applied-ai-018 commited on
Commit
e4b02bf
·
verified ·
1 Parent(s): c2c14f0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__init__.py +25 -0
  2. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/asyn_fluid.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/divisive.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/asyn_fluid.py +151 -0
  15. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/centrality.py +171 -0
  16. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/community_utils.py +29 -0
  17. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/divisive.py +196 -0
  18. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/kclique.py +79 -0
  19. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/kernighan_lin.py +139 -0
  20. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/label_propagation.py +337 -0
  21. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/lukes.py +227 -0
  22. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py +451 -0
  23. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/quality.py +346 -0
  24. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/__init__.py +0 -0
  25. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_asyn_fluid.py +136 -0
  26. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_centrality.py +84 -0
  27. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_divisive.py +106 -0
  28. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kclique.py +91 -0
  29. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py +91 -0
  30. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_label_propagation.py +241 -0
  31. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_louvain.py +264 -0
  32. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_lukes.py +152 -0
  33. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_modularity_max.py +340 -0
  34. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_quality.py +138 -0
  35. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_utils.py +28 -0
  36. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gl1.gpickle.bz2 +3 -0
  37. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gw1.gpickle.bz2 +3 -0
  38. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/wlm3.gpickle.bz2 +3 -0
  39. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/minors/tests/__pycache__/test_contraction.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py +4 -0
  41. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/all.py +321 -0
  42. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py +448 -0
  43. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/product.py +630 -0
  44. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py +0 -0
  45. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_all.py +328 -0
  47. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_binary.py +471 -0
  48. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_product.py +491 -0
  49. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_unary.py +55 -0
  50. env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py +76 -0
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing and measuring community structure.
2
+
3
+ The ``community`` subpackage can be accessed by using :mod:`networkx.community`, then accessing the
4
+ functions as attributes of ``community``. For example::
5
+
6
+ >>> import networkx as nx
7
+ >>> G = nx.barbell_graph(5, 1)
8
+ >>> communities_generator = nx.community.girvan_newman(G)
9
+ >>> top_level_communities = next(communities_generator)
10
+ >>> next_level_communities = next(communities_generator)
11
+ >>> sorted(map(sorted, next_level_communities))
12
+ [[0, 1, 2, 3, 4], [5], [6, 7, 8, 9, 10]]
13
+
14
+ """
15
+ from networkx.algorithms.community.asyn_fluid import *
16
+ from networkx.algorithms.community.centrality import *
17
+ from networkx.algorithms.community.divisive import *
18
+ from networkx.algorithms.community.kclique import *
19
+ from networkx.algorithms.community.kernighan_lin import *
20
+ from networkx.algorithms.community.label_propagation import *
21
+ from networkx.algorithms.community.lukes import *
22
+ from networkx.algorithms.community.modularity_max import *
23
+ from networkx.algorithms.community.quality import *
24
+ from networkx.algorithms.community.community_utils import *
25
+ from networkx.algorithms.community.louvain import *
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.36 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/asyn_fluid.cpython-310.pyc ADDED
Binary file (4.35 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/centrality.cpython-310.pyc ADDED
Binary file (6.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/community_utils.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/divisive.cpython-310.pyc ADDED
Binary file (5.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/kclique.cpython-310.pyc ADDED
Binary file (2.42 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/kernighan_lin.cpython-310.pyc ADDED
Binary file (5.43 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/label_propagation.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/louvain.cpython-310.pyc ADDED
Binary file (13.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/lukes.cpython-310.pyc ADDED
Binary file (7.27 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/modularity_max.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/__pycache__/quality.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/asyn_fluid.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Asynchronous Fluid Communities algorithm for community detection."""
2
+
3
+ from collections import Counter
4
+
5
+ import networkx as nx
6
+ from networkx.algorithms.components import is_connected
7
+ from networkx.exception import NetworkXError
8
+ from networkx.utils import groups, not_implemented_for, py_random_state
9
+
10
+ __all__ = ["asyn_fluidc"]
11
+
12
+
13
+ @not_implemented_for("directed")
14
+ @not_implemented_for("multigraph")
15
+ @py_random_state(3)
16
+ @nx._dispatchable
17
+ def asyn_fluidc(G, k, max_iter=100, seed=None):
18
+ """Returns communities in `G` as detected by Fluid Communities algorithm.
19
+
20
+ The asynchronous fluid communities algorithm is described in
21
+ [1]_. The algorithm is based on the simple idea of fluids interacting
22
+ in an environment, expanding and pushing each other. Its initialization is
23
+ random, so found communities may vary on different executions.
24
+
25
+ The algorithm proceeds as follows. First each of the initial k communities
26
+ is initialized in a random vertex in the graph. Then the algorithm iterates
27
+ over all vertices in a random order, updating the community of each vertex
28
+ based on its own community and the communities of its neighbors. This
29
+ process is performed several times until convergence.
30
+ At all times, each community has a total density of 1, which is equally
31
+ distributed among the vertices it contains. If a vertex changes of
32
+ community, vertex densities of affected communities are adjusted
33
+ immediately. When a complete iteration over all vertices is done, such that
34
+ no vertex changes the community it belongs to, the algorithm has converged
35
+ and returns.
36
+
37
+ This is the original version of the algorithm described in [1]_.
38
+ Unfortunately, it does not support weighted graphs yet.
39
+
40
+ Parameters
41
+ ----------
42
+ G : NetworkX graph
43
+ Graph must be simple and undirected.
44
+
45
+ k : integer
46
+ The number of communities to be found.
47
+
48
+ max_iter : integer
49
+ The number of maximum iterations allowed. By default 100.
50
+
51
+ seed : integer, random_state, or None (default)
52
+ Indicator of random number generation state.
53
+ See :ref:`Randomness<randomness>`.
54
+
55
+ Returns
56
+ -------
57
+ communities : iterable
58
+ Iterable of communities given as sets of nodes.
59
+
60
+ Notes
61
+ -----
62
+ k variable is not an optional argument.
63
+
64
+ References
65
+ ----------
66
+ .. [1] Parés F., Garcia-Gasulla D. et al. "Fluid Communities: A
67
+ Competitive and Highly Scalable Community Detection Algorithm".
68
+ [https://arxiv.org/pdf/1703.09307.pdf].
69
+ """
70
+ # Initial checks
71
+ if not isinstance(k, int):
72
+ raise NetworkXError("k must be an integer.")
73
+ if not k > 0:
74
+ raise NetworkXError("k must be greater than 0.")
75
+ if not is_connected(G):
76
+ raise NetworkXError("Fluid Communities require connected Graphs.")
77
+ if len(G) < k:
78
+ raise NetworkXError("k cannot be bigger than the number of nodes.")
79
+ # Initialization
80
+ max_density = 1.0
81
+ vertices = list(G)
82
+ seed.shuffle(vertices)
83
+ communities = {n: i for i, n in enumerate(vertices[:k])}
84
+ density = {}
85
+ com_to_numvertices = {}
86
+ for vertex in communities:
87
+ com_to_numvertices[communities[vertex]] = 1
88
+ density[communities[vertex]] = max_density
89
+ # Set up control variables and start iterating
90
+ iter_count = 0
91
+ cont = True
92
+ while cont:
93
+ cont = False
94
+ iter_count += 1
95
+ # Loop over all vertices in graph in a random order
96
+ vertices = list(G)
97
+ seed.shuffle(vertices)
98
+ for vertex in vertices:
99
+ # Updating rule
100
+ com_counter = Counter()
101
+ # Take into account self vertex community
102
+ try:
103
+ com_counter.update({communities[vertex]: density[communities[vertex]]})
104
+ except KeyError:
105
+ pass
106
+ # Gather neighbor vertex communities
107
+ for v in G[vertex]:
108
+ try:
109
+ com_counter.update({communities[v]: density[communities[v]]})
110
+ except KeyError:
111
+ continue
112
+ # Check which is the community with highest density
113
+ new_com = -1
114
+ if len(com_counter.keys()) > 0:
115
+ max_freq = max(com_counter.values())
116
+ best_communities = [
117
+ com
118
+ for com, freq in com_counter.items()
119
+ if (max_freq - freq) < 0.0001
120
+ ]
121
+ # If actual vertex com in best communities, it is preserved
122
+ try:
123
+ if communities[vertex] in best_communities:
124
+ new_com = communities[vertex]
125
+ except KeyError:
126
+ pass
127
+ # If vertex community changes...
128
+ if new_com == -1:
129
+ # Set flag of non-convergence
130
+ cont = True
131
+ # Randomly chose a new community from candidates
132
+ new_com = seed.choice(best_communities)
133
+ # Update previous community status
134
+ try:
135
+ com_to_numvertices[communities[vertex]] -= 1
136
+ density[communities[vertex]] = (
137
+ max_density / com_to_numvertices[communities[vertex]]
138
+ )
139
+ except KeyError:
140
+ pass
141
+ # Update new community status
142
+ communities[vertex] = new_com
143
+ com_to_numvertices[communities[vertex]] += 1
144
+ density[communities[vertex]] = (
145
+ max_density / com_to_numvertices[communities[vertex]]
146
+ )
147
+ # If maximum iterations reached --> output actual results
148
+ if iter_count > max_iter:
149
+ break
150
+ # Return results by grouping communities as list of vertices
151
+ return iter(groups(communities).values())
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/centrality.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing communities based on centrality notions."""
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["girvan_newman"]
6
+
7
+
8
+ @nx._dispatchable(preserve_edge_attrs="most_valuable_edge")
9
+ def girvan_newman(G, most_valuable_edge=None):
10
+ """Finds communities in a graph using the Girvan–Newman method.
11
+
12
+ Parameters
13
+ ----------
14
+ G : NetworkX graph
15
+
16
+ most_valuable_edge : function
17
+ Function that takes a graph as input and outputs an edge. The
18
+ edge returned by this function will be recomputed and removed at
19
+ each iteration of the algorithm.
20
+
21
+ If not specified, the edge with the highest
22
+ :func:`networkx.edge_betweenness_centrality` will be used.
23
+
24
+ Returns
25
+ -------
26
+ iterator
27
+ Iterator over tuples of sets of nodes in `G`. Each set of node
28
+ is a community, each tuple is a sequence of communities at a
29
+ particular level of the algorithm.
30
+
31
+ Examples
32
+ --------
33
+ To get the first pair of communities::
34
+
35
+ >>> G = nx.path_graph(10)
36
+ >>> comp = nx.community.girvan_newman(G)
37
+ >>> tuple(sorted(c) for c in next(comp))
38
+ ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
39
+
40
+ To get only the first *k* tuples of communities, use
41
+ :func:`itertools.islice`::
42
+
43
+ >>> import itertools
44
+ >>> G = nx.path_graph(8)
45
+ >>> k = 2
46
+ >>> comp = nx.community.girvan_newman(G)
47
+ >>> for communities in itertools.islice(comp, k):
48
+ ... print(tuple(sorted(c) for c in communities))
49
+ ...
50
+ ([0, 1, 2, 3], [4, 5, 6, 7])
51
+ ([0, 1], [2, 3], [4, 5, 6, 7])
52
+
53
+ To stop getting tuples of communities once the number of communities
54
+ is greater than *k*, use :func:`itertools.takewhile`::
55
+
56
+ >>> import itertools
57
+ >>> G = nx.path_graph(8)
58
+ >>> k = 4
59
+ >>> comp = nx.community.girvan_newman(G)
60
+ >>> limited = itertools.takewhile(lambda c: len(c) <= k, comp)
61
+ >>> for communities in limited:
62
+ ... print(tuple(sorted(c) for c in communities))
63
+ ...
64
+ ([0, 1, 2, 3], [4, 5, 6, 7])
65
+ ([0, 1], [2, 3], [4, 5, 6, 7])
66
+ ([0, 1], [2, 3], [4, 5], [6, 7])
67
+
68
+ To just choose an edge to remove based on the weight::
69
+
70
+ >>> from operator import itemgetter
71
+ >>> G = nx.path_graph(10)
72
+ >>> edges = G.edges()
73
+ >>> nx.set_edge_attributes(G, {(u, v): v for u, v in edges}, "weight")
74
+ >>> def heaviest(G):
75
+ ... u, v, w = max(G.edges(data="weight"), key=itemgetter(2))
76
+ ... return (u, v)
77
+ ...
78
+ >>> comp = nx.community.girvan_newman(G, most_valuable_edge=heaviest)
79
+ >>> tuple(sorted(c) for c in next(comp))
80
+ ([0, 1, 2, 3, 4, 5, 6, 7, 8], [9])
81
+
82
+ To utilize edge weights when choosing an edge with, for example, the
83
+ highest betweenness centrality::
84
+
85
+ >>> from networkx import edge_betweenness_centrality as betweenness
86
+ >>> def most_central_edge(G):
87
+ ... centrality = betweenness(G, weight="weight")
88
+ ... return max(centrality, key=centrality.get)
89
+ ...
90
+ >>> G = nx.path_graph(10)
91
+ >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge)
92
+ >>> tuple(sorted(c) for c in next(comp))
93
+ ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
94
+
95
+ To specify a different ranking algorithm for edges, use the
96
+ `most_valuable_edge` keyword argument::
97
+
98
+ >>> from networkx import edge_betweenness_centrality
99
+ >>> from random import random
100
+ >>> def most_central_edge(G):
101
+ ... centrality = edge_betweenness_centrality(G)
102
+ ... max_cent = max(centrality.values())
103
+ ... # Scale the centrality values so they are between 0 and 1,
104
+ ... # and add some random noise.
105
+ ... centrality = {e: c / max_cent for e, c in centrality.items()}
106
+ ... # Add some random noise.
107
+ ... centrality = {e: c + random() for e, c in centrality.items()}
108
+ ... return max(centrality, key=centrality.get)
109
+ ...
110
+ >>> G = nx.path_graph(10)
111
+ >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge)
112
+
113
+ Notes
114
+ -----
115
+ The Girvan–Newman algorithm detects communities by progressively
116
+ removing edges from the original graph. The algorithm removes the
117
+ "most valuable" edge, traditionally the edge with the highest
118
+ betweenness centrality, at each step. As the graph breaks down into
119
+ pieces, the tightly knit community structure is exposed and the
120
+ result can be depicted as a dendrogram.
121
+
122
+ """
123
+ # If the graph is already empty, simply return its connected
124
+ # components.
125
+ if G.number_of_edges() == 0:
126
+ yield tuple(nx.connected_components(G))
127
+ return
128
+ # If no function is provided for computing the most valuable edge,
129
+ # use the edge betweenness centrality.
130
+ if most_valuable_edge is None:
131
+
132
+ def most_valuable_edge(G):
133
+ """Returns the edge with the highest betweenness centrality
134
+ in the graph `G`.
135
+
136
+ """
137
+ # We have guaranteed that the graph is non-empty, so this
138
+ # dictionary will never be empty.
139
+ betweenness = nx.edge_betweenness_centrality(G)
140
+ return max(betweenness, key=betweenness.get)
141
+
142
+ # The copy of G here must include the edge weight data.
143
+ g = G.copy().to_undirected()
144
+ # Self-loops must be removed because their removal has no effect on
145
+ # the connected components of the graph.
146
+ g.remove_edges_from(nx.selfloop_edges(g))
147
+ while g.number_of_edges() > 0:
148
+ yield _without_most_central_edges(g, most_valuable_edge)
149
+
150
+
151
+ def _without_most_central_edges(G, most_valuable_edge):
152
+ """Returns the connected components of the graph that results from
153
+ repeatedly removing the most "valuable" edge in the graph.
154
+
155
+ `G` must be a non-empty graph. This function modifies the graph `G`
156
+ in-place; that is, it removes edges on the graph `G`.
157
+
158
+ `most_valuable_edge` is a function that takes the graph `G` as input
159
+ (or a subgraph with one or more edges of `G` removed) and returns an
160
+ edge. That edge will be removed and this process will be repeated
161
+ until the number of connected components in the graph increases.
162
+
163
+ """
164
+ original_num_components = nx.number_connected_components(G)
165
+ num_new_components = original_num_components
166
+ while num_new_components <= original_num_components:
167
+ edge = most_valuable_edge(G)
168
+ G.remove_edge(*edge)
169
+ new_components = tuple(nx.connected_components(G))
170
+ num_new_components = len(new_components)
171
+ return new_components
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/community_utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Helper functions for community-finding algorithms."""
2
+ import networkx as nx
3
+
4
+ __all__ = ["is_partition"]
5
+
6
+
7
+ @nx._dispatchable
8
+ def is_partition(G, communities):
9
+ """Returns *True* if `communities` is a partition of the nodes of `G`.
10
+
11
+ A partition of a universe set is a family of pairwise disjoint sets
12
+ whose union is the entire universe set.
13
+
14
+ Parameters
15
+ ----------
16
+ G : NetworkX graph.
17
+
18
+ communities : list or iterable of sets of nodes
19
+ If not a list, the iterable is converted internally to a list.
20
+ If it is an iterator it is exhausted.
21
+
22
+ """
23
+ # Alternate implementation:
24
+ # return all(sum(1 if v in c else 0 for c in communities) == 1 for v in G)
25
+ if not isinstance(communities, list):
26
+ communities = list(communities)
27
+ nodes = {n for c in communities for n in c if n in G}
28
+
29
+ return len(G) == len(nodes) == sum(len(c) for c in communities)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/divisive.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = [
6
+ "edge_betweenness_partition",
7
+ "edge_current_flow_betweenness_partition",
8
+ ]
9
+
10
+
11
+ @nx._dispatchable(edge_attrs="weight")
12
+ def edge_betweenness_partition(G, number_of_sets, *, weight=None):
13
+ """Partition created by iteratively removing the highest edge betweenness edge.
14
+
15
+ This algorithm works by calculating the edge betweenness for all
16
+ edges and removing the edge with the highest value. It is then
17
+ determined whether the graph has been broken into at least
18
+ `number_of_sets` connected components.
19
+ If not the process is repeated.
20
+
21
+ Parameters
22
+ ----------
23
+ G : NetworkX Graph, DiGraph or MultiGraph
24
+ Graph to be partitioned
25
+
26
+ number_of_sets : int
27
+ Number of sets in the desired partition of the graph
28
+
29
+ weight : key, optional, default=None
30
+ The key to use if using weights for edge betweenness calculation
31
+
32
+ Returns
33
+ -------
34
+ C : list of sets
35
+ Partition of the nodes of G
36
+
37
+ Raises
38
+ ------
39
+ NetworkXError
40
+ If number_of_sets is <= 0 or if number_of_sets > len(G)
41
+
42
+ Examples
43
+ --------
44
+ >>> G = nx.karate_club_graph()
45
+ >>> part = nx.community.edge_betweenness_partition(G, 2)
46
+ >>> {0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17, 19, 21} in part
47
+ True
48
+ >>> {2, 8, 9, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33} in part
49
+ True
50
+
51
+ See Also
52
+ --------
53
+ edge_current_flow_betweenness_partition
54
+
55
+ Notes
56
+ -----
57
+ This algorithm is fairly slow, as both the calculation of connected
58
+ components and edge betweenness relies on all pairs shortest
59
+ path algorithms. They could potentially be combined to cut down
60
+ on overall computation time.
61
+
62
+ References
63
+ ----------
64
+ .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports
65
+ Volume 486, Issue 3-5 p. 75-174
66
+ http://arxiv.org/abs/0906.0612
67
+ """
68
+ if number_of_sets <= 0:
69
+ raise nx.NetworkXError("number_of_sets must be >0")
70
+ if number_of_sets == 1:
71
+ return [set(G)]
72
+ if number_of_sets == len(G):
73
+ return [{n} for n in G]
74
+ if number_of_sets > len(G):
75
+ raise nx.NetworkXError("number_of_sets must be <= len(G)")
76
+
77
+ H = G.copy()
78
+ partition = list(nx.connected_components(H))
79
+ while len(partition) < number_of_sets:
80
+ ranking = nx.edge_betweenness_centrality(H, weight=weight)
81
+ edge = max(ranking, key=ranking.get)
82
+ H.remove_edge(*edge)
83
+ partition = list(nx.connected_components(H))
84
+ return partition
85
+
86
+
87
+ @nx._dispatchable(edge_attrs="weight")
88
+ def edge_current_flow_betweenness_partition(G, number_of_sets, *, weight=None):
89
+ """Partition created by removing the highest edge current flow betweenness edge.
90
+
91
+ This algorithm works by calculating the edge current flow
92
+ betweenness for all edges and removing the edge with the
93
+ highest value. It is then determined whether the graph has
94
+ been broken into at least `number_of_sets` connected
95
+ components. If not the process is repeated.
96
+
97
+ Parameters
98
+ ----------
99
+ G : NetworkX Graph, DiGraph or MultiGraph
100
+ Graph to be partitioned
101
+
102
+ number_of_sets : int
103
+ Number of sets in the desired partition of the graph
104
+
105
+ weight : key, optional (default=None)
106
+ The edge attribute key to use as weights for
107
+ edge current flow betweenness calculations
108
+
109
+ Returns
110
+ -------
111
+ C : list of sets
112
+ Partition of G
113
+
114
+ Raises
115
+ ------
116
+ NetworkXError
117
+ If number_of_sets is <= 0 or number_of_sets > len(G)
118
+
119
+ Examples
120
+ --------
121
+ >>> G = nx.karate_club_graph()
122
+ >>> part = nx.community.edge_current_flow_betweenness_partition(G, 2)
123
+ >>> {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 19, 21} in part
124
+ True
125
+ >>> {8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33} in part
126
+ True
127
+
128
+
129
+ See Also
130
+ --------
131
+ edge_betweenness_partition
132
+
133
+ Notes
134
+ -----
135
+ This algorithm is extremely slow, as the recalculation of the edge
136
+ current flow betweenness is extremely slow.
137
+
138
+ References
139
+ ----------
140
+ .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports
141
+ Volume 486, Issue 3-5 p. 75-174
142
+ http://arxiv.org/abs/0906.0612
143
+ """
144
+ if number_of_sets <= 0:
145
+ raise nx.NetworkXError("number_of_sets must be >0")
146
+ elif number_of_sets == 1:
147
+ return [set(G)]
148
+ elif number_of_sets == len(G):
149
+ return [{n} for n in G]
150
+ elif number_of_sets > len(G):
151
+ raise nx.NetworkXError("number_of_sets must be <= len(G)")
152
+
153
+ rank = functools.partial(
154
+ nx.edge_current_flow_betweenness_centrality, normalized=False, weight=weight
155
+ )
156
+
157
+ # current flow requires a connected network so we track the components explicitly
158
+ H = G.copy()
159
+ partition = list(nx.connected_components(H))
160
+ if len(partition) > 1:
161
+ Hcc_subgraphs = [H.subgraph(cc).copy() for cc in partition]
162
+ else:
163
+ Hcc_subgraphs = [H]
164
+
165
+ ranking = {}
166
+ for Hcc in Hcc_subgraphs:
167
+ ranking.update(rank(Hcc))
168
+
169
+ while len(partition) < number_of_sets:
170
+ edge = max(ranking, key=ranking.get)
171
+ for cc, Hcc in zip(partition, Hcc_subgraphs):
172
+ if edge[0] in cc:
173
+ Hcc.remove_edge(*edge)
174
+ del ranking[edge]
175
+ splitcc_list = list(nx.connected_components(Hcc))
176
+ if len(splitcc_list) > 1:
177
+ # there are 2 connected components. split off smaller one
178
+ cc_new = min(splitcc_list, key=len)
179
+ Hcc_new = Hcc.subgraph(cc_new).copy()
180
+ # update edge rankings for Hcc_new
181
+ newranks = rank(Hcc_new)
182
+ for e, r in newranks.items():
183
+ ranking[e if e in ranking else e[::-1]] = r
184
+ # append new cc and Hcc to their lists.
185
+ partition.append(cc_new)
186
+ Hcc_subgraphs.append(Hcc_new)
187
+
188
+ # leave existing cc and Hcc in their lists, but shrink them
189
+ Hcc.remove_nodes_from(cc_new)
190
+ cc.difference_update(cc_new)
191
+ # update edge rankings for Hcc whether it was split or not
192
+ newranks = rank(Hcc)
193
+ for e, r in newranks.items():
194
+ ranking[e if e in ranking else e[::-1]] = r
195
+ break
196
+ return partition
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/kclique.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["k_clique_communities"]
6
+
7
+
8
+ @nx._dispatchable
9
+ def k_clique_communities(G, k, cliques=None):
10
+ """Find k-clique communities in graph using the percolation method.
11
+
12
+ A k-clique community is the union of all cliques of size k that
13
+ can be reached through adjacent (sharing k-1 nodes) k-cliques.
14
+
15
+ Parameters
16
+ ----------
17
+ G : NetworkX graph
18
+
19
+ k : int
20
+ Size of smallest clique
21
+
22
+ cliques: list or generator
23
+ Precomputed cliques (use networkx.find_cliques(G))
24
+
25
+ Returns
26
+ -------
27
+ Yields sets of nodes, one for each k-clique community.
28
+
29
+ Examples
30
+ --------
31
+ >>> G = nx.complete_graph(5)
32
+ >>> K5 = nx.convert_node_labels_to_integers(G, first_label=2)
33
+ >>> G.add_edges_from(K5.edges())
34
+ >>> c = list(nx.community.k_clique_communities(G, 4))
35
+ >>> sorted(list(c[0]))
36
+ [0, 1, 2, 3, 4, 5, 6]
37
+ >>> list(nx.community.k_clique_communities(G, 6))
38
+ []
39
+
40
+ References
41
+ ----------
42
+ .. [1] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek,
43
+ Uncovering the overlapping community structure of complex networks
44
+ in nature and society Nature 435, 814-818, 2005,
45
+ doi:10.1038/nature03607
46
+ """
47
+ if k < 2:
48
+ raise nx.NetworkXError(f"k={k}, k must be greater than 1.")
49
+ if cliques is None:
50
+ cliques = nx.find_cliques(G)
51
+ cliques = [frozenset(c) for c in cliques if len(c) >= k]
52
+
53
+ # First index which nodes are in which cliques
54
+ membership_dict = defaultdict(list)
55
+ for clique in cliques:
56
+ for node in clique:
57
+ membership_dict[node].append(clique)
58
+
59
+ # For each clique, see which adjacent cliques percolate
60
+ perc_graph = nx.Graph()
61
+ perc_graph.add_nodes_from(cliques)
62
+ for clique in cliques:
63
+ for adj_clique in _get_adjacent_cliques(clique, membership_dict):
64
+ if len(clique.intersection(adj_clique)) >= (k - 1):
65
+ perc_graph.add_edge(clique, adj_clique)
66
+
67
+ # Connected components of clique graph with perc edges
68
+ # are the percolated cliques
69
+ for component in nx.connected_components(perc_graph):
70
+ yield (frozenset.union(*component))
71
+
72
+
73
+ def _get_adjacent_cliques(clique, membership_dict):
74
+ adjacent_cliques = set()
75
+ for n in clique:
76
+ for adj_clique in membership_dict[n]:
77
+ if clique != adj_clique:
78
+ adjacent_cliques.add(adj_clique)
79
+ return adjacent_cliques
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/kernighan_lin.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing the Kernighan–Lin bipartition algorithm."""
2
+
3
+ from itertools import count
4
+
5
+ import networkx as nx
6
+ from networkx.algorithms.community.community_utils import is_partition
7
+ from networkx.utils import BinaryHeap, not_implemented_for, py_random_state
8
+
9
+ __all__ = ["kernighan_lin_bisection"]
10
+
11
+
12
+ def _kernighan_lin_sweep(edges, side):
13
+ """
14
+ This is a modified form of Kernighan-Lin, which moves single nodes at a
15
+ time, alternating between sides to keep the bisection balanced. We keep
16
+ two min-heaps of swap costs to make optimal-next-move selection fast.
17
+ """
18
+ costs0, costs1 = costs = BinaryHeap(), BinaryHeap()
19
+ for u, side_u, edges_u in zip(count(), side, edges):
20
+ cost_u = sum(w if side[v] else -w for v, w in edges_u)
21
+ costs[side_u].insert(u, cost_u if side_u else -cost_u)
22
+
23
+ def _update_costs(costs_x, x):
24
+ for y, w in edges[x]:
25
+ costs_y = costs[side[y]]
26
+ cost_y = costs_y.get(y)
27
+ if cost_y is not None:
28
+ cost_y += 2 * (-w if costs_x is costs_y else w)
29
+ costs_y.insert(y, cost_y, True)
30
+
31
+ i = 0
32
+ totcost = 0
33
+ while costs0 and costs1:
34
+ u, cost_u = costs0.pop()
35
+ _update_costs(costs0, u)
36
+ v, cost_v = costs1.pop()
37
+ _update_costs(costs1, v)
38
+ totcost += cost_u + cost_v
39
+ i += 1
40
+ yield totcost, i, (u, v)
41
+
42
+
43
+ @not_implemented_for("directed")
44
+ @py_random_state(4)
45
+ @nx._dispatchable(edge_attrs="weight")
46
+ def kernighan_lin_bisection(G, partition=None, max_iter=10, weight="weight", seed=None):
47
+ """Partition a graph into two blocks using the Kernighan–Lin
48
+ algorithm.
49
+
50
+ This algorithm partitions a network into two sets by iteratively
51
+ swapping pairs of nodes to reduce the edge cut between the two sets. The
52
+ pairs are chosen according to a modified form of Kernighan-Lin [1]_, which
53
+ moves node individually, alternating between sides to keep the bisection
54
+ balanced.
55
+
56
+ Parameters
57
+ ----------
58
+ G : NetworkX graph
59
+ Graph must be undirected.
60
+
61
+ partition : tuple
62
+ Pair of iterables containing an initial partition. If not
63
+ specified, a random balanced partition is used.
64
+
65
+ max_iter : int
66
+ Maximum number of times to attempt swaps to find an
67
+ improvement before giving up.
68
+
69
+ weight : key
70
+ Edge data key to use as weight. If None, the weights are all
71
+ set to one.
72
+
73
+ seed : integer, random_state, or None (default)
74
+ Indicator of random number generation state.
75
+ See :ref:`Randomness<randomness>`.
76
+ Only used if partition is None
77
+
78
+ Returns
79
+ -------
80
+ partition : tuple
81
+ A pair of sets of nodes representing the bipartition.
82
+
83
+ Raises
84
+ ------
85
+ NetworkXError
86
+ If partition is not a valid partition of the nodes of the graph.
87
+
88
+ References
89
+ ----------
90
+ .. [1] Kernighan, B. W.; Lin, Shen (1970).
91
+ "An efficient heuristic procedure for partitioning graphs."
92
+ *Bell Systems Technical Journal* 49: 291--307.
93
+ Oxford University Press 2011.
94
+
95
+ """
96
+ n = len(G)
97
+ labels = list(G)
98
+ seed.shuffle(labels)
99
+ index = {v: i for i, v in enumerate(labels)}
100
+
101
+ if partition is None:
102
+ side = [0] * (n // 2) + [1] * ((n + 1) // 2)
103
+ else:
104
+ try:
105
+ A, B = partition
106
+ except (TypeError, ValueError) as err:
107
+ raise nx.NetworkXError("partition must be two sets") from err
108
+ if not is_partition(G, (A, B)):
109
+ raise nx.NetworkXError("partition invalid")
110
+ side = [0] * n
111
+ for a in A:
112
+ side[index[a]] = 1
113
+
114
+ if G.is_multigraph():
115
+ edges = [
116
+ [
117
+ (index[u], sum(e.get(weight, 1) for e in d.values()))
118
+ for u, d in G[v].items()
119
+ ]
120
+ for v in labels
121
+ ]
122
+ else:
123
+ edges = [
124
+ [(index[u], e.get(weight, 1)) for u, e in G[v].items()] for v in labels
125
+ ]
126
+
127
+ for i in range(max_iter):
128
+ costs = list(_kernighan_lin_sweep(edges, side))
129
+ min_cost, min_i, _ = min(costs)
130
+ if min_cost >= 0:
131
+ break
132
+
133
+ for _, _, (u, v) in costs[:min_i]:
134
+ side[u] = 1
135
+ side[v] = 0
136
+
137
+ A = {u for u, s in zip(labels, side) if s == 0}
138
+ B = {u for u, s in zip(labels, side) if s == 1}
139
+ return A, B
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/label_propagation.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Label propagation community detection algorithms.
3
+ """
4
+ from collections import Counter, defaultdict, deque
5
+
6
+ import networkx as nx
7
+ from networkx.utils import groups, not_implemented_for, py_random_state
8
+
9
+ __all__ = [
10
+ "label_propagation_communities",
11
+ "asyn_lpa_communities",
12
+ "fast_label_propagation_communities",
13
+ ]
14
+
15
+
16
+ @py_random_state("seed")
17
+ @nx._dispatchable(edge_attrs="weight")
18
+ def fast_label_propagation_communities(G, *, weight=None, seed=None):
19
+ """Returns communities in `G` as detected by fast label propagation.
20
+
21
+ The fast label propagation algorithm is described in [1]_. The algorithm is
22
+ probabilistic and the found communities may vary in different executions.
23
+
24
+ The algorithm operates as follows. First, the community label of each node is
25
+ set to a unique label. The algorithm then repeatedly updates the labels of
26
+ the nodes to the most frequent label in their neighborhood. In case of ties,
27
+ a random label is chosen from the most frequent labels.
28
+
29
+ The algorithm maintains a queue of nodes that still need to be processed.
30
+ Initially, all nodes are added to the queue in a random order. Then the nodes
31
+ are removed from the queue one by one and processed. If a node updates its label,
32
+ all its neighbors that have a different label are added to the queue (if not
33
+ already in the queue). The algorithm stops when the queue is empty.
34
+
35
+ Parameters
36
+ ----------
37
+ G : Graph, DiGraph, MultiGraph, or MultiDiGraph
38
+ Any NetworkX graph.
39
+
40
+ weight : string, or None (default)
41
+ The edge attribute representing a non-negative weight of an edge. If None,
42
+ each edge is assumed to have weight one. The weight of an edge is used in
43
+ determining the frequency with which a label appears among the neighbors of
44
+ a node (edge with weight `w` is equivalent to `w` unweighted edges).
45
+
46
+ seed : integer, random_state, or None (default)
47
+ Indicator of random number generation state. See :ref:`Randomness<randomness>`.
48
+
49
+ Returns
50
+ -------
51
+ communities : iterable
52
+ Iterable of communities given as sets of nodes.
53
+
54
+ Notes
55
+ -----
56
+ Edge directions are ignored for directed graphs.
57
+ Edge weights must be non-negative numbers.
58
+
59
+ References
60
+ ----------
61
+ .. [1] Vincent A. Traag & Lovro Šubelj. "Large network community detection by
62
+ fast label propagation." Scientific Reports 13 (2023): 2701.
63
+ https://doi.org/10.1038/s41598-023-29610-z
64
+ """
65
+
66
+ # Queue of nodes to be processed.
67
+ nodes_queue = deque(G)
68
+ seed.shuffle(nodes_queue)
69
+
70
+ # Set of nodes in the queue.
71
+ nodes_set = set(G)
72
+
73
+ # Assign unique label to each node.
74
+ comms = {node: i for i, node in enumerate(G)}
75
+
76
+ while nodes_queue:
77
+ # Remove next node from the queue to process.
78
+ node = nodes_queue.popleft()
79
+ nodes_set.remove(node)
80
+
81
+ # Isolated nodes retain their initial label.
82
+ if G.degree(node) > 0:
83
+ # Compute frequency of labels in node's neighborhood.
84
+ label_freqs = _fast_label_count(G, comms, node, weight)
85
+ max_freq = max(label_freqs.values())
86
+
87
+ # Always sample new label from most frequent labels.
88
+ comm = seed.choice(
89
+ [comm for comm in label_freqs if label_freqs[comm] == max_freq]
90
+ )
91
+
92
+ if comms[node] != comm:
93
+ comms[node] = comm
94
+
95
+ # Add neighbors that have different label to the queue.
96
+ for nbr in nx.all_neighbors(G, node):
97
+ if comms[nbr] != comm and nbr not in nodes_set:
98
+ nodes_queue.append(nbr)
99
+ nodes_set.add(nbr)
100
+
101
+ yield from groups(comms).values()
102
+
103
+
104
+ def _fast_label_count(G, comms, node, weight=None):
105
+ """Computes the frequency of labels in the neighborhood of a node.
106
+
107
+ Returns a dictionary keyed by label to the frequency of that label.
108
+ """
109
+
110
+ if weight is None:
111
+ # Unweighted (un)directed simple graph.
112
+ if not G.is_multigraph():
113
+ label_freqs = Counter(map(comms.get, nx.all_neighbors(G, node)))
114
+
115
+ # Unweighted (un)directed multigraph.
116
+ else:
117
+ label_freqs = defaultdict(int)
118
+ for nbr in G[node]:
119
+ label_freqs[comms[nbr]] += len(G[node][nbr])
120
+
121
+ if G.is_directed():
122
+ for nbr in G.pred[node]:
123
+ label_freqs[comms[nbr]] += len(G.pred[node][nbr])
124
+
125
+ else:
126
+ # Weighted undirected simple/multigraph.
127
+ label_freqs = defaultdict(float)
128
+ for _, nbr, w in G.edges(node, data=weight, default=1):
129
+ label_freqs[comms[nbr]] += w
130
+
131
+ # Weighted directed simple/multigraph.
132
+ if G.is_directed():
133
+ for nbr, _, w in G.in_edges(node, data=weight, default=1):
134
+ label_freqs[comms[nbr]] += w
135
+
136
+ return label_freqs
137
+
138
+
139
+ @py_random_state(2)
140
+ @nx._dispatchable(edge_attrs="weight")
141
+ def asyn_lpa_communities(G, weight=None, seed=None):
142
+ """Returns communities in `G` as detected by asynchronous label
143
+ propagation.
144
+
145
+ The asynchronous label propagation algorithm is described in
146
+ [1]_. The algorithm is probabilistic and the found communities may
147
+ vary on different executions.
148
+
149
+ The algorithm proceeds as follows. After initializing each node with
150
+ a unique label, the algorithm repeatedly sets the label of a node to
151
+ be the label that appears most frequently among that nodes
152
+ neighbors. The algorithm halts when each node has the label that
153
+ appears most frequently among its neighbors. The algorithm is
154
+ asynchronous because each node is updated without waiting for
155
+ updates on the remaining nodes.
156
+
157
+ This generalized version of the algorithm in [1]_ accepts edge
158
+ weights.
159
+
160
+ Parameters
161
+ ----------
162
+ G : Graph
163
+
164
+ weight : string
165
+ The edge attribute representing the weight of an edge.
166
+ If None, each edge is assumed to have weight one. In this
167
+ algorithm, the weight of an edge is used in determining the
168
+ frequency with which a label appears among the neighbors of a
169
+ node: a higher weight means the label appears more often.
170
+
171
+ seed : integer, random_state, or None (default)
172
+ Indicator of random number generation state.
173
+ See :ref:`Randomness<randomness>`.
174
+
175
+ Returns
176
+ -------
177
+ communities : iterable
178
+ Iterable of communities given as sets of nodes.
179
+
180
+ Notes
181
+ -----
182
+ Edge weight attributes must be numerical.
183
+
184
+ References
185
+ ----------
186
+ .. [1] Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. "Near
187
+ linear time algorithm to detect community structures in large-scale
188
+ networks." Physical Review E 76.3 (2007): 036106.
189
+ """
190
+
191
+ labels = {n: i for i, n in enumerate(G)}
192
+ cont = True
193
+
194
+ while cont:
195
+ cont = False
196
+ nodes = list(G)
197
+ seed.shuffle(nodes)
198
+
199
+ for node in nodes:
200
+ if not G[node]:
201
+ continue
202
+
203
+ # Get label frequencies among adjacent nodes.
204
+ # Depending on the order they are processed in,
205
+ # some nodes will be in iteration t and others in t-1,
206
+ # making the algorithm asynchronous.
207
+ if weight is None:
208
+ # initialising a Counter from an iterator of labels is
209
+ # faster for getting unweighted label frequencies
210
+ label_freq = Counter(map(labels.get, G[node]))
211
+ else:
212
+ # updating a defaultdict is substantially faster
213
+ # for getting weighted label frequencies
214
+ label_freq = defaultdict(float)
215
+ for _, v, wt in G.edges(node, data=weight, default=1):
216
+ label_freq[labels[v]] += wt
217
+
218
+ # Get the labels that appear with maximum frequency.
219
+ max_freq = max(label_freq.values())
220
+ best_labels = [
221
+ label for label, freq in label_freq.items() if freq == max_freq
222
+ ]
223
+
224
+ # If the node does not have one of the maximum frequency labels,
225
+ # randomly choose one of them and update the node's label.
226
+ # Continue the iteration as long as at least one node
227
+ # doesn't have a maximum frequency label.
228
+ if labels[node] not in best_labels:
229
+ labels[node] = seed.choice(best_labels)
230
+ cont = True
231
+
232
+ yield from groups(labels).values()
233
+
234
+
235
+ @not_implemented_for("directed")
236
+ @nx._dispatchable
237
+ def label_propagation_communities(G):
238
+ """Generates community sets determined by label propagation
239
+
240
+ Finds communities in `G` using a semi-synchronous label propagation
241
+ method [1]_. This method combines the advantages of both the synchronous
242
+ and asynchronous models. Not implemented for directed graphs.
243
+
244
+ Parameters
245
+ ----------
246
+ G : graph
247
+ An undirected NetworkX graph.
248
+
249
+ Returns
250
+ -------
251
+ communities : iterable
252
+ A dict_values object that contains a set of nodes for each community.
253
+
254
+ Raises
255
+ ------
256
+ NetworkXNotImplemented
257
+ If the graph is directed
258
+
259
+ References
260
+ ----------
261
+ .. [1] Cordasco, G., & Gargano, L. (2010, December). Community detection
262
+ via semi-synchronous label propagation algorithms. In Business
263
+ Applications of Social Network Analysis (BASNA), 2010 IEEE International
264
+ Workshop on (pp. 1-8). IEEE.
265
+ """
266
+ coloring = _color_network(G)
267
+ # Create a unique label for each node in the graph
268
+ labeling = {v: k for k, v in enumerate(G)}
269
+ while not _labeling_complete(labeling, G):
270
+ # Update the labels of every node with the same color.
271
+ for color, nodes in coloring.items():
272
+ for n in nodes:
273
+ _update_label(n, labeling, G)
274
+
275
+ clusters = defaultdict(set)
276
+ for node, label in labeling.items():
277
+ clusters[label].add(node)
278
+ return clusters.values()
279
+
280
+
281
+ def _color_network(G):
282
+ """Colors the network so that neighboring nodes all have distinct colors.
283
+
284
+ Returns a dict keyed by color to a set of nodes with that color.
285
+ """
286
+ coloring = {} # color => set(node)
287
+ colors = nx.coloring.greedy_color(G)
288
+ for node, color in colors.items():
289
+ if color in coloring:
290
+ coloring[color].add(node)
291
+ else:
292
+ coloring[color] = {node}
293
+ return coloring
294
+
295
+
296
+ def _labeling_complete(labeling, G):
297
+ """Determines whether or not LPA is done.
298
+
299
+ Label propagation is complete when all nodes have a label that is
300
+ in the set of highest frequency labels amongst its neighbors.
301
+
302
+ Nodes with no neighbors are considered complete.
303
+ """
304
+ return all(
305
+ labeling[v] in _most_frequent_labels(v, labeling, G) for v in G if len(G[v]) > 0
306
+ )
307
+
308
+
309
+ def _most_frequent_labels(node, labeling, G):
310
+ """Returns a set of all labels with maximum frequency in `labeling`.
311
+
312
+ Input `labeling` should be a dict keyed by node to labels.
313
+ """
314
+ if not G[node]:
315
+ # Nodes with no neighbors are themselves a community and are labeled
316
+ # accordingly, hence the immediate if statement.
317
+ return {labeling[node]}
318
+
319
+ # Compute the frequencies of all neighbors of node
320
+ freqs = Counter(labeling[q] for q in G[node])
321
+ max_freq = max(freqs.values())
322
+ return {label for label, freq in freqs.items() if freq == max_freq}
323
+
324
+
325
+ def _update_label(node, labeling, G):
326
+ """Updates the label of a node using the Prec-Max tie breaking algorithm
327
+
328
+ The algorithm is explained in: 'Community Detection via Semi-Synchronous
329
+ Label Propagation Algorithms' Cordasco and Gargano, 2011
330
+ """
331
+ high_labels = _most_frequent_labels(node, labeling, G)
332
+ if len(high_labels) == 1:
333
+ labeling[node] = high_labels.pop()
334
+ elif len(high_labels) > 1:
335
+ # Prec-Max
336
+ if labeling[node] not in high_labels:
337
+ labeling[node] = max(high_labels)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/lukes.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Lukes Algorithm for exact optimal weighted tree partitioning."""
2
+
3
+ from copy import deepcopy
4
+ from functools import lru_cache
5
+ from random import choice
6
+
7
+ import networkx as nx
8
+ from networkx.utils import not_implemented_for
9
+
10
+ __all__ = ["lukes_partitioning"]
11
+
12
+ D_EDGE_W = "weight"
13
+ D_EDGE_VALUE = 1.0
14
+ D_NODE_W = "weight"
15
+ D_NODE_VALUE = 1
16
+ PKEY = "partitions"
17
+ CLUSTER_EVAL_CACHE_SIZE = 2048
18
+
19
+
20
+ def _split_n_from(n, min_size_of_first_part):
21
+ # splits j in two parts of which the first is at least
22
+ # the second argument
23
+ assert n >= min_size_of_first_part
24
+ for p1 in range(min_size_of_first_part, n + 1):
25
+ yield p1, n - p1
26
+
27
+
28
+ @nx._dispatchable(node_attrs="node_weight", edge_attrs="edge_weight")
29
+ def lukes_partitioning(G, max_size, node_weight=None, edge_weight=None):
30
+ """Optimal partitioning of a weighted tree using the Lukes algorithm.
31
+
32
+ This algorithm partitions a connected, acyclic graph featuring integer
33
+ node weights and float edge weights. The resulting clusters are such
34
+ that the total weight of the nodes in each cluster does not exceed
35
+ max_size and that the weight of the edges that are cut by the partition
36
+ is minimum. The algorithm is based on [1]_.
37
+
38
+ Parameters
39
+ ----------
40
+ G : NetworkX graph
41
+
42
+ max_size : int
43
+ Maximum weight a partition can have in terms of sum of
44
+ node_weight for all nodes in the partition
45
+
46
+ edge_weight : key
47
+ Edge data key to use as weight. If None, the weights are all
48
+ set to one.
49
+
50
+ node_weight : key
51
+ Node data key to use as weight. If None, the weights are all
52
+ set to one. The data must be int.
53
+
54
+ Returns
55
+ -------
56
+ partition : list
57
+ A list of sets of nodes representing the clusters of the
58
+ partition.
59
+
60
+ Raises
61
+ ------
62
+ NotATree
63
+ If G is not a tree.
64
+ TypeError
65
+ If any of the values of node_weight is not int.
66
+
67
+ References
68
+ ----------
69
+ .. [1] Lukes, J. A. (1974).
70
+ "Efficient Algorithm for the Partitioning of Trees."
71
+ IBM Journal of Research and Development, 18(3), 217–224.
72
+
73
+ """
74
+ # First sanity check and tree preparation
75
+ if not nx.is_tree(G):
76
+ raise nx.NotATree("lukes_partitioning works only on trees")
77
+ else:
78
+ if nx.is_directed(G):
79
+ root = [n for n, d in G.in_degree() if d == 0]
80
+ assert len(root) == 1
81
+ root = root[0]
82
+ t_G = deepcopy(G)
83
+ else:
84
+ root = choice(list(G.nodes))
85
+ # this has the desirable side effect of not inheriting attributes
86
+ t_G = nx.dfs_tree(G, root)
87
+
88
+ # Since we do not want to screw up the original graph,
89
+ # if we have a blank attribute, we make a deepcopy
90
+ if edge_weight is None or node_weight is None:
91
+ safe_G = deepcopy(G)
92
+ if edge_weight is None:
93
+ nx.set_edge_attributes(safe_G, D_EDGE_VALUE, D_EDGE_W)
94
+ edge_weight = D_EDGE_W
95
+ if node_weight is None:
96
+ nx.set_node_attributes(safe_G, D_NODE_VALUE, D_NODE_W)
97
+ node_weight = D_NODE_W
98
+ else:
99
+ safe_G = G
100
+
101
+ # Second sanity check
102
+ # The values of node_weight MUST BE int.
103
+ # I cannot see any room for duck typing without incurring serious
104
+ # danger of subtle bugs.
105
+ all_n_attr = nx.get_node_attributes(safe_G, node_weight).values()
106
+ for x in all_n_attr:
107
+ if not isinstance(x, int):
108
+ raise TypeError(
109
+ "lukes_partitioning needs integer "
110
+ f"values for node_weight ({node_weight})"
111
+ )
112
+
113
+ # SUBROUTINES -----------------------
114
+ # these functions are defined here for two reasons:
115
+ # - brevity: we can leverage global "safe_G"
116
+ # - caching: signatures are hashable
117
+
118
+ @not_implemented_for("undirected")
119
+ # this is intended to be called only on t_G
120
+ def _leaves(gr):
121
+ for x in gr.nodes:
122
+ if not nx.descendants(gr, x):
123
+ yield x
124
+
125
+ @not_implemented_for("undirected")
126
+ def _a_parent_of_leaves_only(gr):
127
+ tleaves = set(_leaves(gr))
128
+ for n in set(gr.nodes) - tleaves:
129
+ if all(x in tleaves for x in nx.descendants(gr, n)):
130
+ return n
131
+
132
+ @lru_cache(CLUSTER_EVAL_CACHE_SIZE)
133
+ def _value_of_cluster(cluster):
134
+ valid_edges = [e for e in safe_G.edges if e[0] in cluster and e[1] in cluster]
135
+ return sum(safe_G.edges[e][edge_weight] for e in valid_edges)
136
+
137
+ def _value_of_partition(partition):
138
+ return sum(_value_of_cluster(frozenset(c)) for c in partition)
139
+
140
+ @lru_cache(CLUSTER_EVAL_CACHE_SIZE)
141
+ def _weight_of_cluster(cluster):
142
+ return sum(safe_G.nodes[n][node_weight] for n in cluster)
143
+
144
+ def _pivot(partition, node):
145
+ ccx = [c for c in partition if node in c]
146
+ assert len(ccx) == 1
147
+ return ccx[0]
148
+
149
+ def _concatenate_or_merge(partition_1, partition_2, x, i, ref_weight):
150
+ ccx = _pivot(partition_1, x)
151
+ cci = _pivot(partition_2, i)
152
+ merged_xi = ccx.union(cci)
153
+
154
+ # We first check if we can do the merge.
155
+ # If so, we do the actual calculations, otherwise we concatenate
156
+ if _weight_of_cluster(frozenset(merged_xi)) <= ref_weight:
157
+ cp1 = list(filter(lambda x: x != ccx, partition_1))
158
+ cp2 = list(filter(lambda x: x != cci, partition_2))
159
+
160
+ option_2 = [merged_xi] + cp1 + cp2
161
+ return option_2, _value_of_partition(option_2)
162
+ else:
163
+ option_1 = partition_1 + partition_2
164
+ return option_1, _value_of_partition(option_1)
165
+
166
+ # INITIALIZATION -----------------------
167
+ leaves = set(_leaves(t_G))
168
+ for lv in leaves:
169
+ t_G.nodes[lv][PKEY] = {}
170
+ slot = safe_G.nodes[lv][node_weight]
171
+ t_G.nodes[lv][PKEY][slot] = [{lv}]
172
+ t_G.nodes[lv][PKEY][0] = [{lv}]
173
+
174
+ for inner in [x for x in t_G.nodes if x not in leaves]:
175
+ t_G.nodes[inner][PKEY] = {}
176
+ slot = safe_G.nodes[inner][node_weight]
177
+ t_G.nodes[inner][PKEY][slot] = [{inner}]
178
+ nx._clear_cache(t_G)
179
+
180
+ # CORE ALGORITHM -----------------------
181
+ while True:
182
+ x_node = _a_parent_of_leaves_only(t_G)
183
+ weight_of_x = safe_G.nodes[x_node][node_weight]
184
+ best_value = 0
185
+ best_partition = None
186
+ bp_buffer = {}
187
+ x_descendants = nx.descendants(t_G, x_node)
188
+ for i_node in x_descendants:
189
+ for j in range(weight_of_x, max_size + 1):
190
+ for a, b in _split_n_from(j, weight_of_x):
191
+ if (
192
+ a not in t_G.nodes[x_node][PKEY]
193
+ or b not in t_G.nodes[i_node][PKEY]
194
+ ):
195
+ # it's not possible to form this particular weight sum
196
+ continue
197
+
198
+ part1 = t_G.nodes[x_node][PKEY][a]
199
+ part2 = t_G.nodes[i_node][PKEY][b]
200
+ part, value = _concatenate_or_merge(part1, part2, x_node, i_node, j)
201
+
202
+ if j not in bp_buffer or bp_buffer[j][1] < value:
203
+ # we annotate in the buffer the best partition for j
204
+ bp_buffer[j] = part, value
205
+
206
+ # we also keep track of the overall best partition
207
+ if best_value <= value:
208
+ best_value = value
209
+ best_partition = part
210
+
211
+ # as illustrated in Lukes, once we finished a child, we can
212
+ # discharge the partitions we found into the graph
213
+ # (the key phrase is make all x == x')
214
+ # so that they are used by the subsequent children
215
+ for w, (best_part_for_vl, vl) in bp_buffer.items():
216
+ t_G.nodes[x_node][PKEY][w] = best_part_for_vl
217
+ bp_buffer.clear()
218
+
219
+ # the absolute best partition for this node
220
+ # across all weights has to be stored at 0
221
+ t_G.nodes[x_node][PKEY][0] = best_partition
222
+ t_G.remove_nodes_from(x_descendants)
223
+
224
+ if x_node == root:
225
+ # the 0-labeled partition of root
226
+ # is the optimal one for the whole tree
227
+ return t_G.nodes[root][PKEY][0]
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/modularity_max.py ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for detecting communities based on modularity."""
2
+
3
+ from collections import defaultdict
4
+
5
+ import networkx as nx
6
+ from networkx.algorithms.community.quality import modularity
7
+ from networkx.utils import not_implemented_for
8
+ from networkx.utils.mapped_queue import MappedQueue
9
+
10
+ __all__ = [
11
+ "greedy_modularity_communities",
12
+ "naive_greedy_modularity_communities",
13
+ ]
14
+
15
+
16
+ def _greedy_modularity_communities_generator(G, weight=None, resolution=1):
17
+ r"""Yield community partitions of G and the modularity change at each step.
18
+
19
+ This function performs Clauset-Newman-Moore greedy modularity maximization [2]_
20
+ At each step of the process it yields the change in modularity that will occur in
21
+ the next step followed by yielding the new community partition after that step.
22
+
23
+ Greedy modularity maximization begins with each node in its own community
24
+ and repeatedly joins the pair of communities that lead to the largest
25
+ modularity until one community contains all nodes (the partition has one set).
26
+
27
+ This function maximizes the generalized modularity, where `resolution`
28
+ is the resolution parameter, often expressed as $\gamma$.
29
+ See :func:`~networkx.algorithms.community.quality.modularity`.
30
+
31
+ Parameters
32
+ ----------
33
+ G : NetworkX graph
34
+
35
+ weight : string or None, optional (default=None)
36
+ The name of an edge attribute that holds the numerical value used
37
+ as a weight. If None, then each edge has weight 1.
38
+ The degree is the sum of the edge weights adjacent to the node.
39
+
40
+ resolution : float (default=1)
41
+ If resolution is less than 1, modularity favors larger communities.
42
+ Greater than 1 favors smaller communities.
43
+
44
+ Yields
45
+ ------
46
+ Alternating yield statements produce the following two objects:
47
+
48
+ communities: dict_values
49
+ A dict_values of frozensets of nodes, one for each community.
50
+ This represents a partition of the nodes of the graph into communities.
51
+ The first yield is the partition with each node in its own community.
52
+
53
+ dq: float
54
+ The change in modularity when merging the next two communities
55
+ that leads to the largest modularity.
56
+
57
+ See Also
58
+ --------
59
+ modularity
60
+
61
+ References
62
+ ----------
63
+ .. [1] Newman, M. E. J. "Networks: An Introduction", page 224
64
+ Oxford University Press 2011.
65
+ .. [2] Clauset, A., Newman, M. E., & Moore, C.
66
+ "Finding community structure in very large networks."
67
+ Physical Review E 70(6), 2004.
68
+ .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community
69
+ Detection" Phys. Rev. E74, 2006.
70
+ .. [4] Newman, M. E. J."Analysis of weighted networks"
71
+ Physical Review E 70(5 Pt 2):056131, 2004.
72
+ """
73
+ directed = G.is_directed()
74
+ N = G.number_of_nodes()
75
+
76
+ # Count edges (or the sum of edge-weights for weighted graphs)
77
+ m = G.size(weight)
78
+ q0 = 1 / m
79
+
80
+ # Calculate degrees (notation from the papers)
81
+ # a : the fraction of (weighted) out-degree for each node
82
+ # b : the fraction of (weighted) in-degree for each node
83
+ if directed:
84
+ a = {node: deg_out * q0 for node, deg_out in G.out_degree(weight=weight)}
85
+ b = {node: deg_in * q0 for node, deg_in in G.in_degree(weight=weight)}
86
+ else:
87
+ a = b = {node: deg * q0 * 0.5 for node, deg in G.degree(weight=weight)}
88
+
89
+ # this preliminary step collects the edge weights for each node pair
90
+ # It handles multigraph and digraph and works fine for graph.
91
+ dq_dict = defaultdict(lambda: defaultdict(float))
92
+ for u, v, wt in G.edges(data=weight, default=1):
93
+ if u == v:
94
+ continue
95
+ dq_dict[u][v] += wt
96
+ dq_dict[v][u] += wt
97
+
98
+ # now scale and subtract the expected edge-weights term
99
+ for u, nbrdict in dq_dict.items():
100
+ for v, wt in nbrdict.items():
101
+ dq_dict[u][v] = q0 * wt - resolution * (a[u] * b[v] + b[u] * a[v])
102
+
103
+ # Use -dq to get a max_heap instead of a min_heap
104
+ # dq_heap holds a heap for each node's neighbors
105
+ dq_heap = {u: MappedQueue({(u, v): -dq for v, dq in dq_dict[u].items()}) for u in G}
106
+ # H -> all_dq_heap holds a heap with the best items for each node
107
+ H = MappedQueue([dq_heap[n].heap[0] for n in G if len(dq_heap[n]) > 0])
108
+
109
+ # Initialize single-node communities
110
+ communities = {n: frozenset([n]) for n in G}
111
+ yield communities.values()
112
+
113
+ # Merge the two communities that lead to the largest modularity
114
+ while len(H) > 1:
115
+ # Find best merge
116
+ # Remove from heap of row maxes
117
+ # Ties will be broken by choosing the pair with lowest min community id
118
+ try:
119
+ negdq, u, v = H.pop()
120
+ except IndexError:
121
+ break
122
+ dq = -negdq
123
+ yield dq
124
+ # Remove best merge from row u heap
125
+ dq_heap[u].pop()
126
+ # Push new row max onto H
127
+ if len(dq_heap[u]) > 0:
128
+ H.push(dq_heap[u].heap[0])
129
+ # If this element was also at the root of row v, we need to remove the
130
+ # duplicate entry from H
131
+ if dq_heap[v].heap[0] == (v, u):
132
+ H.remove((v, u))
133
+ # Remove best merge from row v heap
134
+ dq_heap[v].remove((v, u))
135
+ # Push new row max onto H
136
+ if len(dq_heap[v]) > 0:
137
+ H.push(dq_heap[v].heap[0])
138
+ else:
139
+ # Duplicate wasn't in H, just remove from row v heap
140
+ dq_heap[v].remove((v, u))
141
+
142
+ # Perform merge
143
+ communities[v] = frozenset(communities[u] | communities[v])
144
+ del communities[u]
145
+
146
+ # Get neighbor communities connected to the merged communities
147
+ u_nbrs = set(dq_dict[u])
148
+ v_nbrs = set(dq_dict[v])
149
+ all_nbrs = (u_nbrs | v_nbrs) - {u, v}
150
+ both_nbrs = u_nbrs & v_nbrs
151
+ # Update dq for merge of u into v
152
+ for w in all_nbrs:
153
+ # Calculate new dq value
154
+ if w in both_nbrs:
155
+ dq_vw = dq_dict[v][w] + dq_dict[u][w]
156
+ elif w in v_nbrs:
157
+ dq_vw = dq_dict[v][w] - resolution * (a[u] * b[w] + a[w] * b[u])
158
+ else: # w in u_nbrs
159
+ dq_vw = dq_dict[u][w] - resolution * (a[v] * b[w] + a[w] * b[v])
160
+ # Update rows v and w
161
+ for row, col in [(v, w), (w, v)]:
162
+ dq_heap_row = dq_heap[row]
163
+ # Update dict for v,w only (u is removed below)
164
+ dq_dict[row][col] = dq_vw
165
+ # Save old max of per-row heap
166
+ if len(dq_heap_row) > 0:
167
+ d_oldmax = dq_heap_row.heap[0]
168
+ else:
169
+ d_oldmax = None
170
+ # Add/update heaps
171
+ d = (row, col)
172
+ d_negdq = -dq_vw
173
+ # Save old value for finding heap index
174
+ if w in v_nbrs:
175
+ # Update existing element in per-row heap
176
+ dq_heap_row.update(d, d, priority=d_negdq)
177
+ else:
178
+ # We're creating a new nonzero element, add to heap
179
+ dq_heap_row.push(d, priority=d_negdq)
180
+ # Update heap of row maxes if necessary
181
+ if d_oldmax is None:
182
+ # No entries previously in this row, push new max
183
+ H.push(d, priority=d_negdq)
184
+ else:
185
+ # We've updated an entry in this row, has the max changed?
186
+ row_max = dq_heap_row.heap[0]
187
+ if d_oldmax != row_max or d_oldmax.priority != row_max.priority:
188
+ H.update(d_oldmax, row_max)
189
+
190
+ # Remove row/col u from dq_dict matrix
191
+ for w in dq_dict[u]:
192
+ # Remove from dict
193
+ dq_old = dq_dict[w][u]
194
+ del dq_dict[w][u]
195
+ # Remove from heaps if we haven't already
196
+ if w != v:
197
+ # Remove both row and column
198
+ for row, col in [(w, u), (u, w)]:
199
+ dq_heap_row = dq_heap[row]
200
+ # Check if replaced dq is row max
201
+ d_old = (row, col)
202
+ if dq_heap_row.heap[0] == d_old:
203
+ # Update per-row heap and heap of row maxes
204
+ dq_heap_row.remove(d_old)
205
+ H.remove(d_old)
206
+ # Update row max
207
+ if len(dq_heap_row) > 0:
208
+ H.push(dq_heap_row.heap[0])
209
+ else:
210
+ # Only update per-row heap
211
+ dq_heap_row.remove(d_old)
212
+
213
+ del dq_dict[u]
214
+ # Mark row u as deleted, but keep placeholder
215
+ dq_heap[u] = MappedQueue()
216
+ # Merge u into v and update a
217
+ a[v] += a[u]
218
+ a[u] = 0
219
+ if directed:
220
+ b[v] += b[u]
221
+ b[u] = 0
222
+
223
+ yield communities.values()
224
+
225
+
226
+ @nx._dispatchable(edge_attrs="weight")
227
+ def greedy_modularity_communities(
228
+ G,
229
+ weight=None,
230
+ resolution=1,
231
+ cutoff=1,
232
+ best_n=None,
233
+ ):
234
+ r"""Find communities in G using greedy modularity maximization.
235
+
236
+ This function uses Clauset-Newman-Moore greedy modularity maximization [2]_
237
+ to find the community partition with the largest modularity.
238
+
239
+ Greedy modularity maximization begins with each node in its own community
240
+ and repeatedly joins the pair of communities that lead to the largest
241
+ modularity until no further increase in modularity is possible (a maximum).
242
+ Two keyword arguments adjust the stopping condition. `cutoff` is a lower
243
+ limit on the number of communities so you can stop the process before
244
+ reaching a maximum (used to save computation time). `best_n` is an upper
245
+ limit on the number of communities so you can make the process continue
246
+ until at most n communities remain even if the maximum modularity occurs
247
+ for more. To obtain exactly n communities, set both `cutoff` and `best_n` to n.
248
+
249
+ This function maximizes the generalized modularity, where `resolution`
250
+ is the resolution parameter, often expressed as $\gamma$.
251
+ See :func:`~networkx.algorithms.community.quality.modularity`.
252
+
253
+ Parameters
254
+ ----------
255
+ G : NetworkX graph
256
+
257
+ weight : string or None, optional (default=None)
258
+ The name of an edge attribute that holds the numerical value used
259
+ as a weight. If None, then each edge has weight 1.
260
+ The degree is the sum of the edge weights adjacent to the node.
261
+
262
+ resolution : float, optional (default=1)
263
+ If resolution is less than 1, modularity favors larger communities.
264
+ Greater than 1 favors smaller communities.
265
+
266
+ cutoff : int, optional (default=1)
267
+ A minimum number of communities below which the merging process stops.
268
+ The process stops at this number of communities even if modularity
269
+ is not maximized. The goal is to let the user stop the process early.
270
+ The process stops before the cutoff if it finds a maximum of modularity.
271
+
272
+ best_n : int or None, optional (default=None)
273
+ A maximum number of communities above which the merging process will
274
+ not stop. This forces community merging to continue after modularity
275
+ starts to decrease until `best_n` communities remain.
276
+ If ``None``, don't force it to continue beyond a maximum.
277
+
278
+ Raises
279
+ ------
280
+ ValueError : If the `cutoff` or `best_n` value is not in the range
281
+ ``[1, G.number_of_nodes()]``, or if `best_n` < `cutoff`.
282
+
283
+ Returns
284
+ -------
285
+ communities: list
286
+ A list of frozensets of nodes, one for each community.
287
+ Sorted by length with largest communities first.
288
+
289
+ Examples
290
+ --------
291
+ >>> G = nx.karate_club_graph()
292
+ >>> c = nx.community.greedy_modularity_communities(G)
293
+ >>> sorted(c[0])
294
+ [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
295
+
296
+ See Also
297
+ --------
298
+ modularity
299
+
300
+ References
301
+ ----------
302
+ .. [1] Newman, M. E. J. "Networks: An Introduction", page 224
303
+ Oxford University Press 2011.
304
+ .. [2] Clauset, A., Newman, M. E., & Moore, C.
305
+ "Finding community structure in very large networks."
306
+ Physical Review E 70(6), 2004.
307
+ .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community
308
+ Detection" Phys. Rev. E74, 2006.
309
+ .. [4] Newman, M. E. J."Analysis of weighted networks"
310
+ Physical Review E 70(5 Pt 2):056131, 2004.
311
+ """
312
+ if not G.size():
313
+ return [{n} for n in G]
314
+
315
+ if (cutoff < 1) or (cutoff > G.number_of_nodes()):
316
+ raise ValueError(f"cutoff must be between 1 and {len(G)}. Got {cutoff}.")
317
+ if best_n is not None:
318
+ if (best_n < 1) or (best_n > G.number_of_nodes()):
319
+ raise ValueError(f"best_n must be between 1 and {len(G)}. Got {best_n}.")
320
+ if best_n < cutoff:
321
+ raise ValueError(f"Must have best_n >= cutoff. Got {best_n} < {cutoff}")
322
+ if best_n == 1:
323
+ return [set(G)]
324
+ else:
325
+ best_n = G.number_of_nodes()
326
+
327
+ # retrieve generator object to construct output
328
+ community_gen = _greedy_modularity_communities_generator(
329
+ G, weight=weight, resolution=resolution
330
+ )
331
+
332
+ # construct the first best community
333
+ communities = next(community_gen)
334
+
335
+ # continue merging communities until one of the breaking criteria is satisfied
336
+ while len(communities) > cutoff:
337
+ try:
338
+ dq = next(community_gen)
339
+ # StopIteration occurs when communities are the connected components
340
+ except StopIteration:
341
+ communities = sorted(communities, key=len, reverse=True)
342
+ # if best_n requires more merging, merge big sets for highest modularity
343
+ while len(communities) > best_n:
344
+ comm1, comm2, *rest = communities
345
+ communities = [comm1 ^ comm2]
346
+ communities.extend(rest)
347
+ return communities
348
+
349
+ # keep going unless max_mod is reached or best_n says to merge more
350
+ if dq < 0 and len(communities) <= best_n:
351
+ break
352
+ communities = next(community_gen)
353
+
354
+ return sorted(communities, key=len, reverse=True)
355
+
356
+
357
+ @not_implemented_for("directed")
358
+ @not_implemented_for("multigraph")
359
+ @nx._dispatchable(edge_attrs="weight")
360
+ def naive_greedy_modularity_communities(G, resolution=1, weight=None):
361
+ r"""Find communities in G using greedy modularity maximization.
362
+
363
+ This implementation is O(n^4), much slower than alternatives, but it is
364
+ provided as an easy-to-understand reference implementation.
365
+
366
+ Greedy modularity maximization begins with each node in its own community
367
+ and joins the pair of communities that most increases modularity until no
368
+ such pair exists.
369
+
370
+ This function maximizes the generalized modularity, where `resolution`
371
+ is the resolution parameter, often expressed as $\gamma$.
372
+ See :func:`~networkx.algorithms.community.quality.modularity`.
373
+
374
+ Parameters
375
+ ----------
376
+ G : NetworkX graph
377
+ Graph must be simple and undirected.
378
+
379
+ resolution : float (default=1)
380
+ If resolution is less than 1, modularity favors larger communities.
381
+ Greater than 1 favors smaller communities.
382
+
383
+ weight : string or None, optional (default=None)
384
+ The name of an edge attribute that holds the numerical value used
385
+ as a weight. If None, then each edge has weight 1.
386
+ The degree is the sum of the edge weights adjacent to the node.
387
+
388
+ Returns
389
+ -------
390
+ list
391
+ A list of sets of nodes, one for each community.
392
+ Sorted by length with largest communities first.
393
+
394
+ Examples
395
+ --------
396
+ >>> G = nx.karate_club_graph()
397
+ >>> c = nx.community.naive_greedy_modularity_communities(G)
398
+ >>> sorted(c[0])
399
+ [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
400
+
401
+ See Also
402
+ --------
403
+ greedy_modularity_communities
404
+ modularity
405
+ """
406
+ # First create one community for each node
407
+ communities = [frozenset([u]) for u in G.nodes()]
408
+ # Track merges
409
+ merges = []
410
+ # Greedily merge communities until no improvement is possible
411
+ old_modularity = None
412
+ new_modularity = modularity(G, communities, resolution=resolution, weight=weight)
413
+ while old_modularity is None or new_modularity > old_modularity:
414
+ # Save modularity for comparison
415
+ old_modularity = new_modularity
416
+ # Find best pair to merge
417
+ trial_communities = list(communities)
418
+ to_merge = None
419
+ for i, u in enumerate(communities):
420
+ for j, v in enumerate(communities):
421
+ # Skip i==j and empty communities
422
+ if j <= i or len(u) == 0 or len(v) == 0:
423
+ continue
424
+ # Merge communities u and v
425
+ trial_communities[j] = u | v
426
+ trial_communities[i] = frozenset([])
427
+ trial_modularity = modularity(
428
+ G, trial_communities, resolution=resolution, weight=weight
429
+ )
430
+ if trial_modularity >= new_modularity:
431
+ # Check if strictly better or tie
432
+ if trial_modularity > new_modularity:
433
+ # Found new best, save modularity and group indexes
434
+ new_modularity = trial_modularity
435
+ to_merge = (i, j, new_modularity - old_modularity)
436
+ elif to_merge and min(i, j) < min(to_merge[0], to_merge[1]):
437
+ # Break ties by choosing pair with lowest min id
438
+ new_modularity = trial_modularity
439
+ to_merge = (i, j, new_modularity - old_modularity)
440
+ # Un-merge
441
+ trial_communities[i] = u
442
+ trial_communities[j] = v
443
+ if to_merge is not None:
444
+ # If the best merge improves modularity, use it
445
+ merges.append(to_merge)
446
+ i, j, dq = to_merge
447
+ u, v = communities[i], communities[j]
448
+ communities[j] = u | v
449
+ communities[i] = frozenset([])
450
+ # Remove empty communities and sort
451
+ return sorted((c for c in communities if len(c) > 0), key=len, reverse=True)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/quality.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for measuring the quality of a partition (into
2
+ communities).
3
+
4
+ """
5
+
6
+ from itertools import combinations
7
+
8
+ import networkx as nx
9
+ from networkx import NetworkXError
10
+ from networkx.algorithms.community.community_utils import is_partition
11
+ from networkx.utils.decorators import argmap
12
+
13
+ __all__ = ["modularity", "partition_quality"]
14
+
15
+
16
+ class NotAPartition(NetworkXError):
17
+ """Raised if a given collection is not a partition."""
18
+
19
+ def __init__(self, G, collection):
20
+ msg = f"{collection} is not a valid partition of the graph {G}"
21
+ super().__init__(msg)
22
+
23
+
24
+ def _require_partition(G, partition):
25
+ """Decorator to check that a valid partition is input to a function
26
+
27
+ Raises :exc:`networkx.NetworkXError` if the partition is not valid.
28
+
29
+ This decorator should be used on functions whose first two arguments
30
+ are a graph and a partition of the nodes of that graph (in that
31
+ order)::
32
+
33
+ >>> @require_partition
34
+ ... def foo(G, partition):
35
+ ... print("partition is valid!")
36
+ ...
37
+ >>> G = nx.complete_graph(5)
38
+ >>> partition = [{0, 1}, {2, 3}, {4}]
39
+ >>> foo(G, partition)
40
+ partition is valid!
41
+ >>> partition = [{0}, {2, 3}, {4}]
42
+ >>> foo(G, partition)
43
+ Traceback (most recent call last):
44
+ ...
45
+ networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
46
+ >>> partition = [{0, 1}, {1, 2, 3}, {4}]
47
+ >>> foo(G, partition)
48
+ Traceback (most recent call last):
49
+ ...
50
+ networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
51
+
52
+ """
53
+ if is_partition(G, partition):
54
+ return G, partition
55
+ raise nx.NetworkXError("`partition` is not a valid partition of the nodes of G")
56
+
57
+
58
+ require_partition = argmap(_require_partition, (0, 1))
59
+
60
+
61
+ @nx._dispatchable
62
+ def intra_community_edges(G, partition):
63
+ """Returns the number of intra-community edges for a partition of `G`.
64
+
65
+ Parameters
66
+ ----------
67
+ G : NetworkX graph.
68
+
69
+ partition : iterable of sets of nodes
70
+ This must be a partition of the nodes of `G`.
71
+
72
+ The "intra-community edges" are those edges joining a pair of nodes
73
+ in the same block of the partition.
74
+
75
+ """
76
+ return sum(G.subgraph(block).size() for block in partition)
77
+
78
+
79
+ @nx._dispatchable
80
+ def inter_community_edges(G, partition):
81
+ """Returns the number of inter-community edges for a partition of `G`.
82
+ according to the given
83
+ partition of the nodes of `G`.
84
+
85
+ Parameters
86
+ ----------
87
+ G : NetworkX graph.
88
+
89
+ partition : iterable of sets of nodes
90
+ This must be a partition of the nodes of `G`.
91
+
92
+ The *inter-community edges* are those edges joining a pair of nodes
93
+ in different blocks of the partition.
94
+
95
+ Implementation note: this function creates an intermediate graph
96
+ that may require the same amount of memory as that of `G`.
97
+
98
+ """
99
+ # Alternate implementation that does not require constructing a new
100
+ # graph object (but does require constructing an affiliation
101
+ # dictionary):
102
+ #
103
+ # aff = dict(chain.from_iterable(((v, block) for v in block)
104
+ # for block in partition))
105
+ # return sum(1 for u, v in G.edges() if aff[u] != aff[v])
106
+ #
107
+ MG = nx.MultiDiGraph if G.is_directed() else nx.MultiGraph
108
+ return nx.quotient_graph(G, partition, create_using=MG).size()
109
+
110
+
111
+ @nx._dispatchable
112
+ def inter_community_non_edges(G, partition):
113
+ """Returns the number of inter-community non-edges according to the
114
+ given partition of the nodes of `G`.
115
+
116
+ Parameters
117
+ ----------
118
+ G : NetworkX graph.
119
+
120
+ partition : iterable of sets of nodes
121
+ This must be a partition of the nodes of `G`.
122
+
123
+ A *non-edge* is a pair of nodes (undirected if `G` is undirected)
124
+ that are not adjacent in `G`. The *inter-community non-edges* are
125
+ those non-edges on a pair of nodes in different blocks of the
126
+ partition.
127
+
128
+ Implementation note: this function creates two intermediate graphs,
129
+ which may require up to twice the amount of memory as required to
130
+ store `G`.
131
+
132
+ """
133
+ # Alternate implementation that does not require constructing two
134
+ # new graph objects (but does require constructing an affiliation
135
+ # dictionary):
136
+ #
137
+ # aff = dict(chain.from_iterable(((v, block) for v in block)
138
+ # for block in partition))
139
+ # return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v])
140
+ #
141
+ return inter_community_edges(nx.complement(G), partition)
142
+
143
+
144
+ @nx._dispatchable(edge_attrs="weight")
145
+ def modularity(G, communities, weight="weight", resolution=1):
146
+ r"""Returns the modularity of the given partition of the graph.
147
+
148
+ Modularity is defined in [1]_ as
149
+
150
+ .. math::
151
+ Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \gamma\frac{k_ik_j}{2m}\right)
152
+ \delta(c_i,c_j)
153
+
154
+ where $m$ is the number of edges (or sum of all edge weights as in [5]_),
155
+ $A$ is the adjacency matrix of `G`, $k_i$ is the (weighted) degree of $i$,
156
+ $\gamma$ is the resolution parameter, and $\delta(c_i, c_j)$ is 1 if $i$ and
157
+ $j$ are in the same community else 0.
158
+
159
+ According to [2]_ (and verified by some algebra) this can be reduced to
160
+
161
+ .. math::
162
+ Q = \sum_{c=1}^{n}
163
+ \left[ \frac{L_c}{m} - \gamma\left( \frac{k_c}{2m} \right) ^2 \right]
164
+
165
+ where the sum iterates over all communities $c$, $m$ is the number of edges,
166
+ $L_c$ is the number of intra-community links for community $c$,
167
+ $k_c$ is the sum of degrees of the nodes in community $c$,
168
+ and $\gamma$ is the resolution parameter.
169
+
170
+ The resolution parameter sets an arbitrary tradeoff between intra-group
171
+ edges and inter-group edges. More complex grouping patterns can be
172
+ discovered by analyzing the same network with multiple values of gamma
173
+ and then combining the results [3]_. That said, it is very common to
174
+ simply use gamma=1. More on the choice of gamma is in [4]_.
175
+
176
+ The second formula is the one actually used in calculation of the modularity.
177
+ For directed graphs the second formula replaces $k_c$ with $k^{in}_c k^{out}_c$.
178
+
179
+ Parameters
180
+ ----------
181
+ G : NetworkX Graph
182
+
183
+ communities : list or iterable of set of nodes
184
+ These node sets must represent a partition of G's nodes.
185
+
186
+ weight : string or None, optional (default="weight")
187
+ The edge attribute that holds the numerical value used
188
+ as a weight. If None or an edge does not have that attribute,
189
+ then that edge has weight 1.
190
+
191
+ resolution : float (default=1)
192
+ If resolution is less than 1, modularity favors larger communities.
193
+ Greater than 1 favors smaller communities.
194
+
195
+ Returns
196
+ -------
197
+ Q : float
198
+ The modularity of the partition.
199
+
200
+ Raises
201
+ ------
202
+ NotAPartition
203
+ If `communities` is not a partition of the nodes of `G`.
204
+
205
+ Examples
206
+ --------
207
+ >>> G = nx.barbell_graph(3, 0)
208
+ >>> nx.community.modularity(G, [{0, 1, 2}, {3, 4, 5}])
209
+ 0.35714285714285715
210
+ >>> nx.community.modularity(G, nx.community.label_propagation_communities(G))
211
+ 0.35714285714285715
212
+
213
+ References
214
+ ----------
215
+ .. [1] M. E. J. Newman "Networks: An Introduction", page 224.
216
+ Oxford University Press, 2011.
217
+ .. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore.
218
+ "Finding community structure in very large networks."
219
+ Phys. Rev. E 70.6 (2004). <https://arxiv.org/abs/cond-mat/0408187>
220
+ .. [3] Reichardt and Bornholdt "Statistical Mechanics of Community Detection"
221
+ Phys. Rev. E 74, 016110, 2006. https://doi.org/10.1103/PhysRevE.74.016110
222
+ .. [4] M. E. J. Newman, "Equivalence between modularity optimization and
223
+ maximum likelihood methods for community detection"
224
+ Phys. Rev. E 94, 052315, 2016. https://doi.org/10.1103/PhysRevE.94.052315
225
+ .. [5] Blondel, V.D. et al. "Fast unfolding of communities in large
226
+ networks" J. Stat. Mech 10008, 1-12 (2008).
227
+ https://doi.org/10.1088/1742-5468/2008/10/P10008
228
+ """
229
+ if not isinstance(communities, list):
230
+ communities = list(communities)
231
+ if not is_partition(G, communities):
232
+ raise NotAPartition(G, communities)
233
+
234
+ directed = G.is_directed()
235
+ if directed:
236
+ out_degree = dict(G.out_degree(weight=weight))
237
+ in_degree = dict(G.in_degree(weight=weight))
238
+ m = sum(out_degree.values())
239
+ norm = 1 / m**2
240
+ else:
241
+ out_degree = in_degree = dict(G.degree(weight=weight))
242
+ deg_sum = sum(out_degree.values())
243
+ m = deg_sum / 2
244
+ norm = 1 / deg_sum**2
245
+
246
+ def community_contribution(community):
247
+ comm = set(community)
248
+ L_c = sum(wt for u, v, wt in G.edges(comm, data=weight, default=1) if v in comm)
249
+
250
+ out_degree_sum = sum(out_degree[u] for u in comm)
251
+ in_degree_sum = sum(in_degree[u] for u in comm) if directed else out_degree_sum
252
+
253
+ return L_c / m - resolution * out_degree_sum * in_degree_sum * norm
254
+
255
+ return sum(map(community_contribution, communities))
256
+
257
+
258
+ @require_partition
259
+ @nx._dispatchable
260
+ def partition_quality(G, partition):
261
+ """Returns the coverage and performance of a partition of G.
262
+
263
+ The *coverage* of a partition is the ratio of the number of
264
+ intra-community edges to the total number of edges in the graph.
265
+
266
+ The *performance* of a partition is the number of
267
+ intra-community edges plus inter-community non-edges divided by the total
268
+ number of potential edges.
269
+
270
+ This algorithm has complexity $O(C^2 + L)$ where C is the number of communities and L is the number of links.
271
+
272
+ Parameters
273
+ ----------
274
+ G : NetworkX graph
275
+
276
+ partition : sequence
277
+ Partition of the nodes of `G`, represented as a sequence of
278
+ sets of nodes (blocks). Each block of the partition represents a
279
+ community.
280
+
281
+ Returns
282
+ -------
283
+ (float, float)
284
+ The (coverage, performance) tuple of the partition, as defined above.
285
+
286
+ Raises
287
+ ------
288
+ NetworkXError
289
+ If `partition` is not a valid partition of the nodes of `G`.
290
+
291
+ Notes
292
+ -----
293
+ If `G` is a multigraph;
294
+ - for coverage, the multiplicity of edges is counted
295
+ - for performance, the result is -1 (total number of possible edges is not defined)
296
+
297
+ References
298
+ ----------
299
+ .. [1] Santo Fortunato.
300
+ "Community Detection in Graphs".
301
+ *Physical Reports*, Volume 486, Issue 3--5 pp. 75--174
302
+ <https://arxiv.org/abs/0906.0612>
303
+ """
304
+
305
+ node_community = {}
306
+ for i, community in enumerate(partition):
307
+ for node in community:
308
+ node_community[node] = i
309
+
310
+ # `performance` is not defined for multigraphs
311
+ if not G.is_multigraph():
312
+ # Iterate over the communities, quadratic, to calculate `possible_inter_community_edges`
313
+ possible_inter_community_edges = sum(
314
+ len(p1) * len(p2) for p1, p2 in combinations(partition, 2)
315
+ )
316
+
317
+ if G.is_directed():
318
+ possible_inter_community_edges *= 2
319
+ else:
320
+ possible_inter_community_edges = 0
321
+
322
+ # Compute the number of edges in the complete graph -- `n` nodes,
323
+ # directed or undirected, depending on `G`
324
+ n = len(G)
325
+ total_pairs = n * (n - 1)
326
+ if not G.is_directed():
327
+ total_pairs //= 2
328
+
329
+ intra_community_edges = 0
330
+ inter_community_non_edges = possible_inter_community_edges
331
+
332
+ # Iterate over the links to count `intra_community_edges` and `inter_community_non_edges`
333
+ for e in G.edges():
334
+ if node_community[e[0]] == node_community[e[1]]:
335
+ intra_community_edges += 1
336
+ else:
337
+ inter_community_non_edges -= 1
338
+
339
+ coverage = intra_community_edges / len(G.edges)
340
+
341
+ if G.is_multigraph():
342
+ performance = -1.0
343
+ else:
344
+ performance = (intra_community_edges + inter_community_non_edges) / total_pairs
345
+
346
+ return coverage, performance
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_asyn_fluid.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import Graph, NetworkXError
5
+ from networkx.algorithms.community import asyn_fluidc
6
+
7
+
8
+ @pytest.mark.parametrize("graph_constructor", (nx.DiGraph, nx.MultiGraph))
9
+ def test_raises_on_directed_and_multigraphs(graph_constructor):
10
+ G = graph_constructor([(0, 1), (1, 2)])
11
+ with pytest.raises(nx.NetworkXNotImplemented):
12
+ nx.community.asyn_fluidc(G, 1)
13
+
14
+
15
+ def test_exceptions():
16
+ test = Graph()
17
+ test.add_node("a")
18
+ pytest.raises(NetworkXError, asyn_fluidc, test, "hi")
19
+ pytest.raises(NetworkXError, asyn_fluidc, test, -1)
20
+ pytest.raises(NetworkXError, asyn_fluidc, test, 3)
21
+ test.add_node("b")
22
+ pytest.raises(NetworkXError, asyn_fluidc, test, 1)
23
+
24
+
25
+ def test_single_node():
26
+ test = Graph()
27
+
28
+ test.add_node("a")
29
+
30
+ # ground truth
31
+ ground_truth = {frozenset(["a"])}
32
+
33
+ communities = asyn_fluidc(test, 1)
34
+ result = {frozenset(c) for c in communities}
35
+ assert result == ground_truth
36
+
37
+
38
+ def test_two_nodes():
39
+ test = Graph()
40
+
41
+ test.add_edge("a", "b")
42
+
43
+ # ground truth
44
+ ground_truth = {frozenset(["a"]), frozenset(["b"])}
45
+
46
+ communities = asyn_fluidc(test, 2)
47
+ result = {frozenset(c) for c in communities}
48
+ assert result == ground_truth
49
+
50
+
51
+ def test_two_clique_communities():
52
+ test = Graph()
53
+
54
+ # c1
55
+ test.add_edge("a", "b")
56
+ test.add_edge("a", "c")
57
+ test.add_edge("b", "c")
58
+
59
+ # connection
60
+ test.add_edge("c", "d")
61
+
62
+ # c2
63
+ test.add_edge("d", "e")
64
+ test.add_edge("d", "f")
65
+ test.add_edge("f", "e")
66
+
67
+ # ground truth
68
+ ground_truth = {frozenset(["a", "c", "b"]), frozenset(["e", "d", "f"])}
69
+
70
+ communities = asyn_fluidc(test, 2, seed=7)
71
+ result = {frozenset(c) for c in communities}
72
+ assert result == ground_truth
73
+
74
+
75
+ def test_five_clique_ring():
76
+ test = Graph()
77
+
78
+ # c1
79
+ test.add_edge("1a", "1b")
80
+ test.add_edge("1a", "1c")
81
+ test.add_edge("1a", "1d")
82
+ test.add_edge("1b", "1c")
83
+ test.add_edge("1b", "1d")
84
+ test.add_edge("1c", "1d")
85
+
86
+ # c2
87
+ test.add_edge("2a", "2b")
88
+ test.add_edge("2a", "2c")
89
+ test.add_edge("2a", "2d")
90
+ test.add_edge("2b", "2c")
91
+ test.add_edge("2b", "2d")
92
+ test.add_edge("2c", "2d")
93
+
94
+ # c3
95
+ test.add_edge("3a", "3b")
96
+ test.add_edge("3a", "3c")
97
+ test.add_edge("3a", "3d")
98
+ test.add_edge("3b", "3c")
99
+ test.add_edge("3b", "3d")
100
+ test.add_edge("3c", "3d")
101
+
102
+ # c4
103
+ test.add_edge("4a", "4b")
104
+ test.add_edge("4a", "4c")
105
+ test.add_edge("4a", "4d")
106
+ test.add_edge("4b", "4c")
107
+ test.add_edge("4b", "4d")
108
+ test.add_edge("4c", "4d")
109
+
110
+ # c5
111
+ test.add_edge("5a", "5b")
112
+ test.add_edge("5a", "5c")
113
+ test.add_edge("5a", "5d")
114
+ test.add_edge("5b", "5c")
115
+ test.add_edge("5b", "5d")
116
+ test.add_edge("5c", "5d")
117
+
118
+ # connections
119
+ test.add_edge("1a", "2c")
120
+ test.add_edge("2a", "3c")
121
+ test.add_edge("3a", "4c")
122
+ test.add_edge("4a", "5c")
123
+ test.add_edge("5a", "1c")
124
+
125
+ # ground truth
126
+ ground_truth = {
127
+ frozenset(["1a", "1b", "1c", "1d"]),
128
+ frozenset(["2a", "2b", "2c", "2d"]),
129
+ frozenset(["3a", "3b", "3c", "3d"]),
130
+ frozenset(["4a", "4b", "4c", "4d"]),
131
+ frozenset(["5a", "5b", "5c", "5d"]),
132
+ }
133
+
134
+ communities = asyn_fluidc(test, 5, seed=9)
135
+ result = {frozenset(c) for c in communities}
136
+ assert result == ground_truth
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_centrality.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.centrality`
2
+ module.
3
+
4
+ """
5
+ from operator import itemgetter
6
+
7
+ import networkx as nx
8
+
9
+
10
+ def set_of_sets(iterable):
11
+ return set(map(frozenset, iterable))
12
+
13
+
14
+ def validate_communities(result, expected):
15
+ assert set_of_sets(result) == set_of_sets(expected)
16
+
17
+
18
+ def validate_possible_communities(result, *expected):
19
+ assert any(set_of_sets(result) == set_of_sets(p) for p in expected)
20
+
21
+
22
+ class TestGirvanNewman:
23
+ """Unit tests for the
24
+ :func:`networkx.algorithms.community.centrality.girvan_newman`
25
+ function.
26
+
27
+ """
28
+
29
+ def test_no_edges(self):
30
+ G = nx.empty_graph(3)
31
+ communities = list(nx.community.girvan_newman(G))
32
+ assert len(communities) == 1
33
+ validate_communities(communities[0], [{0}, {1}, {2}])
34
+
35
+ def test_undirected(self):
36
+ # Start with the graph .-.-.-.
37
+ G = nx.path_graph(4)
38
+ communities = list(nx.community.girvan_newman(G))
39
+ assert len(communities) == 3
40
+ # After one removal, we get the graph .-. .-.
41
+ validate_communities(communities[0], [{0, 1}, {2, 3}])
42
+ # After the next, we get the graph .-. . ., but there are two
43
+ # symmetric possible versions.
44
+ validate_possible_communities(
45
+ communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
46
+ )
47
+ # After the last removal, we always get the empty graph.
48
+ validate_communities(communities[2], [{0}, {1}, {2}, {3}])
49
+
50
+ def test_directed(self):
51
+ G = nx.DiGraph(nx.path_graph(4))
52
+ communities = list(nx.community.girvan_newman(G))
53
+ assert len(communities) == 3
54
+ validate_communities(communities[0], [{0, 1}, {2, 3}])
55
+ validate_possible_communities(
56
+ communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
57
+ )
58
+ validate_communities(communities[2], [{0}, {1}, {2}, {3}])
59
+
60
+ def test_selfloops(self):
61
+ G = nx.path_graph(4)
62
+ G.add_edge(0, 0)
63
+ G.add_edge(2, 2)
64
+ communities = list(nx.community.girvan_newman(G))
65
+ assert len(communities) == 3
66
+ validate_communities(communities[0], [{0, 1}, {2, 3}])
67
+ validate_possible_communities(
68
+ communities[1], [{0}, {1}, {2, 3}], [{0, 1}, {2}, {3}]
69
+ )
70
+ validate_communities(communities[2], [{0}, {1}, {2}, {3}])
71
+
72
+ def test_most_valuable_edge(self):
73
+ G = nx.Graph()
74
+ G.add_weighted_edges_from([(0, 1, 3), (1, 2, 2), (2, 3, 1)])
75
+ # Let the most valuable edge be the one with the highest weight.
76
+
77
+ def heaviest(G):
78
+ return max(G.edges(data="weight"), key=itemgetter(2))[:2]
79
+
80
+ communities = list(nx.community.girvan_newman(G, heaviest))
81
+ assert len(communities) == 3
82
+ validate_communities(communities[0], [{0}, {1, 2, 3}])
83
+ validate_communities(communities[1], [{0}, {1}, {2, 3}])
84
+ validate_communities(communities[2], [{0}, {1}, {2}, {3}])
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_divisive.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_edge_betweenness_partition():
7
+ G = nx.barbell_graph(3, 0)
8
+ C = nx.community.edge_betweenness_partition(G, 2)
9
+ answer = [{0, 1, 2}, {3, 4, 5}]
10
+ assert len(C) == len(answer)
11
+ for s in answer:
12
+ assert s in C
13
+
14
+ G = nx.barbell_graph(3, 1)
15
+ C = nx.community.edge_betweenness_partition(G, 3)
16
+ answer = [{0, 1, 2}, {4, 5, 6}, {3}]
17
+ assert len(C) == len(answer)
18
+ for s in answer:
19
+ assert s in C
20
+
21
+ C = nx.community.edge_betweenness_partition(G, 7)
22
+ answer = [{n} for n in G]
23
+ assert len(C) == len(answer)
24
+ for s in answer:
25
+ assert s in C
26
+
27
+ C = nx.community.edge_betweenness_partition(G, 1)
28
+ assert C == [set(G)]
29
+
30
+ C = nx.community.edge_betweenness_partition(G, 1, weight="weight")
31
+ assert C == [set(G)]
32
+
33
+ with pytest.raises(nx.NetworkXError):
34
+ nx.community.edge_betweenness_partition(G, 0)
35
+
36
+ with pytest.raises(nx.NetworkXError):
37
+ nx.community.edge_betweenness_partition(G, -1)
38
+
39
+ with pytest.raises(nx.NetworkXError):
40
+ nx.community.edge_betweenness_partition(G, 10)
41
+
42
+
43
+ def test_edge_current_flow_betweenness_partition():
44
+ pytest.importorskip("scipy")
45
+
46
+ G = nx.barbell_graph(3, 0)
47
+ C = nx.community.edge_current_flow_betweenness_partition(G, 2)
48
+ answer = [{0, 1, 2}, {3, 4, 5}]
49
+ assert len(C) == len(answer)
50
+ for s in answer:
51
+ assert s in C
52
+
53
+ G = nx.barbell_graph(3, 1)
54
+ C = nx.community.edge_current_flow_betweenness_partition(G, 2)
55
+ answers = [[{0, 1, 2, 3}, {4, 5, 6}], [{0, 1, 2}, {3, 4, 5, 6}]]
56
+ assert len(C) == len(answers[0])
57
+ assert any(all(s in answer for s in C) for answer in answers)
58
+
59
+ C = nx.community.edge_current_flow_betweenness_partition(G, 3)
60
+ answer = [{0, 1, 2}, {4, 5, 6}, {3}]
61
+ assert len(C) == len(answer)
62
+ for s in answer:
63
+ assert s in C
64
+
65
+ C = nx.community.edge_current_flow_betweenness_partition(G, 4)
66
+ answers = [[{1, 2}, {4, 5, 6}, {3}, {0}], [{0, 1, 2}, {5, 6}, {3}, {4}]]
67
+ assert len(C) == len(answers[0])
68
+ assert any(all(s in answer for s in C) for answer in answers)
69
+
70
+ C = nx.community.edge_current_flow_betweenness_partition(G, 5)
71
+ answer = [{1, 2}, {5, 6}, {3}, {0}, {4}]
72
+ assert len(C) == len(answer)
73
+ for s in answer:
74
+ assert s in C
75
+
76
+ C = nx.community.edge_current_flow_betweenness_partition(G, 6)
77
+ answers = [[{2}, {5, 6}, {3}, {0}, {4}, {1}], [{1, 2}, {6}, {3}, {0}, {4}, {5}]]
78
+ assert len(C) == len(answers[0])
79
+ assert any(all(s in answer for s in C) for answer in answers)
80
+
81
+ C = nx.community.edge_current_flow_betweenness_partition(G, 7)
82
+ answer = [{n} for n in G]
83
+ assert len(C) == len(answer)
84
+ for s in answer:
85
+ assert s in C
86
+
87
+ C = nx.community.edge_current_flow_betweenness_partition(G, 1)
88
+ assert C == [set(G)]
89
+
90
+ C = nx.community.edge_current_flow_betweenness_partition(G, 1, weight="weight")
91
+ assert C == [set(G)]
92
+
93
+ with pytest.raises(nx.NetworkXError):
94
+ nx.community.edge_current_flow_betweenness_partition(G, 0)
95
+
96
+ with pytest.raises(nx.NetworkXError):
97
+ nx.community.edge_current_flow_betweenness_partition(G, -1)
98
+
99
+ with pytest.raises(nx.NetworkXError):
100
+ nx.community.edge_current_flow_betweenness_partition(G, 10)
101
+
102
+ N = 10
103
+ G = nx.empty_graph(N)
104
+ for i in range(2, N - 1):
105
+ C = nx.community.edge_current_flow_betweenness_partition(G, i)
106
+ assert C == [{n} for n in G]
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kclique.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import combinations
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def test_overlapping_K5():
9
+ G = nx.Graph()
10
+ G.add_edges_from(combinations(range(5), 2)) # Add a five clique
11
+ G.add_edges_from(combinations(range(2, 7), 2)) # Add another five clique
12
+ c = list(nx.community.k_clique_communities(G, 4))
13
+ assert c == [frozenset(range(7))]
14
+ c = set(nx.community.k_clique_communities(G, 5))
15
+ assert c == {frozenset(range(5)), frozenset(range(2, 7))}
16
+
17
+
18
+ def test_isolated_K5():
19
+ G = nx.Graph()
20
+ G.add_edges_from(combinations(range(5), 2)) # Add a five clique
21
+ G.add_edges_from(combinations(range(5, 10), 2)) # Add another five clique
22
+ c = set(nx.community.k_clique_communities(G, 5))
23
+ assert c == {frozenset(range(5)), frozenset(range(5, 10))}
24
+
25
+
26
+ class TestZacharyKarateClub:
27
+ def setup_method(self):
28
+ self.G = nx.karate_club_graph()
29
+
30
+ def _check_communities(self, k, expected):
31
+ communities = set(nx.community.k_clique_communities(self.G, k))
32
+ assert communities == expected
33
+
34
+ def test_k2(self):
35
+ # clique percolation with k=2 is just connected components
36
+ expected = {frozenset(self.G)}
37
+ self._check_communities(2, expected)
38
+
39
+ def test_k3(self):
40
+ comm1 = [
41
+ 0,
42
+ 1,
43
+ 2,
44
+ 3,
45
+ 7,
46
+ 8,
47
+ 12,
48
+ 13,
49
+ 14,
50
+ 15,
51
+ 17,
52
+ 18,
53
+ 19,
54
+ 20,
55
+ 21,
56
+ 22,
57
+ 23,
58
+ 26,
59
+ 27,
60
+ 28,
61
+ 29,
62
+ 30,
63
+ 31,
64
+ 32,
65
+ 33,
66
+ ]
67
+ comm2 = [0, 4, 5, 6, 10, 16]
68
+ comm3 = [24, 25, 31]
69
+ expected = {frozenset(comm1), frozenset(comm2), frozenset(comm3)}
70
+ self._check_communities(3, expected)
71
+
72
+ def test_k4(self):
73
+ expected = {
74
+ frozenset([0, 1, 2, 3, 7, 13]),
75
+ frozenset([8, 32, 30, 33]),
76
+ frozenset([32, 33, 29, 23]),
77
+ }
78
+ self._check_communities(4, expected)
79
+
80
+ def test_k5(self):
81
+ expected = {frozenset([0, 1, 2, 3, 7, 13])}
82
+ self._check_communities(5, expected)
83
+
84
+ def test_k6(self):
85
+ expected = set()
86
+ self._check_communities(6, expected)
87
+
88
+
89
+ def test_bad_k():
90
+ with pytest.raises(nx.NetworkXError):
91
+ list(nx.community.k_clique_communities(nx.Graph(), 1))
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_kernighan_lin.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.kernighan_lin`
2
+ module.
3
+ """
4
+ from itertools import permutations
5
+
6
+ import pytest
7
+
8
+ import networkx as nx
9
+ from networkx.algorithms.community import kernighan_lin_bisection
10
+
11
+
12
+ def assert_partition_equal(x, y):
13
+ assert set(map(frozenset, x)) == set(map(frozenset, y))
14
+
15
+
16
+ def test_partition():
17
+ G = nx.barbell_graph(3, 0)
18
+ C = kernighan_lin_bisection(G)
19
+ assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
20
+
21
+
22
+ def test_partition_argument():
23
+ G = nx.barbell_graph(3, 0)
24
+ partition = [{0, 1, 2}, {3, 4, 5}]
25
+ C = kernighan_lin_bisection(G, partition)
26
+ assert_partition_equal(C, partition)
27
+
28
+
29
+ def test_partition_argument_non_integer_nodes():
30
+ G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
31
+ partition = ({"A", "B"}, {"C", "D"})
32
+ C = kernighan_lin_bisection(G, partition)
33
+ assert_partition_equal(C, partition)
34
+
35
+
36
+ def test_seed_argument():
37
+ G = nx.barbell_graph(3, 0)
38
+ C = kernighan_lin_bisection(G, seed=1)
39
+ assert_partition_equal(C, [{0, 1, 2}, {3, 4, 5}])
40
+
41
+
42
+ def test_non_disjoint_partition():
43
+ with pytest.raises(nx.NetworkXError):
44
+ G = nx.barbell_graph(3, 0)
45
+ partition = ({0, 1, 2}, {2, 3, 4, 5})
46
+ kernighan_lin_bisection(G, partition)
47
+
48
+
49
+ def test_too_many_blocks():
50
+ with pytest.raises(nx.NetworkXError):
51
+ G = nx.barbell_graph(3, 0)
52
+ partition = ({0, 1}, {2}, {3, 4, 5})
53
+ kernighan_lin_bisection(G, partition)
54
+
55
+
56
+ def test_multigraph():
57
+ G = nx.cycle_graph(4)
58
+ M = nx.MultiGraph(G.edges())
59
+ M.add_edges_from(G.edges())
60
+ M.remove_edge(1, 2)
61
+ for labels in permutations(range(4)):
62
+ mapping = dict(zip(M, labels))
63
+ A, B = kernighan_lin_bisection(nx.relabel_nodes(M, mapping), seed=0)
64
+ assert_partition_equal(
65
+ [A, B], [{mapping[0], mapping[1]}, {mapping[2], mapping[3]}]
66
+ )
67
+
68
+
69
+ def test_max_iter_argument():
70
+ G = nx.Graph(
71
+ [
72
+ ("A", "B", {"weight": 1}),
73
+ ("A", "C", {"weight": 2}),
74
+ ("A", "D", {"weight": 3}),
75
+ ("A", "E", {"weight": 2}),
76
+ ("A", "F", {"weight": 4}),
77
+ ("B", "C", {"weight": 1}),
78
+ ("B", "D", {"weight": 4}),
79
+ ("B", "E", {"weight": 2}),
80
+ ("B", "F", {"weight": 1}),
81
+ ("C", "D", {"weight": 3}),
82
+ ("C", "E", {"weight": 2}),
83
+ ("C", "F", {"weight": 1}),
84
+ ("D", "E", {"weight": 4}),
85
+ ("D", "F", {"weight": 3}),
86
+ ("E", "F", {"weight": 2}),
87
+ ]
88
+ )
89
+ partition = ({"A", "B", "C"}, {"D", "E", "F"})
90
+ C = kernighan_lin_bisection(G, partition, max_iter=1)
91
+ assert_partition_equal(C, ({"A", "F", "C"}, {"D", "E", "B"}))
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_label_propagation.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain, combinations
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def test_directed_not_supported():
9
+ with pytest.raises(nx.NetworkXNotImplemented):
10
+ # not supported for directed graphs
11
+ test = nx.DiGraph()
12
+ test.add_edge("a", "b")
13
+ test.add_edge("a", "c")
14
+ test.add_edge("b", "d")
15
+ result = nx.community.label_propagation_communities(test)
16
+
17
+
18
+ def test_iterator_vs_iterable():
19
+ G = nx.empty_graph("a")
20
+ assert list(nx.community.label_propagation_communities(G)) == [{"a"}]
21
+ for community in nx.community.label_propagation_communities(G):
22
+ assert community == {"a"}
23
+ pytest.raises(TypeError, next, nx.community.label_propagation_communities(G))
24
+
25
+
26
+ def test_one_node():
27
+ test = nx.Graph()
28
+ test.add_node("a")
29
+
30
+ # The expected communities are:
31
+ ground_truth = {frozenset(["a"])}
32
+
33
+ communities = nx.community.label_propagation_communities(test)
34
+ result = {frozenset(c) for c in communities}
35
+ assert result == ground_truth
36
+
37
+
38
+ def test_unconnected_communities():
39
+ test = nx.Graph()
40
+ # community 1
41
+ test.add_edge("a", "c")
42
+ test.add_edge("a", "d")
43
+ test.add_edge("d", "c")
44
+ # community 2
45
+ test.add_edge("b", "e")
46
+ test.add_edge("e", "f")
47
+ test.add_edge("f", "b")
48
+
49
+ # The expected communities are:
50
+ ground_truth = {frozenset(["a", "c", "d"]), frozenset(["b", "e", "f"])}
51
+
52
+ communities = nx.community.label_propagation_communities(test)
53
+ result = {frozenset(c) for c in communities}
54
+ assert result == ground_truth
55
+
56
+
57
+ def test_connected_communities():
58
+ test = nx.Graph()
59
+ # community 1
60
+ test.add_edge("a", "b")
61
+ test.add_edge("c", "a")
62
+ test.add_edge("c", "b")
63
+ test.add_edge("d", "a")
64
+ test.add_edge("d", "b")
65
+ test.add_edge("d", "c")
66
+ test.add_edge("e", "a")
67
+ test.add_edge("e", "b")
68
+ test.add_edge("e", "c")
69
+ test.add_edge("e", "d")
70
+ # community 2
71
+ test.add_edge("1", "2")
72
+ test.add_edge("3", "1")
73
+ test.add_edge("3", "2")
74
+ test.add_edge("4", "1")
75
+ test.add_edge("4", "2")
76
+ test.add_edge("4", "3")
77
+ test.add_edge("5", "1")
78
+ test.add_edge("5", "2")
79
+ test.add_edge("5", "3")
80
+ test.add_edge("5", "4")
81
+ # edge between community 1 and 2
82
+ test.add_edge("a", "1")
83
+ # community 3
84
+ test.add_edge("x", "y")
85
+ # community 4 with only a single node
86
+ test.add_node("z")
87
+
88
+ # The expected communities are:
89
+ ground_truth1 = {
90
+ frozenset(["a", "b", "c", "d", "e"]),
91
+ frozenset(["1", "2", "3", "4", "5"]),
92
+ frozenset(["x", "y"]),
93
+ frozenset(["z"]),
94
+ }
95
+ ground_truth2 = {
96
+ frozenset(["a", "b", "c", "d", "e", "1", "2", "3", "4", "5"]),
97
+ frozenset(["x", "y"]),
98
+ frozenset(["z"]),
99
+ }
100
+ ground_truth = (ground_truth1, ground_truth2)
101
+
102
+ communities = nx.community.label_propagation_communities(test)
103
+ result = {frozenset(c) for c in communities}
104
+ assert result in ground_truth
105
+
106
+
107
+ def test_termination():
108
+ # ensure termination of asyn_lpa_communities in two cases
109
+ # that led to an endless loop in a previous version
110
+ test1 = nx.karate_club_graph()
111
+ test2 = nx.caveman_graph(2, 10)
112
+ test2.add_edges_from([(0, 20), (20, 10)])
113
+ nx.community.asyn_lpa_communities(test1)
114
+ nx.community.asyn_lpa_communities(test2)
115
+
116
+
117
+ class TestAsynLpaCommunities:
118
+ def _check_communities(self, G, expected):
119
+ """Checks that the communities computed from the given graph ``G``
120
+ using the :func:`~networkx.asyn_lpa_communities` function match
121
+ the set of nodes given in ``expected``.
122
+
123
+ ``expected`` must be a :class:`set` of :class:`frozenset`
124
+ instances, each element of which is a node in the graph.
125
+
126
+ """
127
+ communities = nx.community.asyn_lpa_communities(G)
128
+ result = {frozenset(c) for c in communities}
129
+ assert result == expected
130
+
131
+ def test_null_graph(self):
132
+ G = nx.null_graph()
133
+ ground_truth = set()
134
+ self._check_communities(G, ground_truth)
135
+
136
+ def test_single_node(self):
137
+ G = nx.empty_graph(1)
138
+ ground_truth = {frozenset([0])}
139
+ self._check_communities(G, ground_truth)
140
+
141
+ def test_simple_communities(self):
142
+ # This graph is the disjoint union of two triangles.
143
+ G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"])
144
+ ground_truth = {frozenset("abc"), frozenset("def")}
145
+ self._check_communities(G, ground_truth)
146
+
147
+ def test_seed_argument(self):
148
+ G = nx.Graph(["ab", "ac", "bc", "de", "df", "fe"])
149
+ ground_truth = {frozenset("abc"), frozenset("def")}
150
+ communities = nx.community.asyn_lpa_communities(G, seed=1)
151
+ result = {frozenset(c) for c in communities}
152
+ assert result == ground_truth
153
+
154
+ def test_several_communities(self):
155
+ # This graph is the disjoint union of five triangles.
156
+ ground_truth = {frozenset(range(3 * i, 3 * (i + 1))) for i in range(5)}
157
+ edges = chain.from_iterable(combinations(c, 2) for c in ground_truth)
158
+ G = nx.Graph(edges)
159
+ self._check_communities(G, ground_truth)
160
+
161
+
162
+ class TestFastLabelPropagationCommunities:
163
+ N = 100 # number of nodes
164
+ K = 15 # average node degree
165
+
166
+ def _check_communities(self, G, truth, weight=None, seed=42):
167
+ C = nx.community.fast_label_propagation_communities(G, weight=weight, seed=seed)
168
+ assert {frozenset(c) for c in C} == truth
169
+
170
+ def test_null_graph(self):
171
+ G = nx.null_graph()
172
+ truth = set()
173
+ self._check_communities(G, truth)
174
+
175
+ def test_empty_graph(self):
176
+ G = nx.empty_graph(self.N)
177
+ truth = {frozenset([i]) for i in G}
178
+ self._check_communities(G, truth)
179
+
180
+ def test_star_graph(self):
181
+ G = nx.star_graph(self.N)
182
+ truth = {frozenset(G)}
183
+ self._check_communities(G, truth)
184
+
185
+ def test_complete_graph(self):
186
+ G = nx.complete_graph(self.N)
187
+ truth = {frozenset(G)}
188
+ self._check_communities(G, truth)
189
+
190
+ def test_bipartite_graph(self):
191
+ G = nx.complete_bipartite_graph(self.N // 2, self.N // 2)
192
+ truth = {frozenset(G)}
193
+ self._check_communities(G, truth)
194
+
195
+ def test_random_graph(self):
196
+ G = nx.gnm_random_graph(self.N, self.N * self.K // 2, seed=42)
197
+ truth = {frozenset(G)}
198
+ self._check_communities(G, truth)
199
+
200
+ def test_disjoin_cliques(self):
201
+ G = nx.Graph(["ab", "AB", "AC", "BC", "12", "13", "14", "23", "24", "34"])
202
+ truth = {frozenset("ab"), frozenset("ABC"), frozenset("1234")}
203
+ self._check_communities(G, truth)
204
+
205
+ def test_ring_of_cliques(self):
206
+ N, K = self.N, self.K
207
+ G = nx.ring_of_cliques(N, K)
208
+ truth = {frozenset([K * i + k for k in range(K)]) for i in range(N)}
209
+ self._check_communities(G, truth)
210
+
211
+ def test_larger_graph(self):
212
+ G = nx.gnm_random_graph(100 * self.N, 50 * self.N * self.K, seed=42)
213
+ nx.community.fast_label_propagation_communities(G)
214
+
215
+ def test_graph_type(self):
216
+ G1 = nx.complete_graph(self.N, nx.MultiDiGraph())
217
+ G2 = nx.MultiGraph(G1)
218
+ G3 = nx.DiGraph(G1)
219
+ G4 = nx.Graph(G1)
220
+ truth = {frozenset(G1)}
221
+ self._check_communities(G1, truth)
222
+ self._check_communities(G2, truth)
223
+ self._check_communities(G3, truth)
224
+ self._check_communities(G4, truth)
225
+
226
+ def test_weight_argument(self):
227
+ G = nx.MultiDiGraph()
228
+ G.add_edge(1, 2, weight=1.41)
229
+ G.add_edge(2, 1, weight=1.41)
230
+ G.add_edge(2, 3)
231
+ G.add_edge(3, 4, weight=3.14)
232
+ truth = {frozenset({1, 2}), frozenset({3, 4})}
233
+ self._check_communities(G, truth, weight="weight")
234
+
235
+ def test_seed_argument(self):
236
+ G = nx.karate_club_graph()
237
+ C = nx.community.fast_label_propagation_communities(G, seed=2023)
238
+ truth = {frozenset(c) for c in C}
239
+ self._check_communities(G, truth, seed=2023)
240
+ # smoke test that seed=None works
241
+ C = nx.community.fast_label_propagation_communities(G, seed=None)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_louvain.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_modularity_increase():
7
+ G = nx.LFR_benchmark_graph(
8
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
9
+ )
10
+ partition = [{u} for u in G.nodes()]
11
+ mod = nx.community.modularity(G, partition)
12
+ partition = nx.community.louvain_communities(G)
13
+
14
+ assert nx.community.modularity(G, partition) > mod
15
+
16
+
17
+ def test_valid_partition():
18
+ G = nx.LFR_benchmark_graph(
19
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
20
+ )
21
+ H = G.to_directed()
22
+ partition = nx.community.louvain_communities(G)
23
+ partition2 = nx.community.louvain_communities(H)
24
+
25
+ assert nx.community.is_partition(G, partition)
26
+ assert nx.community.is_partition(H, partition2)
27
+
28
+
29
+ def test_karate_club_partition():
30
+ G = nx.karate_club_graph()
31
+ part = [
32
+ {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21},
33
+ {16, 4, 5, 6, 10},
34
+ {23, 25, 27, 28, 24, 31},
35
+ {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30},
36
+ ]
37
+ partition = nx.community.louvain_communities(G, seed=2, weight=None)
38
+
39
+ assert part == partition
40
+
41
+
42
+ def test_partition_iterator():
43
+ G = nx.path_graph(15)
44
+ parts_iter = nx.community.louvain_partitions(G, seed=42)
45
+ first_part = next(parts_iter)
46
+ first_copy = [s.copy() for s in first_part]
47
+
48
+ # gh-5901 reports sets changing after next partition is yielded
49
+ assert first_copy[0] == first_part[0]
50
+ second_part = next(parts_iter)
51
+ assert first_copy[0] == first_part[0]
52
+
53
+
54
+ def test_undirected_selfloops():
55
+ G = nx.karate_club_graph()
56
+ expected_partition = nx.community.louvain_communities(G, seed=2, weight=None)
57
+ part = [
58
+ {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21},
59
+ {16, 4, 5, 6, 10},
60
+ {23, 25, 27, 28, 24, 31},
61
+ {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30},
62
+ ]
63
+ assert expected_partition == part
64
+
65
+ G.add_weighted_edges_from([(i, i, i * 1000) for i in range(9)])
66
+ # large self-loop weight impacts partition
67
+ partition = nx.community.louvain_communities(G, seed=2, weight="weight")
68
+ assert part != partition
69
+
70
+ # small self-loop weights aren't enough to impact partition in this graph
71
+ partition = nx.community.louvain_communities(G, seed=2, weight=None)
72
+ assert part == partition
73
+
74
+
75
+ def test_directed_selfloops():
76
+ G = nx.DiGraph()
77
+ G.add_nodes_from(range(11))
78
+ G_edges = [
79
+ (0, 2),
80
+ (0, 1),
81
+ (1, 0),
82
+ (2, 1),
83
+ (2, 0),
84
+ (3, 4),
85
+ (4, 3),
86
+ (7, 8),
87
+ (8, 7),
88
+ (9, 10),
89
+ (10, 9),
90
+ ]
91
+ G.add_edges_from(G_edges)
92
+ G_expected_partition = nx.community.louvain_communities(G, seed=123, weight=None)
93
+
94
+ G.add_weighted_edges_from([(i, i, i * 1000) for i in range(3)])
95
+ # large self-loop weight impacts partition
96
+ G_partition = nx.community.louvain_communities(G, seed=123, weight="weight")
97
+ assert G_partition != G_expected_partition
98
+
99
+ # small self-loop weights aren't enough to impact partition in this graph
100
+ G_partition = nx.community.louvain_communities(G, seed=123, weight=None)
101
+ assert G_partition == G_expected_partition
102
+
103
+
104
+ def test_directed_partition():
105
+ """
106
+ Test 2 cases that were looping infinitely
107
+ from issues #5175 and #5704
108
+ """
109
+ G = nx.DiGraph()
110
+ H = nx.DiGraph()
111
+ G.add_nodes_from(range(10))
112
+ H.add_nodes_from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
113
+ G_edges = [
114
+ (0, 2),
115
+ (0, 1),
116
+ (1, 0),
117
+ (2, 1),
118
+ (2, 0),
119
+ (3, 4),
120
+ (4, 3),
121
+ (7, 8),
122
+ (8, 7),
123
+ (9, 10),
124
+ (10, 9),
125
+ ]
126
+ H_edges = [
127
+ (1, 2),
128
+ (1, 6),
129
+ (1, 9),
130
+ (2, 3),
131
+ (2, 4),
132
+ (2, 5),
133
+ (3, 4),
134
+ (4, 3),
135
+ (4, 5),
136
+ (5, 4),
137
+ (6, 7),
138
+ (6, 8),
139
+ (9, 10),
140
+ (9, 11),
141
+ (10, 11),
142
+ (11, 10),
143
+ ]
144
+ G.add_edges_from(G_edges)
145
+ H.add_edges_from(H_edges)
146
+
147
+ G_expected_partition = [{0, 1, 2}, {3, 4}, {5}, {6}, {8, 7}, {9, 10}]
148
+ G_partition = nx.community.louvain_communities(G, seed=123, weight=None)
149
+
150
+ H_expected_partition = [{2, 3, 4, 5}, {8, 1, 6, 7}, {9, 10, 11}]
151
+ H_partition = nx.community.louvain_communities(H, seed=123, weight=None)
152
+
153
+ assert G_partition == G_expected_partition
154
+ assert H_partition == H_expected_partition
155
+
156
+
157
+ def test_none_weight_param():
158
+ G = nx.karate_club_graph()
159
+ nx.set_edge_attributes(
160
+ G, {edge: i * i for i, edge in enumerate(G.edges)}, name="foo"
161
+ )
162
+
163
+ part = [
164
+ {0, 1, 2, 3, 7, 9, 11, 12, 13, 17, 19, 21},
165
+ {16, 4, 5, 6, 10},
166
+ {23, 25, 27, 28, 24, 31},
167
+ {32, 33, 8, 14, 15, 18, 20, 22, 26, 29, 30},
168
+ ]
169
+ partition1 = nx.community.louvain_communities(G, weight=None, seed=2)
170
+ partition2 = nx.community.louvain_communities(G, weight="foo", seed=2)
171
+ partition3 = nx.community.louvain_communities(G, weight="weight", seed=2)
172
+
173
+ assert part == partition1
174
+ assert part != partition2
175
+ assert part != partition3
176
+ assert partition2 != partition3
177
+
178
+
179
+ def test_quality():
180
+ G = nx.LFR_benchmark_graph(
181
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
182
+ )
183
+ H = nx.gn_graph(200, seed=1234)
184
+ I = nx.MultiGraph(G)
185
+ J = nx.MultiDiGraph(H)
186
+
187
+ partition = nx.community.louvain_communities(G)
188
+ partition2 = nx.community.louvain_communities(H)
189
+ partition3 = nx.community.louvain_communities(I)
190
+ partition4 = nx.community.louvain_communities(J)
191
+
192
+ quality = nx.community.partition_quality(G, partition)[0]
193
+ quality2 = nx.community.partition_quality(H, partition2)[0]
194
+ quality3 = nx.community.partition_quality(I, partition3)[0]
195
+ quality4 = nx.community.partition_quality(J, partition4)[0]
196
+
197
+ assert quality >= 0.65
198
+ assert quality2 >= 0.65
199
+ assert quality3 >= 0.65
200
+ assert quality4 >= 0.65
201
+
202
+
203
+ def test_multigraph():
204
+ G = nx.karate_club_graph()
205
+ H = nx.MultiGraph(G)
206
+ G.add_edge(0, 1, weight=10)
207
+ H.add_edge(0, 1, weight=9)
208
+ G.add_edge(0, 9, foo=20)
209
+ H.add_edge(0, 9, foo=20)
210
+
211
+ partition1 = nx.community.louvain_communities(G, seed=1234)
212
+ partition2 = nx.community.louvain_communities(H, seed=1234)
213
+ partition3 = nx.community.louvain_communities(H, weight="foo", seed=1234)
214
+
215
+ assert partition1 == partition2 != partition3
216
+
217
+
218
+ def test_resolution():
219
+ G = nx.LFR_benchmark_graph(
220
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
221
+ )
222
+
223
+ partition1 = nx.community.louvain_communities(G, resolution=0.5, seed=12)
224
+ partition2 = nx.community.louvain_communities(G, seed=12)
225
+ partition3 = nx.community.louvain_communities(G, resolution=2, seed=12)
226
+
227
+ assert len(partition1) <= len(partition2) <= len(partition3)
228
+
229
+
230
+ def test_threshold():
231
+ G = nx.LFR_benchmark_graph(
232
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
233
+ )
234
+ partition1 = nx.community.louvain_communities(G, threshold=0.3, seed=2)
235
+ partition2 = nx.community.louvain_communities(G, seed=2)
236
+ mod1 = nx.community.modularity(G, partition1)
237
+ mod2 = nx.community.modularity(G, partition2)
238
+
239
+ assert mod1 <= mod2
240
+
241
+
242
+ def test_empty_graph():
243
+ G = nx.Graph()
244
+ G.add_nodes_from(range(5))
245
+ expected = [{0}, {1}, {2}, {3}, {4}]
246
+ assert nx.community.louvain_communities(G) == expected
247
+
248
+
249
+ def test_max_level():
250
+ G = nx.LFR_benchmark_graph(
251
+ 250, 3, 1.5, 0.009, average_degree=5, min_community=20, seed=10
252
+ )
253
+ parts_iter = nx.community.louvain_partitions(G, seed=42)
254
+ for max_level, expected in enumerate(parts_iter, 1):
255
+ partition = nx.community.louvain_communities(G, max_level=max_level, seed=42)
256
+ assert partition == expected
257
+ assert max_level > 1 # Ensure we are actually testing max_level
258
+ # max_level is an upper limit; it's okay if we stop before it's hit.
259
+ partition = nx.community.louvain_communities(G, max_level=max_level + 1, seed=42)
260
+ assert partition == expected
261
+ with pytest.raises(
262
+ ValueError, match="max_level argument must be a positive integer"
263
+ ):
264
+ nx.community.louvain_communities(G, max_level=0)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_lukes.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import product
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+ EWL = "e_weight"
8
+ NWL = "n_weight"
9
+
10
+
11
+ # first test from the Lukes original paper
12
+ def paper_1_case(float_edge_wt=False, explicit_node_wt=True, directed=False):
13
+ # problem-specific constants
14
+ limit = 3
15
+
16
+ # configuration
17
+ if float_edge_wt:
18
+ shift = 0.001
19
+ else:
20
+ shift = 0
21
+
22
+ if directed:
23
+ example_1 = nx.DiGraph()
24
+ else:
25
+ example_1 = nx.Graph()
26
+
27
+ # graph creation
28
+ example_1.add_edge(1, 2, **{EWL: 3 + shift})
29
+ example_1.add_edge(1, 4, **{EWL: 2 + shift})
30
+ example_1.add_edge(2, 3, **{EWL: 4 + shift})
31
+ example_1.add_edge(2, 5, **{EWL: 6 + shift})
32
+
33
+ # node weights
34
+ if explicit_node_wt:
35
+ nx.set_node_attributes(example_1, 1, NWL)
36
+ wtu = NWL
37
+ else:
38
+ wtu = None
39
+
40
+ # partitioning
41
+ clusters_1 = {
42
+ frozenset(x)
43
+ for x in nx.community.lukes_partitioning(
44
+ example_1, limit, node_weight=wtu, edge_weight=EWL
45
+ )
46
+ }
47
+
48
+ return clusters_1
49
+
50
+
51
+ # second test from the Lukes original paper
52
+ def paper_2_case(explicit_edge_wt=True, directed=False):
53
+ # problem specific constants
54
+ byte_block_size = 32
55
+
56
+ # configuration
57
+ if directed:
58
+ example_2 = nx.DiGraph()
59
+ else:
60
+ example_2 = nx.Graph()
61
+
62
+ if explicit_edge_wt:
63
+ edic = {EWL: 1}
64
+ wtu = EWL
65
+ else:
66
+ edic = {}
67
+ wtu = None
68
+
69
+ # graph creation
70
+ example_2.add_edge("name", "home_address", **edic)
71
+ example_2.add_edge("name", "education", **edic)
72
+ example_2.add_edge("education", "bs", **edic)
73
+ example_2.add_edge("education", "ms", **edic)
74
+ example_2.add_edge("education", "phd", **edic)
75
+ example_2.add_edge("name", "telephone", **edic)
76
+ example_2.add_edge("telephone", "home", **edic)
77
+ example_2.add_edge("telephone", "office", **edic)
78
+ example_2.add_edge("office", "no1", **edic)
79
+ example_2.add_edge("office", "no2", **edic)
80
+
81
+ example_2.nodes["name"][NWL] = 20
82
+ example_2.nodes["education"][NWL] = 10
83
+ example_2.nodes["bs"][NWL] = 1
84
+ example_2.nodes["ms"][NWL] = 1
85
+ example_2.nodes["phd"][NWL] = 1
86
+ example_2.nodes["home_address"][NWL] = 8
87
+ example_2.nodes["telephone"][NWL] = 8
88
+ example_2.nodes["home"][NWL] = 8
89
+ example_2.nodes["office"][NWL] = 4
90
+ example_2.nodes["no1"][NWL] = 1
91
+ example_2.nodes["no2"][NWL] = 1
92
+
93
+ # partitioning
94
+ clusters_2 = {
95
+ frozenset(x)
96
+ for x in nx.community.lukes_partitioning(
97
+ example_2, byte_block_size, node_weight=NWL, edge_weight=wtu
98
+ )
99
+ }
100
+
101
+ return clusters_2
102
+
103
+
104
+ def test_paper_1_case():
105
+ ground_truth = {frozenset([1, 4]), frozenset([2, 3, 5])}
106
+
107
+ tf = (True, False)
108
+ for flt, nwt, drc in product(tf, tf, tf):
109
+ part = paper_1_case(flt, nwt, drc)
110
+ assert part == ground_truth
111
+
112
+
113
+ def test_paper_2_case():
114
+ ground_truth = {
115
+ frozenset(["education", "bs", "ms", "phd"]),
116
+ frozenset(["name", "home_address"]),
117
+ frozenset(["telephone", "home", "office", "no1", "no2"]),
118
+ }
119
+
120
+ tf = (True, False)
121
+ for ewt, drc in product(tf, tf):
122
+ part = paper_2_case(ewt, drc)
123
+ assert part == ground_truth
124
+
125
+
126
+ def test_mandatory_tree():
127
+ not_a_tree = nx.complete_graph(4)
128
+
129
+ with pytest.raises(nx.NotATree):
130
+ nx.community.lukes_partitioning(not_a_tree, 5)
131
+
132
+
133
+ def test_mandatory_integrality():
134
+ byte_block_size = 32
135
+
136
+ ex_1_broken = nx.DiGraph()
137
+
138
+ ex_1_broken.add_edge(1, 2, **{EWL: 3.2})
139
+ ex_1_broken.add_edge(1, 4, **{EWL: 2.4})
140
+ ex_1_broken.add_edge(2, 3, **{EWL: 4.0})
141
+ ex_1_broken.add_edge(2, 5, **{EWL: 6.3})
142
+
143
+ ex_1_broken.nodes[1][NWL] = 1.2 # !
144
+ ex_1_broken.nodes[2][NWL] = 1
145
+ ex_1_broken.nodes[3][NWL] = 1
146
+ ex_1_broken.nodes[4][NWL] = 1
147
+ ex_1_broken.nodes[5][NWL] = 2
148
+
149
+ with pytest.raises(TypeError):
150
+ nx.community.lukes_partitioning(
151
+ ex_1_broken, byte_block_size, node_weight=NWL, edge_weight=EWL
152
+ )
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_modularity_max.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.algorithms.community import (
5
+ greedy_modularity_communities,
6
+ naive_greedy_modularity_communities,
7
+ )
8
+
9
+
10
+ @pytest.mark.parametrize(
11
+ "func", (greedy_modularity_communities, naive_greedy_modularity_communities)
12
+ )
13
+ def test_modularity_communities(func):
14
+ G = nx.karate_club_graph()
15
+ john_a = frozenset(
16
+ [8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]
17
+ )
18
+ mr_hi = frozenset([0, 4, 5, 6, 10, 11, 16, 19])
19
+ overlap = frozenset([1, 2, 3, 7, 9, 12, 13, 17, 21])
20
+ expected = {john_a, overlap, mr_hi}
21
+ assert set(func(G, weight=None)) == expected
22
+
23
+
24
+ @pytest.mark.parametrize(
25
+ "func", (greedy_modularity_communities, naive_greedy_modularity_communities)
26
+ )
27
+ def test_modularity_communities_categorical_labels(func):
28
+ # Using other than 0-starting contiguous integers as node-labels.
29
+ G = nx.Graph(
30
+ [
31
+ ("a", "b"),
32
+ ("a", "c"),
33
+ ("b", "c"),
34
+ ("b", "d"), # inter-community edge
35
+ ("d", "e"),
36
+ ("d", "f"),
37
+ ("d", "g"),
38
+ ("f", "g"),
39
+ ("d", "e"),
40
+ ("f", "e"),
41
+ ]
42
+ )
43
+ expected = {frozenset({"f", "g", "e", "d"}), frozenset({"a", "b", "c"})}
44
+ assert set(func(G)) == expected
45
+
46
+
47
+ def test_greedy_modularity_communities_components():
48
+ # Test for gh-5530
49
+ G = nx.Graph([(0, 1), (2, 3), (4, 5), (5, 6)])
50
+ # usual case with 3 components
51
+ assert greedy_modularity_communities(G) == [{4, 5, 6}, {0, 1}, {2, 3}]
52
+ # best_n can make the algorithm continue even when modularity goes down
53
+ assert greedy_modularity_communities(G, best_n=3) == [{4, 5, 6}, {0, 1}, {2, 3}]
54
+ assert greedy_modularity_communities(G, best_n=2) == [{0, 1, 4, 5, 6}, {2, 3}]
55
+ assert greedy_modularity_communities(G, best_n=1) == [{0, 1, 2, 3, 4, 5, 6}]
56
+
57
+
58
+ def test_greedy_modularity_communities_relabeled():
59
+ # Test for gh-4966
60
+ G = nx.balanced_tree(2, 2)
61
+ mapping = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 7: "h"}
62
+ G = nx.relabel_nodes(G, mapping)
63
+ expected = [frozenset({"e", "d", "a", "b"}), frozenset({"c", "f", "g"})]
64
+ assert greedy_modularity_communities(G) == expected
65
+
66
+
67
+ def test_greedy_modularity_communities_directed():
68
+ G = nx.DiGraph(
69
+ [
70
+ ("a", "b"),
71
+ ("a", "c"),
72
+ ("b", "c"),
73
+ ("b", "d"), # inter-community edge
74
+ ("d", "e"),
75
+ ("d", "f"),
76
+ ("d", "g"),
77
+ ("f", "g"),
78
+ ("d", "e"),
79
+ ("f", "e"),
80
+ ]
81
+ )
82
+ expected = [frozenset({"f", "g", "e", "d"}), frozenset({"a", "b", "c"})]
83
+ assert greedy_modularity_communities(G) == expected
84
+
85
+ # with loops
86
+ G = nx.DiGraph()
87
+ G.add_edges_from(
88
+ [(1, 1), (1, 2), (1, 3), (2, 3), (1, 4), (4, 4), (5, 5), (4, 5), (4, 6), (5, 6)]
89
+ )
90
+ expected = [frozenset({1, 2, 3}), frozenset({4, 5, 6})]
91
+ assert greedy_modularity_communities(G) == expected
92
+
93
+
94
+ @pytest.mark.parametrize(
95
+ "func", (greedy_modularity_communities, naive_greedy_modularity_communities)
96
+ )
97
+ def test_modularity_communities_weighted(func):
98
+ G = nx.balanced_tree(2, 3)
99
+ for a, b in G.edges:
100
+ if ((a == 1) or (a == 2)) and (b != 0):
101
+ G[a][b]["weight"] = 10.0
102
+ else:
103
+ G[a][b]["weight"] = 1.0
104
+
105
+ expected = [{0, 1, 3, 4, 7, 8, 9, 10}, {2, 5, 6, 11, 12, 13, 14}]
106
+
107
+ assert func(G, weight="weight") == expected
108
+ assert func(G, weight="weight", resolution=0.9) == expected
109
+ assert func(G, weight="weight", resolution=0.3) == expected
110
+ assert func(G, weight="weight", resolution=1.1) != expected
111
+
112
+
113
+ def test_modularity_communities_floating_point():
114
+ # check for floating point error when used as key in the mapped_queue dict.
115
+ # Test for gh-4992 and gh-5000
116
+ G = nx.Graph()
117
+ G.add_weighted_edges_from(
118
+ [(0, 1, 12), (1, 4, 71), (2, 3, 15), (2, 4, 10), (3, 6, 13)]
119
+ )
120
+ expected = [{0, 1, 4}, {2, 3, 6}]
121
+ assert greedy_modularity_communities(G, weight="weight") == expected
122
+ assert (
123
+ greedy_modularity_communities(G, weight="weight", resolution=0.99) == expected
124
+ )
125
+
126
+
127
+ def test_modularity_communities_directed_weighted():
128
+ G = nx.DiGraph()
129
+ G.add_weighted_edges_from(
130
+ [
131
+ (1, 2, 5),
132
+ (1, 3, 3),
133
+ (2, 3, 6),
134
+ (2, 6, 1),
135
+ (1, 4, 1),
136
+ (4, 5, 3),
137
+ (4, 6, 7),
138
+ (5, 6, 2),
139
+ (5, 7, 5),
140
+ (5, 8, 4),
141
+ (6, 8, 3),
142
+ ]
143
+ )
144
+ expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})]
145
+ assert greedy_modularity_communities(G, weight="weight") == expected
146
+
147
+ # A large weight of the edge (2, 6) causes 6 to change group, even if it shares
148
+ # only one connection with the new group and 3 with the old one.
149
+ G[2][6]["weight"] = 20
150
+ expected = [frozenset({1, 2, 3, 6}), frozenset({4, 5, 7, 8})]
151
+ assert greedy_modularity_communities(G, weight="weight") == expected
152
+
153
+
154
+ def test_greedy_modularity_communities_multigraph():
155
+ G = nx.MultiGraph()
156
+ G.add_edges_from(
157
+ [
158
+ (1, 2),
159
+ (1, 2),
160
+ (1, 3),
161
+ (2, 3),
162
+ (1, 4),
163
+ (2, 4),
164
+ (4, 5),
165
+ (5, 6),
166
+ (5, 7),
167
+ (5, 7),
168
+ (6, 7),
169
+ (7, 8),
170
+ (5, 8),
171
+ ]
172
+ )
173
+ expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})]
174
+ assert greedy_modularity_communities(G) == expected
175
+
176
+ # Converting (4, 5) into a multi-edge causes node 4 to change group.
177
+ G.add_edge(4, 5)
178
+ expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})]
179
+ assert greedy_modularity_communities(G) == expected
180
+
181
+
182
+ def test_greedy_modularity_communities_multigraph_weighted():
183
+ G = nx.MultiGraph()
184
+ G.add_weighted_edges_from(
185
+ [
186
+ (1, 2, 5),
187
+ (1, 2, 3),
188
+ (1, 3, 6),
189
+ (1, 3, 6),
190
+ (2, 3, 4),
191
+ (1, 4, 1),
192
+ (1, 4, 1),
193
+ (2, 4, 3),
194
+ (2, 4, 3),
195
+ (4, 5, 1),
196
+ (5, 6, 3),
197
+ (5, 6, 7),
198
+ (5, 6, 4),
199
+ (5, 7, 9),
200
+ (5, 7, 9),
201
+ (6, 7, 8),
202
+ (7, 8, 2),
203
+ (7, 8, 2),
204
+ (5, 8, 6),
205
+ (5, 8, 6),
206
+ ]
207
+ )
208
+ expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})]
209
+ assert greedy_modularity_communities(G, weight="weight") == expected
210
+
211
+ # Adding multi-edge (4, 5, 16) causes node 4 to change group.
212
+ G.add_edge(4, 5, weight=16)
213
+ expected = [frozenset({4, 5, 6, 7, 8}), frozenset({1, 2, 3})]
214
+ assert greedy_modularity_communities(G, weight="weight") == expected
215
+
216
+ # Increasing the weight of edge (1, 4) causes node 4 to return to the former group.
217
+ G[1][4][1]["weight"] = 3
218
+ expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})]
219
+ assert greedy_modularity_communities(G, weight="weight") == expected
220
+
221
+
222
+ def test_greed_modularity_communities_multidigraph():
223
+ G = nx.MultiDiGraph()
224
+ G.add_edges_from(
225
+ [
226
+ (1, 2),
227
+ (1, 2),
228
+ (3, 1),
229
+ (2, 3),
230
+ (2, 3),
231
+ (3, 2),
232
+ (1, 4),
233
+ (2, 4),
234
+ (4, 2),
235
+ (4, 5),
236
+ (5, 6),
237
+ (5, 6),
238
+ (6, 5),
239
+ (5, 7),
240
+ (6, 7),
241
+ (7, 8),
242
+ (5, 8),
243
+ (8, 4),
244
+ ]
245
+ )
246
+ expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})]
247
+ assert greedy_modularity_communities(G, weight="weight") == expected
248
+
249
+
250
+ def test_greed_modularity_communities_multidigraph_weighted():
251
+ G = nx.MultiDiGraph()
252
+ G.add_weighted_edges_from(
253
+ [
254
+ (1, 2, 5),
255
+ (1, 2, 3),
256
+ (3, 1, 6),
257
+ (1, 3, 6),
258
+ (3, 2, 4),
259
+ (1, 4, 2),
260
+ (1, 4, 5),
261
+ (2, 4, 3),
262
+ (3, 2, 8),
263
+ (4, 2, 3),
264
+ (4, 3, 5),
265
+ (4, 5, 2),
266
+ (5, 6, 3),
267
+ (5, 6, 7),
268
+ (6, 5, 4),
269
+ (5, 7, 9),
270
+ (5, 7, 9),
271
+ (7, 6, 8),
272
+ (7, 8, 2),
273
+ (8, 7, 2),
274
+ (5, 8, 6),
275
+ (5, 8, 6),
276
+ ]
277
+ )
278
+ expected = [frozenset({1, 2, 3, 4}), frozenset({5, 6, 7, 8})]
279
+ assert greedy_modularity_communities(G, weight="weight") == expected
280
+
281
+
282
+ def test_resolution_parameter_impact():
283
+ G = nx.barbell_graph(5, 3)
284
+
285
+ gamma = 1
286
+ expected = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))]
287
+ assert greedy_modularity_communities(G, resolution=gamma) == expected
288
+ assert naive_greedy_modularity_communities(G, resolution=gamma) == expected
289
+
290
+ gamma = 2.5
291
+ expected = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}]
292
+ assert greedy_modularity_communities(G, resolution=gamma) == expected
293
+ assert naive_greedy_modularity_communities(G, resolution=gamma) == expected
294
+
295
+ gamma = 0.3
296
+ expected = [frozenset(range(8)), frozenset(range(8, 13))]
297
+ assert greedy_modularity_communities(G, resolution=gamma) == expected
298
+ assert naive_greedy_modularity_communities(G, resolution=gamma) == expected
299
+
300
+
301
+ def test_cutoff_parameter():
302
+ G = nx.circular_ladder_graph(4)
303
+
304
+ # No aggregation:
305
+ expected = [{k} for k in range(8)]
306
+ assert greedy_modularity_communities(G, cutoff=8) == expected
307
+
308
+ # Aggregation to half order (number of nodes)
309
+ expected = [{k, k + 1} for k in range(0, 8, 2)]
310
+ assert greedy_modularity_communities(G, cutoff=4) == expected
311
+
312
+ # Default aggregation case (here, 2 communities emerge)
313
+ expected = [frozenset(range(4)), frozenset(range(4, 8))]
314
+ assert greedy_modularity_communities(G, cutoff=1) == expected
315
+
316
+
317
+ def test_best_n():
318
+ G = nx.barbell_graph(5, 3)
319
+
320
+ # Same result as without enforcing cutoff:
321
+ best_n = 3
322
+ expected = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))]
323
+ assert greedy_modularity_communities(G, best_n=best_n) == expected
324
+
325
+ # One additional merging step:
326
+ best_n = 2
327
+ expected = [frozenset(range(8)), frozenset(range(8, 13))]
328
+ assert greedy_modularity_communities(G, best_n=best_n) == expected
329
+
330
+ # Two additional merging steps:
331
+ best_n = 1
332
+ expected = [frozenset(range(13))]
333
+ assert greedy_modularity_communities(G, best_n=best_n) == expected
334
+
335
+
336
+ def test_greedy_modularity_communities_corner_cases():
337
+ G = nx.empty_graph()
338
+ assert nx.community.greedy_modularity_communities(G) == []
339
+ G.add_nodes_from(range(3))
340
+ assert nx.community.greedy_modularity_communities(G) == [{0}, {1}, {2}]
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_quality.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.quality`
2
+ module.
3
+
4
+ """
5
+ import pytest
6
+
7
+ import networkx as nx
8
+ from networkx import barbell_graph
9
+ from networkx.algorithms.community import modularity, partition_quality
10
+ from networkx.algorithms.community.quality import inter_community_edges
11
+
12
+
13
+ class TestPerformance:
14
+ """Unit tests for the :func:`performance` function."""
15
+
16
+ def test_bad_partition(self):
17
+ """Tests that a poor partition has a low performance measure."""
18
+ G = barbell_graph(3, 0)
19
+ partition = [{0, 1, 4}, {2, 3, 5}]
20
+ assert 8 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7)
21
+
22
+ def test_good_partition(self):
23
+ """Tests that a good partition has a high performance measure."""
24
+ G = barbell_graph(3, 0)
25
+ partition = [{0, 1, 2}, {3, 4, 5}]
26
+ assert 14 / 15 == pytest.approx(partition_quality(G, partition)[1], abs=1e-7)
27
+
28
+
29
+ class TestCoverage:
30
+ """Unit tests for the :func:`coverage` function."""
31
+
32
+ def test_bad_partition(self):
33
+ """Tests that a poor partition has a low coverage measure."""
34
+ G = barbell_graph(3, 0)
35
+ partition = [{0, 1, 4}, {2, 3, 5}]
36
+ assert 3 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7)
37
+
38
+ def test_good_partition(self):
39
+ """Tests that a good partition has a high coverage measure."""
40
+ G = barbell_graph(3, 0)
41
+ partition = [{0, 1, 2}, {3, 4, 5}]
42
+ assert 6 / 7 == pytest.approx(partition_quality(G, partition)[0], abs=1e-7)
43
+
44
+
45
+ def test_modularity():
46
+ G = nx.barbell_graph(3, 0)
47
+ C = [{0, 1, 4}, {2, 3, 5}]
48
+ assert (-16 / (14**2)) == pytest.approx(modularity(G, C), abs=1e-7)
49
+ C = [{0, 1, 2}, {3, 4, 5}]
50
+ assert (35 * 2) / (14**2) == pytest.approx(modularity(G, C), abs=1e-7)
51
+
52
+ n = 1000
53
+ G = nx.erdos_renyi_graph(n, 0.09, seed=42, directed=True)
54
+ C = [set(range(n // 2)), set(range(n // 2, n))]
55
+ assert 0.00017154251389292754 == pytest.approx(modularity(G, C), abs=1e-7)
56
+
57
+ G = nx.margulis_gabber_galil_graph(10)
58
+ mid_value = G.number_of_nodes() // 2
59
+ nodes = list(G.nodes)
60
+ C = [set(nodes[:mid_value]), set(nodes[mid_value:])]
61
+ assert 0.13 == pytest.approx(modularity(G, C), abs=1e-7)
62
+
63
+ G = nx.DiGraph()
64
+ G.add_edges_from([(2, 1), (2, 3), (3, 4)])
65
+ C = [{1, 2}, {3, 4}]
66
+ assert 2 / 9 == pytest.approx(modularity(G, C), abs=1e-7)
67
+
68
+
69
+ def test_modularity_resolution():
70
+ G = nx.barbell_graph(3, 0)
71
+ C = [{0, 1, 4}, {2, 3, 5}]
72
+ assert modularity(G, C) == pytest.approx(3 / 7 - 100 / 14**2)
73
+ gamma = 2
74
+ result = modularity(G, C, resolution=gamma)
75
+ assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2)
76
+ gamma = 0.2
77
+ result = modularity(G, C, resolution=gamma)
78
+ assert result == pytest.approx(3 / 7 - gamma * 100 / 14**2)
79
+
80
+ C = [{0, 1, 2}, {3, 4, 5}]
81
+ assert modularity(G, C) == pytest.approx(6 / 7 - 98 / 14**2)
82
+ gamma = 2
83
+ result = modularity(G, C, resolution=gamma)
84
+ assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2)
85
+ gamma = 0.2
86
+ result = modularity(G, C, resolution=gamma)
87
+ assert result == pytest.approx(6 / 7 - gamma * 98 / 14**2)
88
+
89
+ G = nx.barbell_graph(5, 3)
90
+ C = [frozenset(range(5)), frozenset(range(8, 13)), frozenset(range(5, 8))]
91
+ gamma = 1
92
+ result = modularity(G, C, resolution=gamma)
93
+ # This C is maximal for gamma=1: modularity = 0.518229
94
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
95
+ gamma = 2
96
+ result = modularity(G, C, resolution=gamma)
97
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
98
+ gamma = 0.2
99
+ result = modularity(G, C, resolution=gamma)
100
+ assert result == pytest.approx((22 / 24) - gamma * (918 / (48**2)))
101
+
102
+ C = [{0, 1, 2, 3}, {9, 10, 11, 12}, {5, 6, 7}, {4}, {8}]
103
+ gamma = 1
104
+ result = modularity(G, C, resolution=gamma)
105
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
106
+ gamma = 2.5
107
+ result = modularity(G, C, resolution=gamma)
108
+ # This C is maximal for gamma=2.5: modularity = -0.06553819
109
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
110
+ gamma = 0.2
111
+ result = modularity(G, C, resolution=gamma)
112
+ assert result == pytest.approx((14 / 24) - gamma * (598 / (48**2)))
113
+
114
+ C = [frozenset(range(8)), frozenset(range(8, 13))]
115
+ gamma = 1
116
+ result = modularity(G, C, resolution=gamma)
117
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
118
+ gamma = 2
119
+ result = modularity(G, C, resolution=gamma)
120
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
121
+ gamma = 0.3
122
+ result = modularity(G, C, resolution=gamma)
123
+ # This C is maximal for gamma=0.3: modularity = 0.805990
124
+ assert result == pytest.approx((23 / 24) - gamma * (1170 / (48**2)))
125
+
126
+
127
+ def test_inter_community_edges_with_digraphs():
128
+ G = nx.complete_graph(2, create_using=nx.DiGraph())
129
+ partition = [{0}, {1}]
130
+ assert inter_community_edges(G, partition) == 2
131
+
132
+ G = nx.complete_graph(10, create_using=nx.DiGraph())
133
+ partition = [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}]
134
+ assert inter_community_edges(G, partition) == 70
135
+
136
+ G = nx.cycle_graph(4, create_using=nx.DiGraph())
137
+ partition = [{0, 1}, {2, 3}]
138
+ assert inter_community_edges(G, partition) == 2
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/community/tests/test_utils.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unit tests for the :mod:`networkx.algorithms.community.utils` module.
2
+
3
+ """
4
+
5
+ import networkx as nx
6
+
7
+
8
+ def test_is_partition():
9
+ G = nx.empty_graph(3)
10
+ assert nx.community.is_partition(G, [{0, 1}, {2}])
11
+ assert nx.community.is_partition(G, ({0, 1}, {2}))
12
+ assert nx.community.is_partition(G, ([0, 1], [2]))
13
+ assert nx.community.is_partition(G, [[0, 1], [2]])
14
+
15
+
16
+ def test_not_covering():
17
+ G = nx.empty_graph(3)
18
+ assert not nx.community.is_partition(G, [{0}, {1}])
19
+
20
+
21
+ def test_not_disjoint():
22
+ G = nx.empty_graph(3)
23
+ assert not nx.community.is_partition(G, [{0, 1}, {1, 2}])
24
+
25
+
26
+ def test_not_node():
27
+ G = nx.empty_graph(3)
28
+ assert not nx.community.is_partition(G, [{0, 1}, {3}])
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gl1.gpickle.bz2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf8f81ceb5eaaee1621aa60b892d83e596a6173f6f6517359b679ff3daa1b0f8
3
+ size 44623
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gw1.gpickle.bz2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f79f0e90fa4c51ec79165f15963e1ed89477576e06bcaa67ae622c260411931
3
+ size 42248
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/flow/tests/wlm3.gpickle.bz2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccacba1e0fbfb30bec361f0e48ec88c999d3474fcda5ddf93bd444ace17cfa0e
3
+ size 88132
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/minors/tests/__pycache__/test_contraction.cpython-310.pyc ADDED
Binary file (13.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from networkx.algorithms.operators.all import *
2
+ from networkx.algorithms.operators.binary import *
3
+ from networkx.algorithms.operators.product import *
4
+ from networkx.algorithms.operators.unary import *
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/all.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Operations on many graphs.
2
+ """
3
+ from itertools import chain, repeat
4
+
5
+ import networkx as nx
6
+
7
+ __all__ = ["union_all", "compose_all", "disjoint_union_all", "intersection_all"]
8
+
9
+
10
+ @nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
11
+ def union_all(graphs, rename=()):
12
+ """Returns the union of all graphs.
13
+
14
+ The graphs must be disjoint, otherwise an exception is raised.
15
+
16
+ Parameters
17
+ ----------
18
+ graphs : iterable
19
+ Iterable of NetworkX graphs
20
+
21
+ rename : iterable , optional
22
+ Node names of graphs can be changed by specifying the tuple
23
+ rename=('G-','H-') (for example). Node "u" in G is then renamed
24
+ "G-u" and "v" in H is renamed "H-v". Infinite generators (like itertools.count)
25
+ are also supported.
26
+
27
+ Returns
28
+ -------
29
+ U : a graph with the same type as the first graph in list
30
+
31
+ Raises
32
+ ------
33
+ ValueError
34
+ If `graphs` is an empty list.
35
+
36
+ NetworkXError
37
+ In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
38
+
39
+ Notes
40
+ -----
41
+ For operating on mixed type graphs, they should be converted to the same type.
42
+ >>> G = nx.Graph()
43
+ >>> H = nx.DiGraph()
44
+ >>> GH = union_all([nx.DiGraph(G), H])
45
+
46
+ To force a disjoint union with node relabeling, use
47
+ disjoint_union_all(G,H) or convert_node_labels_to integers().
48
+
49
+ Graph, edge, and node attributes are propagated to the union graph.
50
+ If a graph attribute is present in multiple graphs, then the value
51
+ from the last graph in the list with that attribute is used.
52
+
53
+ Examples
54
+ --------
55
+ >>> G1 = nx.Graph([(1, 2), (2, 3)])
56
+ >>> G2 = nx.Graph([(4, 5), (5, 6)])
57
+ >>> result_graph = nx.union_all([G1, G2])
58
+ >>> result_graph.nodes()
59
+ NodeView((1, 2, 3, 4, 5, 6))
60
+ >>> result_graph.edges()
61
+ EdgeView([(1, 2), (2, 3), (4, 5), (5, 6)])
62
+
63
+ See Also
64
+ --------
65
+ union
66
+ disjoint_union_all
67
+ """
68
+ R = None
69
+ seen_nodes = set()
70
+
71
+ # rename graph to obtain disjoint node labels
72
+ def add_prefix(graph, prefix):
73
+ if prefix is None:
74
+ return graph
75
+
76
+ def label(x):
77
+ return f"{prefix}{x}"
78
+
79
+ return nx.relabel_nodes(graph, label)
80
+
81
+ rename = chain(rename, repeat(None))
82
+ graphs = (add_prefix(G, name) for G, name in zip(graphs, rename))
83
+
84
+ for i, G in enumerate(graphs):
85
+ G_nodes_set = set(G.nodes)
86
+ if i == 0:
87
+ # Union is the same type as first graph
88
+ R = G.__class__()
89
+ elif G.is_directed() != R.is_directed():
90
+ raise nx.NetworkXError("All graphs must be directed or undirected.")
91
+ elif G.is_multigraph() != R.is_multigraph():
92
+ raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
93
+ elif not seen_nodes.isdisjoint(G_nodes_set):
94
+ raise nx.NetworkXError(
95
+ "The node sets of the graphs are not disjoint.\n"
96
+ "Use `rename` to specify prefixes for the graphs or use\n"
97
+ "disjoint_union(G1, G2, ..., GN)."
98
+ )
99
+
100
+ seen_nodes |= G_nodes_set
101
+ R.graph.update(G.graph)
102
+ R.add_nodes_from(G.nodes(data=True))
103
+ R.add_edges_from(
104
+ G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
105
+ )
106
+
107
+ if R is None:
108
+ raise ValueError("cannot apply union_all to an empty list")
109
+
110
+ return R
111
+
112
+
113
+ @nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
114
+ def disjoint_union_all(graphs):
115
+ """Returns the disjoint union of all graphs.
116
+
117
+ This operation forces distinct integer node labels starting with 0
118
+ for the first graph in the list and numbering consecutively.
119
+
120
+ Parameters
121
+ ----------
122
+ graphs : iterable
123
+ Iterable of NetworkX graphs
124
+
125
+ Returns
126
+ -------
127
+ U : A graph with the same type as the first graph in list
128
+
129
+ Raises
130
+ ------
131
+ ValueError
132
+ If `graphs` is an empty list.
133
+
134
+ NetworkXError
135
+ In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
136
+
137
+ Examples
138
+ --------
139
+ >>> G1 = nx.Graph([(1, 2), (2, 3)])
140
+ >>> G2 = nx.Graph([(4, 5), (5, 6)])
141
+ >>> U = nx.disjoint_union_all([G1, G2])
142
+ >>> list(U.nodes())
143
+ [0, 1, 2, 3, 4, 5]
144
+ >>> list(U.edges())
145
+ [(0, 1), (1, 2), (3, 4), (4, 5)]
146
+
147
+ Notes
148
+ -----
149
+ For operating on mixed type graphs, they should be converted to the same type.
150
+
151
+ Graph, edge, and node attributes are propagated to the union graph.
152
+ If a graph attribute is present in multiple graphs, then the value
153
+ from the last graph in the list with that attribute is used.
154
+ """
155
+
156
+ def yield_relabeled(graphs):
157
+ first_label = 0
158
+ for G in graphs:
159
+ yield nx.convert_node_labels_to_integers(G, first_label=first_label)
160
+ first_label += len(G)
161
+
162
+ R = union_all(yield_relabeled(graphs))
163
+
164
+ return R
165
+
166
+
167
+ @nx._dispatchable(graphs="[graphs]", preserve_all_attrs=True, returns_graph=True)
168
+ def compose_all(graphs):
169
+ """Returns the composition of all graphs.
170
+
171
+ Composition is the simple union of the node sets and edge sets.
172
+ The node sets of the supplied graphs need not be disjoint.
173
+
174
+ Parameters
175
+ ----------
176
+ graphs : iterable
177
+ Iterable of NetworkX graphs
178
+
179
+ Returns
180
+ -------
181
+ C : A graph with the same type as the first graph in list
182
+
183
+ Raises
184
+ ------
185
+ ValueError
186
+ If `graphs` is an empty list.
187
+
188
+ NetworkXError
189
+ In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
190
+
191
+ Examples
192
+ --------
193
+ >>> G1 = nx.Graph([(1, 2), (2, 3)])
194
+ >>> G2 = nx.Graph([(3, 4), (5, 6)])
195
+ >>> C = nx.compose_all([G1, G2])
196
+ >>> list(C.nodes())
197
+ [1, 2, 3, 4, 5, 6]
198
+ >>> list(C.edges())
199
+ [(1, 2), (2, 3), (3, 4), (5, 6)]
200
+
201
+ Notes
202
+ -----
203
+ For operating on mixed type graphs, they should be converted to the same type.
204
+
205
+ Graph, edge, and node attributes are propagated to the union graph.
206
+ If a graph attribute is present in multiple graphs, then the value
207
+ from the last graph in the list with that attribute is used.
208
+ """
209
+ R = None
210
+
211
+ # add graph attributes, H attributes take precedent over G attributes
212
+ for i, G in enumerate(graphs):
213
+ if i == 0:
214
+ # create new graph
215
+ R = G.__class__()
216
+ elif G.is_directed() != R.is_directed():
217
+ raise nx.NetworkXError("All graphs must be directed or undirected.")
218
+ elif G.is_multigraph() != R.is_multigraph():
219
+ raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
220
+
221
+ R.graph.update(G.graph)
222
+ R.add_nodes_from(G.nodes(data=True))
223
+ R.add_edges_from(
224
+ G.edges(keys=True, data=True) if G.is_multigraph() else G.edges(data=True)
225
+ )
226
+
227
+ if R is None:
228
+ raise ValueError("cannot apply compose_all to an empty list")
229
+
230
+ return R
231
+
232
+
233
+ @nx._dispatchable(graphs="[graphs]", returns_graph=True)
234
+ def intersection_all(graphs):
235
+ """Returns a new graph that contains only the nodes and the edges that exist in
236
+ all graphs.
237
+
238
+ Parameters
239
+ ----------
240
+ graphs : iterable
241
+ Iterable of NetworkX graphs
242
+
243
+ Returns
244
+ -------
245
+ R : A new graph with the same type as the first graph in list
246
+
247
+ Raises
248
+ ------
249
+ ValueError
250
+ If `graphs` is an empty list.
251
+
252
+ NetworkXError
253
+ In case of mixed type graphs, like MultiGraph and Graph, or directed and undirected graphs.
254
+
255
+ Notes
256
+ -----
257
+ For operating on mixed type graphs, they should be converted to the same type.
258
+
259
+ Attributes from the graph, nodes, and edges are not copied to the new
260
+ graph.
261
+
262
+ The resulting graph can be updated with attributes if desired. For example, code which adds the minimum attribute for each node across all graphs could work.
263
+ >>> g = nx.Graph()
264
+ >>> g.add_node(0, capacity=4)
265
+ >>> g.add_node(1, capacity=3)
266
+ >>> g.add_edge(0, 1)
267
+
268
+ >>> h = g.copy()
269
+ >>> h.nodes[0]["capacity"] = 2
270
+
271
+ >>> gh = nx.intersection_all([g, h])
272
+
273
+ >>> new_node_attr = {
274
+ ... n: min(*(anyG.nodes[n].get("capacity", float("inf")) for anyG in [g, h]))
275
+ ... for n in gh
276
+ ... }
277
+ >>> nx.set_node_attributes(gh, new_node_attr, "new_capacity")
278
+ >>> gh.nodes(data=True)
279
+ NodeDataView({0: {'new_capacity': 2}, 1: {'new_capacity': 3}})
280
+
281
+ Examples
282
+ --------
283
+ >>> G1 = nx.Graph([(1, 2), (2, 3)])
284
+ >>> G2 = nx.Graph([(2, 3), (3, 4)])
285
+ >>> R = nx.intersection_all([G1, G2])
286
+ >>> list(R.nodes())
287
+ [2, 3]
288
+ >>> list(R.edges())
289
+ [(2, 3)]
290
+
291
+ """
292
+ R = None
293
+
294
+ for i, G in enumerate(graphs):
295
+ G_nodes_set = set(G.nodes)
296
+ G_edges_set = set(G.edges)
297
+ if not G.is_directed():
298
+ if G.is_multigraph():
299
+ G_edges_set.update((v, u, k) for u, v, k in list(G_edges_set))
300
+ else:
301
+ G_edges_set.update((v, u) for u, v in list(G_edges_set))
302
+ if i == 0:
303
+ # create new graph
304
+ R = G.__class__()
305
+ node_intersection = G_nodes_set
306
+ edge_intersection = G_edges_set
307
+ elif G.is_directed() != R.is_directed():
308
+ raise nx.NetworkXError("All graphs must be directed or undirected.")
309
+ elif G.is_multigraph() != R.is_multigraph():
310
+ raise nx.NetworkXError("All graphs must be graphs or multigraphs.")
311
+ else:
312
+ node_intersection &= G_nodes_set
313
+ edge_intersection &= G_edges_set
314
+
315
+ if R is None:
316
+ raise ValueError("cannot apply intersection_all to an empty list")
317
+
318
+ R.add_nodes_from(node_intersection)
319
+ R.add_edges_from(edge_intersection)
320
+
321
+ return R
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/binary.py ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Operations on graphs including union, intersection, difference.
3
+ """
4
+ import networkx as nx
5
+
6
+ __all__ = [
7
+ "union",
8
+ "compose",
9
+ "disjoint_union",
10
+ "intersection",
11
+ "difference",
12
+ "symmetric_difference",
13
+ "full_join",
14
+ ]
15
+ _G_H = {"G": 0, "H": 1}
16
+
17
+
18
+ @nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
19
+ def union(G, H, rename=()):
20
+ """Combine graphs G and H. The names of nodes must be unique.
21
+
22
+ A name collision between the graphs will raise an exception.
23
+
24
+ A renaming facility is provided to avoid name collisions.
25
+
26
+
27
+ Parameters
28
+ ----------
29
+ G, H : graph
30
+ A NetworkX graph
31
+
32
+ rename : iterable , optional
33
+ Node names of G and H can be changed by specifying the tuple
34
+ rename=('G-','H-') (for example). Node "u" in G is then renamed
35
+ "G-u" and "v" in H is renamed "H-v".
36
+
37
+ Returns
38
+ -------
39
+ U : A union graph with the same type as G.
40
+
41
+ See Also
42
+ --------
43
+ compose
44
+ :func:`~networkx.Graph.update`
45
+ disjoint_union
46
+
47
+ Notes
48
+ -----
49
+ To combine graphs that have common nodes, consider compose(G, H)
50
+ or the method, Graph.update().
51
+
52
+ disjoint_union() is similar to union() except that it avoids name clashes
53
+ by relabeling the nodes with sequential integers.
54
+
55
+ Edge and node attributes are propagated from G and H to the union graph.
56
+ Graph attributes are also propagated, but if they are present in both G and H,
57
+ then the value from H is used.
58
+
59
+ Examples
60
+ --------
61
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
62
+ >>> H = nx.Graph([(0, 1), (0, 3), (1, 3), (1, 2)])
63
+ >>> U = nx.union(G, H, rename=("G", "H"))
64
+ >>> U.nodes
65
+ NodeView(('G0', 'G1', 'G2', 'H0', 'H1', 'H3', 'H2'))
66
+ >>> U.edges
67
+ EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G1', 'G2'), ('H0', 'H1'), ('H0', 'H3'), ('H1', 'H3'), ('H1', 'H2')])
68
+
69
+
70
+ """
71
+ return nx.union_all([G, H], rename)
72
+
73
+
74
+ @nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
75
+ def disjoint_union(G, H):
76
+ """Combine graphs G and H. The nodes are assumed to be unique (disjoint).
77
+
78
+ This algorithm automatically relabels nodes to avoid name collisions.
79
+
80
+ Parameters
81
+ ----------
82
+ G,H : graph
83
+ A NetworkX graph
84
+
85
+ Returns
86
+ -------
87
+ U : A union graph with the same type as G.
88
+
89
+ See Also
90
+ --------
91
+ union
92
+ compose
93
+ :func:`~networkx.Graph.update`
94
+
95
+ Notes
96
+ -----
97
+ A new graph is created, of the same class as G. It is recommended
98
+ that G and H be either both directed or both undirected.
99
+
100
+ The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
101
+ relabeled len(G) to len(G)+len(H)-1.
102
+
103
+ Renumbering forces G and H to be disjoint, so no exception is ever raised for a name collision.
104
+ To preserve the check for common nodes, use union().
105
+
106
+ Edge and node attributes are propagated from G and H to the union graph.
107
+ Graph attributes are also propagated, but if they are present in both G and H,
108
+ then the value from H is used.
109
+
110
+ To combine graphs that have common nodes, consider compose(G, H)
111
+ or the method, Graph.update().
112
+
113
+ Examples
114
+ --------
115
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
116
+ >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
117
+ >>> G.nodes[0]["key1"] = 5
118
+ >>> H.nodes[0]["key2"] = 10
119
+ >>> U = nx.disjoint_union(G, H)
120
+ >>> U.nodes(data=True)
121
+ NodeDataView({0: {'key1': 5}, 1: {}, 2: {}, 3: {'key2': 10}, 4: {}, 5: {}, 6: {}})
122
+ >>> U.edges
123
+ EdgeView([(0, 1), (0, 2), (1, 2), (3, 4), (4, 6), (5, 6)])
124
+ """
125
+ return nx.disjoint_union_all([G, H])
126
+
127
+
128
+ @nx._dispatchable(graphs=_G_H, returns_graph=True)
129
+ def intersection(G, H):
130
+ """Returns a new graph that contains only the nodes and the edges that exist in
131
+ both G and H.
132
+
133
+ Parameters
134
+ ----------
135
+ G,H : graph
136
+ A NetworkX graph. G and H can have different node sets but must be both graphs or both multigraphs.
137
+
138
+ Raises
139
+ ------
140
+ NetworkXError
141
+ If one is a MultiGraph and the other one is a graph.
142
+
143
+ Returns
144
+ -------
145
+ GH : A new graph with the same type as G.
146
+
147
+ Notes
148
+ -----
149
+ Attributes from the graph, nodes, and edges are not copied to the new
150
+ graph. If you want a new graph of the intersection of G and H
151
+ with the attributes (including edge data) from G use remove_nodes_from()
152
+ as follows
153
+
154
+ >>> G = nx.path_graph(3)
155
+ >>> H = nx.path_graph(5)
156
+ >>> R = G.copy()
157
+ >>> R.remove_nodes_from(n for n in G if n not in H)
158
+ >>> R.remove_edges_from(e for e in G.edges if e not in H.edges)
159
+
160
+ Examples
161
+ --------
162
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
163
+ >>> H = nx.Graph([(0, 3), (1, 2), (2, 3)])
164
+ >>> R = nx.intersection(G, H)
165
+ >>> R.nodes
166
+ NodeView((0, 1, 2))
167
+ >>> R.edges
168
+ EdgeView([(1, 2)])
169
+ """
170
+ return nx.intersection_all([G, H])
171
+
172
+
173
+ @nx._dispatchable(graphs=_G_H, returns_graph=True)
174
+ def difference(G, H):
175
+ """Returns a new graph that contains the edges that exist in G but not in H.
176
+
177
+ The node sets of H and G must be the same.
178
+
179
+ Parameters
180
+ ----------
181
+ G,H : graph
182
+ A NetworkX graph. G and H must have the same node sets.
183
+
184
+ Returns
185
+ -------
186
+ D : A new graph with the same type as G.
187
+
188
+ Notes
189
+ -----
190
+ Attributes from the graph, nodes, and edges are not copied to the new
191
+ graph. If you want a new graph of the difference of G and H with
192
+ the attributes (including edge data) from G use remove_nodes_from()
193
+ as follows:
194
+
195
+ >>> G = nx.path_graph(3)
196
+ >>> H = nx.path_graph(5)
197
+ >>> R = G.copy()
198
+ >>> R.remove_nodes_from(n for n in G if n in H)
199
+
200
+ Examples
201
+ --------
202
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
203
+ >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
204
+ >>> R = nx.difference(G, H)
205
+ >>> R.nodes
206
+ NodeView((0, 1, 2, 3))
207
+ >>> R.edges
208
+ EdgeView([(0, 2), (1, 3)])
209
+ """
210
+ # create new graph
211
+ if not G.is_multigraph() == H.is_multigraph():
212
+ raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
213
+ R = nx.create_empty_copy(G, with_data=False)
214
+
215
+ if set(G) != set(H):
216
+ raise nx.NetworkXError("Node sets of graphs not equal")
217
+
218
+ if G.is_multigraph():
219
+ edges = G.edges(keys=True)
220
+ else:
221
+ edges = G.edges()
222
+ for e in edges:
223
+ if not H.has_edge(*e):
224
+ R.add_edge(*e)
225
+ return R
226
+
227
+
228
+ @nx._dispatchable(graphs=_G_H, returns_graph=True)
229
+ def symmetric_difference(G, H):
230
+ """Returns new graph with edges that exist in either G or H but not both.
231
+
232
+ The node sets of H and G must be the same.
233
+
234
+ Parameters
235
+ ----------
236
+ G,H : graph
237
+ A NetworkX graph. G and H must have the same node sets.
238
+
239
+ Returns
240
+ -------
241
+ D : A new graph with the same type as G.
242
+
243
+ Notes
244
+ -----
245
+ Attributes from the graph, nodes, and edges are not copied to the new
246
+ graph.
247
+
248
+ Examples
249
+ --------
250
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3)])
251
+ >>> H = nx.Graph([(0, 1), (1, 2), (0, 3)])
252
+ >>> R = nx.symmetric_difference(G, H)
253
+ >>> R.nodes
254
+ NodeView((0, 1, 2, 3))
255
+ >>> R.edges
256
+ EdgeView([(0, 2), (0, 3), (1, 3)])
257
+ """
258
+ # create new graph
259
+ if not G.is_multigraph() == H.is_multigraph():
260
+ raise nx.NetworkXError("G and H must both be graphs or multigraphs.")
261
+ R = nx.create_empty_copy(G, with_data=False)
262
+
263
+ if set(G) != set(H):
264
+ raise nx.NetworkXError("Node sets of graphs not equal")
265
+
266
+ gnodes = set(G) # set of nodes in G
267
+ hnodes = set(H) # set of nodes in H
268
+ nodes = gnodes.symmetric_difference(hnodes)
269
+ R.add_nodes_from(nodes)
270
+
271
+ if G.is_multigraph():
272
+ edges = G.edges(keys=True)
273
+ else:
274
+ edges = G.edges()
275
+ # we could copy the data here but then this function doesn't
276
+ # match intersection and difference
277
+ for e in edges:
278
+ if not H.has_edge(*e):
279
+ R.add_edge(*e)
280
+
281
+ if H.is_multigraph():
282
+ edges = H.edges(keys=True)
283
+ else:
284
+ edges = H.edges()
285
+ for e in edges:
286
+ if not G.has_edge(*e):
287
+ R.add_edge(*e)
288
+ return R
289
+
290
+
291
+ @nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
292
+ def compose(G, H):
293
+ """Compose graph G with H by combining nodes and edges into a single graph.
294
+
295
+ The node sets and edges sets do not need to be disjoint.
296
+
297
+ Composing preserves the attributes of nodes and edges.
298
+ Attribute values from H take precedent over attribute values from G.
299
+
300
+ Parameters
301
+ ----------
302
+ G, H : graph
303
+ A NetworkX graph
304
+
305
+ Returns
306
+ -------
307
+ C: A new graph with the same type as G
308
+
309
+ See Also
310
+ --------
311
+ :func:`~networkx.Graph.update`
312
+ union
313
+ disjoint_union
314
+
315
+ Notes
316
+ -----
317
+ It is recommended that G and H be either both directed or both undirected.
318
+
319
+ For MultiGraphs, the edges are identified by incident nodes AND edge-key.
320
+ This can cause surprises (i.e., edge `(1, 2)` may or may not be the same
321
+ in two graphs) if you use MultiGraph without keeping track of edge keys.
322
+
323
+ If combining the attributes of common nodes is not desired, consider union(),
324
+ which raises an exception for name collisions.
325
+
326
+ Examples
327
+ --------
328
+ >>> G = nx.Graph([(0, 1), (0, 2)])
329
+ >>> H = nx.Graph([(0, 1), (1, 2)])
330
+ >>> R = nx.compose(G, H)
331
+ >>> R.nodes
332
+ NodeView((0, 1, 2))
333
+ >>> R.edges
334
+ EdgeView([(0, 1), (0, 2), (1, 2)])
335
+
336
+ By default, the attributes from `H` take precedent over attributes from `G`.
337
+ If you prefer another way of combining attributes, you can update them after the compose operation:
338
+
339
+ >>> G = nx.Graph([(0, 1, {"weight": 2.0}), (3, 0, {"weight": 100.0})])
340
+ >>> H = nx.Graph([(0, 1, {"weight": 10.0}), (1, 2, {"weight": -1.0})])
341
+ >>> nx.set_node_attributes(G, {0: "dark", 1: "light", 3: "black"}, name="color")
342
+ >>> nx.set_node_attributes(H, {0: "green", 1: "orange", 2: "yellow"}, name="color")
343
+ >>> GcomposeH = nx.compose(G, H)
344
+
345
+ Normally, color attribute values of nodes of GcomposeH come from H. We can workaround this as follows:
346
+
347
+ >>> node_data = {
348
+ ... n: G.nodes[n]["color"] + " " + H.nodes[n]["color"] for n in G.nodes & H.nodes
349
+ ... }
350
+ >>> nx.set_node_attributes(GcomposeH, node_data, "color")
351
+ >>> print(GcomposeH.nodes[0]["color"])
352
+ dark green
353
+
354
+ >>> print(GcomposeH.nodes[3]["color"])
355
+ black
356
+
357
+ Similarly, we can update edge attributes after the compose operation in a way we prefer:
358
+
359
+ >>> edge_data = {
360
+ ... e: G.edges[e]["weight"] * H.edges[e]["weight"] for e in G.edges & H.edges
361
+ ... }
362
+ >>> nx.set_edge_attributes(GcomposeH, edge_data, "weight")
363
+ >>> print(GcomposeH.edges[(0, 1)]["weight"])
364
+ 20.0
365
+
366
+ >>> print(GcomposeH.edges[(3, 0)]["weight"])
367
+ 100.0
368
+ """
369
+ return nx.compose_all([G, H])
370
+
371
+
372
+ @nx._dispatchable(graphs=_G_H, preserve_all_attrs=True, returns_graph=True)
373
+ def full_join(G, H, rename=(None, None)):
374
+ """Returns the full join of graphs G and H.
375
+
376
+ Full join is the union of G and H in which all edges between
377
+ G and H are added.
378
+ The node sets of G and H must be disjoint,
379
+ otherwise an exception is raised.
380
+
381
+ Parameters
382
+ ----------
383
+ G, H : graph
384
+ A NetworkX graph
385
+
386
+ rename : tuple , default=(None, None)
387
+ Node names of G and H can be changed by specifying the tuple
388
+ rename=('G-','H-') (for example). Node "u" in G is then renamed
389
+ "G-u" and "v" in H is renamed "H-v".
390
+
391
+ Returns
392
+ -------
393
+ U : The full join graph with the same type as G.
394
+
395
+ Notes
396
+ -----
397
+ It is recommended that G and H be either both directed or both undirected.
398
+
399
+ If G is directed, then edges from G to H are added as well as from H to G.
400
+
401
+ Note that full_join() does not produce parallel edges for MultiGraphs.
402
+
403
+ The full join operation of graphs G and H is the same as getting
404
+ their complement, performing a disjoint union, and finally getting
405
+ the complement of the resulting graph.
406
+
407
+ Graph, edge, and node attributes are propagated from G and H
408
+ to the union graph. If a graph attribute is present in both
409
+ G and H the value from H is used.
410
+
411
+ Examples
412
+ --------
413
+ >>> G = nx.Graph([(0, 1), (0, 2)])
414
+ >>> H = nx.Graph([(3, 4)])
415
+ >>> R = nx.full_join(G, H, rename=("G", "H"))
416
+ >>> R.nodes
417
+ NodeView(('G0', 'G1', 'G2', 'H3', 'H4'))
418
+ >>> R.edges
419
+ EdgeView([('G0', 'G1'), ('G0', 'G2'), ('G0', 'H3'), ('G0', 'H4'), ('G1', 'H3'), ('G1', 'H4'), ('G2', 'H3'), ('G2', 'H4'), ('H3', 'H4')])
420
+
421
+ See Also
422
+ --------
423
+ union
424
+ disjoint_union
425
+ """
426
+ R = union(G, H, rename)
427
+
428
+ def add_prefix(graph, prefix):
429
+ if prefix is None:
430
+ return graph
431
+
432
+ def label(x):
433
+ return f"{prefix}{x}"
434
+
435
+ return nx.relabel_nodes(graph, label)
436
+
437
+ G = add_prefix(G, rename[0])
438
+ H = add_prefix(H, rename[1])
439
+
440
+ for i in G:
441
+ for j in H:
442
+ R.add_edge(i, j)
443
+ if R.is_directed():
444
+ for i in H:
445
+ for j in G:
446
+ R.add_edge(i, j)
447
+
448
+ return R
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/product.py ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Graph products.
3
+ """
4
+ from itertools import product
5
+
6
+ import networkx as nx
7
+ from networkx.utils import not_implemented_for
8
+
9
+ __all__ = [
10
+ "tensor_product",
11
+ "cartesian_product",
12
+ "lexicographic_product",
13
+ "strong_product",
14
+ "power",
15
+ "rooted_product",
16
+ "corona_product",
17
+ "modular_product",
18
+ ]
19
+ _G_H = {"G": 0, "H": 1}
20
+
21
+
22
+ def _dict_product(d1, d2):
23
+ return {k: (d1.get(k), d2.get(k)) for k in set(d1) | set(d2)}
24
+
25
+
26
+ # Generators for producing graph products
27
+ def _node_product(G, H):
28
+ for u, v in product(G, H):
29
+ yield ((u, v), _dict_product(G.nodes[u], H.nodes[v]))
30
+
31
+
32
+ def _directed_edges_cross_edges(G, H):
33
+ if not G.is_multigraph() and not H.is_multigraph():
34
+ for u, v, c in G.edges(data=True):
35
+ for x, y, d in H.edges(data=True):
36
+ yield (u, x), (v, y), _dict_product(c, d)
37
+ if not G.is_multigraph() and H.is_multigraph():
38
+ for u, v, c in G.edges(data=True):
39
+ for x, y, k, d in H.edges(data=True, keys=True):
40
+ yield (u, x), (v, y), k, _dict_product(c, d)
41
+ if G.is_multigraph() and not H.is_multigraph():
42
+ for u, v, k, c in G.edges(data=True, keys=True):
43
+ for x, y, d in H.edges(data=True):
44
+ yield (u, x), (v, y), k, _dict_product(c, d)
45
+ if G.is_multigraph() and H.is_multigraph():
46
+ for u, v, j, c in G.edges(data=True, keys=True):
47
+ for x, y, k, d in H.edges(data=True, keys=True):
48
+ yield (u, x), (v, y), (j, k), _dict_product(c, d)
49
+
50
+
51
+ def _undirected_edges_cross_edges(G, H):
52
+ if not G.is_multigraph() and not H.is_multigraph():
53
+ for u, v, c in G.edges(data=True):
54
+ for x, y, d in H.edges(data=True):
55
+ yield (v, x), (u, y), _dict_product(c, d)
56
+ if not G.is_multigraph() and H.is_multigraph():
57
+ for u, v, c in G.edges(data=True):
58
+ for x, y, k, d in H.edges(data=True, keys=True):
59
+ yield (v, x), (u, y), k, _dict_product(c, d)
60
+ if G.is_multigraph() and not H.is_multigraph():
61
+ for u, v, k, c in G.edges(data=True, keys=True):
62
+ for x, y, d in H.edges(data=True):
63
+ yield (v, x), (u, y), k, _dict_product(c, d)
64
+ if G.is_multigraph() and H.is_multigraph():
65
+ for u, v, j, c in G.edges(data=True, keys=True):
66
+ for x, y, k, d in H.edges(data=True, keys=True):
67
+ yield (v, x), (u, y), (j, k), _dict_product(c, d)
68
+
69
+
70
+ def _edges_cross_nodes(G, H):
71
+ if G.is_multigraph():
72
+ for u, v, k, d in G.edges(data=True, keys=True):
73
+ for x in H:
74
+ yield (u, x), (v, x), k, d
75
+ else:
76
+ for u, v, d in G.edges(data=True):
77
+ for x in H:
78
+ if H.is_multigraph():
79
+ yield (u, x), (v, x), None, d
80
+ else:
81
+ yield (u, x), (v, x), d
82
+
83
+
84
+ def _nodes_cross_edges(G, H):
85
+ if H.is_multigraph():
86
+ for x in G:
87
+ for u, v, k, d in H.edges(data=True, keys=True):
88
+ yield (x, u), (x, v), k, d
89
+ else:
90
+ for x in G:
91
+ for u, v, d in H.edges(data=True):
92
+ if G.is_multigraph():
93
+ yield (x, u), (x, v), None, d
94
+ else:
95
+ yield (x, u), (x, v), d
96
+
97
+
98
+ def _edges_cross_nodes_and_nodes(G, H):
99
+ if G.is_multigraph():
100
+ for u, v, k, d in G.edges(data=True, keys=True):
101
+ for x in H:
102
+ for y in H:
103
+ yield (u, x), (v, y), k, d
104
+ else:
105
+ for u, v, d in G.edges(data=True):
106
+ for x in H:
107
+ for y in H:
108
+ if H.is_multigraph():
109
+ yield (u, x), (v, y), None, d
110
+ else:
111
+ yield (u, x), (v, y), d
112
+
113
+
114
+ def _init_product_graph(G, H):
115
+ if G.is_directed() != H.is_directed():
116
+ msg = "G and H must be both directed or both undirected"
117
+ raise nx.NetworkXError(msg)
118
+ if G.is_multigraph() or H.is_multigraph():
119
+ GH = nx.MultiGraph()
120
+ else:
121
+ GH = nx.Graph()
122
+ if G.is_directed():
123
+ GH = GH.to_directed()
124
+ return GH
125
+
126
+
127
+ @nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
128
+ def tensor_product(G, H):
129
+ r"""Returns the tensor product of G and H.
130
+
131
+ The tensor product $P$ of the graphs $G$ and $H$ has a node set that
132
+ is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
133
+ $P$ has an edge $((u,v), (x,y))$ if and only if $(u,x)$ is an edge in $G$
134
+ and $(v,y)$ is an edge in $H$.
135
+
136
+ Tensor product is sometimes also referred to as the categorical product,
137
+ direct product, cardinal product or conjunction.
138
+
139
+
140
+ Parameters
141
+ ----------
142
+ G, H: graphs
143
+ Networkx graphs.
144
+
145
+ Returns
146
+ -------
147
+ P: NetworkX graph
148
+ The tensor product of G and H. P will be a multi-graph if either G
149
+ or H is a multi-graph, will be a directed if G and H are directed,
150
+ and undirected if G and H are undirected.
151
+
152
+ Raises
153
+ ------
154
+ NetworkXError
155
+ If G and H are not both directed or both undirected.
156
+
157
+ Notes
158
+ -----
159
+ Node attributes in P are two-tuple of the G and H node attributes.
160
+ Missing attributes are assigned None.
161
+
162
+ Examples
163
+ --------
164
+ >>> G = nx.Graph()
165
+ >>> H = nx.Graph()
166
+ >>> G.add_node(0, a1=True)
167
+ >>> H.add_node("a", a2="Spam")
168
+ >>> P = nx.tensor_product(G, H)
169
+ >>> list(P)
170
+ [(0, 'a')]
171
+
172
+ Edge attributes and edge keys (for multigraphs) are also copied to the
173
+ new product graph
174
+ """
175
+ GH = _init_product_graph(G, H)
176
+ GH.add_nodes_from(_node_product(G, H))
177
+ GH.add_edges_from(_directed_edges_cross_edges(G, H))
178
+ if not GH.is_directed():
179
+ GH.add_edges_from(_undirected_edges_cross_edges(G, H))
180
+ return GH
181
+
182
+
183
+ @nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
184
+ def cartesian_product(G, H):
185
+ r"""Returns the Cartesian product of G and H.
186
+
187
+ The Cartesian product $P$ of the graphs $G$ and $H$ has a node set that
188
+ is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
189
+ $P$ has an edge $((u,v),(x,y))$ if and only if either $u$ is equal to $x$
190
+ and both $v$ and $y$ are adjacent in $H$ or if $v$ is equal to $y$ and
191
+ both $u$ and $x$ are adjacent in $G$.
192
+
193
+ Parameters
194
+ ----------
195
+ G, H: graphs
196
+ Networkx graphs.
197
+
198
+ Returns
199
+ -------
200
+ P: NetworkX graph
201
+ The Cartesian product of G and H. P will be a multi-graph if either G
202
+ or H is a multi-graph. Will be a directed if G and H are directed,
203
+ and undirected if G and H are undirected.
204
+
205
+ Raises
206
+ ------
207
+ NetworkXError
208
+ If G and H are not both directed or both undirected.
209
+
210
+ Notes
211
+ -----
212
+ Node attributes in P are two-tuple of the G and H node attributes.
213
+ Missing attributes are assigned None.
214
+
215
+ Examples
216
+ --------
217
+ >>> G = nx.Graph()
218
+ >>> H = nx.Graph()
219
+ >>> G.add_node(0, a1=True)
220
+ >>> H.add_node("a", a2="Spam")
221
+ >>> P = nx.cartesian_product(G, H)
222
+ >>> list(P)
223
+ [(0, 'a')]
224
+
225
+ Edge attributes and edge keys (for multigraphs) are also copied to the
226
+ new product graph
227
+ """
228
+ GH = _init_product_graph(G, H)
229
+ GH.add_nodes_from(_node_product(G, H))
230
+ GH.add_edges_from(_edges_cross_nodes(G, H))
231
+ GH.add_edges_from(_nodes_cross_edges(G, H))
232
+ return GH
233
+
234
+
235
+ @nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
236
+ def lexicographic_product(G, H):
237
+ r"""Returns the lexicographic product of G and H.
238
+
239
+ The lexicographical product $P$ of the graphs $G$ and $H$ has a node set
240
+ that is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
241
+ $P$ has an edge $((u,v), (x,y))$ if and only if $(u,v)$ is an edge in $G$
242
+ or $u==v$ and $(x,y)$ is an edge in $H$.
243
+
244
+ Parameters
245
+ ----------
246
+ G, H: graphs
247
+ Networkx graphs.
248
+
249
+ Returns
250
+ -------
251
+ P: NetworkX graph
252
+ The Cartesian product of G and H. P will be a multi-graph if either G
253
+ or H is a multi-graph. Will be a directed if G and H are directed,
254
+ and undirected if G and H are undirected.
255
+
256
+ Raises
257
+ ------
258
+ NetworkXError
259
+ If G and H are not both directed or both undirected.
260
+
261
+ Notes
262
+ -----
263
+ Node attributes in P are two-tuple of the G and H node attributes.
264
+ Missing attributes are assigned None.
265
+
266
+ Examples
267
+ --------
268
+ >>> G = nx.Graph()
269
+ >>> H = nx.Graph()
270
+ >>> G.add_node(0, a1=True)
271
+ >>> H.add_node("a", a2="Spam")
272
+ >>> P = nx.lexicographic_product(G, H)
273
+ >>> list(P)
274
+ [(0, 'a')]
275
+
276
+ Edge attributes and edge keys (for multigraphs) are also copied to the
277
+ new product graph
278
+ """
279
+ GH = _init_product_graph(G, H)
280
+ GH.add_nodes_from(_node_product(G, H))
281
+ # Edges in G regardless of H designation
282
+ GH.add_edges_from(_edges_cross_nodes_and_nodes(G, H))
283
+ # For each x in G, only if there is an edge in H
284
+ GH.add_edges_from(_nodes_cross_edges(G, H))
285
+ return GH
286
+
287
+
288
+ @nx._dispatchable(graphs=_G_H, preserve_node_attrs=True, returns_graph=True)
289
+ def strong_product(G, H):
290
+ r"""Returns the strong product of G and H.
291
+
292
+ The strong product $P$ of the graphs $G$ and $H$ has a node set that
293
+ is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$.
294
+ $P$ has an edge $((u,v), (x,y))$ if and only if
295
+ $u==v$ and $(x,y)$ is an edge in $H$, or
296
+ $x==y$ and $(u,v)$ is an edge in $G$, or
297
+ $(u,v)$ is an edge in $G$ and $(x,y)$ is an edge in $H$.
298
+
299
+ Parameters
300
+ ----------
301
+ G, H: graphs
302
+ Networkx graphs.
303
+
304
+ Returns
305
+ -------
306
+ P: NetworkX graph
307
+ The Cartesian product of G and H. P will be a multi-graph if either G
308
+ or H is a multi-graph. Will be a directed if G and H are directed,
309
+ and undirected if G and H are undirected.
310
+
311
+ Raises
312
+ ------
313
+ NetworkXError
314
+ If G and H are not both directed or both undirected.
315
+
316
+ Notes
317
+ -----
318
+ Node attributes in P are two-tuple of the G and H node attributes.
319
+ Missing attributes are assigned None.
320
+
321
+ Examples
322
+ --------
323
+ >>> G = nx.Graph()
324
+ >>> H = nx.Graph()
325
+ >>> G.add_node(0, a1=True)
326
+ >>> H.add_node("a", a2="Spam")
327
+ >>> P = nx.strong_product(G, H)
328
+ >>> list(P)
329
+ [(0, 'a')]
330
+
331
+ Edge attributes and edge keys (for multigraphs) are also copied to the
332
+ new product graph
333
+ """
334
+ GH = _init_product_graph(G, H)
335
+ GH.add_nodes_from(_node_product(G, H))
336
+ GH.add_edges_from(_nodes_cross_edges(G, H))
337
+ GH.add_edges_from(_edges_cross_nodes(G, H))
338
+ GH.add_edges_from(_directed_edges_cross_edges(G, H))
339
+ if not GH.is_directed():
340
+ GH.add_edges_from(_undirected_edges_cross_edges(G, H))
341
+ return GH
342
+
343
+
344
+ @not_implemented_for("directed")
345
+ @not_implemented_for("multigraph")
346
+ @nx._dispatchable(returns_graph=True)
347
+ def power(G, k):
348
+ """Returns the specified power of a graph.
349
+
350
+ The $k$th power of a simple graph $G$, denoted $G^k$, is a
351
+ graph on the same set of nodes in which two distinct nodes $u$ and
352
+ $v$ are adjacent in $G^k$ if and only if the shortest path
353
+ distance between $u$ and $v$ in $G$ is at most $k$.
354
+
355
+ Parameters
356
+ ----------
357
+ G : graph
358
+ A NetworkX simple graph object.
359
+
360
+ k : positive integer
361
+ The power to which to raise the graph `G`.
362
+
363
+ Returns
364
+ -------
365
+ NetworkX simple graph
366
+ `G` to the power `k`.
367
+
368
+ Raises
369
+ ------
370
+ ValueError
371
+ If the exponent `k` is not positive.
372
+
373
+ NetworkXNotImplemented
374
+ If `G` is not a simple graph.
375
+
376
+ Examples
377
+ --------
378
+ The number of edges will never decrease when taking successive
379
+ powers:
380
+
381
+ >>> G = nx.path_graph(4)
382
+ >>> list(nx.power(G, 2).edges)
383
+ [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
384
+ >>> list(nx.power(G, 3).edges)
385
+ [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
386
+
387
+ The `k` th power of a cycle graph on *n* nodes is the complete graph
388
+ on *n* nodes, if `k` is at least ``n // 2``:
389
+
390
+ >>> G = nx.cycle_graph(5)
391
+ >>> H = nx.complete_graph(5)
392
+ >>> nx.is_isomorphic(nx.power(G, 2), H)
393
+ True
394
+ >>> G = nx.cycle_graph(8)
395
+ >>> H = nx.complete_graph(8)
396
+ >>> nx.is_isomorphic(nx.power(G, 4), H)
397
+ True
398
+
399
+ References
400
+ ----------
401
+ .. [1] J. A. Bondy, U. S. R. Murty, *Graph Theory*. Springer, 2008.
402
+
403
+ Notes
404
+ -----
405
+ This definition of "power graph" comes from Exercise 3.1.6 of
406
+ *Graph Theory* by Bondy and Murty [1]_.
407
+
408
+ """
409
+ if k <= 0:
410
+ raise ValueError("k must be a positive integer")
411
+ H = nx.Graph()
412
+ H.add_nodes_from(G)
413
+ # update BFS code to ignore self loops.
414
+ for n in G:
415
+ seen = {} # level (number of hops) when seen in BFS
416
+ level = 1 # the current level
417
+ nextlevel = G[n]
418
+ while nextlevel:
419
+ thislevel = nextlevel # advance to next level
420
+ nextlevel = {} # and start a new list (fringe)
421
+ for v in thislevel:
422
+ if v == n: # avoid self loop
423
+ continue
424
+ if v not in seen:
425
+ seen[v] = level # set the level of vertex v
426
+ nextlevel.update(G[v]) # add neighbors of v
427
+ if k <= level:
428
+ break
429
+ level += 1
430
+ H.add_edges_from((n, nbr) for nbr in seen)
431
+ return H
432
+
433
+
434
+ @not_implemented_for("multigraph")
435
+ @nx._dispatchable(graphs=_G_H, returns_graph=True)
436
+ def rooted_product(G, H, root):
437
+ """Return the rooted product of graphs G and H rooted at root in H.
438
+
439
+ A new graph is constructed representing the rooted product of
440
+ the inputted graphs, G and H, with a root in H.
441
+ A rooted product duplicates H for each nodes in G with the root
442
+ of H corresponding to the node in G. Nodes are renamed as the direct
443
+ product of G and H. The result is a subgraph of the cartesian product.
444
+
445
+ Parameters
446
+ ----------
447
+ G,H : graph
448
+ A NetworkX graph
449
+ root : node
450
+ A node in H
451
+
452
+ Returns
453
+ -------
454
+ R : The rooted product of G and H with a specified root in H
455
+
456
+ Notes
457
+ -----
458
+ The nodes of R are the Cartesian Product of the nodes of G and H.
459
+ The nodes of G and H are not relabeled.
460
+ """
461
+ if root not in H:
462
+ raise nx.NetworkXError("root must be a vertex in H")
463
+
464
+ R = nx.Graph()
465
+ R.add_nodes_from(product(G, H))
466
+
467
+ R.add_edges_from(((e[0], root), (e[1], root)) for e in G.edges())
468
+ R.add_edges_from(((g, e[0]), (g, e[1])) for g in G for e in H.edges())
469
+
470
+ return R
471
+
472
+
473
+ @not_implemented_for("directed")
474
+ @not_implemented_for("multigraph")
475
+ @nx._dispatchable(graphs=_G_H, returns_graph=True)
476
+ def corona_product(G, H):
477
+ r"""Returns the Corona product of G and H.
478
+
479
+ The corona product of $G$ and $H$ is the graph $C = G \circ H$ obtained by
480
+ taking one copy of $G$, called the center graph, $|V(G)|$ copies of $H$,
481
+ called the outer graph, and making the $i$-th vertex of $G$ adjacent to
482
+ every vertex of the $i$-th copy of $H$, where $1 ≤ i ≤ |V(G)|$.
483
+
484
+ Parameters
485
+ ----------
486
+ G, H: NetworkX graphs
487
+ The graphs to take the carona product of.
488
+ `G` is the center graph and `H` is the outer graph
489
+
490
+ Returns
491
+ -------
492
+ C: NetworkX graph
493
+ The Corona product of G and H.
494
+
495
+ Raises
496
+ ------
497
+ NetworkXError
498
+ If G and H are not both directed or both undirected.
499
+
500
+ Examples
501
+ --------
502
+ >>> G = nx.cycle_graph(4)
503
+ >>> H = nx.path_graph(2)
504
+ >>> C = nx.corona_product(G, H)
505
+ >>> list(C)
506
+ [0, 1, 2, 3, (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
507
+ >>> print(C)
508
+ Graph with 12 nodes and 16 edges
509
+
510
+ References
511
+ ----------
512
+ [1] M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi,
513
+ "Studying the corona product of graphs under some graph invariants,"
514
+ Transactions on Combinatorics, vol. 3, no. 3, pp. 43–49, Sep. 2014,
515
+ doi: 10.22108/toc.2014.5542.
516
+ [2] A. Faraji, "Corona Product in Graph Theory," Ali Faraji, May 11, 2021.
517
+ https://blog.alifaraji.ir/math/graph-theory/corona-product.html (accessed Dec. 07, 2021).
518
+ """
519
+ GH = _init_product_graph(G, H)
520
+ GH.add_nodes_from(G)
521
+ GH.add_edges_from(G.edges)
522
+
523
+ for G_node in G:
524
+ # copy nodes of H in GH, call it H_i
525
+ GH.add_nodes_from((G_node, v) for v in H)
526
+
527
+ # copy edges of H_i based on H
528
+ GH.add_edges_from(
529
+ ((G_node, e0), (G_node, e1), d) for e0, e1, d in H.edges.data()
530
+ )
531
+
532
+ # creating new edges between H_i and a G's node
533
+ GH.add_edges_from((G_node, (G_node, H_node)) for H_node in H)
534
+
535
+ return GH
536
+
537
+
538
+ @nx._dispatchable(
539
+ graphs=_G_H, preserve_edge_attrs=True, preserve_node_attrs=True, returns_graph=True
540
+ )
541
+ def modular_product(G, H):
542
+ r"""Returns the Modular product of G and H.
543
+
544
+ The modular product of `G` and `H` is the graph $M = G \nabla H$,
545
+ consisting of the node set $V(M) = V(G) \times V(H)$ that is the Cartesian
546
+ product of the node sets of `G` and `H`. Further, M contains an edge ((u, v), (x, y)):
547
+
548
+ - if u is adjacent to x in `G` and v is adjacent to y in `H`, or
549
+ - if u is not adjacent to x in `G` and v is not adjacent to y in `H`.
550
+
551
+ More formally::
552
+
553
+ E(M) = {((u, v), (x, y)) | ((u, x) in E(G) and (v, y) in E(H)) or
554
+ ((u, x) not in E(G) and (v, y) not in E(H))}
555
+
556
+ Parameters
557
+ ----------
558
+ G, H: NetworkX graphs
559
+ The graphs to take the modular product of.
560
+
561
+ Returns
562
+ -------
563
+ M: NetworkX graph
564
+ The Modular product of `G` and `H`.
565
+
566
+ Raises
567
+ ------
568
+ NetworkXNotImplemented
569
+ If `G` is not a simple graph.
570
+
571
+ Examples
572
+ --------
573
+ >>> G = nx.cycle_graph(4)
574
+ >>> H = nx.path_graph(2)
575
+ >>> M = nx.modular_product(G, H)
576
+ >>> list(M)
577
+ [(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]
578
+ >>> print(M)
579
+ Graph with 8 nodes and 8 edges
580
+
581
+ Notes
582
+ -----
583
+ The *modular product* is defined in [1]_ and was first
584
+ introduced as the *weak modular product*.
585
+
586
+ The modular product reduces the problem of counting isomorphic subgraphs
587
+ in `G` and `H` to the problem of counting cliques in M. The subgraphs of
588
+ `G` and `H` that are induced by the nodes of a clique in M are
589
+ isomorphic [2]_ [3]_.
590
+
591
+ References
592
+ ----------
593
+ .. [1] R. Hammack, W. Imrich, and S. Klavžar,
594
+ "Handbook of Product Graphs", CRC Press, 2011.
595
+
596
+ .. [2] H. G. Barrow and R. M. Burstall,
597
+ "Subgraph isomorphism, matching relational structures and maximal
598
+ cliques", Information Processing Letters, vol. 4, issue 4, pp. 83-84,
599
+ 1976, https://doi.org/10.1016/0020-0190(76)90049-1.
600
+
601
+ .. [3] V. G. Vizing, "Reduction of the problem of isomorphism and isomorphic
602
+ entrance to the task of finding the nondensity of a graph." Proc. Third
603
+ All-Union Conference on Problems of Theoretical Cybernetics. 1974.
604
+ """
605
+ if G.is_directed() or H.is_directed():
606
+ raise nx.NetworkXNotImplemented(
607
+ "Modular product not implemented for directed graphs"
608
+ )
609
+ if G.is_multigraph() or H.is_multigraph():
610
+ raise nx.NetworkXNotImplemented(
611
+ "Modular product not implemented for multigraphs"
612
+ )
613
+
614
+ GH = _init_product_graph(G, H)
615
+ GH.add_nodes_from(_node_product(G, H))
616
+
617
+ for u, v, c in G.edges(data=True):
618
+ for x, y, d in H.edges(data=True):
619
+ GH.add_edge((u, x), (v, y), **_dict_product(c, d))
620
+ GH.add_edge((v, x), (u, y), **_dict_product(c, d))
621
+
622
+ G = nx.complement(G)
623
+ H = nx.complement(H)
624
+
625
+ for u, v, c in G.edges(data=True):
626
+ for x, y, d in H.edges(data=True):
627
+ GH.add_edge((u, x), (v, y), **_dict_product(c, d))
628
+ GH.add_edge((v, x), (u, y), **_dict_product(c, d))
629
+
630
+ return GH
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/__pycache__/test_binary.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_all.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.utils import edges_equal
5
+
6
+
7
+ def test_union_all_attributes():
8
+ g = nx.Graph()
9
+ g.add_node(0, x=4)
10
+ g.add_node(1, x=5)
11
+ g.add_edge(0, 1, size=5)
12
+ g.graph["name"] = "g"
13
+
14
+ h = g.copy()
15
+ h.graph["name"] = "h"
16
+ h.graph["attr"] = "attr"
17
+ h.nodes[0]["x"] = 7
18
+
19
+ j = g.copy()
20
+ j.graph["name"] = "j"
21
+ j.graph["attr"] = "attr"
22
+ j.nodes[0]["x"] = 7
23
+
24
+ ghj = nx.union_all([g, h, j], rename=("g", "h", "j"))
25
+ assert set(ghj.nodes()) == {"h0", "h1", "g0", "g1", "j0", "j1"}
26
+ for n in ghj:
27
+ graph, node = n
28
+ assert ghj.nodes[n] == eval(graph).nodes[int(node)]
29
+
30
+ assert ghj.graph["attr"] == "attr"
31
+ assert ghj.graph["name"] == "j" # j graph attributes take precedent
32
+
33
+
34
+ def test_intersection_all():
35
+ G = nx.Graph()
36
+ H = nx.Graph()
37
+ R = nx.Graph(awesome=True)
38
+ G.add_nodes_from([1, 2, 3, 4])
39
+ G.add_edge(1, 2)
40
+ G.add_edge(2, 3)
41
+ H.add_nodes_from([1, 2, 3, 4])
42
+ H.add_edge(2, 3)
43
+ H.add_edge(3, 4)
44
+ R.add_nodes_from([1, 2, 3, 4])
45
+ R.add_edge(2, 3)
46
+ R.add_edge(4, 1)
47
+ I = nx.intersection_all([G, H, R])
48
+ assert set(I.nodes()) == {1, 2, 3, 4}
49
+ assert sorted(I.edges()) == [(2, 3)]
50
+ assert I.graph == {}
51
+
52
+
53
+ def test_intersection_all_different_node_sets():
54
+ G = nx.Graph()
55
+ H = nx.Graph()
56
+ R = nx.Graph()
57
+ G.add_nodes_from([1, 2, 3, 4, 6, 7])
58
+ G.add_edge(1, 2)
59
+ G.add_edge(2, 3)
60
+ G.add_edge(6, 7)
61
+ H.add_nodes_from([1, 2, 3, 4])
62
+ H.add_edge(2, 3)
63
+ H.add_edge(3, 4)
64
+ R.add_nodes_from([1, 2, 3, 4, 8, 9])
65
+ R.add_edge(2, 3)
66
+ R.add_edge(4, 1)
67
+ R.add_edge(8, 9)
68
+ I = nx.intersection_all([G, H, R])
69
+ assert set(I.nodes()) == {1, 2, 3, 4}
70
+ assert sorted(I.edges()) == [(2, 3)]
71
+
72
+
73
+ def test_intersection_all_attributes():
74
+ g = nx.Graph()
75
+ g.add_node(0, x=4)
76
+ g.add_node(1, x=5)
77
+ g.add_edge(0, 1, size=5)
78
+ g.graph["name"] = "g"
79
+
80
+ h = g.copy()
81
+ h.graph["name"] = "h"
82
+ h.graph["attr"] = "attr"
83
+ h.nodes[0]["x"] = 7
84
+
85
+ gh = nx.intersection_all([g, h])
86
+ assert set(gh.nodes()) == set(g.nodes())
87
+ assert set(gh.nodes()) == set(h.nodes())
88
+ assert sorted(gh.edges()) == sorted(g.edges())
89
+
90
+
91
+ def test_intersection_all_attributes_different_node_sets():
92
+ g = nx.Graph()
93
+ g.add_node(0, x=4)
94
+ g.add_node(1, x=5)
95
+ g.add_edge(0, 1, size=5)
96
+ g.graph["name"] = "g"
97
+
98
+ h = g.copy()
99
+ g.add_node(2)
100
+ h.graph["name"] = "h"
101
+ h.graph["attr"] = "attr"
102
+ h.nodes[0]["x"] = 7
103
+
104
+ gh = nx.intersection_all([g, h])
105
+ assert set(gh.nodes()) == set(h.nodes())
106
+ assert sorted(gh.edges()) == sorted(g.edges())
107
+
108
+
109
+ def test_intersection_all_multigraph_attributes():
110
+ g = nx.MultiGraph()
111
+ g.add_edge(0, 1, key=0)
112
+ g.add_edge(0, 1, key=1)
113
+ g.add_edge(0, 1, key=2)
114
+ h = nx.MultiGraph()
115
+ h.add_edge(0, 1, key=0)
116
+ h.add_edge(0, 1, key=3)
117
+ gh = nx.intersection_all([g, h])
118
+ assert set(gh.nodes()) == set(g.nodes())
119
+ assert set(gh.nodes()) == set(h.nodes())
120
+ assert sorted(gh.edges()) == [(0, 1)]
121
+ assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
122
+
123
+
124
+ def test_intersection_all_multigraph_attributes_different_node_sets():
125
+ g = nx.MultiGraph()
126
+ g.add_edge(0, 1, key=0)
127
+ g.add_edge(0, 1, key=1)
128
+ g.add_edge(0, 1, key=2)
129
+ g.add_edge(1, 2, key=1)
130
+ g.add_edge(1, 2, key=2)
131
+ h = nx.MultiGraph()
132
+ h.add_edge(0, 1, key=0)
133
+ h.add_edge(0, 1, key=2)
134
+ h.add_edge(0, 1, key=3)
135
+ gh = nx.intersection_all([g, h])
136
+ assert set(gh.nodes()) == set(h.nodes())
137
+ assert sorted(gh.edges()) == [(0, 1), (0, 1)]
138
+ assert sorted(gh.edges(keys=True)) == [(0, 1, 0), (0, 1, 2)]
139
+
140
+
141
+ def test_intersection_all_digraph():
142
+ g = nx.DiGraph()
143
+ g.add_edges_from([(1, 2), (2, 3)])
144
+ h = nx.DiGraph()
145
+ h.add_edges_from([(2, 1), (2, 3)])
146
+ gh = nx.intersection_all([g, h])
147
+ assert sorted(gh.edges()) == [(2, 3)]
148
+
149
+
150
+ def test_union_all_and_compose_all():
151
+ K3 = nx.complete_graph(3)
152
+ P3 = nx.path_graph(3)
153
+
154
+ G1 = nx.DiGraph()
155
+ G1.add_edge("A", "B")
156
+ G1.add_edge("A", "C")
157
+ G1.add_edge("A", "D")
158
+ G2 = nx.DiGraph()
159
+ G2.add_edge("1", "2")
160
+ G2.add_edge("1", "3")
161
+ G2.add_edge("1", "4")
162
+
163
+ G = nx.union_all([G1, G2])
164
+ H = nx.compose_all([G1, G2])
165
+ assert edges_equal(G.edges(), H.edges())
166
+ assert not G.has_edge("A", "1")
167
+ pytest.raises(nx.NetworkXError, nx.union, K3, P3)
168
+ H1 = nx.union_all([H, G1], rename=("H", "G1"))
169
+ assert sorted(H1.nodes()) == [
170
+ "G1A",
171
+ "G1B",
172
+ "G1C",
173
+ "G1D",
174
+ "H1",
175
+ "H2",
176
+ "H3",
177
+ "H4",
178
+ "HA",
179
+ "HB",
180
+ "HC",
181
+ "HD",
182
+ ]
183
+
184
+ H2 = nx.union_all([H, G2], rename=("H", ""))
185
+ assert sorted(H2.nodes()) == [
186
+ "1",
187
+ "2",
188
+ "3",
189
+ "4",
190
+ "H1",
191
+ "H2",
192
+ "H3",
193
+ "H4",
194
+ "HA",
195
+ "HB",
196
+ "HC",
197
+ "HD",
198
+ ]
199
+
200
+ assert not H1.has_edge("NB", "NA")
201
+
202
+ G = nx.compose_all([G, G])
203
+ assert edges_equal(G.edges(), H.edges())
204
+
205
+ G2 = nx.union_all([G2, G2], rename=("", "copy"))
206
+ assert sorted(G2.nodes()) == [
207
+ "1",
208
+ "2",
209
+ "3",
210
+ "4",
211
+ "copy1",
212
+ "copy2",
213
+ "copy3",
214
+ "copy4",
215
+ ]
216
+
217
+ assert sorted(G2.neighbors("copy4")) == []
218
+ assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"]
219
+ assert len(G) == 8
220
+ assert nx.number_of_edges(G) == 6
221
+
222
+ E = nx.disjoint_union_all([G, G])
223
+ assert len(E) == 16
224
+ assert nx.number_of_edges(E) == 12
225
+
226
+ E = nx.disjoint_union_all([G1, G2])
227
+ assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
228
+
229
+ G1 = nx.DiGraph()
230
+ G1.add_edge("A", "B")
231
+ G2 = nx.DiGraph()
232
+ G2.add_edge(1, 2)
233
+ G3 = nx.DiGraph()
234
+ G3.add_edge(11, 22)
235
+ G4 = nx.union_all([G1, G2, G3], rename=("G1", "G2", "G3"))
236
+ assert sorted(G4.nodes()) == ["G1A", "G1B", "G21", "G22", "G311", "G322"]
237
+
238
+
239
+ def test_union_all_multigraph():
240
+ G = nx.MultiGraph()
241
+ G.add_edge(1, 2, key=0)
242
+ G.add_edge(1, 2, key=1)
243
+ H = nx.MultiGraph()
244
+ H.add_edge(3, 4, key=0)
245
+ H.add_edge(3, 4, key=1)
246
+ GH = nx.union_all([G, H])
247
+ assert set(GH) == set(G) | set(H)
248
+ assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
249
+
250
+
251
+ def test_input_output():
252
+ l = [nx.Graph([(1, 2)]), nx.Graph([(3, 4)], awesome=True)]
253
+ U = nx.disjoint_union_all(l)
254
+ assert len(l) == 2
255
+ assert U.graph["awesome"]
256
+ C = nx.compose_all(l)
257
+ assert len(l) == 2
258
+ l = [nx.Graph([(1, 2)]), nx.Graph([(1, 2)])]
259
+ R = nx.intersection_all(l)
260
+ assert len(l) == 2
261
+
262
+
263
+ def test_mixed_type_union():
264
+ with pytest.raises(nx.NetworkXError):
265
+ G = nx.Graph()
266
+ H = nx.MultiGraph()
267
+ I = nx.Graph()
268
+ U = nx.union_all([G, H, I])
269
+ with pytest.raises(nx.NetworkXError):
270
+ X = nx.Graph()
271
+ Y = nx.DiGraph()
272
+ XY = nx.union_all([X, Y])
273
+
274
+
275
+ def test_mixed_type_disjoint_union():
276
+ with pytest.raises(nx.NetworkXError):
277
+ G = nx.Graph()
278
+ H = nx.MultiGraph()
279
+ I = nx.Graph()
280
+ U = nx.disjoint_union_all([G, H, I])
281
+ with pytest.raises(nx.NetworkXError):
282
+ X = nx.Graph()
283
+ Y = nx.DiGraph()
284
+ XY = nx.disjoint_union_all([X, Y])
285
+
286
+
287
+ def test_mixed_type_intersection():
288
+ with pytest.raises(nx.NetworkXError):
289
+ G = nx.Graph()
290
+ H = nx.MultiGraph()
291
+ I = nx.Graph()
292
+ U = nx.intersection_all([G, H, I])
293
+ with pytest.raises(nx.NetworkXError):
294
+ X = nx.Graph()
295
+ Y = nx.DiGraph()
296
+ XY = nx.intersection_all([X, Y])
297
+
298
+
299
+ def test_mixed_type_compose():
300
+ with pytest.raises(nx.NetworkXError):
301
+ G = nx.Graph()
302
+ H = nx.MultiGraph()
303
+ I = nx.Graph()
304
+ U = nx.compose_all([G, H, I])
305
+ with pytest.raises(nx.NetworkXError):
306
+ X = nx.Graph()
307
+ Y = nx.DiGraph()
308
+ XY = nx.compose_all([X, Y])
309
+
310
+
311
+ def test_empty_union():
312
+ with pytest.raises(ValueError):
313
+ nx.union_all([])
314
+
315
+
316
+ def test_empty_disjoint_union():
317
+ with pytest.raises(ValueError):
318
+ nx.disjoint_union_all([])
319
+
320
+
321
+ def test_empty_compose_all():
322
+ with pytest.raises(ValueError):
323
+ nx.compose_all([])
324
+
325
+
326
+ def test_empty_intersection_all():
327
+ with pytest.raises(ValueError):
328
+ nx.intersection_all([])
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_binary.py ADDED
@@ -0,0 +1,471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+ from networkx.classes.tests import dispatch_interface
7
+ from networkx.utils import edges_equal
8
+
9
+
10
+ def test_union_attributes():
11
+ g = nx.Graph()
12
+ g.add_node(0, x=4)
13
+ g.add_node(1, x=5)
14
+ g.add_edge(0, 1, size=5)
15
+ g.graph["name"] = "g"
16
+
17
+ h = g.copy()
18
+ h.graph["name"] = "h"
19
+ h.graph["attr"] = "attr"
20
+ h.nodes[0]["x"] = 7
21
+
22
+ gh = nx.union(g, h, rename=("g", "h"))
23
+ assert set(gh.nodes()) == {"h0", "h1", "g0", "g1"}
24
+ for n in gh:
25
+ graph, node = n
26
+ assert gh.nodes[n] == eval(graph).nodes[int(node)]
27
+
28
+ assert gh.graph["attr"] == "attr"
29
+ assert gh.graph["name"] == "h" # h graph attributes take precedent
30
+
31
+
32
+ def test_intersection():
33
+ G = nx.Graph()
34
+ H = nx.Graph()
35
+ G.add_nodes_from([1, 2, 3, 4])
36
+ G.add_edge(1, 2)
37
+ G.add_edge(2, 3)
38
+ H.add_nodes_from([1, 2, 3, 4])
39
+ H.add_edge(2, 3)
40
+ H.add_edge(3, 4)
41
+ I = nx.intersection(G, H)
42
+ assert set(I.nodes()) == {1, 2, 3, 4}
43
+ assert sorted(I.edges()) == [(2, 3)]
44
+
45
+ ##################
46
+ # Tests for @nx._dispatchable mechanism with multiple graph arguments
47
+ # nx.intersection is called as if it were a re-implementation
48
+ # from another package.
49
+ ###################
50
+ G2 = dispatch_interface.convert(G)
51
+ H2 = dispatch_interface.convert(H)
52
+ I2 = nx.intersection(G2, H2)
53
+ assert set(I2.nodes()) == {1, 2, 3, 4}
54
+ assert sorted(I2.edges()) == [(2, 3)]
55
+ # Only test if not performing auto convert testing of backend implementations
56
+ if not nx.config["backend_priority"]:
57
+ with pytest.raises(TypeError):
58
+ nx.intersection(G2, H)
59
+ with pytest.raises(TypeError):
60
+ nx.intersection(G, H2)
61
+
62
+
63
+ def test_intersection_node_sets_different():
64
+ G = nx.Graph()
65
+ H = nx.Graph()
66
+ G.add_nodes_from([1, 2, 3, 4, 7])
67
+ G.add_edge(1, 2)
68
+ G.add_edge(2, 3)
69
+ H.add_nodes_from([1, 2, 3, 4, 5, 6])
70
+ H.add_edge(2, 3)
71
+ H.add_edge(3, 4)
72
+ H.add_edge(5, 6)
73
+ I = nx.intersection(G, H)
74
+ assert set(I.nodes()) == {1, 2, 3, 4}
75
+ assert sorted(I.edges()) == [(2, 3)]
76
+
77
+
78
+ def test_intersection_attributes():
79
+ g = nx.Graph()
80
+ g.add_node(0, x=4)
81
+ g.add_node(1, x=5)
82
+ g.add_edge(0, 1, size=5)
83
+ g.graph["name"] = "g"
84
+
85
+ h = g.copy()
86
+ h.graph["name"] = "h"
87
+ h.graph["attr"] = "attr"
88
+ h.nodes[0]["x"] = 7
89
+ gh = nx.intersection(g, h)
90
+
91
+ assert set(gh.nodes()) == set(g.nodes())
92
+ assert set(gh.nodes()) == set(h.nodes())
93
+ assert sorted(gh.edges()) == sorted(g.edges())
94
+
95
+
96
+ def test_intersection_attributes_node_sets_different():
97
+ g = nx.Graph()
98
+ g.add_node(0, x=4)
99
+ g.add_node(1, x=5)
100
+ g.add_node(2, x=3)
101
+ g.add_edge(0, 1, size=5)
102
+ g.graph["name"] = "g"
103
+
104
+ h = g.copy()
105
+ h.graph["name"] = "h"
106
+ h.graph["attr"] = "attr"
107
+ h.nodes[0]["x"] = 7
108
+ h.remove_node(2)
109
+
110
+ gh = nx.intersection(g, h)
111
+ assert set(gh.nodes()) == set(h.nodes())
112
+ assert sorted(gh.edges()) == sorted(g.edges())
113
+
114
+
115
+ def test_intersection_multigraph_attributes():
116
+ g = nx.MultiGraph()
117
+ g.add_edge(0, 1, key=0)
118
+ g.add_edge(0, 1, key=1)
119
+ g.add_edge(0, 1, key=2)
120
+ h = nx.MultiGraph()
121
+ h.add_edge(0, 1, key=0)
122
+ h.add_edge(0, 1, key=3)
123
+ gh = nx.intersection(g, h)
124
+ assert set(gh.nodes()) == set(g.nodes())
125
+ assert set(gh.nodes()) == set(h.nodes())
126
+ assert sorted(gh.edges()) == [(0, 1)]
127
+ assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
128
+
129
+
130
+ def test_intersection_multigraph_attributes_node_set_different():
131
+ g = nx.MultiGraph()
132
+ g.add_edge(0, 1, key=0)
133
+ g.add_edge(0, 1, key=1)
134
+ g.add_edge(0, 1, key=2)
135
+ g.add_edge(0, 2, key=2)
136
+ g.add_edge(0, 2, key=1)
137
+ h = nx.MultiGraph()
138
+ h.add_edge(0, 1, key=0)
139
+ h.add_edge(0, 1, key=3)
140
+ gh = nx.intersection(g, h)
141
+ assert set(gh.nodes()) == set(h.nodes())
142
+ assert sorted(gh.edges()) == [(0, 1)]
143
+ assert sorted(gh.edges(keys=True)) == [(0, 1, 0)]
144
+
145
+
146
+ def test_difference():
147
+ G = nx.Graph()
148
+ H = nx.Graph()
149
+ G.add_nodes_from([1, 2, 3, 4])
150
+ G.add_edge(1, 2)
151
+ G.add_edge(2, 3)
152
+ H.add_nodes_from([1, 2, 3, 4])
153
+ H.add_edge(2, 3)
154
+ H.add_edge(3, 4)
155
+ D = nx.difference(G, H)
156
+ assert set(D.nodes()) == {1, 2, 3, 4}
157
+ assert sorted(D.edges()) == [(1, 2)]
158
+ D = nx.difference(H, G)
159
+ assert set(D.nodes()) == {1, 2, 3, 4}
160
+ assert sorted(D.edges()) == [(3, 4)]
161
+ D = nx.symmetric_difference(G, H)
162
+ assert set(D.nodes()) == {1, 2, 3, 4}
163
+ assert sorted(D.edges()) == [(1, 2), (3, 4)]
164
+
165
+
166
+ def test_difference2():
167
+ G = nx.Graph()
168
+ H = nx.Graph()
169
+ G.add_nodes_from([1, 2, 3, 4])
170
+ H.add_nodes_from([1, 2, 3, 4])
171
+ G.add_edge(1, 2)
172
+ H.add_edge(1, 2)
173
+ G.add_edge(2, 3)
174
+ D = nx.difference(G, H)
175
+ assert set(D.nodes()) == {1, 2, 3, 4}
176
+ assert sorted(D.edges()) == [(2, 3)]
177
+ D = nx.difference(H, G)
178
+ assert set(D.nodes()) == {1, 2, 3, 4}
179
+ assert sorted(D.edges()) == []
180
+ H.add_edge(3, 4)
181
+ D = nx.difference(H, G)
182
+ assert set(D.nodes()) == {1, 2, 3, 4}
183
+ assert sorted(D.edges()) == [(3, 4)]
184
+
185
+
186
+ def test_difference_attributes():
187
+ g = nx.Graph()
188
+ g.add_node(0, x=4)
189
+ g.add_node(1, x=5)
190
+ g.add_edge(0, 1, size=5)
191
+ g.graph["name"] = "g"
192
+
193
+ h = g.copy()
194
+ h.graph["name"] = "h"
195
+ h.graph["attr"] = "attr"
196
+ h.nodes[0]["x"] = 7
197
+
198
+ gh = nx.difference(g, h)
199
+ assert set(gh.nodes()) == set(g.nodes())
200
+ assert set(gh.nodes()) == set(h.nodes())
201
+ assert sorted(gh.edges()) == []
202
+ # node and graph data should not be copied over
203
+ assert gh.nodes.data() != g.nodes.data()
204
+ assert gh.graph != g.graph
205
+
206
+
207
+ def test_difference_multigraph_attributes():
208
+ g = nx.MultiGraph()
209
+ g.add_edge(0, 1, key=0)
210
+ g.add_edge(0, 1, key=1)
211
+ g.add_edge(0, 1, key=2)
212
+ h = nx.MultiGraph()
213
+ h.add_edge(0, 1, key=0)
214
+ h.add_edge(0, 1, key=3)
215
+ gh = nx.difference(g, h)
216
+ assert set(gh.nodes()) == set(g.nodes())
217
+ assert set(gh.nodes()) == set(h.nodes())
218
+ assert sorted(gh.edges()) == [(0, 1), (0, 1)]
219
+ assert sorted(gh.edges(keys=True)) == [(0, 1, 1), (0, 1, 2)]
220
+
221
+
222
+ def test_difference_raise():
223
+ G = nx.path_graph(4)
224
+ H = nx.path_graph(3)
225
+ pytest.raises(nx.NetworkXError, nx.difference, G, H)
226
+ pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H)
227
+
228
+
229
+ def test_symmetric_difference_multigraph():
230
+ g = nx.MultiGraph()
231
+ g.add_edge(0, 1, key=0)
232
+ g.add_edge(0, 1, key=1)
233
+ g.add_edge(0, 1, key=2)
234
+ h = nx.MultiGraph()
235
+ h.add_edge(0, 1, key=0)
236
+ h.add_edge(0, 1, key=3)
237
+ gh = nx.symmetric_difference(g, h)
238
+ assert set(gh.nodes()) == set(g.nodes())
239
+ assert set(gh.nodes()) == set(h.nodes())
240
+ assert sorted(gh.edges()) == 3 * [(0, 1)]
241
+ assert sorted(sorted(e) for e in gh.edges(keys=True)) == [
242
+ [0, 1, 1],
243
+ [0, 1, 2],
244
+ [0, 1, 3],
245
+ ]
246
+
247
+
248
+ def test_union_and_compose():
249
+ K3 = nx.complete_graph(3)
250
+ P3 = nx.path_graph(3)
251
+
252
+ G1 = nx.DiGraph()
253
+ G1.add_edge("A", "B")
254
+ G1.add_edge("A", "C")
255
+ G1.add_edge("A", "D")
256
+ G2 = nx.DiGraph()
257
+ G2.add_edge("1", "2")
258
+ G2.add_edge("1", "3")
259
+ G2.add_edge("1", "4")
260
+
261
+ G = nx.union(G1, G2)
262
+ H = nx.compose(G1, G2)
263
+ assert edges_equal(G.edges(), H.edges())
264
+ assert not G.has_edge("A", 1)
265
+ pytest.raises(nx.NetworkXError, nx.union, K3, P3)
266
+ H1 = nx.union(H, G1, rename=("H", "G1"))
267
+ assert sorted(H1.nodes()) == [
268
+ "G1A",
269
+ "G1B",
270
+ "G1C",
271
+ "G1D",
272
+ "H1",
273
+ "H2",
274
+ "H3",
275
+ "H4",
276
+ "HA",
277
+ "HB",
278
+ "HC",
279
+ "HD",
280
+ ]
281
+
282
+ H2 = nx.union(H, G2, rename=("H", ""))
283
+ assert sorted(H2.nodes()) == [
284
+ "1",
285
+ "2",
286
+ "3",
287
+ "4",
288
+ "H1",
289
+ "H2",
290
+ "H3",
291
+ "H4",
292
+ "HA",
293
+ "HB",
294
+ "HC",
295
+ "HD",
296
+ ]
297
+
298
+ assert not H1.has_edge("NB", "NA")
299
+
300
+ G = nx.compose(G, G)
301
+ assert edges_equal(G.edges(), H.edges())
302
+
303
+ G2 = nx.union(G2, G2, rename=("", "copy"))
304
+ assert sorted(G2.nodes()) == [
305
+ "1",
306
+ "2",
307
+ "3",
308
+ "4",
309
+ "copy1",
310
+ "copy2",
311
+ "copy3",
312
+ "copy4",
313
+ ]
314
+
315
+ assert sorted(G2.neighbors("copy4")) == []
316
+ assert sorted(G2.neighbors("copy1")) == ["copy2", "copy3", "copy4"]
317
+ assert len(G) == 8
318
+ assert nx.number_of_edges(G) == 6
319
+
320
+ E = nx.disjoint_union(G, G)
321
+ assert len(E) == 16
322
+ assert nx.number_of_edges(E) == 12
323
+
324
+ E = nx.disjoint_union(G1, G2)
325
+ assert sorted(E.nodes()) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
326
+
327
+ G = nx.Graph()
328
+ H = nx.Graph()
329
+ G.add_nodes_from([(1, {"a1": 1})])
330
+ H.add_nodes_from([(1, {"b1": 1})])
331
+ R = nx.compose(G, H)
332
+ assert R.nodes == {1: {"a1": 1, "b1": 1}}
333
+
334
+
335
+ def test_union_multigraph():
336
+ G = nx.MultiGraph()
337
+ G.add_edge(1, 2, key=0)
338
+ G.add_edge(1, 2, key=1)
339
+ H = nx.MultiGraph()
340
+ H.add_edge(3, 4, key=0)
341
+ H.add_edge(3, 4, key=1)
342
+ GH = nx.union(G, H)
343
+ assert set(GH) == set(G) | set(H)
344
+ assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
345
+
346
+
347
+ def test_disjoint_union_multigraph():
348
+ G = nx.MultiGraph()
349
+ G.add_edge(0, 1, key=0)
350
+ G.add_edge(0, 1, key=1)
351
+ H = nx.MultiGraph()
352
+ H.add_edge(2, 3, key=0)
353
+ H.add_edge(2, 3, key=1)
354
+ GH = nx.disjoint_union(G, H)
355
+ assert set(GH) == set(G) | set(H)
356
+ assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
357
+
358
+
359
+ def test_compose_multigraph():
360
+ G = nx.MultiGraph()
361
+ G.add_edge(1, 2, key=0)
362
+ G.add_edge(1, 2, key=1)
363
+ H = nx.MultiGraph()
364
+ H.add_edge(3, 4, key=0)
365
+ H.add_edge(3, 4, key=1)
366
+ GH = nx.compose(G, H)
367
+ assert set(GH) == set(G) | set(H)
368
+ assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
369
+ H.add_edge(1, 2, key=2)
370
+ GH = nx.compose(G, H)
371
+ assert set(GH) == set(G) | set(H)
372
+ assert set(GH.edges(keys=True)) == set(G.edges(keys=True)) | set(H.edges(keys=True))
373
+
374
+
375
+ def test_full_join_graph():
376
+ # Simple Graphs
377
+ G = nx.Graph()
378
+ G.add_node(0)
379
+ G.add_edge(1, 2)
380
+ H = nx.Graph()
381
+ H.add_edge(3, 4)
382
+
383
+ U = nx.full_join(G, H)
384
+ assert set(U) == set(G) | set(H)
385
+ assert len(U) == len(G) + len(H)
386
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
387
+
388
+ # Rename
389
+ U = nx.full_join(G, H, rename=("g", "h"))
390
+ assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
391
+ assert len(U) == len(G) + len(H)
392
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
393
+
394
+ # Rename graphs with string-like nodes
395
+ G = nx.Graph()
396
+ G.add_node("a")
397
+ G.add_edge("b", "c")
398
+ H = nx.Graph()
399
+ H.add_edge("d", "e")
400
+
401
+ U = nx.full_join(G, H, rename=("g", "h"))
402
+ assert set(U) == {"ga", "gb", "gc", "hd", "he"}
403
+ assert len(U) == len(G) + len(H)
404
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
405
+
406
+ # DiGraphs
407
+ G = nx.DiGraph()
408
+ G.add_node(0)
409
+ G.add_edge(1, 2)
410
+ H = nx.DiGraph()
411
+ H.add_edge(3, 4)
412
+
413
+ U = nx.full_join(G, H)
414
+ assert set(U) == set(G) | set(H)
415
+ assert len(U) == len(G) + len(H)
416
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
417
+
418
+ # DiGraphs Rename
419
+ U = nx.full_join(G, H, rename=("g", "h"))
420
+ assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
421
+ assert len(U) == len(G) + len(H)
422
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
423
+
424
+
425
+ def test_full_join_multigraph():
426
+ # MultiGraphs
427
+ G = nx.MultiGraph()
428
+ G.add_node(0)
429
+ G.add_edge(1, 2)
430
+ H = nx.MultiGraph()
431
+ H.add_edge(3, 4)
432
+
433
+ U = nx.full_join(G, H)
434
+ assert set(U) == set(G) | set(H)
435
+ assert len(U) == len(G) + len(H)
436
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
437
+
438
+ # MultiGraphs rename
439
+ U = nx.full_join(G, H, rename=("g", "h"))
440
+ assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
441
+ assert len(U) == len(G) + len(H)
442
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H)
443
+
444
+ # MultiDiGraphs
445
+ G = nx.MultiDiGraph()
446
+ G.add_node(0)
447
+ G.add_edge(1, 2)
448
+ H = nx.MultiDiGraph()
449
+ H.add_edge(3, 4)
450
+
451
+ U = nx.full_join(G, H)
452
+ assert set(U) == set(G) | set(H)
453
+ assert len(U) == len(G) + len(H)
454
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
455
+
456
+ # MultiDiGraphs rename
457
+ U = nx.full_join(G, H, rename=("g", "h"))
458
+ assert set(U) == {"g0", "g1", "g2", "h3", "h4"}
459
+ assert len(U) == len(G) + len(H)
460
+ assert len(U.edges()) == len(G.edges()) + len(H.edges()) + len(G) * len(H) * 2
461
+
462
+
463
+ def test_mixed_type_union():
464
+ G = nx.Graph()
465
+ H = nx.MultiGraph()
466
+ pytest.raises(nx.NetworkXError, nx.union, G, H)
467
+ pytest.raises(nx.NetworkXError, nx.disjoint_union, G, H)
468
+ pytest.raises(nx.NetworkXError, nx.intersection, G, H)
469
+ pytest.raises(nx.NetworkXError, nx.difference, G, H)
470
+ pytest.raises(nx.NetworkXError, nx.symmetric_difference, G, H)
471
+ pytest.raises(nx.NetworkXError, nx.compose, G, H)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_product.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx.utils import edges_equal
5
+
6
+
7
+ def test_tensor_product_raises():
8
+ with pytest.raises(nx.NetworkXError):
9
+ P = nx.tensor_product(nx.DiGraph(), nx.Graph())
10
+
11
+
12
+ def test_tensor_product_null():
13
+ null = nx.null_graph()
14
+ empty10 = nx.empty_graph(10)
15
+ K3 = nx.complete_graph(3)
16
+ K10 = nx.complete_graph(10)
17
+ P3 = nx.path_graph(3)
18
+ P10 = nx.path_graph(10)
19
+ # null graph
20
+ G = nx.tensor_product(null, null)
21
+ assert nx.is_isomorphic(G, null)
22
+ # null_graph X anything = null_graph and v.v.
23
+ G = nx.tensor_product(null, empty10)
24
+ assert nx.is_isomorphic(G, null)
25
+ G = nx.tensor_product(null, K3)
26
+ assert nx.is_isomorphic(G, null)
27
+ G = nx.tensor_product(null, K10)
28
+ assert nx.is_isomorphic(G, null)
29
+ G = nx.tensor_product(null, P3)
30
+ assert nx.is_isomorphic(G, null)
31
+ G = nx.tensor_product(null, P10)
32
+ assert nx.is_isomorphic(G, null)
33
+ G = nx.tensor_product(empty10, null)
34
+ assert nx.is_isomorphic(G, null)
35
+ G = nx.tensor_product(K3, null)
36
+ assert nx.is_isomorphic(G, null)
37
+ G = nx.tensor_product(K10, null)
38
+ assert nx.is_isomorphic(G, null)
39
+ G = nx.tensor_product(P3, null)
40
+ assert nx.is_isomorphic(G, null)
41
+ G = nx.tensor_product(P10, null)
42
+ assert nx.is_isomorphic(G, null)
43
+
44
+
45
+ def test_tensor_product_size():
46
+ P5 = nx.path_graph(5)
47
+ K3 = nx.complete_graph(3)
48
+ K5 = nx.complete_graph(5)
49
+
50
+ G = nx.tensor_product(P5, K3)
51
+ assert nx.number_of_nodes(G) == 5 * 3
52
+ G = nx.tensor_product(K3, K5)
53
+ assert nx.number_of_nodes(G) == 3 * 5
54
+
55
+
56
+ def test_tensor_product_combinations():
57
+ # basic smoke test, more realistic tests would be useful
58
+ P5 = nx.path_graph(5)
59
+ K3 = nx.complete_graph(3)
60
+ G = nx.tensor_product(P5, K3)
61
+ assert nx.number_of_nodes(G) == 5 * 3
62
+ G = nx.tensor_product(P5, nx.MultiGraph(K3))
63
+ assert nx.number_of_nodes(G) == 5 * 3
64
+ G = nx.tensor_product(nx.MultiGraph(P5), K3)
65
+ assert nx.number_of_nodes(G) == 5 * 3
66
+ G = nx.tensor_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
67
+ assert nx.number_of_nodes(G) == 5 * 3
68
+
69
+ G = nx.tensor_product(nx.DiGraph(P5), nx.DiGraph(K3))
70
+ assert nx.number_of_nodes(G) == 5 * 3
71
+
72
+
73
+ def test_tensor_product_classic_result():
74
+ K2 = nx.complete_graph(2)
75
+ G = nx.petersen_graph()
76
+ G = nx.tensor_product(G, K2)
77
+ assert nx.is_isomorphic(G, nx.desargues_graph())
78
+
79
+ G = nx.cycle_graph(5)
80
+ G = nx.tensor_product(G, K2)
81
+ assert nx.is_isomorphic(G, nx.cycle_graph(10))
82
+
83
+ G = nx.tetrahedral_graph()
84
+ G = nx.tensor_product(G, K2)
85
+ assert nx.is_isomorphic(G, nx.cubical_graph())
86
+
87
+
88
+ def test_tensor_product_random():
89
+ G = nx.erdos_renyi_graph(10, 2 / 10.0)
90
+ H = nx.erdos_renyi_graph(10, 2 / 10.0)
91
+ GH = nx.tensor_product(G, H)
92
+
93
+ for u_G, u_H in GH.nodes():
94
+ for v_G, v_H in GH.nodes():
95
+ if H.has_edge(u_H, v_H) and G.has_edge(u_G, v_G):
96
+ assert GH.has_edge((u_G, u_H), (v_G, v_H))
97
+ else:
98
+ assert not GH.has_edge((u_G, u_H), (v_G, v_H))
99
+
100
+
101
+ def test_cartesian_product_multigraph():
102
+ G = nx.MultiGraph()
103
+ G.add_edge(1, 2, key=0)
104
+ G.add_edge(1, 2, key=1)
105
+ H = nx.MultiGraph()
106
+ H.add_edge(3, 4, key=0)
107
+ H.add_edge(3, 4, key=1)
108
+ GH = nx.cartesian_product(G, H)
109
+ assert set(GH) == {(1, 3), (2, 3), (2, 4), (1, 4)}
110
+ assert {(frozenset([u, v]), k) for u, v, k in GH.edges(keys=True)} == {
111
+ (frozenset([u, v]), k)
112
+ for u, v, k in [
113
+ ((1, 3), (2, 3), 0),
114
+ ((1, 3), (2, 3), 1),
115
+ ((1, 3), (1, 4), 0),
116
+ ((1, 3), (1, 4), 1),
117
+ ((2, 3), (2, 4), 0),
118
+ ((2, 3), (2, 4), 1),
119
+ ((2, 4), (1, 4), 0),
120
+ ((2, 4), (1, 4), 1),
121
+ ]
122
+ }
123
+
124
+
125
+ def test_cartesian_product_raises():
126
+ with pytest.raises(nx.NetworkXError):
127
+ P = nx.cartesian_product(nx.DiGraph(), nx.Graph())
128
+
129
+
130
+ def test_cartesian_product_null():
131
+ null = nx.null_graph()
132
+ empty10 = nx.empty_graph(10)
133
+ K3 = nx.complete_graph(3)
134
+ K10 = nx.complete_graph(10)
135
+ P3 = nx.path_graph(3)
136
+ P10 = nx.path_graph(10)
137
+ # null graph
138
+ G = nx.cartesian_product(null, null)
139
+ assert nx.is_isomorphic(G, null)
140
+ # null_graph X anything = null_graph and v.v.
141
+ G = nx.cartesian_product(null, empty10)
142
+ assert nx.is_isomorphic(G, null)
143
+ G = nx.cartesian_product(null, K3)
144
+ assert nx.is_isomorphic(G, null)
145
+ G = nx.cartesian_product(null, K10)
146
+ assert nx.is_isomorphic(G, null)
147
+ G = nx.cartesian_product(null, P3)
148
+ assert nx.is_isomorphic(G, null)
149
+ G = nx.cartesian_product(null, P10)
150
+ assert nx.is_isomorphic(G, null)
151
+ G = nx.cartesian_product(empty10, null)
152
+ assert nx.is_isomorphic(G, null)
153
+ G = nx.cartesian_product(K3, null)
154
+ assert nx.is_isomorphic(G, null)
155
+ G = nx.cartesian_product(K10, null)
156
+ assert nx.is_isomorphic(G, null)
157
+ G = nx.cartesian_product(P3, null)
158
+ assert nx.is_isomorphic(G, null)
159
+ G = nx.cartesian_product(P10, null)
160
+ assert nx.is_isomorphic(G, null)
161
+
162
+
163
+ def test_cartesian_product_size():
164
+ # order(GXH)=order(G)*order(H)
165
+ K5 = nx.complete_graph(5)
166
+ P5 = nx.path_graph(5)
167
+ K3 = nx.complete_graph(3)
168
+ G = nx.cartesian_product(P5, K3)
169
+ assert nx.number_of_nodes(G) == 5 * 3
170
+ assert nx.number_of_edges(G) == nx.number_of_edges(P5) * nx.number_of_nodes(
171
+ K3
172
+ ) + nx.number_of_edges(K3) * nx.number_of_nodes(P5)
173
+ G = nx.cartesian_product(K3, K5)
174
+ assert nx.number_of_nodes(G) == 3 * 5
175
+ assert nx.number_of_edges(G) == nx.number_of_edges(K5) * nx.number_of_nodes(
176
+ K3
177
+ ) + nx.number_of_edges(K3) * nx.number_of_nodes(K5)
178
+
179
+
180
+ def test_cartesian_product_classic():
181
+ # test some classic product graphs
182
+ P2 = nx.path_graph(2)
183
+ P3 = nx.path_graph(3)
184
+ # cube = 2-path X 2-path
185
+ G = nx.cartesian_product(P2, P2)
186
+ G = nx.cartesian_product(P2, G)
187
+ assert nx.is_isomorphic(G, nx.cubical_graph())
188
+
189
+ # 3x3 grid
190
+ G = nx.cartesian_product(P3, P3)
191
+ assert nx.is_isomorphic(G, nx.grid_2d_graph(3, 3))
192
+
193
+
194
+ def test_cartesian_product_random():
195
+ G = nx.erdos_renyi_graph(10, 2 / 10.0)
196
+ H = nx.erdos_renyi_graph(10, 2 / 10.0)
197
+ GH = nx.cartesian_product(G, H)
198
+
199
+ for u_G, u_H in GH.nodes():
200
+ for v_G, v_H in GH.nodes():
201
+ if (u_G == v_G and H.has_edge(u_H, v_H)) or (
202
+ u_H == v_H and G.has_edge(u_G, v_G)
203
+ ):
204
+ assert GH.has_edge((u_G, u_H), (v_G, v_H))
205
+ else:
206
+ assert not GH.has_edge((u_G, u_H), (v_G, v_H))
207
+
208
+
209
+ def test_lexicographic_product_raises():
210
+ with pytest.raises(nx.NetworkXError):
211
+ P = nx.lexicographic_product(nx.DiGraph(), nx.Graph())
212
+
213
+
214
+ def test_lexicographic_product_null():
215
+ null = nx.null_graph()
216
+ empty10 = nx.empty_graph(10)
217
+ K3 = nx.complete_graph(3)
218
+ K10 = nx.complete_graph(10)
219
+ P3 = nx.path_graph(3)
220
+ P10 = nx.path_graph(10)
221
+ # null graph
222
+ G = nx.lexicographic_product(null, null)
223
+ assert nx.is_isomorphic(G, null)
224
+ # null_graph X anything = null_graph and v.v.
225
+ G = nx.lexicographic_product(null, empty10)
226
+ assert nx.is_isomorphic(G, null)
227
+ G = nx.lexicographic_product(null, K3)
228
+ assert nx.is_isomorphic(G, null)
229
+ G = nx.lexicographic_product(null, K10)
230
+ assert nx.is_isomorphic(G, null)
231
+ G = nx.lexicographic_product(null, P3)
232
+ assert nx.is_isomorphic(G, null)
233
+ G = nx.lexicographic_product(null, P10)
234
+ assert nx.is_isomorphic(G, null)
235
+ G = nx.lexicographic_product(empty10, null)
236
+ assert nx.is_isomorphic(G, null)
237
+ G = nx.lexicographic_product(K3, null)
238
+ assert nx.is_isomorphic(G, null)
239
+ G = nx.lexicographic_product(K10, null)
240
+ assert nx.is_isomorphic(G, null)
241
+ G = nx.lexicographic_product(P3, null)
242
+ assert nx.is_isomorphic(G, null)
243
+ G = nx.lexicographic_product(P10, null)
244
+ assert nx.is_isomorphic(G, null)
245
+
246
+
247
+ def test_lexicographic_product_size():
248
+ K5 = nx.complete_graph(5)
249
+ P5 = nx.path_graph(5)
250
+ K3 = nx.complete_graph(3)
251
+ G = nx.lexicographic_product(P5, K3)
252
+ assert nx.number_of_nodes(G) == 5 * 3
253
+ G = nx.lexicographic_product(K3, K5)
254
+ assert nx.number_of_nodes(G) == 3 * 5
255
+
256
+
257
+ def test_lexicographic_product_combinations():
258
+ P5 = nx.path_graph(5)
259
+ K3 = nx.complete_graph(3)
260
+ G = nx.lexicographic_product(P5, K3)
261
+ assert nx.number_of_nodes(G) == 5 * 3
262
+ G = nx.lexicographic_product(nx.MultiGraph(P5), K3)
263
+ assert nx.number_of_nodes(G) == 5 * 3
264
+ G = nx.lexicographic_product(P5, nx.MultiGraph(K3))
265
+ assert nx.number_of_nodes(G) == 5 * 3
266
+ G = nx.lexicographic_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
267
+ assert nx.number_of_nodes(G) == 5 * 3
268
+
269
+ # No classic easily found classic results for lexicographic product
270
+
271
+
272
+ def test_lexicographic_product_random():
273
+ G = nx.erdos_renyi_graph(10, 2 / 10.0)
274
+ H = nx.erdos_renyi_graph(10, 2 / 10.0)
275
+ GH = nx.lexicographic_product(G, H)
276
+
277
+ for u_G, u_H in GH.nodes():
278
+ for v_G, v_H in GH.nodes():
279
+ if G.has_edge(u_G, v_G) or (u_G == v_G and H.has_edge(u_H, v_H)):
280
+ assert GH.has_edge((u_G, u_H), (v_G, v_H))
281
+ else:
282
+ assert not GH.has_edge((u_G, u_H), (v_G, v_H))
283
+
284
+
285
+ def test_strong_product_raises():
286
+ with pytest.raises(nx.NetworkXError):
287
+ P = nx.strong_product(nx.DiGraph(), nx.Graph())
288
+
289
+
290
+ def test_strong_product_null():
291
+ null = nx.null_graph()
292
+ empty10 = nx.empty_graph(10)
293
+ K3 = nx.complete_graph(3)
294
+ K10 = nx.complete_graph(10)
295
+ P3 = nx.path_graph(3)
296
+ P10 = nx.path_graph(10)
297
+ # null graph
298
+ G = nx.strong_product(null, null)
299
+ assert nx.is_isomorphic(G, null)
300
+ # null_graph X anything = null_graph and v.v.
301
+ G = nx.strong_product(null, empty10)
302
+ assert nx.is_isomorphic(G, null)
303
+ G = nx.strong_product(null, K3)
304
+ assert nx.is_isomorphic(G, null)
305
+ G = nx.strong_product(null, K10)
306
+ assert nx.is_isomorphic(G, null)
307
+ G = nx.strong_product(null, P3)
308
+ assert nx.is_isomorphic(G, null)
309
+ G = nx.strong_product(null, P10)
310
+ assert nx.is_isomorphic(G, null)
311
+ G = nx.strong_product(empty10, null)
312
+ assert nx.is_isomorphic(G, null)
313
+ G = nx.strong_product(K3, null)
314
+ assert nx.is_isomorphic(G, null)
315
+ G = nx.strong_product(K10, null)
316
+ assert nx.is_isomorphic(G, null)
317
+ G = nx.strong_product(P3, null)
318
+ assert nx.is_isomorphic(G, null)
319
+ G = nx.strong_product(P10, null)
320
+ assert nx.is_isomorphic(G, null)
321
+
322
+
323
+ def test_strong_product_size():
324
+ K5 = nx.complete_graph(5)
325
+ P5 = nx.path_graph(5)
326
+ K3 = nx.complete_graph(3)
327
+ G = nx.strong_product(P5, K3)
328
+ assert nx.number_of_nodes(G) == 5 * 3
329
+ G = nx.strong_product(K3, K5)
330
+ assert nx.number_of_nodes(G) == 3 * 5
331
+
332
+
333
+ def test_strong_product_combinations():
334
+ P5 = nx.path_graph(5)
335
+ K3 = nx.complete_graph(3)
336
+ G = nx.strong_product(P5, K3)
337
+ assert nx.number_of_nodes(G) == 5 * 3
338
+ G = nx.strong_product(nx.MultiGraph(P5), K3)
339
+ assert nx.number_of_nodes(G) == 5 * 3
340
+ G = nx.strong_product(P5, nx.MultiGraph(K3))
341
+ assert nx.number_of_nodes(G) == 5 * 3
342
+ G = nx.strong_product(nx.MultiGraph(P5), nx.MultiGraph(K3))
343
+ assert nx.number_of_nodes(G) == 5 * 3
344
+
345
+ # No classic easily found classic results for strong product
346
+
347
+
348
+ def test_strong_product_random():
349
+ G = nx.erdos_renyi_graph(10, 2 / 10.0)
350
+ H = nx.erdos_renyi_graph(10, 2 / 10.0)
351
+ GH = nx.strong_product(G, H)
352
+
353
+ for u_G, u_H in GH.nodes():
354
+ for v_G, v_H in GH.nodes():
355
+ if (
356
+ (u_G == v_G and H.has_edge(u_H, v_H))
357
+ or (u_H == v_H and G.has_edge(u_G, v_G))
358
+ or (G.has_edge(u_G, v_G) and H.has_edge(u_H, v_H))
359
+ ):
360
+ assert GH.has_edge((u_G, u_H), (v_G, v_H))
361
+ else:
362
+ assert not GH.has_edge((u_G, u_H), (v_G, v_H))
363
+
364
+
365
+ def test_graph_power_raises():
366
+ with pytest.raises(nx.NetworkXNotImplemented):
367
+ nx.power(nx.MultiDiGraph(), 2)
368
+
369
+
370
+ def test_graph_power():
371
+ # wikipedia example for graph power
372
+ G = nx.cycle_graph(7)
373
+ G.add_edge(6, 7)
374
+ G.add_edge(7, 8)
375
+ G.add_edge(8, 9)
376
+ G.add_edge(9, 2)
377
+ H = nx.power(G, 2)
378
+
379
+ assert edges_equal(
380
+ list(H.edges()),
381
+ [
382
+ (0, 1),
383
+ (0, 2),
384
+ (0, 5),
385
+ (0, 6),
386
+ (0, 7),
387
+ (1, 9),
388
+ (1, 2),
389
+ (1, 3),
390
+ (1, 6),
391
+ (2, 3),
392
+ (2, 4),
393
+ (2, 8),
394
+ (2, 9),
395
+ (3, 4),
396
+ (3, 5),
397
+ (3, 9),
398
+ (4, 5),
399
+ (4, 6),
400
+ (5, 6),
401
+ (5, 7),
402
+ (6, 7),
403
+ (6, 8),
404
+ (7, 8),
405
+ (7, 9),
406
+ (8, 9),
407
+ ],
408
+ )
409
+
410
+
411
+ def test_graph_power_negative():
412
+ with pytest.raises(ValueError):
413
+ nx.power(nx.Graph(), -1)
414
+
415
+
416
+ def test_rooted_product_raises():
417
+ with pytest.raises(nx.NetworkXError):
418
+ nx.rooted_product(nx.Graph(), nx.path_graph(2), 10)
419
+
420
+
421
+ def test_rooted_product():
422
+ G = nx.cycle_graph(5)
423
+ H = nx.Graph()
424
+ H.add_edges_from([("a", "b"), ("b", "c"), ("b", "d")])
425
+ R = nx.rooted_product(G, H, "a")
426
+ assert len(R) == len(G) * len(H)
427
+ assert R.size() == G.size() + len(G) * H.size()
428
+
429
+
430
+ def test_corona_product():
431
+ G = nx.cycle_graph(3)
432
+ H = nx.path_graph(2)
433
+ C = nx.corona_product(G, H)
434
+ assert len(C) == (len(G) * len(H)) + len(G)
435
+ assert C.size() == G.size() + len(G) * H.size() + len(G) * len(H)
436
+
437
+
438
+ def test_modular_product():
439
+ G = nx.path_graph(3)
440
+ H = nx.path_graph(4)
441
+ M = nx.modular_product(G, H)
442
+ assert len(M) == len(G) * len(H)
443
+
444
+ assert edges_equal(
445
+ list(M.edges()),
446
+ [
447
+ ((0, 0), (1, 1)),
448
+ ((0, 0), (2, 2)),
449
+ ((0, 0), (2, 3)),
450
+ ((0, 1), (1, 0)),
451
+ ((0, 1), (1, 2)),
452
+ ((0, 1), (2, 3)),
453
+ ((0, 2), (1, 1)),
454
+ ((0, 2), (1, 3)),
455
+ ((0, 2), (2, 0)),
456
+ ((0, 3), (1, 2)),
457
+ ((0, 3), (2, 0)),
458
+ ((0, 3), (2, 1)),
459
+ ((1, 0), (2, 1)),
460
+ ((1, 1), (2, 0)),
461
+ ((1, 1), (2, 2)),
462
+ ((1, 2), (2, 1)),
463
+ ((1, 2), (2, 3)),
464
+ ((1, 3), (2, 2)),
465
+ ],
466
+ )
467
+
468
+
469
+ def test_modular_product_raises():
470
+ G = nx.Graph([(0, 1), (1, 2), (2, 0)])
471
+ H = nx.Graph([(0, 1), (1, 2), (2, 0)])
472
+ DG = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
473
+ DH = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
474
+ with pytest.raises(nx.NetworkXNotImplemented):
475
+ nx.modular_product(G, DH)
476
+ with pytest.raises(nx.NetworkXNotImplemented):
477
+ nx.modular_product(DG, H)
478
+ with pytest.raises(nx.NetworkXNotImplemented):
479
+ nx.modular_product(DG, DH)
480
+
481
+ MG = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)])
482
+ MH = nx.MultiGraph([(0, 1), (1, 2), (2, 0), (0, 1)])
483
+ with pytest.raises(nx.NetworkXNotImplemented):
484
+ nx.modular_product(G, MH)
485
+ with pytest.raises(nx.NetworkXNotImplemented):
486
+ nx.modular_product(MG, H)
487
+ with pytest.raises(nx.NetworkXNotImplemented):
488
+ nx.modular_product(MG, MH)
489
+ with pytest.raises(nx.NetworkXNotImplemented):
490
+ # check multigraph with no multiedges
491
+ nx.modular_product(nx.MultiGraph(G), H)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/tests/test_unary.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+
5
+
6
+ def test_complement():
7
+ null = nx.null_graph()
8
+ empty1 = nx.empty_graph(1)
9
+ empty10 = nx.empty_graph(10)
10
+ K3 = nx.complete_graph(3)
11
+ K5 = nx.complete_graph(5)
12
+ K10 = nx.complete_graph(10)
13
+ P2 = nx.path_graph(2)
14
+ P3 = nx.path_graph(3)
15
+ P5 = nx.path_graph(5)
16
+ P10 = nx.path_graph(10)
17
+ # complement of the complete graph is empty
18
+
19
+ G = nx.complement(K3)
20
+ assert nx.is_isomorphic(G, nx.empty_graph(3))
21
+ G = nx.complement(K5)
22
+ assert nx.is_isomorphic(G, nx.empty_graph(5))
23
+ # for any G, G=complement(complement(G))
24
+ P3cc = nx.complement(nx.complement(P3))
25
+ assert nx.is_isomorphic(P3, P3cc)
26
+ nullcc = nx.complement(nx.complement(null))
27
+ assert nx.is_isomorphic(null, nullcc)
28
+ b = nx.bull_graph()
29
+ bcc = nx.complement(nx.complement(b))
30
+ assert nx.is_isomorphic(b, bcc)
31
+
32
+
33
+ def test_complement_2():
34
+ G1 = nx.DiGraph()
35
+ G1.add_edge("A", "B")
36
+ G1.add_edge("A", "C")
37
+ G1.add_edge("A", "D")
38
+ G1C = nx.complement(G1)
39
+ assert sorted(G1C.edges()) == [
40
+ ("B", "A"),
41
+ ("B", "C"),
42
+ ("B", "D"),
43
+ ("C", "A"),
44
+ ("C", "B"),
45
+ ("C", "D"),
46
+ ("D", "A"),
47
+ ("D", "B"),
48
+ ("D", "C"),
49
+ ]
50
+
51
+
52
+ def test_reverse1():
53
+ # Other tests for reverse are done by the DiGraph and MultiDigraph.
54
+ G1 = nx.Graph()
55
+ pytest.raises(nx.NetworkXError, nx.reverse, G1)
env-llmeval/lib/python3.10/site-packages/networkx/algorithms/operators/unary.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unary operations on graphs"""
2
+ import networkx as nx
3
+
4
+ __all__ = ["complement", "reverse"]
5
+
6
+
7
+ @nx._dispatchable(returns_graph=True)
8
+ def complement(G):
9
+ """Returns the graph complement of G.
10
+
11
+ Parameters
12
+ ----------
13
+ G : graph
14
+ A NetworkX graph
15
+
16
+ Returns
17
+ -------
18
+ GC : A new graph.
19
+
20
+ Notes
21
+ -----
22
+ Note that `complement` does not create self-loops and also
23
+ does not produce parallel edges for MultiGraphs.
24
+
25
+ Graph, node, and edge data are not propagated to the new graph.
26
+
27
+ Examples
28
+ --------
29
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
30
+ >>> G_complement = nx.complement(G)
31
+ >>> G_complement.edges() # This shows the edges of the complemented graph
32
+ EdgeView([(1, 4), (1, 5), (2, 4), (2, 5), (4, 5)])
33
+
34
+ """
35
+ R = G.__class__()
36
+ R.add_nodes_from(G)
37
+ R.add_edges_from(
38
+ ((n, n2) for n, nbrs in G.adjacency() for n2 in G if n2 not in nbrs if n != n2)
39
+ )
40
+ return R
41
+
42
+
43
+ @nx._dispatchable(returns_graph=True)
44
+ def reverse(G, copy=True):
45
+ """Returns the reverse directed graph of G.
46
+
47
+ Parameters
48
+ ----------
49
+ G : directed graph
50
+ A NetworkX directed graph
51
+ copy : bool
52
+ If True, then a new graph is returned. If False, then the graph is
53
+ reversed in place.
54
+
55
+ Returns
56
+ -------
57
+ H : directed graph
58
+ The reversed G.
59
+
60
+ Raises
61
+ ------
62
+ NetworkXError
63
+ If graph is undirected.
64
+
65
+ Examples
66
+ --------
67
+ >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
68
+ >>> G_reversed = nx.reverse(G)
69
+ >>> G_reversed.edges()
70
+ OutEdgeView([(2, 1), (3, 1), (3, 2), (4, 3), (5, 3)])
71
+
72
+ """
73
+ if not G.is_directed():
74
+ raise nx.NetworkXError("Cannot reverse an undirected graph.")
75
+ else:
76
+ return G.reverse(copy=copy)