applied-ai-018 commited on
Commit
e7bb10c
·
verified ·
1 Parent(s): 52ad587

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/numpy/array_api/__init__.py +387 -0
  2. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_constants.py +7 -0
  3. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_creation_functions.py +351 -0
  4. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_elementwise_functions.py +765 -0
  5. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_indexing_functions.py +20 -0
  6. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_set_functions.py +106 -0
  7. env-llmeval/lib/python3.10/site-packages/numpy/array_api/_statistical_functions.py +122 -0
  8. env-llmeval/lib/python3.10/site-packages/numpy/array_api/linalg.py +466 -0
  9. env-llmeval/lib/python3.10/site-packages/numpy/array_api/setup.py +12 -0
  10. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__init__.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__main__.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__version__.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/common_rules.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/diagnose.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/func2subr.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/rules.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/setup.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/symbolic.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/use_rules.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__init__.py +9 -0
  30. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-310.pyc +0 -0
  32. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_backend.py +46 -0
  34. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_distutils.py +75 -0
  35. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_meson.py +205 -0
  36. env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/meson.build.template +54 -0
  37. env-llmeval/lib/python3.10/site-packages/numpy/f2py/src/fortranobject.c +1423 -0
  38. env-llmeval/lib/python3.10/site-packages/numpy/f2py/src/fortranobject.h +173 -0
  39. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_compile_function.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-310.pyc +0 -0
  50. env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/numpy/array_api/__init__.py ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ A NumPy sub-namespace that conforms to the Python array API standard.
3
+
4
+ This submodule accompanies NEP 47, which proposes its inclusion in NumPy. It
5
+ is still considered experimental, and will issue a warning when imported.
6
+
7
+ This is a proof-of-concept namespace that wraps the corresponding NumPy
8
+ functions to give a conforming implementation of the Python array API standard
9
+ (https://data-apis.github.io/array-api/latest/). The standard is currently in
10
+ an RFC phase and comments on it are both welcome and encouraged. Comments
11
+ should be made either at https://github.com/data-apis/array-api or at
12
+ https://github.com/data-apis/consortium-feedback/discussions.
13
+
14
+ NumPy already follows the proposed spec for the most part, so this module
15
+ serves mostly as a thin wrapper around it. However, NumPy also implements a
16
+ lot of behavior that is not included in the spec, so this serves as a
17
+ restricted subset of the API. Only those functions that are part of the spec
18
+ are included in this namespace, and all functions are given with the exact
19
+ signature given in the spec, including the use of position-only arguments, and
20
+ omitting any extra keyword arguments implemented by NumPy but not part of the
21
+ spec. The behavior of some functions is also modified from the NumPy behavior
22
+ to conform to the standard. Note that the underlying array object itself is
23
+ wrapped in a wrapper Array() class, but is otherwise unchanged. This submodule
24
+ is implemented in pure Python with no C extensions.
25
+
26
+ The array API spec is designed as a "minimal API subset" and explicitly allows
27
+ libraries to include behaviors not specified by it. But users of this module
28
+ that intend to write portable code should be aware that only those behaviors
29
+ that are listed in the spec are guaranteed to be implemented across libraries.
30
+ Consequently, the NumPy implementation was chosen to be both conforming and
31
+ minimal, so that users can use this implementation of the array API namespace
32
+ and be sure that behaviors that it defines will be available in conforming
33
+ namespaces from other libraries.
34
+
35
+ A few notes about the current state of this submodule:
36
+
37
+ - There is a test suite that tests modules against the array API standard at
38
+ https://github.com/data-apis/array-api-tests. The test suite is still a work
39
+ in progress, but the existing tests pass on this module, with a few
40
+ exceptions:
41
+
42
+ - DLPack support (see https://github.com/data-apis/array-api/pull/106) is
43
+ not included here, as it requires a full implementation in NumPy proper
44
+ first.
45
+
46
+ The test suite is not yet complete, and even the tests that exist are not
47
+ guaranteed to give a comprehensive coverage of the spec. Therefore, when
48
+ reviewing and using this submodule, you should refer to the standard
49
+ documents themselves. There are some tests in numpy.array_api.tests, but
50
+ they primarily focus on things that are not tested by the official array API
51
+ test suite.
52
+
53
+ - There is a custom array object, numpy.array_api.Array, which is returned by
54
+ all functions in this module. All functions in the array API namespace
55
+ implicitly assume that they will only receive this object as input. The only
56
+ way to create instances of this object is to use one of the array creation
57
+ functions. It does not have a public constructor on the object itself. The
58
+ object is a small wrapper class around numpy.ndarray. The main purpose of it
59
+ is to restrict the namespace of the array object to only those dtypes and
60
+ only those methods that are required by the spec, as well as to limit/change
61
+ certain behavior that differs in the spec. In particular:
62
+
63
+ - The array API namespace does not have scalar objects, only 0-D arrays.
64
+ Operations on Array that would create a scalar in NumPy create a 0-D
65
+ array.
66
+
67
+ - Indexing: Only a subset of indices supported by NumPy are required by the
68
+ spec. The Array object restricts indexing to only allow those types of
69
+ indices that are required by the spec. See the docstring of the
70
+ numpy.array_api.Array._validate_indices helper function for more
71
+ information.
72
+
73
+ - Type promotion: Some type promotion rules are different in the spec. In
74
+ particular, the spec does not have any value-based casting. The spec also
75
+ does not require cross-kind casting, like integer -> floating-point. Only
76
+ those promotions that are explicitly required by the array API
77
+ specification are allowed in this module. See NEP 47 for more info.
78
+
79
+ - Functions do not automatically call asarray() on their input, and will not
80
+ work if the input type is not Array. The exception is array creation
81
+ functions, and Python operators on the Array object, which accept Python
82
+ scalars of the same type as the array dtype.
83
+
84
+ - All functions include type annotations, corresponding to those given in the
85
+ spec (see _typing.py for definitions of some custom types). These do not
86
+ currently fully pass mypy due to some limitations in mypy.
87
+
88
+ - Dtype objects are just the NumPy dtype objects, e.g., float64 =
89
+ np.dtype('float64'). The spec does not require any behavior on these dtype
90
+ objects other than that they be accessible by name and be comparable by
91
+ equality, but it was considered too much extra complexity to create custom
92
+ objects to represent dtypes.
93
+
94
+ - All places where the implementations in this submodule are known to deviate
95
+ from their corresponding functions in NumPy are marked with "# Note:"
96
+ comments.
97
+
98
+ Still TODO in this module are:
99
+
100
+ - DLPack support for numpy.ndarray is still in progress. See
101
+ https://github.com/numpy/numpy/pull/19083.
102
+
103
+ - The copy=False keyword argument to asarray() is not yet implemented. This
104
+ requires support in numpy.asarray() first.
105
+
106
+ - Some functions are not yet fully tested in the array API test suite, and may
107
+ require updates that are not yet known until the tests are written.
108
+
109
+ - The spec is still in an RFC phase and may still have minor updates, which
110
+ will need to be reflected here.
111
+
112
+ - Complex number support in array API spec is planned but not yet finalized,
113
+ as are the fft extension and certain linear algebra functions such as eig
114
+ that require complex dtypes.
115
+
116
+ """
117
+
118
+ import warnings
119
+
120
+ warnings.warn(
121
+ "The numpy.array_api submodule is still experimental. See NEP 47.", stacklevel=2
122
+ )
123
+
124
+ __array_api_version__ = "2022.12"
125
+
126
+ __all__ = ["__array_api_version__"]
127
+
128
+ from ._constants import e, inf, nan, pi, newaxis
129
+
130
+ __all__ += ["e", "inf", "nan", "pi", "newaxis"]
131
+
132
+ from ._creation_functions import (
133
+ asarray,
134
+ arange,
135
+ empty,
136
+ empty_like,
137
+ eye,
138
+ from_dlpack,
139
+ full,
140
+ full_like,
141
+ linspace,
142
+ meshgrid,
143
+ ones,
144
+ ones_like,
145
+ tril,
146
+ triu,
147
+ zeros,
148
+ zeros_like,
149
+ )
150
+
151
+ __all__ += [
152
+ "asarray",
153
+ "arange",
154
+ "empty",
155
+ "empty_like",
156
+ "eye",
157
+ "from_dlpack",
158
+ "full",
159
+ "full_like",
160
+ "linspace",
161
+ "meshgrid",
162
+ "ones",
163
+ "ones_like",
164
+ "tril",
165
+ "triu",
166
+ "zeros",
167
+ "zeros_like",
168
+ ]
169
+
170
+ from ._data_type_functions import (
171
+ astype,
172
+ broadcast_arrays,
173
+ broadcast_to,
174
+ can_cast,
175
+ finfo,
176
+ isdtype,
177
+ iinfo,
178
+ result_type,
179
+ )
180
+
181
+ __all__ += [
182
+ "astype",
183
+ "broadcast_arrays",
184
+ "broadcast_to",
185
+ "can_cast",
186
+ "finfo",
187
+ "iinfo",
188
+ "result_type",
189
+ ]
190
+
191
+ from ._dtypes import (
192
+ int8,
193
+ int16,
194
+ int32,
195
+ int64,
196
+ uint8,
197
+ uint16,
198
+ uint32,
199
+ uint64,
200
+ float32,
201
+ float64,
202
+ complex64,
203
+ complex128,
204
+ bool,
205
+ )
206
+
207
+ __all__ += [
208
+ "int8",
209
+ "int16",
210
+ "int32",
211
+ "int64",
212
+ "uint8",
213
+ "uint16",
214
+ "uint32",
215
+ "uint64",
216
+ "float32",
217
+ "float64",
218
+ "bool",
219
+ ]
220
+
221
+ from ._elementwise_functions import (
222
+ abs,
223
+ acos,
224
+ acosh,
225
+ add,
226
+ asin,
227
+ asinh,
228
+ atan,
229
+ atan2,
230
+ atanh,
231
+ bitwise_and,
232
+ bitwise_left_shift,
233
+ bitwise_invert,
234
+ bitwise_or,
235
+ bitwise_right_shift,
236
+ bitwise_xor,
237
+ ceil,
238
+ conj,
239
+ cos,
240
+ cosh,
241
+ divide,
242
+ equal,
243
+ exp,
244
+ expm1,
245
+ floor,
246
+ floor_divide,
247
+ greater,
248
+ greater_equal,
249
+ imag,
250
+ isfinite,
251
+ isinf,
252
+ isnan,
253
+ less,
254
+ less_equal,
255
+ log,
256
+ log1p,
257
+ log2,
258
+ log10,
259
+ logaddexp,
260
+ logical_and,
261
+ logical_not,
262
+ logical_or,
263
+ logical_xor,
264
+ multiply,
265
+ negative,
266
+ not_equal,
267
+ positive,
268
+ pow,
269
+ real,
270
+ remainder,
271
+ round,
272
+ sign,
273
+ sin,
274
+ sinh,
275
+ square,
276
+ sqrt,
277
+ subtract,
278
+ tan,
279
+ tanh,
280
+ trunc,
281
+ )
282
+
283
+ __all__ += [
284
+ "abs",
285
+ "acos",
286
+ "acosh",
287
+ "add",
288
+ "asin",
289
+ "asinh",
290
+ "atan",
291
+ "atan2",
292
+ "atanh",
293
+ "bitwise_and",
294
+ "bitwise_left_shift",
295
+ "bitwise_invert",
296
+ "bitwise_or",
297
+ "bitwise_right_shift",
298
+ "bitwise_xor",
299
+ "ceil",
300
+ "cos",
301
+ "cosh",
302
+ "divide",
303
+ "equal",
304
+ "exp",
305
+ "expm1",
306
+ "floor",
307
+ "floor_divide",
308
+ "greater",
309
+ "greater_equal",
310
+ "isfinite",
311
+ "isinf",
312
+ "isnan",
313
+ "less",
314
+ "less_equal",
315
+ "log",
316
+ "log1p",
317
+ "log2",
318
+ "log10",
319
+ "logaddexp",
320
+ "logical_and",
321
+ "logical_not",
322
+ "logical_or",
323
+ "logical_xor",
324
+ "multiply",
325
+ "negative",
326
+ "not_equal",
327
+ "positive",
328
+ "pow",
329
+ "remainder",
330
+ "round",
331
+ "sign",
332
+ "sin",
333
+ "sinh",
334
+ "square",
335
+ "sqrt",
336
+ "subtract",
337
+ "tan",
338
+ "tanh",
339
+ "trunc",
340
+ ]
341
+
342
+ from ._indexing_functions import take
343
+
344
+ __all__ += ["take"]
345
+
346
+ # linalg is an extension in the array API spec, which is a sub-namespace. Only
347
+ # a subset of functions in it are imported into the top-level namespace.
348
+ from . import linalg
349
+
350
+ __all__ += ["linalg"]
351
+
352
+ from .linalg import matmul, tensordot, matrix_transpose, vecdot
353
+
354
+ __all__ += ["matmul", "tensordot", "matrix_transpose", "vecdot"]
355
+
356
+ from ._manipulation_functions import (
357
+ concat,
358
+ expand_dims,
359
+ flip,
360
+ permute_dims,
361
+ reshape,
362
+ roll,
363
+ squeeze,
364
+ stack,
365
+ )
366
+
367
+ __all__ += ["concat", "expand_dims", "flip", "permute_dims", "reshape", "roll", "squeeze", "stack"]
368
+
369
+ from ._searching_functions import argmax, argmin, nonzero, where
370
+
371
+ __all__ += ["argmax", "argmin", "nonzero", "where"]
372
+
373
+ from ._set_functions import unique_all, unique_counts, unique_inverse, unique_values
374
+
375
+ __all__ += ["unique_all", "unique_counts", "unique_inverse", "unique_values"]
376
+
377
+ from ._sorting_functions import argsort, sort
378
+
379
+ __all__ += ["argsort", "sort"]
380
+
381
+ from ._statistical_functions import max, mean, min, prod, std, sum, var
382
+
383
+ __all__ += ["max", "mean", "min", "prod", "std", "sum", "var"]
384
+
385
+ from ._utility_functions import all, any
386
+
387
+ __all__ += ["all", "any"]
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_constants.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ e = np.e
4
+ inf = np.inf
5
+ nan = np.nan
6
+ pi = np.pi
7
+ newaxis = np.newaxis
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_creation_functions.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+
4
+ from typing import TYPE_CHECKING, List, Optional, Tuple, Union
5
+
6
+ if TYPE_CHECKING:
7
+ from ._typing import (
8
+ Array,
9
+ Device,
10
+ Dtype,
11
+ NestedSequence,
12
+ SupportsBufferProtocol,
13
+ )
14
+ from collections.abc import Sequence
15
+ from ._dtypes import _all_dtypes
16
+
17
+ import numpy as np
18
+
19
+
20
+ def _check_valid_dtype(dtype):
21
+ # Note: Only spelling dtypes as the dtype objects is supported.
22
+
23
+ # We use this instead of "dtype in _all_dtypes" because the dtype objects
24
+ # define equality with the sorts of things we want to disallow.
25
+ for d in (None,) + _all_dtypes:
26
+ if dtype is d:
27
+ return
28
+ raise ValueError("dtype must be one of the supported dtypes")
29
+
30
+
31
+ def asarray(
32
+ obj: Union[
33
+ Array,
34
+ bool,
35
+ int,
36
+ float,
37
+ NestedSequence[bool | int | float],
38
+ SupportsBufferProtocol,
39
+ ],
40
+ /,
41
+ *,
42
+ dtype: Optional[Dtype] = None,
43
+ device: Optional[Device] = None,
44
+ copy: Optional[Union[bool, np._CopyMode]] = None,
45
+ ) -> Array:
46
+ """
47
+ Array API compatible wrapper for :py:func:`np.asarray <numpy.asarray>`.
48
+
49
+ See its docstring for more information.
50
+ """
51
+ # _array_object imports in this file are inside the functions to avoid
52
+ # circular imports
53
+ from ._array_object import Array
54
+
55
+ _check_valid_dtype(dtype)
56
+ if device not in ["cpu", None]:
57
+ raise ValueError(f"Unsupported device {device!r}")
58
+ if copy in (False, np._CopyMode.IF_NEEDED):
59
+ # Note: copy=False is not yet implemented in np.asarray
60
+ raise NotImplementedError("copy=False is not yet implemented")
61
+ if isinstance(obj, Array):
62
+ if dtype is not None and obj.dtype != dtype:
63
+ copy = True
64
+ if copy in (True, np._CopyMode.ALWAYS):
65
+ return Array._new(np.array(obj._array, copy=True, dtype=dtype))
66
+ return obj
67
+ if dtype is None and isinstance(obj, int) and (obj > 2 ** 64 or obj < -(2 ** 63)):
68
+ # Give a better error message in this case. NumPy would convert this
69
+ # to an object array. TODO: This won't handle large integers in lists.
70
+ raise OverflowError("Integer out of bounds for array dtypes")
71
+ res = np.asarray(obj, dtype=dtype)
72
+ return Array._new(res)
73
+
74
+
75
+ def arange(
76
+ start: Union[int, float],
77
+ /,
78
+ stop: Optional[Union[int, float]] = None,
79
+ step: Union[int, float] = 1,
80
+ *,
81
+ dtype: Optional[Dtype] = None,
82
+ device: Optional[Device] = None,
83
+ ) -> Array:
84
+ """
85
+ Array API compatible wrapper for :py:func:`np.arange <numpy.arange>`.
86
+
87
+ See its docstring for more information.
88
+ """
89
+ from ._array_object import Array
90
+
91
+ _check_valid_dtype(dtype)
92
+ if device not in ["cpu", None]:
93
+ raise ValueError(f"Unsupported device {device!r}")
94
+ return Array._new(np.arange(start, stop=stop, step=step, dtype=dtype))
95
+
96
+
97
+ def empty(
98
+ shape: Union[int, Tuple[int, ...]],
99
+ *,
100
+ dtype: Optional[Dtype] = None,
101
+ device: Optional[Device] = None,
102
+ ) -> Array:
103
+ """
104
+ Array API compatible wrapper for :py:func:`np.empty <numpy.empty>`.
105
+
106
+ See its docstring for more information.
107
+ """
108
+ from ._array_object import Array
109
+
110
+ _check_valid_dtype(dtype)
111
+ if device not in ["cpu", None]:
112
+ raise ValueError(f"Unsupported device {device!r}")
113
+ return Array._new(np.empty(shape, dtype=dtype))
114
+
115
+
116
+ def empty_like(
117
+ x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
118
+ ) -> Array:
119
+ """
120
+ Array API compatible wrapper for :py:func:`np.empty_like <numpy.empty_like>`.
121
+
122
+ See its docstring for more information.
123
+ """
124
+ from ._array_object import Array
125
+
126
+ _check_valid_dtype(dtype)
127
+ if device not in ["cpu", None]:
128
+ raise ValueError(f"Unsupported device {device!r}")
129
+ return Array._new(np.empty_like(x._array, dtype=dtype))
130
+
131
+
132
+ def eye(
133
+ n_rows: int,
134
+ n_cols: Optional[int] = None,
135
+ /,
136
+ *,
137
+ k: int = 0,
138
+ dtype: Optional[Dtype] = None,
139
+ device: Optional[Device] = None,
140
+ ) -> Array:
141
+ """
142
+ Array API compatible wrapper for :py:func:`np.eye <numpy.eye>`.
143
+
144
+ See its docstring for more information.
145
+ """
146
+ from ._array_object import Array
147
+
148
+ _check_valid_dtype(dtype)
149
+ if device not in ["cpu", None]:
150
+ raise ValueError(f"Unsupported device {device!r}")
151
+ return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype))
152
+
153
+
154
+ def from_dlpack(x: object, /) -> Array:
155
+ from ._array_object import Array
156
+
157
+ return Array._new(np.from_dlpack(x))
158
+
159
+
160
+ def full(
161
+ shape: Union[int, Tuple[int, ...]],
162
+ fill_value: Union[int, float],
163
+ *,
164
+ dtype: Optional[Dtype] = None,
165
+ device: Optional[Device] = None,
166
+ ) -> Array:
167
+ """
168
+ Array API compatible wrapper for :py:func:`np.full <numpy.full>`.
169
+
170
+ See its docstring for more information.
171
+ """
172
+ from ._array_object import Array
173
+
174
+ _check_valid_dtype(dtype)
175
+ if device not in ["cpu", None]:
176
+ raise ValueError(f"Unsupported device {device!r}")
177
+ if isinstance(fill_value, Array) and fill_value.ndim == 0:
178
+ fill_value = fill_value._array
179
+ res = np.full(shape, fill_value, dtype=dtype)
180
+ if res.dtype not in _all_dtypes:
181
+ # This will happen if the fill value is not something that NumPy
182
+ # coerces to one of the acceptable dtypes.
183
+ raise TypeError("Invalid input to full")
184
+ return Array._new(res)
185
+
186
+
187
+ def full_like(
188
+ x: Array,
189
+ /,
190
+ fill_value: Union[int, float],
191
+ *,
192
+ dtype: Optional[Dtype] = None,
193
+ device: Optional[Device] = None,
194
+ ) -> Array:
195
+ """
196
+ Array API compatible wrapper for :py:func:`np.full_like <numpy.full_like>`.
197
+
198
+ See its docstring for more information.
199
+ """
200
+ from ._array_object import Array
201
+
202
+ _check_valid_dtype(dtype)
203
+ if device not in ["cpu", None]:
204
+ raise ValueError(f"Unsupported device {device!r}")
205
+ res = np.full_like(x._array, fill_value, dtype=dtype)
206
+ if res.dtype not in _all_dtypes:
207
+ # This will happen if the fill value is not something that NumPy
208
+ # coerces to one of the acceptable dtypes.
209
+ raise TypeError("Invalid input to full_like")
210
+ return Array._new(res)
211
+
212
+
213
+ def linspace(
214
+ start: Union[int, float],
215
+ stop: Union[int, float],
216
+ /,
217
+ num: int,
218
+ *,
219
+ dtype: Optional[Dtype] = None,
220
+ device: Optional[Device] = None,
221
+ endpoint: bool = True,
222
+ ) -> Array:
223
+ """
224
+ Array API compatible wrapper for :py:func:`np.linspace <numpy.linspace>`.
225
+
226
+ See its docstring for more information.
227
+ """
228
+ from ._array_object import Array
229
+
230
+ _check_valid_dtype(dtype)
231
+ if device not in ["cpu", None]:
232
+ raise ValueError(f"Unsupported device {device!r}")
233
+ return Array._new(np.linspace(start, stop, num, dtype=dtype, endpoint=endpoint))
234
+
235
+
236
+ def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]:
237
+ """
238
+ Array API compatible wrapper for :py:func:`np.meshgrid <numpy.meshgrid>`.
239
+
240
+ See its docstring for more information.
241
+ """
242
+ from ._array_object import Array
243
+
244
+ # Note: unlike np.meshgrid, only inputs with all the same dtype are
245
+ # allowed
246
+
247
+ if len({a.dtype for a in arrays}) > 1:
248
+ raise ValueError("meshgrid inputs must all have the same dtype")
249
+
250
+ return [
251
+ Array._new(array)
252
+ for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing)
253
+ ]
254
+
255
+
256
+ def ones(
257
+ shape: Union[int, Tuple[int, ...]],
258
+ *,
259
+ dtype: Optional[Dtype] = None,
260
+ device: Optional[Device] = None,
261
+ ) -> Array:
262
+ """
263
+ Array API compatible wrapper for :py:func:`np.ones <numpy.ones>`.
264
+
265
+ See its docstring for more information.
266
+ """
267
+ from ._array_object import Array
268
+
269
+ _check_valid_dtype(dtype)
270
+ if device not in ["cpu", None]:
271
+ raise ValueError(f"Unsupported device {device!r}")
272
+ return Array._new(np.ones(shape, dtype=dtype))
273
+
274
+
275
+ def ones_like(
276
+ x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
277
+ ) -> Array:
278
+ """
279
+ Array API compatible wrapper for :py:func:`np.ones_like <numpy.ones_like>`.
280
+
281
+ See its docstring for more information.
282
+ """
283
+ from ._array_object import Array
284
+
285
+ _check_valid_dtype(dtype)
286
+ if device not in ["cpu", None]:
287
+ raise ValueError(f"Unsupported device {device!r}")
288
+ return Array._new(np.ones_like(x._array, dtype=dtype))
289
+
290
+
291
+ def tril(x: Array, /, *, k: int = 0) -> Array:
292
+ """
293
+ Array API compatible wrapper for :py:func:`np.tril <numpy.tril>`.
294
+
295
+ See its docstring for more information.
296
+ """
297
+ from ._array_object import Array
298
+
299
+ if x.ndim < 2:
300
+ # Note: Unlike np.tril, x must be at least 2-D
301
+ raise ValueError("x must be at least 2-dimensional for tril")
302
+ return Array._new(np.tril(x._array, k=k))
303
+
304
+
305
+ def triu(x: Array, /, *, k: int = 0) -> Array:
306
+ """
307
+ Array API compatible wrapper for :py:func:`np.triu <numpy.triu>`.
308
+
309
+ See its docstring for more information.
310
+ """
311
+ from ._array_object import Array
312
+
313
+ if x.ndim < 2:
314
+ # Note: Unlike np.triu, x must be at least 2-D
315
+ raise ValueError("x must be at least 2-dimensional for triu")
316
+ return Array._new(np.triu(x._array, k=k))
317
+
318
+
319
+ def zeros(
320
+ shape: Union[int, Tuple[int, ...]],
321
+ *,
322
+ dtype: Optional[Dtype] = None,
323
+ device: Optional[Device] = None,
324
+ ) -> Array:
325
+ """
326
+ Array API compatible wrapper for :py:func:`np.zeros <numpy.zeros>`.
327
+
328
+ See its docstring for more information.
329
+ """
330
+ from ._array_object import Array
331
+
332
+ _check_valid_dtype(dtype)
333
+ if device not in ["cpu", None]:
334
+ raise ValueError(f"Unsupported device {device!r}")
335
+ return Array._new(np.zeros(shape, dtype=dtype))
336
+
337
+
338
+ def zeros_like(
339
+ x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None
340
+ ) -> Array:
341
+ """
342
+ Array API compatible wrapper for :py:func:`np.zeros_like <numpy.zeros_like>`.
343
+
344
+ See its docstring for more information.
345
+ """
346
+ from ._array_object import Array
347
+
348
+ _check_valid_dtype(dtype)
349
+ if device not in ["cpu", None]:
350
+ raise ValueError(f"Unsupported device {device!r}")
351
+ return Array._new(np.zeros_like(x._array, dtype=dtype))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_elementwise_functions.py ADDED
@@ -0,0 +1,765 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._dtypes import (
4
+ _boolean_dtypes,
5
+ _floating_dtypes,
6
+ _real_floating_dtypes,
7
+ _complex_floating_dtypes,
8
+ _integer_dtypes,
9
+ _integer_or_boolean_dtypes,
10
+ _real_numeric_dtypes,
11
+ _numeric_dtypes,
12
+ _result_type,
13
+ )
14
+ from ._array_object import Array
15
+
16
+ import numpy as np
17
+
18
+
19
+ def abs(x: Array, /) -> Array:
20
+ """
21
+ Array API compatible wrapper for :py:func:`np.abs <numpy.abs>`.
22
+
23
+ See its docstring for more information.
24
+ """
25
+ if x.dtype not in _numeric_dtypes:
26
+ raise TypeError("Only numeric dtypes are allowed in abs")
27
+ return Array._new(np.abs(x._array))
28
+
29
+
30
+ # Note: the function name is different here
31
+ def acos(x: Array, /) -> Array:
32
+ """
33
+ Array API compatible wrapper for :py:func:`np.arccos <numpy.arccos>`.
34
+
35
+ See its docstring for more information.
36
+ """
37
+ if x.dtype not in _floating_dtypes:
38
+ raise TypeError("Only floating-point dtypes are allowed in acos")
39
+ return Array._new(np.arccos(x._array))
40
+
41
+
42
+ # Note: the function name is different here
43
+ def acosh(x: Array, /) -> Array:
44
+ """
45
+ Array API compatible wrapper for :py:func:`np.arccosh <numpy.arccosh>`.
46
+
47
+ See its docstring for more information.
48
+ """
49
+ if x.dtype not in _floating_dtypes:
50
+ raise TypeError("Only floating-point dtypes are allowed in acosh")
51
+ return Array._new(np.arccosh(x._array))
52
+
53
+
54
+ def add(x1: Array, x2: Array, /) -> Array:
55
+ """
56
+ Array API compatible wrapper for :py:func:`np.add <numpy.add>`.
57
+
58
+ See its docstring for more information.
59
+ """
60
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
61
+ raise TypeError("Only numeric dtypes are allowed in add")
62
+ # Call result type here just to raise on disallowed type combinations
63
+ _result_type(x1.dtype, x2.dtype)
64
+ x1, x2 = Array._normalize_two_args(x1, x2)
65
+ return Array._new(np.add(x1._array, x2._array))
66
+
67
+
68
+ # Note: the function name is different here
69
+ def asin(x: Array, /) -> Array:
70
+ """
71
+ Array API compatible wrapper for :py:func:`np.arcsin <numpy.arcsin>`.
72
+
73
+ See its docstring for more information.
74
+ """
75
+ if x.dtype not in _floating_dtypes:
76
+ raise TypeError("Only floating-point dtypes are allowed in asin")
77
+ return Array._new(np.arcsin(x._array))
78
+
79
+
80
+ # Note: the function name is different here
81
+ def asinh(x: Array, /) -> Array:
82
+ """
83
+ Array API compatible wrapper for :py:func:`np.arcsinh <numpy.arcsinh>`.
84
+
85
+ See its docstring for more information.
86
+ """
87
+ if x.dtype not in _floating_dtypes:
88
+ raise TypeError("Only floating-point dtypes are allowed in asinh")
89
+ return Array._new(np.arcsinh(x._array))
90
+
91
+
92
+ # Note: the function name is different here
93
+ def atan(x: Array, /) -> Array:
94
+ """
95
+ Array API compatible wrapper for :py:func:`np.arctan <numpy.arctan>`.
96
+
97
+ See its docstring for more information.
98
+ """
99
+ if x.dtype not in _floating_dtypes:
100
+ raise TypeError("Only floating-point dtypes are allowed in atan")
101
+ return Array._new(np.arctan(x._array))
102
+
103
+
104
+ # Note: the function name is different here
105
+ def atan2(x1: Array, x2: Array, /) -> Array:
106
+ """
107
+ Array API compatible wrapper for :py:func:`np.arctan2 <numpy.arctan2>`.
108
+
109
+ See its docstring for more information.
110
+ """
111
+ if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
112
+ raise TypeError("Only real floating-point dtypes are allowed in atan2")
113
+ # Call result type here just to raise on disallowed type combinations
114
+ _result_type(x1.dtype, x2.dtype)
115
+ x1, x2 = Array._normalize_two_args(x1, x2)
116
+ return Array._new(np.arctan2(x1._array, x2._array))
117
+
118
+
119
+ # Note: the function name is different here
120
+ def atanh(x: Array, /) -> Array:
121
+ """
122
+ Array API compatible wrapper for :py:func:`np.arctanh <numpy.arctanh>`.
123
+
124
+ See its docstring for more information.
125
+ """
126
+ if x.dtype not in _floating_dtypes:
127
+ raise TypeError("Only floating-point dtypes are allowed in atanh")
128
+ return Array._new(np.arctanh(x._array))
129
+
130
+
131
+ def bitwise_and(x1: Array, x2: Array, /) -> Array:
132
+ """
133
+ Array API compatible wrapper for :py:func:`np.bitwise_and <numpy.bitwise_and>`.
134
+
135
+ See its docstring for more information.
136
+ """
137
+ if (
138
+ x1.dtype not in _integer_or_boolean_dtypes
139
+ or x2.dtype not in _integer_or_boolean_dtypes
140
+ ):
141
+ raise TypeError("Only integer or boolean dtypes are allowed in bitwise_and")
142
+ # Call result type here just to raise on disallowed type combinations
143
+ _result_type(x1.dtype, x2.dtype)
144
+ x1, x2 = Array._normalize_two_args(x1, x2)
145
+ return Array._new(np.bitwise_and(x1._array, x2._array))
146
+
147
+
148
+ # Note: the function name is different here
149
+ def bitwise_left_shift(x1: Array, x2: Array, /) -> Array:
150
+ """
151
+ Array API compatible wrapper for :py:func:`np.left_shift <numpy.left_shift>`.
152
+
153
+ See its docstring for more information.
154
+ """
155
+ if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
156
+ raise TypeError("Only integer dtypes are allowed in bitwise_left_shift")
157
+ # Call result type here just to raise on disallowed type combinations
158
+ _result_type(x1.dtype, x2.dtype)
159
+ x1, x2 = Array._normalize_two_args(x1, x2)
160
+ # Note: bitwise_left_shift is only defined for x2 nonnegative.
161
+ if np.any(x2._array < 0):
162
+ raise ValueError("bitwise_left_shift(x1, x2) is only defined for x2 >= 0")
163
+ return Array._new(np.left_shift(x1._array, x2._array))
164
+
165
+
166
+ # Note: the function name is different here
167
+ def bitwise_invert(x: Array, /) -> Array:
168
+ """
169
+ Array API compatible wrapper for :py:func:`np.invert <numpy.invert>`.
170
+
171
+ See its docstring for more information.
172
+ """
173
+ if x.dtype not in _integer_or_boolean_dtypes:
174
+ raise TypeError("Only integer or boolean dtypes are allowed in bitwise_invert")
175
+ return Array._new(np.invert(x._array))
176
+
177
+
178
+ def bitwise_or(x1: Array, x2: Array, /) -> Array:
179
+ """
180
+ Array API compatible wrapper for :py:func:`np.bitwise_or <numpy.bitwise_or>`.
181
+
182
+ See its docstring for more information.
183
+ """
184
+ if (
185
+ x1.dtype not in _integer_or_boolean_dtypes
186
+ or x2.dtype not in _integer_or_boolean_dtypes
187
+ ):
188
+ raise TypeError("Only integer or boolean dtypes are allowed in bitwise_or")
189
+ # Call result type here just to raise on disallowed type combinations
190
+ _result_type(x1.dtype, x2.dtype)
191
+ x1, x2 = Array._normalize_two_args(x1, x2)
192
+ return Array._new(np.bitwise_or(x1._array, x2._array))
193
+
194
+
195
+ # Note: the function name is different here
196
+ def bitwise_right_shift(x1: Array, x2: Array, /) -> Array:
197
+ """
198
+ Array API compatible wrapper for :py:func:`np.right_shift <numpy.right_shift>`.
199
+
200
+ See its docstring for more information.
201
+ """
202
+ if x1.dtype not in _integer_dtypes or x2.dtype not in _integer_dtypes:
203
+ raise TypeError("Only integer dtypes are allowed in bitwise_right_shift")
204
+ # Call result type here just to raise on disallowed type combinations
205
+ _result_type(x1.dtype, x2.dtype)
206
+ x1, x2 = Array._normalize_two_args(x1, x2)
207
+ # Note: bitwise_right_shift is only defined for x2 nonnegative.
208
+ if np.any(x2._array < 0):
209
+ raise ValueError("bitwise_right_shift(x1, x2) is only defined for x2 >= 0")
210
+ return Array._new(np.right_shift(x1._array, x2._array))
211
+
212
+
213
+ def bitwise_xor(x1: Array, x2: Array, /) -> Array:
214
+ """
215
+ Array API compatible wrapper for :py:func:`np.bitwise_xor <numpy.bitwise_xor>`.
216
+
217
+ See its docstring for more information.
218
+ """
219
+ if (
220
+ x1.dtype not in _integer_or_boolean_dtypes
221
+ or x2.dtype not in _integer_or_boolean_dtypes
222
+ ):
223
+ raise TypeError("Only integer or boolean dtypes are allowed in bitwise_xor")
224
+ # Call result type here just to raise on disallowed type combinations
225
+ _result_type(x1.dtype, x2.dtype)
226
+ x1, x2 = Array._normalize_two_args(x1, x2)
227
+ return Array._new(np.bitwise_xor(x1._array, x2._array))
228
+
229
+
230
+ def ceil(x: Array, /) -> Array:
231
+ """
232
+ Array API compatible wrapper for :py:func:`np.ceil <numpy.ceil>`.
233
+
234
+ See its docstring for more information.
235
+ """
236
+ if x.dtype not in _real_numeric_dtypes:
237
+ raise TypeError("Only real numeric dtypes are allowed in ceil")
238
+ if x.dtype in _integer_dtypes:
239
+ # Note: The return dtype of ceil is the same as the input
240
+ return x
241
+ return Array._new(np.ceil(x._array))
242
+
243
+
244
+ def conj(x: Array, /) -> Array:
245
+ """
246
+ Array API compatible wrapper for :py:func:`np.conj <numpy.conj>`.
247
+
248
+ See its docstring for more information.
249
+ """
250
+ if x.dtype not in _complex_floating_dtypes:
251
+ raise TypeError("Only complex floating-point dtypes are allowed in conj")
252
+ return Array._new(np.conj(x))
253
+
254
+
255
+ def cos(x: Array, /) -> Array:
256
+ """
257
+ Array API compatible wrapper for :py:func:`np.cos <numpy.cos>`.
258
+
259
+ See its docstring for more information.
260
+ """
261
+ if x.dtype not in _floating_dtypes:
262
+ raise TypeError("Only floating-point dtypes are allowed in cos")
263
+ return Array._new(np.cos(x._array))
264
+
265
+
266
+ def cosh(x: Array, /) -> Array:
267
+ """
268
+ Array API compatible wrapper for :py:func:`np.cosh <numpy.cosh>`.
269
+
270
+ See its docstring for more information.
271
+ """
272
+ if x.dtype not in _floating_dtypes:
273
+ raise TypeError("Only floating-point dtypes are allowed in cosh")
274
+ return Array._new(np.cosh(x._array))
275
+
276
+
277
+ def divide(x1: Array, x2: Array, /) -> Array:
278
+ """
279
+ Array API compatible wrapper for :py:func:`np.divide <numpy.divide>`.
280
+
281
+ See its docstring for more information.
282
+ """
283
+ if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
284
+ raise TypeError("Only floating-point dtypes are allowed in divide")
285
+ # Call result type here just to raise on disallowed type combinations
286
+ _result_type(x1.dtype, x2.dtype)
287
+ x1, x2 = Array._normalize_two_args(x1, x2)
288
+ return Array._new(np.divide(x1._array, x2._array))
289
+
290
+
291
+ def equal(x1: Array, x2: Array, /) -> Array:
292
+ """
293
+ Array API compatible wrapper for :py:func:`np.equal <numpy.equal>`.
294
+
295
+ See its docstring for more information.
296
+ """
297
+ # Call result type here just to raise on disallowed type combinations
298
+ _result_type(x1.dtype, x2.dtype)
299
+ x1, x2 = Array._normalize_two_args(x1, x2)
300
+ return Array._new(np.equal(x1._array, x2._array))
301
+
302
+
303
+ def exp(x: Array, /) -> Array:
304
+ """
305
+ Array API compatible wrapper for :py:func:`np.exp <numpy.exp>`.
306
+
307
+ See its docstring for more information.
308
+ """
309
+ if x.dtype not in _floating_dtypes:
310
+ raise TypeError("Only floating-point dtypes are allowed in exp")
311
+ return Array._new(np.exp(x._array))
312
+
313
+
314
+ def expm1(x: Array, /) -> Array:
315
+ """
316
+ Array API compatible wrapper for :py:func:`np.expm1 <numpy.expm1>`.
317
+
318
+ See its docstring for more information.
319
+ """
320
+ if x.dtype not in _floating_dtypes:
321
+ raise TypeError("Only floating-point dtypes are allowed in expm1")
322
+ return Array._new(np.expm1(x._array))
323
+
324
+
325
+ def floor(x: Array, /) -> Array:
326
+ """
327
+ Array API compatible wrapper for :py:func:`np.floor <numpy.floor>`.
328
+
329
+ See its docstring for more information.
330
+ """
331
+ if x.dtype not in _real_numeric_dtypes:
332
+ raise TypeError("Only real numeric dtypes are allowed in floor")
333
+ if x.dtype in _integer_dtypes:
334
+ # Note: The return dtype of floor is the same as the input
335
+ return x
336
+ return Array._new(np.floor(x._array))
337
+
338
+
339
+ def floor_divide(x1: Array, x2: Array, /) -> Array:
340
+ """
341
+ Array API compatible wrapper for :py:func:`np.floor_divide <numpy.floor_divide>`.
342
+
343
+ See its docstring for more information.
344
+ """
345
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
346
+ raise TypeError("Only real numeric dtypes are allowed in floor_divide")
347
+ # Call result type here just to raise on disallowed type combinations
348
+ _result_type(x1.dtype, x2.dtype)
349
+ x1, x2 = Array._normalize_two_args(x1, x2)
350
+ return Array._new(np.floor_divide(x1._array, x2._array))
351
+
352
+
353
+ def greater(x1: Array, x2: Array, /) -> Array:
354
+ """
355
+ Array API compatible wrapper for :py:func:`np.greater <numpy.greater>`.
356
+
357
+ See its docstring for more information.
358
+ """
359
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
360
+ raise TypeError("Only real numeric dtypes are allowed in greater")
361
+ # Call result type here just to raise on disallowed type combinations
362
+ _result_type(x1.dtype, x2.dtype)
363
+ x1, x2 = Array._normalize_two_args(x1, x2)
364
+ return Array._new(np.greater(x1._array, x2._array))
365
+
366
+
367
+ def greater_equal(x1: Array, x2: Array, /) -> Array:
368
+ """
369
+ Array API compatible wrapper for :py:func:`np.greater_equal <numpy.greater_equal>`.
370
+
371
+ See its docstring for more information.
372
+ """
373
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
374
+ raise TypeError("Only real numeric dtypes are allowed in greater_equal")
375
+ # Call result type here just to raise on disallowed type combinations
376
+ _result_type(x1.dtype, x2.dtype)
377
+ x1, x2 = Array._normalize_two_args(x1, x2)
378
+ return Array._new(np.greater_equal(x1._array, x2._array))
379
+
380
+
381
+ def imag(x: Array, /) -> Array:
382
+ """
383
+ Array API compatible wrapper for :py:func:`np.imag <numpy.imag>`.
384
+
385
+ See its docstring for more information.
386
+ """
387
+ if x.dtype not in _complex_floating_dtypes:
388
+ raise TypeError("Only complex floating-point dtypes are allowed in imag")
389
+ return Array._new(np.imag(x))
390
+
391
+
392
+ def isfinite(x: Array, /) -> Array:
393
+ """
394
+ Array API compatible wrapper for :py:func:`np.isfinite <numpy.isfinite>`.
395
+
396
+ See its docstring for more information.
397
+ """
398
+ if x.dtype not in _numeric_dtypes:
399
+ raise TypeError("Only numeric dtypes are allowed in isfinite")
400
+ return Array._new(np.isfinite(x._array))
401
+
402
+
403
+ def isinf(x: Array, /) -> Array:
404
+ """
405
+ Array API compatible wrapper for :py:func:`np.isinf <numpy.isinf>`.
406
+
407
+ See its docstring for more information.
408
+ """
409
+ if x.dtype not in _numeric_dtypes:
410
+ raise TypeError("Only numeric dtypes are allowed in isinf")
411
+ return Array._new(np.isinf(x._array))
412
+
413
+
414
+ def isnan(x: Array, /) -> Array:
415
+ """
416
+ Array API compatible wrapper for :py:func:`np.isnan <numpy.isnan>`.
417
+
418
+ See its docstring for more information.
419
+ """
420
+ if x.dtype not in _numeric_dtypes:
421
+ raise TypeError("Only numeric dtypes are allowed in isnan")
422
+ return Array._new(np.isnan(x._array))
423
+
424
+
425
+ def less(x1: Array, x2: Array, /) -> Array:
426
+ """
427
+ Array API compatible wrapper for :py:func:`np.less <numpy.less>`.
428
+
429
+ See its docstring for more information.
430
+ """
431
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
432
+ raise TypeError("Only real numeric dtypes are allowed in less")
433
+ # Call result type here just to raise on disallowed type combinations
434
+ _result_type(x1.dtype, x2.dtype)
435
+ x1, x2 = Array._normalize_two_args(x1, x2)
436
+ return Array._new(np.less(x1._array, x2._array))
437
+
438
+
439
+ def less_equal(x1: Array, x2: Array, /) -> Array:
440
+ """
441
+ Array API compatible wrapper for :py:func:`np.less_equal <numpy.less_equal>`.
442
+
443
+ See its docstring for more information.
444
+ """
445
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
446
+ raise TypeError("Only real numeric dtypes are allowed in less_equal")
447
+ # Call result type here just to raise on disallowed type combinations
448
+ _result_type(x1.dtype, x2.dtype)
449
+ x1, x2 = Array._normalize_two_args(x1, x2)
450
+ return Array._new(np.less_equal(x1._array, x2._array))
451
+
452
+
453
+ def log(x: Array, /) -> Array:
454
+ """
455
+ Array API compatible wrapper for :py:func:`np.log <numpy.log>`.
456
+
457
+ See its docstring for more information.
458
+ """
459
+ if x.dtype not in _floating_dtypes:
460
+ raise TypeError("Only floating-point dtypes are allowed in log")
461
+ return Array._new(np.log(x._array))
462
+
463
+
464
+ def log1p(x: Array, /) -> Array:
465
+ """
466
+ Array API compatible wrapper for :py:func:`np.log1p <numpy.log1p>`.
467
+
468
+ See its docstring for more information.
469
+ """
470
+ if x.dtype not in _floating_dtypes:
471
+ raise TypeError("Only floating-point dtypes are allowed in log1p")
472
+ return Array._new(np.log1p(x._array))
473
+
474
+
475
+ def log2(x: Array, /) -> Array:
476
+ """
477
+ Array API compatible wrapper for :py:func:`np.log2 <numpy.log2>`.
478
+
479
+ See its docstring for more information.
480
+ """
481
+ if x.dtype not in _floating_dtypes:
482
+ raise TypeError("Only floating-point dtypes are allowed in log2")
483
+ return Array._new(np.log2(x._array))
484
+
485
+
486
+ def log10(x: Array, /) -> Array:
487
+ """
488
+ Array API compatible wrapper for :py:func:`np.log10 <numpy.log10>`.
489
+
490
+ See its docstring for more information.
491
+ """
492
+ if x.dtype not in _floating_dtypes:
493
+ raise TypeError("Only floating-point dtypes are allowed in log10")
494
+ return Array._new(np.log10(x._array))
495
+
496
+
497
+ def logaddexp(x1: Array, x2: Array) -> Array:
498
+ """
499
+ Array API compatible wrapper for :py:func:`np.logaddexp <numpy.logaddexp>`.
500
+
501
+ See its docstring for more information.
502
+ """
503
+ if x1.dtype not in _real_floating_dtypes or x2.dtype not in _real_floating_dtypes:
504
+ raise TypeError("Only real floating-point dtypes are allowed in logaddexp")
505
+ # Call result type here just to raise on disallowed type combinations
506
+ _result_type(x1.dtype, x2.dtype)
507
+ x1, x2 = Array._normalize_two_args(x1, x2)
508
+ return Array._new(np.logaddexp(x1._array, x2._array))
509
+
510
+
511
+ def logical_and(x1: Array, x2: Array, /) -> Array:
512
+ """
513
+ Array API compatible wrapper for :py:func:`np.logical_and <numpy.logical_and>`.
514
+
515
+ See its docstring for more information.
516
+ """
517
+ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
518
+ raise TypeError("Only boolean dtypes are allowed in logical_and")
519
+ # Call result type here just to raise on disallowed type combinations
520
+ _result_type(x1.dtype, x2.dtype)
521
+ x1, x2 = Array._normalize_two_args(x1, x2)
522
+ return Array._new(np.logical_and(x1._array, x2._array))
523
+
524
+
525
+ def logical_not(x: Array, /) -> Array:
526
+ """
527
+ Array API compatible wrapper for :py:func:`np.logical_not <numpy.logical_not>`.
528
+
529
+ See its docstring for more information.
530
+ """
531
+ if x.dtype not in _boolean_dtypes:
532
+ raise TypeError("Only boolean dtypes are allowed in logical_not")
533
+ return Array._new(np.logical_not(x._array))
534
+
535
+
536
+ def logical_or(x1: Array, x2: Array, /) -> Array:
537
+ """
538
+ Array API compatible wrapper for :py:func:`np.logical_or <numpy.logical_or>`.
539
+
540
+ See its docstring for more information.
541
+ """
542
+ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
543
+ raise TypeError("Only boolean dtypes are allowed in logical_or")
544
+ # Call result type here just to raise on disallowed type combinations
545
+ _result_type(x1.dtype, x2.dtype)
546
+ x1, x2 = Array._normalize_two_args(x1, x2)
547
+ return Array._new(np.logical_or(x1._array, x2._array))
548
+
549
+
550
+ def logical_xor(x1: Array, x2: Array, /) -> Array:
551
+ """
552
+ Array API compatible wrapper for :py:func:`np.logical_xor <numpy.logical_xor>`.
553
+
554
+ See its docstring for more information.
555
+ """
556
+ if x1.dtype not in _boolean_dtypes or x2.dtype not in _boolean_dtypes:
557
+ raise TypeError("Only boolean dtypes are allowed in logical_xor")
558
+ # Call result type here just to raise on disallowed type combinations
559
+ _result_type(x1.dtype, x2.dtype)
560
+ x1, x2 = Array._normalize_two_args(x1, x2)
561
+ return Array._new(np.logical_xor(x1._array, x2._array))
562
+
563
+
564
+ def multiply(x1: Array, x2: Array, /) -> Array:
565
+ """
566
+ Array API compatible wrapper for :py:func:`np.multiply <numpy.multiply>`.
567
+
568
+ See its docstring for more information.
569
+ """
570
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
571
+ raise TypeError("Only numeric dtypes are allowed in multiply")
572
+ # Call result type here just to raise on disallowed type combinations
573
+ _result_type(x1.dtype, x2.dtype)
574
+ x1, x2 = Array._normalize_two_args(x1, x2)
575
+ return Array._new(np.multiply(x1._array, x2._array))
576
+
577
+
578
+ def negative(x: Array, /) -> Array:
579
+ """
580
+ Array API compatible wrapper for :py:func:`np.negative <numpy.negative>`.
581
+
582
+ See its docstring for more information.
583
+ """
584
+ if x.dtype not in _numeric_dtypes:
585
+ raise TypeError("Only numeric dtypes are allowed in negative")
586
+ return Array._new(np.negative(x._array))
587
+
588
+
589
+ def not_equal(x1: Array, x2: Array, /) -> Array:
590
+ """
591
+ Array API compatible wrapper for :py:func:`np.not_equal <numpy.not_equal>`.
592
+
593
+ See its docstring for more information.
594
+ """
595
+ # Call result type here just to raise on disallowed type combinations
596
+ _result_type(x1.dtype, x2.dtype)
597
+ x1, x2 = Array._normalize_two_args(x1, x2)
598
+ return Array._new(np.not_equal(x1._array, x2._array))
599
+
600
+
601
+ def positive(x: Array, /) -> Array:
602
+ """
603
+ Array API compatible wrapper for :py:func:`np.positive <numpy.positive>`.
604
+
605
+ See its docstring for more information.
606
+ """
607
+ if x.dtype not in _numeric_dtypes:
608
+ raise TypeError("Only numeric dtypes are allowed in positive")
609
+ return Array._new(np.positive(x._array))
610
+
611
+
612
+ # Note: the function name is different here
613
+ def pow(x1: Array, x2: Array, /) -> Array:
614
+ """
615
+ Array API compatible wrapper for :py:func:`np.power <numpy.power>`.
616
+
617
+ See its docstring for more information.
618
+ """
619
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
620
+ raise TypeError("Only numeric dtypes are allowed in pow")
621
+ # Call result type here just to raise on disallowed type combinations
622
+ _result_type(x1.dtype, x2.dtype)
623
+ x1, x2 = Array._normalize_two_args(x1, x2)
624
+ return Array._new(np.power(x1._array, x2._array))
625
+
626
+
627
+ def real(x: Array, /) -> Array:
628
+ """
629
+ Array API compatible wrapper for :py:func:`np.real <numpy.real>`.
630
+
631
+ See its docstring for more information.
632
+ """
633
+ if x.dtype not in _complex_floating_dtypes:
634
+ raise TypeError("Only complex floating-point dtypes are allowed in real")
635
+ return Array._new(np.real(x))
636
+
637
+
638
+ def remainder(x1: Array, x2: Array, /) -> Array:
639
+ """
640
+ Array API compatible wrapper for :py:func:`np.remainder <numpy.remainder>`.
641
+
642
+ See its docstring for more information.
643
+ """
644
+ if x1.dtype not in _real_numeric_dtypes or x2.dtype not in _real_numeric_dtypes:
645
+ raise TypeError("Only real numeric dtypes are allowed in remainder")
646
+ # Call result type here just to raise on disallowed type combinations
647
+ _result_type(x1.dtype, x2.dtype)
648
+ x1, x2 = Array._normalize_two_args(x1, x2)
649
+ return Array._new(np.remainder(x1._array, x2._array))
650
+
651
+
652
+ def round(x: Array, /) -> Array:
653
+ """
654
+ Array API compatible wrapper for :py:func:`np.round <numpy.round>`.
655
+
656
+ See its docstring for more information.
657
+ """
658
+ if x.dtype not in _numeric_dtypes:
659
+ raise TypeError("Only numeric dtypes are allowed in round")
660
+ return Array._new(np.round(x._array))
661
+
662
+
663
+ def sign(x: Array, /) -> Array:
664
+ """
665
+ Array API compatible wrapper for :py:func:`np.sign <numpy.sign>`.
666
+
667
+ See its docstring for more information.
668
+ """
669
+ if x.dtype not in _numeric_dtypes:
670
+ raise TypeError("Only numeric dtypes are allowed in sign")
671
+ return Array._new(np.sign(x._array))
672
+
673
+
674
+ def sin(x: Array, /) -> Array:
675
+ """
676
+ Array API compatible wrapper for :py:func:`np.sin <numpy.sin>`.
677
+
678
+ See its docstring for more information.
679
+ """
680
+ if x.dtype not in _floating_dtypes:
681
+ raise TypeError("Only floating-point dtypes are allowed in sin")
682
+ return Array._new(np.sin(x._array))
683
+
684
+
685
+ def sinh(x: Array, /) -> Array:
686
+ """
687
+ Array API compatible wrapper for :py:func:`np.sinh <numpy.sinh>`.
688
+
689
+ See its docstring for more information.
690
+ """
691
+ if x.dtype not in _floating_dtypes:
692
+ raise TypeError("Only floating-point dtypes are allowed in sinh")
693
+ return Array._new(np.sinh(x._array))
694
+
695
+
696
+ def square(x: Array, /) -> Array:
697
+ """
698
+ Array API compatible wrapper for :py:func:`np.square <numpy.square>`.
699
+
700
+ See its docstring for more information.
701
+ """
702
+ if x.dtype not in _numeric_dtypes:
703
+ raise TypeError("Only numeric dtypes are allowed in square")
704
+ return Array._new(np.square(x._array))
705
+
706
+
707
+ def sqrt(x: Array, /) -> Array:
708
+ """
709
+ Array API compatible wrapper for :py:func:`np.sqrt <numpy.sqrt>`.
710
+
711
+ See its docstring for more information.
712
+ """
713
+ if x.dtype not in _floating_dtypes:
714
+ raise TypeError("Only floating-point dtypes are allowed in sqrt")
715
+ return Array._new(np.sqrt(x._array))
716
+
717
+
718
+ def subtract(x1: Array, x2: Array, /) -> Array:
719
+ """
720
+ Array API compatible wrapper for :py:func:`np.subtract <numpy.subtract>`.
721
+
722
+ See its docstring for more information.
723
+ """
724
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
725
+ raise TypeError("Only numeric dtypes are allowed in subtract")
726
+ # Call result type here just to raise on disallowed type combinations
727
+ _result_type(x1.dtype, x2.dtype)
728
+ x1, x2 = Array._normalize_two_args(x1, x2)
729
+ return Array._new(np.subtract(x1._array, x2._array))
730
+
731
+
732
+ def tan(x: Array, /) -> Array:
733
+ """
734
+ Array API compatible wrapper for :py:func:`np.tan <numpy.tan>`.
735
+
736
+ See its docstring for more information.
737
+ """
738
+ if x.dtype not in _floating_dtypes:
739
+ raise TypeError("Only floating-point dtypes are allowed in tan")
740
+ return Array._new(np.tan(x._array))
741
+
742
+
743
+ def tanh(x: Array, /) -> Array:
744
+ """
745
+ Array API compatible wrapper for :py:func:`np.tanh <numpy.tanh>`.
746
+
747
+ See its docstring for more information.
748
+ """
749
+ if x.dtype not in _floating_dtypes:
750
+ raise TypeError("Only floating-point dtypes are allowed in tanh")
751
+ return Array._new(np.tanh(x._array))
752
+
753
+
754
+ def trunc(x: Array, /) -> Array:
755
+ """
756
+ Array API compatible wrapper for :py:func:`np.trunc <numpy.trunc>`.
757
+
758
+ See its docstring for more information.
759
+ """
760
+ if x.dtype not in _real_numeric_dtypes:
761
+ raise TypeError("Only real numeric dtypes are allowed in trunc")
762
+ if x.dtype in _integer_dtypes:
763
+ # Note: The return dtype of trunc is the same as the input
764
+ return x
765
+ return Array._new(np.trunc(x._array))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_indexing_functions.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+ from ._dtypes import _integer_dtypes
5
+
6
+ import numpy as np
7
+
8
+ def take(x: Array, indices: Array, /, *, axis: Optional[int] = None) -> Array:
9
+ """
10
+ Array API compatible wrapper for :py:func:`np.take <numpy.take>`.
11
+
12
+ See its docstring for more information.
13
+ """
14
+ if axis is None and x.ndim != 1:
15
+ raise ValueError("axis must be specified when ndim > 1")
16
+ if indices.dtype not in _integer_dtypes:
17
+ raise TypeError("Only integer dtypes are allowed in indexing")
18
+ if indices.ndim != 1:
19
+ raise ValueError("Only 1-dim indices array is supported")
20
+ return Array._new(np.take(x._array, indices._array, axis=axis))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_set_functions.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._array_object import Array
4
+
5
+ from typing import NamedTuple
6
+
7
+ import numpy as np
8
+
9
+ # Note: np.unique() is split into four functions in the array API:
10
+ # unique_all, unique_counts, unique_inverse, and unique_values (this is done
11
+ # to remove polymorphic return types).
12
+
13
+ # Note: The various unique() functions are supposed to return multiple NaNs.
14
+ # This does not match the NumPy behavior, however, this is currently left as a
15
+ # TODO in this implementation as this behavior may be reverted in np.unique().
16
+ # See https://github.com/numpy/numpy/issues/20326.
17
+
18
+ # Note: The functions here return a namedtuple (np.unique() returns a normal
19
+ # tuple).
20
+
21
+ class UniqueAllResult(NamedTuple):
22
+ values: Array
23
+ indices: Array
24
+ inverse_indices: Array
25
+ counts: Array
26
+
27
+
28
+ class UniqueCountsResult(NamedTuple):
29
+ values: Array
30
+ counts: Array
31
+
32
+
33
+ class UniqueInverseResult(NamedTuple):
34
+ values: Array
35
+ inverse_indices: Array
36
+
37
+
38
+ def unique_all(x: Array, /) -> UniqueAllResult:
39
+ """
40
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
41
+
42
+ See its docstring for more information.
43
+ """
44
+ values, indices, inverse_indices, counts = np.unique(
45
+ x._array,
46
+ return_counts=True,
47
+ return_index=True,
48
+ return_inverse=True,
49
+ equal_nan=False,
50
+ )
51
+ # np.unique() flattens inverse indices, but they need to share x's shape
52
+ # See https://github.com/numpy/numpy/issues/20638
53
+ inverse_indices = inverse_indices.reshape(x.shape)
54
+ return UniqueAllResult(
55
+ Array._new(values),
56
+ Array._new(indices),
57
+ Array._new(inverse_indices),
58
+ Array._new(counts),
59
+ )
60
+
61
+
62
+ def unique_counts(x: Array, /) -> UniqueCountsResult:
63
+ res = np.unique(
64
+ x._array,
65
+ return_counts=True,
66
+ return_index=False,
67
+ return_inverse=False,
68
+ equal_nan=False,
69
+ )
70
+
71
+ return UniqueCountsResult(*[Array._new(i) for i in res])
72
+
73
+
74
+ def unique_inverse(x: Array, /) -> UniqueInverseResult:
75
+ """
76
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
77
+
78
+ See its docstring for more information.
79
+ """
80
+ values, inverse_indices = np.unique(
81
+ x._array,
82
+ return_counts=False,
83
+ return_index=False,
84
+ return_inverse=True,
85
+ equal_nan=False,
86
+ )
87
+ # np.unique() flattens inverse indices, but they need to share x's shape
88
+ # See https://github.com/numpy/numpy/issues/20638
89
+ inverse_indices = inverse_indices.reshape(x.shape)
90
+ return UniqueInverseResult(Array._new(values), Array._new(inverse_indices))
91
+
92
+
93
+ def unique_values(x: Array, /) -> Array:
94
+ """
95
+ Array API compatible wrapper for :py:func:`np.unique <numpy.unique>`.
96
+
97
+ See its docstring for more information.
98
+ """
99
+ res = np.unique(
100
+ x._array,
101
+ return_counts=False,
102
+ return_index=False,
103
+ return_inverse=False,
104
+ equal_nan=False,
105
+ )
106
+ return Array._new(res)
env-llmeval/lib/python3.10/site-packages/numpy/array_api/_statistical_functions.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._dtypes import (
4
+ _real_floating_dtypes,
5
+ _real_numeric_dtypes,
6
+ _numeric_dtypes,
7
+ )
8
+ from ._array_object import Array
9
+ from ._dtypes import float32, float64, complex64, complex128
10
+
11
+ from typing import TYPE_CHECKING, Optional, Tuple, Union
12
+
13
+ if TYPE_CHECKING:
14
+ from ._typing import Dtype
15
+
16
+ import numpy as np
17
+
18
+
19
+ def max(
20
+ x: Array,
21
+ /,
22
+ *,
23
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
24
+ keepdims: bool = False,
25
+ ) -> Array:
26
+ if x.dtype not in _real_numeric_dtypes:
27
+ raise TypeError("Only real numeric dtypes are allowed in max")
28
+ return Array._new(np.max(x._array, axis=axis, keepdims=keepdims))
29
+
30
+
31
+ def mean(
32
+ x: Array,
33
+ /,
34
+ *,
35
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
36
+ keepdims: bool = False,
37
+ ) -> Array:
38
+ if x.dtype not in _real_floating_dtypes:
39
+ raise TypeError("Only real floating-point dtypes are allowed in mean")
40
+ return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims))
41
+
42
+
43
+ def min(
44
+ x: Array,
45
+ /,
46
+ *,
47
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
48
+ keepdims: bool = False,
49
+ ) -> Array:
50
+ if x.dtype not in _real_numeric_dtypes:
51
+ raise TypeError("Only real numeric dtypes are allowed in min")
52
+ return Array._new(np.min(x._array, axis=axis, keepdims=keepdims))
53
+
54
+
55
+ def prod(
56
+ x: Array,
57
+ /,
58
+ *,
59
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
60
+ dtype: Optional[Dtype] = None,
61
+ keepdims: bool = False,
62
+ ) -> Array:
63
+ if x.dtype not in _numeric_dtypes:
64
+ raise TypeError("Only numeric dtypes are allowed in prod")
65
+ # Note: sum() and prod() always upcast for dtype=None. `np.prod` does that
66
+ # for integers, but not for float32 or complex64, so we need to
67
+ # special-case it here
68
+ if dtype is None:
69
+ if x.dtype == float32:
70
+ dtype = float64
71
+ elif x.dtype == complex64:
72
+ dtype = complex128
73
+ return Array._new(np.prod(x._array, dtype=dtype, axis=axis, keepdims=keepdims))
74
+
75
+
76
+ def std(
77
+ x: Array,
78
+ /,
79
+ *,
80
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
81
+ correction: Union[int, float] = 0.0,
82
+ keepdims: bool = False,
83
+ ) -> Array:
84
+ # Note: the keyword argument correction is different here
85
+ if x.dtype not in _real_floating_dtypes:
86
+ raise TypeError("Only real floating-point dtypes are allowed in std")
87
+ return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims))
88
+
89
+
90
+ def sum(
91
+ x: Array,
92
+ /,
93
+ *,
94
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
95
+ dtype: Optional[Dtype] = None,
96
+ keepdims: bool = False,
97
+ ) -> Array:
98
+ if x.dtype not in _numeric_dtypes:
99
+ raise TypeError("Only numeric dtypes are allowed in sum")
100
+ # Note: sum() and prod() always upcast for dtype=None. `np.sum` does that
101
+ # for integers, but not for float32 or complex64, so we need to
102
+ # special-case it here
103
+ if dtype is None:
104
+ if x.dtype == float32:
105
+ dtype = float64
106
+ elif x.dtype == complex64:
107
+ dtype = complex128
108
+ return Array._new(np.sum(x._array, axis=axis, dtype=dtype, keepdims=keepdims))
109
+
110
+
111
+ def var(
112
+ x: Array,
113
+ /,
114
+ *,
115
+ axis: Optional[Union[int, Tuple[int, ...]]] = None,
116
+ correction: Union[int, float] = 0.0,
117
+ keepdims: bool = False,
118
+ ) -> Array:
119
+ # Note: the keyword argument correction is different here
120
+ if x.dtype not in _real_floating_dtypes:
121
+ raise TypeError("Only real floating-point dtypes are allowed in var")
122
+ return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))
env-llmeval/lib/python3.10/site-packages/numpy/array_api/linalg.py ADDED
@@ -0,0 +1,466 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from ._dtypes import (
4
+ _floating_dtypes,
5
+ _numeric_dtypes,
6
+ float32,
7
+ float64,
8
+ complex64,
9
+ complex128
10
+ )
11
+ from ._manipulation_functions import reshape
12
+ from ._elementwise_functions import conj
13
+ from ._array_object import Array
14
+
15
+ from ..core.numeric import normalize_axis_tuple
16
+
17
+ from typing import TYPE_CHECKING
18
+ if TYPE_CHECKING:
19
+ from ._typing import Literal, Optional, Sequence, Tuple, Union, Dtype
20
+
21
+ from typing import NamedTuple
22
+
23
+ import numpy.linalg
24
+ import numpy as np
25
+
26
+ class EighResult(NamedTuple):
27
+ eigenvalues: Array
28
+ eigenvectors: Array
29
+
30
+ class QRResult(NamedTuple):
31
+ Q: Array
32
+ R: Array
33
+
34
+ class SlogdetResult(NamedTuple):
35
+ sign: Array
36
+ logabsdet: Array
37
+
38
+ class SVDResult(NamedTuple):
39
+ U: Array
40
+ S: Array
41
+ Vh: Array
42
+
43
+ # Note: the inclusion of the upper keyword is different from
44
+ # np.linalg.cholesky, which does not have it.
45
+ def cholesky(x: Array, /, *, upper: bool = False) -> Array:
46
+ """
47
+ Array API compatible wrapper for :py:func:`np.linalg.cholesky <numpy.linalg.cholesky>`.
48
+
49
+ See its docstring for more information.
50
+ """
51
+ # Note: the restriction to floating-point dtypes only is different from
52
+ # np.linalg.cholesky.
53
+ if x.dtype not in _floating_dtypes:
54
+ raise TypeError('Only floating-point dtypes are allowed in cholesky')
55
+ L = np.linalg.cholesky(x._array)
56
+ if upper:
57
+ U = Array._new(L).mT
58
+ if U.dtype in [complex64, complex128]:
59
+ U = conj(U)
60
+ return U
61
+ return Array._new(L)
62
+
63
+ # Note: cross is the numpy top-level namespace, not np.linalg
64
+ def cross(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
65
+ """
66
+ Array API compatible wrapper for :py:func:`np.cross <numpy.cross>`.
67
+
68
+ See its docstring for more information.
69
+ """
70
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
71
+ raise TypeError('Only numeric dtypes are allowed in cross')
72
+ # Note: this is different from np.cross(), which broadcasts
73
+ if x1.shape != x2.shape:
74
+ raise ValueError('x1 and x2 must have the same shape')
75
+ if x1.ndim == 0:
76
+ raise ValueError('cross() requires arrays of dimension at least 1')
77
+ # Note: this is different from np.cross(), which allows dimension 2
78
+ if x1.shape[axis] != 3:
79
+ raise ValueError('cross() dimension must equal 3')
80
+ return Array._new(np.cross(x1._array, x2._array, axis=axis))
81
+
82
+ def det(x: Array, /) -> Array:
83
+ """
84
+ Array API compatible wrapper for :py:func:`np.linalg.det <numpy.linalg.det>`.
85
+
86
+ See its docstring for more information.
87
+ """
88
+ # Note: the restriction to floating-point dtypes only is different from
89
+ # np.linalg.det.
90
+ if x.dtype not in _floating_dtypes:
91
+ raise TypeError('Only floating-point dtypes are allowed in det')
92
+ return Array._new(np.linalg.det(x._array))
93
+
94
+ # Note: diagonal is the numpy top-level namespace, not np.linalg
95
+ def diagonal(x: Array, /, *, offset: int = 0) -> Array:
96
+ """
97
+ Array API compatible wrapper for :py:func:`np.diagonal <numpy.diagonal>`.
98
+
99
+ See its docstring for more information.
100
+ """
101
+ # Note: diagonal always operates on the last two axes, whereas np.diagonal
102
+ # operates on the first two axes by default
103
+ return Array._new(np.diagonal(x._array, offset=offset, axis1=-2, axis2=-1))
104
+
105
+
106
+ def eigh(x: Array, /) -> EighResult:
107
+ """
108
+ Array API compatible wrapper for :py:func:`np.linalg.eigh <numpy.linalg.eigh>`.
109
+
110
+ See its docstring for more information.
111
+ """
112
+ # Note: the restriction to floating-point dtypes only is different from
113
+ # np.linalg.eigh.
114
+ if x.dtype not in _floating_dtypes:
115
+ raise TypeError('Only floating-point dtypes are allowed in eigh')
116
+
117
+ # Note: the return type here is a namedtuple, which is different from
118
+ # np.eigh, which only returns a tuple.
119
+ return EighResult(*map(Array._new, np.linalg.eigh(x._array)))
120
+
121
+
122
+ def eigvalsh(x: Array, /) -> Array:
123
+ """
124
+ Array API compatible wrapper for :py:func:`np.linalg.eigvalsh <numpy.linalg.eigvalsh>`.
125
+
126
+ See its docstring for more information.
127
+ """
128
+ # Note: the restriction to floating-point dtypes only is different from
129
+ # np.linalg.eigvalsh.
130
+ if x.dtype not in _floating_dtypes:
131
+ raise TypeError('Only floating-point dtypes are allowed in eigvalsh')
132
+
133
+ return Array._new(np.linalg.eigvalsh(x._array))
134
+
135
+ def inv(x: Array, /) -> Array:
136
+ """
137
+ Array API compatible wrapper for :py:func:`np.linalg.inv <numpy.linalg.inv>`.
138
+
139
+ See its docstring for more information.
140
+ """
141
+ # Note: the restriction to floating-point dtypes only is different from
142
+ # np.linalg.inv.
143
+ if x.dtype not in _floating_dtypes:
144
+ raise TypeError('Only floating-point dtypes are allowed in inv')
145
+
146
+ return Array._new(np.linalg.inv(x._array))
147
+
148
+
149
+ # Note: matmul is the numpy top-level namespace but not in np.linalg
150
+ def matmul(x1: Array, x2: Array, /) -> Array:
151
+ """
152
+ Array API compatible wrapper for :py:func:`np.matmul <numpy.matmul>`.
153
+
154
+ See its docstring for more information.
155
+ """
156
+ # Note: the restriction to numeric dtypes only is different from
157
+ # np.matmul.
158
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
159
+ raise TypeError('Only numeric dtypes are allowed in matmul')
160
+
161
+ return Array._new(np.matmul(x1._array, x2._array))
162
+
163
+
164
+ # Note: the name here is different from norm(). The array API norm is split
165
+ # into matrix_norm and vector_norm().
166
+
167
+ # The type for ord should be Optional[Union[int, float, Literal[np.inf,
168
+ # -np.inf, 'fro', 'nuc']]], but Literal does not support floating-point
169
+ # literals.
170
+ def matrix_norm(x: Array, /, *, keepdims: bool = False, ord: Optional[Union[int, float, Literal['fro', 'nuc']]] = 'fro') -> Array:
171
+ """
172
+ Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
173
+
174
+ See its docstring for more information.
175
+ """
176
+ # Note: the restriction to floating-point dtypes only is different from
177
+ # np.linalg.norm.
178
+ if x.dtype not in _floating_dtypes:
179
+ raise TypeError('Only floating-point dtypes are allowed in matrix_norm')
180
+
181
+ return Array._new(np.linalg.norm(x._array, axis=(-2, -1), keepdims=keepdims, ord=ord))
182
+
183
+
184
+ def matrix_power(x: Array, n: int, /) -> Array:
185
+ """
186
+ Array API compatible wrapper for :py:func:`np.matrix_power <numpy.matrix_power>`.
187
+
188
+ See its docstring for more information.
189
+ """
190
+ # Note: the restriction to floating-point dtypes only is different from
191
+ # np.linalg.matrix_power.
192
+ if x.dtype not in _floating_dtypes:
193
+ raise TypeError('Only floating-point dtypes are allowed for the first argument of matrix_power')
194
+
195
+ # np.matrix_power already checks if n is an integer
196
+ return Array._new(np.linalg.matrix_power(x._array, n))
197
+
198
+ # Note: the keyword argument name rtol is different from np.linalg.matrix_rank
199
+ def matrix_rank(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
200
+ """
201
+ Array API compatible wrapper for :py:func:`np.matrix_rank <numpy.matrix_rank>`.
202
+
203
+ See its docstring for more information.
204
+ """
205
+ # Note: this is different from np.linalg.matrix_rank, which supports 1
206
+ # dimensional arrays.
207
+ if x.ndim < 2:
208
+ raise np.linalg.LinAlgError("1-dimensional array given. Array must be at least two-dimensional")
209
+ S = np.linalg.svd(x._array, compute_uv=False)
210
+ if rtol is None:
211
+ tol = S.max(axis=-1, keepdims=True) * max(x.shape[-2:]) * np.finfo(S.dtype).eps
212
+ else:
213
+ if isinstance(rtol, Array):
214
+ rtol = rtol._array
215
+ # Note: this is different from np.linalg.matrix_rank, which does not multiply
216
+ # the tolerance by the largest singular value.
217
+ tol = S.max(axis=-1, keepdims=True)*np.asarray(rtol)[..., np.newaxis]
218
+ return Array._new(np.count_nonzero(S > tol, axis=-1))
219
+
220
+
221
+ # Note: this function is new in the array API spec. Unlike transpose, it only
222
+ # transposes the last two axes.
223
+ def matrix_transpose(x: Array, /) -> Array:
224
+ if x.ndim < 2:
225
+ raise ValueError("x must be at least 2-dimensional for matrix_transpose")
226
+ return Array._new(np.swapaxes(x._array, -1, -2))
227
+
228
+ # Note: outer is the numpy top-level namespace, not np.linalg
229
+ def outer(x1: Array, x2: Array, /) -> Array:
230
+ """
231
+ Array API compatible wrapper for :py:func:`np.outer <numpy.outer>`.
232
+
233
+ See its docstring for more information.
234
+ """
235
+ # Note: the restriction to numeric dtypes only is different from
236
+ # np.outer.
237
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
238
+ raise TypeError('Only numeric dtypes are allowed in outer')
239
+
240
+ # Note: the restriction to only 1-dim arrays is different from np.outer
241
+ if x1.ndim != 1 or x2.ndim != 1:
242
+ raise ValueError('The input arrays to outer must be 1-dimensional')
243
+
244
+ return Array._new(np.outer(x1._array, x2._array))
245
+
246
+ # Note: the keyword argument name rtol is different from np.linalg.pinv
247
+ def pinv(x: Array, /, *, rtol: Optional[Union[float, Array]] = None) -> Array:
248
+ """
249
+ Array API compatible wrapper for :py:func:`np.linalg.pinv <numpy.linalg.pinv>`.
250
+
251
+ See its docstring for more information.
252
+ """
253
+ # Note: the restriction to floating-point dtypes only is different from
254
+ # np.linalg.pinv.
255
+ if x.dtype not in _floating_dtypes:
256
+ raise TypeError('Only floating-point dtypes are allowed in pinv')
257
+
258
+ # Note: this is different from np.linalg.pinv, which does not multiply the
259
+ # default tolerance by max(M, N).
260
+ if rtol is None:
261
+ rtol = max(x.shape[-2:]) * np.finfo(x.dtype).eps
262
+ return Array._new(np.linalg.pinv(x._array, rcond=rtol))
263
+
264
+ def qr(x: Array, /, *, mode: Literal['reduced', 'complete'] = 'reduced') -> QRResult:
265
+ """
266
+ Array API compatible wrapper for :py:func:`np.linalg.qr <numpy.linalg.qr>`.
267
+
268
+ See its docstring for more information.
269
+ """
270
+ # Note: the restriction to floating-point dtypes only is different from
271
+ # np.linalg.qr.
272
+ if x.dtype not in _floating_dtypes:
273
+ raise TypeError('Only floating-point dtypes are allowed in qr')
274
+
275
+ # Note: the return type here is a namedtuple, which is different from
276
+ # np.linalg.qr, which only returns a tuple.
277
+ return QRResult(*map(Array._new, np.linalg.qr(x._array, mode=mode)))
278
+
279
+ def slogdet(x: Array, /) -> SlogdetResult:
280
+ """
281
+ Array API compatible wrapper for :py:func:`np.linalg.slogdet <numpy.linalg.slogdet>`.
282
+
283
+ See its docstring for more information.
284
+ """
285
+ # Note: the restriction to floating-point dtypes only is different from
286
+ # np.linalg.slogdet.
287
+ if x.dtype not in _floating_dtypes:
288
+ raise TypeError('Only floating-point dtypes are allowed in slogdet')
289
+
290
+ # Note: the return type here is a namedtuple, which is different from
291
+ # np.linalg.slogdet, which only returns a tuple.
292
+ return SlogdetResult(*map(Array._new, np.linalg.slogdet(x._array)))
293
+
294
+ # Note: unlike np.linalg.solve, the array API solve() only accepts x2 as a
295
+ # vector when it is exactly 1-dimensional. All other cases treat x2 as a stack
296
+ # of matrices. The np.linalg.solve behavior of allowing stacks of both
297
+ # matrices and vectors is ambiguous c.f.
298
+ # https://github.com/numpy/numpy/issues/15349 and
299
+ # https://github.com/data-apis/array-api/issues/285.
300
+
301
+ # To workaround this, the below is the code from np.linalg.solve except
302
+ # only calling solve1 in the exactly 1D case.
303
+ def _solve(a, b):
304
+ from ..linalg.linalg import (_makearray, _assert_stacked_2d,
305
+ _assert_stacked_square, _commonType,
306
+ isComplexType, get_linalg_error_extobj,
307
+ _raise_linalgerror_singular)
308
+ from ..linalg import _umath_linalg
309
+
310
+ a, _ = _makearray(a)
311
+ _assert_stacked_2d(a)
312
+ _assert_stacked_square(a)
313
+ b, wrap = _makearray(b)
314
+ t, result_t = _commonType(a, b)
315
+
316
+ # This part is different from np.linalg.solve
317
+ if b.ndim == 1:
318
+ gufunc = _umath_linalg.solve1
319
+ else:
320
+ gufunc = _umath_linalg.solve
321
+
322
+ # This does nothing currently but is left in because it will be relevant
323
+ # when complex dtype support is added to the spec in 2022.
324
+ signature = 'DD->D' if isComplexType(t) else 'dd->d'
325
+ with np.errstate(call=_raise_linalgerror_singular, invalid='call',
326
+ over='ignore', divide='ignore', under='ignore'):
327
+ r = gufunc(a, b, signature=signature)
328
+
329
+ return wrap(r.astype(result_t, copy=False))
330
+
331
+ def solve(x1: Array, x2: Array, /) -> Array:
332
+ """
333
+ Array API compatible wrapper for :py:func:`np.linalg.solve <numpy.linalg.solve>`.
334
+
335
+ See its docstring for more information.
336
+ """
337
+ # Note: the restriction to floating-point dtypes only is different from
338
+ # np.linalg.solve.
339
+ if x1.dtype not in _floating_dtypes or x2.dtype not in _floating_dtypes:
340
+ raise TypeError('Only floating-point dtypes are allowed in solve')
341
+
342
+ return Array._new(_solve(x1._array, x2._array))
343
+
344
+ def svd(x: Array, /, *, full_matrices: bool = True) -> SVDResult:
345
+ """
346
+ Array API compatible wrapper for :py:func:`np.linalg.svd <numpy.linalg.svd>`.
347
+
348
+ See its docstring for more information.
349
+ """
350
+ # Note: the restriction to floating-point dtypes only is different from
351
+ # np.linalg.svd.
352
+ if x.dtype not in _floating_dtypes:
353
+ raise TypeError('Only floating-point dtypes are allowed in svd')
354
+
355
+ # Note: the return type here is a namedtuple, which is different from
356
+ # np.svd, which only returns a tuple.
357
+ return SVDResult(*map(Array._new, np.linalg.svd(x._array, full_matrices=full_matrices)))
358
+
359
+ # Note: svdvals is not in NumPy (but it is in SciPy). It is equivalent to
360
+ # np.linalg.svd(compute_uv=False).
361
+ def svdvals(x: Array, /) -> Union[Array, Tuple[Array, ...]]:
362
+ if x.dtype not in _floating_dtypes:
363
+ raise TypeError('Only floating-point dtypes are allowed in svdvals')
364
+ return Array._new(np.linalg.svd(x._array, compute_uv=False))
365
+
366
+ # Note: tensordot is the numpy top-level namespace but not in np.linalg
367
+
368
+ # Note: axes must be a tuple, unlike np.tensordot where it can be an array or array-like.
369
+ def tensordot(x1: Array, x2: Array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2) -> Array:
370
+ # Note: the restriction to numeric dtypes only is different from
371
+ # np.tensordot.
372
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
373
+ raise TypeError('Only numeric dtypes are allowed in tensordot')
374
+
375
+ return Array._new(np.tensordot(x1._array, x2._array, axes=axes))
376
+
377
+ # Note: trace is the numpy top-level namespace, not np.linalg
378
+ def trace(x: Array, /, *, offset: int = 0, dtype: Optional[Dtype] = None) -> Array:
379
+ """
380
+ Array API compatible wrapper for :py:func:`np.trace <numpy.trace>`.
381
+
382
+ See its docstring for more information.
383
+ """
384
+ if x.dtype not in _numeric_dtypes:
385
+ raise TypeError('Only numeric dtypes are allowed in trace')
386
+
387
+ # Note: trace() works the same as sum() and prod() (see
388
+ # _statistical_functions.py)
389
+ if dtype is None:
390
+ if x.dtype == float32:
391
+ dtype = float64
392
+ elif x.dtype == complex64:
393
+ dtype = complex128
394
+ # Note: trace always operates on the last two axes, whereas np.trace
395
+ # operates on the first two axes by default
396
+ return Array._new(np.asarray(np.trace(x._array, offset=offset, axis1=-2, axis2=-1, dtype=dtype)))
397
+
398
+ # Note: vecdot is not in NumPy
399
+ def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array:
400
+ if x1.dtype not in _numeric_dtypes or x2.dtype not in _numeric_dtypes:
401
+ raise TypeError('Only numeric dtypes are allowed in vecdot')
402
+ ndim = max(x1.ndim, x2.ndim)
403
+ x1_shape = (1,)*(ndim - x1.ndim) + tuple(x1.shape)
404
+ x2_shape = (1,)*(ndim - x2.ndim) + tuple(x2.shape)
405
+ if x1_shape[axis] != x2_shape[axis]:
406
+ raise ValueError("x1 and x2 must have the same size along the given axis")
407
+
408
+ x1_, x2_ = np.broadcast_arrays(x1._array, x2._array)
409
+ x1_ = np.moveaxis(x1_, axis, -1)
410
+ x2_ = np.moveaxis(x2_, axis, -1)
411
+
412
+ res = x1_[..., None, :] @ x2_[..., None]
413
+ return Array._new(res[..., 0, 0])
414
+
415
+
416
+ # Note: the name here is different from norm(). The array API norm is split
417
+ # into matrix_norm and vector_norm().
418
+
419
+ # The type for ord should be Optional[Union[int, float, Literal[np.inf,
420
+ # -np.inf]]] but Literal does not support floating-point literals.
421
+ def vector_norm(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False, ord: Optional[Union[int, float]] = 2) -> Array:
422
+ """
423
+ Array API compatible wrapper for :py:func:`np.linalg.norm <numpy.linalg.norm>`.
424
+
425
+ See its docstring for more information.
426
+ """
427
+ # Note: the restriction to floating-point dtypes only is different from
428
+ # np.linalg.norm.
429
+ if x.dtype not in _floating_dtypes:
430
+ raise TypeError('Only floating-point dtypes are allowed in norm')
431
+
432
+ # np.linalg.norm tries to do a matrix norm whenever axis is a 2-tuple or
433
+ # when axis=None and the input is 2-D, so to force a vector norm, we make
434
+ # it so the input is 1-D (for axis=None), or reshape so that norm is done
435
+ # on a single dimension.
436
+ a = x._array
437
+ if axis is None:
438
+ # Note: np.linalg.norm() doesn't handle 0-D arrays
439
+ a = a.ravel()
440
+ _axis = 0
441
+ elif isinstance(axis, tuple):
442
+ # Note: The axis argument supports any number of axes, whereas
443
+ # np.linalg.norm() only supports a single axis for vector norm.
444
+ normalized_axis = normalize_axis_tuple(axis, x.ndim)
445
+ rest = tuple(i for i in range(a.ndim) if i not in normalized_axis)
446
+ newshape = axis + rest
447
+ a = np.transpose(a, newshape).reshape(
448
+ (np.prod([a.shape[i] for i in axis], dtype=int), *[a.shape[i] for i in rest]))
449
+ _axis = 0
450
+ else:
451
+ _axis = axis
452
+
453
+ res = Array._new(np.linalg.norm(a, axis=_axis, ord=ord))
454
+
455
+ if keepdims:
456
+ # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks
457
+ # above to avoid matrix norm logic.
458
+ shape = list(x.shape)
459
+ _axis = normalize_axis_tuple(range(x.ndim) if axis is None else axis, x.ndim)
460
+ for i in _axis:
461
+ shape[i] = 1
462
+ res = reshape(res, tuple(shape))
463
+
464
+ return res
465
+
466
+ __all__ = ['cholesky', 'cross', 'det', 'diagonal', 'eigh', 'eigvalsh', 'inv', 'matmul', 'matrix_norm', 'matrix_power', 'matrix_rank', 'matrix_transpose', 'outer', 'pinv', 'qr', 'slogdet', 'solve', 'svd', 'svdvals', 'tensordot', 'trace', 'vecdot', 'vector_norm']
env-llmeval/lib/python3.10/site-packages/numpy/array_api/setup.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def configuration(parent_package="", top_path=None):
2
+ from numpy.distutils.misc_util import Configuration
3
+
4
+ config = Configuration("array_api", parent_package, top_path)
5
+ config.add_subpackage("tests")
6
+ return config
7
+
8
+
9
+ if __name__ == "__main__":
10
+ from numpy.distutils.core import setup
11
+
12
+ setup(configuration=configuration)
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (5.36 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__main__.cpython-310.pyc ADDED
Binary file (229 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/__version__.cpython-310.pyc ADDED
Binary file (223 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-310.pyc ADDED
Binary file (1.58 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-310.pyc ADDED
Binary file (5.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-310.pyc ADDED
Binary file (25.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-310.pyc ADDED
Binary file (18.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-310.pyc ADDED
Binary file (45.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/common_rules.cpython-310.pyc ADDED
Binary file (4.85 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-310.pyc ADDED
Binary file (87.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/diagnose.cpython-310.pyc ADDED
Binary file (3.83 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-310.pyc ADDED
Binary file (22.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-310.pyc ADDED
Binary file (7.22 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/func2subr.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/rules.cpython-310.pyc ADDED
Binary file (38.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/setup.cpython-310.pyc ADDED
Binary file (2.34 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/symbolic.cpython-310.pyc ADDED
Binary file (38.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/__pycache__/use_rules.cpython-310.pyc ADDED
Binary file (3.01 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def f2py_build_generator(name):
2
+ if name == "meson":
3
+ from ._meson import MesonBackend
4
+ return MesonBackend
5
+ elif name == "distutils":
6
+ from ._distutils import DistutilsBackend
7
+ return DistutilsBackend
8
+ else:
9
+ raise ValueError(f"Unknown backend: {name}")
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (495 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-310.pyc ADDED
Binary file (2.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-310.pyc ADDED
Binary file (7.44 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_backend.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from abc import ABC, abstractmethod
4
+
5
+
6
+ class Backend(ABC):
7
+ def __init__(
8
+ self,
9
+ modulename,
10
+ sources,
11
+ extra_objects,
12
+ build_dir,
13
+ include_dirs,
14
+ library_dirs,
15
+ libraries,
16
+ define_macros,
17
+ undef_macros,
18
+ f2py_flags,
19
+ sysinfo_flags,
20
+ fc_flags,
21
+ flib_flags,
22
+ setup_flags,
23
+ remove_build_dir,
24
+ extra_dat,
25
+ ):
26
+ self.modulename = modulename
27
+ self.sources = sources
28
+ self.extra_objects = extra_objects
29
+ self.build_dir = build_dir
30
+ self.include_dirs = include_dirs
31
+ self.library_dirs = library_dirs
32
+ self.libraries = libraries
33
+ self.define_macros = define_macros
34
+ self.undef_macros = undef_macros
35
+ self.f2py_flags = f2py_flags
36
+ self.sysinfo_flags = sysinfo_flags
37
+ self.fc_flags = fc_flags
38
+ self.flib_flags = flib_flags
39
+ self.setup_flags = setup_flags
40
+ self.remove_build_dir = remove_build_dir
41
+ self.extra_dat = extra_dat
42
+
43
+ @abstractmethod
44
+ def compile(self) -> None:
45
+ """Compile the wrapper."""
46
+ pass
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_distutils.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ._backend import Backend
2
+
3
+ from numpy.distutils.core import setup, Extension
4
+ from numpy.distutils.system_info import get_info
5
+ from numpy.distutils.misc_util import dict_append
6
+ from numpy.exceptions import VisibleDeprecationWarning
7
+ import os
8
+ import sys
9
+ import shutil
10
+ import warnings
11
+
12
+
13
+ class DistutilsBackend(Backend):
14
+ def __init__(sef, *args, **kwargs):
15
+ warnings.warn(
16
+ "distutils has been deprecated since NumPy 1.26.x"
17
+ "Use the Meson backend instead, or generate wrappers"
18
+ "without -c and use a custom build script",
19
+ VisibleDeprecationWarning,
20
+ stacklevel=2,
21
+ )
22
+ super().__init__(*args, **kwargs)
23
+
24
+ def compile(self):
25
+ num_info = {}
26
+ if num_info:
27
+ self.include_dirs.extend(num_info.get("include_dirs", []))
28
+ ext_args = {
29
+ "name": self.modulename,
30
+ "sources": self.sources,
31
+ "include_dirs": self.include_dirs,
32
+ "library_dirs": self.library_dirs,
33
+ "libraries": self.libraries,
34
+ "define_macros": self.define_macros,
35
+ "undef_macros": self.undef_macros,
36
+ "extra_objects": self.extra_objects,
37
+ "f2py_options": self.f2py_flags,
38
+ }
39
+
40
+ if self.sysinfo_flags:
41
+ for n in self.sysinfo_flags:
42
+ i = get_info(n)
43
+ if not i:
44
+ print(
45
+ f"No {repr(n)} resources found"
46
+ "in system (try `f2py --help-link`)"
47
+ )
48
+ dict_append(ext_args, **i)
49
+
50
+ ext = Extension(**ext_args)
51
+
52
+ sys.argv = [sys.argv[0]] + self.setup_flags
53
+ sys.argv.extend(
54
+ [
55
+ "build",
56
+ "--build-temp",
57
+ self.build_dir,
58
+ "--build-base",
59
+ self.build_dir,
60
+ "--build-platlib",
61
+ ".",
62
+ "--disable-optimization",
63
+ ]
64
+ )
65
+
66
+ if self.fc_flags:
67
+ sys.argv.extend(["config_fc"] + self.fc_flags)
68
+ if self.flib_flags:
69
+ sys.argv.extend(["build_ext"] + self.flib_flags)
70
+
71
+ setup(ext_modules=[ext])
72
+
73
+ if self.remove_build_dir and os.path.exists(self.build_dir):
74
+ print(f"Removing build directory {self.build_dir}")
75
+ shutil.rmtree(self.build_dir)
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/_meson.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import os
4
+ import errno
5
+ import shutil
6
+ import subprocess
7
+ import sys
8
+ from pathlib import Path
9
+
10
+ from ._backend import Backend
11
+ from string import Template
12
+ from itertools import chain
13
+
14
+ import warnings
15
+
16
+
17
+ class MesonTemplate:
18
+ """Template meson build file generation class."""
19
+
20
+ def __init__(
21
+ self,
22
+ modulename: str,
23
+ sources: list[Path],
24
+ deps: list[str],
25
+ libraries: list[str],
26
+ library_dirs: list[Path],
27
+ include_dirs: list[Path],
28
+ object_files: list[Path],
29
+ linker_args: list[str],
30
+ c_args: list[str],
31
+ build_type: str,
32
+ python_exe: str,
33
+ ):
34
+ self.modulename = modulename
35
+ self.build_template_path = (
36
+ Path(__file__).parent.absolute() / "meson.build.template"
37
+ )
38
+ self.sources = sources
39
+ self.deps = deps
40
+ self.libraries = libraries
41
+ self.library_dirs = library_dirs
42
+ if include_dirs is not None:
43
+ self.include_dirs = include_dirs
44
+ else:
45
+ self.include_dirs = []
46
+ self.substitutions = {}
47
+ self.objects = object_files
48
+ self.pipeline = [
49
+ self.initialize_template,
50
+ self.sources_substitution,
51
+ self.deps_substitution,
52
+ self.include_substitution,
53
+ self.libraries_substitution,
54
+ ]
55
+ self.build_type = build_type
56
+ self.python_exe = python_exe
57
+
58
+ def meson_build_template(self) -> str:
59
+ if not self.build_template_path.is_file():
60
+ raise FileNotFoundError(
61
+ errno.ENOENT,
62
+ "Meson build template"
63
+ f" {self.build_template_path.absolute()}"
64
+ " does not exist.",
65
+ )
66
+ return self.build_template_path.read_text()
67
+
68
+ def initialize_template(self) -> None:
69
+ self.substitutions["modulename"] = self.modulename
70
+ self.substitutions["buildtype"] = self.build_type
71
+ self.substitutions["python"] = self.python_exe
72
+
73
+ def sources_substitution(self) -> None:
74
+ indent = " " * 21
75
+ self.substitutions["source_list"] = f",\n{indent}".join(
76
+ [f"{indent}'{source}'" for source in self.sources]
77
+ )
78
+
79
+ def deps_substitution(self) -> None:
80
+ indent = " " * 21
81
+ self.substitutions["dep_list"] = f",\n{indent}".join(
82
+ [f"{indent}dependency('{dep}')" for dep in self.deps]
83
+ )
84
+
85
+ def libraries_substitution(self) -> None:
86
+ self.substitutions["lib_dir_declarations"] = "\n".join(
87
+ [
88
+ f"lib_dir_{i} = declare_dependency(link_args : ['-L{lib_dir}'])"
89
+ for i, lib_dir in enumerate(self.library_dirs)
90
+ ]
91
+ )
92
+
93
+ self.substitutions["lib_declarations"] = "\n".join(
94
+ [
95
+ f"{lib} = declare_dependency(link_args : ['-l{lib}'])"
96
+ for lib in self.libraries
97
+ ]
98
+ )
99
+
100
+ indent = " " * 21
101
+ self.substitutions["lib_list"] = f"\n{indent}".join(
102
+ [f"{indent}{lib}," for lib in self.libraries]
103
+ )
104
+ self.substitutions["lib_dir_list"] = f"\n{indent}".join(
105
+ [f"{indent}lib_dir_{i}," for i in range(len(self.library_dirs))]
106
+ )
107
+
108
+ def include_substitution(self) -> None:
109
+ indent = " " * 21
110
+ self.substitutions["inc_list"] = f",\n{indent}".join(
111
+ [f"{indent}'{inc}'" for inc in self.include_dirs]
112
+ )
113
+
114
+ def generate_meson_build(self):
115
+ for node in self.pipeline:
116
+ node()
117
+ template = Template(self.meson_build_template())
118
+ return template.substitute(self.substitutions)
119
+
120
+
121
+ class MesonBackend(Backend):
122
+ def __init__(self, *args, **kwargs):
123
+ super().__init__(*args, **kwargs)
124
+ self.dependencies = self.extra_dat.get("dependencies", [])
125
+ self.meson_build_dir = "bbdir"
126
+ self.build_type = (
127
+ "debug" if any("debug" in flag for flag in self.fc_flags) else "release"
128
+ )
129
+
130
+ def _move_exec_to_root(self, build_dir: Path):
131
+ walk_dir = Path(build_dir) / self.meson_build_dir
132
+ path_objects = chain(
133
+ walk_dir.glob(f"{self.modulename}*.so"),
134
+ walk_dir.glob(f"{self.modulename}*.pyd"),
135
+ )
136
+ # Same behavior as distutils
137
+ # https://github.com/numpy/numpy/issues/24874#issuecomment-1835632293
138
+ for path_object in path_objects:
139
+ dest_path = Path.cwd() / path_object.name
140
+ if dest_path.exists():
141
+ dest_path.unlink()
142
+ shutil.copy2(path_object, dest_path)
143
+ os.remove(path_object)
144
+
145
+ def write_meson_build(self, build_dir: Path) -> None:
146
+ """Writes the meson build file at specified location"""
147
+ meson_template = MesonTemplate(
148
+ self.modulename,
149
+ self.sources,
150
+ self.dependencies,
151
+ self.libraries,
152
+ self.library_dirs,
153
+ self.include_dirs,
154
+ self.extra_objects,
155
+ self.flib_flags,
156
+ self.fc_flags,
157
+ self.build_type,
158
+ sys.executable,
159
+ )
160
+ src = meson_template.generate_meson_build()
161
+ Path(build_dir).mkdir(parents=True, exist_ok=True)
162
+ meson_build_file = Path(build_dir) / "meson.build"
163
+ meson_build_file.write_text(src)
164
+ return meson_build_file
165
+
166
+ def _run_subprocess_command(self, command, cwd):
167
+ subprocess.run(command, cwd=cwd, check=True)
168
+
169
+ def run_meson(self, build_dir: Path):
170
+ setup_command = ["meson", "setup", self.meson_build_dir]
171
+ self._run_subprocess_command(setup_command, build_dir)
172
+ compile_command = ["meson", "compile", "-C", self.meson_build_dir]
173
+ self._run_subprocess_command(compile_command, build_dir)
174
+
175
+ def compile(self) -> None:
176
+ self.sources = _prepare_sources(self.modulename, self.sources, self.build_dir)
177
+ self.write_meson_build(self.build_dir)
178
+ self.run_meson(self.build_dir)
179
+ self._move_exec_to_root(self.build_dir)
180
+
181
+
182
+ def _prepare_sources(mname, sources, bdir):
183
+ extended_sources = sources.copy()
184
+ Path(bdir).mkdir(parents=True, exist_ok=True)
185
+ # Copy sources
186
+ for source in sources:
187
+ if Path(source).exists() and Path(source).is_file():
188
+ shutil.copy(source, bdir)
189
+ generated_sources = [
190
+ Path(f"{mname}module.c"),
191
+ Path(f"{mname}-f2pywrappers2.f90"),
192
+ Path(f"{mname}-f2pywrappers.f"),
193
+ ]
194
+ bdir = Path(bdir)
195
+ for generated_source in generated_sources:
196
+ if generated_source.exists():
197
+ shutil.copy(generated_source, bdir / generated_source.name)
198
+ extended_sources.append(generated_source.name)
199
+ generated_source.unlink()
200
+ extended_sources = [
201
+ Path(source).name
202
+ for source in extended_sources
203
+ if not Path(source).suffix == ".pyf"
204
+ ]
205
+ return extended_sources
env-llmeval/lib/python3.10/site-packages/numpy/f2py/_backends/meson.build.template ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ project('${modulename}',
2
+ ['c', 'fortran'],
3
+ version : '0.1',
4
+ meson_version: '>= 1.1.0',
5
+ default_options : [
6
+ 'warning_level=1',
7
+ 'buildtype=${buildtype}'
8
+ ])
9
+ fc = meson.get_compiler('fortran')
10
+
11
+ py = import('python').find_installation('${python}', pure: false)
12
+ py_dep = py.dependency()
13
+
14
+ incdir_numpy = run_command(py,
15
+ ['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
16
+ check : true
17
+ ).stdout().strip()
18
+
19
+ incdir_f2py = run_command(py,
20
+ ['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_include())'],
21
+ check : true
22
+ ).stdout().strip()
23
+
24
+ inc_np = include_directories(incdir_numpy)
25
+ np_dep = declare_dependency(include_directories: inc_np)
26
+
27
+ incdir_f2py = incdir_numpy / '..' / '..' / 'f2py' / 'src'
28
+ inc_f2py = include_directories(incdir_f2py)
29
+ fortranobject_c = incdir_f2py / 'fortranobject.c'
30
+
31
+ inc_np = include_directories(incdir_numpy, incdir_f2py)
32
+ # gh-25000
33
+ quadmath_dep = fc.find_library('quadmath', required: false)
34
+
35
+ ${lib_declarations}
36
+ ${lib_dir_declarations}
37
+
38
+ py.extension_module('${modulename}',
39
+ [
40
+ ${source_list},
41
+ fortranobject_c
42
+ ],
43
+ include_directories: [
44
+ inc_np,
45
+ ${inc_list}
46
+ ],
47
+ dependencies : [
48
+ py_dep,
49
+ quadmath_dep,
50
+ ${dep_list}
51
+ ${lib_list}
52
+ ${lib_dir_list}
53
+ ],
54
+ install : true)
env-llmeval/lib/python3.10/site-packages/numpy/f2py/src/fortranobject.c ADDED
@@ -0,0 +1,1423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #define FORTRANOBJECT_C
2
+ #include "fortranobject.h"
3
+
4
+ #ifdef __cplusplus
5
+ extern "C" {
6
+ #endif
7
+
8
+ #include <stdarg.h>
9
+ #include <stdlib.h>
10
+ #include <string.h>
11
+
12
+ /*
13
+ This file implements: FortranObject, array_from_pyobj, copy_ND_array
14
+
15
+ Author: Pearu Peterson <[email protected]>
16
+ $Revision: 1.52 $
17
+ $Date: 2005/07/11 07:44:20 $
18
+ */
19
+
20
+ int
21
+ F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj)
22
+ {
23
+ if (obj == NULL) {
24
+ fprintf(stderr, "Error loading %s\n", name);
25
+ if (PyErr_Occurred()) {
26
+ PyErr_Print();
27
+ PyErr_Clear();
28
+ }
29
+ return -1;
30
+ }
31
+ return PyDict_SetItemString(dict, name, obj);
32
+ }
33
+
34
+ /*
35
+ * Python-only fallback for thread-local callback pointers
36
+ */
37
+ void *
38
+ F2PySwapThreadLocalCallbackPtr(char *key, void *ptr)
39
+ {
40
+ PyObject *local_dict, *value;
41
+ void *prev;
42
+
43
+ local_dict = PyThreadState_GetDict();
44
+ if (local_dict == NULL) {
45
+ Py_FatalError(
46
+ "F2PySwapThreadLocalCallbackPtr: PyThreadState_GetDict "
47
+ "failed");
48
+ }
49
+
50
+ value = PyDict_GetItemString(local_dict, key);
51
+ if (value != NULL) {
52
+ prev = PyLong_AsVoidPtr(value);
53
+ if (PyErr_Occurred()) {
54
+ Py_FatalError(
55
+ "F2PySwapThreadLocalCallbackPtr: PyLong_AsVoidPtr failed");
56
+ }
57
+ }
58
+ else {
59
+ prev = NULL;
60
+ }
61
+
62
+ value = PyLong_FromVoidPtr((void *)ptr);
63
+ if (value == NULL) {
64
+ Py_FatalError(
65
+ "F2PySwapThreadLocalCallbackPtr: PyLong_FromVoidPtr failed");
66
+ }
67
+
68
+ if (PyDict_SetItemString(local_dict, key, value) != 0) {
69
+ Py_FatalError(
70
+ "F2PySwapThreadLocalCallbackPtr: PyDict_SetItemString failed");
71
+ }
72
+
73
+ Py_DECREF(value);
74
+
75
+ return prev;
76
+ }
77
+
78
+ void *
79
+ F2PyGetThreadLocalCallbackPtr(char *key)
80
+ {
81
+ PyObject *local_dict, *value;
82
+ void *prev;
83
+
84
+ local_dict = PyThreadState_GetDict();
85
+ if (local_dict == NULL) {
86
+ Py_FatalError(
87
+ "F2PyGetThreadLocalCallbackPtr: PyThreadState_GetDict failed");
88
+ }
89
+
90
+ value = PyDict_GetItemString(local_dict, key);
91
+ if (value != NULL) {
92
+ prev = PyLong_AsVoidPtr(value);
93
+ if (PyErr_Occurred()) {
94
+ Py_FatalError(
95
+ "F2PyGetThreadLocalCallbackPtr: PyLong_AsVoidPtr failed");
96
+ }
97
+ }
98
+ else {
99
+ prev = NULL;
100
+ }
101
+
102
+ return prev;
103
+ }
104
+
105
+ static PyArray_Descr *
106
+ get_descr_from_type_and_elsize(const int type_num, const int elsize) {
107
+ PyArray_Descr * descr = PyArray_DescrFromType(type_num);
108
+ if (type_num == NPY_STRING) {
109
+ // PyArray_DescrFromType returns descr with elsize = 0.
110
+ PyArray_DESCR_REPLACE(descr);
111
+ if (descr == NULL) {
112
+ return NULL;
113
+ }
114
+ descr->elsize = elsize;
115
+ }
116
+ return descr;
117
+ }
118
+
119
+ /************************* FortranObject *******************************/
120
+
121
+ typedef PyObject *(*fortranfunc)(PyObject *, PyObject *, PyObject *, void *);
122
+
123
+ PyObject *
124
+ PyFortranObject_New(FortranDataDef *defs, f2py_void_func init)
125
+ {
126
+ int i;
127
+ PyFortranObject *fp = NULL;
128
+ PyObject *v = NULL;
129
+ if (init != NULL) { /* Initialize F90 module objects */
130
+ (*(init))();
131
+ }
132
+ fp = PyObject_New(PyFortranObject, &PyFortran_Type);
133
+ if (fp == NULL) {
134
+ return NULL;
135
+ }
136
+ if ((fp->dict = PyDict_New()) == NULL) {
137
+ Py_DECREF(fp);
138
+ return NULL;
139
+ }
140
+ fp->len = 0;
141
+ while (defs[fp->len].name != NULL) {
142
+ fp->len++;
143
+ }
144
+ if (fp->len == 0) {
145
+ goto fail;
146
+ }
147
+ fp->defs = defs;
148
+ for (i = 0; i < fp->len; i++) {
149
+ if (fp->defs[i].rank == -1) { /* Is Fortran routine */
150
+ v = PyFortranObject_NewAsAttr(&(fp->defs[i]));
151
+ if (v == NULL) {
152
+ goto fail;
153
+ }
154
+ PyDict_SetItemString(fp->dict, fp->defs[i].name, v);
155
+ Py_XDECREF(v);
156
+ }
157
+ else if ((fp->defs[i].data) !=
158
+ NULL) { /* Is Fortran variable or array (not allocatable) */
159
+ PyArray_Descr *
160
+ descr = get_descr_from_type_and_elsize(fp->defs[i].type,
161
+ fp->defs[i].elsize);
162
+ if (descr == NULL) {
163
+ goto fail;
164
+ }
165
+ v = PyArray_NewFromDescr(&PyArray_Type, descr, fp->defs[i].rank,
166
+ fp->defs[i].dims.d, NULL, fp->defs[i].data,
167
+ NPY_ARRAY_FARRAY, NULL);
168
+ if (v == NULL) {
169
+ Py_DECREF(descr);
170
+ goto fail;
171
+ }
172
+ PyDict_SetItemString(fp->dict, fp->defs[i].name, v);
173
+ Py_XDECREF(v);
174
+ }
175
+ }
176
+ return (PyObject *)fp;
177
+ fail:
178
+ Py_XDECREF(fp);
179
+ return NULL;
180
+ }
181
+
182
+ PyObject *
183
+ PyFortranObject_NewAsAttr(FortranDataDef *defs)
184
+ { /* used for calling F90 module routines */
185
+ PyFortranObject *fp = NULL;
186
+ fp = PyObject_New(PyFortranObject, &PyFortran_Type);
187
+ if (fp == NULL)
188
+ return NULL;
189
+ if ((fp->dict = PyDict_New()) == NULL) {
190
+ PyObject_Del(fp);
191
+ return NULL;
192
+ }
193
+ fp->len = 1;
194
+ fp->defs = defs;
195
+ if (defs->rank == -1) {
196
+ PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("function %s", defs->name));
197
+ } else if (defs->rank == 0) {
198
+ PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("scalar %s", defs->name));
199
+ } else {
200
+ PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("array %s", defs->name));
201
+ }
202
+ return (PyObject *)fp;
203
+ }
204
+
205
+ /* Fortran methods */
206
+
207
+ static void
208
+ fortran_dealloc(PyFortranObject *fp)
209
+ {
210
+ Py_XDECREF(fp->dict);
211
+ PyObject_Del(fp);
212
+ }
213
+
214
+ /* Returns number of bytes consumed from buf, or -1 on error. */
215
+ static Py_ssize_t
216
+ format_def(char *buf, Py_ssize_t size, FortranDataDef def)
217
+ {
218
+ char *p = buf;
219
+ int i;
220
+ npy_intp n;
221
+
222
+ n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]);
223
+ if (n < 0 || n >= size) {
224
+ return -1;
225
+ }
226
+ p += n;
227
+ size -= n;
228
+
229
+ for (i = 1; i < def.rank; i++) {
230
+ n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]);
231
+ if (n < 0 || n >= size) {
232
+ return -1;
233
+ }
234
+ p += n;
235
+ size -= n;
236
+ }
237
+
238
+ if (size <= 0) {
239
+ return -1;
240
+ }
241
+
242
+ *p++ = ')';
243
+ size--;
244
+
245
+ if (def.data == NULL) {
246
+ static const char notalloc[] = ", not allocated";
247
+ if ((size_t)size < sizeof(notalloc)) {
248
+ return -1;
249
+ }
250
+ memcpy(p, notalloc, sizeof(notalloc));
251
+ p += sizeof(notalloc);
252
+ size -= sizeof(notalloc);
253
+ }
254
+
255
+ return p - buf;
256
+ }
257
+
258
+ static PyObject *
259
+ fortran_doc(FortranDataDef def)
260
+ {
261
+ char *buf, *p;
262
+ PyObject *s = NULL;
263
+ Py_ssize_t n, origsize, size = 100;
264
+
265
+ if (def.doc != NULL) {
266
+ size += strlen(def.doc);
267
+ }
268
+ origsize = size;
269
+ buf = p = (char *)PyMem_Malloc(size);
270
+ if (buf == NULL) {
271
+ return PyErr_NoMemory();
272
+ }
273
+
274
+ if (def.rank == -1) {
275
+ if (def.doc) {
276
+ n = strlen(def.doc);
277
+ if (n > size) {
278
+ goto fail;
279
+ }
280
+ memcpy(p, def.doc, n);
281
+ p += n;
282
+ size -= n;
283
+ }
284
+ else {
285
+ n = PyOS_snprintf(p, size, "%s - no docs available", def.name);
286
+ if (n < 0 || n >= size) {
287
+ goto fail;
288
+ }
289
+ p += n;
290
+ size -= n;
291
+ }
292
+ }
293
+ else {
294
+ PyArray_Descr *d = PyArray_DescrFromType(def.type);
295
+ n = PyOS_snprintf(p, size, "%s : '%c'-", def.name, d->type);
296
+ Py_DECREF(d);
297
+ if (n < 0 || n >= size) {
298
+ goto fail;
299
+ }
300
+ p += n;
301
+ size -= n;
302
+
303
+ if (def.data == NULL) {
304
+ n = format_def(p, size, def);
305
+ if (n < 0) {
306
+ goto fail;
307
+ }
308
+ p += n;
309
+ size -= n;
310
+ }
311
+ else if (def.rank > 0) {
312
+ n = format_def(p, size, def);
313
+ if (n < 0) {
314
+ goto fail;
315
+ }
316
+ p += n;
317
+ size -= n;
318
+ }
319
+ else {
320
+ n = strlen("scalar");
321
+ if (size < n) {
322
+ goto fail;
323
+ }
324
+ memcpy(p, "scalar", n);
325
+ p += n;
326
+ size -= n;
327
+ }
328
+ }
329
+ if (size <= 1) {
330
+ goto fail;
331
+ }
332
+ *p++ = '\n';
333
+ size--;
334
+
335
+ /* p now points one beyond the last character of the string in buf */
336
+ s = PyUnicode_FromStringAndSize(buf, p - buf);
337
+
338
+ PyMem_Free(buf);
339
+ return s;
340
+
341
+ fail:
342
+ fprintf(stderr,
343
+ "fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:"
344
+ " too long docstring required, increase size\n",
345
+ p - buf, origsize);
346
+ PyMem_Free(buf);
347
+ return NULL;
348
+ }
349
+
350
+ static FortranDataDef *save_def; /* save pointer of an allocatable array */
351
+ static void
352
+ set_data(char *d, npy_intp *f)
353
+ { /* callback from Fortran */
354
+ if (*f) /* In fortran f=allocated(d) */
355
+ save_def->data = d;
356
+ else
357
+ save_def->data = NULL;
358
+ /* printf("set_data: d=%p,f=%d\n",d,*f); */
359
+ }
360
+
361
+ static PyObject *
362
+ fortran_getattr(PyFortranObject *fp, char *name)
363
+ {
364
+ int i, j, k, flag;
365
+ if (fp->dict != NULL) {
366
+ PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name);
367
+ if (v == NULL && PyErr_Occurred()) {
368
+ return NULL;
369
+ }
370
+ else if (v != NULL) {
371
+ Py_INCREF(v);
372
+ return v;
373
+ }
374
+ }
375
+ for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name));
376
+ i++)
377
+ ;
378
+ if (j == 0)
379
+ if (fp->defs[i].rank != -1) { /* F90 allocatable array */
380
+ if (fp->defs[i].func == NULL)
381
+ return NULL;
382
+ for (k = 0; k < fp->defs[i].rank; ++k) fp->defs[i].dims.d[k] = -1;
383
+ save_def = &fp->defs[i];
384
+ (*(fp->defs[i].func))(&fp->defs[i].rank, fp->defs[i].dims.d,
385
+ set_data, &flag);
386
+ if (flag == 2)
387
+ k = fp->defs[i].rank + 1;
388
+ else
389
+ k = fp->defs[i].rank;
390
+ if (fp->defs[i].data != NULL) { /* array is allocated */
391
+ PyObject *v = PyArray_New(
392
+ &PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type,
393
+ NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL);
394
+ if (v == NULL)
395
+ return NULL;
396
+ /* Py_INCREF(v); */
397
+ return v;
398
+ }
399
+ else { /* array is not allocated */
400
+ Py_RETURN_NONE;
401
+ }
402
+ }
403
+ if (strcmp(name, "__dict__") == 0) {
404
+ Py_INCREF(fp->dict);
405
+ return fp->dict;
406
+ }
407
+ if (strcmp(name, "__doc__") == 0) {
408
+ PyObject *s = PyUnicode_FromString(""), *s2, *s3;
409
+ for (i = 0; i < fp->len; i++) {
410
+ s2 = fortran_doc(fp->defs[i]);
411
+ s3 = PyUnicode_Concat(s, s2);
412
+ Py_DECREF(s2);
413
+ Py_DECREF(s);
414
+ s = s3;
415
+ }
416
+ if (PyDict_SetItemString(fp->dict, name, s))
417
+ return NULL;
418
+ return s;
419
+ }
420
+ if ((strcmp(name, "_cpointer") == 0) && (fp->len == 1)) {
421
+ PyObject *cobj =
422
+ F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data), NULL);
423
+ if (PyDict_SetItemString(fp->dict, name, cobj))
424
+ return NULL;
425
+ return cobj;
426
+ }
427
+ PyObject *str, *ret;
428
+ str = PyUnicode_FromString(name);
429
+ ret = PyObject_GenericGetAttr((PyObject *)fp, str);
430
+ Py_DECREF(str);
431
+ return ret;
432
+ }
433
+
434
+ static int
435
+ fortran_setattr(PyFortranObject *fp, char *name, PyObject *v)
436
+ {
437
+ int i, j, flag;
438
+ PyArrayObject *arr = NULL;
439
+ for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name));
440
+ i++)
441
+ ;
442
+ if (j == 0) {
443
+ if (fp->defs[i].rank == -1) {
444
+ PyErr_SetString(PyExc_AttributeError,
445
+ "over-writing fortran routine");
446
+ return -1;
447
+ }
448
+ if (fp->defs[i].func != NULL) { /* is allocatable array */
449
+ npy_intp dims[F2PY_MAX_DIMS];
450
+ int k;
451
+ save_def = &fp->defs[i];
452
+ if (v != Py_None) { /* set new value (reallocate if needed --
453
+ see f2py generated code for more
454
+ details ) */
455
+ for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1;
456
+ if ((arr = array_from_pyobj(fp->defs[i].type, dims,
457
+ fp->defs[i].rank, F2PY_INTENT_IN,
458
+ v)) == NULL)
459
+ return -1;
460
+ (*(fp->defs[i].func))(&fp->defs[i].rank, PyArray_DIMS(arr),
461
+ set_data, &flag);
462
+ }
463
+ else { /* deallocate */
464
+ for (k = 0; k < fp->defs[i].rank; k++) dims[k] = 0;
465
+ (*(fp->defs[i].func))(&fp->defs[i].rank, dims, set_data,
466
+ &flag);
467
+ for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1;
468
+ }
469
+ memcpy(fp->defs[i].dims.d, dims,
470
+ fp->defs[i].rank * sizeof(npy_intp));
471
+ }
472
+ else { /* not allocatable array */
473
+ if ((arr = array_from_pyobj(fp->defs[i].type, fp->defs[i].dims.d,
474
+ fp->defs[i].rank, F2PY_INTENT_IN,
475
+ v)) == NULL)
476
+ return -1;
477
+ }
478
+ if (fp->defs[i].data !=
479
+ NULL) { /* copy Python object to Fortran array */
480
+ npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d,
481
+ PyArray_NDIM(arr));
482
+ if (s == -1)
483
+ s = PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr));
484
+ if (s < 0 || (memcpy(fp->defs[i].data, PyArray_DATA(arr),
485
+ s * PyArray_ITEMSIZE(arr))) == NULL) {
486
+ if ((PyObject *)arr != v) {
487
+ Py_DECREF(arr);
488
+ }
489
+ return -1;
490
+ }
491
+ if ((PyObject *)arr != v) {
492
+ Py_DECREF(arr);
493
+ }
494
+ }
495
+ else
496
+ return (fp->defs[i].func == NULL ? -1 : 0);
497
+ return 0; /* successful */
498
+ }
499
+ if (fp->dict == NULL) {
500
+ fp->dict = PyDict_New();
501
+ if (fp->dict == NULL)
502
+ return -1;
503
+ }
504
+ if (v == NULL) {
505
+ int rv = PyDict_DelItemString(fp->dict, name);
506
+ if (rv < 0)
507
+ PyErr_SetString(PyExc_AttributeError,
508
+ "delete non-existing fortran attribute");
509
+ return rv;
510
+ }
511
+ else
512
+ return PyDict_SetItemString(fp->dict, name, v);
513
+ }
514
+
515
+ static PyObject *
516
+ fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw)
517
+ {
518
+ int i = 0;
519
+ /* printf("fortran call
520
+ name=%s,func=%p,data=%p,%p\n",fp->defs[i].name,
521
+ fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */
522
+ if (fp->defs[i].rank == -1) { /* is Fortran routine */
523
+ if (fp->defs[i].func == NULL) {
524
+ PyErr_Format(PyExc_RuntimeError, "no function to call");
525
+ return NULL;
526
+ }
527
+ else if (fp->defs[i].data == NULL)
528
+ /* dummy routine */
529
+ return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp, arg,
530
+ kw, NULL);
531
+ else
532
+ return (*((fortranfunc)(fp->defs[i].func)))(
533
+ (PyObject *)fp, arg, kw, (void *)fp->defs[i].data);
534
+ }
535
+ PyErr_Format(PyExc_TypeError, "this fortran object is not callable");
536
+ return NULL;
537
+ }
538
+
539
+ static PyObject *
540
+ fortran_repr(PyFortranObject *fp)
541
+ {
542
+ PyObject *name = NULL, *repr = NULL;
543
+ name = PyObject_GetAttrString((PyObject *)fp, "__name__");
544
+ PyErr_Clear();
545
+ if (name != NULL && PyUnicode_Check(name)) {
546
+ repr = PyUnicode_FromFormat("<fortran %U>", name);
547
+ }
548
+ else {
549
+ repr = PyUnicode_FromString("<fortran object>");
550
+ }
551
+ Py_XDECREF(name);
552
+ return repr;
553
+ }
554
+
555
+ PyTypeObject PyFortran_Type = {
556
+ PyVarObject_HEAD_INIT(NULL, 0).tp_name = "fortran",
557
+ .tp_basicsize = sizeof(PyFortranObject),
558
+ .tp_dealloc = (destructor)fortran_dealloc,
559
+ .tp_getattr = (getattrfunc)fortran_getattr,
560
+ .tp_setattr = (setattrfunc)fortran_setattr,
561
+ .tp_repr = (reprfunc)fortran_repr,
562
+ .tp_call = (ternaryfunc)fortran_call,
563
+ };
564
+
565
+ /************************* f2py_report_atexit *******************************/
566
+
567
+ #ifdef F2PY_REPORT_ATEXIT
568
+ static int passed_time = 0;
569
+ static int passed_counter = 0;
570
+ static int passed_call_time = 0;
571
+ static struct timeb start_time;
572
+ static struct timeb stop_time;
573
+ static struct timeb start_call_time;
574
+ static struct timeb stop_call_time;
575
+ static int cb_passed_time = 0;
576
+ static int cb_passed_counter = 0;
577
+ static int cb_passed_call_time = 0;
578
+ static struct timeb cb_start_time;
579
+ static struct timeb cb_stop_time;
580
+ static struct timeb cb_start_call_time;
581
+ static struct timeb cb_stop_call_time;
582
+
583
+ extern void
584
+ f2py_start_clock(void)
585
+ {
586
+ ftime(&start_time);
587
+ }
588
+ extern void
589
+ f2py_start_call_clock(void)
590
+ {
591
+ f2py_stop_clock();
592
+ ftime(&start_call_time);
593
+ }
594
+ extern void
595
+ f2py_stop_clock(void)
596
+ {
597
+ ftime(&stop_time);
598
+ passed_time += 1000 * (stop_time.time - start_time.time);
599
+ passed_time += stop_time.millitm - start_time.millitm;
600
+ }
601
+ extern void
602
+ f2py_stop_call_clock(void)
603
+ {
604
+ ftime(&stop_call_time);
605
+ passed_call_time += 1000 * (stop_call_time.time - start_call_time.time);
606
+ passed_call_time += stop_call_time.millitm - start_call_time.millitm;
607
+ passed_counter += 1;
608
+ f2py_start_clock();
609
+ }
610
+
611
+ extern void
612
+ f2py_cb_start_clock(void)
613
+ {
614
+ ftime(&cb_start_time);
615
+ }
616
+ extern void
617
+ f2py_cb_start_call_clock(void)
618
+ {
619
+ f2py_cb_stop_clock();
620
+ ftime(&cb_start_call_time);
621
+ }
622
+ extern void
623
+ f2py_cb_stop_clock(void)
624
+ {
625
+ ftime(&cb_stop_time);
626
+ cb_passed_time += 1000 * (cb_stop_time.time - cb_start_time.time);
627
+ cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm;
628
+ }
629
+ extern void
630
+ f2py_cb_stop_call_clock(void)
631
+ {
632
+ ftime(&cb_stop_call_time);
633
+ cb_passed_call_time +=
634
+ 1000 * (cb_stop_call_time.time - cb_start_call_time.time);
635
+ cb_passed_call_time +=
636
+ cb_stop_call_time.millitm - cb_start_call_time.millitm;
637
+ cb_passed_counter += 1;
638
+ f2py_cb_start_clock();
639
+ }
640
+
641
+ static int f2py_report_on_exit_been_here = 0;
642
+ extern void
643
+ f2py_report_on_exit(int exit_flag, void *name)
644
+ {
645
+ if (f2py_report_on_exit_been_here) {
646
+ fprintf(stderr, " %s\n", (char *)name);
647
+ return;
648
+ }
649
+ f2py_report_on_exit_been_here = 1;
650
+ fprintf(stderr, " /-----------------------\\\n");
651
+ fprintf(stderr, " < F2PY performance report >\n");
652
+ fprintf(stderr, " \\-----------------------/\n");
653
+ fprintf(stderr, "Overall time spent in ...\n");
654
+ fprintf(stderr, "(a) wrapped (Fortran/C) functions : %8d msec\n",
655
+ passed_call_time);
656
+ fprintf(stderr, "(b) f2py interface, %6d calls : %8d msec\n",
657
+ passed_counter, passed_time);
658
+ fprintf(stderr, "(c) call-back (Python) functions : %8d msec\n",
659
+ cb_passed_call_time);
660
+ fprintf(stderr, "(d) f2py call-back interface, %6d calls : %8d msec\n",
661
+ cb_passed_counter, cb_passed_time);
662
+
663
+ fprintf(stderr,
664
+ "(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n",
665
+ passed_call_time - cb_passed_call_time - cb_passed_time);
666
+ fprintf(stderr,
667
+ "Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n");
668
+ fprintf(stderr, "Exit status: %d\n", exit_flag);
669
+ fprintf(stderr, "Modules : %s\n", (char *)name);
670
+ }
671
+ #endif
672
+
673
+ /********************** report on array copy ****************************/
674
+
675
+ #ifdef F2PY_REPORT_ON_ARRAY_COPY
676
+ static void
677
+ f2py_report_on_array_copy(PyArrayObject *arr)
678
+ {
679
+ const npy_intp arr_size = PyArray_Size((PyObject *)arr);
680
+ if (arr_size > F2PY_REPORT_ON_ARRAY_COPY) {
681
+ fprintf(stderr,
682
+ "copied an array: size=%ld, elsize=%" NPY_INTP_FMT "\n",
683
+ arr_size, (npy_intp)PyArray_ITEMSIZE(arr));
684
+ }
685
+ }
686
+ static void
687
+ f2py_report_on_array_copy_fromany(void)
688
+ {
689
+ fprintf(stderr, "created an array from object\n");
690
+ }
691
+
692
+ #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR \
693
+ f2py_report_on_array_copy((PyArrayObject *)arr)
694
+ #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany()
695
+ #else
696
+ #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR
697
+ #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY
698
+ #endif
699
+
700
+ /************************* array_from_obj *******************************/
701
+
702
+ /*
703
+ * File: array_from_pyobj.c
704
+ *
705
+ * Description:
706
+ * ------------
707
+ * Provides array_from_pyobj function that returns a contiguous array
708
+ * object with the given dimensions and required storage order, either
709
+ * in row-major (C) or column-major (Fortran) order. The function
710
+ * array_from_pyobj is very flexible about its Python object argument
711
+ * that can be any number, list, tuple, or array.
712
+ *
713
+ * array_from_pyobj is used in f2py generated Python extension
714
+ * modules.
715
+ *
716
+ * Author: Pearu Peterson <[email protected]>
717
+ * Created: 13-16 January 2002
718
+ * $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $
719
+ */
720
+
721
+ static int check_and_fix_dimensions(const PyArrayObject* arr,
722
+ const int rank,
723
+ npy_intp *dims,
724
+ const char *errmess);
725
+
726
+ static int
727
+ find_first_negative_dimension(const int rank, const npy_intp *dims)
728
+ {
729
+ int i;
730
+ for (i = 0; i < rank; ++i) {
731
+ if (dims[i] < 0) {
732
+ return i;
733
+ }
734
+ }
735
+ return -1;
736
+ }
737
+
738
+ #ifdef DEBUG_COPY_ND_ARRAY
739
+ void
740
+ dump_dims(int rank, npy_intp const *dims)
741
+ {
742
+ int i;
743
+ printf("[");
744
+ for (i = 0; i < rank; ++i) {
745
+ printf("%3" NPY_INTP_FMT, dims[i]);
746
+ }
747
+ printf("]\n");
748
+ }
749
+ void
750
+ dump_attrs(const PyArrayObject *obj)
751
+ {
752
+ const PyArrayObject_fields *arr = (const PyArrayObject_fields *)obj;
753
+ int rank = PyArray_NDIM(arr);
754
+ npy_intp size = PyArray_Size((PyObject *)arr);
755
+ printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", rank,
756
+ arr->flags, size);
757
+ printf("\tstrides = ");
758
+ dump_dims(rank, arr->strides);
759
+ printf("\tdimensions = ");
760
+ dump_dims(rank, arr->dimensions);
761
+ }
762
+ #endif
763
+
764
+ #define SWAPTYPE(a, b, t) \
765
+ { \
766
+ t c; \
767
+ c = (a); \
768
+ (a) = (b); \
769
+ (b) = c; \
770
+ }
771
+
772
+ static int
773
+ swap_arrays(PyArrayObject *obj1, PyArrayObject *obj2)
774
+ {
775
+ PyArrayObject_fields *arr1 = (PyArrayObject_fields *)obj1,
776
+ *arr2 = (PyArrayObject_fields *)obj2;
777
+ SWAPTYPE(arr1->data, arr2->data, char *);
778
+ SWAPTYPE(arr1->nd, arr2->nd, int);
779
+ SWAPTYPE(arr1->dimensions, arr2->dimensions, npy_intp *);
780
+ SWAPTYPE(arr1->strides, arr2->strides, npy_intp *);
781
+ SWAPTYPE(arr1->base, arr2->base, PyObject *);
782
+ SWAPTYPE(arr1->descr, arr2->descr, PyArray_Descr *);
783
+ SWAPTYPE(arr1->flags, arr2->flags, int);
784
+ /* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */
785
+ return 0;
786
+ }
787
+
788
+ #define ARRAY_ISCOMPATIBLE(arr,type_num) \
789
+ ((PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num)) || \
790
+ (PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num)) || \
791
+ (PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num)) || \
792
+ (PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num)) || \
793
+ (PyArray_ISSTRING(arr) && PyTypeNum_ISSTRING(type_num)))
794
+
795
+ static int
796
+ get_elsize(PyObject *obj) {
797
+ /*
798
+ get_elsize determines array itemsize from a Python object. Returns
799
+ elsize if successful, -1 otherwise.
800
+
801
+ Supported types of the input are: numpy.ndarray, bytes, str, tuple,
802
+ list.
803
+ */
804
+
805
+ if (PyArray_Check(obj)) {
806
+ return PyArray_DESCR((PyArrayObject *)obj)->elsize;
807
+ } else if (PyBytes_Check(obj)) {
808
+ return PyBytes_GET_SIZE(obj);
809
+ } else if (PyUnicode_Check(obj)) {
810
+ return PyUnicode_GET_LENGTH(obj);
811
+ } else if (PySequence_Check(obj)) {
812
+ PyObject* fast = PySequence_Fast(obj, "f2py:fortranobject.c:get_elsize");
813
+ if (fast != NULL) {
814
+ Py_ssize_t i, n = PySequence_Fast_GET_SIZE(fast);
815
+ int sz, elsize = 0;
816
+ for (i=0; i<n; i++) {
817
+ sz = get_elsize(PySequence_Fast_GET_ITEM(fast, i) /* borrowed */);
818
+ if (sz > elsize) {
819
+ elsize = sz;
820
+ }
821
+ }
822
+ Py_DECREF(fast);
823
+ return elsize;
824
+ }
825
+ }
826
+ return -1;
827
+ }
828
+
829
+ extern PyArrayObject *
830
+ ndarray_from_pyobj(const int type_num,
831
+ const int elsize_,
832
+ npy_intp *dims,
833
+ const int rank,
834
+ const int intent,
835
+ PyObject *obj,
836
+ const char *errmess) {
837
+ /*
838
+ * Return an array with given element type and shape from a Python
839
+ * object while taking into account the usage intent of the array.
840
+ *
841
+ * - element type is defined by type_num and elsize
842
+ * - shape is defined by dims and rank
843
+ *
844
+ * ndarray_from_pyobj is used to convert Python object arguments
845
+ * to numpy ndarrays with given type and shape that data is passed
846
+ * to interfaced Fortran or C functions.
847
+ *
848
+ * errmess (if not NULL), contains a prefix of an error message
849
+ * for an exception to be triggered within this function.
850
+ *
851
+ * Negative elsize value means that elsize is to be determined
852
+ * from the Python object in runtime.
853
+ *
854
+ * Note on strings
855
+ * ---------------
856
+ *
857
+ * String type (type_num == NPY_STRING) does not have fixed
858
+ * element size and, by default, the type object sets it to
859
+ * 0. Therefore, for string types, one has to use elsize
860
+ * argument. For other types, elsize value is ignored.
861
+ *
862
+ * NumPy defines the type of a fixed-width string as
863
+ * dtype('S<width>'). In addition, there is also dtype('c'), that
864
+ * appears as dtype('S1') (these have the same type_num value),
865
+ * but is actually different (.char attribute is either 'S' or
866
+ * 'c', respecitely).
867
+ *
868
+ * In Fortran, character arrays and strings are different
869
+ * concepts. The relation between Fortran types, NumPy dtypes,
870
+ * and type_num-elsize pairs, is defined as follows:
871
+ *
872
+ * character*5 foo | dtype('S5') | elsize=5, shape=()
873
+ * character(5) foo | dtype('S1') | elsize=1, shape=(5)
874
+ * character*5 foo(n) | dtype('S5') | elsize=5, shape=(n,)
875
+ * character(5) foo(n) | dtype('S1') | elsize=1, shape=(5, n)
876
+ * character*(*) foo | dtype('S') | elsize=-1, shape=()
877
+ *
878
+ * Note about reference counting
879
+ * -----------------------------
880
+ *
881
+ * If the caller returns the array to Python, it must be done with
882
+ * Py_BuildValue("N",arr). Otherwise, if obj!=arr then the caller
883
+ * must call Py_DECREF(arr).
884
+ *
885
+ * Note on intent(cache,out,..)
886
+ * ----------------------------
887
+ * Don't expect correct data when returning intent(cache) array.
888
+ *
889
+ */
890
+ char mess[F2PY_MESSAGE_BUFFER_SIZE];
891
+ PyArrayObject *arr = NULL;
892
+ int elsize = (elsize_ < 0 ? get_elsize(obj) : elsize_);
893
+ if (elsize < 0) {
894
+ if (errmess != NULL) {
895
+ strcpy(mess, errmess);
896
+ }
897
+ sprintf(mess + strlen(mess),
898
+ " -- failed to determine element size from %s",
899
+ Py_TYPE(obj)->tp_name);
900
+ PyErr_SetString(PyExc_SystemError, mess);
901
+ return NULL;
902
+ }
903
+ PyArray_Descr * descr = get_descr_from_type_and_elsize(type_num, elsize); // new reference
904
+ if (descr == NULL) {
905
+ return NULL;
906
+ }
907
+ elsize = descr->elsize;
908
+ if ((intent & F2PY_INTENT_HIDE)
909
+ || ((intent & F2PY_INTENT_CACHE) && (obj == Py_None))
910
+ || ((intent & F2PY_OPTIONAL) && (obj == Py_None))
911
+ ) {
912
+ /* intent(cache), optional, intent(hide) */
913
+ int ineg = find_first_negative_dimension(rank, dims);
914
+ if (ineg >= 0) {
915
+ int i;
916
+ strcpy(mess, "failed to create intent(cache|hide)|optional array"
917
+ "-- must have defined dimensions but got (");
918
+ for(i = 0; i < rank; ++i)
919
+ sprintf(mess + strlen(mess), "%" NPY_INTP_FMT ",", dims[i]);
920
+ strcat(mess, ")");
921
+ PyErr_SetString(PyExc_ValueError, mess);
922
+ Py_DECREF(descr);
923
+ return NULL;
924
+ }
925
+ arr = (PyArrayObject *) \
926
+ PyArray_NewFromDescr(&PyArray_Type, descr, rank, dims,
927
+ NULL, NULL, !(intent & F2PY_INTENT_C), NULL);
928
+ if (arr == NULL) {
929
+ Py_DECREF(descr);
930
+ return NULL;
931
+ }
932
+ if (PyArray_ITEMSIZE(arr) != elsize) {
933
+ strcpy(mess, "failed to create intent(cache|hide)|optional array");
934
+ sprintf(mess+strlen(mess)," -- expected elsize=%d got %" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr));
935
+ PyErr_SetString(PyExc_ValueError,mess);
936
+ Py_DECREF(arr);
937
+ return NULL;
938
+ }
939
+ if (!(intent & F2PY_INTENT_CACHE)) {
940
+ PyArray_FILLWBYTE(arr, 0);
941
+ }
942
+ return arr;
943
+ }
944
+
945
+ if (PyArray_Check(obj)) {
946
+ arr = (PyArrayObject *)obj;
947
+ if (intent & F2PY_INTENT_CACHE) {
948
+ /* intent(cache) */
949
+ if (PyArray_ISONESEGMENT(arr)
950
+ && PyArray_ITEMSIZE(arr) >= elsize) {
951
+ if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
952
+ Py_DECREF(descr);
953
+ return NULL;
954
+ }
955
+ if (intent & F2PY_INTENT_OUT)
956
+ Py_INCREF(arr);
957
+ Py_DECREF(descr);
958
+ return arr;
959
+ }
960
+ strcpy(mess, "failed to initialize intent(cache) array");
961
+ if (!PyArray_ISONESEGMENT(arr))
962
+ strcat(mess, " -- input must be in one segment");
963
+ if (PyArray_ITEMSIZE(arr) < elsize)
964
+ sprintf(mess + strlen(mess),
965
+ " -- expected at least elsize=%d but got "
966
+ "%" NPY_INTP_FMT,
967
+ elsize, (npy_intp)PyArray_ITEMSIZE(arr));
968
+ PyErr_SetString(PyExc_ValueError, mess);
969
+ Py_DECREF(descr);
970
+ return NULL;
971
+ }
972
+
973
+ /* here we have always intent(in) or intent(inout) or intent(inplace)
974
+ */
975
+
976
+ if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
977
+ Py_DECREF(descr);
978
+ return NULL;
979
+ }
980
+ /*
981
+ printf("intent alignment=%d\n", F2PY_GET_ALIGNMENT(intent));
982
+ printf("alignment check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent));
983
+ int i;
984
+ for (i=1;i<=16;i++)
985
+ printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i));
986
+ */
987
+ if ((! (intent & F2PY_INTENT_COPY)) &&
988
+ PyArray_ITEMSIZE(arr) == elsize &&
989
+ ARRAY_ISCOMPATIBLE(arr,type_num) &&
990
+ F2PY_CHECK_ALIGNMENT(arr, intent)) {
991
+ if ((intent & F2PY_INTENT_INOUT || intent & F2PY_INTENT_INPLACE)
992
+ ? ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY(arr) : PyArray_ISFARRAY(arr))
993
+ : ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY_RO(arr) : PyArray_ISFARRAY_RO(arr))) {
994
+ if ((intent & F2PY_INTENT_OUT)) {
995
+ Py_INCREF(arr);
996
+ }
997
+ /* Returning input array */
998
+ Py_DECREF(descr);
999
+ return arr;
1000
+ }
1001
+ }
1002
+ if (intent & F2PY_INTENT_INOUT) {
1003
+ strcpy(mess, "failed to initialize intent(inout) array");
1004
+ /* Must use PyArray_IS*ARRAY because intent(inout) requires
1005
+ * writable input */
1006
+ if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr))
1007
+ strcat(mess, " -- input not contiguous");
1008
+ if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr))
1009
+ strcat(mess, " -- input not fortran contiguous");
1010
+ if (PyArray_ITEMSIZE(arr) != elsize)
1011
+ sprintf(mess + strlen(mess),
1012
+ " -- expected elsize=%d but got %" NPY_INTP_FMT,
1013
+ elsize,
1014
+ (npy_intp)PyArray_ITEMSIZE(arr)
1015
+ );
1016
+ if (!(ARRAY_ISCOMPATIBLE(arr, type_num))) {
1017
+ sprintf(mess + strlen(mess),
1018
+ " -- input '%c' not compatible to '%c'",
1019
+ PyArray_DESCR(arr)->type, descr->type);
1020
+ }
1021
+ if (!(F2PY_CHECK_ALIGNMENT(arr, intent)))
1022
+ sprintf(mess + strlen(mess), " -- input not %d-aligned",
1023
+ F2PY_GET_ALIGNMENT(intent));
1024
+ PyErr_SetString(PyExc_ValueError, mess);
1025
+ Py_DECREF(descr);
1026
+ return NULL;
1027
+ }
1028
+
1029
+ /* here we have always intent(in) or intent(inplace) */
1030
+
1031
+ {
1032
+ PyArrayObject * retarr = (PyArrayObject *) \
1033
+ PyArray_NewFromDescr(&PyArray_Type, descr, PyArray_NDIM(arr), PyArray_DIMS(arr),
1034
+ NULL, NULL, !(intent & F2PY_INTENT_C), NULL);
1035
+ if (retarr==NULL) {
1036
+ Py_DECREF(descr);
1037
+ return NULL;
1038
+ }
1039
+ F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
1040
+ if (PyArray_CopyInto(retarr, arr)) {
1041
+ Py_DECREF(retarr);
1042
+ return NULL;
1043
+ }
1044
+ if (intent & F2PY_INTENT_INPLACE) {
1045
+ if (swap_arrays(arr,retarr)) {
1046
+ Py_DECREF(retarr);
1047
+ return NULL; /* XXX: set exception */
1048
+ }
1049
+ Py_XDECREF(retarr);
1050
+ if (intent & F2PY_INTENT_OUT)
1051
+ Py_INCREF(arr);
1052
+ } else {
1053
+ arr = retarr;
1054
+ }
1055
+ }
1056
+ return arr;
1057
+ }
1058
+
1059
+ if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) ||
1060
+ (intent & F2PY_INTENT_CACHE)) {
1061
+ PyErr_Format(PyExc_TypeError,
1062
+ "failed to initialize intent(inout|inplace|cache) "
1063
+ "array, input '%s' object is not an array",
1064
+ Py_TYPE(obj)->tp_name);
1065
+ Py_DECREF(descr);
1066
+ return NULL;
1067
+ }
1068
+
1069
+ {
1070
+ F2PY_REPORT_ON_ARRAY_COPY_FROMANY;
1071
+ arr = (PyArrayObject *)PyArray_FromAny(
1072
+ obj, descr, 0, 0,
1073
+ ((intent & F2PY_INTENT_C) ? NPY_ARRAY_CARRAY
1074
+ : NPY_ARRAY_FARRAY) |
1075
+ NPY_ARRAY_FORCECAST,
1076
+ NULL);
1077
+ // Warning: in the case of NPY_STRING, PyArray_FromAny may
1078
+ // reset descr->elsize, e.g. dtype('S0') becomes dtype('S1').
1079
+ if (arr == NULL) {
1080
+ Py_DECREF(descr);
1081
+ return NULL;
1082
+ }
1083
+ if (type_num != NPY_STRING && PyArray_ITEMSIZE(arr) != elsize) {
1084
+ // This is internal sanity tests: elsize has been set to
1085
+ // descr->elsize in the beginning of this function.
1086
+ strcpy(mess, "failed to initialize intent(in) array");
1087
+ sprintf(mess + strlen(mess),
1088
+ " -- expected elsize=%d got %" NPY_INTP_FMT, elsize,
1089
+ (npy_intp)PyArray_ITEMSIZE(arr));
1090
+ PyErr_SetString(PyExc_ValueError, mess);
1091
+ Py_DECREF(arr);
1092
+ return NULL;
1093
+ }
1094
+ if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
1095
+ Py_DECREF(arr);
1096
+ return NULL;
1097
+ }
1098
+ return arr;
1099
+ }
1100
+ }
1101
+
1102
+ extern PyArrayObject *
1103
+ array_from_pyobj(const int type_num,
1104
+ npy_intp *dims,
1105
+ const int rank,
1106
+ const int intent,
1107
+ PyObject *obj) {
1108
+ /*
1109
+ Same as ndarray_from_pyobj but with elsize determined from type,
1110
+ if possible. Provided for backward compatibility.
1111
+ */
1112
+ PyArray_Descr* descr = PyArray_DescrFromType(type_num);
1113
+ int elsize = descr->elsize;
1114
+ Py_DECREF(descr);
1115
+ return ndarray_from_pyobj(type_num, elsize, dims, rank, intent, obj, NULL);
1116
+ }
1117
+
1118
+ /*****************************************/
1119
+ /* Helper functions for array_from_pyobj */
1120
+ /*****************************************/
1121
+
1122
+ static int
1123
+ check_and_fix_dimensions(const PyArrayObject* arr, const int rank,
1124
+ npy_intp *dims, const char *errmess)
1125
+ {
1126
+ /*
1127
+ * This function fills in blanks (that are -1's) in dims list using
1128
+ * the dimensions from arr. It also checks that non-blank dims will
1129
+ * match with the corresponding values in arr dimensions.
1130
+ *
1131
+ * Returns 0 if the function is successful.
1132
+ *
1133
+ * If an error condition is detected, an exception is set and 1 is
1134
+ * returned.
1135
+ */
1136
+ char mess[F2PY_MESSAGE_BUFFER_SIZE];
1137
+ const npy_intp arr_size =
1138
+ (PyArray_NDIM(arr)) ? PyArray_Size((PyObject *)arr) : 1;
1139
+ #ifdef DEBUG_COPY_ND_ARRAY
1140
+ dump_attrs(arr);
1141
+ printf("check_and_fix_dimensions:init: dims=");
1142
+ dump_dims(rank, dims);
1143
+ #endif
1144
+ if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */
1145
+ npy_intp new_size = 1;
1146
+ int free_axe = -1;
1147
+ int i;
1148
+ npy_intp d;
1149
+ /* Fill dims where -1 or 0; check dimensions; calc new_size; */
1150
+ for (i = 0; i < PyArray_NDIM(arr); ++i) {
1151
+ d = PyArray_DIM(arr, i);
1152
+ if (dims[i] >= 0) {
1153
+ if (d > 1 && dims[i] != d) {
1154
+ PyErr_Format(
1155
+ PyExc_ValueError,
1156
+ "%d-th dimension must be fixed to %" NPY_INTP_FMT
1157
+ " but got %" NPY_INTP_FMT "\n",
1158
+ i, dims[i], d);
1159
+ return 1;
1160
+ }
1161
+ if (!dims[i])
1162
+ dims[i] = 1;
1163
+ }
1164
+ else {
1165
+ dims[i] = d ? d : 1;
1166
+ }
1167
+ new_size *= dims[i];
1168
+ }
1169
+ for (i = PyArray_NDIM(arr); i < rank; ++i)
1170
+ if (dims[i] > 1) {
1171
+ PyErr_Format(PyExc_ValueError,
1172
+ "%d-th dimension must be %" NPY_INTP_FMT
1173
+ " but got 0 (not defined).\n",
1174
+ i, dims[i]);
1175
+ return 1;
1176
+ }
1177
+ else if (free_axe < 0)
1178
+ free_axe = i;
1179
+ else
1180
+ dims[i] = 1;
1181
+ if (free_axe >= 0) {
1182
+ dims[free_axe] = arr_size / new_size;
1183
+ new_size *= dims[free_axe];
1184
+ }
1185
+ if (new_size != arr_size) {
1186
+ PyErr_Format(PyExc_ValueError,
1187
+ "unexpected array size: new_size=%" NPY_INTP_FMT
1188
+ ", got array with arr_size=%" NPY_INTP_FMT
1189
+ " (maybe too many free indices)\n",
1190
+ new_size, arr_size);
1191
+ return 1;
1192
+ }
1193
+ }
1194
+ else if (rank == PyArray_NDIM(arr)) {
1195
+ npy_intp new_size = 1;
1196
+ int i;
1197
+ npy_intp d;
1198
+ for (i = 0; i < rank; ++i) {
1199
+ d = PyArray_DIM(arr, i);
1200
+ if (dims[i] >= 0) {
1201
+ if (d > 1 && d != dims[i]) {
1202
+ if (errmess != NULL) {
1203
+ strcpy(mess, errmess);
1204
+ }
1205
+ sprintf(mess + strlen(mess),
1206
+ " -- %d-th dimension must be fixed to %"
1207
+ NPY_INTP_FMT " but got %" NPY_INTP_FMT,
1208
+ i, dims[i], d);
1209
+ PyErr_SetString(PyExc_ValueError, mess);
1210
+ return 1;
1211
+ }
1212
+ if (!dims[i])
1213
+ dims[i] = 1;
1214
+ }
1215
+ else
1216
+ dims[i] = d;
1217
+ new_size *= dims[i];
1218
+ }
1219
+ if (new_size != arr_size) {
1220
+ PyErr_Format(PyExc_ValueError,
1221
+ "unexpected array size: new_size=%" NPY_INTP_FMT
1222
+ ", got array with arr_size=%" NPY_INTP_FMT "\n",
1223
+ new_size, arr_size);
1224
+ return 1;
1225
+ }
1226
+ }
1227
+ else { /* [[1,2]] -> [[1],[2]] */
1228
+ int i, j;
1229
+ npy_intp d;
1230
+ int effrank;
1231
+ npy_intp size;
1232
+ for (i = 0, effrank = 0; i < PyArray_NDIM(arr); ++i)
1233
+ if (PyArray_DIM(arr, i) > 1)
1234
+ ++effrank;
1235
+ if (dims[rank - 1] >= 0)
1236
+ if (effrank > rank) {
1237
+ PyErr_Format(PyExc_ValueError,
1238
+ "too many axes: %d (effrank=%d), "
1239
+ "expected rank=%d\n",
1240
+ PyArray_NDIM(arr), effrank, rank);
1241
+ return 1;
1242
+ }
1243
+
1244
+ for (i = 0, j = 0; i < rank; ++i) {
1245
+ while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j;
1246
+ if (j >= PyArray_NDIM(arr))
1247
+ d = 1;
1248
+ else
1249
+ d = PyArray_DIM(arr, j++);
1250
+ if (dims[i] >= 0) {
1251
+ if (d > 1 && d != dims[i]) {
1252
+ if (errmess != NULL) {
1253
+ strcpy(mess, errmess);
1254
+ }
1255
+ sprintf(mess + strlen(mess),
1256
+ " -- %d-th dimension must be fixed to %"
1257
+ NPY_INTP_FMT " but got %" NPY_INTP_FMT
1258
+ " (real index=%d)\n",
1259
+ i, dims[i], d, j-1);
1260
+ PyErr_SetString(PyExc_ValueError, mess);
1261
+ return 1;
1262
+ }
1263
+ if (!dims[i])
1264
+ dims[i] = 1;
1265
+ }
1266
+ else
1267
+ dims[i] = d;
1268
+ }
1269
+
1270
+ for (i = rank; i < PyArray_NDIM(arr);
1271
+ ++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */
1272
+ while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j;
1273
+ if (j >= PyArray_NDIM(arr))
1274
+ d = 1;
1275
+ else
1276
+ d = PyArray_DIM(arr, j++);
1277
+ dims[rank - 1] *= d;
1278
+ }
1279
+ for (i = 0, size = 1; i < rank; ++i) size *= dims[i];
1280
+ if (size != arr_size) {
1281
+ char msg[200];
1282
+ int len;
1283
+ snprintf(msg, sizeof(msg),
1284
+ "unexpected array size: size=%" NPY_INTP_FMT
1285
+ ", arr_size=%" NPY_INTP_FMT
1286
+ ", rank=%d, effrank=%d, arr.nd=%d, dims=[",
1287
+ size, arr_size, rank, effrank, PyArray_NDIM(arr));
1288
+ for (i = 0; i < rank; ++i) {
1289
+ len = strlen(msg);
1290
+ snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT,
1291
+ dims[i]);
1292
+ }
1293
+ len = strlen(msg);
1294
+ snprintf(msg + len, sizeof(msg) - len, " ], arr.dims=[");
1295
+ for (i = 0; i < PyArray_NDIM(arr); ++i) {
1296
+ len = strlen(msg);
1297
+ snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT,
1298
+ PyArray_DIM(arr, i));
1299
+ }
1300
+ len = strlen(msg);
1301
+ snprintf(msg + len, sizeof(msg) - len, " ]\n");
1302
+ PyErr_SetString(PyExc_ValueError, msg);
1303
+ return 1;
1304
+ }
1305
+ }
1306
+ #ifdef DEBUG_COPY_ND_ARRAY
1307
+ printf("check_and_fix_dimensions:end: dims=");
1308
+ dump_dims(rank, dims);
1309
+ #endif
1310
+ return 0;
1311
+ }
1312
+
1313
+ /* End of file: array_from_pyobj.c */
1314
+
1315
+ /************************* copy_ND_array *******************************/
1316
+
1317
+ extern int
1318
+ copy_ND_array(const PyArrayObject *arr, PyArrayObject *out)
1319
+ {
1320
+ F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
1321
+ return PyArray_CopyInto(out, (PyArrayObject *)arr);
1322
+ }
1323
+
1324
+ /********************* Various utility functions ***********************/
1325
+
1326
+ extern int
1327
+ f2py_describe(PyObject *obj, char *buf) {
1328
+ /*
1329
+ Write the description of a Python object to buf. The caller must
1330
+ provide buffer with size sufficient to write the description.
1331
+
1332
+ Return 1 on success.
1333
+ */
1334
+ char localbuf[F2PY_MESSAGE_BUFFER_SIZE];
1335
+ if (PyBytes_Check(obj)) {
1336
+ sprintf(localbuf, "%d-%s", (npy_int)PyBytes_GET_SIZE(obj), Py_TYPE(obj)->tp_name);
1337
+ } else if (PyUnicode_Check(obj)) {
1338
+ sprintf(localbuf, "%d-%s", (npy_int)PyUnicode_GET_LENGTH(obj), Py_TYPE(obj)->tp_name);
1339
+ } else if (PyArray_CheckScalar(obj)) {
1340
+ PyArrayObject* arr = (PyArrayObject*)obj;
1341
+ sprintf(localbuf, "%c%" NPY_INTP_FMT "-%s-scalar", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name);
1342
+ } else if (PyArray_Check(obj)) {
1343
+ int i;
1344
+ PyArrayObject* arr = (PyArrayObject*)obj;
1345
+ strcpy(localbuf, "(");
1346
+ for (i=0; i<PyArray_NDIM(arr); i++) {
1347
+ if (i) {
1348
+ strcat(localbuf, " ");
1349
+ }
1350
+ sprintf(localbuf + strlen(localbuf), "%" NPY_INTP_FMT ",", PyArray_DIM(arr, i));
1351
+ }
1352
+ sprintf(localbuf + strlen(localbuf), ")-%c%" NPY_INTP_FMT "-%s", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name);
1353
+ } else if (PySequence_Check(obj)) {
1354
+ sprintf(localbuf, "%d-%s", (npy_int)PySequence_Length(obj), Py_TYPE(obj)->tp_name);
1355
+ } else {
1356
+ sprintf(localbuf, "%s instance", Py_TYPE(obj)->tp_name);
1357
+ }
1358
+ // TODO: detect the size of buf and make sure that size(buf) >= size(localbuf).
1359
+ strcpy(buf, localbuf);
1360
+ return 1;
1361
+ }
1362
+
1363
+ extern npy_intp
1364
+ f2py_size_impl(PyArrayObject* var, ...)
1365
+ {
1366
+ npy_intp sz = 0;
1367
+ npy_intp dim;
1368
+ npy_intp rank;
1369
+ va_list argp;
1370
+ va_start(argp, var);
1371
+ dim = va_arg(argp, npy_int);
1372
+ if (dim==-1)
1373
+ {
1374
+ sz = PyArray_SIZE(var);
1375
+ }
1376
+ else
1377
+ {
1378
+ rank = PyArray_NDIM(var);
1379
+ if (dim>=1 && dim<=rank)
1380
+ sz = PyArray_DIM(var, dim-1);
1381
+ else
1382
+ fprintf(stderr, "f2py_size: 2nd argument value=%" NPY_INTP_FMT
1383
+ " fails to satisfy 1<=value<=%" NPY_INTP_FMT
1384
+ ". Result will be 0.\n", dim, rank);
1385
+ }
1386
+ va_end(argp);
1387
+ return sz;
1388
+ }
1389
+
1390
+ /*********************************************/
1391
+ /* Compatibility functions for Python >= 3.0 */
1392
+ /*********************************************/
1393
+
1394
+ PyObject *
1395
+ F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
1396
+ {
1397
+ PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
1398
+ if (ret == NULL) {
1399
+ PyErr_Clear();
1400
+ }
1401
+ return ret;
1402
+ }
1403
+
1404
+ void *
1405
+ F2PyCapsule_AsVoidPtr(PyObject *obj)
1406
+ {
1407
+ void *ret = PyCapsule_GetPointer(obj, NULL);
1408
+ if (ret == NULL) {
1409
+ PyErr_Clear();
1410
+ }
1411
+ return ret;
1412
+ }
1413
+
1414
+ int
1415
+ F2PyCapsule_Check(PyObject *ptr)
1416
+ {
1417
+ return PyCapsule_CheckExact(ptr);
1418
+ }
1419
+
1420
+ #ifdef __cplusplus
1421
+ }
1422
+ #endif
1423
+ /************************* EOF fortranobject.c *******************************/
env-llmeval/lib/python3.10/site-packages/numpy/f2py/src/fortranobject.h ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ifndef Py_FORTRANOBJECT_H
2
+ #define Py_FORTRANOBJECT_H
3
+ #ifdef __cplusplus
4
+ extern "C" {
5
+ #endif
6
+
7
+ #include <Python.h>
8
+
9
+ #ifndef NPY_NO_DEPRECATED_API
10
+ #define NPY_NO_DEPRECATED_API NPY_API_VERSION
11
+ #endif
12
+ #ifdef FORTRANOBJECT_C
13
+ #define NO_IMPORT_ARRAY
14
+ #endif
15
+ #define PY_ARRAY_UNIQUE_SYMBOL _npy_f2py_ARRAY_API
16
+ #include "numpy/arrayobject.h"
17
+ #include "numpy/npy_3kcompat.h"
18
+
19
+ #ifdef F2PY_REPORT_ATEXIT
20
+ #include <sys/timeb.h>
21
+ // clang-format off
22
+ extern void f2py_start_clock(void);
23
+ extern void f2py_stop_clock(void);
24
+ extern void f2py_start_call_clock(void);
25
+ extern void f2py_stop_call_clock(void);
26
+ extern void f2py_cb_start_clock(void);
27
+ extern void f2py_cb_stop_clock(void);
28
+ extern void f2py_cb_start_call_clock(void);
29
+ extern void f2py_cb_stop_call_clock(void);
30
+ extern void f2py_report_on_exit(int, void *);
31
+ // clang-format on
32
+ #endif
33
+
34
+ #ifdef DMALLOC
35
+ #include "dmalloc.h"
36
+ #endif
37
+
38
+ /* Fortran object interface */
39
+
40
+ /*
41
+ 123456789-123456789-123456789-123456789-123456789-123456789-123456789-12
42
+
43
+ PyFortranObject represents various Fortran objects:
44
+ Fortran (module) routines, COMMON blocks, module data.
45
+
46
+ Author: Pearu Peterson <[email protected]>
47
+ */
48
+
49
+ #define F2PY_MAX_DIMS 40
50
+ #define F2PY_MESSAGE_BUFFER_SIZE 300 // Increase on "stack smashing detected"
51
+
52
+ typedef void (*f2py_set_data_func)(char *, npy_intp *);
53
+ typedef void (*f2py_void_func)(void);
54
+ typedef void (*f2py_init_func)(int *, npy_intp *, f2py_set_data_func, int *);
55
+
56
+ /*typedef void* (*f2py_c_func)(void*,...);*/
57
+
58
+ typedef void *(*f2pycfunc)(void);
59
+
60
+ typedef struct {
61
+ char *name; /* attribute (array||routine) name */
62
+ int rank; /* array rank, 0 for scalar, max is F2PY_MAX_DIMS,
63
+ || rank=-1 for Fortran routine */
64
+ struct {
65
+ npy_intp d[F2PY_MAX_DIMS];
66
+ } dims; /* dimensions of the array, || not used */
67
+ int type; /* PyArray_<type> || not used */
68
+ int elsize; /* Element size || not used */
69
+ char *data; /* pointer to array || Fortran routine */
70
+ f2py_init_func func; /* initialization function for
71
+ allocatable arrays:
72
+ func(&rank,dims,set_ptr_func,name,len(name))
73
+ || C/API wrapper for Fortran routine */
74
+ char *doc; /* documentation string; only recommended
75
+ for routines. */
76
+ } FortranDataDef;
77
+
78
+ typedef struct {
79
+ PyObject_HEAD
80
+ int len; /* Number of attributes */
81
+ FortranDataDef *defs; /* An array of FortranDataDef's */
82
+ PyObject *dict; /* Fortran object attribute dictionary */
83
+ } PyFortranObject;
84
+
85
+ #define PyFortran_Check(op) (Py_TYPE(op) == &PyFortran_Type)
86
+ #define PyFortran_Check1(op) (0 == strcmp(Py_TYPE(op)->tp_name, "fortran"))
87
+
88
+ extern PyTypeObject PyFortran_Type;
89
+ extern int
90
+ F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj);
91
+ extern PyObject *
92
+ PyFortranObject_New(FortranDataDef *defs, f2py_void_func init);
93
+ extern PyObject *
94
+ PyFortranObject_NewAsAttr(FortranDataDef *defs);
95
+
96
+ PyObject *
97
+ F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *));
98
+ void *
99
+ F2PyCapsule_AsVoidPtr(PyObject *obj);
100
+ int
101
+ F2PyCapsule_Check(PyObject *ptr);
102
+
103
+ extern void *
104
+ F2PySwapThreadLocalCallbackPtr(char *key, void *ptr);
105
+ extern void *
106
+ F2PyGetThreadLocalCallbackPtr(char *key);
107
+
108
+ #define ISCONTIGUOUS(m) (PyArray_FLAGS(m) & NPY_ARRAY_C_CONTIGUOUS)
109
+ #define F2PY_INTENT_IN 1
110
+ #define F2PY_INTENT_INOUT 2
111
+ #define F2PY_INTENT_OUT 4
112
+ #define F2PY_INTENT_HIDE 8
113
+ #define F2PY_INTENT_CACHE 16
114
+ #define F2PY_INTENT_COPY 32
115
+ #define F2PY_INTENT_C 64
116
+ #define F2PY_OPTIONAL 128
117
+ #define F2PY_INTENT_INPLACE 256
118
+ #define F2PY_INTENT_ALIGNED4 512
119
+ #define F2PY_INTENT_ALIGNED8 1024
120
+ #define F2PY_INTENT_ALIGNED16 2048
121
+
122
+ #define ARRAY_ISALIGNED(ARR, SIZE) ((size_t)(PyArray_DATA(ARR)) % (SIZE) == 0)
123
+ #define F2PY_ALIGN4(intent) (intent & F2PY_INTENT_ALIGNED4)
124
+ #define F2PY_ALIGN8(intent) (intent & F2PY_INTENT_ALIGNED8)
125
+ #define F2PY_ALIGN16(intent) (intent & F2PY_INTENT_ALIGNED16)
126
+
127
+ #define F2PY_GET_ALIGNMENT(intent) \
128
+ (F2PY_ALIGN4(intent) \
129
+ ? 4 \
130
+ : (F2PY_ALIGN8(intent) ? 8 : (F2PY_ALIGN16(intent) ? 16 : 1)))
131
+ #define F2PY_CHECK_ALIGNMENT(arr, intent) \
132
+ ARRAY_ISALIGNED(arr, F2PY_GET_ALIGNMENT(intent))
133
+ #define F2PY_ARRAY_IS_CHARACTER_COMPATIBLE(arr) ((PyArray_DESCR(arr)->type_num == NPY_STRING && PyArray_DESCR(arr)->elsize >= 1) \
134
+ || PyArray_DESCR(arr)->type_num == NPY_UINT8)
135
+ #define F2PY_IS_UNICODE_ARRAY(arr) (PyArray_DESCR(arr)->type_num == NPY_UNICODE)
136
+
137
+ extern PyArrayObject *
138
+ ndarray_from_pyobj(const int type_num, const int elsize_, npy_intp *dims,
139
+ const int rank, const int intent, PyObject *obj,
140
+ const char *errmess);
141
+
142
+ extern PyArrayObject *
143
+ array_from_pyobj(const int type_num, npy_intp *dims, const int rank,
144
+ const int intent, PyObject *obj);
145
+ extern int
146
+ copy_ND_array(const PyArrayObject *in, PyArrayObject *out);
147
+
148
+ #ifdef DEBUG_COPY_ND_ARRAY
149
+ extern void
150
+ dump_attrs(const PyArrayObject *arr);
151
+ #endif
152
+
153
+ extern int f2py_describe(PyObject *obj, char *buf);
154
+
155
+ /* Utility CPP macros and functions that can be used in signature file
156
+ expressions. See signature-file.rst for documentation.
157
+ */
158
+
159
+ #define f2py_itemsize(var) (PyArray_DESCR((capi_ ## var ## _as_array))->elsize)
160
+ #define f2py_size(var, ...) f2py_size_impl((PyArrayObject *)(capi_ ## var ## _as_array), ## __VA_ARGS__, -1)
161
+ #define f2py_rank(var) var ## _Rank
162
+ #define f2py_shape(var,dim) var ## _Dims[dim]
163
+ #define f2py_len(var) f2py_shape(var,0)
164
+ #define f2py_fshape(var,dim) f2py_shape(var,rank(var)-dim-1)
165
+ #define f2py_flen(var) f2py_fshape(var,0)
166
+ #define f2py_slen(var) capi_ ## var ## _len
167
+
168
+ extern npy_intp f2py_size_impl(PyArrayObject* var, ...);
169
+
170
+ #ifdef __cplusplus
171
+ }
172
+ #endif
173
+ #endif /* !Py_FORTRANOBJECT_H */
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-310.pyc ADDED
Binary file (1.38 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-310.pyc ADDED
Binary file (20.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-310.pyc ADDED
Binary file (1.85 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-310.pyc ADDED
Binary file (997 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-310.pyc ADDED
Binary file (8.89 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-310.pyc ADDED
Binary file (22.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (1.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_compile_function.cpython-310.pyc ADDED
Binary file (2.41 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-310.pyc ADDED
Binary file (3.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-310.pyc ADDED
Binary file (2 kB). View file