |
+
['0.0', '0.0']])
|
145 |
+
|
146 |
+
Finally, it is possible to convert a matrix to a nested list. This is very useful,
|
147 |
+
as most Python libraries involving matrices or arrays (namely NumPy or SymPy)
|
148 |
+
support this format::
|
149 |
+
|
150 |
+
>>> B.tolist()
|
151 |
+
[[mpf('1.0'), mpf('0.0')], [mpf('0.0'), mpf('0.0')]]
|
152 |
+
|
153 |
+
|
154 |
+
Matrix operations
|
155 |
+
-----------------
|
156 |
+
|
157 |
+
You can add and subtract matrices of compatible dimensions::
|
158 |
+
|
159 |
+
>>> A = matrix([[1, 2], [3, 4]])
|
160 |
+
>>> B = matrix([[-2, 4], [5, 9]])
|
161 |
+
>>> A + B
|
162 |
+
matrix(
|
163 |
+
[['-1.0', '6.0'],
|
164 |
+
['8.0', '13.0']])
|
165 |
+
>>> A - B
|
166 |
+
matrix(
|
167 |
+
[['3.0', '-2.0'],
|
168 |
+
['-2.0', '-5.0']])
|
169 |
+
>>> A + ones(3) # doctest:+ELLIPSIS
|
170 |
+
Traceback (most recent call last):
|
171 |
+
...
|
172 |
+
ValueError: incompatible dimensions for addition
|
173 |
+
|
174 |
+
It is possible to multiply or add matrices and scalars. In the latter case the
|
175 |
+
operation will be done element-wise::
|
176 |
+
|
177 |
+
>>> A * 2
|
178 |
+
matrix(
|
179 |
+
[['2.0', '4.0'],
|
180 |
+
['6.0', '8.0']])
|
181 |
+
>>> A / 4
|
182 |
+
matrix(
|
183 |
+
[['0.25', '0.5'],
|
184 |
+
['0.75', '1.0']])
|
185 |
+
>>> A - 1
|
186 |
+
matrix(
|
187 |
+
[['0.0', '1.0'],
|
188 |
+
['2.0', '3.0']])
|
189 |
+
|
190 |
+
Of course you can perform matrix multiplication, if the dimensions are
|
191 |
+
compatible, using ``@`` (for Python >= 3.5) or ``*``. For clarity, ``@`` is
|
192 |
+
recommended (`PEP 465 <https://www.python.org/dev/peps/pep-0465/>`), because
|
193 |
+
the meaning of ``*`` is different in many other Python libraries such as NumPy.
|
194 |
+
|
195 |
+
>>> A @ B # doctest:+SKIP
|
196 |
+
matrix(
|
197 |
+
[['8.0', '22.0'],
|
198 |
+
['14.0', '48.0']])
|
199 |
+
>>> A * B # same as A @ B
|
200 |
+
matrix(
|
201 |
+
[['8.0', '22.0'],
|
202 |
+
['14.0', '48.0']])
|
203 |
+
>>> matrix([[1, 2, 3]]) * matrix([[-6], [7], [-2]])
|
204 |
+
matrix(
|
205 |
+
[['2.0']])
|
206 |
+
|
207 |
+
..
|
208 |
+
COMMENT: TODO: the above "doctest:+SKIP" may be removed as soon as we
|
209 |
+
have dropped support for Python 3.5 and below.
|
210 |
+
|
211 |
+
You can raise powers of square matrices::
|
212 |
+
|
213 |
+
>>> A**2
|
214 |
+
matrix(
|
215 |
+
[['7.0', '10.0'],
|
216 |
+
['15.0', '22.0']])
|
217 |
+
|
218 |
+
Negative powers will calculate the inverse::
|
219 |
+
|
220 |
+
>>> A**-1
|
221 |
+
matrix(
|
222 |
+
[['-2.0', '1.0'],
|
223 |
+
['1.5', '-0.5']])
|
224 |
+
>>> A * A**-1
|
225 |
+
matrix(
|
226 |
+
[['1.0', '1.0842021724855e-19'],
|
227 |
+
['-2.16840434497101e-19', '1.0']])
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
Matrix transposition is straightforward::
|
232 |
+
|
233 |
+
>>> A = ones(2, 3)
|
234 |
+
>>> A
|
235 |
+
matrix(
|
236 |
+
[['1.0', '1.0', '1.0'],
|
237 |
+
['1.0', '1.0', '1.0']])
|
238 |
+
>>> A.T
|
239 |
+
matrix(
|
240 |
+
[['1.0', '1.0'],
|
241 |
+
['1.0', '1.0'],
|
242 |
+
['1.0', '1.0']])
|
243 |
+
|
244 |
+
Norms
|
245 |
+
.....
|
246 |
+
|
247 |
+
Sometimes you need to know how "large" a matrix or vector is. Due to their
|
248 |
+
multidimensional nature it's not possible to compare them, but there are
|
249 |
+
several functions to map a matrix or a vector to a positive real number, the
|
250 |
+
so called norms.
|
251 |
+
|
252 |
+
For vectors the p-norm is intended, usually the 1-, the 2- and the oo-norm are
|
253 |
+
used.
|
254 |
+
|
255 |
+
>>> x = matrix([-10, 2, 100])
|
256 |
+
>>> norm(x, 1)
|
257 |
+
mpf('112.0')
|
258 |
+
>>> norm(x, 2)
|
259 |
+
mpf('100.5186549850325')
|
260 |
+
>>> norm(x, inf)
|
261 |
+
mpf('100.0')
|
262 |
+
|
263 |
+
Please note that the 2-norm is the most used one, though it is more expensive
|
264 |
+
to calculate than the 1- or oo-norm.
|
265 |
+
|
266 |
+
It is possible to generalize some vector norms to matrix norm::
|
267 |
+
|
268 |
+
>>> A = matrix([[1, -1000], [100, 50]])
|
269 |
+
>>> mnorm(A, 1)
|
270 |
+
mpf('1050.0')
|
271 |
+
>>> mnorm(A, inf)
|
272 |
+
mpf('1001.0')
|
273 |
+
>>> mnorm(A, 'F')
|
274 |
+
mpf('1006.2310867787777')
|
275 |
+
|
276 |
+
The last norm (the "Frobenius-norm") is an approximation for the 2-norm, which
|
277 |
+
is hard to calculate and not available. The Frobenius-norm lacks some
|
278 |
+
mathematical properties you might expect from a norm.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(self, *args, **kwargs):
|
282 |
+
self.__data = {}
|
283 |
+
# LU decompostion cache, this is useful when solving the same system
|
284 |
+
# multiple times, when calculating the inverse and when calculating the
|
285 |
+
# determinant
|
286 |
+
self._LU = None
|
287 |
+
if "force_type" in kwargs:
|
288 |
+
warnings.warn("The force_type argument was removed, it did not work"
|
289 |
+
" properly anyway. If you want to force floating-point or"
|
290 |
+
" interval computations, use the respective methods from `fp`"
|
291 |
+
" or `mp` instead, e.g., `fp.matrix()` or `iv.matrix()`."
|
292 |
+
" If you want to truncate values to integer, use .apply(int) instead.")
|
293 |
+
if isinstance(args[0], (list, tuple)):
|
294 |
+
if isinstance(args[0][0], (list, tuple)):
|
295 |
+
# interpret nested list as matrix
|
296 |
+
A = args[0]
|
297 |
+
self.__rows = len(A)
|
298 |
+
self.__cols = len(A[0])
|
299 |
+
for i, row in enumerate(A):
|
300 |
+
for j, a in enumerate(row):
|
301 |
+
# note: this will call __setitem__ which will call self.ctx.convert() to convert the datatype.
|
302 |
+
self[i, j] = a
|
303 |
+
else:
|
304 |
+
# interpret list as row vector
|
305 |
+
v = args[0]
|
306 |
+
self.__rows = len(v)
|
307 |
+
self.__cols = 1
|
308 |
+
for i, e in enumerate(v):
|
309 |
+
self[i, 0] = e
|
310 |
+
elif isinstance(args[0], int):
|
311 |
+
# create empty matrix of given dimensions
|
312 |
+
if len(args) == 1:
|
313 |
+
self.__rows = self.__cols = args[0]
|
314 |
+
else:
|
315 |
+
if not isinstance(args[1], int):
|
316 |
+
raise TypeError("expected int")
|
317 |
+
self.__rows = args[0]
|
318 |
+
self.__cols = args[1]
|
319 |
+
elif isinstance(args[0], _matrix):
|
320 |
+
A = args[0]
|
321 |
+
self.__rows = A._matrix__rows
|
322 |
+
self.__cols = A._matrix__cols
|
323 |
+
for i in xrange(A.__rows):
|
324 |
+
for j in xrange(A.__cols):
|
325 |
+
self[i, j] = A[i, j]
|
326 |
+
elif hasattr(args[0], 'tolist'):
|
327 |
+
A = self.ctx.matrix(args[0].tolist())
|
328 |
+
self.__data = A._matrix__data
|
329 |
+
self.__rows = A._matrix__rows
|
330 |
+
self.__cols = A._matrix__cols
|
331 |
+
else:
|
332 |
+
raise TypeError('could not interpret given arguments')
|
333 |
+
|
334 |
+
def apply(self, f):
|
335 |
+
"""
|
336 |
+
Return a copy of self with the function `f` applied elementwise.
|
337 |
+
"""
|
338 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
339 |
+
for i in xrange(self.__rows):
|
340 |
+
for j in xrange(self.__cols):
|
341 |
+
new[i,j] = f(self[i,j])
|
342 |
+
return new
|
343 |
+
|
344 |
+
def __nstr__(self, n=None, **kwargs):
|
345 |
+
# Build table of string representations of the elements
|
346 |
+
res = []
|
347 |
+
# Track per-column max lengths for pretty alignment
|
348 |
+
maxlen = [0] * self.cols
|
349 |
+
for i in range(self.rows):
|
350 |
+
res.append([])
|
351 |
+
for j in range(self.cols):
|
352 |
+
if n:
|
353 |
+
string = self.ctx.nstr(self[i,j], n, **kwargs)
|
354 |
+
else:
|
355 |
+
string = str(self[i,j])
|
356 |
+
res[-1].append(string)
|
357 |
+
maxlen[j] = max(len(string), maxlen[j])
|
358 |
+
# Patch strings together
|
359 |
+
for i, row in enumerate(res):
|
360 |
+
for j, elem in enumerate(row):
|
361 |
+
# Pad each element up to maxlen so the columns line up
|
362 |
+
row[j] = elem.rjust(maxlen[j])
|
363 |
+
res[i] = "[" + colsep.join(row) + "]"
|
364 |
+
return rowsep.join(res)
|
365 |
+
|
366 |
+
def __str__(self):
|
367 |
+
return self.__nstr__()
|
368 |
+
|
369 |
+
def _toliststr(self, avoid_type=False):
|
370 |
+
"""
|
371 |
+
Create a list string from a matrix.
|
372 |
+
|
373 |
+
If avoid_type: avoid multiple 'mpf's.
|
374 |
+
"""
|
375 |
+
# XXX: should be something like self.ctx._types
|
376 |
+
typ = self.ctx.mpf
|
377 |
+
s = '['
|
378 |
+
for i in xrange(self.__rows):
|
379 |
+
s += '['
|
380 |
+
for j in xrange(self.__cols):
|
381 |
+
if not avoid_type or not isinstance(self[i,j], typ):
|
382 |
+
a = repr(self[i,j])
|
383 |
+
else:
|
384 |
+
a = "'" + str(self[i,j]) + "'"
|
385 |
+
s += a + ', '
|
386 |
+
s = s[:-2]
|
387 |
+
s += '],\n '
|
388 |
+
s = s[:-3]
|
389 |
+
s += ']'
|
390 |
+
return s
|
391 |
+
|
392 |
+
def tolist(self):
|
393 |
+
"""
|
394 |
+
Convert the matrix to a nested list.
|
395 |
+
"""
|
396 |
+
return [[self[i,j] for j in range(self.__cols)] for i in range(self.__rows)]
|
397 |
+
|
398 |
+
def __repr__(self):
|
399 |
+
if self.ctx.pretty:
|
400 |
+
return self.__str__()
|
401 |
+
s = 'matrix(\n'
|
402 |
+
s += self._toliststr(avoid_type=True) + ')'
|
403 |
+
return s
|
404 |
+
|
405 |
+
def __get_element(self, key):
|
406 |
+
'''
|
407 |
+
Fast extraction of the i,j element from the matrix
|
408 |
+
This function is for private use only because is unsafe:
|
409 |
+
1. Does not check on the value of key it expects key to be a integer tuple (i,j)
|
410 |
+
2. Does not check bounds
|
411 |
+
'''
|
412 |
+
if key in self.__data:
|
413 |
+
return self.__data[key]
|
414 |
+
else:
|
415 |
+
return self.ctx.zero
|
416 |
+
|
417 |
+
def __set_element(self, key, value):
|
418 |
+
'''
|
419 |
+
Fast assignment of the i,j element in the matrix
|
420 |
+
This function is unsafe:
|
421 |
+
1. Does not check on the value of key it expects key to be a integer tuple (i,j)
|
422 |
+
2. Does not check bounds
|
423 |
+
3. Does not check the value type
|
424 |
+
4. Does not reset the LU cache
|
425 |
+
'''
|
426 |
+
if value: # only store non-zeros
|
427 |
+
self.__data[key] = value
|
428 |
+
elif key in self.__data:
|
429 |
+
del self.__data[key]
|
430 |
+
|
431 |
+
|
432 |
+
def __getitem__(self, key):
|
433 |
+
'''
|
434 |
+
Getitem function for mp matrix class with slice index enabled
|
435 |
+
it allows the following assingments
|
436 |
+
scalar to a slice of the matrix
|
437 |
+
B = A[:,2:6]
|
438 |
+
'''
|
439 |
+
# Convert vector to matrix indexing
|
440 |
+
if isinstance(key, int) or isinstance(key,slice):
|
441 |
+
# only sufficent for vectors
|
442 |
+
if self.__rows == 1:
|
443 |
+
key = (0, key)
|
444 |
+
elif self.__cols == 1:
|
445 |
+
key = (key, 0)
|
446 |
+
else:
|
447 |
+
raise IndexError('insufficient indices for matrix')
|
448 |
+
|
449 |
+
if isinstance(key[0],slice) or isinstance(key[1],slice):
|
450 |
+
|
451 |
+
#Rows
|
452 |
+
if isinstance(key[0],slice):
|
453 |
+
#Check bounds
|
454 |
+
if (key[0].start is None or key[0].start >= 0) and \
|
455 |
+
(key[0].stop is None or key[0].stop <= self.__rows+1):
|
456 |
+
# Generate indices
|
457 |
+
rows = xrange(*key[0].indices(self.__rows))
|
458 |
+
else:
|
459 |
+
raise IndexError('Row index out of bounds')
|
460 |
+
else:
|
461 |
+
# Single row
|
462 |
+
rows = [key[0]]
|
463 |
+
|
464 |
+
# Columns
|
465 |
+
if isinstance(key[1],slice):
|
466 |
+
# Check bounds
|
467 |
+
if (key[1].start is None or key[1].start >= 0) and \
|
468 |
+
(key[1].stop is None or key[1].stop <= self.__cols+1):
|
469 |
+
# Generate indices
|
470 |
+
columns = xrange(*key[1].indices(self.__cols))
|
471 |
+
else:
|
472 |
+
raise IndexError('Column index out of bounds')
|
473 |
+
|
474 |
+
else:
|
475 |
+
# Single column
|
476 |
+
columns = [key[1]]
|
477 |
+
|
478 |
+
# Create matrix slice
|
479 |
+
m = self.ctx.matrix(len(rows),len(columns))
|
480 |
+
|
481 |
+
# Assign elements to the output matrix
|
482 |
+
for i,x in enumerate(rows):
|
483 |
+
for j,y in enumerate(columns):
|
484 |
+
m.__set_element((i,j),self.__get_element((x,y)))
|
485 |
+
|
486 |
+
return m
|
487 |
+
|
488 |
+
else:
|
489 |
+
# single element extraction
|
490 |
+
if key[0] >= self.__rows or key[1] >= self.__cols:
|
491 |
+
raise IndexError('matrix index out of range')
|
492 |
+
if key in self.__data:
|
493 |
+
return self.__data[key]
|
494 |
+
else:
|
495 |
+
return self.ctx.zero
|
496 |
+
|
497 |
+
def __setitem__(self, key, value):
|
498 |
+
# setitem function for mp matrix class with slice index enabled
|
499 |
+
# it allows the following assingments
|
500 |
+
# scalar to a slice of the matrix
|
501 |
+
# A[:,2:6] = 2.5
|
502 |
+
# submatrix to matrix (the value matrix should be the same size as the slice size)
|
503 |
+
# A[3,:] = B where A is n x m and B is n x 1
|
504 |
+
# Convert vector to matrix indexing
|
505 |
+
if isinstance(key, int) or isinstance(key,slice):
|
506 |
+
# only sufficent for vectors
|
507 |
+
if self.__rows == 1:
|
508 |
+
key = (0, key)
|
509 |
+
elif self.__cols == 1:
|
510 |
+
key = (key, 0)
|
511 |
+
else:
|
512 |
+
raise IndexError('insufficient indices for matrix')
|
513 |
+
# Slice indexing
|
514 |
+
if isinstance(key[0],slice) or isinstance(key[1],slice):
|
515 |
+
# Rows
|
516 |
+
if isinstance(key[0],slice):
|
517 |
+
# Check bounds
|
518 |
+
if (key[0].start is None or key[0].start >= 0) and \
|
519 |
+
(key[0].stop is None or key[0].stop <= self.__rows+1):
|
520 |
+
# generate row indices
|
521 |
+
rows = xrange(*key[0].indices(self.__rows))
|
522 |
+
else:
|
523 |
+
raise IndexError('Row index out of bounds')
|
524 |
+
else:
|
525 |
+
# Single row
|
526 |
+
rows = [key[0]]
|
527 |
+
# Columns
|
528 |
+
if isinstance(key[1],slice):
|
529 |
+
# Check bounds
|
530 |
+
if (key[1].start is None or key[1].start >= 0) and \
|
531 |
+
(key[1].stop is None or key[1].stop <= self.__cols+1):
|
532 |
+
# Generate column indices
|
533 |
+
columns = xrange(*key[1].indices(self.__cols))
|
534 |
+
else:
|
535 |
+
raise IndexError('Column index out of bounds')
|
536 |
+
else:
|
537 |
+
# Single column
|
538 |
+
columns = [key[1]]
|
539 |
+
# Assign slice with a scalar
|
540 |
+
if isinstance(value,self.ctx.matrix):
|
541 |
+
# Assign elements to matrix if input and output dimensions match
|
542 |
+
if len(rows) == value.rows and len(columns) == value.cols:
|
543 |
+
for i,x in enumerate(rows):
|
544 |
+
for j,y in enumerate(columns):
|
545 |
+
self.__set_element((x,y), value.__get_element((i,j)))
|
546 |
+
else:
|
547 |
+
raise ValueError('Dimensions do not match')
|
548 |
+
else:
|
549 |
+
# Assign slice with scalars
|
550 |
+
value = self.ctx.convert(value)
|
551 |
+
for i in rows:
|
552 |
+
for j in columns:
|
553 |
+
self.__set_element((i,j), value)
|
554 |
+
else:
|
555 |
+
# Single element assingment
|
556 |
+
# Check bounds
|
557 |
+
if key[0] >= self.__rows or key[1] >= self.__cols:
|
558 |
+
raise IndexError('matrix index out of range')
|
559 |
+
# Convert and store value
|
560 |
+
value = self.ctx.convert(value)
|
561 |
+
if value: # only store non-zeros
|
562 |
+
self.__data[key] = value
|
563 |
+
elif key in self.__data:
|
564 |
+
del self.__data[key]
|
565 |
+
|
566 |
+
if self._LU:
|
567 |
+
self._LU = None
|
568 |
+
return
|
569 |
+
|
570 |
+
def __iter__(self):
|
571 |
+
for i in xrange(self.__rows):
|
572 |
+
for j in xrange(self.__cols):
|
573 |
+
yield self[i,j]
|
574 |
+
|
575 |
+
def __mul__(self, other):
|
576 |
+
if isinstance(other, self.ctx.matrix):
|
577 |
+
# dot multiplication
|
578 |
+
if self.__cols != other.__rows:
|
579 |
+
raise ValueError('dimensions not compatible for multiplication')
|
580 |
+
new = self.ctx.matrix(self.__rows, other.__cols)
|
581 |
+
self_zero = self.ctx.zero
|
582 |
+
self_get = self.__data.get
|
583 |
+
other_zero = other.ctx.zero
|
584 |
+
other_get = other.__data.get
|
585 |
+
for i in xrange(self.__rows):
|
586 |
+
for j in xrange(other.__cols):
|
587 |
+
new[i, j] = self.ctx.fdot((self_get((i,k), self_zero), other_get((k,j), other_zero))
|
588 |
+
for k in xrange(other.__rows))
|
589 |
+
return new
|
590 |
+
else:
|
591 |
+
# try scalar multiplication
|
592 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
593 |
+
for i in xrange(self.__rows):
|
594 |
+
for j in xrange(self.__cols):
|
595 |
+
new[i, j] = other * self[i, j]
|
596 |
+
return new
|
597 |
+
|
598 |
+
def __matmul__(self, other):
|
599 |
+
return self.__mul__(other)
|
600 |
+
|
601 |
+
def __rmul__(self, other):
|
602 |
+
# assume other is scalar and thus commutative
|
603 |
+
if isinstance(other, self.ctx.matrix):
|
604 |
+
raise TypeError("other should not be type of ctx.matrix")
|
605 |
+
return self.__mul__(other)
|
606 |
+
|
607 |
+
def __pow__(self, other):
|
608 |
+
# avoid cyclic import problems
|
609 |
+
#from linalg import inverse
|
610 |
+
if not isinstance(other, int):
|
611 |
+
raise ValueError('only integer exponents are supported')
|
612 |
+
if not self.__rows == self.__cols:
|
613 |
+
raise ValueError('only powers of square matrices are defined')
|
614 |
+
n = other
|
615 |
+
if n == 0:
|
616 |
+
return self.ctx.eye(self.__rows)
|
617 |
+
if n < 0:
|
618 |
+
n = -n
|
619 |
+
neg = True
|
620 |
+
else:
|
621 |
+
neg = False
|
622 |
+
i = n
|
623 |
+
y = 1
|
624 |
+
z = self.copy()
|
625 |
+
while i != 0:
|
626 |
+
if i % 2 == 1:
|
627 |
+
y = y * z
|
628 |
+
z = z*z
|
629 |
+
i = i // 2
|
630 |
+
if neg:
|
631 |
+
y = self.ctx.inverse(y)
|
632 |
+
return y
|
633 |
+
|
634 |
+
def __div__(self, other):
|
635 |
+
# assume other is scalar and do element-wise divison
|
636 |
+
assert not isinstance(other, self.ctx.matrix)
|
637 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
638 |
+
for i in xrange(self.__rows):
|
639 |
+
for j in xrange(self.__cols):
|
640 |
+
new[i,j] = self[i,j] / other
|
641 |
+
return new
|
642 |
+
|
643 |
+
__truediv__ = __div__
|
644 |
+
|
645 |
+
def __add__(self, other):
|
646 |
+
if isinstance(other, self.ctx.matrix):
|
647 |
+
if not (self.__rows == other.__rows and self.__cols == other.__cols):
|
648 |
+
raise ValueError('incompatible dimensions for addition')
|
649 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
650 |
+
for i in xrange(self.__rows):
|
651 |
+
for j in xrange(self.__cols):
|
652 |
+
new[i,j] = self[i,j] + other[i,j]
|
653 |
+
return new
|
654 |
+
else:
|
655 |
+
# assume other is scalar and add element-wise
|
656 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
657 |
+
for i in xrange(self.__rows):
|
658 |
+
for j in xrange(self.__cols):
|
659 |
+
new[i,j] += self[i,j] + other
|
660 |
+
return new
|
661 |
+
|
662 |
+
def __radd__(self, other):
|
663 |
+
return self.__add__(other)
|
664 |
+
|
665 |
+
def __sub__(self, other):
|
666 |
+
if isinstance(other, self.ctx.matrix) and not (self.__rows == other.__rows
|
667 |
+
and self.__cols == other.__cols):
|
668 |
+
raise ValueError('incompatible dimensions for subtraction')
|
669 |
+
return self.__add__(other * (-1))
|
670 |
+
|
671 |
+
def __pos__(self):
|
672 |
+
"""
|
673 |
+
+M returns a copy of M, rounded to current working precision.
|
674 |
+
"""
|
675 |
+
return (+1) * self
|
676 |
+
|
677 |
+
def __neg__(self):
|
678 |
+
return (-1) * self
|
679 |
+
|
680 |
+
def __rsub__(self, other):
|
681 |
+
return -self + other
|
682 |
+
|
683 |
+
def __eq__(self, other):
|
684 |
+
return self.__rows == other.__rows and self.__cols == other.__cols \
|
685 |
+
and self.__data == other.__data
|
686 |
+
|
687 |
+
def __len__(self):
|
688 |
+
if self.rows == 1:
|
689 |
+
return self.cols
|
690 |
+
elif self.cols == 1:
|
691 |
+
return self.rows
|
692 |
+
else:
|
693 |
+
return self.rows # do it like numpy
|
694 |
+
|
695 |
+
def __getrows(self):
|
696 |
+
return self.__rows
|
697 |
+
|
698 |
+
def __setrows(self, value):
|
699 |
+
for key in self.__data.copy():
|
700 |
+
if key[0] >= value:
|
701 |
+
del self.__data[key]
|
702 |
+
self.__rows = value
|
703 |
+
|
704 |
+
rows = property(__getrows, __setrows, doc='number of rows')
|
705 |
+
|
706 |
+
def __getcols(self):
|
707 |
+
return self.__cols
|
708 |
+
|
709 |
+
def __setcols(self, value):
|
710 |
+
for key in self.__data.copy():
|
711 |
+
if key[1] >= value:
|
712 |
+
del self.__data[key]
|
713 |
+
self.__cols = value
|
714 |
+
|
715 |
+
cols = property(__getcols, __setcols, doc='number of columns')
|
716 |
+
|
717 |
+
def transpose(self):
|
718 |
+
new = self.ctx.matrix(self.__cols, self.__rows)
|
719 |
+
for i in xrange(self.__rows):
|
720 |
+
for j in xrange(self.__cols):
|
721 |
+
new[j,i] = self[i,j]
|
722 |
+
return new
|
723 |
+
|
724 |
+
T = property(transpose)
|
725 |
+
|
726 |
+
def conjugate(self):
|
727 |
+
return self.apply(self.ctx.conj)
|
728 |
+
|
729 |
+
def transpose_conj(self):
|
730 |
+
return self.conjugate().transpose()
|
731 |
+
|
732 |
+
H = property(transpose_conj)
|
733 |
+
|
734 |
+
def copy(self):
|
735 |
+
new = self.ctx.matrix(self.__rows, self.__cols)
|
736 |
+
new.__data = self.__data.copy()
|
737 |
+
return new
|
738 |
+
|
739 |
+
__copy__ = copy
|
740 |
+
|
741 |
+
def column(self, n):
|
742 |
+
m = self.ctx.matrix(self.rows, 1)
|
743 |
+
for i in range(self.rows):
|
744 |
+
m[i] = self[i,n]
|
745 |
+
return m
|
746 |
+
|
747 |
+
class MatrixMethods(object):
|
748 |
+
|
749 |
+
def __init__(ctx):
|
750 |
+
# XXX: subclass
|
751 |
+
ctx.matrix = type('matrix', (_matrix,), {})
|
752 |
+
ctx.matrix.ctx = ctx
|
753 |
+
ctx.matrix.convert = ctx.convert
|
754 |
+
|
755 |
+
def eye(ctx, n, **kwargs):
|
756 |
+
"""
|
757 |
+
Create square identity matrix n x n.
|
758 |
+
"""
|
759 |
+
A = ctx.matrix(n, **kwargs)
|
760 |
+
for i in xrange(n):
|
761 |
+
A[i,i] = 1
|
762 |
+
return A
|
763 |
+
|
764 |
+
def diag(ctx, diagonal, **kwargs):
|
765 |
+
"""
|
766 |
+
Create square diagonal matrix using given list.
|
767 |
+
|
768 |
+
Example:
|
769 |
+
>>> from mpmath import diag, mp
|
770 |
+
>>> mp.pretty = False
|
771 |
+
>>> diag([1, 2, 3])
|
772 |
+
matrix(
|
773 |
+
[['1.0', '0.0', '0.0'],
|
774 |
+
['0.0', '2.0', '0.0'],
|
775 |
+
['0.0', '0.0', '3.0']])
|
776 |
+
"""
|
777 |
+
A = ctx.matrix(len(diagonal), **kwargs)
|
778 |
+
for i in xrange(len(diagonal)):
|
779 |
+
A[i,i] = diagonal[i]
|
780 |
+
return A
|
781 |
+
|
782 |
+
def zeros(ctx, *args, **kwargs):
|
783 |
+
"""
|
784 |
+
Create matrix m x n filled with zeros.
|
785 |
+
One given dimension will create square matrix n x n.
|
786 |
+
|
787 |
+
Example:
|
788 |
+
>>> from mpmath import zeros, mp
|
789 |
+
>>> mp.pretty = False
|
790 |
+
>>> zeros(2)
|
791 |
+
matrix(
|
792 |
+
[['0.0', '0.0'],
|
793 |
+
['0.0', '0.0']])
|
794 |
+
"""
|
795 |
+
if len(args) == 1:
|
796 |
+
m = n = args[0]
|
797 |
+
elif len(args) == 2:
|
798 |
+
m = args[0]
|
799 |
+
n = args[1]
|
800 |
+
else:
|
801 |
+
raise TypeError('zeros expected at most 2 arguments, got %i' % len(args))
|
802 |
+
A = ctx.matrix(m, n, **kwargs)
|
803 |
+
for i in xrange(m):
|
804 |
+
for j in xrange(n):
|
805 |
+
A[i,j] = 0
|
806 |
+
return A
|
807 |
+
|
808 |
+
def ones(ctx, *args, **kwargs):
|
809 |
+
"""
|
810 |
+
Create matrix m x n filled with ones.
|
811 |
+
One given dimension will create square matrix n x n.
|
812 |
+
|
813 |
+
Example:
|
814 |
+
>>> from mpmath import ones, mp
|
815 |
+
>>> mp.pretty = False
|
816 |
+
>>> ones(2)
|
817 |
+
matrix(
|
818 |
+
[['1.0', '1.0'],
|
819 |
+
['1.0', '1.0']])
|
820 |
+
"""
|
821 |
+
if len(args) == 1:
|
822 |
+
m = n = args[0]
|
823 |
+
elif len(args) == 2:
|
824 |
+
m = args[0]
|
825 |
+
n = args[1]
|
826 |
+
else:
|
827 |
+
raise TypeError('ones expected at most 2 arguments, got %i' % len(args))
|
828 |
+
A = ctx.matrix(m, n, **kwargs)
|
829 |
+
for i in xrange(m):
|
830 |
+
for j in xrange(n):
|
831 |
+
A[i,j] = 1
|
832 |
+
return A
|
833 |
+
|
834 |
+
def hilbert(ctx, m, n=None):
|
835 |
+
"""
|
836 |
+
Create (pseudo) hilbert matrix m x n.
|
837 |
+
One given dimension will create hilbert matrix n x n.
|
838 |
+
|
839 |
+
The matrix is very ill-conditioned and symmetric, positive definite if
|
840 |
+
square.
|
841 |
+
"""
|
842 |
+
if n is None:
|
843 |
+
n = m
|
844 |
+
A = ctx.matrix(m, n)
|
845 |
+
for i in xrange(m):
|
846 |
+
for j in xrange(n):
|
847 |
+
A[i,j] = ctx.one / (i + j + 1)
|
848 |
+
return A
|
849 |
+
|
850 |
+
def randmatrix(ctx, m, n=None, min=0, max=1, **kwargs):
|
851 |
+
"""
|
852 |
+
Create a random m x n matrix.
|
853 |
+
|
854 |
+
All values are >= min and <max.
|
855 |
+
n defaults to m.
|
856 |
+
|
857 |
+
Example:
|
858 |
+
>>> from mpmath import randmatrix
|
859 |
+
>>> randmatrix(2) # doctest:+SKIP
|
860 |
+
matrix(
|
861 |
+
[['0.53491598236191806', '0.57195669543302752'],
|
862 |
+
['0.85589992269513615', '0.82444367501382143']])
|
863 |
+
"""
|
864 |
+
if not n:
|
865 |
+
n = m
|
866 |
+
A = ctx.matrix(m, n, **kwargs)
|
867 |
+
for i in xrange(m):
|
868 |
+
for j in xrange(n):
|
869 |
+
A[i,j] = ctx.rand() * (max - min) + min
|
870 |
+
return A
|
871 |
+
|
872 |
+
def swap_row(ctx, A, i, j):
|
873 |
+
"""
|
874 |
+
Swap row i with row j.
|
875 |
+
"""
|
876 |
+
if i == j:
|
877 |
+
return
|
878 |
+
if isinstance(A, ctx.matrix):
|
879 |
+
for k in xrange(A.cols):
|
880 |
+
A[i,k], A[j,k] = A[j,k], A[i,k]
|
881 |
+
elif isinstance(A, list):
|
882 |
+
A[i], A[j] = A[j], A[i]
|
883 |
+
else:
|
884 |
+
raise TypeError('could not interpret type')
|
885 |
+
|
886 |
+
def extend(ctx, A, b):
|
887 |
+
"""
|
888 |
+
Extend matrix A with column b and return result.
|
889 |
+
"""
|
890 |
+
if not isinstance(A, ctx.matrix):
|
891 |
+
raise TypeError("A should be a type of ctx.matrix")
|
892 |
+
if A.rows != len(b):
|
893 |
+
raise ValueError("Value should be equal to len(b)")
|
894 |
+
A = A.copy()
|
895 |
+
A.cols += 1
|
896 |
+
for i in xrange(A.rows):
|
897 |
+
A[i, A.cols-1] = b[i]
|
898 |
+
return A
|
899 |
+
|
900 |
+
def norm(ctx, x, p=2):
|
901 |
+
r"""
|
902 |
+
Gives the entrywise `p`-norm of an iterable *x*, i.e. the vector norm
|
903 |
+
`\left(\sum_k |x_k|^p\right)^{1/p}`, for any given `1 \le p \le \infty`.
|
904 |
+
|
905 |
+
Special cases:
|
906 |
+
|
907 |
+
If *x* is not iterable, this just returns ``absmax(x)``.
|
908 |
+
|
909 |
+
``p=1`` gives the sum of absolute values.
|
910 |
+
|
911 |
+
``p=2`` is the standard Euclidean vector norm.
|
912 |
+
|
913 |
+
``p=inf`` gives the magnitude of the largest element.
|
914 |
+
|
915 |
+
For *x* a matrix, ``p=2`` is the Frobenius norm.
|
916 |
+
For operator matrix norms, use :func:`~mpmath.mnorm` instead.
|
917 |
+
|
918 |
+
You can use the string 'inf' as well as float('inf') or mpf('inf')
|
919 |
+
to specify the infinity norm.
|
920 |
+
|
921 |
+
**Examples**
|
922 |
+
|
923 |
+
>>> from mpmath import *
|
924 |
+
>>> mp.dps = 15; mp.pretty = False
|
925 |
+
>>> x = matrix([-10, 2, 100])
|
926 |
+
>>> norm(x, 1)
|
927 |
+
mpf('112.0')
|
928 |
+
>>> norm(x, 2)
|
929 |
+
mpf('100.5186549850325')
|
930 |
+
>>> norm(x, inf)
|
931 |
+
mpf('100.0')
|
932 |
+
|
933 |
+
"""
|
934 |
+
try:
|
935 |
+
iter(x)
|
936 |
+
except TypeError:
|
937 |
+
return ctx.absmax(x)
|
938 |
+
if type(p) is not int:
|
939 |
+
p = ctx.convert(p)
|
940 |
+
if p == ctx.inf:
|
941 |
+
return max(ctx.absmax(i) for i in x)
|
942 |
+
elif p == 1:
|
943 |
+
return ctx.fsum(x, absolute=1)
|
944 |
+
elif p == 2:
|
945 |
+
return ctx.sqrt(ctx.fsum(x, absolute=1, squared=1))
|
946 |
+
elif p > 1:
|
947 |
+
return ctx.nthroot(ctx.fsum(abs(i)**p for i in x), p)
|
948 |
+
else:
|
949 |
+
raise ValueError('p has to be >= 1')
|
950 |
+
|
951 |
+
def mnorm(ctx, A, p=1):
|
952 |
+
r"""
|
953 |
+
Gives the matrix (operator) `p`-norm of A. Currently ``p=1`` and ``p=inf``
|
954 |
+
are supported:
|
955 |
+
|
956 |
+
``p=1`` gives the 1-norm (maximal column sum)
|
957 |
+
|
958 |
+
``p=inf`` gives the `\infty`-norm (maximal row sum).
|
959 |
+
You can use the string 'inf' as well as float('inf') or mpf('inf')
|
960 |
+
|
961 |
+
``p=2`` (not implemented) for a square matrix is the usual spectral
|
962 |
+
matrix norm, i.e. the largest singular value.
|
963 |
+
|
964 |
+
``p='f'`` (or 'F', 'fro', 'Frobenius, 'frobenius') gives the
|
965 |
+
Frobenius norm, which is the elementwise 2-norm. The Frobenius norm is an
|
966 |
+
approximation of the spectral norm and satisfies
|
967 |
+
|
968 |
+
.. math ::
|
969 |
+
|
970 |
+
\frac{1}{\sqrt{\mathrm{rank}(A)}} \|A\|_F \le \|A\|_2 \le \|A\|_F
|
971 |
+
|
972 |
+
The Frobenius norm lacks some mathematical properties that might
|
973 |
+
be expected of a norm.
|
974 |
+
|
975 |
+
For general elementwise `p`-norms, use :func:`~mpmath.norm` instead.
|
976 |
+
|
977 |
+
**Examples**
|
978 |
+
|
979 |
+
>>> from mpmath import *
|
980 |
+
>>> mp.dps = 15; mp.pretty = False
|
981 |
+
>>> A = matrix([[1, -1000], [100, 50]])
|
982 |
+
>>> mnorm(A, 1)
|
983 |
+
mpf('1050.0')
|
984 |
+
>>> mnorm(A, inf)
|
985 |
+
mpf('1001.0')
|
986 |
+
>>> mnorm(A, 'F')
|
987 |
+
mpf('1006.2310867787777')
|
988 |
+
|
989 |
+
"""
|
990 |
+
A = ctx.matrix(A)
|
991 |
+
if type(p) is not int:
|
992 |
+
if type(p) is str and 'frobenius'.startswith(p.lower()):
|
993 |
+
return ctx.norm(A, 2)
|
994 |
+
p = ctx.convert(p)
|
995 |
+
m, n = A.rows, A.cols
|
996 |
+
if p == 1:
|
997 |
+
return max(ctx.fsum((A[i,j] for i in xrange(m)), absolute=1) for j in xrange(n))
|
998 |
+
elif p == ctx.inf:
|
999 |
+
return max(ctx.fsum((A[i,j] for j in xrange(n)), absolute=1) for i in xrange(m))
|
1000 |
+
else:
|
1001 |
+
raise NotImplementedError("matrix p-norm for arbitrary p")
|
1002 |
+
|
1003 |
+
if __name__ == '__main__':
|
1004 |
+
import doctest
|
1005 |
+
doctest.testmod()
|
env-llmeval/lib/python3.10/site-packages/mpmath/visualization.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Plotting (requires matplotlib)
|
3 |
+
"""
|
4 |
+
|
5 |
+
from colorsys import hsv_to_rgb, hls_to_rgb
|
6 |
+
from .libmp import NoConvergence
|
7 |
+
from .libmp.backend import xrange
|
8 |
+
|
9 |
+
class VisualizationMethods(object):
|
10 |
+
plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence)
|
11 |
+
|
12 |
+
def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None,
|
13 |
+
singularities=[], axes=None):
|
14 |
+
r"""
|
15 |
+
Shows a simple 2D plot of a function `f(x)` or list of functions
|
16 |
+
`[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval
|
17 |
+
specified by *xlim*. Some examples::
|
18 |
+
|
19 |
+
plot(lambda x: exp(x)*li(x), [1, 4])
|
20 |
+
plot([cos, sin], [-4, 4])
|
21 |
+
plot([fresnels, fresnelc], [-4, 4])
|
22 |
+
plot([sqrt, cbrt], [-4, 4])
|
23 |
+
plot(lambda t: zeta(0.5+t*j), [-20, 20])
|
24 |
+
plot([floor, ceil, abs, sign], [-5, 5])
|
25 |
+
|
26 |
+
Points where the function raises a numerical exception or
|
27 |
+
returns an infinite value are removed from the graph.
|
28 |
+
Singularities can also be excluded explicitly
|
29 |
+
as follows (useful for removing erroneous vertical lines)::
|
30 |
+
|
31 |
+
plot(cot, ylim=[-5, 5]) # bad
|
32 |
+
plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good
|
33 |
+
|
34 |
+
For parts where the function assumes complex values, the
|
35 |
+
real part is plotted with dashes and the imaginary part
|
36 |
+
is plotted with dots.
|
37 |
+
|
38 |
+
.. note :: This function requires matplotlib (pylab).
|
39 |
+
"""
|
40 |
+
if file:
|
41 |
+
axes = None
|
42 |
+
fig = None
|
43 |
+
if not axes:
|
44 |
+
import pylab
|
45 |
+
fig = pylab.figure()
|
46 |
+
axes = fig.add_subplot(111)
|
47 |
+
if not isinstance(f, (tuple, list)):
|
48 |
+
f = [f]
|
49 |
+
a, b = xlim
|
50 |
+
colors = ['b', 'r', 'g', 'm', 'k']
|
51 |
+
for n, func in enumerate(f):
|
52 |
+
x = ctx.arange(a, b, (b-a)/float(points))
|
53 |
+
segments = []
|
54 |
+
segment = []
|
55 |
+
in_complex = False
|
56 |
+
for i in xrange(len(x)):
|
57 |
+
try:
|
58 |
+
if i != 0:
|
59 |
+
for sing in singularities:
|
60 |
+
if x[i-1] <= sing and x[i] >= sing:
|
61 |
+
raise ValueError
|
62 |
+
v = func(x[i])
|
63 |
+
if ctx.isnan(v) or abs(v) > 1e300:
|
64 |
+
raise ValueError
|
65 |
+
if hasattr(v, "imag") and v.imag:
|
66 |
+
re = float(v.real)
|
67 |
+
im = float(v.imag)
|
68 |
+
if not in_complex:
|
69 |
+
in_complex = True
|
70 |
+
segments.append(segment)
|
71 |
+
segment = []
|
72 |
+
segment.append((float(x[i]), re, im))
|
73 |
+
else:
|
74 |
+
if in_complex:
|
75 |
+
in_complex = False
|
76 |
+
segments.append(segment)
|
77 |
+
segment = []
|
78 |
+
if hasattr(v, "real"):
|
79 |
+
v = v.real
|
80 |
+
segment.append((float(x[i]), v))
|
81 |
+
except ctx.plot_ignore:
|
82 |
+
if segment:
|
83 |
+
segments.append(segment)
|
84 |
+
segment = []
|
85 |
+
if segment:
|
86 |
+
segments.append(segment)
|
87 |
+
for segment in segments:
|
88 |
+
x = [s[0] for s in segment]
|
89 |
+
y = [s[1] for s in segment]
|
90 |
+
if not x:
|
91 |
+
continue
|
92 |
+
c = colors[n % len(colors)]
|
93 |
+
if len(segment[0]) == 3:
|
94 |
+
z = [s[2] for s in segment]
|
95 |
+
axes.plot(x, y, '--'+c, linewidth=3)
|
96 |
+
axes.plot(x, z, ':'+c, linewidth=3)
|
97 |
+
else:
|
98 |
+
axes.plot(x, y, c, linewidth=3)
|
99 |
+
axes.set_xlim([float(_) for _ in xlim])
|
100 |
+
if ylim:
|
101 |
+
axes.set_ylim([float(_) for _ in ylim])
|
102 |
+
axes.set_xlabel('x')
|
103 |
+
axes.set_ylabel('f(x)')
|
104 |
+
axes.grid(True)
|
105 |
+
if fig:
|
106 |
+
if file:
|
107 |
+
pylab.savefig(file, dpi=dpi)
|
108 |
+
else:
|
109 |
+
pylab.show()
|
110 |
+
|
111 |
+
def default_color_function(ctx, z):
|
112 |
+
if ctx.isinf(z):
|
113 |
+
return (1.0, 1.0, 1.0)
|
114 |
+
if ctx.isnan(z):
|
115 |
+
return (0.5, 0.5, 0.5)
|
116 |
+
pi = 3.1415926535898
|
117 |
+
a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi)
|
118 |
+
a = (a + 0.5) % 1.0
|
119 |
+
b = 1.0 - float(1/(1.0+abs(z)**0.3))
|
120 |
+
return hls_to_rgb(a, b, 0.8)
|
121 |
+
|
122 |
+
blue_orange_colors = [
|
123 |
+
(-1.0, (0.0, 0.0, 0.0)),
|
124 |
+
(-0.95, (0.1, 0.2, 0.5)), # dark blue
|
125 |
+
(-0.5, (0.0, 0.5, 1.0)), # blueish
|
126 |
+
(-0.05, (0.4, 0.8, 0.8)), # cyanish
|
127 |
+
( 0.0, (1.0, 1.0, 1.0)),
|
128 |
+
( 0.05, (1.0, 0.9, 0.3)), # yellowish
|
129 |
+
( 0.5, (0.9, 0.5, 0.0)), # orangeish
|
130 |
+
( 0.95, (0.7, 0.1, 0.0)), # redish
|
131 |
+
( 1.0, (0.0, 0.0, 0.0)),
|
132 |
+
( 2.0, (0.0, 0.0, 0.0)),
|
133 |
+
]
|
134 |
+
|
135 |
+
def phase_color_function(ctx, z):
|
136 |
+
if ctx.isinf(z):
|
137 |
+
return (1.0, 1.0, 1.0)
|
138 |
+
if ctx.isnan(z):
|
139 |
+
return (0.5, 0.5, 0.5)
|
140 |
+
pi = 3.1415926535898
|
141 |
+
w = float(ctx.arg(z)) / pi
|
142 |
+
w = max(min(w, 1.0), -1.0)
|
143 |
+
for i in range(1,len(blue_orange_colors)):
|
144 |
+
if blue_orange_colors[i][0] > w:
|
145 |
+
a, (ra, ga, ba) = blue_orange_colors[i-1]
|
146 |
+
b, (rb, gb, bb) = blue_orange_colors[i]
|
147 |
+
s = (w-a) / (b-a)
|
148 |
+
return ra+(rb-ra)*s, ga+(gb-ga)*s, ba+(bb-ba)*s
|
149 |
+
|
150 |
+
def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None,
|
151 |
+
verbose=False, file=None, dpi=None, axes=None):
|
152 |
+
"""
|
153 |
+
Plots the given complex-valued function *f* over a rectangular part
|
154 |
+
of the complex plane specified by the pairs of intervals *re* and *im*.
|
155 |
+
For example::
|
156 |
+
|
157 |
+
cplot(lambda z: z, [-2, 2], [-10, 10])
|
158 |
+
cplot(exp)
|
159 |
+
cplot(zeta, [0, 1], [0, 50])
|
160 |
+
|
161 |
+
By default, the complex argument (phase) is shown as color (hue) and
|
162 |
+
the magnitude is show as brightness. You can also supply a
|
163 |
+
custom color function (*color*). This function should take a
|
164 |
+
complex number as input and return an RGB 3-tuple containing
|
165 |
+
floats in the range 0.0-1.0.
|
166 |
+
|
167 |
+
Alternatively, you can select a builtin color function by passing
|
168 |
+
a string as *color*:
|
169 |
+
|
170 |
+
* "default" - default color scheme
|
171 |
+
* "phase" - a color scheme that only renders the phase of the function,
|
172 |
+
with white for positive reals, black for negative reals, gold in the
|
173 |
+
upper half plane, and blue in the lower half plane.
|
174 |
+
|
175 |
+
To obtain a sharp image, the number of points may need to be
|
176 |
+
increased to 100,000 or thereabout. Since evaluating the
|
177 |
+
function that many times is likely to be slow, the 'verbose'
|
178 |
+
option is useful to display progress.
|
179 |
+
|
180 |
+
.. note :: This function requires matplotlib (pylab).
|
181 |
+
"""
|
182 |
+
if color is None or color == "default":
|
183 |
+
color = ctx.default_color_function
|
184 |
+
if color == "phase":
|
185 |
+
color = ctx.phase_color_function
|
186 |
+
import pylab
|
187 |
+
if file:
|
188 |
+
axes = None
|
189 |
+
fig = None
|
190 |
+
if not axes:
|
191 |
+
fig = pylab.figure()
|
192 |
+
axes = fig.add_subplot(111)
|
193 |
+
rea, reb = re
|
194 |
+
ima, imb = im
|
195 |
+
dre = reb - rea
|
196 |
+
dim = imb - ima
|
197 |
+
M = int(ctx.sqrt(points*dre/dim)+1)
|
198 |
+
N = int(ctx.sqrt(points*dim/dre)+1)
|
199 |
+
x = pylab.linspace(rea, reb, M)
|
200 |
+
y = pylab.linspace(ima, imb, N)
|
201 |
+
# Note: we have to be careful to get the right rotation.
|
202 |
+
# Test with these plots:
|
203 |
+
# cplot(lambda z: z if z.real < 0 else 0)
|
204 |
+
# cplot(lambda z: z if z.imag < 0 else 0)
|
205 |
+
w = pylab.zeros((N, M, 3))
|
206 |
+
for n in xrange(N):
|
207 |
+
for m in xrange(M):
|
208 |
+
z = ctx.mpc(x[m], y[n])
|
209 |
+
try:
|
210 |
+
v = color(f(z))
|
211 |
+
except ctx.plot_ignore:
|
212 |
+
v = (0.5, 0.5, 0.5)
|
213 |
+
w[n,m] = v
|
214 |
+
if verbose:
|
215 |
+
print(str(n) + ' of ' + str(N))
|
216 |
+
rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]]
|
217 |
+
axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower')
|
218 |
+
axes.set_xlabel('Re(z)')
|
219 |
+
axes.set_ylabel('Im(z)')
|
220 |
+
if fig:
|
221 |
+
if file:
|
222 |
+
pylab.savefig(file, dpi=dpi)
|
223 |
+
else:
|
224 |
+
pylab.show()
|
225 |
+
|
226 |
+
def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \
|
227 |
+
wireframe=False, file=None, dpi=None, axes=None):
|
228 |
+
"""
|
229 |
+
Plots the surface defined by `f`.
|
230 |
+
|
231 |
+
If `f` returns a single component, then this plots the surface
|
232 |
+
defined by `z = f(x,y)` over the rectangular domain with
|
233 |
+
`x = u` and `y = v`.
|
234 |
+
|
235 |
+
If `f` returns three components, then this plots the parametric
|
236 |
+
surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`.
|
237 |
+
|
238 |
+
For example, to plot a simple function::
|
239 |
+
|
240 |
+
>>> from mpmath import *
|
241 |
+
>>> f = lambda x, y: sin(x+y)*cos(y)
|
242 |
+
>>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP
|
243 |
+
|
244 |
+
Plotting a donut::
|
245 |
+
|
246 |
+
>>> r, R = 1, 2.5
|
247 |
+
>>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)]
|
248 |
+
>>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP
|
249 |
+
|
250 |
+
.. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher.
|
251 |
+
"""
|
252 |
+
import pylab
|
253 |
+
import mpl_toolkits.mplot3d as mplot3d
|
254 |
+
if file:
|
255 |
+
axes = None
|
256 |
+
fig = None
|
257 |
+
if not axes:
|
258 |
+
fig = pylab.figure()
|
259 |
+
axes = mplot3d.axes3d.Axes3D(fig)
|
260 |
+
ua, ub = u
|
261 |
+
va, vb = v
|
262 |
+
du = ub - ua
|
263 |
+
dv = vb - va
|
264 |
+
if not isinstance(points, (list, tuple)):
|
265 |
+
points = [points, points]
|
266 |
+
M, N = points
|
267 |
+
u = pylab.linspace(ua, ub, M)
|
268 |
+
v = pylab.linspace(va, vb, N)
|
269 |
+
x, y, z = [pylab.zeros((M, N)) for i in xrange(3)]
|
270 |
+
xab, yab, zab = [[0, 0] for i in xrange(3)]
|
271 |
+
for n in xrange(N):
|
272 |
+
for m in xrange(M):
|
273 |
+
fdata = f(ctx.convert(u[m]), ctx.convert(v[n]))
|
274 |
+
try:
|
275 |
+
x[m,n], y[m,n], z[m,n] = fdata
|
276 |
+
except TypeError:
|
277 |
+
x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata
|
278 |
+
for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]:
|
279 |
+
if c < cab[0]:
|
280 |
+
cab[0] = c
|
281 |
+
if c > cab[1]:
|
282 |
+
cab[1] = c
|
283 |
+
if wireframe:
|
284 |
+
axes.plot_wireframe(x, y, z, rstride=4, cstride=4)
|
285 |
+
else:
|
286 |
+
axes.plot_surface(x, y, z, rstride=4, cstride=4)
|
287 |
+
axes.set_xlabel('x')
|
288 |
+
axes.set_ylabel('y')
|
289 |
+
axes.set_zlabel('z')
|
290 |
+
if keep_aspect:
|
291 |
+
dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]]
|
292 |
+
maxd = max(dx, dy, dz)
|
293 |
+
if dx < maxd:
|
294 |
+
delta = maxd - dx
|
295 |
+
axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0)
|
296 |
+
if dy < maxd:
|
297 |
+
delta = maxd - dy
|
298 |
+
axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0)
|
299 |
+
if dz < maxd:
|
300 |
+
delta = maxd - dz
|
301 |
+
axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0)
|
302 |
+
if fig:
|
303 |
+
if file:
|
304 |
+
pylab.savefig(file, dpi=dpi)
|
305 |
+
else:
|
306 |
+
pylab.show()
|
307 |
+
|
308 |
+
|
309 |
+
VisualizationMethods.plot = plot
|
310 |
+
VisualizationMethods.default_color_function = default_color_function
|
311 |
+
VisualizationMethods.phase_color_function = phase_color_function
|
312 |
+
VisualizationMethods.cplot = cplot
|
313 |
+
VisualizationMethods.splot = splot
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/LICENSE
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2009, Jay Loden, Dave Daeschler, Giampaolo Rodola
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without modification,
|
7 |
+
are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
* Neither the name of the psutil authors nor the names of its contributors
|
17 |
+
may be used to endorse or promote products derived from this software without
|
18 |
+
specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
21 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
22 |
+
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
24 |
+
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
25 |
+
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
26 |
+
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
27 |
+
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
28 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/METADATA
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: psutil
|
3 |
+
Version: 5.9.8
|
4 |
+
Summary: Cross-platform lib for process and system monitoring in Python.
|
5 |
+
Home-page: https://github.com/giampaolo/psutil
|
6 |
+
Author: Giampaolo Rodola
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: BSD-3-Clause
|
9 |
+
Keywords: ps,top,kill,free,lsof,netstat,nice,tty,ionice,uptime,taskmgr,process,df,iotop,iostat,ifconfig,taskset,who,pidof,pmap,smem,pstree,monitoring,ulimit,prlimit,smem,performance,metrics,agent,observability
|
10 |
+
Platform: Platform Independent
|
11 |
+
Classifier: Development Status :: 5 - Production/Stable
|
12 |
+
Classifier: Environment :: Console
|
13 |
+
Classifier: Environment :: Win32 (MS Windows)
|
14 |
+
Classifier: Intended Audience :: Developers
|
15 |
+
Classifier: Intended Audience :: Information Technology
|
16 |
+
Classifier: Intended Audience :: System Administrators
|
17 |
+
Classifier: License :: OSI Approved :: BSD License
|
18 |
+
Classifier: Operating System :: MacOS :: MacOS X
|
19 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows 10
|
20 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows 7
|
21 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows 8
|
22 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows 8.1
|
23 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows Server 2003
|
24 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows Server 2008
|
25 |
+
Classifier: Operating System :: Microsoft :: Windows :: Windows Vista
|
26 |
+
Classifier: Operating System :: Microsoft
|
27 |
+
Classifier: Operating System :: OS Independent
|
28 |
+
Classifier: Operating System :: POSIX :: AIX
|
29 |
+
Classifier: Operating System :: POSIX :: BSD :: FreeBSD
|
30 |
+
Classifier: Operating System :: POSIX :: BSD :: NetBSD
|
31 |
+
Classifier: Operating System :: POSIX :: BSD :: OpenBSD
|
32 |
+
Classifier: Operating System :: POSIX :: BSD
|
33 |
+
Classifier: Operating System :: POSIX :: Linux
|
34 |
+
Classifier: Operating System :: POSIX :: SunOS/Solaris
|
35 |
+
Classifier: Operating System :: POSIX
|
36 |
+
Classifier: Programming Language :: C
|
37 |
+
Classifier: Programming Language :: Python :: 2
|
38 |
+
Classifier: Programming Language :: Python :: 2.7
|
39 |
+
Classifier: Programming Language :: Python :: 3
|
40 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
41 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
42 |
+
Classifier: Programming Language :: Python
|
43 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
44 |
+
Classifier: Topic :: Software Development :: Libraries
|
45 |
+
Classifier: Topic :: System :: Benchmark
|
46 |
+
Classifier: Topic :: System :: Hardware :: Hardware Drivers
|
47 |
+
Classifier: Topic :: System :: Hardware
|
48 |
+
Classifier: Topic :: System :: Monitoring
|
49 |
+
Classifier: Topic :: System :: Networking :: Monitoring :: Hardware Watchdog
|
50 |
+
Classifier: Topic :: System :: Networking :: Monitoring
|
51 |
+
Classifier: Topic :: System :: Networking
|
52 |
+
Classifier: Topic :: System :: Operating System
|
53 |
+
Classifier: Topic :: System :: Systems Administration
|
54 |
+
Classifier: Topic :: Utilities
|
55 |
+
Requires-Python: >=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*
|
56 |
+
Description-Content-Type: text/x-rst
|
57 |
+
License-File: LICENSE
|
58 |
+
Provides-Extra: test
|
59 |
+
Requires-Dist: ipaddress ; (python_version < "3.0") and extra == 'test'
|
60 |
+
Requires-Dist: mock ; (python_version < "3.0") and extra == 'test'
|
61 |
+
Requires-Dist: enum34 ; (python_version <= "3.4") and extra == 'test'
|
62 |
+
Requires-Dist: pywin32 ; (sys_platform == "win32") and extra == 'test'
|
63 |
+
Requires-Dist: wmi ; (sys_platform == "win32") and extra == 'test'
|
64 |
+
|
65 |
+
| |downloads| |stars| |forks| |contributors| |coverage|
|
66 |
+
| |version| |py-versions| |packages| |license|
|
67 |
+
| |github-actions-wheels| |github-actions-bsd| |appveyor| |doc| |twitter| |tidelift|
|
68 |
+
|
69 |
+
.. |downloads| image:: https://img.shields.io/pypi/dm/psutil.svg
|
70 |
+
:target: https://pepy.tech/project/psutil
|
71 |
+
:alt: Downloads
|
72 |
+
|
73 |
+
.. |stars| image:: https://img.shields.io/github/stars/giampaolo/psutil.svg
|
74 |
+
:target: https://github.com/giampaolo/psutil/stargazers
|
75 |
+
:alt: Github stars
|
76 |
+
|
77 |
+
.. |forks| image:: https://img.shields.io/github/forks/giampaolo/psutil.svg
|
78 |
+
:target: https://github.com/giampaolo/psutil/network/members
|
79 |
+
:alt: Github forks
|
80 |
+
|
81 |
+
.. |contributors| image:: https://img.shields.io/github/contributors/giampaolo/psutil.svg
|
82 |
+
:target: https://github.com/giampaolo/psutil/graphs/contributors
|
83 |
+
:alt: Contributors
|
84 |
+
|
85 |
+
.. |github-actions-wheels| image:: https://img.shields.io/github/actions/workflow/status/giampaolo/psutil/.github/workflows/build.yml?label=Linux%2C%20macOS%2C%20Windows
|
86 |
+
:target: https://github.com/giampaolo/psutil/actions?query=workflow%3Abuild
|
87 |
+
:alt: Linux, macOS, Windows
|
88 |
+
|
89 |
+
.. |github-actions-bsd| image:: https://img.shields.io/github/actions/workflow/status/giampaolo/psutil/.github/workflows/bsd.yml?label=FreeBSD,%20NetBSD,%20OpenBSD
|
90 |
+
:target: https://github.com/giampaolo/psutil/actions?query=workflow%3Absd-tests
|
91 |
+
:alt: FreeBSD, NetBSD, OpenBSD
|
92 |
+
|
93 |
+
.. |appveyor| image:: https://img.shields.io/appveyor/build/giampaolo/psutil/master.svg?maxAge=3600&label=Windows%20(py2)
|
94 |
+
:target: https://ci.appveyor.com/project/giampaolo/psutil
|
95 |
+
:alt: Windows (Appveyor)
|
96 |
+
|
97 |
+
.. |coverage| image:: https://coveralls.io/repos/github/giampaolo/psutil/badge.svg?branch=master
|
98 |
+
:target: https://coveralls.io/github/giampaolo/psutil?branch=master
|
99 |
+
:alt: Test coverage (coverall.io)
|
100 |
+
|
101 |
+
.. |doc| image:: https://readthedocs.org/projects/psutil/badge/?version=latest
|
102 |
+
:target: https://psutil.readthedocs.io/en/latest/
|
103 |
+
:alt: Documentation Status
|
104 |
+
|
105 |
+
.. |version| image:: https://img.shields.io/pypi/v/psutil.svg?label=pypi
|
106 |
+
:target: https://pypi.org/project/psutil
|
107 |
+
:alt: Latest version
|
108 |
+
|
109 |
+
.. |py-versions| image:: https://img.shields.io/pypi/pyversions/psutil.svg
|
110 |
+
:alt: Supported Python versions
|
111 |
+
|
112 |
+
.. |packages| image:: https://repology.org/badge/tiny-repos/python:psutil.svg
|
113 |
+
:target: https://repology.org/metapackage/python:psutil/versions
|
114 |
+
:alt: Binary packages
|
115 |
+
|
116 |
+
.. |license| image:: https://img.shields.io/pypi/l/psutil.svg
|
117 |
+
:target: https://github.com/giampaolo/psutil/blob/master/LICENSE
|
118 |
+
:alt: License
|
119 |
+
|
120 |
+
.. |twitter| image:: https://img.shields.io/twitter/follow/grodola.svg?label=follow&style=flat&logo=twitter&logoColor=4FADFF
|
121 |
+
:target: https://twitter.com/grodola
|
122 |
+
:alt: Twitter Follow
|
123 |
+
|
124 |
+
.. |tidelift| image:: https://tidelift.com/badges/github/giampaolo/psutil?style=flat
|
125 |
+
:target: https://tidelift.com/subscription/pkg/pypi-psutil?utm_source=pypi-psutil&utm_medium=referral&utm_campaign=readme
|
126 |
+
:alt: Tidelift
|
127 |
+
|
128 |
+
-----
|
129 |
+
|
130 |
+
Quick links
|
131 |
+
===========
|
132 |
+
|
133 |
+
- `Home page <https://github.com/giampaolo/psutil>`_
|
134 |
+
- `Install <https://github.com/giampaolo/psutil/blob/master/INSTALL.rst>`_
|
135 |
+
- `Documentation <http://psutil.readthedocs.io>`_
|
136 |
+
- `Download <https://pypi.org/project/psutil/#files>`_
|
137 |
+
- `Forum <http://groups.google.com/group/psutil/topics>`_
|
138 |
+
- `StackOverflow <https://stackoverflow.com/questions/tagged/psutil>`_
|
139 |
+
- `Blog <https://gmpy.dev/tags/psutil>`_
|
140 |
+
- `What's new <https://github.com/giampaolo/psutil/blob/master/HISTORY.rst>`_
|
141 |
+
|
142 |
+
|
143 |
+
Summary
|
144 |
+
=======
|
145 |
+
|
146 |
+
psutil (process and system utilities) is a cross-platform library for
|
147 |
+
retrieving information on **running processes** and **system utilization**
|
148 |
+
(CPU, memory, disks, network, sensors) in Python.
|
149 |
+
It is useful mainly for **system monitoring**, **profiling and limiting process
|
150 |
+
resources** and **management of running processes**.
|
151 |
+
It implements many functionalities offered by classic UNIX command line tools
|
152 |
+
such as *ps, top, iotop, lsof, netstat, ifconfig, free* and others.
|
153 |
+
psutil currently supports the following platforms:
|
154 |
+
|
155 |
+
- **Linux**
|
156 |
+
- **Windows**
|
157 |
+
- **macOS**
|
158 |
+
- **FreeBSD, OpenBSD**, **NetBSD**
|
159 |
+
- **Sun Solaris**
|
160 |
+
- **AIX**
|
161 |
+
|
162 |
+
Supported Python versions are **2.7**, **3.6+** and
|
163 |
+
`PyPy <http://pypy.org/>`__.
|
164 |
+
|
165 |
+
Funding
|
166 |
+
=======
|
167 |
+
|
168 |
+
While psutil is free software and will always be, the project would benefit
|
169 |
+
immensely from some funding.
|
170 |
+
Keeping up with bug reports and maintenance has become hardly sustainable for
|
171 |
+
me alone in terms of time.
|
172 |
+
If you're a company that's making significant use of psutil you can consider
|
173 |
+
becoming a sponsor via `GitHub Sponsors <https://github.com/sponsors/giampaolo>`__,
|
174 |
+
`Open Collective <https://opencollective.com/psutil>`__ or
|
175 |
+
`PayPal <https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=A9ZS7PKKRM3S8>`__
|
176 |
+
and have your logo displayed in here and psutil `doc <https://psutil.readthedocs.io>`__.
|
177 |
+
|
178 |
+
Sponsors
|
179 |
+
========
|
180 |
+
|
181 |
+
.. image:: https://github.com/giampaolo/psutil/raw/master/docs/_static/tidelift-logo.png
|
182 |
+
:width: 200
|
183 |
+
:alt: Alternative text
|
184 |
+
|
185 |
+
`Add your logo <https://github.com/sponsors/giampaolo>`__.
|
186 |
+
|
187 |
+
Example usages
|
188 |
+
==============
|
189 |
+
|
190 |
+
This represents pretty much the whole psutil API.
|
191 |
+
|
192 |
+
CPU
|
193 |
+
---
|
194 |
+
|
195 |
+
.. code-block:: python
|
196 |
+
|
197 |
+
>>> import psutil
|
198 |
+
>>>
|
199 |
+
>>> psutil.cpu_times()
|
200 |
+
scputimes(user=3961.46, nice=169.729, system=2150.659, idle=16900.540, iowait=629.59, irq=0.0, softirq=19.42, steal=0.0, guest=0, guest_nice=0.0)
|
201 |
+
>>>
|
202 |
+
>>> for x in range(3):
|
203 |
+
... psutil.cpu_percent(interval=1)
|
204 |
+
...
|
205 |
+
4.0
|
206 |
+
5.9
|
207 |
+
3.8
|
208 |
+
>>>
|
209 |
+
>>> for x in range(3):
|
210 |
+
... psutil.cpu_percent(interval=1, percpu=True)
|
211 |
+
...
|
212 |
+
[4.0, 6.9, 3.7, 9.2]
|
213 |
+
[7.0, 8.5, 2.4, 2.1]
|
214 |
+
[1.2, 9.0, 9.9, 7.2]
|
215 |
+
>>>
|
216 |
+
>>> for x in range(3):
|
217 |
+
... psutil.cpu_times_percent(interval=1, percpu=False)
|
218 |
+
...
|
219 |
+
scputimes(user=1.5, nice=0.0, system=0.5, idle=96.5, iowait=1.5, irq=0.0, softirq=0.0, steal=0.0, guest=0.0, guest_nice=0.0)
|
220 |
+
scputimes(user=1.0, nice=0.0, system=0.0, idle=99.0, iowait=0.0, irq=0.0, softirq=0.0, steal=0.0, guest=0.0, guest_nice=0.0)
|
221 |
+
scputimes(user=2.0, nice=0.0, system=0.0, idle=98.0, iowait=0.0, irq=0.0, softirq=0.0, steal=0.0, guest=0.0, guest_nice=0.0)
|
222 |
+
>>>
|
223 |
+
>>> psutil.cpu_count()
|
224 |
+
4
|
225 |
+
>>> psutil.cpu_count(logical=False)
|
226 |
+
2
|
227 |
+
>>>
|
228 |
+
>>> psutil.cpu_stats()
|
229 |
+
scpustats(ctx_switches=20455687, interrupts=6598984, soft_interrupts=2134212, syscalls=0)
|
230 |
+
>>>
|
231 |
+
>>> psutil.cpu_freq()
|
232 |
+
scpufreq(current=931.42925, min=800.0, max=3500.0)
|
233 |
+
>>>
|
234 |
+
>>> psutil.getloadavg() # also on Windows (emulated)
|
235 |
+
(3.14, 3.89, 4.67)
|
236 |
+
|
237 |
+
Memory
|
238 |
+
------
|
239 |
+
|
240 |
+
.. code-block:: python
|
241 |
+
|
242 |
+
>>> psutil.virtual_memory()
|
243 |
+
svmem(total=10367352832, available=6472179712, percent=37.6, used=8186245120, free=2181107712, active=4748992512, inactive=2758115328, buffers=790724608, cached=3500347392, shared=787554304)
|
244 |
+
>>> psutil.swap_memory()
|
245 |
+
sswap(total=2097147904, used=296128512, free=1801019392, percent=14.1, sin=304193536, sout=677842944)
|
246 |
+
>>>
|
247 |
+
|
248 |
+
Disks
|
249 |
+
-----
|
250 |
+
|
251 |
+
.. code-block:: python
|
252 |
+
|
253 |
+
>>> psutil.disk_partitions()
|
254 |
+
[sdiskpart(device='/dev/sda1', mountpoint='/', fstype='ext4', opts='rw,nosuid', maxfile=255, maxpath=4096),
|
255 |
+
sdiskpart(device='/dev/sda2', mountpoint='/home', fstype='ext', opts='rw', maxfile=255, maxpath=4096)]
|
256 |
+
>>>
|
257 |
+
>>> psutil.disk_usage('/')
|
258 |
+
sdiskusage(total=21378641920, used=4809781248, free=15482871808, percent=22.5)
|
259 |
+
>>>
|
260 |
+
>>> psutil.disk_io_counters(perdisk=False)
|
261 |
+
sdiskio(read_count=719566, write_count=1082197, read_bytes=18626220032, write_bytes=24081764352, read_time=5023392, write_time=63199568, read_merged_count=619166, write_merged_count=812396, busy_time=4523412)
|
262 |
+
>>>
|
263 |
+
|
264 |
+
Network
|
265 |
+
-------
|
266 |
+
|
267 |
+
.. code-block:: python
|
268 |
+
|
269 |
+
>>> psutil.net_io_counters(pernic=True)
|
270 |
+
{'eth0': netio(bytes_sent=485291293, bytes_recv=6004858642, packets_sent=3251564, packets_recv=4787798, errin=0, errout=0, dropin=0, dropout=0),
|
271 |
+
'lo': netio(bytes_sent=2838627, bytes_recv=2838627, packets_sent=30567, packets_recv=30567, errin=0, errout=0, dropin=0, dropout=0)}
|
272 |
+
>>>
|
273 |
+
>>> psutil.net_connections(kind='tcp')
|
274 |
+
[sconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.135.91', port=80), status='ESTABLISHED', pid=1254),
|
275 |
+
sconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.100', port=80), status='CLOSING', pid=2987),
|
276 |
+
...]
|
277 |
+
>>>
|
278 |
+
>>> psutil.net_if_addrs()
|
279 |
+
{'lo': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', netmask='255.0.0.0', broadcast='127.0.0.1', ptp=None),
|
280 |
+
snicaddr(family=<AddressFamily.AF_INET6: 10>, address='::1', netmask='ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None),
|
281 |
+
snicaddr(family=<AddressFamily.AF_LINK: 17>, address='00:00:00:00:00:00', netmask=None, broadcast='00:00:00:00:00:00', ptp=None)],
|
282 |
+
'wlan0': [snicaddr(family=<AddressFamily.AF_INET: 2>, address='192.168.1.3', netmask='255.255.255.0', broadcast='192.168.1.255', ptp=None),
|
283 |
+
snicaddr(family=<AddressFamily.AF_INET6: 10>, address='fe80::c685:8ff:fe45:641%wlan0', netmask='ffff:ffff:ffff:ffff::', broadcast=None, ptp=None),
|
284 |
+
snicaddr(family=<AddressFamily.AF_LINK: 17>, address='c4:85:08:45:06:41', netmask=None, broadcast='ff:ff:ff:ff:ff:ff', ptp=None)]}
|
285 |
+
>>>
|
286 |
+
>>> psutil.net_if_stats()
|
287 |
+
{'lo': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=65536, flags='up,loopback,running'),
|
288 |
+
'wlan0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_FULL: 2>, speed=100, mtu=1500, flags='up,broadcast,running,multicast')}
|
289 |
+
>>>
|
290 |
+
|
291 |
+
Sensors
|
292 |
+
-------
|
293 |
+
|
294 |
+
.. code-block:: python
|
295 |
+
|
296 |
+
>>> import psutil
|
297 |
+
>>> psutil.sensors_temperatures()
|
298 |
+
{'acpitz': [shwtemp(label='', current=47.0, high=103.0, critical=103.0)],
|
299 |
+
'asus': [shwtemp(label='', current=47.0, high=None, critical=None)],
|
300 |
+
'coretemp': [shwtemp(label='Physical id 0', current=52.0, high=100.0, critical=100.0),
|
301 |
+
shwtemp(label='Core 0', current=45.0, high=100.0, critical=100.0)]}
|
302 |
+
>>>
|
303 |
+
>>> psutil.sensors_fans()
|
304 |
+
{'asus': [sfan(label='cpu_fan', current=3200)]}
|
305 |
+
>>>
|
306 |
+
>>> psutil.sensors_battery()
|
307 |
+
sbattery(percent=93, secsleft=16628, power_plugged=False)
|
308 |
+
>>>
|
309 |
+
|
310 |
+
Other system info
|
311 |
+
-----------------
|
312 |
+
|
313 |
+
.. code-block:: python
|
314 |
+
|
315 |
+
>>> import psutil
|
316 |
+
>>> psutil.users()
|
317 |
+
[suser(name='giampaolo', terminal='pts/2', host='localhost', started=1340737536.0, pid=1352),
|
318 |
+
suser(name='giampaolo', terminal='pts/3', host='localhost', started=1340737792.0, pid=1788)]
|
319 |
+
>>>
|
320 |
+
>>> psutil.boot_time()
|
321 |
+
1365519115.0
|
322 |
+
>>>
|
323 |
+
|
324 |
+
Process management
|
325 |
+
------------------
|
326 |
+
|
327 |
+
.. code-block:: python
|
328 |
+
|
329 |
+
>>> import psutil
|
330 |
+
>>> psutil.pids()
|
331 |
+
[1, 2, 3, 4, 5, 6, 7, 46, 48, 50, 51, 178, 182, 222, 223, 224, 268, 1215,
|
332 |
+
1216, 1220, 1221, 1243, 1244, 1301, 1601, 2237, 2355, 2637, 2774, 3932,
|
333 |
+
4176, 4177, 4185, 4187, 4189, 4225, 4243, 4245, 4263, 4282, 4306, 4311,
|
334 |
+
4312, 4313, 4314, 4337, 4339, 4357, 4358, 4363, 4383, 4395, 4408, 4433,
|
335 |
+
4443, 4445, 4446, 5167, 5234, 5235, 5252, 5318, 5424, 5644, 6987, 7054,
|
336 |
+
7055, 7071]
|
337 |
+
>>>
|
338 |
+
>>> p = psutil.Process(7055)
|
339 |
+
>>> p
|
340 |
+
psutil.Process(pid=7055, name='python3', status='running', started='09:04:44')
|
341 |
+
>>> p.pid
|
342 |
+
7055
|
343 |
+
>>> p.name()
|
344 |
+
'python3'
|
345 |
+
>>> p.exe()
|
346 |
+
'/usr/bin/python3'
|
347 |
+
>>> p.cwd()
|
348 |
+
'/home/giampaolo'
|
349 |
+
>>> p.cmdline()
|
350 |
+
['/usr/bin/python3', 'main.py']
|
351 |
+
>>>
|
352 |
+
>>> p.ppid()
|
353 |
+
7054
|
354 |
+
>>> p.parent()
|
355 |
+
psutil.Process(pid=4699, name='bash', status='sleeping', started='09:06:44')
|
356 |
+
>>> p.parents()
|
357 |
+
[psutil.Process(pid=4699, name='bash', started='09:06:44'),
|
358 |
+
psutil.Process(pid=4689, name='gnome-terminal-server', status='sleeping', started='0:06:44'),
|
359 |
+
psutil.Process(pid=1, name='systemd', status='sleeping', started='05:56:55')]
|
360 |
+
>>> p.children(recursive=True)
|
361 |
+
[psutil.Process(pid=29835, name='python3', status='sleeping', started='11:45:38'),
|
362 |
+
psutil.Process(pid=29836, name='python3', status='waking', started='11:43:39')]
|
363 |
+
>>>
|
364 |
+
>>> p.status()
|
365 |
+
'running'
|
366 |
+
>>> p.create_time()
|
367 |
+
1267551141.5019531
|
368 |
+
>>> p.terminal()
|
369 |
+
'/dev/pts/0'
|
370 |
+
>>>
|
371 |
+
>>> p.username()
|
372 |
+
'giampaolo'
|
373 |
+
>>> p.uids()
|
374 |
+
puids(real=1000, effective=1000, saved=1000)
|
375 |
+
>>> p.gids()
|
376 |
+
pgids(real=1000, effective=1000, saved=1000)
|
377 |
+
>>>
|
378 |
+
>>> p.cpu_times()
|
379 |
+
pcputimes(user=1.02, system=0.31, children_user=0.32, children_system=0.1, iowait=0.0)
|
380 |
+
>>> p.cpu_percent(interval=1.0)
|
381 |
+
12.1
|
382 |
+
>>> p.cpu_affinity()
|
383 |
+
[0, 1, 2, 3]
|
384 |
+
>>> p.cpu_affinity([0, 1]) # set
|
385 |
+
>>> p.cpu_num()
|
386 |
+
1
|
387 |
+
>>>
|
388 |
+
>>> p.memory_info()
|
389 |
+
pmem(rss=10915840, vms=67608576, shared=3313664, text=2310144, lib=0, data=7262208, dirty=0)
|
390 |
+
>>> p.memory_full_info() # "real" USS memory usage (Linux, macOS, Win only)
|
391 |
+
pfullmem(rss=10199040, vms=52133888, shared=3887104, text=2867200, lib=0, data=5967872, dirty=0, uss=6545408, pss=6872064, swap=0)
|
392 |
+
>>> p.memory_percent()
|
393 |
+
0.7823
|
394 |
+
>>> p.memory_maps()
|
395 |
+
[pmmap_grouped(path='/lib/x8664-linux-gnu/libutil-2.15.so', rss=32768, size=2125824, pss=32768, shared_clean=0, shared_dirty=0, private_clean=20480, private_dirty=12288, referenced=32768, anonymous=12288, swap=0),
|
396 |
+
pmmap_grouped(path='/lib/x8664-linux-gnu/libc-2.15.so', rss=3821568, size=3842048, pss=3821568, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=3821568, referenced=3575808, anonymous=3821568, swap=0),
|
397 |
+
pmmap_grouped(path='[heap]', rss=32768, size=139264, pss=32768, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=32768, referenced=32768, anonymous=32768, swap=0),
|
398 |
+
pmmap_grouped(path='[stack]', rss=2465792, size=2494464, pss=2465792, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=2465792, referenced=2277376, anonymous=2465792, swap=0),
|
399 |
+
...]
|
400 |
+
>>>
|
401 |
+
>>> p.io_counters()
|
402 |
+
pio(read_count=478001, write_count=59371, read_bytes=700416, write_bytes=69632, read_chars=456232, write_chars=517543)
|
403 |
+
>>>
|
404 |
+
>>> p.open_files()
|
405 |
+
[popenfile(path='/home/giampaolo/monit.py', fd=3, position=0, mode='r', flags=32768),
|
406 |
+
popenfile(path='/var/log/monit.log', fd=4, position=235542, mode='a', flags=33793)]
|
407 |
+
>>>
|
408 |
+
>>> p.connections(kind='tcp')
|
409 |
+
[pconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.135.91', port=80), status='ESTABLISHED'),
|
410 |
+
pconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.100', port=80), status='CLOSING')]
|
411 |
+
>>>
|
412 |
+
>>> p.threads()
|
413 |
+
[pthread(id=5234, user_time=22.5, system_time=9.2891),
|
414 |
+
pthread(id=5237, user_time=0.0707, system_time=1.1)]
|
415 |
+
>>>
|
416 |
+
>>> p.num_threads()
|
417 |
+
4
|
418 |
+
>>> p.num_fds()
|
419 |
+
8
|
420 |
+
>>> p.num_ctx_switches()
|
421 |
+
pctxsw(voluntary=78, involuntary=19)
|
422 |
+
>>>
|
423 |
+
>>> p.nice()
|
424 |
+
0
|
425 |
+
>>> p.nice(10) # set
|
426 |
+
>>>
|
427 |
+
>>> p.ionice(psutil.IOPRIO_CLASS_IDLE) # IO priority (Win and Linux only)
|
428 |
+
>>> p.ionice()
|
429 |
+
pionice(ioclass=<IOPriority.IOPRIO_CLASS_IDLE: 3>, value=0)
|
430 |
+
>>>
|
431 |
+
>>> p.rlimit(psutil.RLIMIT_NOFILE, (5, 5)) # set resource limits (Linux only)
|
432 |
+
>>> p.rlimit(psutil.RLIMIT_NOFILE)
|
433 |
+
(5, 5)
|
434 |
+
>>>
|
435 |
+
>>> p.environ()
|
436 |
+
{'LC_PAPER': 'it_IT.UTF-8', 'SHELL': '/bin/bash', 'GREP_OPTIONS': '--color=auto',
|
437 |
+
'XDG_CONFIG_DIRS': '/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg',
|
438 |
+
...}
|
439 |
+
>>>
|
440 |
+
>>> p.as_dict()
|
441 |
+
{'status': 'running', 'num_ctx_switches': pctxsw(voluntary=63, involuntary=1), 'pid': 5457, ...}
|
442 |
+
>>> p.is_running()
|
443 |
+
True
|
444 |
+
>>> p.suspend()
|
445 |
+
>>> p.resume()
|
446 |
+
>>>
|
447 |
+
>>> p.terminate()
|
448 |
+
>>> p.kill()
|
449 |
+
>>> p.wait(timeout=3)
|
450 |
+
<Exitcode.EX_OK: 0>
|
451 |
+
>>>
|
452 |
+
>>> psutil.test()
|
453 |
+
USER PID %CPU %MEM VSZ RSS TTY START TIME COMMAND
|
454 |
+
root 1 0.0 0.0 24584 2240 Jun17 00:00 init
|
455 |
+
root 2 0.0 0.0 0 0 Jun17 00:00 kthreadd
|
456 |
+
...
|
457 |
+
giampaolo 31475 0.0 0.0 20760 3024 /dev/pts/0 Jun19 00:00 python2.4
|
458 |
+
giampaolo 31721 0.0 2.2 773060 181896 00:04 10:30 chrome
|
459 |
+
root 31763 0.0 0.0 0 0 00:05 00:00 kworker/0:1
|
460 |
+
>>>
|
461 |
+
|
462 |
+
Further process APIs
|
463 |
+
--------------------
|
464 |
+
|
465 |
+
.. code-block:: python
|
466 |
+
|
467 |
+
>>> import psutil
|
468 |
+
>>> for proc in psutil.process_iter(['pid', 'name']):
|
469 |
+
... print(proc.info)
|
470 |
+
...
|
471 |
+
{'pid': 1, 'name': 'systemd'}
|
472 |
+
{'pid': 2, 'name': 'kthreadd'}
|
473 |
+
{'pid': 3, 'name': 'ksoftirqd/0'}
|
474 |
+
...
|
475 |
+
>>>
|
476 |
+
>>> psutil.pid_exists(3)
|
477 |
+
True
|
478 |
+
>>>
|
479 |
+
>>> def on_terminate(proc):
|
480 |
+
... print("process {} terminated".format(proc))
|
481 |
+
...
|
482 |
+
>>> # waits for multiple processes to terminate
|
483 |
+
>>> gone, alive = psutil.wait_procs(procs_list, timeout=3, callback=on_terminate)
|
484 |
+
>>>
|
485 |
+
|
486 |
+
Windows services
|
487 |
+
----------------
|
488 |
+
|
489 |
+
.. code-block:: python
|
490 |
+
|
491 |
+
>>> list(psutil.win_service_iter())
|
492 |
+
[<WindowsService(name='AeLookupSvc', display_name='Application Experience') at 38850096>,
|
493 |
+
<WindowsService(name='ALG', display_name='Application Layer Gateway Service') at 38850128>,
|
494 |
+
<WindowsService(name='APNMCP', display_name='Ask Update Service') at 38850160>,
|
495 |
+
<WindowsService(name='AppIDSvc', display_name='Application Identity') at 38850192>,
|
496 |
+
...]
|
497 |
+
>>> s = psutil.win_service_get('alg')
|
498 |
+
>>> s.as_dict()
|
499 |
+
{'binpath': 'C:\\Windows\\System32\\alg.exe',
|
500 |
+
'description': 'Provides support for 3rd party protocol plug-ins for Internet Connection Sharing',
|
501 |
+
'display_name': 'Application Layer Gateway Service',
|
502 |
+
'name': 'alg',
|
503 |
+
'pid': None,
|
504 |
+
'start_type': 'manual',
|
505 |
+
'status': 'stopped',
|
506 |
+
'username': 'NT AUTHORITY\\LocalService'}
|
507 |
+
|
508 |
+
Projects using psutil
|
509 |
+
=====================
|
510 |
+
|
511 |
+
Here's some I find particularly interesting:
|
512 |
+
|
513 |
+
- https://github.com/google/grr
|
514 |
+
- https://github.com/facebook/osquery/
|
515 |
+
- https://github.com/nicolargo/glances
|
516 |
+
- https://github.com/aristocratos/bpytop
|
517 |
+
- https://github.com/Jahaja/psdash
|
518 |
+
- https://github.com/ajenti/ajenti
|
519 |
+
- https://github.com/home-assistant/home-assistant/
|
520 |
+
|
521 |
+
Portings
|
522 |
+
========
|
523 |
+
|
524 |
+
- Go: https://github.com/shirou/gopsutil
|
525 |
+
- C: https://github.com/hamon-in/cpslib
|
526 |
+
- Rust: https://github.com/rust-psutil/rust-psutil
|
527 |
+
- Nim: https://github.com/johnscillieri/psutil-nim
|
528 |
+
|
529 |
+
|
530 |
+
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/RECORD
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
psutil-5.9.8.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
psutil-5.9.8.dist-info/LICENSE,sha256=uJwGOzeG4o4MCjjxkx22H-015p3SopZvvs_-4PRsjRA,1548
|
3 |
+
psutil-5.9.8.dist-info/METADATA,sha256=GfZ5-fidrq0yXOCgyN4funClVHk6R_zfJz-3FKx0KjU,21837
|
4 |
+
psutil-5.9.8.dist-info/RECORD,,
|
5 |
+
psutil-5.9.8.dist-info/WHEEL,sha256=rgpVBmjjvbINeGKCkWEGd3f40VHMTsDkQj1Lgil82zE,221
|
6 |
+
psutil-5.9.8.dist-info/top_level.txt,sha256=gCNhn57wzksDjSAISmgMJ0aiXzQulk0GJhb2-BAyYgw,7
|
7 |
+
psutil/__init__.py,sha256=YWf_i2ZjuJqELRfNl6nX0nZuoi09GXqMZPJVsMJMCQQ,89169
|
8 |
+
psutil/__pycache__/__init__.cpython-310.pyc,,
|
9 |
+
psutil/__pycache__/_common.cpython-310.pyc,,
|
10 |
+
psutil/__pycache__/_compat.cpython-310.pyc,,
|
11 |
+
psutil/__pycache__/_psaix.cpython-310.pyc,,
|
12 |
+
psutil/__pycache__/_psbsd.cpython-310.pyc,,
|
13 |
+
psutil/__pycache__/_pslinux.cpython-310.pyc,,
|
14 |
+
psutil/__pycache__/_psosx.cpython-310.pyc,,
|
15 |
+
psutil/__pycache__/_psposix.cpython-310.pyc,,
|
16 |
+
psutil/__pycache__/_pssunos.cpython-310.pyc,,
|
17 |
+
psutil/__pycache__/_pswindows.cpython-310.pyc,,
|
18 |
+
psutil/_common.py,sha256=BTwHxdYJQynrn5i8IOs6XFxLo9L1Eg5cgDCq6Yaypr0,29393
|
19 |
+
psutil/_compat.py,sha256=AOF0vSCWle_sbJ1Gw-CGx0aEI9yk5u70YhPYOPg3KHs,15349
|
20 |
+
psutil/_psaix.py,sha256=1bqEwjk6IG3Y-zrDajKi8oPSYvq3NrqpPUQeDRo4Ugg,18749
|
21 |
+
psutil/_psbsd.py,sha256=FruAJy_GrpjAfHLpb4c3IVGfy2Xii8b1BHnIjxUfbbI,31956
|
22 |
+
psutil/_pslinux.py,sha256=QYI6yHTvRMYZlVxB068xVAEMEAGGRSU9E7-sJD3165o,88043
|
23 |
+
psutil/_psosx.py,sha256=d_KMSzmjL6vAYQx1fQN57b3xazJGdTt4rIysODB1r2g,16209
|
24 |
+
psutil/_psposix.py,sha256=X9rd7WHKQ6mUAn2ihb03MCnzrBtQsrPRkCouExmuagQ,8235
|
25 |
+
psutil/_pssunos.py,sha256=Zx6eLY-0NRUFFIKP7SycktgDoottdnlA9aX8y4e74dY,25559
|
26 |
+
psutil/_psutil_linux.abi3.so,sha256=onwm8BWn6axbKjPqB263JHm6rbDcEvMncKYhhpbu5I4,115304
|
27 |
+
psutil/_psutil_posix.abi3.so,sha256=xNVKy1LdKcnigEe_BpaXfYEg4qad9MkedLwkYh4BaBk,71624
|
28 |
+
psutil/_pswindows.py,sha256=BXgoASpIS6ccw5jTx4V-H2fMsIcSv_NQ6EozsxFgY-0,37734
|
29 |
+
psutil/tests/__init__.py,sha256=gc621Vvgj2NaxusB_zGwfqwP_np3qaCQqJlyPrp1D0k,64753
|
30 |
+
psutil/tests/__main__.py,sha256=f1YY6SZebctd5Hwb1in40nFShfJw4zA2FLidsdg_eY8,269
|
31 |
+
psutil/tests/__pycache__/__init__.cpython-310.pyc,,
|
32 |
+
psutil/tests/__pycache__/__main__.cpython-310.pyc,,
|
33 |
+
psutil/tests/__pycache__/runner.cpython-310.pyc,,
|
34 |
+
psutil/tests/__pycache__/test_aix.cpython-310.pyc,,
|
35 |
+
psutil/tests/__pycache__/test_bsd.cpython-310.pyc,,
|
36 |
+
psutil/tests/__pycache__/test_connections.cpython-310.pyc,,
|
37 |
+
psutil/tests/__pycache__/test_contracts.cpython-310.pyc,,
|
38 |
+
psutil/tests/__pycache__/test_linux.cpython-310.pyc,,
|
39 |
+
psutil/tests/__pycache__/test_memleaks.cpython-310.pyc,,
|
40 |
+
psutil/tests/__pycache__/test_misc.cpython-310.pyc,,
|
41 |
+
psutil/tests/__pycache__/test_osx.cpython-310.pyc,,
|
42 |
+
psutil/tests/__pycache__/test_posix.cpython-310.pyc,,
|
43 |
+
psutil/tests/__pycache__/test_process.cpython-310.pyc,,
|
44 |
+
psutil/tests/__pycache__/test_process_all.cpython-310.pyc,,
|
45 |
+
psutil/tests/__pycache__/test_sunos.cpython-310.pyc,,
|
46 |
+
psutil/tests/__pycache__/test_system.cpython-310.pyc,,
|
47 |
+
psutil/tests/__pycache__/test_testutils.cpython-310.pyc,,
|
48 |
+
psutil/tests/__pycache__/test_unicode.cpython-310.pyc,,
|
49 |
+
psutil/tests/__pycache__/test_windows.cpython-310.pyc,,
|
50 |
+
psutil/tests/runner.py,sha256=WtRnLZ5gS39gIysLCkeV99hw5LvodVwBGesoen9IMNs,11464
|
51 |
+
psutil/tests/test_aix.py,sha256=8SKjFw7cR3byBShlvWAzQSOTjji5Bpnk8JyUksR0AQI,4585
|
52 |
+
psutil/tests/test_bsd.py,sha256=kfNXLsZ1p-VoGtVX4At9qMOS_zN8OMVP9yecuHEWaC4,21245
|
53 |
+
psutil/tests/test_connections.py,sha256=CHL65q2IYxb8ErtJAUh87RyKSCWewwmAg4VFK80arO8,21642
|
54 |
+
psutil/tests/test_contracts.py,sha256=_TAWN7ldbgqJIdh6tMkRDivXPoH6T3jKYG47_KzDvtE,12998
|
55 |
+
psutil/tests/test_linux.py,sha256=LPvhEPUPSQ4MdxBlARPcR4Thsd_wNqKkqj0JqlKkZCo,92530
|
56 |
+
psutil/tests/test_memleaks.py,sha256=pzwEMUaz6Xh8AmN_qiCmYTU2yzot_dwsdbTfFdK89Vk,15012
|
57 |
+
psutil/tests/test_misc.py,sha256=JovYMJNShu2yC3t2sfkFY5uW96TL7K5gkwXnjOR25aQ,35117
|
58 |
+
psutil/tests/test_osx.py,sha256=MQsepO25TlfydaOxjqgEBM4Wri9SnCUkpBLEiQnKv2Q,6603
|
59 |
+
psutil/tests/test_posix.py,sha256=sDam9vdJJWuYNddovhxi1c3K-z4AfTAD0fQyyaeD8YY,17387
|
60 |
+
psutil/tests/test_process.py,sha256=lOq3nOyQQvKRJRaTREO0GB0ErOQGZeqxHsEbn5qs8P4,61535
|
61 |
+
psutil/tests/test_process_all.py,sha256=qkLXnkVVYEqM2IhhID0CzEVWAmD4Ib7i0E4mUjo8J_Y,16112
|
62 |
+
psutil/tests/test_sunos.py,sha256=NhZsHABJKjCEDzGA7ZL62s6NlqpJwpoDybaPB2Bm9HE,1310
|
63 |
+
psutil/tests/test_system.py,sha256=rfzGP_ZuMHxzuTz3CuVxn8-zXNe5_9YCm1Z5JTKXqT8,37044
|
64 |
+
psutil/tests/test_testutils.py,sha256=mBbsRBbUf4VmDrKTbvlSeVqo_5HTM9h4eTE_VZ_5eXc,14828
|
65 |
+
psutil/tests/test_unicode.py,sha256=lKytzxNA72Zdhhz6jnXjVRm-3-79j1zeliPO1SMSVaE,12549
|
66 |
+
psutil/tests/test_windows.py,sha256=D_fKdhp8rsXDF7OrBXLRPS7XMpqXAzqJzbrjPqlL5pE,35298
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/WHEEL
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.37.1)
|
3 |
+
Root-Is-Purelib: false
|
4 |
+
Tag: cp36-abi3-manylinux_2_12_x86_64
|
5 |
+
Tag: cp36-abi3-manylinux2010_x86_64
|
6 |
+
Tag: cp36-abi3-manylinux_2_17_x86_64
|
7 |
+
Tag: cp36-abi3-manylinux2014_x86_64
|
8 |
+
|
env-llmeval/lib/python3.10/site-packages/psutil-5.9.8.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
psutil
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_cell.cpython-310.pyc
ADDED
Binary file (884 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_font.cpython-310.pyc
ADDED
Binary file (887 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_style.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_styler.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_styler_interface.cpython-310.pyc
ADDED
Binary file (1.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/__pycache__/_theme.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_cell.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from ._style import Style
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass(frozen=True)
|
8 |
+
class Cell:
|
9 |
+
"""
|
10 |
+
A data class representing a cell in a table.
|
11 |
+
"""
|
12 |
+
|
13 |
+
row: int
|
14 |
+
"""row index. ``-1`` means that the table header row."""
|
15 |
+
|
16 |
+
col: int
|
17 |
+
"""column index."""
|
18 |
+
|
19 |
+
value: Any
|
20 |
+
"""data for the cell."""
|
21 |
+
|
22 |
+
default_style: Style
|
23 |
+
"""default |Style| for the cell."""
|
24 |
+
|
25 |
+
def is_header_row(self) -> bool:
|
26 |
+
"""
|
27 |
+
Return |True| if the cell is a header.
|
28 |
+
"""
|
29 |
+
|
30 |
+
return self.row < 0
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_style.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from enum import Enum, unique
|
3 |
+
from typing import Any, Dict, Optional, Union
|
4 |
+
|
5 |
+
from dataproperty import Align
|
6 |
+
from tcolorpy import Color
|
7 |
+
|
8 |
+
from .._function import normalize_enum
|
9 |
+
from ._font import FontSize, FontStyle, FontWeight
|
10 |
+
|
11 |
+
|
12 |
+
@unique
|
13 |
+
class DecorationLine(Enum):
|
14 |
+
NONE = "none"
|
15 |
+
LINE_THROUGH = "line_through"
|
16 |
+
STRIKE = "strike"
|
17 |
+
UNDERLINE = "underline"
|
18 |
+
|
19 |
+
|
20 |
+
@unique
|
21 |
+
class ThousandSeparator(Enum):
|
22 |
+
NONE = "none" #: no thousands separator
|
23 |
+
COMMA = "comma" #: ``','`` as thousands separator
|
24 |
+
SPACE = "space" #: ``' '`` as thousands separator
|
25 |
+
UNDERSCORE = "underscore" #: ``'_'`` as thousands separator
|
26 |
+
|
27 |
+
|
28 |
+
@unique
|
29 |
+
class VerticalAlign(Enum):
|
30 |
+
BASELINE = (1 << 0, "baseline")
|
31 |
+
TOP = (1 << 1, "top")
|
32 |
+
MIDDLE = (1 << 2, "middle")
|
33 |
+
BOTTOM = (1 << 3, "bottom")
|
34 |
+
|
35 |
+
@property
|
36 |
+
def align_code(self) -> int:
|
37 |
+
return self.__align_code
|
38 |
+
|
39 |
+
@property
|
40 |
+
def align_str(self) -> str:
|
41 |
+
return self.__align_string
|
42 |
+
|
43 |
+
def __init__(self, code: int, string: str) -> None:
|
44 |
+
self.__align_code = code
|
45 |
+
self.__align_string = string
|
46 |
+
|
47 |
+
|
48 |
+
_s_to_ts: Dict[str, ThousandSeparator] = {
|
49 |
+
"": ThousandSeparator.NONE,
|
50 |
+
",": ThousandSeparator.COMMA,
|
51 |
+
" ": ThousandSeparator.SPACE,
|
52 |
+
"_": ThousandSeparator.UNDERSCORE,
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
def _normalize_thousand_separator(value: Union[str, ThousandSeparator]) -> ThousandSeparator:
|
57 |
+
if isinstance(value, ThousandSeparator):
|
58 |
+
return value
|
59 |
+
|
60 |
+
thousand_separator = normalize_enum(
|
61 |
+
value,
|
62 |
+
ThousandSeparator,
|
63 |
+
default=ThousandSeparator.NONE,
|
64 |
+
validate=False,
|
65 |
+
)
|
66 |
+
if isinstance(thousand_separator, ThousandSeparator):
|
67 |
+
return thousand_separator
|
68 |
+
|
69 |
+
norm_value = _s_to_ts.get(value)
|
70 |
+
if norm_value is None:
|
71 |
+
raise ValueError(f"unknown thousand separator: {value}")
|
72 |
+
|
73 |
+
return norm_value
|
74 |
+
|
75 |
+
|
76 |
+
class Style:
|
77 |
+
"""Style specifier class for table elements.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
color (Union[|str|, tcolorpy.Color, |None|]):
|
81 |
+
Text color for cells.
|
82 |
+
When using str, specify a color code (``"#XXXXXX"``) or a color name.
|
83 |
+
|
84 |
+
.. note::
|
85 |
+
In the current version, only applicable for part of text format writer classes.
|
86 |
+
|
87 |
+
fg_color (Union[|str|, tcolorpy.Color, |None|]):
|
88 |
+
Alias to :py:attr:`~.color`.
|
89 |
+
|
90 |
+
bg_color (Union[|str|, tcolorpy.Color, |None|]):
|
91 |
+
Background color for cells.
|
92 |
+
When using str, specify a color code (``"#XXXXXX"``) or a color name.
|
93 |
+
|
94 |
+
.. note::
|
95 |
+
In the current version, only applicable for part of text format writer classes.
|
96 |
+
|
97 |
+
align (|str| / :py:class:`~.style.Align`):
|
98 |
+
Horizontal text alignment for cells.
|
99 |
+
This can be only applied for text format writer classes.
|
100 |
+
Possible string values are:
|
101 |
+
|
102 |
+
- ``"auto"`` (default)
|
103 |
+
- Detect data type for each column and set alignment that appropriate
|
104 |
+
for the type automatically
|
105 |
+
- ``"left"``
|
106 |
+
- ``"right"``
|
107 |
+
- ``"center"``
|
108 |
+
|
109 |
+
vertical_align (|str| / :py:class:`~.style.VerticalAlign`):
|
110 |
+
Vertical text alignment for cells.
|
111 |
+
This can be only applied for HtmlTableWriter class.
|
112 |
+
Possible string values are:
|
113 |
+
|
114 |
+
- ``"baseline"`` (default)
|
115 |
+
- ``"top"``
|
116 |
+
- ``"middle"``
|
117 |
+
- ``"bottom"``
|
118 |
+
|
119 |
+
font_size (|str| / :py:class:`~.style.FontSize`):
|
120 |
+
Font size specification for cells in a column.
|
121 |
+
This can be only applied for HTML/Latex writer classes.
|
122 |
+
Possible string values are:
|
123 |
+
|
124 |
+
- ``"tiny"``
|
125 |
+
- ``"small"``
|
126 |
+
- ``"medium"``
|
127 |
+
- ``"large"``
|
128 |
+
- ``"none"`` (default: no font size specification)
|
129 |
+
|
130 |
+
font_weight (|str| / :py:class:`~.style.FontWeight`):
|
131 |
+
Font weight specification for cells in a column.
|
132 |
+
This can be only applied for HTML/Latex/Markdown writer classes.
|
133 |
+
Possible string values are:
|
134 |
+
|
135 |
+
- ``"normal"`` (default)
|
136 |
+
- ``"bold"``
|
137 |
+
|
138 |
+
font_style (|str| / :py:class:`~.style.FontStyle`):
|
139 |
+
Font style specification for cells in a column.
|
140 |
+
This can be applied only for HTML/Latex/Markdown writer classes.
|
141 |
+
Possible string values are:
|
142 |
+
|
143 |
+
- ``"normal"`` (default)
|
144 |
+
- ``"italic"``
|
145 |
+
- ``"typewriter"`` (only for Latex writer)
|
146 |
+
|
147 |
+
decoration_line (|str| / :py:class:`~.style.DecorationLine`)
|
148 |
+
|
149 |
+
Experiental.
|
150 |
+
Possible string values are:
|
151 |
+
|
152 |
+
- ``"line-through"``
|
153 |
+
- ``"strike"`` (alias for ``"line-through"``)
|
154 |
+
- ``"underline"``
|
155 |
+
- ``"none"`` (default)
|
156 |
+
|
157 |
+
thousand_separator (|str| / :py:class:`~.style.ThousandSeparator`):
|
158 |
+
Thousand separator specification for numbers in a column.
|
159 |
+
This can be only applied for text format writer classes.
|
160 |
+
Possible string values are:
|
161 |
+
|
162 |
+
- ``","``/``"comma"``
|
163 |
+
- ``" "``/``"space"``
|
164 |
+
- ``"_"``/``"underscore"``
|
165 |
+
- ``""``/``"none"`` (default)
|
166 |
+
|
167 |
+
Example:
|
168 |
+
:ref:`example-style`
|
169 |
+
"""
|
170 |
+
|
171 |
+
@property
|
172 |
+
def align(self) -> Align:
|
173 |
+
return self.__align
|
174 |
+
|
175 |
+
@align.setter
|
176 |
+
def align(self, value: Align) -> None:
|
177 |
+
self.__align = value
|
178 |
+
|
179 |
+
@property
|
180 |
+
def vertical_align(self) -> VerticalAlign:
|
181 |
+
return self.__valign
|
182 |
+
|
183 |
+
@property
|
184 |
+
def decoration_line(self) -> DecorationLine:
|
185 |
+
return self.__decoration_line
|
186 |
+
|
187 |
+
@property
|
188 |
+
def font_size(self) -> FontSize:
|
189 |
+
return self.__font_size
|
190 |
+
|
191 |
+
@property
|
192 |
+
def font_style(self) -> FontStyle:
|
193 |
+
return self.__font_style
|
194 |
+
|
195 |
+
@property
|
196 |
+
def font_weight(self) -> FontWeight:
|
197 |
+
return self.__font_weight
|
198 |
+
|
199 |
+
@property
|
200 |
+
def color(self) -> Optional[Color]:
|
201 |
+
return self.__fg_color
|
202 |
+
|
203 |
+
@property
|
204 |
+
def fg_color(self) -> Optional[Color]:
|
205 |
+
return self.__fg_color
|
206 |
+
|
207 |
+
@property
|
208 |
+
def bg_color(self) -> Optional[Color]:
|
209 |
+
return self.__bg_color
|
210 |
+
|
211 |
+
@property
|
212 |
+
def thousand_separator(self) -> ThousandSeparator:
|
213 |
+
return self.__thousand_separator
|
214 |
+
|
215 |
+
@property
|
216 |
+
def padding(self) -> Optional[int]:
|
217 |
+
return self.__padding
|
218 |
+
|
219 |
+
@padding.setter
|
220 |
+
def padding(self, value: Optional[int]) -> None:
|
221 |
+
self.__padding = value
|
222 |
+
|
223 |
+
def __init__(self, **kwargs: Any) -> None:
|
224 |
+
self.__kwargs = kwargs
|
225 |
+
self.__update_color(initialize=True)
|
226 |
+
self.__update_align(initialize=True)
|
227 |
+
self.__update_font(initialize=True)
|
228 |
+
self.__update_misc(initialize=True)
|
229 |
+
|
230 |
+
if self.__kwargs:
|
231 |
+
warnings.warn(f"unknown style attributes found: {self.__kwargs.keys()}", UserWarning)
|
232 |
+
|
233 |
+
def __repr__(self) -> str:
|
234 |
+
items = []
|
235 |
+
|
236 |
+
if self.align:
|
237 |
+
items.append(f"align={self.align.align_string}")
|
238 |
+
if self.padding is not None:
|
239 |
+
items.append(f"padding={self.padding}")
|
240 |
+
if self.vertical_align:
|
241 |
+
items.append(f"valign={self.vertical_align.align_str}")
|
242 |
+
if self.color:
|
243 |
+
items.append(f"color={self.color}")
|
244 |
+
if self.bg_color:
|
245 |
+
items.append(f"bg_color={self.bg_color}")
|
246 |
+
if self.decoration_line is not DecorationLine.NONE:
|
247 |
+
items.append(f"decoration_line={self.decoration_line.value}")
|
248 |
+
if self.font_size is not FontSize.NONE:
|
249 |
+
items.append(f"font_size={self.font_size.value}")
|
250 |
+
if self.font_style:
|
251 |
+
items.append(f"font_style={self.font_style.value}")
|
252 |
+
if self.font_weight:
|
253 |
+
items.append(f"font_weight={self.font_weight.value}")
|
254 |
+
if self.thousand_separator is not ThousandSeparator.NONE:
|
255 |
+
items.append(f"thousand_separator={self.thousand_separator.value}")
|
256 |
+
|
257 |
+
return "({})".format(", ".join(items))
|
258 |
+
|
259 |
+
def __eq__(self, other: Any) -> bool:
|
260 |
+
if self.__class__ is not other.__class__:
|
261 |
+
return False
|
262 |
+
|
263 |
+
return all(
|
264 |
+
[
|
265 |
+
self.align == other.align,
|
266 |
+
self.font_size == other.font_size,
|
267 |
+
self.font_style == other.font_style,
|
268 |
+
self.font_weight == other.font_weight,
|
269 |
+
self.thousand_separator == other.thousand_separator,
|
270 |
+
]
|
271 |
+
)
|
272 |
+
|
273 |
+
def __ne__(self, other: Any) -> bool:
|
274 |
+
if self.__class__ is not other.__class__:
|
275 |
+
return True
|
276 |
+
|
277 |
+
return not self.__eq__(other)
|
278 |
+
|
279 |
+
def update(self, **kwargs: Any) -> None:
|
280 |
+
"""Update specified style attributes."""
|
281 |
+
self.__kwargs = kwargs
|
282 |
+
self.__update_color(initialize=False)
|
283 |
+
self.__update_align(initialize=False)
|
284 |
+
self.__update_font(initialize=False)
|
285 |
+
self.__update_misc(initialize=False)
|
286 |
+
|
287 |
+
if self.__kwargs:
|
288 |
+
warnings.warn(f"unknown style attributes found: {self.__kwargs.keys()}", UserWarning)
|
289 |
+
|
290 |
+
def __update_color(self, initialize: bool) -> None:
|
291 |
+
fg_color = self.__kwargs.pop("color", None) or self.__kwargs.pop("fg_color", None)
|
292 |
+
if fg_color:
|
293 |
+
self.__fg_color: Optional[Color] = Color(fg_color)
|
294 |
+
elif initialize:
|
295 |
+
self.__fg_color = None
|
296 |
+
|
297 |
+
bg_color = self.__kwargs.pop("bg_color", None)
|
298 |
+
if bg_color:
|
299 |
+
self.__bg_color: Optional[Color] = Color(bg_color)
|
300 |
+
elif initialize:
|
301 |
+
self.__bg_color = None
|
302 |
+
|
303 |
+
def __update_font(self, initialize: bool) -> None:
|
304 |
+
font_size = self.__kwargs.pop("font_size", None)
|
305 |
+
if font_size:
|
306 |
+
self.__font_size = normalize_enum(
|
307 |
+
font_size,
|
308 |
+
FontSize,
|
309 |
+
validate=False,
|
310 |
+
default=FontSize.NONE,
|
311 |
+
)
|
312 |
+
elif initialize:
|
313 |
+
self.__font_size = FontSize.NONE
|
314 |
+
self.__validate_attr("font_size", (FontSize, str))
|
315 |
+
|
316 |
+
font_style = self.__kwargs.pop("font_style", None)
|
317 |
+
if font_style:
|
318 |
+
self.__font_style = normalize_enum(font_style, FontStyle, default=FontStyle.NORMAL)
|
319 |
+
elif initialize:
|
320 |
+
self.__font_style = FontStyle.NORMAL
|
321 |
+
self.__validate_attr("font_style", FontStyle)
|
322 |
+
|
323 |
+
font_weight = self.__kwargs.pop("font_weight", None)
|
324 |
+
if font_weight:
|
325 |
+
self.__font_weight = normalize_enum(font_weight, FontWeight, default=FontWeight.NORMAL)
|
326 |
+
elif initialize:
|
327 |
+
self.__font_weight = FontWeight.NORMAL
|
328 |
+
self.__validate_attr("font_weight", FontWeight)
|
329 |
+
|
330 |
+
def __update_align(self, initialize: bool) -> None:
|
331 |
+
align = self.__kwargs.pop("align", None)
|
332 |
+
if align:
|
333 |
+
self.__align = normalize_enum(align, Align, default=Align.AUTO)
|
334 |
+
elif initialize:
|
335 |
+
self.__align = Align.AUTO
|
336 |
+
self.__validate_attr("align", Align)
|
337 |
+
|
338 |
+
valign = self.__kwargs.pop("vertical_align", None)
|
339 |
+
if valign:
|
340 |
+
self.__valign = normalize_enum(valign, VerticalAlign, default=VerticalAlign.BASELINE)
|
341 |
+
elif initialize:
|
342 |
+
self.__valign = VerticalAlign.BASELINE
|
343 |
+
self.__validate_attr("vertical_align", VerticalAlign)
|
344 |
+
|
345 |
+
def __update_misc(self, initialize: bool) -> None:
|
346 |
+
padding = self.__kwargs.pop("padding", None)
|
347 |
+
if padding is not None:
|
348 |
+
self.__padding = padding
|
349 |
+
elif initialize:
|
350 |
+
self.__padding = None
|
351 |
+
|
352 |
+
decoration_line = self.__kwargs.pop("decoration_line", None)
|
353 |
+
if decoration_line:
|
354 |
+
self.__decoration_line = normalize_enum(
|
355 |
+
decoration_line, DecorationLine, default=DecorationLine.NONE
|
356 |
+
)
|
357 |
+
elif initialize:
|
358 |
+
self.__decoration_line = DecorationLine.NONE
|
359 |
+
self.__validate_attr("decoration_line", DecorationLine)
|
360 |
+
|
361 |
+
thousand_separator = self.__kwargs.pop("thousand_separator", None)
|
362 |
+
if thousand_separator:
|
363 |
+
self.__thousand_separator = _normalize_thousand_separator(thousand_separator)
|
364 |
+
elif initialize:
|
365 |
+
self.__thousand_separator = ThousandSeparator.NONE
|
366 |
+
self.__validate_attr("thousand_separator", ThousandSeparator)
|
367 |
+
|
368 |
+
def __validate_attr(self, attr_name: str, expected_type: Any) -> None:
|
369 |
+
value = getattr(self, attr_name)
|
370 |
+
if isinstance(expected_type, (list, tuple)):
|
371 |
+
expected = " or ".join(c.__name__ for c in expected_type)
|
372 |
+
else:
|
373 |
+
expected = expected_type.__name__
|
374 |
+
|
375 |
+
if not isinstance(value, expected_type):
|
376 |
+
raise TypeError(f"{attr_name} must be instance of {expected}: actual={type(value)}")
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/style/_theme.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import pkgutil
|
3 |
+
import re
|
4 |
+
from typing import Any, Dict, NamedTuple, Optional, Sequence
|
5 |
+
|
6 |
+
from .._logger import logger
|
7 |
+
from ..style import Cell, Style
|
8 |
+
|
9 |
+
|
10 |
+
try:
|
11 |
+
from typing import Protocol
|
12 |
+
except ImportError:
|
13 |
+
# typing.Protocol is only available starting from Python 3.8.
|
14 |
+
from .._typing import Protocol # type: ignore
|
15 |
+
|
16 |
+
PLUGIN_NAME_PEFIX = "pytablewriter"
|
17 |
+
PLUGIN_NAME_SUFFIX = "theme"
|
18 |
+
KNOWN_PLUGINS = (
|
19 |
+
f"{PLUGIN_NAME_PEFIX}_altrow_{PLUGIN_NAME_SUFFIX}",
|
20 |
+
f"{PLUGIN_NAME_PEFIX}_altcol_{PLUGIN_NAME_SUFFIX}",
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class StyleFilterFunc(Protocol):
|
25 |
+
def __call__(self, cell: Cell, **kwargs: Any) -> Optional[Style]:
|
26 |
+
...
|
27 |
+
|
28 |
+
|
29 |
+
class ColSeparatorStyleFilterFunc(Protocol):
|
30 |
+
def __call__(
|
31 |
+
self, left_cell: Optional[Cell], right_cell: Optional[Cell], **kwargs: Any
|
32 |
+
) -> Optional[Style]:
|
33 |
+
...
|
34 |
+
|
35 |
+
|
36 |
+
class CheckStyleFilterKeywordArgsFunc(Protocol):
|
37 |
+
def __call__(self, **kwargs: Any) -> None:
|
38 |
+
...
|
39 |
+
|
40 |
+
|
41 |
+
class Theme(NamedTuple):
|
42 |
+
style_filter: Optional[StyleFilterFunc]
|
43 |
+
col_separator_style_filter: Optional[ColSeparatorStyleFilterFunc]
|
44 |
+
check_style_filter_kwargs: Optional[CheckStyleFilterKeywordArgsFunc]
|
45 |
+
|
46 |
+
|
47 |
+
def list_themes() -> Sequence[str]:
|
48 |
+
return list(load_ptw_plugins())
|
49 |
+
|
50 |
+
|
51 |
+
def load_ptw_plugins() -> Dict[str, Theme]:
|
52 |
+
plugin_regexp = re.compile(
|
53 |
+
rf"^{PLUGIN_NAME_PEFIX}[_-].+[_-]{PLUGIN_NAME_SUFFIX}", re.IGNORECASE
|
54 |
+
)
|
55 |
+
|
56 |
+
discovered_plugins = {
|
57 |
+
name: importlib.import_module(name)
|
58 |
+
for _finder, name, _ispkg in pkgutil.iter_modules()
|
59 |
+
if plugin_regexp.search(name) is not None
|
60 |
+
}
|
61 |
+
|
62 |
+
logger.debug(f"discovered_plugins: {list(discovered_plugins)}")
|
63 |
+
|
64 |
+
themes: Dict[str, Theme] = {}
|
65 |
+
for theme, plugin in discovered_plugins.items():
|
66 |
+
style_filter = plugin.style_filter if hasattr(plugin, "style_filter") else None
|
67 |
+
col_sep_style_filter = (
|
68 |
+
plugin.col_separator_style_filter
|
69 |
+
if hasattr(plugin, "col_separator_style_filter")
|
70 |
+
else None
|
71 |
+
)
|
72 |
+
check_kwargs_func = (
|
73 |
+
plugin.check_style_filter_kwargs
|
74 |
+
if hasattr(plugin, "check_style_filter_kwargs")
|
75 |
+
else None
|
76 |
+
)
|
77 |
+
themes[theme] = Theme(style_filter, col_sep_style_filter, check_kwargs_func)
|
78 |
+
|
79 |
+
return themes
|
80 |
+
|
81 |
+
|
82 |
+
def fetch_theme(plugin_name: str) -> Theme:
|
83 |
+
loaded_themes = load_ptw_plugins()
|
84 |
+
theme_regexp = re.compile(
|
85 |
+
rf"^{PLUGIN_NAME_PEFIX}[_-]{plugin_name}[_-]{PLUGIN_NAME_SUFFIX}", re.IGNORECASE
|
86 |
+
)
|
87 |
+
matched_theme = None
|
88 |
+
|
89 |
+
for loaded_theme in loaded_themes:
|
90 |
+
if theme_regexp.search(loaded_theme):
|
91 |
+
matched_theme = loaded_theme
|
92 |
+
break
|
93 |
+
else:
|
94 |
+
err_msgs = [f"{plugin_name} theme is not installed."]
|
95 |
+
|
96 |
+
if plugin_name in KNOWN_PLUGINS:
|
97 |
+
err_msgs.append(f"try 'pip install {plugin_name}' to install the theme.")
|
98 |
+
|
99 |
+
raise RuntimeError(" ".join(err_msgs))
|
100 |
+
|
101 |
+
return loaded_themes[matched_theme]
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_common.cpython-310.pyc
ADDED
Binary file (411 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_elasticsearch.cpython-310.pyc
ADDED
Binary file (6.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_interface.cpython-310.pyc
ADDED
Binary file (3.56 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_msgfy.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_null.cpython-310.pyc
ADDED
Binary file (2.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/__pycache__/_table_writer.cpython-310.pyc
ADDED
Binary file (37.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/_asciidoc.cpython-310.pyc
ADDED
Binary file (5.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pytablewriter/writer/text/__pycache__/_borderless.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|