Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_fillna.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_insert.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_repeat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_shift.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_astype.py +176 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_insert.py +145 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_repeat.py +34 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_shift.py +76 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_ops.py +14 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_searchsorted.py +28 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_setops.py +254 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_timedelta_range.py +173 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_crosstab.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_cut.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_from_dummies.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_get_dummies.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_melt.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_pivot.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_pivot_multilevel.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_qcut.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_union_categoricals.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/conftest.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_append_common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_categorical.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_concat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_dataframe.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_datetimes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_empty.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_index.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_invalid.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_series.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_sort.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/conftest.py +7 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_append.py +389 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_append_common.py +753 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_categorical.py +273 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_concat.py +912 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_dataframe.py +230 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_datetimes.py +606 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_empty.py +295 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_index.py +472 -0
- env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_invalid.py +54 -0
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (204 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_fillna.cpython-310.pyc
ADDED
Binary file (925 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_insert.cpython-310.pyc
ADDED
Binary file (4.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_repeat.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_shift.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_astype.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import (
|
8 |
+
Index,
|
9 |
+
NaT,
|
10 |
+
Timedelta,
|
11 |
+
TimedeltaIndex,
|
12 |
+
timedelta_range,
|
13 |
+
)
|
14 |
+
import pandas._testing as tm
|
15 |
+
from pandas.core.arrays import TimedeltaArray
|
16 |
+
|
17 |
+
|
18 |
+
class TestTimedeltaIndex:
|
19 |
+
def test_astype_object(self):
|
20 |
+
idx = timedelta_range(start="1 days", periods=4, freq="D", name="idx")
|
21 |
+
expected_list = [
|
22 |
+
Timedelta("1 days"),
|
23 |
+
Timedelta("2 days"),
|
24 |
+
Timedelta("3 days"),
|
25 |
+
Timedelta("4 days"),
|
26 |
+
]
|
27 |
+
result = idx.astype(object)
|
28 |
+
expected = Index(expected_list, dtype=object, name="idx")
|
29 |
+
tm.assert_index_equal(result, expected)
|
30 |
+
assert idx.tolist() == expected_list
|
31 |
+
|
32 |
+
def test_astype_object_with_nat(self):
|
33 |
+
idx = TimedeltaIndex(
|
34 |
+
[timedelta(days=1), timedelta(days=2), NaT, timedelta(days=4)], name="idx"
|
35 |
+
)
|
36 |
+
expected_list = [
|
37 |
+
Timedelta("1 days"),
|
38 |
+
Timedelta("2 days"),
|
39 |
+
NaT,
|
40 |
+
Timedelta("4 days"),
|
41 |
+
]
|
42 |
+
result = idx.astype(object)
|
43 |
+
expected = Index(expected_list, dtype=object, name="idx")
|
44 |
+
tm.assert_index_equal(result, expected)
|
45 |
+
assert idx.tolist() == expected_list
|
46 |
+
|
47 |
+
def test_astype(self):
|
48 |
+
# GH 13149, GH 13209
|
49 |
+
idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan], name="idx")
|
50 |
+
|
51 |
+
result = idx.astype(object)
|
52 |
+
expected = Index(
|
53 |
+
[Timedelta("1 days 03:46:40")] + [NaT] * 3, dtype=object, name="idx"
|
54 |
+
)
|
55 |
+
tm.assert_index_equal(result, expected)
|
56 |
+
|
57 |
+
result = idx.astype(np.int64)
|
58 |
+
expected = Index(
|
59 |
+
[100000000000000] + [-9223372036854775808] * 3, dtype=np.int64, name="idx"
|
60 |
+
)
|
61 |
+
tm.assert_index_equal(result, expected)
|
62 |
+
|
63 |
+
result = idx.astype(str)
|
64 |
+
expected = Index([str(x) for x in idx], name="idx", dtype=object)
|
65 |
+
tm.assert_index_equal(result, expected)
|
66 |
+
|
67 |
+
rng = timedelta_range("1 days", periods=10)
|
68 |
+
result = rng.astype("i8")
|
69 |
+
tm.assert_index_equal(result, Index(rng.asi8))
|
70 |
+
tm.assert_numpy_array_equal(rng.asi8, result.values)
|
71 |
+
|
72 |
+
def test_astype_uint(self):
|
73 |
+
arr = timedelta_range("1h", periods=2)
|
74 |
+
|
75 |
+
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
|
76 |
+
arr.astype("uint64")
|
77 |
+
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
|
78 |
+
arr.astype("uint32")
|
79 |
+
|
80 |
+
def test_astype_timedelta64(self):
|
81 |
+
# GH 13149, GH 13209
|
82 |
+
idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan])
|
83 |
+
|
84 |
+
msg = (
|
85 |
+
r"Cannot convert from timedelta64\[ns\] to timedelta64. "
|
86 |
+
"Supported resolutions are 's', 'ms', 'us', 'ns'"
|
87 |
+
)
|
88 |
+
with pytest.raises(ValueError, match=msg):
|
89 |
+
idx.astype("timedelta64")
|
90 |
+
|
91 |
+
result = idx.astype("timedelta64[ns]")
|
92 |
+
tm.assert_index_equal(result, idx)
|
93 |
+
assert result is not idx
|
94 |
+
|
95 |
+
result = idx.astype("timedelta64[ns]", copy=False)
|
96 |
+
tm.assert_index_equal(result, idx)
|
97 |
+
assert result is idx
|
98 |
+
|
99 |
+
def test_astype_to_td64d_raises(self, index_or_series):
|
100 |
+
# We don't support "D" reso
|
101 |
+
scalar = Timedelta(days=31)
|
102 |
+
td = index_or_series(
|
103 |
+
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
|
104 |
+
dtype="m8[ns]",
|
105 |
+
)
|
106 |
+
msg = (
|
107 |
+
r"Cannot convert from timedelta64\[ns\] to timedelta64\[D\]. "
|
108 |
+
"Supported resolutions are 's', 'ms', 'us', 'ns'"
|
109 |
+
)
|
110 |
+
with pytest.raises(ValueError, match=msg):
|
111 |
+
td.astype("timedelta64[D]")
|
112 |
+
|
113 |
+
def test_astype_ms_to_s(self, index_or_series):
|
114 |
+
scalar = Timedelta(days=31)
|
115 |
+
td = index_or_series(
|
116 |
+
[scalar, scalar, scalar + timedelta(minutes=5, seconds=3), NaT],
|
117 |
+
dtype="m8[ns]",
|
118 |
+
)
|
119 |
+
|
120 |
+
exp_values = np.asarray(td).astype("m8[s]")
|
121 |
+
exp_tda = TimedeltaArray._simple_new(exp_values, dtype=exp_values.dtype)
|
122 |
+
expected = index_or_series(exp_tda)
|
123 |
+
assert expected.dtype == "m8[s]"
|
124 |
+
result = td.astype("timedelta64[s]")
|
125 |
+
tm.assert_equal(result, expected)
|
126 |
+
|
127 |
+
def test_astype_freq_conversion(self):
|
128 |
+
# pre-2.0 td64 astype converted to float64. now for supported units
|
129 |
+
# (s, ms, us, ns) this converts to the requested dtype.
|
130 |
+
# This matches TDA and Series
|
131 |
+
tdi = timedelta_range("1 Day", periods=30)
|
132 |
+
|
133 |
+
res = tdi.astype("m8[s]")
|
134 |
+
exp_values = np.asarray(tdi).astype("m8[s]")
|
135 |
+
exp_tda = TimedeltaArray._simple_new(
|
136 |
+
exp_values, dtype=exp_values.dtype, freq=tdi.freq
|
137 |
+
)
|
138 |
+
expected = Index(exp_tda)
|
139 |
+
assert expected.dtype == "m8[s]"
|
140 |
+
tm.assert_index_equal(res, expected)
|
141 |
+
|
142 |
+
# check this matches Series and TimedeltaArray
|
143 |
+
res = tdi._data.astype("m8[s]")
|
144 |
+
tm.assert_equal(res, expected._values)
|
145 |
+
|
146 |
+
res = tdi.to_series().astype("m8[s]")
|
147 |
+
tm.assert_equal(res._values, expected._values._with_freq(None))
|
148 |
+
|
149 |
+
@pytest.mark.parametrize("dtype", [float, "datetime64", "datetime64[ns]"])
|
150 |
+
def test_astype_raises(self, dtype):
|
151 |
+
# GH 13149, GH 13209
|
152 |
+
idx = TimedeltaIndex([1e14, "NaT", NaT, np.nan])
|
153 |
+
msg = "Cannot cast TimedeltaIndex to dtype"
|
154 |
+
with pytest.raises(TypeError, match=msg):
|
155 |
+
idx.astype(dtype)
|
156 |
+
|
157 |
+
def test_astype_category(self):
|
158 |
+
obj = timedelta_range("1h", periods=2, freq="h")
|
159 |
+
|
160 |
+
result = obj.astype("category")
|
161 |
+
expected = pd.CategoricalIndex([Timedelta("1h"), Timedelta("2h")])
|
162 |
+
tm.assert_index_equal(result, expected)
|
163 |
+
|
164 |
+
result = obj._data.astype("category")
|
165 |
+
expected = expected.values
|
166 |
+
tm.assert_categorical_equal(result, expected)
|
167 |
+
|
168 |
+
def test_astype_array_fallback(self):
|
169 |
+
obj = timedelta_range("1h", periods=2)
|
170 |
+
result = obj.astype(bool)
|
171 |
+
expected = Index(np.array([True, True]))
|
172 |
+
tm.assert_index_equal(result, expected)
|
173 |
+
|
174 |
+
result = obj._data.astype(bool)
|
175 |
+
expected = np.array([True, True])
|
176 |
+
tm.assert_numpy_array_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_insert.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas._libs import lib
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
Index,
|
11 |
+
Timedelta,
|
12 |
+
TimedeltaIndex,
|
13 |
+
timedelta_range,
|
14 |
+
)
|
15 |
+
import pandas._testing as tm
|
16 |
+
|
17 |
+
|
18 |
+
class TestTimedeltaIndexInsert:
|
19 |
+
def test_insert(self):
|
20 |
+
idx = TimedeltaIndex(["4day", "1day", "2day"], name="idx")
|
21 |
+
|
22 |
+
result = idx.insert(2, timedelta(days=5))
|
23 |
+
exp = TimedeltaIndex(["4day", "1day", "5day", "2day"], name="idx")
|
24 |
+
tm.assert_index_equal(result, exp)
|
25 |
+
|
26 |
+
# insertion of non-datetime should coerce to object index
|
27 |
+
result = idx.insert(1, "inserted")
|
28 |
+
expected = Index(
|
29 |
+
[Timedelta("4day"), "inserted", Timedelta("1day"), Timedelta("2day")],
|
30 |
+
name="idx",
|
31 |
+
)
|
32 |
+
assert not isinstance(result, TimedeltaIndex)
|
33 |
+
tm.assert_index_equal(result, expected)
|
34 |
+
assert result.name == expected.name
|
35 |
+
|
36 |
+
idx = timedelta_range("1day 00:00:01", periods=3, freq="s", name="idx")
|
37 |
+
|
38 |
+
# preserve freq
|
39 |
+
expected_0 = TimedeltaIndex(
|
40 |
+
["1day", "1day 00:00:01", "1day 00:00:02", "1day 00:00:03"],
|
41 |
+
name="idx",
|
42 |
+
freq="s",
|
43 |
+
)
|
44 |
+
expected_3 = TimedeltaIndex(
|
45 |
+
["1day 00:00:01", "1day 00:00:02", "1day 00:00:03", "1day 00:00:04"],
|
46 |
+
name="idx",
|
47 |
+
freq="s",
|
48 |
+
)
|
49 |
+
|
50 |
+
# reset freq to None
|
51 |
+
expected_1_nofreq = TimedeltaIndex(
|
52 |
+
["1day 00:00:01", "1day 00:00:01", "1day 00:00:02", "1day 00:00:03"],
|
53 |
+
name="idx",
|
54 |
+
freq=None,
|
55 |
+
)
|
56 |
+
expected_3_nofreq = TimedeltaIndex(
|
57 |
+
["1day 00:00:01", "1day 00:00:02", "1day 00:00:03", "1day 00:00:05"],
|
58 |
+
name="idx",
|
59 |
+
freq=None,
|
60 |
+
)
|
61 |
+
|
62 |
+
cases = [
|
63 |
+
(0, Timedelta("1day"), expected_0),
|
64 |
+
(-3, Timedelta("1day"), expected_0),
|
65 |
+
(3, Timedelta("1day 00:00:04"), expected_3),
|
66 |
+
(1, Timedelta("1day 00:00:01"), expected_1_nofreq),
|
67 |
+
(3, Timedelta("1day 00:00:05"), expected_3_nofreq),
|
68 |
+
]
|
69 |
+
|
70 |
+
for n, d, expected in cases:
|
71 |
+
result = idx.insert(n, d)
|
72 |
+
tm.assert_index_equal(result, expected)
|
73 |
+
assert result.name == expected.name
|
74 |
+
assert result.freq == expected.freq
|
75 |
+
|
76 |
+
@pytest.mark.parametrize(
|
77 |
+
"null", [None, np.nan, np.timedelta64("NaT"), pd.NaT, pd.NA]
|
78 |
+
)
|
79 |
+
def test_insert_nat(self, null):
|
80 |
+
# GH 18295 (test missing)
|
81 |
+
idx = timedelta_range("1day", "3day")
|
82 |
+
result = idx.insert(1, null)
|
83 |
+
expected = TimedeltaIndex(["1day", pd.NaT, "2day", "3day"])
|
84 |
+
tm.assert_index_equal(result, expected)
|
85 |
+
|
86 |
+
def test_insert_invalid_na(self):
|
87 |
+
idx = TimedeltaIndex(["4day", "1day", "2day"], name="idx")
|
88 |
+
|
89 |
+
item = np.datetime64("NaT")
|
90 |
+
result = idx.insert(0, item)
|
91 |
+
|
92 |
+
expected = Index([item] + list(idx), dtype=object, name="idx")
|
93 |
+
tm.assert_index_equal(result, expected)
|
94 |
+
|
95 |
+
# Also works if we pass a different dt64nat object
|
96 |
+
item2 = np.datetime64("NaT")
|
97 |
+
result = idx.insert(0, item2)
|
98 |
+
tm.assert_index_equal(result, expected)
|
99 |
+
|
100 |
+
@pytest.mark.parametrize(
|
101 |
+
"item", [0, np.int64(0), np.float64(0), np.array(0), np.datetime64(456, "us")]
|
102 |
+
)
|
103 |
+
def test_insert_mismatched_types_raises(self, item):
|
104 |
+
# GH#33703 dont cast these to td64
|
105 |
+
tdi = TimedeltaIndex(["4day", "1day", "2day"], name="idx")
|
106 |
+
|
107 |
+
result = tdi.insert(1, item)
|
108 |
+
|
109 |
+
expected = Index(
|
110 |
+
[tdi[0], lib.item_from_zerodim(item)] + list(tdi[1:]),
|
111 |
+
dtype=object,
|
112 |
+
name="idx",
|
113 |
+
)
|
114 |
+
tm.assert_index_equal(result, expected)
|
115 |
+
|
116 |
+
def test_insert_castable_str(self):
|
117 |
+
idx = timedelta_range("1day", "3day")
|
118 |
+
|
119 |
+
result = idx.insert(0, "1 Day")
|
120 |
+
|
121 |
+
expected = TimedeltaIndex([idx[0]] + list(idx))
|
122 |
+
tm.assert_index_equal(result, expected)
|
123 |
+
|
124 |
+
def test_insert_non_castable_str(self):
|
125 |
+
idx = timedelta_range("1day", "3day")
|
126 |
+
|
127 |
+
result = idx.insert(0, "foo")
|
128 |
+
|
129 |
+
expected = Index(["foo"] + list(idx), dtype=object)
|
130 |
+
tm.assert_index_equal(result, expected)
|
131 |
+
|
132 |
+
def test_insert_empty(self):
|
133 |
+
# Corner case inserting with length zero doesn't raise IndexError
|
134 |
+
# GH#33573 for freq preservation
|
135 |
+
idx = timedelta_range("1 Day", periods=3)
|
136 |
+
td = idx[0]
|
137 |
+
|
138 |
+
result = idx[:0].insert(0, td)
|
139 |
+
assert result.freq == "D"
|
140 |
+
|
141 |
+
with pytest.raises(IndexError, match="loc must be an integer between"):
|
142 |
+
result = idx[:0].insert(1, td)
|
143 |
+
|
144 |
+
with pytest.raises(IndexError, match="loc must be an integer between"):
|
145 |
+
result = idx[:0].insert(-1, td)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_repeat.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas import (
|
4 |
+
TimedeltaIndex,
|
5 |
+
timedelta_range,
|
6 |
+
)
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
class TestRepeat:
|
11 |
+
def test_repeat(self):
|
12 |
+
index = timedelta_range("1 days", periods=2, freq="D")
|
13 |
+
exp = TimedeltaIndex(["1 days", "1 days", "2 days", "2 days"])
|
14 |
+
for res in [index.repeat(2), np.repeat(index, 2)]:
|
15 |
+
tm.assert_index_equal(res, exp)
|
16 |
+
assert res.freq is None
|
17 |
+
|
18 |
+
index = TimedeltaIndex(["1 days", "NaT", "3 days"])
|
19 |
+
exp = TimedeltaIndex(
|
20 |
+
[
|
21 |
+
"1 days",
|
22 |
+
"1 days",
|
23 |
+
"1 days",
|
24 |
+
"NaT",
|
25 |
+
"NaT",
|
26 |
+
"NaT",
|
27 |
+
"3 days",
|
28 |
+
"3 days",
|
29 |
+
"3 days",
|
30 |
+
]
|
31 |
+
)
|
32 |
+
for res in [index.repeat(3), np.repeat(index, 3)]:
|
33 |
+
tm.assert_index_equal(res, exp)
|
34 |
+
assert res.freq is None
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/test_shift.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from pandas.errors import NullFrequencyError
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from pandas import TimedeltaIndex
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
class TestTimedeltaIndexShift:
|
11 |
+
# -------------------------------------------------------------
|
12 |
+
# TimedeltaIndex.shift is used by __add__/__sub__
|
13 |
+
|
14 |
+
def test_tdi_shift_empty(self):
|
15 |
+
# GH#9903
|
16 |
+
idx = TimedeltaIndex([], name="xxx")
|
17 |
+
tm.assert_index_equal(idx.shift(0, freq="h"), idx)
|
18 |
+
tm.assert_index_equal(idx.shift(3, freq="h"), idx)
|
19 |
+
|
20 |
+
def test_tdi_shift_hours(self):
|
21 |
+
# GH#9903
|
22 |
+
idx = TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
|
23 |
+
tm.assert_index_equal(idx.shift(0, freq="h"), idx)
|
24 |
+
exp = TimedeltaIndex(["8 hours", "9 hours", "12 hours"], name="xxx")
|
25 |
+
tm.assert_index_equal(idx.shift(3, freq="h"), exp)
|
26 |
+
exp = TimedeltaIndex(["2 hours", "3 hours", "6 hours"], name="xxx")
|
27 |
+
tm.assert_index_equal(idx.shift(-3, freq="h"), exp)
|
28 |
+
|
29 |
+
def test_tdi_shift_minutes(self):
|
30 |
+
# GH#9903
|
31 |
+
idx = TimedeltaIndex(["5 hours", "6 hours", "9 hours"], name="xxx")
|
32 |
+
tm.assert_index_equal(idx.shift(0, freq="min"), idx)
|
33 |
+
exp = TimedeltaIndex(["05:03:00", "06:03:00", "9:03:00"], name="xxx")
|
34 |
+
tm.assert_index_equal(idx.shift(3, freq="min"), exp)
|
35 |
+
exp = TimedeltaIndex(["04:57:00", "05:57:00", "8:57:00"], name="xxx")
|
36 |
+
tm.assert_index_equal(idx.shift(-3, freq="min"), exp)
|
37 |
+
|
38 |
+
def test_tdi_shift_int(self):
|
39 |
+
# GH#8083
|
40 |
+
tdi = pd.to_timedelta(range(5), unit="d")
|
41 |
+
trange = tdi._with_freq("infer") + pd.offsets.Hour(1)
|
42 |
+
result = trange.shift(1)
|
43 |
+
expected = TimedeltaIndex(
|
44 |
+
[
|
45 |
+
"1 days 01:00:00",
|
46 |
+
"2 days 01:00:00",
|
47 |
+
"3 days 01:00:00",
|
48 |
+
"4 days 01:00:00",
|
49 |
+
"5 days 01:00:00",
|
50 |
+
],
|
51 |
+
freq="D",
|
52 |
+
)
|
53 |
+
tm.assert_index_equal(result, expected)
|
54 |
+
|
55 |
+
def test_tdi_shift_nonstandard_freq(self):
|
56 |
+
# GH#8083
|
57 |
+
tdi = pd.to_timedelta(range(5), unit="d")
|
58 |
+
trange = tdi._with_freq("infer") + pd.offsets.Hour(1)
|
59 |
+
result = trange.shift(3, freq="2D 1s")
|
60 |
+
expected = TimedeltaIndex(
|
61 |
+
[
|
62 |
+
"6 days 01:00:03",
|
63 |
+
"7 days 01:00:03",
|
64 |
+
"8 days 01:00:03",
|
65 |
+
"9 days 01:00:03",
|
66 |
+
"10 days 01:00:03",
|
67 |
+
],
|
68 |
+
freq="D",
|
69 |
+
)
|
70 |
+
tm.assert_index_equal(result, expected)
|
71 |
+
|
72 |
+
def test_shift_no_freq(self):
|
73 |
+
# GH#19147
|
74 |
+
tdi = TimedeltaIndex(["1 days 01:00:00", "2 days 01:00:00"], freq=None)
|
75 |
+
with pytest.raises(NullFrequencyError, match="Cannot shift with no freq"):
|
76 |
+
tdi.shift(2)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_ops.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas import (
|
2 |
+
TimedeltaIndex,
|
3 |
+
timedelta_range,
|
4 |
+
)
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
class TestTimedeltaIndexOps:
|
9 |
+
def test_infer_freq(self, freq_sample):
|
10 |
+
# GH#11018
|
11 |
+
idx = timedelta_range("1", freq=freq_sample, periods=10)
|
12 |
+
result = TimedeltaIndex(idx.asi8, freq="infer")
|
13 |
+
tm.assert_index_equal(idx, result)
|
14 |
+
assert result.freq == freq_sample
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_searchsorted.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
TimedeltaIndex,
|
6 |
+
Timestamp,
|
7 |
+
)
|
8 |
+
import pandas._testing as tm
|
9 |
+
|
10 |
+
|
11 |
+
class TestSearchSorted:
|
12 |
+
def test_searchsorted_different_argument_classes(self, listlike_box):
|
13 |
+
idx = TimedeltaIndex(["1 day", "2 days", "3 days"])
|
14 |
+
result = idx.searchsorted(listlike_box(idx))
|
15 |
+
expected = np.arange(len(idx), dtype=result.dtype)
|
16 |
+
tm.assert_numpy_array_equal(result, expected)
|
17 |
+
|
18 |
+
result = idx._data.searchsorted(listlike_box(idx))
|
19 |
+
tm.assert_numpy_array_equal(result, expected)
|
20 |
+
|
21 |
+
@pytest.mark.parametrize(
|
22 |
+
"arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
|
23 |
+
)
|
24 |
+
def test_searchsorted_invalid_argument_dtype(self, arg):
|
25 |
+
idx = TimedeltaIndex(["1 day", "2 days", "3 days"])
|
26 |
+
msg = "value should be a 'Timedelta', 'NaT', or array of those. Got"
|
27 |
+
with pytest.raises(TypeError, match=msg):
|
28 |
+
idx.searchsorted(arg)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_setops.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
Index,
|
7 |
+
TimedeltaIndex,
|
8 |
+
timedelta_range,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
from pandas.tseries.offsets import Hour
|
13 |
+
|
14 |
+
|
15 |
+
class TestTimedeltaIndex:
|
16 |
+
def test_union(self):
|
17 |
+
i1 = timedelta_range("1day", periods=5)
|
18 |
+
i2 = timedelta_range("3day", periods=5)
|
19 |
+
result = i1.union(i2)
|
20 |
+
expected = timedelta_range("1day", periods=7)
|
21 |
+
tm.assert_index_equal(result, expected)
|
22 |
+
|
23 |
+
i1 = Index(np.arange(0, 20, 2, dtype=np.int64))
|
24 |
+
i2 = timedelta_range(start="1 day", periods=10, freq="D")
|
25 |
+
i1.union(i2) # Works
|
26 |
+
i2.union(i1) # Fails with "AttributeError: can't set attribute"
|
27 |
+
|
28 |
+
def test_union_sort_false(self):
|
29 |
+
tdi = timedelta_range("1day", periods=5)
|
30 |
+
|
31 |
+
left = tdi[3:]
|
32 |
+
right = tdi[:3]
|
33 |
+
|
34 |
+
# Check that we are testing the desired code path
|
35 |
+
assert left._can_fast_union(right)
|
36 |
+
|
37 |
+
result = left.union(right)
|
38 |
+
tm.assert_index_equal(result, tdi)
|
39 |
+
|
40 |
+
result = left.union(right, sort=False)
|
41 |
+
expected = TimedeltaIndex(["4 Days", "5 Days", "1 Days", "2 Day", "3 Days"])
|
42 |
+
tm.assert_index_equal(result, expected)
|
43 |
+
|
44 |
+
def test_union_coverage(self):
|
45 |
+
idx = TimedeltaIndex(["3d", "1d", "2d"])
|
46 |
+
ordered = TimedeltaIndex(idx.sort_values(), freq="infer")
|
47 |
+
result = ordered.union(idx)
|
48 |
+
tm.assert_index_equal(result, ordered)
|
49 |
+
|
50 |
+
result = ordered[:0].union(ordered)
|
51 |
+
tm.assert_index_equal(result, ordered)
|
52 |
+
assert result.freq == ordered.freq
|
53 |
+
|
54 |
+
def test_union_bug_1730(self):
|
55 |
+
rng_a = timedelta_range("1 day", periods=4, freq="3h")
|
56 |
+
rng_b = timedelta_range("1 day", periods=4, freq="4h")
|
57 |
+
|
58 |
+
result = rng_a.union(rng_b)
|
59 |
+
exp = TimedeltaIndex(sorted(set(rng_a) | set(rng_b)))
|
60 |
+
tm.assert_index_equal(result, exp)
|
61 |
+
|
62 |
+
def test_union_bug_1745(self):
|
63 |
+
left = TimedeltaIndex(["1 day 15:19:49.695000"])
|
64 |
+
right = TimedeltaIndex(
|
65 |
+
["2 day 13:04:21.322000", "1 day 15:27:24.873000", "1 day 15:31:05.350000"]
|
66 |
+
)
|
67 |
+
|
68 |
+
result = left.union(right)
|
69 |
+
exp = TimedeltaIndex(sorted(set(left) | set(right)))
|
70 |
+
tm.assert_index_equal(result, exp)
|
71 |
+
|
72 |
+
def test_union_bug_4564(self):
|
73 |
+
left = timedelta_range("1 day", "30d")
|
74 |
+
right = left + pd.offsets.Minute(15)
|
75 |
+
|
76 |
+
result = left.union(right)
|
77 |
+
exp = TimedeltaIndex(sorted(set(left) | set(right)))
|
78 |
+
tm.assert_index_equal(result, exp)
|
79 |
+
|
80 |
+
def test_union_freq_infer(self):
|
81 |
+
# When taking the union of two TimedeltaIndexes, we infer
|
82 |
+
# a freq even if the arguments don't have freq. This matches
|
83 |
+
# DatetimeIndex behavior.
|
84 |
+
tdi = timedelta_range("1 Day", periods=5)
|
85 |
+
left = tdi[[0, 1, 3, 4]]
|
86 |
+
right = tdi[[2, 3, 1]]
|
87 |
+
|
88 |
+
assert left.freq is None
|
89 |
+
assert right.freq is None
|
90 |
+
|
91 |
+
result = left.union(right)
|
92 |
+
tm.assert_index_equal(result, tdi)
|
93 |
+
assert result.freq == "D"
|
94 |
+
|
95 |
+
def test_intersection_bug_1708(self):
|
96 |
+
index_1 = timedelta_range("1 day", periods=4, freq="h")
|
97 |
+
index_2 = index_1 + pd.offsets.Hour(5)
|
98 |
+
|
99 |
+
result = index_1.intersection(index_2)
|
100 |
+
assert len(result) == 0
|
101 |
+
|
102 |
+
index_1 = timedelta_range("1 day", periods=4, freq="h")
|
103 |
+
index_2 = index_1 + pd.offsets.Hour(1)
|
104 |
+
|
105 |
+
result = index_1.intersection(index_2)
|
106 |
+
expected = timedelta_range("1 day 01:00:00", periods=3, freq="h")
|
107 |
+
tm.assert_index_equal(result, expected)
|
108 |
+
assert result.freq == expected.freq
|
109 |
+
|
110 |
+
def test_intersection_equal(self, sort):
|
111 |
+
# GH 24471 Test intersection outcome given the sort keyword
|
112 |
+
# for equal indices intersection should return the original index
|
113 |
+
first = timedelta_range("1 day", periods=4, freq="h")
|
114 |
+
second = timedelta_range("1 day", periods=4, freq="h")
|
115 |
+
intersect = first.intersection(second, sort=sort)
|
116 |
+
if sort is None:
|
117 |
+
tm.assert_index_equal(intersect, second.sort_values())
|
118 |
+
tm.assert_index_equal(intersect, second)
|
119 |
+
|
120 |
+
# Corner cases
|
121 |
+
inter = first.intersection(first, sort=sort)
|
122 |
+
assert inter is first
|
123 |
+
|
124 |
+
@pytest.mark.parametrize("period_1, period_2", [(0, 4), (4, 0)])
|
125 |
+
def test_intersection_zero_length(self, period_1, period_2, sort):
|
126 |
+
# GH 24471 test for non overlap the intersection should be zero length
|
127 |
+
index_1 = timedelta_range("1 day", periods=period_1, freq="h")
|
128 |
+
index_2 = timedelta_range("1 day", periods=period_2, freq="h")
|
129 |
+
expected = timedelta_range("1 day", periods=0, freq="h")
|
130 |
+
result = index_1.intersection(index_2, sort=sort)
|
131 |
+
tm.assert_index_equal(result, expected)
|
132 |
+
|
133 |
+
def test_zero_length_input_index(self, sort):
|
134 |
+
# GH 24966 test for 0-len intersections are copied
|
135 |
+
index_1 = timedelta_range("1 day", periods=0, freq="h")
|
136 |
+
index_2 = timedelta_range("1 day", periods=3, freq="h")
|
137 |
+
result = index_1.intersection(index_2, sort=sort)
|
138 |
+
assert index_1 is not result
|
139 |
+
assert index_2 is not result
|
140 |
+
tm.assert_copy(result, index_1)
|
141 |
+
|
142 |
+
@pytest.mark.parametrize(
|
143 |
+
"rng, expected",
|
144 |
+
# if target has the same name, it is preserved
|
145 |
+
[
|
146 |
+
(
|
147 |
+
timedelta_range("1 day", periods=5, freq="h", name="idx"),
|
148 |
+
timedelta_range("1 day", periods=4, freq="h", name="idx"),
|
149 |
+
),
|
150 |
+
# if target name is different, it will be reset
|
151 |
+
(
|
152 |
+
timedelta_range("1 day", periods=5, freq="h", name="other"),
|
153 |
+
timedelta_range("1 day", periods=4, freq="h", name=None),
|
154 |
+
),
|
155 |
+
# if no overlap exists return empty index
|
156 |
+
(
|
157 |
+
timedelta_range("1 day", periods=10, freq="h", name="idx")[5:],
|
158 |
+
TimedeltaIndex([], freq="h", name="idx"),
|
159 |
+
),
|
160 |
+
],
|
161 |
+
)
|
162 |
+
def test_intersection(self, rng, expected, sort):
|
163 |
+
# GH 4690 (with tz)
|
164 |
+
base = timedelta_range("1 day", periods=4, freq="h", name="idx")
|
165 |
+
result = base.intersection(rng, sort=sort)
|
166 |
+
if sort is None:
|
167 |
+
expected = expected.sort_values()
|
168 |
+
tm.assert_index_equal(result, expected)
|
169 |
+
assert result.name == expected.name
|
170 |
+
assert result.freq == expected.freq
|
171 |
+
|
172 |
+
@pytest.mark.parametrize(
|
173 |
+
"rng, expected",
|
174 |
+
# part intersection works
|
175 |
+
[
|
176 |
+
(
|
177 |
+
TimedeltaIndex(["5 hour", "2 hour", "4 hour", "9 hour"], name="idx"),
|
178 |
+
TimedeltaIndex(["2 hour", "4 hour"], name="idx"),
|
179 |
+
),
|
180 |
+
# reordered part intersection
|
181 |
+
(
|
182 |
+
TimedeltaIndex(["2 hour", "5 hour", "5 hour", "1 hour"], name="other"),
|
183 |
+
TimedeltaIndex(["1 hour", "2 hour"], name=None),
|
184 |
+
),
|
185 |
+
# reversed index
|
186 |
+
(
|
187 |
+
TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx")[
|
188 |
+
::-1
|
189 |
+
],
|
190 |
+
TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx"),
|
191 |
+
),
|
192 |
+
],
|
193 |
+
)
|
194 |
+
def test_intersection_non_monotonic(self, rng, expected, sort):
|
195 |
+
# 24471 non-monotonic
|
196 |
+
base = TimedeltaIndex(["1 hour", "2 hour", "4 hour", "3 hour"], name="idx")
|
197 |
+
result = base.intersection(rng, sort=sort)
|
198 |
+
if sort is None:
|
199 |
+
expected = expected.sort_values()
|
200 |
+
tm.assert_index_equal(result, expected)
|
201 |
+
assert result.name == expected.name
|
202 |
+
|
203 |
+
# if reversed order, frequency is still the same
|
204 |
+
if all(base == rng[::-1]) and sort is None:
|
205 |
+
assert isinstance(result.freq, Hour)
|
206 |
+
else:
|
207 |
+
assert result.freq is None
|
208 |
+
|
209 |
+
|
210 |
+
class TestTimedeltaIndexDifference:
|
211 |
+
def test_difference_freq(self, sort):
|
212 |
+
# GH14323: Difference of TimedeltaIndex should not preserve frequency
|
213 |
+
|
214 |
+
index = timedelta_range("0 days", "5 days", freq="D")
|
215 |
+
|
216 |
+
other = timedelta_range("1 days", "4 days", freq="D")
|
217 |
+
expected = TimedeltaIndex(["0 days", "5 days"], freq=None)
|
218 |
+
idx_diff = index.difference(other, sort)
|
219 |
+
tm.assert_index_equal(idx_diff, expected)
|
220 |
+
tm.assert_attr_equal("freq", idx_diff, expected)
|
221 |
+
|
222 |
+
# preserve frequency when the difference is a contiguous
|
223 |
+
# subset of the original range
|
224 |
+
other = timedelta_range("2 days", "5 days", freq="D")
|
225 |
+
idx_diff = index.difference(other, sort)
|
226 |
+
expected = TimedeltaIndex(["0 days", "1 days"], freq="D")
|
227 |
+
tm.assert_index_equal(idx_diff, expected)
|
228 |
+
tm.assert_attr_equal("freq", idx_diff, expected)
|
229 |
+
|
230 |
+
def test_difference_sort(self, sort):
|
231 |
+
index = TimedeltaIndex(
|
232 |
+
["5 days", "3 days", "2 days", "4 days", "1 days", "0 days"]
|
233 |
+
)
|
234 |
+
|
235 |
+
other = timedelta_range("1 days", "4 days", freq="D")
|
236 |
+
idx_diff = index.difference(other, sort)
|
237 |
+
|
238 |
+
expected = TimedeltaIndex(["5 days", "0 days"], freq=None)
|
239 |
+
|
240 |
+
if sort is None:
|
241 |
+
expected = expected.sort_values()
|
242 |
+
|
243 |
+
tm.assert_index_equal(idx_diff, expected)
|
244 |
+
tm.assert_attr_equal("freq", idx_diff, expected)
|
245 |
+
|
246 |
+
other = timedelta_range("2 days", "5 days", freq="D")
|
247 |
+
idx_diff = index.difference(other, sort)
|
248 |
+
expected = TimedeltaIndex(["1 days", "0 days"], freq=None)
|
249 |
+
|
250 |
+
if sort is None:
|
251 |
+
expected = expected.sort_values()
|
252 |
+
|
253 |
+
tm.assert_index_equal(idx_diff, expected)
|
254 |
+
tm.assert_attr_equal("freq", idx_diff, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/test_timedelta_range.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas import (
|
5 |
+
Timedelta,
|
6 |
+
TimedeltaIndex,
|
7 |
+
timedelta_range,
|
8 |
+
to_timedelta,
|
9 |
+
)
|
10 |
+
import pandas._testing as tm
|
11 |
+
|
12 |
+
from pandas.tseries.offsets import (
|
13 |
+
Day,
|
14 |
+
Second,
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class TestTimedeltas:
|
19 |
+
def test_timedelta_range_unit(self):
|
20 |
+
# GH#49824
|
21 |
+
tdi = timedelta_range("0 Days", periods=10, freq="100000D", unit="s")
|
22 |
+
exp_arr = (np.arange(10, dtype="i8") * 100_000).view("m8[D]").astype("m8[s]")
|
23 |
+
tm.assert_numpy_array_equal(tdi.to_numpy(), exp_arr)
|
24 |
+
|
25 |
+
def test_timedelta_range(self):
|
26 |
+
expected = to_timedelta(np.arange(5), unit="D")
|
27 |
+
result = timedelta_range("0 days", periods=5, freq="D")
|
28 |
+
tm.assert_index_equal(result, expected)
|
29 |
+
|
30 |
+
expected = to_timedelta(np.arange(11), unit="D")
|
31 |
+
result = timedelta_range("0 days", "10 days", freq="D")
|
32 |
+
tm.assert_index_equal(result, expected)
|
33 |
+
|
34 |
+
expected = to_timedelta(np.arange(5), unit="D") + Second(2) + Day()
|
35 |
+
result = timedelta_range("1 days, 00:00:02", "5 days, 00:00:02", freq="D")
|
36 |
+
tm.assert_index_equal(result, expected)
|
37 |
+
|
38 |
+
expected = to_timedelta([1, 3, 5, 7, 9], unit="D") + Second(2)
|
39 |
+
result = timedelta_range("1 days, 00:00:02", periods=5, freq="2D")
|
40 |
+
tm.assert_index_equal(result, expected)
|
41 |
+
|
42 |
+
expected = to_timedelta(np.arange(50), unit="min") * 30
|
43 |
+
result = timedelta_range("0 days", freq="30min", periods=50)
|
44 |
+
tm.assert_index_equal(result, expected)
|
45 |
+
|
46 |
+
@pytest.mark.parametrize(
|
47 |
+
"depr_unit, unit",
|
48 |
+
[
|
49 |
+
("H", "hour"),
|
50 |
+
("T", "minute"),
|
51 |
+
("t", "minute"),
|
52 |
+
("S", "second"),
|
53 |
+
("L", "millisecond"),
|
54 |
+
("l", "millisecond"),
|
55 |
+
("U", "microsecond"),
|
56 |
+
("u", "microsecond"),
|
57 |
+
("N", "nanosecond"),
|
58 |
+
("n", "nanosecond"),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
def test_timedelta_units_H_T_S_L_U_N_deprecated(self, depr_unit, unit):
|
62 |
+
# GH#52536
|
63 |
+
depr_msg = (
|
64 |
+
f"'{depr_unit}' is deprecated and will be removed in a future version."
|
65 |
+
)
|
66 |
+
|
67 |
+
expected = to_timedelta(np.arange(5), unit=unit)
|
68 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
69 |
+
result = to_timedelta(np.arange(5), unit=depr_unit)
|
70 |
+
tm.assert_index_equal(result, expected)
|
71 |
+
|
72 |
+
@pytest.mark.parametrize(
|
73 |
+
"periods, freq", [(3, "2D"), (5, "D"), (6, "19h12min"), (7, "16h"), (9, "12h")]
|
74 |
+
)
|
75 |
+
def test_linspace_behavior(self, periods, freq):
|
76 |
+
# GH 20976
|
77 |
+
result = timedelta_range(start="0 days", end="4 days", periods=periods)
|
78 |
+
expected = timedelta_range(start="0 days", end="4 days", freq=freq)
|
79 |
+
tm.assert_index_equal(result, expected)
|
80 |
+
|
81 |
+
@pytest.mark.parametrize("msg_freq, freq", [("H", "19H12min"), ("T", "19h12T")])
|
82 |
+
def test_timedelta_range_H_T_deprecated(self, freq, msg_freq):
|
83 |
+
# GH#52536
|
84 |
+
msg = f"'{msg_freq}' is deprecated and will be removed in a future version."
|
85 |
+
|
86 |
+
result = timedelta_range(start="0 days", end="4 days", periods=6)
|
87 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
88 |
+
expected = timedelta_range(start="0 days", end="4 days", freq=freq)
|
89 |
+
tm.assert_index_equal(result, expected)
|
90 |
+
|
91 |
+
def test_errors(self):
|
92 |
+
# not enough params
|
93 |
+
msg = (
|
94 |
+
"Of the four parameters: start, end, periods, and freq, "
|
95 |
+
"exactly three must be specified"
|
96 |
+
)
|
97 |
+
with pytest.raises(ValueError, match=msg):
|
98 |
+
timedelta_range(start="0 days")
|
99 |
+
|
100 |
+
with pytest.raises(ValueError, match=msg):
|
101 |
+
timedelta_range(end="5 days")
|
102 |
+
|
103 |
+
with pytest.raises(ValueError, match=msg):
|
104 |
+
timedelta_range(periods=2)
|
105 |
+
|
106 |
+
with pytest.raises(ValueError, match=msg):
|
107 |
+
timedelta_range()
|
108 |
+
|
109 |
+
# too many params
|
110 |
+
with pytest.raises(ValueError, match=msg):
|
111 |
+
timedelta_range(start="0 days", end="5 days", periods=10, freq="h")
|
112 |
+
|
113 |
+
@pytest.mark.parametrize(
|
114 |
+
"start, end, freq, expected_periods",
|
115 |
+
[
|
116 |
+
("1D", "10D", "2D", (10 - 1) // 2 + 1),
|
117 |
+
("2D", "30D", "3D", (30 - 2) // 3 + 1),
|
118 |
+
("2s", "50s", "5s", (50 - 2) // 5 + 1),
|
119 |
+
# tests that worked before GH 33498:
|
120 |
+
("4D", "16D", "3D", (16 - 4) // 3 + 1),
|
121 |
+
("8D", "16D", "40s", (16 * 3600 * 24 - 8 * 3600 * 24) // 40 + 1),
|
122 |
+
],
|
123 |
+
)
|
124 |
+
def test_timedelta_range_freq_divide_end(self, start, end, freq, expected_periods):
|
125 |
+
# GH 33498 only the cases where `(end % freq) == 0` used to fail
|
126 |
+
res = timedelta_range(start=start, end=end, freq=freq)
|
127 |
+
assert Timedelta(start) == res[0]
|
128 |
+
assert Timedelta(end) >= res[-1]
|
129 |
+
assert len(res) == expected_periods
|
130 |
+
|
131 |
+
def test_timedelta_range_infer_freq(self):
|
132 |
+
# https://github.com/pandas-dev/pandas/issues/35897
|
133 |
+
result = timedelta_range("0s", "1s", periods=31)
|
134 |
+
assert result.freq is None
|
135 |
+
|
136 |
+
@pytest.mark.parametrize(
|
137 |
+
"freq_depr, start, end, expected_values, expected_freq",
|
138 |
+
[
|
139 |
+
(
|
140 |
+
"3.5S",
|
141 |
+
"05:03:01",
|
142 |
+
"05:03:10",
|
143 |
+
["0 days 05:03:01", "0 days 05:03:04.500000", "0 days 05:03:08"],
|
144 |
+
"3500ms",
|
145 |
+
),
|
146 |
+
(
|
147 |
+
"2.5T",
|
148 |
+
"5 hours",
|
149 |
+
"5 hours 8 minutes",
|
150 |
+
[
|
151 |
+
"0 days 05:00:00",
|
152 |
+
"0 days 05:02:30",
|
153 |
+
"0 days 05:05:00",
|
154 |
+
"0 days 05:07:30",
|
155 |
+
],
|
156 |
+
"150s",
|
157 |
+
),
|
158 |
+
],
|
159 |
+
)
|
160 |
+
def test_timedelta_range_deprecated_freq(
|
161 |
+
self, freq_depr, start, end, expected_values, expected_freq
|
162 |
+
):
|
163 |
+
# GH#52536
|
164 |
+
msg = (
|
165 |
+
f"'{freq_depr[-1]}' is deprecated and will be removed in a future version."
|
166 |
+
)
|
167 |
+
|
168 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
169 |
+
result = timedelta_range(start=start, end=end, freq=freq_depr)
|
170 |
+
expected = TimedeltaIndex(
|
171 |
+
expected_values, dtype="timedelta64[ns]", freq=expected_freq
|
172 |
+
)
|
173 |
+
tm.assert_index_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_crosstab.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_cut.cpython-310.pyc
ADDED
Binary file (22.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_from_dummies.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_get_dummies.cpython-310.pyc
ADDED
Binary file (20.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_melt.cpython-310.pyc
ADDED
Binary file (29.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_pivot.cpython-310.pyc
ADDED
Binary file (63.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_pivot_multilevel.cpython-310.pyc
ADDED
Binary file (4.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_qcut.cpython-310.pyc
ADDED
Binary file (8.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_union_categoricals.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (3.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (414 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_append_common.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_categorical.cpython-310.pyc
ADDED
Binary file (7.82 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_concat.cpython-310.pyc
ADDED
Binary file (27.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_dataframe.cpython-310.pyc
ADDED
Binary file (7.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_datetimes.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_empty.cpython-310.pyc
ADDED
Binary file (8.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_index.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_invalid.cpython-310.pyc
ADDED
Binary file (2.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_series.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/__pycache__/test_sort.cpython-310.pyc
ADDED
Binary file (4.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/conftest.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
|
4 |
+
@pytest.fixture(params=[True, False])
|
5 |
+
def sort(request):
|
6 |
+
"""Boolean sort keyword for concat and DataFrame.append."""
|
7 |
+
return request.param
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_append.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime as dt
|
2 |
+
from itertools import combinations
|
3 |
+
|
4 |
+
import dateutil
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
Series,
|
13 |
+
Timestamp,
|
14 |
+
concat,
|
15 |
+
isna,
|
16 |
+
)
|
17 |
+
import pandas._testing as tm
|
18 |
+
|
19 |
+
|
20 |
+
class TestAppend:
|
21 |
+
def test_append(self, sort, float_frame):
|
22 |
+
mixed_frame = float_frame.copy()
|
23 |
+
mixed_frame["foo"] = "bar"
|
24 |
+
|
25 |
+
begin_index = float_frame.index[:5]
|
26 |
+
end_index = float_frame.index[5:]
|
27 |
+
|
28 |
+
begin_frame = float_frame.reindex(begin_index)
|
29 |
+
end_frame = float_frame.reindex(end_index)
|
30 |
+
|
31 |
+
appended = begin_frame._append(end_frame)
|
32 |
+
tm.assert_almost_equal(appended["A"], float_frame["A"])
|
33 |
+
|
34 |
+
del end_frame["A"]
|
35 |
+
partial_appended = begin_frame._append(end_frame, sort=sort)
|
36 |
+
assert "A" in partial_appended
|
37 |
+
|
38 |
+
partial_appended = end_frame._append(begin_frame, sort=sort)
|
39 |
+
assert "A" in partial_appended
|
40 |
+
|
41 |
+
# mixed type handling
|
42 |
+
appended = mixed_frame[:5]._append(mixed_frame[5:])
|
43 |
+
tm.assert_frame_equal(appended, mixed_frame)
|
44 |
+
|
45 |
+
# what to test here
|
46 |
+
mixed_appended = mixed_frame[:5]._append(float_frame[5:], sort=sort)
|
47 |
+
mixed_appended2 = float_frame[:5]._append(mixed_frame[5:], sort=sort)
|
48 |
+
|
49 |
+
# all equal except 'foo' column
|
50 |
+
tm.assert_frame_equal(
|
51 |
+
mixed_appended.reindex(columns=["A", "B", "C", "D"]),
|
52 |
+
mixed_appended2.reindex(columns=["A", "B", "C", "D"]),
|
53 |
+
)
|
54 |
+
|
55 |
+
def test_append_empty(self, float_frame):
|
56 |
+
empty = DataFrame()
|
57 |
+
|
58 |
+
appended = float_frame._append(empty)
|
59 |
+
tm.assert_frame_equal(float_frame, appended)
|
60 |
+
assert appended is not float_frame
|
61 |
+
|
62 |
+
appended = empty._append(float_frame)
|
63 |
+
tm.assert_frame_equal(float_frame, appended)
|
64 |
+
assert appended is not float_frame
|
65 |
+
|
66 |
+
def test_append_overlap_raises(self, float_frame):
|
67 |
+
msg = "Indexes have overlapping values"
|
68 |
+
with pytest.raises(ValueError, match=msg):
|
69 |
+
float_frame._append(float_frame, verify_integrity=True)
|
70 |
+
|
71 |
+
def test_append_new_columns(self):
|
72 |
+
# see gh-6129: new columns
|
73 |
+
df = DataFrame({"a": {"x": 1, "y": 2}, "b": {"x": 3, "y": 4}})
|
74 |
+
row = Series([5, 6, 7], index=["a", "b", "c"], name="z")
|
75 |
+
expected = DataFrame(
|
76 |
+
{
|
77 |
+
"a": {"x": 1, "y": 2, "z": 5},
|
78 |
+
"b": {"x": 3, "y": 4, "z": 6},
|
79 |
+
"c": {"z": 7},
|
80 |
+
}
|
81 |
+
)
|
82 |
+
result = df._append(row)
|
83 |
+
tm.assert_frame_equal(result, expected)
|
84 |
+
|
85 |
+
def test_append_length0_frame(self, sort):
|
86 |
+
df = DataFrame(columns=["A", "B", "C"])
|
87 |
+
df3 = DataFrame(index=[0, 1], columns=["A", "B"])
|
88 |
+
df5 = df._append(df3, sort=sort)
|
89 |
+
|
90 |
+
expected = DataFrame(index=[0, 1], columns=["A", "B", "C"])
|
91 |
+
tm.assert_frame_equal(df5, expected)
|
92 |
+
|
93 |
+
def test_append_records(self):
|
94 |
+
arr1 = np.zeros((2,), dtype=("i4,f4,S10"))
|
95 |
+
arr1[:] = [(1, 2.0, "Hello"), (2, 3.0, "World")]
|
96 |
+
|
97 |
+
arr2 = np.zeros((3,), dtype=("i4,f4,S10"))
|
98 |
+
arr2[:] = [(3, 4.0, "foo"), (5, 6.0, "bar"), (7.0, 8.0, "baz")]
|
99 |
+
|
100 |
+
df1 = DataFrame(arr1)
|
101 |
+
df2 = DataFrame(arr2)
|
102 |
+
|
103 |
+
result = df1._append(df2, ignore_index=True)
|
104 |
+
expected = DataFrame(np.concatenate((arr1, arr2)))
|
105 |
+
tm.assert_frame_equal(result, expected)
|
106 |
+
|
107 |
+
# rewrite sort fixture, since we also want to test default of None
|
108 |
+
def test_append_sorts(self, sort):
|
109 |
+
df1 = DataFrame({"a": [1, 2], "b": [1, 2]}, columns=["b", "a"])
|
110 |
+
df2 = DataFrame({"a": [1, 2], "c": [3, 4]}, index=[2, 3])
|
111 |
+
|
112 |
+
result = df1._append(df2, sort=sort)
|
113 |
+
|
114 |
+
# for None / True
|
115 |
+
expected = DataFrame(
|
116 |
+
{"b": [1, 2, None, None], "a": [1, 2, 1, 2], "c": [None, None, 3, 4]},
|
117 |
+
columns=["a", "b", "c"],
|
118 |
+
)
|
119 |
+
if sort is False:
|
120 |
+
expected = expected[["b", "a", "c"]]
|
121 |
+
tm.assert_frame_equal(result, expected)
|
122 |
+
|
123 |
+
def test_append_different_columns(self, sort):
|
124 |
+
df = DataFrame(
|
125 |
+
{
|
126 |
+
"bools": np.random.default_rng(2).standard_normal(10) > 0,
|
127 |
+
"ints": np.random.default_rng(2).integers(0, 10, 10),
|
128 |
+
"floats": np.random.default_rng(2).standard_normal(10),
|
129 |
+
"strings": ["foo", "bar"] * 5,
|
130 |
+
}
|
131 |
+
)
|
132 |
+
|
133 |
+
a = df[:5].loc[:, ["bools", "ints", "floats"]]
|
134 |
+
b = df[5:].loc[:, ["strings", "ints", "floats"]]
|
135 |
+
|
136 |
+
appended = a._append(b, sort=sort)
|
137 |
+
assert isna(appended["strings"][0:4]).all()
|
138 |
+
assert isna(appended["bools"][5:]).all()
|
139 |
+
|
140 |
+
def test_append_many(self, sort, float_frame):
|
141 |
+
chunks = [
|
142 |
+
float_frame[:5],
|
143 |
+
float_frame[5:10],
|
144 |
+
float_frame[10:15],
|
145 |
+
float_frame[15:],
|
146 |
+
]
|
147 |
+
|
148 |
+
result = chunks[0]._append(chunks[1:])
|
149 |
+
tm.assert_frame_equal(result, float_frame)
|
150 |
+
|
151 |
+
chunks[-1] = chunks[-1].copy()
|
152 |
+
chunks[-1]["foo"] = "bar"
|
153 |
+
result = chunks[0]._append(chunks[1:], sort=sort)
|
154 |
+
tm.assert_frame_equal(result.loc[:, float_frame.columns], float_frame)
|
155 |
+
assert (result["foo"][15:] == "bar").all()
|
156 |
+
assert result["foo"][:15].isna().all()
|
157 |
+
|
158 |
+
def test_append_preserve_index_name(self):
|
159 |
+
# #980
|
160 |
+
df1 = DataFrame(columns=["A", "B", "C"])
|
161 |
+
df1 = df1.set_index(["A"])
|
162 |
+
df2 = DataFrame(data=[[1, 4, 7], [2, 5, 8], [3, 6, 9]], columns=["A", "B", "C"])
|
163 |
+
df2 = df2.set_index(["A"])
|
164 |
+
|
165 |
+
msg = "The behavior of array concatenation with empty entries is deprecated"
|
166 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
167 |
+
result = df1._append(df2)
|
168 |
+
assert result.index.name == "A"
|
169 |
+
|
170 |
+
indexes_can_append = [
|
171 |
+
pd.RangeIndex(3),
|
172 |
+
Index([4, 5, 6]),
|
173 |
+
Index([4.5, 5.5, 6.5]),
|
174 |
+
Index(list("abc")),
|
175 |
+
pd.CategoricalIndex("A B C".split()),
|
176 |
+
pd.CategoricalIndex("D E F".split(), ordered=True),
|
177 |
+
pd.IntervalIndex.from_breaks([7, 8, 9, 10]),
|
178 |
+
pd.DatetimeIndex(
|
179 |
+
[
|
180 |
+
dt.datetime(2013, 1, 3, 0, 0),
|
181 |
+
dt.datetime(2013, 1, 3, 6, 10),
|
182 |
+
dt.datetime(2013, 1, 3, 7, 12),
|
183 |
+
]
|
184 |
+
),
|
185 |
+
pd.MultiIndex.from_arrays(["A B C".split(), "D E F".split()]),
|
186 |
+
]
|
187 |
+
|
188 |
+
@pytest.mark.parametrize(
|
189 |
+
"index", indexes_can_append, ids=lambda x: type(x).__name__
|
190 |
+
)
|
191 |
+
def test_append_same_columns_type(self, index):
|
192 |
+
# GH18359
|
193 |
+
|
194 |
+
# df wider than ser
|
195 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=index)
|
196 |
+
ser_index = index[:2]
|
197 |
+
ser = Series([7, 8], index=ser_index, name=2)
|
198 |
+
result = df._append(ser)
|
199 |
+
expected = DataFrame(
|
200 |
+
[[1, 2, 3.0], [4, 5, 6], [7, 8, np.nan]], index=[0, 1, 2], columns=index
|
201 |
+
)
|
202 |
+
# integer dtype is preserved for columns present in ser.index
|
203 |
+
assert expected.dtypes.iloc[0].kind == "i"
|
204 |
+
assert expected.dtypes.iloc[1].kind == "i"
|
205 |
+
|
206 |
+
tm.assert_frame_equal(result, expected)
|
207 |
+
|
208 |
+
# ser wider than df
|
209 |
+
ser_index = index
|
210 |
+
index = index[:2]
|
211 |
+
df = DataFrame([[1, 2], [4, 5]], columns=index)
|
212 |
+
ser = Series([7, 8, 9], index=ser_index, name=2)
|
213 |
+
result = df._append(ser)
|
214 |
+
expected = DataFrame(
|
215 |
+
[[1, 2, np.nan], [4, 5, np.nan], [7, 8, 9]],
|
216 |
+
index=[0, 1, 2],
|
217 |
+
columns=ser_index,
|
218 |
+
)
|
219 |
+
tm.assert_frame_equal(result, expected)
|
220 |
+
|
221 |
+
@pytest.mark.parametrize(
|
222 |
+
"df_columns, series_index",
|
223 |
+
combinations(indexes_can_append, r=2),
|
224 |
+
ids=lambda x: type(x).__name__,
|
225 |
+
)
|
226 |
+
def test_append_different_columns_types(self, df_columns, series_index):
|
227 |
+
# GH18359
|
228 |
+
# See also test 'test_append_different_columns_types_raises' below
|
229 |
+
# for errors raised when appending
|
230 |
+
|
231 |
+
df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=df_columns)
|
232 |
+
ser = Series([7, 8, 9], index=series_index, name=2)
|
233 |
+
|
234 |
+
result = df._append(ser)
|
235 |
+
idx_diff = ser.index.difference(df_columns)
|
236 |
+
combined_columns = Index(df_columns.tolist()).append(idx_diff)
|
237 |
+
expected = DataFrame(
|
238 |
+
[
|
239 |
+
[1.0, 2.0, 3.0, np.nan, np.nan, np.nan],
|
240 |
+
[4, 5, 6, np.nan, np.nan, np.nan],
|
241 |
+
[np.nan, np.nan, np.nan, 7, 8, 9],
|
242 |
+
],
|
243 |
+
index=[0, 1, 2],
|
244 |
+
columns=combined_columns,
|
245 |
+
)
|
246 |
+
tm.assert_frame_equal(result, expected)
|
247 |
+
|
248 |
+
def test_append_dtype_coerce(self, sort):
|
249 |
+
# GH 4993
|
250 |
+
# appending with datetime will incorrectly convert datetime64
|
251 |
+
|
252 |
+
df1 = DataFrame(
|
253 |
+
index=[1, 2],
|
254 |
+
data=[dt.datetime(2013, 1, 1, 0, 0), dt.datetime(2013, 1, 2, 0, 0)],
|
255 |
+
columns=["start_time"],
|
256 |
+
)
|
257 |
+
df2 = DataFrame(
|
258 |
+
index=[4, 5],
|
259 |
+
data=[
|
260 |
+
[dt.datetime(2013, 1, 3, 0, 0), dt.datetime(2013, 1, 3, 6, 10)],
|
261 |
+
[dt.datetime(2013, 1, 4, 0, 0), dt.datetime(2013, 1, 4, 7, 10)],
|
262 |
+
],
|
263 |
+
columns=["start_time", "end_time"],
|
264 |
+
)
|
265 |
+
|
266 |
+
expected = concat(
|
267 |
+
[
|
268 |
+
Series(
|
269 |
+
[
|
270 |
+
pd.NaT,
|
271 |
+
pd.NaT,
|
272 |
+
dt.datetime(2013, 1, 3, 6, 10),
|
273 |
+
dt.datetime(2013, 1, 4, 7, 10),
|
274 |
+
],
|
275 |
+
name="end_time",
|
276 |
+
),
|
277 |
+
Series(
|
278 |
+
[
|
279 |
+
dt.datetime(2013, 1, 1, 0, 0),
|
280 |
+
dt.datetime(2013, 1, 2, 0, 0),
|
281 |
+
dt.datetime(2013, 1, 3, 0, 0),
|
282 |
+
dt.datetime(2013, 1, 4, 0, 0),
|
283 |
+
],
|
284 |
+
name="start_time",
|
285 |
+
),
|
286 |
+
],
|
287 |
+
axis=1,
|
288 |
+
sort=sort,
|
289 |
+
)
|
290 |
+
result = df1._append(df2, ignore_index=True, sort=sort)
|
291 |
+
if sort:
|
292 |
+
expected = expected[["end_time", "start_time"]]
|
293 |
+
else:
|
294 |
+
expected = expected[["start_time", "end_time"]]
|
295 |
+
|
296 |
+
tm.assert_frame_equal(result, expected)
|
297 |
+
|
298 |
+
def test_append_missing_column_proper_upcast(self, sort):
|
299 |
+
df1 = DataFrame({"A": np.array([1, 2, 3, 4], dtype="i8")})
|
300 |
+
df2 = DataFrame({"B": np.array([True, False, True, False], dtype=bool)})
|
301 |
+
|
302 |
+
appended = df1._append(df2, ignore_index=True, sort=sort)
|
303 |
+
assert appended["A"].dtype == "f8"
|
304 |
+
assert appended["B"].dtype == "O"
|
305 |
+
|
306 |
+
def test_append_empty_frame_to_series_with_dateutil_tz(self):
|
307 |
+
# GH 23682
|
308 |
+
date = Timestamp("2018-10-24 07:30:00", tz=dateutil.tz.tzutc())
|
309 |
+
ser = Series({"a": 1.0, "b": 2.0, "date": date})
|
310 |
+
df = DataFrame(columns=["c", "d"])
|
311 |
+
result_a = df._append(ser, ignore_index=True)
|
312 |
+
expected = DataFrame(
|
313 |
+
[[np.nan, np.nan, 1.0, 2.0, date]], columns=["c", "d", "a", "b", "date"]
|
314 |
+
)
|
315 |
+
# These columns get cast to object after append
|
316 |
+
expected["c"] = expected["c"].astype(object)
|
317 |
+
expected["d"] = expected["d"].astype(object)
|
318 |
+
tm.assert_frame_equal(result_a, expected)
|
319 |
+
|
320 |
+
expected = DataFrame(
|
321 |
+
[[np.nan, np.nan, 1.0, 2.0, date]] * 2, columns=["c", "d", "a", "b", "date"]
|
322 |
+
)
|
323 |
+
expected["c"] = expected["c"].astype(object)
|
324 |
+
expected["d"] = expected["d"].astype(object)
|
325 |
+
result_b = result_a._append(ser, ignore_index=True)
|
326 |
+
tm.assert_frame_equal(result_b, expected)
|
327 |
+
|
328 |
+
result = df._append([ser, ser], ignore_index=True)
|
329 |
+
tm.assert_frame_equal(result, expected)
|
330 |
+
|
331 |
+
def test_append_empty_tz_frame_with_datetime64ns(self, using_array_manager):
|
332 |
+
# https://github.com/pandas-dev/pandas/issues/35460
|
333 |
+
df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
|
334 |
+
|
335 |
+
# pd.NaT gets inferred as tz-naive, so append result is tz-naive
|
336 |
+
result = df._append({"a": pd.NaT}, ignore_index=True)
|
337 |
+
if using_array_manager:
|
338 |
+
expected = DataFrame({"a": [pd.NaT]}, dtype=object)
|
339 |
+
else:
|
340 |
+
expected = DataFrame({"a": [np.nan]}, dtype=object)
|
341 |
+
tm.assert_frame_equal(result, expected)
|
342 |
+
|
343 |
+
# also test with typed value to append
|
344 |
+
df = DataFrame(columns=["a"]).astype("datetime64[ns, UTC]")
|
345 |
+
other = Series({"a": pd.NaT}, dtype="datetime64[ns]")
|
346 |
+
result = df._append(other, ignore_index=True)
|
347 |
+
tm.assert_frame_equal(result, expected)
|
348 |
+
|
349 |
+
# mismatched tz
|
350 |
+
other = Series({"a": pd.NaT}, dtype="datetime64[ns, US/Pacific]")
|
351 |
+
result = df._append(other, ignore_index=True)
|
352 |
+
expected = DataFrame({"a": [pd.NaT]}).astype(object)
|
353 |
+
tm.assert_frame_equal(result, expected)
|
354 |
+
|
355 |
+
@pytest.mark.parametrize(
|
356 |
+
"dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
|
357 |
+
)
|
358 |
+
@pytest.mark.parametrize("val", [1, "NaT"])
|
359 |
+
def test_append_empty_frame_with_timedelta64ns_nat(
|
360 |
+
self, dtype_str, val, using_array_manager
|
361 |
+
):
|
362 |
+
# https://github.com/pandas-dev/pandas/issues/35460
|
363 |
+
df = DataFrame(columns=["a"]).astype(dtype_str)
|
364 |
+
|
365 |
+
other = DataFrame({"a": [np.timedelta64(val, "ns")]})
|
366 |
+
result = df._append(other, ignore_index=True)
|
367 |
+
|
368 |
+
expected = other.astype(object)
|
369 |
+
if isinstance(val, str) and dtype_str != "int64" and not using_array_manager:
|
370 |
+
# TODO: expected used to be `other.astype(object)` which is a more
|
371 |
+
# reasonable result. This was changed when tightening
|
372 |
+
# assert_frame_equal's treatment of mismatched NAs to match the
|
373 |
+
# existing behavior.
|
374 |
+
expected = DataFrame({"a": [np.nan]}, dtype=object)
|
375 |
+
tm.assert_frame_equal(result, expected)
|
376 |
+
|
377 |
+
@pytest.mark.parametrize(
|
378 |
+
"dtype_str", ["datetime64[ns, UTC]", "datetime64[ns]", "Int64", "int64"]
|
379 |
+
)
|
380 |
+
@pytest.mark.parametrize("val", [1, "NaT"])
|
381 |
+
def test_append_frame_with_timedelta64ns_nat(self, dtype_str, val):
|
382 |
+
# https://github.com/pandas-dev/pandas/issues/35460
|
383 |
+
df = DataFrame({"a": pd.array([1], dtype=dtype_str)})
|
384 |
+
|
385 |
+
other = DataFrame({"a": [np.timedelta64(val, "ns")]})
|
386 |
+
result = df._append(other, ignore_index=True)
|
387 |
+
|
388 |
+
expected = DataFrame({"a": [df.iloc[0, 0], other.iloc[0, 0]]}, dtype=object)
|
389 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_append_common.py
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
Categorical,
|
7 |
+
DataFrame,
|
8 |
+
Index,
|
9 |
+
Series,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
@pytest.fixture(
|
15 |
+
params=list(
|
16 |
+
{
|
17 |
+
"bool": [True, False, True],
|
18 |
+
"int64": [1, 2, 3],
|
19 |
+
"float64": [1.1, np.nan, 3.3],
|
20 |
+
"category": Categorical(["X", "Y", "Z"]),
|
21 |
+
"object": ["a", "b", "c"],
|
22 |
+
"datetime64[ns]": [
|
23 |
+
pd.Timestamp("2011-01-01"),
|
24 |
+
pd.Timestamp("2011-01-02"),
|
25 |
+
pd.Timestamp("2011-01-03"),
|
26 |
+
],
|
27 |
+
"datetime64[ns, US/Eastern]": [
|
28 |
+
pd.Timestamp("2011-01-01", tz="US/Eastern"),
|
29 |
+
pd.Timestamp("2011-01-02", tz="US/Eastern"),
|
30 |
+
pd.Timestamp("2011-01-03", tz="US/Eastern"),
|
31 |
+
],
|
32 |
+
"timedelta64[ns]": [
|
33 |
+
pd.Timedelta("1 days"),
|
34 |
+
pd.Timedelta("2 days"),
|
35 |
+
pd.Timedelta("3 days"),
|
36 |
+
],
|
37 |
+
"period[M]": [
|
38 |
+
pd.Period("2011-01", freq="M"),
|
39 |
+
pd.Period("2011-02", freq="M"),
|
40 |
+
pd.Period("2011-03", freq="M"),
|
41 |
+
],
|
42 |
+
}.items()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
def item(request):
|
46 |
+
key, data = request.param
|
47 |
+
return key, data
|
48 |
+
|
49 |
+
|
50 |
+
@pytest.fixture
|
51 |
+
def item2(item):
|
52 |
+
return item
|
53 |
+
|
54 |
+
|
55 |
+
class TestConcatAppendCommon:
|
56 |
+
"""
|
57 |
+
Test common dtype coercion rules between concat and append.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def test_dtypes(self, item, index_or_series, using_infer_string):
|
61 |
+
# to confirm test case covers intended dtypes
|
62 |
+
typ, vals = item
|
63 |
+
obj = index_or_series(vals)
|
64 |
+
if typ == "object" and using_infer_string:
|
65 |
+
typ = "string"
|
66 |
+
if isinstance(obj, Index):
|
67 |
+
assert obj.dtype == typ
|
68 |
+
elif isinstance(obj, Series):
|
69 |
+
if typ.startswith("period"):
|
70 |
+
assert obj.dtype == "Period[M]"
|
71 |
+
else:
|
72 |
+
assert obj.dtype == typ
|
73 |
+
|
74 |
+
def test_concatlike_same_dtypes(self, item):
|
75 |
+
# GH 13660
|
76 |
+
typ1, vals1 = item
|
77 |
+
|
78 |
+
vals2 = vals1
|
79 |
+
vals3 = vals1
|
80 |
+
|
81 |
+
if typ1 == "category":
|
82 |
+
exp_data = Categorical(list(vals1) + list(vals2))
|
83 |
+
exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3))
|
84 |
+
else:
|
85 |
+
exp_data = vals1 + vals2
|
86 |
+
exp_data3 = vals1 + vals2 + vals3
|
87 |
+
|
88 |
+
# ----- Index ----- #
|
89 |
+
|
90 |
+
# index.append
|
91 |
+
res = Index(vals1).append(Index(vals2))
|
92 |
+
exp = Index(exp_data)
|
93 |
+
tm.assert_index_equal(res, exp)
|
94 |
+
|
95 |
+
# 3 elements
|
96 |
+
res = Index(vals1).append([Index(vals2), Index(vals3)])
|
97 |
+
exp = Index(exp_data3)
|
98 |
+
tm.assert_index_equal(res, exp)
|
99 |
+
|
100 |
+
# index.append name mismatch
|
101 |
+
i1 = Index(vals1, name="x")
|
102 |
+
i2 = Index(vals2, name="y")
|
103 |
+
res = i1.append(i2)
|
104 |
+
exp = Index(exp_data)
|
105 |
+
tm.assert_index_equal(res, exp)
|
106 |
+
|
107 |
+
# index.append name match
|
108 |
+
i1 = Index(vals1, name="x")
|
109 |
+
i2 = Index(vals2, name="x")
|
110 |
+
res = i1.append(i2)
|
111 |
+
exp = Index(exp_data, name="x")
|
112 |
+
tm.assert_index_equal(res, exp)
|
113 |
+
|
114 |
+
# cannot append non-index
|
115 |
+
with pytest.raises(TypeError, match="all inputs must be Index"):
|
116 |
+
Index(vals1).append(vals2)
|
117 |
+
|
118 |
+
with pytest.raises(TypeError, match="all inputs must be Index"):
|
119 |
+
Index(vals1).append([Index(vals2), vals3])
|
120 |
+
|
121 |
+
# ----- Series ----- #
|
122 |
+
|
123 |
+
# series.append
|
124 |
+
res = Series(vals1)._append(Series(vals2), ignore_index=True)
|
125 |
+
exp = Series(exp_data)
|
126 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
127 |
+
|
128 |
+
# concat
|
129 |
+
res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True)
|
130 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
131 |
+
|
132 |
+
# 3 elements
|
133 |
+
res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True)
|
134 |
+
exp = Series(exp_data3)
|
135 |
+
tm.assert_series_equal(res, exp)
|
136 |
+
|
137 |
+
res = pd.concat(
|
138 |
+
[Series(vals1), Series(vals2), Series(vals3)],
|
139 |
+
ignore_index=True,
|
140 |
+
)
|
141 |
+
tm.assert_series_equal(res, exp)
|
142 |
+
|
143 |
+
# name mismatch
|
144 |
+
s1 = Series(vals1, name="x")
|
145 |
+
s2 = Series(vals2, name="y")
|
146 |
+
res = s1._append(s2, ignore_index=True)
|
147 |
+
exp = Series(exp_data)
|
148 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
149 |
+
|
150 |
+
res = pd.concat([s1, s2], ignore_index=True)
|
151 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
152 |
+
|
153 |
+
# name match
|
154 |
+
s1 = Series(vals1, name="x")
|
155 |
+
s2 = Series(vals2, name="x")
|
156 |
+
res = s1._append(s2, ignore_index=True)
|
157 |
+
exp = Series(exp_data, name="x")
|
158 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
159 |
+
|
160 |
+
res = pd.concat([s1, s2], ignore_index=True)
|
161 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
162 |
+
|
163 |
+
# cannot append non-index
|
164 |
+
msg = (
|
165 |
+
r"cannot concatenate object of type '.+'; "
|
166 |
+
"only Series and DataFrame objs are valid"
|
167 |
+
)
|
168 |
+
with pytest.raises(TypeError, match=msg):
|
169 |
+
Series(vals1)._append(vals2)
|
170 |
+
|
171 |
+
with pytest.raises(TypeError, match=msg):
|
172 |
+
Series(vals1)._append([Series(vals2), vals3])
|
173 |
+
|
174 |
+
with pytest.raises(TypeError, match=msg):
|
175 |
+
pd.concat([Series(vals1), vals2])
|
176 |
+
|
177 |
+
with pytest.raises(TypeError, match=msg):
|
178 |
+
pd.concat([Series(vals1), Series(vals2), vals3])
|
179 |
+
|
180 |
+
def test_concatlike_dtypes_coercion(self, item, item2, request):
|
181 |
+
# GH 13660
|
182 |
+
typ1, vals1 = item
|
183 |
+
typ2, vals2 = item2
|
184 |
+
|
185 |
+
vals3 = vals2
|
186 |
+
|
187 |
+
# basically infer
|
188 |
+
exp_index_dtype = None
|
189 |
+
exp_series_dtype = None
|
190 |
+
|
191 |
+
if typ1 == typ2:
|
192 |
+
pytest.skip("same dtype is tested in test_concatlike_same_dtypes")
|
193 |
+
elif typ1 == "category" or typ2 == "category":
|
194 |
+
pytest.skip("categorical type tested elsewhere")
|
195 |
+
|
196 |
+
# specify expected dtype
|
197 |
+
if typ1 == "bool" and typ2 in ("int64", "float64"):
|
198 |
+
# series coerces to numeric based on numpy rule
|
199 |
+
# index doesn't because bool is object dtype
|
200 |
+
exp_series_dtype = typ2
|
201 |
+
mark = pytest.mark.xfail(reason="GH#39187 casting to object")
|
202 |
+
request.applymarker(mark)
|
203 |
+
elif typ2 == "bool" and typ1 in ("int64", "float64"):
|
204 |
+
exp_series_dtype = typ1
|
205 |
+
mark = pytest.mark.xfail(reason="GH#39187 casting to object")
|
206 |
+
request.applymarker(mark)
|
207 |
+
elif typ1 in {"datetime64[ns, US/Eastern]", "timedelta64[ns]"} or typ2 in {
|
208 |
+
"datetime64[ns, US/Eastern]",
|
209 |
+
"timedelta64[ns]",
|
210 |
+
}:
|
211 |
+
exp_index_dtype = object
|
212 |
+
exp_series_dtype = object
|
213 |
+
|
214 |
+
exp_data = vals1 + vals2
|
215 |
+
exp_data3 = vals1 + vals2 + vals3
|
216 |
+
|
217 |
+
# ----- Index ----- #
|
218 |
+
|
219 |
+
# index.append
|
220 |
+
# GH#39817
|
221 |
+
res = Index(vals1).append(Index(vals2))
|
222 |
+
exp = Index(exp_data, dtype=exp_index_dtype)
|
223 |
+
tm.assert_index_equal(res, exp)
|
224 |
+
|
225 |
+
# 3 elements
|
226 |
+
res = Index(vals1).append([Index(vals2), Index(vals3)])
|
227 |
+
exp = Index(exp_data3, dtype=exp_index_dtype)
|
228 |
+
tm.assert_index_equal(res, exp)
|
229 |
+
|
230 |
+
# ----- Series ----- #
|
231 |
+
|
232 |
+
# series._append
|
233 |
+
# GH#39817
|
234 |
+
res = Series(vals1)._append(Series(vals2), ignore_index=True)
|
235 |
+
exp = Series(exp_data, dtype=exp_series_dtype)
|
236 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
237 |
+
|
238 |
+
# concat
|
239 |
+
# GH#39817
|
240 |
+
res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True)
|
241 |
+
tm.assert_series_equal(res, exp, check_index_type=True)
|
242 |
+
|
243 |
+
# 3 elements
|
244 |
+
# GH#39817
|
245 |
+
res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True)
|
246 |
+
exp = Series(exp_data3, dtype=exp_series_dtype)
|
247 |
+
tm.assert_series_equal(res, exp)
|
248 |
+
|
249 |
+
# GH#39817
|
250 |
+
res = pd.concat(
|
251 |
+
[Series(vals1), Series(vals2), Series(vals3)],
|
252 |
+
ignore_index=True,
|
253 |
+
)
|
254 |
+
tm.assert_series_equal(res, exp)
|
255 |
+
|
256 |
+
def test_concatlike_common_coerce_to_pandas_object(self):
|
257 |
+
# GH 13626
|
258 |
+
# result must be Timestamp/Timedelta, not datetime.datetime/timedelta
|
259 |
+
dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"])
|
260 |
+
tdi = pd.TimedeltaIndex(["1 days", "2 days"])
|
261 |
+
|
262 |
+
exp = Index(
|
263 |
+
[
|
264 |
+
pd.Timestamp("2011-01-01"),
|
265 |
+
pd.Timestamp("2011-01-02"),
|
266 |
+
pd.Timedelta("1 days"),
|
267 |
+
pd.Timedelta("2 days"),
|
268 |
+
]
|
269 |
+
)
|
270 |
+
|
271 |
+
res = dti.append(tdi)
|
272 |
+
tm.assert_index_equal(res, exp)
|
273 |
+
assert isinstance(res[0], pd.Timestamp)
|
274 |
+
assert isinstance(res[-1], pd.Timedelta)
|
275 |
+
|
276 |
+
dts = Series(dti)
|
277 |
+
tds = Series(tdi)
|
278 |
+
res = dts._append(tds)
|
279 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
280 |
+
assert isinstance(res.iloc[0], pd.Timestamp)
|
281 |
+
assert isinstance(res.iloc[-1], pd.Timedelta)
|
282 |
+
|
283 |
+
res = pd.concat([dts, tds])
|
284 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
285 |
+
assert isinstance(res.iloc[0], pd.Timestamp)
|
286 |
+
assert isinstance(res.iloc[-1], pd.Timedelta)
|
287 |
+
|
288 |
+
def test_concatlike_datetimetz(self, tz_aware_fixture):
|
289 |
+
tz = tz_aware_fixture
|
290 |
+
# GH 7795
|
291 |
+
dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
|
292 |
+
dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz)
|
293 |
+
|
294 |
+
exp = pd.DatetimeIndex(
|
295 |
+
["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz
|
296 |
+
)
|
297 |
+
|
298 |
+
res = dti1.append(dti2)
|
299 |
+
tm.assert_index_equal(res, exp)
|
300 |
+
|
301 |
+
dts1 = Series(dti1)
|
302 |
+
dts2 = Series(dti2)
|
303 |
+
res = dts1._append(dts2)
|
304 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
305 |
+
|
306 |
+
res = pd.concat([dts1, dts2])
|
307 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
308 |
+
|
309 |
+
@pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"])
|
310 |
+
def test_concatlike_datetimetz_short(self, tz):
|
311 |
+
# GH#7795
|
312 |
+
ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz)
|
313 |
+
ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz)
|
314 |
+
df1 = DataFrame(0, index=ix1, columns=["A", "B"])
|
315 |
+
df2 = DataFrame(0, index=ix2, columns=["A", "B"])
|
316 |
+
|
317 |
+
exp_idx = pd.DatetimeIndex(
|
318 |
+
["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"],
|
319 |
+
tz=tz,
|
320 |
+
).as_unit("ns")
|
321 |
+
exp = DataFrame(0, index=exp_idx, columns=["A", "B"])
|
322 |
+
|
323 |
+
tm.assert_frame_equal(df1._append(df2), exp)
|
324 |
+
tm.assert_frame_equal(pd.concat([df1, df2]), exp)
|
325 |
+
|
326 |
+
def test_concatlike_datetimetz_to_object(self, tz_aware_fixture):
|
327 |
+
tz = tz_aware_fixture
|
328 |
+
# GH 13660
|
329 |
+
|
330 |
+
# different tz coerces to object
|
331 |
+
dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
|
332 |
+
dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"])
|
333 |
+
|
334 |
+
exp = Index(
|
335 |
+
[
|
336 |
+
pd.Timestamp("2011-01-01", tz=tz),
|
337 |
+
pd.Timestamp("2011-01-02", tz=tz),
|
338 |
+
pd.Timestamp("2012-01-01"),
|
339 |
+
pd.Timestamp("2012-01-02"),
|
340 |
+
],
|
341 |
+
dtype=object,
|
342 |
+
)
|
343 |
+
|
344 |
+
res = dti1.append(dti2)
|
345 |
+
tm.assert_index_equal(res, exp)
|
346 |
+
|
347 |
+
dts1 = Series(dti1)
|
348 |
+
dts2 = Series(dti2)
|
349 |
+
res = dts1._append(dts2)
|
350 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
351 |
+
|
352 |
+
res = pd.concat([dts1, dts2])
|
353 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
354 |
+
|
355 |
+
# different tz
|
356 |
+
dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific")
|
357 |
+
|
358 |
+
exp = Index(
|
359 |
+
[
|
360 |
+
pd.Timestamp("2011-01-01", tz=tz),
|
361 |
+
pd.Timestamp("2011-01-02", tz=tz),
|
362 |
+
pd.Timestamp("2012-01-01", tz="US/Pacific"),
|
363 |
+
pd.Timestamp("2012-01-02", tz="US/Pacific"),
|
364 |
+
],
|
365 |
+
dtype=object,
|
366 |
+
)
|
367 |
+
|
368 |
+
res = dti1.append(dti3)
|
369 |
+
tm.assert_index_equal(res, exp)
|
370 |
+
|
371 |
+
dts1 = Series(dti1)
|
372 |
+
dts3 = Series(dti3)
|
373 |
+
res = dts1._append(dts3)
|
374 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
375 |
+
|
376 |
+
res = pd.concat([dts1, dts3])
|
377 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
378 |
+
|
379 |
+
def test_concatlike_common_period(self):
|
380 |
+
# GH 13660
|
381 |
+
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
382 |
+
pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M")
|
383 |
+
|
384 |
+
exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M")
|
385 |
+
|
386 |
+
res = pi1.append(pi2)
|
387 |
+
tm.assert_index_equal(res, exp)
|
388 |
+
|
389 |
+
ps1 = Series(pi1)
|
390 |
+
ps2 = Series(pi2)
|
391 |
+
res = ps1._append(ps2)
|
392 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
393 |
+
|
394 |
+
res = pd.concat([ps1, ps2])
|
395 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
396 |
+
|
397 |
+
def test_concatlike_common_period_diff_freq_to_object(self):
|
398 |
+
# GH 13221
|
399 |
+
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
400 |
+
pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D")
|
401 |
+
|
402 |
+
exp = Index(
|
403 |
+
[
|
404 |
+
pd.Period("2011-01", freq="M"),
|
405 |
+
pd.Period("2011-02", freq="M"),
|
406 |
+
pd.Period("2012-01-01", freq="D"),
|
407 |
+
pd.Period("2012-02-01", freq="D"),
|
408 |
+
],
|
409 |
+
dtype=object,
|
410 |
+
)
|
411 |
+
|
412 |
+
res = pi1.append(pi2)
|
413 |
+
tm.assert_index_equal(res, exp)
|
414 |
+
|
415 |
+
ps1 = Series(pi1)
|
416 |
+
ps2 = Series(pi2)
|
417 |
+
res = ps1._append(ps2)
|
418 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
419 |
+
|
420 |
+
res = pd.concat([ps1, ps2])
|
421 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
422 |
+
|
423 |
+
def test_concatlike_common_period_mixed_dt_to_object(self):
|
424 |
+
# GH 13221
|
425 |
+
# different datetimelike
|
426 |
+
pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M")
|
427 |
+
tdi = pd.TimedeltaIndex(["1 days", "2 days"])
|
428 |
+
exp = Index(
|
429 |
+
[
|
430 |
+
pd.Period("2011-01", freq="M"),
|
431 |
+
pd.Period("2011-02", freq="M"),
|
432 |
+
pd.Timedelta("1 days"),
|
433 |
+
pd.Timedelta("2 days"),
|
434 |
+
],
|
435 |
+
dtype=object,
|
436 |
+
)
|
437 |
+
|
438 |
+
res = pi1.append(tdi)
|
439 |
+
tm.assert_index_equal(res, exp)
|
440 |
+
|
441 |
+
ps1 = Series(pi1)
|
442 |
+
tds = Series(tdi)
|
443 |
+
res = ps1._append(tds)
|
444 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
445 |
+
|
446 |
+
res = pd.concat([ps1, tds])
|
447 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
448 |
+
|
449 |
+
# inverse
|
450 |
+
exp = Index(
|
451 |
+
[
|
452 |
+
pd.Timedelta("1 days"),
|
453 |
+
pd.Timedelta("2 days"),
|
454 |
+
pd.Period("2011-01", freq="M"),
|
455 |
+
pd.Period("2011-02", freq="M"),
|
456 |
+
],
|
457 |
+
dtype=object,
|
458 |
+
)
|
459 |
+
|
460 |
+
res = tdi.append(pi1)
|
461 |
+
tm.assert_index_equal(res, exp)
|
462 |
+
|
463 |
+
ps1 = Series(pi1)
|
464 |
+
tds = Series(tdi)
|
465 |
+
res = tds._append(ps1)
|
466 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
467 |
+
|
468 |
+
res = pd.concat([tds, ps1])
|
469 |
+
tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1]))
|
470 |
+
|
471 |
+
def test_concat_categorical(self):
|
472 |
+
# GH 13524
|
473 |
+
|
474 |
+
# same categories -> category
|
475 |
+
s1 = Series([1, 2, np.nan], dtype="category")
|
476 |
+
s2 = Series([2, 1, 2], dtype="category")
|
477 |
+
|
478 |
+
exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category")
|
479 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
480 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
481 |
+
|
482 |
+
# partially different categories => not-category
|
483 |
+
s1 = Series([3, 2], dtype="category")
|
484 |
+
s2 = Series([2, 1], dtype="category")
|
485 |
+
|
486 |
+
exp = Series([3, 2, 2, 1])
|
487 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
488 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
489 |
+
|
490 |
+
# completely different categories (same dtype) => not-category
|
491 |
+
s1 = Series([10, 11, np.nan], dtype="category")
|
492 |
+
s2 = Series([np.nan, 1, 3, 2], dtype="category")
|
493 |
+
|
494 |
+
exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64)
|
495 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
496 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
497 |
+
|
498 |
+
def test_union_categorical_same_categories_different_order(self):
|
499 |
+
# https://github.com/pandas-dev/pandas/issues/19096
|
500 |
+
a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"]))
|
501 |
+
b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"]))
|
502 |
+
result = pd.concat([a, b], ignore_index=True)
|
503 |
+
expected = Series(
|
504 |
+
Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"])
|
505 |
+
)
|
506 |
+
tm.assert_series_equal(result, expected)
|
507 |
+
|
508 |
+
def test_concat_categorical_coercion(self):
|
509 |
+
# GH 13524
|
510 |
+
|
511 |
+
# category + not-category => not-category
|
512 |
+
s1 = Series([1, 2, np.nan], dtype="category")
|
513 |
+
s2 = Series([2, 1, 2])
|
514 |
+
|
515 |
+
exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64)
|
516 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
517 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
518 |
+
|
519 |
+
# result shouldn't be affected by 1st elem dtype
|
520 |
+
exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64)
|
521 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
522 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
523 |
+
|
524 |
+
# all values are not in category => not-category
|
525 |
+
s1 = Series([3, 2], dtype="category")
|
526 |
+
s2 = Series([2, 1])
|
527 |
+
|
528 |
+
exp = Series([3, 2, 2, 1])
|
529 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
530 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
531 |
+
|
532 |
+
exp = Series([2, 1, 3, 2])
|
533 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
534 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
535 |
+
|
536 |
+
# completely different categories => not-category
|
537 |
+
s1 = Series([10, 11, np.nan], dtype="category")
|
538 |
+
s2 = Series([1, 3, 2])
|
539 |
+
|
540 |
+
exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64)
|
541 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
542 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
543 |
+
|
544 |
+
exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64)
|
545 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
546 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
547 |
+
|
548 |
+
# different dtype => not-category
|
549 |
+
s1 = Series([10, 11, np.nan], dtype="category")
|
550 |
+
s2 = Series(["a", "b", "c"])
|
551 |
+
|
552 |
+
exp = Series([10, 11, np.nan, "a", "b", "c"])
|
553 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
554 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
555 |
+
|
556 |
+
exp = Series(["a", "b", "c", 10, 11, np.nan])
|
557 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
558 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
559 |
+
|
560 |
+
# if normal series only contains NaN-likes => not-category
|
561 |
+
s1 = Series([10, 11], dtype="category")
|
562 |
+
s2 = Series([np.nan, np.nan, np.nan])
|
563 |
+
|
564 |
+
exp = Series([10, 11, np.nan, np.nan, np.nan])
|
565 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
566 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
567 |
+
|
568 |
+
exp = Series([np.nan, np.nan, np.nan, 10, 11])
|
569 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
570 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
571 |
+
|
572 |
+
def test_concat_categorical_3elem_coercion(self):
|
573 |
+
# GH 13524
|
574 |
+
|
575 |
+
# mixed dtypes => not-category
|
576 |
+
s1 = Series([1, 2, np.nan], dtype="category")
|
577 |
+
s2 = Series([2, 1, 2], dtype="category")
|
578 |
+
s3 = Series([1, 2, 1, 2, np.nan])
|
579 |
+
|
580 |
+
exp = Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan], dtype="float")
|
581 |
+
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
582 |
+
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
583 |
+
|
584 |
+
exp = Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2], dtype="float")
|
585 |
+
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
586 |
+
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
587 |
+
|
588 |
+
# values are all in either category => not-category
|
589 |
+
s1 = Series([4, 5, 6], dtype="category")
|
590 |
+
s2 = Series([1, 2, 3], dtype="category")
|
591 |
+
s3 = Series([1, 3, 4])
|
592 |
+
|
593 |
+
exp = Series([4, 5, 6, 1, 2, 3, 1, 3, 4])
|
594 |
+
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
595 |
+
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
596 |
+
|
597 |
+
exp = Series([1, 3, 4, 4, 5, 6, 1, 2, 3])
|
598 |
+
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
599 |
+
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
600 |
+
|
601 |
+
# values are all in either category => not-category
|
602 |
+
s1 = Series([4, 5, 6], dtype="category")
|
603 |
+
s2 = Series([1, 2, 3], dtype="category")
|
604 |
+
s3 = Series([10, 11, 12])
|
605 |
+
|
606 |
+
exp = Series([4, 5, 6, 1, 2, 3, 10, 11, 12])
|
607 |
+
tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp)
|
608 |
+
tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp)
|
609 |
+
|
610 |
+
exp = Series([10, 11, 12, 4, 5, 6, 1, 2, 3])
|
611 |
+
tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp)
|
612 |
+
tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp)
|
613 |
+
|
614 |
+
def test_concat_categorical_multi_coercion(self):
|
615 |
+
# GH 13524
|
616 |
+
|
617 |
+
s1 = Series([1, 3], dtype="category")
|
618 |
+
s2 = Series([3, 4], dtype="category")
|
619 |
+
s3 = Series([2, 3])
|
620 |
+
s4 = Series([2, 2], dtype="category")
|
621 |
+
s5 = Series([1, np.nan])
|
622 |
+
s6 = Series([1, 3, 2], dtype="category")
|
623 |
+
|
624 |
+
# mixed dtype, values are all in categories => not-category
|
625 |
+
exp = Series([1, 3, 3, 4, 2, 3, 2, 2, 1, np.nan, 1, 3, 2])
|
626 |
+
res = pd.concat([s1, s2, s3, s4, s5, s6], ignore_index=True)
|
627 |
+
tm.assert_series_equal(res, exp)
|
628 |
+
res = s1._append([s2, s3, s4, s5, s6], ignore_index=True)
|
629 |
+
tm.assert_series_equal(res, exp)
|
630 |
+
|
631 |
+
exp = Series([1, 3, 2, 1, np.nan, 2, 2, 2, 3, 3, 4, 1, 3])
|
632 |
+
res = pd.concat([s6, s5, s4, s3, s2, s1], ignore_index=True)
|
633 |
+
tm.assert_series_equal(res, exp)
|
634 |
+
res = s6._append([s5, s4, s3, s2, s1], ignore_index=True)
|
635 |
+
tm.assert_series_equal(res, exp)
|
636 |
+
|
637 |
+
def test_concat_categorical_ordered(self):
|
638 |
+
# GH 13524
|
639 |
+
|
640 |
+
s1 = Series(Categorical([1, 2, np.nan], ordered=True))
|
641 |
+
s2 = Series(Categorical([2, 1, 2], ordered=True))
|
642 |
+
|
643 |
+
exp = Series(Categorical([1, 2, np.nan, 2, 1, 2], ordered=True))
|
644 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
645 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
646 |
+
|
647 |
+
exp = Series(Categorical([1, 2, np.nan, 2, 1, 2, 1, 2, np.nan], ordered=True))
|
648 |
+
tm.assert_series_equal(pd.concat([s1, s2, s1], ignore_index=True), exp)
|
649 |
+
tm.assert_series_equal(s1._append([s2, s1], ignore_index=True), exp)
|
650 |
+
|
651 |
+
def test_concat_categorical_coercion_nan(self):
|
652 |
+
# GH 13524
|
653 |
+
|
654 |
+
# some edge cases
|
655 |
+
# category + not-category => not category
|
656 |
+
s1 = Series(np.array([np.nan, np.nan], dtype=np.float64), dtype="category")
|
657 |
+
s2 = Series([np.nan, 1])
|
658 |
+
|
659 |
+
exp = Series([np.nan, np.nan, np.nan, 1])
|
660 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
661 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
662 |
+
|
663 |
+
s1 = Series([1, np.nan], dtype="category")
|
664 |
+
s2 = Series([np.nan, np.nan])
|
665 |
+
|
666 |
+
exp = Series([1, np.nan, np.nan, np.nan], dtype="float")
|
667 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
668 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
669 |
+
|
670 |
+
# mixed dtype, all nan-likes => not-category
|
671 |
+
s1 = Series([np.nan, np.nan], dtype="category")
|
672 |
+
s2 = Series([np.nan, np.nan])
|
673 |
+
|
674 |
+
exp = Series([np.nan, np.nan, np.nan, np.nan])
|
675 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
676 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
677 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
678 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
679 |
+
|
680 |
+
# all category nan-likes => category
|
681 |
+
s1 = Series([np.nan, np.nan], dtype="category")
|
682 |
+
s2 = Series([np.nan, np.nan], dtype="category")
|
683 |
+
|
684 |
+
exp = Series([np.nan, np.nan, np.nan, np.nan], dtype="category")
|
685 |
+
|
686 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
687 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
688 |
+
|
689 |
+
def test_concat_categorical_empty(self):
|
690 |
+
# GH 13524
|
691 |
+
|
692 |
+
s1 = Series([], dtype="category")
|
693 |
+
s2 = Series([1, 2], dtype="category")
|
694 |
+
|
695 |
+
msg = "The behavior of array concatenation with empty entries is deprecated"
|
696 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
697 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
698 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
699 |
+
|
700 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
701 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), s2)
|
702 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), s2)
|
703 |
+
|
704 |
+
s1 = Series([], dtype="category")
|
705 |
+
s2 = Series([], dtype="category")
|
706 |
+
|
707 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
708 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
709 |
+
|
710 |
+
s1 = Series([], dtype="category")
|
711 |
+
s2 = Series([], dtype="object")
|
712 |
+
|
713 |
+
# different dtype => not-category
|
714 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), s2)
|
715 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), s2)
|
716 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), s2)
|
717 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), s2)
|
718 |
+
|
719 |
+
s1 = Series([], dtype="category")
|
720 |
+
s2 = Series([np.nan, np.nan])
|
721 |
+
|
722 |
+
# empty Series is ignored
|
723 |
+
exp = Series([np.nan, np.nan])
|
724 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
725 |
+
tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp)
|
726 |
+
tm.assert_series_equal(s1._append(s2, ignore_index=True), exp)
|
727 |
+
|
728 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
729 |
+
tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp)
|
730 |
+
tm.assert_series_equal(s2._append(s1, ignore_index=True), exp)
|
731 |
+
|
732 |
+
def test_categorical_concat_append(self):
|
733 |
+
cat = Categorical(["a", "b"], categories=["a", "b"])
|
734 |
+
vals = [1, 2]
|
735 |
+
df = DataFrame({"cats": cat, "vals": vals})
|
736 |
+
cat2 = Categorical(["a", "b", "a", "b"], categories=["a", "b"])
|
737 |
+
vals2 = [1, 2, 1, 2]
|
738 |
+
exp = DataFrame({"cats": cat2, "vals": vals2}, index=Index([0, 1, 0, 1]))
|
739 |
+
|
740 |
+
tm.assert_frame_equal(pd.concat([df, df]), exp)
|
741 |
+
tm.assert_frame_equal(df._append(df), exp)
|
742 |
+
|
743 |
+
# GH 13524 can concat different categories
|
744 |
+
cat3 = Categorical(["a", "b"], categories=["a", "b", "c"])
|
745 |
+
vals3 = [1, 2]
|
746 |
+
df_different_categories = DataFrame({"cats": cat3, "vals": vals3})
|
747 |
+
|
748 |
+
res = pd.concat([df, df_different_categories], ignore_index=True)
|
749 |
+
exp = DataFrame({"cats": list("abab"), "vals": [1, 2, 1, 2]})
|
750 |
+
tm.assert_frame_equal(res, exp)
|
751 |
+
|
752 |
+
res = df._append(df_different_categories, ignore_index=True)
|
753 |
+
tm.assert_frame_equal(res, exp)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_categorical.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from pandas import (
|
9 |
+
Categorical,
|
10 |
+
DataFrame,
|
11 |
+
Series,
|
12 |
+
)
|
13 |
+
import pandas._testing as tm
|
14 |
+
|
15 |
+
|
16 |
+
class TestCategoricalConcat:
|
17 |
+
def test_categorical_concat(self, sort):
|
18 |
+
# See GH 10177
|
19 |
+
df1 = DataFrame(
|
20 |
+
np.arange(18, dtype="int64").reshape(6, 3), columns=["a", "b", "c"]
|
21 |
+
)
|
22 |
+
|
23 |
+
df2 = DataFrame(np.arange(14, dtype="int64").reshape(7, 2), columns=["a", "c"])
|
24 |
+
|
25 |
+
cat_values = ["one", "one", "two", "one", "two", "two", "one"]
|
26 |
+
df2["h"] = Series(Categorical(cat_values))
|
27 |
+
|
28 |
+
res = pd.concat((df1, df2), axis=0, ignore_index=True, sort=sort)
|
29 |
+
exp = DataFrame(
|
30 |
+
{
|
31 |
+
"a": [0, 3, 6, 9, 12, 15, 0, 2, 4, 6, 8, 10, 12],
|
32 |
+
"b": [
|
33 |
+
1,
|
34 |
+
4,
|
35 |
+
7,
|
36 |
+
10,
|
37 |
+
13,
|
38 |
+
16,
|
39 |
+
np.nan,
|
40 |
+
np.nan,
|
41 |
+
np.nan,
|
42 |
+
np.nan,
|
43 |
+
np.nan,
|
44 |
+
np.nan,
|
45 |
+
np.nan,
|
46 |
+
],
|
47 |
+
"c": [2, 5, 8, 11, 14, 17, 1, 3, 5, 7, 9, 11, 13],
|
48 |
+
"h": [None] * 6 + cat_values,
|
49 |
+
}
|
50 |
+
)
|
51 |
+
exp["h"] = exp["h"].astype(df2["h"].dtype)
|
52 |
+
tm.assert_frame_equal(res, exp)
|
53 |
+
|
54 |
+
def test_categorical_concat_dtypes(self, using_infer_string):
|
55 |
+
# GH8143
|
56 |
+
index = ["cat", "obj", "num"]
|
57 |
+
cat = Categorical(["a", "b", "c"])
|
58 |
+
obj = Series(["a", "b", "c"])
|
59 |
+
num = Series([1, 2, 3])
|
60 |
+
df = pd.concat([Series(cat), obj, num], axis=1, keys=index)
|
61 |
+
|
62 |
+
result = df.dtypes == (
|
63 |
+
object if not using_infer_string else "string[pyarrow_numpy]"
|
64 |
+
)
|
65 |
+
expected = Series([False, True, False], index=index)
|
66 |
+
tm.assert_series_equal(result, expected)
|
67 |
+
|
68 |
+
result = df.dtypes == "int64"
|
69 |
+
expected = Series([False, False, True], index=index)
|
70 |
+
tm.assert_series_equal(result, expected)
|
71 |
+
|
72 |
+
result = df.dtypes == "category"
|
73 |
+
expected = Series([True, False, False], index=index)
|
74 |
+
tm.assert_series_equal(result, expected)
|
75 |
+
|
76 |
+
def test_concat_categoricalindex(self):
|
77 |
+
# GH 16111, categories that aren't lexsorted
|
78 |
+
categories = [9, 0, 1, 2, 3]
|
79 |
+
|
80 |
+
a = Series(1, index=pd.CategoricalIndex([9, 0], categories=categories))
|
81 |
+
b = Series(2, index=pd.CategoricalIndex([0, 1], categories=categories))
|
82 |
+
c = Series(3, index=pd.CategoricalIndex([1, 2], categories=categories))
|
83 |
+
|
84 |
+
result = pd.concat([a, b, c], axis=1)
|
85 |
+
|
86 |
+
exp_idx = pd.CategoricalIndex([9, 0, 1, 2], categories=categories)
|
87 |
+
exp = DataFrame(
|
88 |
+
{
|
89 |
+
0: [1, 1, np.nan, np.nan],
|
90 |
+
1: [np.nan, 2, 2, np.nan],
|
91 |
+
2: [np.nan, np.nan, 3, 3],
|
92 |
+
},
|
93 |
+
columns=[0, 1, 2],
|
94 |
+
index=exp_idx,
|
95 |
+
)
|
96 |
+
tm.assert_frame_equal(result, exp)
|
97 |
+
|
98 |
+
def test_categorical_concat_preserve(self):
|
99 |
+
# GH 8641 series concat not preserving category dtype
|
100 |
+
# GH 13524 can concat different categories
|
101 |
+
s = Series(list("abc"), dtype="category")
|
102 |
+
s2 = Series(list("abd"), dtype="category")
|
103 |
+
|
104 |
+
exp = Series(list("abcabd"))
|
105 |
+
res = pd.concat([s, s2], ignore_index=True)
|
106 |
+
tm.assert_series_equal(res, exp)
|
107 |
+
|
108 |
+
exp = Series(list("abcabc"), dtype="category")
|
109 |
+
res = pd.concat([s, s], ignore_index=True)
|
110 |
+
tm.assert_series_equal(res, exp)
|
111 |
+
|
112 |
+
exp = Series(list("abcabc"), index=[0, 1, 2, 0, 1, 2], dtype="category")
|
113 |
+
res = pd.concat([s, s])
|
114 |
+
tm.assert_series_equal(res, exp)
|
115 |
+
|
116 |
+
a = Series(np.arange(6, dtype="int64"))
|
117 |
+
b = Series(list("aabbca"))
|
118 |
+
|
119 |
+
df2 = DataFrame({"A": a, "B": b.astype(CategoricalDtype(list("cab")))})
|
120 |
+
res = pd.concat([df2, df2])
|
121 |
+
exp = DataFrame(
|
122 |
+
{
|
123 |
+
"A": pd.concat([a, a]),
|
124 |
+
"B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))),
|
125 |
+
}
|
126 |
+
)
|
127 |
+
tm.assert_frame_equal(res, exp)
|
128 |
+
|
129 |
+
def test_categorical_index_preserver(self):
|
130 |
+
a = Series(np.arange(6, dtype="int64"))
|
131 |
+
b = Series(list("aabbca"))
|
132 |
+
|
133 |
+
df2 = DataFrame(
|
134 |
+
{"A": a, "B": b.astype(CategoricalDtype(list("cab")))}
|
135 |
+
).set_index("B")
|
136 |
+
result = pd.concat([df2, df2])
|
137 |
+
expected = DataFrame(
|
138 |
+
{
|
139 |
+
"A": pd.concat([a, a]),
|
140 |
+
"B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))),
|
141 |
+
}
|
142 |
+
).set_index("B")
|
143 |
+
tm.assert_frame_equal(result, expected)
|
144 |
+
|
145 |
+
# wrong categories -> uses concat_compat, which casts to object
|
146 |
+
df3 = DataFrame(
|
147 |
+
{"A": a, "B": Categorical(b, categories=list("abe"))}
|
148 |
+
).set_index("B")
|
149 |
+
result = pd.concat([df2, df3])
|
150 |
+
expected = pd.concat(
|
151 |
+
[
|
152 |
+
df2.set_axis(df2.index.astype(object), axis=0),
|
153 |
+
df3.set_axis(df3.index.astype(object), axis=0),
|
154 |
+
]
|
155 |
+
)
|
156 |
+
tm.assert_frame_equal(result, expected)
|
157 |
+
|
158 |
+
def test_concat_categorical_tz(self):
|
159 |
+
# GH-23816
|
160 |
+
a = Series(pd.date_range("2017-01-01", periods=2, tz="US/Pacific"))
|
161 |
+
b = Series(["a", "b"], dtype="category")
|
162 |
+
result = pd.concat([a, b], ignore_index=True)
|
163 |
+
expected = Series(
|
164 |
+
[
|
165 |
+
pd.Timestamp("2017-01-01", tz="US/Pacific"),
|
166 |
+
pd.Timestamp("2017-01-02", tz="US/Pacific"),
|
167 |
+
"a",
|
168 |
+
"b",
|
169 |
+
]
|
170 |
+
)
|
171 |
+
tm.assert_series_equal(result, expected)
|
172 |
+
|
173 |
+
def test_concat_categorical_datetime(self):
|
174 |
+
# GH-39443
|
175 |
+
df1 = DataFrame(
|
176 |
+
{"x": Series(datetime(2021, 1, 1), index=[0], dtype="category")}
|
177 |
+
)
|
178 |
+
df2 = DataFrame(
|
179 |
+
{"x": Series(datetime(2021, 1, 2), index=[1], dtype="category")}
|
180 |
+
)
|
181 |
+
|
182 |
+
result = pd.concat([df1, df2])
|
183 |
+
expected = DataFrame(
|
184 |
+
{"x": Series([datetime(2021, 1, 1), datetime(2021, 1, 2)])}
|
185 |
+
)
|
186 |
+
|
187 |
+
tm.assert_equal(result, expected)
|
188 |
+
|
189 |
+
def test_concat_categorical_unchanged(self):
|
190 |
+
# GH-12007
|
191 |
+
# test fix for when concat on categorical and float
|
192 |
+
# coerces dtype categorical -> float
|
193 |
+
df = DataFrame(Series(["a", "b", "c"], dtype="category", name="A"))
|
194 |
+
ser = Series([0, 1, 2], index=[0, 1, 3], name="B")
|
195 |
+
result = pd.concat([df, ser], axis=1)
|
196 |
+
expected = DataFrame(
|
197 |
+
{
|
198 |
+
"A": Series(["a", "b", "c", np.nan], dtype="category"),
|
199 |
+
"B": Series([0, 1, np.nan, 2], dtype="float"),
|
200 |
+
}
|
201 |
+
)
|
202 |
+
tm.assert_equal(result, expected)
|
203 |
+
|
204 |
+
def test_categorical_concat_gh7864(self):
|
205 |
+
# GH 7864
|
206 |
+
# make sure ordering is preserved
|
207 |
+
df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": list("abbaae")})
|
208 |
+
df["grade"] = Categorical(df["raw_grade"])
|
209 |
+
df["grade"].cat.set_categories(["e", "a", "b"])
|
210 |
+
|
211 |
+
df1 = df[0:3]
|
212 |
+
df2 = df[3:]
|
213 |
+
|
214 |
+
tm.assert_index_equal(df["grade"].cat.categories, df1["grade"].cat.categories)
|
215 |
+
tm.assert_index_equal(df["grade"].cat.categories, df2["grade"].cat.categories)
|
216 |
+
|
217 |
+
dfx = pd.concat([df1, df2])
|
218 |
+
tm.assert_index_equal(df["grade"].cat.categories, dfx["grade"].cat.categories)
|
219 |
+
|
220 |
+
dfa = df1._append(df2)
|
221 |
+
tm.assert_index_equal(df["grade"].cat.categories, dfa["grade"].cat.categories)
|
222 |
+
|
223 |
+
def test_categorical_index_upcast(self):
|
224 |
+
# GH 17629
|
225 |
+
# test upcasting to object when concatenating on categorical indexes
|
226 |
+
# with non-identical categories
|
227 |
+
|
228 |
+
a = DataFrame({"foo": [1, 2]}, index=Categorical(["foo", "bar"]))
|
229 |
+
b = DataFrame({"foo": [4, 3]}, index=Categorical(["baz", "bar"]))
|
230 |
+
|
231 |
+
res = pd.concat([a, b])
|
232 |
+
exp = DataFrame({"foo": [1, 2, 4, 3]}, index=["foo", "bar", "baz", "bar"])
|
233 |
+
|
234 |
+
tm.assert_equal(res, exp)
|
235 |
+
|
236 |
+
a = Series([1, 2], index=Categorical(["foo", "bar"]))
|
237 |
+
b = Series([4, 3], index=Categorical(["baz", "bar"]))
|
238 |
+
|
239 |
+
res = pd.concat([a, b])
|
240 |
+
exp = Series([1, 2, 4, 3], index=["foo", "bar", "baz", "bar"])
|
241 |
+
|
242 |
+
tm.assert_equal(res, exp)
|
243 |
+
|
244 |
+
def test_categorical_missing_from_one_frame(self):
|
245 |
+
# GH 25412
|
246 |
+
df1 = DataFrame({"f1": [1, 2, 3]})
|
247 |
+
df2 = DataFrame({"f1": [2, 3, 1], "f2": Series([4, 4, 4]).astype("category")})
|
248 |
+
result = pd.concat([df1, df2], sort=True)
|
249 |
+
dtype = CategoricalDtype([4])
|
250 |
+
expected = DataFrame(
|
251 |
+
{
|
252 |
+
"f1": [1, 2, 3, 2, 3, 1],
|
253 |
+
"f2": Categorical.from_codes([-1, -1, -1, 0, 0, 0], dtype=dtype),
|
254 |
+
},
|
255 |
+
index=[0, 1, 2, 0, 1, 2],
|
256 |
+
)
|
257 |
+
tm.assert_frame_equal(result, expected)
|
258 |
+
|
259 |
+
def test_concat_categorical_same_categories_different_order(self):
|
260 |
+
# https://github.com/pandas-dev/pandas/issues/24845
|
261 |
+
|
262 |
+
c1 = pd.CategoricalIndex(["a", "a"], categories=["a", "b"], ordered=False)
|
263 |
+
c2 = pd.CategoricalIndex(["b", "b"], categories=["b", "a"], ordered=False)
|
264 |
+
c3 = pd.CategoricalIndex(
|
265 |
+
["a", "a", "b", "b"], categories=["a", "b"], ordered=False
|
266 |
+
)
|
267 |
+
|
268 |
+
df1 = DataFrame({"A": [1, 2]}, index=c1)
|
269 |
+
df2 = DataFrame({"A": [3, 4]}, index=c2)
|
270 |
+
|
271 |
+
result = pd.concat((df1, df2))
|
272 |
+
expected = DataFrame({"A": [1, 2, 3, 4]}, index=c3)
|
273 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_concat.py
ADDED
@@ -0,0 +1,912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import (
|
2 |
+
abc,
|
3 |
+
deque,
|
4 |
+
)
|
5 |
+
from collections.abc import Iterator
|
6 |
+
from datetime import datetime
|
7 |
+
from decimal import Decimal
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pytest
|
11 |
+
|
12 |
+
from pandas.errors import InvalidIndexError
|
13 |
+
import pandas.util._test_decorators as td
|
14 |
+
|
15 |
+
import pandas as pd
|
16 |
+
from pandas import (
|
17 |
+
DataFrame,
|
18 |
+
Index,
|
19 |
+
MultiIndex,
|
20 |
+
PeriodIndex,
|
21 |
+
Series,
|
22 |
+
concat,
|
23 |
+
date_range,
|
24 |
+
)
|
25 |
+
import pandas._testing as tm
|
26 |
+
from pandas.core.arrays import SparseArray
|
27 |
+
from pandas.tests.extension.decimal import to_decimal
|
28 |
+
|
29 |
+
|
30 |
+
class TestConcatenate:
|
31 |
+
def test_append_concat(self):
|
32 |
+
# GH#1815
|
33 |
+
d1 = date_range("12/31/1990", "12/31/1999", freq="YE-DEC")
|
34 |
+
d2 = date_range("12/31/2000", "12/31/2009", freq="YE-DEC")
|
35 |
+
|
36 |
+
s1 = Series(np.random.default_rng(2).standard_normal(10), d1)
|
37 |
+
s2 = Series(np.random.default_rng(2).standard_normal(10), d2)
|
38 |
+
|
39 |
+
s1 = s1.to_period()
|
40 |
+
s2 = s2.to_period()
|
41 |
+
|
42 |
+
# drops index
|
43 |
+
result = concat([s1, s2])
|
44 |
+
assert isinstance(result.index, PeriodIndex)
|
45 |
+
assert result.index[0] == s1.index[0]
|
46 |
+
|
47 |
+
def test_concat_copy(self, using_array_manager, using_copy_on_write):
|
48 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
|
49 |
+
df2 = DataFrame(np.random.default_rng(2).integers(0, 10, size=4).reshape(4, 1))
|
50 |
+
df3 = DataFrame({5: "foo"}, index=range(4))
|
51 |
+
|
52 |
+
# These are actual copies.
|
53 |
+
result = concat([df, df2, df3], axis=1, copy=True)
|
54 |
+
|
55 |
+
if not using_copy_on_write:
|
56 |
+
for arr in result._mgr.arrays:
|
57 |
+
assert not any(
|
58 |
+
np.shares_memory(arr, y)
|
59 |
+
for x in [df, df2, df3]
|
60 |
+
for y in x._mgr.arrays
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
for arr in result._mgr.arrays:
|
64 |
+
assert arr.base is not None
|
65 |
+
|
66 |
+
# These are the same.
|
67 |
+
result = concat([df, df2, df3], axis=1, copy=False)
|
68 |
+
|
69 |
+
for arr in result._mgr.arrays:
|
70 |
+
if arr.dtype.kind == "f":
|
71 |
+
assert arr.base is df._mgr.arrays[0].base
|
72 |
+
elif arr.dtype.kind in ["i", "u"]:
|
73 |
+
assert arr.base is df2._mgr.arrays[0].base
|
74 |
+
elif arr.dtype == object:
|
75 |
+
if using_array_manager:
|
76 |
+
# we get the same array object, which has no base
|
77 |
+
assert arr is df3._mgr.arrays[0]
|
78 |
+
else:
|
79 |
+
assert arr.base is not None
|
80 |
+
|
81 |
+
# Float block was consolidated.
|
82 |
+
df4 = DataFrame(np.random.default_rng(2).standard_normal((4, 1)))
|
83 |
+
result = concat([df, df2, df3, df4], axis=1, copy=False)
|
84 |
+
for arr in result._mgr.arrays:
|
85 |
+
if arr.dtype.kind == "f":
|
86 |
+
if using_array_manager or using_copy_on_write:
|
87 |
+
# this is a view on some array in either df or df4
|
88 |
+
assert any(
|
89 |
+
np.shares_memory(arr, other)
|
90 |
+
for other in df._mgr.arrays + df4._mgr.arrays
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
# the block was consolidated, so we got a copy anyway
|
94 |
+
assert arr.base is None
|
95 |
+
elif arr.dtype.kind in ["i", "u"]:
|
96 |
+
assert arr.base is df2._mgr.arrays[0].base
|
97 |
+
elif arr.dtype == object:
|
98 |
+
# this is a view on df3
|
99 |
+
assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays)
|
100 |
+
|
101 |
+
def test_concat_with_group_keys(self):
|
102 |
+
# axis=0
|
103 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((3, 4)))
|
104 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
|
105 |
+
|
106 |
+
result = concat([df, df2], keys=[0, 1])
|
107 |
+
exp_index = MultiIndex.from_arrays(
|
108 |
+
[[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]]
|
109 |
+
)
|
110 |
+
expected = DataFrame(np.r_[df.values, df2.values], index=exp_index)
|
111 |
+
tm.assert_frame_equal(result, expected)
|
112 |
+
|
113 |
+
result = concat([df, df], keys=[0, 1])
|
114 |
+
exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]])
|
115 |
+
expected = DataFrame(np.r_[df.values, df.values], index=exp_index2)
|
116 |
+
tm.assert_frame_equal(result, expected)
|
117 |
+
|
118 |
+
# axis=1
|
119 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((4, 3)))
|
120 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((4, 4)))
|
121 |
+
|
122 |
+
result = concat([df, df2], keys=[0, 1], axis=1)
|
123 |
+
expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index)
|
124 |
+
tm.assert_frame_equal(result, expected)
|
125 |
+
|
126 |
+
result = concat([df, df], keys=[0, 1], axis=1)
|
127 |
+
expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2)
|
128 |
+
tm.assert_frame_equal(result, expected)
|
129 |
+
|
130 |
+
def test_concat_keys_specific_levels(self):
|
131 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
132 |
+
pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]]
|
133 |
+
level = ["three", "two", "one", "zero"]
|
134 |
+
result = concat(
|
135 |
+
pieces,
|
136 |
+
axis=1,
|
137 |
+
keys=["one", "two", "three"],
|
138 |
+
levels=[level],
|
139 |
+
names=["group_key"],
|
140 |
+
)
|
141 |
+
|
142 |
+
tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key"))
|
143 |
+
tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3]))
|
144 |
+
|
145 |
+
assert result.columns.names == ["group_key", None]
|
146 |
+
|
147 |
+
@pytest.mark.parametrize("mapping", ["mapping", "dict"])
|
148 |
+
def test_concat_mapping(self, mapping, non_dict_mapping_subclass):
|
149 |
+
constructor = dict if mapping == "dict" else non_dict_mapping_subclass
|
150 |
+
frames = constructor(
|
151 |
+
{
|
152 |
+
"foo": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
153 |
+
"bar": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
154 |
+
"baz": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
155 |
+
"qux": DataFrame(np.random.default_rng(2).standard_normal((4, 3))),
|
156 |
+
}
|
157 |
+
)
|
158 |
+
|
159 |
+
sorted_keys = list(frames.keys())
|
160 |
+
|
161 |
+
result = concat(frames)
|
162 |
+
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys)
|
163 |
+
tm.assert_frame_equal(result, expected)
|
164 |
+
|
165 |
+
result = concat(frames, axis=1)
|
166 |
+
expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1)
|
167 |
+
tm.assert_frame_equal(result, expected)
|
168 |
+
|
169 |
+
keys = ["baz", "foo", "bar"]
|
170 |
+
result = concat(frames, keys=keys)
|
171 |
+
expected = concat([frames[k] for k in keys], keys=keys)
|
172 |
+
tm.assert_frame_equal(result, expected)
|
173 |
+
|
174 |
+
def test_concat_keys_and_levels(self):
|
175 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)))
|
176 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)))
|
177 |
+
|
178 |
+
levels = [["foo", "baz"], ["one", "two"]]
|
179 |
+
names = ["first", "second"]
|
180 |
+
result = concat(
|
181 |
+
[df, df2, df, df2],
|
182 |
+
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
183 |
+
levels=levels,
|
184 |
+
names=names,
|
185 |
+
)
|
186 |
+
expected = concat([df, df2, df, df2])
|
187 |
+
exp_index = MultiIndex(
|
188 |
+
levels=levels + [[0]],
|
189 |
+
codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]],
|
190 |
+
names=names + [None],
|
191 |
+
)
|
192 |
+
expected.index = exp_index
|
193 |
+
|
194 |
+
tm.assert_frame_equal(result, expected)
|
195 |
+
|
196 |
+
# no names
|
197 |
+
result = concat(
|
198 |
+
[df, df2, df, df2],
|
199 |
+
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
200 |
+
levels=levels,
|
201 |
+
)
|
202 |
+
assert result.index.names == (None,) * 3
|
203 |
+
|
204 |
+
# no levels
|
205 |
+
result = concat(
|
206 |
+
[df, df2, df, df2],
|
207 |
+
keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")],
|
208 |
+
names=["first", "second"],
|
209 |
+
)
|
210 |
+
assert result.index.names == ("first", "second", None)
|
211 |
+
tm.assert_index_equal(
|
212 |
+
result.index.levels[0], Index(["baz", "foo"], name="first")
|
213 |
+
)
|
214 |
+
|
215 |
+
def test_concat_keys_levels_no_overlap(self):
|
216 |
+
# GH #1406
|
217 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
|
218 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
|
219 |
+
|
220 |
+
msg = "Values not found in passed level"
|
221 |
+
with pytest.raises(ValueError, match=msg):
|
222 |
+
concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
|
223 |
+
|
224 |
+
msg = "Key one not in level"
|
225 |
+
with pytest.raises(ValueError, match=msg):
|
226 |
+
concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]])
|
227 |
+
|
228 |
+
def test_crossed_dtypes_weird_corner(self):
|
229 |
+
columns = ["A", "B", "C", "D"]
|
230 |
+
df1 = DataFrame(
|
231 |
+
{
|
232 |
+
"A": np.array([1, 2, 3, 4], dtype="f8"),
|
233 |
+
"B": np.array([1, 2, 3, 4], dtype="i8"),
|
234 |
+
"C": np.array([1, 2, 3, 4], dtype="f8"),
|
235 |
+
"D": np.array([1, 2, 3, 4], dtype="i8"),
|
236 |
+
},
|
237 |
+
columns=columns,
|
238 |
+
)
|
239 |
+
|
240 |
+
df2 = DataFrame(
|
241 |
+
{
|
242 |
+
"A": np.array([1, 2, 3, 4], dtype="i8"),
|
243 |
+
"B": np.array([1, 2, 3, 4], dtype="f8"),
|
244 |
+
"C": np.array([1, 2, 3, 4], dtype="i8"),
|
245 |
+
"D": np.array([1, 2, 3, 4], dtype="f8"),
|
246 |
+
},
|
247 |
+
columns=columns,
|
248 |
+
)
|
249 |
+
|
250 |
+
appended = concat([df1, df2], ignore_index=True)
|
251 |
+
expected = DataFrame(
|
252 |
+
np.concatenate([df1.values, df2.values], axis=0), columns=columns
|
253 |
+
)
|
254 |
+
tm.assert_frame_equal(appended, expected)
|
255 |
+
|
256 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((1, 3)), index=["a"])
|
257 |
+
df2 = DataFrame(np.random.default_rng(2).standard_normal((1, 4)), index=["b"])
|
258 |
+
result = concat([df, df2], keys=["one", "two"], names=["first", "second"])
|
259 |
+
assert result.index.names == ("first", "second")
|
260 |
+
|
261 |
+
def test_with_mixed_tuples(self, sort):
|
262 |
+
# 10697
|
263 |
+
# columns have mixed tuples, so handle properly
|
264 |
+
df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2))
|
265 |
+
df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2))
|
266 |
+
|
267 |
+
# it works
|
268 |
+
concat([df1, df2], sort=sort)
|
269 |
+
|
270 |
+
def test_concat_mixed_objs_columns(self):
|
271 |
+
# Test column-wise concat for mixed series/frames (axis=1)
|
272 |
+
# G2385
|
273 |
+
|
274 |
+
index = date_range("01-Jan-2013", periods=10, freq="h")
|
275 |
+
arr = np.arange(10, dtype="int64")
|
276 |
+
s1 = Series(arr, index=index)
|
277 |
+
s2 = Series(arr, index=index)
|
278 |
+
df = DataFrame(arr.reshape(-1, 1), index=index)
|
279 |
+
|
280 |
+
expected = DataFrame(
|
281 |
+
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0]
|
282 |
+
)
|
283 |
+
result = concat([df, df], axis=1)
|
284 |
+
tm.assert_frame_equal(result, expected)
|
285 |
+
|
286 |
+
expected = DataFrame(
|
287 |
+
np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1]
|
288 |
+
)
|
289 |
+
result = concat([s1, s2], axis=1)
|
290 |
+
tm.assert_frame_equal(result, expected)
|
291 |
+
|
292 |
+
expected = DataFrame(
|
293 |
+
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
|
294 |
+
)
|
295 |
+
result = concat([s1, s2, s1], axis=1)
|
296 |
+
tm.assert_frame_equal(result, expected)
|
297 |
+
|
298 |
+
expected = DataFrame(
|
299 |
+
np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3]
|
300 |
+
)
|
301 |
+
result = concat([s1, df, s2, s2, s1], axis=1)
|
302 |
+
tm.assert_frame_equal(result, expected)
|
303 |
+
|
304 |
+
# with names
|
305 |
+
s1.name = "foo"
|
306 |
+
expected = DataFrame(
|
307 |
+
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0]
|
308 |
+
)
|
309 |
+
result = concat([s1, df, s2], axis=1)
|
310 |
+
tm.assert_frame_equal(result, expected)
|
311 |
+
|
312 |
+
s2.name = "bar"
|
313 |
+
expected = DataFrame(
|
314 |
+
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"]
|
315 |
+
)
|
316 |
+
result = concat([s1, df, s2], axis=1)
|
317 |
+
tm.assert_frame_equal(result, expected)
|
318 |
+
|
319 |
+
# ignore index
|
320 |
+
expected = DataFrame(
|
321 |
+
np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2]
|
322 |
+
)
|
323 |
+
result = concat([s1, df, s2], axis=1, ignore_index=True)
|
324 |
+
tm.assert_frame_equal(result, expected)
|
325 |
+
|
326 |
+
def test_concat_mixed_objs_index(self):
|
327 |
+
# Test row-wise concat for mixed series/frames with a common name
|
328 |
+
# GH2385, GH15047
|
329 |
+
|
330 |
+
index = date_range("01-Jan-2013", periods=10, freq="h")
|
331 |
+
arr = np.arange(10, dtype="int64")
|
332 |
+
s1 = Series(arr, index=index)
|
333 |
+
s2 = Series(arr, index=index)
|
334 |
+
df = DataFrame(arr.reshape(-1, 1), index=index)
|
335 |
+
|
336 |
+
expected = DataFrame(
|
337 |
+
np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0]
|
338 |
+
)
|
339 |
+
result = concat([s1, df, s2])
|
340 |
+
tm.assert_frame_equal(result, expected)
|
341 |
+
|
342 |
+
def test_concat_mixed_objs_index_names(self):
|
343 |
+
# Test row-wise concat for mixed series/frames with distinct names
|
344 |
+
# GH2385, GH15047
|
345 |
+
|
346 |
+
index = date_range("01-Jan-2013", periods=10, freq="h")
|
347 |
+
arr = np.arange(10, dtype="int64")
|
348 |
+
s1 = Series(arr, index=index, name="foo")
|
349 |
+
s2 = Series(arr, index=index, name="bar")
|
350 |
+
df = DataFrame(arr.reshape(-1, 1), index=index)
|
351 |
+
|
352 |
+
expected = DataFrame(
|
353 |
+
np.kron(np.where(np.identity(3) == 1, 1, np.nan), arr).T,
|
354 |
+
index=index.tolist() * 3,
|
355 |
+
columns=["foo", 0, "bar"],
|
356 |
+
)
|
357 |
+
result = concat([s1, df, s2])
|
358 |
+
tm.assert_frame_equal(result, expected)
|
359 |
+
|
360 |
+
# Rename all series to 0 when ignore_index=True
|
361 |
+
expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0])
|
362 |
+
result = concat([s1, df, s2], ignore_index=True)
|
363 |
+
tm.assert_frame_equal(result, expected)
|
364 |
+
|
365 |
+
def test_dtype_coercion(self):
|
366 |
+
# 12411
|
367 |
+
df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]})
|
368 |
+
|
369 |
+
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
370 |
+
tm.assert_series_equal(result.dtypes, df.dtypes)
|
371 |
+
|
372 |
+
# 12045
|
373 |
+
df = DataFrame({"date": [datetime(2012, 1, 1), datetime(1012, 1, 2)]})
|
374 |
+
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
375 |
+
tm.assert_series_equal(result.dtypes, df.dtypes)
|
376 |
+
|
377 |
+
# 11594
|
378 |
+
df = DataFrame({"text": ["some words"] + [None] * 9})
|
379 |
+
result = concat([df.iloc[[0]], df.iloc[[1]]])
|
380 |
+
tm.assert_series_equal(result.dtypes, df.dtypes)
|
381 |
+
|
382 |
+
def test_concat_single_with_key(self):
|
383 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
384 |
+
|
385 |
+
result = concat([df], keys=["foo"])
|
386 |
+
expected = concat([df, df], keys=["foo", "bar"])
|
387 |
+
tm.assert_frame_equal(result, expected[:10])
|
388 |
+
|
389 |
+
def test_concat_no_items_raises(self):
|
390 |
+
with pytest.raises(ValueError, match="No objects to concatenate"):
|
391 |
+
concat([])
|
392 |
+
|
393 |
+
def test_concat_exclude_none(self):
|
394 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
|
395 |
+
|
396 |
+
pieces = [df[:5], None, None, df[5:]]
|
397 |
+
result = concat(pieces)
|
398 |
+
tm.assert_frame_equal(result, df)
|
399 |
+
with pytest.raises(ValueError, match="All objects passed were None"):
|
400 |
+
concat([None, None])
|
401 |
+
|
402 |
+
def test_concat_keys_with_none(self):
|
403 |
+
# #1649
|
404 |
+
df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]])
|
405 |
+
|
406 |
+
result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
|
407 |
+
expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0})
|
408 |
+
tm.assert_frame_equal(result, expected)
|
409 |
+
|
410 |
+
result = concat(
|
411 |
+
[None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"]
|
412 |
+
)
|
413 |
+
expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"])
|
414 |
+
tm.assert_frame_equal(result, expected)
|
415 |
+
|
416 |
+
def test_concat_bug_1719(self):
|
417 |
+
ts1 = Series(
|
418 |
+
np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10)
|
419 |
+
)
|
420 |
+
ts2 = ts1.copy()[::2]
|
421 |
+
|
422 |
+
# to join with union
|
423 |
+
# these two are of different length!
|
424 |
+
left = concat([ts1, ts2], join="outer", axis=1)
|
425 |
+
right = concat([ts2, ts1], join="outer", axis=1)
|
426 |
+
|
427 |
+
assert len(left) == len(right)
|
428 |
+
|
429 |
+
def test_concat_bug_2972(self):
|
430 |
+
ts0 = Series(np.zeros(5))
|
431 |
+
ts1 = Series(np.ones(5))
|
432 |
+
ts0.name = ts1.name = "same name"
|
433 |
+
result = concat([ts0, ts1], axis=1)
|
434 |
+
|
435 |
+
expected = DataFrame({0: ts0, 1: ts1})
|
436 |
+
expected.columns = ["same name", "same name"]
|
437 |
+
tm.assert_frame_equal(result, expected)
|
438 |
+
|
439 |
+
def test_concat_bug_3602(self):
|
440 |
+
# GH 3602, duplicate columns
|
441 |
+
df1 = DataFrame(
|
442 |
+
{
|
443 |
+
"firmNo": [0, 0, 0, 0],
|
444 |
+
"prc": [6, 6, 6, 6],
|
445 |
+
"stringvar": ["rrr", "rrr", "rrr", "rrr"],
|
446 |
+
}
|
447 |
+
)
|
448 |
+
df2 = DataFrame(
|
449 |
+
{"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]}
|
450 |
+
)
|
451 |
+
expected = DataFrame(
|
452 |
+
[
|
453 |
+
[0, 6, "rrr", 9, 1, 6],
|
454 |
+
[0, 6, "rrr", 10, 2, 6],
|
455 |
+
[0, 6, "rrr", 11, 3, 6],
|
456 |
+
[0, 6, "rrr", 12, 4, 6],
|
457 |
+
]
|
458 |
+
)
|
459 |
+
expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"]
|
460 |
+
|
461 |
+
result = concat([df1, df2], axis=1)
|
462 |
+
tm.assert_frame_equal(result, expected)
|
463 |
+
|
464 |
+
def test_concat_iterables(self):
|
465 |
+
# GH8645 check concat works with tuples, list, generators, and weird
|
466 |
+
# stuff like deque and custom iterables
|
467 |
+
df1 = DataFrame([1, 2, 3])
|
468 |
+
df2 = DataFrame([4, 5, 6])
|
469 |
+
expected = DataFrame([1, 2, 3, 4, 5, 6])
|
470 |
+
tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected)
|
471 |
+
tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected)
|
472 |
+
tm.assert_frame_equal(
|
473 |
+
concat((df for df in (df1, df2)), ignore_index=True), expected
|
474 |
+
)
|
475 |
+
tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected)
|
476 |
+
|
477 |
+
class CustomIterator1:
|
478 |
+
def __len__(self) -> int:
|
479 |
+
return 2
|
480 |
+
|
481 |
+
def __getitem__(self, index):
|
482 |
+
try:
|
483 |
+
return {0: df1, 1: df2}[index]
|
484 |
+
except KeyError as err:
|
485 |
+
raise IndexError from err
|
486 |
+
|
487 |
+
tm.assert_frame_equal(concat(CustomIterator1(), ignore_index=True), expected)
|
488 |
+
|
489 |
+
class CustomIterator2(abc.Iterable):
|
490 |
+
def __iter__(self) -> Iterator:
|
491 |
+
yield df1
|
492 |
+
yield df2
|
493 |
+
|
494 |
+
tm.assert_frame_equal(concat(CustomIterator2(), ignore_index=True), expected)
|
495 |
+
|
496 |
+
def test_concat_order(self):
|
497 |
+
# GH 17344, GH#47331
|
498 |
+
dfs = [DataFrame(index=range(3), columns=["a", 1, None])]
|
499 |
+
dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for _ in range(100)]
|
500 |
+
|
501 |
+
result = concat(dfs, sort=True).columns
|
502 |
+
expected = Index([1, "a", None])
|
503 |
+
tm.assert_index_equal(result, expected)
|
504 |
+
|
505 |
+
def test_concat_different_extension_dtypes_upcasts(self):
|
506 |
+
a = Series(pd.array([1, 2], dtype="Int64"))
|
507 |
+
b = Series(to_decimal([1, 2]))
|
508 |
+
|
509 |
+
result = concat([a, b], ignore_index=True)
|
510 |
+
expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object)
|
511 |
+
tm.assert_series_equal(result, expected)
|
512 |
+
|
513 |
+
def test_concat_ordered_dict(self):
|
514 |
+
# GH 21510
|
515 |
+
expected = concat(
|
516 |
+
[Series(range(3)), Series(range(4))], keys=["First", "Another"]
|
517 |
+
)
|
518 |
+
result = concat({"First": Series(range(3)), "Another": Series(range(4))})
|
519 |
+
tm.assert_series_equal(result, expected)
|
520 |
+
|
521 |
+
def test_concat_duplicate_indices_raise(self):
|
522 |
+
# GH 45888: test raise for concat DataFrames with duplicate indices
|
523 |
+
# https://github.com/pandas-dev/pandas/issues/36263
|
524 |
+
df1 = DataFrame(
|
525 |
+
np.random.default_rng(2).standard_normal(5),
|
526 |
+
index=[0, 1, 2, 3, 3],
|
527 |
+
columns=["a"],
|
528 |
+
)
|
529 |
+
df2 = DataFrame(
|
530 |
+
np.random.default_rng(2).standard_normal(5),
|
531 |
+
index=[0, 1, 2, 2, 4],
|
532 |
+
columns=["b"],
|
533 |
+
)
|
534 |
+
msg = "Reindexing only valid with uniquely valued Index objects"
|
535 |
+
with pytest.raises(InvalidIndexError, match=msg):
|
536 |
+
concat([df1, df2], axis=1)
|
537 |
+
|
538 |
+
|
539 |
+
def test_concat_no_unnecessary_upcast(float_numpy_dtype, frame_or_series):
|
540 |
+
# GH 13247
|
541 |
+
dims = frame_or_series(dtype=object).ndim
|
542 |
+
dt = float_numpy_dtype
|
543 |
+
|
544 |
+
dfs = [
|
545 |
+
frame_or_series(np.array([1], dtype=dt, ndmin=dims)),
|
546 |
+
frame_or_series(np.array([np.nan], dtype=dt, ndmin=dims)),
|
547 |
+
frame_or_series(np.array([5], dtype=dt, ndmin=dims)),
|
548 |
+
]
|
549 |
+
x = concat(dfs)
|
550 |
+
assert x.values.dtype == dt
|
551 |
+
|
552 |
+
|
553 |
+
@pytest.mark.parametrize("pdt", [Series, DataFrame])
|
554 |
+
def test_concat_will_upcast(pdt, any_signed_int_numpy_dtype):
|
555 |
+
dt = any_signed_int_numpy_dtype
|
556 |
+
dims = pdt().ndim
|
557 |
+
dfs = [
|
558 |
+
pdt(np.array([1], dtype=dt, ndmin=dims)),
|
559 |
+
pdt(np.array([np.nan], ndmin=dims)),
|
560 |
+
pdt(np.array([5], dtype=dt, ndmin=dims)),
|
561 |
+
]
|
562 |
+
x = concat(dfs)
|
563 |
+
assert x.values.dtype == "float64"
|
564 |
+
|
565 |
+
|
566 |
+
def test_concat_empty_and_non_empty_frame_regression():
|
567 |
+
# GH 18178 regression test
|
568 |
+
df1 = DataFrame({"foo": [1]})
|
569 |
+
df2 = DataFrame({"foo": []})
|
570 |
+
expected = DataFrame({"foo": [1.0]})
|
571 |
+
result = concat([df1, df2])
|
572 |
+
tm.assert_frame_equal(result, expected)
|
573 |
+
|
574 |
+
|
575 |
+
def test_concat_sparse():
|
576 |
+
# GH 23557
|
577 |
+
a = Series(SparseArray([0, 1, 2]))
|
578 |
+
expected = DataFrame(data=[[0, 0], [1, 1], [2, 2]]).astype(
|
579 |
+
pd.SparseDtype(np.int64, 0)
|
580 |
+
)
|
581 |
+
result = concat([a, a], axis=1)
|
582 |
+
tm.assert_frame_equal(result, expected)
|
583 |
+
|
584 |
+
|
585 |
+
def test_concat_dense_sparse():
|
586 |
+
# GH 30668
|
587 |
+
dtype = pd.SparseDtype(np.float64, None)
|
588 |
+
a = Series(pd.arrays.SparseArray([1, None]), dtype=dtype)
|
589 |
+
b = Series([1], dtype=float)
|
590 |
+
expected = Series(data=[1, None, 1], index=[0, 1, 0]).astype(dtype)
|
591 |
+
result = concat([a, b], axis=0)
|
592 |
+
tm.assert_series_equal(result, expected)
|
593 |
+
|
594 |
+
|
595 |
+
@pytest.mark.parametrize("keys", [["e", "f", "f"], ["f", "e", "f"]])
|
596 |
+
def test_duplicate_keys(keys):
|
597 |
+
# GH 33654
|
598 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
599 |
+
s1 = Series([7, 8, 9], name="c")
|
600 |
+
s2 = Series([10, 11, 12], name="d")
|
601 |
+
result = concat([df, s1, s2], axis=1, keys=keys)
|
602 |
+
expected_values = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
|
603 |
+
expected_columns = MultiIndex.from_tuples(
|
604 |
+
[(keys[0], "a"), (keys[0], "b"), (keys[1], "c"), (keys[2], "d")]
|
605 |
+
)
|
606 |
+
expected = DataFrame(expected_values, columns=expected_columns)
|
607 |
+
tm.assert_frame_equal(result, expected)
|
608 |
+
|
609 |
+
|
610 |
+
def test_duplicate_keys_same_frame():
|
611 |
+
# GH 43595
|
612 |
+
keys = ["e", "e"]
|
613 |
+
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
|
614 |
+
result = concat([df, df], axis=1, keys=keys)
|
615 |
+
expected_values = [[1, 4, 1, 4], [2, 5, 2, 5], [3, 6, 3, 6]]
|
616 |
+
expected_columns = MultiIndex.from_tuples(
|
617 |
+
[(keys[0], "a"), (keys[0], "b"), (keys[1], "a"), (keys[1], "b")]
|
618 |
+
)
|
619 |
+
expected = DataFrame(expected_values, columns=expected_columns)
|
620 |
+
tm.assert_frame_equal(result, expected)
|
621 |
+
|
622 |
+
|
623 |
+
@pytest.mark.filterwarnings(
|
624 |
+
"ignore:Passing a BlockManager|Passing a SingleBlockManager:DeprecationWarning"
|
625 |
+
)
|
626 |
+
@pytest.mark.parametrize(
|
627 |
+
"obj",
|
628 |
+
[
|
629 |
+
tm.SubclassedDataFrame({"A": np.arange(0, 10)}),
|
630 |
+
tm.SubclassedSeries(np.arange(0, 10), name="A"),
|
631 |
+
],
|
632 |
+
)
|
633 |
+
def test_concat_preserves_subclass(obj):
|
634 |
+
# GH28330 -- preserve subclass
|
635 |
+
|
636 |
+
result = concat([obj, obj])
|
637 |
+
assert isinstance(result, type(obj))
|
638 |
+
|
639 |
+
|
640 |
+
def test_concat_frame_axis0_extension_dtypes():
|
641 |
+
# preserve extension dtype (through common_dtype mechanism)
|
642 |
+
df1 = DataFrame({"a": pd.array([1, 2, 3], dtype="Int64")})
|
643 |
+
df2 = DataFrame({"a": np.array([4, 5, 6])})
|
644 |
+
|
645 |
+
result = concat([df1, df2], ignore_index=True)
|
646 |
+
expected = DataFrame({"a": [1, 2, 3, 4, 5, 6]}, dtype="Int64")
|
647 |
+
tm.assert_frame_equal(result, expected)
|
648 |
+
|
649 |
+
result = concat([df2, df1], ignore_index=True)
|
650 |
+
expected = DataFrame({"a": [4, 5, 6, 1, 2, 3]}, dtype="Int64")
|
651 |
+
tm.assert_frame_equal(result, expected)
|
652 |
+
|
653 |
+
|
654 |
+
def test_concat_preserves_extension_int64_dtype():
|
655 |
+
# GH 24768
|
656 |
+
df_a = DataFrame({"a": [-1]}, dtype="Int64")
|
657 |
+
df_b = DataFrame({"b": [1]}, dtype="Int64")
|
658 |
+
result = concat([df_a, df_b], ignore_index=True)
|
659 |
+
expected = DataFrame({"a": [-1, None], "b": [None, 1]}, dtype="Int64")
|
660 |
+
tm.assert_frame_equal(result, expected)
|
661 |
+
|
662 |
+
|
663 |
+
@pytest.mark.parametrize(
|
664 |
+
"dtype1,dtype2,expected_dtype",
|
665 |
+
[
|
666 |
+
("bool", "bool", "bool"),
|
667 |
+
("boolean", "bool", "boolean"),
|
668 |
+
("bool", "boolean", "boolean"),
|
669 |
+
("boolean", "boolean", "boolean"),
|
670 |
+
],
|
671 |
+
)
|
672 |
+
def test_concat_bool_types(dtype1, dtype2, expected_dtype):
|
673 |
+
# GH 42800
|
674 |
+
ser1 = Series([True, False], dtype=dtype1)
|
675 |
+
ser2 = Series([False, True], dtype=dtype2)
|
676 |
+
result = concat([ser1, ser2], ignore_index=True)
|
677 |
+
expected = Series([True, False, False, True], dtype=expected_dtype)
|
678 |
+
tm.assert_series_equal(result, expected)
|
679 |
+
|
680 |
+
|
681 |
+
@pytest.mark.parametrize(
|
682 |
+
("keys", "integrity"),
|
683 |
+
[
|
684 |
+
(["red"] * 3, True),
|
685 |
+
(["red"] * 3, False),
|
686 |
+
(["red", "blue", "red"], False),
|
687 |
+
(["red", "blue", "red"], True),
|
688 |
+
],
|
689 |
+
)
|
690 |
+
def test_concat_repeated_keys(keys, integrity):
|
691 |
+
# GH: 20816
|
692 |
+
series_list = [Series({"a": 1}), Series({"b": 2}), Series({"c": 3})]
|
693 |
+
result = concat(series_list, keys=keys, verify_integrity=integrity)
|
694 |
+
tuples = list(zip(keys, ["a", "b", "c"]))
|
695 |
+
expected = Series([1, 2, 3], index=MultiIndex.from_tuples(tuples))
|
696 |
+
tm.assert_series_equal(result, expected)
|
697 |
+
|
698 |
+
|
699 |
+
def test_concat_null_object_with_dti():
|
700 |
+
# GH#40841
|
701 |
+
dti = pd.DatetimeIndex(
|
702 |
+
["2021-04-08 21:21:14+00:00"], dtype="datetime64[ns, UTC]", name="Time (UTC)"
|
703 |
+
)
|
704 |
+
right = DataFrame(data={"C": [0.5274]}, index=dti)
|
705 |
+
|
706 |
+
idx = Index([None], dtype="object", name="Maybe Time (UTC)")
|
707 |
+
left = DataFrame(data={"A": [None], "B": [np.nan]}, index=idx)
|
708 |
+
|
709 |
+
result = concat([left, right], axis="columns")
|
710 |
+
|
711 |
+
exp_index = Index([None, dti[0]], dtype=object)
|
712 |
+
expected = DataFrame(
|
713 |
+
{
|
714 |
+
"A": np.array([None, np.nan], dtype=object),
|
715 |
+
"B": [np.nan, np.nan],
|
716 |
+
"C": [np.nan, 0.5274],
|
717 |
+
},
|
718 |
+
index=exp_index,
|
719 |
+
)
|
720 |
+
tm.assert_frame_equal(result, expected)
|
721 |
+
|
722 |
+
|
723 |
+
def test_concat_multiindex_with_empty_rangeindex():
|
724 |
+
# GH#41234
|
725 |
+
mi = MultiIndex.from_tuples([("B", 1), ("C", 1)])
|
726 |
+
df1 = DataFrame([[1, 2]], columns=mi)
|
727 |
+
df2 = DataFrame(index=[1], columns=pd.RangeIndex(0))
|
728 |
+
|
729 |
+
result = concat([df1, df2])
|
730 |
+
expected = DataFrame([[1, 2], [np.nan, np.nan]], columns=mi)
|
731 |
+
tm.assert_frame_equal(result, expected)
|
732 |
+
|
733 |
+
|
734 |
+
@pytest.mark.parametrize(
|
735 |
+
"data",
|
736 |
+
[
|
737 |
+
Series(data=[1, 2]),
|
738 |
+
DataFrame(
|
739 |
+
data={
|
740 |
+
"col1": [1, 2],
|
741 |
+
}
|
742 |
+
),
|
743 |
+
DataFrame(dtype=float),
|
744 |
+
Series(dtype=float),
|
745 |
+
],
|
746 |
+
)
|
747 |
+
def test_concat_drop_attrs(data):
|
748 |
+
# GH#41828
|
749 |
+
df1 = data.copy()
|
750 |
+
df1.attrs = {1: 1}
|
751 |
+
df2 = data.copy()
|
752 |
+
df2.attrs = {1: 2}
|
753 |
+
df = concat([df1, df2])
|
754 |
+
assert len(df.attrs) == 0
|
755 |
+
|
756 |
+
|
757 |
+
@pytest.mark.parametrize(
|
758 |
+
"data",
|
759 |
+
[
|
760 |
+
Series(data=[1, 2]),
|
761 |
+
DataFrame(
|
762 |
+
data={
|
763 |
+
"col1": [1, 2],
|
764 |
+
}
|
765 |
+
),
|
766 |
+
DataFrame(dtype=float),
|
767 |
+
Series(dtype=float),
|
768 |
+
],
|
769 |
+
)
|
770 |
+
def test_concat_retain_attrs(data):
|
771 |
+
# GH#41828
|
772 |
+
df1 = data.copy()
|
773 |
+
df1.attrs = {1: 1}
|
774 |
+
df2 = data.copy()
|
775 |
+
df2.attrs = {1: 1}
|
776 |
+
df = concat([df1, df2])
|
777 |
+
assert df.attrs[1] == 1
|
778 |
+
|
779 |
+
|
780 |
+
@td.skip_array_manager_invalid_test
|
781 |
+
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
|
782 |
+
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
|
783 |
+
def test_concat_ignore_empty_object_float(empty_dtype, df_dtype):
|
784 |
+
# https://github.com/pandas-dev/pandas/issues/45637
|
785 |
+
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
|
786 |
+
empty = DataFrame(columns=["foo", "bar"], dtype=empty_dtype)
|
787 |
+
|
788 |
+
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
789 |
+
warn = None
|
790 |
+
if df_dtype == "datetime64[ns]" or (
|
791 |
+
df_dtype == "float64" and empty_dtype != "float64"
|
792 |
+
):
|
793 |
+
warn = FutureWarning
|
794 |
+
with tm.assert_produces_warning(warn, match=msg):
|
795 |
+
result = concat([empty, df])
|
796 |
+
expected = df
|
797 |
+
if df_dtype == "int64":
|
798 |
+
# TODO what exact behaviour do we want for integer eventually?
|
799 |
+
if empty_dtype == "float64":
|
800 |
+
expected = df.astype("float64")
|
801 |
+
else:
|
802 |
+
expected = df.astype("object")
|
803 |
+
tm.assert_frame_equal(result, expected)
|
804 |
+
|
805 |
+
|
806 |
+
@td.skip_array_manager_invalid_test
|
807 |
+
@pytest.mark.parametrize("df_dtype", ["float64", "int64", "datetime64[ns]"])
|
808 |
+
@pytest.mark.parametrize("empty_dtype", [None, "float64", "object"])
|
809 |
+
def test_concat_ignore_all_na_object_float(empty_dtype, df_dtype):
|
810 |
+
df = DataFrame({"foo": [1, 2], "bar": [1, 2]}, dtype=df_dtype)
|
811 |
+
empty = DataFrame({"foo": [np.nan], "bar": [np.nan]}, dtype=empty_dtype)
|
812 |
+
|
813 |
+
if df_dtype == "int64":
|
814 |
+
# TODO what exact behaviour do we want for integer eventually?
|
815 |
+
if empty_dtype == "object":
|
816 |
+
df_dtype = "object"
|
817 |
+
else:
|
818 |
+
df_dtype = "float64"
|
819 |
+
|
820 |
+
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
821 |
+
warn = None
|
822 |
+
if empty_dtype != df_dtype and empty_dtype is not None:
|
823 |
+
warn = FutureWarning
|
824 |
+
elif df_dtype == "datetime64[ns]":
|
825 |
+
warn = FutureWarning
|
826 |
+
|
827 |
+
with tm.assert_produces_warning(warn, match=msg):
|
828 |
+
result = concat([empty, df], ignore_index=True)
|
829 |
+
|
830 |
+
expected = DataFrame({"foo": [np.nan, 1, 2], "bar": [np.nan, 1, 2]}, dtype=df_dtype)
|
831 |
+
tm.assert_frame_equal(result, expected)
|
832 |
+
|
833 |
+
|
834 |
+
@td.skip_array_manager_invalid_test
|
835 |
+
def test_concat_ignore_empty_from_reindex():
|
836 |
+
# https://github.com/pandas-dev/pandas/pull/43507#issuecomment-920375856
|
837 |
+
df1 = DataFrame({"a": [1], "b": [pd.Timestamp("2012-01-01")]})
|
838 |
+
df2 = DataFrame({"a": [2]})
|
839 |
+
|
840 |
+
aligned = df2.reindex(columns=df1.columns)
|
841 |
+
|
842 |
+
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
843 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
844 |
+
result = concat([df1, aligned], ignore_index=True)
|
845 |
+
expected = df1 = DataFrame({"a": [1, 2], "b": [pd.Timestamp("2012-01-01"), pd.NaT]})
|
846 |
+
tm.assert_frame_equal(result, expected)
|
847 |
+
|
848 |
+
|
849 |
+
def test_concat_mismatched_keys_length():
|
850 |
+
# GH#43485
|
851 |
+
ser = Series(range(5))
|
852 |
+
sers = [ser + n for n in range(4)]
|
853 |
+
keys = ["A", "B", "C"]
|
854 |
+
|
855 |
+
msg = r"The behavior of pd.concat with len\(keys\) != len\(objs\) is deprecated"
|
856 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
857 |
+
concat(sers, keys=keys, axis=1)
|
858 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
859 |
+
concat(sers, keys=keys, axis=0)
|
860 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
861 |
+
concat((x for x in sers), keys=(y for y in keys), axis=1)
|
862 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
863 |
+
concat((x for x in sers), keys=(y for y in keys), axis=0)
|
864 |
+
|
865 |
+
|
866 |
+
def test_concat_multiindex_with_category():
|
867 |
+
df1 = DataFrame(
|
868 |
+
{
|
869 |
+
"c1": Series(list("abc"), dtype="category"),
|
870 |
+
"c2": Series(list("eee"), dtype="category"),
|
871 |
+
"i2": Series([1, 2, 3]),
|
872 |
+
}
|
873 |
+
)
|
874 |
+
df1 = df1.set_index(["c1", "c2"])
|
875 |
+
df2 = DataFrame(
|
876 |
+
{
|
877 |
+
"c1": Series(list("abc"), dtype="category"),
|
878 |
+
"c2": Series(list("eee"), dtype="category"),
|
879 |
+
"i2": Series([4, 5, 6]),
|
880 |
+
}
|
881 |
+
)
|
882 |
+
df2 = df2.set_index(["c1", "c2"])
|
883 |
+
result = concat([df1, df2])
|
884 |
+
expected = DataFrame(
|
885 |
+
{
|
886 |
+
"c1": Series(list("abcabc"), dtype="category"),
|
887 |
+
"c2": Series(list("eeeeee"), dtype="category"),
|
888 |
+
"i2": Series([1, 2, 3, 4, 5, 6]),
|
889 |
+
}
|
890 |
+
)
|
891 |
+
expected = expected.set_index(["c1", "c2"])
|
892 |
+
tm.assert_frame_equal(result, expected)
|
893 |
+
|
894 |
+
|
895 |
+
def test_concat_ea_upcast():
|
896 |
+
# GH#54848
|
897 |
+
df1 = DataFrame(["a"], dtype="string")
|
898 |
+
df2 = DataFrame([1], dtype="Int64")
|
899 |
+
result = concat([df1, df2])
|
900 |
+
expected = DataFrame(["a", 1], index=[0, 0])
|
901 |
+
tm.assert_frame_equal(result, expected)
|
902 |
+
|
903 |
+
|
904 |
+
def test_concat_none_with_timezone_timestamp():
|
905 |
+
# GH#52093
|
906 |
+
df1 = DataFrame([{"A": None}])
|
907 |
+
df2 = DataFrame([{"A": pd.Timestamp("1990-12-20 00:00:00+00:00")}])
|
908 |
+
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
909 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
910 |
+
result = concat([df1, df2], ignore_index=True)
|
911 |
+
expected = DataFrame({"A": [None, pd.Timestamp("1990-12-20 00:00:00+00:00")]})
|
912 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_dataframe.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
Index,
|
8 |
+
Series,
|
9 |
+
concat,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
class TestDataFrameConcat:
|
15 |
+
def test_concat_multiple_frames_dtypes(self):
|
16 |
+
# GH#2759
|
17 |
+
df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
|
18 |
+
df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
|
19 |
+
results = concat((df1, df2), axis=1).dtypes
|
20 |
+
expected = Series(
|
21 |
+
[np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
|
22 |
+
index=["foo", "bar", 0, 1],
|
23 |
+
)
|
24 |
+
tm.assert_series_equal(results, expected)
|
25 |
+
|
26 |
+
def test_concat_tuple_keys(self):
|
27 |
+
# GH#14438
|
28 |
+
df1 = DataFrame(np.ones((2, 2)), columns=list("AB"))
|
29 |
+
df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
|
30 |
+
results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
|
31 |
+
expected = DataFrame(
|
32 |
+
{
|
33 |
+
"A": {
|
34 |
+
("bee", "bah", 0): 1.0,
|
35 |
+
("bee", "bah", 1): 1.0,
|
36 |
+
("bee", "boo", 0): 2.0,
|
37 |
+
("bee", "boo", 1): 2.0,
|
38 |
+
("bee", "boo", 2): 2.0,
|
39 |
+
},
|
40 |
+
"B": {
|
41 |
+
("bee", "bah", 0): 1.0,
|
42 |
+
("bee", "bah", 1): 1.0,
|
43 |
+
("bee", "boo", 0): 2.0,
|
44 |
+
("bee", "boo", 1): 2.0,
|
45 |
+
("bee", "boo", 2): 2.0,
|
46 |
+
},
|
47 |
+
}
|
48 |
+
)
|
49 |
+
tm.assert_frame_equal(results, expected)
|
50 |
+
|
51 |
+
def test_concat_named_keys(self):
|
52 |
+
# GH#14252
|
53 |
+
df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
|
54 |
+
index = Index(["a", "b"], name="baz")
|
55 |
+
concatted_named_from_keys = concat([df, df], keys=index)
|
56 |
+
expected_named = DataFrame(
|
57 |
+
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
58 |
+
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
|
59 |
+
)
|
60 |
+
tm.assert_frame_equal(concatted_named_from_keys, expected_named)
|
61 |
+
|
62 |
+
index_no_name = Index(["a", "b"], name=None)
|
63 |
+
concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"])
|
64 |
+
tm.assert_frame_equal(concatted_named_from_names, expected_named)
|
65 |
+
|
66 |
+
concatted_unnamed = concat([df, df], keys=index_no_name)
|
67 |
+
expected_unnamed = DataFrame(
|
68 |
+
{"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
|
69 |
+
index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
|
70 |
+
)
|
71 |
+
tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
|
72 |
+
|
73 |
+
def test_concat_axis_parameter(self):
|
74 |
+
# GH#14369
|
75 |
+
df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2))
|
76 |
+
df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2))
|
77 |
+
|
78 |
+
# Index/row/0 DataFrame
|
79 |
+
expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
|
80 |
+
|
81 |
+
concatted_index = concat([df1, df2], axis="index")
|
82 |
+
tm.assert_frame_equal(concatted_index, expected_index)
|
83 |
+
|
84 |
+
concatted_row = concat([df1, df2], axis="rows")
|
85 |
+
tm.assert_frame_equal(concatted_row, expected_index)
|
86 |
+
|
87 |
+
concatted_0 = concat([df1, df2], axis=0)
|
88 |
+
tm.assert_frame_equal(concatted_0, expected_index)
|
89 |
+
|
90 |
+
# Columns/1 DataFrame
|
91 |
+
expected_columns = DataFrame(
|
92 |
+
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
|
93 |
+
)
|
94 |
+
|
95 |
+
concatted_columns = concat([df1, df2], axis="columns")
|
96 |
+
tm.assert_frame_equal(concatted_columns, expected_columns)
|
97 |
+
|
98 |
+
concatted_1 = concat([df1, df2], axis=1)
|
99 |
+
tm.assert_frame_equal(concatted_1, expected_columns)
|
100 |
+
|
101 |
+
series1 = Series([0.1, 0.2])
|
102 |
+
series2 = Series([0.3, 0.4])
|
103 |
+
|
104 |
+
# Index/row/0 Series
|
105 |
+
expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
|
106 |
+
|
107 |
+
concatted_index_series = concat([series1, series2], axis="index")
|
108 |
+
tm.assert_series_equal(concatted_index_series, expected_index_series)
|
109 |
+
|
110 |
+
concatted_row_series = concat([series1, series2], axis="rows")
|
111 |
+
tm.assert_series_equal(concatted_row_series, expected_index_series)
|
112 |
+
|
113 |
+
concatted_0_series = concat([series1, series2], axis=0)
|
114 |
+
tm.assert_series_equal(concatted_0_series, expected_index_series)
|
115 |
+
|
116 |
+
# Columns/1 Series
|
117 |
+
expected_columns_series = DataFrame(
|
118 |
+
[[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
|
119 |
+
)
|
120 |
+
|
121 |
+
concatted_columns_series = concat([series1, series2], axis="columns")
|
122 |
+
tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
|
123 |
+
|
124 |
+
concatted_1_series = concat([series1, series2], axis=1)
|
125 |
+
tm.assert_frame_equal(concatted_1_series, expected_columns_series)
|
126 |
+
|
127 |
+
# Testing ValueError
|
128 |
+
with pytest.raises(ValueError, match="No axis named"):
|
129 |
+
concat([series1, series2], axis="something")
|
130 |
+
|
131 |
+
def test_concat_numerical_names(self):
|
132 |
+
# GH#15262, GH#12223
|
133 |
+
df = DataFrame(
|
134 |
+
{"col": range(9)},
|
135 |
+
dtype="int32",
|
136 |
+
index=(
|
137 |
+
pd.MultiIndex.from_product(
|
138 |
+
[["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
|
139 |
+
)
|
140 |
+
),
|
141 |
+
)
|
142 |
+
result = concat((df.iloc[:2, :], df.iloc[-2:, :]))
|
143 |
+
expected = DataFrame(
|
144 |
+
{"col": [0, 1, 7, 8]},
|
145 |
+
dtype="int32",
|
146 |
+
index=pd.MultiIndex.from_tuples(
|
147 |
+
[("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
|
148 |
+
),
|
149 |
+
)
|
150 |
+
tm.assert_frame_equal(result, expected)
|
151 |
+
|
152 |
+
def test_concat_astype_dup_col(self):
|
153 |
+
# GH#23049
|
154 |
+
df = DataFrame([{"a": "b"}])
|
155 |
+
df = concat([df, df], axis=1)
|
156 |
+
|
157 |
+
result = df.astype("category")
|
158 |
+
expected = DataFrame(
|
159 |
+
np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
|
160 |
+
).astype("category")
|
161 |
+
tm.assert_frame_equal(result, expected)
|
162 |
+
|
163 |
+
def test_concat_dataframe_keys_bug(self, sort):
|
164 |
+
t1 = DataFrame(
|
165 |
+
{"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))}
|
166 |
+
)
|
167 |
+
t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))})
|
168 |
+
|
169 |
+
# it works
|
170 |
+
result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort)
|
171 |
+
assert list(result.columns) == [("t1", "value"), ("t2", "value")]
|
172 |
+
|
173 |
+
def test_concat_bool_with_int(self):
|
174 |
+
# GH#42092 we may want to change this to return object, but that
|
175 |
+
# would need a deprecation
|
176 |
+
df1 = DataFrame(Series([True, False, True, True], dtype="bool"))
|
177 |
+
df2 = DataFrame(Series([1, 0, 1], dtype="int64"))
|
178 |
+
|
179 |
+
result = concat([df1, df2])
|
180 |
+
expected = concat([df1.astype("int64"), df2])
|
181 |
+
tm.assert_frame_equal(result, expected)
|
182 |
+
|
183 |
+
def test_concat_duplicates_in_index_with_keys(self):
|
184 |
+
# GH#42651
|
185 |
+
index = [1, 1, 3]
|
186 |
+
data = [1, 2, 3]
|
187 |
+
|
188 |
+
df = DataFrame(data=data, index=index)
|
189 |
+
result = concat([df], keys=["A"], names=["ID", "date"])
|
190 |
+
mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"])
|
191 |
+
expected = DataFrame(data=data, index=mi)
|
192 |
+
tm.assert_frame_equal(result, expected)
|
193 |
+
tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date"))
|
194 |
+
|
195 |
+
@pytest.mark.parametrize("ignore_index", [True, False])
|
196 |
+
@pytest.mark.parametrize("order", ["C", "F"])
|
197 |
+
@pytest.mark.parametrize("axis", [0, 1])
|
198 |
+
def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write):
|
199 |
+
# based on asv ConcatDataFrames
|
200 |
+
df = DataFrame(np.zeros((10, 5), dtype=np.float32, order=order))
|
201 |
+
|
202 |
+
res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True)
|
203 |
+
|
204 |
+
if not using_copy_on_write:
|
205 |
+
for arr in res._iter_column_arrays():
|
206 |
+
for arr2 in df._iter_column_arrays():
|
207 |
+
assert not np.shares_memory(arr, arr2)
|
208 |
+
|
209 |
+
def test_outer_sort_columns(self):
|
210 |
+
# GH#47127
|
211 |
+
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
212 |
+
df2 = DataFrame({"A": [100]})
|
213 |
+
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
214 |
+
expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]})
|
215 |
+
tm.assert_frame_equal(result, expected)
|
216 |
+
|
217 |
+
def test_inner_sort_columns(self):
|
218 |
+
# GH#47127
|
219 |
+
df1 = DataFrame({"A": [0], "B": [1], 0: 1})
|
220 |
+
df2 = DataFrame({"A": [100], 0: 2})
|
221 |
+
result = concat([df1, df2], ignore_index=True, join="inner", sort=True)
|
222 |
+
expected = DataFrame({0: [1, 2], "A": [0, 100]})
|
223 |
+
tm.assert_frame_equal(result, expected)
|
224 |
+
|
225 |
+
def test_sort_columns_one_df(self):
|
226 |
+
# GH#47127
|
227 |
+
df1 = DataFrame({"A": [100], 0: 2})
|
228 |
+
result = concat([df1], ignore_index=True, join="inner", sort=True)
|
229 |
+
expected = DataFrame({0: [2], "A": [100]})
|
230 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_datetimes.py
ADDED
@@ -0,0 +1,606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime as dt
|
2 |
+
from datetime import datetime
|
3 |
+
|
4 |
+
import dateutil
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
DatetimeIndex,
|
12 |
+
Index,
|
13 |
+
MultiIndex,
|
14 |
+
Series,
|
15 |
+
Timestamp,
|
16 |
+
concat,
|
17 |
+
date_range,
|
18 |
+
to_timedelta,
|
19 |
+
)
|
20 |
+
import pandas._testing as tm
|
21 |
+
|
22 |
+
|
23 |
+
class TestDatetimeConcat:
|
24 |
+
def test_concat_datetime64_block(self):
|
25 |
+
rng = date_range("1/1/2000", periods=10)
|
26 |
+
|
27 |
+
df = DataFrame({"time": rng})
|
28 |
+
|
29 |
+
result = concat([df, df])
|
30 |
+
assert (result.iloc[:10]["time"] == rng).all()
|
31 |
+
assert (result.iloc[10:]["time"] == rng).all()
|
32 |
+
|
33 |
+
def test_concat_datetime_datetime64_frame(self):
|
34 |
+
# GH#2624
|
35 |
+
rows = []
|
36 |
+
rows.append([datetime(2010, 1, 1), 1])
|
37 |
+
rows.append([datetime(2010, 1, 2), "hi"])
|
38 |
+
|
39 |
+
df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
|
40 |
+
|
41 |
+
ind = date_range(start="2000/1/1", freq="D", periods=10)
|
42 |
+
df1 = DataFrame({"date": ind, "test": range(10)})
|
43 |
+
|
44 |
+
# it works!
|
45 |
+
concat([df1, df2_obj])
|
46 |
+
|
47 |
+
def test_concat_datetime_timezone(self):
|
48 |
+
# GH 18523
|
49 |
+
idx1 = date_range("2011-01-01", periods=3, freq="h", tz="Europe/Paris")
|
50 |
+
idx2 = date_range(start=idx1[0], end=idx1[-1], freq="h")
|
51 |
+
df1 = DataFrame({"a": [1, 2, 3]}, index=idx1)
|
52 |
+
df2 = DataFrame({"b": [1, 2, 3]}, index=idx2)
|
53 |
+
result = concat([df1, df2], axis=1)
|
54 |
+
|
55 |
+
exp_idx = DatetimeIndex(
|
56 |
+
[
|
57 |
+
"2011-01-01 00:00:00+01:00",
|
58 |
+
"2011-01-01 01:00:00+01:00",
|
59 |
+
"2011-01-01 02:00:00+01:00",
|
60 |
+
],
|
61 |
+
dtype="M8[ns, Europe/Paris]",
|
62 |
+
freq="h",
|
63 |
+
)
|
64 |
+
expected = DataFrame(
|
65 |
+
[[1, 1], [2, 2], [3, 3]], index=exp_idx, columns=["a", "b"]
|
66 |
+
)
|
67 |
+
|
68 |
+
tm.assert_frame_equal(result, expected)
|
69 |
+
|
70 |
+
idx3 = date_range("2011-01-01", periods=3, freq="h", tz="Asia/Tokyo")
|
71 |
+
df3 = DataFrame({"b": [1, 2, 3]}, index=idx3)
|
72 |
+
result = concat([df1, df3], axis=1)
|
73 |
+
|
74 |
+
exp_idx = DatetimeIndex(
|
75 |
+
[
|
76 |
+
"2010-12-31 15:00:00+00:00",
|
77 |
+
"2010-12-31 16:00:00+00:00",
|
78 |
+
"2010-12-31 17:00:00+00:00",
|
79 |
+
"2010-12-31 23:00:00+00:00",
|
80 |
+
"2011-01-01 00:00:00+00:00",
|
81 |
+
"2011-01-01 01:00:00+00:00",
|
82 |
+
]
|
83 |
+
).as_unit("ns")
|
84 |
+
|
85 |
+
expected = DataFrame(
|
86 |
+
[
|
87 |
+
[np.nan, 1],
|
88 |
+
[np.nan, 2],
|
89 |
+
[np.nan, 3],
|
90 |
+
[1, np.nan],
|
91 |
+
[2, np.nan],
|
92 |
+
[3, np.nan],
|
93 |
+
],
|
94 |
+
index=exp_idx,
|
95 |
+
columns=["a", "b"],
|
96 |
+
)
|
97 |
+
|
98 |
+
tm.assert_frame_equal(result, expected)
|
99 |
+
|
100 |
+
# GH 13783: Concat after resample
|
101 |
+
result = concat([df1.resample("h").mean(), df2.resample("h").mean()], sort=True)
|
102 |
+
expected = DataFrame(
|
103 |
+
{"a": [1, 2, 3] + [np.nan] * 3, "b": [np.nan] * 3 + [1, 2, 3]},
|
104 |
+
index=idx1.append(idx1),
|
105 |
+
)
|
106 |
+
tm.assert_frame_equal(result, expected)
|
107 |
+
|
108 |
+
def test_concat_datetimeindex_freq(self):
|
109 |
+
# GH 3232
|
110 |
+
# Monotonic index result
|
111 |
+
dr = date_range("01-Jan-2013", periods=100, freq="50ms", tz="UTC")
|
112 |
+
data = list(range(100))
|
113 |
+
expected = DataFrame(data, index=dr)
|
114 |
+
result = concat([expected[:50], expected[50:]])
|
115 |
+
tm.assert_frame_equal(result, expected)
|
116 |
+
|
117 |
+
# Non-monotonic index result
|
118 |
+
result = concat([expected[50:], expected[:50]])
|
119 |
+
expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50]))
|
120 |
+
expected.index._data.freq = None
|
121 |
+
tm.assert_frame_equal(result, expected)
|
122 |
+
|
123 |
+
def test_concat_multiindex_datetime_object_index(self):
|
124 |
+
# https://github.com/pandas-dev/pandas/issues/11058
|
125 |
+
idx = Index(
|
126 |
+
[dt.date(2013, 1, 1), dt.date(2014, 1, 1), dt.date(2015, 1, 1)],
|
127 |
+
dtype="object",
|
128 |
+
)
|
129 |
+
|
130 |
+
s = Series(
|
131 |
+
["a", "b"],
|
132 |
+
index=MultiIndex.from_arrays(
|
133 |
+
[
|
134 |
+
[1, 2],
|
135 |
+
idx[:-1],
|
136 |
+
],
|
137 |
+
names=["first", "second"],
|
138 |
+
),
|
139 |
+
)
|
140 |
+
s2 = Series(
|
141 |
+
["a", "b"],
|
142 |
+
index=MultiIndex.from_arrays(
|
143 |
+
[[1, 2], idx[::2]],
|
144 |
+
names=["first", "second"],
|
145 |
+
),
|
146 |
+
)
|
147 |
+
mi = MultiIndex.from_arrays(
|
148 |
+
[[1, 2, 2], idx],
|
149 |
+
names=["first", "second"],
|
150 |
+
)
|
151 |
+
assert mi.levels[1].dtype == object
|
152 |
+
|
153 |
+
expected = DataFrame(
|
154 |
+
[["a", "a"], ["b", np.nan], [np.nan, "b"]],
|
155 |
+
index=mi,
|
156 |
+
)
|
157 |
+
result = concat([s, s2], axis=1)
|
158 |
+
tm.assert_frame_equal(result, expected)
|
159 |
+
|
160 |
+
def test_concat_NaT_series(self):
|
161 |
+
# GH 11693
|
162 |
+
# test for merging NaT series with datetime series.
|
163 |
+
x = Series(
|
164 |
+
date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="US/Eastern")
|
165 |
+
)
|
166 |
+
y = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]")
|
167 |
+
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
168 |
+
|
169 |
+
result = concat([x, y], ignore_index=True)
|
170 |
+
tm.assert_series_equal(result, expected)
|
171 |
+
|
172 |
+
# all NaT with tz
|
173 |
+
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns, US/Eastern]")
|
174 |
+
result = concat([y, y], ignore_index=True)
|
175 |
+
tm.assert_series_equal(result, expected)
|
176 |
+
|
177 |
+
def test_concat_NaT_series2(self):
|
178 |
+
# without tz
|
179 |
+
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h"))
|
180 |
+
y = Series(date_range("20151124 10:00", "20151124 11:00", freq="1h"))
|
181 |
+
y[:] = pd.NaT
|
182 |
+
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
183 |
+
result = concat([x, y], ignore_index=True)
|
184 |
+
tm.assert_series_equal(result, expected)
|
185 |
+
|
186 |
+
# all NaT without tz
|
187 |
+
x[:] = pd.NaT
|
188 |
+
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns]")
|
189 |
+
result = concat([x, y], ignore_index=True)
|
190 |
+
tm.assert_series_equal(result, expected)
|
191 |
+
|
192 |
+
@pytest.mark.parametrize("tz", [None, "UTC"])
|
193 |
+
def test_concat_NaT_dataframes(self, tz):
|
194 |
+
# GH 12396
|
195 |
+
|
196 |
+
dti = DatetimeIndex([pd.NaT, pd.NaT], tz=tz)
|
197 |
+
first = DataFrame({0: dti})
|
198 |
+
second = DataFrame(
|
199 |
+
[[Timestamp("2015/01/01", tz=tz)], [Timestamp("2016/01/01", tz=tz)]],
|
200 |
+
index=[2, 3],
|
201 |
+
)
|
202 |
+
expected = DataFrame(
|
203 |
+
[
|
204 |
+
pd.NaT,
|
205 |
+
pd.NaT,
|
206 |
+
Timestamp("2015/01/01", tz=tz),
|
207 |
+
Timestamp("2016/01/01", tz=tz),
|
208 |
+
]
|
209 |
+
)
|
210 |
+
|
211 |
+
result = concat([first, second], axis=0)
|
212 |
+
tm.assert_frame_equal(result, expected)
|
213 |
+
|
214 |
+
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
215 |
+
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
216 |
+
@pytest.mark.parametrize("item", [pd.NaT, Timestamp("20150101")])
|
217 |
+
def test_concat_NaT_dataframes_all_NaT_axis_0(
|
218 |
+
self, tz1, tz2, item, using_array_manager
|
219 |
+
):
|
220 |
+
# GH 12396
|
221 |
+
|
222 |
+
# tz-naive
|
223 |
+
first = DataFrame([[pd.NaT], [pd.NaT]]).apply(lambda x: x.dt.tz_localize(tz1))
|
224 |
+
second = DataFrame([item]).apply(lambda x: x.dt.tz_localize(tz2))
|
225 |
+
|
226 |
+
result = concat([first, second], axis=0)
|
227 |
+
expected = DataFrame(Series([pd.NaT, pd.NaT, item], index=[0, 1, 0]))
|
228 |
+
expected = expected.apply(lambda x: x.dt.tz_localize(tz2))
|
229 |
+
if tz1 != tz2:
|
230 |
+
expected = expected.astype(object)
|
231 |
+
if item is pd.NaT and not using_array_manager:
|
232 |
+
# GH#18463
|
233 |
+
# TODO: setting nan here is to keep the test passing as we
|
234 |
+
# make assert_frame_equal stricter, but is nan really the
|
235 |
+
# ideal behavior here?
|
236 |
+
if tz1 is not None:
|
237 |
+
expected.iloc[-1, 0] = np.nan
|
238 |
+
else:
|
239 |
+
expected.iloc[:-1, 0] = np.nan
|
240 |
+
|
241 |
+
tm.assert_frame_equal(result, expected)
|
242 |
+
|
243 |
+
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
244 |
+
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
245 |
+
def test_concat_NaT_dataframes_all_NaT_axis_1(self, tz1, tz2):
|
246 |
+
# GH 12396
|
247 |
+
|
248 |
+
first = DataFrame(Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1))
|
249 |
+
second = DataFrame(Series([pd.NaT]).dt.tz_localize(tz2), columns=[1])
|
250 |
+
expected = DataFrame(
|
251 |
+
{
|
252 |
+
0: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1),
|
253 |
+
1: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz2),
|
254 |
+
}
|
255 |
+
)
|
256 |
+
result = concat([first, second], axis=1)
|
257 |
+
tm.assert_frame_equal(result, expected)
|
258 |
+
|
259 |
+
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
260 |
+
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
261 |
+
def test_concat_NaT_series_dataframe_all_NaT(self, tz1, tz2):
|
262 |
+
# GH 12396
|
263 |
+
|
264 |
+
# tz-naive
|
265 |
+
first = Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1)
|
266 |
+
second = DataFrame(
|
267 |
+
[
|
268 |
+
[Timestamp("2015/01/01", tz=tz2)],
|
269 |
+
[Timestamp("2016/01/01", tz=tz2)],
|
270 |
+
],
|
271 |
+
index=[2, 3],
|
272 |
+
)
|
273 |
+
|
274 |
+
expected = DataFrame(
|
275 |
+
[
|
276 |
+
pd.NaT,
|
277 |
+
pd.NaT,
|
278 |
+
Timestamp("2015/01/01", tz=tz2),
|
279 |
+
Timestamp("2016/01/01", tz=tz2),
|
280 |
+
]
|
281 |
+
)
|
282 |
+
if tz1 != tz2:
|
283 |
+
expected = expected.astype(object)
|
284 |
+
|
285 |
+
result = concat([first, second])
|
286 |
+
tm.assert_frame_equal(result, expected)
|
287 |
+
|
288 |
+
|
289 |
+
class TestTimezoneConcat:
|
290 |
+
def test_concat_tz_series(self):
|
291 |
+
# gh-11755: tz and no tz
|
292 |
+
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
293 |
+
y = Series(date_range("2012-01-01", "2012-01-02"))
|
294 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
295 |
+
result = concat([x, y], ignore_index=True)
|
296 |
+
tm.assert_series_equal(result, expected)
|
297 |
+
|
298 |
+
def test_concat_tz_series2(self):
|
299 |
+
# gh-11887: concat tz and object
|
300 |
+
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
301 |
+
y = Series(["a", "b"])
|
302 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
303 |
+
result = concat([x, y], ignore_index=True)
|
304 |
+
tm.assert_series_equal(result, expected)
|
305 |
+
|
306 |
+
def test_concat_tz_series3(self, unit, unit2):
|
307 |
+
# see gh-12217 and gh-12306
|
308 |
+
# Concatenating two UTC times
|
309 |
+
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
310 |
+
first[0] = first[0].dt.tz_localize("UTC")
|
311 |
+
|
312 |
+
second = DataFrame([[datetime(2016, 1, 2)]], dtype=f"M8[{unit2}]")
|
313 |
+
second[0] = second[0].dt.tz_localize("UTC")
|
314 |
+
|
315 |
+
result = concat([first, second])
|
316 |
+
exp_unit = tm.get_finest_unit(unit, unit2)
|
317 |
+
assert result[0].dtype == f"datetime64[{exp_unit}, UTC]"
|
318 |
+
|
319 |
+
def test_concat_tz_series4(self, unit, unit2):
|
320 |
+
# Concatenating two London times
|
321 |
+
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
322 |
+
first[0] = first[0].dt.tz_localize("Europe/London")
|
323 |
+
|
324 |
+
second = DataFrame([[datetime(2016, 1, 2)]], dtype=f"M8[{unit2}]")
|
325 |
+
second[0] = second[0].dt.tz_localize("Europe/London")
|
326 |
+
|
327 |
+
result = concat([first, second])
|
328 |
+
exp_unit = tm.get_finest_unit(unit, unit2)
|
329 |
+
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
330 |
+
|
331 |
+
def test_concat_tz_series5(self, unit, unit2):
|
332 |
+
# Concatenating 2+1 London times
|
333 |
+
first = DataFrame(
|
334 |
+
[[datetime(2016, 1, 1)], [datetime(2016, 1, 2)]], dtype=f"M8[{unit}]"
|
335 |
+
)
|
336 |
+
first[0] = first[0].dt.tz_localize("Europe/London")
|
337 |
+
|
338 |
+
second = DataFrame([[datetime(2016, 1, 3)]], dtype=f"M8[{unit2}]")
|
339 |
+
second[0] = second[0].dt.tz_localize("Europe/London")
|
340 |
+
|
341 |
+
result = concat([first, second])
|
342 |
+
exp_unit = tm.get_finest_unit(unit, unit2)
|
343 |
+
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
344 |
+
|
345 |
+
def test_concat_tz_series6(self, unit, unit2):
|
346 |
+
# Concatenating 1+2 London times
|
347 |
+
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
348 |
+
first[0] = first[0].dt.tz_localize("Europe/London")
|
349 |
+
|
350 |
+
second = DataFrame(
|
351 |
+
[[datetime(2016, 1, 2)], [datetime(2016, 1, 3)]], dtype=f"M8[{unit2}]"
|
352 |
+
)
|
353 |
+
second[0] = second[0].dt.tz_localize("Europe/London")
|
354 |
+
|
355 |
+
result = concat([first, second])
|
356 |
+
exp_unit = tm.get_finest_unit(unit, unit2)
|
357 |
+
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
358 |
+
|
359 |
+
def test_concat_tz_series_tzlocal(self):
|
360 |
+
# see gh-13583
|
361 |
+
x = [
|
362 |
+
Timestamp("2011-01-01", tz=dateutil.tz.tzlocal()),
|
363 |
+
Timestamp("2011-02-01", tz=dateutil.tz.tzlocal()),
|
364 |
+
]
|
365 |
+
y = [
|
366 |
+
Timestamp("2012-01-01", tz=dateutil.tz.tzlocal()),
|
367 |
+
Timestamp("2012-02-01", tz=dateutil.tz.tzlocal()),
|
368 |
+
]
|
369 |
+
|
370 |
+
result = concat([Series(x), Series(y)], ignore_index=True)
|
371 |
+
tm.assert_series_equal(result, Series(x + y))
|
372 |
+
assert result.dtype == "datetime64[ns, tzlocal()]"
|
373 |
+
|
374 |
+
def test_concat_tz_series_with_datetimelike(self):
|
375 |
+
# see gh-12620: tz and timedelta
|
376 |
+
x = [
|
377 |
+
Timestamp("2011-01-01", tz="US/Eastern"),
|
378 |
+
Timestamp("2011-02-01", tz="US/Eastern"),
|
379 |
+
]
|
380 |
+
y = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
|
381 |
+
result = concat([Series(x), Series(y)], ignore_index=True)
|
382 |
+
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
383 |
+
|
384 |
+
# tz and period
|
385 |
+
y = [pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M")]
|
386 |
+
result = concat([Series(x), Series(y)], ignore_index=True)
|
387 |
+
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
388 |
+
|
389 |
+
def test_concat_tz_frame(self):
|
390 |
+
df2 = DataFrame(
|
391 |
+
{
|
392 |
+
"A": Timestamp("20130102", tz="US/Eastern"),
|
393 |
+
"B": Timestamp("20130603", tz="CET"),
|
394 |
+
},
|
395 |
+
index=range(5),
|
396 |
+
)
|
397 |
+
|
398 |
+
# concat
|
399 |
+
df3 = concat([df2.A.to_frame(), df2.B.to_frame()], axis=1)
|
400 |
+
tm.assert_frame_equal(df2, df3)
|
401 |
+
|
402 |
+
def test_concat_multiple_tzs(self):
|
403 |
+
# GH#12467
|
404 |
+
# combining datetime tz-aware and naive DataFrames
|
405 |
+
ts1 = Timestamp("2015-01-01", tz=None)
|
406 |
+
ts2 = Timestamp("2015-01-01", tz="UTC")
|
407 |
+
ts3 = Timestamp("2015-01-01", tz="EST")
|
408 |
+
|
409 |
+
df1 = DataFrame({"time": [ts1]})
|
410 |
+
df2 = DataFrame({"time": [ts2]})
|
411 |
+
df3 = DataFrame({"time": [ts3]})
|
412 |
+
|
413 |
+
results = concat([df1, df2]).reset_index(drop=True)
|
414 |
+
expected = DataFrame({"time": [ts1, ts2]}, dtype=object)
|
415 |
+
tm.assert_frame_equal(results, expected)
|
416 |
+
|
417 |
+
results = concat([df1, df3]).reset_index(drop=True)
|
418 |
+
expected = DataFrame({"time": [ts1, ts3]}, dtype=object)
|
419 |
+
tm.assert_frame_equal(results, expected)
|
420 |
+
|
421 |
+
results = concat([df2, df3]).reset_index(drop=True)
|
422 |
+
expected = DataFrame({"time": [ts2, ts3]})
|
423 |
+
tm.assert_frame_equal(results, expected)
|
424 |
+
|
425 |
+
def test_concat_multiindex_with_tz(self):
|
426 |
+
# GH 6606
|
427 |
+
df = DataFrame(
|
428 |
+
{
|
429 |
+
"dt": DatetimeIndex(
|
430 |
+
[
|
431 |
+
datetime(2014, 1, 1),
|
432 |
+
datetime(2014, 1, 2),
|
433 |
+
datetime(2014, 1, 3),
|
434 |
+
],
|
435 |
+
dtype="M8[ns, US/Pacific]",
|
436 |
+
),
|
437 |
+
"b": ["A", "B", "C"],
|
438 |
+
"c": [1, 2, 3],
|
439 |
+
"d": [4, 5, 6],
|
440 |
+
}
|
441 |
+
)
|
442 |
+
df = df.set_index(["dt", "b"])
|
443 |
+
|
444 |
+
exp_idx1 = DatetimeIndex(
|
445 |
+
["2014-01-01", "2014-01-02", "2014-01-03"] * 2,
|
446 |
+
dtype="M8[ns, US/Pacific]",
|
447 |
+
name="dt",
|
448 |
+
)
|
449 |
+
exp_idx2 = Index(["A", "B", "C"] * 2, name="b")
|
450 |
+
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
|
451 |
+
expected = DataFrame(
|
452 |
+
{"c": [1, 2, 3] * 2, "d": [4, 5, 6] * 2}, index=exp_idx, columns=["c", "d"]
|
453 |
+
)
|
454 |
+
|
455 |
+
result = concat([df, df])
|
456 |
+
tm.assert_frame_equal(result, expected)
|
457 |
+
|
458 |
+
def test_concat_tz_not_aligned(self):
|
459 |
+
# GH#22796
|
460 |
+
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
|
461 |
+
a = DataFrame({"A": ts})
|
462 |
+
b = DataFrame({"A": ts, "B": ts})
|
463 |
+
result = concat([a, b], sort=True, ignore_index=True)
|
464 |
+
expected = DataFrame(
|
465 |
+
{"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
|
466 |
+
)
|
467 |
+
tm.assert_frame_equal(result, expected)
|
468 |
+
|
469 |
+
@pytest.mark.parametrize(
|
470 |
+
"t1",
|
471 |
+
[
|
472 |
+
"2015-01-01",
|
473 |
+
pytest.param(
|
474 |
+
pd.NaT,
|
475 |
+
marks=pytest.mark.xfail(
|
476 |
+
reason="GH23037 incorrect dtype when concatenating"
|
477 |
+
),
|
478 |
+
),
|
479 |
+
],
|
480 |
+
)
|
481 |
+
def test_concat_tz_NaT(self, t1):
|
482 |
+
# GH#22796
|
483 |
+
# Concatenating tz-aware multicolumn DataFrames
|
484 |
+
ts1 = Timestamp(t1, tz="UTC")
|
485 |
+
ts2 = Timestamp("2015-01-01", tz="UTC")
|
486 |
+
ts3 = Timestamp("2015-01-01", tz="UTC")
|
487 |
+
|
488 |
+
df1 = DataFrame([[ts1, ts2]])
|
489 |
+
df2 = DataFrame([[ts3]])
|
490 |
+
|
491 |
+
result = concat([df1, df2])
|
492 |
+
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
|
493 |
+
|
494 |
+
tm.assert_frame_equal(result, expected)
|
495 |
+
|
496 |
+
def test_concat_tz_with_empty(self):
|
497 |
+
# GH 9188
|
498 |
+
result = concat(
|
499 |
+
[DataFrame(date_range("2000", periods=1, tz="UTC")), DataFrame()]
|
500 |
+
)
|
501 |
+
expected = DataFrame(date_range("2000", periods=1, tz="UTC"))
|
502 |
+
tm.assert_frame_equal(result, expected)
|
503 |
+
|
504 |
+
|
505 |
+
class TestPeriodConcat:
|
506 |
+
def test_concat_period_series(self):
|
507 |
+
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
508 |
+
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="D"))
|
509 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="Period[D]")
|
510 |
+
result = concat([x, y], ignore_index=True)
|
511 |
+
tm.assert_series_equal(result, expected)
|
512 |
+
|
513 |
+
def test_concat_period_multiple_freq_series(self):
|
514 |
+
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
515 |
+
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="M"))
|
516 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
517 |
+
result = concat([x, y], ignore_index=True)
|
518 |
+
tm.assert_series_equal(result, expected)
|
519 |
+
assert result.dtype == "object"
|
520 |
+
|
521 |
+
def test_concat_period_other_series(self):
|
522 |
+
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
523 |
+
y = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="M"))
|
524 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
525 |
+
result = concat([x, y], ignore_index=True)
|
526 |
+
tm.assert_series_equal(result, expected)
|
527 |
+
assert result.dtype == "object"
|
528 |
+
|
529 |
+
def test_concat_period_other_series2(self):
|
530 |
+
# non-period
|
531 |
+
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
532 |
+
y = Series(DatetimeIndex(["2015-11-01", "2015-12-01"]))
|
533 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
534 |
+
result = concat([x, y], ignore_index=True)
|
535 |
+
tm.assert_series_equal(result, expected)
|
536 |
+
assert result.dtype == "object"
|
537 |
+
|
538 |
+
def test_concat_period_other_series3(self):
|
539 |
+
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
540 |
+
y = Series(["A", "B"])
|
541 |
+
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
542 |
+
result = concat([x, y], ignore_index=True)
|
543 |
+
tm.assert_series_equal(result, expected)
|
544 |
+
assert result.dtype == "object"
|
545 |
+
|
546 |
+
|
547 |
+
def test_concat_timedelta64_block():
|
548 |
+
rng = to_timedelta(np.arange(10), unit="s")
|
549 |
+
|
550 |
+
df = DataFrame({"time": rng})
|
551 |
+
|
552 |
+
result = concat([df, df])
|
553 |
+
tm.assert_frame_equal(result.iloc[:10], df)
|
554 |
+
tm.assert_frame_equal(result.iloc[10:], df)
|
555 |
+
|
556 |
+
|
557 |
+
def test_concat_multiindex_datetime_nat():
|
558 |
+
# GH#44900
|
559 |
+
left = DataFrame({"a": 1}, index=MultiIndex.from_tuples([(1, pd.NaT)]))
|
560 |
+
right = DataFrame(
|
561 |
+
{"b": 2}, index=MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
562 |
+
)
|
563 |
+
result = concat([left, right], axis="columns")
|
564 |
+
expected = DataFrame(
|
565 |
+
{"a": [1.0, np.nan], "b": 2}, MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
566 |
+
)
|
567 |
+
tm.assert_frame_equal(result, expected)
|
568 |
+
|
569 |
+
|
570 |
+
def test_concat_float_datetime64(using_array_manager):
|
571 |
+
# GH#32934
|
572 |
+
df_time = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
573 |
+
df_float = DataFrame({"A": pd.array([1.0], dtype="float64")})
|
574 |
+
|
575 |
+
expected = DataFrame(
|
576 |
+
{
|
577 |
+
"A": [
|
578 |
+
pd.array(["2000"], dtype="datetime64[ns]")[0],
|
579 |
+
pd.array([1.0], dtype="float64")[0],
|
580 |
+
]
|
581 |
+
},
|
582 |
+
index=[0, 0],
|
583 |
+
)
|
584 |
+
result = concat([df_time, df_float])
|
585 |
+
tm.assert_frame_equal(result, expected)
|
586 |
+
|
587 |
+
expected = DataFrame({"A": pd.array([], dtype="object")})
|
588 |
+
result = concat([df_time.iloc[:0], df_float.iloc[:0]])
|
589 |
+
tm.assert_frame_equal(result, expected)
|
590 |
+
|
591 |
+
expected = DataFrame({"A": pd.array([1.0], dtype="object")})
|
592 |
+
result = concat([df_time.iloc[:0], df_float])
|
593 |
+
tm.assert_frame_equal(result, expected)
|
594 |
+
|
595 |
+
if not using_array_manager:
|
596 |
+
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
597 |
+
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
598 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
599 |
+
result = concat([df_time, df_float.iloc[:0]])
|
600 |
+
tm.assert_frame_equal(result, expected)
|
601 |
+
else:
|
602 |
+
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")}).astype(
|
603 |
+
{"A": "object"}
|
604 |
+
)
|
605 |
+
result = concat([df_time, df_float.iloc[:0]])
|
606 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_empty.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from pandas import (
|
6 |
+
DataFrame,
|
7 |
+
RangeIndex,
|
8 |
+
Series,
|
9 |
+
concat,
|
10 |
+
date_range,
|
11 |
+
)
|
12 |
+
import pandas._testing as tm
|
13 |
+
|
14 |
+
|
15 |
+
class TestEmptyConcat:
|
16 |
+
def test_handle_empty_objects(self, sort, using_infer_string):
|
17 |
+
df = DataFrame(
|
18 |
+
np.random.default_rng(2).standard_normal((10, 4)), columns=list("abcd")
|
19 |
+
)
|
20 |
+
|
21 |
+
dfcopy = df[:5].copy()
|
22 |
+
dfcopy["foo"] = "bar"
|
23 |
+
empty = df[5:5]
|
24 |
+
|
25 |
+
frames = [dfcopy, empty, empty, df[5:]]
|
26 |
+
concatted = concat(frames, axis=0, sort=sort)
|
27 |
+
|
28 |
+
expected = df.reindex(columns=["a", "b", "c", "d", "foo"])
|
29 |
+
expected["foo"] = expected["foo"].astype(
|
30 |
+
object if not using_infer_string else "string[pyarrow_numpy]"
|
31 |
+
)
|
32 |
+
expected.loc[0:4, "foo"] = "bar"
|
33 |
+
|
34 |
+
tm.assert_frame_equal(concatted, expected)
|
35 |
+
|
36 |
+
# empty as first element with time series
|
37 |
+
# GH3259
|
38 |
+
df = DataFrame(
|
39 |
+
{"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s")
|
40 |
+
)
|
41 |
+
empty = DataFrame()
|
42 |
+
result = concat([df, empty], axis=1)
|
43 |
+
tm.assert_frame_equal(result, df)
|
44 |
+
result = concat([empty, df], axis=1)
|
45 |
+
tm.assert_frame_equal(result, df)
|
46 |
+
|
47 |
+
result = concat([df, empty])
|
48 |
+
tm.assert_frame_equal(result, df)
|
49 |
+
result = concat([empty, df])
|
50 |
+
tm.assert_frame_equal(result, df)
|
51 |
+
|
52 |
+
def test_concat_empty_series(self):
|
53 |
+
# GH 11082
|
54 |
+
s1 = Series([1, 2, 3], name="x")
|
55 |
+
s2 = Series(name="y", dtype="float64")
|
56 |
+
res = concat([s1, s2], axis=1)
|
57 |
+
exp = DataFrame(
|
58 |
+
{"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]},
|
59 |
+
index=RangeIndex(3),
|
60 |
+
)
|
61 |
+
tm.assert_frame_equal(res, exp)
|
62 |
+
|
63 |
+
s1 = Series([1, 2, 3], name="x")
|
64 |
+
s2 = Series(name="y", dtype="float64")
|
65 |
+
msg = "The behavior of array concatenation with empty entries is deprecated"
|
66 |
+
with tm.assert_produces_warning(FutureWarning, match=msg):
|
67 |
+
res = concat([s1, s2], axis=0)
|
68 |
+
# name will be reset
|
69 |
+
exp = Series([1, 2, 3])
|
70 |
+
tm.assert_series_equal(res, exp)
|
71 |
+
|
72 |
+
# empty Series with no name
|
73 |
+
s1 = Series([1, 2, 3], name="x")
|
74 |
+
s2 = Series(name=None, dtype="float64")
|
75 |
+
res = concat([s1, s2], axis=1)
|
76 |
+
exp = DataFrame(
|
77 |
+
{"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]},
|
78 |
+
columns=["x", 0],
|
79 |
+
index=RangeIndex(3),
|
80 |
+
)
|
81 |
+
tm.assert_frame_equal(res, exp)
|
82 |
+
|
83 |
+
@pytest.mark.parametrize("tz", [None, "UTC"])
|
84 |
+
@pytest.mark.parametrize("values", [[], [1, 2, 3]])
|
85 |
+
def test_concat_empty_series_timelike(self, tz, values):
|
86 |
+
# GH 18447
|
87 |
+
|
88 |
+
first = Series([], dtype="M8[ns]").dt.tz_localize(tz)
|
89 |
+
dtype = None if values else np.float64
|
90 |
+
second = Series(values, dtype=dtype)
|
91 |
+
|
92 |
+
expected = DataFrame(
|
93 |
+
{
|
94 |
+
0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz),
|
95 |
+
1: values,
|
96 |
+
}
|
97 |
+
)
|
98 |
+
result = concat([first, second], axis=1)
|
99 |
+
tm.assert_frame_equal(result, expected)
|
100 |
+
|
101 |
+
@pytest.mark.parametrize(
|
102 |
+
"left,right,expected",
|
103 |
+
[
|
104 |
+
# booleans
|
105 |
+
(np.bool_, np.int32, np.object_), # changed from int32 in 2.0 GH#39817
|
106 |
+
(np.bool_, np.float32, np.object_),
|
107 |
+
# datetime-like
|
108 |
+
("m8[ns]", np.bool_, np.object_),
|
109 |
+
("m8[ns]", np.int64, np.object_),
|
110 |
+
("M8[ns]", np.bool_, np.object_),
|
111 |
+
("M8[ns]", np.int64, np.object_),
|
112 |
+
# categorical
|
113 |
+
("category", "category", "category"),
|
114 |
+
("category", "object", "object"),
|
115 |
+
],
|
116 |
+
)
|
117 |
+
def test_concat_empty_series_dtypes(self, left, right, expected):
|
118 |
+
# GH#39817, GH#45101
|
119 |
+
result = concat([Series(dtype=left), Series(dtype=right)])
|
120 |
+
assert result.dtype == expected
|
121 |
+
|
122 |
+
@pytest.mark.parametrize(
|
123 |
+
"dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]
|
124 |
+
)
|
125 |
+
def test_concat_empty_series_dtypes_match_roundtrips(self, dtype):
|
126 |
+
dtype = np.dtype(dtype)
|
127 |
+
|
128 |
+
result = concat([Series(dtype=dtype)])
|
129 |
+
assert result.dtype == dtype
|
130 |
+
|
131 |
+
result = concat([Series(dtype=dtype), Series(dtype=dtype)])
|
132 |
+
assert result.dtype == dtype
|
133 |
+
|
134 |
+
@pytest.mark.parametrize("dtype", ["float64", "int8", "uint8", "m8[ns]", "M8[ns]"])
|
135 |
+
@pytest.mark.parametrize(
|
136 |
+
"dtype2",
|
137 |
+
["float64", "int8", "uint8", "m8[ns]", "M8[ns]"],
|
138 |
+
)
|
139 |
+
def test_concat_empty_series_dtypes_roundtrips(self, dtype, dtype2):
|
140 |
+
# round-tripping with self & like self
|
141 |
+
if dtype == dtype2:
|
142 |
+
pytest.skip("same dtype is not applicable for test")
|
143 |
+
|
144 |
+
def int_result_type(dtype, dtype2):
|
145 |
+
typs = {dtype.kind, dtype2.kind}
|
146 |
+
if not len(typs - {"i", "u", "b"}) and (
|
147 |
+
dtype.kind == "i" or dtype2.kind == "i"
|
148 |
+
):
|
149 |
+
return "i"
|
150 |
+
elif not len(typs - {"u", "b"}) and (
|
151 |
+
dtype.kind == "u" or dtype2.kind == "u"
|
152 |
+
):
|
153 |
+
return "u"
|
154 |
+
return None
|
155 |
+
|
156 |
+
def float_result_type(dtype, dtype2):
|
157 |
+
typs = {dtype.kind, dtype2.kind}
|
158 |
+
if not len(typs - {"f", "i", "u"}) and (
|
159 |
+
dtype.kind == "f" or dtype2.kind == "f"
|
160 |
+
):
|
161 |
+
return "f"
|
162 |
+
return None
|
163 |
+
|
164 |
+
def get_result_type(dtype, dtype2):
|
165 |
+
result = float_result_type(dtype, dtype2)
|
166 |
+
if result is not None:
|
167 |
+
return result
|
168 |
+
result = int_result_type(dtype, dtype2)
|
169 |
+
if result is not None:
|
170 |
+
return result
|
171 |
+
return "O"
|
172 |
+
|
173 |
+
dtype = np.dtype(dtype)
|
174 |
+
dtype2 = np.dtype(dtype2)
|
175 |
+
expected = get_result_type(dtype, dtype2)
|
176 |
+
result = concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype
|
177 |
+
assert result.kind == expected
|
178 |
+
|
179 |
+
def test_concat_empty_series_dtypes_triple(self):
|
180 |
+
assert (
|
181 |
+
concat(
|
182 |
+
[Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)]
|
183 |
+
).dtype
|
184 |
+
== np.object_
|
185 |
+
)
|
186 |
+
|
187 |
+
def test_concat_empty_series_dtype_category_with_array(self):
|
188 |
+
# GH#18515
|
189 |
+
assert (
|
190 |
+
concat(
|
191 |
+
[Series(np.array([]), dtype="category"), Series(dtype="float64")]
|
192 |
+
).dtype
|
193 |
+
== "float64"
|
194 |
+
)
|
195 |
+
|
196 |
+
def test_concat_empty_series_dtypes_sparse(self):
|
197 |
+
result = concat(
|
198 |
+
[
|
199 |
+
Series(dtype="float64").astype("Sparse"),
|
200 |
+
Series(dtype="float64").astype("Sparse"),
|
201 |
+
]
|
202 |
+
)
|
203 |
+
assert result.dtype == "Sparse[float64]"
|
204 |
+
|
205 |
+
result = concat(
|
206 |
+
[Series(dtype="float64").astype("Sparse"), Series(dtype="float64")]
|
207 |
+
)
|
208 |
+
expected = pd.SparseDtype(np.float64)
|
209 |
+
assert result.dtype == expected
|
210 |
+
|
211 |
+
result = concat(
|
212 |
+
[Series(dtype="float64").astype("Sparse"), Series(dtype="object")]
|
213 |
+
)
|
214 |
+
expected = pd.SparseDtype("object")
|
215 |
+
assert result.dtype == expected
|
216 |
+
|
217 |
+
def test_concat_empty_df_object_dtype(self):
|
218 |
+
# GH 9149
|
219 |
+
df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]})
|
220 |
+
df_2 = DataFrame(columns=df_1.columns)
|
221 |
+
result = concat([df_1, df_2], axis=0)
|
222 |
+
expected = df_1.astype(object)
|
223 |
+
tm.assert_frame_equal(result, expected)
|
224 |
+
|
225 |
+
def test_concat_empty_dataframe_dtypes(self):
|
226 |
+
df = DataFrame(columns=list("abc"))
|
227 |
+
df["a"] = df["a"].astype(np.bool_)
|
228 |
+
df["b"] = df["b"].astype(np.int32)
|
229 |
+
df["c"] = df["c"].astype(np.float64)
|
230 |
+
|
231 |
+
result = concat([df, df])
|
232 |
+
assert result["a"].dtype == np.bool_
|
233 |
+
assert result["b"].dtype == np.int32
|
234 |
+
assert result["c"].dtype == np.float64
|
235 |
+
|
236 |
+
result = concat([df, df.astype(np.float64)])
|
237 |
+
assert result["a"].dtype == np.object_
|
238 |
+
assert result["b"].dtype == np.float64
|
239 |
+
assert result["c"].dtype == np.float64
|
240 |
+
|
241 |
+
def test_concat_inner_join_empty(self):
|
242 |
+
# GH 15328
|
243 |
+
df_empty = DataFrame()
|
244 |
+
df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64")
|
245 |
+
df_expected = DataFrame({"a": []}, index=RangeIndex(0), dtype="int64")
|
246 |
+
|
247 |
+
result = concat([df_a, df_empty], axis=1, join="inner")
|
248 |
+
tm.assert_frame_equal(result, df_expected)
|
249 |
+
|
250 |
+
result = concat([df_a, df_empty], axis=1, join="outer")
|
251 |
+
tm.assert_frame_equal(result, df_a)
|
252 |
+
|
253 |
+
def test_empty_dtype_coerce(self):
|
254 |
+
# xref to #12411
|
255 |
+
# xref to #12045
|
256 |
+
# xref to #11594
|
257 |
+
# see below
|
258 |
+
|
259 |
+
# 10571
|
260 |
+
df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"])
|
261 |
+
df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"])
|
262 |
+
result = concat([df1, df2])
|
263 |
+
expected = df1.dtypes
|
264 |
+
tm.assert_series_equal(result.dtypes, expected)
|
265 |
+
|
266 |
+
def test_concat_empty_dataframe(self):
|
267 |
+
# 39037
|
268 |
+
df1 = DataFrame(columns=["a", "b"])
|
269 |
+
df2 = DataFrame(columns=["b", "c"])
|
270 |
+
result = concat([df1, df2, df1])
|
271 |
+
expected = DataFrame(columns=["a", "b", "c"])
|
272 |
+
tm.assert_frame_equal(result, expected)
|
273 |
+
|
274 |
+
df3 = DataFrame(columns=["a", "b"])
|
275 |
+
df4 = DataFrame(columns=["b"])
|
276 |
+
result = concat([df3, df4])
|
277 |
+
expected = DataFrame(columns=["a", "b"])
|
278 |
+
tm.assert_frame_equal(result, expected)
|
279 |
+
|
280 |
+
def test_concat_empty_dataframe_different_dtypes(self, using_infer_string):
|
281 |
+
# 39037
|
282 |
+
df1 = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
|
283 |
+
df2 = DataFrame({"a": [1, 2, 3]})
|
284 |
+
|
285 |
+
result = concat([df1[:0], df2[:0]])
|
286 |
+
assert result["a"].dtype == np.int64
|
287 |
+
assert result["b"].dtype == np.object_ if not using_infer_string else "string"
|
288 |
+
|
289 |
+
def test_concat_to_empty_ea(self):
|
290 |
+
"""48510 `concat` to an empty EA should maintain type EA dtype."""
|
291 |
+
df_empty = DataFrame({"a": pd.array([], dtype=pd.Int64Dtype())})
|
292 |
+
df_new = DataFrame({"a": pd.array([1, 2, 3], dtype=pd.Int64Dtype())})
|
293 |
+
expected = df_new.copy()
|
294 |
+
result = concat([df_empty, df_new])
|
295 |
+
tm.assert_frame_equal(result, expected)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_index.py
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas.errors import PerformanceWarning
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
from pandas import (
|
10 |
+
DataFrame,
|
11 |
+
Index,
|
12 |
+
MultiIndex,
|
13 |
+
Series,
|
14 |
+
concat,
|
15 |
+
)
|
16 |
+
import pandas._testing as tm
|
17 |
+
|
18 |
+
|
19 |
+
class TestIndexConcat:
|
20 |
+
def test_concat_ignore_index(self, sort):
|
21 |
+
frame1 = DataFrame(
|
22 |
+
{"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]}
|
23 |
+
)
|
24 |
+
frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]})
|
25 |
+
frame1.index = Index(["x", "y", "z"])
|
26 |
+
frame2.index = Index(["x", "y", "q"])
|
27 |
+
|
28 |
+
v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort)
|
29 |
+
|
30 |
+
nan = np.nan
|
31 |
+
expected = DataFrame(
|
32 |
+
[
|
33 |
+
[nan, nan, nan, 4.3],
|
34 |
+
["a", 1, 4.5, 5.2],
|
35 |
+
["b", 2, 3.2, 2.2],
|
36 |
+
["c", 3, 1.2, nan],
|
37 |
+
],
|
38 |
+
index=Index(["q", "x", "y", "z"]),
|
39 |
+
)
|
40 |
+
if not sort:
|
41 |
+
expected = expected.loc[["x", "y", "z", "q"]]
|
42 |
+
|
43 |
+
tm.assert_frame_equal(v1, expected)
|
44 |
+
|
45 |
+
@pytest.mark.parametrize(
|
46 |
+
"name_in1,name_in2,name_in3,name_out",
|
47 |
+
[
|
48 |
+
("idx", "idx", "idx", "idx"),
|
49 |
+
("idx", "idx", None, None),
|
50 |
+
("idx", None, None, None),
|
51 |
+
("idx1", "idx2", None, None),
|
52 |
+
("idx1", "idx1", "idx2", None),
|
53 |
+
("idx1", "idx2", "idx3", None),
|
54 |
+
(None, None, None, None),
|
55 |
+
],
|
56 |
+
)
|
57 |
+
def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out):
|
58 |
+
# GH13475
|
59 |
+
indices = [
|
60 |
+
Index(["a", "b", "c"], name=name_in1),
|
61 |
+
Index(["b", "c", "d"], name=name_in2),
|
62 |
+
Index(["c", "d", "e"], name=name_in3),
|
63 |
+
]
|
64 |
+
frames = [
|
65 |
+
DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"])
|
66 |
+
]
|
67 |
+
result = concat(frames, axis=1)
|
68 |
+
|
69 |
+
exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out)
|
70 |
+
expected = DataFrame(
|
71 |
+
{
|
72 |
+
"x": [0, 1, 2, np.nan, np.nan],
|
73 |
+
"y": [np.nan, 0, 1, 2, np.nan],
|
74 |
+
"z": [np.nan, np.nan, 0, 1, 2],
|
75 |
+
},
|
76 |
+
index=exp_ind,
|
77 |
+
)
|
78 |
+
|
79 |
+
tm.assert_frame_equal(result, expected)
|
80 |
+
|
81 |
+
def test_concat_rename_index(self):
|
82 |
+
a = DataFrame(
|
83 |
+
np.random.default_rng(2).random((3, 3)),
|
84 |
+
columns=list("ABC"),
|
85 |
+
index=Index(list("abc"), name="index_a"),
|
86 |
+
)
|
87 |
+
b = DataFrame(
|
88 |
+
np.random.default_rng(2).random((3, 3)),
|
89 |
+
columns=list("ABC"),
|
90 |
+
index=Index(list("abc"), name="index_b"),
|
91 |
+
)
|
92 |
+
|
93 |
+
result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"])
|
94 |
+
|
95 |
+
exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"])
|
96 |
+
names = list(exp.index.names)
|
97 |
+
names[1] = "lvl1"
|
98 |
+
exp.index.set_names(names, inplace=True)
|
99 |
+
|
100 |
+
tm.assert_frame_equal(result, exp)
|
101 |
+
assert result.index.names == exp.index.names
|
102 |
+
|
103 |
+
def test_concat_copy_index_series(self, axis, using_copy_on_write):
|
104 |
+
# GH 29879
|
105 |
+
ser = Series([1, 2])
|
106 |
+
comb = concat([ser, ser], axis=axis, copy=True)
|
107 |
+
if not using_copy_on_write or axis in [0, "index"]:
|
108 |
+
assert comb.index is not ser.index
|
109 |
+
else:
|
110 |
+
assert comb.index is ser.index
|
111 |
+
|
112 |
+
def test_concat_copy_index_frame(self, axis, using_copy_on_write):
|
113 |
+
# GH 29879
|
114 |
+
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"])
|
115 |
+
comb = concat([df, df], axis=axis, copy=True)
|
116 |
+
if not using_copy_on_write:
|
117 |
+
assert not comb.index.is_(df.index)
|
118 |
+
assert not comb.columns.is_(df.columns)
|
119 |
+
elif axis in [0, "index"]:
|
120 |
+
assert not comb.index.is_(df.index)
|
121 |
+
assert comb.columns.is_(df.columns)
|
122 |
+
elif axis in [1, "columns"]:
|
123 |
+
assert comb.index.is_(df.index)
|
124 |
+
assert not comb.columns.is_(df.columns)
|
125 |
+
|
126 |
+
def test_default_index(self):
|
127 |
+
# is_series and ignore_index
|
128 |
+
s1 = Series([1, 2, 3], name="x")
|
129 |
+
s2 = Series([4, 5, 6], name="y")
|
130 |
+
res = concat([s1, s2], axis=1, ignore_index=True)
|
131 |
+
assert isinstance(res.columns, pd.RangeIndex)
|
132 |
+
exp = DataFrame([[1, 4], [2, 5], [3, 6]])
|
133 |
+
# use check_index_type=True to check the result have
|
134 |
+
# RangeIndex (default index)
|
135 |
+
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
136 |
+
|
137 |
+
# is_series and all inputs have no names
|
138 |
+
s1 = Series([1, 2, 3])
|
139 |
+
s2 = Series([4, 5, 6])
|
140 |
+
res = concat([s1, s2], axis=1, ignore_index=False)
|
141 |
+
assert isinstance(res.columns, pd.RangeIndex)
|
142 |
+
exp = DataFrame([[1, 4], [2, 5], [3, 6]])
|
143 |
+
exp.columns = pd.RangeIndex(2)
|
144 |
+
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
145 |
+
|
146 |
+
# is_dataframe and ignore_index
|
147 |
+
df1 = DataFrame({"A": [1, 2], "B": [5, 6]})
|
148 |
+
df2 = DataFrame({"A": [3, 4], "B": [7, 8]})
|
149 |
+
|
150 |
+
res = concat([df1, df2], axis=0, ignore_index=True)
|
151 |
+
exp = DataFrame([[1, 5], [2, 6], [3, 7], [4, 8]], columns=["A", "B"])
|
152 |
+
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
153 |
+
|
154 |
+
res = concat([df1, df2], axis=1, ignore_index=True)
|
155 |
+
exp = DataFrame([[1, 5, 3, 7], [2, 6, 4, 8]])
|
156 |
+
tm.assert_frame_equal(res, exp, check_index_type=True, check_column_type=True)
|
157 |
+
|
158 |
+
def test_dups_index(self):
|
159 |
+
# GH 4771
|
160 |
+
|
161 |
+
# single dtypes
|
162 |
+
df = DataFrame(
|
163 |
+
np.random.default_rng(2).integers(0, 10, size=40).reshape(10, 4),
|
164 |
+
columns=["A", "A", "C", "C"],
|
165 |
+
)
|
166 |
+
|
167 |
+
result = concat([df, df], axis=1)
|
168 |
+
tm.assert_frame_equal(result.iloc[:, :4], df)
|
169 |
+
tm.assert_frame_equal(result.iloc[:, 4:], df)
|
170 |
+
|
171 |
+
result = concat([df, df], axis=0)
|
172 |
+
tm.assert_frame_equal(result.iloc[:10], df)
|
173 |
+
tm.assert_frame_equal(result.iloc[10:], df)
|
174 |
+
|
175 |
+
# multi dtypes
|
176 |
+
df = concat(
|
177 |
+
[
|
178 |
+
DataFrame(
|
179 |
+
np.random.default_rng(2).standard_normal((10, 4)),
|
180 |
+
columns=["A", "A", "B", "B"],
|
181 |
+
),
|
182 |
+
DataFrame(
|
183 |
+
np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2),
|
184 |
+
columns=["A", "C"],
|
185 |
+
),
|
186 |
+
],
|
187 |
+
axis=1,
|
188 |
+
)
|
189 |
+
|
190 |
+
result = concat([df, df], axis=1)
|
191 |
+
tm.assert_frame_equal(result.iloc[:, :6], df)
|
192 |
+
tm.assert_frame_equal(result.iloc[:, 6:], df)
|
193 |
+
|
194 |
+
result = concat([df, df], axis=0)
|
195 |
+
tm.assert_frame_equal(result.iloc[:10], df)
|
196 |
+
tm.assert_frame_equal(result.iloc[10:], df)
|
197 |
+
|
198 |
+
# append
|
199 |
+
result = df.iloc[0:8, :]._append(df.iloc[8:])
|
200 |
+
tm.assert_frame_equal(result, df)
|
201 |
+
|
202 |
+
result = df.iloc[0:8, :]._append(df.iloc[8:9])._append(df.iloc[9:10])
|
203 |
+
tm.assert_frame_equal(result, df)
|
204 |
+
|
205 |
+
expected = concat([df, df], axis=0)
|
206 |
+
result = df._append(df)
|
207 |
+
tm.assert_frame_equal(result, expected)
|
208 |
+
|
209 |
+
|
210 |
+
class TestMultiIndexConcat:
|
211 |
+
def test_concat_multiindex_with_keys(self, multiindex_dataframe_random_data):
|
212 |
+
frame = multiindex_dataframe_random_data
|
213 |
+
index = frame.index
|
214 |
+
result = concat([frame, frame], keys=[0, 1], names=["iteration"])
|
215 |
+
|
216 |
+
assert result.index.names == ("iteration",) + index.names
|
217 |
+
tm.assert_frame_equal(result.loc[0], frame)
|
218 |
+
tm.assert_frame_equal(result.loc[1], frame)
|
219 |
+
assert result.index.nlevels == 3
|
220 |
+
|
221 |
+
def test_concat_multiindex_with_none_in_index_names(self):
|
222 |
+
# GH 15787
|
223 |
+
index = MultiIndex.from_product([[1], range(5)], names=["level1", None])
|
224 |
+
df = DataFrame({"col": range(5)}, index=index, dtype=np.int32)
|
225 |
+
|
226 |
+
result = concat([df, df], keys=[1, 2], names=["level2"])
|
227 |
+
index = MultiIndex.from_product(
|
228 |
+
[[1, 2], [1], range(5)], names=["level2", "level1", None]
|
229 |
+
)
|
230 |
+
expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32)
|
231 |
+
tm.assert_frame_equal(result, expected)
|
232 |
+
|
233 |
+
result = concat([df, df[:2]], keys=[1, 2], names=["level2"])
|
234 |
+
level2 = [1] * 5 + [2] * 2
|
235 |
+
level1 = [1] * 7
|
236 |
+
no_name = list(range(5)) + list(range(2))
|
237 |
+
tuples = list(zip(level2, level1, no_name))
|
238 |
+
index = MultiIndex.from_tuples(tuples, names=["level2", "level1", None])
|
239 |
+
expected = DataFrame({"col": no_name}, index=index, dtype=np.int32)
|
240 |
+
tm.assert_frame_equal(result, expected)
|
241 |
+
|
242 |
+
def test_concat_multiindex_rangeindex(self):
|
243 |
+
# GH13542
|
244 |
+
# when multi-index levels are RangeIndex objects
|
245 |
+
# there is a bug in concat with objects of len 1
|
246 |
+
|
247 |
+
df = DataFrame(np.random.default_rng(2).standard_normal((9, 2)))
|
248 |
+
df.index = MultiIndex(
|
249 |
+
levels=[pd.RangeIndex(3), pd.RangeIndex(3)],
|
250 |
+
codes=[np.repeat(np.arange(3), 3), np.tile(np.arange(3), 3)],
|
251 |
+
)
|
252 |
+
|
253 |
+
res = concat([df.iloc[[2, 3, 4], :], df.iloc[[5], :]])
|
254 |
+
exp = df.iloc[[2, 3, 4, 5], :]
|
255 |
+
tm.assert_frame_equal(res, exp)
|
256 |
+
|
257 |
+
def test_concat_multiindex_dfs_with_deepcopy(self):
|
258 |
+
# GH 9967
|
259 |
+
example_multiindex1 = MultiIndex.from_product([["a"], ["b"]])
|
260 |
+
example_dataframe1 = DataFrame([0], index=example_multiindex1)
|
261 |
+
|
262 |
+
example_multiindex2 = MultiIndex.from_product([["a"], ["c"]])
|
263 |
+
example_dataframe2 = DataFrame([1], index=example_multiindex2)
|
264 |
+
|
265 |
+
example_dict = {"s1": example_dataframe1, "s2": example_dataframe2}
|
266 |
+
expected_index = MultiIndex(
|
267 |
+
levels=[["s1", "s2"], ["a"], ["b", "c"]],
|
268 |
+
codes=[[0, 1], [0, 0], [0, 1]],
|
269 |
+
names=["testname", None, None],
|
270 |
+
)
|
271 |
+
expected = DataFrame([[0], [1]], index=expected_index)
|
272 |
+
result_copy = concat(deepcopy(example_dict), names=["testname"])
|
273 |
+
tm.assert_frame_equal(result_copy, expected)
|
274 |
+
result_no_copy = concat(example_dict, names=["testname"])
|
275 |
+
tm.assert_frame_equal(result_no_copy, expected)
|
276 |
+
|
277 |
+
@pytest.mark.parametrize(
|
278 |
+
"mi1_list",
|
279 |
+
[
|
280 |
+
[["a"], range(2)],
|
281 |
+
[["b"], np.arange(2.0, 4.0)],
|
282 |
+
[["c"], ["A", "B"]],
|
283 |
+
[["d"], pd.date_range(start="2017", end="2018", periods=2)],
|
284 |
+
],
|
285 |
+
)
|
286 |
+
@pytest.mark.parametrize(
|
287 |
+
"mi2_list",
|
288 |
+
[
|
289 |
+
[["a"], range(2)],
|
290 |
+
[["b"], np.arange(2.0, 4.0)],
|
291 |
+
[["c"], ["A", "B"]],
|
292 |
+
[["d"], pd.date_range(start="2017", end="2018", periods=2)],
|
293 |
+
],
|
294 |
+
)
|
295 |
+
def test_concat_with_various_multiindex_dtypes(
|
296 |
+
self, mi1_list: list, mi2_list: list
|
297 |
+
):
|
298 |
+
# GitHub #23478
|
299 |
+
mi1 = MultiIndex.from_product(mi1_list)
|
300 |
+
mi2 = MultiIndex.from_product(mi2_list)
|
301 |
+
|
302 |
+
df1 = DataFrame(np.zeros((1, len(mi1))), columns=mi1)
|
303 |
+
df2 = DataFrame(np.zeros((1, len(mi2))), columns=mi2)
|
304 |
+
|
305 |
+
if mi1_list[0] == mi2_list[0]:
|
306 |
+
expected_mi = MultiIndex(
|
307 |
+
levels=[mi1_list[0], list(mi1_list[1])],
|
308 |
+
codes=[[0, 0, 0, 0], [0, 1, 0, 1]],
|
309 |
+
)
|
310 |
+
else:
|
311 |
+
expected_mi = MultiIndex(
|
312 |
+
levels=[
|
313 |
+
mi1_list[0] + mi2_list[0],
|
314 |
+
list(mi1_list[1]) + list(mi2_list[1]),
|
315 |
+
],
|
316 |
+
codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
|
317 |
+
)
|
318 |
+
|
319 |
+
expected_df = DataFrame(np.zeros((1, len(expected_mi))), columns=expected_mi)
|
320 |
+
|
321 |
+
with tm.assert_produces_warning(None):
|
322 |
+
result_df = concat((df1, df2), axis=1)
|
323 |
+
|
324 |
+
tm.assert_frame_equal(expected_df, result_df)
|
325 |
+
|
326 |
+
def test_concat_multiindex_(self):
|
327 |
+
# GitHub #44786
|
328 |
+
df = DataFrame({"col": ["a", "b", "c"]}, index=["1", "2", "2"])
|
329 |
+
df = concat([df], keys=["X"])
|
330 |
+
|
331 |
+
iterables = [["X"], ["1", "2", "2"]]
|
332 |
+
result_index = df.index
|
333 |
+
expected_index = MultiIndex.from_product(iterables)
|
334 |
+
|
335 |
+
tm.assert_index_equal(result_index, expected_index)
|
336 |
+
|
337 |
+
result_df = df
|
338 |
+
expected_df = DataFrame(
|
339 |
+
{"col": ["a", "b", "c"]}, index=MultiIndex.from_product(iterables)
|
340 |
+
)
|
341 |
+
tm.assert_frame_equal(result_df, expected_df)
|
342 |
+
|
343 |
+
def test_concat_with_key_not_unique(self):
|
344 |
+
# GitHub #46519
|
345 |
+
df1 = DataFrame({"name": [1]})
|
346 |
+
df2 = DataFrame({"name": [2]})
|
347 |
+
df3 = DataFrame({"name": [3]})
|
348 |
+
df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
|
349 |
+
# the warning is caused by indexing unsorted multi-index
|
350 |
+
with tm.assert_produces_warning(
|
351 |
+
PerformanceWarning, match="indexing past lexsort depth"
|
352 |
+
):
|
353 |
+
out_a = df_a.loc[("x", 0), :]
|
354 |
+
|
355 |
+
df_b = DataFrame(
|
356 |
+
{"name": [1, 2, 3]}, index=Index([("x", 0), ("y", 0), ("x", 0)])
|
357 |
+
)
|
358 |
+
with tm.assert_produces_warning(
|
359 |
+
PerformanceWarning, match="indexing past lexsort depth"
|
360 |
+
):
|
361 |
+
out_b = df_b.loc[("x", 0)]
|
362 |
+
|
363 |
+
tm.assert_frame_equal(out_a, out_b)
|
364 |
+
|
365 |
+
df1 = DataFrame({"name": ["a", "a", "b"]})
|
366 |
+
df2 = DataFrame({"name": ["a", "b"]})
|
367 |
+
df3 = DataFrame({"name": ["c", "d"]})
|
368 |
+
df_a = concat([df1, df2, df3], keys=["x", "y", "x"])
|
369 |
+
with tm.assert_produces_warning(
|
370 |
+
PerformanceWarning, match="indexing past lexsort depth"
|
371 |
+
):
|
372 |
+
out_a = df_a.loc[("x", 0), :]
|
373 |
+
|
374 |
+
df_b = DataFrame(
|
375 |
+
{
|
376 |
+
"a": ["x", "x", "x", "y", "y", "x", "x"],
|
377 |
+
"b": [0, 1, 2, 0, 1, 0, 1],
|
378 |
+
"name": list("aababcd"),
|
379 |
+
}
|
380 |
+
).set_index(["a", "b"])
|
381 |
+
df_b.index.names = [None, None]
|
382 |
+
with tm.assert_produces_warning(
|
383 |
+
PerformanceWarning, match="indexing past lexsort depth"
|
384 |
+
):
|
385 |
+
out_b = df_b.loc[("x", 0), :]
|
386 |
+
|
387 |
+
tm.assert_frame_equal(out_a, out_b)
|
388 |
+
|
389 |
+
def test_concat_with_duplicated_levels(self):
|
390 |
+
# keyword levels should be unique
|
391 |
+
df1 = DataFrame({"A": [1]}, index=["x"])
|
392 |
+
df2 = DataFrame({"A": [1]}, index=["y"])
|
393 |
+
msg = r"Level values not unique: \['x', 'y', 'y'\]"
|
394 |
+
with pytest.raises(ValueError, match=msg):
|
395 |
+
concat([df1, df2], keys=["x", "y"], levels=[["x", "y", "y"]])
|
396 |
+
|
397 |
+
@pytest.mark.parametrize("levels", [[["x", "y"]], [["x", "y", "y"]]])
|
398 |
+
def test_concat_with_levels_with_none_keys(self, levels):
|
399 |
+
df1 = DataFrame({"A": [1]}, index=["x"])
|
400 |
+
df2 = DataFrame({"A": [1]}, index=["y"])
|
401 |
+
msg = "levels supported only when keys is not None"
|
402 |
+
with pytest.raises(ValueError, match=msg):
|
403 |
+
concat([df1, df2], levels=levels)
|
404 |
+
|
405 |
+
def test_concat_range_index_result(self):
|
406 |
+
# GH#47501
|
407 |
+
df1 = DataFrame({"a": [1, 2]})
|
408 |
+
df2 = DataFrame({"b": [1, 2]})
|
409 |
+
|
410 |
+
result = concat([df1, df2], sort=True, axis=1)
|
411 |
+
expected = DataFrame({"a": [1, 2], "b": [1, 2]})
|
412 |
+
tm.assert_frame_equal(result, expected)
|
413 |
+
expected_index = pd.RangeIndex(0, 2)
|
414 |
+
tm.assert_index_equal(result.index, expected_index, exact=True)
|
415 |
+
|
416 |
+
def test_concat_index_keep_dtype(self):
|
417 |
+
# GH#47329
|
418 |
+
df1 = DataFrame([[0, 1, 1]], columns=Index([1, 2, 3], dtype="object"))
|
419 |
+
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype="object"))
|
420 |
+
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
421 |
+
expected = DataFrame(
|
422 |
+
[[0, 1, 1.0], [0, 1, np.nan]], columns=Index([1, 2, 3], dtype="object")
|
423 |
+
)
|
424 |
+
tm.assert_frame_equal(result, expected)
|
425 |
+
|
426 |
+
def test_concat_index_keep_dtype_ea_numeric(self, any_numeric_ea_dtype):
|
427 |
+
# GH#47329
|
428 |
+
df1 = DataFrame(
|
429 |
+
[[0, 1, 1]], columns=Index([1, 2, 3], dtype=any_numeric_ea_dtype)
|
430 |
+
)
|
431 |
+
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype=any_numeric_ea_dtype))
|
432 |
+
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
433 |
+
expected = DataFrame(
|
434 |
+
[[0, 1, 1.0], [0, 1, np.nan]],
|
435 |
+
columns=Index([1, 2, 3], dtype=any_numeric_ea_dtype),
|
436 |
+
)
|
437 |
+
tm.assert_frame_equal(result, expected)
|
438 |
+
|
439 |
+
@pytest.mark.parametrize("dtype", ["Int8", "Int16", "Int32"])
|
440 |
+
def test_concat_index_find_common(self, dtype):
|
441 |
+
# GH#47329
|
442 |
+
df1 = DataFrame([[0, 1, 1]], columns=Index([1, 2, 3], dtype=dtype))
|
443 |
+
df2 = DataFrame([[0, 1]], columns=Index([1, 2], dtype="Int32"))
|
444 |
+
result = concat([df1, df2], ignore_index=True, join="outer", sort=True)
|
445 |
+
expected = DataFrame(
|
446 |
+
[[0, 1, 1.0], [0, 1, np.nan]], columns=Index([1, 2, 3], dtype="Int32")
|
447 |
+
)
|
448 |
+
tm.assert_frame_equal(result, expected)
|
449 |
+
|
450 |
+
def test_concat_axis_1_sort_false_rangeindex(self, using_infer_string):
|
451 |
+
# GH 46675
|
452 |
+
s1 = Series(["a", "b", "c"])
|
453 |
+
s2 = Series(["a", "b"])
|
454 |
+
s3 = Series(["a", "b", "c", "d"])
|
455 |
+
s4 = Series(
|
456 |
+
[], dtype=object if not using_infer_string else "string[pyarrow_numpy]"
|
457 |
+
)
|
458 |
+
result = concat(
|
459 |
+
[s1, s2, s3, s4], sort=False, join="outer", ignore_index=False, axis=1
|
460 |
+
)
|
461 |
+
expected = DataFrame(
|
462 |
+
[
|
463 |
+
["a"] * 3 + [np.nan],
|
464 |
+
["b"] * 3 + [np.nan],
|
465 |
+
["c", np.nan] * 2,
|
466 |
+
[np.nan] * 2 + ["d"] + [np.nan],
|
467 |
+
],
|
468 |
+
dtype=object if not using_infer_string else "string[pyarrow_numpy]",
|
469 |
+
)
|
470 |
+
tm.assert_frame_equal(
|
471 |
+
result, expected, check_index_type=True, check_column_type=True
|
472 |
+
)
|
env-llmeval/lib/python3.10/site-packages/pandas/tests/reshape/concat/test_invalid.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import StringIO
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from pandas import (
|
7 |
+
DataFrame,
|
8 |
+
concat,
|
9 |
+
read_csv,
|
10 |
+
)
|
11 |
+
import pandas._testing as tm
|
12 |
+
|
13 |
+
|
14 |
+
class TestInvalidConcat:
|
15 |
+
@pytest.mark.parametrize("obj", [1, {}, [1, 2], (1, 2)])
|
16 |
+
def test_concat_invalid(self, obj):
|
17 |
+
# trying to concat a ndframe with a non-ndframe
|
18 |
+
df1 = DataFrame(range(2))
|
19 |
+
msg = (
|
20 |
+
f"cannot concatenate object of type '{type(obj)}'; "
|
21 |
+
"only Series and DataFrame objs are valid"
|
22 |
+
)
|
23 |
+
with pytest.raises(TypeError, match=msg):
|
24 |
+
concat([df1, obj])
|
25 |
+
|
26 |
+
def test_concat_invalid_first_argument(self):
|
27 |
+
df1 = DataFrame(range(2))
|
28 |
+
msg = (
|
29 |
+
"first argument must be an iterable of pandas "
|
30 |
+
'objects, you passed an object of type "DataFrame"'
|
31 |
+
)
|
32 |
+
with pytest.raises(TypeError, match=msg):
|
33 |
+
concat(df1)
|
34 |
+
|
35 |
+
def test_concat_generator_obj(self):
|
36 |
+
# generator ok though
|
37 |
+
concat(DataFrame(np.random.default_rng(2).random((5, 5))) for _ in range(3))
|
38 |
+
|
39 |
+
def test_concat_textreader_obj(self):
|
40 |
+
# text reader ok
|
41 |
+
# GH6583
|
42 |
+
data = """index,A,B,C,D
|
43 |
+
foo,2,3,4,5
|
44 |
+
bar,7,8,9,10
|
45 |
+
baz,12,13,14,15
|
46 |
+
qux,12,13,14,15
|
47 |
+
foo2,12,13,14,15
|
48 |
+
bar2,12,13,14,15
|
49 |
+
"""
|
50 |
+
|
51 |
+
with read_csv(StringIO(data), chunksize=1) as reader:
|
52 |
+
result = concat(reader, ignore_index=True)
|
53 |
+
expected = read_csv(StringIO(data))
|
54 |
+
tm.assert_frame_equal(result, expected)
|