diff --git "a/env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyx" "b/env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyx" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/scipy/special/_ufuncs.pyx" @@ -0,0 +1,21968 @@ +# This file is automatically generated by _generate_pyx.py. +# Do not edit manually! + +from libc.math cimport NAN + +include "_ufuncs_extra_code_common.pxi" +include "_ufuncs_extra_code.pxi" +__all__ = ['agm', 'airy', 'airye', 'bdtr', 'bdtrc', 'bdtri', 'bdtrik', 'bdtrin', 'bei', 'beip', 'ber', 'berp', 'besselpoly', 'beta', 'betainc', 'betaincc', 'betainccinv', 'betaincinv', 'betaln', 'binom', 'boxcox', 'boxcox1p', 'btdtr', 'btdtri', 'btdtria', 'btdtrib', 'cbrt', 'chdtr', 'chdtrc', 'chdtri', 'chdtriv', 'chndtr', 'chndtridf', 'chndtrinc', 'chndtrix', 'cosdg', 'cosm1', 'cotdg', 'dawsn', 'ellipe', 'ellipeinc', 'ellipj', 'ellipk', 'ellipkinc', 'ellipkm1', 'elliprc', 'elliprd', 'elliprf', 'elliprg', 'elliprj', 'entr', 'erf', 'erfc', 'erfcinv', 'erfcx', 'erfi', 'erfinv', 'eval_chebyc', 'eval_chebys', 'eval_chebyt', 'eval_chebyu', 'eval_gegenbauer', 'eval_genlaguerre', 'eval_hermite', 'eval_hermitenorm', 'eval_jacobi', 'eval_laguerre', 'eval_legendre', 'eval_sh_chebyt', 'eval_sh_chebyu', 'eval_sh_jacobi', 'eval_sh_legendre', 'exp1', 'exp10', 'exp2', 'expi', 'expit', 'expm1', 'expn', 'exprel', 'fdtr', 'fdtrc', 'fdtri', 'fdtridfd', 'fresnel', 'gamma', 'gammainc', 'gammaincc', 'gammainccinv', 'gammaincinv', 'gammaln', 'gammasgn', 'gdtr', 'gdtrc', 'gdtria', 'gdtrib', 'gdtrix', 'hankel1', 'hankel1e', 'hankel2', 'hankel2e', 'huber', 'hyp0f1', 'hyp1f1', 'hyp2f1', 'hyperu', 'i0', 'i0e', 'i1', 'i1e', 'inv_boxcox', 'inv_boxcox1p', 'it2i0k0', 'it2j0y0', 'it2struve0', 'itairy', 'iti0k0', 'itj0y0', 'itmodstruve0', 'itstruve0', 'iv', 'ive', 'j0', 'j1', 'jv', 'jve', 'k0', 'k0e', 'k1', 'k1e', 'kei', 'keip', 'kelvin', 'ker', 'kerp', 'kl_div', 'kn', 'kolmogi', 'kolmogorov', 'kv', 'kve', 'log1p', 'log_expit', 'log_ndtr', 'loggamma', 'logit', 'lpmv', 'mathieu_a', 'mathieu_b', 'mathieu_cem', 'mathieu_modcem1', 'mathieu_modcem2', 'mathieu_modsem1', 'mathieu_modsem2', 'mathieu_sem', 'modfresnelm', 'modfresnelp', 'modstruve', 'nbdtr', 'nbdtrc', 'nbdtri', 'nbdtrik', 'nbdtrin', 'ncfdtr', 'ncfdtri', 'ncfdtridfd', 'ncfdtridfn', 'ncfdtrinc', 'nctdtr', 'nctdtridf', 'nctdtrinc', 'nctdtrit', 'ndtr', 'ndtri', 'ndtri_exp', 'nrdtrimn', 'nrdtrisd', 'obl_ang1', 'obl_ang1_cv', 'obl_cv', 'obl_rad1', 'obl_rad1_cv', 'obl_rad2', 'obl_rad2_cv', 'owens_t', 'pbdv', 'pbvv', 'pbwa', 'pdtr', 'pdtrc', 'pdtri', 'pdtrik', 'poch', 'powm1', 'pro_ang1', 'pro_ang1_cv', 'pro_cv', 'pro_rad1', 'pro_rad1_cv', 'pro_rad2', 'pro_rad2_cv', 'pseudo_huber', 'psi', 'radian', 'rel_entr', 'rgamma', 'round', 'shichi', 'sici', 'sindg', 'smirnov', 'smirnovi', 'spence', 'sph_harm', 'stdtr', 'stdtridf', 'stdtrit', 'struve', 'tandg', 'tklmbda', 'voigt_profile', 'wofz', 'wright_bessel', 'wrightomega', 'xlog1py', 'xlogy', 'y0', 'y1', 'yn', 'yv', 'yve', 'zetac', 'geterr', 'seterr', 'errstate', 'jn'] +cdef void loop_D_DDDD__As_DDDD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_DDDD__As_FFFF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_DDD__As_DDD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_D_DDD__As_FFF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_D_DD__As_DD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_D_DD__As_FF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_D_D__As_D_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_D_D__As_F_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_D_Dld__As_Dld_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_D_dD__As_dD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_D_dD__As_fF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_D_ddD__As_ddD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_D_ddD__As_ffF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_D_dddD__As_dddD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_dddD__As_fffF_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_dddd__As_dddd_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_dddd__As_ffff_F(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_iidd__As_lldd_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double complex ov0 + for i in range(n): + if (ip0)[0] == (ip0)[0] and (ip1)[0] == (ip1)[0]: + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_D_lD__As_lD_D(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double complex ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_d_d__As_d_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_d_d__As_f_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_d_dd__As_dd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_d_dd__As_ff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddd__As_ddd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddd__As_fff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_d_dddd__As_dddd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_d_dddd__As_ffff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_d_dddd_d_As_dddd_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef char *op1 = args[5] + cdef double ov0 + cdef double ov1 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + op1 += steps[5] + sf_error.check_fpe(func_name) + +cdef void loop_d_dddd_d_As_ffff_ff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef char *op1 = args[5] + cdef double ov0 + cdef double ov1 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + op1 += steps[5] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddddddd__As_ddddddd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *ip4 = args[4] + cdef char *ip5 = args[5] + cdef char *ip6 = args[6] + cdef char *op0 = args[7] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], (ip4)[0], (ip5)[0], (ip6)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + ip4 += steps[4] + ip5 += steps[5] + ip6 += steps[6] + op0 += steps[7] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddddddd__As_fffffff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *ip4 = args[4] + cdef char *ip5 = args[5] + cdef char *ip6 = args[6] + cdef char *op0 = args[7] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], (ip4)[0], (ip5)[0], (ip6)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + ip4 += steps[4] + ip5 += steps[5] + ip6 += steps[6] + op0 += steps[7] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddi_d_As_ddl_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef char *op1 = args[4] + cdef double ov0 + cdef double ov1 + for i in range(n): + if (ip2)[0] == (ip2)[0]: + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], &ov1) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + ov1 = NAN + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + op1 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_d_ddiiddd__As_ddllddd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *ip4 = args[4] + cdef char *ip5 = args[5] + cdef char *ip6 = args[6] + cdef char *op0 = args[7] + cdef double ov0 + for i in range(n): + if (ip2)[0] == (ip2)[0] and (ip3)[0] == (ip3)[0]: + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], (ip4)[0], (ip5)[0], (ip6)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + ip4 += steps[4] + ip5 += steps[5] + ip6 += steps[6] + op0 += steps[7] + sf_error.check_fpe(func_name) + +cdef void loop_d_did__As_dld_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double ov0 + for i in range(n): + if (ip1)[0] == (ip1)[0]: + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_d_id__As_ld_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double ov0 + for i in range(n): + if (ip0)[0] == (ip0)[0]: + ov0 = (func)((ip0)[0], (ip1)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_d_iid__As_lld_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double ov0 + for i in range(n): + if (ip0)[0] == (ip0)[0] and (ip1)[0] == (ip1)[0]: + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = NAN + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_d_ld__As_ld_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_d_ldd__As_ldd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_d_lddd__As_lddd_d(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *op0 = args[4] + cdef double ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + op0 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_f_f__As_f_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef float ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_f_ff__As_ff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef float ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_f_fff__As_fff_f(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef float ov0 + for i in range(n): + ov0 = (func)((ip0)[0], (ip1)[0], (ip2)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_g_g__As_g_g(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef long double ov0 + for i in range(n): + ov0 = (func)((ip0)[0]) + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef void loop_i_D_DDDD_As_D_DDDD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double complex ov0 + cdef double complex ov1 + cdef double complex ov2 + cdef double complex ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_D_DDDD_As_F_FFFF(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double complex ov0 + cdef double complex ov1 + cdef double complex ov2 + cdef double complex ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_D_DD_As_D_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double complex ov0 + cdef double complex ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_D_DD_As_F_FF(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double complex ov0 + cdef double complex ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_DDDD_As_d_DDDD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double complex ov0 + cdef double complex ov1 + cdef double complex ov2 + cdef double complex ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_DDDD_As_f_FFFF(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double complex ov0 + cdef double complex ov1 + cdef double complex ov2 + cdef double complex ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_DD_As_d_DD(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double complex ov0 + cdef double complex ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_DD_As_f_FF(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double complex ov0 + cdef double complex ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_dd_As_d_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_dd_As_f_ff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_dddd_As_d_dddd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double ov0 + cdef double ov1 + cdef double ov2 + cdef double ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_d_dddd_As_f_ffff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef char *op1 = args[2] + cdef char *op2 = args[3] + cdef char *op3 = args[4] + cdef double ov0 + cdef double ov1 + cdef double ov2 + cdef double ov3 + for i in range(n): + (func)((ip0)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + op0 += steps[1] + op1 += steps[2] + op2 += steps[3] + op3 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_dd_dd_As_dd_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef char *op1 = args[3] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + op1 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_i_dd_dd_As_ff_ff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef char *op1 = args[3] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + op1 += steps[3] + sf_error.check_fpe(func_name) + +cdef void loop_i_dd_dddd_As_dd_dddd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef char *op1 = args[3] + cdef char *op2 = args[4] + cdef char *op3 = args[5] + cdef double ov0 + cdef double ov1 + cdef double ov2 + cdef double ov3 + for i in range(n): + (func)((ip0)[0], (ip1)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + op1 += steps[3] + op2 += steps[4] + op3 += steps[5] + sf_error.check_fpe(func_name) + +cdef void loop_i_dd_dddd_As_ff_ffff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *op0 = args[2] + cdef char *op1 = args[3] + cdef char *op2 = args[4] + cdef char *op3 = args[5] + cdef double ov0 + cdef double ov1 + cdef double ov2 + cdef double ov3 + for i in range(n): + (func)((ip0)[0], (ip1)[0], &ov0, &ov1, &ov2, &ov3) + (op0)[0] = ov0 + (op1)[0] = ov1 + (op2)[0] = ov2 + (op3)[0] = ov3 + ip0 += steps[0] + ip1 += steps[1] + op0 += steps[2] + op1 += steps[3] + op2 += steps[4] + op3 += steps[5] + sf_error.check_fpe(func_name) + +cdef void loop_i_ddd_dd_As_ddd_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef char *op1 = args[4] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], (ip2)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + op1 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_ddd_dd_As_fff_ff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *op0 = args[3] + cdef char *op1 = args[4] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], (ip2)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + op0 += steps[3] + op1 += steps[4] + sf_error.check_fpe(func_name) + +cdef void loop_i_ddddd_dd_As_ddddd_dd(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *ip4 = args[4] + cdef char *op0 = args[5] + cdef char *op1 = args[6] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], (ip4)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + ip4 += steps[4] + op0 += steps[5] + op1 += steps[6] + sf_error.check_fpe(func_name) + +cdef void loop_i_ddddd_dd_As_fffff_ff(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *ip1 = args[1] + cdef char *ip2 = args[2] + cdef char *ip3 = args[3] + cdef char *ip4 = args[4] + cdef char *op0 = args[5] + cdef char *op1 = args[6] + cdef double ov0 + cdef double ov1 + for i in range(n): + (func)((ip0)[0], (ip1)[0], (ip2)[0], (ip3)[0], (ip4)[0], &ov0, &ov1) + (op0)[0] = ov0 + (op1)[0] = ov1 + ip0 += steps[0] + ip1 += steps[1] + ip2 += steps[2] + ip3 += steps[3] + ip4 += steps[4] + op0 += steps[5] + op1 += steps[6] + sf_error.check_fpe(func_name) + +cdef void loop_i_i__As_l_l(char **args, np.npy_intp *dims, np.npy_intp *steps, void *data) noexcept nogil: + cdef np.npy_intp i, n = dims[0] + cdef void *func = (data)[0] + cdef char *func_name = (data)[1] + cdef char *ip0 = args[0] + cdef char *op0 = args[1] + cdef int ov0 + for i in range(n): + if (ip0)[0] == (ip0)[0]: + ov0 = (func)((ip0)[0]) + else: + sf_error.error(func_name, sf_error.DOMAIN, "invalid input argument") + ov0 = 0xbad0bad0 + (op0)[0] = ov0 + ip0 += steps[0] + op0 += steps[1] + sf_error.check_fpe(func_name) + +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cosine_cdf "cosine_cdf"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cosine_invcdf "cosine_invcdf"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cospi "cospi"(double) noexcept nogil +from ._ellip_harm cimport ellip_harmonic as _func_ellip_harmonic +ctypedef double _proto_ellip_harmonic_t(double, double, int, int, double, double, double) noexcept nogil +cdef _proto_ellip_harmonic_t *_proto_ellip_harmonic_t_var = &_func_ellip_harmonic +from ._legacy cimport ellip_harmonic_unsafe as _func_ellip_harmonic_unsafe +ctypedef double _proto_ellip_harmonic_unsafe_t(double, double, double, double, double, double, double) noexcept nogil +cdef _proto_ellip_harmonic_unsafe_t *_proto_ellip_harmonic_unsafe_t_var = &_func_ellip_harmonic_unsafe +from ._factorial cimport _factorial as _func__factorial +ctypedef double _proto__factorial_t(double) noexcept nogil +cdef _proto__factorial_t *_proto__factorial_t_var = &_func__factorial +cdef extern from r"_ufuncs_defs.h": + cdef double _func_igam_fac "igam_fac"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kolmogc "kolmogc"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kolmogci "kolmogci"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kolmogp "kolmogp"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_lanczos_sum_expg_scaled "lanczos_sum_expg_scaled"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_lgam1p "lgam1p"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_log1pmx "log1pmx"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_riemann_zeta "riemann_zeta"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_scaled_exp1 "scaled_exp1"(double) noexcept nogil +from .sf_error cimport _sf_error_test_function as _func__sf_error_test_function +ctypedef int _proto__sf_error_test_function_t(int) noexcept nogil +cdef _proto__sf_error_test_function_t *_proto__sf_error_test_function_t_var = &_func__sf_error_test_function +cdef extern from r"_ufuncs_defs.h": + cdef double _func_sinpi "sinpi"(double) noexcept nogil +from ._legacy cimport smirnovc_unsafe as _func_smirnovc_unsafe +ctypedef double _proto_smirnovc_unsafe_t(double, double) noexcept nogil +cdef _proto_smirnovc_unsafe_t *_proto_smirnovc_unsafe_t_var = &_func_smirnovc_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_smirnovc "smirnovc"(int, double) noexcept nogil +from ._legacy cimport smirnovci_unsafe as _func_smirnovci_unsafe +ctypedef double _proto_smirnovci_unsafe_t(double, double) noexcept nogil +cdef _proto_smirnovci_unsafe_t *_proto_smirnovci_unsafe_t_var = &_func_smirnovci_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_smirnovci "smirnovci"(int, double) noexcept nogil +from ._legacy cimport smirnovp_unsafe as _func_smirnovp_unsafe +ctypedef double _proto_smirnovp_unsafe_t(double, double) noexcept nogil +cdef _proto_smirnovp_unsafe_t *_proto_smirnovp_unsafe_t_var = &_func_smirnovp_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_smirnovp "smirnovp"(int, double) noexcept nogil +from ._spherical_bessel cimport spherical_in_complex as _func_spherical_in_complex +ctypedef double complex _proto_spherical_in_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_in_complex_t *_proto_spherical_in_complex_t_var = &_func_spherical_in_complex +from ._spherical_bessel cimport spherical_in_real as _func_spherical_in_real +ctypedef double _proto_spherical_in_real_t(long, double) noexcept nogil +cdef _proto_spherical_in_real_t *_proto_spherical_in_real_t_var = &_func_spherical_in_real +from ._spherical_bessel cimport spherical_in_d_complex as _func_spherical_in_d_complex +ctypedef double complex _proto_spherical_in_d_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_in_d_complex_t *_proto_spherical_in_d_complex_t_var = &_func_spherical_in_d_complex +from ._spherical_bessel cimport spherical_in_d_real as _func_spherical_in_d_real +ctypedef double _proto_spherical_in_d_real_t(long, double) noexcept nogil +cdef _proto_spherical_in_d_real_t *_proto_spherical_in_d_real_t_var = &_func_spherical_in_d_real +from ._spherical_bessel cimport spherical_jn_complex as _func_spherical_jn_complex +ctypedef double complex _proto_spherical_jn_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_jn_complex_t *_proto_spherical_jn_complex_t_var = &_func_spherical_jn_complex +from ._spherical_bessel cimport spherical_jn_real as _func_spherical_jn_real +ctypedef double _proto_spherical_jn_real_t(long, double) noexcept nogil +cdef _proto_spherical_jn_real_t *_proto_spherical_jn_real_t_var = &_func_spherical_jn_real +from ._spherical_bessel cimport spherical_jn_d_complex as _func_spherical_jn_d_complex +ctypedef double complex _proto_spherical_jn_d_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_jn_d_complex_t *_proto_spherical_jn_d_complex_t_var = &_func_spherical_jn_d_complex +from ._spherical_bessel cimport spherical_jn_d_real as _func_spherical_jn_d_real +ctypedef double _proto_spherical_jn_d_real_t(long, double) noexcept nogil +cdef _proto_spherical_jn_d_real_t *_proto_spherical_jn_d_real_t_var = &_func_spherical_jn_d_real +from ._spherical_bessel cimport spherical_kn_complex as _func_spherical_kn_complex +ctypedef double complex _proto_spherical_kn_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_kn_complex_t *_proto_spherical_kn_complex_t_var = &_func_spherical_kn_complex +from ._spherical_bessel cimport spherical_kn_real as _func_spherical_kn_real +ctypedef double _proto_spherical_kn_real_t(long, double) noexcept nogil +cdef _proto_spherical_kn_real_t *_proto_spherical_kn_real_t_var = &_func_spherical_kn_real +from ._spherical_bessel cimport spherical_kn_d_complex as _func_spherical_kn_d_complex +ctypedef double complex _proto_spherical_kn_d_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_kn_d_complex_t *_proto_spherical_kn_d_complex_t_var = &_func_spherical_kn_d_complex +from ._spherical_bessel cimport spherical_kn_d_real as _func_spherical_kn_d_real +ctypedef double _proto_spherical_kn_d_real_t(long, double) noexcept nogil +cdef _proto_spherical_kn_d_real_t *_proto_spherical_kn_d_real_t_var = &_func_spherical_kn_d_real +from ._spherical_bessel cimport spherical_yn_complex as _func_spherical_yn_complex +ctypedef double complex _proto_spherical_yn_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_yn_complex_t *_proto_spherical_yn_complex_t_var = &_func_spherical_yn_complex +from ._spherical_bessel cimport spherical_yn_real as _func_spherical_yn_real +ctypedef double _proto_spherical_yn_real_t(long, double) noexcept nogil +cdef _proto_spherical_yn_real_t *_proto_spherical_yn_real_t_var = &_func_spherical_yn_real +from ._spherical_bessel cimport spherical_yn_d_complex as _func_spherical_yn_d_complex +ctypedef double complex _proto_spherical_yn_d_complex_t(long, double complex) noexcept nogil +cdef _proto_spherical_yn_d_complex_t *_proto_spherical_yn_d_complex_t_var = &_func_spherical_yn_d_complex +from ._spherical_bessel cimport spherical_yn_d_real as _func_spherical_yn_d_real +ctypedef double _proto_spherical_yn_d_real_t(long, double) noexcept nogil +cdef _proto_spherical_yn_d_real_t *_proto_spherical_yn_d_real_t_var = &_func_spherical_yn_d_real +cdef extern from r"_ufuncs_defs.h": + cdef double _func_struve_asymp_large_z "struve_asymp_large_z"(double, double, int, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_struve_bessel_series "struve_bessel_series"(double, double, int, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_struve_power_series "struve_power_series"(double, double, int, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_zeta "zeta"(double, double) noexcept nogil +from ._agm cimport agm as _func_agm +ctypedef double _proto_agm_t(double, double) noexcept nogil +cdef _proto_agm_t *_proto_agm_t_var = &_func_agm +cdef extern from r"_ufuncs_defs.h": + cdef int _func_airy_wrap "airy_wrap"(double, double *, double *, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_cairy_wrap "cairy_wrap"(double complex, double complex *, double complex *, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_cairy_wrap_e "cairy_wrap_e"(double complex, double complex *, double complex *, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_cairy_wrap_e_real "cairy_wrap_e_real"(double, double *, double *, double *, double *) noexcept nogil +from ._legacy cimport bdtr_unsafe as _func_bdtr_unsafe +ctypedef double _proto_bdtr_unsafe_t(double, double, double) noexcept nogil +cdef _proto_bdtr_unsafe_t *_proto_bdtr_unsafe_t_var = &_func_bdtr_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_bdtr "bdtr"(double, int, double) noexcept nogil +from ._legacy cimport bdtrc_unsafe as _func_bdtrc_unsafe +ctypedef double _proto_bdtrc_unsafe_t(double, double, double) noexcept nogil +cdef _proto_bdtrc_unsafe_t *_proto_bdtrc_unsafe_t_var = &_func_bdtrc_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_bdtrc "bdtrc"(double, int, double) noexcept nogil +from ._legacy cimport bdtri_unsafe as _func_bdtri_unsafe +ctypedef double _proto_bdtri_unsafe_t(double, double, double) noexcept nogil +cdef _proto_bdtri_unsafe_t *_proto_bdtri_unsafe_t_var = &_func_bdtri_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_bdtri "bdtri"(double, int, double) noexcept nogil +from ._cdflib_wrappers cimport bdtrik as _func_bdtrik +ctypedef double _proto_bdtrik_t(double, double, double) noexcept nogil +cdef _proto_bdtrik_t *_proto_bdtrik_t_var = &_func_bdtrik +from ._cdflib_wrappers cimport bdtrin as _func_bdtrin +ctypedef double _proto_bdtrin_t(double, double, double) noexcept nogil +cdef _proto_bdtrin_t *_proto_bdtrin_t_var = &_func_bdtrin +cdef extern from r"_ufuncs_defs.h": + cdef double _func_bei_wrap "bei_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_beip_wrap "beip_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ber_wrap "ber_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_berp_wrap "berp_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_besselpoly "besselpoly"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_beta "beta"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_lbeta "lbeta"(double, double) noexcept nogil +from ._boxcox cimport boxcox as _func_boxcox +ctypedef double _proto_boxcox_t(double, double) noexcept nogil +cdef _proto_boxcox_t *_proto_boxcox_t_var = &_func_boxcox +from ._boxcox cimport boxcox1p as _func_boxcox1p +ctypedef double _proto_boxcox1p_t(double, double) noexcept nogil +cdef _proto_boxcox1p_t *_proto_boxcox1p_t_var = &_func_boxcox1p +cdef extern from r"_ufuncs_defs.h": + cdef double _func_btdtr "btdtr"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_incbi "incbi"(double, double, double) noexcept nogil +from ._cdflib_wrappers cimport btdtria as _func_btdtria +ctypedef double _proto_btdtria_t(double, double, double) noexcept nogil +cdef _proto_btdtria_t *_proto_btdtria_t_var = &_func_btdtria +from ._cdflib_wrappers cimport btdtrib as _func_btdtrib +ctypedef double _proto_btdtrib_t(double, double, double) noexcept nogil +cdef _proto_btdtrib_t *_proto_btdtrib_t_var = &_func_btdtrib +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbrt "cbrt"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_chdtr "chdtr"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_chdtrc "chdtrc"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_chdtri "chdtri"(double, double) noexcept nogil +from ._cdflib_wrappers cimport chdtriv as _func_chdtriv +ctypedef double _proto_chdtriv_t(double, double) noexcept nogil +cdef _proto_chdtriv_t *_proto_chdtriv_t_var = &_func_chdtriv +from ._cdflib_wrappers cimport chndtr as _func_chndtr +ctypedef double _proto_chndtr_t(double, double, double) noexcept nogil +cdef _proto_chndtr_t *_proto_chndtr_t_var = &_func_chndtr +from ._cdflib_wrappers cimport chndtridf as _func_chndtridf +ctypedef double _proto_chndtridf_t(double, double, double) noexcept nogil +cdef _proto_chndtridf_t *_proto_chndtridf_t_var = &_func_chndtridf +from ._cdflib_wrappers cimport chndtrinc as _func_chndtrinc +ctypedef double _proto_chndtrinc_t(double, double, double) noexcept nogil +cdef _proto_chndtrinc_t *_proto_chndtrinc_t_var = &_func_chndtrinc +from ._cdflib_wrappers cimport chndtrix as _func_chndtrix +ctypedef double _proto_chndtrix_t(double, double, double) noexcept nogil +cdef _proto_chndtrix_t *_proto_chndtrix_t_var = &_func_chndtrix +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cosdg "cosdg"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cosm1 "cosm1"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cotdg "cotdg"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ellpe "ellpe"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ellie "ellie"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_ellpj "ellpj"(double, double, double *, double *, double *, double *) noexcept nogil +from ._ellipk cimport ellipk as _func_ellipk +ctypedef double _proto_ellipk_t(double) noexcept nogil +cdef _proto_ellipk_t *_proto_ellipk_t_var = &_func_ellipk +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ellik "ellik"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ellpk "ellpk"(double) noexcept nogil +from ._convex_analysis cimport entr as _func_entr +ctypedef double _proto_entr_t(double) noexcept nogil +cdef _proto_entr_t *_proto_entr_t_var = &_func_entr +cdef extern from r"_ufuncs_defs.h": + cdef double _func_erf "erf"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_erfc "erfc"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_erfcinv "erfcinv"(double) noexcept nogil +from .orthogonal_eval cimport eval_chebyc as _func_eval_chebyc +ctypedef double complex _proto_eval_chebyc_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_chebyc_double_complex__t *_proto_eval_chebyc_double_complex__t_var = &_func_eval_chebyc[double_complex] +from .orthogonal_eval cimport eval_chebyc as _func_eval_chebyc +ctypedef double _proto_eval_chebyc_double__t(double, double) noexcept nogil +cdef _proto_eval_chebyc_double__t *_proto_eval_chebyc_double__t_var = &_func_eval_chebyc[double] +from .orthogonal_eval cimport eval_chebyc_l as _func_eval_chebyc_l +ctypedef double _proto_eval_chebyc_l_t(long, double) noexcept nogil +cdef _proto_eval_chebyc_l_t *_proto_eval_chebyc_l_t_var = &_func_eval_chebyc_l +from .orthogonal_eval cimport eval_chebys as _func_eval_chebys +ctypedef double complex _proto_eval_chebys_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_chebys_double_complex__t *_proto_eval_chebys_double_complex__t_var = &_func_eval_chebys[double_complex] +from .orthogonal_eval cimport eval_chebys as _func_eval_chebys +ctypedef double _proto_eval_chebys_double__t(double, double) noexcept nogil +cdef _proto_eval_chebys_double__t *_proto_eval_chebys_double__t_var = &_func_eval_chebys[double] +from .orthogonal_eval cimport eval_chebys_l as _func_eval_chebys_l +ctypedef double _proto_eval_chebys_l_t(long, double) noexcept nogil +cdef _proto_eval_chebys_l_t *_proto_eval_chebys_l_t_var = &_func_eval_chebys_l +from .orthogonal_eval cimport eval_chebyt as _func_eval_chebyt +ctypedef double complex _proto_eval_chebyt_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_chebyt_double_complex__t *_proto_eval_chebyt_double_complex__t_var = &_func_eval_chebyt[double_complex] +from .orthogonal_eval cimport eval_chebyt as _func_eval_chebyt +ctypedef double _proto_eval_chebyt_double__t(double, double) noexcept nogil +cdef _proto_eval_chebyt_double__t *_proto_eval_chebyt_double__t_var = &_func_eval_chebyt[double] +from .orthogonal_eval cimport eval_chebyt_l as _func_eval_chebyt_l +ctypedef double _proto_eval_chebyt_l_t(long, double) noexcept nogil +cdef _proto_eval_chebyt_l_t *_proto_eval_chebyt_l_t_var = &_func_eval_chebyt_l +from .orthogonal_eval cimport eval_chebyu as _func_eval_chebyu +ctypedef double complex _proto_eval_chebyu_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_chebyu_double_complex__t *_proto_eval_chebyu_double_complex__t_var = &_func_eval_chebyu[double_complex] +from .orthogonal_eval cimport eval_chebyu as _func_eval_chebyu +ctypedef double _proto_eval_chebyu_double__t(double, double) noexcept nogil +cdef _proto_eval_chebyu_double__t *_proto_eval_chebyu_double__t_var = &_func_eval_chebyu[double] +from .orthogonal_eval cimport eval_chebyu_l as _func_eval_chebyu_l +ctypedef double _proto_eval_chebyu_l_t(long, double) noexcept nogil +cdef _proto_eval_chebyu_l_t *_proto_eval_chebyu_l_t_var = &_func_eval_chebyu_l +from .orthogonal_eval cimport eval_gegenbauer as _func_eval_gegenbauer +ctypedef double complex _proto_eval_gegenbauer_double_complex__t(double, double, double complex) noexcept nogil +cdef _proto_eval_gegenbauer_double_complex__t *_proto_eval_gegenbauer_double_complex__t_var = &_func_eval_gegenbauer[double_complex] +from .orthogonal_eval cimport eval_gegenbauer as _func_eval_gegenbauer +ctypedef double _proto_eval_gegenbauer_double__t(double, double, double) noexcept nogil +cdef _proto_eval_gegenbauer_double__t *_proto_eval_gegenbauer_double__t_var = &_func_eval_gegenbauer[double] +from .orthogonal_eval cimport eval_gegenbauer_l as _func_eval_gegenbauer_l +ctypedef double _proto_eval_gegenbauer_l_t(long, double, double) noexcept nogil +cdef _proto_eval_gegenbauer_l_t *_proto_eval_gegenbauer_l_t_var = &_func_eval_gegenbauer_l +from .orthogonal_eval cimport eval_genlaguerre as _func_eval_genlaguerre +ctypedef double complex _proto_eval_genlaguerre_double_complex__t(double, double, double complex) noexcept nogil +cdef _proto_eval_genlaguerre_double_complex__t *_proto_eval_genlaguerre_double_complex__t_var = &_func_eval_genlaguerre[double_complex] +from .orthogonal_eval cimport eval_genlaguerre as _func_eval_genlaguerre +ctypedef double _proto_eval_genlaguerre_double__t(double, double, double) noexcept nogil +cdef _proto_eval_genlaguerre_double__t *_proto_eval_genlaguerre_double__t_var = &_func_eval_genlaguerre[double] +from .orthogonal_eval cimport eval_genlaguerre_l as _func_eval_genlaguerre_l +ctypedef double _proto_eval_genlaguerre_l_t(long, double, double) noexcept nogil +cdef _proto_eval_genlaguerre_l_t *_proto_eval_genlaguerre_l_t_var = &_func_eval_genlaguerre_l +from .orthogonal_eval cimport eval_hermite as _func_eval_hermite +ctypedef double _proto_eval_hermite_t(long, double) noexcept nogil +cdef _proto_eval_hermite_t *_proto_eval_hermite_t_var = &_func_eval_hermite +from .orthogonal_eval cimport eval_hermitenorm as _func_eval_hermitenorm +ctypedef double _proto_eval_hermitenorm_t(long, double) noexcept nogil +cdef _proto_eval_hermitenorm_t *_proto_eval_hermitenorm_t_var = &_func_eval_hermitenorm +from .orthogonal_eval cimport eval_jacobi as _func_eval_jacobi +ctypedef double complex _proto_eval_jacobi_double_complex__t(double, double, double, double complex) noexcept nogil +cdef _proto_eval_jacobi_double_complex__t *_proto_eval_jacobi_double_complex__t_var = &_func_eval_jacobi[double_complex] +from .orthogonal_eval cimport eval_jacobi as _func_eval_jacobi +ctypedef double _proto_eval_jacobi_double__t(double, double, double, double) noexcept nogil +cdef _proto_eval_jacobi_double__t *_proto_eval_jacobi_double__t_var = &_func_eval_jacobi[double] +from .orthogonal_eval cimport eval_jacobi_l as _func_eval_jacobi_l +ctypedef double _proto_eval_jacobi_l_t(long, double, double, double) noexcept nogil +cdef _proto_eval_jacobi_l_t *_proto_eval_jacobi_l_t_var = &_func_eval_jacobi_l +from .orthogonal_eval cimport eval_laguerre as _func_eval_laguerre +ctypedef double complex _proto_eval_laguerre_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_laguerre_double_complex__t *_proto_eval_laguerre_double_complex__t_var = &_func_eval_laguerre[double_complex] +from .orthogonal_eval cimport eval_laguerre as _func_eval_laguerre +ctypedef double _proto_eval_laguerre_double__t(double, double) noexcept nogil +cdef _proto_eval_laguerre_double__t *_proto_eval_laguerre_double__t_var = &_func_eval_laguerre[double] +from .orthogonal_eval cimport eval_laguerre_l as _func_eval_laguerre_l +ctypedef double _proto_eval_laguerre_l_t(long, double) noexcept nogil +cdef _proto_eval_laguerre_l_t *_proto_eval_laguerre_l_t_var = &_func_eval_laguerre_l +from .orthogonal_eval cimport eval_legendre as _func_eval_legendre +ctypedef double complex _proto_eval_legendre_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_legendre_double_complex__t *_proto_eval_legendre_double_complex__t_var = &_func_eval_legendre[double_complex] +from .orthogonal_eval cimport eval_legendre as _func_eval_legendre +ctypedef double _proto_eval_legendre_double__t(double, double) noexcept nogil +cdef _proto_eval_legendre_double__t *_proto_eval_legendre_double__t_var = &_func_eval_legendre[double] +from .orthogonal_eval cimport eval_legendre_l as _func_eval_legendre_l +ctypedef double _proto_eval_legendre_l_t(long, double) noexcept nogil +cdef _proto_eval_legendre_l_t *_proto_eval_legendre_l_t_var = &_func_eval_legendre_l +from .orthogonal_eval cimport eval_sh_chebyt as _func_eval_sh_chebyt +ctypedef double complex _proto_eval_sh_chebyt_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_sh_chebyt_double_complex__t *_proto_eval_sh_chebyt_double_complex__t_var = &_func_eval_sh_chebyt[double_complex] +from .orthogonal_eval cimport eval_sh_chebyt as _func_eval_sh_chebyt +ctypedef double _proto_eval_sh_chebyt_double__t(double, double) noexcept nogil +cdef _proto_eval_sh_chebyt_double__t *_proto_eval_sh_chebyt_double__t_var = &_func_eval_sh_chebyt[double] +from .orthogonal_eval cimport eval_sh_chebyt_l as _func_eval_sh_chebyt_l +ctypedef double _proto_eval_sh_chebyt_l_t(long, double) noexcept nogil +cdef _proto_eval_sh_chebyt_l_t *_proto_eval_sh_chebyt_l_t_var = &_func_eval_sh_chebyt_l +from .orthogonal_eval cimport eval_sh_chebyu as _func_eval_sh_chebyu +ctypedef double complex _proto_eval_sh_chebyu_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_sh_chebyu_double_complex__t *_proto_eval_sh_chebyu_double_complex__t_var = &_func_eval_sh_chebyu[double_complex] +from .orthogonal_eval cimport eval_sh_chebyu as _func_eval_sh_chebyu +ctypedef double _proto_eval_sh_chebyu_double__t(double, double) noexcept nogil +cdef _proto_eval_sh_chebyu_double__t *_proto_eval_sh_chebyu_double__t_var = &_func_eval_sh_chebyu[double] +from .orthogonal_eval cimport eval_sh_chebyu_l as _func_eval_sh_chebyu_l +ctypedef double _proto_eval_sh_chebyu_l_t(long, double) noexcept nogil +cdef _proto_eval_sh_chebyu_l_t *_proto_eval_sh_chebyu_l_t_var = &_func_eval_sh_chebyu_l +from .orthogonal_eval cimport eval_sh_jacobi as _func_eval_sh_jacobi +ctypedef double complex _proto_eval_sh_jacobi_double_complex__t(double, double, double, double complex) noexcept nogil +cdef _proto_eval_sh_jacobi_double_complex__t *_proto_eval_sh_jacobi_double_complex__t_var = &_func_eval_sh_jacobi[double_complex] +from .orthogonal_eval cimport eval_sh_jacobi as _func_eval_sh_jacobi +ctypedef double _proto_eval_sh_jacobi_double__t(double, double, double, double) noexcept nogil +cdef _proto_eval_sh_jacobi_double__t *_proto_eval_sh_jacobi_double__t_var = &_func_eval_sh_jacobi[double] +from .orthogonal_eval cimport eval_sh_jacobi_l as _func_eval_sh_jacobi_l +ctypedef double _proto_eval_sh_jacobi_l_t(long, double, double, double) noexcept nogil +cdef _proto_eval_sh_jacobi_l_t *_proto_eval_sh_jacobi_l_t_var = &_func_eval_sh_jacobi_l +from .orthogonal_eval cimport eval_sh_legendre as _func_eval_sh_legendre +ctypedef double complex _proto_eval_sh_legendre_double_complex__t(double, double complex) noexcept nogil +cdef _proto_eval_sh_legendre_double_complex__t *_proto_eval_sh_legendre_double_complex__t_var = &_func_eval_sh_legendre[double_complex] +from .orthogonal_eval cimport eval_sh_legendre as _func_eval_sh_legendre +ctypedef double _proto_eval_sh_legendre_double__t(double, double) noexcept nogil +cdef _proto_eval_sh_legendre_double__t *_proto_eval_sh_legendre_double__t_var = &_func_eval_sh_legendre[double] +from .orthogonal_eval cimport eval_sh_legendre_l as _func_eval_sh_legendre_l +ctypedef double _proto_eval_sh_legendre_l_t(long, double) noexcept nogil +cdef _proto_eval_sh_legendre_l_t *_proto_eval_sh_legendre_l_t_var = &_func_eval_sh_legendre_l +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cexp1_wrap "cexp1_wrap"(double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_exp1_wrap "exp1_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_exp10 "exp10"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_exp2 "exp2"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cexpi_wrap "cexpi_wrap"(double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_expi_wrap "expi_wrap"(double) noexcept nogil +from ._cunity cimport cexpm1 as _func_cexpm1 +ctypedef double complex _proto_cexpm1_t(double complex) noexcept nogil +cdef _proto_cexpm1_t *_proto_cexpm1_t_var = &_func_cexpm1 +cdef extern from r"_ufuncs_defs.h": + cdef double _func_expm1 "expm1"(double) noexcept nogil +from ._legacy cimport expn_unsafe as _func_expn_unsafe +ctypedef double _proto_expn_unsafe_t(double, double) noexcept nogil +cdef _proto_expn_unsafe_t *_proto_expn_unsafe_t_var = &_func_expn_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_expn "expn"(int, double) noexcept nogil +from ._exprel cimport exprel as _func_exprel +ctypedef double _proto_exprel_t(double) noexcept nogil +cdef _proto_exprel_t *_proto_exprel_t_var = &_func_exprel +cdef extern from r"_ufuncs_defs.h": + cdef double _func_fdtr "fdtr"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_fdtrc "fdtrc"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_fdtri "fdtri"(double, double, double) noexcept nogil +from ._cdflib_wrappers cimport fdtridfd as _func_fdtridfd +ctypedef double _proto_fdtridfd_t(double, double, double) noexcept nogil +cdef _proto_fdtridfd_t *_proto_fdtridfd_t_var = &_func_fdtridfd +cdef extern from r"_ufuncs_defs.h": + cdef int _func_fresnl "fresnl"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_cfresnl_wrap "cfresnl_wrap"(double complex, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_Gamma "Gamma"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_igam "igam"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_igamc "igamc"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_igamci "igamci"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_igami "igami"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_lgam "lgam"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_gammasgn "gammasgn"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_gdtr "gdtr"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_gdtrc "gdtrc"(double, double, double) noexcept nogil +from ._cdflib_wrappers cimport gdtria as _func_gdtria +ctypedef double _proto_gdtria_t(double, double, double) noexcept nogil +cdef _proto_gdtria_t *_proto_gdtria_t_var = &_func_gdtria +from ._cdflib_wrappers cimport gdtrib as _func_gdtrib +ctypedef double _proto_gdtrib_t(double, double, double) noexcept nogil +cdef _proto_gdtrib_t *_proto_gdtrib_t_var = &_func_gdtrib +from ._cdflib_wrappers cimport gdtrix as _func_gdtrix +ctypedef double _proto_gdtrix_t(double, double, double) noexcept nogil +cdef _proto_gdtrix_t *_proto_gdtrix_t_var = &_func_gdtrix +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesh_wrap1 "cbesh_wrap1"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesh_wrap1_e "cbesh_wrap1_e"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesh_wrap2 "cbesh_wrap2"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesh_wrap2_e "cbesh_wrap2_e"(double, double complex) noexcept nogil +from ._convex_analysis cimport huber as _func_huber +ctypedef double _proto_huber_t(double, double) noexcept nogil +cdef _proto_huber_t *_proto_huber_t_var = &_func_huber +from ._hyp0f1 cimport _hyp0f1_cmplx as _func__hyp0f1_cmplx +ctypedef double complex _proto__hyp0f1_cmplx_t(double, double complex) noexcept nogil +cdef _proto__hyp0f1_cmplx_t *_proto__hyp0f1_cmplx_t_var = &_func__hyp0f1_cmplx +from ._hyp0f1 cimport _hyp0f1_real as _func__hyp0f1_real +ctypedef double _proto__hyp0f1_real_t(double, double) noexcept nogil +cdef _proto__hyp0f1_real_t *_proto__hyp0f1_real_t_var = &_func__hyp0f1_real +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_chyp1f1_wrap "chyp1f1_wrap"(double, double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_hyp2f1 "hyp2f1"(double, double, double, double) noexcept nogil +from ._hyp2f1 cimport hyp2f1_complex as _func_hyp2f1_complex +ctypedef double complex _proto_hyp2f1_complex_t(double, double, double, double complex) noexcept nogil +cdef _proto_hyp2f1_complex_t *_proto_hyp2f1_complex_t_var = &_func_hyp2f1_complex +from ._hypergeometric cimport hyperu as _func_hyperu +ctypedef double _proto_hyperu_t(double, double, double) noexcept nogil +cdef _proto_hyperu_t *_proto_hyperu_t_var = &_func_hyperu +cdef extern from r"_ufuncs_defs.h": + cdef double _func_i0 "i0"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_i0e "i0e"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_i1 "i1"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_i1e "i1e"(double) noexcept nogil +from ._boxcox cimport inv_boxcox as _func_inv_boxcox +ctypedef double _proto_inv_boxcox_t(double, double) noexcept nogil +cdef _proto_inv_boxcox_t *_proto_inv_boxcox_t_var = &_func_inv_boxcox +from ._boxcox cimport inv_boxcox1p as _func_inv_boxcox1p +ctypedef double _proto_inv_boxcox1p_t(double, double) noexcept nogil +cdef _proto_inv_boxcox1p_t *_proto_inv_boxcox1p_t_var = &_func_inv_boxcox1p +cdef extern from r"_ufuncs_defs.h": + cdef int _func_it2i0k0_wrap "it2i0k0_wrap"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_it2j0y0_wrap "it2j0y0_wrap"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_it2struve0_wrap "it2struve0_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_itairy_wrap "itairy_wrap"(double, double *, double *, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_it1i0k0_wrap "it1i0k0_wrap"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_it1j0y0_wrap "it1j0y0_wrap"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_itmodstruve0_wrap "itmodstruve0_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_itstruve0_wrap "itstruve0_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesi_wrap "cbesi_wrap"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_iv "iv"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesi_wrap_e "cbesi_wrap_e"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesi_wrap_e_real "cbesi_wrap_e_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_j0 "j0"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_j1 "j1"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesj_wrap "cbesj_wrap"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesj_wrap_real "cbesj_wrap_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesj_wrap_e "cbesj_wrap_e"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesj_wrap_e_real "cbesj_wrap_e_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_k0 "k0"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_k0e "k0e"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_k1 "k1"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_k1e "k1e"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kei_wrap "kei_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_keip_wrap "keip_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_kelvin_wrap "kelvin_wrap"(double, double complex *, double complex *, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ker_wrap "ker_wrap"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kerp_wrap "kerp_wrap"(double) noexcept nogil +from ._convex_analysis cimport kl_div as _func_kl_div +ctypedef double _proto_kl_div_t(double, double) noexcept nogil +cdef _proto_kl_div_t *_proto_kl_div_t_var = &_func_kl_div +from ._legacy cimport kn_unsafe as _func_kn_unsafe +ctypedef double _proto_kn_unsafe_t(double, double) noexcept nogil +cdef _proto_kn_unsafe_t *_proto_kn_unsafe_t_var = &_func_kn_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesk_wrap_real_int "cbesk_wrap_real_int"(int, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kolmogi "kolmogi"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_kolmogorov "kolmogorov"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesk_wrap "cbesk_wrap"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesk_wrap_real "cbesk_wrap_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesk_wrap_e "cbesk_wrap_e"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesk_wrap_e_real "cbesk_wrap_e_real"(double, double) noexcept nogil +from ._cunity cimport clog1p as _func_clog1p +ctypedef double complex _proto_clog1p_t(double complex) noexcept nogil +cdef _proto_clog1p_t *_proto_clog1p_t_var = &_func_clog1p +cdef extern from r"_ufuncs_defs.h": + cdef double _func_log1p "log1p"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_pmv_wrap "pmv_wrap"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cem_cva_wrap "cem_cva_wrap"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_sem_cva_wrap "sem_cva_wrap"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_cem_wrap "cem_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_mcm1_wrap "mcm1_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_mcm2_wrap "mcm2_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_msm1_wrap "msm1_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_msm2_wrap "msm2_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_sem_wrap "sem_wrap"(double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_modified_fresnel_minus_wrap "modified_fresnel_minus_wrap"(double, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_modified_fresnel_plus_wrap "modified_fresnel_plus_wrap"(double, double complex *, double complex *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_struve_l "struve_l"(double, double) noexcept nogil +from ._legacy cimport nbdtr_unsafe as _func_nbdtr_unsafe +ctypedef double _proto_nbdtr_unsafe_t(double, double, double) noexcept nogil +cdef _proto_nbdtr_unsafe_t *_proto_nbdtr_unsafe_t_var = &_func_nbdtr_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_nbdtr "nbdtr"(int, int, double) noexcept nogil +from ._legacy cimport nbdtrc_unsafe as _func_nbdtrc_unsafe +ctypedef double _proto_nbdtrc_unsafe_t(double, double, double) noexcept nogil +cdef _proto_nbdtrc_unsafe_t *_proto_nbdtrc_unsafe_t_var = &_func_nbdtrc_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_nbdtrc "nbdtrc"(int, int, double) noexcept nogil +from ._legacy cimport nbdtri_unsafe as _func_nbdtri_unsafe +ctypedef double _proto_nbdtri_unsafe_t(double, double, double) noexcept nogil +cdef _proto_nbdtri_unsafe_t *_proto_nbdtri_unsafe_t_var = &_func_nbdtri_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_nbdtri "nbdtri"(int, int, double) noexcept nogil +from ._cdflib_wrappers cimport nbdtrik as _func_nbdtrik +ctypedef double _proto_nbdtrik_t(double, double, double) noexcept nogil +cdef _proto_nbdtrik_t *_proto_nbdtrik_t_var = &_func_nbdtrik +from ._cdflib_wrappers cimport nbdtrin as _func_nbdtrin +ctypedef double _proto_nbdtrin_t(double, double, double) noexcept nogil +cdef _proto_nbdtrin_t *_proto_nbdtrin_t_var = &_func_nbdtrin +from ._cdflib_wrappers cimport ncfdtr as _func_ncfdtr +ctypedef double _proto_ncfdtr_t(double, double, double, double) noexcept nogil +cdef _proto_ncfdtr_t *_proto_ncfdtr_t_var = &_func_ncfdtr +from ._cdflib_wrappers cimport ncfdtri as _func_ncfdtri +ctypedef double _proto_ncfdtri_t(double, double, double, double) noexcept nogil +cdef _proto_ncfdtri_t *_proto_ncfdtri_t_var = &_func_ncfdtri +from ._cdflib_wrappers cimport ncfdtridfd as _func_ncfdtridfd +ctypedef double _proto_ncfdtridfd_t(double, double, double, double) noexcept nogil +cdef _proto_ncfdtridfd_t *_proto_ncfdtridfd_t_var = &_func_ncfdtridfd +from ._cdflib_wrappers cimport ncfdtridfn as _func_ncfdtridfn +ctypedef double _proto_ncfdtridfn_t(double, double, double, double) noexcept nogil +cdef _proto_ncfdtridfn_t *_proto_ncfdtridfn_t_var = &_func_ncfdtridfn +from ._cdflib_wrappers cimport ncfdtrinc as _func_ncfdtrinc +ctypedef double _proto_ncfdtrinc_t(double, double, double, double) noexcept nogil +cdef _proto_ncfdtrinc_t *_proto_ncfdtrinc_t_var = &_func_ncfdtrinc +from ._cdflib_wrappers cimport nctdtr as _func_nctdtr +ctypedef double _proto_nctdtr_t(double, double, double) noexcept nogil +cdef _proto_nctdtr_t *_proto_nctdtr_t_var = &_func_nctdtr +from ._cdflib_wrappers cimport nctdtridf as _func_nctdtridf +ctypedef double _proto_nctdtridf_t(double, double, double) noexcept nogil +cdef _proto_nctdtridf_t *_proto_nctdtridf_t_var = &_func_nctdtridf +from ._cdflib_wrappers cimport nctdtrinc as _func_nctdtrinc +ctypedef double _proto_nctdtrinc_t(double, double, double) noexcept nogil +cdef _proto_nctdtrinc_t *_proto_nctdtrinc_t_var = &_func_nctdtrinc +from ._cdflib_wrappers cimport nctdtrit as _func_nctdtrit +ctypedef double _proto_nctdtrit_t(double, double, double) noexcept nogil +cdef _proto_nctdtrit_t *_proto_nctdtrit_t_var = &_func_nctdtrit +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ndtr "ndtr"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_ndtri "ndtri"(double) noexcept nogil +from ._ndtri_exp cimport ndtri_exp as _func_ndtri_exp +ctypedef double _proto_ndtri_exp_t(double) noexcept nogil +cdef _proto_ndtri_exp_t *_proto_ndtri_exp_t_var = &_func_ndtri_exp +from ._cdflib_wrappers cimport nrdtrimn as _func_nrdtrimn +ctypedef double _proto_nrdtrimn_t(double, double, double) noexcept nogil +cdef _proto_nrdtrimn_t *_proto_nrdtrimn_t_var = &_func_nrdtrimn +from ._cdflib_wrappers cimport nrdtrisd as _func_nrdtrisd +ctypedef double _proto_nrdtrisd_t(double, double, double) noexcept nogil +cdef _proto_nrdtrisd_t *_proto_nrdtrisd_t_var = &_func_nrdtrisd +cdef extern from r"_ufuncs_defs.h": + cdef double _func_oblate_aswfa_nocv_wrap "oblate_aswfa_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_oblate_aswfa_wrap "oblate_aswfa_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_oblate_segv_wrap "oblate_segv_wrap"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_oblate_radial1_nocv_wrap "oblate_radial1_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_oblate_radial1_wrap "oblate_radial1_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_oblate_radial2_nocv_wrap "oblate_radial2_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_oblate_radial2_wrap "oblate_radial2_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_owens_t "owens_t"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_pbdv_wrap "pbdv_wrap"(double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_pbvv_wrap "pbvv_wrap"(double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_pbwa_wrap "pbwa_wrap"(double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_pdtr "pdtr"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_pdtrc "pdtrc"(double, double) noexcept nogil +from ._legacy cimport pdtri_unsafe as _func_pdtri_unsafe +ctypedef double _proto_pdtri_unsafe_t(double, double) noexcept nogil +cdef _proto_pdtri_unsafe_t *_proto_pdtri_unsafe_t_var = &_func_pdtri_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_pdtri "pdtri"(int, double) noexcept nogil +from ._cdflib_wrappers cimport pdtrik as _func_pdtrik +ctypedef double _proto_pdtrik_t(double, double) noexcept nogil +cdef _proto_pdtrik_t *_proto_pdtrik_t_var = &_func_pdtrik +cdef extern from r"_ufuncs_defs.h": + cdef double _func_poch "poch"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_prolate_aswfa_nocv_wrap "prolate_aswfa_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_prolate_aswfa_wrap "prolate_aswfa_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_prolate_segv_wrap "prolate_segv_wrap"(double, double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_prolate_radial1_nocv_wrap "prolate_radial1_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_prolate_radial1_wrap "prolate_radial1_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_prolate_radial2_nocv_wrap "prolate_radial2_nocv_wrap"(double, double, double, double, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef int _func_prolate_radial2_wrap "prolate_radial2_wrap"(double, double, double, double, double, double *, double *) noexcept nogil +from ._convex_analysis cimport pseudo_huber as _func_pseudo_huber +ctypedef double _proto_pseudo_huber_t(double, double) noexcept nogil +cdef _proto_pseudo_huber_t *_proto_pseudo_huber_t_var = &_func_pseudo_huber +cdef extern from r"_ufuncs_defs.h": + cdef double _func_radian "radian"(double, double, double) noexcept nogil +from ._convex_analysis cimport rel_entr as _func_rel_entr +ctypedef double _proto_rel_entr_t(double, double) noexcept nogil +cdef _proto_rel_entr_t *_proto_rel_entr_t_var = &_func_rel_entr +cdef extern from r"_ufuncs_defs.h": + cdef double _func_rgamma "rgamma"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_round "round"(double) noexcept nogil +from ._sici cimport cshichi as _func_cshichi +ctypedef int _proto_cshichi_t(double complex, double complex *, double complex *) noexcept nogil +cdef _proto_cshichi_t *_proto_cshichi_t_var = &_func_cshichi +cdef extern from r"_ufuncs_defs.h": + cdef int _func_shichi "shichi"(double, double *, double *) noexcept nogil +from ._sici cimport csici as _func_csici +ctypedef int _proto_csici_t(double complex, double complex *, double complex *) noexcept nogil +cdef _proto_csici_t *_proto_csici_t_var = &_func_csici +cdef extern from r"_ufuncs_defs.h": + cdef int _func_sici "sici"(double, double *, double *) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_sindg "sindg"(double) noexcept nogil +from ._legacy cimport smirnov_unsafe as _func_smirnov_unsafe +ctypedef double _proto_smirnov_unsafe_t(double, double) noexcept nogil +cdef _proto_smirnov_unsafe_t *_proto_smirnov_unsafe_t_var = &_func_smirnov_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_smirnov "smirnov"(int, double) noexcept nogil +from ._legacy cimport smirnovi_unsafe as _func_smirnovi_unsafe +ctypedef double _proto_smirnovi_unsafe_t(double, double) noexcept nogil +cdef _proto_smirnovi_unsafe_t *_proto_smirnovi_unsafe_t_var = &_func_smirnovi_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_smirnovi "smirnovi"(int, double) noexcept nogil +from ._spence cimport cspence as _func_cspence +ctypedef double complex _proto_cspence_t(double complex) noexcept nogil +cdef _proto_cspence_t *_proto_cspence_t_var = &_func_cspence +cdef extern from r"_ufuncs_defs.h": + cdef double _func_spence "spence"(double) noexcept nogil +from ._legacy cimport sph_harmonic_unsafe as _func_sph_harmonic_unsafe +ctypedef double complex _proto_sph_harmonic_unsafe_t(double, double, double, double) noexcept nogil +cdef _proto_sph_harmonic_unsafe_t *_proto_sph_harmonic_unsafe_t_var = &_func_sph_harmonic_unsafe +from .sph_harm cimport sph_harmonic as _func_sph_harmonic +ctypedef double complex _proto_sph_harmonic_t(int, int, double, double) noexcept nogil +cdef _proto_sph_harmonic_t *_proto_sph_harmonic_t_var = &_func_sph_harmonic +from ._cdflib_wrappers cimport stdtr as _func_stdtr +ctypedef double _proto_stdtr_t(double, double) noexcept nogil +cdef _proto_stdtr_t *_proto_stdtr_t_var = &_func_stdtr +from ._cdflib_wrappers cimport stdtridf as _func_stdtridf +ctypedef double _proto_stdtridf_t(double, double) noexcept nogil +cdef _proto_stdtridf_t *_proto_stdtridf_t_var = &_func_stdtridf +from ._cdflib_wrappers cimport stdtrit as _func_stdtrit +ctypedef double _proto_stdtrit_t(double, double) noexcept nogil +cdef _proto_stdtrit_t *_proto_stdtrit_t_var = &_func_stdtrit +cdef extern from r"_ufuncs_defs.h": + cdef double _func_struve_h "struve_h"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_tandg "tandg"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_tukeylambdacdf "tukeylambdacdf"(double, double) noexcept nogil +from ._wright_bessel cimport wright_bessel_scalar as _func_wright_bessel_scalar +ctypedef double _proto_wright_bessel_scalar_t(double, double, double) noexcept nogil +cdef _proto_wright_bessel_scalar_t *_proto_wright_bessel_scalar_t_var = &_func_wright_bessel_scalar +from ._xlogy cimport xlog1py as _func_xlog1py +ctypedef double _proto_xlog1py_double__t(double, double) noexcept nogil +cdef _proto_xlog1py_double__t *_proto_xlog1py_double__t_var = &_func_xlog1py[double] +from ._xlogy cimport xlog1py as _func_xlog1py +ctypedef double complex _proto_xlog1py_double_complex__t(double complex, double complex) noexcept nogil +cdef _proto_xlog1py_double_complex__t *_proto_xlog1py_double_complex__t_var = &_func_xlog1py[double_complex] +from ._xlogy cimport xlogy as _func_xlogy +ctypedef double _proto_xlogy_double__t(double, double) noexcept nogil +cdef _proto_xlogy_double__t *_proto_xlogy_double__t_var = &_func_xlogy[double] +from ._xlogy cimport xlogy as _func_xlogy +ctypedef double complex _proto_xlogy_double_complex__t(double complex, double complex) noexcept nogil +cdef _proto_xlogy_double_complex__t *_proto_xlogy_double_complex__t_var = &_func_xlogy[double_complex] +cdef extern from r"_ufuncs_defs.h": + cdef double _func_y0 "y0"(double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_y1 "y1"(double) noexcept nogil +from ._legacy cimport yn_unsafe as _func_yn_unsafe +ctypedef double _proto_yn_unsafe_t(double, double) noexcept nogil +cdef _proto_yn_unsafe_t *_proto_yn_unsafe_t_var = &_func_yn_unsafe +cdef extern from r"_ufuncs_defs.h": + cdef double _func_yn "yn"(int, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesy_wrap "cbesy_wrap"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesy_wrap_real "cbesy_wrap_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double complex _func_cbesy_wrap_e "cbesy_wrap_e"(double, double complex) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_cbesy_wrap_e_real "cbesy_wrap_e_real"(double, double) noexcept nogil +cdef extern from r"_ufuncs_defs.h": + cdef double _func_zetac "zetac"(double) noexcept nogil +cdef np.PyUFuncGenericFunction ufunc__cosine_cdf_loops[2] +cdef void *ufunc__cosine_cdf_ptr[4] +cdef void *ufunc__cosine_cdf_data[2] +cdef char ufunc__cosine_cdf_types[4] +cdef char *ufunc__cosine_cdf_doc = ( + "_cosine_cdf(x)\n" + "\n" + "Cumulative distribution function (CDF) of the cosine distribution::\n" + "\n" + " { 0, x < -pi\n" + " cdf(x) = { (pi + x + sin(x))/(2*pi), -pi <= x <= pi\n" + " { 1, x > pi\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " `x` must contain real numbers.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The cosine distribution CDF evaluated at `x`.") +ufunc__cosine_cdf_loops[0] = loop_d_d__As_f_f +ufunc__cosine_cdf_loops[1] = loop_d_d__As_d_d +ufunc__cosine_cdf_types[0] = NPY_FLOAT +ufunc__cosine_cdf_types[1] = NPY_FLOAT +ufunc__cosine_cdf_types[2] = NPY_DOUBLE +ufunc__cosine_cdf_types[3] = NPY_DOUBLE +ufunc__cosine_cdf_ptr[2*0] = _func_cosine_cdf +ufunc__cosine_cdf_ptr[2*0+1] = ("_cosine_cdf") +ufunc__cosine_cdf_ptr[2*1] = _func_cosine_cdf +ufunc__cosine_cdf_ptr[2*1+1] = ("_cosine_cdf") +ufunc__cosine_cdf_data[0] = &ufunc__cosine_cdf_ptr[2*0] +ufunc__cosine_cdf_data[1] = &ufunc__cosine_cdf_ptr[2*1] +_cosine_cdf = np.PyUFunc_FromFuncAndData(ufunc__cosine_cdf_loops, ufunc__cosine_cdf_data, ufunc__cosine_cdf_types, 2, 1, 1, 0, "_cosine_cdf", ufunc__cosine_cdf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__cosine_invcdf_loops[2] +cdef void *ufunc__cosine_invcdf_ptr[4] +cdef void *ufunc__cosine_invcdf_data[2] +cdef char ufunc__cosine_invcdf_types[4] +cdef char *ufunc__cosine_invcdf_doc = ( + "_cosine_invcdf(p)\n" + "\n" + "Inverse of the cumulative distribution function (CDF) of the cosine\n" + "distribution.\n" + "\n" + "The CDF of the cosine distribution is::\n" + "\n" + " cdf(x) = (pi + x + sin(x))/(2*pi)\n" + "\n" + "This function computes the inverse of cdf(x).\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " `p` must contain real numbers in the interval ``0 <= p <= 1``.\n" + " `nan` is returned for values of `p` outside the interval [0, 1].\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The inverse of the cosine distribution CDF evaluated at `p`.") +ufunc__cosine_invcdf_loops[0] = loop_d_d__As_f_f +ufunc__cosine_invcdf_loops[1] = loop_d_d__As_d_d +ufunc__cosine_invcdf_types[0] = NPY_FLOAT +ufunc__cosine_invcdf_types[1] = NPY_FLOAT +ufunc__cosine_invcdf_types[2] = NPY_DOUBLE +ufunc__cosine_invcdf_types[3] = NPY_DOUBLE +ufunc__cosine_invcdf_ptr[2*0] = _func_cosine_invcdf +ufunc__cosine_invcdf_ptr[2*0+1] = ("_cosine_invcdf") +ufunc__cosine_invcdf_ptr[2*1] = _func_cosine_invcdf +ufunc__cosine_invcdf_ptr[2*1+1] = ("_cosine_invcdf") +ufunc__cosine_invcdf_data[0] = &ufunc__cosine_invcdf_ptr[2*0] +ufunc__cosine_invcdf_data[1] = &ufunc__cosine_invcdf_ptr[2*1] +_cosine_invcdf = np.PyUFunc_FromFuncAndData(ufunc__cosine_invcdf_loops, ufunc__cosine_invcdf_data, ufunc__cosine_invcdf_types, 2, 1, 1, 0, "_cosine_invcdf", ufunc__cosine_invcdf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__cospi_loops[4] +cdef void *ufunc__cospi_ptr[8] +cdef void *ufunc__cospi_data[4] +cdef char ufunc__cospi_types[8] +cdef char *ufunc__cospi_doc = ( + "Internal function, do not use.") +ufunc__cospi_loops[0] = loop_d_d__As_f_f +ufunc__cospi_loops[1] = loop_d_d__As_d_d +ufunc__cospi_loops[2] = loop_D_D__As_F_F +ufunc__cospi_loops[3] = loop_D_D__As_D_D +ufunc__cospi_types[0] = NPY_FLOAT +ufunc__cospi_types[1] = NPY_FLOAT +ufunc__cospi_types[2] = NPY_DOUBLE +ufunc__cospi_types[3] = NPY_DOUBLE +ufunc__cospi_types[4] = NPY_CFLOAT +ufunc__cospi_types[5] = NPY_CFLOAT +ufunc__cospi_types[6] = NPY_CDOUBLE +ufunc__cospi_types[7] = NPY_CDOUBLE +ufunc__cospi_ptr[2*0] = _func_cospi +ufunc__cospi_ptr[2*0+1] = ("_cospi") +ufunc__cospi_ptr[2*1] = _func_cospi +ufunc__cospi_ptr[2*1+1] = ("_cospi") +ufunc__cospi_ptr[2*2] = scipy.special._ufuncs_cxx._export_ccospi +ufunc__cospi_ptr[2*2+1] = ("_cospi") +ufunc__cospi_ptr[2*3] = scipy.special._ufuncs_cxx._export_ccospi +ufunc__cospi_ptr[2*3+1] = ("_cospi") +ufunc__cospi_data[0] = &ufunc__cospi_ptr[2*0] +ufunc__cospi_data[1] = &ufunc__cospi_ptr[2*1] +ufunc__cospi_data[2] = &ufunc__cospi_ptr[2*2] +ufunc__cospi_data[3] = &ufunc__cospi_ptr[2*3] +_cospi = np.PyUFunc_FromFuncAndData(ufunc__cospi_loops, ufunc__cospi_data, ufunc__cospi_types, 4, 1, 1, 0, "_cospi", ufunc__cospi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__ellip_harm_loops[3] +cdef void *ufunc__ellip_harm_ptr[6] +cdef void *ufunc__ellip_harm_data[3] +cdef char ufunc__ellip_harm_types[24] +cdef char *ufunc__ellip_harm_doc = ( + "Internal function, use `ellip_harm` instead.") +ufunc__ellip_harm_loops[0] = loop_d_ddddddd__As_fffffff_f +ufunc__ellip_harm_loops[1] = loop_d_ddiiddd__As_ddllddd_d +ufunc__ellip_harm_loops[2] = loop_d_ddddddd__As_ddddddd_d +ufunc__ellip_harm_types[0] = NPY_FLOAT +ufunc__ellip_harm_types[1] = NPY_FLOAT +ufunc__ellip_harm_types[2] = NPY_FLOAT +ufunc__ellip_harm_types[3] = NPY_FLOAT +ufunc__ellip_harm_types[4] = NPY_FLOAT +ufunc__ellip_harm_types[5] = NPY_FLOAT +ufunc__ellip_harm_types[6] = NPY_FLOAT +ufunc__ellip_harm_types[7] = NPY_FLOAT +ufunc__ellip_harm_types[8] = NPY_DOUBLE +ufunc__ellip_harm_types[9] = NPY_DOUBLE +ufunc__ellip_harm_types[10] = NPY_LONG +ufunc__ellip_harm_types[11] = NPY_LONG +ufunc__ellip_harm_types[12] = NPY_DOUBLE +ufunc__ellip_harm_types[13] = NPY_DOUBLE +ufunc__ellip_harm_types[14] = NPY_DOUBLE +ufunc__ellip_harm_types[15] = NPY_DOUBLE +ufunc__ellip_harm_types[16] = NPY_DOUBLE +ufunc__ellip_harm_types[17] = NPY_DOUBLE +ufunc__ellip_harm_types[18] = NPY_DOUBLE +ufunc__ellip_harm_types[19] = NPY_DOUBLE +ufunc__ellip_harm_types[20] = NPY_DOUBLE +ufunc__ellip_harm_types[21] = NPY_DOUBLE +ufunc__ellip_harm_types[22] = NPY_DOUBLE +ufunc__ellip_harm_types[23] = NPY_DOUBLE +ufunc__ellip_harm_ptr[2*0] = _func_ellip_harmonic_unsafe +ufunc__ellip_harm_ptr[2*0+1] = ("_ellip_harm") +ufunc__ellip_harm_ptr[2*1] = _func_ellip_harmonic +ufunc__ellip_harm_ptr[2*1+1] = ("_ellip_harm") +ufunc__ellip_harm_ptr[2*2] = _func_ellip_harmonic_unsafe +ufunc__ellip_harm_ptr[2*2+1] = ("_ellip_harm") +ufunc__ellip_harm_data[0] = &ufunc__ellip_harm_ptr[2*0] +ufunc__ellip_harm_data[1] = &ufunc__ellip_harm_ptr[2*1] +ufunc__ellip_harm_data[2] = &ufunc__ellip_harm_ptr[2*2] +_ellip_harm = np.PyUFunc_FromFuncAndData(ufunc__ellip_harm_loops, ufunc__ellip_harm_data, ufunc__ellip_harm_types, 3, 7, 1, 0, "_ellip_harm", ufunc__ellip_harm_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__factorial_loops[2] +cdef void *ufunc__factorial_ptr[4] +cdef void *ufunc__factorial_data[2] +cdef char ufunc__factorial_types[4] +cdef char *ufunc__factorial_doc = ( + "Internal function, do not use.") +ufunc__factorial_loops[0] = loop_d_d__As_f_f +ufunc__factorial_loops[1] = loop_d_d__As_d_d +ufunc__factorial_types[0] = NPY_FLOAT +ufunc__factorial_types[1] = NPY_FLOAT +ufunc__factorial_types[2] = NPY_DOUBLE +ufunc__factorial_types[3] = NPY_DOUBLE +ufunc__factorial_ptr[2*0] = _func__factorial +ufunc__factorial_ptr[2*0+1] = ("_factorial") +ufunc__factorial_ptr[2*1] = _func__factorial +ufunc__factorial_ptr[2*1+1] = ("_factorial") +ufunc__factorial_data[0] = &ufunc__factorial_ptr[2*0] +ufunc__factorial_data[1] = &ufunc__factorial_ptr[2*1] +_factorial = np.PyUFunc_FromFuncAndData(ufunc__factorial_loops, ufunc__factorial_data, ufunc__factorial_types, 2, 1, 1, 0, "_factorial", ufunc__factorial_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__igam_fac_loops[2] +cdef void *ufunc__igam_fac_ptr[4] +cdef void *ufunc__igam_fac_data[2] +cdef char ufunc__igam_fac_types[6] +cdef char *ufunc__igam_fac_doc = ( + "Internal function, do not use.") +ufunc__igam_fac_loops[0] = loop_d_dd__As_ff_f +ufunc__igam_fac_loops[1] = loop_d_dd__As_dd_d +ufunc__igam_fac_types[0] = NPY_FLOAT +ufunc__igam_fac_types[1] = NPY_FLOAT +ufunc__igam_fac_types[2] = NPY_FLOAT +ufunc__igam_fac_types[3] = NPY_DOUBLE +ufunc__igam_fac_types[4] = NPY_DOUBLE +ufunc__igam_fac_types[5] = NPY_DOUBLE +ufunc__igam_fac_ptr[2*0] = _func_igam_fac +ufunc__igam_fac_ptr[2*0+1] = ("_igam_fac") +ufunc__igam_fac_ptr[2*1] = _func_igam_fac +ufunc__igam_fac_ptr[2*1+1] = ("_igam_fac") +ufunc__igam_fac_data[0] = &ufunc__igam_fac_ptr[2*0] +ufunc__igam_fac_data[1] = &ufunc__igam_fac_ptr[2*1] +_igam_fac = np.PyUFunc_FromFuncAndData(ufunc__igam_fac_loops, ufunc__igam_fac_data, ufunc__igam_fac_types, 2, 2, 1, 0, "_igam_fac", ufunc__igam_fac_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__kolmogc_loops[2] +cdef void *ufunc__kolmogc_ptr[4] +cdef void *ufunc__kolmogc_data[2] +cdef char ufunc__kolmogc_types[4] +cdef char *ufunc__kolmogc_doc = ( + "Internal function, do not use.") +ufunc__kolmogc_loops[0] = loop_d_d__As_f_f +ufunc__kolmogc_loops[1] = loop_d_d__As_d_d +ufunc__kolmogc_types[0] = NPY_FLOAT +ufunc__kolmogc_types[1] = NPY_FLOAT +ufunc__kolmogc_types[2] = NPY_DOUBLE +ufunc__kolmogc_types[3] = NPY_DOUBLE +ufunc__kolmogc_ptr[2*0] = _func_kolmogc +ufunc__kolmogc_ptr[2*0+1] = ("_kolmogc") +ufunc__kolmogc_ptr[2*1] = _func_kolmogc +ufunc__kolmogc_ptr[2*1+1] = ("_kolmogc") +ufunc__kolmogc_data[0] = &ufunc__kolmogc_ptr[2*0] +ufunc__kolmogc_data[1] = &ufunc__kolmogc_ptr[2*1] +_kolmogc = np.PyUFunc_FromFuncAndData(ufunc__kolmogc_loops, ufunc__kolmogc_data, ufunc__kolmogc_types, 2, 1, 1, 0, "_kolmogc", ufunc__kolmogc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__kolmogci_loops[2] +cdef void *ufunc__kolmogci_ptr[4] +cdef void *ufunc__kolmogci_data[2] +cdef char ufunc__kolmogci_types[4] +cdef char *ufunc__kolmogci_doc = ( + "Internal function, do not use.") +ufunc__kolmogci_loops[0] = loop_d_d__As_f_f +ufunc__kolmogci_loops[1] = loop_d_d__As_d_d +ufunc__kolmogci_types[0] = NPY_FLOAT +ufunc__kolmogci_types[1] = NPY_FLOAT +ufunc__kolmogci_types[2] = NPY_DOUBLE +ufunc__kolmogci_types[3] = NPY_DOUBLE +ufunc__kolmogci_ptr[2*0] = _func_kolmogci +ufunc__kolmogci_ptr[2*0+1] = ("_kolmogci") +ufunc__kolmogci_ptr[2*1] = _func_kolmogci +ufunc__kolmogci_ptr[2*1+1] = ("_kolmogci") +ufunc__kolmogci_data[0] = &ufunc__kolmogci_ptr[2*0] +ufunc__kolmogci_data[1] = &ufunc__kolmogci_ptr[2*1] +_kolmogci = np.PyUFunc_FromFuncAndData(ufunc__kolmogci_loops, ufunc__kolmogci_data, ufunc__kolmogci_types, 2, 1, 1, 0, "_kolmogci", ufunc__kolmogci_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__kolmogp_loops[2] +cdef void *ufunc__kolmogp_ptr[4] +cdef void *ufunc__kolmogp_data[2] +cdef char ufunc__kolmogp_types[4] +cdef char *ufunc__kolmogp_doc = ( + "Internal function, do not use.") +ufunc__kolmogp_loops[0] = loop_d_d__As_f_f +ufunc__kolmogp_loops[1] = loop_d_d__As_d_d +ufunc__kolmogp_types[0] = NPY_FLOAT +ufunc__kolmogp_types[1] = NPY_FLOAT +ufunc__kolmogp_types[2] = NPY_DOUBLE +ufunc__kolmogp_types[3] = NPY_DOUBLE +ufunc__kolmogp_ptr[2*0] = _func_kolmogp +ufunc__kolmogp_ptr[2*0+1] = ("_kolmogp") +ufunc__kolmogp_ptr[2*1] = _func_kolmogp +ufunc__kolmogp_ptr[2*1+1] = ("_kolmogp") +ufunc__kolmogp_data[0] = &ufunc__kolmogp_ptr[2*0] +ufunc__kolmogp_data[1] = &ufunc__kolmogp_ptr[2*1] +_kolmogp = np.PyUFunc_FromFuncAndData(ufunc__kolmogp_loops, ufunc__kolmogp_data, ufunc__kolmogp_types, 2, 1, 1, 0, "_kolmogp", ufunc__kolmogp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__lambertw_loops[1] +cdef void *ufunc__lambertw_ptr[2] +cdef void *ufunc__lambertw_data[1] +cdef char ufunc__lambertw_types[4] +cdef char *ufunc__lambertw_doc = ( + "Internal function, use `lambertw` instead.") +ufunc__lambertw_loops[0] = loop_D_Dld__As_Dld_D +ufunc__lambertw_types[0] = NPY_CDOUBLE +ufunc__lambertw_types[1] = NPY_LONG +ufunc__lambertw_types[2] = NPY_DOUBLE +ufunc__lambertw_types[3] = NPY_CDOUBLE +ufunc__lambertw_ptr[2*0] = scipy.special._ufuncs_cxx._export_lambertw_scalar +ufunc__lambertw_ptr[2*0+1] = ("_lambertw") +ufunc__lambertw_data[0] = &ufunc__lambertw_ptr[2*0] +_lambertw = np.PyUFunc_FromFuncAndData(ufunc__lambertw_loops, ufunc__lambertw_data, ufunc__lambertw_types, 1, 3, 1, 0, "_lambertw", ufunc__lambertw_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__lanczos_sum_expg_scaled_loops[2] +cdef void *ufunc__lanczos_sum_expg_scaled_ptr[4] +cdef void *ufunc__lanczos_sum_expg_scaled_data[2] +cdef char ufunc__lanczos_sum_expg_scaled_types[4] +cdef char *ufunc__lanczos_sum_expg_scaled_doc = ( + "Internal function, do not use.") +ufunc__lanczos_sum_expg_scaled_loops[0] = loop_d_d__As_f_f +ufunc__lanczos_sum_expg_scaled_loops[1] = loop_d_d__As_d_d +ufunc__lanczos_sum_expg_scaled_types[0] = NPY_FLOAT +ufunc__lanczos_sum_expg_scaled_types[1] = NPY_FLOAT +ufunc__lanczos_sum_expg_scaled_types[2] = NPY_DOUBLE +ufunc__lanczos_sum_expg_scaled_types[3] = NPY_DOUBLE +ufunc__lanczos_sum_expg_scaled_ptr[2*0] = _func_lanczos_sum_expg_scaled +ufunc__lanczos_sum_expg_scaled_ptr[2*0+1] = ("_lanczos_sum_expg_scaled") +ufunc__lanczos_sum_expg_scaled_ptr[2*1] = _func_lanczos_sum_expg_scaled +ufunc__lanczos_sum_expg_scaled_ptr[2*1+1] = ("_lanczos_sum_expg_scaled") +ufunc__lanczos_sum_expg_scaled_data[0] = &ufunc__lanczos_sum_expg_scaled_ptr[2*0] +ufunc__lanczos_sum_expg_scaled_data[1] = &ufunc__lanczos_sum_expg_scaled_ptr[2*1] +_lanczos_sum_expg_scaled = np.PyUFunc_FromFuncAndData(ufunc__lanczos_sum_expg_scaled_loops, ufunc__lanczos_sum_expg_scaled_data, ufunc__lanczos_sum_expg_scaled_types, 2, 1, 1, 0, "_lanczos_sum_expg_scaled", ufunc__lanczos_sum_expg_scaled_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__lgam1p_loops[2] +cdef void *ufunc__lgam1p_ptr[4] +cdef void *ufunc__lgam1p_data[2] +cdef char ufunc__lgam1p_types[4] +cdef char *ufunc__lgam1p_doc = ( + "Internal function, do not use.") +ufunc__lgam1p_loops[0] = loop_d_d__As_f_f +ufunc__lgam1p_loops[1] = loop_d_d__As_d_d +ufunc__lgam1p_types[0] = NPY_FLOAT +ufunc__lgam1p_types[1] = NPY_FLOAT +ufunc__lgam1p_types[2] = NPY_DOUBLE +ufunc__lgam1p_types[3] = NPY_DOUBLE +ufunc__lgam1p_ptr[2*0] = _func_lgam1p +ufunc__lgam1p_ptr[2*0+1] = ("_lgam1p") +ufunc__lgam1p_ptr[2*1] = _func_lgam1p +ufunc__lgam1p_ptr[2*1+1] = ("_lgam1p") +ufunc__lgam1p_data[0] = &ufunc__lgam1p_ptr[2*0] +ufunc__lgam1p_data[1] = &ufunc__lgam1p_ptr[2*1] +_lgam1p = np.PyUFunc_FromFuncAndData(ufunc__lgam1p_loops, ufunc__lgam1p_data, ufunc__lgam1p_types, 2, 1, 1, 0, "_lgam1p", ufunc__lgam1p_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__log1pmx_loops[2] +cdef void *ufunc__log1pmx_ptr[4] +cdef void *ufunc__log1pmx_data[2] +cdef char ufunc__log1pmx_types[4] +cdef char *ufunc__log1pmx_doc = ( + "Internal function, do not use.") +ufunc__log1pmx_loops[0] = loop_d_d__As_f_f +ufunc__log1pmx_loops[1] = loop_d_d__As_d_d +ufunc__log1pmx_types[0] = NPY_FLOAT +ufunc__log1pmx_types[1] = NPY_FLOAT +ufunc__log1pmx_types[2] = NPY_DOUBLE +ufunc__log1pmx_types[3] = NPY_DOUBLE +ufunc__log1pmx_ptr[2*0] = _func_log1pmx +ufunc__log1pmx_ptr[2*0+1] = ("_log1pmx") +ufunc__log1pmx_ptr[2*1] = _func_log1pmx +ufunc__log1pmx_ptr[2*1+1] = ("_log1pmx") +ufunc__log1pmx_data[0] = &ufunc__log1pmx_ptr[2*0] +ufunc__log1pmx_data[1] = &ufunc__log1pmx_ptr[2*1] +_log1pmx = np.PyUFunc_FromFuncAndData(ufunc__log1pmx_loops, ufunc__log1pmx_data, ufunc__log1pmx_types, 2, 1, 1, 0, "_log1pmx", ufunc__log1pmx_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__riemann_zeta_loops[2] +cdef void *ufunc__riemann_zeta_ptr[4] +cdef void *ufunc__riemann_zeta_data[2] +cdef char ufunc__riemann_zeta_types[4] +cdef char *ufunc__riemann_zeta_doc = ( + "Internal function, use `zeta` instead.") +ufunc__riemann_zeta_loops[0] = loop_d_d__As_f_f +ufunc__riemann_zeta_loops[1] = loop_d_d__As_d_d +ufunc__riemann_zeta_types[0] = NPY_FLOAT +ufunc__riemann_zeta_types[1] = NPY_FLOAT +ufunc__riemann_zeta_types[2] = NPY_DOUBLE +ufunc__riemann_zeta_types[3] = NPY_DOUBLE +ufunc__riemann_zeta_ptr[2*0] = _func_riemann_zeta +ufunc__riemann_zeta_ptr[2*0+1] = ("_riemann_zeta") +ufunc__riemann_zeta_ptr[2*1] = _func_riemann_zeta +ufunc__riemann_zeta_ptr[2*1+1] = ("_riemann_zeta") +ufunc__riemann_zeta_data[0] = &ufunc__riemann_zeta_ptr[2*0] +ufunc__riemann_zeta_data[1] = &ufunc__riemann_zeta_ptr[2*1] +_riemann_zeta = np.PyUFunc_FromFuncAndData(ufunc__riemann_zeta_loops, ufunc__riemann_zeta_data, ufunc__riemann_zeta_types, 2, 1, 1, 0, "_riemann_zeta", ufunc__riemann_zeta_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__scaled_exp1_loops[2] +cdef void *ufunc__scaled_exp1_ptr[4] +cdef void *ufunc__scaled_exp1_data[2] +cdef char ufunc__scaled_exp1_types[4] +cdef char *ufunc__scaled_exp1_doc = ( + "_scaled_exp1(x, out=None):\n" + "\n" + "Compute the scaled exponential integral.\n" + "\n" + "This is a private function, subject to change or removal with no\n" + "deprecation.\n" + "\n" + "This function computes F(x), where F is the factor remaining in E_1(x)\n" + "when exp(-x)/x is factored out. That is,::\n" + "\n" + " E_1(x) = exp(-x)/x * F(x)\n" + "\n" + "or\n" + "\n" + " F(x) = x * exp(x) * E_1(x)\n" + "\n" + "The function is defined for real x >= 0. For x < 0, nan is returned.\n" + "\n" + "F has the properties:\n" + "\n" + "* F(0) = 0\n" + "* F(x) is increasing on [0, inf).\n" + "* The limit as x goes to infinity of F(x) is 1.\n" + "\n" + "Parameters\n" + "----------\n" + "x: array_like\n" + " The input values. Must be real. The implementation is limited to\n" + " double precision floating point, so other types will be cast to\n" + " to double precision.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the scaled exponential integral.\n" + "\n" + "See Also\n" + "--------\n" + "exp1 : exponential integral E_1\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import _scaled_exp1\n" + ">>> _scaled_exp1([0, 0.1, 1, 10, 100])") +ufunc__scaled_exp1_loops[0] = loop_d_d__As_f_f +ufunc__scaled_exp1_loops[1] = loop_d_d__As_d_d +ufunc__scaled_exp1_types[0] = NPY_FLOAT +ufunc__scaled_exp1_types[1] = NPY_FLOAT +ufunc__scaled_exp1_types[2] = NPY_DOUBLE +ufunc__scaled_exp1_types[3] = NPY_DOUBLE +ufunc__scaled_exp1_ptr[2*0] = _func_scaled_exp1 +ufunc__scaled_exp1_ptr[2*0+1] = ("_scaled_exp1") +ufunc__scaled_exp1_ptr[2*1] = _func_scaled_exp1 +ufunc__scaled_exp1_ptr[2*1+1] = ("_scaled_exp1") +ufunc__scaled_exp1_data[0] = &ufunc__scaled_exp1_ptr[2*0] +ufunc__scaled_exp1_data[1] = &ufunc__scaled_exp1_ptr[2*1] +_scaled_exp1 = np.PyUFunc_FromFuncAndData(ufunc__scaled_exp1_loops, ufunc__scaled_exp1_data, ufunc__scaled_exp1_types, 2, 1, 1, 0, "_scaled_exp1", ufunc__scaled_exp1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__sf_error_test_function_loops[1] +cdef void *ufunc__sf_error_test_function_ptr[2] +cdef void *ufunc__sf_error_test_function_data[1] +cdef char ufunc__sf_error_test_function_types[2] +cdef char *ufunc__sf_error_test_function_doc = ( + "Private function; do not use.") +ufunc__sf_error_test_function_loops[0] = loop_i_i__As_l_l +ufunc__sf_error_test_function_types[0] = NPY_LONG +ufunc__sf_error_test_function_types[1] = NPY_LONG +ufunc__sf_error_test_function_ptr[2*0] = _func__sf_error_test_function +ufunc__sf_error_test_function_ptr[2*0+1] = ("_sf_error_test_function") +ufunc__sf_error_test_function_data[0] = &ufunc__sf_error_test_function_ptr[2*0] +_sf_error_test_function = np.PyUFunc_FromFuncAndData(ufunc__sf_error_test_function_loops, ufunc__sf_error_test_function_data, ufunc__sf_error_test_function_types, 1, 1, 1, 0, "_sf_error_test_function", ufunc__sf_error_test_function_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__sinpi_loops[4] +cdef void *ufunc__sinpi_ptr[8] +cdef void *ufunc__sinpi_data[4] +cdef char ufunc__sinpi_types[8] +cdef char *ufunc__sinpi_doc = ( + "Internal function, do not use.") +ufunc__sinpi_loops[0] = loop_d_d__As_f_f +ufunc__sinpi_loops[1] = loop_d_d__As_d_d +ufunc__sinpi_loops[2] = loop_D_D__As_F_F +ufunc__sinpi_loops[3] = loop_D_D__As_D_D +ufunc__sinpi_types[0] = NPY_FLOAT +ufunc__sinpi_types[1] = NPY_FLOAT +ufunc__sinpi_types[2] = NPY_DOUBLE +ufunc__sinpi_types[3] = NPY_DOUBLE +ufunc__sinpi_types[4] = NPY_CFLOAT +ufunc__sinpi_types[5] = NPY_CFLOAT +ufunc__sinpi_types[6] = NPY_CDOUBLE +ufunc__sinpi_types[7] = NPY_CDOUBLE +ufunc__sinpi_ptr[2*0] = _func_sinpi +ufunc__sinpi_ptr[2*0+1] = ("_sinpi") +ufunc__sinpi_ptr[2*1] = _func_sinpi +ufunc__sinpi_ptr[2*1+1] = ("_sinpi") +ufunc__sinpi_ptr[2*2] = scipy.special._ufuncs_cxx._export_csinpi +ufunc__sinpi_ptr[2*2+1] = ("_sinpi") +ufunc__sinpi_ptr[2*3] = scipy.special._ufuncs_cxx._export_csinpi +ufunc__sinpi_ptr[2*3+1] = ("_sinpi") +ufunc__sinpi_data[0] = &ufunc__sinpi_ptr[2*0] +ufunc__sinpi_data[1] = &ufunc__sinpi_ptr[2*1] +ufunc__sinpi_data[2] = &ufunc__sinpi_ptr[2*2] +ufunc__sinpi_data[3] = &ufunc__sinpi_ptr[2*3] +_sinpi = np.PyUFunc_FromFuncAndData(ufunc__sinpi_loops, ufunc__sinpi_data, ufunc__sinpi_types, 4, 1, 1, 0, "_sinpi", ufunc__sinpi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__smirnovc_loops[3] +cdef void *ufunc__smirnovc_ptr[6] +cdef void *ufunc__smirnovc_data[3] +cdef char ufunc__smirnovc_types[9] +cdef char *ufunc__smirnovc_doc = ( + "_smirnovc(n, d)\n" + " Internal function, do not use.") +ufunc__smirnovc_loops[0] = loop_d_id__As_ld_d +ufunc__smirnovc_loops[1] = loop_d_dd__As_ff_f +ufunc__smirnovc_loops[2] = loop_d_dd__As_dd_d +ufunc__smirnovc_types[0] = NPY_LONG +ufunc__smirnovc_types[1] = NPY_DOUBLE +ufunc__smirnovc_types[2] = NPY_DOUBLE +ufunc__smirnovc_types[3] = NPY_FLOAT +ufunc__smirnovc_types[4] = NPY_FLOAT +ufunc__smirnovc_types[5] = NPY_FLOAT +ufunc__smirnovc_types[6] = NPY_DOUBLE +ufunc__smirnovc_types[7] = NPY_DOUBLE +ufunc__smirnovc_types[8] = NPY_DOUBLE +ufunc__smirnovc_ptr[2*0] = _func_smirnovc +ufunc__smirnovc_ptr[2*0+1] = ("_smirnovc") +ufunc__smirnovc_ptr[2*1] = _func_smirnovc_unsafe +ufunc__smirnovc_ptr[2*1+1] = ("_smirnovc") +ufunc__smirnovc_ptr[2*2] = _func_smirnovc_unsafe +ufunc__smirnovc_ptr[2*2+1] = ("_smirnovc") +ufunc__smirnovc_data[0] = &ufunc__smirnovc_ptr[2*0] +ufunc__smirnovc_data[1] = &ufunc__smirnovc_ptr[2*1] +ufunc__smirnovc_data[2] = &ufunc__smirnovc_ptr[2*2] +_smirnovc = np.PyUFunc_FromFuncAndData(ufunc__smirnovc_loops, ufunc__smirnovc_data, ufunc__smirnovc_types, 3, 2, 1, 0, "_smirnovc", ufunc__smirnovc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__smirnovci_loops[3] +cdef void *ufunc__smirnovci_ptr[6] +cdef void *ufunc__smirnovci_data[3] +cdef char ufunc__smirnovci_types[9] +cdef char *ufunc__smirnovci_doc = ( + "Internal function, do not use.") +ufunc__smirnovci_loops[0] = loop_d_id__As_ld_d +ufunc__smirnovci_loops[1] = loop_d_dd__As_ff_f +ufunc__smirnovci_loops[2] = loop_d_dd__As_dd_d +ufunc__smirnovci_types[0] = NPY_LONG +ufunc__smirnovci_types[1] = NPY_DOUBLE +ufunc__smirnovci_types[2] = NPY_DOUBLE +ufunc__smirnovci_types[3] = NPY_FLOAT +ufunc__smirnovci_types[4] = NPY_FLOAT +ufunc__smirnovci_types[5] = NPY_FLOAT +ufunc__smirnovci_types[6] = NPY_DOUBLE +ufunc__smirnovci_types[7] = NPY_DOUBLE +ufunc__smirnovci_types[8] = NPY_DOUBLE +ufunc__smirnovci_ptr[2*0] = _func_smirnovci +ufunc__smirnovci_ptr[2*0+1] = ("_smirnovci") +ufunc__smirnovci_ptr[2*1] = _func_smirnovci_unsafe +ufunc__smirnovci_ptr[2*1+1] = ("_smirnovci") +ufunc__smirnovci_ptr[2*2] = _func_smirnovci_unsafe +ufunc__smirnovci_ptr[2*2+1] = ("_smirnovci") +ufunc__smirnovci_data[0] = &ufunc__smirnovci_ptr[2*0] +ufunc__smirnovci_data[1] = &ufunc__smirnovci_ptr[2*1] +ufunc__smirnovci_data[2] = &ufunc__smirnovci_ptr[2*2] +_smirnovci = np.PyUFunc_FromFuncAndData(ufunc__smirnovci_loops, ufunc__smirnovci_data, ufunc__smirnovci_types, 3, 2, 1, 0, "_smirnovci", ufunc__smirnovci_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__smirnovp_loops[3] +cdef void *ufunc__smirnovp_ptr[6] +cdef void *ufunc__smirnovp_data[3] +cdef char ufunc__smirnovp_types[9] +cdef char *ufunc__smirnovp_doc = ( + "_smirnovp(n, p)\n" + " Internal function, do not use.") +ufunc__smirnovp_loops[0] = loop_d_id__As_ld_d +ufunc__smirnovp_loops[1] = loop_d_dd__As_ff_f +ufunc__smirnovp_loops[2] = loop_d_dd__As_dd_d +ufunc__smirnovp_types[0] = NPY_LONG +ufunc__smirnovp_types[1] = NPY_DOUBLE +ufunc__smirnovp_types[2] = NPY_DOUBLE +ufunc__smirnovp_types[3] = NPY_FLOAT +ufunc__smirnovp_types[4] = NPY_FLOAT +ufunc__smirnovp_types[5] = NPY_FLOAT +ufunc__smirnovp_types[6] = NPY_DOUBLE +ufunc__smirnovp_types[7] = NPY_DOUBLE +ufunc__smirnovp_types[8] = NPY_DOUBLE +ufunc__smirnovp_ptr[2*0] = _func_smirnovp +ufunc__smirnovp_ptr[2*0+1] = ("_smirnovp") +ufunc__smirnovp_ptr[2*1] = _func_smirnovp_unsafe +ufunc__smirnovp_ptr[2*1+1] = ("_smirnovp") +ufunc__smirnovp_ptr[2*2] = _func_smirnovp_unsafe +ufunc__smirnovp_ptr[2*2+1] = ("_smirnovp") +ufunc__smirnovp_data[0] = &ufunc__smirnovp_ptr[2*0] +ufunc__smirnovp_data[1] = &ufunc__smirnovp_ptr[2*1] +ufunc__smirnovp_data[2] = &ufunc__smirnovp_ptr[2*2] +_smirnovp = np.PyUFunc_FromFuncAndData(ufunc__smirnovp_loops, ufunc__smirnovp_data, ufunc__smirnovp_types, 3, 2, 1, 0, "_smirnovp", ufunc__smirnovp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_in_loops[2] +cdef void *ufunc__spherical_in_ptr[4] +cdef void *ufunc__spherical_in_data[2] +cdef char ufunc__spherical_in_types[6] +cdef char *ufunc__spherical_in_doc = ( + "Internal function, use `spherical_in` instead.") +ufunc__spherical_in_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_in_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_in_types[0] = NPY_LONG +ufunc__spherical_in_types[1] = NPY_DOUBLE +ufunc__spherical_in_types[2] = NPY_DOUBLE +ufunc__spherical_in_types[3] = NPY_LONG +ufunc__spherical_in_types[4] = NPY_CDOUBLE +ufunc__spherical_in_types[5] = NPY_CDOUBLE +ufunc__spherical_in_ptr[2*0] = _func_spherical_in_real +ufunc__spherical_in_ptr[2*0+1] = ("_spherical_in") +ufunc__spherical_in_ptr[2*1] = _func_spherical_in_complex +ufunc__spherical_in_ptr[2*1+1] = ("_spherical_in") +ufunc__spherical_in_data[0] = &ufunc__spherical_in_ptr[2*0] +ufunc__spherical_in_data[1] = &ufunc__spherical_in_ptr[2*1] +_spherical_in = np.PyUFunc_FromFuncAndData(ufunc__spherical_in_loops, ufunc__spherical_in_data, ufunc__spherical_in_types, 2, 2, 1, 0, "_spherical_in", ufunc__spherical_in_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_in_d_loops[2] +cdef void *ufunc__spherical_in_d_ptr[4] +cdef void *ufunc__spherical_in_d_data[2] +cdef char ufunc__spherical_in_d_types[6] +cdef char *ufunc__spherical_in_d_doc = ( + "Internal function, use `spherical_in` instead.") +ufunc__spherical_in_d_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_in_d_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_in_d_types[0] = NPY_LONG +ufunc__spherical_in_d_types[1] = NPY_DOUBLE +ufunc__spherical_in_d_types[2] = NPY_DOUBLE +ufunc__spherical_in_d_types[3] = NPY_LONG +ufunc__spherical_in_d_types[4] = NPY_CDOUBLE +ufunc__spherical_in_d_types[5] = NPY_CDOUBLE +ufunc__spherical_in_d_ptr[2*0] = _func_spherical_in_d_real +ufunc__spherical_in_d_ptr[2*0+1] = ("_spherical_in_d") +ufunc__spherical_in_d_ptr[2*1] = _func_spherical_in_d_complex +ufunc__spherical_in_d_ptr[2*1+1] = ("_spherical_in_d") +ufunc__spherical_in_d_data[0] = &ufunc__spherical_in_d_ptr[2*0] +ufunc__spherical_in_d_data[1] = &ufunc__spherical_in_d_ptr[2*1] +_spherical_in_d = np.PyUFunc_FromFuncAndData(ufunc__spherical_in_d_loops, ufunc__spherical_in_d_data, ufunc__spherical_in_d_types, 2, 2, 1, 0, "_spherical_in_d", ufunc__spherical_in_d_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_jn_loops[2] +cdef void *ufunc__spherical_jn_ptr[4] +cdef void *ufunc__spherical_jn_data[2] +cdef char ufunc__spherical_jn_types[6] +cdef char *ufunc__spherical_jn_doc = ( + "Internal function, use `spherical_jn` instead.") +ufunc__spherical_jn_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_jn_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_jn_types[0] = NPY_LONG +ufunc__spherical_jn_types[1] = NPY_DOUBLE +ufunc__spherical_jn_types[2] = NPY_DOUBLE +ufunc__spherical_jn_types[3] = NPY_LONG +ufunc__spherical_jn_types[4] = NPY_CDOUBLE +ufunc__spherical_jn_types[5] = NPY_CDOUBLE +ufunc__spherical_jn_ptr[2*0] = _func_spherical_jn_real +ufunc__spherical_jn_ptr[2*0+1] = ("_spherical_jn") +ufunc__spherical_jn_ptr[2*1] = _func_spherical_jn_complex +ufunc__spherical_jn_ptr[2*1+1] = ("_spherical_jn") +ufunc__spherical_jn_data[0] = &ufunc__spherical_jn_ptr[2*0] +ufunc__spherical_jn_data[1] = &ufunc__spherical_jn_ptr[2*1] +_spherical_jn = np.PyUFunc_FromFuncAndData(ufunc__spherical_jn_loops, ufunc__spherical_jn_data, ufunc__spherical_jn_types, 2, 2, 1, 0, "_spherical_jn", ufunc__spherical_jn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_jn_d_loops[2] +cdef void *ufunc__spherical_jn_d_ptr[4] +cdef void *ufunc__spherical_jn_d_data[2] +cdef char ufunc__spherical_jn_d_types[6] +cdef char *ufunc__spherical_jn_d_doc = ( + "Internal function, use `spherical_jn` instead.") +ufunc__spherical_jn_d_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_jn_d_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_jn_d_types[0] = NPY_LONG +ufunc__spherical_jn_d_types[1] = NPY_DOUBLE +ufunc__spherical_jn_d_types[2] = NPY_DOUBLE +ufunc__spherical_jn_d_types[3] = NPY_LONG +ufunc__spherical_jn_d_types[4] = NPY_CDOUBLE +ufunc__spherical_jn_d_types[5] = NPY_CDOUBLE +ufunc__spherical_jn_d_ptr[2*0] = _func_spherical_jn_d_real +ufunc__spherical_jn_d_ptr[2*0+1] = ("_spherical_jn_d") +ufunc__spherical_jn_d_ptr[2*1] = _func_spherical_jn_d_complex +ufunc__spherical_jn_d_ptr[2*1+1] = ("_spherical_jn_d") +ufunc__spherical_jn_d_data[0] = &ufunc__spherical_jn_d_ptr[2*0] +ufunc__spherical_jn_d_data[1] = &ufunc__spherical_jn_d_ptr[2*1] +_spherical_jn_d = np.PyUFunc_FromFuncAndData(ufunc__spherical_jn_d_loops, ufunc__spherical_jn_d_data, ufunc__spherical_jn_d_types, 2, 2, 1, 0, "_spherical_jn_d", ufunc__spherical_jn_d_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_kn_loops[2] +cdef void *ufunc__spherical_kn_ptr[4] +cdef void *ufunc__spherical_kn_data[2] +cdef char ufunc__spherical_kn_types[6] +cdef char *ufunc__spherical_kn_doc = ( + "Internal function, use `spherical_kn` instead.") +ufunc__spherical_kn_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_kn_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_kn_types[0] = NPY_LONG +ufunc__spherical_kn_types[1] = NPY_DOUBLE +ufunc__spherical_kn_types[2] = NPY_DOUBLE +ufunc__spherical_kn_types[3] = NPY_LONG +ufunc__spherical_kn_types[4] = NPY_CDOUBLE +ufunc__spherical_kn_types[5] = NPY_CDOUBLE +ufunc__spherical_kn_ptr[2*0] = _func_spherical_kn_real +ufunc__spherical_kn_ptr[2*0+1] = ("_spherical_kn") +ufunc__spherical_kn_ptr[2*1] = _func_spherical_kn_complex +ufunc__spherical_kn_ptr[2*1+1] = ("_spherical_kn") +ufunc__spherical_kn_data[0] = &ufunc__spherical_kn_ptr[2*0] +ufunc__spherical_kn_data[1] = &ufunc__spherical_kn_ptr[2*1] +_spherical_kn = np.PyUFunc_FromFuncAndData(ufunc__spherical_kn_loops, ufunc__spherical_kn_data, ufunc__spherical_kn_types, 2, 2, 1, 0, "_spherical_kn", ufunc__spherical_kn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_kn_d_loops[2] +cdef void *ufunc__spherical_kn_d_ptr[4] +cdef void *ufunc__spherical_kn_d_data[2] +cdef char ufunc__spherical_kn_d_types[6] +cdef char *ufunc__spherical_kn_d_doc = ( + "Internal function, use `spherical_kn` instead.") +ufunc__spherical_kn_d_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_kn_d_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_kn_d_types[0] = NPY_LONG +ufunc__spherical_kn_d_types[1] = NPY_DOUBLE +ufunc__spherical_kn_d_types[2] = NPY_DOUBLE +ufunc__spherical_kn_d_types[3] = NPY_LONG +ufunc__spherical_kn_d_types[4] = NPY_CDOUBLE +ufunc__spherical_kn_d_types[5] = NPY_CDOUBLE +ufunc__spherical_kn_d_ptr[2*0] = _func_spherical_kn_d_real +ufunc__spherical_kn_d_ptr[2*0+1] = ("_spherical_kn_d") +ufunc__spherical_kn_d_ptr[2*1] = _func_spherical_kn_d_complex +ufunc__spherical_kn_d_ptr[2*1+1] = ("_spherical_kn_d") +ufunc__spherical_kn_d_data[0] = &ufunc__spherical_kn_d_ptr[2*0] +ufunc__spherical_kn_d_data[1] = &ufunc__spherical_kn_d_ptr[2*1] +_spherical_kn_d = np.PyUFunc_FromFuncAndData(ufunc__spherical_kn_d_loops, ufunc__spherical_kn_d_data, ufunc__spherical_kn_d_types, 2, 2, 1, 0, "_spherical_kn_d", ufunc__spherical_kn_d_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_yn_loops[2] +cdef void *ufunc__spherical_yn_ptr[4] +cdef void *ufunc__spherical_yn_data[2] +cdef char ufunc__spherical_yn_types[6] +cdef char *ufunc__spherical_yn_doc = ( + "Internal function, use `spherical_yn` instead.") +ufunc__spherical_yn_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_yn_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_yn_types[0] = NPY_LONG +ufunc__spherical_yn_types[1] = NPY_DOUBLE +ufunc__spherical_yn_types[2] = NPY_DOUBLE +ufunc__spherical_yn_types[3] = NPY_LONG +ufunc__spherical_yn_types[4] = NPY_CDOUBLE +ufunc__spherical_yn_types[5] = NPY_CDOUBLE +ufunc__spherical_yn_ptr[2*0] = _func_spherical_yn_real +ufunc__spherical_yn_ptr[2*0+1] = ("_spherical_yn") +ufunc__spherical_yn_ptr[2*1] = _func_spherical_yn_complex +ufunc__spherical_yn_ptr[2*1+1] = ("_spherical_yn") +ufunc__spherical_yn_data[0] = &ufunc__spherical_yn_ptr[2*0] +ufunc__spherical_yn_data[1] = &ufunc__spherical_yn_ptr[2*1] +_spherical_yn = np.PyUFunc_FromFuncAndData(ufunc__spherical_yn_loops, ufunc__spherical_yn_data, ufunc__spherical_yn_types, 2, 2, 1, 0, "_spherical_yn", ufunc__spherical_yn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__spherical_yn_d_loops[2] +cdef void *ufunc__spherical_yn_d_ptr[4] +cdef void *ufunc__spherical_yn_d_data[2] +cdef char ufunc__spherical_yn_d_types[6] +cdef char *ufunc__spherical_yn_d_doc = ( + "Internal function, use `spherical_yn` instead.") +ufunc__spherical_yn_d_loops[0] = loop_d_ld__As_ld_d +ufunc__spherical_yn_d_loops[1] = loop_D_lD__As_lD_D +ufunc__spherical_yn_d_types[0] = NPY_LONG +ufunc__spherical_yn_d_types[1] = NPY_DOUBLE +ufunc__spherical_yn_d_types[2] = NPY_DOUBLE +ufunc__spherical_yn_d_types[3] = NPY_LONG +ufunc__spherical_yn_d_types[4] = NPY_CDOUBLE +ufunc__spherical_yn_d_types[5] = NPY_CDOUBLE +ufunc__spherical_yn_d_ptr[2*0] = _func_spherical_yn_d_real +ufunc__spherical_yn_d_ptr[2*0+1] = ("_spherical_yn_d") +ufunc__spherical_yn_d_ptr[2*1] = _func_spherical_yn_d_complex +ufunc__spherical_yn_d_ptr[2*1+1] = ("_spherical_yn_d") +ufunc__spherical_yn_d_data[0] = &ufunc__spherical_yn_d_ptr[2*0] +ufunc__spherical_yn_d_data[1] = &ufunc__spherical_yn_d_ptr[2*1] +_spherical_yn_d = np.PyUFunc_FromFuncAndData(ufunc__spherical_yn_d_loops, ufunc__spherical_yn_d_data, ufunc__spherical_yn_d_types, 2, 2, 1, 0, "_spherical_yn_d", ufunc__spherical_yn_d_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__stirling2_inexact_loops[2] +cdef void *ufunc__stirling2_inexact_ptr[4] +cdef void *ufunc__stirling2_inexact_data[2] +cdef char ufunc__stirling2_inexact_types[6] +cdef char *ufunc__stirling2_inexact_doc = ( + "Internal function, do not use.") +ufunc__stirling2_inexact_loops[0] = loop_d_dd__As_ff_f +ufunc__stirling2_inexact_loops[1] = loop_d_dd__As_dd_d +ufunc__stirling2_inexact_types[0] = NPY_FLOAT +ufunc__stirling2_inexact_types[1] = NPY_FLOAT +ufunc__stirling2_inexact_types[2] = NPY_FLOAT +ufunc__stirling2_inexact_types[3] = NPY_DOUBLE +ufunc__stirling2_inexact_types[4] = NPY_DOUBLE +ufunc__stirling2_inexact_types[5] = NPY_DOUBLE +ufunc__stirling2_inexact_ptr[2*0] = scipy.special._ufuncs_cxx._export__stirling2_inexact +ufunc__stirling2_inexact_ptr[2*0+1] = ("_stirling2_inexact") +ufunc__stirling2_inexact_ptr[2*1] = scipy.special._ufuncs_cxx._export__stirling2_inexact +ufunc__stirling2_inexact_ptr[2*1+1] = ("_stirling2_inexact") +ufunc__stirling2_inexact_data[0] = &ufunc__stirling2_inexact_ptr[2*0] +ufunc__stirling2_inexact_data[1] = &ufunc__stirling2_inexact_ptr[2*1] +_stirling2_inexact = np.PyUFunc_FromFuncAndData(ufunc__stirling2_inexact_loops, ufunc__stirling2_inexact_data, ufunc__stirling2_inexact_types, 2, 2, 1, 0, "_stirling2_inexact", ufunc__stirling2_inexact_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__struve_asymp_large_z_loops[1] +cdef void *ufunc__struve_asymp_large_z_ptr[2] +cdef void *ufunc__struve_asymp_large_z_data[1] +cdef char ufunc__struve_asymp_large_z_types[5] +cdef char *ufunc__struve_asymp_large_z_doc = ( + "_struve_asymp_large_z(v, z, is_h)\n" + "\n" + "Internal function for testing `struve` & `modstruve`\n" + "\n" + "Evaluates using asymptotic expansion\n" + "\n" + "Returns\n" + "-------\n" + "v, err") +ufunc__struve_asymp_large_z_loops[0] = loop_d_ddi_d_As_ddl_dd +ufunc__struve_asymp_large_z_types[0] = NPY_DOUBLE +ufunc__struve_asymp_large_z_types[1] = NPY_DOUBLE +ufunc__struve_asymp_large_z_types[2] = NPY_LONG +ufunc__struve_asymp_large_z_types[3] = NPY_DOUBLE +ufunc__struve_asymp_large_z_types[4] = NPY_DOUBLE +ufunc__struve_asymp_large_z_ptr[2*0] = _func_struve_asymp_large_z +ufunc__struve_asymp_large_z_ptr[2*0+1] = ("_struve_asymp_large_z") +ufunc__struve_asymp_large_z_data[0] = &ufunc__struve_asymp_large_z_ptr[2*0] +_struve_asymp_large_z = np.PyUFunc_FromFuncAndData(ufunc__struve_asymp_large_z_loops, ufunc__struve_asymp_large_z_data, ufunc__struve_asymp_large_z_types, 1, 3, 2, 0, "_struve_asymp_large_z", ufunc__struve_asymp_large_z_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__struve_bessel_series_loops[1] +cdef void *ufunc__struve_bessel_series_ptr[2] +cdef void *ufunc__struve_bessel_series_data[1] +cdef char ufunc__struve_bessel_series_types[5] +cdef char *ufunc__struve_bessel_series_doc = ( + "_struve_bessel_series(v, z, is_h)\n" + "\n" + "Internal function for testing `struve` & `modstruve`\n" + "\n" + "Evaluates using Bessel function series\n" + "\n" + "Returns\n" + "-------\n" + "v, err") +ufunc__struve_bessel_series_loops[0] = loop_d_ddi_d_As_ddl_dd +ufunc__struve_bessel_series_types[0] = NPY_DOUBLE +ufunc__struve_bessel_series_types[1] = NPY_DOUBLE +ufunc__struve_bessel_series_types[2] = NPY_LONG +ufunc__struve_bessel_series_types[3] = NPY_DOUBLE +ufunc__struve_bessel_series_types[4] = NPY_DOUBLE +ufunc__struve_bessel_series_ptr[2*0] = _func_struve_bessel_series +ufunc__struve_bessel_series_ptr[2*0+1] = ("_struve_bessel_series") +ufunc__struve_bessel_series_data[0] = &ufunc__struve_bessel_series_ptr[2*0] +_struve_bessel_series = np.PyUFunc_FromFuncAndData(ufunc__struve_bessel_series_loops, ufunc__struve_bessel_series_data, ufunc__struve_bessel_series_types, 1, 3, 2, 0, "_struve_bessel_series", ufunc__struve_bessel_series_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__struve_power_series_loops[1] +cdef void *ufunc__struve_power_series_ptr[2] +cdef void *ufunc__struve_power_series_data[1] +cdef char ufunc__struve_power_series_types[5] +cdef char *ufunc__struve_power_series_doc = ( + "_struve_power_series(v, z, is_h)\n" + "\n" + "Internal function for testing `struve` & `modstruve`\n" + "\n" + "Evaluates using power series\n" + "\n" + "Returns\n" + "-------\n" + "v, err") +ufunc__struve_power_series_loops[0] = loop_d_ddi_d_As_ddl_dd +ufunc__struve_power_series_types[0] = NPY_DOUBLE +ufunc__struve_power_series_types[1] = NPY_DOUBLE +ufunc__struve_power_series_types[2] = NPY_LONG +ufunc__struve_power_series_types[3] = NPY_DOUBLE +ufunc__struve_power_series_types[4] = NPY_DOUBLE +ufunc__struve_power_series_ptr[2*0] = _func_struve_power_series +ufunc__struve_power_series_ptr[2*0+1] = ("_struve_power_series") +ufunc__struve_power_series_data[0] = &ufunc__struve_power_series_ptr[2*0] +_struve_power_series = np.PyUFunc_FromFuncAndData(ufunc__struve_power_series_loops, ufunc__struve_power_series_data, ufunc__struve_power_series_types, 1, 3, 2, 0, "_struve_power_series", ufunc__struve_power_series_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc__zeta_loops[2] +cdef void *ufunc__zeta_ptr[4] +cdef void *ufunc__zeta_data[2] +cdef char ufunc__zeta_types[6] +cdef char *ufunc__zeta_doc = ( + "_zeta(x, q)\n" + "\n" + "Internal function, Hurwitz zeta.") +ufunc__zeta_loops[0] = loop_d_dd__As_ff_f +ufunc__zeta_loops[1] = loop_d_dd__As_dd_d +ufunc__zeta_types[0] = NPY_FLOAT +ufunc__zeta_types[1] = NPY_FLOAT +ufunc__zeta_types[2] = NPY_FLOAT +ufunc__zeta_types[3] = NPY_DOUBLE +ufunc__zeta_types[4] = NPY_DOUBLE +ufunc__zeta_types[5] = NPY_DOUBLE +ufunc__zeta_ptr[2*0] = _func_zeta +ufunc__zeta_ptr[2*0+1] = ("_zeta") +ufunc__zeta_ptr[2*1] = _func_zeta +ufunc__zeta_ptr[2*1+1] = ("_zeta") +ufunc__zeta_data[0] = &ufunc__zeta_ptr[2*0] +ufunc__zeta_data[1] = &ufunc__zeta_ptr[2*1] +_zeta = np.PyUFunc_FromFuncAndData(ufunc__zeta_loops, ufunc__zeta_data, ufunc__zeta_types, 2, 2, 1, 0, "_zeta", ufunc__zeta_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_agm_loops[2] +cdef void *ufunc_agm_ptr[4] +cdef void *ufunc_agm_data[2] +cdef char ufunc_agm_types[6] +cdef char *ufunc_agm_doc = ( + "agm(a, b, out=None)\n" + "\n" + "Compute the arithmetic-geometric mean of `a` and `b`.\n" + "\n" + "Start with a_0 = a and b_0 = b and iteratively compute::\n" + "\n" + " a_{n+1} = (a_n + b_n)/2\n" + " b_{n+1} = sqrt(a_n*b_n)\n" + "\n" + "a_n and b_n converge to the same limit as n increases; their common\n" + "limit is agm(a, b).\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Real values only. If the values are both negative, the result\n" + " is negative. If one value is negative and the other is positive,\n" + " `nan` is returned.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The arithmetic-geometric mean of `a` and `b`.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import agm\n" + ">>> a, b = 24.0, 6.0\n" + ">>> agm(a, b)\n" + "13.458171481725614\n" + "\n" + "Compare that result to the iteration:\n" + "\n" + ">>> while a != b:\n" + "... a, b = (a + b)/2, np.sqrt(a*b)\n" + "... print(\"a = %19.16f b=%19.16f\" % (a, b))\n" + "...\n" + "a = 15.0000000000000000 b=12.0000000000000000\n" + "a = 13.5000000000000000 b=13.4164078649987388\n" + "a = 13.4582039324993694 b=13.4581390309909850\n" + "a = 13.4581714817451772 b=13.4581714817060547\n" + "a = 13.4581714817256159 b=13.4581714817256159\n" + "\n" + "When array-like arguments are given, broadcasting applies:\n" + "\n" + ">>> a = np.array([[1.5], [3], [6]]) # a has shape (3, 1).\n" + ">>> b = np.array([6, 12, 24, 48]) # b has shape (4,).\n" + ">>> agm(a, b)\n" + "array([[ 3.36454287, 5.42363427, 9.05798751, 15.53650756],\n" + " [ 4.37037309, 6.72908574, 10.84726853, 18.11597502],\n" + " [ 6. , 8.74074619, 13.45817148, 21.69453707]])") +ufunc_agm_loops[0] = loop_d_dd__As_ff_f +ufunc_agm_loops[1] = loop_d_dd__As_dd_d +ufunc_agm_types[0] = NPY_FLOAT +ufunc_agm_types[1] = NPY_FLOAT +ufunc_agm_types[2] = NPY_FLOAT +ufunc_agm_types[3] = NPY_DOUBLE +ufunc_agm_types[4] = NPY_DOUBLE +ufunc_agm_types[5] = NPY_DOUBLE +ufunc_agm_ptr[2*0] = _func_agm +ufunc_agm_ptr[2*0+1] = ("agm") +ufunc_agm_ptr[2*1] = _func_agm +ufunc_agm_ptr[2*1+1] = ("agm") +ufunc_agm_data[0] = &ufunc_agm_ptr[2*0] +ufunc_agm_data[1] = &ufunc_agm_ptr[2*1] +agm = np.PyUFunc_FromFuncAndData(ufunc_agm_loops, ufunc_agm_data, ufunc_agm_types, 2, 2, 1, 0, "agm", ufunc_agm_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_airy_loops[4] +cdef void *ufunc_airy_ptr[8] +cdef void *ufunc_airy_data[4] +cdef char ufunc_airy_types[20] +cdef char *ufunc_airy_doc = ( + "airy(z, out=None)\n" + "\n" + "Airy functions and their derivatives.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex argument.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function values\n" + "\n" + "Returns\n" + "-------\n" + "Ai, Aip, Bi, Bip : 4-tuple of scalar or ndarray\n" + " Airy functions Ai and Bi, and their derivatives Aip and Bip.\n" + "\n" + "See Also\n" + "--------\n" + "airye : exponentially scaled Airy functions.\n" + "\n" + "Notes\n" + "-----\n" + "The Airy functions Ai and Bi are two independent solutions of\n" + "\n" + ".. math:: y''(x) = x y(x).\n" + "\n" + "For real `z` in [-10, 10], the computation is carried out by calling\n" + "the Cephes [1]_ `airy` routine, which uses power series summation\n" + "for small `z` and rational minimax approximations for large `z`.\n" + "\n" + "Outside this range, the AMOS [2]_ `zairy` and `zbiry` routines are\n" + "employed. They are computed using power series for :math:`|z| < 1` and\n" + "the following relations to modified Bessel functions for larger `z`\n" + "(where :math:`t \\equiv 2 z^{3/2}/3`):\n" + "\n" + ".. math::\n" + "\n" + " Ai(z) = \\frac{1}{\\pi \\sqrt{3}} K_{1/3}(t)\n" + "\n" + " Ai'(z) = -\\frac{z}{\\pi \\sqrt{3}} K_{2/3}(t)\n" + "\n" + " Bi(z) = \\sqrt{\\frac{z}{3}} \\left(I_{-1/3}(t) + I_{1/3}(t) \\right)\n" + "\n" + " Bi'(z) = \\frac{z}{\\sqrt{3}} \\left(I_{-2/3}(t) + I_{2/3}(t)\\right)\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [2] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Compute the Airy functions on the interval [-15, 5].\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> x = np.linspace(-15, 5, 201)\n" + ">>> ai, aip, bi, bip = special.airy(x)\n" + "\n" + "Plot Ai(x) and Bi(x).\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> plt.plot(x, ai, 'r', label='Ai(x)')\n" + ">>> plt.plot(x, bi, 'b--', label='Bi(x)')\n" + ">>> plt.ylim(-0.5, 1.0)\n" + ">>> plt.grid()\n" + ">>> plt.legend(loc='upper left')\n" + ">>> plt.show()") +ufunc_airy_loops[0] = loop_i_d_dddd_As_f_ffff +ufunc_airy_loops[1] = loop_i_d_dddd_As_d_dddd +ufunc_airy_loops[2] = loop_i_D_DDDD_As_F_FFFF +ufunc_airy_loops[3] = loop_i_D_DDDD_As_D_DDDD +ufunc_airy_types[0] = NPY_FLOAT +ufunc_airy_types[1] = NPY_FLOAT +ufunc_airy_types[2] = NPY_FLOAT +ufunc_airy_types[3] = NPY_FLOAT +ufunc_airy_types[4] = NPY_FLOAT +ufunc_airy_types[5] = NPY_DOUBLE +ufunc_airy_types[6] = NPY_DOUBLE +ufunc_airy_types[7] = NPY_DOUBLE +ufunc_airy_types[8] = NPY_DOUBLE +ufunc_airy_types[9] = NPY_DOUBLE +ufunc_airy_types[10] = NPY_CFLOAT +ufunc_airy_types[11] = NPY_CFLOAT +ufunc_airy_types[12] = NPY_CFLOAT +ufunc_airy_types[13] = NPY_CFLOAT +ufunc_airy_types[14] = NPY_CFLOAT +ufunc_airy_types[15] = NPY_CDOUBLE +ufunc_airy_types[16] = NPY_CDOUBLE +ufunc_airy_types[17] = NPY_CDOUBLE +ufunc_airy_types[18] = NPY_CDOUBLE +ufunc_airy_types[19] = NPY_CDOUBLE +ufunc_airy_ptr[2*0] = _func_airy_wrap +ufunc_airy_ptr[2*0+1] = ("airy") +ufunc_airy_ptr[2*1] = _func_airy_wrap +ufunc_airy_ptr[2*1+1] = ("airy") +ufunc_airy_ptr[2*2] = _func_cairy_wrap +ufunc_airy_ptr[2*2+1] = ("airy") +ufunc_airy_ptr[2*3] = _func_cairy_wrap +ufunc_airy_ptr[2*3+1] = ("airy") +ufunc_airy_data[0] = &ufunc_airy_ptr[2*0] +ufunc_airy_data[1] = &ufunc_airy_ptr[2*1] +ufunc_airy_data[2] = &ufunc_airy_ptr[2*2] +ufunc_airy_data[3] = &ufunc_airy_ptr[2*3] +airy = np.PyUFunc_FromFuncAndData(ufunc_airy_loops, ufunc_airy_data, ufunc_airy_types, 4, 1, 4, 0, "airy", ufunc_airy_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_airye_loops[4] +cdef void *ufunc_airye_ptr[8] +cdef void *ufunc_airye_data[4] +cdef char ufunc_airye_types[20] +cdef char *ufunc_airye_doc = ( + "airye(z, out=None)\n" + "\n" + "Exponentially scaled Airy functions and their derivatives.\n" + "\n" + "Scaling::\n" + "\n" + " eAi = Ai * exp(2.0/3.0*z*sqrt(z))\n" + " eAip = Aip * exp(2.0/3.0*z*sqrt(z))\n" + " eBi = Bi * exp(-abs(2.0/3.0*(z*sqrt(z)).real))\n" + " eBip = Bip * exp(-abs(2.0/3.0*(z*sqrt(z)).real))\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex argument.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function values\n" + "\n" + "Returns\n" + "-------\n" + "eAi, eAip, eBi, eBip : 4-tuple of scalar or ndarray\n" + " Exponentially scaled Airy functions eAi and eBi, and their derivatives\n" + " eAip and eBip\n" + "\n" + "See Also\n" + "--------\n" + "airy\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the AMOS [1]_ routines `zairy` and `zbiry`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "We can compute exponentially scaled Airy functions and their derivatives:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import airye\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> z = np.linspace(0, 50, 500)\n" + ">>> eAi, eAip, eBi, eBip = airye(z)\n" + ">>> f, ax = plt.subplots(2, 1, sharex=True)\n" + ">>> for ind, data in enumerate([[eAi, eAip, [\"eAi\", \"eAip\"]],\n" + "... [eBi, eBip, [\"eBi\", \"eBip\"]]]):\n" + "... ax[ind].plot(z, data[0], \"-r\", z, data[1], \"-b\")\n" + "... ax[ind].legend(data[2])\n" + "... ax[ind].grid(True)\n" + ">>> plt.show()\n" + "\n" + "We can compute these using usual non-scaled Airy functions by:\n" + "\n" + ">>> from scipy.special import airy\n" + ">>> Ai, Aip, Bi, Bip = airy(z)\n" + ">>> np.allclose(eAi, Ai * np.exp(2.0 / 3.0 * z * np.sqrt(z)))\n" + "True\n" + ">>> np.allclose(eAip, Aip * np.exp(2.0 / 3.0 * z * np.sqrt(z)))\n" + "True\n" + ">>> np.allclose(eBi, Bi * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))\n" + "True\n" + ">>> np.allclose(eBip, Bip * np.exp(-abs(np.real(2.0 / 3.0 * z * np.sqrt(z)))))\n" + "True\n" + "\n" + "Comparing non-scaled and exponentially scaled ones, the usual non-scaled\n" + "function quickly underflows for large values, whereas the exponentially\n" + "scaled function does not.\n" + "\n" + ">>> airy(200)\n" + "(0.0, 0.0, nan, nan)\n" + ">>> airye(200)\n" + "(0.07501041684381093, -1.0609012305109042, 0.15003188417418148, 2.1215836725571093)") +ufunc_airye_loops[0] = loop_i_d_dddd_As_f_ffff +ufunc_airye_loops[1] = loop_i_d_dddd_As_d_dddd +ufunc_airye_loops[2] = loop_i_D_DDDD_As_F_FFFF +ufunc_airye_loops[3] = loop_i_D_DDDD_As_D_DDDD +ufunc_airye_types[0] = NPY_FLOAT +ufunc_airye_types[1] = NPY_FLOAT +ufunc_airye_types[2] = NPY_FLOAT +ufunc_airye_types[3] = NPY_FLOAT +ufunc_airye_types[4] = NPY_FLOAT +ufunc_airye_types[5] = NPY_DOUBLE +ufunc_airye_types[6] = NPY_DOUBLE +ufunc_airye_types[7] = NPY_DOUBLE +ufunc_airye_types[8] = NPY_DOUBLE +ufunc_airye_types[9] = NPY_DOUBLE +ufunc_airye_types[10] = NPY_CFLOAT +ufunc_airye_types[11] = NPY_CFLOAT +ufunc_airye_types[12] = NPY_CFLOAT +ufunc_airye_types[13] = NPY_CFLOAT +ufunc_airye_types[14] = NPY_CFLOAT +ufunc_airye_types[15] = NPY_CDOUBLE +ufunc_airye_types[16] = NPY_CDOUBLE +ufunc_airye_types[17] = NPY_CDOUBLE +ufunc_airye_types[18] = NPY_CDOUBLE +ufunc_airye_types[19] = NPY_CDOUBLE +ufunc_airye_ptr[2*0] = _func_cairy_wrap_e_real +ufunc_airye_ptr[2*0+1] = ("airye") +ufunc_airye_ptr[2*1] = _func_cairy_wrap_e_real +ufunc_airye_ptr[2*1+1] = ("airye") +ufunc_airye_ptr[2*2] = _func_cairy_wrap_e +ufunc_airye_ptr[2*2+1] = ("airye") +ufunc_airye_ptr[2*3] = _func_cairy_wrap_e +ufunc_airye_ptr[2*3+1] = ("airye") +ufunc_airye_data[0] = &ufunc_airye_ptr[2*0] +ufunc_airye_data[1] = &ufunc_airye_ptr[2*1] +ufunc_airye_data[2] = &ufunc_airye_ptr[2*2] +ufunc_airye_data[3] = &ufunc_airye_ptr[2*3] +airye = np.PyUFunc_FromFuncAndData(ufunc_airye_loops, ufunc_airye_data, ufunc_airye_types, 4, 1, 4, 0, "airye", ufunc_airye_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bdtr_loops[3] +cdef void *ufunc_bdtr_ptr[6] +cdef void *ufunc_bdtr_data[3] +cdef char ufunc_bdtr_types[12] +cdef char *ufunc_bdtr_doc = ( + "bdtr(k, n, p, out=None)\n" + "\n" + "Binomial distribution cumulative distribution function.\n" + "\n" + "Sum of the terms 0 through `floor(k)` of the Binomial probability density.\n" + "\n" + ".. math::\n" + " \\mathrm{bdtr}(k, n, p) =\n" + " \\sum_{j=0}^{\\lfloor k \\rfloor} {{n}\\choose{j}} p^j (1-p)^{n-j}\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of successes (double), rounded down to the nearest integer.\n" + "n : array_like\n" + " Number of events (int).\n" + "p : array_like\n" + " Probability of success in a single event (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Probability of `floor(k)` or fewer successes in `n` independent events with\n" + " success probabilities of `p`.\n" + "\n" + "Notes\n" + "-----\n" + "The terms are not summed directly; instead the regularized incomplete beta\n" + "function is employed, according to the formula,\n" + "\n" + ".. math::\n" + " \\mathrm{bdtr}(k, n, p) =\n" + " I_{1 - p}(n - \\lfloor k \\rfloor, \\lfloor k \\rfloor + 1).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `bdtr`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_bdtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_bdtr_loops[1] = loop_d_did__As_dld_d +ufunc_bdtr_loops[2] = loop_d_ddd__As_ddd_d +ufunc_bdtr_types[0] = NPY_FLOAT +ufunc_bdtr_types[1] = NPY_FLOAT +ufunc_bdtr_types[2] = NPY_FLOAT +ufunc_bdtr_types[3] = NPY_FLOAT +ufunc_bdtr_types[4] = NPY_DOUBLE +ufunc_bdtr_types[5] = NPY_LONG +ufunc_bdtr_types[6] = NPY_DOUBLE +ufunc_bdtr_types[7] = NPY_DOUBLE +ufunc_bdtr_types[8] = NPY_DOUBLE +ufunc_bdtr_types[9] = NPY_DOUBLE +ufunc_bdtr_types[10] = NPY_DOUBLE +ufunc_bdtr_types[11] = NPY_DOUBLE +ufunc_bdtr_ptr[2*0] = _func_bdtr_unsafe +ufunc_bdtr_ptr[2*0+1] = ("bdtr") +ufunc_bdtr_ptr[2*1] = _func_bdtr +ufunc_bdtr_ptr[2*1+1] = ("bdtr") +ufunc_bdtr_ptr[2*2] = _func_bdtr_unsafe +ufunc_bdtr_ptr[2*2+1] = ("bdtr") +ufunc_bdtr_data[0] = &ufunc_bdtr_ptr[2*0] +ufunc_bdtr_data[1] = &ufunc_bdtr_ptr[2*1] +ufunc_bdtr_data[2] = &ufunc_bdtr_ptr[2*2] +bdtr = np.PyUFunc_FromFuncAndData(ufunc_bdtr_loops, ufunc_bdtr_data, ufunc_bdtr_types, 3, 3, 1, 0, "bdtr", ufunc_bdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bdtrc_loops[3] +cdef void *ufunc_bdtrc_ptr[6] +cdef void *ufunc_bdtrc_data[3] +cdef char ufunc_bdtrc_types[12] +cdef char *ufunc_bdtrc_doc = ( + "bdtrc(k, n, p, out=None)\n" + "\n" + "Binomial distribution survival function.\n" + "\n" + "Sum of the terms `floor(k) + 1` through `n` of the binomial probability\n" + "density,\n" + "\n" + ".. math::\n" + " \\mathrm{bdtrc}(k, n, p) =\n" + " \\sum_{j=\\lfloor k \\rfloor +1}^n {{n}\\choose{j}} p^j (1-p)^{n-j}\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of successes (double), rounded down to nearest integer.\n" + "n : array_like\n" + " Number of events (int)\n" + "p : array_like\n" + " Probability of success in a single event.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Probability of `floor(k) + 1` or more successes in `n` independent\n" + " events with success probabilities of `p`.\n" + "\n" + "See Also\n" + "--------\n" + "bdtr\n" + "betainc\n" + "\n" + "Notes\n" + "-----\n" + "The terms are not summed directly; instead the regularized incomplete beta\n" + "function is employed, according to the formula,\n" + "\n" + ".. math::\n" + " \\mathrm{bdtrc}(k, n, p) = I_{p}(\\lfloor k \\rfloor + 1, n - \\lfloor k \\rfloor).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `bdtrc`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_bdtrc_loops[0] = loop_d_ddd__As_fff_f +ufunc_bdtrc_loops[1] = loop_d_did__As_dld_d +ufunc_bdtrc_loops[2] = loop_d_ddd__As_ddd_d +ufunc_bdtrc_types[0] = NPY_FLOAT +ufunc_bdtrc_types[1] = NPY_FLOAT +ufunc_bdtrc_types[2] = NPY_FLOAT +ufunc_bdtrc_types[3] = NPY_FLOAT +ufunc_bdtrc_types[4] = NPY_DOUBLE +ufunc_bdtrc_types[5] = NPY_LONG +ufunc_bdtrc_types[6] = NPY_DOUBLE +ufunc_bdtrc_types[7] = NPY_DOUBLE +ufunc_bdtrc_types[8] = NPY_DOUBLE +ufunc_bdtrc_types[9] = NPY_DOUBLE +ufunc_bdtrc_types[10] = NPY_DOUBLE +ufunc_bdtrc_types[11] = NPY_DOUBLE +ufunc_bdtrc_ptr[2*0] = _func_bdtrc_unsafe +ufunc_bdtrc_ptr[2*0+1] = ("bdtrc") +ufunc_bdtrc_ptr[2*1] = _func_bdtrc +ufunc_bdtrc_ptr[2*1+1] = ("bdtrc") +ufunc_bdtrc_ptr[2*2] = _func_bdtrc_unsafe +ufunc_bdtrc_ptr[2*2+1] = ("bdtrc") +ufunc_bdtrc_data[0] = &ufunc_bdtrc_ptr[2*0] +ufunc_bdtrc_data[1] = &ufunc_bdtrc_ptr[2*1] +ufunc_bdtrc_data[2] = &ufunc_bdtrc_ptr[2*2] +bdtrc = np.PyUFunc_FromFuncAndData(ufunc_bdtrc_loops, ufunc_bdtrc_data, ufunc_bdtrc_types, 3, 3, 1, 0, "bdtrc", ufunc_bdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bdtri_loops[3] +cdef void *ufunc_bdtri_ptr[6] +cdef void *ufunc_bdtri_data[3] +cdef char ufunc_bdtri_types[12] +cdef char *ufunc_bdtri_doc = ( + "bdtri(k, n, y, out=None)\n" + "\n" + "Inverse function to `bdtr` with respect to `p`.\n" + "\n" + "Finds the event probability `p` such that the sum of the terms 0 through\n" + "`k` of the binomial probability density is equal to the given cumulative\n" + "probability `y`.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of successes (float), rounded down to the nearest integer.\n" + "n : array_like\n" + " Number of events (float)\n" + "y : array_like\n" + " Cumulative probability (probability of `k` or fewer successes in `n`\n" + " events).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "p : scalar or ndarray\n" + " The event probability such that `bdtr(\\lfloor k \\rfloor, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "bdtr\n" + "betaincinv\n" + "\n" + "Notes\n" + "-----\n" + "The computation is carried out using the inverse beta integral function\n" + "and the relation,::\n" + "\n" + " 1 - p = betaincinv(n - k, k + 1, y).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `bdtri`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_bdtri_loops[0] = loop_d_ddd__As_fff_f +ufunc_bdtri_loops[1] = loop_d_did__As_dld_d +ufunc_bdtri_loops[2] = loop_d_ddd__As_ddd_d +ufunc_bdtri_types[0] = NPY_FLOAT +ufunc_bdtri_types[1] = NPY_FLOAT +ufunc_bdtri_types[2] = NPY_FLOAT +ufunc_bdtri_types[3] = NPY_FLOAT +ufunc_bdtri_types[4] = NPY_DOUBLE +ufunc_bdtri_types[5] = NPY_LONG +ufunc_bdtri_types[6] = NPY_DOUBLE +ufunc_bdtri_types[7] = NPY_DOUBLE +ufunc_bdtri_types[8] = NPY_DOUBLE +ufunc_bdtri_types[9] = NPY_DOUBLE +ufunc_bdtri_types[10] = NPY_DOUBLE +ufunc_bdtri_types[11] = NPY_DOUBLE +ufunc_bdtri_ptr[2*0] = _func_bdtri_unsafe +ufunc_bdtri_ptr[2*0+1] = ("bdtri") +ufunc_bdtri_ptr[2*1] = _func_bdtri +ufunc_bdtri_ptr[2*1+1] = ("bdtri") +ufunc_bdtri_ptr[2*2] = _func_bdtri_unsafe +ufunc_bdtri_ptr[2*2+1] = ("bdtri") +ufunc_bdtri_data[0] = &ufunc_bdtri_ptr[2*0] +ufunc_bdtri_data[1] = &ufunc_bdtri_ptr[2*1] +ufunc_bdtri_data[2] = &ufunc_bdtri_ptr[2*2] +bdtri = np.PyUFunc_FromFuncAndData(ufunc_bdtri_loops, ufunc_bdtri_data, ufunc_bdtri_types, 3, 3, 1, 0, "bdtri", ufunc_bdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bdtrik_loops[2] +cdef void *ufunc_bdtrik_ptr[4] +cdef void *ufunc_bdtrik_data[2] +cdef char ufunc_bdtrik_types[8] +cdef char *ufunc_bdtrik_doc = ( + "bdtrik(y, n, p, out=None)\n" + "\n" + "Inverse function to `bdtr` with respect to `k`.\n" + "\n" + "Finds the number of successes `k` such that the sum of the terms 0 through\n" + "`k` of the Binomial probability density for `n` events with probability\n" + "`p` is equal to the given cumulative probability `y`.\n" + "\n" + "Parameters\n" + "----------\n" + "y : array_like\n" + " Cumulative probability (probability of `k` or fewer successes in `n`\n" + " events).\n" + "n : array_like\n" + " Number of events (float).\n" + "p : array_like\n" + " Success probability (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "k : scalar or ndarray\n" + " The number of successes `k` such that `bdtr(k, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "bdtr\n" + "\n" + "Notes\n" + "-----\n" + "Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the\n" + "cumulative incomplete beta distribution.\n" + "\n" + "Computation of `k` involves a search for a value that produces the desired\n" + "value of `y`. The search relies on the monotonicity of `y` with `k`.\n" + "\n" + "Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [2] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.") +ufunc_bdtrik_loops[0] = loop_d_ddd__As_fff_f +ufunc_bdtrik_loops[1] = loop_d_ddd__As_ddd_d +ufunc_bdtrik_types[0] = NPY_FLOAT +ufunc_bdtrik_types[1] = NPY_FLOAT +ufunc_bdtrik_types[2] = NPY_FLOAT +ufunc_bdtrik_types[3] = NPY_FLOAT +ufunc_bdtrik_types[4] = NPY_DOUBLE +ufunc_bdtrik_types[5] = NPY_DOUBLE +ufunc_bdtrik_types[6] = NPY_DOUBLE +ufunc_bdtrik_types[7] = NPY_DOUBLE +ufunc_bdtrik_ptr[2*0] = _func_bdtrik +ufunc_bdtrik_ptr[2*0+1] = ("bdtrik") +ufunc_bdtrik_ptr[2*1] = _func_bdtrik +ufunc_bdtrik_ptr[2*1+1] = ("bdtrik") +ufunc_bdtrik_data[0] = &ufunc_bdtrik_ptr[2*0] +ufunc_bdtrik_data[1] = &ufunc_bdtrik_ptr[2*1] +bdtrik = np.PyUFunc_FromFuncAndData(ufunc_bdtrik_loops, ufunc_bdtrik_data, ufunc_bdtrik_types, 2, 3, 1, 0, "bdtrik", ufunc_bdtrik_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bdtrin_loops[2] +cdef void *ufunc_bdtrin_ptr[4] +cdef void *ufunc_bdtrin_data[2] +cdef char ufunc_bdtrin_types[8] +cdef char *ufunc_bdtrin_doc = ( + "bdtrin(k, y, p, out=None)\n" + "\n" + "Inverse function to `bdtr` with respect to `n`.\n" + "\n" + "Finds the number of events `n` such that the sum of the terms 0 through\n" + "`k` of the Binomial probability density for events with probability `p` is\n" + "equal to the given cumulative probability `y`.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of successes (float).\n" + "y : array_like\n" + " Cumulative probability (probability of `k` or fewer successes in `n`\n" + " events).\n" + "p : array_like\n" + " Success probability (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "n : scalar or ndarray\n" + " The number of events `n` such that `bdtr(k, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "bdtr\n" + "\n" + "Notes\n" + "-----\n" + "Formula 26.5.24 of [1]_ is used to reduce the binomial distribution to the\n" + "cumulative incomplete beta distribution.\n" + "\n" + "Computation of `n` involves a search for a value that produces the desired\n" + "value of `y`. The search relies on the monotonicity of `y` with `n`.\n" + "\n" + "Wrapper for the CDFLIB [2]_ Fortran routine `cdfbin`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [2] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.") +ufunc_bdtrin_loops[0] = loop_d_ddd__As_fff_f +ufunc_bdtrin_loops[1] = loop_d_ddd__As_ddd_d +ufunc_bdtrin_types[0] = NPY_FLOAT +ufunc_bdtrin_types[1] = NPY_FLOAT +ufunc_bdtrin_types[2] = NPY_FLOAT +ufunc_bdtrin_types[3] = NPY_FLOAT +ufunc_bdtrin_types[4] = NPY_DOUBLE +ufunc_bdtrin_types[5] = NPY_DOUBLE +ufunc_bdtrin_types[6] = NPY_DOUBLE +ufunc_bdtrin_types[7] = NPY_DOUBLE +ufunc_bdtrin_ptr[2*0] = _func_bdtrin +ufunc_bdtrin_ptr[2*0+1] = ("bdtrin") +ufunc_bdtrin_ptr[2*1] = _func_bdtrin +ufunc_bdtrin_ptr[2*1+1] = ("bdtrin") +ufunc_bdtrin_data[0] = &ufunc_bdtrin_ptr[2*0] +ufunc_bdtrin_data[1] = &ufunc_bdtrin_ptr[2*1] +bdtrin = np.PyUFunc_FromFuncAndData(ufunc_bdtrin_loops, ufunc_bdtrin_data, ufunc_bdtrin_types, 2, 3, 1, 0, "bdtrin", ufunc_bdtrin_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_bei_loops[2] +cdef void *ufunc_bei_ptr[4] +cdef void *ufunc_bei_data[2] +cdef char ufunc_bei_types[4] +cdef char *ufunc_bei_doc = ( + "bei(x, out=None)\n" + "\n" + "Kelvin function bei.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{bei}(x) = \\Im[J_0(x e^{3 \\pi i / 4})]\n" + "\n" + "where :math:`J_0` is the Bessel function of the first kind of\n" + "order zero (see `jv`). See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Kelvin function.\n" + "\n" + "See Also\n" + "--------\n" + "ber : the corresponding real part\n" + "beip : the derivative of bei\n" + "jv : Bessel function of the first kind\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10.61\n" + "\n" + "Examples\n" + "--------\n" + "It can be expressed using Bessel functions.\n" + "\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + ">>> x = np.array([1.0, 2.0, 3.0, 4.0])\n" + ">>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).imag\n" + "array([0.24956604, 0.97229163, 1.93758679, 2.29269032])\n" + ">>> sc.bei(x)\n" + "array([0.24956604, 0.97229163, 1.93758679, 2.29269032])") +ufunc_bei_loops[0] = loop_d_d__As_f_f +ufunc_bei_loops[1] = loop_d_d__As_d_d +ufunc_bei_types[0] = NPY_FLOAT +ufunc_bei_types[1] = NPY_FLOAT +ufunc_bei_types[2] = NPY_DOUBLE +ufunc_bei_types[3] = NPY_DOUBLE +ufunc_bei_ptr[2*0] = _func_bei_wrap +ufunc_bei_ptr[2*0+1] = ("bei") +ufunc_bei_ptr[2*1] = _func_bei_wrap +ufunc_bei_ptr[2*1+1] = ("bei") +ufunc_bei_data[0] = &ufunc_bei_ptr[2*0] +ufunc_bei_data[1] = &ufunc_bei_ptr[2*1] +bei = np.PyUFunc_FromFuncAndData(ufunc_bei_loops, ufunc_bei_data, ufunc_bei_types, 2, 1, 1, 0, "bei", ufunc_bei_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_beip_loops[2] +cdef void *ufunc_beip_ptr[4] +cdef void *ufunc_beip_data[2] +cdef char ufunc_beip_types[4] +cdef char *ufunc_beip_doc = ( + "beip(x, out=None)\n" + "\n" + "Derivative of the Kelvin function bei.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The values of the derivative of bei.\n" + "\n" + "See Also\n" + "--------\n" + "bei\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10#PT5") +ufunc_beip_loops[0] = loop_d_d__As_f_f +ufunc_beip_loops[1] = loop_d_d__As_d_d +ufunc_beip_types[0] = NPY_FLOAT +ufunc_beip_types[1] = NPY_FLOAT +ufunc_beip_types[2] = NPY_DOUBLE +ufunc_beip_types[3] = NPY_DOUBLE +ufunc_beip_ptr[2*0] = _func_beip_wrap +ufunc_beip_ptr[2*0+1] = ("beip") +ufunc_beip_ptr[2*1] = _func_beip_wrap +ufunc_beip_ptr[2*1+1] = ("beip") +ufunc_beip_data[0] = &ufunc_beip_ptr[2*0] +ufunc_beip_data[1] = &ufunc_beip_ptr[2*1] +beip = np.PyUFunc_FromFuncAndData(ufunc_beip_loops, ufunc_beip_data, ufunc_beip_types, 2, 1, 1, 0, "beip", ufunc_beip_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ber_loops[2] +cdef void *ufunc_ber_ptr[4] +cdef void *ufunc_ber_data[2] +cdef char ufunc_ber_types[4] +cdef char *ufunc_ber_doc = ( + "ber(x, out=None)\n" + "\n" + "Kelvin function ber.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{ber}(x) = \\Re[J_0(x e^{3 \\pi i / 4})]\n" + "\n" + "where :math:`J_0` is the Bessel function of the first kind of\n" + "order zero (see `jv`). See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Kelvin function.\n" + "\n" + "See Also\n" + "--------\n" + "bei : the corresponding real part\n" + "berp : the derivative of bei\n" + "jv : Bessel function of the first kind\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10.61\n" + "\n" + "Examples\n" + "--------\n" + "It can be expressed using Bessel functions.\n" + "\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + ">>> x = np.array([1.0, 2.0, 3.0, 4.0])\n" + ">>> sc.jv(0, x * np.exp(3 * np.pi * 1j / 4)).real\n" + "array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])\n" + ">>> sc.ber(x)\n" + "array([ 0.98438178, 0.75173418, -0.22138025, -2.56341656])") +ufunc_ber_loops[0] = loop_d_d__As_f_f +ufunc_ber_loops[1] = loop_d_d__As_d_d +ufunc_ber_types[0] = NPY_FLOAT +ufunc_ber_types[1] = NPY_FLOAT +ufunc_ber_types[2] = NPY_DOUBLE +ufunc_ber_types[3] = NPY_DOUBLE +ufunc_ber_ptr[2*0] = _func_ber_wrap +ufunc_ber_ptr[2*0+1] = ("ber") +ufunc_ber_ptr[2*1] = _func_ber_wrap +ufunc_ber_ptr[2*1+1] = ("ber") +ufunc_ber_data[0] = &ufunc_ber_ptr[2*0] +ufunc_ber_data[1] = &ufunc_ber_ptr[2*1] +ber = np.PyUFunc_FromFuncAndData(ufunc_ber_loops, ufunc_ber_data, ufunc_ber_types, 2, 1, 1, 0, "ber", ufunc_ber_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_berp_loops[2] +cdef void *ufunc_berp_ptr[4] +cdef void *ufunc_berp_data[2] +cdef char ufunc_berp_types[4] +cdef char *ufunc_berp_doc = ( + "berp(x, out=None)\n" + "\n" + "Derivative of the Kelvin function ber.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The values of the derivative of ber.\n" + "\n" + "See Also\n" + "--------\n" + "ber\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10#PT5") +ufunc_berp_loops[0] = loop_d_d__As_f_f +ufunc_berp_loops[1] = loop_d_d__As_d_d +ufunc_berp_types[0] = NPY_FLOAT +ufunc_berp_types[1] = NPY_FLOAT +ufunc_berp_types[2] = NPY_DOUBLE +ufunc_berp_types[3] = NPY_DOUBLE +ufunc_berp_ptr[2*0] = _func_berp_wrap +ufunc_berp_ptr[2*0+1] = ("berp") +ufunc_berp_ptr[2*1] = _func_berp_wrap +ufunc_berp_ptr[2*1+1] = ("berp") +ufunc_berp_data[0] = &ufunc_berp_ptr[2*0] +ufunc_berp_data[1] = &ufunc_berp_ptr[2*1] +berp = np.PyUFunc_FromFuncAndData(ufunc_berp_loops, ufunc_berp_data, ufunc_berp_types, 2, 1, 1, 0, "berp", ufunc_berp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_besselpoly_loops[2] +cdef void *ufunc_besselpoly_ptr[4] +cdef void *ufunc_besselpoly_data[2] +cdef char ufunc_besselpoly_types[8] +cdef char *ufunc_besselpoly_doc = ( + "besselpoly(a, lmb, nu, out=None)\n" + "\n" + "Weighted integral of the Bessel function of the first kind.\n" + "\n" + "Computes\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^1 x^\\lambda J_\\nu(2 a x) \\, dx\n" + "\n" + "where :math:`J_\\nu` is a Bessel function and :math:`\\lambda=lmb`,\n" + ":math:`\\nu=nu`.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Scale factor inside the Bessel function.\n" + "lmb : array_like\n" + " Power of `x`\n" + "nu : array_like\n" + " Order of the Bessel function.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the integral.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function for one parameter set.\n" + "\n" + ">>> from scipy.special import besselpoly\n" + ">>> besselpoly(1, 1, 1)\n" + "0.24449718372863877\n" + "\n" + "Evaluate the function for different scale factors.\n" + "\n" + ">>> import numpy as np\n" + ">>> factors = np.array([0., 3., 6.])\n" + ">>> besselpoly(factors, 1, 1)\n" + "array([ 0. , -0.00549029, 0.00140174])\n" + "\n" + "Plot the function for varying powers, orders and scales.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> powers = np.linspace(0, 10, 100)\n" + ">>> orders = [1, 2, 3]\n" + ">>> scales = [1, 2]\n" + ">>> all_combinations = [(order, scale) for order in orders\n" + "... for scale in scales]\n" + ">>> for order, scale in all_combinations:\n" + "... ax.plot(powers, besselpoly(scale, powers, order),\n" + "... label=rf\"$\\nu={order}, a={scale}$\")\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(r\"$\\lambda$\")\n" + ">>> ax.set_ylabel(r\"$\\int_0^1 x^{\\lambda} J_{\\nu}(2ax)\\,dx$\")\n" + ">>> plt.show()") +ufunc_besselpoly_loops[0] = loop_d_ddd__As_fff_f +ufunc_besselpoly_loops[1] = loop_d_ddd__As_ddd_d +ufunc_besselpoly_types[0] = NPY_FLOAT +ufunc_besselpoly_types[1] = NPY_FLOAT +ufunc_besselpoly_types[2] = NPY_FLOAT +ufunc_besselpoly_types[3] = NPY_FLOAT +ufunc_besselpoly_types[4] = NPY_DOUBLE +ufunc_besselpoly_types[5] = NPY_DOUBLE +ufunc_besselpoly_types[6] = NPY_DOUBLE +ufunc_besselpoly_types[7] = NPY_DOUBLE +ufunc_besselpoly_ptr[2*0] = _func_besselpoly +ufunc_besselpoly_ptr[2*0+1] = ("besselpoly") +ufunc_besselpoly_ptr[2*1] = _func_besselpoly +ufunc_besselpoly_ptr[2*1+1] = ("besselpoly") +ufunc_besselpoly_data[0] = &ufunc_besselpoly_ptr[2*0] +ufunc_besselpoly_data[1] = &ufunc_besselpoly_ptr[2*1] +besselpoly = np.PyUFunc_FromFuncAndData(ufunc_besselpoly_loops, ufunc_besselpoly_data, ufunc_besselpoly_types, 2, 3, 1, 0, "besselpoly", ufunc_besselpoly_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_beta_loops[2] +cdef void *ufunc_beta_ptr[4] +cdef void *ufunc_beta_data[2] +cdef char ufunc_beta_types[6] +cdef char *ufunc_beta_doc = ( + "beta(a, b, out=None)\n" + "\n" + "Beta function.\n" + "\n" + "This function is defined in [1]_ as\n" + "\n" + ".. math::\n" + "\n" + " B(a, b) = \\int_0^1 t^{a-1}(1-t)^{b-1}dt\n" + " = \\frac{\\Gamma(a)\\Gamma(b)}{\\Gamma(a+b)},\n" + "\n" + "where :math:`\\Gamma` is the gamma function.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Real-valued arguments\n" + "out : ndarray, optional\n" + " Optional output array for the function result\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the beta function\n" + "\n" + "See Also\n" + "--------\n" + "gamma : the gamma function\n" + "betainc : the regularized incomplete beta function\n" + "betaln : the natural logarithm of the absolute\n" + " value of the beta function\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions,\n" + " Eq. 5.12.1. https://dlmf.nist.gov/5.12\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "The beta function relates to the gamma function by the\n" + "definition given above:\n" + "\n" + ">>> sc.beta(2, 3)\n" + "0.08333333333333333\n" + ">>> sc.gamma(2)*sc.gamma(3)/sc.gamma(2 + 3)\n" + "0.08333333333333333\n" + "\n" + "As this relationship demonstrates, the beta function\n" + "is symmetric:\n" + "\n" + ">>> sc.beta(1.7, 2.4)\n" + "0.16567527689031739\n" + ">>> sc.beta(2.4, 1.7)\n" + "0.16567527689031739\n" + "\n" + "This function satisfies :math:`B(1, b) = 1/b`:\n" + "\n" + ">>> sc.beta(1, 4)\n" + "0.25") +ufunc_beta_loops[0] = loop_d_dd__As_ff_f +ufunc_beta_loops[1] = loop_d_dd__As_dd_d +ufunc_beta_types[0] = NPY_FLOAT +ufunc_beta_types[1] = NPY_FLOAT +ufunc_beta_types[2] = NPY_FLOAT +ufunc_beta_types[3] = NPY_DOUBLE +ufunc_beta_types[4] = NPY_DOUBLE +ufunc_beta_types[5] = NPY_DOUBLE +ufunc_beta_ptr[2*0] = _func_beta +ufunc_beta_ptr[2*0+1] = ("beta") +ufunc_beta_ptr[2*1] = _func_beta +ufunc_beta_ptr[2*1+1] = ("beta") +ufunc_beta_data[0] = &ufunc_beta_ptr[2*0] +ufunc_beta_data[1] = &ufunc_beta_ptr[2*1] +beta = np.PyUFunc_FromFuncAndData(ufunc_beta_loops, ufunc_beta_data, ufunc_beta_types, 2, 2, 1, 0, "beta", ufunc_beta_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_betainc_loops[2] +cdef void *ufunc_betainc_ptr[4] +cdef void *ufunc_betainc_data[2] +cdef char ufunc_betainc_types[8] +cdef char *ufunc_betainc_doc = ( + "betainc(a, b, x, out=None)\n" + "\n" + "Regularized incomplete beta function.\n" + "\n" + "Computes the regularized incomplete beta function, defined as [1]_:\n" + "\n" + ".. math::\n" + "\n" + " I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\n" + " t^{a-1}(1-t)^{b-1}dt,\n" + "\n" + "for :math:`0 \\leq x \\leq 1`.\n" + "\n" + "This function is the cumulative distribution function for the beta\n" + "distribution; its range is [0, 1].\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Positive, real-valued parameters\n" + "x : array_like\n" + " Real-valued such that :math:`0 \\leq x \\leq 1`,\n" + " the upper limit of integration\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the regularized incomplete beta function\n" + "\n" + "See Also\n" + "--------\n" + "beta : beta function\n" + "betaincinv : inverse of the regularized incomplete beta function\n" + "betaincc : complement of the regularized incomplete beta function\n" + "scipy.stats.beta : beta distribution\n" + "\n" + "Notes\n" + "-----\n" + "The term *regularized* in the name of this function refers to the\n" + "scaling of the function by the gamma function terms shown in the\n" + "formula. When not qualified as *regularized*, the name *incomplete\n" + "beta function* often refers to just the integral expression,\n" + "without the gamma terms. One can use the function `beta` from\n" + "`scipy.special` to get this \"nonregularized\" incomplete beta\n" + "function by multiplying the result of ``betainc(a, b, x)`` by\n" + "``beta(a, b)``.\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.17\n" + "\n" + "Examples\n" + "--------\n" + "\n" + "Let :math:`B(a, b)` be the `beta` function.\n" + "\n" + ">>> import scipy.special as sc\n" + "\n" + "The coefficient in terms of `gamma` is equal to\n" + ":math:`1/B(a, b)`. Also, when :math:`x=1`\n" + "the integral is equal to :math:`B(a, b)`.\n" + "Therefore, :math:`I_{x=1}(a, b) = 1` for any :math:`a, b`.\n" + "\n" + ">>> sc.betainc(0.2, 3.5, 1.0)\n" + "1.0\n" + "\n" + "It satisfies\n" + ":math:`I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b))`,\n" + "where :math:`F` is the hypergeometric function `hyp2f1`:\n" + "\n" + ">>> a, b, x = 1.4, 3.1, 0.5\n" + ">>> x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b))\n" + "0.8148904036225295\n" + ">>> sc.betainc(a, b, x)\n" + "0.8148904036225296\n" + "\n" + "This functions satisfies the relationship\n" + ":math:`I_x(a, b) = 1 - I_{1-x}(b, a)`:\n" + "\n" + ">>> sc.betainc(2.2, 3.1, 0.4)\n" + "0.49339638807619446\n" + ">>> 1 - sc.betainc(3.1, 2.2, 1 - 0.4)\n" + "0.49339638807619446") +ufunc_betainc_loops[0] = loop_f_fff__As_fff_f +ufunc_betainc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_betainc_types[0] = NPY_FLOAT +ufunc_betainc_types[1] = NPY_FLOAT +ufunc_betainc_types[2] = NPY_FLOAT +ufunc_betainc_types[3] = NPY_FLOAT +ufunc_betainc_types[4] = NPY_DOUBLE +ufunc_betainc_types[5] = NPY_DOUBLE +ufunc_betainc_types[6] = NPY_DOUBLE +ufunc_betainc_types[7] = NPY_DOUBLE +ufunc_betainc_ptr[2*0] = scipy.special._ufuncs_cxx._export_ibeta_float +ufunc_betainc_ptr[2*0+1] = ("betainc") +ufunc_betainc_ptr[2*1] = scipy.special._ufuncs_cxx._export_ibeta_double +ufunc_betainc_ptr[2*1+1] = ("betainc") +ufunc_betainc_data[0] = &ufunc_betainc_ptr[2*0] +ufunc_betainc_data[1] = &ufunc_betainc_ptr[2*1] +betainc = np.PyUFunc_FromFuncAndData(ufunc_betainc_loops, ufunc_betainc_data, ufunc_betainc_types, 2, 3, 1, 0, "betainc", ufunc_betainc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_betaincc_loops[2] +cdef void *ufunc_betaincc_ptr[4] +cdef void *ufunc_betaincc_data[2] +cdef char ufunc_betaincc_types[8] +cdef char *ufunc_betaincc_doc = ( + "betaincc(a, b, x, out=None)\n" + "\n" + "Complement of the regularized incomplete beta function.\n" + "\n" + "Computes the complement of the regularized incomplete beta function,\n" + "defined as [1]_:\n" + "\n" + ".. math::\n" + "\n" + " \\bar{I}_x(a, b) = 1 - I_x(a, b)\n" + " = 1 - \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)} \\int_0^x\n" + " t^{a-1}(1-t)^{b-1}dt,\n" + "\n" + "for :math:`0 \\leq x \\leq 1`.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Positive, real-valued parameters\n" + "x : array_like\n" + " Real-valued such that :math:`0 \\leq x \\leq 1`,\n" + " the upper limit of integration\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the regularized incomplete beta function\n" + "\n" + "See Also\n" + "--------\n" + "betainc : regularized incomplete beta function\n" + "betaincinv : inverse of the regularized incomplete beta function\n" + "betainccinv :\n" + " inverse of the complement of the regularized incomplete beta function\n" + "beta : beta function\n" + "scipy.stats.beta : beta distribution\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 1.11.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.17\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import betaincc, betainc\n" + "\n" + "The naive calculation ``1 - betainc(a, b, x)`` loses precision when\n" + "the values of ``betainc(a, b, x)`` are close to 1:\n" + "\n" + ">>> 1 - betainc(0.5, 8, [0.9, 0.99, 0.999])\n" + "array([2.0574632e-09, 0.0000000e+00, 0.0000000e+00])\n" + "\n" + "By using ``betaincc``, we get the correct values:\n" + "\n" + ">>> betaincc(0.5, 8, [0.9, 0.99, 0.999])\n" + "array([2.05746321e-09, 1.97259354e-17, 1.96467954e-25])") +ufunc_betaincc_loops[0] = loop_f_fff__As_fff_f +ufunc_betaincc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_betaincc_types[0] = NPY_FLOAT +ufunc_betaincc_types[1] = NPY_FLOAT +ufunc_betaincc_types[2] = NPY_FLOAT +ufunc_betaincc_types[3] = NPY_FLOAT +ufunc_betaincc_types[4] = NPY_DOUBLE +ufunc_betaincc_types[5] = NPY_DOUBLE +ufunc_betaincc_types[6] = NPY_DOUBLE +ufunc_betaincc_types[7] = NPY_DOUBLE +ufunc_betaincc_ptr[2*0] = scipy.special._ufuncs_cxx._export_ibetac_float +ufunc_betaincc_ptr[2*0+1] = ("betaincc") +ufunc_betaincc_ptr[2*1] = scipy.special._ufuncs_cxx._export_ibetac_double +ufunc_betaincc_ptr[2*1+1] = ("betaincc") +ufunc_betaincc_data[0] = &ufunc_betaincc_ptr[2*0] +ufunc_betaincc_data[1] = &ufunc_betaincc_ptr[2*1] +betaincc = np.PyUFunc_FromFuncAndData(ufunc_betaincc_loops, ufunc_betaincc_data, ufunc_betaincc_types, 2, 3, 1, 0, "betaincc", ufunc_betaincc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_betainccinv_loops[2] +cdef void *ufunc_betainccinv_ptr[4] +cdef void *ufunc_betainccinv_data[2] +cdef char ufunc_betainccinv_types[8] +cdef char *ufunc_betainccinv_doc = ( + "betainccinv(a, b, y, out=None)\n" + "\n" + "Inverse of the complemented regularized incomplete beta function.\n" + "\n" + "Computes :math:`x` such that:\n" + "\n" + ".. math::\n" + "\n" + " y = 1 - I_x(a, b) = 1 - \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)}\n" + " \\int_0^x t^{a-1}(1-t)^{b-1}dt,\n" + "\n" + "where :math:`I_x` is the normalized incomplete beta function `betainc`\n" + "and :math:`\\Gamma` is the `gamma` function [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Positive, real-valued parameters\n" + "y : array_like\n" + " Real-valued input\n" + "out : ndarray, optional\n" + " Optional output array for function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the inverse of the regularized incomplete beta function\n" + "\n" + "See Also\n" + "--------\n" + "betainc : regularized incomplete beta function\n" + "betaincc : complement of the regularized incomplete beta function\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 1.11.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.17\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import betainccinv, betaincc\n" + "\n" + "This function is the inverse of `betaincc` for fixed\n" + "values of :math:`a` and :math:`b`.\n" + "\n" + ">>> a, b = 1.2, 3.1\n" + ">>> y = betaincc(a, b, 0.2)\n" + ">>> betainccinv(a, b, y)\n" + "0.2\n" + "\n" + ">>> a, b = 7, 2.5\n" + ">>> x = betainccinv(a, b, 0.875)\n" + ">>> betaincc(a, b, x)\n" + "0.875") +ufunc_betainccinv_loops[0] = loop_f_fff__As_fff_f +ufunc_betainccinv_loops[1] = loop_d_ddd__As_ddd_d +ufunc_betainccinv_types[0] = NPY_FLOAT +ufunc_betainccinv_types[1] = NPY_FLOAT +ufunc_betainccinv_types[2] = NPY_FLOAT +ufunc_betainccinv_types[3] = NPY_FLOAT +ufunc_betainccinv_types[4] = NPY_DOUBLE +ufunc_betainccinv_types[5] = NPY_DOUBLE +ufunc_betainccinv_types[6] = NPY_DOUBLE +ufunc_betainccinv_types[7] = NPY_DOUBLE +ufunc_betainccinv_ptr[2*0] = scipy.special._ufuncs_cxx._export_ibetac_inv_float +ufunc_betainccinv_ptr[2*0+1] = ("betainccinv") +ufunc_betainccinv_ptr[2*1] = scipy.special._ufuncs_cxx._export_ibetac_inv_double +ufunc_betainccinv_ptr[2*1+1] = ("betainccinv") +ufunc_betainccinv_data[0] = &ufunc_betainccinv_ptr[2*0] +ufunc_betainccinv_data[1] = &ufunc_betainccinv_ptr[2*1] +betainccinv = np.PyUFunc_FromFuncAndData(ufunc_betainccinv_loops, ufunc_betainccinv_data, ufunc_betainccinv_types, 2, 3, 1, 0, "betainccinv", ufunc_betainccinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_betaincinv_loops[2] +cdef void *ufunc_betaincinv_ptr[4] +cdef void *ufunc_betaincinv_data[2] +cdef char ufunc_betaincinv_types[8] +cdef char *ufunc_betaincinv_doc = ( + "betaincinv(a, b, y, out=None)\n" + "\n" + "Inverse of the regularized incomplete beta function.\n" + "\n" + "Computes :math:`x` such that:\n" + "\n" + ".. math::\n" + "\n" + " y = I_x(a, b) = \\frac{\\Gamma(a+b)}{\\Gamma(a)\\Gamma(b)}\n" + " \\int_0^x t^{a-1}(1-t)^{b-1}dt,\n" + "\n" + "where :math:`I_x` is the normalized incomplete beta function `betainc`\n" + "and :math:`\\Gamma` is the `gamma` function [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Positive, real-valued parameters\n" + "y : array_like\n" + " Real-valued input\n" + "out : ndarray, optional\n" + " Optional output array for function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the inverse of the regularized incomplete beta function\n" + "\n" + "See Also\n" + "--------\n" + "betainc : regularized incomplete beta function\n" + "gamma : gamma function\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.17\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "This function is the inverse of `betainc` for fixed\n" + "values of :math:`a` and :math:`b`.\n" + "\n" + ">>> a, b = 1.2, 3.1\n" + ">>> y = sc.betainc(a, b, 0.2)\n" + ">>> sc.betaincinv(a, b, y)\n" + "0.2\n" + ">>>\n" + ">>> a, b = 7.5, 0.4\n" + ">>> x = sc.betaincinv(a, b, 0.5)\n" + ">>> sc.betainc(a, b, x)\n" + "0.5") +ufunc_betaincinv_loops[0] = loop_f_fff__As_fff_f +ufunc_betaincinv_loops[1] = loop_d_ddd__As_ddd_d +ufunc_betaincinv_types[0] = NPY_FLOAT +ufunc_betaincinv_types[1] = NPY_FLOAT +ufunc_betaincinv_types[2] = NPY_FLOAT +ufunc_betaincinv_types[3] = NPY_FLOAT +ufunc_betaincinv_types[4] = NPY_DOUBLE +ufunc_betaincinv_types[5] = NPY_DOUBLE +ufunc_betaincinv_types[6] = NPY_DOUBLE +ufunc_betaincinv_types[7] = NPY_DOUBLE +ufunc_betaincinv_ptr[2*0] = scipy.special._ufuncs_cxx._export_ibeta_inv_float +ufunc_betaincinv_ptr[2*0+1] = ("betaincinv") +ufunc_betaincinv_ptr[2*1] = scipy.special._ufuncs_cxx._export_ibeta_inv_double +ufunc_betaincinv_ptr[2*1+1] = ("betaincinv") +ufunc_betaincinv_data[0] = &ufunc_betaincinv_ptr[2*0] +ufunc_betaincinv_data[1] = &ufunc_betaincinv_ptr[2*1] +betaincinv = np.PyUFunc_FromFuncAndData(ufunc_betaincinv_loops, ufunc_betaincinv_data, ufunc_betaincinv_types, 2, 3, 1, 0, "betaincinv", ufunc_betaincinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_betaln_loops[2] +cdef void *ufunc_betaln_ptr[4] +cdef void *ufunc_betaln_data[2] +cdef char ufunc_betaln_types[6] +cdef char *ufunc_betaln_doc = ( + "betaln(a, b, out=None)\n" + "\n" + "Natural logarithm of absolute value of beta function.\n" + "\n" + "Computes ``ln(abs(beta(a, b)))``.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Positive, real-valued parameters\n" + "out : ndarray, optional\n" + " Optional output array for function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the betaln function\n" + "\n" + "See Also\n" + "--------\n" + "gamma : the gamma function\n" + "betainc : the regularized incomplete beta function\n" + "beta : the beta function\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import betaln, beta\n" + "\n" + "Verify that, for moderate values of ``a`` and ``b``, ``betaln(a, b)``\n" + "is the same as ``log(beta(a, b))``:\n" + "\n" + ">>> betaln(3, 4)\n" + "-4.0943445622221\n" + "\n" + ">>> np.log(beta(3, 4))\n" + "-4.0943445622221\n" + "\n" + "In the following ``beta(a, b)`` underflows to 0, so we can't compute\n" + "the logarithm of the actual value.\n" + "\n" + ">>> a = 400\n" + ">>> b = 900\n" + ">>> beta(a, b)\n" + "0.0\n" + "\n" + "We can compute the logarithm of ``beta(a, b)`` by using `betaln`:\n" + "\n" + ">>> betaln(a, b)\n" + "-804.3069951764146") +ufunc_betaln_loops[0] = loop_d_dd__As_ff_f +ufunc_betaln_loops[1] = loop_d_dd__As_dd_d +ufunc_betaln_types[0] = NPY_FLOAT +ufunc_betaln_types[1] = NPY_FLOAT +ufunc_betaln_types[2] = NPY_FLOAT +ufunc_betaln_types[3] = NPY_DOUBLE +ufunc_betaln_types[4] = NPY_DOUBLE +ufunc_betaln_types[5] = NPY_DOUBLE +ufunc_betaln_ptr[2*0] = _func_lbeta +ufunc_betaln_ptr[2*0+1] = ("betaln") +ufunc_betaln_ptr[2*1] = _func_lbeta +ufunc_betaln_ptr[2*1+1] = ("betaln") +ufunc_betaln_data[0] = &ufunc_betaln_ptr[2*0] +ufunc_betaln_data[1] = &ufunc_betaln_ptr[2*1] +betaln = np.PyUFunc_FromFuncAndData(ufunc_betaln_loops, ufunc_betaln_data, ufunc_betaln_types, 2, 2, 1, 0, "betaln", ufunc_betaln_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_binom_loops[2] +cdef void *ufunc_binom_ptr[4] +cdef void *ufunc_binom_data[2] +cdef char ufunc_binom_types[6] +cdef char *ufunc_binom_doc = ( + "binom(x, y, out=None)\n" + "\n" + "Binomial coefficient considered as a function of two real variables.\n" + "\n" + "For real arguments, the binomial coefficient is defined as\n" + "\n" + ".. math::\n" + "\n" + " \\binom{x}{y} = \\frac{\\Gamma(x + 1)}{\\Gamma(y + 1)\\Gamma(x - y + 1)} =\n" + " \\frac{1}{(x + 1)\\mathrm{B}(x - y + 1, y + 1)}\n" + "\n" + "Where :math:`\\Gamma` is the Gamma function (`gamma`) and :math:`\\mathrm{B}`\n" + "is the Beta function (`beta`) [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x, y: array_like\n" + " Real arguments to :math:`\\binom{x}{y}`.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of binomial coefficient.\n" + "\n" + "See Also\n" + "--------\n" + "comb : The number of combinations of N things taken k at a time.\n" + "\n" + "Notes\n" + "-----\n" + "The Gamma function has poles at non-positive integers and tends to either\n" + "positive or negative infinity depending on the direction on the real line\n" + "from which a pole is approached. When considered as a function of two real\n" + "variables, :math:`\\binom{x}{y}` is thus undefined when `x` is a negative\n" + "integer. `binom` returns ``nan`` when ``x`` is a negative integer. This\n" + "is the case even when ``x`` is a negative integer and ``y`` an integer,\n" + "contrary to the usual convention for defining :math:`\\binom{n}{k}` when it\n" + "is considered as a function of two integer variables.\n" + "\n" + "References\n" + "----------\n" + ".. [1] https://en.wikipedia.org/wiki/Binomial_coefficient\n" + "\n" + "Examples\n" + "--------\n" + "The following examples illustrate the ways in which `binom` differs from\n" + "the function `comb`.\n" + "\n" + ">>> from scipy.special import binom, comb\n" + "\n" + "When ``exact=False`` and ``x`` and ``y`` are both positive, `comb` calls\n" + "`binom` internally.\n" + "\n" + ">>> x, y = 3, 2\n" + ">>> (binom(x, y), comb(x, y), comb(x, y, exact=True))\n" + "(3.0, 3.0, 3)\n" + "\n" + "For larger values, `comb` with ``exact=True`` no longer agrees\n" + "with `binom`.\n" + "\n" + ">>> x, y = 43, 23\n" + ">>> (binom(x, y), comb(x, y), comb(x, y, exact=True))\n" + "(960566918219.9999, 960566918219.9999, 960566918220)\n" + "\n" + "`binom` returns ``nan`` when ``x`` is a negative integer, but is otherwise\n" + "defined for negative arguments. `comb` returns 0 whenever one of ``x`` or\n" + "``y`` is negative or ``x`` is less than ``y``.\n" + "\n" + ">>> x, y = -3, 2\n" + ">>> (binom(x, y), comb(x, y), comb(x, y, exact=True))\n" + "(nan, 0.0, 0)\n" + "\n" + ">>> x, y = -3.1, 2.2\n" + ">>> (binom(x, y), comb(x, y), comb(x, y, exact=True))\n" + "(18.714147876804432, 0.0, 0)\n" + "\n" + ">>> x, y = 2.2, 3.1\n" + ">>> (binom(x, y), comb(x, y), comb(x, y, exact=True))\n" + "(0.037399983365134115, 0.0, 0)") +ufunc_binom_loops[0] = loop_d_dd__As_ff_f +ufunc_binom_loops[1] = loop_d_dd__As_dd_d +ufunc_binom_types[0] = NPY_FLOAT +ufunc_binom_types[1] = NPY_FLOAT +ufunc_binom_types[2] = NPY_FLOAT +ufunc_binom_types[3] = NPY_DOUBLE +ufunc_binom_types[4] = NPY_DOUBLE +ufunc_binom_types[5] = NPY_DOUBLE +ufunc_binom_ptr[2*0] = scipy.special._ufuncs_cxx._export_binom +ufunc_binom_ptr[2*0+1] = ("binom") +ufunc_binom_ptr[2*1] = scipy.special._ufuncs_cxx._export_binom +ufunc_binom_ptr[2*1+1] = ("binom") +ufunc_binom_data[0] = &ufunc_binom_ptr[2*0] +ufunc_binom_data[1] = &ufunc_binom_ptr[2*1] +binom = np.PyUFunc_FromFuncAndData(ufunc_binom_loops, ufunc_binom_data, ufunc_binom_types, 2, 2, 1, 0, "binom", ufunc_binom_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_boxcox_loops[2] +cdef void *ufunc_boxcox_ptr[4] +cdef void *ufunc_boxcox_data[2] +cdef char ufunc_boxcox_types[6] +cdef char *ufunc_boxcox_doc = ( + "boxcox(x, lmbda, out=None)\n" + "\n" + "Compute the Box-Cox transformation.\n" + "\n" + "The Box-Cox transformation is::\n" + "\n" + " y = (x**lmbda - 1) / lmbda if lmbda != 0\n" + " log(x) if lmbda == 0\n" + "\n" + "Returns `nan` if ``x < 0``.\n" + "Returns `-inf` if ``x == 0`` and ``lmbda < 0``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Data to be transformed.\n" + "lmbda : array_like\n" + " Power parameter of the Box-Cox transform.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Transformed data.\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.14.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import boxcox\n" + ">>> boxcox([1, 4, 10], 2.5)\n" + "array([ 0. , 12.4 , 126.09110641])\n" + ">>> boxcox(2, [0, 1, 2])\n" + "array([ 0.69314718, 1. , 1.5 ])") +ufunc_boxcox_loops[0] = loop_d_dd__As_ff_f +ufunc_boxcox_loops[1] = loop_d_dd__As_dd_d +ufunc_boxcox_types[0] = NPY_FLOAT +ufunc_boxcox_types[1] = NPY_FLOAT +ufunc_boxcox_types[2] = NPY_FLOAT +ufunc_boxcox_types[3] = NPY_DOUBLE +ufunc_boxcox_types[4] = NPY_DOUBLE +ufunc_boxcox_types[5] = NPY_DOUBLE +ufunc_boxcox_ptr[2*0] = _func_boxcox +ufunc_boxcox_ptr[2*0+1] = ("boxcox") +ufunc_boxcox_ptr[2*1] = _func_boxcox +ufunc_boxcox_ptr[2*1+1] = ("boxcox") +ufunc_boxcox_data[0] = &ufunc_boxcox_ptr[2*0] +ufunc_boxcox_data[1] = &ufunc_boxcox_ptr[2*1] +boxcox = np.PyUFunc_FromFuncAndData(ufunc_boxcox_loops, ufunc_boxcox_data, ufunc_boxcox_types, 2, 2, 1, 0, "boxcox", ufunc_boxcox_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_boxcox1p_loops[2] +cdef void *ufunc_boxcox1p_ptr[4] +cdef void *ufunc_boxcox1p_data[2] +cdef char ufunc_boxcox1p_types[6] +cdef char *ufunc_boxcox1p_doc = ( + "boxcox1p(x, lmbda, out=None)\n" + "\n" + "Compute the Box-Cox transformation of 1 + `x`.\n" + "\n" + "The Box-Cox transformation computed by `boxcox1p` is::\n" + "\n" + " y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0\n" + " log(1+x) if lmbda == 0\n" + "\n" + "Returns `nan` if ``x < -1``.\n" + "Returns `-inf` if ``x == -1`` and ``lmbda < 0``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Data to be transformed.\n" + "lmbda : array_like\n" + " Power parameter of the Box-Cox transform.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Transformed data.\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.14.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import boxcox1p\n" + ">>> boxcox1p(1e-4, [0, 0.5, 1])\n" + "array([ 9.99950003e-05, 9.99975001e-05, 1.00000000e-04])\n" + ">>> boxcox1p([0.01, 0.1], 0.25)\n" + "array([ 0.00996272, 0.09645476])") +ufunc_boxcox1p_loops[0] = loop_d_dd__As_ff_f +ufunc_boxcox1p_loops[1] = loop_d_dd__As_dd_d +ufunc_boxcox1p_types[0] = NPY_FLOAT +ufunc_boxcox1p_types[1] = NPY_FLOAT +ufunc_boxcox1p_types[2] = NPY_FLOAT +ufunc_boxcox1p_types[3] = NPY_DOUBLE +ufunc_boxcox1p_types[4] = NPY_DOUBLE +ufunc_boxcox1p_types[5] = NPY_DOUBLE +ufunc_boxcox1p_ptr[2*0] = _func_boxcox1p +ufunc_boxcox1p_ptr[2*0+1] = ("boxcox1p") +ufunc_boxcox1p_ptr[2*1] = _func_boxcox1p +ufunc_boxcox1p_ptr[2*1+1] = ("boxcox1p") +ufunc_boxcox1p_data[0] = &ufunc_boxcox1p_ptr[2*0] +ufunc_boxcox1p_data[1] = &ufunc_boxcox1p_ptr[2*1] +boxcox1p = np.PyUFunc_FromFuncAndData(ufunc_boxcox1p_loops, ufunc_boxcox1p_data, ufunc_boxcox1p_types, 2, 2, 1, 0, "boxcox1p", ufunc_boxcox1p_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_btdtr_loops[2] +cdef void *ufunc_btdtr_ptr[4] +cdef void *ufunc_btdtr_data[2] +cdef char ufunc_btdtr_types[8] +cdef char *ufunc_btdtr_doc = ( + "btdtr(a, b, x, out=None)\n" + "\n" + "Cumulative distribution function of the beta distribution.\n" + "\n" + "Returns the integral from zero to `x` of the beta probability density\n" + "function,\n" + "\n" + ".. math::\n" + " I = \\int_0^x \\frac{\\Gamma(a + b)}{\\Gamma(a)\\Gamma(b)} t^{a-1} (1-t)^{b-1}\\,dt\n" + "\n" + "where :math:`\\Gamma` is the gamma function.\n" + "\n" + ".. deprecated:: 1.12.0\n" + " This function is deprecated and will be removed from SciPy 1.14.0.\n" + " Use `scipy.special.betainc` instead.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Shape parameter (a > 0).\n" + "b : array_like\n" + " Shape parameter (b > 0).\n" + "x : array_like\n" + " Upper limit of integration, in [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " Cumulative distribution function of the beta distribution with\n" + " parameters `a` and `b` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "betainc\n" + "\n" + "Notes\n" + "-----\n" + "This function is identical to the incomplete beta integral function\n" + "`betainc`.\n" + "\n" + "Wrapper for the Cephes [1]_ routine `btdtr`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_btdtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_btdtr_loops[1] = loop_d_ddd__As_ddd_d +ufunc_btdtr_types[0] = NPY_FLOAT +ufunc_btdtr_types[1] = NPY_FLOAT +ufunc_btdtr_types[2] = NPY_FLOAT +ufunc_btdtr_types[3] = NPY_FLOAT +ufunc_btdtr_types[4] = NPY_DOUBLE +ufunc_btdtr_types[5] = NPY_DOUBLE +ufunc_btdtr_types[6] = NPY_DOUBLE +ufunc_btdtr_types[7] = NPY_DOUBLE +ufunc_btdtr_ptr[2*0] = _func_btdtr +ufunc_btdtr_ptr[2*0+1] = ("btdtr") +ufunc_btdtr_ptr[2*1] = _func_btdtr +ufunc_btdtr_ptr[2*1+1] = ("btdtr") +ufunc_btdtr_data[0] = &ufunc_btdtr_ptr[2*0] +ufunc_btdtr_data[1] = &ufunc_btdtr_ptr[2*1] +btdtr = np.PyUFunc_FromFuncAndData(ufunc_btdtr_loops, ufunc_btdtr_data, ufunc_btdtr_types, 2, 3, 1, 0, "btdtr", ufunc_btdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_btdtri_loops[2] +cdef void *ufunc_btdtri_ptr[4] +cdef void *ufunc_btdtri_data[2] +cdef char ufunc_btdtri_types[8] +cdef char *ufunc_btdtri_doc = ( + "btdtri(a, b, p, out=None)\n" + "\n" + "The `p`-th quantile of the beta distribution.\n" + "\n" + "This function is the inverse of the beta cumulative distribution function,\n" + "`btdtr`, returning the value of `x` for which `btdtr(a, b, x) = p`, or\n" + "\n" + ".. math::\n" + " p = \\int_0^x \\frac{\\Gamma(a + b)}{\\Gamma(a)\\Gamma(b)} t^{a-1} (1-t)^{b-1}\\,dt\n" + "\n" + ".. deprecated:: 1.12.0\n" + " This function is deprecated and will be removed from SciPy 1.14.0.\n" + " Use `scipy.special.betaincinv` instead.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Shape parameter (`a` > 0).\n" + "b : array_like\n" + " Shape parameter (`b` > 0).\n" + "p : array_like\n" + " Cumulative probability, in [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " The quantile corresponding to `p`.\n" + "\n" + "See Also\n" + "--------\n" + "betaincinv\n" + "btdtr\n" + "\n" + "Notes\n" + "-----\n" + "The value of `x` is found by interval halving or Newton iterations.\n" + "\n" + "Wrapper for the Cephes [1]_ routine `incbi`, which solves the equivalent\n" + "problem of finding the inverse of the incomplete beta integral.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_btdtri_loops[0] = loop_d_ddd__As_fff_f +ufunc_btdtri_loops[1] = loop_d_ddd__As_ddd_d +ufunc_btdtri_types[0] = NPY_FLOAT +ufunc_btdtri_types[1] = NPY_FLOAT +ufunc_btdtri_types[2] = NPY_FLOAT +ufunc_btdtri_types[3] = NPY_FLOAT +ufunc_btdtri_types[4] = NPY_DOUBLE +ufunc_btdtri_types[5] = NPY_DOUBLE +ufunc_btdtri_types[6] = NPY_DOUBLE +ufunc_btdtri_types[7] = NPY_DOUBLE +ufunc_btdtri_ptr[2*0] = _func_incbi +ufunc_btdtri_ptr[2*0+1] = ("btdtri") +ufunc_btdtri_ptr[2*1] = _func_incbi +ufunc_btdtri_ptr[2*1+1] = ("btdtri") +ufunc_btdtri_data[0] = &ufunc_btdtri_ptr[2*0] +ufunc_btdtri_data[1] = &ufunc_btdtri_ptr[2*1] +btdtri = np.PyUFunc_FromFuncAndData(ufunc_btdtri_loops, ufunc_btdtri_data, ufunc_btdtri_types, 2, 3, 1, 0, "btdtri", ufunc_btdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_btdtria_loops[2] +cdef void *ufunc_btdtria_ptr[4] +cdef void *ufunc_btdtria_data[2] +cdef char ufunc_btdtria_types[8] +cdef char *ufunc_btdtria_doc = ( + "btdtria(p, b, x, out=None)\n" + "\n" + "Inverse of `btdtr` with respect to `a`.\n" + "\n" + "This is the inverse of the beta cumulative distribution function, `btdtr`,\n" + "considered as a function of `a`, returning the value of `a` for which\n" + "`btdtr(a, b, x) = p`, or\n" + "\n" + ".. math::\n" + " p = \\int_0^x \\frac{\\Gamma(a + b)}{\\Gamma(a)\\Gamma(b)} t^{a-1} (1-t)^{b-1}\\,dt\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Cumulative probability, in [0, 1].\n" + "b : array_like\n" + " Shape parameter (`b` > 0).\n" + "x : array_like\n" + " The quantile, in [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "a : scalar or ndarray\n" + " The value of the shape parameter `a` such that `btdtr(a, b, x) = p`.\n" + "\n" + "See Also\n" + "--------\n" + "btdtr : Cumulative distribution function of the beta distribution.\n" + "btdtri : Inverse with respect to `x`.\n" + "btdtrib : Inverse with respect to `b`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.\n" + "\n" + "The cumulative distribution function `p` is computed using a routine by\n" + "DiDinato and Morris [2]_. Computation of `a` involves a search for a value\n" + "that produces the desired value of `p`. The search relies on the\n" + "monotonicity of `p` with `a`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] DiDinato, A. R. and Morris, A. H.,\n" + " Algorithm 708: Significant Digit Computation of the Incomplete Beta\n" + " Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.") +ufunc_btdtria_loops[0] = loop_d_ddd__As_fff_f +ufunc_btdtria_loops[1] = loop_d_ddd__As_ddd_d +ufunc_btdtria_types[0] = NPY_FLOAT +ufunc_btdtria_types[1] = NPY_FLOAT +ufunc_btdtria_types[2] = NPY_FLOAT +ufunc_btdtria_types[3] = NPY_FLOAT +ufunc_btdtria_types[4] = NPY_DOUBLE +ufunc_btdtria_types[5] = NPY_DOUBLE +ufunc_btdtria_types[6] = NPY_DOUBLE +ufunc_btdtria_types[7] = NPY_DOUBLE +ufunc_btdtria_ptr[2*0] = _func_btdtria +ufunc_btdtria_ptr[2*0+1] = ("btdtria") +ufunc_btdtria_ptr[2*1] = _func_btdtria +ufunc_btdtria_ptr[2*1+1] = ("btdtria") +ufunc_btdtria_data[0] = &ufunc_btdtria_ptr[2*0] +ufunc_btdtria_data[1] = &ufunc_btdtria_ptr[2*1] +btdtria = np.PyUFunc_FromFuncAndData(ufunc_btdtria_loops, ufunc_btdtria_data, ufunc_btdtria_types, 2, 3, 1, 0, "btdtria", ufunc_btdtria_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_btdtrib_loops[2] +cdef void *ufunc_btdtrib_ptr[4] +cdef void *ufunc_btdtrib_data[2] +cdef char ufunc_btdtrib_types[8] +cdef char *ufunc_btdtrib_doc = ( + "btdtria(a, p, x, out=None)\n" + "\n" + "Inverse of `btdtr` with respect to `b`.\n" + "\n" + "This is the inverse of the beta cumulative distribution function, `btdtr`,\n" + "considered as a function of `b`, returning the value of `b` for which\n" + "`btdtr(a, b, x) = p`, or\n" + "\n" + ".. math::\n" + " p = \\int_0^x \\frac{\\Gamma(a + b)}{\\Gamma(a)\\Gamma(b)} t^{a-1} (1-t)^{b-1}\\,dt\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Shape parameter (`a` > 0).\n" + "p : array_like\n" + " Cumulative probability, in [0, 1].\n" + "x : array_like\n" + " The quantile, in [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "b : scalar or ndarray\n" + " The value of the shape parameter `b` such that `btdtr(a, b, x) = p`.\n" + "\n" + "See Also\n" + "--------\n" + "btdtr : Cumulative distribution function of the beta distribution.\n" + "btdtri : Inverse with respect to `x`.\n" + "btdtria : Inverse with respect to `a`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfbet`.\n" + "\n" + "The cumulative distribution function `p` is computed using a routine by\n" + "DiDinato and Morris [2]_. Computation of `b` involves a search for a value\n" + "that produces the desired value of `p`. The search relies on the\n" + "monotonicity of `p` with `b`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] DiDinato, A. R. and Morris, A. H.,\n" + " Algorithm 708: Significant Digit Computation of the Incomplete Beta\n" + " Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.") +ufunc_btdtrib_loops[0] = loop_d_ddd__As_fff_f +ufunc_btdtrib_loops[1] = loop_d_ddd__As_ddd_d +ufunc_btdtrib_types[0] = NPY_FLOAT +ufunc_btdtrib_types[1] = NPY_FLOAT +ufunc_btdtrib_types[2] = NPY_FLOAT +ufunc_btdtrib_types[3] = NPY_FLOAT +ufunc_btdtrib_types[4] = NPY_DOUBLE +ufunc_btdtrib_types[5] = NPY_DOUBLE +ufunc_btdtrib_types[6] = NPY_DOUBLE +ufunc_btdtrib_types[7] = NPY_DOUBLE +ufunc_btdtrib_ptr[2*0] = _func_btdtrib +ufunc_btdtrib_ptr[2*0+1] = ("btdtrib") +ufunc_btdtrib_ptr[2*1] = _func_btdtrib +ufunc_btdtrib_ptr[2*1+1] = ("btdtrib") +ufunc_btdtrib_data[0] = &ufunc_btdtrib_ptr[2*0] +ufunc_btdtrib_data[1] = &ufunc_btdtrib_ptr[2*1] +btdtrib = np.PyUFunc_FromFuncAndData(ufunc_btdtrib_loops, ufunc_btdtrib_data, ufunc_btdtrib_types, 2, 3, 1, 0, "btdtrib", ufunc_btdtrib_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_cbrt_loops[2] +cdef void *ufunc_cbrt_ptr[4] +cdef void *ufunc_cbrt_data[2] +cdef char ufunc_cbrt_types[4] +cdef char *ufunc_cbrt_doc = ( + "cbrt(x, out=None)\n" + "\n" + "Element-wise cube root of `x`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " `x` must contain real numbers.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The cube root of each value in `x`.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import cbrt\n" + "\n" + ">>> cbrt(8)\n" + "2.0\n" + ">>> cbrt([-8, -3, 0.125, 1.331])\n" + "array([-2. , -1.44224957, 0.5 , 1.1 ])") +ufunc_cbrt_loops[0] = loop_d_d__As_f_f +ufunc_cbrt_loops[1] = loop_d_d__As_d_d +ufunc_cbrt_types[0] = NPY_FLOAT +ufunc_cbrt_types[1] = NPY_FLOAT +ufunc_cbrt_types[2] = NPY_DOUBLE +ufunc_cbrt_types[3] = NPY_DOUBLE +ufunc_cbrt_ptr[2*0] = _func_cbrt +ufunc_cbrt_ptr[2*0+1] = ("cbrt") +ufunc_cbrt_ptr[2*1] = _func_cbrt +ufunc_cbrt_ptr[2*1+1] = ("cbrt") +ufunc_cbrt_data[0] = &ufunc_cbrt_ptr[2*0] +ufunc_cbrt_data[1] = &ufunc_cbrt_ptr[2*1] +cbrt = np.PyUFunc_FromFuncAndData(ufunc_cbrt_loops, ufunc_cbrt_data, ufunc_cbrt_types, 2, 1, 1, 0, "cbrt", ufunc_cbrt_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chdtr_loops[2] +cdef void *ufunc_chdtr_ptr[4] +cdef void *ufunc_chdtr_data[2] +cdef char ufunc_chdtr_types[6] +cdef char *ufunc_chdtr_doc = ( + "chdtr(v, x, out=None)\n" + "\n" + "Chi square cumulative distribution function.\n" + "\n" + "Returns the area under the left tail (from 0 to `x`) of the Chi\n" + "square probability density function with `v` degrees of freedom:\n" + "\n" + ".. math::\n" + "\n" + " \\frac{1}{2^{v/2} \\Gamma(v/2)} \\int_0^x t^{v/2 - 1} e^{-t/2} dt\n" + "\n" + "Here :math:`\\Gamma` is the Gamma function; see `gamma`. This\n" + "integral can be expressed in terms of the regularized lower\n" + "incomplete gamma function `gammainc` as\n" + "``gammainc(v / 2, x / 2)``. [1]_\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Degrees of freedom.\n" + "x : array_like\n" + " Upper bound of the integral.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the cumulative distribution function.\n" + "\n" + "See Also\n" + "--------\n" + "chdtrc, chdtri, chdtriv, gammainc\n" + "\n" + "References\n" + "----------\n" + ".. [1] Chi-Square distribution,\n" + " https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It can be expressed in terms of the regularized lower incomplete\n" + "gamma function.\n" + "\n" + ">>> v = 1\n" + ">>> x = np.arange(4)\n" + ">>> sc.chdtr(v, x)\n" + "array([0. , 0.68268949, 0.84270079, 0.91673548])\n" + ">>> sc.gammainc(v / 2, x / 2)\n" + "array([0. , 0.68268949, 0.84270079, 0.91673548])") +ufunc_chdtr_loops[0] = loop_d_dd__As_ff_f +ufunc_chdtr_loops[1] = loop_d_dd__As_dd_d +ufunc_chdtr_types[0] = NPY_FLOAT +ufunc_chdtr_types[1] = NPY_FLOAT +ufunc_chdtr_types[2] = NPY_FLOAT +ufunc_chdtr_types[3] = NPY_DOUBLE +ufunc_chdtr_types[4] = NPY_DOUBLE +ufunc_chdtr_types[5] = NPY_DOUBLE +ufunc_chdtr_ptr[2*0] = _func_chdtr +ufunc_chdtr_ptr[2*0+1] = ("chdtr") +ufunc_chdtr_ptr[2*1] = _func_chdtr +ufunc_chdtr_ptr[2*1+1] = ("chdtr") +ufunc_chdtr_data[0] = &ufunc_chdtr_ptr[2*0] +ufunc_chdtr_data[1] = &ufunc_chdtr_ptr[2*1] +chdtr = np.PyUFunc_FromFuncAndData(ufunc_chdtr_loops, ufunc_chdtr_data, ufunc_chdtr_types, 2, 2, 1, 0, "chdtr", ufunc_chdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chdtrc_loops[2] +cdef void *ufunc_chdtrc_ptr[4] +cdef void *ufunc_chdtrc_data[2] +cdef char ufunc_chdtrc_types[6] +cdef char *ufunc_chdtrc_doc = ( + "chdtrc(v, x, out=None)\n" + "\n" + "Chi square survival function.\n" + "\n" + "Returns the area under the right hand tail (from `x` to infinity)\n" + "of the Chi square probability density function with `v` degrees of\n" + "freedom:\n" + "\n" + ".. math::\n" + "\n" + " \\frac{1}{2^{v/2} \\Gamma(v/2)} \\int_x^\\infty t^{v/2 - 1} e^{-t/2} dt\n" + "\n" + "Here :math:`\\Gamma` is the Gamma function; see `gamma`. This\n" + "integral can be expressed in terms of the regularized upper\n" + "incomplete gamma function `gammaincc` as\n" + "``gammaincc(v / 2, x / 2)``. [1]_\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Degrees of freedom.\n" + "x : array_like\n" + " Lower bound of the integral.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the survival function.\n" + "\n" + "See Also\n" + "--------\n" + "chdtr, chdtri, chdtriv, gammaincc\n" + "\n" + "References\n" + "----------\n" + ".. [1] Chi-Square distribution,\n" + " https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It can be expressed in terms of the regularized upper incomplete\n" + "gamma function.\n" + "\n" + ">>> v = 1\n" + ">>> x = np.arange(4)\n" + ">>> sc.chdtrc(v, x)\n" + "array([1. , 0.31731051, 0.15729921, 0.08326452])\n" + ">>> sc.gammaincc(v / 2, x / 2)\n" + "array([1. , 0.31731051, 0.15729921, 0.08326452])") +ufunc_chdtrc_loops[0] = loop_d_dd__As_ff_f +ufunc_chdtrc_loops[1] = loop_d_dd__As_dd_d +ufunc_chdtrc_types[0] = NPY_FLOAT +ufunc_chdtrc_types[1] = NPY_FLOAT +ufunc_chdtrc_types[2] = NPY_FLOAT +ufunc_chdtrc_types[3] = NPY_DOUBLE +ufunc_chdtrc_types[4] = NPY_DOUBLE +ufunc_chdtrc_types[5] = NPY_DOUBLE +ufunc_chdtrc_ptr[2*0] = _func_chdtrc +ufunc_chdtrc_ptr[2*0+1] = ("chdtrc") +ufunc_chdtrc_ptr[2*1] = _func_chdtrc +ufunc_chdtrc_ptr[2*1+1] = ("chdtrc") +ufunc_chdtrc_data[0] = &ufunc_chdtrc_ptr[2*0] +ufunc_chdtrc_data[1] = &ufunc_chdtrc_ptr[2*1] +chdtrc = np.PyUFunc_FromFuncAndData(ufunc_chdtrc_loops, ufunc_chdtrc_data, ufunc_chdtrc_types, 2, 2, 1, 0, "chdtrc", ufunc_chdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chdtri_loops[2] +cdef void *ufunc_chdtri_ptr[4] +cdef void *ufunc_chdtri_data[2] +cdef char ufunc_chdtri_types[6] +cdef char *ufunc_chdtri_doc = ( + "chdtri(v, p, out=None)\n" + "\n" + "Inverse to `chdtrc` with respect to `x`.\n" + "\n" + "Returns `x` such that ``chdtrc(v, x) == p``.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Degrees of freedom.\n" + "p : array_like\n" + " Probability.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Value so that the probability a Chi square random variable\n" + " with `v` degrees of freedom is greater than `x` equals `p`.\n" + "\n" + "See Also\n" + "--------\n" + "chdtrc, chdtr, chdtriv\n" + "\n" + "References\n" + "----------\n" + ".. [1] Chi-Square distribution,\n" + " https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It inverts `chdtrc`.\n" + "\n" + ">>> v, p = 1, 0.3\n" + ">>> sc.chdtrc(v, sc.chdtri(v, p))\n" + "0.3\n" + ">>> x = 1\n" + ">>> sc.chdtri(v, sc.chdtrc(v, x))\n" + "1.0") +ufunc_chdtri_loops[0] = loop_d_dd__As_ff_f +ufunc_chdtri_loops[1] = loop_d_dd__As_dd_d +ufunc_chdtri_types[0] = NPY_FLOAT +ufunc_chdtri_types[1] = NPY_FLOAT +ufunc_chdtri_types[2] = NPY_FLOAT +ufunc_chdtri_types[3] = NPY_DOUBLE +ufunc_chdtri_types[4] = NPY_DOUBLE +ufunc_chdtri_types[5] = NPY_DOUBLE +ufunc_chdtri_ptr[2*0] = _func_chdtri +ufunc_chdtri_ptr[2*0+1] = ("chdtri") +ufunc_chdtri_ptr[2*1] = _func_chdtri +ufunc_chdtri_ptr[2*1+1] = ("chdtri") +ufunc_chdtri_data[0] = &ufunc_chdtri_ptr[2*0] +ufunc_chdtri_data[1] = &ufunc_chdtri_ptr[2*1] +chdtri = np.PyUFunc_FromFuncAndData(ufunc_chdtri_loops, ufunc_chdtri_data, ufunc_chdtri_types, 2, 2, 1, 0, "chdtri", ufunc_chdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chdtriv_loops[2] +cdef void *ufunc_chdtriv_ptr[4] +cdef void *ufunc_chdtriv_data[2] +cdef char ufunc_chdtriv_types[6] +cdef char *ufunc_chdtriv_doc = ( + "chdtriv(p, x, out=None)\n" + "\n" + "Inverse to `chdtr` with respect to `v`.\n" + "\n" + "Returns `v` such that ``chdtr(v, x) == p``.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Probability that the Chi square random variable is less than\n" + " or equal to `x`.\n" + "x : array_like\n" + " Nonnegative input.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Degrees of freedom.\n" + "\n" + "See Also\n" + "--------\n" + "chdtr, chdtrc, chdtri\n" + "\n" + "References\n" + "----------\n" + ".. [1] Chi-Square distribution,\n" + " https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It inverts `chdtr`.\n" + "\n" + ">>> p, x = 0.5, 1\n" + ">>> sc.chdtr(sc.chdtriv(p, x), x)\n" + "0.5000000000202172\n" + ">>> v = 1\n" + ">>> sc.chdtriv(sc.chdtr(v, x), v)\n" + "1.0000000000000013") +ufunc_chdtriv_loops[0] = loop_d_dd__As_ff_f +ufunc_chdtriv_loops[1] = loop_d_dd__As_dd_d +ufunc_chdtriv_types[0] = NPY_FLOAT +ufunc_chdtriv_types[1] = NPY_FLOAT +ufunc_chdtriv_types[2] = NPY_FLOAT +ufunc_chdtriv_types[3] = NPY_DOUBLE +ufunc_chdtriv_types[4] = NPY_DOUBLE +ufunc_chdtriv_types[5] = NPY_DOUBLE +ufunc_chdtriv_ptr[2*0] = _func_chdtriv +ufunc_chdtriv_ptr[2*0+1] = ("chdtriv") +ufunc_chdtriv_ptr[2*1] = _func_chdtriv +ufunc_chdtriv_ptr[2*1+1] = ("chdtriv") +ufunc_chdtriv_data[0] = &ufunc_chdtriv_ptr[2*0] +ufunc_chdtriv_data[1] = &ufunc_chdtriv_ptr[2*1] +chdtriv = np.PyUFunc_FromFuncAndData(ufunc_chdtriv_loops, ufunc_chdtriv_data, ufunc_chdtriv_types, 2, 2, 1, 0, "chdtriv", ufunc_chdtriv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chndtr_loops[2] +cdef void *ufunc_chndtr_ptr[4] +cdef void *ufunc_chndtr_data[2] +cdef char ufunc_chndtr_types[8] +cdef char *ufunc_chndtr_doc = ( + "chndtr(x, df, nc, out=None)\n" + "\n" + "Non-central chi square cumulative distribution function\n" + "\n" + "The cumulative distribution function is given by:\n" + "\n" + ".. math::\n" + "\n" + " P(\\chi^{\\prime 2} \\vert \\nu, \\lambda) =\\sum_{j=0}^{\\infty}\n" + " e^{-\\lambda /2}\n" + " \\frac{(\\lambda /2)^j}{j!} P(\\chi^{\\prime 2} \\vert \\nu + 2j),\n" + "\n" + "where :math:`\\nu > 0` is the degrees of freedom (``df``) and\n" + ":math:`\\lambda \\geq 0` is the non-centrality parameter (``nc``).\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Upper bound of the integral; must satisfy ``x >= 0``\n" + "df : array_like\n" + " Degrees of freedom; must satisfy ``df > 0``\n" + "nc : array_like\n" + " Non-centrality parameter; must satisfy ``nc >= 0``\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Value of the non-central chi square cumulative distribution function.\n" + "\n" + "See Also\n" + "--------\n" + "chndtrix, chndtridf, chndtrinc") +ufunc_chndtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_chndtr_loops[1] = loop_d_ddd__As_ddd_d +ufunc_chndtr_types[0] = NPY_FLOAT +ufunc_chndtr_types[1] = NPY_FLOAT +ufunc_chndtr_types[2] = NPY_FLOAT +ufunc_chndtr_types[3] = NPY_FLOAT +ufunc_chndtr_types[4] = NPY_DOUBLE +ufunc_chndtr_types[5] = NPY_DOUBLE +ufunc_chndtr_types[6] = NPY_DOUBLE +ufunc_chndtr_types[7] = NPY_DOUBLE +ufunc_chndtr_ptr[2*0] = _func_chndtr +ufunc_chndtr_ptr[2*0+1] = ("chndtr") +ufunc_chndtr_ptr[2*1] = _func_chndtr +ufunc_chndtr_ptr[2*1+1] = ("chndtr") +ufunc_chndtr_data[0] = &ufunc_chndtr_ptr[2*0] +ufunc_chndtr_data[1] = &ufunc_chndtr_ptr[2*1] +chndtr = np.PyUFunc_FromFuncAndData(ufunc_chndtr_loops, ufunc_chndtr_data, ufunc_chndtr_types, 2, 3, 1, 0, "chndtr", ufunc_chndtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chndtridf_loops[2] +cdef void *ufunc_chndtridf_ptr[4] +cdef void *ufunc_chndtridf_data[2] +cdef char ufunc_chndtridf_types[8] +cdef char *ufunc_chndtridf_doc = ( + "chndtridf(x, p, nc, out=None)\n" + "\n" + "Inverse to `chndtr` vs `df`\n" + "\n" + "Calculated using a search to find a value for `df` that produces the\n" + "desired value of `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Upper bound of the integral; must satisfy ``x >= 0``\n" + "p : array_like\n" + " Probability; must satisfy ``0 <= p < 1``\n" + "nc : array_like\n" + " Non-centrality parameter; must satisfy ``nc >= 0``\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "df : scalar or ndarray\n" + " Degrees of freedom\n" + "\n" + "See Also\n" + "--------\n" + "chndtr, chndtrix, chndtrinc") +ufunc_chndtridf_loops[0] = loop_d_ddd__As_fff_f +ufunc_chndtridf_loops[1] = loop_d_ddd__As_ddd_d +ufunc_chndtridf_types[0] = NPY_FLOAT +ufunc_chndtridf_types[1] = NPY_FLOAT +ufunc_chndtridf_types[2] = NPY_FLOAT +ufunc_chndtridf_types[3] = NPY_FLOAT +ufunc_chndtridf_types[4] = NPY_DOUBLE +ufunc_chndtridf_types[5] = NPY_DOUBLE +ufunc_chndtridf_types[6] = NPY_DOUBLE +ufunc_chndtridf_types[7] = NPY_DOUBLE +ufunc_chndtridf_ptr[2*0] = _func_chndtridf +ufunc_chndtridf_ptr[2*0+1] = ("chndtridf") +ufunc_chndtridf_ptr[2*1] = _func_chndtridf +ufunc_chndtridf_ptr[2*1+1] = ("chndtridf") +ufunc_chndtridf_data[0] = &ufunc_chndtridf_ptr[2*0] +ufunc_chndtridf_data[1] = &ufunc_chndtridf_ptr[2*1] +chndtridf = np.PyUFunc_FromFuncAndData(ufunc_chndtridf_loops, ufunc_chndtridf_data, ufunc_chndtridf_types, 2, 3, 1, 0, "chndtridf", ufunc_chndtridf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chndtrinc_loops[2] +cdef void *ufunc_chndtrinc_ptr[4] +cdef void *ufunc_chndtrinc_data[2] +cdef char ufunc_chndtrinc_types[8] +cdef char *ufunc_chndtrinc_doc = ( + "chndtrinc(x, df, p, out=None)\n" + "\n" + "Inverse to `chndtr` vs `nc`\n" + "\n" + "Calculated using a search to find a value for `df` that produces the\n" + "desired value of `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Upper bound of the integral; must satisfy ``x >= 0``\n" + "df : array_like\n" + " Degrees of freedom; must satisfy ``df > 0``\n" + "p : array_like\n" + " Probability; must satisfy ``0 <= p < 1``\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "nc : scalar or ndarray\n" + " Non-centrality\n" + "\n" + "See Also\n" + "--------\n" + "chndtr, chndtrix, chndtrinc") +ufunc_chndtrinc_loops[0] = loop_d_ddd__As_fff_f +ufunc_chndtrinc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_chndtrinc_types[0] = NPY_FLOAT +ufunc_chndtrinc_types[1] = NPY_FLOAT +ufunc_chndtrinc_types[2] = NPY_FLOAT +ufunc_chndtrinc_types[3] = NPY_FLOAT +ufunc_chndtrinc_types[4] = NPY_DOUBLE +ufunc_chndtrinc_types[5] = NPY_DOUBLE +ufunc_chndtrinc_types[6] = NPY_DOUBLE +ufunc_chndtrinc_types[7] = NPY_DOUBLE +ufunc_chndtrinc_ptr[2*0] = _func_chndtrinc +ufunc_chndtrinc_ptr[2*0+1] = ("chndtrinc") +ufunc_chndtrinc_ptr[2*1] = _func_chndtrinc +ufunc_chndtrinc_ptr[2*1+1] = ("chndtrinc") +ufunc_chndtrinc_data[0] = &ufunc_chndtrinc_ptr[2*0] +ufunc_chndtrinc_data[1] = &ufunc_chndtrinc_ptr[2*1] +chndtrinc = np.PyUFunc_FromFuncAndData(ufunc_chndtrinc_loops, ufunc_chndtrinc_data, ufunc_chndtrinc_types, 2, 3, 1, 0, "chndtrinc", ufunc_chndtrinc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_chndtrix_loops[2] +cdef void *ufunc_chndtrix_ptr[4] +cdef void *ufunc_chndtrix_data[2] +cdef char ufunc_chndtrix_types[8] +cdef char *ufunc_chndtrix_doc = ( + "chndtrix(p, df, nc, out=None)\n" + "\n" + "Inverse to `chndtr` vs `x`\n" + "\n" + "Calculated using a search to find a value for `x` that produces the\n" + "desired value of `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Probability; must satisfy ``0 <= p < 1``\n" + "df : array_like\n" + " Degrees of freedom; must satisfy ``df > 0``\n" + "nc : array_like\n" + " Non-centrality parameter; must satisfy ``nc >= 0``\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Value so that the probability a non-central Chi square random variable\n" + " with `df` degrees of freedom and non-centrality, `nc`, is greater than\n" + " `x` equals `p`.\n" + "\n" + "See Also\n" + "--------\n" + "chndtr, chndtridf, chndtrinc") +ufunc_chndtrix_loops[0] = loop_d_ddd__As_fff_f +ufunc_chndtrix_loops[1] = loop_d_ddd__As_ddd_d +ufunc_chndtrix_types[0] = NPY_FLOAT +ufunc_chndtrix_types[1] = NPY_FLOAT +ufunc_chndtrix_types[2] = NPY_FLOAT +ufunc_chndtrix_types[3] = NPY_FLOAT +ufunc_chndtrix_types[4] = NPY_DOUBLE +ufunc_chndtrix_types[5] = NPY_DOUBLE +ufunc_chndtrix_types[6] = NPY_DOUBLE +ufunc_chndtrix_types[7] = NPY_DOUBLE +ufunc_chndtrix_ptr[2*0] = _func_chndtrix +ufunc_chndtrix_ptr[2*0+1] = ("chndtrix") +ufunc_chndtrix_ptr[2*1] = _func_chndtrix +ufunc_chndtrix_ptr[2*1+1] = ("chndtrix") +ufunc_chndtrix_data[0] = &ufunc_chndtrix_ptr[2*0] +ufunc_chndtrix_data[1] = &ufunc_chndtrix_ptr[2*1] +chndtrix = np.PyUFunc_FromFuncAndData(ufunc_chndtrix_loops, ufunc_chndtrix_data, ufunc_chndtrix_types, 2, 3, 1, 0, "chndtrix", ufunc_chndtrix_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_cosdg_loops[2] +cdef void *ufunc_cosdg_ptr[4] +cdef void *ufunc_cosdg_data[2] +cdef char ufunc_cosdg_types[4] +cdef char *ufunc_cosdg_doc = ( + "cosdg(x, out=None)\n" + "\n" + "Cosine of the angle `x` given in degrees.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Angle, given in degrees.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Cosine of the input.\n" + "\n" + "See Also\n" + "--------\n" + "sindg, tandg, cotdg\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than using cosine directly.\n" + "\n" + ">>> x = 90 + 180 * np.arange(3)\n" + ">>> sc.cosdg(x)\n" + "array([-0., 0., -0.])\n" + ">>> np.cos(x * np.pi / 180)\n" + "array([ 6.1232340e-17, -1.8369702e-16, 3.0616170e-16])") +ufunc_cosdg_loops[0] = loop_d_d__As_f_f +ufunc_cosdg_loops[1] = loop_d_d__As_d_d +ufunc_cosdg_types[0] = NPY_FLOAT +ufunc_cosdg_types[1] = NPY_FLOAT +ufunc_cosdg_types[2] = NPY_DOUBLE +ufunc_cosdg_types[3] = NPY_DOUBLE +ufunc_cosdg_ptr[2*0] = _func_cosdg +ufunc_cosdg_ptr[2*0+1] = ("cosdg") +ufunc_cosdg_ptr[2*1] = _func_cosdg +ufunc_cosdg_ptr[2*1+1] = ("cosdg") +ufunc_cosdg_data[0] = &ufunc_cosdg_ptr[2*0] +ufunc_cosdg_data[1] = &ufunc_cosdg_ptr[2*1] +cosdg = np.PyUFunc_FromFuncAndData(ufunc_cosdg_loops, ufunc_cosdg_data, ufunc_cosdg_types, 2, 1, 1, 0, "cosdg", ufunc_cosdg_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_cosm1_loops[2] +cdef void *ufunc_cosm1_ptr[4] +cdef void *ufunc_cosm1_data[2] +cdef char ufunc_cosm1_types[4] +cdef char *ufunc_cosm1_doc = ( + "cosm1(x, out=None)\n" + "\n" + "cos(x) - 1 for use when `x` is near zero.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real valued argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of ``cos(x) - 1``.\n" + "\n" + "See Also\n" + "--------\n" + "expm1, log1p\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than computing ``cos(x) - 1`` directly for\n" + "``x`` around 0.\n" + "\n" + ">>> x = 1e-30\n" + ">>> np.cos(x) - 1\n" + "0.0\n" + ">>> sc.cosm1(x)\n" + "-5.0000000000000005e-61") +ufunc_cosm1_loops[0] = loop_d_d__As_f_f +ufunc_cosm1_loops[1] = loop_d_d__As_d_d +ufunc_cosm1_types[0] = NPY_FLOAT +ufunc_cosm1_types[1] = NPY_FLOAT +ufunc_cosm1_types[2] = NPY_DOUBLE +ufunc_cosm1_types[3] = NPY_DOUBLE +ufunc_cosm1_ptr[2*0] = _func_cosm1 +ufunc_cosm1_ptr[2*0+1] = ("cosm1") +ufunc_cosm1_ptr[2*1] = _func_cosm1 +ufunc_cosm1_ptr[2*1+1] = ("cosm1") +ufunc_cosm1_data[0] = &ufunc_cosm1_ptr[2*0] +ufunc_cosm1_data[1] = &ufunc_cosm1_ptr[2*1] +cosm1 = np.PyUFunc_FromFuncAndData(ufunc_cosm1_loops, ufunc_cosm1_data, ufunc_cosm1_types, 2, 1, 1, 0, "cosm1", ufunc_cosm1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_cotdg_loops[2] +cdef void *ufunc_cotdg_ptr[4] +cdef void *ufunc_cotdg_data[2] +cdef char ufunc_cotdg_types[4] +cdef char *ufunc_cotdg_doc = ( + "cotdg(x, out=None)\n" + "\n" + "Cotangent of the angle `x` given in degrees.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Angle, given in degrees.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Cotangent at the input.\n" + "\n" + "See Also\n" + "--------\n" + "sindg, cosdg, tandg\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than using cotangent directly.\n" + "\n" + ">>> x = 90 + 180 * np.arange(3)\n" + ">>> sc.cotdg(x)\n" + "array([0., 0., 0.])\n" + ">>> 1 / np.tan(x * np.pi / 180)\n" + "array([6.1232340e-17, 1.8369702e-16, 3.0616170e-16])") +ufunc_cotdg_loops[0] = loop_d_d__As_f_f +ufunc_cotdg_loops[1] = loop_d_d__As_d_d +ufunc_cotdg_types[0] = NPY_FLOAT +ufunc_cotdg_types[1] = NPY_FLOAT +ufunc_cotdg_types[2] = NPY_DOUBLE +ufunc_cotdg_types[3] = NPY_DOUBLE +ufunc_cotdg_ptr[2*0] = _func_cotdg +ufunc_cotdg_ptr[2*0+1] = ("cotdg") +ufunc_cotdg_ptr[2*1] = _func_cotdg +ufunc_cotdg_ptr[2*1+1] = ("cotdg") +ufunc_cotdg_data[0] = &ufunc_cotdg_ptr[2*0] +ufunc_cotdg_data[1] = &ufunc_cotdg_ptr[2*1] +cotdg = np.PyUFunc_FromFuncAndData(ufunc_cotdg_loops, ufunc_cotdg_data, ufunc_cotdg_types, 2, 1, 1, 0, "cotdg", ufunc_cotdg_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_dawsn_loops[4] +cdef void *ufunc_dawsn_ptr[8] +cdef void *ufunc_dawsn_data[4] +cdef char ufunc_dawsn_types[8] +cdef char *ufunc_dawsn_doc = ( + "dawsn(x, out=None)\n" + "\n" + "Dawson's integral.\n" + "\n" + "Computes::\n" + "\n" + " exp(-x**2) * integral(exp(t**2), t=0..x).\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Function parameter.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the integral.\n" + "\n" + "See Also\n" + "--------\n" + "wofz, erf, erfc, erfcx, erfi\n" + "\n" + "References\n" + "----------\n" + ".. [1] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-15, 15, num=1000)\n" + ">>> plt.plot(x, special.dawsn(x))\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.ylabel('$dawsn(x)$')\n" + ">>> plt.show()") +ufunc_dawsn_loops[0] = loop_d_d__As_f_f +ufunc_dawsn_loops[1] = loop_d_d__As_d_d +ufunc_dawsn_loops[2] = loop_D_D__As_F_F +ufunc_dawsn_loops[3] = loop_D_D__As_D_D +ufunc_dawsn_types[0] = NPY_FLOAT +ufunc_dawsn_types[1] = NPY_FLOAT +ufunc_dawsn_types[2] = NPY_DOUBLE +ufunc_dawsn_types[3] = NPY_DOUBLE +ufunc_dawsn_types[4] = NPY_CFLOAT +ufunc_dawsn_types[5] = NPY_CFLOAT +ufunc_dawsn_types[6] = NPY_CDOUBLE +ufunc_dawsn_types[7] = NPY_CDOUBLE +ufunc_dawsn_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_dawsn +ufunc_dawsn_ptr[2*0+1] = ("dawsn") +ufunc_dawsn_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_dawsn +ufunc_dawsn_ptr[2*1+1] = ("dawsn") +ufunc_dawsn_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_dawsn_complex +ufunc_dawsn_ptr[2*2+1] = ("dawsn") +ufunc_dawsn_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_dawsn_complex +ufunc_dawsn_ptr[2*3+1] = ("dawsn") +ufunc_dawsn_data[0] = &ufunc_dawsn_ptr[2*0] +ufunc_dawsn_data[1] = &ufunc_dawsn_ptr[2*1] +ufunc_dawsn_data[2] = &ufunc_dawsn_ptr[2*2] +ufunc_dawsn_data[3] = &ufunc_dawsn_ptr[2*3] +dawsn = np.PyUFunc_FromFuncAndData(ufunc_dawsn_loops, ufunc_dawsn_data, ufunc_dawsn_types, 4, 1, 1, 0, "dawsn", ufunc_dawsn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipe_loops[2] +cdef void *ufunc_ellipe_ptr[4] +cdef void *ufunc_ellipe_data[2] +cdef char ufunc_ellipe_types[4] +cdef char *ufunc_ellipe_doc = ( + "ellipe(m, out=None)\n" + "\n" + "Complete elliptic integral of the second kind\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: E(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{1/2} dt\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Defines the parameter of the elliptic integral.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "E : scalar or ndarray\n" + " Value of the elliptic integral.\n" + "\n" + "See Also\n" + "--------\n" + "ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1\n" + "ellipk : Complete elliptic integral of the first kind\n" + "ellipkinc : Incomplete elliptic integral of the first kind\n" + "ellipeinc : Incomplete elliptic integral of the second kind\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `ellpe`.\n" + "\n" + "For `m > 0` the computation uses the approximation,\n" + "\n" + ".. math:: E(m) \\approx P(1-m) - (1-m) \\log(1-m) Q(1-m),\n" + "\n" + "where :math:`P` and :math:`Q` are tenth-order polynomials. For\n" + "`m < 0`, the relation\n" + "\n" + ".. math:: E(m) = E(m/(m - 1)) \\sqrt(1-m)\n" + "\n" + "is used.\n" + "\n" + "The parameterization in terms of :math:`m` follows that of section\n" + "17.2 in [2]_. Other parameterizations in terms of the\n" + "complementary parameter :math:`1 - m`, modular angle\n" + ":math:`\\sin^2(\\alpha) = m`, or modulus :math:`k^2 = m` are also\n" + "used, so be careful that you choose the correct parameter.\n" + "\n" + "The Legendre E integral is related to Carlson's symmetric R_D or R_G\n" + "functions in multiple ways [3]_. For example,\n" + "\n" + ".. math:: E(m) = 2 R_G(0, 1-k^2, 1) .\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [3] NIST Digital Library of Mathematical\n" + " Functions. http://dlmf.nist.gov/, Release 1.0.28 of\n" + " 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i\n" + "\n" + "Examples\n" + "--------\n" + "This function is used in finding the circumference of an\n" + "ellipse with semi-major axis `a` and semi-minor axis `b`.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + "\n" + ">>> a = 3.5\n" + ">>> b = 2.1\n" + ">>> e_sq = 1.0 - b**2/a**2 # eccentricity squared\n" + "\n" + "Then the circumference is found using the following:\n" + "\n" + ">>> C = 4*a*special.ellipe(e_sq) # circumference formula\n" + ">>> C\n" + "17.868899204378693\n" + "\n" + "When `a` and `b` are the same (meaning eccentricity is 0),\n" + "this reduces to the circumference of a circle.\n" + "\n" + ">>> 4*a*special.ellipe(0.0) # formula for ellipse with a = b\n" + "21.991148575128552\n" + ">>> 2*np.pi*a # formula for circle of radius a\n" + "21.991148575128552") +ufunc_ellipe_loops[0] = loop_d_d__As_f_f +ufunc_ellipe_loops[1] = loop_d_d__As_d_d +ufunc_ellipe_types[0] = NPY_FLOAT +ufunc_ellipe_types[1] = NPY_FLOAT +ufunc_ellipe_types[2] = NPY_DOUBLE +ufunc_ellipe_types[3] = NPY_DOUBLE +ufunc_ellipe_ptr[2*0] = _func_ellpe +ufunc_ellipe_ptr[2*0+1] = ("ellipe") +ufunc_ellipe_ptr[2*1] = _func_ellpe +ufunc_ellipe_ptr[2*1+1] = ("ellipe") +ufunc_ellipe_data[0] = &ufunc_ellipe_ptr[2*0] +ufunc_ellipe_data[1] = &ufunc_ellipe_ptr[2*1] +ellipe = np.PyUFunc_FromFuncAndData(ufunc_ellipe_loops, ufunc_ellipe_data, ufunc_ellipe_types, 2, 1, 1, 0, "ellipe", ufunc_ellipe_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipeinc_loops[2] +cdef void *ufunc_ellipeinc_ptr[4] +cdef void *ufunc_ellipeinc_data[2] +cdef char ufunc_ellipeinc_types[6] +cdef char *ufunc_ellipeinc_doc = ( + "ellipeinc(phi, m, out=None)\n" + "\n" + "Incomplete elliptic integral of the second kind\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: E(\\phi, m) = \\int_0^{\\phi} [1 - m \\sin(t)^2]^{1/2} dt\n" + "\n" + "Parameters\n" + "----------\n" + "phi : array_like\n" + " amplitude of the elliptic integral.\n" + "m : array_like\n" + " parameter of the elliptic integral.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "E : scalar or ndarray\n" + " Value of the elliptic integral.\n" + "\n" + "See Also\n" + "--------\n" + "ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1\n" + "ellipk : Complete elliptic integral of the first kind\n" + "ellipkinc : Incomplete elliptic integral of the first kind\n" + "ellipe : Complete elliptic integral of the second kind\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `ellie`.\n" + "\n" + "Computation uses arithmetic-geometric means algorithm.\n" + "\n" + "The parameterization in terms of :math:`m` follows that of section\n" + "17.2 in [2]_. Other parameterizations in terms of the\n" + "complementary parameter :math:`1 - m`, modular angle\n" + ":math:`\\sin^2(\\alpha) = m`, or modulus :math:`k^2 = m` are also\n" + "used, so be careful that you choose the correct parameter.\n" + "\n" + "The Legendre E incomplete integral can be related to combinations\n" + "of Carlson's symmetric integrals R_D, R_F, and R_G in multiple\n" + "ways [3]_. For example, with :math:`c = \\csc^2\\phi`,\n" + "\n" + ".. math::\n" + " E(\\phi, m) = R_F(c-1, c-k^2, c)\n" + " - \\frac{1}{3} k^2 R_D(c-1, c-k^2, c) .\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [3] NIST Digital Library of Mathematical\n" + " Functions. http://dlmf.nist.gov/, Release 1.0.28 of\n" + " 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i") +ufunc_ellipeinc_loops[0] = loop_d_dd__As_ff_f +ufunc_ellipeinc_loops[1] = loop_d_dd__As_dd_d +ufunc_ellipeinc_types[0] = NPY_FLOAT +ufunc_ellipeinc_types[1] = NPY_FLOAT +ufunc_ellipeinc_types[2] = NPY_FLOAT +ufunc_ellipeinc_types[3] = NPY_DOUBLE +ufunc_ellipeinc_types[4] = NPY_DOUBLE +ufunc_ellipeinc_types[5] = NPY_DOUBLE +ufunc_ellipeinc_ptr[2*0] = _func_ellie +ufunc_ellipeinc_ptr[2*0+1] = ("ellipeinc") +ufunc_ellipeinc_ptr[2*1] = _func_ellie +ufunc_ellipeinc_ptr[2*1+1] = ("ellipeinc") +ufunc_ellipeinc_data[0] = &ufunc_ellipeinc_ptr[2*0] +ufunc_ellipeinc_data[1] = &ufunc_ellipeinc_ptr[2*1] +ellipeinc = np.PyUFunc_FromFuncAndData(ufunc_ellipeinc_loops, ufunc_ellipeinc_data, ufunc_ellipeinc_types, 2, 2, 1, 0, "ellipeinc", ufunc_ellipeinc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipj_loops[2] +cdef void *ufunc_ellipj_ptr[4] +cdef void *ufunc_ellipj_data[2] +cdef char ufunc_ellipj_types[12] +cdef char *ufunc_ellipj_doc = ( + "ellipj(u, m, out=None)\n" + "\n" + "Jacobian elliptic functions\n" + "\n" + "Calculates the Jacobian elliptic functions of parameter `m` between\n" + "0 and 1, and real argument `u`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Parameter.\n" + "u : array_like\n" + " Argument.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function values\n" + "\n" + "Returns\n" + "-------\n" + "sn, cn, dn, ph : 4-tuple of scalar or ndarray\n" + " The returned functions::\n" + "\n" + " sn(u|m), cn(u|m), dn(u|m)\n" + "\n" + " The value `ph` is such that if `u = ellipkinc(ph, m)`,\n" + " then `sn(u|m) = sin(ph)` and `cn(u|m) = cos(ph)`.\n" + "\n" + "See Also\n" + "--------\n" + "ellipk : Complete elliptic integral of the first kind\n" + "ellipkinc : Incomplete elliptic integral of the first kind\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `ellpj`.\n" + "\n" + "These functions are periodic, with quarter-period on the real axis\n" + "equal to the complete elliptic integral `ellipk(m)`.\n" + "\n" + "Relation to incomplete elliptic integral: If `u = ellipkinc(phi,m)`, then\n" + "`sn(u|m) = sin(phi)`, and `cn(u|m) = cos(phi)`. The `phi` is called\n" + "the amplitude of `u`.\n" + "\n" + "Computation is by means of the arithmetic-geometric mean algorithm,\n" + "except when `m` is within 1e-9 of 0 or 1. In the latter case with `m`\n" + "close to 1, the approximation applies only for `phi < pi/2`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_ellipj_loops[0] = loop_i_dd_dddd_As_ff_ffff +ufunc_ellipj_loops[1] = loop_i_dd_dddd_As_dd_dddd +ufunc_ellipj_types[0] = NPY_FLOAT +ufunc_ellipj_types[1] = NPY_FLOAT +ufunc_ellipj_types[2] = NPY_FLOAT +ufunc_ellipj_types[3] = NPY_FLOAT +ufunc_ellipj_types[4] = NPY_FLOAT +ufunc_ellipj_types[5] = NPY_FLOAT +ufunc_ellipj_types[6] = NPY_DOUBLE +ufunc_ellipj_types[7] = NPY_DOUBLE +ufunc_ellipj_types[8] = NPY_DOUBLE +ufunc_ellipj_types[9] = NPY_DOUBLE +ufunc_ellipj_types[10] = NPY_DOUBLE +ufunc_ellipj_types[11] = NPY_DOUBLE +ufunc_ellipj_ptr[2*0] = _func_ellpj +ufunc_ellipj_ptr[2*0+1] = ("ellipj") +ufunc_ellipj_ptr[2*1] = _func_ellpj +ufunc_ellipj_ptr[2*1+1] = ("ellipj") +ufunc_ellipj_data[0] = &ufunc_ellipj_ptr[2*0] +ufunc_ellipj_data[1] = &ufunc_ellipj_ptr[2*1] +ellipj = np.PyUFunc_FromFuncAndData(ufunc_ellipj_loops, ufunc_ellipj_data, ufunc_ellipj_types, 2, 2, 4, 0, "ellipj", ufunc_ellipj_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipk_loops[2] +cdef void *ufunc_ellipk_ptr[4] +cdef void *ufunc_ellipk_data[2] +cdef char ufunc_ellipk_types[4] +cdef char *ufunc_ellipk_doc = ( + "ellipk(m, out=None)\n" + "\n" + "Complete elliptic integral of the first kind.\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: K(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " The parameter of the elliptic integral.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the elliptic integral.\n" + "\n" + "See Also\n" + "--------\n" + "ellipkm1 : Complete elliptic integral of the first kind around m = 1\n" + "ellipkinc : Incomplete elliptic integral of the first kind\n" + "ellipe : Complete elliptic integral of the second kind\n" + "ellipeinc : Incomplete elliptic integral of the second kind\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "\n" + "Notes\n" + "-----\n" + "For more precision around point m = 1, use `ellipkm1`, which this\n" + "function calls.\n" + "\n" + "The parameterization in terms of :math:`m` follows that of section\n" + "17.2 in [1]_. Other parameterizations in terms of the\n" + "complementary parameter :math:`1 - m`, modular angle\n" + ":math:`\\sin^2(\\alpha) = m`, or modulus :math:`k^2 = m` are also\n" + "used, so be careful that you choose the correct parameter.\n" + "\n" + "The Legendre K integral is related to Carlson's symmetric R_F\n" + "function by [2]_:\n" + "\n" + ".. math:: K(m) = R_F(0, 1-k^2, 1) .\n" + "\n" + "References\n" + "----------\n" + ".. [1] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [2] NIST Digital Library of Mathematical\n" + " Functions. http://dlmf.nist.gov/, Release 1.0.28 of\n" + " 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i") +ufunc_ellipk_loops[0] = loop_d_d__As_f_f +ufunc_ellipk_loops[1] = loop_d_d__As_d_d +ufunc_ellipk_types[0] = NPY_FLOAT +ufunc_ellipk_types[1] = NPY_FLOAT +ufunc_ellipk_types[2] = NPY_DOUBLE +ufunc_ellipk_types[3] = NPY_DOUBLE +ufunc_ellipk_ptr[2*0] = _func_ellipk +ufunc_ellipk_ptr[2*0+1] = ("ellipk") +ufunc_ellipk_ptr[2*1] = _func_ellipk +ufunc_ellipk_ptr[2*1+1] = ("ellipk") +ufunc_ellipk_data[0] = &ufunc_ellipk_ptr[2*0] +ufunc_ellipk_data[1] = &ufunc_ellipk_ptr[2*1] +ellipk = np.PyUFunc_FromFuncAndData(ufunc_ellipk_loops, ufunc_ellipk_data, ufunc_ellipk_types, 2, 1, 1, 0, "ellipk", ufunc_ellipk_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipkinc_loops[2] +cdef void *ufunc_ellipkinc_ptr[4] +cdef void *ufunc_ellipkinc_data[2] +cdef char ufunc_ellipkinc_types[6] +cdef char *ufunc_ellipkinc_doc = ( + "ellipkinc(phi, m, out=None)\n" + "\n" + "Incomplete elliptic integral of the first kind\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: K(\\phi, m) = \\int_0^{\\phi} [1 - m \\sin(t)^2]^{-1/2} dt\n" + "\n" + "This function is also called :math:`F(\\phi, m)`.\n" + "\n" + "Parameters\n" + "----------\n" + "phi : array_like\n" + " amplitude of the elliptic integral\n" + "m : array_like\n" + " parameter of the elliptic integral\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the elliptic integral\n" + "\n" + "See Also\n" + "--------\n" + "ellipkm1 : Complete elliptic integral of the first kind, near `m` = 1\n" + "ellipk : Complete elliptic integral of the first kind\n" + "ellipe : Complete elliptic integral of the second kind\n" + "ellipeinc : Incomplete elliptic integral of the second kind\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `ellik`. The computation is\n" + "carried out using the arithmetic-geometric mean algorithm.\n" + "\n" + "The parameterization in terms of :math:`m` follows that of section\n" + "17.2 in [2]_. Other parameterizations in terms of the\n" + "complementary parameter :math:`1 - m`, modular angle\n" + ":math:`\\sin^2(\\alpha) = m`, or modulus :math:`k^2 = m` are also\n" + "used, so be careful that you choose the correct parameter.\n" + "\n" + "The Legendre K incomplete integral (or F integral) is related to\n" + "Carlson's symmetric R_F function [3]_.\n" + "Setting :math:`c = \\csc^2\\phi`,\n" + "\n" + ".. math:: F(\\phi, m) = R_F(c-1, c-k^2, c) .\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + ".. [3] NIST Digital Library of Mathematical\n" + " Functions. http://dlmf.nist.gov/, Release 1.0.28 of\n" + " 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i") +ufunc_ellipkinc_loops[0] = loop_d_dd__As_ff_f +ufunc_ellipkinc_loops[1] = loop_d_dd__As_dd_d +ufunc_ellipkinc_types[0] = NPY_FLOAT +ufunc_ellipkinc_types[1] = NPY_FLOAT +ufunc_ellipkinc_types[2] = NPY_FLOAT +ufunc_ellipkinc_types[3] = NPY_DOUBLE +ufunc_ellipkinc_types[4] = NPY_DOUBLE +ufunc_ellipkinc_types[5] = NPY_DOUBLE +ufunc_ellipkinc_ptr[2*0] = _func_ellik +ufunc_ellipkinc_ptr[2*0+1] = ("ellipkinc") +ufunc_ellipkinc_ptr[2*1] = _func_ellik +ufunc_ellipkinc_ptr[2*1+1] = ("ellipkinc") +ufunc_ellipkinc_data[0] = &ufunc_ellipkinc_ptr[2*0] +ufunc_ellipkinc_data[1] = &ufunc_ellipkinc_ptr[2*1] +ellipkinc = np.PyUFunc_FromFuncAndData(ufunc_ellipkinc_loops, ufunc_ellipkinc_data, ufunc_ellipkinc_types, 2, 2, 1, 0, "ellipkinc", ufunc_ellipkinc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ellipkm1_loops[2] +cdef void *ufunc_ellipkm1_ptr[4] +cdef void *ufunc_ellipkm1_data[2] +cdef char ufunc_ellipkm1_types[4] +cdef char *ufunc_ellipkm1_doc = ( + "ellipkm1(p, out=None)\n" + "\n" + "Complete elliptic integral of the first kind around `m` = 1\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt\n" + "\n" + "where `m = 1 - p`.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Defines the parameter of the elliptic integral as `m = 1 - p`.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the elliptic integral.\n" + "\n" + "See Also\n" + "--------\n" + "ellipk : Complete elliptic integral of the first kind\n" + "ellipkinc : Incomplete elliptic integral of the first kind\n" + "ellipe : Complete elliptic integral of the second kind\n" + "ellipeinc : Incomplete elliptic integral of the second kind\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `ellpk`.\n" + "\n" + "For `p <= 1`, computation uses the approximation,\n" + "\n" + ".. math:: K(p) \\approx P(p) - \\log(p) Q(p),\n" + "\n" + "where :math:`P` and :math:`Q` are tenth-order polynomials. The\n" + "argument `p` is used internally rather than `m` so that the logarithmic\n" + "singularity at `m = 1` will be shifted to the origin; this preserves\n" + "maximum accuracy. For `p > 1`, the identity\n" + "\n" + ".. math:: K(p) = K(1/p)/\\sqrt(p)\n" + "\n" + "is used.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/") +ufunc_ellipkm1_loops[0] = loop_d_d__As_f_f +ufunc_ellipkm1_loops[1] = loop_d_d__As_d_d +ufunc_ellipkm1_types[0] = NPY_FLOAT +ufunc_ellipkm1_types[1] = NPY_FLOAT +ufunc_ellipkm1_types[2] = NPY_DOUBLE +ufunc_ellipkm1_types[3] = NPY_DOUBLE +ufunc_ellipkm1_ptr[2*0] = _func_ellpk +ufunc_ellipkm1_ptr[2*0+1] = ("ellipkm1") +ufunc_ellipkm1_ptr[2*1] = _func_ellpk +ufunc_ellipkm1_ptr[2*1+1] = ("ellipkm1") +ufunc_ellipkm1_data[0] = &ufunc_ellipkm1_ptr[2*0] +ufunc_ellipkm1_data[1] = &ufunc_ellipkm1_ptr[2*1] +ellipkm1 = np.PyUFunc_FromFuncAndData(ufunc_ellipkm1_loops, ufunc_ellipkm1_data, ufunc_ellipkm1_types, 2, 1, 1, 0, "ellipkm1", ufunc_ellipkm1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_elliprc_loops[4] +cdef void *ufunc_elliprc_ptr[8] +cdef void *ufunc_elliprc_data[4] +cdef char ufunc_elliprc_types[12] +cdef char *ufunc_elliprc_doc = ( + "elliprc(x, y, out=None)\n" + "\n" + "Degenerate symmetric elliptic integral.\n" + "\n" + "The function RC is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " R_{\\mathrm{C}}(x, y) =\n" + " \\frac{1}{2} \\int_0^{+\\infty} (t + x)^{-1/2} (t + y)^{-1} dt\n" + " = R_{\\mathrm{F}}(x, y, y)\n" + "\n" + "Parameters\n" + "----------\n" + "x, y : array_like\n" + " Real or complex input parameters. `x` can be any number in the\n" + " complex plane cut along the negative real axis. `y` must be non-zero.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "R : scalar or ndarray\n" + " Value of the integral. If `y` is real and negative, the Cauchy\n" + " principal value is returned. If both of `x` and `y` are real, the\n" + " return value is real. Otherwise, the return value is complex.\n" + "\n" + "See Also\n" + "--------\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "elliprj : Symmetric elliptic integral of the third kind.\n" + "\n" + "Notes\n" + "-----\n" + "RC is a degenerate case of the symmetric integral RF: ``elliprc(x, y) ==\n" + "elliprf(x, y, y)``. It is an elementary function rather than an elliptic\n" + "integral.\n" + "\n" + "The code implements Carlson's algorithm based on the duplication theorems\n" + "and series expansion up to the 7th order. [2]_\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] B. C. Carlson, ed., Chapter 19 in \"Digital Library of Mathematical\n" + " Functions,\" NIST, US Dept. of Commerce.\n" + " https://dlmf.nist.gov/19.16.E6\n" + ".. [2] B. C. Carlson, \"Numerical computation of real or complex elliptic\n" + " integrals,\" Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.\n" + " https://arxiv.org/abs/math/9409227\n" + " https://doi.org/10.1007/BF02198293\n" + "\n" + "Examples\n" + "--------\n" + "Basic homogeneity property:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import elliprc\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> y = 5.\n" + ">>> scale = 0.3 + 0.4j\n" + ">>> elliprc(scale*x, scale*y)\n" + "(0.5484493976710874-0.4169557678995833j)\n" + "\n" + ">>> elliprc(x, y)/np.sqrt(scale)\n" + "(0.5484493976710874-0.41695576789958333j)\n" + "\n" + "When the two arguments coincide, the integral is particularly\n" + "simple:\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> elliprc(x, x)\n" + "(0.4299173120614631-0.3041729818745595j)\n" + "\n" + ">>> 1/np.sqrt(x)\n" + "(0.4299173120614631-0.30417298187455954j)\n" + "\n" + "Another simple case: the first argument vanishes:\n" + "\n" + ">>> y = 1.2 + 3.4j\n" + ">>> elliprc(0, y)\n" + "(0.6753125346116815-0.47779380263880866j)\n" + "\n" + ">>> np.pi/2/np.sqrt(y)\n" + "(0.6753125346116815-0.4777938026388088j)\n" + "\n" + "When `x` and `y` are both positive, we can express\n" + ":math:`R_C(x,y)` in terms of more elementary functions. For the\n" + "case :math:`0 \\le x < y`,\n" + "\n" + ">>> x = 3.2\n" + ">>> y = 6.\n" + ">>> elliprc(x, y)\n" + "0.44942991498453444\n" + "\n" + ">>> np.arctan(np.sqrt((y-x)/x))/np.sqrt(y-x)\n" + "0.44942991498453433\n" + "\n" + "And for the case :math:`0 \\le y < x`,\n" + "\n" + ">>> x = 6.\n" + ">>> y = 3.2\n" + ">>> elliprc(x,y)\n" + "0.4989837501576147\n" + "\n" + ">>> np.log((np.sqrt(x)+np.sqrt(x-y))/np.sqrt(y))/np.sqrt(x-y)\n" + "0.49898375015761476") +ufunc_elliprc_loops[0] = loop_d_dd__As_ff_f +ufunc_elliprc_loops[1] = loop_d_dd__As_dd_d +ufunc_elliprc_loops[2] = loop_D_DD__As_FF_F +ufunc_elliprc_loops[3] = loop_D_DD__As_DD_D +ufunc_elliprc_types[0] = NPY_FLOAT +ufunc_elliprc_types[1] = NPY_FLOAT +ufunc_elliprc_types[2] = NPY_FLOAT +ufunc_elliprc_types[3] = NPY_DOUBLE +ufunc_elliprc_types[4] = NPY_DOUBLE +ufunc_elliprc_types[5] = NPY_DOUBLE +ufunc_elliprc_types[6] = NPY_CFLOAT +ufunc_elliprc_types[7] = NPY_CFLOAT +ufunc_elliprc_types[8] = NPY_CFLOAT +ufunc_elliprc_types[9] = NPY_CDOUBLE +ufunc_elliprc_types[10] = NPY_CDOUBLE +ufunc_elliprc_types[11] = NPY_CDOUBLE +ufunc_elliprc_ptr[2*0] = scipy.special._ufuncs_cxx._export_fellint_RC +ufunc_elliprc_ptr[2*0+1] = ("elliprc") +ufunc_elliprc_ptr[2*1] = scipy.special._ufuncs_cxx._export_fellint_RC +ufunc_elliprc_ptr[2*1+1] = ("elliprc") +ufunc_elliprc_ptr[2*2] = scipy.special._ufuncs_cxx._export_cellint_RC +ufunc_elliprc_ptr[2*2+1] = ("elliprc") +ufunc_elliprc_ptr[2*3] = scipy.special._ufuncs_cxx._export_cellint_RC +ufunc_elliprc_ptr[2*3+1] = ("elliprc") +ufunc_elliprc_data[0] = &ufunc_elliprc_ptr[2*0] +ufunc_elliprc_data[1] = &ufunc_elliprc_ptr[2*1] +ufunc_elliprc_data[2] = &ufunc_elliprc_ptr[2*2] +ufunc_elliprc_data[3] = &ufunc_elliprc_ptr[2*3] +elliprc = np.PyUFunc_FromFuncAndData(ufunc_elliprc_loops, ufunc_elliprc_data, ufunc_elliprc_types, 4, 2, 1, 0, "elliprc", ufunc_elliprc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_elliprd_loops[4] +cdef void *ufunc_elliprd_ptr[8] +cdef void *ufunc_elliprd_data[4] +cdef char ufunc_elliprd_types[16] +cdef char *ufunc_elliprd_doc = ( + "elliprd(x, y, z, out=None)\n" + "\n" + "Symmetric elliptic integral of the second kind.\n" + "\n" + "The function RD is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " R_{\\mathrm{D}}(x, y, z) =\n" + " \\frac{3}{2} \\int_0^{+\\infty} [(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}\n" + " dt\n" + "\n" + "Parameters\n" + "----------\n" + "x, y, z : array_like\n" + " Real or complex input parameters. `x` or `y` can be any number in the\n" + " complex plane cut along the negative real axis, but at most one of them\n" + " can be zero, while `z` must be non-zero.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "R : scalar or ndarray\n" + " Value of the integral. If all of `x`, `y`, and `z` are real, the\n" + " return value is real. Otherwise, the return value is complex.\n" + "\n" + "See Also\n" + "--------\n" + "elliprc : Degenerate symmetric elliptic integral.\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "elliprj : Symmetric elliptic integral of the third kind.\n" + "\n" + "Notes\n" + "-----\n" + "RD is a degenerate case of the elliptic integral RJ: ``elliprd(x, y, z) ==\n" + "elliprj(x, y, z, z)``.\n" + "\n" + "The code implements Carlson's algorithm based on the duplication theorems\n" + "and series expansion up to the 7th order. [2]_\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] B. C. Carlson, ed., Chapter 19 in \"Digital Library of Mathematical\n" + " Functions,\" NIST, US Dept. of Commerce.\n" + " https://dlmf.nist.gov/19.16.E5\n" + ".. [2] B. C. Carlson, \"Numerical computation of real or complex elliptic\n" + " integrals,\" Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.\n" + " https://arxiv.org/abs/math/9409227\n" + " https://doi.org/10.1007/BF02198293\n" + "\n" + "Examples\n" + "--------\n" + "Basic homogeneity property:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import elliprd\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> y = 5.\n" + ">>> z = 6.\n" + ">>> scale = 0.3 + 0.4j\n" + ">>> elliprd(scale*x, scale*y, scale*z)\n" + "(-0.03703043835680379-0.24500934665683802j)\n" + "\n" + ">>> elliprd(x, y, z)*np.power(scale, -1.5)\n" + "(-0.0370304383568038-0.24500934665683805j)\n" + "\n" + "All three arguments coincide:\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> elliprd(x, x, x)\n" + "(-0.03986825876151896-0.14051741840449586j)\n" + "\n" + ">>> np.power(x, -1.5)\n" + "(-0.03986825876151894-0.14051741840449583j)\n" + "\n" + "The so-called \"second lemniscate constant\":\n" + "\n" + ">>> elliprd(0, 2, 1)/3\n" + "0.5990701173677961\n" + "\n" + ">>> from scipy.special import gamma\n" + ">>> gamma(0.75)**2/np.sqrt(2*np.pi)\n" + "0.5990701173677959") +ufunc_elliprd_loops[0] = loop_d_ddd__As_fff_f +ufunc_elliprd_loops[1] = loop_d_ddd__As_ddd_d +ufunc_elliprd_loops[2] = loop_D_DDD__As_FFF_F +ufunc_elliprd_loops[3] = loop_D_DDD__As_DDD_D +ufunc_elliprd_types[0] = NPY_FLOAT +ufunc_elliprd_types[1] = NPY_FLOAT +ufunc_elliprd_types[2] = NPY_FLOAT +ufunc_elliprd_types[3] = NPY_FLOAT +ufunc_elliprd_types[4] = NPY_DOUBLE +ufunc_elliprd_types[5] = NPY_DOUBLE +ufunc_elliprd_types[6] = NPY_DOUBLE +ufunc_elliprd_types[7] = NPY_DOUBLE +ufunc_elliprd_types[8] = NPY_CFLOAT +ufunc_elliprd_types[9] = NPY_CFLOAT +ufunc_elliprd_types[10] = NPY_CFLOAT +ufunc_elliprd_types[11] = NPY_CFLOAT +ufunc_elliprd_types[12] = NPY_CDOUBLE +ufunc_elliprd_types[13] = NPY_CDOUBLE +ufunc_elliprd_types[14] = NPY_CDOUBLE +ufunc_elliprd_types[15] = NPY_CDOUBLE +ufunc_elliprd_ptr[2*0] = scipy.special._ufuncs_cxx._export_fellint_RD +ufunc_elliprd_ptr[2*0+1] = ("elliprd") +ufunc_elliprd_ptr[2*1] = scipy.special._ufuncs_cxx._export_fellint_RD +ufunc_elliprd_ptr[2*1+1] = ("elliprd") +ufunc_elliprd_ptr[2*2] = scipy.special._ufuncs_cxx._export_cellint_RD +ufunc_elliprd_ptr[2*2+1] = ("elliprd") +ufunc_elliprd_ptr[2*3] = scipy.special._ufuncs_cxx._export_cellint_RD +ufunc_elliprd_ptr[2*3+1] = ("elliprd") +ufunc_elliprd_data[0] = &ufunc_elliprd_ptr[2*0] +ufunc_elliprd_data[1] = &ufunc_elliprd_ptr[2*1] +ufunc_elliprd_data[2] = &ufunc_elliprd_ptr[2*2] +ufunc_elliprd_data[3] = &ufunc_elliprd_ptr[2*3] +elliprd = np.PyUFunc_FromFuncAndData(ufunc_elliprd_loops, ufunc_elliprd_data, ufunc_elliprd_types, 4, 3, 1, 0, "elliprd", ufunc_elliprd_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_elliprf_loops[4] +cdef void *ufunc_elliprf_ptr[8] +cdef void *ufunc_elliprf_data[4] +cdef char ufunc_elliprf_types[16] +cdef char *ufunc_elliprf_doc = ( + "elliprf(x, y, z, out=None)\n" + "\n" + "Completely-symmetric elliptic integral of the first kind.\n" + "\n" + "The function RF is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " R_{\\mathrm{F}}(x, y, z) =\n" + " \\frac{1}{2} \\int_0^{+\\infty} [(t + x) (t + y) (t + z)]^{-1/2} dt\n" + "\n" + "Parameters\n" + "----------\n" + "x, y, z : array_like\n" + " Real or complex input parameters. `x`, `y`, or `z` can be any number in\n" + " the complex plane cut along the negative real axis, but at most one of\n" + " them can be zero.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "R : scalar or ndarray\n" + " Value of the integral. If all of `x`, `y`, and `z` are real, the return\n" + " value is real. Otherwise, the return value is complex.\n" + "\n" + "See Also\n" + "--------\n" + "elliprc : Degenerate symmetric integral.\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "elliprj : Symmetric elliptic integral of the third kind.\n" + "\n" + "Notes\n" + "-----\n" + "The code implements Carlson's algorithm based on the duplication theorems\n" + "and series expansion up to the 7th order (cf.:\n" + "https://dlmf.nist.gov/19.36.i) and the AGM algorithm for the complete\n" + "integral. [2]_\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] B. C. Carlson, ed., Chapter 19 in \"Digital Library of Mathematical\n" + " Functions,\" NIST, US Dept. of Commerce.\n" + " https://dlmf.nist.gov/19.16.E1\n" + ".. [2] B. C. Carlson, \"Numerical computation of real or complex elliptic\n" + " integrals,\" Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.\n" + " https://arxiv.org/abs/math/9409227\n" + " https://doi.org/10.1007/BF02198293\n" + "\n" + "Examples\n" + "--------\n" + "Basic homogeneity property:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import elliprf\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> y = 5.\n" + ">>> z = 6.\n" + ">>> scale = 0.3 + 0.4j\n" + ">>> elliprf(scale*x, scale*y, scale*z)\n" + "(0.5328051227278146-0.4008623567957094j)\n" + "\n" + ">>> elliprf(x, y, z)/np.sqrt(scale)\n" + "(0.5328051227278147-0.4008623567957095j)\n" + "\n" + "All three arguments coincide:\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> elliprf(x, x, x)\n" + "(0.42991731206146316-0.30417298187455954j)\n" + "\n" + ">>> 1/np.sqrt(x)\n" + "(0.4299173120614631-0.30417298187455954j)\n" + "\n" + "The so-called \"first lemniscate constant\":\n" + "\n" + ">>> elliprf(0, 1, 2)\n" + "1.3110287771460598\n" + "\n" + ">>> from scipy.special import gamma\n" + ">>> gamma(0.25)**2/(4*np.sqrt(2*np.pi))\n" + "1.3110287771460598") +ufunc_elliprf_loops[0] = loop_d_ddd__As_fff_f +ufunc_elliprf_loops[1] = loop_d_ddd__As_ddd_d +ufunc_elliprf_loops[2] = loop_D_DDD__As_FFF_F +ufunc_elliprf_loops[3] = loop_D_DDD__As_DDD_D +ufunc_elliprf_types[0] = NPY_FLOAT +ufunc_elliprf_types[1] = NPY_FLOAT +ufunc_elliprf_types[2] = NPY_FLOAT +ufunc_elliprf_types[3] = NPY_FLOAT +ufunc_elliprf_types[4] = NPY_DOUBLE +ufunc_elliprf_types[5] = NPY_DOUBLE +ufunc_elliprf_types[6] = NPY_DOUBLE +ufunc_elliprf_types[7] = NPY_DOUBLE +ufunc_elliprf_types[8] = NPY_CFLOAT +ufunc_elliprf_types[9] = NPY_CFLOAT +ufunc_elliprf_types[10] = NPY_CFLOAT +ufunc_elliprf_types[11] = NPY_CFLOAT +ufunc_elliprf_types[12] = NPY_CDOUBLE +ufunc_elliprf_types[13] = NPY_CDOUBLE +ufunc_elliprf_types[14] = NPY_CDOUBLE +ufunc_elliprf_types[15] = NPY_CDOUBLE +ufunc_elliprf_ptr[2*0] = scipy.special._ufuncs_cxx._export_fellint_RF +ufunc_elliprf_ptr[2*0+1] = ("elliprf") +ufunc_elliprf_ptr[2*1] = scipy.special._ufuncs_cxx._export_fellint_RF +ufunc_elliprf_ptr[2*1+1] = ("elliprf") +ufunc_elliprf_ptr[2*2] = scipy.special._ufuncs_cxx._export_cellint_RF +ufunc_elliprf_ptr[2*2+1] = ("elliprf") +ufunc_elliprf_ptr[2*3] = scipy.special._ufuncs_cxx._export_cellint_RF +ufunc_elliprf_ptr[2*3+1] = ("elliprf") +ufunc_elliprf_data[0] = &ufunc_elliprf_ptr[2*0] +ufunc_elliprf_data[1] = &ufunc_elliprf_ptr[2*1] +ufunc_elliprf_data[2] = &ufunc_elliprf_ptr[2*2] +ufunc_elliprf_data[3] = &ufunc_elliprf_ptr[2*3] +elliprf = np.PyUFunc_FromFuncAndData(ufunc_elliprf_loops, ufunc_elliprf_data, ufunc_elliprf_types, 4, 3, 1, 0, "elliprf", ufunc_elliprf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_elliprg_loops[4] +cdef void *ufunc_elliprg_ptr[8] +cdef void *ufunc_elliprg_data[4] +cdef char ufunc_elliprg_types[16] +cdef char *ufunc_elliprg_doc = ( + "elliprg(x, y, z, out=None)\n" + "\n" + "Completely-symmetric elliptic integral of the second kind.\n" + "\n" + "The function RG is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " R_{\\mathrm{G}}(x, y, z) =\n" + " \\frac{1}{4} \\int_0^{+\\infty} [(t + x) (t + y) (t + z)]^{-1/2}\n" + " \\left(\\frac{x}{t + x} + \\frac{y}{t + y} + \\frac{z}{t + z}\\right) t\n" + " dt\n" + "\n" + "Parameters\n" + "----------\n" + "x, y, z : array_like\n" + " Real or complex input parameters. `x`, `y`, or `z` can be any number in\n" + " the complex plane cut along the negative real axis.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "R : scalar or ndarray\n" + " Value of the integral. If all of `x`, `y`, and `z` are real, the return\n" + " value is real. Otherwise, the return value is complex.\n" + "\n" + "See Also\n" + "--------\n" + "elliprc : Degenerate symmetric integral.\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "elliprj : Symmetric elliptic integral of the third kind.\n" + "\n" + "Notes\n" + "-----\n" + "The implementation uses the relation [1]_\n" + "\n" + ".. math::\n" + "\n" + " 2 R_{\\mathrm{G}}(x, y, z) =\n" + " z R_{\\mathrm{F}}(x, y, z) -\n" + " \\frac{1}{3} (x - z) (y - z) R_{\\mathrm{D}}(x, y, z) +\n" + " \\sqrt{\\frac{x y}{z}}\n" + "\n" + "and the symmetry of `x`, `y`, `z` when at least one non-zero parameter can\n" + "be chosen as the pivot. When one of the arguments is close to zero, the AGM\n" + "method is applied instead. Other special cases are computed following Ref.\n" + "[2]_\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] B. C. Carlson, \"Numerical computation of real or complex elliptic\n" + " integrals,\" Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.\n" + " https://arxiv.org/abs/math/9409227\n" + " https://doi.org/10.1007/BF02198293\n" + ".. [2] B. C. Carlson, ed., Chapter 19 in \"Digital Library of Mathematical\n" + " Functions,\" NIST, US Dept. of Commerce.\n" + " https://dlmf.nist.gov/19.16.E1\n" + " https://dlmf.nist.gov/19.20.ii\n" + "\n" + "Examples\n" + "--------\n" + "Basic homogeneity property:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import elliprg\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> y = 5.\n" + ">>> z = 6.\n" + ">>> scale = 0.3 + 0.4j\n" + ">>> elliprg(scale*x, scale*y, scale*z)\n" + "(1.195936862005246+0.8470988320464167j)\n" + "\n" + ">>> elliprg(x, y, z)*np.sqrt(scale)\n" + "(1.195936862005246+0.8470988320464165j)\n" + "\n" + "Simplifications:\n" + "\n" + ">>> elliprg(0, y, y)\n" + "1.756203682760182\n" + "\n" + ">>> 0.25*np.pi*np.sqrt(y)\n" + "1.7562036827601817\n" + "\n" + ">>> elliprg(0, 0, z)\n" + "1.224744871391589\n" + "\n" + ">>> 0.5*np.sqrt(z)\n" + "1.224744871391589\n" + "\n" + "The surface area of a triaxial ellipsoid with semiaxes ``a``, ``b``, and\n" + "``c`` is given by\n" + "\n" + ".. math::\n" + "\n" + " S = 4 \\pi a b c R_{\\mathrm{G}}(1 / a^2, 1 / b^2, 1 / c^2).\n" + "\n" + ">>> def ellipsoid_area(a, b, c):\n" + "... r = 4.0 * np.pi * a * b * c\n" + "... return r * elliprg(1.0 / (a * a), 1.0 / (b * b), 1.0 / (c * c))\n" + ">>> print(ellipsoid_area(1, 3, 5))\n" + "108.62688289491807") +ufunc_elliprg_loops[0] = loop_d_ddd__As_fff_f +ufunc_elliprg_loops[1] = loop_d_ddd__As_ddd_d +ufunc_elliprg_loops[2] = loop_D_DDD__As_FFF_F +ufunc_elliprg_loops[3] = loop_D_DDD__As_DDD_D +ufunc_elliprg_types[0] = NPY_FLOAT +ufunc_elliprg_types[1] = NPY_FLOAT +ufunc_elliprg_types[2] = NPY_FLOAT +ufunc_elliprg_types[3] = NPY_FLOAT +ufunc_elliprg_types[4] = NPY_DOUBLE +ufunc_elliprg_types[5] = NPY_DOUBLE +ufunc_elliprg_types[6] = NPY_DOUBLE +ufunc_elliprg_types[7] = NPY_DOUBLE +ufunc_elliprg_types[8] = NPY_CFLOAT +ufunc_elliprg_types[9] = NPY_CFLOAT +ufunc_elliprg_types[10] = NPY_CFLOAT +ufunc_elliprg_types[11] = NPY_CFLOAT +ufunc_elliprg_types[12] = NPY_CDOUBLE +ufunc_elliprg_types[13] = NPY_CDOUBLE +ufunc_elliprg_types[14] = NPY_CDOUBLE +ufunc_elliprg_types[15] = NPY_CDOUBLE +ufunc_elliprg_ptr[2*0] = scipy.special._ufuncs_cxx._export_fellint_RG +ufunc_elliprg_ptr[2*0+1] = ("elliprg") +ufunc_elliprg_ptr[2*1] = scipy.special._ufuncs_cxx._export_fellint_RG +ufunc_elliprg_ptr[2*1+1] = ("elliprg") +ufunc_elliprg_ptr[2*2] = scipy.special._ufuncs_cxx._export_cellint_RG +ufunc_elliprg_ptr[2*2+1] = ("elliprg") +ufunc_elliprg_ptr[2*3] = scipy.special._ufuncs_cxx._export_cellint_RG +ufunc_elliprg_ptr[2*3+1] = ("elliprg") +ufunc_elliprg_data[0] = &ufunc_elliprg_ptr[2*0] +ufunc_elliprg_data[1] = &ufunc_elliprg_ptr[2*1] +ufunc_elliprg_data[2] = &ufunc_elliprg_ptr[2*2] +ufunc_elliprg_data[3] = &ufunc_elliprg_ptr[2*3] +elliprg = np.PyUFunc_FromFuncAndData(ufunc_elliprg_loops, ufunc_elliprg_data, ufunc_elliprg_types, 4, 3, 1, 0, "elliprg", ufunc_elliprg_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_elliprj_loops[4] +cdef void *ufunc_elliprj_ptr[8] +cdef void *ufunc_elliprj_data[4] +cdef char ufunc_elliprj_types[20] +cdef char *ufunc_elliprj_doc = ( + "elliprj(x, y, z, p, out=None)\n" + "\n" + "Symmetric elliptic integral of the third kind.\n" + "\n" + "The function RJ is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " R_{\\mathrm{J}}(x, y, z, p) =\n" + " \\frac{3}{2} \\int_0^{+\\infty} [(t + x) (t + y) (t + z)]^{-1/2}\n" + " (t + p)^{-1} dt\n" + "\n" + ".. warning::\n" + " This function should be considered experimental when the inputs are\n" + " unbalanced. Check correctness with another independent implementation.\n" + "\n" + "Parameters\n" + "----------\n" + "x, y, z, p : array_like\n" + " Real or complex input parameters. `x`, `y`, or `z` are numbers in\n" + " the complex plane cut along the negative real axis (subject to further\n" + " constraints, see Notes), and at most one of them can be zero. `p` must\n" + " be non-zero.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "R : scalar or ndarray\n" + " Value of the integral. If all of `x`, `y`, `z`, and `p` are real, the\n" + " return value is real. Otherwise, the return value is complex.\n" + "\n" + " If `p` is real and negative, while `x`, `y`, and `z` are real,\n" + " non-negative, and at most one of them is zero, the Cauchy principal\n" + " value is returned. [1]_ [2]_\n" + "\n" + "See Also\n" + "--------\n" + "elliprc : Degenerate symmetric integral.\n" + "elliprd : Symmetric elliptic integral of the second kind.\n" + "elliprf : Completely-symmetric elliptic integral of the first kind.\n" + "elliprg : Completely-symmetric elliptic integral of the second kind.\n" + "\n" + "Notes\n" + "-----\n" + "The code implements Carlson's algorithm based on the duplication theorems\n" + "and series expansion up to the 7th order. [3]_ The algorithm is slightly\n" + "different from its earlier incarnation as it appears in [1]_, in that the\n" + "call to `elliprc` (or ``atan``/``atanh``, see [4]_) is no longer needed in\n" + "the inner loop. Asymptotic approximations are used where arguments differ\n" + "widely in the order of magnitude. [5]_\n" + "\n" + "The input values are subject to certain sufficient but not necessary\n" + "constraints when input arguments are complex. Notably, ``x``, ``y``, and\n" + "``z`` must have non-negative real parts, unless two of them are\n" + "non-negative and complex-conjugates to each other while the other is a real\n" + "non-negative number. [1]_ If the inputs do not satisfy the sufficient\n" + "condition described in Ref. [1]_ they are rejected outright with the output\n" + "set to NaN.\n" + "\n" + "In the case where one of ``x``, ``y``, and ``z`` is equal to ``p``, the\n" + "function ``elliprd`` should be preferred because of its less restrictive\n" + "domain.\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] B. C. Carlson, \"Numerical computation of real or complex elliptic\n" + " integrals,\" Numer. Algorithm, vol. 10, no. 1, pp. 13-26, 1995.\n" + " https://arxiv.org/abs/math/9409227\n" + " https://doi.org/10.1007/BF02198293\n" + ".. [2] B. C. Carlson, ed., Chapter 19 in \"Digital Library of Mathematical\n" + " Functions,\" NIST, US Dept. of Commerce.\n" + " https://dlmf.nist.gov/19.20.iii\n" + ".. [3] B. C. Carlson, J. FitzSimmons, \"Reduction Theorems for Elliptic\n" + " Integrands with the Square Root of Two Quadratic Factors,\" J.\n" + " Comput. Appl. Math., vol. 118, nos. 1-2, pp. 71-85, 2000.\n" + " https://doi.org/10.1016/S0377-0427(00)00282-X\n" + ".. [4] F. Johansson, \"Numerical Evaluation of Elliptic Functions, Elliptic\n" + " Integrals and Modular Forms,\" in J. Blumlein, C. Schneider, P.\n" + " Paule, eds., \"Elliptic Integrals, Elliptic Functions and Modular\n" + " Forms in Quantum Field Theory,\" pp. 269-293, 2019 (Cham,\n" + " Switzerland: Springer Nature Switzerland)\n" + " https://arxiv.org/abs/1806.06725\n" + " https://doi.org/10.1007/978-3-030-04480-0\n" + ".. [5] B. C. Carlson, J. L. Gustafson, \"Asymptotic Approximations for\n" + " Symmetric Elliptic Integrals,\" SIAM J. Math. Anls., vol. 25, no. 2,\n" + " pp. 288-303, 1994.\n" + " https://arxiv.org/abs/math/9310223\n" + " https://doi.org/10.1137/S0036141092228477\n" + "\n" + "Examples\n" + "--------\n" + "Basic homogeneity property:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import elliprj\n" + "\n" + ">>> x = 1.2 + 3.4j\n" + ">>> y = 5.\n" + ">>> z = 6.\n" + ">>> p = 7.\n" + ">>> scale = 0.3 - 0.4j\n" + ">>> elliprj(scale*x, scale*y, scale*z, scale*p)\n" + "(0.10834905565679157+0.19694950747103812j)\n" + "\n" + ">>> elliprj(x, y, z, p)*np.power(scale, -1.5)\n" + "(0.10834905565679556+0.19694950747103854j)\n" + "\n" + "Reduction to simpler elliptic integral:\n" + "\n" + ">>> elliprj(x, y, z, z)\n" + "(0.08288462362195129-0.028376809745123258j)\n" + "\n" + ">>> from scipy.special import elliprd\n" + ">>> elliprd(x, y, z)\n" + "(0.08288462362195136-0.028376809745123296j)\n" + "\n" + "All arguments coincide:\n" + "\n" + ">>> elliprj(x, x, x, x)\n" + "(-0.03986825876151896-0.14051741840449586j)\n" + "\n" + ">>> np.power(x, -1.5)\n" + "(-0.03986825876151894-0.14051741840449583j)") +ufunc_elliprj_loops[0] = loop_d_dddd__As_ffff_f +ufunc_elliprj_loops[1] = loop_d_dddd__As_dddd_d +ufunc_elliprj_loops[2] = loop_D_DDDD__As_FFFF_F +ufunc_elliprj_loops[3] = loop_D_DDDD__As_DDDD_D +ufunc_elliprj_types[0] = NPY_FLOAT +ufunc_elliprj_types[1] = NPY_FLOAT +ufunc_elliprj_types[2] = NPY_FLOAT +ufunc_elliprj_types[3] = NPY_FLOAT +ufunc_elliprj_types[4] = NPY_FLOAT +ufunc_elliprj_types[5] = NPY_DOUBLE +ufunc_elliprj_types[6] = NPY_DOUBLE +ufunc_elliprj_types[7] = NPY_DOUBLE +ufunc_elliprj_types[8] = NPY_DOUBLE +ufunc_elliprj_types[9] = NPY_DOUBLE +ufunc_elliprj_types[10] = NPY_CFLOAT +ufunc_elliprj_types[11] = NPY_CFLOAT +ufunc_elliprj_types[12] = NPY_CFLOAT +ufunc_elliprj_types[13] = NPY_CFLOAT +ufunc_elliprj_types[14] = NPY_CFLOAT +ufunc_elliprj_types[15] = NPY_CDOUBLE +ufunc_elliprj_types[16] = NPY_CDOUBLE +ufunc_elliprj_types[17] = NPY_CDOUBLE +ufunc_elliprj_types[18] = NPY_CDOUBLE +ufunc_elliprj_types[19] = NPY_CDOUBLE +ufunc_elliprj_ptr[2*0] = scipy.special._ufuncs_cxx._export_fellint_RJ +ufunc_elliprj_ptr[2*0+1] = ("elliprj") +ufunc_elliprj_ptr[2*1] = scipy.special._ufuncs_cxx._export_fellint_RJ +ufunc_elliprj_ptr[2*1+1] = ("elliprj") +ufunc_elliprj_ptr[2*2] = scipy.special._ufuncs_cxx._export_cellint_RJ +ufunc_elliprj_ptr[2*2+1] = ("elliprj") +ufunc_elliprj_ptr[2*3] = scipy.special._ufuncs_cxx._export_cellint_RJ +ufunc_elliprj_ptr[2*3+1] = ("elliprj") +ufunc_elliprj_data[0] = &ufunc_elliprj_ptr[2*0] +ufunc_elliprj_data[1] = &ufunc_elliprj_ptr[2*1] +ufunc_elliprj_data[2] = &ufunc_elliprj_ptr[2*2] +ufunc_elliprj_data[3] = &ufunc_elliprj_ptr[2*3] +elliprj = np.PyUFunc_FromFuncAndData(ufunc_elliprj_loops, ufunc_elliprj_data, ufunc_elliprj_types, 4, 4, 1, 0, "elliprj", ufunc_elliprj_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_entr_loops[2] +cdef void *ufunc_entr_ptr[4] +cdef void *ufunc_entr_data[2] +cdef char ufunc_entr_types[4] +cdef char *ufunc_entr_doc = ( + "entr(x, out=None)\n" + "\n" + "Elementwise function for computing entropy.\n" + "\n" + ".. math:: \\text{entr}(x) = \\begin{cases} - x \\log(x) & x > 0 \\\\ 0 & x = 0\n" + " \\\\ -\\infty & \\text{otherwise} \\end{cases}\n" + "\n" + "Parameters\n" + "----------\n" + "x : ndarray\n" + " Input array.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "res : scalar or ndarray\n" + " The value of the elementwise entropy function at the given points `x`.\n" + "\n" + "See Also\n" + "--------\n" + "kl_div, rel_entr, scipy.stats.entropy\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 0.15.0\n" + "\n" + "This function is concave.\n" + "\n" + "The origin of this function is in convex programming; see [1]_.\n" + "Given a probability distribution :math:`p_1, \\ldots, p_n`,\n" + "the definition of entropy in the context of *information theory* is\n" + "\n" + ".. math::\n" + "\n" + " \\sum_{i = 1}^n \\mathrm{entr}(p_i).\n" + "\n" + "To compute the latter quantity, use `scipy.stats.entropy`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.\n" + " Cambridge University Press, 2004.\n" + " :doi:`https://doi.org/10.1017/CBO9780511804441`") +ufunc_entr_loops[0] = loop_d_d__As_f_f +ufunc_entr_loops[1] = loop_d_d__As_d_d +ufunc_entr_types[0] = NPY_FLOAT +ufunc_entr_types[1] = NPY_FLOAT +ufunc_entr_types[2] = NPY_DOUBLE +ufunc_entr_types[3] = NPY_DOUBLE +ufunc_entr_ptr[2*0] = _func_entr +ufunc_entr_ptr[2*0+1] = ("entr") +ufunc_entr_ptr[2*1] = _func_entr +ufunc_entr_ptr[2*1+1] = ("entr") +ufunc_entr_data[0] = &ufunc_entr_ptr[2*0] +ufunc_entr_data[1] = &ufunc_entr_ptr[2*1] +entr = np.PyUFunc_FromFuncAndData(ufunc_entr_loops, ufunc_entr_data, ufunc_entr_types, 2, 1, 1, 0, "entr", ufunc_entr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erf_loops[4] +cdef void *ufunc_erf_ptr[8] +cdef void *ufunc_erf_data[4] +cdef char ufunc_erf_types[8] +cdef char *ufunc_erf_doc = ( + "erf(z, out=None)\n" + "\n" + "Returns the error function of complex argument.\n" + "\n" + "It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : ndarray\n" + " Input array.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "res : scalar or ndarray\n" + " The values of the error function at the given points `x`.\n" + "\n" + "See Also\n" + "--------\n" + "erfc, erfinv, erfcinv, wofz, erfcx, erfi\n" + "\n" + "Notes\n" + "-----\n" + "The cumulative of the unit normal distribution is given by\n" + "``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``.\n" + "\n" + "References\n" + "----------\n" + ".. [1] https://en.wikipedia.org/wiki/Error_function\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover,\n" + " 1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm\n" + ".. [3] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-3, 3)\n" + ">>> plt.plot(x, special.erf(x))\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.ylabel('$erf(x)$')\n" + ">>> plt.show()") +ufunc_erf_loops[0] = loop_d_d__As_f_f +ufunc_erf_loops[1] = loop_d_d__As_d_d +ufunc_erf_loops[2] = loop_D_D__As_F_F +ufunc_erf_loops[3] = loop_D_D__As_D_D +ufunc_erf_types[0] = NPY_FLOAT +ufunc_erf_types[1] = NPY_FLOAT +ufunc_erf_types[2] = NPY_DOUBLE +ufunc_erf_types[3] = NPY_DOUBLE +ufunc_erf_types[4] = NPY_CFLOAT +ufunc_erf_types[5] = NPY_CFLOAT +ufunc_erf_types[6] = NPY_CDOUBLE +ufunc_erf_types[7] = NPY_CDOUBLE +ufunc_erf_ptr[2*0] = _func_erf +ufunc_erf_ptr[2*0+1] = ("erf") +ufunc_erf_ptr[2*1] = _func_erf +ufunc_erf_ptr[2*1+1] = ("erf") +ufunc_erf_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_erf +ufunc_erf_ptr[2*2+1] = ("erf") +ufunc_erf_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_erf +ufunc_erf_ptr[2*3+1] = ("erf") +ufunc_erf_data[0] = &ufunc_erf_ptr[2*0] +ufunc_erf_data[1] = &ufunc_erf_ptr[2*1] +ufunc_erf_data[2] = &ufunc_erf_ptr[2*2] +ufunc_erf_data[3] = &ufunc_erf_ptr[2*3] +erf = np.PyUFunc_FromFuncAndData(ufunc_erf_loops, ufunc_erf_data, ufunc_erf_types, 4, 1, 1, 0, "erf", ufunc_erf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erfc_loops[4] +cdef void *ufunc_erfc_ptr[8] +cdef void *ufunc_erfc_data[4] +cdef char ufunc_erfc_types[8] +cdef char *ufunc_erfc_doc = ( + "erfc(x, out=None)\n" + "\n" + "Complementary error function, ``1 - erf(x)``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the complementary error function\n" + "\n" + "See Also\n" + "--------\n" + "erf, erfi, erfcx, dawsn, wofz\n" + "\n" + "References\n" + "----------\n" + ".. [1] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-3, 3)\n" + ">>> plt.plot(x, special.erfc(x))\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.ylabel('$erfc(x)$')\n" + ">>> plt.show()") +ufunc_erfc_loops[0] = loop_d_d__As_f_f +ufunc_erfc_loops[1] = loop_d_d__As_d_d +ufunc_erfc_loops[2] = loop_D_D__As_F_F +ufunc_erfc_loops[3] = loop_D_D__As_D_D +ufunc_erfc_types[0] = NPY_FLOAT +ufunc_erfc_types[1] = NPY_FLOAT +ufunc_erfc_types[2] = NPY_DOUBLE +ufunc_erfc_types[3] = NPY_DOUBLE +ufunc_erfc_types[4] = NPY_CFLOAT +ufunc_erfc_types[5] = NPY_CFLOAT +ufunc_erfc_types[6] = NPY_CDOUBLE +ufunc_erfc_types[7] = NPY_CDOUBLE +ufunc_erfc_ptr[2*0] = _func_erfc +ufunc_erfc_ptr[2*0+1] = ("erfc") +ufunc_erfc_ptr[2*1] = _func_erfc +ufunc_erfc_ptr[2*1+1] = ("erfc") +ufunc_erfc_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_erfc_complex +ufunc_erfc_ptr[2*2+1] = ("erfc") +ufunc_erfc_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_erfc_complex +ufunc_erfc_ptr[2*3+1] = ("erfc") +ufunc_erfc_data[0] = &ufunc_erfc_ptr[2*0] +ufunc_erfc_data[1] = &ufunc_erfc_ptr[2*1] +ufunc_erfc_data[2] = &ufunc_erfc_ptr[2*2] +ufunc_erfc_data[3] = &ufunc_erfc_ptr[2*3] +erfc = np.PyUFunc_FromFuncAndData(ufunc_erfc_loops, ufunc_erfc_data, ufunc_erfc_types, 4, 1, 1, 0, "erfc", ufunc_erfc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erfcinv_loops[2] +cdef void *ufunc_erfcinv_ptr[4] +cdef void *ufunc_erfcinv_data[2] +cdef char ufunc_erfcinv_types[4] +cdef char *ufunc_erfcinv_doc = ( + "erfcinv(y, out=None)\n" + "\n" + "Inverse of the complementary error function.\n" + "\n" + "Computes the inverse of the complementary error function.\n" + "\n" + "In the complex domain, there is no unique complex number w satisfying\n" + "erfc(w)=z. This indicates a true inverse function would be multivalued.\n" + "When the domain restricts to the real, 0 < x < 2, there is a unique real\n" + "number satisfying erfc(erfcinv(x)) = erfcinv(erfc(x)).\n" + "\n" + "It is related to inverse of the error function by erfcinv(1-x) = erfinv(x)\n" + "\n" + "Parameters\n" + "----------\n" + "y : ndarray\n" + " Argument at which to evaluate. Domain: [0, 2]\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "erfcinv : scalar or ndarray\n" + " The inverse of erfc of y, element-wise\n" + "\n" + "See Also\n" + "--------\n" + "erf : Error function of a complex argument\n" + "erfc : Complementary error function, ``1 - erf(x)``\n" + "erfinv : Inverse of the error function\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> from scipy.special import erfcinv\n" + "\n" + ">>> erfcinv(0.5)\n" + "0.4769362762044699\n" + "\n" + ">>> y = np.linspace(0.0, 2.0, num=11)\n" + ">>> erfcinv(y)\n" + "array([ inf, 0.9061938 , 0.59511608, 0.37080716, 0.17914345,\n" + " -0. , -0.17914345, -0.37080716, -0.59511608, -0.9061938 ,\n" + " -inf])\n" + "\n" + "Plot the function:\n" + "\n" + ">>> y = np.linspace(0, 2, 200)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(y, erfcinv(y))\n" + ">>> ax.grid(True)\n" + ">>> ax.set_xlabel('y')\n" + ">>> ax.set_title('erfcinv(y)')\n" + ">>> plt.show()") +ufunc_erfcinv_loops[0] = loop_d_d__As_f_f +ufunc_erfcinv_loops[1] = loop_d_d__As_d_d +ufunc_erfcinv_types[0] = NPY_FLOAT +ufunc_erfcinv_types[1] = NPY_FLOAT +ufunc_erfcinv_types[2] = NPY_DOUBLE +ufunc_erfcinv_types[3] = NPY_DOUBLE +ufunc_erfcinv_ptr[2*0] = _func_erfcinv +ufunc_erfcinv_ptr[2*0+1] = ("erfcinv") +ufunc_erfcinv_ptr[2*1] = _func_erfcinv +ufunc_erfcinv_ptr[2*1+1] = ("erfcinv") +ufunc_erfcinv_data[0] = &ufunc_erfcinv_ptr[2*0] +ufunc_erfcinv_data[1] = &ufunc_erfcinv_ptr[2*1] +erfcinv = np.PyUFunc_FromFuncAndData(ufunc_erfcinv_loops, ufunc_erfcinv_data, ufunc_erfcinv_types, 2, 1, 1, 0, "erfcinv", ufunc_erfcinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erfcx_loops[4] +cdef void *ufunc_erfcx_ptr[8] +cdef void *ufunc_erfcx_data[4] +cdef char ufunc_erfcx_types[8] +cdef char *ufunc_erfcx_doc = ( + "erfcx(x, out=None)\n" + "\n" + "Scaled complementary error function, ``exp(x**2) * erfc(x)``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the scaled complementary error function\n" + "\n" + "\n" + "See Also\n" + "--------\n" + "erf, erfc, erfi, dawsn, wofz\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.12.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-3, 3)\n" + ">>> plt.plot(x, special.erfcx(x))\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.ylabel('$erfcx(x)$')\n" + ">>> plt.show()") +ufunc_erfcx_loops[0] = loop_d_d__As_f_f +ufunc_erfcx_loops[1] = loop_d_d__As_d_d +ufunc_erfcx_loops[2] = loop_D_D__As_F_F +ufunc_erfcx_loops[3] = loop_D_D__As_D_D +ufunc_erfcx_types[0] = NPY_FLOAT +ufunc_erfcx_types[1] = NPY_FLOAT +ufunc_erfcx_types[2] = NPY_DOUBLE +ufunc_erfcx_types[3] = NPY_DOUBLE +ufunc_erfcx_types[4] = NPY_CFLOAT +ufunc_erfcx_types[5] = NPY_CFLOAT +ufunc_erfcx_types[6] = NPY_CDOUBLE +ufunc_erfcx_types[7] = NPY_CDOUBLE +ufunc_erfcx_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_erfcx +ufunc_erfcx_ptr[2*0+1] = ("erfcx") +ufunc_erfcx_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_erfcx +ufunc_erfcx_ptr[2*1+1] = ("erfcx") +ufunc_erfcx_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_erfcx_complex +ufunc_erfcx_ptr[2*2+1] = ("erfcx") +ufunc_erfcx_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_erfcx_complex +ufunc_erfcx_ptr[2*3+1] = ("erfcx") +ufunc_erfcx_data[0] = &ufunc_erfcx_ptr[2*0] +ufunc_erfcx_data[1] = &ufunc_erfcx_ptr[2*1] +ufunc_erfcx_data[2] = &ufunc_erfcx_ptr[2*2] +ufunc_erfcx_data[3] = &ufunc_erfcx_ptr[2*3] +erfcx = np.PyUFunc_FromFuncAndData(ufunc_erfcx_loops, ufunc_erfcx_data, ufunc_erfcx_types, 4, 1, 1, 0, "erfcx", ufunc_erfcx_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erfi_loops[4] +cdef void *ufunc_erfi_ptr[8] +cdef void *ufunc_erfi_data[4] +cdef char ufunc_erfi_types[8] +cdef char *ufunc_erfi_doc = ( + "erfi(z, out=None)\n" + "\n" + "Imaginary error function, ``-i erf(i z)``.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the imaginary error function\n" + "\n" + "See Also\n" + "--------\n" + "erf, erfc, erfcx, dawsn, wofz\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.12.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-3, 3)\n" + ">>> plt.plot(x, special.erfi(x))\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.ylabel('$erfi(x)$')\n" + ">>> plt.show()") +ufunc_erfi_loops[0] = loop_d_d__As_f_f +ufunc_erfi_loops[1] = loop_d_d__As_d_d +ufunc_erfi_loops[2] = loop_D_D__As_F_F +ufunc_erfi_loops[3] = loop_D_D__As_D_D +ufunc_erfi_types[0] = NPY_FLOAT +ufunc_erfi_types[1] = NPY_FLOAT +ufunc_erfi_types[2] = NPY_DOUBLE +ufunc_erfi_types[3] = NPY_DOUBLE +ufunc_erfi_types[4] = NPY_CFLOAT +ufunc_erfi_types[5] = NPY_CFLOAT +ufunc_erfi_types[6] = NPY_CDOUBLE +ufunc_erfi_types[7] = NPY_CDOUBLE +ufunc_erfi_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_erfi +ufunc_erfi_ptr[2*0+1] = ("erfi") +ufunc_erfi_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_erfi +ufunc_erfi_ptr[2*1+1] = ("erfi") +ufunc_erfi_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_erfi_complex +ufunc_erfi_ptr[2*2+1] = ("erfi") +ufunc_erfi_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_erfi_complex +ufunc_erfi_ptr[2*3+1] = ("erfi") +ufunc_erfi_data[0] = &ufunc_erfi_ptr[2*0] +ufunc_erfi_data[1] = &ufunc_erfi_ptr[2*1] +ufunc_erfi_data[2] = &ufunc_erfi_ptr[2*2] +ufunc_erfi_data[3] = &ufunc_erfi_ptr[2*3] +erfi = np.PyUFunc_FromFuncAndData(ufunc_erfi_loops, ufunc_erfi_data, ufunc_erfi_types, 4, 1, 1, 0, "erfi", ufunc_erfi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_erfinv_loops[2] +cdef void *ufunc_erfinv_ptr[4] +cdef void *ufunc_erfinv_data[2] +cdef char ufunc_erfinv_types[4] +cdef char *ufunc_erfinv_doc = ( + "erfinv(y, out=None)\n" + "\n" + "Inverse of the error function.\n" + "\n" + "Computes the inverse of the error function.\n" + "\n" + "In the complex domain, there is no unique complex number w satisfying\n" + "erf(w)=z. This indicates a true inverse function would be multivalued.\n" + "When the domain restricts to the real, -1 < x < 1, there is a unique real\n" + "number satisfying erf(erfinv(x)) = x.\n" + "\n" + "Parameters\n" + "----------\n" + "y : ndarray\n" + " Argument at which to evaluate. Domain: [-1, 1]\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "erfinv : scalar or ndarray\n" + " The inverse of erf of y, element-wise\n" + "\n" + "See Also\n" + "--------\n" + "erf : Error function of a complex argument\n" + "erfc : Complementary error function, ``1 - erf(x)``\n" + "erfcinv : Inverse of the complementary error function\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> from scipy.special import erfinv, erf\n" + "\n" + ">>> erfinv(0.5)\n" + "0.4769362762044699\n" + "\n" + ">>> y = np.linspace(-1.0, 1.0, num=9)\n" + ">>> x = erfinv(y)\n" + ">>> x\n" + "array([ -inf, -0.81341985, -0.47693628, -0.22531206, 0. ,\n" + " 0.22531206, 0.47693628, 0.81341985, inf])\n" + "\n" + "Verify that ``erf(erfinv(y))`` is ``y``.\n" + "\n" + ">>> erf(x)\n" + "array([-1. , -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. ])\n" + "\n" + "Plot the function:\n" + "\n" + ">>> y = np.linspace(-1, 1, 200)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(y, erfinv(y))\n" + ">>> ax.grid(True)\n" + ">>> ax.set_xlabel('y')\n" + ">>> ax.set_title('erfinv(y)')\n" + ">>> plt.show()") +ufunc_erfinv_loops[0] = loop_f_f__As_f_f +ufunc_erfinv_loops[1] = loop_d_d__As_d_d +ufunc_erfinv_types[0] = NPY_FLOAT +ufunc_erfinv_types[1] = NPY_FLOAT +ufunc_erfinv_types[2] = NPY_DOUBLE +ufunc_erfinv_types[3] = NPY_DOUBLE +ufunc_erfinv_ptr[2*0] = scipy.special._ufuncs_cxx._export_erfinv_float +ufunc_erfinv_ptr[2*0+1] = ("erfinv") +ufunc_erfinv_ptr[2*1] = scipy.special._ufuncs_cxx._export_erfinv_double +ufunc_erfinv_ptr[2*1+1] = ("erfinv") +ufunc_erfinv_data[0] = &ufunc_erfinv_ptr[2*0] +ufunc_erfinv_data[1] = &ufunc_erfinv_ptr[2*1] +erfinv = np.PyUFunc_FromFuncAndData(ufunc_erfinv_loops, ufunc_erfinv_data, ufunc_erfinv_types, 2, 1, 1, 0, "erfinv", ufunc_erfinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_chebyc_loops[5] +cdef void *ufunc_eval_chebyc_ptr[10] +cdef void *ufunc_eval_chebyc_data[5] +cdef char ufunc_eval_chebyc_types[15] +cdef char *ufunc_eval_chebyc_doc = ( + "eval_chebyc(n, x, out=None)\n" + "\n" + "Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a\n" + "point.\n" + "\n" + "These polynomials are defined as\n" + "\n" + ".. math::\n" + "\n" + " C_n(x) = 2 T_n(x/2)\n" + "\n" + "where :math:`T_n` is a Chebyshev polynomial of the first kind. See\n" + "22.5.11 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to `eval_chebyt`.\n" + "x : array_like\n" + " Points at which to evaluate the Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "C : scalar or ndarray\n" + " Values of the Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_chebyc : roots and quadrature weights of Chebyshev\n" + " polynomials of the first kind on [-2, 2]\n" + "chebyc : Chebyshev polynomial object\n" + "numpy.polynomial.chebyshev.Chebyshev : Chebyshev series\n" + "eval_chebyt : evaluate Chebycshev polynomials of the first kind\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "They are a scaled version of the Chebyshev polynomials of the\n" + "first kind.\n" + "\n" + ">>> x = np.linspace(-2, 2, 6)\n" + ">>> sc.eval_chebyc(3, x)\n" + "array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])\n" + ">>> 2 * sc.eval_chebyt(3, x / 2)\n" + "array([-2. , 1.872, 1.136, -1.136, -1.872, 2. ])") +ufunc_eval_chebyc_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_chebyc_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_chebyc_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_chebyc_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_chebyc_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_chebyc_types[0] = NPY_LONG +ufunc_eval_chebyc_types[1] = NPY_DOUBLE +ufunc_eval_chebyc_types[2] = NPY_DOUBLE +ufunc_eval_chebyc_types[3] = NPY_FLOAT +ufunc_eval_chebyc_types[4] = NPY_FLOAT +ufunc_eval_chebyc_types[5] = NPY_FLOAT +ufunc_eval_chebyc_types[6] = NPY_FLOAT +ufunc_eval_chebyc_types[7] = NPY_CFLOAT +ufunc_eval_chebyc_types[8] = NPY_CFLOAT +ufunc_eval_chebyc_types[9] = NPY_DOUBLE +ufunc_eval_chebyc_types[10] = NPY_DOUBLE +ufunc_eval_chebyc_types[11] = NPY_DOUBLE +ufunc_eval_chebyc_types[12] = NPY_DOUBLE +ufunc_eval_chebyc_types[13] = NPY_CDOUBLE +ufunc_eval_chebyc_types[14] = NPY_CDOUBLE +ufunc_eval_chebyc_ptr[2*0] = _func_eval_chebyc_l +ufunc_eval_chebyc_ptr[2*0+1] = ("eval_chebyc") +ufunc_eval_chebyc_ptr[2*1] = _func_eval_chebyc[double] +ufunc_eval_chebyc_ptr[2*1+1] = ("eval_chebyc") +ufunc_eval_chebyc_ptr[2*2] = _func_eval_chebyc[double_complex] +ufunc_eval_chebyc_ptr[2*2+1] = ("eval_chebyc") +ufunc_eval_chebyc_ptr[2*3] = _func_eval_chebyc[double] +ufunc_eval_chebyc_ptr[2*3+1] = ("eval_chebyc") +ufunc_eval_chebyc_ptr[2*4] = _func_eval_chebyc[double_complex] +ufunc_eval_chebyc_ptr[2*4+1] = ("eval_chebyc") +ufunc_eval_chebyc_data[0] = &ufunc_eval_chebyc_ptr[2*0] +ufunc_eval_chebyc_data[1] = &ufunc_eval_chebyc_ptr[2*1] +ufunc_eval_chebyc_data[2] = &ufunc_eval_chebyc_ptr[2*2] +ufunc_eval_chebyc_data[3] = &ufunc_eval_chebyc_ptr[2*3] +ufunc_eval_chebyc_data[4] = &ufunc_eval_chebyc_ptr[2*4] +eval_chebyc = np.PyUFunc_FromFuncAndData(ufunc_eval_chebyc_loops, ufunc_eval_chebyc_data, ufunc_eval_chebyc_types, 5, 2, 1, 0, "eval_chebyc", ufunc_eval_chebyc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_chebys_loops[5] +cdef void *ufunc_eval_chebys_ptr[10] +cdef void *ufunc_eval_chebys_data[5] +cdef char ufunc_eval_chebys_types[15] +cdef char *ufunc_eval_chebys_doc = ( + "eval_chebys(n, x, out=None)\n" + "\n" + "Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a\n" + "point.\n" + "\n" + "These polynomials are defined as\n" + "\n" + ".. math::\n" + "\n" + " S_n(x) = U_n(x/2)\n" + "\n" + "where :math:`U_n` is a Chebyshev polynomial of the second\n" + "kind. See 22.5.13 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to `eval_chebyu`.\n" + "x : array_like\n" + " Points at which to evaluate the Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "S : scalar or ndarray\n" + " Values of the Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_chebys : roots and quadrature weights of Chebyshev\n" + " polynomials of the second kind on [-2, 2]\n" + "chebys : Chebyshev polynomial object\n" + "eval_chebyu : evaluate Chebyshev polynomials of the second kind\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "They are a scaled version of the Chebyshev polynomials of the\n" + "second kind.\n" + "\n" + ">>> x = np.linspace(-2, 2, 6)\n" + ">>> sc.eval_chebys(3, x)\n" + "array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])\n" + ">>> sc.eval_chebyu(3, x / 2)\n" + "array([-4. , 0.672, 0.736, -0.736, -0.672, 4. ])") +ufunc_eval_chebys_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_chebys_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_chebys_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_chebys_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_chebys_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_chebys_types[0] = NPY_LONG +ufunc_eval_chebys_types[1] = NPY_DOUBLE +ufunc_eval_chebys_types[2] = NPY_DOUBLE +ufunc_eval_chebys_types[3] = NPY_FLOAT +ufunc_eval_chebys_types[4] = NPY_FLOAT +ufunc_eval_chebys_types[5] = NPY_FLOAT +ufunc_eval_chebys_types[6] = NPY_FLOAT +ufunc_eval_chebys_types[7] = NPY_CFLOAT +ufunc_eval_chebys_types[8] = NPY_CFLOAT +ufunc_eval_chebys_types[9] = NPY_DOUBLE +ufunc_eval_chebys_types[10] = NPY_DOUBLE +ufunc_eval_chebys_types[11] = NPY_DOUBLE +ufunc_eval_chebys_types[12] = NPY_DOUBLE +ufunc_eval_chebys_types[13] = NPY_CDOUBLE +ufunc_eval_chebys_types[14] = NPY_CDOUBLE +ufunc_eval_chebys_ptr[2*0] = _func_eval_chebys_l +ufunc_eval_chebys_ptr[2*0+1] = ("eval_chebys") +ufunc_eval_chebys_ptr[2*1] = _func_eval_chebys[double] +ufunc_eval_chebys_ptr[2*1+1] = ("eval_chebys") +ufunc_eval_chebys_ptr[2*2] = _func_eval_chebys[double_complex] +ufunc_eval_chebys_ptr[2*2+1] = ("eval_chebys") +ufunc_eval_chebys_ptr[2*3] = _func_eval_chebys[double] +ufunc_eval_chebys_ptr[2*3+1] = ("eval_chebys") +ufunc_eval_chebys_ptr[2*4] = _func_eval_chebys[double_complex] +ufunc_eval_chebys_ptr[2*4+1] = ("eval_chebys") +ufunc_eval_chebys_data[0] = &ufunc_eval_chebys_ptr[2*0] +ufunc_eval_chebys_data[1] = &ufunc_eval_chebys_ptr[2*1] +ufunc_eval_chebys_data[2] = &ufunc_eval_chebys_ptr[2*2] +ufunc_eval_chebys_data[3] = &ufunc_eval_chebys_ptr[2*3] +ufunc_eval_chebys_data[4] = &ufunc_eval_chebys_ptr[2*4] +eval_chebys = np.PyUFunc_FromFuncAndData(ufunc_eval_chebys_loops, ufunc_eval_chebys_data, ufunc_eval_chebys_types, 5, 2, 1, 0, "eval_chebys", ufunc_eval_chebys_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_chebyt_loops[5] +cdef void *ufunc_eval_chebyt_ptr[10] +cdef void *ufunc_eval_chebyt_data[5] +cdef char ufunc_eval_chebyt_types[15] +cdef char *ufunc_eval_chebyt_doc = ( + "eval_chebyt(n, x, out=None)\n" + "\n" + "Evaluate Chebyshev polynomial of the first kind at a point.\n" + "\n" + "The Chebyshev polynomials of the first kind can be defined via the\n" + "Gauss hypergeometric function :math:`{}_2F_1` as\n" + "\n" + ".. math::\n" + "\n" + " T_n(x) = {}_2F_1(n, -n; 1/2; (1 - x)/2).\n" + "\n" + "When :math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.47 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to the Gauss hypergeometric\n" + " function.\n" + "x : array_like\n" + " Points at which to evaluate the Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "T : scalar or ndarray\n" + " Values of the Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_chebyt : roots and quadrature weights of Chebyshev\n" + " polynomials of the first kind\n" + "chebyu : Chebychev polynomial object\n" + "eval_chebyu : evaluate Chebyshev polynomials of the second kind\n" + "hyp2f1 : Gauss hypergeometric function\n" + "numpy.polynomial.chebyshev.Chebyshev : Chebyshev series\n" + "\n" + "Notes\n" + "-----\n" + "This routine is numerically stable for `x` in ``[-1, 1]`` at least\n" + "up to order ``10000``.\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_chebyt_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_chebyt_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_chebyt_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_chebyt_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_chebyt_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_chebyt_types[0] = NPY_LONG +ufunc_eval_chebyt_types[1] = NPY_DOUBLE +ufunc_eval_chebyt_types[2] = NPY_DOUBLE +ufunc_eval_chebyt_types[3] = NPY_FLOAT +ufunc_eval_chebyt_types[4] = NPY_FLOAT +ufunc_eval_chebyt_types[5] = NPY_FLOAT +ufunc_eval_chebyt_types[6] = NPY_FLOAT +ufunc_eval_chebyt_types[7] = NPY_CFLOAT +ufunc_eval_chebyt_types[8] = NPY_CFLOAT +ufunc_eval_chebyt_types[9] = NPY_DOUBLE +ufunc_eval_chebyt_types[10] = NPY_DOUBLE +ufunc_eval_chebyt_types[11] = NPY_DOUBLE +ufunc_eval_chebyt_types[12] = NPY_DOUBLE +ufunc_eval_chebyt_types[13] = NPY_CDOUBLE +ufunc_eval_chebyt_types[14] = NPY_CDOUBLE +ufunc_eval_chebyt_ptr[2*0] = _func_eval_chebyt_l +ufunc_eval_chebyt_ptr[2*0+1] = ("eval_chebyt") +ufunc_eval_chebyt_ptr[2*1] = _func_eval_chebyt[double] +ufunc_eval_chebyt_ptr[2*1+1] = ("eval_chebyt") +ufunc_eval_chebyt_ptr[2*2] = _func_eval_chebyt[double_complex] +ufunc_eval_chebyt_ptr[2*2+1] = ("eval_chebyt") +ufunc_eval_chebyt_ptr[2*3] = _func_eval_chebyt[double] +ufunc_eval_chebyt_ptr[2*3+1] = ("eval_chebyt") +ufunc_eval_chebyt_ptr[2*4] = _func_eval_chebyt[double_complex] +ufunc_eval_chebyt_ptr[2*4+1] = ("eval_chebyt") +ufunc_eval_chebyt_data[0] = &ufunc_eval_chebyt_ptr[2*0] +ufunc_eval_chebyt_data[1] = &ufunc_eval_chebyt_ptr[2*1] +ufunc_eval_chebyt_data[2] = &ufunc_eval_chebyt_ptr[2*2] +ufunc_eval_chebyt_data[3] = &ufunc_eval_chebyt_ptr[2*3] +ufunc_eval_chebyt_data[4] = &ufunc_eval_chebyt_ptr[2*4] +eval_chebyt = np.PyUFunc_FromFuncAndData(ufunc_eval_chebyt_loops, ufunc_eval_chebyt_data, ufunc_eval_chebyt_types, 5, 2, 1, 0, "eval_chebyt", ufunc_eval_chebyt_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_chebyu_loops[5] +cdef void *ufunc_eval_chebyu_ptr[10] +cdef void *ufunc_eval_chebyu_data[5] +cdef char ufunc_eval_chebyu_types[15] +cdef char *ufunc_eval_chebyu_doc = ( + "eval_chebyu(n, x, out=None)\n" + "\n" + "Evaluate Chebyshev polynomial of the second kind at a point.\n" + "\n" + "The Chebyshev polynomials of the second kind can be defined via\n" + "the Gauss hypergeometric function :math:`{}_2F_1` as\n" + "\n" + ".. math::\n" + "\n" + " U_n(x) = (n + 1) {}_2F_1(-n, n + 2; 3/2; (1 - x)/2).\n" + "\n" + "When :math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.48 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to the Gauss hypergeometric\n" + " function.\n" + "x : array_like\n" + " Points at which to evaluate the Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "U : scalar or ndarray\n" + " Values of the Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_chebyu : roots and quadrature weights of Chebyshev\n" + " polynomials of the second kind\n" + "chebyu : Chebyshev polynomial object\n" + "eval_chebyt : evaluate Chebyshev polynomials of the first kind\n" + "hyp2f1 : Gauss hypergeometric function\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_chebyu_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_chebyu_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_chebyu_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_chebyu_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_chebyu_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_chebyu_types[0] = NPY_LONG +ufunc_eval_chebyu_types[1] = NPY_DOUBLE +ufunc_eval_chebyu_types[2] = NPY_DOUBLE +ufunc_eval_chebyu_types[3] = NPY_FLOAT +ufunc_eval_chebyu_types[4] = NPY_FLOAT +ufunc_eval_chebyu_types[5] = NPY_FLOAT +ufunc_eval_chebyu_types[6] = NPY_FLOAT +ufunc_eval_chebyu_types[7] = NPY_CFLOAT +ufunc_eval_chebyu_types[8] = NPY_CFLOAT +ufunc_eval_chebyu_types[9] = NPY_DOUBLE +ufunc_eval_chebyu_types[10] = NPY_DOUBLE +ufunc_eval_chebyu_types[11] = NPY_DOUBLE +ufunc_eval_chebyu_types[12] = NPY_DOUBLE +ufunc_eval_chebyu_types[13] = NPY_CDOUBLE +ufunc_eval_chebyu_types[14] = NPY_CDOUBLE +ufunc_eval_chebyu_ptr[2*0] = _func_eval_chebyu_l +ufunc_eval_chebyu_ptr[2*0+1] = ("eval_chebyu") +ufunc_eval_chebyu_ptr[2*1] = _func_eval_chebyu[double] +ufunc_eval_chebyu_ptr[2*1+1] = ("eval_chebyu") +ufunc_eval_chebyu_ptr[2*2] = _func_eval_chebyu[double_complex] +ufunc_eval_chebyu_ptr[2*2+1] = ("eval_chebyu") +ufunc_eval_chebyu_ptr[2*3] = _func_eval_chebyu[double] +ufunc_eval_chebyu_ptr[2*3+1] = ("eval_chebyu") +ufunc_eval_chebyu_ptr[2*4] = _func_eval_chebyu[double_complex] +ufunc_eval_chebyu_ptr[2*4+1] = ("eval_chebyu") +ufunc_eval_chebyu_data[0] = &ufunc_eval_chebyu_ptr[2*0] +ufunc_eval_chebyu_data[1] = &ufunc_eval_chebyu_ptr[2*1] +ufunc_eval_chebyu_data[2] = &ufunc_eval_chebyu_ptr[2*2] +ufunc_eval_chebyu_data[3] = &ufunc_eval_chebyu_ptr[2*3] +ufunc_eval_chebyu_data[4] = &ufunc_eval_chebyu_ptr[2*4] +eval_chebyu = np.PyUFunc_FromFuncAndData(ufunc_eval_chebyu_loops, ufunc_eval_chebyu_data, ufunc_eval_chebyu_types, 5, 2, 1, 0, "eval_chebyu", ufunc_eval_chebyu_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_gegenbauer_loops[5] +cdef void *ufunc_eval_gegenbauer_ptr[10] +cdef void *ufunc_eval_gegenbauer_data[5] +cdef char ufunc_eval_gegenbauer_types[20] +cdef char *ufunc_eval_gegenbauer_doc = ( + "eval_gegenbauer(n, alpha, x, out=None)\n" + "\n" + "Evaluate Gegenbauer polynomial at a point.\n" + "\n" + "The Gegenbauer polynomials can be defined via the Gauss\n" + "hypergeometric function :math:`{}_2F_1` as\n" + "\n" + ".. math::\n" + "\n" + " C_n^{(\\alpha)} = \\frac{(2\\alpha)_n}{\\Gamma(n + 1)}\n" + " {}_2F_1(-n, 2\\alpha + n; \\alpha + 1/2; (1 - z)/2).\n" + "\n" + "When :math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.46 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to the Gauss hypergeometric\n" + " function.\n" + "alpha : array_like\n" + " Parameter\n" + "x : array_like\n" + " Points at which to evaluate the Gegenbauer polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "C : scalar or ndarray\n" + " Values of the Gegenbauer polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_gegenbauer : roots and quadrature weights of Gegenbauer\n" + " polynomials\n" + "gegenbauer : Gegenbauer polynomial object\n" + "hyp2f1 : Gauss hypergeometric function\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_gegenbauer_loops[0] = loop_d_ldd__As_ldd_d +ufunc_eval_gegenbauer_loops[1] = loop_d_ddd__As_fff_f +ufunc_eval_gegenbauer_loops[2] = loop_D_ddD__As_ffF_F +ufunc_eval_gegenbauer_loops[3] = loop_d_ddd__As_ddd_d +ufunc_eval_gegenbauer_loops[4] = loop_D_ddD__As_ddD_D +ufunc_eval_gegenbauer_types[0] = NPY_LONG +ufunc_eval_gegenbauer_types[1] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[2] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[3] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[4] = NPY_FLOAT +ufunc_eval_gegenbauer_types[5] = NPY_FLOAT +ufunc_eval_gegenbauer_types[6] = NPY_FLOAT +ufunc_eval_gegenbauer_types[7] = NPY_FLOAT +ufunc_eval_gegenbauer_types[8] = NPY_FLOAT +ufunc_eval_gegenbauer_types[9] = NPY_FLOAT +ufunc_eval_gegenbauer_types[10] = NPY_CFLOAT +ufunc_eval_gegenbauer_types[11] = NPY_CFLOAT +ufunc_eval_gegenbauer_types[12] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[13] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[14] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[15] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[16] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[17] = NPY_DOUBLE +ufunc_eval_gegenbauer_types[18] = NPY_CDOUBLE +ufunc_eval_gegenbauer_types[19] = NPY_CDOUBLE +ufunc_eval_gegenbauer_ptr[2*0] = _func_eval_gegenbauer_l +ufunc_eval_gegenbauer_ptr[2*0+1] = ("eval_gegenbauer") +ufunc_eval_gegenbauer_ptr[2*1] = _func_eval_gegenbauer[double] +ufunc_eval_gegenbauer_ptr[2*1+1] = ("eval_gegenbauer") +ufunc_eval_gegenbauer_ptr[2*2] = _func_eval_gegenbauer[double_complex] +ufunc_eval_gegenbauer_ptr[2*2+1] = ("eval_gegenbauer") +ufunc_eval_gegenbauer_ptr[2*3] = _func_eval_gegenbauer[double] +ufunc_eval_gegenbauer_ptr[2*3+1] = ("eval_gegenbauer") +ufunc_eval_gegenbauer_ptr[2*4] = _func_eval_gegenbauer[double_complex] +ufunc_eval_gegenbauer_ptr[2*4+1] = ("eval_gegenbauer") +ufunc_eval_gegenbauer_data[0] = &ufunc_eval_gegenbauer_ptr[2*0] +ufunc_eval_gegenbauer_data[1] = &ufunc_eval_gegenbauer_ptr[2*1] +ufunc_eval_gegenbauer_data[2] = &ufunc_eval_gegenbauer_ptr[2*2] +ufunc_eval_gegenbauer_data[3] = &ufunc_eval_gegenbauer_ptr[2*3] +ufunc_eval_gegenbauer_data[4] = &ufunc_eval_gegenbauer_ptr[2*4] +eval_gegenbauer = np.PyUFunc_FromFuncAndData(ufunc_eval_gegenbauer_loops, ufunc_eval_gegenbauer_data, ufunc_eval_gegenbauer_types, 5, 3, 1, 0, "eval_gegenbauer", ufunc_eval_gegenbauer_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_genlaguerre_loops[5] +cdef void *ufunc_eval_genlaguerre_ptr[10] +cdef void *ufunc_eval_genlaguerre_data[5] +cdef char ufunc_eval_genlaguerre_types[20] +cdef char *ufunc_eval_genlaguerre_doc = ( + "eval_genlaguerre(n, alpha, x, out=None)\n" + "\n" + "Evaluate generalized Laguerre polynomial at a point.\n" + "\n" + "The generalized Laguerre polynomials can be defined via the\n" + "confluent hypergeometric function :math:`{}_1F_1` as\n" + "\n" + ".. math::\n" + "\n" + " L_n^{(\\alpha)}(x) = \\binom{n + \\alpha}{n}\n" + " {}_1F_1(-n, \\alpha + 1, x).\n" + "\n" + "When :math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.54 in [AS]_ for details. The Laguerre\n" + "polynomials are the special case where :math:`\\alpha = 0`.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to the confluent hypergeometric\n" + " function.\n" + "alpha : array_like\n" + " Parameter; must have ``alpha > -1``\n" + "x : array_like\n" + " Points at which to evaluate the generalized Laguerre\n" + " polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "L : scalar or ndarray\n" + " Values of the generalized Laguerre polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_genlaguerre : roots and quadrature weights of generalized\n" + " Laguerre polynomials\n" + "genlaguerre : generalized Laguerre polynomial object\n" + "hyp1f1 : confluent hypergeometric function\n" + "eval_laguerre : evaluate Laguerre polynomials\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_genlaguerre_loops[0] = loop_d_ldd__As_ldd_d +ufunc_eval_genlaguerre_loops[1] = loop_d_ddd__As_fff_f +ufunc_eval_genlaguerre_loops[2] = loop_D_ddD__As_ffF_F +ufunc_eval_genlaguerre_loops[3] = loop_d_ddd__As_ddd_d +ufunc_eval_genlaguerre_loops[4] = loop_D_ddD__As_ddD_D +ufunc_eval_genlaguerre_types[0] = NPY_LONG +ufunc_eval_genlaguerre_types[1] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[2] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[3] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[4] = NPY_FLOAT +ufunc_eval_genlaguerre_types[5] = NPY_FLOAT +ufunc_eval_genlaguerre_types[6] = NPY_FLOAT +ufunc_eval_genlaguerre_types[7] = NPY_FLOAT +ufunc_eval_genlaguerre_types[8] = NPY_FLOAT +ufunc_eval_genlaguerre_types[9] = NPY_FLOAT +ufunc_eval_genlaguerre_types[10] = NPY_CFLOAT +ufunc_eval_genlaguerre_types[11] = NPY_CFLOAT +ufunc_eval_genlaguerre_types[12] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[13] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[14] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[15] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[16] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[17] = NPY_DOUBLE +ufunc_eval_genlaguerre_types[18] = NPY_CDOUBLE +ufunc_eval_genlaguerre_types[19] = NPY_CDOUBLE +ufunc_eval_genlaguerre_ptr[2*0] = _func_eval_genlaguerre_l +ufunc_eval_genlaguerre_ptr[2*0+1] = ("eval_genlaguerre") +ufunc_eval_genlaguerre_ptr[2*1] = _func_eval_genlaguerre[double] +ufunc_eval_genlaguerre_ptr[2*1+1] = ("eval_genlaguerre") +ufunc_eval_genlaguerre_ptr[2*2] = _func_eval_genlaguerre[double_complex] +ufunc_eval_genlaguerre_ptr[2*2+1] = ("eval_genlaguerre") +ufunc_eval_genlaguerre_ptr[2*3] = _func_eval_genlaguerre[double] +ufunc_eval_genlaguerre_ptr[2*3+1] = ("eval_genlaguerre") +ufunc_eval_genlaguerre_ptr[2*4] = _func_eval_genlaguerre[double_complex] +ufunc_eval_genlaguerre_ptr[2*4+1] = ("eval_genlaguerre") +ufunc_eval_genlaguerre_data[0] = &ufunc_eval_genlaguerre_ptr[2*0] +ufunc_eval_genlaguerre_data[1] = &ufunc_eval_genlaguerre_ptr[2*1] +ufunc_eval_genlaguerre_data[2] = &ufunc_eval_genlaguerre_ptr[2*2] +ufunc_eval_genlaguerre_data[3] = &ufunc_eval_genlaguerre_ptr[2*3] +ufunc_eval_genlaguerre_data[4] = &ufunc_eval_genlaguerre_ptr[2*4] +eval_genlaguerre = np.PyUFunc_FromFuncAndData(ufunc_eval_genlaguerre_loops, ufunc_eval_genlaguerre_data, ufunc_eval_genlaguerre_types, 5, 3, 1, 0, "eval_genlaguerre", ufunc_eval_genlaguerre_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_hermite_loops[1] +cdef void *ufunc_eval_hermite_ptr[2] +cdef void *ufunc_eval_hermite_data[1] +cdef char ufunc_eval_hermite_types[3] +cdef char *ufunc_eval_hermite_doc = ( + "eval_hermite(n, x, out=None)\n" + "\n" + "Evaluate physicist's Hermite polynomial at a point.\n" + "\n" + "Defined by\n" + "\n" + ".. math::\n" + "\n" + " H_n(x) = (-1)^n e^{x^2} \\frac{d^n}{dx^n} e^{-x^2};\n" + "\n" + ":math:`H_n` is a polynomial of degree :math:`n`. See 22.11.7 in\n" + "[AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial\n" + "x : array_like\n" + " Points at which to evaluate the Hermite polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "H : scalar or ndarray\n" + " Values of the Hermite polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_hermite : roots and quadrature weights of physicist's\n" + " Hermite polynomials\n" + "hermite : physicist's Hermite polynomial object\n" + "numpy.polynomial.hermite.Hermite : Physicist's Hermite series\n" + "eval_hermitenorm : evaluate Probabilist's Hermite polynomials\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_hermite_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_hermite_types[0] = NPY_LONG +ufunc_eval_hermite_types[1] = NPY_DOUBLE +ufunc_eval_hermite_types[2] = NPY_DOUBLE +ufunc_eval_hermite_ptr[2*0] = _func_eval_hermite +ufunc_eval_hermite_ptr[2*0+1] = ("eval_hermite") +ufunc_eval_hermite_data[0] = &ufunc_eval_hermite_ptr[2*0] +eval_hermite = np.PyUFunc_FromFuncAndData(ufunc_eval_hermite_loops, ufunc_eval_hermite_data, ufunc_eval_hermite_types, 1, 2, 1, 0, "eval_hermite", ufunc_eval_hermite_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_hermitenorm_loops[1] +cdef void *ufunc_eval_hermitenorm_ptr[2] +cdef void *ufunc_eval_hermitenorm_data[1] +cdef char ufunc_eval_hermitenorm_types[3] +cdef char *ufunc_eval_hermitenorm_doc = ( + "eval_hermitenorm(n, x, out=None)\n" + "\n" + "Evaluate probabilist's (normalized) Hermite polynomial at a\n" + "point.\n" + "\n" + "Defined by\n" + "\n" + ".. math::\n" + "\n" + " He_n(x) = (-1)^n e^{x^2/2} \\frac{d^n}{dx^n} e^{-x^2/2};\n" + "\n" + ":math:`He_n` is a polynomial of degree :math:`n`. See 22.11.8 in\n" + "[AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial\n" + "x : array_like\n" + " Points at which to evaluate the Hermite polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "He : scalar or ndarray\n" + " Values of the Hermite polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_hermitenorm : roots and quadrature weights of probabilist's\n" + " Hermite polynomials\n" + "hermitenorm : probabilist's Hermite polynomial object\n" + "numpy.polynomial.hermite_e.HermiteE : Probabilist's Hermite series\n" + "eval_hermite : evaluate physicist's Hermite polynomials\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_hermitenorm_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_hermitenorm_types[0] = NPY_LONG +ufunc_eval_hermitenorm_types[1] = NPY_DOUBLE +ufunc_eval_hermitenorm_types[2] = NPY_DOUBLE +ufunc_eval_hermitenorm_ptr[2*0] = _func_eval_hermitenorm +ufunc_eval_hermitenorm_ptr[2*0+1] = ("eval_hermitenorm") +ufunc_eval_hermitenorm_data[0] = &ufunc_eval_hermitenorm_ptr[2*0] +eval_hermitenorm = np.PyUFunc_FromFuncAndData(ufunc_eval_hermitenorm_loops, ufunc_eval_hermitenorm_data, ufunc_eval_hermitenorm_types, 1, 2, 1, 0, "eval_hermitenorm", ufunc_eval_hermitenorm_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_jacobi_loops[5] +cdef void *ufunc_eval_jacobi_ptr[10] +cdef void *ufunc_eval_jacobi_data[5] +cdef char ufunc_eval_jacobi_types[25] +cdef char *ufunc_eval_jacobi_doc = ( + "eval_jacobi(n, alpha, beta, x, out=None)\n" + "\n" + "Evaluate Jacobi polynomial at a point.\n" + "\n" + "The Jacobi polynomials can be defined via the Gauss hypergeometric\n" + "function :math:`{}_2F_1` as\n" + "\n" + ".. math::\n" + "\n" + " P_n^{(\\alpha, \\beta)}(x) = \\frac{(\\alpha + 1)_n}{\\Gamma(n + 1)}\n" + " {}_2F_1(-n, 1 + \\alpha + \\beta + n; \\alpha + 1; (1 - z)/2)\n" + "\n" + "where :math:`(\\cdot)_n` is the Pochhammer symbol; see `poch`. When\n" + ":math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.42 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer the result is\n" + " determined via the relation to the Gauss hypergeometric\n" + " function.\n" + "alpha : array_like\n" + " Parameter\n" + "beta : array_like\n" + " Parameter\n" + "x : array_like\n" + " Points at which to evaluate the polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "P : scalar or ndarray\n" + " Values of the Jacobi polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_jacobi : roots and quadrature weights of Jacobi polynomials\n" + "jacobi : Jacobi polynomial object\n" + "hyp2f1 : Gauss hypergeometric function\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_jacobi_loops[0] = loop_d_lddd__As_lddd_d +ufunc_eval_jacobi_loops[1] = loop_d_dddd__As_ffff_f +ufunc_eval_jacobi_loops[2] = loop_D_dddD__As_fffF_F +ufunc_eval_jacobi_loops[3] = loop_d_dddd__As_dddd_d +ufunc_eval_jacobi_loops[4] = loop_D_dddD__As_dddD_D +ufunc_eval_jacobi_types[0] = NPY_LONG +ufunc_eval_jacobi_types[1] = NPY_DOUBLE +ufunc_eval_jacobi_types[2] = NPY_DOUBLE +ufunc_eval_jacobi_types[3] = NPY_DOUBLE +ufunc_eval_jacobi_types[4] = NPY_DOUBLE +ufunc_eval_jacobi_types[5] = NPY_FLOAT +ufunc_eval_jacobi_types[6] = NPY_FLOAT +ufunc_eval_jacobi_types[7] = NPY_FLOAT +ufunc_eval_jacobi_types[8] = NPY_FLOAT +ufunc_eval_jacobi_types[9] = NPY_FLOAT +ufunc_eval_jacobi_types[10] = NPY_FLOAT +ufunc_eval_jacobi_types[11] = NPY_FLOAT +ufunc_eval_jacobi_types[12] = NPY_FLOAT +ufunc_eval_jacobi_types[13] = NPY_CFLOAT +ufunc_eval_jacobi_types[14] = NPY_CFLOAT +ufunc_eval_jacobi_types[15] = NPY_DOUBLE +ufunc_eval_jacobi_types[16] = NPY_DOUBLE +ufunc_eval_jacobi_types[17] = NPY_DOUBLE +ufunc_eval_jacobi_types[18] = NPY_DOUBLE +ufunc_eval_jacobi_types[19] = NPY_DOUBLE +ufunc_eval_jacobi_types[20] = NPY_DOUBLE +ufunc_eval_jacobi_types[21] = NPY_DOUBLE +ufunc_eval_jacobi_types[22] = NPY_DOUBLE +ufunc_eval_jacobi_types[23] = NPY_CDOUBLE +ufunc_eval_jacobi_types[24] = NPY_CDOUBLE +ufunc_eval_jacobi_ptr[2*0] = _func_eval_jacobi_l +ufunc_eval_jacobi_ptr[2*0+1] = ("eval_jacobi") +ufunc_eval_jacobi_ptr[2*1] = _func_eval_jacobi[double] +ufunc_eval_jacobi_ptr[2*1+1] = ("eval_jacobi") +ufunc_eval_jacobi_ptr[2*2] = _func_eval_jacobi[double_complex] +ufunc_eval_jacobi_ptr[2*2+1] = ("eval_jacobi") +ufunc_eval_jacobi_ptr[2*3] = _func_eval_jacobi[double] +ufunc_eval_jacobi_ptr[2*3+1] = ("eval_jacobi") +ufunc_eval_jacobi_ptr[2*4] = _func_eval_jacobi[double_complex] +ufunc_eval_jacobi_ptr[2*4+1] = ("eval_jacobi") +ufunc_eval_jacobi_data[0] = &ufunc_eval_jacobi_ptr[2*0] +ufunc_eval_jacobi_data[1] = &ufunc_eval_jacobi_ptr[2*1] +ufunc_eval_jacobi_data[2] = &ufunc_eval_jacobi_ptr[2*2] +ufunc_eval_jacobi_data[3] = &ufunc_eval_jacobi_ptr[2*3] +ufunc_eval_jacobi_data[4] = &ufunc_eval_jacobi_ptr[2*4] +eval_jacobi = np.PyUFunc_FromFuncAndData(ufunc_eval_jacobi_loops, ufunc_eval_jacobi_data, ufunc_eval_jacobi_types, 5, 4, 1, 0, "eval_jacobi", ufunc_eval_jacobi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_laguerre_loops[5] +cdef void *ufunc_eval_laguerre_ptr[10] +cdef void *ufunc_eval_laguerre_data[5] +cdef char ufunc_eval_laguerre_types[15] +cdef char *ufunc_eval_laguerre_doc = ( + "eval_laguerre(n, x, out=None)\n" + "\n" + "Evaluate Laguerre polynomial at a point.\n" + "\n" + "The Laguerre polynomials can be defined via the confluent\n" + "hypergeometric function :math:`{}_1F_1` as\n" + "\n" + ".. math::\n" + "\n" + " L_n(x) = {}_1F_1(-n, 1, x).\n" + "\n" + "See 22.5.16 and 22.5.54 in [AS]_ for details. When :math:`n` is an\n" + "integer the result is a polynomial of degree :math:`n`.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer the result is\n" + " determined via the relation to the confluent hypergeometric\n" + " function.\n" + "x : array_like\n" + " Points at which to evaluate the Laguerre polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "L : scalar or ndarray\n" + " Values of the Laguerre polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_laguerre : roots and quadrature weights of Laguerre\n" + " polynomials\n" + "laguerre : Laguerre polynomial object\n" + "numpy.polynomial.laguerre.Laguerre : Laguerre series\n" + "eval_genlaguerre : evaluate generalized Laguerre polynomials\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_laguerre_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_laguerre_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_laguerre_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_laguerre_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_laguerre_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_laguerre_types[0] = NPY_LONG +ufunc_eval_laguerre_types[1] = NPY_DOUBLE +ufunc_eval_laguerre_types[2] = NPY_DOUBLE +ufunc_eval_laguerre_types[3] = NPY_FLOAT +ufunc_eval_laguerre_types[4] = NPY_FLOAT +ufunc_eval_laguerre_types[5] = NPY_FLOAT +ufunc_eval_laguerre_types[6] = NPY_FLOAT +ufunc_eval_laguerre_types[7] = NPY_CFLOAT +ufunc_eval_laguerre_types[8] = NPY_CFLOAT +ufunc_eval_laguerre_types[9] = NPY_DOUBLE +ufunc_eval_laguerre_types[10] = NPY_DOUBLE +ufunc_eval_laguerre_types[11] = NPY_DOUBLE +ufunc_eval_laguerre_types[12] = NPY_DOUBLE +ufunc_eval_laguerre_types[13] = NPY_CDOUBLE +ufunc_eval_laguerre_types[14] = NPY_CDOUBLE +ufunc_eval_laguerre_ptr[2*0] = _func_eval_laguerre_l +ufunc_eval_laguerre_ptr[2*0+1] = ("eval_laguerre") +ufunc_eval_laguerre_ptr[2*1] = _func_eval_laguerre[double] +ufunc_eval_laguerre_ptr[2*1+1] = ("eval_laguerre") +ufunc_eval_laguerre_ptr[2*2] = _func_eval_laguerre[double_complex] +ufunc_eval_laguerre_ptr[2*2+1] = ("eval_laguerre") +ufunc_eval_laguerre_ptr[2*3] = _func_eval_laguerre[double] +ufunc_eval_laguerre_ptr[2*3+1] = ("eval_laguerre") +ufunc_eval_laguerre_ptr[2*4] = _func_eval_laguerre[double_complex] +ufunc_eval_laguerre_ptr[2*4+1] = ("eval_laguerre") +ufunc_eval_laguerre_data[0] = &ufunc_eval_laguerre_ptr[2*0] +ufunc_eval_laguerre_data[1] = &ufunc_eval_laguerre_ptr[2*1] +ufunc_eval_laguerre_data[2] = &ufunc_eval_laguerre_ptr[2*2] +ufunc_eval_laguerre_data[3] = &ufunc_eval_laguerre_ptr[2*3] +ufunc_eval_laguerre_data[4] = &ufunc_eval_laguerre_ptr[2*4] +eval_laguerre = np.PyUFunc_FromFuncAndData(ufunc_eval_laguerre_loops, ufunc_eval_laguerre_data, ufunc_eval_laguerre_types, 5, 2, 1, 0, "eval_laguerre", ufunc_eval_laguerre_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_legendre_loops[5] +cdef void *ufunc_eval_legendre_ptr[10] +cdef void *ufunc_eval_legendre_data[5] +cdef char ufunc_eval_legendre_types[15] +cdef char *ufunc_eval_legendre_doc = ( + "eval_legendre(n, x, out=None)\n" + "\n" + "Evaluate Legendre polynomial at a point.\n" + "\n" + "The Legendre polynomials can be defined via the Gauss\n" + "hypergeometric function :math:`{}_2F_1` as\n" + "\n" + ".. math::\n" + "\n" + " P_n(x) = {}_2F_1(-n, n + 1; 1; (1 - x)/2).\n" + "\n" + "When :math:`n` is an integer the result is a polynomial of degree\n" + ":math:`n`. See 22.5.49 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to the Gauss hypergeometric\n" + " function.\n" + "x : array_like\n" + " Points at which to evaluate the Legendre polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "P : scalar or ndarray\n" + " Values of the Legendre polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_legendre : roots and quadrature weights of Legendre\n" + " polynomials\n" + "legendre : Legendre polynomial object\n" + "hyp2f1 : Gauss hypergeometric function\n" + "numpy.polynomial.legendre.Legendre : Legendre series\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import eval_legendre\n" + "\n" + "Evaluate the zero-order Legendre polynomial at x = 0\n" + "\n" + ">>> eval_legendre(0, 0)\n" + "1.0\n" + "\n" + "Evaluate the first-order Legendre polynomial between -1 and 1\n" + "\n" + ">>> X = np.linspace(-1, 1, 5) # Domain of Legendre polynomials\n" + ">>> eval_legendre(1, X)\n" + "array([-1. , -0.5, 0. , 0.5, 1. ])\n" + "\n" + "Evaluate Legendre polynomials of order 0 through 4 at x = 0\n" + "\n" + ">>> N = range(0, 5)\n" + ">>> eval_legendre(N, 0)\n" + "array([ 1. , 0. , -0.5 , 0. , 0.375])\n" + "\n" + "Plot Legendre polynomials of order 0 through 4\n" + "\n" + ">>> X = np.linspace(-1, 1)\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> for n in range(0, 5):\n" + "... y = eval_legendre(n, X)\n" + "... plt.plot(X, y, label=r'$P_{}(x)$'.format(n))\n" + "\n" + ">>> plt.title(\"Legendre Polynomials\")\n" + ">>> plt.xlabel(\"x\")\n" + ">>> plt.ylabel(r'$P_n(x)$')\n" + ">>> plt.legend(loc='lower right')\n" + ">>> plt.show()") +ufunc_eval_legendre_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_legendre_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_legendre_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_legendre_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_legendre_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_legendre_types[0] = NPY_LONG +ufunc_eval_legendre_types[1] = NPY_DOUBLE +ufunc_eval_legendre_types[2] = NPY_DOUBLE +ufunc_eval_legendre_types[3] = NPY_FLOAT +ufunc_eval_legendre_types[4] = NPY_FLOAT +ufunc_eval_legendre_types[5] = NPY_FLOAT +ufunc_eval_legendre_types[6] = NPY_FLOAT +ufunc_eval_legendre_types[7] = NPY_CFLOAT +ufunc_eval_legendre_types[8] = NPY_CFLOAT +ufunc_eval_legendre_types[9] = NPY_DOUBLE +ufunc_eval_legendre_types[10] = NPY_DOUBLE +ufunc_eval_legendre_types[11] = NPY_DOUBLE +ufunc_eval_legendre_types[12] = NPY_DOUBLE +ufunc_eval_legendre_types[13] = NPY_CDOUBLE +ufunc_eval_legendre_types[14] = NPY_CDOUBLE +ufunc_eval_legendre_ptr[2*0] = _func_eval_legendre_l +ufunc_eval_legendre_ptr[2*0+1] = ("eval_legendre") +ufunc_eval_legendre_ptr[2*1] = _func_eval_legendre[double] +ufunc_eval_legendre_ptr[2*1+1] = ("eval_legendre") +ufunc_eval_legendre_ptr[2*2] = _func_eval_legendre[double_complex] +ufunc_eval_legendre_ptr[2*2+1] = ("eval_legendre") +ufunc_eval_legendre_ptr[2*3] = _func_eval_legendre[double] +ufunc_eval_legendre_ptr[2*3+1] = ("eval_legendre") +ufunc_eval_legendre_ptr[2*4] = _func_eval_legendre[double_complex] +ufunc_eval_legendre_ptr[2*4+1] = ("eval_legendre") +ufunc_eval_legendre_data[0] = &ufunc_eval_legendre_ptr[2*0] +ufunc_eval_legendre_data[1] = &ufunc_eval_legendre_ptr[2*1] +ufunc_eval_legendre_data[2] = &ufunc_eval_legendre_ptr[2*2] +ufunc_eval_legendre_data[3] = &ufunc_eval_legendre_ptr[2*3] +ufunc_eval_legendre_data[4] = &ufunc_eval_legendre_ptr[2*4] +eval_legendre = np.PyUFunc_FromFuncAndData(ufunc_eval_legendre_loops, ufunc_eval_legendre_data, ufunc_eval_legendre_types, 5, 2, 1, 0, "eval_legendre", ufunc_eval_legendre_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_sh_chebyt_loops[5] +cdef void *ufunc_eval_sh_chebyt_ptr[10] +cdef void *ufunc_eval_sh_chebyt_data[5] +cdef char ufunc_eval_sh_chebyt_types[15] +cdef char *ufunc_eval_sh_chebyt_doc = ( + "eval_sh_chebyt(n, x, out=None)\n" + "\n" + "Evaluate shifted Chebyshev polynomial of the first kind at a\n" + "point.\n" + "\n" + "These polynomials are defined as\n" + "\n" + ".. math::\n" + "\n" + " T_n^*(x) = T_n(2x - 1)\n" + "\n" + "where :math:`T_n` is a Chebyshev polynomial of the first kind. See\n" + "22.5.14 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to `eval_chebyt`.\n" + "x : array_like\n" + " Points at which to evaluate the shifted Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "T : scalar or ndarray\n" + " Values of the shifted Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_sh_chebyt : roots and quadrature weights of shifted\n" + " Chebyshev polynomials of the first kind\n" + "sh_chebyt : shifted Chebyshev polynomial object\n" + "eval_chebyt : evaluate Chebyshev polynomials of the first kind\n" + "numpy.polynomial.chebyshev.Chebyshev : Chebyshev series\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_sh_chebyt_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_sh_chebyt_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_sh_chebyt_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_sh_chebyt_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_sh_chebyt_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_sh_chebyt_types[0] = NPY_LONG +ufunc_eval_sh_chebyt_types[1] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[2] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[3] = NPY_FLOAT +ufunc_eval_sh_chebyt_types[4] = NPY_FLOAT +ufunc_eval_sh_chebyt_types[5] = NPY_FLOAT +ufunc_eval_sh_chebyt_types[6] = NPY_FLOAT +ufunc_eval_sh_chebyt_types[7] = NPY_CFLOAT +ufunc_eval_sh_chebyt_types[8] = NPY_CFLOAT +ufunc_eval_sh_chebyt_types[9] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[10] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[11] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[12] = NPY_DOUBLE +ufunc_eval_sh_chebyt_types[13] = NPY_CDOUBLE +ufunc_eval_sh_chebyt_types[14] = NPY_CDOUBLE +ufunc_eval_sh_chebyt_ptr[2*0] = _func_eval_sh_chebyt_l +ufunc_eval_sh_chebyt_ptr[2*0+1] = ("eval_sh_chebyt") +ufunc_eval_sh_chebyt_ptr[2*1] = _func_eval_sh_chebyt[double] +ufunc_eval_sh_chebyt_ptr[2*1+1] = ("eval_sh_chebyt") +ufunc_eval_sh_chebyt_ptr[2*2] = _func_eval_sh_chebyt[double_complex] +ufunc_eval_sh_chebyt_ptr[2*2+1] = ("eval_sh_chebyt") +ufunc_eval_sh_chebyt_ptr[2*3] = _func_eval_sh_chebyt[double] +ufunc_eval_sh_chebyt_ptr[2*3+1] = ("eval_sh_chebyt") +ufunc_eval_sh_chebyt_ptr[2*4] = _func_eval_sh_chebyt[double_complex] +ufunc_eval_sh_chebyt_ptr[2*4+1] = ("eval_sh_chebyt") +ufunc_eval_sh_chebyt_data[0] = &ufunc_eval_sh_chebyt_ptr[2*0] +ufunc_eval_sh_chebyt_data[1] = &ufunc_eval_sh_chebyt_ptr[2*1] +ufunc_eval_sh_chebyt_data[2] = &ufunc_eval_sh_chebyt_ptr[2*2] +ufunc_eval_sh_chebyt_data[3] = &ufunc_eval_sh_chebyt_ptr[2*3] +ufunc_eval_sh_chebyt_data[4] = &ufunc_eval_sh_chebyt_ptr[2*4] +eval_sh_chebyt = np.PyUFunc_FromFuncAndData(ufunc_eval_sh_chebyt_loops, ufunc_eval_sh_chebyt_data, ufunc_eval_sh_chebyt_types, 5, 2, 1, 0, "eval_sh_chebyt", ufunc_eval_sh_chebyt_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_sh_chebyu_loops[5] +cdef void *ufunc_eval_sh_chebyu_ptr[10] +cdef void *ufunc_eval_sh_chebyu_data[5] +cdef char ufunc_eval_sh_chebyu_types[15] +cdef char *ufunc_eval_sh_chebyu_doc = ( + "eval_sh_chebyu(n, x, out=None)\n" + "\n" + "Evaluate shifted Chebyshev polynomial of the second kind at a\n" + "point.\n" + "\n" + "These polynomials are defined as\n" + "\n" + ".. math::\n" + "\n" + " U_n^*(x) = U_n(2x - 1)\n" + "\n" + "where :math:`U_n` is a Chebyshev polynomial of the first kind. See\n" + "22.5.15 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to `eval_chebyu`.\n" + "x : array_like\n" + " Points at which to evaluate the shifted Chebyshev polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "U : scalar or ndarray\n" + " Values of the shifted Chebyshev polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_sh_chebyu : roots and quadrature weights of shifted\n" + " Chebychev polynomials of the second kind\n" + "sh_chebyu : shifted Chebyshev polynomial object\n" + "eval_chebyu : evaluate Chebyshev polynomials of the second kind\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_sh_chebyu_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_sh_chebyu_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_sh_chebyu_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_sh_chebyu_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_sh_chebyu_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_sh_chebyu_types[0] = NPY_LONG +ufunc_eval_sh_chebyu_types[1] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[2] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[3] = NPY_FLOAT +ufunc_eval_sh_chebyu_types[4] = NPY_FLOAT +ufunc_eval_sh_chebyu_types[5] = NPY_FLOAT +ufunc_eval_sh_chebyu_types[6] = NPY_FLOAT +ufunc_eval_sh_chebyu_types[7] = NPY_CFLOAT +ufunc_eval_sh_chebyu_types[8] = NPY_CFLOAT +ufunc_eval_sh_chebyu_types[9] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[10] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[11] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[12] = NPY_DOUBLE +ufunc_eval_sh_chebyu_types[13] = NPY_CDOUBLE +ufunc_eval_sh_chebyu_types[14] = NPY_CDOUBLE +ufunc_eval_sh_chebyu_ptr[2*0] = _func_eval_sh_chebyu_l +ufunc_eval_sh_chebyu_ptr[2*0+1] = ("eval_sh_chebyu") +ufunc_eval_sh_chebyu_ptr[2*1] = _func_eval_sh_chebyu[double] +ufunc_eval_sh_chebyu_ptr[2*1+1] = ("eval_sh_chebyu") +ufunc_eval_sh_chebyu_ptr[2*2] = _func_eval_sh_chebyu[double_complex] +ufunc_eval_sh_chebyu_ptr[2*2+1] = ("eval_sh_chebyu") +ufunc_eval_sh_chebyu_ptr[2*3] = _func_eval_sh_chebyu[double] +ufunc_eval_sh_chebyu_ptr[2*3+1] = ("eval_sh_chebyu") +ufunc_eval_sh_chebyu_ptr[2*4] = _func_eval_sh_chebyu[double_complex] +ufunc_eval_sh_chebyu_ptr[2*4+1] = ("eval_sh_chebyu") +ufunc_eval_sh_chebyu_data[0] = &ufunc_eval_sh_chebyu_ptr[2*0] +ufunc_eval_sh_chebyu_data[1] = &ufunc_eval_sh_chebyu_ptr[2*1] +ufunc_eval_sh_chebyu_data[2] = &ufunc_eval_sh_chebyu_ptr[2*2] +ufunc_eval_sh_chebyu_data[3] = &ufunc_eval_sh_chebyu_ptr[2*3] +ufunc_eval_sh_chebyu_data[4] = &ufunc_eval_sh_chebyu_ptr[2*4] +eval_sh_chebyu = np.PyUFunc_FromFuncAndData(ufunc_eval_sh_chebyu_loops, ufunc_eval_sh_chebyu_data, ufunc_eval_sh_chebyu_types, 5, 2, 1, 0, "eval_sh_chebyu", ufunc_eval_sh_chebyu_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_sh_jacobi_loops[5] +cdef void *ufunc_eval_sh_jacobi_ptr[10] +cdef void *ufunc_eval_sh_jacobi_data[5] +cdef char ufunc_eval_sh_jacobi_types[25] +cdef char *ufunc_eval_sh_jacobi_doc = ( + "eval_sh_jacobi(n, p, q, x, out=None)\n" + "\n" + "Evaluate shifted Jacobi polynomial at a point.\n" + "\n" + "Defined by\n" + "\n" + ".. math::\n" + "\n" + " G_n^{(p, q)}(x)\n" + " = \\binom{2n + p - 1}{n}^{-1} P_n^{(p - q, q - 1)}(2x - 1),\n" + "\n" + "where :math:`P_n^{(\\cdot, \\cdot)}` is the n-th Jacobi\n" + "polynomial. See 22.5.2 in [AS]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : int\n" + " Degree of the polynomial. If not an integer, the result is\n" + " determined via the relation to `binom` and `eval_jacobi`.\n" + "p : float\n" + " Parameter\n" + "q : float\n" + " Parameter\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "G : scalar or ndarray\n" + " Values of the shifted Jacobi polynomial.\n" + "\n" + "See Also\n" + "--------\n" + "roots_sh_jacobi : roots and quadrature weights of shifted Jacobi\n" + " polynomials\n" + "sh_jacobi : shifted Jacobi polynomial object\n" + "eval_jacobi : evaluate Jacobi polynomials\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_sh_jacobi_loops[0] = loop_d_lddd__As_lddd_d +ufunc_eval_sh_jacobi_loops[1] = loop_d_dddd__As_ffff_f +ufunc_eval_sh_jacobi_loops[2] = loop_D_dddD__As_fffF_F +ufunc_eval_sh_jacobi_loops[3] = loop_d_dddd__As_dddd_d +ufunc_eval_sh_jacobi_loops[4] = loop_D_dddD__As_dddD_D +ufunc_eval_sh_jacobi_types[0] = NPY_LONG +ufunc_eval_sh_jacobi_types[1] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[2] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[3] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[4] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[5] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[6] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[7] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[8] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[9] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[10] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[11] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[12] = NPY_FLOAT +ufunc_eval_sh_jacobi_types[13] = NPY_CFLOAT +ufunc_eval_sh_jacobi_types[14] = NPY_CFLOAT +ufunc_eval_sh_jacobi_types[15] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[16] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[17] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[18] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[19] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[20] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[21] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[22] = NPY_DOUBLE +ufunc_eval_sh_jacobi_types[23] = NPY_CDOUBLE +ufunc_eval_sh_jacobi_types[24] = NPY_CDOUBLE +ufunc_eval_sh_jacobi_ptr[2*0] = _func_eval_sh_jacobi_l +ufunc_eval_sh_jacobi_ptr[2*0+1] = ("eval_sh_jacobi") +ufunc_eval_sh_jacobi_ptr[2*1] = _func_eval_sh_jacobi[double] +ufunc_eval_sh_jacobi_ptr[2*1+1] = ("eval_sh_jacobi") +ufunc_eval_sh_jacobi_ptr[2*2] = _func_eval_sh_jacobi[double_complex] +ufunc_eval_sh_jacobi_ptr[2*2+1] = ("eval_sh_jacobi") +ufunc_eval_sh_jacobi_ptr[2*3] = _func_eval_sh_jacobi[double] +ufunc_eval_sh_jacobi_ptr[2*3+1] = ("eval_sh_jacobi") +ufunc_eval_sh_jacobi_ptr[2*4] = _func_eval_sh_jacobi[double_complex] +ufunc_eval_sh_jacobi_ptr[2*4+1] = ("eval_sh_jacobi") +ufunc_eval_sh_jacobi_data[0] = &ufunc_eval_sh_jacobi_ptr[2*0] +ufunc_eval_sh_jacobi_data[1] = &ufunc_eval_sh_jacobi_ptr[2*1] +ufunc_eval_sh_jacobi_data[2] = &ufunc_eval_sh_jacobi_ptr[2*2] +ufunc_eval_sh_jacobi_data[3] = &ufunc_eval_sh_jacobi_ptr[2*3] +ufunc_eval_sh_jacobi_data[4] = &ufunc_eval_sh_jacobi_ptr[2*4] +eval_sh_jacobi = np.PyUFunc_FromFuncAndData(ufunc_eval_sh_jacobi_loops, ufunc_eval_sh_jacobi_data, ufunc_eval_sh_jacobi_types, 5, 4, 1, 0, "eval_sh_jacobi", ufunc_eval_sh_jacobi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_eval_sh_legendre_loops[5] +cdef void *ufunc_eval_sh_legendre_ptr[10] +cdef void *ufunc_eval_sh_legendre_data[5] +cdef char ufunc_eval_sh_legendre_types[15] +cdef char *ufunc_eval_sh_legendre_doc = ( + "eval_sh_legendre(n, x, out=None)\n" + "\n" + "Evaluate shifted Legendre polynomial at a point.\n" + "\n" + "These polynomials are defined as\n" + "\n" + ".. math::\n" + "\n" + " P_n^*(x) = P_n(2x - 1)\n" + "\n" + "where :math:`P_n` is a Legendre polynomial. See 2.2.11 in [AS]_\n" + "for details.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Degree of the polynomial. If not an integer, the value is\n" + " determined via the relation to `eval_legendre`.\n" + "x : array_like\n" + " Points at which to evaluate the shifted Legendre polynomial\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "P : scalar or ndarray\n" + " Values of the shifted Legendre polynomial\n" + "\n" + "See Also\n" + "--------\n" + "roots_sh_legendre : roots and quadrature weights of shifted\n" + " Legendre polynomials\n" + "sh_legendre : shifted Legendre polynomial object\n" + "eval_legendre : evaluate Legendre polynomials\n" + "numpy.polynomial.legendre.Legendre : Legendre series\n" + "\n" + "References\n" + "----------\n" + ".. [AS] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.") +ufunc_eval_sh_legendre_loops[0] = loop_d_ld__As_ld_d +ufunc_eval_sh_legendre_loops[1] = loop_d_dd__As_ff_f +ufunc_eval_sh_legendre_loops[2] = loop_D_dD__As_fF_F +ufunc_eval_sh_legendre_loops[3] = loop_d_dd__As_dd_d +ufunc_eval_sh_legendre_loops[4] = loop_D_dD__As_dD_D +ufunc_eval_sh_legendre_types[0] = NPY_LONG +ufunc_eval_sh_legendre_types[1] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[2] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[3] = NPY_FLOAT +ufunc_eval_sh_legendre_types[4] = NPY_FLOAT +ufunc_eval_sh_legendre_types[5] = NPY_FLOAT +ufunc_eval_sh_legendre_types[6] = NPY_FLOAT +ufunc_eval_sh_legendre_types[7] = NPY_CFLOAT +ufunc_eval_sh_legendre_types[8] = NPY_CFLOAT +ufunc_eval_sh_legendre_types[9] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[10] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[11] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[12] = NPY_DOUBLE +ufunc_eval_sh_legendre_types[13] = NPY_CDOUBLE +ufunc_eval_sh_legendre_types[14] = NPY_CDOUBLE +ufunc_eval_sh_legendre_ptr[2*0] = _func_eval_sh_legendre_l +ufunc_eval_sh_legendre_ptr[2*0+1] = ("eval_sh_legendre") +ufunc_eval_sh_legendre_ptr[2*1] = _func_eval_sh_legendre[double] +ufunc_eval_sh_legendre_ptr[2*1+1] = ("eval_sh_legendre") +ufunc_eval_sh_legendre_ptr[2*2] = _func_eval_sh_legendre[double_complex] +ufunc_eval_sh_legendre_ptr[2*2+1] = ("eval_sh_legendre") +ufunc_eval_sh_legendre_ptr[2*3] = _func_eval_sh_legendre[double] +ufunc_eval_sh_legendre_ptr[2*3+1] = ("eval_sh_legendre") +ufunc_eval_sh_legendre_ptr[2*4] = _func_eval_sh_legendre[double_complex] +ufunc_eval_sh_legendre_ptr[2*4+1] = ("eval_sh_legendre") +ufunc_eval_sh_legendre_data[0] = &ufunc_eval_sh_legendre_ptr[2*0] +ufunc_eval_sh_legendre_data[1] = &ufunc_eval_sh_legendre_ptr[2*1] +ufunc_eval_sh_legendre_data[2] = &ufunc_eval_sh_legendre_ptr[2*2] +ufunc_eval_sh_legendre_data[3] = &ufunc_eval_sh_legendre_ptr[2*3] +ufunc_eval_sh_legendre_data[4] = &ufunc_eval_sh_legendre_ptr[2*4] +eval_sh_legendre = np.PyUFunc_FromFuncAndData(ufunc_eval_sh_legendre_loops, ufunc_eval_sh_legendre_data, ufunc_eval_sh_legendre_types, 5, 2, 1, 0, "eval_sh_legendre", ufunc_eval_sh_legendre_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_exp1_loops[4] +cdef void *ufunc_exp1_ptr[8] +cdef void *ufunc_exp1_data[4] +cdef char ufunc_exp1_types[8] +cdef char *ufunc_exp1_doc = ( + "exp1(z, out=None)\n" + "\n" + "Exponential integral E1.\n" + "\n" + "For complex :math:`z \\ne 0` the exponential integral can be defined as\n" + "[1]_\n" + "\n" + ".. math::\n" + "\n" + " E_1(z) = \\int_z^\\infty \\frac{e^{-t}}{t} dt,\n" + "\n" + "where the path of the integral does not cross the negative real\n" + "axis or pass through the origin.\n" + "\n" + "Parameters\n" + "----------\n" + "z: array_like\n" + " Real or complex argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the exponential integral E1\n" + "\n" + "See Also\n" + "--------\n" + "expi : exponential integral :math:`Ei`\n" + "expn : generalization of :math:`E_1`\n" + "\n" + "Notes\n" + "-----\n" + "For :math:`x > 0` it is related to the exponential integral\n" + ":math:`Ei` (see `expi`) via the relation\n" + "\n" + ".. math::\n" + "\n" + " E_1(x) = -Ei(-x).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Digital Library of Mathematical Functions, 6.2.1\n" + " https://dlmf.nist.gov/6.2#E1\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It has a pole at 0.\n" + "\n" + ">>> sc.exp1(0)\n" + "inf\n" + "\n" + "It has a branch cut on the negative real axis.\n" + "\n" + ">>> sc.exp1(-1)\n" + "nan\n" + ">>> sc.exp1(complex(-1, 0))\n" + "(-1.8951178163559368-3.141592653589793j)\n" + ">>> sc.exp1(complex(-1, -0.0))\n" + "(-1.8951178163559368+3.141592653589793j)\n" + "\n" + "It approaches 0 along the positive real axis.\n" + "\n" + ">>> sc.exp1([1, 10, 100, 1000])\n" + "array([2.19383934e-01, 4.15696893e-06, 3.68359776e-46, 0.00000000e+00])\n" + "\n" + "It is related to `expi`.\n" + "\n" + ">>> x = np.array([1, 2, 3, 4])\n" + ">>> sc.exp1(x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])\n" + ">>> -sc.expi(-x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])") +ufunc_exp1_loops[0] = loop_d_d__As_f_f +ufunc_exp1_loops[1] = loop_d_d__As_d_d +ufunc_exp1_loops[2] = loop_D_D__As_F_F +ufunc_exp1_loops[3] = loop_D_D__As_D_D +ufunc_exp1_types[0] = NPY_FLOAT +ufunc_exp1_types[1] = NPY_FLOAT +ufunc_exp1_types[2] = NPY_DOUBLE +ufunc_exp1_types[3] = NPY_DOUBLE +ufunc_exp1_types[4] = NPY_CFLOAT +ufunc_exp1_types[5] = NPY_CFLOAT +ufunc_exp1_types[6] = NPY_CDOUBLE +ufunc_exp1_types[7] = NPY_CDOUBLE +ufunc_exp1_ptr[2*0] = _func_exp1_wrap +ufunc_exp1_ptr[2*0+1] = ("exp1") +ufunc_exp1_ptr[2*1] = _func_exp1_wrap +ufunc_exp1_ptr[2*1+1] = ("exp1") +ufunc_exp1_ptr[2*2] = _func_cexp1_wrap +ufunc_exp1_ptr[2*2+1] = ("exp1") +ufunc_exp1_ptr[2*3] = _func_cexp1_wrap +ufunc_exp1_ptr[2*3+1] = ("exp1") +ufunc_exp1_data[0] = &ufunc_exp1_ptr[2*0] +ufunc_exp1_data[1] = &ufunc_exp1_ptr[2*1] +ufunc_exp1_data[2] = &ufunc_exp1_ptr[2*2] +ufunc_exp1_data[3] = &ufunc_exp1_ptr[2*3] +exp1 = np.PyUFunc_FromFuncAndData(ufunc_exp1_loops, ufunc_exp1_data, ufunc_exp1_types, 4, 1, 1, 0, "exp1", ufunc_exp1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_exp10_loops[2] +cdef void *ufunc_exp10_ptr[4] +cdef void *ufunc_exp10_data[2] +cdef char ufunc_exp10_types[4] +cdef char *ufunc_exp10_doc = ( + "exp10(x, out=None)\n" + "\n" + "Compute ``10**x`` element-wise.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " `x` must contain real numbers.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " ``10**x``, computed element-wise.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import exp10\n" + "\n" + ">>> exp10(3)\n" + "1000.0\n" + ">>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])\n" + ">>> exp10(x)\n" + "array([[ 0.1 , 0.31622777, 1. ],\n" + " [ 3.16227766, 10. , 31.6227766 ]])") +ufunc_exp10_loops[0] = loop_d_d__As_f_f +ufunc_exp10_loops[1] = loop_d_d__As_d_d +ufunc_exp10_types[0] = NPY_FLOAT +ufunc_exp10_types[1] = NPY_FLOAT +ufunc_exp10_types[2] = NPY_DOUBLE +ufunc_exp10_types[3] = NPY_DOUBLE +ufunc_exp10_ptr[2*0] = _func_exp10 +ufunc_exp10_ptr[2*0+1] = ("exp10") +ufunc_exp10_ptr[2*1] = _func_exp10 +ufunc_exp10_ptr[2*1+1] = ("exp10") +ufunc_exp10_data[0] = &ufunc_exp10_ptr[2*0] +ufunc_exp10_data[1] = &ufunc_exp10_ptr[2*1] +exp10 = np.PyUFunc_FromFuncAndData(ufunc_exp10_loops, ufunc_exp10_data, ufunc_exp10_types, 2, 1, 1, 0, "exp10", ufunc_exp10_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_exp2_loops[2] +cdef void *ufunc_exp2_ptr[4] +cdef void *ufunc_exp2_data[2] +cdef char ufunc_exp2_types[4] +cdef char *ufunc_exp2_doc = ( + "exp2(x, out=None)\n" + "\n" + "Compute ``2**x`` element-wise.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " `x` must contain real numbers.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " ``2**x``, computed element-wise.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import exp2\n" + "\n" + ">>> exp2(3)\n" + "8.0\n" + ">>> x = np.array([[-1, -0.5, 0], [0.5, 1, 1.5]])\n" + ">>> exp2(x)\n" + "array([[ 0.5 , 0.70710678, 1. ],\n" + " [ 1.41421356, 2. , 2.82842712]])") +ufunc_exp2_loops[0] = loop_d_d__As_f_f +ufunc_exp2_loops[1] = loop_d_d__As_d_d +ufunc_exp2_types[0] = NPY_FLOAT +ufunc_exp2_types[1] = NPY_FLOAT +ufunc_exp2_types[2] = NPY_DOUBLE +ufunc_exp2_types[3] = NPY_DOUBLE +ufunc_exp2_ptr[2*0] = _func_exp2 +ufunc_exp2_ptr[2*0+1] = ("exp2") +ufunc_exp2_ptr[2*1] = _func_exp2 +ufunc_exp2_ptr[2*1+1] = ("exp2") +ufunc_exp2_data[0] = &ufunc_exp2_ptr[2*0] +ufunc_exp2_data[1] = &ufunc_exp2_ptr[2*1] +exp2 = np.PyUFunc_FromFuncAndData(ufunc_exp2_loops, ufunc_exp2_data, ufunc_exp2_types, 2, 1, 1, 0, "exp2", ufunc_exp2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_expi_loops[4] +cdef void *ufunc_expi_ptr[8] +cdef void *ufunc_expi_data[4] +cdef char ufunc_expi_types[8] +cdef char *ufunc_expi_doc = ( + "expi(x, out=None)\n" + "\n" + "Exponential integral Ei.\n" + "\n" + "For real :math:`x`, the exponential integral is defined as [1]_\n" + "\n" + ".. math::\n" + "\n" + " Ei(x) = \\int_{-\\infty}^x \\frac{e^t}{t} dt.\n" + "\n" + "For :math:`x > 0` the integral is understood as a Cauchy principal\n" + "value.\n" + "\n" + "It is extended to the complex plane by analytic continuation of\n" + "the function on the interval :math:`(0, \\infty)`. The complex\n" + "variant has a branch cut on the negative real axis.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the exponential integral\n" + "\n" + "See Also\n" + "--------\n" + "exp1 : Exponential integral :math:`E_1`\n" + "expn : Generalized exponential integral :math:`E_n`\n" + "\n" + "Notes\n" + "-----\n" + "The exponential integrals :math:`E_1` and :math:`Ei` satisfy the\n" + "relation\n" + "\n" + ".. math::\n" + "\n" + " E_1(x) = -Ei(-x)\n" + "\n" + "for :math:`x > 0`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Digital Library of Mathematical Functions, 6.2.5\n" + " https://dlmf.nist.gov/6.2#E5\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is related to `exp1`.\n" + "\n" + ">>> x = np.array([1, 2, 3, 4])\n" + ">>> -sc.expi(-x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])\n" + ">>> sc.exp1(x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])\n" + "\n" + "The complex variant has a branch cut on the negative real axis.\n" + "\n" + ">>> sc.expi(-1 + 1e-12j)\n" + "(-0.21938393439552062+3.1415926535894254j)\n" + ">>> sc.expi(-1 - 1e-12j)\n" + "(-0.21938393439552062-3.1415926535894254j)\n" + "\n" + "As the complex variant approaches the branch cut, the real parts\n" + "approach the value of the real variant.\n" + "\n" + ">>> sc.expi(-1)\n" + "-0.21938393439552062\n" + "\n" + "The SciPy implementation returns the real variant for complex\n" + "values on the branch cut.\n" + "\n" + ">>> sc.expi(complex(-1, 0.0))\n" + "(-0.21938393439552062-0j)\n" + ">>> sc.expi(complex(-1, -0.0))\n" + "(-0.21938393439552062-0j)") +ufunc_expi_loops[0] = loop_d_d__As_f_f +ufunc_expi_loops[1] = loop_d_d__As_d_d +ufunc_expi_loops[2] = loop_D_D__As_F_F +ufunc_expi_loops[3] = loop_D_D__As_D_D +ufunc_expi_types[0] = NPY_FLOAT +ufunc_expi_types[1] = NPY_FLOAT +ufunc_expi_types[2] = NPY_DOUBLE +ufunc_expi_types[3] = NPY_DOUBLE +ufunc_expi_types[4] = NPY_CFLOAT +ufunc_expi_types[5] = NPY_CFLOAT +ufunc_expi_types[6] = NPY_CDOUBLE +ufunc_expi_types[7] = NPY_CDOUBLE +ufunc_expi_ptr[2*0] = _func_expi_wrap +ufunc_expi_ptr[2*0+1] = ("expi") +ufunc_expi_ptr[2*1] = _func_expi_wrap +ufunc_expi_ptr[2*1+1] = ("expi") +ufunc_expi_ptr[2*2] = _func_cexpi_wrap +ufunc_expi_ptr[2*2+1] = ("expi") +ufunc_expi_ptr[2*3] = _func_cexpi_wrap +ufunc_expi_ptr[2*3+1] = ("expi") +ufunc_expi_data[0] = &ufunc_expi_ptr[2*0] +ufunc_expi_data[1] = &ufunc_expi_ptr[2*1] +ufunc_expi_data[2] = &ufunc_expi_ptr[2*2] +ufunc_expi_data[3] = &ufunc_expi_ptr[2*3] +expi = np.PyUFunc_FromFuncAndData(ufunc_expi_loops, ufunc_expi_data, ufunc_expi_types, 4, 1, 1, 0, "expi", ufunc_expi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_expit_loops[3] +cdef void *ufunc_expit_ptr[6] +cdef void *ufunc_expit_data[3] +cdef char ufunc_expit_types[6] +cdef char *ufunc_expit_doc = ( + "expit(x, out=None)\n" + "\n" + "Expit (a.k.a. logistic sigmoid) ufunc for ndarrays.\n" + "\n" + "The expit function, also known as the logistic sigmoid function, is\n" + "defined as ``expit(x) = 1/(1+exp(-x))``. It is the inverse of the\n" + "logit function.\n" + "\n" + "Parameters\n" + "----------\n" + "x : ndarray\n" + " The ndarray to apply expit to element-wise.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " An ndarray of the same shape as x. Its entries\n" + " are `expit` of the corresponding entry of x.\n" + "\n" + "See Also\n" + "--------\n" + "logit\n" + "\n" + "Notes\n" + "-----\n" + "As a ufunc expit takes a number of optional\n" + "keyword arguments. For more information\n" + "see `ufuncs `_\n" + "\n" + ".. versionadded:: 0.10.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import expit, logit\n" + "\n" + ">>> expit([-np.inf, -1.5, 0, 1.5, np.inf])\n" + "array([ 0. , 0.18242552, 0.5 , 0.81757448, 1. ])\n" + "\n" + "`logit` is the inverse of `expit`:\n" + "\n" + ">>> logit(expit([-2.5, 0, 3.1, 5.0]))\n" + "array([-2.5, 0. , 3.1, 5. ])\n" + "\n" + "Plot expit(x) for x in [-6, 6]:\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-6, 6, 121)\n" + ">>> y = expit(x)\n" + ">>> plt.plot(x, y)\n" + ">>> plt.grid()\n" + ">>> plt.xlim(-6, 6)\n" + ">>> plt.xlabel('x')\n" + ">>> plt.title('expit(x)')\n" + ">>> plt.show()") +ufunc_expit_loops[0] = loop_f_f__As_f_f +ufunc_expit_loops[1] = loop_d_d__As_d_d +ufunc_expit_loops[2] = loop_g_g__As_g_g +ufunc_expit_types[0] = NPY_FLOAT +ufunc_expit_types[1] = NPY_FLOAT +ufunc_expit_types[2] = NPY_DOUBLE +ufunc_expit_types[3] = NPY_DOUBLE +ufunc_expit_types[4] = NPY_LONGDOUBLE +ufunc_expit_types[5] = NPY_LONGDOUBLE +ufunc_expit_ptr[2*0] = scipy.special._ufuncs_cxx._export_expitf +ufunc_expit_ptr[2*0+1] = ("expit") +ufunc_expit_ptr[2*1] = scipy.special._ufuncs_cxx._export_expit +ufunc_expit_ptr[2*1+1] = ("expit") +ufunc_expit_ptr[2*2] = scipy.special._ufuncs_cxx._export_expitl +ufunc_expit_ptr[2*2+1] = ("expit") +ufunc_expit_data[0] = &ufunc_expit_ptr[2*0] +ufunc_expit_data[1] = &ufunc_expit_ptr[2*1] +ufunc_expit_data[2] = &ufunc_expit_ptr[2*2] +expit = np.PyUFunc_FromFuncAndData(ufunc_expit_loops, ufunc_expit_data, ufunc_expit_types, 3, 1, 1, 0, "expit", ufunc_expit_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_expm1_loops[4] +cdef void *ufunc_expm1_ptr[8] +cdef void *ufunc_expm1_data[4] +cdef char ufunc_expm1_types[8] +cdef char *ufunc_expm1_doc = ( + "expm1(x, out=None)\n" + "\n" + "Compute ``exp(x) - 1``.\n" + "\n" + "When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation\n" + "of ``exp(x) - 1`` can suffer from catastrophic loss of precision.\n" + "``expm1(x)`` is implemented to avoid the loss of precision that occurs when\n" + "`x` is near zero.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " `x` must contain real numbers.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " ``exp(x) - 1`` computed element-wise.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import expm1\n" + "\n" + ">>> expm1(1.0)\n" + "1.7182818284590451\n" + ">>> expm1([-0.2, -0.1, 0, 0.1, 0.2])\n" + "array([-0.18126925, -0.09516258, 0. , 0.10517092, 0.22140276])\n" + "\n" + "The exact value of ``exp(7.5e-13) - 1`` is::\n" + "\n" + " 7.5000000000028125000000007031250000001318...*10**-13.\n" + "\n" + "Here is what ``expm1(7.5e-13)`` gives:\n" + "\n" + ">>> expm1(7.5e-13)\n" + "7.5000000000028135e-13\n" + "\n" + "Compare that to ``exp(7.5e-13) - 1``, where the subtraction results in\n" + "a \"catastrophic\" loss of precision:\n" + "\n" + ">>> np.exp(7.5e-13) - 1\n" + "7.5006667543675576e-13") +ufunc_expm1_loops[0] = loop_d_d__As_f_f +ufunc_expm1_loops[1] = loop_d_d__As_d_d +ufunc_expm1_loops[2] = loop_D_D__As_F_F +ufunc_expm1_loops[3] = loop_D_D__As_D_D +ufunc_expm1_types[0] = NPY_FLOAT +ufunc_expm1_types[1] = NPY_FLOAT +ufunc_expm1_types[2] = NPY_DOUBLE +ufunc_expm1_types[3] = NPY_DOUBLE +ufunc_expm1_types[4] = NPY_CFLOAT +ufunc_expm1_types[5] = NPY_CFLOAT +ufunc_expm1_types[6] = NPY_CDOUBLE +ufunc_expm1_types[7] = NPY_CDOUBLE +ufunc_expm1_ptr[2*0] = _func_expm1 +ufunc_expm1_ptr[2*0+1] = ("expm1") +ufunc_expm1_ptr[2*1] = _func_expm1 +ufunc_expm1_ptr[2*1+1] = ("expm1") +ufunc_expm1_ptr[2*2] = _func_cexpm1 +ufunc_expm1_ptr[2*2+1] = ("expm1") +ufunc_expm1_ptr[2*3] = _func_cexpm1 +ufunc_expm1_ptr[2*3+1] = ("expm1") +ufunc_expm1_data[0] = &ufunc_expm1_ptr[2*0] +ufunc_expm1_data[1] = &ufunc_expm1_ptr[2*1] +ufunc_expm1_data[2] = &ufunc_expm1_ptr[2*2] +ufunc_expm1_data[3] = &ufunc_expm1_ptr[2*3] +expm1 = np.PyUFunc_FromFuncAndData(ufunc_expm1_loops, ufunc_expm1_data, ufunc_expm1_types, 4, 1, 1, 0, "expm1", ufunc_expm1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_expn_loops[3] +cdef void *ufunc_expn_ptr[6] +cdef void *ufunc_expn_data[3] +cdef char ufunc_expn_types[9] +cdef char *ufunc_expn_doc = ( + "expn(n, x, out=None)\n" + "\n" + "Generalized exponential integral En.\n" + "\n" + "For integer :math:`n \\geq 0` and real :math:`x \\geq 0` the\n" + "generalized exponential integral is defined as [dlmf]_\n" + "\n" + ".. math::\n" + "\n" + " E_n(x) = x^{n - 1} \\int_x^\\infty \\frac{e^{-t}}{t^n} dt.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Non-negative integers\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the generalized exponential integral\n" + "\n" + "See Also\n" + "--------\n" + "exp1 : special case of :math:`E_n` for :math:`n = 1`\n" + "expi : related to :math:`E_n` when :math:`n = 1`\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] Digital Library of Mathematical Functions, 8.19.2\n" + " https://dlmf.nist.gov/8.19#E2\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "Its domain is nonnegative n and x.\n" + "\n" + ">>> sc.expn(-1, 1.0), sc.expn(1, -1.0)\n" + "(nan, nan)\n" + "\n" + "It has a pole at ``x = 0`` for ``n = 1, 2``; for larger ``n`` it\n" + "is equal to ``1 / (n - 1)``.\n" + "\n" + ">>> sc.expn([0, 1, 2, 3, 4], 0)\n" + "array([ inf, inf, 1. , 0.5 , 0.33333333])\n" + "\n" + "For n equal to 0 it reduces to ``exp(-x) / x``.\n" + "\n" + ">>> x = np.array([1, 2, 3, 4])\n" + ">>> sc.expn(0, x)\n" + "array([0.36787944, 0.06766764, 0.01659569, 0.00457891])\n" + ">>> np.exp(-x) / x\n" + "array([0.36787944, 0.06766764, 0.01659569, 0.00457891])\n" + "\n" + "For n equal to 1 it reduces to `exp1`.\n" + "\n" + ">>> sc.expn(1, x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])\n" + ">>> sc.exp1(x)\n" + "array([0.21938393, 0.04890051, 0.01304838, 0.00377935])") +ufunc_expn_loops[0] = loop_d_id__As_ld_d +ufunc_expn_loops[1] = loop_d_dd__As_ff_f +ufunc_expn_loops[2] = loop_d_dd__As_dd_d +ufunc_expn_types[0] = NPY_LONG +ufunc_expn_types[1] = NPY_DOUBLE +ufunc_expn_types[2] = NPY_DOUBLE +ufunc_expn_types[3] = NPY_FLOAT +ufunc_expn_types[4] = NPY_FLOAT +ufunc_expn_types[5] = NPY_FLOAT +ufunc_expn_types[6] = NPY_DOUBLE +ufunc_expn_types[7] = NPY_DOUBLE +ufunc_expn_types[8] = NPY_DOUBLE +ufunc_expn_ptr[2*0] = _func_expn +ufunc_expn_ptr[2*0+1] = ("expn") +ufunc_expn_ptr[2*1] = _func_expn_unsafe +ufunc_expn_ptr[2*1+1] = ("expn") +ufunc_expn_ptr[2*2] = _func_expn_unsafe +ufunc_expn_ptr[2*2+1] = ("expn") +ufunc_expn_data[0] = &ufunc_expn_ptr[2*0] +ufunc_expn_data[1] = &ufunc_expn_ptr[2*1] +ufunc_expn_data[2] = &ufunc_expn_ptr[2*2] +expn = np.PyUFunc_FromFuncAndData(ufunc_expn_loops, ufunc_expn_data, ufunc_expn_types, 3, 2, 1, 0, "expn", ufunc_expn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_exprel_loops[2] +cdef void *ufunc_exprel_ptr[4] +cdef void *ufunc_exprel_data[2] +cdef char ufunc_exprel_types[4] +cdef char *ufunc_exprel_doc = ( + "exprel(x, out=None)\n" + "\n" + "Relative error exponential, ``(exp(x) - 1)/x``.\n" + "\n" + "When `x` is near zero, ``exp(x)`` is near 1, so the numerical calculation\n" + "of ``exp(x) - 1`` can suffer from catastrophic loss of precision.\n" + "``exprel(x)`` is implemented to avoid the loss of precision that occurs when\n" + "`x` is near zero.\n" + "\n" + "Parameters\n" + "----------\n" + "x : ndarray\n" + " Input array. `x` must contain real numbers.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " ``(exp(x) - 1)/x``, computed element-wise.\n" + "\n" + "See Also\n" + "--------\n" + "expm1\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 0.17.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import exprel\n" + "\n" + ">>> exprel(0.01)\n" + "1.0050167084168056\n" + ">>> exprel([-0.25, -0.1, 0, 0.1, 0.25])\n" + "array([ 0.88479687, 0.95162582, 1. , 1.05170918, 1.13610167])\n" + "\n" + "Compare ``exprel(5e-9)`` to the naive calculation. The exact value\n" + "is ``1.00000000250000000416...``.\n" + "\n" + ">>> exprel(5e-9)\n" + "1.0000000025\n" + "\n" + ">>> (np.exp(5e-9) - 1)/5e-9\n" + "0.99999999392252903") +ufunc_exprel_loops[0] = loop_d_d__As_f_f +ufunc_exprel_loops[1] = loop_d_d__As_d_d +ufunc_exprel_types[0] = NPY_FLOAT +ufunc_exprel_types[1] = NPY_FLOAT +ufunc_exprel_types[2] = NPY_DOUBLE +ufunc_exprel_types[3] = NPY_DOUBLE +ufunc_exprel_ptr[2*0] = _func_exprel +ufunc_exprel_ptr[2*0+1] = ("exprel") +ufunc_exprel_ptr[2*1] = _func_exprel +ufunc_exprel_ptr[2*1+1] = ("exprel") +ufunc_exprel_data[0] = &ufunc_exprel_ptr[2*0] +ufunc_exprel_data[1] = &ufunc_exprel_ptr[2*1] +exprel = np.PyUFunc_FromFuncAndData(ufunc_exprel_loops, ufunc_exprel_data, ufunc_exprel_types, 2, 1, 1, 0, "exprel", ufunc_exprel_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_fdtr_loops[2] +cdef void *ufunc_fdtr_ptr[4] +cdef void *ufunc_fdtr_data[2] +cdef char ufunc_fdtr_types[8] +cdef char *ufunc_fdtr_doc = ( + "fdtr(dfn, dfd, x, out=None)\n" + "\n" + "F cumulative distribution function.\n" + "\n" + "Returns the value of the cumulative distribution function of the\n" + "F-distribution, also known as Snedecor's F-distribution or the\n" + "Fisher-Snedecor distribution.\n" + "\n" + "The F-distribution with parameters :math:`d_n` and :math:`d_d` is the\n" + "distribution of the random variable,\n" + "\n" + ".. math::\n" + " X = \\frac{U_n/d_n}{U_d/d_d},\n" + "\n" + "where :math:`U_n` and :math:`U_d` are random variables distributed\n" + ":math:`\\chi^2`, with :math:`d_n` and :math:`d_d` degrees of freedom,\n" + "respectively.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " First parameter (positive float).\n" + "dfd : array_like\n" + " Second parameter (positive float).\n" + "x : array_like\n" + " Argument (nonnegative float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " The CDF of the F-distribution with parameters `dfn` and `dfd` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "fdtrc : F distribution survival function\n" + "fdtri : F distribution inverse cumulative distribution\n" + "scipy.stats.f : F distribution\n" + "\n" + "Notes\n" + "-----\n" + "The regularized incomplete beta function is used, according to the\n" + "formula,\n" + "\n" + ".. math::\n" + " F(d_n, d_d; x) = I_{xd_n/(d_d + xd_n)}(d_n/2, d_d/2).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `fdtr`. The F distribution is also\n" + "available as `scipy.stats.f`. Calling `fdtr` directly can improve\n" + "performance compared to the ``cdf`` method of `scipy.stats.f` (see last\n" + "example below).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function for ``dfn=1`` and ``dfd=2`` at ``x=1``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import fdtr\n" + ">>> fdtr(1, 2, 1)\n" + "0.5773502691896258\n" + "\n" + "Calculate the function at several points by providing a NumPy array for\n" + "`x`.\n" + "\n" + ">>> x = np.array([0.5, 2., 3.])\n" + ">>> fdtr(1, 2, x)\n" + "array([0.4472136 , 0.70710678, 0.77459667])\n" + "\n" + "Plot the function for several parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> dfn_parameters = [1, 5, 10, 50]\n" + ">>> dfd_parameters = [1, 1, 2, 3]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(dfn_parameters, dfd_parameters,\n" + "... linestyles))\n" + ">>> x = np.linspace(0, 30, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for parameter_set in parameters_list:\n" + "... dfn, dfd, style = parameter_set\n" + "... fdtr_vals = fdtr(dfn, dfd, x)\n" + "... ax.plot(x, fdtr_vals, label=rf\"$d_n={dfn},\\, d_d={dfd}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(\"F distribution cumulative distribution function\")\n" + ">>> plt.show()\n" + "\n" + "The F distribution is also available as `scipy.stats.f`. Using `fdtr`\n" + "directly can be much faster than calling the ``cdf`` method of\n" + "`scipy.stats.f`, especially for small arrays or individual values.\n" + "To get the same results one must use the following parametrization:\n" + "``stats.f(dfn, dfd).cdf(x)=fdtr(dfn, dfd, x)``.\n" + "\n" + ">>> from scipy.stats import f\n" + ">>> dfn, dfd = 1, 2\n" + ">>> x = 1\n" + ">>> fdtr_res = fdtr(dfn, dfd, x) # this will often be faster than below\n" + ">>> f_dist_res = f(dfn, dfd).cdf(x)\n" + ">>> fdtr_res == f_dist_res # test that results are equal\n" + "True") +ufunc_fdtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_fdtr_loops[1] = loop_d_ddd__As_ddd_d +ufunc_fdtr_types[0] = NPY_FLOAT +ufunc_fdtr_types[1] = NPY_FLOAT +ufunc_fdtr_types[2] = NPY_FLOAT +ufunc_fdtr_types[3] = NPY_FLOAT +ufunc_fdtr_types[4] = NPY_DOUBLE +ufunc_fdtr_types[5] = NPY_DOUBLE +ufunc_fdtr_types[6] = NPY_DOUBLE +ufunc_fdtr_types[7] = NPY_DOUBLE +ufunc_fdtr_ptr[2*0] = _func_fdtr +ufunc_fdtr_ptr[2*0+1] = ("fdtr") +ufunc_fdtr_ptr[2*1] = _func_fdtr +ufunc_fdtr_ptr[2*1+1] = ("fdtr") +ufunc_fdtr_data[0] = &ufunc_fdtr_ptr[2*0] +ufunc_fdtr_data[1] = &ufunc_fdtr_ptr[2*1] +fdtr = np.PyUFunc_FromFuncAndData(ufunc_fdtr_loops, ufunc_fdtr_data, ufunc_fdtr_types, 2, 3, 1, 0, "fdtr", ufunc_fdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_fdtrc_loops[2] +cdef void *ufunc_fdtrc_ptr[4] +cdef void *ufunc_fdtrc_data[2] +cdef char ufunc_fdtrc_types[8] +cdef char *ufunc_fdtrc_doc = ( + "fdtrc(dfn, dfd, x, out=None)\n" + "\n" + "F survival function.\n" + "\n" + "Returns the complemented F-distribution function (the integral of the\n" + "density from `x` to infinity).\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " First parameter (positive float).\n" + "dfd : array_like\n" + " Second parameter (positive float).\n" + "x : array_like\n" + " Argument (nonnegative float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " The complemented F-distribution function with parameters `dfn` and\n" + " `dfd` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "fdtr : F distribution cumulative distribution function\n" + "fdtri : F distribution inverse cumulative distribution function\n" + "scipy.stats.f : F distribution\n" + "\n" + "Notes\n" + "-----\n" + "The regularized incomplete beta function is used, according to the\n" + "formula,\n" + "\n" + ".. math::\n" + " F(d_n, d_d; x) = I_{d_d/(d_d + xd_n)}(d_d/2, d_n/2).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `fdtrc`. The F distribution is also\n" + "available as `scipy.stats.f`. Calling `fdtrc` directly can improve\n" + "performance compared to the ``sf`` method of `scipy.stats.f` (see last\n" + "example below).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function for ``dfn=1`` and ``dfd=2`` at ``x=1``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import fdtrc\n" + ">>> fdtrc(1, 2, 1)\n" + "0.42264973081037427\n" + "\n" + "Calculate the function at several points by providing a NumPy array for\n" + "`x`.\n" + "\n" + ">>> x = np.array([0.5, 2., 3.])\n" + ">>> fdtrc(1, 2, x)\n" + "array([0.5527864 , 0.29289322, 0.22540333])\n" + "\n" + "Plot the function for several parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> dfn_parameters = [1, 5, 10, 50]\n" + ">>> dfd_parameters = [1, 1, 2, 3]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(dfn_parameters, dfd_parameters,\n" + "... linestyles))\n" + ">>> x = np.linspace(0, 30, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for parameter_set in parameters_list:\n" + "... dfn, dfd, style = parameter_set\n" + "... fdtrc_vals = fdtrc(dfn, dfd, x)\n" + "... ax.plot(x, fdtrc_vals, label=rf\"$d_n={dfn},\\, d_d={dfd}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(\"F distribution survival function\")\n" + ">>> plt.show()\n" + "\n" + "The F distribution is also available as `scipy.stats.f`. Using `fdtrc`\n" + "directly can be much faster than calling the ``sf`` method of\n" + "`scipy.stats.f`, especially for small arrays or individual values.\n" + "To get the same results one must use the following parametrization:\n" + "``stats.f(dfn, dfd).sf(x)=fdtrc(dfn, dfd, x)``.\n" + "\n" + ">>> from scipy.stats import f\n" + ">>> dfn, dfd = 1, 2\n" + ">>> x = 1\n" + ">>> fdtrc_res = fdtrc(dfn, dfd, x) # this will often be faster than below\n" + ">>> f_dist_res = f(dfn, dfd).sf(x)\n" + ">>> f_dist_res == fdtrc_res # test that results are equal\n" + "True") +ufunc_fdtrc_loops[0] = loop_d_ddd__As_fff_f +ufunc_fdtrc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_fdtrc_types[0] = NPY_FLOAT +ufunc_fdtrc_types[1] = NPY_FLOAT +ufunc_fdtrc_types[2] = NPY_FLOAT +ufunc_fdtrc_types[3] = NPY_FLOAT +ufunc_fdtrc_types[4] = NPY_DOUBLE +ufunc_fdtrc_types[5] = NPY_DOUBLE +ufunc_fdtrc_types[6] = NPY_DOUBLE +ufunc_fdtrc_types[7] = NPY_DOUBLE +ufunc_fdtrc_ptr[2*0] = _func_fdtrc +ufunc_fdtrc_ptr[2*0+1] = ("fdtrc") +ufunc_fdtrc_ptr[2*1] = _func_fdtrc +ufunc_fdtrc_ptr[2*1+1] = ("fdtrc") +ufunc_fdtrc_data[0] = &ufunc_fdtrc_ptr[2*0] +ufunc_fdtrc_data[1] = &ufunc_fdtrc_ptr[2*1] +fdtrc = np.PyUFunc_FromFuncAndData(ufunc_fdtrc_loops, ufunc_fdtrc_data, ufunc_fdtrc_types, 2, 3, 1, 0, "fdtrc", ufunc_fdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_fdtri_loops[2] +cdef void *ufunc_fdtri_ptr[4] +cdef void *ufunc_fdtri_data[2] +cdef char ufunc_fdtri_types[8] +cdef char *ufunc_fdtri_doc = ( + "fdtri(dfn, dfd, p, out=None)\n" + "\n" + "The `p`-th quantile of the F-distribution.\n" + "\n" + "This function is the inverse of the F-distribution CDF, `fdtr`, returning\n" + "the `x` such that `fdtr(dfn, dfd, x) = p`.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " First parameter (positive float).\n" + "dfd : array_like\n" + " Second parameter (positive float).\n" + "p : array_like\n" + " Cumulative probability, in [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " The quantile corresponding to `p`.\n" + "\n" + "See Also\n" + "--------\n" + "fdtr : F distribution cumulative distribution function\n" + "fdtrc : F distribution survival function\n" + "scipy.stats.f : F distribution\n" + "\n" + "Notes\n" + "-----\n" + "The computation is carried out using the relation to the inverse\n" + "regularized beta function, :math:`I^{-1}_x(a, b)`. Let\n" + ":math:`z = I^{-1}_p(d_d/2, d_n/2).` Then,\n" + "\n" + ".. math::\n" + " x = \\frac{d_d (1 - z)}{d_n z}.\n" + "\n" + "If `p` is such that :math:`x < 0.5`, the following relation is used\n" + "instead for improved stability: let\n" + ":math:`z' = I^{-1}_{1 - p}(d_n/2, d_d/2).` Then,\n" + "\n" + ".. math::\n" + " x = \\frac{d_d z'}{d_n (1 - z')}.\n" + "\n" + "Wrapper for the Cephes [1]_ routine `fdtri`.\n" + "\n" + "The F distribution is also available as `scipy.stats.f`. Calling\n" + "`fdtri` directly can improve performance compared to the ``ppf``\n" + "method of `scipy.stats.f` (see last example below).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "`fdtri` represents the inverse of the F distribution CDF which is\n" + "available as `fdtr`. Here, we calculate the CDF for ``df1=1``, ``df2=2``\n" + "at ``x=3``. `fdtri` then returns ``3`` given the same values for `df1`,\n" + "`df2` and the computed CDF value.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import fdtri, fdtr\n" + ">>> df1, df2 = 1, 2\n" + ">>> x = 3\n" + ">>> cdf_value = fdtr(df1, df2, x)\n" + ">>> fdtri(df1, df2, cdf_value)\n" + "3.000000000000006\n" + "\n" + "Calculate the function at several points by providing a NumPy array for\n" + "`x`.\n" + "\n" + ">>> x = np.array([0.1, 0.4, 0.7])\n" + ">>> fdtri(1, 2, x)\n" + "array([0.02020202, 0.38095238, 1.92156863])\n" + "\n" + "Plot the function for several parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> dfn_parameters = [50, 10, 1, 50]\n" + ">>> dfd_parameters = [0.5, 1, 1, 5]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(dfn_parameters, dfd_parameters,\n" + "... linestyles))\n" + ">>> x = np.linspace(0, 1, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for parameter_set in parameters_list:\n" + "... dfn, dfd, style = parameter_set\n" + "... fdtri_vals = fdtri(dfn, dfd, x)\n" + "... ax.plot(x, fdtri_vals, label=rf\"$d_n={dfn},\\, d_d={dfd}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> title = \"F distribution inverse cumulative distribution function\"\n" + ">>> ax.set_title(title)\n" + ">>> ax.set_ylim(0, 30)\n" + ">>> plt.show()\n" + "\n" + "The F distribution is also available as `scipy.stats.f`. Using `fdtri`\n" + "directly can be much faster than calling the ``ppf`` method of\n" + "`scipy.stats.f`, especially for small arrays or individual values.\n" + "To get the same results one must use the following parametrization:\n" + "``stats.f(dfn, dfd).ppf(x)=fdtri(dfn, dfd, x)``.\n" + "\n" + ">>> from scipy.stats import f\n" + ">>> dfn, dfd = 1, 2\n" + ">>> x = 0.7\n" + ">>> fdtri_res = fdtri(dfn, dfd, x) # this will often be faster than below\n" + ">>> f_dist_res = f(dfn, dfd).ppf(x)\n" + ">>> f_dist_res == fdtri_res # test that results are equal\n" + "True") +ufunc_fdtri_loops[0] = loop_d_ddd__As_fff_f +ufunc_fdtri_loops[1] = loop_d_ddd__As_ddd_d +ufunc_fdtri_types[0] = NPY_FLOAT +ufunc_fdtri_types[1] = NPY_FLOAT +ufunc_fdtri_types[2] = NPY_FLOAT +ufunc_fdtri_types[3] = NPY_FLOAT +ufunc_fdtri_types[4] = NPY_DOUBLE +ufunc_fdtri_types[5] = NPY_DOUBLE +ufunc_fdtri_types[6] = NPY_DOUBLE +ufunc_fdtri_types[7] = NPY_DOUBLE +ufunc_fdtri_ptr[2*0] = _func_fdtri +ufunc_fdtri_ptr[2*0+1] = ("fdtri") +ufunc_fdtri_ptr[2*1] = _func_fdtri +ufunc_fdtri_ptr[2*1+1] = ("fdtri") +ufunc_fdtri_data[0] = &ufunc_fdtri_ptr[2*0] +ufunc_fdtri_data[1] = &ufunc_fdtri_ptr[2*1] +fdtri = np.PyUFunc_FromFuncAndData(ufunc_fdtri_loops, ufunc_fdtri_data, ufunc_fdtri_types, 2, 3, 1, 0, "fdtri", ufunc_fdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_fdtridfd_loops[2] +cdef void *ufunc_fdtridfd_ptr[4] +cdef void *ufunc_fdtridfd_data[2] +cdef char ufunc_fdtridfd_types[8] +cdef char *ufunc_fdtridfd_doc = ( + "fdtridfd(dfn, p, x, out=None)\n" + "\n" + "Inverse to `fdtr` vs dfd\n" + "\n" + "Finds the F density argument dfd such that ``fdtr(dfn, dfd, x) == p``.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " First parameter (positive float).\n" + "p : array_like\n" + " Cumulative probability, in [0, 1].\n" + "x : array_like\n" + " Argument (nonnegative float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "dfd : scalar or ndarray\n" + " `dfd` such that ``fdtr(dfn, dfd, x) == p``.\n" + "\n" + "See Also\n" + "--------\n" + "fdtr : F distribution cumulative distribution function\n" + "fdtrc : F distribution survival function\n" + "fdtri : F distribution quantile function\n" + "scipy.stats.f : F distribution\n" + "\n" + "Examples\n" + "--------\n" + "Compute the F distribution cumulative distribution function for one\n" + "parameter set.\n" + "\n" + ">>> from scipy.special import fdtridfd, fdtr\n" + ">>> dfn, dfd, x = 10, 5, 2\n" + ">>> cdf_value = fdtr(dfn, dfd, x)\n" + ">>> cdf_value\n" + "0.7700248806501017\n" + "\n" + "Verify that `fdtridfd` recovers the original value for `dfd`:\n" + "\n" + ">>> fdtridfd(dfn, cdf_value, x)\n" + "5.0") +ufunc_fdtridfd_loops[0] = loop_d_ddd__As_fff_f +ufunc_fdtridfd_loops[1] = loop_d_ddd__As_ddd_d +ufunc_fdtridfd_types[0] = NPY_FLOAT +ufunc_fdtridfd_types[1] = NPY_FLOAT +ufunc_fdtridfd_types[2] = NPY_FLOAT +ufunc_fdtridfd_types[3] = NPY_FLOAT +ufunc_fdtridfd_types[4] = NPY_DOUBLE +ufunc_fdtridfd_types[5] = NPY_DOUBLE +ufunc_fdtridfd_types[6] = NPY_DOUBLE +ufunc_fdtridfd_types[7] = NPY_DOUBLE +ufunc_fdtridfd_ptr[2*0] = _func_fdtridfd +ufunc_fdtridfd_ptr[2*0+1] = ("fdtridfd") +ufunc_fdtridfd_ptr[2*1] = _func_fdtridfd +ufunc_fdtridfd_ptr[2*1+1] = ("fdtridfd") +ufunc_fdtridfd_data[0] = &ufunc_fdtridfd_ptr[2*0] +ufunc_fdtridfd_data[1] = &ufunc_fdtridfd_ptr[2*1] +fdtridfd = np.PyUFunc_FromFuncAndData(ufunc_fdtridfd_loops, ufunc_fdtridfd_data, ufunc_fdtridfd_types, 2, 3, 1, 0, "fdtridfd", ufunc_fdtridfd_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_fresnel_loops[4] +cdef void *ufunc_fresnel_ptr[8] +cdef void *ufunc_fresnel_data[4] +cdef char ufunc_fresnel_types[12] +cdef char *ufunc_fresnel_doc = ( + "fresnel(z, out=None)\n" + "\n" + "Fresnel integrals.\n" + "\n" + "The Fresnel integrals are defined as\n" + "\n" + ".. math::\n" + "\n" + " S(z) &= \\int_0^z \\sin(\\pi t^2 /2) dt \\\\\n" + " C(z) &= \\int_0^z \\cos(\\pi t^2 /2) dt.\n" + "\n" + "See [dlmf]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex valued argument\n" + "out : 2-tuple of ndarrays, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "S, C : 2-tuple of scalar or ndarray\n" + " Values of the Fresnel integrals\n" + "\n" + "See Also\n" + "--------\n" + "fresnel_zeros : zeros of the Fresnel integrals\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/7.2#iii\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "As z goes to infinity along the real axis, S and C converge to 0.5.\n" + "\n" + ">>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf])\n" + ">>> S\n" + "array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5 ])\n" + ">>> C\n" + "array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5 ])\n" + "\n" + "They are related to the error function `erf`.\n" + "\n" + ">>> z = np.array([1, 2, 3, 4])\n" + ">>> zeta = 0.5 * np.sqrt(np.pi) * (1 - 1j) * z\n" + ">>> S, C = sc.fresnel(z)\n" + ">>> C + 1j*S\n" + "array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,\n" + " 0.60572079+0.496313j , 0.49842603+0.42051575j])\n" + ">>> 0.5 * (1 + 1j) * sc.erf(zeta)\n" + "array([0.7798934 +0.43825915j, 0.48825341+0.34341568j,\n" + " 0.60572079+0.496313j , 0.49842603+0.42051575j])") +ufunc_fresnel_loops[0] = loop_i_d_dd_As_f_ff +ufunc_fresnel_loops[1] = loop_i_d_dd_As_d_dd +ufunc_fresnel_loops[2] = loop_i_D_DD_As_F_FF +ufunc_fresnel_loops[3] = loop_i_D_DD_As_D_DD +ufunc_fresnel_types[0] = NPY_FLOAT +ufunc_fresnel_types[1] = NPY_FLOAT +ufunc_fresnel_types[2] = NPY_FLOAT +ufunc_fresnel_types[3] = NPY_DOUBLE +ufunc_fresnel_types[4] = NPY_DOUBLE +ufunc_fresnel_types[5] = NPY_DOUBLE +ufunc_fresnel_types[6] = NPY_CFLOAT +ufunc_fresnel_types[7] = NPY_CFLOAT +ufunc_fresnel_types[8] = NPY_CFLOAT +ufunc_fresnel_types[9] = NPY_CDOUBLE +ufunc_fresnel_types[10] = NPY_CDOUBLE +ufunc_fresnel_types[11] = NPY_CDOUBLE +ufunc_fresnel_ptr[2*0] = _func_fresnl +ufunc_fresnel_ptr[2*0+1] = ("fresnel") +ufunc_fresnel_ptr[2*1] = _func_fresnl +ufunc_fresnel_ptr[2*1+1] = ("fresnel") +ufunc_fresnel_ptr[2*2] = _func_cfresnl_wrap +ufunc_fresnel_ptr[2*2+1] = ("fresnel") +ufunc_fresnel_ptr[2*3] = _func_cfresnl_wrap +ufunc_fresnel_ptr[2*3+1] = ("fresnel") +ufunc_fresnel_data[0] = &ufunc_fresnel_ptr[2*0] +ufunc_fresnel_data[1] = &ufunc_fresnel_ptr[2*1] +ufunc_fresnel_data[2] = &ufunc_fresnel_ptr[2*2] +ufunc_fresnel_data[3] = &ufunc_fresnel_ptr[2*3] +fresnel = np.PyUFunc_FromFuncAndData(ufunc_fresnel_loops, ufunc_fresnel_data, ufunc_fresnel_types, 4, 1, 2, 0, "fresnel", ufunc_fresnel_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gamma_loops[4] +cdef void *ufunc_gamma_ptr[8] +cdef void *ufunc_gamma_data[4] +cdef char ufunc_gamma_types[8] +cdef char *ufunc_gamma_doc = ( + "gamma(z, out=None)\n" + "\n" + "gamma function.\n" + "\n" + "The gamma function is defined as\n" + "\n" + ".. math::\n" + "\n" + " \\Gamma(z) = \\int_0^\\infty t^{z-1} e^{-t} dt\n" + "\n" + "for :math:`\\Re(z) > 0` and is extended to the rest of the complex\n" + "plane by analytic continuation. See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the gamma function\n" + "\n" + "Notes\n" + "-----\n" + "The gamma function is often referred to as the generalized\n" + "factorial since :math:`\\Gamma(n + 1) = n!` for natural numbers\n" + ":math:`n`. More generally it satisfies the recurrence relation\n" + ":math:`\\Gamma(z + 1) = z \\cdot \\Gamma(z)` for complex :math:`z`,\n" + "which, combined with the fact that :math:`\\Gamma(1) = 1`, implies\n" + "the above identity for :math:`z = n`.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/5.2#E1\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import gamma, factorial\n" + "\n" + ">>> gamma([0, 0.5, 1, 5])\n" + "array([ inf, 1.77245385, 1. , 24. ])\n" + "\n" + ">>> z = 2.5 + 1j\n" + ">>> gamma(z)\n" + "(0.77476210455108352+0.70763120437959293j)\n" + ">>> gamma(z+1), z*gamma(z) # Recurrence property\n" + "((1.2292740569981171+2.5438401155000685j),\n" + " (1.2292740569981158+2.5438401155000658j))\n" + "\n" + ">>> gamma(0.5)**2 # gamma(0.5) = sqrt(pi)\n" + "3.1415926535897927\n" + "\n" + "Plot gamma(x) for real x\n" + "\n" + ">>> x = np.linspace(-3.5, 5.5, 2251)\n" + ">>> y = gamma(x)\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> plt.plot(x, y, 'b', alpha=0.6, label='gamma(x)')\n" + ">>> k = np.arange(1, 7)\n" + ">>> plt.plot(k, factorial(k-1), 'k*', alpha=0.6,\n" + "... label='(x-1)!, x = 1, 2, ...')\n" + ">>> plt.xlim(-3.5, 5.5)\n" + ">>> plt.ylim(-10, 25)\n" + ">>> plt.grid()\n" + ">>> plt.xlabel('x')\n" + ">>> plt.legend(loc='lower right')\n" + ">>> plt.show()") +ufunc_gamma_loops[0] = loop_d_d__As_f_f +ufunc_gamma_loops[1] = loop_d_d__As_d_d +ufunc_gamma_loops[2] = loop_D_D__As_F_F +ufunc_gamma_loops[3] = loop_D_D__As_D_D +ufunc_gamma_types[0] = NPY_FLOAT +ufunc_gamma_types[1] = NPY_FLOAT +ufunc_gamma_types[2] = NPY_DOUBLE +ufunc_gamma_types[3] = NPY_DOUBLE +ufunc_gamma_types[4] = NPY_CFLOAT +ufunc_gamma_types[5] = NPY_CFLOAT +ufunc_gamma_types[6] = NPY_CDOUBLE +ufunc_gamma_types[7] = NPY_CDOUBLE +ufunc_gamma_ptr[2*0] = _func_Gamma +ufunc_gamma_ptr[2*0+1] = ("gamma") +ufunc_gamma_ptr[2*1] = _func_Gamma +ufunc_gamma_ptr[2*1+1] = ("gamma") +ufunc_gamma_ptr[2*2] = scipy.special._ufuncs_cxx._export_cgamma +ufunc_gamma_ptr[2*2+1] = ("gamma") +ufunc_gamma_ptr[2*3] = scipy.special._ufuncs_cxx._export_cgamma +ufunc_gamma_ptr[2*3+1] = ("gamma") +ufunc_gamma_data[0] = &ufunc_gamma_ptr[2*0] +ufunc_gamma_data[1] = &ufunc_gamma_ptr[2*1] +ufunc_gamma_data[2] = &ufunc_gamma_ptr[2*2] +ufunc_gamma_data[3] = &ufunc_gamma_ptr[2*3] +gamma = np.PyUFunc_FromFuncAndData(ufunc_gamma_loops, ufunc_gamma_data, ufunc_gamma_types, 4, 1, 1, 0, "gamma", ufunc_gamma_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammainc_loops[2] +cdef void *ufunc_gammainc_ptr[4] +cdef void *ufunc_gammainc_data[2] +cdef char ufunc_gammainc_types[6] +cdef char *ufunc_gammainc_doc = ( + "gammainc(a, x, out=None)\n" + "\n" + "Regularized lower incomplete gamma function.\n" + "\n" + "It is defined as\n" + "\n" + ".. math::\n" + "\n" + " P(a, x) = \\frac{1}{\\Gamma(a)} \\int_0^x t^{a - 1}e^{-t} dt\n" + "\n" + "for :math:`a > 0` and :math:`x \\geq 0`. See [dlmf]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Positive parameter\n" + "x : array_like\n" + " Nonnegative argument\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the lower incomplete gamma function\n" + "\n" + "See Also\n" + "--------\n" + "gammaincc : regularized upper incomplete gamma function\n" + "gammaincinv : inverse of the regularized lower incomplete gamma function\n" + "gammainccinv : inverse of the regularized upper incomplete gamma function\n" + "\n" + "Notes\n" + "-----\n" + "The function satisfies the relation ``gammainc(a, x) +\n" + "gammaincc(a, x) = 1`` where `gammaincc` is the regularized upper\n" + "incomplete gamma function.\n" + "\n" + "The implementation largely follows that of [boost]_.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical functions\n" + " https://dlmf.nist.gov/8.2#E4\n" + ".. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n" + " https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It is the CDF of the gamma distribution, so it starts at 0 and\n" + "monotonically increases to 1.\n" + "\n" + ">>> sc.gammainc(0.5, [0, 1, 10, 100])\n" + "array([0. , 0.84270079, 0.99999226, 1. ])\n" + "\n" + "It is equal to one minus the upper incomplete gamma function.\n" + "\n" + ">>> a, x = 0.5, 0.4\n" + ">>> sc.gammainc(a, x)\n" + "0.6289066304773024\n" + ">>> 1 - sc.gammaincc(a, x)\n" + "0.6289066304773024") +ufunc_gammainc_loops[0] = loop_d_dd__As_ff_f +ufunc_gammainc_loops[1] = loop_d_dd__As_dd_d +ufunc_gammainc_types[0] = NPY_FLOAT +ufunc_gammainc_types[1] = NPY_FLOAT +ufunc_gammainc_types[2] = NPY_FLOAT +ufunc_gammainc_types[3] = NPY_DOUBLE +ufunc_gammainc_types[4] = NPY_DOUBLE +ufunc_gammainc_types[5] = NPY_DOUBLE +ufunc_gammainc_ptr[2*0] = _func_igam +ufunc_gammainc_ptr[2*0+1] = ("gammainc") +ufunc_gammainc_ptr[2*1] = _func_igam +ufunc_gammainc_ptr[2*1+1] = ("gammainc") +ufunc_gammainc_data[0] = &ufunc_gammainc_ptr[2*0] +ufunc_gammainc_data[1] = &ufunc_gammainc_ptr[2*1] +gammainc = np.PyUFunc_FromFuncAndData(ufunc_gammainc_loops, ufunc_gammainc_data, ufunc_gammainc_types, 2, 2, 1, 0, "gammainc", ufunc_gammainc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammaincc_loops[2] +cdef void *ufunc_gammaincc_ptr[4] +cdef void *ufunc_gammaincc_data[2] +cdef char ufunc_gammaincc_types[6] +cdef char *ufunc_gammaincc_doc = ( + "gammaincc(a, x, out=None)\n" + "\n" + "Regularized upper incomplete gamma function.\n" + "\n" + "It is defined as\n" + "\n" + ".. math::\n" + "\n" + " Q(a, x) = \\frac{1}{\\Gamma(a)} \\int_x^\\infty t^{a - 1}e^{-t} dt\n" + "\n" + "for :math:`a > 0` and :math:`x \\geq 0`. See [dlmf]_ for details.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Positive parameter\n" + "x : array_like\n" + " Nonnegative argument\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the upper incomplete gamma function\n" + "\n" + "See Also\n" + "--------\n" + "gammainc : regularized lower incomplete gamma function\n" + "gammaincinv : inverse of the regularized lower incomplete gamma function\n" + "gammainccinv : inverse of the regularized upper incomplete gamma function\n" + "\n" + "Notes\n" + "-----\n" + "The function satisfies the relation ``gammainc(a, x) +\n" + "gammaincc(a, x) = 1`` where `gammainc` is the regularized lower\n" + "incomplete gamma function.\n" + "\n" + "The implementation largely follows that of [boost]_.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical functions\n" + " https://dlmf.nist.gov/8.2#E4\n" + ".. [boost] Maddock et. al., \"Incomplete Gamma Functions\",\n" + " https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It is the survival function of the gamma distribution, so it\n" + "starts at 1 and monotonically decreases to 0.\n" + "\n" + ">>> sc.gammaincc(0.5, [0, 1, 10, 100, 1000])\n" + "array([1.00000000e+00, 1.57299207e-01, 7.74421643e-06, 2.08848758e-45,\n" + " 0.00000000e+00])\n" + "\n" + "It is equal to one minus the lower incomplete gamma function.\n" + "\n" + ">>> a, x = 0.5, 0.4\n" + ">>> sc.gammaincc(a, x)\n" + "0.37109336952269756\n" + ">>> 1 - sc.gammainc(a, x)\n" + "0.37109336952269756") +ufunc_gammaincc_loops[0] = loop_d_dd__As_ff_f +ufunc_gammaincc_loops[1] = loop_d_dd__As_dd_d +ufunc_gammaincc_types[0] = NPY_FLOAT +ufunc_gammaincc_types[1] = NPY_FLOAT +ufunc_gammaincc_types[2] = NPY_FLOAT +ufunc_gammaincc_types[3] = NPY_DOUBLE +ufunc_gammaincc_types[4] = NPY_DOUBLE +ufunc_gammaincc_types[5] = NPY_DOUBLE +ufunc_gammaincc_ptr[2*0] = _func_igamc +ufunc_gammaincc_ptr[2*0+1] = ("gammaincc") +ufunc_gammaincc_ptr[2*1] = _func_igamc +ufunc_gammaincc_ptr[2*1+1] = ("gammaincc") +ufunc_gammaincc_data[0] = &ufunc_gammaincc_ptr[2*0] +ufunc_gammaincc_data[1] = &ufunc_gammaincc_ptr[2*1] +gammaincc = np.PyUFunc_FromFuncAndData(ufunc_gammaincc_loops, ufunc_gammaincc_data, ufunc_gammaincc_types, 2, 2, 1, 0, "gammaincc", ufunc_gammaincc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammainccinv_loops[2] +cdef void *ufunc_gammainccinv_ptr[4] +cdef void *ufunc_gammainccinv_data[2] +cdef char ufunc_gammainccinv_types[6] +cdef char *ufunc_gammainccinv_doc = ( + "gammainccinv(a, y, out=None)\n" + "\n" + "Inverse of the regularized upper incomplete gamma function.\n" + "\n" + "Given an input :math:`y` between 0 and 1, returns :math:`x` such\n" + "that :math:`y = Q(a, x)`. Here :math:`Q` is the regularized upper\n" + "incomplete gamma function; see `gammaincc`. This is well-defined\n" + "because the upper incomplete gamma function is monotonic as can\n" + "be seen from its definition in [dlmf]_.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Positive parameter\n" + "y : array_like\n" + " Argument between 0 and 1, inclusive\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the inverse of the upper incomplete gamma function\n" + "\n" + "See Also\n" + "--------\n" + "gammaincc : regularized upper incomplete gamma function\n" + "gammainc : regularized lower incomplete gamma function\n" + "gammaincinv : inverse of the regularized lower incomplete gamma function\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.2#E4\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It starts at infinity and monotonically decreases to 0.\n" + "\n" + ">>> sc.gammainccinv(0.5, [0, 0.1, 0.5, 1])\n" + "array([ inf, 1.35277173, 0.22746821, 0. ])\n" + "\n" + "It inverts the upper incomplete gamma function.\n" + "\n" + ">>> a, x = 0.5, [0, 0.1, 0.5, 1]\n" + ">>> sc.gammaincc(a, sc.gammainccinv(a, x))\n" + "array([0. , 0.1, 0.5, 1. ])\n" + "\n" + ">>> a, x = 0.5, [0, 10, 50]\n" + ">>> sc.gammainccinv(a, sc.gammaincc(a, x))\n" + "array([ 0., 10., 50.])") +ufunc_gammainccinv_loops[0] = loop_d_dd__As_ff_f +ufunc_gammainccinv_loops[1] = loop_d_dd__As_dd_d +ufunc_gammainccinv_types[0] = NPY_FLOAT +ufunc_gammainccinv_types[1] = NPY_FLOAT +ufunc_gammainccinv_types[2] = NPY_FLOAT +ufunc_gammainccinv_types[3] = NPY_DOUBLE +ufunc_gammainccinv_types[4] = NPY_DOUBLE +ufunc_gammainccinv_types[5] = NPY_DOUBLE +ufunc_gammainccinv_ptr[2*0] = _func_igamci +ufunc_gammainccinv_ptr[2*0+1] = ("gammainccinv") +ufunc_gammainccinv_ptr[2*1] = _func_igamci +ufunc_gammainccinv_ptr[2*1+1] = ("gammainccinv") +ufunc_gammainccinv_data[0] = &ufunc_gammainccinv_ptr[2*0] +ufunc_gammainccinv_data[1] = &ufunc_gammainccinv_ptr[2*1] +gammainccinv = np.PyUFunc_FromFuncAndData(ufunc_gammainccinv_loops, ufunc_gammainccinv_data, ufunc_gammainccinv_types, 2, 2, 1, 0, "gammainccinv", ufunc_gammainccinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammaincinv_loops[2] +cdef void *ufunc_gammaincinv_ptr[4] +cdef void *ufunc_gammaincinv_data[2] +cdef char ufunc_gammaincinv_types[6] +cdef char *ufunc_gammaincinv_doc = ( + "gammaincinv(a, y, out=None)\n" + "\n" + "Inverse to the regularized lower incomplete gamma function.\n" + "\n" + "Given an input :math:`y` between 0 and 1, returns :math:`x` such\n" + "that :math:`y = P(a, x)`. Here :math:`P` is the regularized lower\n" + "incomplete gamma function; see `gammainc`. This is well-defined\n" + "because the lower incomplete gamma function is monotonic as can be\n" + "seen from its definition in [dlmf]_.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Positive parameter\n" + "y : array_like\n" + " Parameter between 0 and 1, inclusive\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the inverse of the lower incomplete gamma function\n" + "\n" + "See Also\n" + "--------\n" + "gammainc : regularized lower incomplete gamma function\n" + "gammaincc : regularized upper incomplete gamma function\n" + "gammainccinv : inverse of the regularized upper incomplete gamma function\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/8.2#E4\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It starts at 0 and monotonically increases to infinity.\n" + "\n" + ">>> sc.gammaincinv(0.5, [0, 0.1 ,0.5, 1])\n" + "array([0. , 0.00789539, 0.22746821, inf])\n" + "\n" + "It inverts the lower incomplete gamma function.\n" + "\n" + ">>> a, x = 0.5, [0, 0.1, 0.5, 1]\n" + ">>> sc.gammainc(a, sc.gammaincinv(a, x))\n" + "array([0. , 0.1, 0.5, 1. ])\n" + "\n" + ">>> a, x = 0.5, [0, 10, 25]\n" + ">>> sc.gammaincinv(a, sc.gammainc(a, x))\n" + "array([ 0. , 10. , 25.00001465])") +ufunc_gammaincinv_loops[0] = loop_d_dd__As_ff_f +ufunc_gammaincinv_loops[1] = loop_d_dd__As_dd_d +ufunc_gammaincinv_types[0] = NPY_FLOAT +ufunc_gammaincinv_types[1] = NPY_FLOAT +ufunc_gammaincinv_types[2] = NPY_FLOAT +ufunc_gammaincinv_types[3] = NPY_DOUBLE +ufunc_gammaincinv_types[4] = NPY_DOUBLE +ufunc_gammaincinv_types[5] = NPY_DOUBLE +ufunc_gammaincinv_ptr[2*0] = _func_igami +ufunc_gammaincinv_ptr[2*0+1] = ("gammaincinv") +ufunc_gammaincinv_ptr[2*1] = _func_igami +ufunc_gammaincinv_ptr[2*1+1] = ("gammaincinv") +ufunc_gammaincinv_data[0] = &ufunc_gammaincinv_ptr[2*0] +ufunc_gammaincinv_data[1] = &ufunc_gammaincinv_ptr[2*1] +gammaincinv = np.PyUFunc_FromFuncAndData(ufunc_gammaincinv_loops, ufunc_gammaincinv_data, ufunc_gammaincinv_types, 2, 2, 1, 0, "gammaincinv", ufunc_gammaincinv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammaln_loops[2] +cdef void *ufunc_gammaln_ptr[4] +cdef void *ufunc_gammaln_data[2] +cdef char ufunc_gammaln_types[4] +cdef char *ufunc_gammaln_doc = ( + "gammaln(x, out=None)\n" + "\n" + "Logarithm of the absolute value of the gamma function.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " \\ln(\\lvert\\Gamma(x)\\rvert)\n" + "\n" + "where :math:`\\Gamma` is the gamma function. For more details on\n" + "the gamma function, see [dlmf]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the log of the absolute value of gamma\n" + "\n" + "See Also\n" + "--------\n" + "gammasgn : sign of the gamma function\n" + "loggamma : principal branch of the logarithm of the gamma function\n" + "\n" + "Notes\n" + "-----\n" + "It is the same function as the Python standard library function\n" + ":func:`math.lgamma`.\n" + "\n" + "When used in conjunction with `gammasgn`, this function is useful\n" + "for working in logspace on the real axis without having to deal\n" + "with complex numbers via the relation ``exp(gammaln(x)) =\n" + "gammasgn(x) * gamma(x)``.\n" + "\n" + "For complex-valued log-gamma, use `loggamma` instead of `gammaln`.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/5\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It has two positive zeros.\n" + "\n" + ">>> sc.gammaln([1, 2])\n" + "array([0., 0.])\n" + "\n" + "It has poles at nonpositive integers.\n" + "\n" + ">>> sc.gammaln([0, -1, -2, -3, -4])\n" + "array([inf, inf, inf, inf, inf])\n" + "\n" + "It asymptotically approaches ``x * log(x)`` (Stirling's formula).\n" + "\n" + ">>> x = np.array([1e10, 1e20, 1e40, 1e80])\n" + ">>> sc.gammaln(x)\n" + "array([2.20258509e+11, 4.50517019e+21, 9.11034037e+41, 1.83206807e+82])\n" + ">>> x * np.log(x)\n" + "array([2.30258509e+11, 4.60517019e+21, 9.21034037e+41, 1.84206807e+82])") +ufunc_gammaln_loops[0] = loop_d_d__As_f_f +ufunc_gammaln_loops[1] = loop_d_d__As_d_d +ufunc_gammaln_types[0] = NPY_FLOAT +ufunc_gammaln_types[1] = NPY_FLOAT +ufunc_gammaln_types[2] = NPY_DOUBLE +ufunc_gammaln_types[3] = NPY_DOUBLE +ufunc_gammaln_ptr[2*0] = _func_lgam +ufunc_gammaln_ptr[2*0+1] = ("gammaln") +ufunc_gammaln_ptr[2*1] = _func_lgam +ufunc_gammaln_ptr[2*1+1] = ("gammaln") +ufunc_gammaln_data[0] = &ufunc_gammaln_ptr[2*0] +ufunc_gammaln_data[1] = &ufunc_gammaln_ptr[2*1] +gammaln = np.PyUFunc_FromFuncAndData(ufunc_gammaln_loops, ufunc_gammaln_data, ufunc_gammaln_types, 2, 1, 1, 0, "gammaln", ufunc_gammaln_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gammasgn_loops[2] +cdef void *ufunc_gammasgn_ptr[4] +cdef void *ufunc_gammasgn_data[2] +cdef char ufunc_gammasgn_types[4] +cdef char *ufunc_gammasgn_doc = ( + "gammasgn(x, out=None)\n" + "\n" + "Sign of the gamma function.\n" + "\n" + "It is defined as\n" + "\n" + ".. math::\n" + "\n" + " \\text{gammasgn}(x) =\n" + " \\begin{cases}\n" + " +1 & \\Gamma(x) > 0 \\\\\n" + " -1 & \\Gamma(x) < 0\n" + " \\end{cases}\n" + "\n" + "where :math:`\\Gamma` is the gamma function; see `gamma`. This\n" + "definition is complete since the gamma function is never zero;\n" + "see the discussion after [dlmf]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Sign of the gamma function\n" + "\n" + "See Also\n" + "--------\n" + "gamma : the gamma function\n" + "gammaln : log of the absolute value of the gamma function\n" + "loggamma : analytic continuation of the log of the gamma function\n" + "\n" + "Notes\n" + "-----\n" + "The gamma function can be computed as ``gammasgn(x) *\n" + "np.exp(gammaln(x))``.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/5.2#E1\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is 1 for `x > 0`.\n" + "\n" + ">>> sc.gammasgn([1, 2, 3, 4])\n" + "array([1., 1., 1., 1.])\n" + "\n" + "It alternates between -1 and 1 for negative integers.\n" + "\n" + ">>> sc.gammasgn([-0.5, -1.5, -2.5, -3.5])\n" + "array([-1., 1., -1., 1.])\n" + "\n" + "It can be used to compute the gamma function.\n" + "\n" + ">>> x = [1.5, 0.5, -0.5, -1.5]\n" + ">>> sc.gammasgn(x) * np.exp(sc.gammaln(x))\n" + "array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])\n" + ">>> sc.gamma(x)\n" + "array([ 0.88622693, 1.77245385, -3.5449077 , 2.3632718 ])") +ufunc_gammasgn_loops[0] = loop_d_d__As_f_f +ufunc_gammasgn_loops[1] = loop_d_d__As_d_d +ufunc_gammasgn_types[0] = NPY_FLOAT +ufunc_gammasgn_types[1] = NPY_FLOAT +ufunc_gammasgn_types[2] = NPY_DOUBLE +ufunc_gammasgn_types[3] = NPY_DOUBLE +ufunc_gammasgn_ptr[2*0] = _func_gammasgn +ufunc_gammasgn_ptr[2*0+1] = ("gammasgn") +ufunc_gammasgn_ptr[2*1] = _func_gammasgn +ufunc_gammasgn_ptr[2*1+1] = ("gammasgn") +ufunc_gammasgn_data[0] = &ufunc_gammasgn_ptr[2*0] +ufunc_gammasgn_data[1] = &ufunc_gammasgn_ptr[2*1] +gammasgn = np.PyUFunc_FromFuncAndData(ufunc_gammasgn_loops, ufunc_gammasgn_data, ufunc_gammasgn_types, 2, 1, 1, 0, "gammasgn", ufunc_gammasgn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gdtr_loops[2] +cdef void *ufunc_gdtr_ptr[4] +cdef void *ufunc_gdtr_data[2] +cdef char ufunc_gdtr_types[8] +cdef char *ufunc_gdtr_doc = ( + "gdtr(a, b, x, out=None)\n" + "\n" + "Gamma distribution cumulative distribution function.\n" + "\n" + "Returns the integral from zero to `x` of the gamma probability density\n" + "function,\n" + "\n" + ".. math::\n" + "\n" + " F = \\int_0^x \\frac{a^b}{\\Gamma(b)} t^{b-1} e^{-at}\\,dt,\n" + "\n" + "where :math:`\\Gamma` is the gamma function.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " The rate parameter of the gamma distribution, sometimes denoted\n" + " :math:`\\beta` (float). It is also the reciprocal of the scale\n" + " parameter :math:`\\theta`.\n" + "b : array_like\n" + " The shape parameter of the gamma distribution, sometimes denoted\n" + " :math:`\\alpha` (float).\n" + "x : array_like\n" + " The quantile (upper limit of integration; float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "F : scalar or ndarray\n" + " The CDF of the gamma distribution with parameters `a` and `b`\n" + " evaluated at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "gdtrc : 1 - CDF of the gamma distribution.\n" + "scipy.stats.gamma: Gamma distribution\n" + "\n" + "Notes\n" + "-----\n" + "The evaluation is carried out using the relation to the incomplete gamma\n" + "integral (regularized gamma function).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `gdtr`. Calling `gdtr` directly can\n" + "improve performance compared to the ``cdf`` method of `scipy.stats.gamma`\n" + "(see last example below).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Compute the function for ``a=1``, ``b=2`` at ``x=5``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import gdtr\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> gdtr(1., 2., 5.)\n" + "0.9595723180054873\n" + "\n" + "Compute the function for ``a=1`` and ``b=2`` at several points by\n" + "providing a NumPy array for `x`.\n" + "\n" + ">>> xvalues = np.array([1., 2., 3., 4])\n" + ">>> gdtr(1., 1., xvalues)\n" + "array([0.63212056, 0.86466472, 0.95021293, 0.98168436])\n" + "\n" + "`gdtr` can evaluate different parameter sets by providing arrays with\n" + "broadcasting compatible shapes for `a`, `b` and `x`. Here we compute the\n" + "function for three different `a` at four positions `x` and ``b=3``,\n" + "resulting in a 3x4 array.\n" + "\n" + ">>> a = np.array([[0.5], [1.5], [2.5]])\n" + ">>> x = np.array([1., 2., 3., 4])\n" + ">>> a.shape, x.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> gdtr(a, 3., x)\n" + "array([[0.01438768, 0.0803014 , 0.19115317, 0.32332358],\n" + " [0.19115317, 0.57680992, 0.82642193, 0.9380312 ],\n" + " [0.45618688, 0.87534798, 0.97974328, 0.9972306 ]])\n" + "\n" + "Plot the function for four different parameter sets.\n" + "\n" + ">>> a_parameters = [0.3, 1, 2, 6]\n" + ">>> b_parameters = [2, 10, 15, 20]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(a_parameters, b_parameters, linestyles))\n" + ">>> x = np.linspace(0, 30, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for parameter_set in parameters_list:\n" + "... a, b, style = parameter_set\n" + "... gdtr_vals = gdtr(a, b, x)\n" + "... ax.plot(x, gdtr_vals, label=fr\"$a= {a},\\, b={b}$\", ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(\"Gamma distribution cumulative distribution function\")\n" + ">>> plt.show()\n" + "\n" + "The gamma distribution is also available as `scipy.stats.gamma`. Using\n" + "`gdtr` directly can be much faster than calling the ``cdf`` method of\n" + "`scipy.stats.gamma`, especially for small arrays or individual values.\n" + "To get the same results one must use the following parametrization:\n" + "``stats.gamma(b, scale=1/a).cdf(x)=gdtr(a, b, x)``.\n" + "\n" + ">>> from scipy.stats import gamma\n" + ">>> a = 2.\n" + ">>> b = 3\n" + ">>> x = 1.\n" + ">>> gdtr_result = gdtr(a, b, x) # this will often be faster than below\n" + ">>> gamma_dist_result = gamma(b, scale=1/a).cdf(x)\n" + ">>> gdtr_result == gamma_dist_result # test that results are equal\n" + "True") +ufunc_gdtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_gdtr_loops[1] = loop_d_ddd__As_ddd_d +ufunc_gdtr_types[0] = NPY_FLOAT +ufunc_gdtr_types[1] = NPY_FLOAT +ufunc_gdtr_types[2] = NPY_FLOAT +ufunc_gdtr_types[3] = NPY_FLOAT +ufunc_gdtr_types[4] = NPY_DOUBLE +ufunc_gdtr_types[5] = NPY_DOUBLE +ufunc_gdtr_types[6] = NPY_DOUBLE +ufunc_gdtr_types[7] = NPY_DOUBLE +ufunc_gdtr_ptr[2*0] = _func_gdtr +ufunc_gdtr_ptr[2*0+1] = ("gdtr") +ufunc_gdtr_ptr[2*1] = _func_gdtr +ufunc_gdtr_ptr[2*1+1] = ("gdtr") +ufunc_gdtr_data[0] = &ufunc_gdtr_ptr[2*0] +ufunc_gdtr_data[1] = &ufunc_gdtr_ptr[2*1] +gdtr = np.PyUFunc_FromFuncAndData(ufunc_gdtr_loops, ufunc_gdtr_data, ufunc_gdtr_types, 2, 3, 1, 0, "gdtr", ufunc_gdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gdtrc_loops[2] +cdef void *ufunc_gdtrc_ptr[4] +cdef void *ufunc_gdtrc_data[2] +cdef char ufunc_gdtrc_types[8] +cdef char *ufunc_gdtrc_doc = ( + "gdtrc(a, b, x, out=None)\n" + "\n" + "Gamma distribution survival function.\n" + "\n" + "Integral from `x` to infinity of the gamma probability density function,\n" + "\n" + ".. math::\n" + "\n" + " F = \\int_x^\\infty \\frac{a^b}{\\Gamma(b)} t^{b-1} e^{-at}\\,dt,\n" + "\n" + "where :math:`\\Gamma` is the gamma function.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " The rate parameter of the gamma distribution, sometimes denoted\n" + " :math:`\\beta` (float). It is also the reciprocal of the scale\n" + " parameter :math:`\\theta`.\n" + "b : array_like\n" + " The shape parameter of the gamma distribution, sometimes denoted\n" + " :math:`\\alpha` (float).\n" + "x : array_like\n" + " The quantile (lower limit of integration; float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "F : scalar or ndarray\n" + " The survival function of the gamma distribution with parameters `a`\n" + " and `b` evaluated at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "gdtr: Gamma distribution cumulative distribution function\n" + "scipy.stats.gamma: Gamma distribution\n" + "gdtrix\n" + "\n" + "Notes\n" + "-----\n" + "The evaluation is carried out using the relation to the incomplete gamma\n" + "integral (regularized gamma function).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `gdtrc`. Calling `gdtrc` directly can\n" + "improve performance compared to the ``sf`` method of `scipy.stats.gamma`\n" + "(see last example below).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Compute the function for ``a=1`` and ``b=2`` at ``x=5``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import gdtrc\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> gdtrc(1., 2., 5.)\n" + "0.04042768199451279\n" + "\n" + "Compute the function for ``a=1``, ``b=2`` at several points by providing\n" + "a NumPy array for `x`.\n" + "\n" + ">>> xvalues = np.array([1., 2., 3., 4])\n" + ">>> gdtrc(1., 1., xvalues)\n" + "array([0.36787944, 0.13533528, 0.04978707, 0.01831564])\n" + "\n" + "`gdtrc` can evaluate different parameter sets by providing arrays with\n" + "broadcasting compatible shapes for `a`, `b` and `x`. Here we compute the\n" + "function for three different `a` at four positions `x` and ``b=3``,\n" + "resulting in a 3x4 array.\n" + "\n" + ">>> a = np.array([[0.5], [1.5], [2.5]])\n" + ">>> x = np.array([1., 2., 3., 4])\n" + ">>> a.shape, x.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> gdtrc(a, 3., x)\n" + "array([[0.98561232, 0.9196986 , 0.80884683, 0.67667642],\n" + " [0.80884683, 0.42319008, 0.17357807, 0.0619688 ],\n" + " [0.54381312, 0.12465202, 0.02025672, 0.0027694 ]])\n" + "\n" + "Plot the function for four different parameter sets.\n" + "\n" + ">>> a_parameters = [0.3, 1, 2, 6]\n" + ">>> b_parameters = [2, 10, 15, 20]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(a_parameters, b_parameters, linestyles))\n" + ">>> x = np.linspace(0, 30, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for parameter_set in parameters_list:\n" + "... a, b, style = parameter_set\n" + "... gdtrc_vals = gdtrc(a, b, x)\n" + "... ax.plot(x, gdtrc_vals, label=fr\"$a= {a},\\, b={b}$\", ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(\"Gamma distribution survival function\")\n" + ">>> plt.show()\n" + "\n" + "The gamma distribution is also available as `scipy.stats.gamma`.\n" + "Using `gdtrc` directly can be much faster than calling the ``sf`` method\n" + "of `scipy.stats.gamma`, especially for small arrays or individual\n" + "values. To get the same results one must use the following parametrization:\n" + "``stats.gamma(b, scale=1/a).sf(x)=gdtrc(a, b, x)``.\n" + "\n" + ">>> from scipy.stats import gamma\n" + ">>> a = 2\n" + ">>> b = 3\n" + ">>> x = 1.\n" + ">>> gdtrc_result = gdtrc(a, b, x) # this will often be faster than below\n" + ">>> gamma_dist_result = gamma(b, scale=1/a).sf(x)\n" + ">>> gdtrc_result == gamma_dist_result # test that results are equal\n" + "True") +ufunc_gdtrc_loops[0] = loop_d_ddd__As_fff_f +ufunc_gdtrc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_gdtrc_types[0] = NPY_FLOAT +ufunc_gdtrc_types[1] = NPY_FLOAT +ufunc_gdtrc_types[2] = NPY_FLOAT +ufunc_gdtrc_types[3] = NPY_FLOAT +ufunc_gdtrc_types[4] = NPY_DOUBLE +ufunc_gdtrc_types[5] = NPY_DOUBLE +ufunc_gdtrc_types[6] = NPY_DOUBLE +ufunc_gdtrc_types[7] = NPY_DOUBLE +ufunc_gdtrc_ptr[2*0] = _func_gdtrc +ufunc_gdtrc_ptr[2*0+1] = ("gdtrc") +ufunc_gdtrc_ptr[2*1] = _func_gdtrc +ufunc_gdtrc_ptr[2*1+1] = ("gdtrc") +ufunc_gdtrc_data[0] = &ufunc_gdtrc_ptr[2*0] +ufunc_gdtrc_data[1] = &ufunc_gdtrc_ptr[2*1] +gdtrc = np.PyUFunc_FromFuncAndData(ufunc_gdtrc_loops, ufunc_gdtrc_data, ufunc_gdtrc_types, 2, 3, 1, 0, "gdtrc", ufunc_gdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gdtria_loops[2] +cdef void *ufunc_gdtria_ptr[4] +cdef void *ufunc_gdtria_data[2] +cdef char ufunc_gdtria_types[8] +cdef char *ufunc_gdtria_doc = ( + "gdtria(p, b, x, out=None)\n" + "\n" + "Inverse of `gdtr` vs a.\n" + "\n" + "Returns the inverse with respect to the parameter `a` of ``p =\n" + "gdtr(a, b, x)``, the cumulative distribution function of the gamma\n" + "distribution.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Probability values.\n" + "b : array_like\n" + " `b` parameter values of `gdtr(a, b, x)`. `b` is the \"shape\" parameter\n" + " of the gamma distribution.\n" + "x : array_like\n" + " Nonnegative real values, from the domain of the gamma distribution.\n" + "out : ndarray, optional\n" + " If a fourth argument is given, it must be a numpy.ndarray whose size\n" + " matches the broadcast result of `a`, `b` and `x`. `out` is then the\n" + " array returned by the function.\n" + "\n" + "Returns\n" + "-------\n" + "a : scalar or ndarray\n" + " Values of the `a` parameter such that `p = gdtr(a, b, x)`. `1/a`\n" + " is the \"scale\" parameter of the gamma distribution.\n" + "\n" + "See Also\n" + "--------\n" + "gdtr : CDF of the gamma distribution.\n" + "gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.\n" + "gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.\n" + "\n" + "The cumulative distribution function `p` is computed using a routine by\n" + "DiDinato and Morris [2]_. Computation of `a` involves a search for a value\n" + "that produces the desired value of `p`. The search relies on the\n" + "monotonicity of `p` with `a`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] DiDinato, A. R. and Morris, A. H.,\n" + " Computation of the incomplete gamma function ratios and their\n" + " inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.\n" + "\n" + "Examples\n" + "--------\n" + "First evaluate `gdtr`.\n" + "\n" + ">>> from scipy.special import gdtr, gdtria\n" + ">>> p = gdtr(1.2, 3.4, 5.6)\n" + ">>> print(p)\n" + "0.94378087442\n" + "\n" + "Verify the inverse.\n" + "\n" + ">>> gdtria(p, 3.4, 5.6)\n" + "1.2") +ufunc_gdtria_loops[0] = loop_d_ddd__As_fff_f +ufunc_gdtria_loops[1] = loop_d_ddd__As_ddd_d +ufunc_gdtria_types[0] = NPY_FLOAT +ufunc_gdtria_types[1] = NPY_FLOAT +ufunc_gdtria_types[2] = NPY_FLOAT +ufunc_gdtria_types[3] = NPY_FLOAT +ufunc_gdtria_types[4] = NPY_DOUBLE +ufunc_gdtria_types[5] = NPY_DOUBLE +ufunc_gdtria_types[6] = NPY_DOUBLE +ufunc_gdtria_types[7] = NPY_DOUBLE +ufunc_gdtria_ptr[2*0] = _func_gdtria +ufunc_gdtria_ptr[2*0+1] = ("gdtria") +ufunc_gdtria_ptr[2*1] = _func_gdtria +ufunc_gdtria_ptr[2*1+1] = ("gdtria") +ufunc_gdtria_data[0] = &ufunc_gdtria_ptr[2*0] +ufunc_gdtria_data[1] = &ufunc_gdtria_ptr[2*1] +gdtria = np.PyUFunc_FromFuncAndData(ufunc_gdtria_loops, ufunc_gdtria_data, ufunc_gdtria_types, 2, 3, 1, 0, "gdtria", ufunc_gdtria_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gdtrib_loops[2] +cdef void *ufunc_gdtrib_ptr[4] +cdef void *ufunc_gdtrib_data[2] +cdef char ufunc_gdtrib_types[8] +cdef char *ufunc_gdtrib_doc = ( + "gdtrib(a, p, x, out=None)\n" + "\n" + "Inverse of `gdtr` vs b.\n" + "\n" + "Returns the inverse with respect to the parameter `b` of ``p =\n" + "gdtr(a, b, x)``, the cumulative distribution function of the gamma\n" + "distribution.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " `a` parameter values of `gdtr(a, b, x)`. `1/a` is the \"scale\"\n" + " parameter of the gamma distribution.\n" + "p : array_like\n" + " Probability values.\n" + "x : array_like\n" + " Nonnegative real values, from the domain of the gamma distribution.\n" + "out : ndarray, optional\n" + " If a fourth argument is given, it must be a numpy.ndarray whose size\n" + " matches the broadcast result of `a`, `b` and `x`. `out` is then the\n" + " array returned by the function.\n" + "\n" + "Returns\n" + "-------\n" + "b : scalar or ndarray\n" + " Values of the `b` parameter such that `p = gdtr(a, b, x)`. `b` is\n" + " the \"shape\" parameter of the gamma distribution.\n" + "\n" + "See Also\n" + "--------\n" + "gdtr : CDF of the gamma distribution.\n" + "gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.\n" + "gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.\n" + "\n" + "The cumulative distribution function `p` is computed using a routine by\n" + "DiDinato and Morris [2]_. Computation of `b` involves a search for a value\n" + "that produces the desired value of `p`. The search relies on the\n" + "monotonicity of `p` with `b`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] DiDinato, A. R. and Morris, A. H.,\n" + " Computation of the incomplete gamma function ratios and their\n" + " inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.\n" + "\n" + "Examples\n" + "--------\n" + "First evaluate `gdtr`.\n" + "\n" + ">>> from scipy.special import gdtr, gdtrib\n" + ">>> p = gdtr(1.2, 3.4, 5.6)\n" + ">>> print(p)\n" + "0.94378087442\n" + "\n" + "Verify the inverse.\n" + "\n" + ">>> gdtrib(1.2, p, 5.6)\n" + "3.3999999999723882") +ufunc_gdtrib_loops[0] = loop_d_ddd__As_fff_f +ufunc_gdtrib_loops[1] = loop_d_ddd__As_ddd_d +ufunc_gdtrib_types[0] = NPY_FLOAT +ufunc_gdtrib_types[1] = NPY_FLOAT +ufunc_gdtrib_types[2] = NPY_FLOAT +ufunc_gdtrib_types[3] = NPY_FLOAT +ufunc_gdtrib_types[4] = NPY_DOUBLE +ufunc_gdtrib_types[5] = NPY_DOUBLE +ufunc_gdtrib_types[6] = NPY_DOUBLE +ufunc_gdtrib_types[7] = NPY_DOUBLE +ufunc_gdtrib_ptr[2*0] = _func_gdtrib +ufunc_gdtrib_ptr[2*0+1] = ("gdtrib") +ufunc_gdtrib_ptr[2*1] = _func_gdtrib +ufunc_gdtrib_ptr[2*1+1] = ("gdtrib") +ufunc_gdtrib_data[0] = &ufunc_gdtrib_ptr[2*0] +ufunc_gdtrib_data[1] = &ufunc_gdtrib_ptr[2*1] +gdtrib = np.PyUFunc_FromFuncAndData(ufunc_gdtrib_loops, ufunc_gdtrib_data, ufunc_gdtrib_types, 2, 3, 1, 0, "gdtrib", ufunc_gdtrib_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_gdtrix_loops[2] +cdef void *ufunc_gdtrix_ptr[4] +cdef void *ufunc_gdtrix_data[2] +cdef char ufunc_gdtrix_types[8] +cdef char *ufunc_gdtrix_doc = ( + "gdtrix(a, b, p, out=None)\n" + "\n" + "Inverse of `gdtr` vs x.\n" + "\n" + "Returns the inverse with respect to the parameter `x` of ``p =\n" + "gdtr(a, b, x)``, the cumulative distribution function of the gamma\n" + "distribution. This is also known as the pth quantile of the\n" + "distribution.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " `a` parameter values of `gdtr(a, b, x)`. `1/a` is the \"scale\"\n" + " parameter of the gamma distribution.\n" + "b : array_like\n" + " `b` parameter values of `gdtr(a, b, x)`. `b` is the \"shape\" parameter\n" + " of the gamma distribution.\n" + "p : array_like\n" + " Probability values.\n" + "out : ndarray, optional\n" + " If a fourth argument is given, it must be a numpy.ndarray whose size\n" + " matches the broadcast result of `a`, `b` and `x`. `out` is then the\n" + " array returned by the function.\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Values of the `x` parameter such that `p = gdtr(a, b, x)`.\n" + "\n" + "See Also\n" + "--------\n" + "gdtr : CDF of the gamma distribution.\n" + "gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.\n" + "gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfgam`.\n" + "\n" + "The cumulative distribution function `p` is computed using a routine by\n" + "DiDinato and Morris [2]_. Computation of `x` involves a search for a value\n" + "that produces the desired value of `p`. The search relies on the\n" + "monotonicity of `p` with `x`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] DiDinato, A. R. and Morris, A. H.,\n" + " Computation of the incomplete gamma function ratios and their\n" + " inverse. ACM Trans. Math. Softw. 12 (1986), 377-393.\n" + "\n" + "Examples\n" + "--------\n" + "First evaluate `gdtr`.\n" + "\n" + ">>> from scipy.special import gdtr, gdtrix\n" + ">>> p = gdtr(1.2, 3.4, 5.6)\n" + ">>> print(p)\n" + "0.94378087442\n" + "\n" + "Verify the inverse.\n" + "\n" + ">>> gdtrix(1.2, 3.4, p)\n" + "5.5999999999999996") +ufunc_gdtrix_loops[0] = loop_d_ddd__As_fff_f +ufunc_gdtrix_loops[1] = loop_d_ddd__As_ddd_d +ufunc_gdtrix_types[0] = NPY_FLOAT +ufunc_gdtrix_types[1] = NPY_FLOAT +ufunc_gdtrix_types[2] = NPY_FLOAT +ufunc_gdtrix_types[3] = NPY_FLOAT +ufunc_gdtrix_types[4] = NPY_DOUBLE +ufunc_gdtrix_types[5] = NPY_DOUBLE +ufunc_gdtrix_types[6] = NPY_DOUBLE +ufunc_gdtrix_types[7] = NPY_DOUBLE +ufunc_gdtrix_ptr[2*0] = _func_gdtrix +ufunc_gdtrix_ptr[2*0+1] = ("gdtrix") +ufunc_gdtrix_ptr[2*1] = _func_gdtrix +ufunc_gdtrix_ptr[2*1+1] = ("gdtrix") +ufunc_gdtrix_data[0] = &ufunc_gdtrix_ptr[2*0] +ufunc_gdtrix_data[1] = &ufunc_gdtrix_ptr[2*1] +gdtrix = np.PyUFunc_FromFuncAndData(ufunc_gdtrix_loops, ufunc_gdtrix_data, ufunc_gdtrix_types, 2, 3, 1, 0, "gdtrix", ufunc_gdtrix_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hankel1_loops[2] +cdef void *ufunc_hankel1_ptr[4] +cdef void *ufunc_hankel1_data[2] +cdef char ufunc_hankel1_types[6] +cdef char *ufunc_hankel1_doc = ( + "hankel1(v, z, out=None)\n" + "\n" + "Hankel function of the first kind\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Hankel function of the first kind.\n" + "\n" + "See Also\n" + "--------\n" + "hankel1e : ndarray\n" + " This function with leading exponential behavior stripped off.\n" + "\n" + "Notes\n" + "-----\n" + "A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the\n" + "computation using the relation,\n" + "\n" + ".. math:: H^{(1)}_v(z) =\n" + " \\frac{2}{\\imath\\pi} \\exp(-\\imath \\pi v/2) K_v(z \\exp(-\\imath\\pi/2))\n" + "\n" + "where :math:`K_v` is the modified Bessel function of the second kind.\n" + "For negative orders, the relation\n" + "\n" + ".. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \\exp(\\imath\\pi v)\n" + "\n" + "is used.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/") +ufunc_hankel1_loops[0] = loop_D_dD__As_fF_F +ufunc_hankel1_loops[1] = loop_D_dD__As_dD_D +ufunc_hankel1_types[0] = NPY_FLOAT +ufunc_hankel1_types[1] = NPY_CFLOAT +ufunc_hankel1_types[2] = NPY_CFLOAT +ufunc_hankel1_types[3] = NPY_DOUBLE +ufunc_hankel1_types[4] = NPY_CDOUBLE +ufunc_hankel1_types[5] = NPY_CDOUBLE +ufunc_hankel1_ptr[2*0] = _func_cbesh_wrap1 +ufunc_hankel1_ptr[2*0+1] = ("hankel1") +ufunc_hankel1_ptr[2*1] = _func_cbesh_wrap1 +ufunc_hankel1_ptr[2*1+1] = ("hankel1") +ufunc_hankel1_data[0] = &ufunc_hankel1_ptr[2*0] +ufunc_hankel1_data[1] = &ufunc_hankel1_ptr[2*1] +hankel1 = np.PyUFunc_FromFuncAndData(ufunc_hankel1_loops, ufunc_hankel1_data, ufunc_hankel1_types, 2, 2, 1, 0, "hankel1", ufunc_hankel1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hankel1e_loops[2] +cdef void *ufunc_hankel1e_ptr[4] +cdef void *ufunc_hankel1e_data[2] +cdef char ufunc_hankel1e_types[6] +cdef char *ufunc_hankel1e_doc = ( + "hankel1e(v, z, out=None)\n" + "\n" + "Exponentially scaled Hankel function of the first kind\n" + "\n" + "Defined as::\n" + "\n" + " hankel1e(v, z) = hankel1(v, z) * exp(-1j * z)\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the exponentially scaled Hankel function.\n" + "\n" + "Notes\n" + "-----\n" + "A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the\n" + "computation using the relation,\n" + "\n" + ".. math:: H^{(1)}_v(z) =\n" + " \\frac{2}{\\imath\\pi} \\exp(-\\imath \\pi v/2) K_v(z \\exp(-\\imath\\pi/2))\n" + "\n" + "where :math:`K_v` is the modified Bessel function of the second kind.\n" + "For negative orders, the relation\n" + "\n" + ".. math:: H^{(1)}_{-v}(z) = H^{(1)}_v(z) \\exp(\\imath\\pi v)\n" + "\n" + "is used.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/") +ufunc_hankel1e_loops[0] = loop_D_dD__As_fF_F +ufunc_hankel1e_loops[1] = loop_D_dD__As_dD_D +ufunc_hankel1e_types[0] = NPY_FLOAT +ufunc_hankel1e_types[1] = NPY_CFLOAT +ufunc_hankel1e_types[2] = NPY_CFLOAT +ufunc_hankel1e_types[3] = NPY_DOUBLE +ufunc_hankel1e_types[4] = NPY_CDOUBLE +ufunc_hankel1e_types[5] = NPY_CDOUBLE +ufunc_hankel1e_ptr[2*0] = _func_cbesh_wrap1_e +ufunc_hankel1e_ptr[2*0+1] = ("hankel1e") +ufunc_hankel1e_ptr[2*1] = _func_cbesh_wrap1_e +ufunc_hankel1e_ptr[2*1+1] = ("hankel1e") +ufunc_hankel1e_data[0] = &ufunc_hankel1e_ptr[2*0] +ufunc_hankel1e_data[1] = &ufunc_hankel1e_ptr[2*1] +hankel1e = np.PyUFunc_FromFuncAndData(ufunc_hankel1e_loops, ufunc_hankel1e_data, ufunc_hankel1e_types, 2, 2, 1, 0, "hankel1e", ufunc_hankel1e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hankel2_loops[2] +cdef void *ufunc_hankel2_ptr[4] +cdef void *ufunc_hankel2_data[2] +cdef char ufunc_hankel2_types[6] +cdef char *ufunc_hankel2_doc = ( + "hankel2(v, z, out=None)\n" + "\n" + "Hankel function of the second kind\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Hankel function of the second kind.\n" + "\n" + "See Also\n" + "--------\n" + "hankel2e : this function with leading exponential behavior stripped off.\n" + "\n" + "Notes\n" + "-----\n" + "A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the\n" + "computation using the relation,\n" + "\n" + ".. math:: H^{(2)}_v(z) =\n" + " -\\frac{2}{\\imath\\pi} \\exp(\\imath \\pi v/2) K_v(z \\exp(\\imath\\pi/2))\n" + "\n" + "where :math:`K_v` is the modified Bessel function of the second kind.\n" + "For negative orders, the relation\n" + "\n" + ".. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \\exp(-\\imath\\pi v)\n" + "\n" + "is used.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/") +ufunc_hankel2_loops[0] = loop_D_dD__As_fF_F +ufunc_hankel2_loops[1] = loop_D_dD__As_dD_D +ufunc_hankel2_types[0] = NPY_FLOAT +ufunc_hankel2_types[1] = NPY_CFLOAT +ufunc_hankel2_types[2] = NPY_CFLOAT +ufunc_hankel2_types[3] = NPY_DOUBLE +ufunc_hankel2_types[4] = NPY_CDOUBLE +ufunc_hankel2_types[5] = NPY_CDOUBLE +ufunc_hankel2_ptr[2*0] = _func_cbesh_wrap2 +ufunc_hankel2_ptr[2*0+1] = ("hankel2") +ufunc_hankel2_ptr[2*1] = _func_cbesh_wrap2 +ufunc_hankel2_ptr[2*1+1] = ("hankel2") +ufunc_hankel2_data[0] = &ufunc_hankel2_ptr[2*0] +ufunc_hankel2_data[1] = &ufunc_hankel2_ptr[2*1] +hankel2 = np.PyUFunc_FromFuncAndData(ufunc_hankel2_loops, ufunc_hankel2_data, ufunc_hankel2_types, 2, 2, 1, 0, "hankel2", ufunc_hankel2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hankel2e_loops[2] +cdef void *ufunc_hankel2e_ptr[4] +cdef void *ufunc_hankel2e_data[2] +cdef char ufunc_hankel2e_types[6] +cdef char *ufunc_hankel2e_doc = ( + "hankel2e(v, z, out=None)\n" + "\n" + "Exponentially scaled Hankel function of the second kind\n" + "\n" + "Defined as::\n" + "\n" + " hankel2e(v, z) = hankel2(v, z) * exp(1j * z)\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the exponentially scaled Hankel function of the second kind.\n" + "\n" + "Notes\n" + "-----\n" + "A wrapper for the AMOS [1]_ routine `zbesh`, which carries out the\n" + "computation using the relation,\n" + "\n" + ".. math:: H^{(2)}_v(z) = -\\frac{2}{\\imath\\pi}\n" + " \\exp(\\frac{\\imath \\pi v}{2}) K_v(z exp(\\frac{\\imath\\pi}{2}))\n" + "\n" + "where :math:`K_v` is the modified Bessel function of the second kind.\n" + "For negative orders, the relation\n" + "\n" + ".. math:: H^{(2)}_{-v}(z) = H^{(2)}_v(z) \\exp(-\\imath\\pi v)\n" + "\n" + "is used.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/") +ufunc_hankel2e_loops[0] = loop_D_dD__As_fF_F +ufunc_hankel2e_loops[1] = loop_D_dD__As_dD_D +ufunc_hankel2e_types[0] = NPY_FLOAT +ufunc_hankel2e_types[1] = NPY_CFLOAT +ufunc_hankel2e_types[2] = NPY_CFLOAT +ufunc_hankel2e_types[3] = NPY_DOUBLE +ufunc_hankel2e_types[4] = NPY_CDOUBLE +ufunc_hankel2e_types[5] = NPY_CDOUBLE +ufunc_hankel2e_ptr[2*0] = _func_cbesh_wrap2_e +ufunc_hankel2e_ptr[2*0+1] = ("hankel2e") +ufunc_hankel2e_ptr[2*1] = _func_cbesh_wrap2_e +ufunc_hankel2e_ptr[2*1+1] = ("hankel2e") +ufunc_hankel2e_data[0] = &ufunc_hankel2e_ptr[2*0] +ufunc_hankel2e_data[1] = &ufunc_hankel2e_ptr[2*1] +hankel2e = np.PyUFunc_FromFuncAndData(ufunc_hankel2e_loops, ufunc_hankel2e_data, ufunc_hankel2e_types, 2, 2, 1, 0, "hankel2e", ufunc_hankel2e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_huber_loops[2] +cdef void *ufunc_huber_ptr[4] +cdef void *ufunc_huber_data[2] +cdef char ufunc_huber_types[6] +cdef char *ufunc_huber_doc = ( + "huber(delta, r, out=None)\n" + "\n" + "Huber loss function.\n" + "\n" + ".. math:: \\text{huber}(\\delta, r) = \\begin{cases} \\infty & \\delta < 0 \\\\\n" + " \\frac{1}{2}r^2 & 0 \\le \\delta, | r | \\le \\delta \\\\\n" + " \\delta ( |r| - \\frac{1}{2}\\delta ) & \\text{otherwise} \\end{cases}\n" + "\n" + "Parameters\n" + "----------\n" + "delta : ndarray\n" + " Input array, indicating the quadratic vs. linear loss changepoint.\n" + "r : ndarray\n" + " Input array, possibly representing residuals.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The computed Huber loss function values.\n" + "\n" + "See Also\n" + "--------\n" + "pseudo_huber : smooth approximation of this function\n" + "\n" + "Notes\n" + "-----\n" + "`huber` is useful as a loss function in robust statistics or machine\n" + "learning to reduce the influence of outliers as compared to the common\n" + "squared error loss, residuals with a magnitude higher than `delta` are\n" + "not squared [1]_.\n" + "\n" + "Typically, `r` represents residuals, the difference\n" + "between a model prediction and data. Then, for :math:`|r|\\leq\\delta`,\n" + "`huber` resembles the squared error and for :math:`|r|>\\delta` the\n" + "absolute error. This way, the Huber loss often achieves\n" + "a fast convergence in model fitting for small residuals like the squared\n" + "error loss function and still reduces the influence of outliers\n" + "(:math:`|r|>\\delta`) like the absolute error loss. As :math:`\\delta` is\n" + "the cutoff between squared and absolute error regimes, it has\n" + "to be tuned carefully for each problem. `huber` is also\n" + "convex, making it suitable for gradient based optimization.\n" + "\n" + ".. versionadded:: 0.15.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] Peter Huber. \"Robust Estimation of a Location Parameter\",\n" + " 1964. Annals of Statistics. 53 (1): 73 - 101.\n" + "\n" + "Examples\n" + "--------\n" + "Import all necessary modules.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import huber\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + "Compute the function for ``delta=1`` at ``r=2``\n" + "\n" + ">>> huber(1., 2.)\n" + "1.5\n" + "\n" + "Compute the function for different `delta` by providing a NumPy array or\n" + "list for `delta`.\n" + "\n" + ">>> huber([1., 3., 5.], 4.)\n" + "array([3.5, 7.5, 8. ])\n" + "\n" + "Compute the function at different points by providing a NumPy array or\n" + "list for `r`.\n" + "\n" + ">>> huber(2., np.array([1., 1.5, 3.]))\n" + "array([0.5 , 1.125, 4. ])\n" + "\n" + "The function can be calculated for different `delta` and `r` by\n" + "providing arrays for both with compatible shapes for broadcasting.\n" + "\n" + ">>> r = np.array([1., 2.5, 8., 10.])\n" + ">>> deltas = np.array([[1.], [5.], [9.]])\n" + ">>> print(r.shape, deltas.shape)\n" + "(4,) (3, 1)\n" + "\n" + ">>> huber(deltas, r)\n" + "array([[ 0.5 , 2. , 7.5 , 9.5 ],\n" + " [ 0.5 , 3.125, 27.5 , 37.5 ],\n" + " [ 0.5 , 3.125, 32. , 49.5 ]])\n" + "\n" + "Plot the function for different `delta`.\n" + "\n" + ">>> x = np.linspace(-4, 4, 500)\n" + ">>> deltas = [1, 2, 3]\n" + ">>> linestyles = [\"dashed\", \"dotted\", \"dashdot\"]\n" + ">>> fig, ax = plt.subplots()\n" + ">>> combined_plot_parameters = list(zip(deltas, linestyles))\n" + ">>> for delta, style in combined_plot_parameters:\n" + "... ax.plot(x, huber(delta, x), label=fr\"$\\delta={delta}$\", ls=style)\n" + ">>> ax.legend(loc=\"upper center\")\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(r\"Huber loss function $h_{\\delta}(x)$\")\n" + ">>> ax.set_xlim(-4, 4)\n" + ">>> ax.set_ylim(0, 8)\n" + ">>> plt.show()") +ufunc_huber_loops[0] = loop_d_dd__As_ff_f +ufunc_huber_loops[1] = loop_d_dd__As_dd_d +ufunc_huber_types[0] = NPY_FLOAT +ufunc_huber_types[1] = NPY_FLOAT +ufunc_huber_types[2] = NPY_FLOAT +ufunc_huber_types[3] = NPY_DOUBLE +ufunc_huber_types[4] = NPY_DOUBLE +ufunc_huber_types[5] = NPY_DOUBLE +ufunc_huber_ptr[2*0] = _func_huber +ufunc_huber_ptr[2*0+1] = ("huber") +ufunc_huber_ptr[2*1] = _func_huber +ufunc_huber_ptr[2*1+1] = ("huber") +ufunc_huber_data[0] = &ufunc_huber_ptr[2*0] +ufunc_huber_data[1] = &ufunc_huber_ptr[2*1] +huber = np.PyUFunc_FromFuncAndData(ufunc_huber_loops, ufunc_huber_data, ufunc_huber_types, 2, 2, 1, 0, "huber", ufunc_huber_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hyp0f1_loops[4] +cdef void *ufunc_hyp0f1_ptr[8] +cdef void *ufunc_hyp0f1_data[4] +cdef char ufunc_hyp0f1_types[12] +cdef char *ufunc_hyp0f1_doc = ( + "hyp0f1(v, z, out=None)\n" + "\n" + "Confluent hypergeometric limit function 0F1.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Real-valued parameter\n" + "z : array_like\n" + " Real- or complex-valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The confluent hypergeometric limit function\n" + "\n" + "Notes\n" + "-----\n" + "This function is defined as:\n" + "\n" + ".. math:: _0F_1(v, z) = \\sum_{k=0}^{\\infty}\\frac{z^k}{(v)_k k!}.\n" + "\n" + "It's also the limit as :math:`q \\to \\infty` of :math:`_1F_1(q; v; z/q)`,\n" + "and satisfies the differential equation :math:`f''(z) + vf'(z) =\n" + "f(z)`. See [1]_ for more information.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Wolfram MathWorld, \"Confluent Hypergeometric Limit Function\",\n" + " http://mathworld.wolfram.com/ConfluentHypergeometricLimitFunction.html\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is one when `z` is zero.\n" + "\n" + ">>> sc.hyp0f1(1, 0)\n" + "1.0\n" + "\n" + "It is the limit of the confluent hypergeometric function as `q`\n" + "goes to infinity.\n" + "\n" + ">>> q = np.array([1, 10, 100, 1000])\n" + ">>> v = 1\n" + ">>> z = 1\n" + ">>> sc.hyp1f1(q, v, z / q)\n" + "array([2.71828183, 2.31481985, 2.28303778, 2.27992985])\n" + ">>> sc.hyp0f1(v, z)\n" + "2.2795853023360673\n" + "\n" + "It is related to Bessel functions.\n" + "\n" + ">>> n = 1\n" + ">>> x = np.linspace(0, 1, 5)\n" + ">>> sc.jv(n, x)\n" + "array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])\n" + ">>> (0.5 * x)**n / sc.factorial(n) * sc.hyp0f1(n + 1, -0.25 * x**2)\n" + "array([0. , 0.12402598, 0.24226846, 0.3492436 , 0.44005059])") +ufunc_hyp0f1_loops[0] = loop_d_dd__As_ff_f +ufunc_hyp0f1_loops[1] = loop_D_dD__As_fF_F +ufunc_hyp0f1_loops[2] = loop_d_dd__As_dd_d +ufunc_hyp0f1_loops[3] = loop_D_dD__As_dD_D +ufunc_hyp0f1_types[0] = NPY_FLOAT +ufunc_hyp0f1_types[1] = NPY_FLOAT +ufunc_hyp0f1_types[2] = NPY_FLOAT +ufunc_hyp0f1_types[3] = NPY_FLOAT +ufunc_hyp0f1_types[4] = NPY_CFLOAT +ufunc_hyp0f1_types[5] = NPY_CFLOAT +ufunc_hyp0f1_types[6] = NPY_DOUBLE +ufunc_hyp0f1_types[7] = NPY_DOUBLE +ufunc_hyp0f1_types[8] = NPY_DOUBLE +ufunc_hyp0f1_types[9] = NPY_DOUBLE +ufunc_hyp0f1_types[10] = NPY_CDOUBLE +ufunc_hyp0f1_types[11] = NPY_CDOUBLE +ufunc_hyp0f1_ptr[2*0] = _func__hyp0f1_real +ufunc_hyp0f1_ptr[2*0+1] = ("hyp0f1") +ufunc_hyp0f1_ptr[2*1] = _func__hyp0f1_cmplx +ufunc_hyp0f1_ptr[2*1+1] = ("hyp0f1") +ufunc_hyp0f1_ptr[2*2] = _func__hyp0f1_real +ufunc_hyp0f1_ptr[2*2+1] = ("hyp0f1") +ufunc_hyp0f1_ptr[2*3] = _func__hyp0f1_cmplx +ufunc_hyp0f1_ptr[2*3+1] = ("hyp0f1") +ufunc_hyp0f1_data[0] = &ufunc_hyp0f1_ptr[2*0] +ufunc_hyp0f1_data[1] = &ufunc_hyp0f1_ptr[2*1] +ufunc_hyp0f1_data[2] = &ufunc_hyp0f1_ptr[2*2] +ufunc_hyp0f1_data[3] = &ufunc_hyp0f1_ptr[2*3] +hyp0f1 = np.PyUFunc_FromFuncAndData(ufunc_hyp0f1_loops, ufunc_hyp0f1_data, ufunc_hyp0f1_types, 4, 2, 1, 0, "hyp0f1", ufunc_hyp0f1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hyp1f1_loops[4] +cdef void *ufunc_hyp1f1_ptr[8] +cdef void *ufunc_hyp1f1_data[4] +cdef char ufunc_hyp1f1_types[16] +cdef char *ufunc_hyp1f1_doc = ( + "hyp1f1(a, b, x, out=None)\n" + "\n" + "Confluent hypergeometric function 1F1.\n" + "\n" + "The confluent hypergeometric function is defined by the series\n" + "\n" + ".. math::\n" + "\n" + " {}_1F_1(a; b; x) = \\sum_{k = 0}^\\infty \\frac{(a)_k}{(b)_k k!} x^k.\n" + "\n" + "See [dlmf]_ for more details. Here :math:`(\\cdot)_k` is the\n" + "Pochhammer symbol; see `poch`.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Real parameters\n" + "x : array_like\n" + " Real or complex argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the confluent hypergeometric function\n" + "\n" + "See Also\n" + "--------\n" + "hyperu : another confluent hypergeometric function\n" + "hyp0f1 : confluent hypergeometric limit function\n" + "hyp2f1 : Gaussian hypergeometric function\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/13.2#E2\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is one when `x` is zero:\n" + "\n" + ">>> sc.hyp1f1(0.5, 0.5, 0)\n" + "1.0\n" + "\n" + "It is singular when `b` is a nonpositive integer.\n" + "\n" + ">>> sc.hyp1f1(0.5, -1, 0)\n" + "inf\n" + "\n" + "It is a polynomial when `a` is a nonpositive integer.\n" + "\n" + ">>> a, b, x = -1, 0.5, np.array([1.0, 2.0, 3.0, 4.0])\n" + ">>> sc.hyp1f1(a, b, x)\n" + "array([-1., -3., -5., -7.])\n" + ">>> 1 + (a / b) * x\n" + "array([-1., -3., -5., -7.])\n" + "\n" + "It reduces to the exponential function when `a = b`.\n" + "\n" + ">>> sc.hyp1f1(2, 2, [1, 2, 3, 4])\n" + "array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])\n" + ">>> np.exp([1, 2, 3, 4])\n" + "array([ 2.71828183, 7.3890561 , 20.08553692, 54.59815003])") +ufunc_hyp1f1_loops[0] = loop_d_ddd__As_fff_f +ufunc_hyp1f1_loops[1] = loop_D_ddD__As_ffF_F +ufunc_hyp1f1_loops[2] = loop_d_ddd__As_ddd_d +ufunc_hyp1f1_loops[3] = loop_D_ddD__As_ddD_D +ufunc_hyp1f1_types[0] = NPY_FLOAT +ufunc_hyp1f1_types[1] = NPY_FLOAT +ufunc_hyp1f1_types[2] = NPY_FLOAT +ufunc_hyp1f1_types[3] = NPY_FLOAT +ufunc_hyp1f1_types[4] = NPY_FLOAT +ufunc_hyp1f1_types[5] = NPY_FLOAT +ufunc_hyp1f1_types[6] = NPY_CFLOAT +ufunc_hyp1f1_types[7] = NPY_CFLOAT +ufunc_hyp1f1_types[8] = NPY_DOUBLE +ufunc_hyp1f1_types[9] = NPY_DOUBLE +ufunc_hyp1f1_types[10] = NPY_DOUBLE +ufunc_hyp1f1_types[11] = NPY_DOUBLE +ufunc_hyp1f1_types[12] = NPY_DOUBLE +ufunc_hyp1f1_types[13] = NPY_DOUBLE +ufunc_hyp1f1_types[14] = NPY_CDOUBLE +ufunc_hyp1f1_types[15] = NPY_CDOUBLE +ufunc_hyp1f1_ptr[2*0] = scipy.special._ufuncs_cxx._export_hyp1f1_double +ufunc_hyp1f1_ptr[2*0+1] = ("hyp1f1") +ufunc_hyp1f1_ptr[2*1] = _func_chyp1f1_wrap +ufunc_hyp1f1_ptr[2*1+1] = ("hyp1f1") +ufunc_hyp1f1_ptr[2*2] = scipy.special._ufuncs_cxx._export_hyp1f1_double +ufunc_hyp1f1_ptr[2*2+1] = ("hyp1f1") +ufunc_hyp1f1_ptr[2*3] = _func_chyp1f1_wrap +ufunc_hyp1f1_ptr[2*3+1] = ("hyp1f1") +ufunc_hyp1f1_data[0] = &ufunc_hyp1f1_ptr[2*0] +ufunc_hyp1f1_data[1] = &ufunc_hyp1f1_ptr[2*1] +ufunc_hyp1f1_data[2] = &ufunc_hyp1f1_ptr[2*2] +ufunc_hyp1f1_data[3] = &ufunc_hyp1f1_ptr[2*3] +hyp1f1 = np.PyUFunc_FromFuncAndData(ufunc_hyp1f1_loops, ufunc_hyp1f1_data, ufunc_hyp1f1_types, 4, 3, 1, 0, "hyp1f1", ufunc_hyp1f1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hyp2f1_loops[4] +cdef void *ufunc_hyp2f1_ptr[8] +cdef void *ufunc_hyp2f1_data[4] +cdef char ufunc_hyp2f1_types[20] +cdef char *ufunc_hyp2f1_doc = ( + "hyp2f1(a, b, c, z, out=None)\n" + "\n" + "Gauss hypergeometric function 2F1(a, b; c; z)\n" + "\n" + "Parameters\n" + "----------\n" + "a, b, c : array_like\n" + " Arguments, should be real-valued.\n" + "z : array_like\n" + " Argument, real or complex.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "hyp2f1 : scalar or ndarray\n" + " The values of the gaussian hypergeometric function.\n" + "\n" + "See Also\n" + "--------\n" + "hyp0f1 : confluent hypergeometric limit function.\n" + "hyp1f1 : Kummer's (confluent hypergeometric) function.\n" + "\n" + "Notes\n" + "-----\n" + "This function is defined for :math:`|z| < 1` as\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{hyp2f1}(a, b, c, z) = \\sum_{n=0}^\\infty\n" + " \\frac{(a)_n (b)_n}{(c)_n}\\frac{z^n}{n!},\n" + "\n" + "and defined on the rest of the complex z-plane by analytic\n" + "continuation [1]_.\n" + "Here :math:`(\\cdot)_n` is the Pochhammer symbol; see `poch`. When\n" + ":math:`n` is an integer the result is a polynomial of degree :math:`n`.\n" + "\n" + "The implementation for complex values of ``z`` is described in [2]_,\n" + "except for ``z`` in the region defined by\n" + "\n" + ".. math::\n" + "\n" + " 0.9 <= \\left|z\\right| < 1.1,\n" + " \\left|1 - z\\right| >= 0.9,\n" + " \\mathrm{real}(z) >= 0\n" + "\n" + "in which the implementation follows [4]_.\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/15.2\n" + ".. [2] S. Zhang and J.M. Jin, \"Computation of Special Functions\", Wiley 1996\n" + ".. [3] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [4] J.L. Lopez and N.M. Temme, \"New series expansions of the Gauss\n" + " hypergeometric function\", Adv Comput Math 39, 349-365 (2013).\n" + " https://doi.org/10.1007/s10444-012-9283-y\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It has poles when `c` is a negative integer.\n" + "\n" + ">>> sc.hyp2f1(1, 1, -2, 1)\n" + "inf\n" + "\n" + "It is a polynomial when `a` or `b` is a negative integer.\n" + "\n" + ">>> a, b, c = -1, 1, 1.5\n" + ">>> z = np.linspace(0, 1, 5)\n" + ">>> sc.hyp2f1(a, b, c, z)\n" + "array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])\n" + ">>> 1 + a * b * z / c\n" + "array([1. , 0.83333333, 0.66666667, 0.5 , 0.33333333])\n" + "\n" + "It is symmetric in `a` and `b`.\n" + "\n" + ">>> a = np.linspace(0, 1, 5)\n" + ">>> b = np.linspace(0, 1, 5)\n" + ">>> sc.hyp2f1(a, b, 1, 0.5)\n" + "array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])\n" + ">>> sc.hyp2f1(b, a, 1, 0.5)\n" + "array([1. , 1.03997334, 1.1803406 , 1.47074441, 2. ])\n" + "\n" + "It contains many other functions as special cases.\n" + "\n" + ">>> z = 0.5\n" + ">>> sc.hyp2f1(1, 1, 2, z)\n" + "1.3862943611198901\n" + ">>> -np.log(1 - z) / z\n" + "1.3862943611198906\n" + "\n" + ">>> sc.hyp2f1(0.5, 1, 1.5, z**2)\n" + "1.098612288668109\n" + ">>> np.log((1 + z) / (1 - z)) / (2 * z)\n" + "1.0986122886681098\n" + "\n" + ">>> sc.hyp2f1(0.5, 1, 1.5, -z**2)\n" + "0.9272952180016117\n" + ">>> np.arctan(z) / z\n" + "0.9272952180016122") +ufunc_hyp2f1_loops[0] = loop_d_dddd__As_ffff_f +ufunc_hyp2f1_loops[1] = loop_D_dddD__As_fffF_F +ufunc_hyp2f1_loops[2] = loop_d_dddd__As_dddd_d +ufunc_hyp2f1_loops[3] = loop_D_dddD__As_dddD_D +ufunc_hyp2f1_types[0] = NPY_FLOAT +ufunc_hyp2f1_types[1] = NPY_FLOAT +ufunc_hyp2f1_types[2] = NPY_FLOAT +ufunc_hyp2f1_types[3] = NPY_FLOAT +ufunc_hyp2f1_types[4] = NPY_FLOAT +ufunc_hyp2f1_types[5] = NPY_FLOAT +ufunc_hyp2f1_types[6] = NPY_FLOAT +ufunc_hyp2f1_types[7] = NPY_FLOAT +ufunc_hyp2f1_types[8] = NPY_CFLOAT +ufunc_hyp2f1_types[9] = NPY_CFLOAT +ufunc_hyp2f1_types[10] = NPY_DOUBLE +ufunc_hyp2f1_types[11] = NPY_DOUBLE +ufunc_hyp2f1_types[12] = NPY_DOUBLE +ufunc_hyp2f1_types[13] = NPY_DOUBLE +ufunc_hyp2f1_types[14] = NPY_DOUBLE +ufunc_hyp2f1_types[15] = NPY_DOUBLE +ufunc_hyp2f1_types[16] = NPY_DOUBLE +ufunc_hyp2f1_types[17] = NPY_DOUBLE +ufunc_hyp2f1_types[18] = NPY_CDOUBLE +ufunc_hyp2f1_types[19] = NPY_CDOUBLE +ufunc_hyp2f1_ptr[2*0] = _func_hyp2f1 +ufunc_hyp2f1_ptr[2*0+1] = ("hyp2f1") +ufunc_hyp2f1_ptr[2*1] = _func_hyp2f1_complex +ufunc_hyp2f1_ptr[2*1+1] = ("hyp2f1") +ufunc_hyp2f1_ptr[2*2] = _func_hyp2f1 +ufunc_hyp2f1_ptr[2*2+1] = ("hyp2f1") +ufunc_hyp2f1_ptr[2*3] = _func_hyp2f1_complex +ufunc_hyp2f1_ptr[2*3+1] = ("hyp2f1") +ufunc_hyp2f1_data[0] = &ufunc_hyp2f1_ptr[2*0] +ufunc_hyp2f1_data[1] = &ufunc_hyp2f1_ptr[2*1] +ufunc_hyp2f1_data[2] = &ufunc_hyp2f1_ptr[2*2] +ufunc_hyp2f1_data[3] = &ufunc_hyp2f1_ptr[2*3] +hyp2f1 = np.PyUFunc_FromFuncAndData(ufunc_hyp2f1_loops, ufunc_hyp2f1_data, ufunc_hyp2f1_types, 4, 4, 1, 0, "hyp2f1", ufunc_hyp2f1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_hyperu_loops[2] +cdef void *ufunc_hyperu_ptr[4] +cdef void *ufunc_hyperu_data[2] +cdef char ufunc_hyperu_types[8] +cdef char *ufunc_hyperu_doc = ( + "hyperu(a, b, x, out=None)\n" + "\n" + "Confluent hypergeometric function U\n" + "\n" + "It is defined as the solution to the equation\n" + "\n" + ".. math::\n" + "\n" + " x \\frac{d^2w}{dx^2} + (b - x) \\frac{dw}{dx} - aw = 0\n" + "\n" + "which satisfies the property\n" + "\n" + ".. math::\n" + "\n" + " U(a, b, x) \\sim x^{-a}\n" + "\n" + "as :math:`x \\to \\infty`. See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "a, b : array_like\n" + " Real-valued parameters\n" + "x : array_like\n" + " Real-valued argument\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of `U`\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematics Functions\n" + " https://dlmf.nist.gov/13.2#E6\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It has a branch cut along the negative `x` axis.\n" + "\n" + ">>> x = np.linspace(-0.1, -10, 5)\n" + ">>> sc.hyperu(1, 1, x)\n" + "array([nan, nan, nan, nan, nan])\n" + "\n" + "It approaches zero as `x` goes to infinity.\n" + "\n" + ">>> x = np.array([1, 10, 100])\n" + ">>> sc.hyperu(1, 1, x)\n" + "array([0.59634736, 0.09156333, 0.00990194])\n" + "\n" + "It satisfies Kummer's transformation.\n" + "\n" + ">>> a, b, x = 2, 1, 1\n" + ">>> sc.hyperu(a, b, x)\n" + "0.1926947246463881\n" + ">>> x**(1 - b) * sc.hyperu(a - b + 1, 2 - b, x)\n" + "0.1926947246463881") +ufunc_hyperu_loops[0] = loop_d_ddd__As_fff_f +ufunc_hyperu_loops[1] = loop_d_ddd__As_ddd_d +ufunc_hyperu_types[0] = NPY_FLOAT +ufunc_hyperu_types[1] = NPY_FLOAT +ufunc_hyperu_types[2] = NPY_FLOAT +ufunc_hyperu_types[3] = NPY_FLOAT +ufunc_hyperu_types[4] = NPY_DOUBLE +ufunc_hyperu_types[5] = NPY_DOUBLE +ufunc_hyperu_types[6] = NPY_DOUBLE +ufunc_hyperu_types[7] = NPY_DOUBLE +ufunc_hyperu_ptr[2*0] = _func_hyperu +ufunc_hyperu_ptr[2*0+1] = ("hyperu") +ufunc_hyperu_ptr[2*1] = _func_hyperu +ufunc_hyperu_ptr[2*1+1] = ("hyperu") +ufunc_hyperu_data[0] = &ufunc_hyperu_ptr[2*0] +ufunc_hyperu_data[1] = &ufunc_hyperu_ptr[2*1] +hyperu = np.PyUFunc_FromFuncAndData(ufunc_hyperu_loops, ufunc_hyperu_data, ufunc_hyperu_types, 2, 3, 1, 0, "hyperu", ufunc_hyperu_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_i0_loops[2] +cdef void *ufunc_i0_ptr[4] +cdef void *ufunc_i0_data[2] +cdef char ufunc_i0_types[4] +cdef char *ufunc_i0_doc = ( + "i0(x, out=None)\n" + "\n" + "Modified Bessel function of order 0.\n" + "\n" + "Defined as,\n" + "\n" + ".. math::\n" + " I_0(x) = \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{(k!)^2} = J_0(\\imath x),\n" + "\n" + "where :math:`J_0` is the Bessel function of the first kind of order 0.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " Value of the modified Bessel function of order 0 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "iv: Modified Bessel function of any order\n" + "i0e: Exponentially scaled modified Bessel function of order 0\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 8] and (8, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `i0`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import i0\n" + ">>> i0(1.)\n" + "1.2660658777520082\n" + "\n" + "Calculate at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> i0(np.array([-2., 0., 3.5]))\n" + "array([2.2795853 , 1. , 7.37820343])\n" + "\n" + "Plot the function from -10 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> y = i0(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_i0_loops[0] = loop_d_d__As_f_f +ufunc_i0_loops[1] = loop_d_d__As_d_d +ufunc_i0_types[0] = NPY_FLOAT +ufunc_i0_types[1] = NPY_FLOAT +ufunc_i0_types[2] = NPY_DOUBLE +ufunc_i0_types[3] = NPY_DOUBLE +ufunc_i0_ptr[2*0] = _func_i0 +ufunc_i0_ptr[2*0+1] = ("i0") +ufunc_i0_ptr[2*1] = _func_i0 +ufunc_i0_ptr[2*1+1] = ("i0") +ufunc_i0_data[0] = &ufunc_i0_ptr[2*0] +ufunc_i0_data[1] = &ufunc_i0_ptr[2*1] +i0 = np.PyUFunc_FromFuncAndData(ufunc_i0_loops, ufunc_i0_data, ufunc_i0_types, 2, 1, 1, 0, "i0", ufunc_i0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_i0e_loops[2] +cdef void *ufunc_i0e_ptr[4] +cdef void *ufunc_i0e_data[2] +cdef char ufunc_i0e_types[4] +cdef char *ufunc_i0e_doc = ( + "i0e(x, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function of order 0.\n" + "\n" + "Defined as::\n" + "\n" + " i0e(x) = exp(-abs(x)) * i0(x).\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " Value of the exponentially scaled modified Bessel function of order 0\n" + " at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "iv: Modified Bessel function of the first kind\n" + "i0: Modified Bessel function of order 0\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 8] and (8, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval. The\n" + "polynomial expansions used are the same as those in `i0`, but\n" + "they are not multiplied by the dominant exponential factor.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `i0e`. `i0e`\n" + "is useful for large arguments `x`: for these, `i0` quickly overflows.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `i0` returns infinity whereas `i0e` still returns\n" + "a finite number.\n" + "\n" + ">>> from scipy.special import i0, i0e\n" + ">>> i0(1000.), i0e(1000.)\n" + "(inf, 0.012617240455891257)\n" + "\n" + "Calculate the function at several points by providing a NumPy array or\n" + "list for `x`:\n" + "\n" + ">>> import numpy as np\n" + ">>> i0e(np.array([-2., 0., 3.]))\n" + "array([0.30850832, 1. , 0.24300035])\n" + "\n" + "Plot the function from -10 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> y = i0e(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_i0e_loops[0] = loop_d_d__As_f_f +ufunc_i0e_loops[1] = loop_d_d__As_d_d +ufunc_i0e_types[0] = NPY_FLOAT +ufunc_i0e_types[1] = NPY_FLOAT +ufunc_i0e_types[2] = NPY_DOUBLE +ufunc_i0e_types[3] = NPY_DOUBLE +ufunc_i0e_ptr[2*0] = _func_i0e +ufunc_i0e_ptr[2*0+1] = ("i0e") +ufunc_i0e_ptr[2*1] = _func_i0e +ufunc_i0e_ptr[2*1+1] = ("i0e") +ufunc_i0e_data[0] = &ufunc_i0e_ptr[2*0] +ufunc_i0e_data[1] = &ufunc_i0e_ptr[2*1] +i0e = np.PyUFunc_FromFuncAndData(ufunc_i0e_loops, ufunc_i0e_data, ufunc_i0e_types, 2, 1, 1, 0, "i0e", ufunc_i0e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_i1_loops[2] +cdef void *ufunc_i1_ptr[4] +cdef void *ufunc_i1_data[2] +cdef char ufunc_i1_types[4] +cdef char *ufunc_i1_doc = ( + "i1(x, out=None)\n" + "\n" + "Modified Bessel function of order 1.\n" + "\n" + "Defined as,\n" + "\n" + ".. math::\n" + " I_1(x) = \\frac{1}{2}x \\sum_{k=0}^\\infty \\frac{(x^2/4)^k}{k! (k + 1)!}\n" + " = -\\imath J_1(\\imath x),\n" + "\n" + "where :math:`J_1` is the Bessel function of the first kind of order 1.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " Value of the modified Bessel function of order 1 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "iv: Modified Bessel function of the first kind\n" + "i1e: Exponentially scaled modified Bessel function of order 1\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 8] and (8, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `i1`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import i1\n" + ">>> i1(1.)\n" + "0.5651591039924851\n" + "\n" + "Calculate the function at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> i1(np.array([-2., 0., 6.]))\n" + "array([-1.59063685, 0. , 61.34193678])\n" + "\n" + "Plot the function between -10 and 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> y = i1(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_i1_loops[0] = loop_d_d__As_f_f +ufunc_i1_loops[1] = loop_d_d__As_d_d +ufunc_i1_types[0] = NPY_FLOAT +ufunc_i1_types[1] = NPY_FLOAT +ufunc_i1_types[2] = NPY_DOUBLE +ufunc_i1_types[3] = NPY_DOUBLE +ufunc_i1_ptr[2*0] = _func_i1 +ufunc_i1_ptr[2*0+1] = ("i1") +ufunc_i1_ptr[2*1] = _func_i1 +ufunc_i1_ptr[2*1+1] = ("i1") +ufunc_i1_data[0] = &ufunc_i1_ptr[2*0] +ufunc_i1_data[1] = &ufunc_i1_ptr[2*1] +i1 = np.PyUFunc_FromFuncAndData(ufunc_i1_loops, ufunc_i1_data, ufunc_i1_types, 2, 1, 1, 0, "i1", ufunc_i1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_i1e_loops[2] +cdef void *ufunc_i1e_ptr[4] +cdef void *ufunc_i1e_data[2] +cdef char ufunc_i1e_types[4] +cdef char *ufunc_i1e_doc = ( + "i1e(x, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function of order 1.\n" + "\n" + "Defined as::\n" + "\n" + " i1e(x) = exp(-abs(x)) * i1(x)\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " Value of the exponentially scaled modified Bessel function of order 1\n" + " at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "iv: Modified Bessel function of the first kind\n" + "i1: Modified Bessel function of order 1\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 8] and (8, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval. The\n" + "polynomial expansions used are the same as those in `i1`, but\n" + "they are not multiplied by the dominant exponential factor.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `i1e`. `i1e`\n" + "is useful for large arguments `x`: for these, `i1` quickly overflows.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `i1` returns infinity whereas `i1e` still returns\n" + "a finite number.\n" + "\n" + ">>> from scipy.special import i1, i1e\n" + ">>> i1(1000.), i1e(1000.)\n" + "(inf, 0.01261093025692863)\n" + "\n" + "Calculate the function at several points by providing a NumPy array or\n" + "list for `x`:\n" + "\n" + ">>> import numpy as np\n" + ">>> i1e(np.array([-2., 0., 6.]))\n" + "array([-0.21526929, 0. , 0.15205146])\n" + "\n" + "Plot the function between -10 and 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> y = i1e(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_i1e_loops[0] = loop_d_d__As_f_f +ufunc_i1e_loops[1] = loop_d_d__As_d_d +ufunc_i1e_types[0] = NPY_FLOAT +ufunc_i1e_types[1] = NPY_FLOAT +ufunc_i1e_types[2] = NPY_DOUBLE +ufunc_i1e_types[3] = NPY_DOUBLE +ufunc_i1e_ptr[2*0] = _func_i1e +ufunc_i1e_ptr[2*0+1] = ("i1e") +ufunc_i1e_ptr[2*1] = _func_i1e +ufunc_i1e_ptr[2*1+1] = ("i1e") +ufunc_i1e_data[0] = &ufunc_i1e_ptr[2*0] +ufunc_i1e_data[1] = &ufunc_i1e_ptr[2*1] +i1e = np.PyUFunc_FromFuncAndData(ufunc_i1e_loops, ufunc_i1e_data, ufunc_i1e_types, 2, 1, 1, 0, "i1e", ufunc_i1e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_inv_boxcox_loops[2] +cdef void *ufunc_inv_boxcox_ptr[4] +cdef void *ufunc_inv_boxcox_data[2] +cdef char ufunc_inv_boxcox_types[6] +cdef char *ufunc_inv_boxcox_doc = ( + "inv_boxcox(y, lmbda, out=None)\n" + "\n" + "Compute the inverse of the Box-Cox transformation.\n" + "\n" + "Find ``x`` such that::\n" + "\n" + " y = (x**lmbda - 1) / lmbda if lmbda != 0\n" + " log(x) if lmbda == 0\n" + "\n" + "Parameters\n" + "----------\n" + "y : array_like\n" + " Data to be transformed.\n" + "lmbda : array_like\n" + " Power parameter of the Box-Cox transform.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Transformed data.\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.16.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import boxcox, inv_boxcox\n" + ">>> y = boxcox([1, 4, 10], 2.5)\n" + ">>> inv_boxcox(y, 2.5)\n" + "array([1., 4., 10.])") +ufunc_inv_boxcox_loops[0] = loop_d_dd__As_ff_f +ufunc_inv_boxcox_loops[1] = loop_d_dd__As_dd_d +ufunc_inv_boxcox_types[0] = NPY_FLOAT +ufunc_inv_boxcox_types[1] = NPY_FLOAT +ufunc_inv_boxcox_types[2] = NPY_FLOAT +ufunc_inv_boxcox_types[3] = NPY_DOUBLE +ufunc_inv_boxcox_types[4] = NPY_DOUBLE +ufunc_inv_boxcox_types[5] = NPY_DOUBLE +ufunc_inv_boxcox_ptr[2*0] = _func_inv_boxcox +ufunc_inv_boxcox_ptr[2*0+1] = ("inv_boxcox") +ufunc_inv_boxcox_ptr[2*1] = _func_inv_boxcox +ufunc_inv_boxcox_ptr[2*1+1] = ("inv_boxcox") +ufunc_inv_boxcox_data[0] = &ufunc_inv_boxcox_ptr[2*0] +ufunc_inv_boxcox_data[1] = &ufunc_inv_boxcox_ptr[2*1] +inv_boxcox = np.PyUFunc_FromFuncAndData(ufunc_inv_boxcox_loops, ufunc_inv_boxcox_data, ufunc_inv_boxcox_types, 2, 2, 1, 0, "inv_boxcox", ufunc_inv_boxcox_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_inv_boxcox1p_loops[2] +cdef void *ufunc_inv_boxcox1p_ptr[4] +cdef void *ufunc_inv_boxcox1p_data[2] +cdef char ufunc_inv_boxcox1p_types[6] +cdef char *ufunc_inv_boxcox1p_doc = ( + "inv_boxcox1p(y, lmbda, out=None)\n" + "\n" + "Compute the inverse of the Box-Cox transformation.\n" + "\n" + "Find ``x`` such that::\n" + "\n" + " y = ((1+x)**lmbda - 1) / lmbda if lmbda != 0\n" + " log(1+x) if lmbda == 0\n" + "\n" + "Parameters\n" + "----------\n" + "y : array_like\n" + " Data to be transformed.\n" + "lmbda : array_like\n" + " Power parameter of the Box-Cox transform.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Transformed data.\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.16.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import boxcox1p, inv_boxcox1p\n" + ">>> y = boxcox1p([1, 4, 10], 2.5)\n" + ">>> inv_boxcox1p(y, 2.5)\n" + "array([1., 4., 10.])") +ufunc_inv_boxcox1p_loops[0] = loop_d_dd__As_ff_f +ufunc_inv_boxcox1p_loops[1] = loop_d_dd__As_dd_d +ufunc_inv_boxcox1p_types[0] = NPY_FLOAT +ufunc_inv_boxcox1p_types[1] = NPY_FLOAT +ufunc_inv_boxcox1p_types[2] = NPY_FLOAT +ufunc_inv_boxcox1p_types[3] = NPY_DOUBLE +ufunc_inv_boxcox1p_types[4] = NPY_DOUBLE +ufunc_inv_boxcox1p_types[5] = NPY_DOUBLE +ufunc_inv_boxcox1p_ptr[2*0] = _func_inv_boxcox1p +ufunc_inv_boxcox1p_ptr[2*0+1] = ("inv_boxcox1p") +ufunc_inv_boxcox1p_ptr[2*1] = _func_inv_boxcox1p +ufunc_inv_boxcox1p_ptr[2*1+1] = ("inv_boxcox1p") +ufunc_inv_boxcox1p_data[0] = &ufunc_inv_boxcox1p_ptr[2*0] +ufunc_inv_boxcox1p_data[1] = &ufunc_inv_boxcox1p_ptr[2*1] +inv_boxcox1p = np.PyUFunc_FromFuncAndData(ufunc_inv_boxcox1p_loops, ufunc_inv_boxcox1p_data, ufunc_inv_boxcox1p_types, 2, 2, 1, 0, "inv_boxcox1p", ufunc_inv_boxcox1p_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_it2i0k0_loops[2] +cdef void *ufunc_it2i0k0_ptr[4] +cdef void *ufunc_it2i0k0_data[2] +cdef char ufunc_it2i0k0_types[6] +cdef char *ufunc_it2i0k0_doc = ( + "it2i0k0(x, out=None)\n" + "\n" + "Integrals related to modified Bessel functions of order 0.\n" + "\n" + "Computes the integrals\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x \\frac{I_0(t) - 1}{t} dt \\\\\n" + " \\int_x^\\infty \\frac{K_0(t)}{t} dt.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Values at which to evaluate the integrals.\n" + "out : tuple of ndarrays, optional\n" + " Optional output arrays for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "ii0 : scalar or ndarray\n" + " The integral for `i0`\n" + "ik0 : scalar or ndarray\n" + " The integral for `k0`\n" + "\n" + "References\n" + "----------\n" + ".. [1] S. Zhang and J.M. Jin, \"Computation of Special Functions\",\n" + " Wiley 1996\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the functions at one point.\n" + "\n" + ">>> from scipy.special import it2i0k0\n" + ">>> int_i, int_k = it2i0k0(1.)\n" + ">>> int_i, int_k\n" + "(0.12897944249456852, 0.2085182909001295)\n" + "\n" + "Evaluate the functions at several points.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0.5, 1.5, 3.])\n" + ">>> int_i, int_k = it2i0k0(points)\n" + ">>> int_i, int_k\n" + "(array([0.03149527, 0.30187149, 1.50012461]),\n" + " array([0.66575102, 0.0823715 , 0.00823631]))\n" + "\n" + "Plot the functions from 0 to 5.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 5., 1000)\n" + ">>> int_i, int_k = it2i0k0(x)\n" + ">>> ax.plot(x, int_i, label=r\"$\\int_0^x \\frac{I_0(t)-1}{t}\\,dt$\")\n" + ">>> ax.plot(x, int_k, label=r\"$\\int_x^{\\infty} \\frac{K_0(t)}{t}\\,dt$\")\n" + ">>> ax.legend()\n" + ">>> ax.set_ylim(0, 10)\n" + ">>> plt.show()") +ufunc_it2i0k0_loops[0] = loop_i_d_dd_As_f_ff +ufunc_it2i0k0_loops[1] = loop_i_d_dd_As_d_dd +ufunc_it2i0k0_types[0] = NPY_FLOAT +ufunc_it2i0k0_types[1] = NPY_FLOAT +ufunc_it2i0k0_types[2] = NPY_FLOAT +ufunc_it2i0k0_types[3] = NPY_DOUBLE +ufunc_it2i0k0_types[4] = NPY_DOUBLE +ufunc_it2i0k0_types[5] = NPY_DOUBLE +ufunc_it2i0k0_ptr[2*0] = _func_it2i0k0_wrap +ufunc_it2i0k0_ptr[2*0+1] = ("it2i0k0") +ufunc_it2i0k0_ptr[2*1] = _func_it2i0k0_wrap +ufunc_it2i0k0_ptr[2*1+1] = ("it2i0k0") +ufunc_it2i0k0_data[0] = &ufunc_it2i0k0_ptr[2*0] +ufunc_it2i0k0_data[1] = &ufunc_it2i0k0_ptr[2*1] +it2i0k0 = np.PyUFunc_FromFuncAndData(ufunc_it2i0k0_loops, ufunc_it2i0k0_data, ufunc_it2i0k0_types, 2, 1, 2, 0, "it2i0k0", ufunc_it2i0k0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_it2j0y0_loops[2] +cdef void *ufunc_it2j0y0_ptr[4] +cdef void *ufunc_it2j0y0_data[2] +cdef char ufunc_it2j0y0_types[6] +cdef char *ufunc_it2j0y0_doc = ( + "it2j0y0(x, out=None)\n" + "\n" + "Integrals related to Bessel functions of the first kind of order 0.\n" + "\n" + "Computes the integrals\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x \\frac{1 - J_0(t)}{t} dt \\\\\n" + " \\int_x^\\infty \\frac{Y_0(t)}{t} dt.\n" + "\n" + "For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Values at which to evaluate the integrals.\n" + "out : tuple of ndarrays, optional\n" + " Optional output arrays for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "ij0 : scalar or ndarray\n" + " The integral for `j0`\n" + "iy0 : scalar or ndarray\n" + " The integral for `y0`\n" + "\n" + "References\n" + "----------\n" + ".. [1] S. Zhang and J.M. Jin, \"Computation of Special Functions\",\n" + " Wiley 1996\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the functions at one point.\n" + "\n" + ">>> from scipy.special import it2j0y0\n" + ">>> int_j, int_y = it2j0y0(1.)\n" + ">>> int_j, int_y\n" + "(0.12116524699506871, 0.39527290169929336)\n" + "\n" + "Evaluate the functions at several points.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0.5, 1.5, 3.])\n" + ">>> int_j, int_y = it2j0y0(points)\n" + ">>> int_j, int_y\n" + "(array([0.03100699, 0.26227724, 0.85614669]),\n" + " array([ 0.26968854, 0.29769696, -0.02987272]))\n" + "\n" + "Plot the functions from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> int_j, int_y = it2j0y0(x)\n" + ">>> ax.plot(x, int_j, label=r\"$\\int_0^x \\frac{1-J_0(t)}{t}\\,dt$\")\n" + ">>> ax.plot(x, int_y, label=r\"$\\int_x^{\\infty} \\frac{Y_0(t)}{t}\\,dt$\")\n" + ">>> ax.legend()\n" + ">>> ax.set_ylim(-2.5, 2.5)\n" + ">>> plt.show()") +ufunc_it2j0y0_loops[0] = loop_i_d_dd_As_f_ff +ufunc_it2j0y0_loops[1] = loop_i_d_dd_As_d_dd +ufunc_it2j0y0_types[0] = NPY_FLOAT +ufunc_it2j0y0_types[1] = NPY_FLOAT +ufunc_it2j0y0_types[2] = NPY_FLOAT +ufunc_it2j0y0_types[3] = NPY_DOUBLE +ufunc_it2j0y0_types[4] = NPY_DOUBLE +ufunc_it2j0y0_types[5] = NPY_DOUBLE +ufunc_it2j0y0_ptr[2*0] = _func_it2j0y0_wrap +ufunc_it2j0y0_ptr[2*0+1] = ("it2j0y0") +ufunc_it2j0y0_ptr[2*1] = _func_it2j0y0_wrap +ufunc_it2j0y0_ptr[2*1+1] = ("it2j0y0") +ufunc_it2j0y0_data[0] = &ufunc_it2j0y0_ptr[2*0] +ufunc_it2j0y0_data[1] = &ufunc_it2j0y0_ptr[2*1] +it2j0y0 = np.PyUFunc_FromFuncAndData(ufunc_it2j0y0_loops, ufunc_it2j0y0_data, ufunc_it2j0y0_types, 2, 1, 2, 0, "it2j0y0", ufunc_it2j0y0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_it2struve0_loops[2] +cdef void *ufunc_it2struve0_ptr[4] +cdef void *ufunc_it2struve0_data[2] +cdef char ufunc_it2struve0_types[4] +cdef char *ufunc_it2struve0_doc = ( + "it2struve0(x, out=None)\n" + "\n" + "Integral related to the Struve function of order 0.\n" + "\n" + "Returns the integral,\n" + "\n" + ".. math::\n" + " \\int_x^\\infty \\frac{H_0(t)}{t}\\,dt\n" + "\n" + "where :math:`H_0` is the Struve function of order 0.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Lower limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " The value of the integral.\n" + "\n" + "See Also\n" + "--------\n" + "struve\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for a Fortran routine created by Shanjie Zhang and Jianming\n" + "Jin [1]_.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Zhang, Shanjie and Jin, Jianming. \"Computation of Special\n" + " Functions\", John Wiley and Sons, 1996.\n" + " https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function at one point.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import it2struve0\n" + ">>> it2struve0(1.)\n" + "0.9571973506383524\n" + "\n" + "Evaluate the function at several points by supplying\n" + "an array for `x`.\n" + "\n" + ">>> points = np.array([1., 2., 3.5])\n" + ">>> it2struve0(points)\n" + "array([0.95719735, 0.46909296, 0.10366042])\n" + "\n" + "Plot the function from -10 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> it2struve0_values = it2struve0(x)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, it2struve0_values)\n" + ">>> ax.set_xlabel(r'$x$')\n" + ">>> ax.set_ylabel(r'$\\int_x^{\\infty}\\frac{H_0(t)}{t}\\,dt$')\n" + ">>> plt.show()") +ufunc_it2struve0_loops[0] = loop_d_d__As_f_f +ufunc_it2struve0_loops[1] = loop_d_d__As_d_d +ufunc_it2struve0_types[0] = NPY_FLOAT +ufunc_it2struve0_types[1] = NPY_FLOAT +ufunc_it2struve0_types[2] = NPY_DOUBLE +ufunc_it2struve0_types[3] = NPY_DOUBLE +ufunc_it2struve0_ptr[2*0] = _func_it2struve0_wrap +ufunc_it2struve0_ptr[2*0+1] = ("it2struve0") +ufunc_it2struve0_ptr[2*1] = _func_it2struve0_wrap +ufunc_it2struve0_ptr[2*1+1] = ("it2struve0") +ufunc_it2struve0_data[0] = &ufunc_it2struve0_ptr[2*0] +ufunc_it2struve0_data[1] = &ufunc_it2struve0_ptr[2*1] +it2struve0 = np.PyUFunc_FromFuncAndData(ufunc_it2struve0_loops, ufunc_it2struve0_data, ufunc_it2struve0_types, 2, 1, 1, 0, "it2struve0", ufunc_it2struve0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_itairy_loops[2] +cdef void *ufunc_itairy_ptr[4] +cdef void *ufunc_itairy_data[2] +cdef char ufunc_itairy_types[10] +cdef char *ufunc_itairy_doc = ( + "itairy(x, out=None)\n" + "\n" + "Integrals of Airy functions\n" + "\n" + "Calculates the integrals of Airy functions from 0 to `x`.\n" + "\n" + "Parameters\n" + "----------\n" + "\n" + "x : array_like\n" + " Upper limit of integration (float).\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function values\n" + "\n" + "Returns\n" + "-------\n" + "Apt : scalar or ndarray\n" + " Integral of Ai(t) from 0 to x.\n" + "Bpt : scalar or ndarray\n" + " Integral of Bi(t) from 0 to x.\n" + "Ant : scalar or ndarray\n" + " Integral of Ai(-t) from 0 to x.\n" + "Bnt : scalar or ndarray\n" + " Integral of Bi(-t) from 0 to x.\n" + "\n" + "Notes\n" + "-----\n" + "\n" + "Wrapper for a Fortran routine created by Shanjie Zhang and Jianming\n" + "Jin [1]_.\n" + "\n" + "References\n" + "----------\n" + "\n" + ".. [1] Zhang, Shanjie and Jin, Jianming. \"Computation of Special\n" + " Functions\", John Wiley and Sons, 1996.\n" + " https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html\n" + "\n" + "Examples\n" + "--------\n" + "Compute the functions at ``x=1.``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import itairy\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> apt, bpt, ant, bnt = itairy(1.)\n" + ">>> apt, bpt, ant, bnt\n" + "(0.23631734191710949,\n" + " 0.8727691167380077,\n" + " 0.46567398346706845,\n" + " 0.3730050096342943)\n" + "\n" + "Compute the functions at several points by providing a NumPy array for `x`.\n" + "\n" + ">>> x = np.array([1., 1.5, 2.5, 5])\n" + ">>> apt, bpt, ant, bnt = itairy(x)\n" + ">>> apt, bpt, ant, bnt\n" + "(array([0.23631734, 0.28678675, 0.324638 , 0.33328759]),\n" + " array([ 0.87276912, 1.62470809, 5.20906691, 321.47831857]),\n" + " array([0.46567398, 0.72232876, 0.93187776, 0.7178822 ]),\n" + " array([ 0.37300501, 0.35038814, -0.02812939, 0.15873094]))\n" + "\n" + "Plot the functions from -10 to 10.\n" + "\n" + ">>> x = np.linspace(-10, 10, 500)\n" + ">>> apt, bpt, ant, bnt = itairy(x)\n" + ">>> fig, ax = plt.subplots(figsize=(6, 5))\n" + ">>> ax.plot(x, apt, label=r\"$\\int_0^x\\, Ai(t)\\, dt$\")\n" + ">>> ax.plot(x, bpt, ls=\"dashed\", label=r\"$\\int_0^x\\, Bi(t)\\, dt$\")\n" + ">>> ax.plot(x, ant, ls=\"dashdot\", label=r\"$\\int_0^x\\, Ai(-t)\\, dt$\")\n" + ">>> ax.plot(x, bnt, ls=\"dotted\", label=r\"$\\int_0^x\\, Bi(-t)\\, dt$\")\n" + ">>> ax.set_ylim(-2, 1.5)\n" + ">>> ax.legend(loc=\"lower right\")\n" + ">>> plt.show()") +ufunc_itairy_loops[0] = loop_i_d_dddd_As_f_ffff +ufunc_itairy_loops[1] = loop_i_d_dddd_As_d_dddd +ufunc_itairy_types[0] = NPY_FLOAT +ufunc_itairy_types[1] = NPY_FLOAT +ufunc_itairy_types[2] = NPY_FLOAT +ufunc_itairy_types[3] = NPY_FLOAT +ufunc_itairy_types[4] = NPY_FLOAT +ufunc_itairy_types[5] = NPY_DOUBLE +ufunc_itairy_types[6] = NPY_DOUBLE +ufunc_itairy_types[7] = NPY_DOUBLE +ufunc_itairy_types[8] = NPY_DOUBLE +ufunc_itairy_types[9] = NPY_DOUBLE +ufunc_itairy_ptr[2*0] = _func_itairy_wrap +ufunc_itairy_ptr[2*0+1] = ("itairy") +ufunc_itairy_ptr[2*1] = _func_itairy_wrap +ufunc_itairy_ptr[2*1+1] = ("itairy") +ufunc_itairy_data[0] = &ufunc_itairy_ptr[2*0] +ufunc_itairy_data[1] = &ufunc_itairy_ptr[2*1] +itairy = np.PyUFunc_FromFuncAndData(ufunc_itairy_loops, ufunc_itairy_data, ufunc_itairy_types, 2, 1, 4, 0, "itairy", ufunc_itairy_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_iti0k0_loops[2] +cdef void *ufunc_iti0k0_ptr[4] +cdef void *ufunc_iti0k0_data[2] +cdef char ufunc_iti0k0_types[6] +cdef char *ufunc_iti0k0_doc = ( + "iti0k0(x, out=None)\n" + "\n" + "Integrals of modified Bessel functions of order 0.\n" + "\n" + "Computes the integrals\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x I_0(t) dt \\\\\n" + " \\int_0^x K_0(t) dt.\n" + "\n" + "For more on :math:`I_0` and :math:`K_0` see `i0` and `k0`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Values at which to evaluate the integrals.\n" + "out : tuple of ndarrays, optional\n" + " Optional output arrays for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "ii0 : scalar or ndarray\n" + " The integral for `i0`\n" + "ik0 : scalar or ndarray\n" + " The integral for `k0`\n" + "\n" + "References\n" + "----------\n" + ".. [1] S. Zhang and J.M. Jin, \"Computation of Special Functions\",\n" + " Wiley 1996\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the functions at one point.\n" + "\n" + ">>> from scipy.special import iti0k0\n" + ">>> int_i, int_k = iti0k0(1.)\n" + ">>> int_i, int_k\n" + "(1.0865210970235892, 1.2425098486237771)\n" + "\n" + "Evaluate the functions at several points.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0., 1.5, 3.])\n" + ">>> int_i, int_k = iti0k0(points)\n" + ">>> int_i, int_k\n" + "(array([0. , 1.80606937, 6.16096149]),\n" + " array([0. , 1.39458246, 1.53994809]))\n" + "\n" + "Plot the functions from 0 to 5.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 5., 1000)\n" + ">>> int_i, int_k = iti0k0(x)\n" + ">>> ax.plot(x, int_i, label=r\"$\\int_0^x I_0(t)\\,dt$\")\n" + ">>> ax.plot(x, int_k, label=r\"$\\int_0^x K_0(t)\\,dt$\")\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_iti0k0_loops[0] = loop_i_d_dd_As_f_ff +ufunc_iti0k0_loops[1] = loop_i_d_dd_As_d_dd +ufunc_iti0k0_types[0] = NPY_FLOAT +ufunc_iti0k0_types[1] = NPY_FLOAT +ufunc_iti0k0_types[2] = NPY_FLOAT +ufunc_iti0k0_types[3] = NPY_DOUBLE +ufunc_iti0k0_types[4] = NPY_DOUBLE +ufunc_iti0k0_types[5] = NPY_DOUBLE +ufunc_iti0k0_ptr[2*0] = _func_it1i0k0_wrap +ufunc_iti0k0_ptr[2*0+1] = ("iti0k0") +ufunc_iti0k0_ptr[2*1] = _func_it1i0k0_wrap +ufunc_iti0k0_ptr[2*1+1] = ("iti0k0") +ufunc_iti0k0_data[0] = &ufunc_iti0k0_ptr[2*0] +ufunc_iti0k0_data[1] = &ufunc_iti0k0_ptr[2*1] +iti0k0 = np.PyUFunc_FromFuncAndData(ufunc_iti0k0_loops, ufunc_iti0k0_data, ufunc_iti0k0_types, 2, 1, 2, 0, "iti0k0", ufunc_iti0k0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_itj0y0_loops[2] +cdef void *ufunc_itj0y0_ptr[4] +cdef void *ufunc_itj0y0_data[2] +cdef char ufunc_itj0y0_types[6] +cdef char *ufunc_itj0y0_doc = ( + "itj0y0(x, out=None)\n" + "\n" + "Integrals of Bessel functions of the first kind of order 0.\n" + "\n" + "Computes the integrals\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x J_0(t) dt \\\\\n" + " \\int_0^x Y_0(t) dt.\n" + "\n" + "For more on :math:`J_0` and :math:`Y_0` see `j0` and `y0`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Values at which to evaluate the integrals.\n" + "out : tuple of ndarrays, optional\n" + " Optional output arrays for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "ij0 : scalar or ndarray\n" + " The integral of `j0`\n" + "iy0 : scalar or ndarray\n" + " The integral of `y0`\n" + "\n" + "References\n" + "----------\n" + ".. [1] S. Zhang and J.M. Jin, \"Computation of Special Functions\",\n" + " Wiley 1996\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the functions at one point.\n" + "\n" + ">>> from scipy.special import itj0y0\n" + ">>> int_j, int_y = itj0y0(1.)\n" + ">>> int_j, int_y\n" + "(0.9197304100897596, -0.637069376607422)\n" + "\n" + "Evaluate the functions at several points.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0., 1.5, 3.])\n" + ">>> int_j, int_y = itj0y0(points)\n" + ">>> int_j, int_y\n" + "(array([0. , 1.24144951, 1.38756725]),\n" + " array([ 0. , -0.51175903, 0.19765826]))\n" + "\n" + "Plot the functions from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> int_j, int_y = itj0y0(x)\n" + ">>> ax.plot(x, int_j, label=r\"$\\int_0^x J_0(t)\\,dt$\")\n" + ">>> ax.plot(x, int_y, label=r\"$\\int_0^x Y_0(t)\\,dt$\")\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_itj0y0_loops[0] = loop_i_d_dd_As_f_ff +ufunc_itj0y0_loops[1] = loop_i_d_dd_As_d_dd +ufunc_itj0y0_types[0] = NPY_FLOAT +ufunc_itj0y0_types[1] = NPY_FLOAT +ufunc_itj0y0_types[2] = NPY_FLOAT +ufunc_itj0y0_types[3] = NPY_DOUBLE +ufunc_itj0y0_types[4] = NPY_DOUBLE +ufunc_itj0y0_types[5] = NPY_DOUBLE +ufunc_itj0y0_ptr[2*0] = _func_it1j0y0_wrap +ufunc_itj0y0_ptr[2*0+1] = ("itj0y0") +ufunc_itj0y0_ptr[2*1] = _func_it1j0y0_wrap +ufunc_itj0y0_ptr[2*1+1] = ("itj0y0") +ufunc_itj0y0_data[0] = &ufunc_itj0y0_ptr[2*0] +ufunc_itj0y0_data[1] = &ufunc_itj0y0_ptr[2*1] +itj0y0 = np.PyUFunc_FromFuncAndData(ufunc_itj0y0_loops, ufunc_itj0y0_data, ufunc_itj0y0_types, 2, 1, 2, 0, "itj0y0", ufunc_itj0y0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_itmodstruve0_loops[2] +cdef void *ufunc_itmodstruve0_ptr[4] +cdef void *ufunc_itmodstruve0_data[2] +cdef char ufunc_itmodstruve0_types[4] +cdef char *ufunc_itmodstruve0_doc = ( + "itmodstruve0(x, out=None)\n" + "\n" + "Integral of the modified Struve function of order 0.\n" + "\n" + ".. math::\n" + " I = \\int_0^x L_0(t)\\,dt\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Upper limit of integration (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " The integral of :math:`L_0` from 0 to `x`.\n" + "\n" + "See Also\n" + "--------\n" + "modstruve: Modified Struve function which is integrated by this function\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for a Fortran routine created by Shanjie Zhang and Jianming\n" + "Jin [1]_.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Zhang, Shanjie and Jin, Jianming. \"Computation of Special\n" + " Functions\", John Wiley and Sons, 1996.\n" + " https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function at one point.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import itmodstruve0\n" + ">>> itmodstruve0(1.)\n" + "0.3364726286440384\n" + "\n" + "Evaluate the function at several points by supplying\n" + "an array for `x`.\n" + "\n" + ">>> points = np.array([1., 2., 3.5])\n" + ">>> itmodstruve0(points)\n" + "array([0.33647263, 1.588285 , 7.60382578])\n" + "\n" + "Plot the function from -10 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> itmodstruve0_values = itmodstruve0(x)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, itmodstruve0_values)\n" + ">>> ax.set_xlabel(r'$x$')\n" + ">>> ax.set_ylabel(r'$\\int_0^xL_0(t)\\,dt$')\n" + ">>> plt.show()") +ufunc_itmodstruve0_loops[0] = loop_d_d__As_f_f +ufunc_itmodstruve0_loops[1] = loop_d_d__As_d_d +ufunc_itmodstruve0_types[0] = NPY_FLOAT +ufunc_itmodstruve0_types[1] = NPY_FLOAT +ufunc_itmodstruve0_types[2] = NPY_DOUBLE +ufunc_itmodstruve0_types[3] = NPY_DOUBLE +ufunc_itmodstruve0_ptr[2*0] = _func_itmodstruve0_wrap +ufunc_itmodstruve0_ptr[2*0+1] = ("itmodstruve0") +ufunc_itmodstruve0_ptr[2*1] = _func_itmodstruve0_wrap +ufunc_itmodstruve0_ptr[2*1+1] = ("itmodstruve0") +ufunc_itmodstruve0_data[0] = &ufunc_itmodstruve0_ptr[2*0] +ufunc_itmodstruve0_data[1] = &ufunc_itmodstruve0_ptr[2*1] +itmodstruve0 = np.PyUFunc_FromFuncAndData(ufunc_itmodstruve0_loops, ufunc_itmodstruve0_data, ufunc_itmodstruve0_types, 2, 1, 1, 0, "itmodstruve0", ufunc_itmodstruve0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_itstruve0_loops[2] +cdef void *ufunc_itstruve0_ptr[4] +cdef void *ufunc_itstruve0_data[2] +cdef char ufunc_itstruve0_types[4] +cdef char *ufunc_itstruve0_doc = ( + "itstruve0(x, out=None)\n" + "\n" + "Integral of the Struve function of order 0.\n" + "\n" + ".. math::\n" + " I = \\int_0^x H_0(t)\\,dt\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Upper limit of integration (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "I : scalar or ndarray\n" + " The integral of :math:`H_0` from 0 to `x`.\n" + "\n" + "See Also\n" + "--------\n" + "struve: Function which is integrated by this function\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for a Fortran routine created by Shanjie Zhang and Jianming\n" + "Jin [1]_.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Zhang, Shanjie and Jin, Jianming. \"Computation of Special\n" + " Functions\", John Wiley and Sons, 1996.\n" + " https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function at one point.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import itstruve0\n" + ">>> itstruve0(1.)\n" + "0.30109042670805547\n" + "\n" + "Evaluate the function at several points by supplying\n" + "an array for `x`.\n" + "\n" + ">>> points = np.array([1., 2., 3.5])\n" + ">>> itstruve0(points)\n" + "array([0.30109043, 1.01870116, 1.96804581])\n" + "\n" + "Plot the function from -20 to 20.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-20., 20., 1000)\n" + ">>> istruve0_values = itstruve0(x)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, istruve0_values)\n" + ">>> ax.set_xlabel(r'$x$')\n" + ">>> ax.set_ylabel(r'$\\int_0^{x}H_0(t)\\,dt$')\n" + ">>> plt.show()") +ufunc_itstruve0_loops[0] = loop_d_d__As_f_f +ufunc_itstruve0_loops[1] = loop_d_d__As_d_d +ufunc_itstruve0_types[0] = NPY_FLOAT +ufunc_itstruve0_types[1] = NPY_FLOAT +ufunc_itstruve0_types[2] = NPY_DOUBLE +ufunc_itstruve0_types[3] = NPY_DOUBLE +ufunc_itstruve0_ptr[2*0] = _func_itstruve0_wrap +ufunc_itstruve0_ptr[2*0+1] = ("itstruve0") +ufunc_itstruve0_ptr[2*1] = _func_itstruve0_wrap +ufunc_itstruve0_ptr[2*1+1] = ("itstruve0") +ufunc_itstruve0_data[0] = &ufunc_itstruve0_ptr[2*0] +ufunc_itstruve0_data[1] = &ufunc_itstruve0_ptr[2*1] +itstruve0 = np.PyUFunc_FromFuncAndData(ufunc_itstruve0_loops, ufunc_itstruve0_data, ufunc_itstruve0_types, 2, 1, 1, 0, "itstruve0", ufunc_itstruve0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_iv_loops[4] +cdef void *ufunc_iv_ptr[8] +cdef void *ufunc_iv_data[4] +cdef char ufunc_iv_types[12] +cdef char *ufunc_iv_doc = ( + "iv(v, z, out=None)\n" + "\n" + "Modified Bessel function of the first kind of real order.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order. If `z` is of real type and negative, `v` must be integer\n" + " valued.\n" + "z : array_like of float or complex\n" + " Argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the modified Bessel function.\n" + "\n" + "See Also\n" + "--------\n" + "ive : This function with leading exponential behavior stripped off.\n" + "i0 : Faster version of this function for order 0.\n" + "i1 : Faster version of this function for order 1.\n" + "\n" + "Notes\n" + "-----\n" + "For real `z` and :math:`v \\in [-50, 50]`, the evaluation is carried out\n" + "using Temme's method [1]_. For larger orders, uniform asymptotic\n" + "expansions are applied.\n" + "\n" + "For complex `z` and positive `v`, the AMOS [2]_ `zbesi` routine is\n" + "called. It uses a power series for small `z`, the asymptotic expansion\n" + "for large `abs(z)`, the Miller algorithm normalized by the Wronskian\n" + "and a Neumann series for intermediate magnitudes, and the uniform\n" + "asymptotic expansions for :math:`I_v(z)` and :math:`J_v(z)` for large\n" + "orders. Backward recurrence is used to generate sequences or reduce\n" + "orders when necessary.\n" + "\n" + "The calculations above are done in the right half plane and continued\n" + "into the left half plane by the formula,\n" + "\n" + ".. math:: I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)\n" + "\n" + "(valid when the real part of `z` is positive). For negative `v`, the\n" + "formula\n" + "\n" + ".. math:: I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)\n" + "\n" + "is used, where :math:`K_v(z)` is the modified Bessel function of the\n" + "second kind, evaluated using the AMOS routine `zbesk`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Temme, Journal of Computational Physics, vol 21, 343 (1976)\n" + ".. [2] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function of order 0 at one point.\n" + "\n" + ">>> from scipy.special import iv\n" + ">>> iv(0, 1.)\n" + "1.2660658777520084\n" + "\n" + "Evaluate the function at one point for different orders.\n" + "\n" + ">>> iv(0, 1.), iv(1, 1.), iv(1.5, 1.)\n" + "(1.2660658777520084, 0.565159103992485, 0.2935253263474798)\n" + "\n" + "The evaluation for different orders can be carried out in one call by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> iv([0, 1, 1.5], 1.)\n" + "array([1.26606588, 0.5651591 , 0.29352533])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([-2., 0., 3.])\n" + ">>> iv(0, points)\n" + "array([2.2795853 , 1. , 4.88079259])\n" + "\n" + "If `z` is an array, the order parameter `v` must be broadcastable to\n" + "the correct shape if different orders shall be computed in one call.\n" + "To calculate the orders 0 and 1 for an 1D array:\n" + "\n" + ">>> orders = np.array([[0], [1]])\n" + ">>> orders.shape\n" + "(2, 1)\n" + "\n" + ">>> iv(orders, points)\n" + "array([[ 2.2795853 , 1. , 4.88079259],\n" + " [-1.59063685, 0. , 3.95337022]])\n" + "\n" + "Plot the functions of order 0 to 3 from -5 to 5.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-5., 5., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, iv(i, x), label=f'$I_{i!r}$')\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_iv_loops[0] = loop_d_dd__As_ff_f +ufunc_iv_loops[1] = loop_D_dD__As_fF_F +ufunc_iv_loops[2] = loop_d_dd__As_dd_d +ufunc_iv_loops[3] = loop_D_dD__As_dD_D +ufunc_iv_types[0] = NPY_FLOAT +ufunc_iv_types[1] = NPY_FLOAT +ufunc_iv_types[2] = NPY_FLOAT +ufunc_iv_types[3] = NPY_FLOAT +ufunc_iv_types[4] = NPY_CFLOAT +ufunc_iv_types[5] = NPY_CFLOAT +ufunc_iv_types[6] = NPY_DOUBLE +ufunc_iv_types[7] = NPY_DOUBLE +ufunc_iv_types[8] = NPY_DOUBLE +ufunc_iv_types[9] = NPY_DOUBLE +ufunc_iv_types[10] = NPY_CDOUBLE +ufunc_iv_types[11] = NPY_CDOUBLE +ufunc_iv_ptr[2*0] = _func_iv +ufunc_iv_ptr[2*0+1] = ("iv") +ufunc_iv_ptr[2*1] = _func_cbesi_wrap +ufunc_iv_ptr[2*1+1] = ("iv") +ufunc_iv_ptr[2*2] = _func_iv +ufunc_iv_ptr[2*2+1] = ("iv") +ufunc_iv_ptr[2*3] = _func_cbesi_wrap +ufunc_iv_ptr[2*3+1] = ("iv") +ufunc_iv_data[0] = &ufunc_iv_ptr[2*0] +ufunc_iv_data[1] = &ufunc_iv_ptr[2*1] +ufunc_iv_data[2] = &ufunc_iv_ptr[2*2] +ufunc_iv_data[3] = &ufunc_iv_ptr[2*3] +iv = np.PyUFunc_FromFuncAndData(ufunc_iv_loops, ufunc_iv_data, ufunc_iv_types, 4, 2, 1, 0, "iv", ufunc_iv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ive_loops[4] +cdef void *ufunc_ive_ptr[8] +cdef void *ufunc_ive_data[4] +cdef char ufunc_ive_types[12] +cdef char *ufunc_ive_doc = ( + "ive(v, z, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function of the first kind.\n" + "\n" + "Defined as::\n" + "\n" + " ive(v, z) = iv(v, z) * exp(-abs(z.real))\n" + "\n" + "For imaginary numbers without a real part, returns the unscaled\n" + "Bessel function of the first kind `iv`.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like of float\n" + " Order.\n" + "z : array_like of float or complex\n" + " Argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the exponentially scaled modified Bessel function.\n" + "\n" + "See Also\n" + "--------\n" + "iv: Modified Bessel function of the first kind\n" + "i0e: Faster implementation of this function for order 0\n" + "i1e: Faster implementation of this function for order 1\n" + "\n" + "Notes\n" + "-----\n" + "For positive `v`, the AMOS [1]_ `zbesi` routine is called. It uses a\n" + "power series for small `z`, the asymptotic expansion for large\n" + "`abs(z)`, the Miller algorithm normalized by the Wronskian and a\n" + "Neumann series for intermediate magnitudes, and the uniform asymptotic\n" + "expansions for :math:`I_v(z)` and :math:`J_v(z)` for large orders.\n" + "Backward recurrence is used to generate sequences or reduce orders when\n" + "necessary.\n" + "\n" + "The calculations above are done in the right half plane and continued\n" + "into the left half plane by the formula,\n" + "\n" + ".. math:: I_v(z \\exp(\\pm\\imath\\pi)) = \\exp(\\pm\\pi v) I_v(z)\n" + "\n" + "(valid when the real part of `z` is positive). For negative `v`, the\n" + "formula\n" + "\n" + ".. math:: I_{-v}(z) = I_v(z) + \\frac{2}{\\pi} \\sin(\\pi v) K_v(z)\n" + "\n" + "is used, where :math:`K_v(z)` is the modified Bessel function of the\n" + "second kind, evaluated using the AMOS routine `zbesk`.\n" + "\n" + "`ive` is useful for large arguments `z`: for these, `iv` easily overflows,\n" + "while `ive` does not due to the exponential scaling.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `iv` returns infinity whereas `ive` still returns\n" + "a finite number.\n" + "\n" + ">>> from scipy.special import iv, ive\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> iv(3, 1000.), ive(3, 1000.)\n" + "(inf, 0.01256056218254712)\n" + "\n" + "Evaluate the function at one point for different orders by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> ive([0, 1, 1.5], 1.)\n" + "array([0.46575961, 0.20791042, 0.10798193])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> points = np.array([-2., 0., 3.])\n" + ">>> ive(0, points)\n" + "array([0.30850832, 1. , 0.24300035])\n" + "\n" + "Evaluate the function at several points for different orders by\n" + "providing arrays for both `v` for `z`. Both arrays have to be\n" + "broadcastable to the correct shape. To calculate the orders 0, 1\n" + "and 2 for a 1D array of points:\n" + "\n" + ">>> ive([[0], [1], [2]], points)\n" + "array([[ 0.30850832, 1. , 0.24300035],\n" + " [-0.21526929, 0. , 0.19682671],\n" + " [ 0.09323903, 0. , 0.11178255]])\n" + "\n" + "Plot the functions of order 0 to 3 from -5 to 5.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-5., 5., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, ive(i, x), label=fr'$I_{i!r}(z)\\cdot e^{{-|z|}}$')\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(r\"$z$\")\n" + ">>> plt.show()") +ufunc_ive_loops[0] = loop_d_dd__As_ff_f +ufunc_ive_loops[1] = loop_D_dD__As_fF_F +ufunc_ive_loops[2] = loop_d_dd__As_dd_d +ufunc_ive_loops[3] = loop_D_dD__As_dD_D +ufunc_ive_types[0] = NPY_FLOAT +ufunc_ive_types[1] = NPY_FLOAT +ufunc_ive_types[2] = NPY_FLOAT +ufunc_ive_types[3] = NPY_FLOAT +ufunc_ive_types[4] = NPY_CFLOAT +ufunc_ive_types[5] = NPY_CFLOAT +ufunc_ive_types[6] = NPY_DOUBLE +ufunc_ive_types[7] = NPY_DOUBLE +ufunc_ive_types[8] = NPY_DOUBLE +ufunc_ive_types[9] = NPY_DOUBLE +ufunc_ive_types[10] = NPY_CDOUBLE +ufunc_ive_types[11] = NPY_CDOUBLE +ufunc_ive_ptr[2*0] = _func_cbesi_wrap_e_real +ufunc_ive_ptr[2*0+1] = ("ive") +ufunc_ive_ptr[2*1] = _func_cbesi_wrap_e +ufunc_ive_ptr[2*1+1] = ("ive") +ufunc_ive_ptr[2*2] = _func_cbesi_wrap_e_real +ufunc_ive_ptr[2*2+1] = ("ive") +ufunc_ive_ptr[2*3] = _func_cbesi_wrap_e +ufunc_ive_ptr[2*3+1] = ("ive") +ufunc_ive_data[0] = &ufunc_ive_ptr[2*0] +ufunc_ive_data[1] = &ufunc_ive_ptr[2*1] +ufunc_ive_data[2] = &ufunc_ive_ptr[2*2] +ufunc_ive_data[3] = &ufunc_ive_ptr[2*3] +ive = np.PyUFunc_FromFuncAndData(ufunc_ive_loops, ufunc_ive_data, ufunc_ive_types, 4, 2, 1, 0, "ive", ufunc_ive_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_j0_loops[2] +cdef void *ufunc_j0_ptr[4] +cdef void *ufunc_j0_data[2] +cdef char ufunc_j0_types[4] +cdef char *ufunc_j0_doc = ( + "j0(x, out=None)\n" + "\n" + "Bessel function of the first kind of order 0.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "J : scalar or ndarray\n" + " Value of the Bessel function of the first kind of order 0 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "jv : Bessel function of real order and complex argument.\n" + "spherical_jn : spherical Bessel functions.\n" + "\n" + "Notes\n" + "-----\n" + "The domain is divided into the intervals [0, 5] and (5, infinity). In the\n" + "first interval the following rational approximation is used:\n" + "\n" + ".. math::\n" + "\n" + " J_0(x) \\approx (w - r_1^2)(w - r_2^2) \\frac{P_3(w)}{Q_8(w)},\n" + "\n" + "where :math:`w = x^2` and :math:`r_1`, :math:`r_2` are the zeros of\n" + ":math:`J_0`, and :math:`P_3` and :math:`Q_8` are polynomials of degrees 3\n" + "and 8, respectively.\n" + "\n" + "In the second interval, the Hankel asymptotic expansion is employed with\n" + "two rational functions of degree 6/6 and 7/7.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `j0`.\n" + "It should not be confused with the spherical Bessel functions (see\n" + "`spherical_jn`).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import j0\n" + ">>> j0(1.)\n" + "0.7651976865579665\n" + "\n" + "Calculate the function at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> j0(np.array([-2., 0., 4.]))\n" + "array([ 0.22389078, 1. , -0.39714981])\n" + "\n" + "Plot the function from -20 to 20.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-20., 20., 1000)\n" + ">>> y = j0(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_j0_loops[0] = loop_d_d__As_f_f +ufunc_j0_loops[1] = loop_d_d__As_d_d +ufunc_j0_types[0] = NPY_FLOAT +ufunc_j0_types[1] = NPY_FLOAT +ufunc_j0_types[2] = NPY_DOUBLE +ufunc_j0_types[3] = NPY_DOUBLE +ufunc_j0_ptr[2*0] = _func_j0 +ufunc_j0_ptr[2*0+1] = ("j0") +ufunc_j0_ptr[2*1] = _func_j0 +ufunc_j0_ptr[2*1+1] = ("j0") +ufunc_j0_data[0] = &ufunc_j0_ptr[2*0] +ufunc_j0_data[1] = &ufunc_j0_ptr[2*1] +j0 = np.PyUFunc_FromFuncAndData(ufunc_j0_loops, ufunc_j0_data, ufunc_j0_types, 2, 1, 1, 0, "j0", ufunc_j0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_j1_loops[2] +cdef void *ufunc_j1_ptr[4] +cdef void *ufunc_j1_data[2] +cdef char ufunc_j1_types[4] +cdef char *ufunc_j1_doc = ( + "j1(x, out=None)\n" + "\n" + "Bessel function of the first kind of order 1.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "J : scalar or ndarray\n" + " Value of the Bessel function of the first kind of order 1 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "jv: Bessel function of the first kind\n" + "spherical_jn: spherical Bessel functions.\n" + "\n" + "Notes\n" + "-----\n" + "The domain is divided into the intervals [0, 8] and (8, infinity). In the\n" + "first interval a 24 term Chebyshev expansion is used. In the second, the\n" + "asymptotic trigonometric representation is employed using two rational\n" + "functions of degree 5/5.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `j1`.\n" + "It should not be confused with the spherical Bessel functions (see\n" + "`spherical_jn`).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import j1\n" + ">>> j1(1.)\n" + "0.44005058574493355\n" + "\n" + "Calculate the function at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> j1(np.array([-2., 0., 4.]))\n" + "array([-0.57672481, 0. , -0.06604333])\n" + "\n" + "Plot the function from -20 to 20.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-20., 20., 1000)\n" + ">>> y = j1(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_j1_loops[0] = loop_d_d__As_f_f +ufunc_j1_loops[1] = loop_d_d__As_d_d +ufunc_j1_types[0] = NPY_FLOAT +ufunc_j1_types[1] = NPY_FLOAT +ufunc_j1_types[2] = NPY_DOUBLE +ufunc_j1_types[3] = NPY_DOUBLE +ufunc_j1_ptr[2*0] = _func_j1 +ufunc_j1_ptr[2*0+1] = ("j1") +ufunc_j1_ptr[2*1] = _func_j1 +ufunc_j1_ptr[2*1+1] = ("j1") +ufunc_j1_data[0] = &ufunc_j1_ptr[2*0] +ufunc_j1_data[1] = &ufunc_j1_ptr[2*1] +j1 = np.PyUFunc_FromFuncAndData(ufunc_j1_loops, ufunc_j1_data, ufunc_j1_types, 2, 1, 1, 0, "j1", ufunc_j1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_jv_loops[4] +cdef void *ufunc_jv_ptr[8] +cdef void *ufunc_jv_data[4] +cdef char ufunc_jv_types[12] +cdef char *ufunc_jv_doc = ( + "jv(v, z, out=None)\n" + "\n" + "Bessel function of the first kind of real order and complex argument.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "J : scalar or ndarray\n" + " Value of the Bessel function, :math:`J_v(z)`.\n" + "\n" + "See Also\n" + "--------\n" + "jve : :math:`J_v` with leading exponential behavior stripped off.\n" + "spherical_jn : spherical Bessel functions.\n" + "j0 : faster version of this function for order 0.\n" + "j1 : faster version of this function for order 1.\n" + "\n" + "Notes\n" + "-----\n" + "For positive `v` values, the computation is carried out using the AMOS\n" + "[1]_ `zbesj` routine, which exploits the connection to the modified\n" + "Bessel function :math:`I_v`,\n" + "\n" + ".. math::\n" + " J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)\n" + "\n" + " J_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)\n" + "\n" + "For negative `v` values the formula,\n" + "\n" + ".. math:: J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)\n" + "\n" + "is used, where :math:`Y_v(z)` is the Bessel function of the second\n" + "kind, computed using the AMOS routine `zbesy`. Note that the second\n" + "term is exactly zero for integer `v`; to improve accuracy the second\n" + "term is explicitly omitted for `v` values such that `v = floor(v)`.\n" + "\n" + "Not to be confused with the spherical Bessel functions (see `spherical_jn`).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function of order 0 at one point.\n" + "\n" + ">>> from scipy.special import jv\n" + ">>> jv(0, 1.)\n" + "0.7651976865579666\n" + "\n" + "Evaluate the function at one point for different orders.\n" + "\n" + ">>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.)\n" + "(0.7651976865579666, 0.44005058574493355, 0.24029783912342725)\n" + "\n" + "The evaluation for different orders can be carried out in one call by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> jv([0, 1, 1.5], 1.)\n" + "array([0.76519769, 0.44005059, 0.24029784])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([-2., 0., 3.])\n" + ">>> jv(0, points)\n" + "array([ 0.22389078, 1. , -0.26005195])\n" + "\n" + "If `z` is an array, the order parameter `v` must be broadcastable to\n" + "the correct shape if different orders shall be computed in one call.\n" + "To calculate the orders 0 and 1 for an 1D array:\n" + "\n" + ">>> orders = np.array([[0], [1]])\n" + ">>> orders.shape\n" + "(2, 1)\n" + "\n" + ">>> jv(orders, points)\n" + "array([[ 0.22389078, 1. , -0.26005195],\n" + " [-0.57672481, 0. , 0.33905896]])\n" + "\n" + "Plot the functions of order 0 to 3 from -10 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, jv(i, x), label=f'$J_{i!r}$')\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_jv_loops[0] = loop_d_dd__As_ff_f +ufunc_jv_loops[1] = loop_D_dD__As_fF_F +ufunc_jv_loops[2] = loop_d_dd__As_dd_d +ufunc_jv_loops[3] = loop_D_dD__As_dD_D +ufunc_jv_types[0] = NPY_FLOAT +ufunc_jv_types[1] = NPY_FLOAT +ufunc_jv_types[2] = NPY_FLOAT +ufunc_jv_types[3] = NPY_FLOAT +ufunc_jv_types[4] = NPY_CFLOAT +ufunc_jv_types[5] = NPY_CFLOAT +ufunc_jv_types[6] = NPY_DOUBLE +ufunc_jv_types[7] = NPY_DOUBLE +ufunc_jv_types[8] = NPY_DOUBLE +ufunc_jv_types[9] = NPY_DOUBLE +ufunc_jv_types[10] = NPY_CDOUBLE +ufunc_jv_types[11] = NPY_CDOUBLE +ufunc_jv_ptr[2*0] = _func_cbesj_wrap_real +ufunc_jv_ptr[2*0+1] = ("jv") +ufunc_jv_ptr[2*1] = _func_cbesj_wrap +ufunc_jv_ptr[2*1+1] = ("jv") +ufunc_jv_ptr[2*2] = _func_cbesj_wrap_real +ufunc_jv_ptr[2*2+1] = ("jv") +ufunc_jv_ptr[2*3] = _func_cbesj_wrap +ufunc_jv_ptr[2*3+1] = ("jv") +ufunc_jv_data[0] = &ufunc_jv_ptr[2*0] +ufunc_jv_data[1] = &ufunc_jv_ptr[2*1] +ufunc_jv_data[2] = &ufunc_jv_ptr[2*2] +ufunc_jv_data[3] = &ufunc_jv_ptr[2*3] +jv = np.PyUFunc_FromFuncAndData(ufunc_jv_loops, ufunc_jv_data, ufunc_jv_types, 4, 2, 1, 0, "jv", ufunc_jv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_jve_loops[4] +cdef void *ufunc_jve_ptr[8] +cdef void *ufunc_jve_data[4] +cdef char ufunc_jve_types[12] +cdef char *ufunc_jve_doc = ( + "jve(v, z, out=None)\n" + "\n" + "Exponentially scaled Bessel function of the first kind of order `v`.\n" + "\n" + "Defined as::\n" + "\n" + " jve(v, z) = jv(v, z) * exp(-abs(z.imag))\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "J : scalar or ndarray\n" + " Value of the exponentially scaled Bessel function.\n" + "\n" + "See Also\n" + "--------\n" + "jv: Unscaled Bessel function of the first kind\n" + "\n" + "Notes\n" + "-----\n" + "For positive `v` values, the computation is carried out using the AMOS\n" + "[1]_ `zbesj` routine, which exploits the connection to the modified\n" + "Bessel function :math:`I_v`,\n" + "\n" + ".. math::\n" + " J_v(z) = \\exp(v\\pi\\imath/2) I_v(-\\imath z)\\qquad (\\Im z > 0)\n" + "\n" + " J_v(z) = \\exp(-v\\pi\\imath/2) I_v(\\imath z)\\qquad (\\Im z < 0)\n" + "\n" + "For negative `v` values the formula,\n" + "\n" + ".. math:: J_{-v}(z) = J_v(z) \\cos(\\pi v) - Y_v(z) \\sin(\\pi v)\n" + "\n" + "is used, where :math:`Y_v(z)` is the Bessel function of the second\n" + "kind, computed using the AMOS routine `zbesy`. Note that the second\n" + "term is exactly zero for integer `v`; to improve accuracy the second\n" + "term is explicitly omitted for `v` values such that `v = floor(v)`.\n" + "\n" + "Exponentially scaled Bessel functions are useful for large arguments `z`:\n" + "for these, the unscaled Bessel functions can easily under-or overflow.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Compare the output of `jv` and `jve` for large complex arguments for `z`\n" + "by computing their values for order ``v=1`` at ``z=1000j``. We see that\n" + "`jv` overflows but `jve` returns a finite number:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import jv, jve\n" + ">>> v = 1\n" + ">>> z = 1000j\n" + ">>> jv(v, z), jve(v, z)\n" + "((inf+infj), (7.721967686709077e-19+0.012610930256928629j))\n" + "\n" + "For real arguments for `z`, `jve` returns the same as `jv`.\n" + "\n" + ">>> v, z = 1, 1000\n" + ">>> jv(v, z), jve(v, z)\n" + "(0.004728311907089523, 0.004728311907089523)\n" + "\n" + "The function can be evaluated for several orders at the same time by\n" + "providing a list or NumPy array for `v`:\n" + "\n" + ">>> jve([1, 3, 5], 1j)\n" + "array([1.27304208e-17+2.07910415e-01j, -4.99352086e-19-8.15530777e-03j,\n" + " 6.11480940e-21+9.98657141e-05j])\n" + "\n" + "In the same way, the function can be evaluated at several points in one\n" + "call by providing a list or NumPy array for `z`:\n" + "\n" + ">>> jve(1, np.array([1j, 2j, 3j]))\n" + "array([1.27308412e-17+0.20791042j, 1.31814423e-17+0.21526929j,\n" + " 1.20521602e-17+0.19682671j])\n" + "\n" + "It is also possible to evaluate several orders at several points\n" + "at the same time by providing arrays for `v` and `z` with\n" + "compatible shapes for broadcasting. Compute `jve` for two different orders\n" + "`v` and three points `z` resulting in a 2x3 array.\n" + "\n" + ">>> v = np.array([[1], [3]])\n" + ">>> z = np.array([1j, 2j, 3j])\n" + ">>> v.shape, z.shape\n" + "((2, 1), (3,))\n" + "\n" + ">>> jve(v, z)\n" + "array([[1.27304208e-17+0.20791042j, 1.31810070e-17+0.21526929j,\n" + " 1.20517622e-17+0.19682671j],\n" + " [-4.99352086e-19-0.00815531j, -1.76289571e-18-0.02879122j,\n" + " -2.92578784e-18-0.04778332j]])") +ufunc_jve_loops[0] = loop_d_dd__As_ff_f +ufunc_jve_loops[1] = loop_D_dD__As_fF_F +ufunc_jve_loops[2] = loop_d_dd__As_dd_d +ufunc_jve_loops[3] = loop_D_dD__As_dD_D +ufunc_jve_types[0] = NPY_FLOAT +ufunc_jve_types[1] = NPY_FLOAT +ufunc_jve_types[2] = NPY_FLOAT +ufunc_jve_types[3] = NPY_FLOAT +ufunc_jve_types[4] = NPY_CFLOAT +ufunc_jve_types[5] = NPY_CFLOAT +ufunc_jve_types[6] = NPY_DOUBLE +ufunc_jve_types[7] = NPY_DOUBLE +ufunc_jve_types[8] = NPY_DOUBLE +ufunc_jve_types[9] = NPY_DOUBLE +ufunc_jve_types[10] = NPY_CDOUBLE +ufunc_jve_types[11] = NPY_CDOUBLE +ufunc_jve_ptr[2*0] = _func_cbesj_wrap_e_real +ufunc_jve_ptr[2*0+1] = ("jve") +ufunc_jve_ptr[2*1] = _func_cbesj_wrap_e +ufunc_jve_ptr[2*1+1] = ("jve") +ufunc_jve_ptr[2*2] = _func_cbesj_wrap_e_real +ufunc_jve_ptr[2*2+1] = ("jve") +ufunc_jve_ptr[2*3] = _func_cbesj_wrap_e +ufunc_jve_ptr[2*3+1] = ("jve") +ufunc_jve_data[0] = &ufunc_jve_ptr[2*0] +ufunc_jve_data[1] = &ufunc_jve_ptr[2*1] +ufunc_jve_data[2] = &ufunc_jve_ptr[2*2] +ufunc_jve_data[3] = &ufunc_jve_ptr[2*3] +jve = np.PyUFunc_FromFuncAndData(ufunc_jve_loops, ufunc_jve_data, ufunc_jve_types, 4, 2, 1, 0, "jve", ufunc_jve_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_k0_loops[2] +cdef void *ufunc_k0_ptr[4] +cdef void *ufunc_k0_data[2] +cdef char ufunc_k0_types[4] +cdef char *ufunc_k0_doc = ( + "k0(x, out=None)\n" + "\n" + "Modified Bessel function of the second kind of order 0, :math:`K_0`.\n" + "\n" + "This function is also sometimes referred to as the modified Bessel\n" + "function of the third kind of order 0.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the modified Bessel function :math:`K_0` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "kv: Modified Bessel function of the second kind of any order\n" + "k0e: Exponentially scaled modified Bessel function of the second kind\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 2] and (2, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `k0`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import k0\n" + ">>> k0(1.)\n" + "0.42102443824070823\n" + "\n" + "Calculate the function at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> k0(np.array([0.5, 2., 3.]))\n" + "array([0.92441907, 0.11389387, 0.0347395 ])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = k0(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_k0_loops[0] = loop_d_d__As_f_f +ufunc_k0_loops[1] = loop_d_d__As_d_d +ufunc_k0_types[0] = NPY_FLOAT +ufunc_k0_types[1] = NPY_FLOAT +ufunc_k0_types[2] = NPY_DOUBLE +ufunc_k0_types[3] = NPY_DOUBLE +ufunc_k0_ptr[2*0] = _func_k0 +ufunc_k0_ptr[2*0+1] = ("k0") +ufunc_k0_ptr[2*1] = _func_k0 +ufunc_k0_ptr[2*1+1] = ("k0") +ufunc_k0_data[0] = &ufunc_k0_ptr[2*0] +ufunc_k0_data[1] = &ufunc_k0_ptr[2*1] +k0 = np.PyUFunc_FromFuncAndData(ufunc_k0_loops, ufunc_k0_data, ufunc_k0_types, 2, 1, 1, 0, "k0", ufunc_k0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_k0e_loops[2] +cdef void *ufunc_k0e_ptr[4] +cdef void *ufunc_k0e_data[2] +cdef char ufunc_k0e_types[4] +cdef char *ufunc_k0e_doc = ( + "k0e(x, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function K of order 0\n" + "\n" + "Defined as::\n" + "\n" + " k0e(x) = exp(x) * k0(x).\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the exponentially scaled modified Bessel function K of order\n" + " 0 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "kv: Modified Bessel function of the second kind of any order\n" + "k0: Modified Bessel function of the second kind\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 2] and (2, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `k0e`. `k0e` is\n" + "useful for large arguments: for these, `k0` easily underflows.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `k0` returns 0 whereas `k0e` still returns a\n" + "useful finite number:\n" + "\n" + ">>> from scipy.special import k0, k0e\n" + ">>> k0(1000.), k0e(1000)\n" + "(0., 0.03962832160075422)\n" + "\n" + "Calculate the function at several points by providing a NumPy array or\n" + "list for `x`:\n" + "\n" + ">>> import numpy as np\n" + ">>> k0e(np.array([0.5, 2., 3.]))\n" + "array([1.52410939, 0.84156822, 0.6977616 ])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = k0e(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_k0e_loops[0] = loop_d_d__As_f_f +ufunc_k0e_loops[1] = loop_d_d__As_d_d +ufunc_k0e_types[0] = NPY_FLOAT +ufunc_k0e_types[1] = NPY_FLOAT +ufunc_k0e_types[2] = NPY_DOUBLE +ufunc_k0e_types[3] = NPY_DOUBLE +ufunc_k0e_ptr[2*0] = _func_k0e +ufunc_k0e_ptr[2*0+1] = ("k0e") +ufunc_k0e_ptr[2*1] = _func_k0e +ufunc_k0e_ptr[2*1+1] = ("k0e") +ufunc_k0e_data[0] = &ufunc_k0e_ptr[2*0] +ufunc_k0e_data[1] = &ufunc_k0e_ptr[2*1] +k0e = np.PyUFunc_FromFuncAndData(ufunc_k0e_loops, ufunc_k0e_data, ufunc_k0e_types, 2, 1, 1, 0, "k0e", ufunc_k0e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_k1_loops[2] +cdef void *ufunc_k1_ptr[4] +cdef void *ufunc_k1_data[2] +cdef char ufunc_k1_types[4] +cdef char *ufunc_k1_doc = ( + "k1(x, out=None)\n" + "\n" + "Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the modified Bessel function K of order 1 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "kv: Modified Bessel function of the second kind of any order\n" + "k1e: Exponentially scaled modified Bessel function K of order 1\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 2] and (2, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `k1`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import k1\n" + ">>> k1(1.)\n" + "0.6019072301972346\n" + "\n" + "Calculate the function at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> k1(np.array([0.5, 2., 3.]))\n" + "array([1.65644112, 0.13986588, 0.04015643])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = k1(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_k1_loops[0] = loop_d_d__As_f_f +ufunc_k1_loops[1] = loop_d_d__As_d_d +ufunc_k1_types[0] = NPY_FLOAT +ufunc_k1_types[1] = NPY_FLOAT +ufunc_k1_types[2] = NPY_DOUBLE +ufunc_k1_types[3] = NPY_DOUBLE +ufunc_k1_ptr[2*0] = _func_k1 +ufunc_k1_ptr[2*0+1] = ("k1") +ufunc_k1_ptr[2*1] = _func_k1 +ufunc_k1_ptr[2*1+1] = ("k1") +ufunc_k1_data[0] = &ufunc_k1_ptr[2*0] +ufunc_k1_data[1] = &ufunc_k1_ptr[2*1] +k1 = np.PyUFunc_FromFuncAndData(ufunc_k1_loops, ufunc_k1_data, ufunc_k1_types, 2, 1, 1, 0, "k1", ufunc_k1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_k1e_loops[2] +cdef void *ufunc_k1e_ptr[4] +cdef void *ufunc_k1e_data[2] +cdef char ufunc_k1e_types[4] +cdef char *ufunc_k1e_doc = ( + "k1e(x, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function K of order 1\n" + "\n" + "Defined as::\n" + "\n" + " k1e(x) = exp(x) * k1(x)\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float)\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "K : scalar or ndarray\n" + " Value of the exponentially scaled modified Bessel function K of order\n" + " 1 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "kv: Modified Bessel function of the second kind of any order\n" + "k1: Modified Bessel function of the second kind of order 1\n" + "\n" + "Notes\n" + "-----\n" + "The range is partitioned into the two intervals [0, 2] and (2, infinity).\n" + "Chebyshev polynomial expansions are employed in each interval.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `k1e`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `k1` returns 0 whereas `k1e` still returns a\n" + "useful floating point number.\n" + "\n" + ">>> from scipy.special import k1, k1e\n" + ">>> k1(1000.), k1e(1000.)\n" + "(0., 0.03964813081296021)\n" + "\n" + "Calculate the function at several points by providing a NumPy array or\n" + "list for `x`:\n" + "\n" + ">>> import numpy as np\n" + ">>> k1e(np.array([0.5, 2., 3.]))\n" + "array([2.73100971, 1.03347685, 0.80656348])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = k1e(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_k1e_loops[0] = loop_d_d__As_f_f +ufunc_k1e_loops[1] = loop_d_d__As_d_d +ufunc_k1e_types[0] = NPY_FLOAT +ufunc_k1e_types[1] = NPY_FLOAT +ufunc_k1e_types[2] = NPY_DOUBLE +ufunc_k1e_types[3] = NPY_DOUBLE +ufunc_k1e_ptr[2*0] = _func_k1e +ufunc_k1e_ptr[2*0+1] = ("k1e") +ufunc_k1e_ptr[2*1] = _func_k1e +ufunc_k1e_ptr[2*1+1] = ("k1e") +ufunc_k1e_data[0] = &ufunc_k1e_ptr[2*0] +ufunc_k1e_data[1] = &ufunc_k1e_ptr[2*1] +k1e = np.PyUFunc_FromFuncAndData(ufunc_k1e_loops, ufunc_k1e_data, ufunc_k1e_types, 2, 1, 1, 0, "k1e", ufunc_k1e_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kei_loops[2] +cdef void *ufunc_kei_ptr[4] +cdef void *ufunc_kei_data[2] +cdef char ufunc_kei_types[4] +cdef char *ufunc_kei_doc = ( + "kei(x, out=None)\n" + "\n" + "Kelvin function kei.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{kei}(x) = \\Im[K_0(x e^{\\pi i / 4})]\n" + "\n" + "where :math:`K_0` is the modified Bessel function of the second\n" + "kind (see `kv`). See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Kelvin function.\n" + "\n" + "See Also\n" + "--------\n" + "ker : the corresponding real part\n" + "keip : the derivative of kei\n" + "kv : modified Bessel function of the second kind\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10.61\n" + "\n" + "Examples\n" + "--------\n" + "It can be expressed using the modified Bessel function of the\n" + "second kind.\n" + "\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + ">>> x = np.array([1.0, 2.0, 3.0, 4.0])\n" + ">>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).imag\n" + "array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])\n" + ">>> sc.kei(x)\n" + "array([-0.49499464, -0.20240007, -0.05112188, 0.0021984 ])") +ufunc_kei_loops[0] = loop_d_d__As_f_f +ufunc_kei_loops[1] = loop_d_d__As_d_d +ufunc_kei_types[0] = NPY_FLOAT +ufunc_kei_types[1] = NPY_FLOAT +ufunc_kei_types[2] = NPY_DOUBLE +ufunc_kei_types[3] = NPY_DOUBLE +ufunc_kei_ptr[2*0] = _func_kei_wrap +ufunc_kei_ptr[2*0+1] = ("kei") +ufunc_kei_ptr[2*1] = _func_kei_wrap +ufunc_kei_ptr[2*1+1] = ("kei") +ufunc_kei_data[0] = &ufunc_kei_ptr[2*0] +ufunc_kei_data[1] = &ufunc_kei_ptr[2*1] +kei = np.PyUFunc_FromFuncAndData(ufunc_kei_loops, ufunc_kei_data, ufunc_kei_types, 2, 1, 1, 0, "kei", ufunc_kei_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_keip_loops[2] +cdef void *ufunc_keip_ptr[4] +cdef void *ufunc_keip_data[2] +cdef char ufunc_keip_types[4] +cdef char *ufunc_keip_doc = ( + "keip(x, out=None)\n" + "\n" + "Derivative of the Kelvin function kei.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The values of the derivative of kei.\n" + "\n" + "See Also\n" + "--------\n" + "kei\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10#PT5") +ufunc_keip_loops[0] = loop_d_d__As_f_f +ufunc_keip_loops[1] = loop_d_d__As_d_d +ufunc_keip_types[0] = NPY_FLOAT +ufunc_keip_types[1] = NPY_FLOAT +ufunc_keip_types[2] = NPY_DOUBLE +ufunc_keip_types[3] = NPY_DOUBLE +ufunc_keip_ptr[2*0] = _func_keip_wrap +ufunc_keip_ptr[2*0+1] = ("keip") +ufunc_keip_ptr[2*1] = _func_keip_wrap +ufunc_keip_ptr[2*1+1] = ("keip") +ufunc_keip_data[0] = &ufunc_keip_ptr[2*0] +ufunc_keip_data[1] = &ufunc_keip_ptr[2*1] +keip = np.PyUFunc_FromFuncAndData(ufunc_keip_loops, ufunc_keip_data, ufunc_keip_types, 2, 1, 1, 0, "keip", ufunc_keip_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kelvin_loops[2] +cdef void *ufunc_kelvin_ptr[4] +cdef void *ufunc_kelvin_data[2] +cdef char ufunc_kelvin_types[10] +cdef char *ufunc_kelvin_doc = ( + "kelvin(x, out=None)\n" + "\n" + "Kelvin functions as complex numbers\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function values\n" + "\n" + "Returns\n" + "-------\n" + "Be, Ke, Bep, Kep : 4-tuple of scalar or ndarray\n" + " The tuple (Be, Ke, Bep, Kep) contains complex numbers\n" + " representing the real and imaginary Kelvin functions and their\n" + " derivatives evaluated at `x`. For example, kelvin(x)[0].real =\n" + " ber x and kelvin(x)[0].imag = bei x with similar relationships\n" + " for ker and kei.") +ufunc_kelvin_loops[0] = loop_i_d_DDDD_As_f_FFFF +ufunc_kelvin_loops[1] = loop_i_d_DDDD_As_d_DDDD +ufunc_kelvin_types[0] = NPY_FLOAT +ufunc_kelvin_types[1] = NPY_CFLOAT +ufunc_kelvin_types[2] = NPY_CFLOAT +ufunc_kelvin_types[3] = NPY_CFLOAT +ufunc_kelvin_types[4] = NPY_CFLOAT +ufunc_kelvin_types[5] = NPY_DOUBLE +ufunc_kelvin_types[6] = NPY_CDOUBLE +ufunc_kelvin_types[7] = NPY_CDOUBLE +ufunc_kelvin_types[8] = NPY_CDOUBLE +ufunc_kelvin_types[9] = NPY_CDOUBLE +ufunc_kelvin_ptr[2*0] = _func_kelvin_wrap +ufunc_kelvin_ptr[2*0+1] = ("kelvin") +ufunc_kelvin_ptr[2*1] = _func_kelvin_wrap +ufunc_kelvin_ptr[2*1+1] = ("kelvin") +ufunc_kelvin_data[0] = &ufunc_kelvin_ptr[2*0] +ufunc_kelvin_data[1] = &ufunc_kelvin_ptr[2*1] +kelvin = np.PyUFunc_FromFuncAndData(ufunc_kelvin_loops, ufunc_kelvin_data, ufunc_kelvin_types, 2, 1, 4, 0, "kelvin", ufunc_kelvin_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ker_loops[2] +cdef void *ufunc_ker_ptr[4] +cdef void *ufunc_ker_data[2] +cdef char ufunc_ker_types[4] +cdef char *ufunc_ker_doc = ( + "ker(x, out=None)\n" + "\n" + "Kelvin function ker.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{ker}(x) = \\Re[K_0(x e^{\\pi i / 4})]\n" + "\n" + "Where :math:`K_0` is the modified Bessel function of the second\n" + "kind (see `kv`). See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Kelvin function.\n" + "\n" + "See Also\n" + "--------\n" + "kei : the corresponding imaginary part\n" + "kerp : the derivative of ker\n" + "kv : modified Bessel function of the second kind\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10.61\n" + "\n" + "Examples\n" + "--------\n" + "It can be expressed using the modified Bessel function of the\n" + "second kind.\n" + "\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + ">>> x = np.array([1.0, 2.0, 3.0, 4.0])\n" + ">>> sc.kv(0, x * np.exp(np.pi * 1j / 4)).real\n" + "array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])\n" + ">>> sc.ker(x)\n" + "array([ 0.28670621, -0.04166451, -0.06702923, -0.03617885])") +ufunc_ker_loops[0] = loop_d_d__As_f_f +ufunc_ker_loops[1] = loop_d_d__As_d_d +ufunc_ker_types[0] = NPY_FLOAT +ufunc_ker_types[1] = NPY_FLOAT +ufunc_ker_types[2] = NPY_DOUBLE +ufunc_ker_types[3] = NPY_DOUBLE +ufunc_ker_ptr[2*0] = _func_ker_wrap +ufunc_ker_ptr[2*0+1] = ("ker") +ufunc_ker_ptr[2*1] = _func_ker_wrap +ufunc_ker_ptr[2*1+1] = ("ker") +ufunc_ker_data[0] = &ufunc_ker_ptr[2*0] +ufunc_ker_data[1] = &ufunc_ker_ptr[2*1] +ker = np.PyUFunc_FromFuncAndData(ufunc_ker_loops, ufunc_ker_data, ufunc_ker_types, 2, 1, 1, 0, "ker", ufunc_ker_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kerp_loops[2] +cdef void *ufunc_kerp_ptr[4] +cdef void *ufunc_kerp_data[2] +cdef char ufunc_kerp_types[4] +cdef char *ufunc_kerp_doc = ( + "kerp(x, out=None)\n" + "\n" + "Derivative of the Kelvin function ker.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the derivative of ker.\n" + "\n" + "See Also\n" + "--------\n" + "ker\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST, Digital Library of Mathematical Functions,\n" + " https://dlmf.nist.gov/10#PT5") +ufunc_kerp_loops[0] = loop_d_d__As_f_f +ufunc_kerp_loops[1] = loop_d_d__As_d_d +ufunc_kerp_types[0] = NPY_FLOAT +ufunc_kerp_types[1] = NPY_FLOAT +ufunc_kerp_types[2] = NPY_DOUBLE +ufunc_kerp_types[3] = NPY_DOUBLE +ufunc_kerp_ptr[2*0] = _func_kerp_wrap +ufunc_kerp_ptr[2*0+1] = ("kerp") +ufunc_kerp_ptr[2*1] = _func_kerp_wrap +ufunc_kerp_ptr[2*1+1] = ("kerp") +ufunc_kerp_data[0] = &ufunc_kerp_ptr[2*0] +ufunc_kerp_data[1] = &ufunc_kerp_ptr[2*1] +kerp = np.PyUFunc_FromFuncAndData(ufunc_kerp_loops, ufunc_kerp_data, ufunc_kerp_types, 2, 1, 1, 0, "kerp", ufunc_kerp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kl_div_loops[2] +cdef void *ufunc_kl_div_ptr[4] +cdef void *ufunc_kl_div_data[2] +cdef char ufunc_kl_div_types[6] +cdef char *ufunc_kl_div_doc = ( + "kl_div(x, y, out=None)\n" + "\n" + "Elementwise function for computing Kullback-Leibler divergence.\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{kl\\_div}(x, y) =\n" + " \\begin{cases}\n" + " x \\log(x / y) - x + y & x > 0, y > 0 \\\\\n" + " y & x = 0, y \\ge 0 \\\\\n" + " \\infty & \\text{otherwise}\n" + " \\end{cases}\n" + "\n" + "Parameters\n" + "----------\n" + "x, y : array_like\n" + " Real arguments\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Kullback-Liebler divergence.\n" + "\n" + "See Also\n" + "--------\n" + "entr, rel_entr, scipy.stats.entropy\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 0.15.0\n" + "\n" + "This function is non-negative and is jointly convex in `x` and `y`.\n" + "\n" + "The origin of this function is in convex programming; see [1]_ for\n" + "details. This is why the function contains the extra :math:`-x\n" + "+ y` terms over what might be expected from the Kullback-Leibler\n" + "divergence. For a version of the function without the extra terms,\n" + "see `rel_entr`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.\n" + " Cambridge University Press, 2004.\n" + " :doi:`https://doi.org/10.1017/CBO9780511804441`") +ufunc_kl_div_loops[0] = loop_d_dd__As_ff_f +ufunc_kl_div_loops[1] = loop_d_dd__As_dd_d +ufunc_kl_div_types[0] = NPY_FLOAT +ufunc_kl_div_types[1] = NPY_FLOAT +ufunc_kl_div_types[2] = NPY_FLOAT +ufunc_kl_div_types[3] = NPY_DOUBLE +ufunc_kl_div_types[4] = NPY_DOUBLE +ufunc_kl_div_types[5] = NPY_DOUBLE +ufunc_kl_div_ptr[2*0] = _func_kl_div +ufunc_kl_div_ptr[2*0+1] = ("kl_div") +ufunc_kl_div_ptr[2*1] = _func_kl_div +ufunc_kl_div_ptr[2*1+1] = ("kl_div") +ufunc_kl_div_data[0] = &ufunc_kl_div_ptr[2*0] +ufunc_kl_div_data[1] = &ufunc_kl_div_ptr[2*1] +kl_div = np.PyUFunc_FromFuncAndData(ufunc_kl_div_loops, ufunc_kl_div_data, ufunc_kl_div_types, 2, 2, 1, 0, "kl_div", ufunc_kl_div_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kn_loops[3] +cdef void *ufunc_kn_ptr[6] +cdef void *ufunc_kn_data[3] +cdef char ufunc_kn_types[9] +cdef char *ufunc_kn_doc = ( + "kn(n, x, out=None)\n" + "\n" + "Modified Bessel function of the second kind of integer order `n`\n" + "\n" + "Returns the modified Bessel function of the second kind for integer order\n" + "`n` at real `z`.\n" + "\n" + "These are also sometimes called functions of the third kind, Basset\n" + "functions, or Macdonald functions.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like of int\n" + " Order of Bessel functions (floats will truncate with a warning)\n" + "x : array_like of float\n" + " Argument at which to evaluate the Bessel functions\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the Modified Bessel function of the second kind,\n" + " :math:`K_n(x)`.\n" + "\n" + "See Also\n" + "--------\n" + "kv : Same function, but accepts real order and complex argument\n" + "kvp : Derivative of this function\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the\n" + "algorithm used, see [2]_ and the references therein.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + ".. [2] Donald E. Amos, \"Algorithm 644: A portable package for Bessel\n" + " functions of a complex argument and nonnegative order\", ACM\n" + " TOMS Vol. 12 Issue 3, Sept. 1986, p. 265\n" + "\n" + "Examples\n" + "--------\n" + "Plot the function of several orders for real input:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import kn\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(0, 5, 1000)\n" + ">>> for N in range(6):\n" + "... plt.plot(x, kn(N, x), label='$K_{}(x)$'.format(N))\n" + ">>> plt.ylim(0, 10)\n" + ">>> plt.legend()\n" + ">>> plt.title(r'Modified Bessel function of the second kind $K_n(x)$')\n" + ">>> plt.show()\n" + "\n" + "Calculate for a single value at multiple orders:\n" + "\n" + ">>> kn([4, 5, 6], 1)\n" + "array([ 44.23241585, 360.9605896 , 3653.83831186])") +ufunc_kn_loops[0] = loop_d_id__As_ld_d +ufunc_kn_loops[1] = loop_d_dd__As_ff_f +ufunc_kn_loops[2] = loop_d_dd__As_dd_d +ufunc_kn_types[0] = NPY_LONG +ufunc_kn_types[1] = NPY_DOUBLE +ufunc_kn_types[2] = NPY_DOUBLE +ufunc_kn_types[3] = NPY_FLOAT +ufunc_kn_types[4] = NPY_FLOAT +ufunc_kn_types[5] = NPY_FLOAT +ufunc_kn_types[6] = NPY_DOUBLE +ufunc_kn_types[7] = NPY_DOUBLE +ufunc_kn_types[8] = NPY_DOUBLE +ufunc_kn_ptr[2*0] = _func_cbesk_wrap_real_int +ufunc_kn_ptr[2*0+1] = ("kn") +ufunc_kn_ptr[2*1] = _func_kn_unsafe +ufunc_kn_ptr[2*1+1] = ("kn") +ufunc_kn_ptr[2*2] = _func_kn_unsafe +ufunc_kn_ptr[2*2+1] = ("kn") +ufunc_kn_data[0] = &ufunc_kn_ptr[2*0] +ufunc_kn_data[1] = &ufunc_kn_ptr[2*1] +ufunc_kn_data[2] = &ufunc_kn_ptr[2*2] +kn = np.PyUFunc_FromFuncAndData(ufunc_kn_loops, ufunc_kn_data, ufunc_kn_types, 3, 2, 1, 0, "kn", ufunc_kn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kolmogi_loops[2] +cdef void *ufunc_kolmogi_ptr[4] +cdef void *ufunc_kolmogi_data[2] +cdef char ufunc_kolmogi_types[4] +cdef char *ufunc_kolmogi_doc = ( + "kolmogi(p, out=None)\n" + "\n" + "Inverse Survival Function of Kolmogorov distribution\n" + "\n" + "It is the inverse function to `kolmogorov`.\n" + "Returns y such that ``kolmogorov(y) == p``.\n" + "\n" + "Parameters\n" + "----------\n" + "p : float array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value(s) of kolmogi(p)\n" + "\n" + "See Also\n" + "--------\n" + "kolmogorov : The Survival Function for the distribution\n" + "scipy.stats.kstwobign : Provides the functionality as a continuous distribution\n" + "smirnov, smirnovi : Functions for the one-sided distribution\n" + "\n" + "Notes\n" + "-----\n" + "`kolmogorov` is used by `stats.kstest` in the application of the\n" + "Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this\n" + "function is exposed in `scpy.special`, but the recommended way to achieve\n" + "the most accurate CDF/SF/PDF/PPF/ISF computations is to use the\n" + "`stats.kstwobign` distribution.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import kolmogi\n" + ">>> kolmogi([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0])\n" + "array([ inf, 1.22384787, 1.01918472, 0.82757356, 0.67644769,\n" + " 0.57117327, 0. ])") +ufunc_kolmogi_loops[0] = loop_d_d__As_f_f +ufunc_kolmogi_loops[1] = loop_d_d__As_d_d +ufunc_kolmogi_types[0] = NPY_FLOAT +ufunc_kolmogi_types[1] = NPY_FLOAT +ufunc_kolmogi_types[2] = NPY_DOUBLE +ufunc_kolmogi_types[3] = NPY_DOUBLE +ufunc_kolmogi_ptr[2*0] = _func_kolmogi +ufunc_kolmogi_ptr[2*0+1] = ("kolmogi") +ufunc_kolmogi_ptr[2*1] = _func_kolmogi +ufunc_kolmogi_ptr[2*1+1] = ("kolmogi") +ufunc_kolmogi_data[0] = &ufunc_kolmogi_ptr[2*0] +ufunc_kolmogi_data[1] = &ufunc_kolmogi_ptr[2*1] +kolmogi = np.PyUFunc_FromFuncAndData(ufunc_kolmogi_loops, ufunc_kolmogi_data, ufunc_kolmogi_types, 2, 1, 1, 0, "kolmogi", ufunc_kolmogi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kolmogorov_loops[2] +cdef void *ufunc_kolmogorov_ptr[4] +cdef void *ufunc_kolmogorov_data[2] +cdef char ufunc_kolmogorov_types[4] +cdef char *ufunc_kolmogorov_doc = ( + "kolmogorov(y, out=None)\n" + "\n" + "Complementary cumulative distribution (Survival Function) function of\n" + "Kolmogorov distribution.\n" + "\n" + "Returns the complementary cumulative distribution function of\n" + "Kolmogorov's limiting distribution (``D_n*\\sqrt(n)`` as n goes to infinity)\n" + "of a two-sided test for equality between an empirical and a theoretical\n" + "distribution. It is equal to the (limit as n->infinity of the)\n" + "probability that ``sqrt(n) * max absolute deviation > y``.\n" + "\n" + "Parameters\n" + "----------\n" + "y : float array_like\n" + " Absolute deviation between the Empirical CDF (ECDF) and the target CDF,\n" + " multiplied by sqrt(n).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value(s) of kolmogorov(y)\n" + "\n" + "See Also\n" + "--------\n" + "kolmogi : The Inverse Survival Function for the distribution\n" + "scipy.stats.kstwobign : Provides the functionality as a continuous distribution\n" + "smirnov, smirnovi : Functions for the one-sided distribution\n" + "\n" + "Notes\n" + "-----\n" + "`kolmogorov` is used by `stats.kstest` in the application of the\n" + "Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this\n" + "function is exposed in `scpy.special`, but the recommended way to achieve\n" + "the most accurate CDF/SF/PDF/PPF/ISF computations is to use the\n" + "`stats.kstwobign` distribution.\n" + "\n" + "Examples\n" + "--------\n" + "Show the probability of a gap at least as big as 0, 0.5 and 1.0.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import kolmogorov\n" + ">>> from scipy.stats import kstwobign\n" + ">>> kolmogorov([0, 0.5, 1.0])\n" + "array([ 1. , 0.96394524, 0.26999967])\n" + "\n" + "Compare a sample of size 1000 drawn from a Laplace(0, 1) distribution against\n" + "the target distribution, a Normal(0, 1) distribution.\n" + "\n" + ">>> from scipy.stats import norm, laplace\n" + ">>> rng = np.random.default_rng()\n" + ">>> n = 1000\n" + ">>> lap01 = laplace(0, 1)\n" + ">>> x = np.sort(lap01.rvs(n, random_state=rng))\n" + ">>> np.mean(x), np.std(x)\n" + "(-0.05841730131499543, 1.3968109101997568)\n" + "\n" + "Construct the Empirical CDF and the K-S statistic Dn.\n" + "\n" + ">>> target = norm(0,1) # Normal mean 0, stddev 1\n" + ">>> cdfs = target.cdf(x)\n" + ">>> ecdfs = np.arange(n+1, dtype=float)/n\n" + ">>> gaps = np.column_stack([cdfs - ecdfs[:n], ecdfs[1:] - cdfs])\n" + ">>> Dn = np.max(gaps)\n" + ">>> Kn = np.sqrt(n) * Dn\n" + ">>> print('Dn=%f, sqrt(n)*Dn=%f' % (Dn, Kn))\n" + "Dn=0.043363, sqrt(n)*Dn=1.371265\n" + ">>> print(chr(10).join(['For a sample of size n drawn from a N(0, 1) distribution:',\n" + "... ' the approximate Kolmogorov probability that sqrt(n)*Dn>=%f is %f' %\n" + "... (Kn, kolmogorov(Kn)),\n" + "... ' the approximate Kolmogorov probability that sqrt(n)*Dn<=%f is %f' %\n" + "... (Kn, kstwobign.cdf(Kn))]))\n" + "For a sample of size n drawn from a N(0, 1) distribution:\n" + " the approximate Kolmogorov probability that sqrt(n)*Dn>=1.371265 is 0.046533\n" + " the approximate Kolmogorov probability that sqrt(n)*Dn<=1.371265 is 0.953467\n" + "\n" + "Plot the Empirical CDF against the target N(0, 1) CDF.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> plt.step(np.concatenate([[-3], x]), ecdfs, where='post', label='Empirical CDF')\n" + ">>> x3 = np.linspace(-3, 3, 100)\n" + ">>> plt.plot(x3, target.cdf(x3), label='CDF for N(0, 1)')\n" + ">>> plt.ylim([0, 1]); plt.grid(True); plt.legend();\n" + ">>> # Add vertical lines marking Dn+ and Dn-\n" + ">>> iminus, iplus = np.argmax(gaps, axis=0)\n" + ">>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus],\n" + "... color='r', linestyle='dashed', lw=4)\n" + ">>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1],\n" + "... color='r', linestyle='dashed', lw=4)\n" + ">>> plt.show()") +ufunc_kolmogorov_loops[0] = loop_d_d__As_f_f +ufunc_kolmogorov_loops[1] = loop_d_d__As_d_d +ufunc_kolmogorov_types[0] = NPY_FLOAT +ufunc_kolmogorov_types[1] = NPY_FLOAT +ufunc_kolmogorov_types[2] = NPY_DOUBLE +ufunc_kolmogorov_types[3] = NPY_DOUBLE +ufunc_kolmogorov_ptr[2*0] = _func_kolmogorov +ufunc_kolmogorov_ptr[2*0+1] = ("kolmogorov") +ufunc_kolmogorov_ptr[2*1] = _func_kolmogorov +ufunc_kolmogorov_ptr[2*1+1] = ("kolmogorov") +ufunc_kolmogorov_data[0] = &ufunc_kolmogorov_ptr[2*0] +ufunc_kolmogorov_data[1] = &ufunc_kolmogorov_ptr[2*1] +kolmogorov = np.PyUFunc_FromFuncAndData(ufunc_kolmogorov_loops, ufunc_kolmogorov_data, ufunc_kolmogorov_types, 2, 1, 1, 0, "kolmogorov", ufunc_kolmogorov_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kv_loops[4] +cdef void *ufunc_kv_ptr[8] +cdef void *ufunc_kv_data[4] +cdef char ufunc_kv_types[12] +cdef char *ufunc_kv_doc = ( + "kv(v, z, out=None)\n" + "\n" + "Modified Bessel function of the second kind of real order `v`\n" + "\n" + "Returns the modified Bessel function of the second kind for real order\n" + "`v` at complex `z`.\n" + "\n" + "These are also sometimes called functions of the third kind, Basset\n" + "functions, or Macdonald functions. They are defined as those solutions\n" + "of the modified Bessel equation for which,\n" + "\n" + ".. math::\n" + " K_v(x) \\sim \\sqrt{\\pi/(2x)} \\exp(-x)\n" + "\n" + "as :math:`x \\to \\infty` [3]_.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like of float\n" + " Order of Bessel functions\n" + "z : array_like of complex\n" + " Argument at which to evaluate the Bessel functions\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The results. Note that input must be of complex type to get complex\n" + " output, e.g. ``kv(3, -2+0j)`` instead of ``kv(3, -2)``.\n" + "\n" + "See Also\n" + "--------\n" + "kve : This function with leading exponential behavior stripped off.\n" + "kvp : Derivative of this function\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the\n" + "algorithm used, see [2]_ and the references therein.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + ".. [2] Donald E. Amos, \"Algorithm 644: A portable package for Bessel\n" + " functions of a complex argument and nonnegative order\", ACM\n" + " TOMS Vol. 12 Issue 3, Sept. 1986, p. 265\n" + ".. [3] NIST Digital Library of Mathematical Functions,\n" + " Eq. 10.25.E3. https://dlmf.nist.gov/10.25.E3\n" + "\n" + "Examples\n" + "--------\n" + "Plot the function of several orders for real input:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import kv\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(0, 5, 1000)\n" + ">>> for N in np.linspace(0, 6, 5):\n" + "... plt.plot(x, kv(N, x), label='$K_{{{}}}(x)$'.format(N))\n" + ">>> plt.ylim(0, 10)\n" + ">>> plt.legend()\n" + ">>> plt.title(r'Modified Bessel function of the second kind $K_\\nu(x)$')\n" + ">>> plt.show()\n" + "\n" + "Calculate for a single value at multiple orders:\n" + "\n" + ">>> kv([4, 4.5, 5], 1+2j)\n" + "array([ 0.1992+2.3892j, 2.3493+3.6j , 7.2827+3.8104j])") +ufunc_kv_loops[0] = loop_d_dd__As_ff_f +ufunc_kv_loops[1] = loop_D_dD__As_fF_F +ufunc_kv_loops[2] = loop_d_dd__As_dd_d +ufunc_kv_loops[3] = loop_D_dD__As_dD_D +ufunc_kv_types[0] = NPY_FLOAT +ufunc_kv_types[1] = NPY_FLOAT +ufunc_kv_types[2] = NPY_FLOAT +ufunc_kv_types[3] = NPY_FLOAT +ufunc_kv_types[4] = NPY_CFLOAT +ufunc_kv_types[5] = NPY_CFLOAT +ufunc_kv_types[6] = NPY_DOUBLE +ufunc_kv_types[7] = NPY_DOUBLE +ufunc_kv_types[8] = NPY_DOUBLE +ufunc_kv_types[9] = NPY_DOUBLE +ufunc_kv_types[10] = NPY_CDOUBLE +ufunc_kv_types[11] = NPY_CDOUBLE +ufunc_kv_ptr[2*0] = _func_cbesk_wrap_real +ufunc_kv_ptr[2*0+1] = ("kv") +ufunc_kv_ptr[2*1] = _func_cbesk_wrap +ufunc_kv_ptr[2*1+1] = ("kv") +ufunc_kv_ptr[2*2] = _func_cbesk_wrap_real +ufunc_kv_ptr[2*2+1] = ("kv") +ufunc_kv_ptr[2*3] = _func_cbesk_wrap +ufunc_kv_ptr[2*3+1] = ("kv") +ufunc_kv_data[0] = &ufunc_kv_ptr[2*0] +ufunc_kv_data[1] = &ufunc_kv_ptr[2*1] +ufunc_kv_data[2] = &ufunc_kv_ptr[2*2] +ufunc_kv_data[3] = &ufunc_kv_ptr[2*3] +kv = np.PyUFunc_FromFuncAndData(ufunc_kv_loops, ufunc_kv_data, ufunc_kv_types, 4, 2, 1, 0, "kv", ufunc_kv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_kve_loops[4] +cdef void *ufunc_kve_ptr[8] +cdef void *ufunc_kve_data[4] +cdef char ufunc_kve_types[12] +cdef char *ufunc_kve_doc = ( + "kve(v, z, out=None)\n" + "\n" + "Exponentially scaled modified Bessel function of the second kind.\n" + "\n" + "Returns the exponentially scaled, modified Bessel function of the\n" + "second kind (sometimes called the third kind) for real order `v` at\n" + "complex `z`::\n" + "\n" + " kve(v, z) = kv(v, z) * exp(z)\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like of float\n" + " Order of Bessel functions\n" + "z : array_like of complex\n" + " Argument at which to evaluate the Bessel functions\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The exponentially scaled modified Bessel function of the second kind.\n" + "\n" + "See Also\n" + "--------\n" + "kv : This function without exponential scaling.\n" + "k0e : Faster version of this function for order 0.\n" + "k1e : Faster version of this function for order 1.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for AMOS [1]_ routine `zbesk`. For a discussion of the\n" + "algorithm used, see [2]_ and the references therein.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + ".. [2] Donald E. Amos, \"Algorithm 644: A portable package for Bessel\n" + " functions of a complex argument and nonnegative order\", ACM\n" + " TOMS Vol. 12 Issue 3, Sept. 1986, p. 265\n" + "\n" + "Examples\n" + "--------\n" + "In the following example `kv` returns 0 whereas `kve` still returns\n" + "a useful finite number.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import kv, kve\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> kv(3, 1000.), kve(3, 1000.)\n" + "(0.0, 0.03980696128440973)\n" + "\n" + "Evaluate the function at one point for different orders by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> kve([0, 1, 1.5], 1.)\n" + "array([1.14446308, 1.63615349, 2.50662827])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> points = np.array([1., 3., 10.])\n" + ">>> kve(0, points)\n" + "array([1.14446308, 0.6977616 , 0.39163193])\n" + "\n" + "Evaluate the function at several points for different orders by\n" + "providing arrays for both `v` for `z`. Both arrays have to be\n" + "broadcastable to the correct shape. To calculate the orders 0, 1\n" + "and 2 for a 1D array of points:\n" + "\n" + ">>> kve([[0], [1], [2]], points)\n" + "array([[1.14446308, 0.6977616 , 0.39163193],\n" + " [1.63615349, 0.80656348, 0.41076657],\n" + " [4.41677005, 1.23547058, 0.47378525]])\n" + "\n" + "Plot the functions of order 0 to 3 from 0 to 5.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 5., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, kve(i, x), label=fr'$K_{i!r}(z)\\cdot e^z$')\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(r\"$z$\")\n" + ">>> ax.set_ylim(0, 4)\n" + ">>> ax.set_xlim(0, 5)\n" + ">>> plt.show()") +ufunc_kve_loops[0] = loop_d_dd__As_ff_f +ufunc_kve_loops[1] = loop_D_dD__As_fF_F +ufunc_kve_loops[2] = loop_d_dd__As_dd_d +ufunc_kve_loops[3] = loop_D_dD__As_dD_D +ufunc_kve_types[0] = NPY_FLOAT +ufunc_kve_types[1] = NPY_FLOAT +ufunc_kve_types[2] = NPY_FLOAT +ufunc_kve_types[3] = NPY_FLOAT +ufunc_kve_types[4] = NPY_CFLOAT +ufunc_kve_types[5] = NPY_CFLOAT +ufunc_kve_types[6] = NPY_DOUBLE +ufunc_kve_types[7] = NPY_DOUBLE +ufunc_kve_types[8] = NPY_DOUBLE +ufunc_kve_types[9] = NPY_DOUBLE +ufunc_kve_types[10] = NPY_CDOUBLE +ufunc_kve_types[11] = NPY_CDOUBLE +ufunc_kve_ptr[2*0] = _func_cbesk_wrap_e_real +ufunc_kve_ptr[2*0+1] = ("kve") +ufunc_kve_ptr[2*1] = _func_cbesk_wrap_e +ufunc_kve_ptr[2*1+1] = ("kve") +ufunc_kve_ptr[2*2] = _func_cbesk_wrap_e_real +ufunc_kve_ptr[2*2+1] = ("kve") +ufunc_kve_ptr[2*3] = _func_cbesk_wrap_e +ufunc_kve_ptr[2*3+1] = ("kve") +ufunc_kve_data[0] = &ufunc_kve_ptr[2*0] +ufunc_kve_data[1] = &ufunc_kve_ptr[2*1] +ufunc_kve_data[2] = &ufunc_kve_ptr[2*2] +ufunc_kve_data[3] = &ufunc_kve_ptr[2*3] +kve = np.PyUFunc_FromFuncAndData(ufunc_kve_loops, ufunc_kve_data, ufunc_kve_types, 4, 2, 1, 0, "kve", ufunc_kve_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_log1p_loops[4] +cdef void *ufunc_log1p_ptr[8] +cdef void *ufunc_log1p_data[4] +cdef char ufunc_log1p_types[8] +cdef char *ufunc_log1p_doc = ( + "log1p(x, out=None)\n" + "\n" + "Calculates log(1 + x) for use when `x` is near zero.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex valued input.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of ``log(1 + x)``.\n" + "\n" + "See Also\n" + "--------\n" + "expm1, cosm1\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than using ``log(1 + x)`` directly for ``x``\n" + "near 0. Note that in the below example ``1 + 1e-17 == 1`` to\n" + "double precision.\n" + "\n" + ">>> sc.log1p(1e-17)\n" + "1e-17\n" + ">>> np.log(1 + 1e-17)\n" + "0.0") +ufunc_log1p_loops[0] = loop_d_d__As_f_f +ufunc_log1p_loops[1] = loop_d_d__As_d_d +ufunc_log1p_loops[2] = loop_D_D__As_F_F +ufunc_log1p_loops[3] = loop_D_D__As_D_D +ufunc_log1p_types[0] = NPY_FLOAT +ufunc_log1p_types[1] = NPY_FLOAT +ufunc_log1p_types[2] = NPY_DOUBLE +ufunc_log1p_types[3] = NPY_DOUBLE +ufunc_log1p_types[4] = NPY_CFLOAT +ufunc_log1p_types[5] = NPY_CFLOAT +ufunc_log1p_types[6] = NPY_CDOUBLE +ufunc_log1p_types[7] = NPY_CDOUBLE +ufunc_log1p_ptr[2*0] = _func_log1p +ufunc_log1p_ptr[2*0+1] = ("log1p") +ufunc_log1p_ptr[2*1] = _func_log1p +ufunc_log1p_ptr[2*1+1] = ("log1p") +ufunc_log1p_ptr[2*2] = _func_clog1p +ufunc_log1p_ptr[2*2+1] = ("log1p") +ufunc_log1p_ptr[2*3] = _func_clog1p +ufunc_log1p_ptr[2*3+1] = ("log1p") +ufunc_log1p_data[0] = &ufunc_log1p_ptr[2*0] +ufunc_log1p_data[1] = &ufunc_log1p_ptr[2*1] +ufunc_log1p_data[2] = &ufunc_log1p_ptr[2*2] +ufunc_log1p_data[3] = &ufunc_log1p_ptr[2*3] +log1p = np.PyUFunc_FromFuncAndData(ufunc_log1p_loops, ufunc_log1p_data, ufunc_log1p_types, 4, 1, 1, 0, "log1p", ufunc_log1p_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_log_expit_loops[3] +cdef void *ufunc_log_expit_ptr[6] +cdef void *ufunc_log_expit_data[3] +cdef char ufunc_log_expit_types[6] +cdef char *ufunc_log_expit_doc = ( + "log_expit(x, out=None)\n" + "\n" + "Logarithm of the logistic sigmoid function.\n" + "\n" + "The SciPy implementation of the logistic sigmoid function is\n" + "`scipy.special.expit`, so this function is called ``log_expit``.\n" + "\n" + "The function is mathematically equivalent to ``log(expit(x))``, but\n" + "is formulated to avoid loss of precision for inputs with large\n" + "(positive or negative) magnitude.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " The values to apply ``log_expit`` to element-wise.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "out : scalar or ndarray\n" + " The computed values, an ndarray of the same shape as ``x``.\n" + "\n" + "See Also\n" + "--------\n" + "expit\n" + "\n" + "Notes\n" + "-----\n" + "As a ufunc, ``log_expit`` takes a number of optional keyword arguments.\n" + "For more information see\n" + "`ufuncs `_\n" + "\n" + ".. versionadded:: 1.8.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import log_expit, expit\n" + "\n" + ">>> log_expit([-3.0, 0.25, 2.5, 5.0])\n" + "array([-3.04858735, -0.57593942, -0.07888973, -0.00671535])\n" + "\n" + "Large negative values:\n" + "\n" + ">>> log_expit([-100, -500, -1000])\n" + "array([ -100., -500., -1000.])\n" + "\n" + "Note that ``expit(-1000)`` returns 0, so the naive implementation\n" + "``log(expit(-1000))`` return ``-inf``.\n" + "\n" + "Large positive values:\n" + "\n" + ">>> log_expit([29, 120, 400])\n" + "array([-2.54366565e-013, -7.66764807e-053, -1.91516960e-174])\n" + "\n" + "Compare that to the naive implementation:\n" + "\n" + ">>> np.log(expit([29, 120, 400]))\n" + "array([-2.54463117e-13, 0.00000000e+00, 0.00000000e+00])\n" + "\n" + "The first value is accurate to only 3 digits, and the larger inputs\n" + "lose all precision and return 0.") +ufunc_log_expit_loops[0] = loop_f_f__As_f_f +ufunc_log_expit_loops[1] = loop_d_d__As_d_d +ufunc_log_expit_loops[2] = loop_g_g__As_g_g +ufunc_log_expit_types[0] = NPY_FLOAT +ufunc_log_expit_types[1] = NPY_FLOAT +ufunc_log_expit_types[2] = NPY_DOUBLE +ufunc_log_expit_types[3] = NPY_DOUBLE +ufunc_log_expit_types[4] = NPY_LONGDOUBLE +ufunc_log_expit_types[5] = NPY_LONGDOUBLE +ufunc_log_expit_ptr[2*0] = scipy.special._ufuncs_cxx._export_log_expitf +ufunc_log_expit_ptr[2*0+1] = ("log_expit") +ufunc_log_expit_ptr[2*1] = scipy.special._ufuncs_cxx._export_log_expit +ufunc_log_expit_ptr[2*1+1] = ("log_expit") +ufunc_log_expit_ptr[2*2] = scipy.special._ufuncs_cxx._export_log_expitl +ufunc_log_expit_ptr[2*2+1] = ("log_expit") +ufunc_log_expit_data[0] = &ufunc_log_expit_ptr[2*0] +ufunc_log_expit_data[1] = &ufunc_log_expit_ptr[2*1] +ufunc_log_expit_data[2] = &ufunc_log_expit_ptr[2*2] +log_expit = np.PyUFunc_FromFuncAndData(ufunc_log_expit_loops, ufunc_log_expit_data, ufunc_log_expit_types, 3, 1, 1, 0, "log_expit", ufunc_log_expit_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_log_ndtr_loops[4] +cdef void *ufunc_log_ndtr_ptr[8] +cdef void *ufunc_log_ndtr_data[4] +cdef char ufunc_log_ndtr_types[8] +cdef char *ufunc_log_ndtr_doc = ( + "log_ndtr(x, out=None)\n" + "\n" + "Logarithm of Gaussian cumulative distribution function.\n" + "\n" + "Returns the log of the area under the standard Gaussian probability\n" + "density function, integrated from minus infinity to `x`::\n" + "\n" + " log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like, real or complex\n" + " Argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value of the log of the normal CDF evaluated at `x`\n" + "\n" + "See Also\n" + "--------\n" + "erf\n" + "erfc\n" + "scipy.stats.norm\n" + "ndtr\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import log_ndtr, ndtr\n" + "\n" + "The benefit of ``log_ndtr(x)`` over the naive implementation\n" + "``np.log(ndtr(x))`` is most evident with moderate to large positive\n" + "values of ``x``:\n" + "\n" + ">>> x = np.array([6, 7, 9, 12, 15, 25])\n" + ">>> log_ndtr(x)\n" + "array([-9.86587646e-010, -1.27981254e-012, -1.12858841e-019,\n" + " -1.77648211e-033, -3.67096620e-051, -3.05669671e-138])\n" + "\n" + "The results of the naive calculation for the moderate ``x`` values\n" + "have only 5 or 6 correct significant digits. For values of ``x``\n" + "greater than approximately 8.3, the naive expression returns 0:\n" + "\n" + ">>> np.log(ndtr(x))\n" + "array([-9.86587701e-10, -1.27986510e-12, 0.00000000e+00,\n" + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])") +ufunc_log_ndtr_loops[0] = loop_d_d__As_f_f +ufunc_log_ndtr_loops[1] = loop_d_d__As_d_d +ufunc_log_ndtr_loops[2] = loop_D_D__As_F_F +ufunc_log_ndtr_loops[3] = loop_D_D__As_D_D +ufunc_log_ndtr_types[0] = NPY_FLOAT +ufunc_log_ndtr_types[1] = NPY_FLOAT +ufunc_log_ndtr_types[2] = NPY_DOUBLE +ufunc_log_ndtr_types[3] = NPY_DOUBLE +ufunc_log_ndtr_types[4] = NPY_CFLOAT +ufunc_log_ndtr_types[5] = NPY_CFLOAT +ufunc_log_ndtr_types[6] = NPY_CDOUBLE +ufunc_log_ndtr_types[7] = NPY_CDOUBLE +ufunc_log_ndtr_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_log_ndtr +ufunc_log_ndtr_ptr[2*0+1] = ("log_ndtr") +ufunc_log_ndtr_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_log_ndtr +ufunc_log_ndtr_ptr[2*1+1] = ("log_ndtr") +ufunc_log_ndtr_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_log_ndtr_complex +ufunc_log_ndtr_ptr[2*2+1] = ("log_ndtr") +ufunc_log_ndtr_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_log_ndtr_complex +ufunc_log_ndtr_ptr[2*3+1] = ("log_ndtr") +ufunc_log_ndtr_data[0] = &ufunc_log_ndtr_ptr[2*0] +ufunc_log_ndtr_data[1] = &ufunc_log_ndtr_ptr[2*1] +ufunc_log_ndtr_data[2] = &ufunc_log_ndtr_ptr[2*2] +ufunc_log_ndtr_data[3] = &ufunc_log_ndtr_ptr[2*3] +log_ndtr = np.PyUFunc_FromFuncAndData(ufunc_log_ndtr_loops, ufunc_log_ndtr_data, ufunc_log_ndtr_types, 4, 1, 1, 0, "log_ndtr", ufunc_log_ndtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_loggamma_loops[4] +cdef void *ufunc_loggamma_ptr[8] +cdef void *ufunc_loggamma_data[4] +cdef char ufunc_loggamma_types[8] +cdef char *ufunc_loggamma_doc = ( + "loggamma(z, out=None)\n" + "\n" + "Principal branch of the logarithm of the gamma function.\n" + "\n" + "Defined to be :math:`\\log(\\Gamma(x))` for :math:`x > 0` and\n" + "extended to the complex plane by analytic continuation. The\n" + "function has a single branch cut on the negative real axis.\n" + "\n" + ".. versionadded:: 0.18.0\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Values in the complex plane at which to compute ``loggamma``\n" + "out : ndarray, optional\n" + " Output array for computed values of ``loggamma``\n" + "\n" + "Returns\n" + "-------\n" + "loggamma : scalar or ndarray\n" + " Values of ``loggamma`` at z.\n" + "\n" + "See Also\n" + "--------\n" + "gammaln : logarithm of the absolute value of the gamma function\n" + "gammasgn : sign of the gamma function\n" + "\n" + "Notes\n" + "-----\n" + "It is not generally true that :math:`\\log\\Gamma(z) =\n" + "\\log(\\Gamma(z))`, though the real parts of the functions do\n" + "agree. The benefit of not defining `loggamma` as\n" + ":math:`\\log(\\Gamma(z))` is that the latter function has a\n" + "complicated branch cut structure whereas `loggamma` is analytic\n" + "except for on the negative real axis.\n" + "\n" + "The identities\n" + "\n" + ".. math::\n" + " \\exp(\\log\\Gamma(z)) &= \\Gamma(z) \\\\\n" + " \\log\\Gamma(z + 1) &= \\log(z) + \\log\\Gamma(z)\n" + "\n" + "make `loggamma` useful for working in complex logspace.\n" + "\n" + "On the real line `loggamma` is related to `gammaln` via\n" + "``exp(loggamma(x + 0j)) = gammasgn(x)*exp(gammaln(x))``, up to\n" + "rounding error.\n" + "\n" + "The implementation here is based on [hare1997]_.\n" + "\n" + "References\n" + "----------\n" + ".. [hare1997] D.E.G. Hare,\n" + " *Computing the Principal Branch of log-Gamma*,\n" + " Journal of Algorithms, Volume 25, Issue 2, November 1997, pages 221-236.") +ufunc_loggamma_loops[0] = loop_d_d__As_f_f +ufunc_loggamma_loops[1] = loop_d_d__As_d_d +ufunc_loggamma_loops[2] = loop_D_D__As_F_F +ufunc_loggamma_loops[3] = loop_D_D__As_D_D +ufunc_loggamma_types[0] = NPY_FLOAT +ufunc_loggamma_types[1] = NPY_FLOAT +ufunc_loggamma_types[2] = NPY_DOUBLE +ufunc_loggamma_types[3] = NPY_DOUBLE +ufunc_loggamma_types[4] = NPY_CFLOAT +ufunc_loggamma_types[5] = NPY_CFLOAT +ufunc_loggamma_types[6] = NPY_CDOUBLE +ufunc_loggamma_types[7] = NPY_CDOUBLE +ufunc_loggamma_ptr[2*0] = scipy.special._ufuncs_cxx._export_loggamma_real +ufunc_loggamma_ptr[2*0+1] = ("loggamma") +ufunc_loggamma_ptr[2*1] = scipy.special._ufuncs_cxx._export_loggamma_real +ufunc_loggamma_ptr[2*1+1] = ("loggamma") +ufunc_loggamma_ptr[2*2] = scipy.special._ufuncs_cxx._export_loggamma +ufunc_loggamma_ptr[2*2+1] = ("loggamma") +ufunc_loggamma_ptr[2*3] = scipy.special._ufuncs_cxx._export_loggamma +ufunc_loggamma_ptr[2*3+1] = ("loggamma") +ufunc_loggamma_data[0] = &ufunc_loggamma_ptr[2*0] +ufunc_loggamma_data[1] = &ufunc_loggamma_ptr[2*1] +ufunc_loggamma_data[2] = &ufunc_loggamma_ptr[2*2] +ufunc_loggamma_data[3] = &ufunc_loggamma_ptr[2*3] +loggamma = np.PyUFunc_FromFuncAndData(ufunc_loggamma_loops, ufunc_loggamma_data, ufunc_loggamma_types, 4, 1, 1, 0, "loggamma", ufunc_loggamma_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_logit_loops[3] +cdef void *ufunc_logit_ptr[6] +cdef void *ufunc_logit_data[3] +cdef char ufunc_logit_types[6] +cdef char *ufunc_logit_doc = ( + "logit(x, out=None)\n" + "\n" + "Logit ufunc for ndarrays.\n" + "\n" + "The logit function is defined as logit(p) = log(p/(1-p)).\n" + "Note that logit(0) = -inf, logit(1) = inf, and logit(p)\n" + "for p<0 or p>1 yields nan.\n" + "\n" + "Parameters\n" + "----------\n" + "x : ndarray\n" + " The ndarray to apply logit to element-wise.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " An ndarray of the same shape as x. Its entries\n" + " are logit of the corresponding entry of x.\n" + "\n" + "See Also\n" + "--------\n" + "expit\n" + "\n" + "Notes\n" + "-----\n" + "As a ufunc logit takes a number of optional\n" + "keyword arguments. For more information\n" + "see `ufuncs `_\n" + "\n" + ".. versionadded:: 0.10.0\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import logit, expit\n" + "\n" + ">>> logit([0, 0.25, 0.5, 0.75, 1])\n" + "array([ -inf, -1.09861229, 0. , 1.09861229, inf])\n" + "\n" + "`expit` is the inverse of `logit`:\n" + "\n" + ">>> expit(logit([0.1, 0.75, 0.999]))\n" + "array([ 0.1 , 0.75 , 0.999])\n" + "\n" + "Plot logit(x) for x in [0, 1]:\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(0, 1, 501)\n" + ">>> y = logit(x)\n" + ">>> plt.plot(x, y)\n" + ">>> plt.grid()\n" + ">>> plt.ylim(-6, 6)\n" + ">>> plt.xlabel('x')\n" + ">>> plt.title('logit(x)')\n" + ">>> plt.show()") +ufunc_logit_loops[0] = loop_f_f__As_f_f +ufunc_logit_loops[1] = loop_d_d__As_d_d +ufunc_logit_loops[2] = loop_g_g__As_g_g +ufunc_logit_types[0] = NPY_FLOAT +ufunc_logit_types[1] = NPY_FLOAT +ufunc_logit_types[2] = NPY_DOUBLE +ufunc_logit_types[3] = NPY_DOUBLE +ufunc_logit_types[4] = NPY_LONGDOUBLE +ufunc_logit_types[5] = NPY_LONGDOUBLE +ufunc_logit_ptr[2*0] = scipy.special._ufuncs_cxx._export_logitf +ufunc_logit_ptr[2*0+1] = ("logit") +ufunc_logit_ptr[2*1] = scipy.special._ufuncs_cxx._export_logit +ufunc_logit_ptr[2*1+1] = ("logit") +ufunc_logit_ptr[2*2] = scipy.special._ufuncs_cxx._export_logitl +ufunc_logit_ptr[2*2+1] = ("logit") +ufunc_logit_data[0] = &ufunc_logit_ptr[2*0] +ufunc_logit_data[1] = &ufunc_logit_ptr[2*1] +ufunc_logit_data[2] = &ufunc_logit_ptr[2*2] +logit = np.PyUFunc_FromFuncAndData(ufunc_logit_loops, ufunc_logit_data, ufunc_logit_types, 3, 1, 1, 0, "logit", ufunc_logit_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_lpmv_loops[2] +cdef void *ufunc_lpmv_ptr[4] +cdef void *ufunc_lpmv_data[2] +cdef char ufunc_lpmv_types[8] +cdef char *ufunc_lpmv_doc = ( + "lpmv(m, v, x, out=None)\n" + "\n" + "Associated Legendre function of integer order and real degree.\n" + "\n" + "Defined as\n" + "\n" + ".. math::\n" + "\n" + " P_v^m = (-1)^m (1 - x^2)^{m/2} \\frac{d^m}{dx^m} P_v(x)\n" + "\n" + "where\n" + "\n" + ".. math::\n" + "\n" + " P_v = \\sum_{k = 0}^\\infty \\frac{(-v)_k (v + 1)_k}{(k!)^2}\n" + " \\left(\\frac{1 - x}{2}\\right)^k\n" + "\n" + "is the Legendre function of the first kind. Here :math:`(\\cdot)_k`\n" + "is the Pochhammer symbol; see `poch`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order (int or float). If passed a float not equal to an\n" + " integer the function returns NaN.\n" + "v : array_like\n" + " Degree (float).\n" + "x : array_like\n" + " Argument (float). Must have ``|x| <= 1``.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "pmv : scalar or ndarray\n" + " Value of the associated Legendre function.\n" + "\n" + "See Also\n" + "--------\n" + "lpmn : Compute the associated Legendre function for all orders\n" + " ``0, ..., m`` and degrees ``0, ..., n``.\n" + "clpmn : Compute the associated Legendre function at complex\n" + " arguments.\n" + "\n" + "Notes\n" + "-----\n" + "Note that this implementation includes the Condon-Shortley phase.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Zhang, Jin, \"Computation of Special Functions\", John Wiley\n" + " and Sons, Inc, 1996.") +ufunc_lpmv_loops[0] = loop_d_ddd__As_fff_f +ufunc_lpmv_loops[1] = loop_d_ddd__As_ddd_d +ufunc_lpmv_types[0] = NPY_FLOAT +ufunc_lpmv_types[1] = NPY_FLOAT +ufunc_lpmv_types[2] = NPY_FLOAT +ufunc_lpmv_types[3] = NPY_FLOAT +ufunc_lpmv_types[4] = NPY_DOUBLE +ufunc_lpmv_types[5] = NPY_DOUBLE +ufunc_lpmv_types[6] = NPY_DOUBLE +ufunc_lpmv_types[7] = NPY_DOUBLE +ufunc_lpmv_ptr[2*0] = _func_pmv_wrap +ufunc_lpmv_ptr[2*0+1] = ("lpmv") +ufunc_lpmv_ptr[2*1] = _func_pmv_wrap +ufunc_lpmv_ptr[2*1+1] = ("lpmv") +ufunc_lpmv_data[0] = &ufunc_lpmv_ptr[2*0] +ufunc_lpmv_data[1] = &ufunc_lpmv_ptr[2*1] +lpmv = np.PyUFunc_FromFuncAndData(ufunc_lpmv_loops, ufunc_lpmv_data, ufunc_lpmv_types, 2, 3, 1, 0, "lpmv", ufunc_lpmv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_a_loops[2] +cdef void *ufunc_mathieu_a_ptr[4] +cdef void *ufunc_mathieu_a_data[2] +cdef char ufunc_mathieu_a_types[6] +cdef char *ufunc_mathieu_a_doc = ( + "mathieu_a(m, q, out=None)\n" + "\n" + "Characteristic value of even Mathieu functions\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Characteristic value for the even solution, ``ce_m(z, q)``, of\n" + " Mathieu's equation.\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_b, mathieu_cem, mathieu_sem") +ufunc_mathieu_a_loops[0] = loop_d_dd__As_ff_f +ufunc_mathieu_a_loops[1] = loop_d_dd__As_dd_d +ufunc_mathieu_a_types[0] = NPY_FLOAT +ufunc_mathieu_a_types[1] = NPY_FLOAT +ufunc_mathieu_a_types[2] = NPY_FLOAT +ufunc_mathieu_a_types[3] = NPY_DOUBLE +ufunc_mathieu_a_types[4] = NPY_DOUBLE +ufunc_mathieu_a_types[5] = NPY_DOUBLE +ufunc_mathieu_a_ptr[2*0] = _func_cem_cva_wrap +ufunc_mathieu_a_ptr[2*0+1] = ("mathieu_a") +ufunc_mathieu_a_ptr[2*1] = _func_cem_cva_wrap +ufunc_mathieu_a_ptr[2*1+1] = ("mathieu_a") +ufunc_mathieu_a_data[0] = &ufunc_mathieu_a_ptr[2*0] +ufunc_mathieu_a_data[1] = &ufunc_mathieu_a_ptr[2*1] +mathieu_a = np.PyUFunc_FromFuncAndData(ufunc_mathieu_a_loops, ufunc_mathieu_a_data, ufunc_mathieu_a_types, 2, 2, 1, 0, "mathieu_a", ufunc_mathieu_a_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_b_loops[2] +cdef void *ufunc_mathieu_b_ptr[4] +cdef void *ufunc_mathieu_b_data[2] +cdef char ufunc_mathieu_b_types[6] +cdef char *ufunc_mathieu_b_doc = ( + "mathieu_b(m, q, out=None)\n" + "\n" + "Characteristic value of odd Mathieu functions\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Characteristic value for the odd solution, ``se_m(z, q)``, of Mathieu's\n" + " equation.\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_a, mathieu_cem, mathieu_sem") +ufunc_mathieu_b_loops[0] = loop_d_dd__As_ff_f +ufunc_mathieu_b_loops[1] = loop_d_dd__As_dd_d +ufunc_mathieu_b_types[0] = NPY_FLOAT +ufunc_mathieu_b_types[1] = NPY_FLOAT +ufunc_mathieu_b_types[2] = NPY_FLOAT +ufunc_mathieu_b_types[3] = NPY_DOUBLE +ufunc_mathieu_b_types[4] = NPY_DOUBLE +ufunc_mathieu_b_types[5] = NPY_DOUBLE +ufunc_mathieu_b_ptr[2*0] = _func_sem_cva_wrap +ufunc_mathieu_b_ptr[2*0+1] = ("mathieu_b") +ufunc_mathieu_b_ptr[2*1] = _func_sem_cva_wrap +ufunc_mathieu_b_ptr[2*1+1] = ("mathieu_b") +ufunc_mathieu_b_data[0] = &ufunc_mathieu_b_ptr[2*0] +ufunc_mathieu_b_data[1] = &ufunc_mathieu_b_ptr[2*1] +mathieu_b = np.PyUFunc_FromFuncAndData(ufunc_mathieu_b_loops, ufunc_mathieu_b_data, ufunc_mathieu_b_types, 2, 2, 1, 0, "mathieu_b", ufunc_mathieu_b_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_cem_loops[2] +cdef void *ufunc_mathieu_cem_ptr[4] +cdef void *ufunc_mathieu_cem_data[2] +cdef char ufunc_mathieu_cem_types[10] +cdef char *ufunc_mathieu_cem_doc = ( + "mathieu_cem(m, q, x, out=None)\n" + "\n" + "Even Mathieu function and its derivative\n" + "\n" + "Returns the even Mathieu function, ``ce_m(x, q)``, of order `m` and\n" + "parameter `q` evaluated at `x` (given in degrees). Also returns the\n" + "derivative with respect to `x` of ce_m(x, q)\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_a, mathieu_b, mathieu_sem") +ufunc_mathieu_cem_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_cem_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_cem_types[0] = NPY_FLOAT +ufunc_mathieu_cem_types[1] = NPY_FLOAT +ufunc_mathieu_cem_types[2] = NPY_FLOAT +ufunc_mathieu_cem_types[3] = NPY_FLOAT +ufunc_mathieu_cem_types[4] = NPY_FLOAT +ufunc_mathieu_cem_types[5] = NPY_DOUBLE +ufunc_mathieu_cem_types[6] = NPY_DOUBLE +ufunc_mathieu_cem_types[7] = NPY_DOUBLE +ufunc_mathieu_cem_types[8] = NPY_DOUBLE +ufunc_mathieu_cem_types[9] = NPY_DOUBLE +ufunc_mathieu_cem_ptr[2*0] = _func_cem_wrap +ufunc_mathieu_cem_ptr[2*0+1] = ("mathieu_cem") +ufunc_mathieu_cem_ptr[2*1] = _func_cem_wrap +ufunc_mathieu_cem_ptr[2*1+1] = ("mathieu_cem") +ufunc_mathieu_cem_data[0] = &ufunc_mathieu_cem_ptr[2*0] +ufunc_mathieu_cem_data[1] = &ufunc_mathieu_cem_ptr[2*1] +mathieu_cem = np.PyUFunc_FromFuncAndData(ufunc_mathieu_cem_loops, ufunc_mathieu_cem_data, ufunc_mathieu_cem_types, 2, 3, 2, 0, "mathieu_cem", ufunc_mathieu_cem_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_modcem1_loops[2] +cdef void *ufunc_mathieu_modcem1_ptr[4] +cdef void *ufunc_mathieu_modcem1_data[2] +cdef char ufunc_mathieu_modcem1_types[10] +cdef char *ufunc_mathieu_modcem1_doc = ( + "mathieu_modcem1(m, q, x, out=None)\n" + "\n" + "Even modified Mathieu function of the first kind and its derivative\n" + "\n" + "Evaluates the even modified Mathieu function of the first kind,\n" + "``Mc1m(x, q)``, and its derivative at `x` for order `m` and parameter\n" + "`q`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_modsem1") +ufunc_mathieu_modcem1_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_modcem1_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_modcem1_types[0] = NPY_FLOAT +ufunc_mathieu_modcem1_types[1] = NPY_FLOAT +ufunc_mathieu_modcem1_types[2] = NPY_FLOAT +ufunc_mathieu_modcem1_types[3] = NPY_FLOAT +ufunc_mathieu_modcem1_types[4] = NPY_FLOAT +ufunc_mathieu_modcem1_types[5] = NPY_DOUBLE +ufunc_mathieu_modcem1_types[6] = NPY_DOUBLE +ufunc_mathieu_modcem1_types[7] = NPY_DOUBLE +ufunc_mathieu_modcem1_types[8] = NPY_DOUBLE +ufunc_mathieu_modcem1_types[9] = NPY_DOUBLE +ufunc_mathieu_modcem1_ptr[2*0] = _func_mcm1_wrap +ufunc_mathieu_modcem1_ptr[2*0+1] = ("mathieu_modcem1") +ufunc_mathieu_modcem1_ptr[2*1] = _func_mcm1_wrap +ufunc_mathieu_modcem1_ptr[2*1+1] = ("mathieu_modcem1") +ufunc_mathieu_modcem1_data[0] = &ufunc_mathieu_modcem1_ptr[2*0] +ufunc_mathieu_modcem1_data[1] = &ufunc_mathieu_modcem1_ptr[2*1] +mathieu_modcem1 = np.PyUFunc_FromFuncAndData(ufunc_mathieu_modcem1_loops, ufunc_mathieu_modcem1_data, ufunc_mathieu_modcem1_types, 2, 3, 2, 0, "mathieu_modcem1", ufunc_mathieu_modcem1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_modcem2_loops[2] +cdef void *ufunc_mathieu_modcem2_ptr[4] +cdef void *ufunc_mathieu_modcem2_data[2] +cdef char ufunc_mathieu_modcem2_types[10] +cdef char *ufunc_mathieu_modcem2_doc = ( + "mathieu_modcem2(m, q, x, out=None)\n" + "\n" + "Even modified Mathieu function of the second kind and its derivative\n" + "\n" + "Evaluates the even modified Mathieu function of the second kind,\n" + "Mc2m(x, q), and its derivative at `x` (given in degrees) for order `m`\n" + "and parameter `q`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_modsem2") +ufunc_mathieu_modcem2_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_modcem2_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_modcem2_types[0] = NPY_FLOAT +ufunc_mathieu_modcem2_types[1] = NPY_FLOAT +ufunc_mathieu_modcem2_types[2] = NPY_FLOAT +ufunc_mathieu_modcem2_types[3] = NPY_FLOAT +ufunc_mathieu_modcem2_types[4] = NPY_FLOAT +ufunc_mathieu_modcem2_types[5] = NPY_DOUBLE +ufunc_mathieu_modcem2_types[6] = NPY_DOUBLE +ufunc_mathieu_modcem2_types[7] = NPY_DOUBLE +ufunc_mathieu_modcem2_types[8] = NPY_DOUBLE +ufunc_mathieu_modcem2_types[9] = NPY_DOUBLE +ufunc_mathieu_modcem2_ptr[2*0] = _func_mcm2_wrap +ufunc_mathieu_modcem2_ptr[2*0+1] = ("mathieu_modcem2") +ufunc_mathieu_modcem2_ptr[2*1] = _func_mcm2_wrap +ufunc_mathieu_modcem2_ptr[2*1+1] = ("mathieu_modcem2") +ufunc_mathieu_modcem2_data[0] = &ufunc_mathieu_modcem2_ptr[2*0] +ufunc_mathieu_modcem2_data[1] = &ufunc_mathieu_modcem2_ptr[2*1] +mathieu_modcem2 = np.PyUFunc_FromFuncAndData(ufunc_mathieu_modcem2_loops, ufunc_mathieu_modcem2_data, ufunc_mathieu_modcem2_types, 2, 3, 2, 0, "mathieu_modcem2", ufunc_mathieu_modcem2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_modsem1_loops[2] +cdef void *ufunc_mathieu_modsem1_ptr[4] +cdef void *ufunc_mathieu_modsem1_data[2] +cdef char ufunc_mathieu_modsem1_types[10] +cdef char *ufunc_mathieu_modsem1_doc = ( + "mathieu_modsem1(m, q, x, out=None)\n" + "\n" + "Odd modified Mathieu function of the first kind and its derivative\n" + "\n" + "Evaluates the odd modified Mathieu function of the first kind,\n" + "Ms1m(x, q), and its derivative at `x` (given in degrees) for order `m`\n" + "and parameter `q`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_modcem1") +ufunc_mathieu_modsem1_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_modsem1_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_modsem1_types[0] = NPY_FLOAT +ufunc_mathieu_modsem1_types[1] = NPY_FLOAT +ufunc_mathieu_modsem1_types[2] = NPY_FLOAT +ufunc_mathieu_modsem1_types[3] = NPY_FLOAT +ufunc_mathieu_modsem1_types[4] = NPY_FLOAT +ufunc_mathieu_modsem1_types[5] = NPY_DOUBLE +ufunc_mathieu_modsem1_types[6] = NPY_DOUBLE +ufunc_mathieu_modsem1_types[7] = NPY_DOUBLE +ufunc_mathieu_modsem1_types[8] = NPY_DOUBLE +ufunc_mathieu_modsem1_types[9] = NPY_DOUBLE +ufunc_mathieu_modsem1_ptr[2*0] = _func_msm1_wrap +ufunc_mathieu_modsem1_ptr[2*0+1] = ("mathieu_modsem1") +ufunc_mathieu_modsem1_ptr[2*1] = _func_msm1_wrap +ufunc_mathieu_modsem1_ptr[2*1+1] = ("mathieu_modsem1") +ufunc_mathieu_modsem1_data[0] = &ufunc_mathieu_modsem1_ptr[2*0] +ufunc_mathieu_modsem1_data[1] = &ufunc_mathieu_modsem1_ptr[2*1] +mathieu_modsem1 = np.PyUFunc_FromFuncAndData(ufunc_mathieu_modsem1_loops, ufunc_mathieu_modsem1_data, ufunc_mathieu_modsem1_types, 2, 3, 2, 0, "mathieu_modsem1", ufunc_mathieu_modsem1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_modsem2_loops[2] +cdef void *ufunc_mathieu_modsem2_ptr[4] +cdef void *ufunc_mathieu_modsem2_data[2] +cdef char ufunc_mathieu_modsem2_types[10] +cdef char *ufunc_mathieu_modsem2_doc = ( + "mathieu_modsem2(m, q, x, out=None)\n" + "\n" + "Odd modified Mathieu function of the second kind and its derivative\n" + "\n" + "Evaluates the odd modified Mathieu function of the second kind,\n" + "Ms2m(x, q), and its derivative at `x` (given in degrees) for order `m`\n" + "and parameter q.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_modcem2") +ufunc_mathieu_modsem2_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_modsem2_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_modsem2_types[0] = NPY_FLOAT +ufunc_mathieu_modsem2_types[1] = NPY_FLOAT +ufunc_mathieu_modsem2_types[2] = NPY_FLOAT +ufunc_mathieu_modsem2_types[3] = NPY_FLOAT +ufunc_mathieu_modsem2_types[4] = NPY_FLOAT +ufunc_mathieu_modsem2_types[5] = NPY_DOUBLE +ufunc_mathieu_modsem2_types[6] = NPY_DOUBLE +ufunc_mathieu_modsem2_types[7] = NPY_DOUBLE +ufunc_mathieu_modsem2_types[8] = NPY_DOUBLE +ufunc_mathieu_modsem2_types[9] = NPY_DOUBLE +ufunc_mathieu_modsem2_ptr[2*0] = _func_msm2_wrap +ufunc_mathieu_modsem2_ptr[2*0+1] = ("mathieu_modsem2") +ufunc_mathieu_modsem2_ptr[2*1] = _func_msm2_wrap +ufunc_mathieu_modsem2_ptr[2*1+1] = ("mathieu_modsem2") +ufunc_mathieu_modsem2_data[0] = &ufunc_mathieu_modsem2_ptr[2*0] +ufunc_mathieu_modsem2_data[1] = &ufunc_mathieu_modsem2_ptr[2*1] +mathieu_modsem2 = np.PyUFunc_FromFuncAndData(ufunc_mathieu_modsem2_loops, ufunc_mathieu_modsem2_data, ufunc_mathieu_modsem2_types, 2, 3, 2, 0, "mathieu_modsem2", ufunc_mathieu_modsem2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_mathieu_sem_loops[2] +cdef void *ufunc_mathieu_sem_ptr[4] +cdef void *ufunc_mathieu_sem_data[2] +cdef char ufunc_mathieu_sem_types[10] +cdef char *ufunc_mathieu_sem_doc = ( + "mathieu_sem(m, q, x, out=None)\n" + "\n" + "Odd Mathieu function and its derivative\n" + "\n" + "Returns the odd Mathieu function, se_m(x, q), of order `m` and\n" + "parameter `q` evaluated at `x` (given in degrees). Also returns the\n" + "derivative with respect to `x` of se_m(x, q).\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the function\n" + "q : array_like\n" + " Parameter of the function\n" + "x : array_like\n" + " Argument of the function, *given in degrees, not radians*.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "y : scalar or ndarray\n" + " Value of the function\n" + "yp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "mathieu_a, mathieu_b, mathieu_cem") +ufunc_mathieu_sem_loops[0] = loop_i_ddd_dd_As_fff_ff +ufunc_mathieu_sem_loops[1] = loop_i_ddd_dd_As_ddd_dd +ufunc_mathieu_sem_types[0] = NPY_FLOAT +ufunc_mathieu_sem_types[1] = NPY_FLOAT +ufunc_mathieu_sem_types[2] = NPY_FLOAT +ufunc_mathieu_sem_types[3] = NPY_FLOAT +ufunc_mathieu_sem_types[4] = NPY_FLOAT +ufunc_mathieu_sem_types[5] = NPY_DOUBLE +ufunc_mathieu_sem_types[6] = NPY_DOUBLE +ufunc_mathieu_sem_types[7] = NPY_DOUBLE +ufunc_mathieu_sem_types[8] = NPY_DOUBLE +ufunc_mathieu_sem_types[9] = NPY_DOUBLE +ufunc_mathieu_sem_ptr[2*0] = _func_sem_wrap +ufunc_mathieu_sem_ptr[2*0+1] = ("mathieu_sem") +ufunc_mathieu_sem_ptr[2*1] = _func_sem_wrap +ufunc_mathieu_sem_ptr[2*1+1] = ("mathieu_sem") +ufunc_mathieu_sem_data[0] = &ufunc_mathieu_sem_ptr[2*0] +ufunc_mathieu_sem_data[1] = &ufunc_mathieu_sem_ptr[2*1] +mathieu_sem = np.PyUFunc_FromFuncAndData(ufunc_mathieu_sem_loops, ufunc_mathieu_sem_data, ufunc_mathieu_sem_types, 2, 3, 2, 0, "mathieu_sem", ufunc_mathieu_sem_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_modfresnelm_loops[2] +cdef void *ufunc_modfresnelm_ptr[4] +cdef void *ufunc_modfresnelm_data[2] +cdef char ufunc_modfresnelm_types[6] +cdef char *ufunc_modfresnelm_doc = ( + "modfresnelm(x, out=None)\n" + "\n" + "Modified Fresnel negative integrals\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Function argument\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "fm : scalar or ndarray\n" + " Integral ``F_-(x)``: ``integral(exp(-1j*t*t), t=x..inf)``\n" + "km : scalar or ndarray\n" + " Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp``\n" + "\n" + "See Also\n" + "--------\n" + "modfresnelp") +ufunc_modfresnelm_loops[0] = loop_i_d_DD_As_f_FF +ufunc_modfresnelm_loops[1] = loop_i_d_DD_As_d_DD +ufunc_modfresnelm_types[0] = NPY_FLOAT +ufunc_modfresnelm_types[1] = NPY_CFLOAT +ufunc_modfresnelm_types[2] = NPY_CFLOAT +ufunc_modfresnelm_types[3] = NPY_DOUBLE +ufunc_modfresnelm_types[4] = NPY_CDOUBLE +ufunc_modfresnelm_types[5] = NPY_CDOUBLE +ufunc_modfresnelm_ptr[2*0] = _func_modified_fresnel_minus_wrap +ufunc_modfresnelm_ptr[2*0+1] = ("modfresnelm") +ufunc_modfresnelm_ptr[2*1] = _func_modified_fresnel_minus_wrap +ufunc_modfresnelm_ptr[2*1+1] = ("modfresnelm") +ufunc_modfresnelm_data[0] = &ufunc_modfresnelm_ptr[2*0] +ufunc_modfresnelm_data[1] = &ufunc_modfresnelm_ptr[2*1] +modfresnelm = np.PyUFunc_FromFuncAndData(ufunc_modfresnelm_loops, ufunc_modfresnelm_data, ufunc_modfresnelm_types, 2, 1, 2, 0, "modfresnelm", ufunc_modfresnelm_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_modfresnelp_loops[2] +cdef void *ufunc_modfresnelp_ptr[4] +cdef void *ufunc_modfresnelp_data[2] +cdef char ufunc_modfresnelp_types[6] +cdef char *ufunc_modfresnelp_doc = ( + "modfresnelp(x, out=None)\n" + "\n" + "Modified Fresnel positive integrals\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Function argument\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "fp : scalar or ndarray\n" + " Integral ``F_+(x)``: ``integral(exp(1j*t*t), t=x..inf)``\n" + "kp : scalar or ndarray\n" + " Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp``\n" + "\n" + "See Also\n" + "--------\n" + "modfresnelm") +ufunc_modfresnelp_loops[0] = loop_i_d_DD_As_f_FF +ufunc_modfresnelp_loops[1] = loop_i_d_DD_As_d_DD +ufunc_modfresnelp_types[0] = NPY_FLOAT +ufunc_modfresnelp_types[1] = NPY_CFLOAT +ufunc_modfresnelp_types[2] = NPY_CFLOAT +ufunc_modfresnelp_types[3] = NPY_DOUBLE +ufunc_modfresnelp_types[4] = NPY_CDOUBLE +ufunc_modfresnelp_types[5] = NPY_CDOUBLE +ufunc_modfresnelp_ptr[2*0] = _func_modified_fresnel_plus_wrap +ufunc_modfresnelp_ptr[2*0+1] = ("modfresnelp") +ufunc_modfresnelp_ptr[2*1] = _func_modified_fresnel_plus_wrap +ufunc_modfresnelp_ptr[2*1+1] = ("modfresnelp") +ufunc_modfresnelp_data[0] = &ufunc_modfresnelp_ptr[2*0] +ufunc_modfresnelp_data[1] = &ufunc_modfresnelp_ptr[2*1] +modfresnelp = np.PyUFunc_FromFuncAndData(ufunc_modfresnelp_loops, ufunc_modfresnelp_data, ufunc_modfresnelp_types, 2, 1, 2, 0, "modfresnelp", ufunc_modfresnelp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_modstruve_loops[2] +cdef void *ufunc_modstruve_ptr[4] +cdef void *ufunc_modstruve_data[2] +cdef char ufunc_modstruve_types[6] +cdef char *ufunc_modstruve_doc = ( + "modstruve(v, x, out=None)\n" + "\n" + "Modified Struve function.\n" + "\n" + "Return the value of the modified Struve function of order `v` at `x`. The\n" + "modified Struve function is defined as,\n" + "\n" + ".. math::\n" + " L_v(x) = -\\imath \\exp(-\\pi\\imath v/2) H_v(\\imath x),\n" + "\n" + "where :math:`H_v` is the Struve function.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order of the modified Struve function (float).\n" + "x : array_like\n" + " Argument of the Struve function (float; must be positive unless `v` is\n" + " an integer).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "L : scalar or ndarray\n" + " Value of the modified Struve function of order `v` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "struve\n" + "\n" + "Notes\n" + "-----\n" + "Three methods discussed in [1]_ are used to evaluate the function:\n" + "\n" + "- power series\n" + "- expansion in Bessel functions (if :math:`|x| < |v| + 20`)\n" + "- asymptotic large-x expansion (if :math:`x \\geq 0.7v + 12`)\n" + "\n" + "Rounding errors are estimated based on the largest terms in the sums, and\n" + "the result associated with the smallest error is returned.\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/11\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the modified Struve function of order 1 at 2.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import modstruve\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> modstruve(1, 2.)\n" + "1.102759787367716\n" + "\n" + "Calculate the modified Struve function at 2 for orders 1, 2 and 3 by\n" + "providing a list for the order parameter `v`.\n" + "\n" + ">>> modstruve([1, 2, 3], 2.)\n" + "array([1.10275979, 0.41026079, 0.11247294])\n" + "\n" + "Calculate the modified Struve function of order 1 for several points\n" + "by providing an array for `x`.\n" + "\n" + ">>> points = np.array([2., 5., 8.])\n" + ">>> modstruve(1, points)\n" + "array([ 1.10275979, 23.72821578, 399.24709139])\n" + "\n" + "Compute the modified Struve function for several orders at several\n" + "points by providing arrays for `v` and `z`. The arrays have to be\n" + "broadcastable to the correct shapes.\n" + "\n" + ">>> orders = np.array([[1], [2], [3]])\n" + ">>> points.shape, orders.shape\n" + "((3,), (3, 1))\n" + "\n" + ">>> modstruve(orders, points)\n" + "array([[1.10275979e+00, 2.37282158e+01, 3.99247091e+02],\n" + " [4.10260789e-01, 1.65535979e+01, 3.25973609e+02],\n" + " [1.12472937e-01, 9.42430454e+00, 2.33544042e+02]])\n" + "\n" + "Plot the modified Struve functions of order 0 to 3 from -5 to 5.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-5., 5., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, modstruve(i, x), label=f'$L_{i!r}$')\n" + ">>> ax.legend(ncol=2)\n" + ">>> ax.set_xlim(-5, 5)\n" + ">>> ax.set_title(r\"Modified Struve functions $L_{\\nu}$\")\n" + ">>> plt.show()") +ufunc_modstruve_loops[0] = loop_d_dd__As_ff_f +ufunc_modstruve_loops[1] = loop_d_dd__As_dd_d +ufunc_modstruve_types[0] = NPY_FLOAT +ufunc_modstruve_types[1] = NPY_FLOAT +ufunc_modstruve_types[2] = NPY_FLOAT +ufunc_modstruve_types[3] = NPY_DOUBLE +ufunc_modstruve_types[4] = NPY_DOUBLE +ufunc_modstruve_types[5] = NPY_DOUBLE +ufunc_modstruve_ptr[2*0] = _func_struve_l +ufunc_modstruve_ptr[2*0+1] = ("modstruve") +ufunc_modstruve_ptr[2*1] = _func_struve_l +ufunc_modstruve_ptr[2*1+1] = ("modstruve") +ufunc_modstruve_data[0] = &ufunc_modstruve_ptr[2*0] +ufunc_modstruve_data[1] = &ufunc_modstruve_ptr[2*1] +modstruve = np.PyUFunc_FromFuncAndData(ufunc_modstruve_loops, ufunc_modstruve_data, ufunc_modstruve_types, 2, 2, 1, 0, "modstruve", ufunc_modstruve_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nbdtr_loops[3] +cdef void *ufunc_nbdtr_ptr[6] +cdef void *ufunc_nbdtr_data[3] +cdef char ufunc_nbdtr_types[12] +cdef char *ufunc_nbdtr_doc = ( + "nbdtr(k, n, p, out=None)\n" + "\n" + "Negative binomial cumulative distribution function.\n" + "\n" + "Returns the sum of the terms 0 through `k` of the negative binomial\n" + "distribution probability mass function,\n" + "\n" + ".. math::\n" + "\n" + " F = \\sum_{j=0}^k {{n + j - 1}\\choose{j}} p^n (1 - p)^j.\n" + "\n" + "In a sequence of Bernoulli trials with individual success probabilities\n" + "`p`, this is the probability that `k` or fewer failures precede the nth\n" + "success.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " The maximum number of allowed failures (nonnegative int).\n" + "n : array_like\n" + " The target number of successes (positive int).\n" + "p : array_like\n" + " Probability of success in a single event (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "F : scalar or ndarray\n" + " The probability of `k` or fewer failures before `n` successes in a\n" + " sequence of events with individual success probability `p`.\n" + "\n" + "See Also\n" + "--------\n" + "nbdtrc : Negative binomial survival function\n" + "nbdtrik : Negative binomial quantile function\n" + "scipy.stats.nbinom : Negative binomial distribution\n" + "\n" + "Notes\n" + "-----\n" + "If floating point values are passed for `k` or `n`, they will be truncated\n" + "to integers.\n" + "\n" + "The terms are not summed directly; instead the regularized incomplete beta\n" + "function is employed, according to the formula,\n" + "\n" + ".. math::\n" + " \\mathrm{nbdtr}(k, n, p) = I_{p}(n, k + 1).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `nbdtr`.\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. Using `nbdtr` directly can improve performance\n" + "compared to the ``cdf`` method of `scipy.stats.nbinom` (see last example).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Compute the function for ``k=10`` and ``n=5`` at ``p=0.5``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import nbdtr\n" + ">>> nbdtr(10, 5, 0.5)\n" + "0.940765380859375\n" + "\n" + "Compute the function for ``n=10`` and ``p=0.5`` at several points by\n" + "providing a NumPy array or list for `k`.\n" + "\n" + ">>> nbdtr([5, 10, 15], 10, 0.5)\n" + "array([0.15087891, 0.58809853, 0.88523853])\n" + "\n" + "Plot the function for four different parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> k = np.arange(130)\n" + ">>> n_parameters = [20, 20, 20, 80]\n" + ">>> p_parameters = [0.2, 0.5, 0.8, 0.5]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(p_parameters, n_parameters,\n" + "... linestyles))\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> for parameter_set in parameters_list:\n" + "... p, n, style = parameter_set\n" + "... nbdtr_vals = nbdtr(k, n, p)\n" + "... ax.plot(k, nbdtr_vals, label=rf\"$n={n},\\, p={p}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$k$\")\n" + ">>> ax.set_title(\"Negative binomial cumulative distribution function\")\n" + ">>> plt.show()\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. Using `nbdtr` directly can be much faster than\n" + "calling the ``cdf`` method of `scipy.stats.nbinom`, especially for small\n" + "arrays or individual values. To get the same results one must use the\n" + "following parametrization: ``nbinom(n, p).cdf(k)=nbdtr(k, n, p)``.\n" + "\n" + ">>> from scipy.stats import nbinom\n" + ">>> k, n, p = 5, 3, 0.5\n" + ">>> nbdtr_res = nbdtr(k, n, p) # this will often be faster than below\n" + ">>> stats_res = nbinom(n, p).cdf(k)\n" + ">>> stats_res, nbdtr_res # test that results are equal\n" + "(0.85546875, 0.85546875)\n" + "\n" + "`nbdtr` can evaluate different parameter sets by providing arrays with\n" + "shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute\n" + "the function for three different `k` at four locations `p`, resulting in\n" + "a 3x4 array.\n" + "\n" + ">>> k = np.array([[5], [10], [15]])\n" + ">>> p = np.array([0.3, 0.5, 0.7, 0.9])\n" + ">>> k.shape, p.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> nbdtr(k, 5, p)\n" + "array([[0.15026833, 0.62304687, 0.95265101, 0.9998531 ],\n" + " [0.48450894, 0.94076538, 0.99932777, 0.99999999],\n" + " [0.76249222, 0.99409103, 0.99999445, 1. ]])") +ufunc_nbdtr_loops[0] = loop_d_iid__As_lld_d +ufunc_nbdtr_loops[1] = loop_d_ddd__As_fff_f +ufunc_nbdtr_loops[2] = loop_d_ddd__As_ddd_d +ufunc_nbdtr_types[0] = NPY_LONG +ufunc_nbdtr_types[1] = NPY_LONG +ufunc_nbdtr_types[2] = NPY_DOUBLE +ufunc_nbdtr_types[3] = NPY_DOUBLE +ufunc_nbdtr_types[4] = NPY_FLOAT +ufunc_nbdtr_types[5] = NPY_FLOAT +ufunc_nbdtr_types[6] = NPY_FLOAT +ufunc_nbdtr_types[7] = NPY_FLOAT +ufunc_nbdtr_types[8] = NPY_DOUBLE +ufunc_nbdtr_types[9] = NPY_DOUBLE +ufunc_nbdtr_types[10] = NPY_DOUBLE +ufunc_nbdtr_types[11] = NPY_DOUBLE +ufunc_nbdtr_ptr[2*0] = _func_nbdtr +ufunc_nbdtr_ptr[2*0+1] = ("nbdtr") +ufunc_nbdtr_ptr[2*1] = _func_nbdtr_unsafe +ufunc_nbdtr_ptr[2*1+1] = ("nbdtr") +ufunc_nbdtr_ptr[2*2] = _func_nbdtr_unsafe +ufunc_nbdtr_ptr[2*2+1] = ("nbdtr") +ufunc_nbdtr_data[0] = &ufunc_nbdtr_ptr[2*0] +ufunc_nbdtr_data[1] = &ufunc_nbdtr_ptr[2*1] +ufunc_nbdtr_data[2] = &ufunc_nbdtr_ptr[2*2] +nbdtr = np.PyUFunc_FromFuncAndData(ufunc_nbdtr_loops, ufunc_nbdtr_data, ufunc_nbdtr_types, 3, 3, 1, 0, "nbdtr", ufunc_nbdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nbdtrc_loops[3] +cdef void *ufunc_nbdtrc_ptr[6] +cdef void *ufunc_nbdtrc_data[3] +cdef char ufunc_nbdtrc_types[12] +cdef char *ufunc_nbdtrc_doc = ( + "nbdtrc(k, n, p, out=None)\n" + "\n" + "Negative binomial survival function.\n" + "\n" + "Returns the sum of the terms `k + 1` to infinity of the negative binomial\n" + "distribution probability mass function,\n" + "\n" + ".. math::\n" + "\n" + " F = \\sum_{j=k + 1}^\\infty {{n + j - 1}\\choose{j}} p^n (1 - p)^j.\n" + "\n" + "In a sequence of Bernoulli trials with individual success probabilities\n" + "`p`, this is the probability that more than `k` failures precede the nth\n" + "success.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " The maximum number of allowed failures (nonnegative int).\n" + "n : array_like\n" + " The target number of successes (positive int).\n" + "p : array_like\n" + " Probability of success in a single event (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "F : scalar or ndarray\n" + " The probability of `k + 1` or more failures before `n` successes in a\n" + " sequence of events with individual success probability `p`.\n" + "\n" + "See Also\n" + "--------\n" + "nbdtr : Negative binomial cumulative distribution function\n" + "nbdtrik : Negative binomial percentile function\n" + "scipy.stats.nbinom : Negative binomial distribution\n" + "\n" + "Notes\n" + "-----\n" + "If floating point values are passed for `k` or `n`, they will be truncated\n" + "to integers.\n" + "\n" + "The terms are not summed directly; instead the regularized incomplete beta\n" + "function is employed, according to the formula,\n" + "\n" + ".. math::\n" + " \\mathrm{nbdtrc}(k, n, p) = I_{1 - p}(k + 1, n).\n" + "\n" + "Wrapper for the Cephes [1]_ routine `nbdtrc`.\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. Using `nbdtrc` directly can improve performance\n" + "compared to the ``sf`` method of `scipy.stats.nbinom` (see last example).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Compute the function for ``k=10`` and ``n=5`` at ``p=0.5``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import nbdtrc\n" + ">>> nbdtrc(10, 5, 0.5)\n" + "0.059234619140624986\n" + "\n" + "Compute the function for ``n=10`` and ``p=0.5`` at several points by\n" + "providing a NumPy array or list for `k`.\n" + "\n" + ">>> nbdtrc([5, 10, 15], 10, 0.5)\n" + "array([0.84912109, 0.41190147, 0.11476147])\n" + "\n" + "Plot the function for four different parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> k = np.arange(130)\n" + ">>> n_parameters = [20, 20, 20, 80]\n" + ">>> p_parameters = [0.2, 0.5, 0.8, 0.5]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(p_parameters, n_parameters,\n" + "... linestyles))\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> for parameter_set in parameters_list:\n" + "... p, n, style = parameter_set\n" + "... nbdtrc_vals = nbdtrc(k, n, p)\n" + "... ax.plot(k, nbdtrc_vals, label=rf\"$n={n},\\, p={p}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_xlabel(\"$k$\")\n" + ">>> ax.set_title(\"Negative binomial distribution survival function\")\n" + ">>> plt.show()\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. Using `nbdtrc` directly can be much faster than\n" + "calling the ``sf`` method of `scipy.stats.nbinom`, especially for small\n" + "arrays or individual values. To get the same results one must use the\n" + "following parametrization: ``nbinom(n, p).sf(k)=nbdtrc(k, n, p)``.\n" + "\n" + ">>> from scipy.stats import nbinom\n" + ">>> k, n, p = 3, 5, 0.5\n" + ">>> nbdtr_res = nbdtrc(k, n, p) # this will often be faster than below\n" + ">>> stats_res = nbinom(n, p).sf(k)\n" + ">>> stats_res, nbdtr_res # test that results are equal\n" + "(0.6367187499999999, 0.6367187499999999)\n" + "\n" + "`nbdtrc` can evaluate different parameter sets by providing arrays with\n" + "shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute\n" + "the function for three different `k` at four locations `p`, resulting in\n" + "a 3x4 array.\n" + "\n" + ">>> k = np.array([[5], [10], [15]])\n" + ">>> p = np.array([0.3, 0.5, 0.7, 0.9])\n" + ">>> k.shape, p.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> nbdtrc(k, 5, p)\n" + "array([[8.49731667e-01, 3.76953125e-01, 4.73489874e-02, 1.46902600e-04],\n" + " [5.15491059e-01, 5.92346191e-02, 6.72234070e-04, 9.29610100e-09],\n" + " [2.37507779e-01, 5.90896606e-03, 5.55025308e-06, 3.26346760e-13]])") +ufunc_nbdtrc_loops[0] = loop_d_iid__As_lld_d +ufunc_nbdtrc_loops[1] = loop_d_ddd__As_fff_f +ufunc_nbdtrc_loops[2] = loop_d_ddd__As_ddd_d +ufunc_nbdtrc_types[0] = NPY_LONG +ufunc_nbdtrc_types[1] = NPY_LONG +ufunc_nbdtrc_types[2] = NPY_DOUBLE +ufunc_nbdtrc_types[3] = NPY_DOUBLE +ufunc_nbdtrc_types[4] = NPY_FLOAT +ufunc_nbdtrc_types[5] = NPY_FLOAT +ufunc_nbdtrc_types[6] = NPY_FLOAT +ufunc_nbdtrc_types[7] = NPY_FLOAT +ufunc_nbdtrc_types[8] = NPY_DOUBLE +ufunc_nbdtrc_types[9] = NPY_DOUBLE +ufunc_nbdtrc_types[10] = NPY_DOUBLE +ufunc_nbdtrc_types[11] = NPY_DOUBLE +ufunc_nbdtrc_ptr[2*0] = _func_nbdtrc +ufunc_nbdtrc_ptr[2*0+1] = ("nbdtrc") +ufunc_nbdtrc_ptr[2*1] = _func_nbdtrc_unsafe +ufunc_nbdtrc_ptr[2*1+1] = ("nbdtrc") +ufunc_nbdtrc_ptr[2*2] = _func_nbdtrc_unsafe +ufunc_nbdtrc_ptr[2*2+1] = ("nbdtrc") +ufunc_nbdtrc_data[0] = &ufunc_nbdtrc_ptr[2*0] +ufunc_nbdtrc_data[1] = &ufunc_nbdtrc_ptr[2*1] +ufunc_nbdtrc_data[2] = &ufunc_nbdtrc_ptr[2*2] +nbdtrc = np.PyUFunc_FromFuncAndData(ufunc_nbdtrc_loops, ufunc_nbdtrc_data, ufunc_nbdtrc_types, 3, 3, 1, 0, "nbdtrc", ufunc_nbdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nbdtri_loops[3] +cdef void *ufunc_nbdtri_ptr[6] +cdef void *ufunc_nbdtri_data[3] +cdef char ufunc_nbdtri_types[12] +cdef char *ufunc_nbdtri_doc = ( + "nbdtri(k, n, y, out=None)\n" + "\n" + "Returns the inverse with respect to the parameter `p` of\n" + "`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution\n" + "function.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " The maximum number of allowed failures (nonnegative int).\n" + "n : array_like\n" + " The target number of successes (positive int).\n" + "y : array_like\n" + " The probability of `k` or fewer failures before `n` successes (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "p : scalar or ndarray\n" + " Probability of success in a single event (float) such that\n" + " `nbdtr(k, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "nbdtr : Cumulative distribution function of the negative binomial.\n" + "nbdtrc : Negative binomial survival function.\n" + "scipy.stats.nbinom : negative binomial distribution.\n" + "nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.\n" + "nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.\n" + "scipy.stats.nbinom : Negative binomial distribution\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `nbdtri`.\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. Using `nbdtri` directly can improve performance\n" + "compared to the ``ppf`` method of `scipy.stats.nbinom`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "`nbdtri` is the inverse of `nbdtr` with respect to `p`.\n" + "Up to floating point errors the following holds:\n" + "``nbdtri(k, n, nbdtr(k, n, p))=p``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import nbdtri, nbdtr\n" + ">>> k, n, y = 5, 10, 0.2\n" + ">>> cdf_val = nbdtr(k, n, y)\n" + ">>> nbdtri(k, n, cdf_val)\n" + "0.20000000000000004\n" + "\n" + "Compute the function for ``k=10`` and ``n=5`` at several points by\n" + "providing a NumPy array or list for `y`.\n" + "\n" + ">>> y = np.array([0.1, 0.4, 0.8])\n" + ">>> nbdtri(3, 5, y)\n" + "array([0.34462319, 0.51653095, 0.69677416])\n" + "\n" + "Plot the function for three different parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> n_parameters = [5, 20, 30, 30]\n" + ">>> k_parameters = [20, 20, 60, 80]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(n_parameters, k_parameters, linestyles))\n" + ">>> cdf_vals = np.linspace(0, 1, 1000)\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> for parameter_set in parameters_list:\n" + "... n, k, style = parameter_set\n" + "... nbdtri_vals = nbdtri(k, n, cdf_vals)\n" + "... ax.plot(cdf_vals, nbdtri_vals, label=rf\"$k={k},\\ n={n}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_ylabel(\"$p$\")\n" + ">>> ax.set_xlabel(\"$CDF$\")\n" + ">>> title = \"nbdtri: inverse of negative binomial CDF with respect to $p$\"\n" + ">>> ax.set_title(title)\n" + ">>> plt.show()\n" + "\n" + "`nbdtri` can evaluate different parameter sets by providing arrays with\n" + "shapes compatible for broadcasting for `k`, `n` and `p`. Here we compute\n" + "the function for three different `k` at four locations `p`, resulting in\n" + "a 3x4 array.\n" + "\n" + ">>> k = np.array([[5], [10], [15]])\n" + ">>> y = np.array([0.3, 0.5, 0.7, 0.9])\n" + ">>> k.shape, y.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> nbdtri(k, 5, y)\n" + "array([[0.37258157, 0.45169416, 0.53249956, 0.64578407],\n" + " [0.24588501, 0.30451981, 0.36778453, 0.46397088],\n" + " [0.18362101, 0.22966758, 0.28054743, 0.36066188]])") +ufunc_nbdtri_loops[0] = loop_d_iid__As_lld_d +ufunc_nbdtri_loops[1] = loop_d_ddd__As_fff_f +ufunc_nbdtri_loops[2] = loop_d_ddd__As_ddd_d +ufunc_nbdtri_types[0] = NPY_LONG +ufunc_nbdtri_types[1] = NPY_LONG +ufunc_nbdtri_types[2] = NPY_DOUBLE +ufunc_nbdtri_types[3] = NPY_DOUBLE +ufunc_nbdtri_types[4] = NPY_FLOAT +ufunc_nbdtri_types[5] = NPY_FLOAT +ufunc_nbdtri_types[6] = NPY_FLOAT +ufunc_nbdtri_types[7] = NPY_FLOAT +ufunc_nbdtri_types[8] = NPY_DOUBLE +ufunc_nbdtri_types[9] = NPY_DOUBLE +ufunc_nbdtri_types[10] = NPY_DOUBLE +ufunc_nbdtri_types[11] = NPY_DOUBLE +ufunc_nbdtri_ptr[2*0] = _func_nbdtri +ufunc_nbdtri_ptr[2*0+1] = ("nbdtri") +ufunc_nbdtri_ptr[2*1] = _func_nbdtri_unsafe +ufunc_nbdtri_ptr[2*1+1] = ("nbdtri") +ufunc_nbdtri_ptr[2*2] = _func_nbdtri_unsafe +ufunc_nbdtri_ptr[2*2+1] = ("nbdtri") +ufunc_nbdtri_data[0] = &ufunc_nbdtri_ptr[2*0] +ufunc_nbdtri_data[1] = &ufunc_nbdtri_ptr[2*1] +ufunc_nbdtri_data[2] = &ufunc_nbdtri_ptr[2*2] +nbdtri = np.PyUFunc_FromFuncAndData(ufunc_nbdtri_loops, ufunc_nbdtri_data, ufunc_nbdtri_types, 3, 3, 1, 0, "nbdtri", ufunc_nbdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nbdtrik_loops[2] +cdef void *ufunc_nbdtrik_ptr[4] +cdef void *ufunc_nbdtrik_data[2] +cdef char ufunc_nbdtrik_types[8] +cdef char *ufunc_nbdtrik_doc = ( + "nbdtrik(y, n, p, out=None)\n" + "\n" + "Negative binomial percentile function.\n" + "\n" + "Returns the inverse with respect to the parameter `k` of\n" + "`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution\n" + "function.\n" + "\n" + "Parameters\n" + "----------\n" + "y : array_like\n" + " The probability of `k` or fewer failures before `n` successes (float).\n" + "n : array_like\n" + " The target number of successes (positive int).\n" + "p : array_like\n" + " Probability of success in a single event (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "k : scalar or ndarray\n" + " The maximum number of allowed failures such that `nbdtr(k, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "nbdtr : Cumulative distribution function of the negative binomial.\n" + "nbdtrc : Survival function of the negative binomial.\n" + "nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.\n" + "nbdtrin : Inverse with respect to `n` of `nbdtr(k, n, p)`.\n" + "scipy.stats.nbinom : Negative binomial distribution\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.\n" + "\n" + "Formula 26.5.26 of [2]_,\n" + "\n" + ".. math::\n" + " \\sum_{j=k + 1}^\\infty {{n + j - 1}\n" + " \\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),\n" + "\n" + "is used to reduce calculation of the cumulative distribution function to\n" + "that of a regularized incomplete beta :math:`I`.\n" + "\n" + "Computation of `k` involves a search for a value that produces the desired\n" + "value of `y`. The search relies on the monotonicity of `y` with `k`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + "Compute the negative binomial cumulative distribution function for an\n" + "exemplary parameter set.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import nbdtr, nbdtrik\n" + ">>> k, n, p = 5, 2, 0.5\n" + ">>> cdf_value = nbdtr(k, n, p)\n" + ">>> cdf_value\n" + "0.9375\n" + "\n" + "Verify that `nbdtrik` recovers the original value for `k`.\n" + "\n" + ">>> nbdtrik(cdf_value, n, p)\n" + "5.0\n" + "\n" + "Plot the function for different parameter sets.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> p_parameters = [0.2, 0.5, 0.7, 0.5]\n" + ">>> n_parameters = [30, 30, 30, 80]\n" + ">>> linestyles = ['solid', 'dashed', 'dotted', 'dashdot']\n" + ">>> parameters_list = list(zip(p_parameters, n_parameters, linestyles))\n" + ">>> cdf_vals = np.linspace(0, 1, 1000)\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> for parameter_set in parameters_list:\n" + "... p, n, style = parameter_set\n" + "... nbdtrik_vals = nbdtrik(cdf_vals, n, p)\n" + "... ax.plot(cdf_vals, nbdtrik_vals, label=rf\"$n={n},\\ p={p}$\",\n" + "... ls=style)\n" + ">>> ax.legend()\n" + ">>> ax.set_ylabel(\"$k$\")\n" + ">>> ax.set_xlabel(\"$CDF$\")\n" + ">>> ax.set_title(\"Negative binomial percentile function\")\n" + ">>> plt.show()\n" + "\n" + "The negative binomial distribution is also available as\n" + "`scipy.stats.nbinom`. The percentile function method ``ppf``\n" + "returns the result of `nbdtrik` rounded up to integers:\n" + "\n" + ">>> from scipy.stats import nbinom\n" + ">>> q, n, p = 0.6, 5, 0.5\n" + ">>> nbinom.ppf(q, n, p), nbdtrik(q, n, p)\n" + "(5.0, 4.800428460273882)") +ufunc_nbdtrik_loops[0] = loop_d_ddd__As_fff_f +ufunc_nbdtrik_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nbdtrik_types[0] = NPY_FLOAT +ufunc_nbdtrik_types[1] = NPY_FLOAT +ufunc_nbdtrik_types[2] = NPY_FLOAT +ufunc_nbdtrik_types[3] = NPY_FLOAT +ufunc_nbdtrik_types[4] = NPY_DOUBLE +ufunc_nbdtrik_types[5] = NPY_DOUBLE +ufunc_nbdtrik_types[6] = NPY_DOUBLE +ufunc_nbdtrik_types[7] = NPY_DOUBLE +ufunc_nbdtrik_ptr[2*0] = _func_nbdtrik +ufunc_nbdtrik_ptr[2*0+1] = ("nbdtrik") +ufunc_nbdtrik_ptr[2*1] = _func_nbdtrik +ufunc_nbdtrik_ptr[2*1+1] = ("nbdtrik") +ufunc_nbdtrik_data[0] = &ufunc_nbdtrik_ptr[2*0] +ufunc_nbdtrik_data[1] = &ufunc_nbdtrik_ptr[2*1] +nbdtrik = np.PyUFunc_FromFuncAndData(ufunc_nbdtrik_loops, ufunc_nbdtrik_data, ufunc_nbdtrik_types, 2, 3, 1, 0, "nbdtrik", ufunc_nbdtrik_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nbdtrin_loops[2] +cdef void *ufunc_nbdtrin_ptr[4] +cdef void *ufunc_nbdtrin_data[2] +cdef char ufunc_nbdtrin_types[8] +cdef char *ufunc_nbdtrin_doc = ( + "nbdtrin(k, y, p, out=None)\n" + "\n" + "Inverse of `nbdtr` vs `n`.\n" + "\n" + "Returns the inverse with respect to the parameter `n` of\n" + "`y = nbdtr(k, n, p)`, the negative binomial cumulative distribution\n" + "function.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " The maximum number of allowed failures (nonnegative int).\n" + "y : array_like\n" + " The probability of `k` or fewer failures before `n` successes (float).\n" + "p : array_like\n" + " Probability of success in a single event (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "n : scalar or ndarray\n" + " The number of successes `n` such that `nbdtr(k, n, p) = y`.\n" + "\n" + "See Also\n" + "--------\n" + "nbdtr : Cumulative distribution function of the negative binomial.\n" + "nbdtri : Inverse with respect to `p` of `nbdtr(k, n, p)`.\n" + "nbdtrik : Inverse with respect to `k` of `nbdtr(k, n, p)`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdfnbn`.\n" + "\n" + "Formula 26.5.26 of [2]_,\n" + "\n" + ".. math::\n" + " \\sum_{j=k + 1}^\\infty {{n + j - 1}\n" + " \\choose{j}} p^n (1 - p)^j = I_{1 - p}(k + 1, n),\n" + "\n" + "is used to reduce calculation of the cumulative distribution function to\n" + "that of a regularized incomplete beta :math:`I`.\n" + "\n" + "Computation of `n` involves a search for a value that produces the desired\n" + "value of `y`. The search relies on the monotonicity of `y` with `n`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + "Compute the negative binomial cumulative distribution function for an\n" + "exemplary parameter set.\n" + "\n" + ">>> from scipy.special import nbdtr, nbdtrin\n" + ">>> k, n, p = 5, 2, 0.5\n" + ">>> cdf_value = nbdtr(k, n, p)\n" + ">>> cdf_value\n" + "0.9375\n" + "\n" + "Verify that `nbdtrin` recovers the original value for `n` up to floating\n" + "point accuracy.\n" + "\n" + ">>> nbdtrin(k, cdf_value, p)\n" + "1.999999999998137") +ufunc_nbdtrin_loops[0] = loop_d_ddd__As_fff_f +ufunc_nbdtrin_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nbdtrin_types[0] = NPY_FLOAT +ufunc_nbdtrin_types[1] = NPY_FLOAT +ufunc_nbdtrin_types[2] = NPY_FLOAT +ufunc_nbdtrin_types[3] = NPY_FLOAT +ufunc_nbdtrin_types[4] = NPY_DOUBLE +ufunc_nbdtrin_types[5] = NPY_DOUBLE +ufunc_nbdtrin_types[6] = NPY_DOUBLE +ufunc_nbdtrin_types[7] = NPY_DOUBLE +ufunc_nbdtrin_ptr[2*0] = _func_nbdtrin +ufunc_nbdtrin_ptr[2*0+1] = ("nbdtrin") +ufunc_nbdtrin_ptr[2*1] = _func_nbdtrin +ufunc_nbdtrin_ptr[2*1+1] = ("nbdtrin") +ufunc_nbdtrin_data[0] = &ufunc_nbdtrin_ptr[2*0] +ufunc_nbdtrin_data[1] = &ufunc_nbdtrin_ptr[2*1] +nbdtrin = np.PyUFunc_FromFuncAndData(ufunc_nbdtrin_loops, ufunc_nbdtrin_data, ufunc_nbdtrin_types, 2, 3, 1, 0, "nbdtrin", ufunc_nbdtrin_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ncfdtr_loops[2] +cdef void *ufunc_ncfdtr_ptr[4] +cdef void *ufunc_ncfdtr_data[2] +cdef char ufunc_ncfdtr_types[10] +cdef char *ufunc_ncfdtr_doc = ( + "ncfdtr(dfn, dfd, nc, f, out=None)\n" + "\n" + "Cumulative distribution function of the non-central F distribution.\n" + "\n" + "The non-central F describes the distribution of,\n" + "\n" + ".. math::\n" + " Z = \\frac{X/d_n}{Y/d_d}\n" + "\n" + "where :math:`X` and :math:`Y` are independently distributed, with\n" + ":math:`X` distributed non-central :math:`\\chi^2` with noncentrality\n" + "parameter `nc` and :math:`d_n` degrees of freedom, and :math:`Y`\n" + "distributed :math:`\\chi^2` with :math:`d_d` degrees of freedom.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " Degrees of freedom of the numerator sum of squares. Range (0, inf).\n" + "dfd : array_like\n" + " Degrees of freedom of the denominator sum of squares. Range (0, inf).\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (0, 1e4).\n" + "f : array_like\n" + " Quantiles, i.e. the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "cdf : scalar or ndarray\n" + " The calculated CDF. If all inputs are scalar, the return will be a\n" + " float. Otherwise it will be an array.\n" + "\n" + "See Also\n" + "--------\n" + "ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.\n" + "ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.\n" + "ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.\n" + "ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the CDFLIB [1]_ Fortran routine `cdffnc`.\n" + "\n" + "The cumulative distribution function is computed using Formula 26.6.20 of\n" + "[2]_:\n" + "\n" + ".. math::\n" + " F(d_n, d_d, n_c, f) = \\sum_{j=0}^\\infty e^{-n_c/2}\n" + " \\frac{(n_c/2)^j}{j!} I_{x}(\\frac{d_n}{2} + j, \\frac{d_d}{2}),\n" + "\n" + "where :math:`I` is the regularized incomplete beta function, and\n" + ":math:`x = f d_n/(f d_n + d_d)`.\n" + "\n" + "The computation time required for this routine is proportional to the\n" + "noncentrality parameter `nc`. Very large values of this parameter can\n" + "consume immense computer resources. This is why the search range is\n" + "bounded by 10,000.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Barry Brown, James Lovato, and Kathy Russell,\n" + " CDFLIB: Library of Fortran Routines for Cumulative Distribution\n" + " Functions, Inverses, and Other Parameters.\n" + ".. [2] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> from scipy import stats\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + "Plot the CDF of the non-central F distribution, for nc=0. Compare with the\n" + "F-distribution from scipy.stats:\n" + "\n" + ">>> x = np.linspace(-1, 8, num=500)\n" + ">>> dfn = 3\n" + ">>> dfd = 2\n" + ">>> ncf_stats = stats.f.cdf(x, dfn, dfd)\n" + ">>> ncf_special = special.ncfdtr(dfn, dfd, 0, x)\n" + "\n" + ">>> fig = plt.figure()\n" + ">>> ax = fig.add_subplot(111)\n" + ">>> ax.plot(x, ncf_stats, 'b-', lw=3)\n" + ">>> ax.plot(x, ncf_special, 'r-')\n" + ">>> plt.show()") +ufunc_ncfdtr_loops[0] = loop_d_dddd__As_ffff_f +ufunc_ncfdtr_loops[1] = loop_d_dddd__As_dddd_d +ufunc_ncfdtr_types[0] = NPY_FLOAT +ufunc_ncfdtr_types[1] = NPY_FLOAT +ufunc_ncfdtr_types[2] = NPY_FLOAT +ufunc_ncfdtr_types[3] = NPY_FLOAT +ufunc_ncfdtr_types[4] = NPY_FLOAT +ufunc_ncfdtr_types[5] = NPY_DOUBLE +ufunc_ncfdtr_types[6] = NPY_DOUBLE +ufunc_ncfdtr_types[7] = NPY_DOUBLE +ufunc_ncfdtr_types[8] = NPY_DOUBLE +ufunc_ncfdtr_types[9] = NPY_DOUBLE +ufunc_ncfdtr_ptr[2*0] = _func_ncfdtr +ufunc_ncfdtr_ptr[2*0+1] = ("ncfdtr") +ufunc_ncfdtr_ptr[2*1] = _func_ncfdtr +ufunc_ncfdtr_ptr[2*1+1] = ("ncfdtr") +ufunc_ncfdtr_data[0] = &ufunc_ncfdtr_ptr[2*0] +ufunc_ncfdtr_data[1] = &ufunc_ncfdtr_ptr[2*1] +ncfdtr = np.PyUFunc_FromFuncAndData(ufunc_ncfdtr_loops, ufunc_ncfdtr_data, ufunc_ncfdtr_types, 2, 4, 1, 0, "ncfdtr", ufunc_ncfdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ncfdtri_loops[2] +cdef void *ufunc_ncfdtri_ptr[4] +cdef void *ufunc_ncfdtri_data[2] +cdef char ufunc_ncfdtri_types[10] +cdef char *ufunc_ncfdtri_doc = ( + "ncfdtri(dfn, dfd, nc, p, out=None)\n" + "\n" + "Inverse with respect to `f` of the CDF of the non-central F distribution.\n" + "\n" + "See `ncfdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " Degrees of freedom of the numerator sum of squares. Range (0, inf).\n" + "dfd : array_like\n" + " Degrees of freedom of the denominator sum of squares. Range (0, inf).\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (0, 1e4).\n" + "p : array_like\n" + " Value of the cumulative distribution function. Must be in the\n" + " range [0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "f : scalar or ndarray\n" + " Quantiles, i.e., the upper limit of integration.\n" + "\n" + "See Also\n" + "--------\n" + "ncfdtr : CDF of the non-central F distribution.\n" + "ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.\n" + "ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.\n" + "ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import ncfdtr, ncfdtri\n" + "\n" + "Compute the CDF for several values of `f`:\n" + "\n" + ">>> f = [0.5, 1, 1.5]\n" + ">>> p = ncfdtr(2, 3, 1.5, f)\n" + ">>> p\n" + "array([ 0.20782291, 0.36107392, 0.47345752])\n" + "\n" + "Compute the inverse. We recover the values of `f`, as expected:\n" + "\n" + ">>> ncfdtri(2, 3, 1.5, p)\n" + "array([ 0.5, 1. , 1.5])") +ufunc_ncfdtri_loops[0] = loop_d_dddd__As_ffff_f +ufunc_ncfdtri_loops[1] = loop_d_dddd__As_dddd_d +ufunc_ncfdtri_types[0] = NPY_FLOAT +ufunc_ncfdtri_types[1] = NPY_FLOAT +ufunc_ncfdtri_types[2] = NPY_FLOAT +ufunc_ncfdtri_types[3] = NPY_FLOAT +ufunc_ncfdtri_types[4] = NPY_FLOAT +ufunc_ncfdtri_types[5] = NPY_DOUBLE +ufunc_ncfdtri_types[6] = NPY_DOUBLE +ufunc_ncfdtri_types[7] = NPY_DOUBLE +ufunc_ncfdtri_types[8] = NPY_DOUBLE +ufunc_ncfdtri_types[9] = NPY_DOUBLE +ufunc_ncfdtri_ptr[2*0] = _func_ncfdtri +ufunc_ncfdtri_ptr[2*0+1] = ("ncfdtri") +ufunc_ncfdtri_ptr[2*1] = _func_ncfdtri +ufunc_ncfdtri_ptr[2*1+1] = ("ncfdtri") +ufunc_ncfdtri_data[0] = &ufunc_ncfdtri_ptr[2*0] +ufunc_ncfdtri_data[1] = &ufunc_ncfdtri_ptr[2*1] +ncfdtri = np.PyUFunc_FromFuncAndData(ufunc_ncfdtri_loops, ufunc_ncfdtri_data, ufunc_ncfdtri_types, 2, 4, 1, 0, "ncfdtri", ufunc_ncfdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ncfdtridfd_loops[2] +cdef void *ufunc_ncfdtridfd_ptr[4] +cdef void *ufunc_ncfdtridfd_data[2] +cdef char ufunc_ncfdtridfd_types[10] +cdef char *ufunc_ncfdtridfd_doc = ( + "ncfdtridfd(dfn, p, nc, f, out=None)\n" + "\n" + "Calculate degrees of freedom (denominator) for the noncentral F-distribution.\n" + "\n" + "This is the inverse with respect to `dfd` of `ncfdtr`.\n" + "See `ncfdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " Degrees of freedom of the numerator sum of squares. Range (0, inf).\n" + "p : array_like\n" + " Value of the cumulative distribution function. Must be in the\n" + " range [0, 1].\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (0, 1e4).\n" + "f : array_like\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "dfd : scalar or ndarray\n" + " Degrees of freedom of the denominator sum of squares.\n" + "\n" + "See Also\n" + "--------\n" + "ncfdtr : CDF of the non-central F distribution.\n" + "ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.\n" + "ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.\n" + "ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.\n" + "\n" + "Notes\n" + "-----\n" + "The value of the cumulative noncentral F distribution is not necessarily\n" + "monotone in either degrees of freedom. There thus may be two values that\n" + "provide a given CDF value. This routine assumes monotonicity and will\n" + "find an arbitrary one of the two values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import ncfdtr, ncfdtridfd\n" + "\n" + "Compute the CDF for several values of `dfd`:\n" + "\n" + ">>> dfd = [1, 2, 3]\n" + ">>> p = ncfdtr(2, dfd, 0.25, 15)\n" + ">>> p\n" + "array([ 0.8097138 , 0.93020416, 0.96787852])\n" + "\n" + "Compute the inverse. We recover the values of `dfd`, as expected:\n" + "\n" + ">>> ncfdtridfd(2, p, 0.25, 15)\n" + "array([ 1., 2., 3.])") +ufunc_ncfdtridfd_loops[0] = loop_d_dddd__As_ffff_f +ufunc_ncfdtridfd_loops[1] = loop_d_dddd__As_dddd_d +ufunc_ncfdtridfd_types[0] = NPY_FLOAT +ufunc_ncfdtridfd_types[1] = NPY_FLOAT +ufunc_ncfdtridfd_types[2] = NPY_FLOAT +ufunc_ncfdtridfd_types[3] = NPY_FLOAT +ufunc_ncfdtridfd_types[4] = NPY_FLOAT +ufunc_ncfdtridfd_types[5] = NPY_DOUBLE +ufunc_ncfdtridfd_types[6] = NPY_DOUBLE +ufunc_ncfdtridfd_types[7] = NPY_DOUBLE +ufunc_ncfdtridfd_types[8] = NPY_DOUBLE +ufunc_ncfdtridfd_types[9] = NPY_DOUBLE +ufunc_ncfdtridfd_ptr[2*0] = _func_ncfdtridfd +ufunc_ncfdtridfd_ptr[2*0+1] = ("ncfdtridfd") +ufunc_ncfdtridfd_ptr[2*1] = _func_ncfdtridfd +ufunc_ncfdtridfd_ptr[2*1+1] = ("ncfdtridfd") +ufunc_ncfdtridfd_data[0] = &ufunc_ncfdtridfd_ptr[2*0] +ufunc_ncfdtridfd_data[1] = &ufunc_ncfdtridfd_ptr[2*1] +ncfdtridfd = np.PyUFunc_FromFuncAndData(ufunc_ncfdtridfd_loops, ufunc_ncfdtridfd_data, ufunc_ncfdtridfd_types, 2, 4, 1, 0, "ncfdtridfd", ufunc_ncfdtridfd_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ncfdtridfn_loops[2] +cdef void *ufunc_ncfdtridfn_ptr[4] +cdef void *ufunc_ncfdtridfn_data[2] +cdef char ufunc_ncfdtridfn_types[10] +cdef char *ufunc_ncfdtridfn_doc = ( + "ncfdtridfn(p, dfd, nc, f, out=None)\n" + "\n" + "Calculate degrees of freedom (numerator) for the noncentral F-distribution.\n" + "\n" + "This is the inverse with respect to `dfn` of `ncfdtr`.\n" + "See `ncfdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Value of the cumulative distribution function. Must be in the\n" + " range [0, 1].\n" + "dfd : array_like\n" + " Degrees of freedom of the denominator sum of squares. Range (0, inf).\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (0, 1e4).\n" + "f : float\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "dfn : scalar or ndarray\n" + " Degrees of freedom of the numerator sum of squares.\n" + "\n" + "See Also\n" + "--------\n" + "ncfdtr : CDF of the non-central F distribution.\n" + "ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.\n" + "ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.\n" + "ncfdtrinc : Inverse of `ncfdtr` with respect to `nc`.\n" + "\n" + "Notes\n" + "-----\n" + "The value of the cumulative noncentral F distribution is not necessarily\n" + "monotone in either degrees of freedom. There thus may be two values that\n" + "provide a given CDF value. This routine assumes monotonicity and will\n" + "find an arbitrary one of the two values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import ncfdtr, ncfdtridfn\n" + "\n" + "Compute the CDF for several values of `dfn`:\n" + "\n" + ">>> dfn = [1, 2, 3]\n" + ">>> p = ncfdtr(dfn, 2, 0.25, 15)\n" + ">>> p\n" + "array([ 0.92562363, 0.93020416, 0.93188394])\n" + "\n" + "Compute the inverse. We recover the values of `dfn`, as expected:\n" + "\n" + ">>> ncfdtridfn(p, 2, 0.25, 15)\n" + "array([ 1., 2., 3.])") +ufunc_ncfdtridfn_loops[0] = loop_d_dddd__As_ffff_f +ufunc_ncfdtridfn_loops[1] = loop_d_dddd__As_dddd_d +ufunc_ncfdtridfn_types[0] = NPY_FLOAT +ufunc_ncfdtridfn_types[1] = NPY_FLOAT +ufunc_ncfdtridfn_types[2] = NPY_FLOAT +ufunc_ncfdtridfn_types[3] = NPY_FLOAT +ufunc_ncfdtridfn_types[4] = NPY_FLOAT +ufunc_ncfdtridfn_types[5] = NPY_DOUBLE +ufunc_ncfdtridfn_types[6] = NPY_DOUBLE +ufunc_ncfdtridfn_types[7] = NPY_DOUBLE +ufunc_ncfdtridfn_types[8] = NPY_DOUBLE +ufunc_ncfdtridfn_types[9] = NPY_DOUBLE +ufunc_ncfdtridfn_ptr[2*0] = _func_ncfdtridfn +ufunc_ncfdtridfn_ptr[2*0+1] = ("ncfdtridfn") +ufunc_ncfdtridfn_ptr[2*1] = _func_ncfdtridfn +ufunc_ncfdtridfn_ptr[2*1+1] = ("ncfdtridfn") +ufunc_ncfdtridfn_data[0] = &ufunc_ncfdtridfn_ptr[2*0] +ufunc_ncfdtridfn_data[1] = &ufunc_ncfdtridfn_ptr[2*1] +ncfdtridfn = np.PyUFunc_FromFuncAndData(ufunc_ncfdtridfn_loops, ufunc_ncfdtridfn_data, ufunc_ncfdtridfn_types, 2, 4, 1, 0, "ncfdtridfn", ufunc_ncfdtridfn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ncfdtrinc_loops[2] +cdef void *ufunc_ncfdtrinc_ptr[4] +cdef void *ufunc_ncfdtrinc_data[2] +cdef char ufunc_ncfdtrinc_types[10] +cdef char *ufunc_ncfdtrinc_doc = ( + "ncfdtrinc(dfn, dfd, p, f, out=None)\n" + "\n" + "Calculate non-centrality parameter for non-central F distribution.\n" + "\n" + "This is the inverse with respect to `nc` of `ncfdtr`.\n" + "See `ncfdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "dfn : array_like\n" + " Degrees of freedom of the numerator sum of squares. Range (0, inf).\n" + "dfd : array_like\n" + " Degrees of freedom of the denominator sum of squares. Range (0, inf).\n" + "p : array_like\n" + " Value of the cumulative distribution function. Must be in the\n" + " range [0, 1].\n" + "f : array_like\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "nc : scalar or ndarray\n" + " Noncentrality parameter.\n" + "\n" + "See Also\n" + "--------\n" + "ncfdtr : CDF of the non-central F distribution.\n" + "ncfdtri : Quantile function; inverse of `ncfdtr` with respect to `f`.\n" + "ncfdtridfd : Inverse of `ncfdtr` with respect to `dfd`.\n" + "ncfdtridfn : Inverse of `ncfdtr` with respect to `dfn`.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import ncfdtr, ncfdtrinc\n" + "\n" + "Compute the CDF for several values of `nc`:\n" + "\n" + ">>> nc = [0.5, 1.5, 2.0]\n" + ">>> p = ncfdtr(2, 3, nc, 15)\n" + ">>> p\n" + "array([ 0.96309246, 0.94327955, 0.93304098])\n" + "\n" + "Compute the inverse. We recover the values of `nc`, as expected:\n" + "\n" + ">>> ncfdtrinc(2, 3, p, 15)\n" + "array([ 0.5, 1.5, 2. ])") +ufunc_ncfdtrinc_loops[0] = loop_d_dddd__As_ffff_f +ufunc_ncfdtrinc_loops[1] = loop_d_dddd__As_dddd_d +ufunc_ncfdtrinc_types[0] = NPY_FLOAT +ufunc_ncfdtrinc_types[1] = NPY_FLOAT +ufunc_ncfdtrinc_types[2] = NPY_FLOAT +ufunc_ncfdtrinc_types[3] = NPY_FLOAT +ufunc_ncfdtrinc_types[4] = NPY_FLOAT +ufunc_ncfdtrinc_types[5] = NPY_DOUBLE +ufunc_ncfdtrinc_types[6] = NPY_DOUBLE +ufunc_ncfdtrinc_types[7] = NPY_DOUBLE +ufunc_ncfdtrinc_types[8] = NPY_DOUBLE +ufunc_ncfdtrinc_types[9] = NPY_DOUBLE +ufunc_ncfdtrinc_ptr[2*0] = _func_ncfdtrinc +ufunc_ncfdtrinc_ptr[2*0+1] = ("ncfdtrinc") +ufunc_ncfdtrinc_ptr[2*1] = _func_ncfdtrinc +ufunc_ncfdtrinc_ptr[2*1+1] = ("ncfdtrinc") +ufunc_ncfdtrinc_data[0] = &ufunc_ncfdtrinc_ptr[2*0] +ufunc_ncfdtrinc_data[1] = &ufunc_ncfdtrinc_ptr[2*1] +ncfdtrinc = np.PyUFunc_FromFuncAndData(ufunc_ncfdtrinc_loops, ufunc_ncfdtrinc_data, ufunc_ncfdtrinc_types, 2, 4, 1, 0, "ncfdtrinc", ufunc_ncfdtrinc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nctdtr_loops[2] +cdef void *ufunc_nctdtr_ptr[4] +cdef void *ufunc_nctdtr_data[2] +cdef char ufunc_nctdtr_types[8] +cdef char *ufunc_nctdtr_doc = ( + "nctdtr(df, nc, t, out=None)\n" + "\n" + "Cumulative distribution function of the non-central `t` distribution.\n" + "\n" + "Parameters\n" + "----------\n" + "df : array_like\n" + " Degrees of freedom of the distribution. Should be in range (0, inf).\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (-1e6, 1e6).\n" + "t : array_like\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "cdf : scalar or ndarray\n" + " The calculated CDF. If all inputs are scalar, the return will be a\n" + " float. Otherwise, it will be an array.\n" + "\n" + "See Also\n" + "--------\n" + "nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.\n" + "nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.\n" + "nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> from scipy import stats\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + "Plot the CDF of the non-central t distribution, for nc=0. Compare with the\n" + "t-distribution from scipy.stats:\n" + "\n" + ">>> x = np.linspace(-5, 5, num=500)\n" + ">>> df = 3\n" + ">>> nct_stats = stats.t.cdf(x, df)\n" + ">>> nct_special = special.nctdtr(df, 0, x)\n" + "\n" + ">>> fig = plt.figure()\n" + ">>> ax = fig.add_subplot(111)\n" + ">>> ax.plot(x, nct_stats, 'b-', lw=3)\n" + ">>> ax.plot(x, nct_special, 'r-')\n" + ">>> plt.show()") +ufunc_nctdtr_loops[0] = loop_d_ddd__As_fff_f +ufunc_nctdtr_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nctdtr_types[0] = NPY_FLOAT +ufunc_nctdtr_types[1] = NPY_FLOAT +ufunc_nctdtr_types[2] = NPY_FLOAT +ufunc_nctdtr_types[3] = NPY_FLOAT +ufunc_nctdtr_types[4] = NPY_DOUBLE +ufunc_nctdtr_types[5] = NPY_DOUBLE +ufunc_nctdtr_types[6] = NPY_DOUBLE +ufunc_nctdtr_types[7] = NPY_DOUBLE +ufunc_nctdtr_ptr[2*0] = _func_nctdtr +ufunc_nctdtr_ptr[2*0+1] = ("nctdtr") +ufunc_nctdtr_ptr[2*1] = _func_nctdtr +ufunc_nctdtr_ptr[2*1+1] = ("nctdtr") +ufunc_nctdtr_data[0] = &ufunc_nctdtr_ptr[2*0] +ufunc_nctdtr_data[1] = &ufunc_nctdtr_ptr[2*1] +nctdtr = np.PyUFunc_FromFuncAndData(ufunc_nctdtr_loops, ufunc_nctdtr_data, ufunc_nctdtr_types, 2, 3, 1, 0, "nctdtr", ufunc_nctdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nctdtridf_loops[2] +cdef void *ufunc_nctdtridf_ptr[4] +cdef void *ufunc_nctdtridf_data[2] +cdef char ufunc_nctdtridf_types[8] +cdef char *ufunc_nctdtridf_doc = ( + "nctdtridf(p, nc, t, out=None)\n" + "\n" + "Calculate degrees of freedom for non-central t distribution.\n" + "\n" + "See `nctdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " CDF values, in range (0, 1].\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (-1e6, 1e6).\n" + "t : array_like\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "df : scalar or ndarray\n" + " The degrees of freedom. If all inputs are scalar, the return will be a\n" + " float. Otherwise, it will be an array.\n" + "\n" + "See Also\n" + "--------\n" + "nctdtr : CDF of the non-central `t` distribution.\n" + "nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.\n" + "nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import nctdtr, nctdtridf\n" + "\n" + "Compute the CDF for several values of `df`:\n" + "\n" + ">>> df = [1, 2, 3]\n" + ">>> p = nctdtr(df, 0.25, 1)\n" + ">>> p\n" + "array([0.67491974, 0.716464 , 0.73349456])\n" + "\n" + "Compute the inverse. We recover the values of `df`, as expected:\n" + "\n" + ">>> nctdtridf(p, 0.25, 1)\n" + "array([1., 2., 3.])") +ufunc_nctdtridf_loops[0] = loop_d_ddd__As_fff_f +ufunc_nctdtridf_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nctdtridf_types[0] = NPY_FLOAT +ufunc_nctdtridf_types[1] = NPY_FLOAT +ufunc_nctdtridf_types[2] = NPY_FLOAT +ufunc_nctdtridf_types[3] = NPY_FLOAT +ufunc_nctdtridf_types[4] = NPY_DOUBLE +ufunc_nctdtridf_types[5] = NPY_DOUBLE +ufunc_nctdtridf_types[6] = NPY_DOUBLE +ufunc_nctdtridf_types[7] = NPY_DOUBLE +ufunc_nctdtridf_ptr[2*0] = _func_nctdtridf +ufunc_nctdtridf_ptr[2*0+1] = ("nctdtridf") +ufunc_nctdtridf_ptr[2*1] = _func_nctdtridf +ufunc_nctdtridf_ptr[2*1+1] = ("nctdtridf") +ufunc_nctdtridf_data[0] = &ufunc_nctdtridf_ptr[2*0] +ufunc_nctdtridf_data[1] = &ufunc_nctdtridf_ptr[2*1] +nctdtridf = np.PyUFunc_FromFuncAndData(ufunc_nctdtridf_loops, ufunc_nctdtridf_data, ufunc_nctdtridf_types, 2, 3, 1, 0, "nctdtridf", ufunc_nctdtridf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nctdtrinc_loops[2] +cdef void *ufunc_nctdtrinc_ptr[4] +cdef void *ufunc_nctdtrinc_data[2] +cdef char ufunc_nctdtrinc_types[8] +cdef char *ufunc_nctdtrinc_doc = ( + "nctdtrinc(df, p, t, out=None)\n" + "\n" + "Calculate non-centrality parameter for non-central t distribution.\n" + "\n" + "See `nctdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "df : array_like\n" + " Degrees of freedom of the distribution. Should be in range (0, inf).\n" + "p : array_like\n" + " CDF values, in range (0, 1].\n" + "t : array_like\n" + " Quantiles, i.e., the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "nc : scalar or ndarray\n" + " Noncentrality parameter\n" + "\n" + "See Also\n" + "--------\n" + "nctdtr : CDF of the non-central `t` distribution.\n" + "nctdtrit : Inverse CDF (iCDF) of the non-central t distribution.\n" + "nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import nctdtr, nctdtrinc\n" + "\n" + "Compute the CDF for several values of `nc`:\n" + "\n" + ">>> nc = [0.5, 1.5, 2.5]\n" + ">>> p = nctdtr(3, nc, 1.5)\n" + ">>> p\n" + "array([0.77569497, 0.45524533, 0.1668691 ])\n" + "\n" + "Compute the inverse. We recover the values of `nc`, as expected:\n" + "\n" + ">>> nctdtrinc(3, p, 1.5)\n" + "array([0.5, 1.5, 2.5])") +ufunc_nctdtrinc_loops[0] = loop_d_ddd__As_fff_f +ufunc_nctdtrinc_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nctdtrinc_types[0] = NPY_FLOAT +ufunc_nctdtrinc_types[1] = NPY_FLOAT +ufunc_nctdtrinc_types[2] = NPY_FLOAT +ufunc_nctdtrinc_types[3] = NPY_FLOAT +ufunc_nctdtrinc_types[4] = NPY_DOUBLE +ufunc_nctdtrinc_types[5] = NPY_DOUBLE +ufunc_nctdtrinc_types[6] = NPY_DOUBLE +ufunc_nctdtrinc_types[7] = NPY_DOUBLE +ufunc_nctdtrinc_ptr[2*0] = _func_nctdtrinc +ufunc_nctdtrinc_ptr[2*0+1] = ("nctdtrinc") +ufunc_nctdtrinc_ptr[2*1] = _func_nctdtrinc +ufunc_nctdtrinc_ptr[2*1+1] = ("nctdtrinc") +ufunc_nctdtrinc_data[0] = &ufunc_nctdtrinc_ptr[2*0] +ufunc_nctdtrinc_data[1] = &ufunc_nctdtrinc_ptr[2*1] +nctdtrinc = np.PyUFunc_FromFuncAndData(ufunc_nctdtrinc_loops, ufunc_nctdtrinc_data, ufunc_nctdtrinc_types, 2, 3, 1, 0, "nctdtrinc", ufunc_nctdtrinc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nctdtrit_loops[2] +cdef void *ufunc_nctdtrit_ptr[4] +cdef void *ufunc_nctdtrit_data[2] +cdef char ufunc_nctdtrit_types[8] +cdef char *ufunc_nctdtrit_doc = ( + "nctdtrit(df, nc, p, out=None)\n" + "\n" + "Inverse cumulative distribution function of the non-central t distribution.\n" + "\n" + "See `nctdtr` for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "df : array_like\n" + " Degrees of freedom of the distribution. Should be in range (0, inf).\n" + "nc : array_like\n" + " Noncentrality parameter. Should be in range (-1e6, 1e6).\n" + "p : array_like\n" + " CDF values, in range (0, 1].\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "t : scalar or ndarray\n" + " Quantiles\n" + "\n" + "See Also\n" + "--------\n" + "nctdtr : CDF of the non-central `t` distribution.\n" + "nctdtridf : Calculate degrees of freedom, given CDF and iCDF values.\n" + "nctdtrinc : Calculate non-centrality parameter, given CDF iCDF values.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import nctdtr, nctdtrit\n" + "\n" + "Compute the CDF for several values of `t`:\n" + "\n" + ">>> t = [0.5, 1, 1.5]\n" + ">>> p = nctdtr(3, 1, t)\n" + ">>> p\n" + "array([0.29811049, 0.46922687, 0.6257559 ])\n" + "\n" + "Compute the inverse. We recover the values of `t`, as expected:\n" + "\n" + ">>> nctdtrit(3, 1, p)\n" + "array([0.5, 1. , 1.5])") +ufunc_nctdtrit_loops[0] = loop_d_ddd__As_fff_f +ufunc_nctdtrit_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nctdtrit_types[0] = NPY_FLOAT +ufunc_nctdtrit_types[1] = NPY_FLOAT +ufunc_nctdtrit_types[2] = NPY_FLOAT +ufunc_nctdtrit_types[3] = NPY_FLOAT +ufunc_nctdtrit_types[4] = NPY_DOUBLE +ufunc_nctdtrit_types[5] = NPY_DOUBLE +ufunc_nctdtrit_types[6] = NPY_DOUBLE +ufunc_nctdtrit_types[7] = NPY_DOUBLE +ufunc_nctdtrit_ptr[2*0] = _func_nctdtrit +ufunc_nctdtrit_ptr[2*0+1] = ("nctdtrit") +ufunc_nctdtrit_ptr[2*1] = _func_nctdtrit +ufunc_nctdtrit_ptr[2*1+1] = ("nctdtrit") +ufunc_nctdtrit_data[0] = &ufunc_nctdtrit_ptr[2*0] +ufunc_nctdtrit_data[1] = &ufunc_nctdtrit_ptr[2*1] +nctdtrit = np.PyUFunc_FromFuncAndData(ufunc_nctdtrit_loops, ufunc_nctdtrit_data, ufunc_nctdtrit_types, 2, 3, 1, 0, "nctdtrit", ufunc_nctdtrit_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ndtr_loops[4] +cdef void *ufunc_ndtr_ptr[8] +cdef void *ufunc_ndtr_data[4] +cdef char ufunc_ndtr_types[8] +cdef char *ufunc_ndtr_doc = ( + "ndtr(x, out=None)\n" + "\n" + "Cumulative distribution of the standard normal distribution.\n" + "\n" + "Returns the area under the standard Gaussian probability\n" + "density function, integrated from minus infinity to `x`\n" + "\n" + ".. math::\n" + "\n" + " \\frac{1}{\\sqrt{2\\pi}} \\int_{-\\infty}^x \\exp(-t^2/2) dt\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like, real or complex\n" + " Argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value of the normal CDF evaluated at `x`\n" + "\n" + "See Also\n" + "--------\n" + "log_ndtr : Logarithm of ndtr\n" + "ndtri : Inverse of ndtr, standard normal percentile function\n" + "erf : Error function\n" + "erfc : 1 - erf\n" + "scipy.stats.norm : Normal distribution\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate `ndtr` at one point.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import ndtr\n" + ">>> ndtr(0.5)\n" + "0.6914624612740131\n" + "\n" + "Evaluate the function at several points by providing a NumPy array\n" + "or list for `x`.\n" + "\n" + ">>> ndtr([0, 0.5, 2])\n" + "array([0.5 , 0.69146246, 0.97724987])\n" + "\n" + "Plot the function.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(-5, 5, 100)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, ndtr(x))\n" + ">>> ax.set_title(r\"Standard normal cumulative distribution function $\\Phi$\")\n" + ">>> plt.show()") +ufunc_ndtr_loops[0] = loop_d_d__As_f_f +ufunc_ndtr_loops[1] = loop_d_d__As_d_d +ufunc_ndtr_loops[2] = loop_D_D__As_F_F +ufunc_ndtr_loops[3] = loop_D_D__As_D_D +ufunc_ndtr_types[0] = NPY_FLOAT +ufunc_ndtr_types[1] = NPY_FLOAT +ufunc_ndtr_types[2] = NPY_DOUBLE +ufunc_ndtr_types[3] = NPY_DOUBLE +ufunc_ndtr_types[4] = NPY_CFLOAT +ufunc_ndtr_types[5] = NPY_CFLOAT +ufunc_ndtr_types[6] = NPY_CDOUBLE +ufunc_ndtr_types[7] = NPY_CDOUBLE +ufunc_ndtr_ptr[2*0] = _func_ndtr +ufunc_ndtr_ptr[2*0+1] = ("ndtr") +ufunc_ndtr_ptr[2*1] = _func_ndtr +ufunc_ndtr_ptr[2*1+1] = ("ndtr") +ufunc_ndtr_ptr[2*2] = scipy.special._ufuncs_cxx._export_faddeeva_ndtr +ufunc_ndtr_ptr[2*2+1] = ("ndtr") +ufunc_ndtr_ptr[2*3] = scipy.special._ufuncs_cxx._export_faddeeva_ndtr +ufunc_ndtr_ptr[2*3+1] = ("ndtr") +ufunc_ndtr_data[0] = &ufunc_ndtr_ptr[2*0] +ufunc_ndtr_data[1] = &ufunc_ndtr_ptr[2*1] +ufunc_ndtr_data[2] = &ufunc_ndtr_ptr[2*2] +ufunc_ndtr_data[3] = &ufunc_ndtr_ptr[2*3] +ndtr = np.PyUFunc_FromFuncAndData(ufunc_ndtr_loops, ufunc_ndtr_data, ufunc_ndtr_types, 4, 1, 1, 0, "ndtr", ufunc_ndtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ndtri_loops[2] +cdef void *ufunc_ndtri_ptr[4] +cdef void *ufunc_ndtri_data[2] +cdef char ufunc_ndtri_types[4] +cdef char *ufunc_ndtri_doc = ( + "ndtri(y, out=None)\n" + "\n" + "Inverse of `ndtr` vs x\n" + "\n" + "Returns the argument x for which the area under the standard normal\n" + "probability density function (integrated from minus infinity to `x`)\n" + "is equal to y.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "x : scalar or ndarray\n" + " Value of x such that ``ndtr(x) == p``.\n" + "\n" + "See Also\n" + "--------\n" + "ndtr : Standard normal cumulative probability distribution\n" + "ndtri_exp : Inverse of log_ndtr\n" + "\n" + "Examples\n" + "--------\n" + "`ndtri` is the percentile function of the standard normal distribution.\n" + "This means it returns the inverse of the cumulative density `ndtr`. First,\n" + "let us compute a cumulative density value.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import ndtri, ndtr\n" + ">>> cdf_val = ndtr(2)\n" + ">>> cdf_val\n" + "0.9772498680518208\n" + "\n" + "Verify that `ndtri` yields the original value for `x` up to floating point\n" + "errors.\n" + "\n" + ">>> ndtri(cdf_val)\n" + "2.0000000000000004\n" + "\n" + "Plot the function. For that purpose, we provide a NumPy array as argument.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> x = np.linspace(0.01, 1, 200)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, ndtri(x))\n" + ">>> ax.set_title(\"Standard normal percentile function\")\n" + ">>> plt.show()") +ufunc_ndtri_loops[0] = loop_d_d__As_f_f +ufunc_ndtri_loops[1] = loop_d_d__As_d_d +ufunc_ndtri_types[0] = NPY_FLOAT +ufunc_ndtri_types[1] = NPY_FLOAT +ufunc_ndtri_types[2] = NPY_DOUBLE +ufunc_ndtri_types[3] = NPY_DOUBLE +ufunc_ndtri_ptr[2*0] = _func_ndtri +ufunc_ndtri_ptr[2*0+1] = ("ndtri") +ufunc_ndtri_ptr[2*1] = _func_ndtri +ufunc_ndtri_ptr[2*1+1] = ("ndtri") +ufunc_ndtri_data[0] = &ufunc_ndtri_ptr[2*0] +ufunc_ndtri_data[1] = &ufunc_ndtri_ptr[2*1] +ndtri = np.PyUFunc_FromFuncAndData(ufunc_ndtri_loops, ufunc_ndtri_data, ufunc_ndtri_types, 2, 1, 1, 0, "ndtri", ufunc_ndtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_ndtri_exp_loops[2] +cdef void *ufunc_ndtri_exp_ptr[4] +cdef void *ufunc_ndtri_exp_data[2] +cdef char ufunc_ndtri_exp_types[4] +cdef char *ufunc_ndtri_exp_doc = ( + "ndtri_exp(y, out=None)\n" + "\n" + "Inverse of `log_ndtr` vs x. Allows for greater precision than\n" + "`ndtri` composed with `numpy.exp` for very small values of y and for\n" + "y close to 0.\n" + "\n" + "Parameters\n" + "----------\n" + "y : array_like of float\n" + " Function argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Inverse of the log CDF of the standard normal distribution, evaluated\n" + " at y.\n" + "\n" + "See Also\n" + "--------\n" + "log_ndtr : log of the standard normal cumulative distribution function\n" + "ndtr : standard normal cumulative distribution function\n" + "ndtri : standard normal percentile function\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "`ndtri_exp` agrees with the naive implementation when the latter does\n" + "not suffer from underflow.\n" + "\n" + ">>> sc.ndtri_exp(-1)\n" + "-0.33747496376420244\n" + ">>> sc.ndtri(np.exp(-1))\n" + "-0.33747496376420244\n" + "\n" + "For extreme values of y, the naive approach fails\n" + "\n" + ">>> sc.ndtri(np.exp(-800))\n" + "-inf\n" + ">>> sc.ndtri(np.exp(-1e-20))\n" + "inf\n" + "\n" + "whereas `ndtri_exp` is still able to compute the result to high precision.\n" + "\n" + ">>> sc.ndtri_exp(-800)\n" + "-39.88469483825668\n" + ">>> sc.ndtri_exp(-1e-20)\n" + "9.262340089798409") +ufunc_ndtri_exp_loops[0] = loop_d_d__As_f_f +ufunc_ndtri_exp_loops[1] = loop_d_d__As_d_d +ufunc_ndtri_exp_types[0] = NPY_FLOAT +ufunc_ndtri_exp_types[1] = NPY_FLOAT +ufunc_ndtri_exp_types[2] = NPY_DOUBLE +ufunc_ndtri_exp_types[3] = NPY_DOUBLE +ufunc_ndtri_exp_ptr[2*0] = _func_ndtri_exp +ufunc_ndtri_exp_ptr[2*0+1] = ("ndtri_exp") +ufunc_ndtri_exp_ptr[2*1] = _func_ndtri_exp +ufunc_ndtri_exp_ptr[2*1+1] = ("ndtri_exp") +ufunc_ndtri_exp_data[0] = &ufunc_ndtri_exp_ptr[2*0] +ufunc_ndtri_exp_data[1] = &ufunc_ndtri_exp_ptr[2*1] +ndtri_exp = np.PyUFunc_FromFuncAndData(ufunc_ndtri_exp_loops, ufunc_ndtri_exp_data, ufunc_ndtri_exp_types, 2, 1, 1, 0, "ndtri_exp", ufunc_ndtri_exp_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nrdtrimn_loops[2] +cdef void *ufunc_nrdtrimn_ptr[4] +cdef void *ufunc_nrdtrimn_data[2] +cdef char ufunc_nrdtrimn_types[8] +cdef char *ufunc_nrdtrimn_doc = ( + "nrdtrimn(p, std, x, out=None)\n" + "\n" + "Calculate mean of normal distribution given other params.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " CDF values, in range (0, 1].\n" + "std : array_like\n" + " Standard deviation.\n" + "x : array_like\n" + " Quantiles, i.e. the upper limit of integration.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "mn : scalar or ndarray\n" + " The mean of the normal distribution.\n" + "\n" + "See Also\n" + "--------\n" + "scipy.stats.norm : Normal distribution\n" + "ndtr : Standard normal cumulative probability distribution\n" + "ndtri : Inverse of standard normal CDF with respect to quantile\n" + "nrdtrisd : Inverse of normal distribution CDF with respect to\n" + " standard deviation\n" + "\n" + "Examples\n" + "--------\n" + "`nrdtrimn` can be used to recover the mean of a normal distribution\n" + "if we know the CDF value `p` for a given quantile `x` and the\n" + "standard deviation `std`. First, we calculate\n" + "the normal distribution CDF for an exemplary parameter set.\n" + "\n" + ">>> from scipy.stats import norm\n" + ">>> mean = 3.\n" + ">>> std = 2.\n" + ">>> x = 6.\n" + ">>> p = norm.cdf(x, loc=mean, scale=std)\n" + ">>> p\n" + "0.9331927987311419\n" + "\n" + "Verify that `nrdtrimn` returns the original value for `mean`.\n" + "\n" + ">>> from scipy.special import nrdtrimn\n" + ">>> nrdtrimn(p, std, x)\n" + "3.0000000000000004") +ufunc_nrdtrimn_loops[0] = loop_d_ddd__As_fff_f +ufunc_nrdtrimn_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nrdtrimn_types[0] = NPY_FLOAT +ufunc_nrdtrimn_types[1] = NPY_FLOAT +ufunc_nrdtrimn_types[2] = NPY_FLOAT +ufunc_nrdtrimn_types[3] = NPY_FLOAT +ufunc_nrdtrimn_types[4] = NPY_DOUBLE +ufunc_nrdtrimn_types[5] = NPY_DOUBLE +ufunc_nrdtrimn_types[6] = NPY_DOUBLE +ufunc_nrdtrimn_types[7] = NPY_DOUBLE +ufunc_nrdtrimn_ptr[2*0] = _func_nrdtrimn +ufunc_nrdtrimn_ptr[2*0+1] = ("nrdtrimn") +ufunc_nrdtrimn_ptr[2*1] = _func_nrdtrimn +ufunc_nrdtrimn_ptr[2*1+1] = ("nrdtrimn") +ufunc_nrdtrimn_data[0] = &ufunc_nrdtrimn_ptr[2*0] +ufunc_nrdtrimn_data[1] = &ufunc_nrdtrimn_ptr[2*1] +nrdtrimn = np.PyUFunc_FromFuncAndData(ufunc_nrdtrimn_loops, ufunc_nrdtrimn_data, ufunc_nrdtrimn_types, 2, 3, 1, 0, "nrdtrimn", ufunc_nrdtrimn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_nrdtrisd_loops[2] +cdef void *ufunc_nrdtrisd_ptr[4] +cdef void *ufunc_nrdtrisd_data[2] +cdef char ufunc_nrdtrisd_types[8] +cdef char *ufunc_nrdtrisd_doc = ( + "nrdtrisd(mn, p, x, out=None)\n" + "\n" + "Calculate standard deviation of normal distribution given other params.\n" + "\n" + "Parameters\n" + "----------\n" + "mn : scalar or ndarray\n" + " The mean of the normal distribution.\n" + "p : array_like\n" + " CDF values, in range (0, 1].\n" + "x : array_like\n" + " Quantiles, i.e. the upper limit of integration.\n" + "\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "std : scalar or ndarray\n" + " Standard deviation.\n" + "\n" + "See Also\n" + "--------\n" + "scipy.stats.norm : Normal distribution\n" + "ndtr : Standard normal cumulative probability distribution\n" + "ndtri : Inverse of standard normal CDF with respect to quantile\n" + "nrdtrimn : Inverse of normal distribution CDF with respect to\n" + " mean\n" + "\n" + "Examples\n" + "--------\n" + "`nrdtrisd` can be used to recover the standard deviation of a normal\n" + "distribution if we know the CDF value `p` for a given quantile `x` and\n" + "the mean `mn`. First, we calculate the normal distribution CDF for an\n" + "exemplary parameter set.\n" + "\n" + ">>> from scipy.stats import norm\n" + ">>> mean = 3.\n" + ">>> std = 2.\n" + ">>> x = 6.\n" + ">>> p = norm.cdf(x, loc=mean, scale=std)\n" + ">>> p\n" + "0.9331927987311419\n" + "\n" + "Verify that `nrdtrisd` returns the original value for `std`.\n" + "\n" + ">>> from scipy.special import nrdtrisd\n" + ">>> nrdtrisd(mean, p, x)\n" + "2.0000000000000004") +ufunc_nrdtrisd_loops[0] = loop_d_ddd__As_fff_f +ufunc_nrdtrisd_loops[1] = loop_d_ddd__As_ddd_d +ufunc_nrdtrisd_types[0] = NPY_FLOAT +ufunc_nrdtrisd_types[1] = NPY_FLOAT +ufunc_nrdtrisd_types[2] = NPY_FLOAT +ufunc_nrdtrisd_types[3] = NPY_FLOAT +ufunc_nrdtrisd_types[4] = NPY_DOUBLE +ufunc_nrdtrisd_types[5] = NPY_DOUBLE +ufunc_nrdtrisd_types[6] = NPY_DOUBLE +ufunc_nrdtrisd_types[7] = NPY_DOUBLE +ufunc_nrdtrisd_ptr[2*0] = _func_nrdtrisd +ufunc_nrdtrisd_ptr[2*0+1] = ("nrdtrisd") +ufunc_nrdtrisd_ptr[2*1] = _func_nrdtrisd +ufunc_nrdtrisd_ptr[2*1+1] = ("nrdtrisd") +ufunc_nrdtrisd_data[0] = &ufunc_nrdtrisd_ptr[2*0] +ufunc_nrdtrisd_data[1] = &ufunc_nrdtrisd_ptr[2*1] +nrdtrisd = np.PyUFunc_FromFuncAndData(ufunc_nrdtrisd_loops, ufunc_nrdtrisd_data, ufunc_nrdtrisd_types, 2, 3, 1, 0, "nrdtrisd", ufunc_nrdtrisd_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_ang1_loops[2] +cdef void *ufunc_obl_ang1_ptr[4] +cdef void *ufunc_obl_ang1_data[2] +cdef char ufunc_obl_ang1_types[12] +cdef char *ufunc_obl_ang1_doc = ( + "obl_ang1(m, n, c, x, out=None)\n" + "\n" + "Oblate spheroidal angular function of the first kind and its derivative\n" + "\n" + "Computes the oblate spheroidal angular function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_ang1_cv") +ufunc_obl_ang1_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_obl_ang1_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_obl_ang1_types[0] = NPY_FLOAT +ufunc_obl_ang1_types[1] = NPY_FLOAT +ufunc_obl_ang1_types[2] = NPY_FLOAT +ufunc_obl_ang1_types[3] = NPY_FLOAT +ufunc_obl_ang1_types[4] = NPY_FLOAT +ufunc_obl_ang1_types[5] = NPY_FLOAT +ufunc_obl_ang1_types[6] = NPY_DOUBLE +ufunc_obl_ang1_types[7] = NPY_DOUBLE +ufunc_obl_ang1_types[8] = NPY_DOUBLE +ufunc_obl_ang1_types[9] = NPY_DOUBLE +ufunc_obl_ang1_types[10] = NPY_DOUBLE +ufunc_obl_ang1_types[11] = NPY_DOUBLE +ufunc_obl_ang1_ptr[2*0] = _func_oblate_aswfa_nocv_wrap +ufunc_obl_ang1_ptr[2*0+1] = ("obl_ang1") +ufunc_obl_ang1_ptr[2*1] = _func_oblate_aswfa_nocv_wrap +ufunc_obl_ang1_ptr[2*1+1] = ("obl_ang1") +ufunc_obl_ang1_data[0] = &ufunc_obl_ang1_ptr[2*0] +ufunc_obl_ang1_data[1] = &ufunc_obl_ang1_ptr[2*1] +obl_ang1 = np.PyUFunc_FromFuncAndData(ufunc_obl_ang1_loops, ufunc_obl_ang1_data, ufunc_obl_ang1_types, 2, 4, 2, 0, "obl_ang1", ufunc_obl_ang1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_ang1_cv_loops[2] +cdef void *ufunc_obl_ang1_cv_ptr[4] +cdef void *ufunc_obl_ang1_cv_data[2] +cdef char ufunc_obl_ang1_cv_types[14] +cdef char *ufunc_obl_ang1_cv_doc = ( + "obl_ang1_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Oblate spheroidal angular function obl_ang1 for precomputed characteristic value\n" + "\n" + "Computes the oblate spheroidal angular function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_ang1") +ufunc_obl_ang1_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_obl_ang1_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_obl_ang1_cv_types[0] = NPY_FLOAT +ufunc_obl_ang1_cv_types[1] = NPY_FLOAT +ufunc_obl_ang1_cv_types[2] = NPY_FLOAT +ufunc_obl_ang1_cv_types[3] = NPY_FLOAT +ufunc_obl_ang1_cv_types[4] = NPY_FLOAT +ufunc_obl_ang1_cv_types[5] = NPY_FLOAT +ufunc_obl_ang1_cv_types[6] = NPY_FLOAT +ufunc_obl_ang1_cv_types[7] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[8] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[9] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[10] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[11] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[12] = NPY_DOUBLE +ufunc_obl_ang1_cv_types[13] = NPY_DOUBLE +ufunc_obl_ang1_cv_ptr[2*0] = _func_oblate_aswfa_wrap +ufunc_obl_ang1_cv_ptr[2*0+1] = ("obl_ang1_cv") +ufunc_obl_ang1_cv_ptr[2*1] = _func_oblate_aswfa_wrap +ufunc_obl_ang1_cv_ptr[2*1+1] = ("obl_ang1_cv") +ufunc_obl_ang1_cv_data[0] = &ufunc_obl_ang1_cv_ptr[2*0] +ufunc_obl_ang1_cv_data[1] = &ufunc_obl_ang1_cv_ptr[2*1] +obl_ang1_cv = np.PyUFunc_FromFuncAndData(ufunc_obl_ang1_cv_loops, ufunc_obl_ang1_cv_data, ufunc_obl_ang1_cv_types, 2, 5, 2, 0, "obl_ang1_cv", ufunc_obl_ang1_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_cv_loops[2] +cdef void *ufunc_obl_cv_ptr[4] +cdef void *ufunc_obl_cv_data[2] +cdef char ufunc_obl_cv_types[8] +cdef char *ufunc_obl_cv_doc = ( + "obl_cv(m, n, c, out=None)\n" + "\n" + "Characteristic value of oblate spheroidal function\n" + "\n" + "Computes the characteristic value of oblate spheroidal wave\n" + "functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "cv : scalar or ndarray\n" + " Characteristic value") +ufunc_obl_cv_loops[0] = loop_d_ddd__As_fff_f +ufunc_obl_cv_loops[1] = loop_d_ddd__As_ddd_d +ufunc_obl_cv_types[0] = NPY_FLOAT +ufunc_obl_cv_types[1] = NPY_FLOAT +ufunc_obl_cv_types[2] = NPY_FLOAT +ufunc_obl_cv_types[3] = NPY_FLOAT +ufunc_obl_cv_types[4] = NPY_DOUBLE +ufunc_obl_cv_types[5] = NPY_DOUBLE +ufunc_obl_cv_types[6] = NPY_DOUBLE +ufunc_obl_cv_types[7] = NPY_DOUBLE +ufunc_obl_cv_ptr[2*0] = _func_oblate_segv_wrap +ufunc_obl_cv_ptr[2*0+1] = ("obl_cv") +ufunc_obl_cv_ptr[2*1] = _func_oblate_segv_wrap +ufunc_obl_cv_ptr[2*1+1] = ("obl_cv") +ufunc_obl_cv_data[0] = &ufunc_obl_cv_ptr[2*0] +ufunc_obl_cv_data[1] = &ufunc_obl_cv_ptr[2*1] +obl_cv = np.PyUFunc_FromFuncAndData(ufunc_obl_cv_loops, ufunc_obl_cv_data, ufunc_obl_cv_types, 2, 3, 1, 0, "obl_cv", ufunc_obl_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_rad1_loops[2] +cdef void *ufunc_obl_rad1_ptr[4] +cdef void *ufunc_obl_rad1_data[2] +cdef char ufunc_obl_rad1_types[12] +cdef char *ufunc_obl_rad1_doc = ( + "obl_rad1(m, n, c, x, out=None)\n" + "\n" + "Oblate spheroidal radial function of the first kind and its derivative\n" + "\n" + "Computes the oblate spheroidal radial function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_rad1_cv") +ufunc_obl_rad1_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_obl_rad1_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_obl_rad1_types[0] = NPY_FLOAT +ufunc_obl_rad1_types[1] = NPY_FLOAT +ufunc_obl_rad1_types[2] = NPY_FLOAT +ufunc_obl_rad1_types[3] = NPY_FLOAT +ufunc_obl_rad1_types[4] = NPY_FLOAT +ufunc_obl_rad1_types[5] = NPY_FLOAT +ufunc_obl_rad1_types[6] = NPY_DOUBLE +ufunc_obl_rad1_types[7] = NPY_DOUBLE +ufunc_obl_rad1_types[8] = NPY_DOUBLE +ufunc_obl_rad1_types[9] = NPY_DOUBLE +ufunc_obl_rad1_types[10] = NPY_DOUBLE +ufunc_obl_rad1_types[11] = NPY_DOUBLE +ufunc_obl_rad1_ptr[2*0] = _func_oblate_radial1_nocv_wrap +ufunc_obl_rad1_ptr[2*0+1] = ("obl_rad1") +ufunc_obl_rad1_ptr[2*1] = _func_oblate_radial1_nocv_wrap +ufunc_obl_rad1_ptr[2*1+1] = ("obl_rad1") +ufunc_obl_rad1_data[0] = &ufunc_obl_rad1_ptr[2*0] +ufunc_obl_rad1_data[1] = &ufunc_obl_rad1_ptr[2*1] +obl_rad1 = np.PyUFunc_FromFuncAndData(ufunc_obl_rad1_loops, ufunc_obl_rad1_data, ufunc_obl_rad1_types, 2, 4, 2, 0, "obl_rad1", ufunc_obl_rad1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_rad1_cv_loops[2] +cdef void *ufunc_obl_rad1_cv_ptr[4] +cdef void *ufunc_obl_rad1_cv_data[2] +cdef char ufunc_obl_rad1_cv_types[14] +cdef char *ufunc_obl_rad1_cv_doc = ( + "obl_rad1_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Oblate spheroidal radial function obl_rad1 for precomputed characteristic value\n" + "\n" + "Computes the oblate spheroidal radial function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_rad1") +ufunc_obl_rad1_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_obl_rad1_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_obl_rad1_cv_types[0] = NPY_FLOAT +ufunc_obl_rad1_cv_types[1] = NPY_FLOAT +ufunc_obl_rad1_cv_types[2] = NPY_FLOAT +ufunc_obl_rad1_cv_types[3] = NPY_FLOAT +ufunc_obl_rad1_cv_types[4] = NPY_FLOAT +ufunc_obl_rad1_cv_types[5] = NPY_FLOAT +ufunc_obl_rad1_cv_types[6] = NPY_FLOAT +ufunc_obl_rad1_cv_types[7] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[8] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[9] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[10] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[11] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[12] = NPY_DOUBLE +ufunc_obl_rad1_cv_types[13] = NPY_DOUBLE +ufunc_obl_rad1_cv_ptr[2*0] = _func_oblate_radial1_wrap +ufunc_obl_rad1_cv_ptr[2*0+1] = ("obl_rad1_cv") +ufunc_obl_rad1_cv_ptr[2*1] = _func_oblate_radial1_wrap +ufunc_obl_rad1_cv_ptr[2*1+1] = ("obl_rad1_cv") +ufunc_obl_rad1_cv_data[0] = &ufunc_obl_rad1_cv_ptr[2*0] +ufunc_obl_rad1_cv_data[1] = &ufunc_obl_rad1_cv_ptr[2*1] +obl_rad1_cv = np.PyUFunc_FromFuncAndData(ufunc_obl_rad1_cv_loops, ufunc_obl_rad1_cv_data, ufunc_obl_rad1_cv_types, 2, 5, 2, 0, "obl_rad1_cv", ufunc_obl_rad1_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_rad2_loops[2] +cdef void *ufunc_obl_rad2_ptr[4] +cdef void *ufunc_obl_rad2_data[2] +cdef char ufunc_obl_rad2_types[12] +cdef char *ufunc_obl_rad2_doc = ( + "obl_rad2(m, n, c, x, out=None)\n" + "\n" + "Oblate spheroidal radial function of the second kind and its derivative.\n" + "\n" + "Computes the oblate spheroidal radial function of the second kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_rad2_cv") +ufunc_obl_rad2_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_obl_rad2_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_obl_rad2_types[0] = NPY_FLOAT +ufunc_obl_rad2_types[1] = NPY_FLOAT +ufunc_obl_rad2_types[2] = NPY_FLOAT +ufunc_obl_rad2_types[3] = NPY_FLOAT +ufunc_obl_rad2_types[4] = NPY_FLOAT +ufunc_obl_rad2_types[5] = NPY_FLOAT +ufunc_obl_rad2_types[6] = NPY_DOUBLE +ufunc_obl_rad2_types[7] = NPY_DOUBLE +ufunc_obl_rad2_types[8] = NPY_DOUBLE +ufunc_obl_rad2_types[9] = NPY_DOUBLE +ufunc_obl_rad2_types[10] = NPY_DOUBLE +ufunc_obl_rad2_types[11] = NPY_DOUBLE +ufunc_obl_rad2_ptr[2*0] = _func_oblate_radial2_nocv_wrap +ufunc_obl_rad2_ptr[2*0+1] = ("obl_rad2") +ufunc_obl_rad2_ptr[2*1] = _func_oblate_radial2_nocv_wrap +ufunc_obl_rad2_ptr[2*1+1] = ("obl_rad2") +ufunc_obl_rad2_data[0] = &ufunc_obl_rad2_ptr[2*0] +ufunc_obl_rad2_data[1] = &ufunc_obl_rad2_ptr[2*1] +obl_rad2 = np.PyUFunc_FromFuncAndData(ufunc_obl_rad2_loops, ufunc_obl_rad2_data, ufunc_obl_rad2_types, 2, 4, 2, 0, "obl_rad2", ufunc_obl_rad2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_obl_rad2_cv_loops[2] +cdef void *ufunc_obl_rad2_cv_ptr[4] +cdef void *ufunc_obl_rad2_cv_data[2] +cdef char ufunc_obl_rad2_cv_types[14] +cdef char *ufunc_obl_rad2_cv_doc = ( + "obl_rad2_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Oblate spheroidal radial function obl_rad2 for precomputed characteristic value\n" + "\n" + "Computes the oblate spheroidal radial function of the second kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Mode parameter m (nonnegative)\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Parameter x (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x\n" + "\n" + "See Also\n" + "--------\n" + "obl_rad2") +ufunc_obl_rad2_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_obl_rad2_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_obl_rad2_cv_types[0] = NPY_FLOAT +ufunc_obl_rad2_cv_types[1] = NPY_FLOAT +ufunc_obl_rad2_cv_types[2] = NPY_FLOAT +ufunc_obl_rad2_cv_types[3] = NPY_FLOAT +ufunc_obl_rad2_cv_types[4] = NPY_FLOAT +ufunc_obl_rad2_cv_types[5] = NPY_FLOAT +ufunc_obl_rad2_cv_types[6] = NPY_FLOAT +ufunc_obl_rad2_cv_types[7] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[8] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[9] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[10] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[11] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[12] = NPY_DOUBLE +ufunc_obl_rad2_cv_types[13] = NPY_DOUBLE +ufunc_obl_rad2_cv_ptr[2*0] = _func_oblate_radial2_wrap +ufunc_obl_rad2_cv_ptr[2*0+1] = ("obl_rad2_cv") +ufunc_obl_rad2_cv_ptr[2*1] = _func_oblate_radial2_wrap +ufunc_obl_rad2_cv_ptr[2*1+1] = ("obl_rad2_cv") +ufunc_obl_rad2_cv_data[0] = &ufunc_obl_rad2_cv_ptr[2*0] +ufunc_obl_rad2_cv_data[1] = &ufunc_obl_rad2_cv_ptr[2*1] +obl_rad2_cv = np.PyUFunc_FromFuncAndData(ufunc_obl_rad2_cv_loops, ufunc_obl_rad2_cv_data, ufunc_obl_rad2_cv_types, 2, 5, 2, 0, "obl_rad2_cv", ufunc_obl_rad2_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_owens_t_loops[2] +cdef void *ufunc_owens_t_ptr[4] +cdef void *ufunc_owens_t_data[2] +cdef char ufunc_owens_t_types[6] +cdef char *ufunc_owens_t_doc = ( + "owens_t(h, a, out=None)\n" + "\n" + "Owen's T Function.\n" + "\n" + "The function T(h, a) gives the probability of the event\n" + "(X > h and 0 < Y < a * X) where X and Y are independent\n" + "standard normal random variables.\n" + "\n" + "Parameters\n" + "----------\n" + "h: array_like\n" + " Input value.\n" + "a: array_like\n" + " Input value.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "t: scalar or ndarray\n" + " Probability of the event (X > h and 0 < Y < a * X),\n" + " where X and Y are independent standard normal random variables.\n" + "\n" + "References\n" + "----------\n" + ".. [1] M. Patefield and D. Tandy, \"Fast and accurate calculation of\n" + " Owen's T Function\", Statistical Software vol. 5, pp. 1-25, 2000.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy import special\n" + ">>> a = 3.5\n" + ">>> h = 0.78\n" + ">>> special.owens_t(h, a)\n" + "0.10877216734852274") +ufunc_owens_t_loops[0] = loop_d_dd__As_ff_f +ufunc_owens_t_loops[1] = loop_d_dd__As_dd_d +ufunc_owens_t_types[0] = NPY_FLOAT +ufunc_owens_t_types[1] = NPY_FLOAT +ufunc_owens_t_types[2] = NPY_FLOAT +ufunc_owens_t_types[3] = NPY_DOUBLE +ufunc_owens_t_types[4] = NPY_DOUBLE +ufunc_owens_t_types[5] = NPY_DOUBLE +ufunc_owens_t_ptr[2*0] = _func_owens_t +ufunc_owens_t_ptr[2*0+1] = ("owens_t") +ufunc_owens_t_ptr[2*1] = _func_owens_t +ufunc_owens_t_ptr[2*1+1] = ("owens_t") +ufunc_owens_t_data[0] = &ufunc_owens_t_ptr[2*0] +ufunc_owens_t_data[1] = &ufunc_owens_t_ptr[2*1] +owens_t = np.PyUFunc_FromFuncAndData(ufunc_owens_t_loops, ufunc_owens_t_data, ufunc_owens_t_types, 2, 2, 1, 0, "owens_t", ufunc_owens_t_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pbdv_loops[2] +cdef void *ufunc_pbdv_ptr[4] +cdef void *ufunc_pbdv_data[2] +cdef char ufunc_pbdv_types[8] +cdef char *ufunc_pbdv_doc = ( + "pbdv(v, x, out=None)\n" + "\n" + "Parabolic cylinder function D\n" + "\n" + "Returns (d, dp) the parabolic cylinder function Dv(x) in d and the\n" + "derivative, Dv'(x) in dp.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Real parameter\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "d : scalar or ndarray\n" + " Value of the function\n" + "dp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pbdv_loops[0] = loop_i_dd_dd_As_ff_ff +ufunc_pbdv_loops[1] = loop_i_dd_dd_As_dd_dd +ufunc_pbdv_types[0] = NPY_FLOAT +ufunc_pbdv_types[1] = NPY_FLOAT +ufunc_pbdv_types[2] = NPY_FLOAT +ufunc_pbdv_types[3] = NPY_FLOAT +ufunc_pbdv_types[4] = NPY_DOUBLE +ufunc_pbdv_types[5] = NPY_DOUBLE +ufunc_pbdv_types[6] = NPY_DOUBLE +ufunc_pbdv_types[7] = NPY_DOUBLE +ufunc_pbdv_ptr[2*0] = _func_pbdv_wrap +ufunc_pbdv_ptr[2*0+1] = ("pbdv") +ufunc_pbdv_ptr[2*1] = _func_pbdv_wrap +ufunc_pbdv_ptr[2*1+1] = ("pbdv") +ufunc_pbdv_data[0] = &ufunc_pbdv_ptr[2*0] +ufunc_pbdv_data[1] = &ufunc_pbdv_ptr[2*1] +pbdv = np.PyUFunc_FromFuncAndData(ufunc_pbdv_loops, ufunc_pbdv_data, ufunc_pbdv_types, 2, 2, 2, 0, "pbdv", ufunc_pbdv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pbvv_loops[2] +cdef void *ufunc_pbvv_ptr[4] +cdef void *ufunc_pbvv_data[2] +cdef char ufunc_pbvv_types[8] +cdef char *ufunc_pbvv_doc = ( + "pbvv(v, x, out=None)\n" + "\n" + "Parabolic cylinder function V\n" + "\n" + "Returns the parabolic cylinder function Vv(x) in v and the\n" + "derivative, Vv'(x) in vp.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Real parameter\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "v : scalar or ndarray\n" + " Value of the function\n" + "vp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pbvv_loops[0] = loop_i_dd_dd_As_ff_ff +ufunc_pbvv_loops[1] = loop_i_dd_dd_As_dd_dd +ufunc_pbvv_types[0] = NPY_FLOAT +ufunc_pbvv_types[1] = NPY_FLOAT +ufunc_pbvv_types[2] = NPY_FLOAT +ufunc_pbvv_types[3] = NPY_FLOAT +ufunc_pbvv_types[4] = NPY_DOUBLE +ufunc_pbvv_types[5] = NPY_DOUBLE +ufunc_pbvv_types[6] = NPY_DOUBLE +ufunc_pbvv_types[7] = NPY_DOUBLE +ufunc_pbvv_ptr[2*0] = _func_pbvv_wrap +ufunc_pbvv_ptr[2*0+1] = ("pbvv") +ufunc_pbvv_ptr[2*1] = _func_pbvv_wrap +ufunc_pbvv_ptr[2*1+1] = ("pbvv") +ufunc_pbvv_data[0] = &ufunc_pbvv_ptr[2*0] +ufunc_pbvv_data[1] = &ufunc_pbvv_ptr[2*1] +pbvv = np.PyUFunc_FromFuncAndData(ufunc_pbvv_loops, ufunc_pbvv_data, ufunc_pbvv_types, 2, 2, 2, 0, "pbvv", ufunc_pbvv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pbwa_loops[2] +cdef void *ufunc_pbwa_ptr[4] +cdef void *ufunc_pbwa_data[2] +cdef char ufunc_pbwa_types[8] +cdef char *ufunc_pbwa_doc = ( + "pbwa(a, x, out=None)\n" + "\n" + "Parabolic cylinder function W.\n" + "\n" + "The function is a particular solution to the differential equation\n" + "\n" + ".. math::\n" + "\n" + " y'' + \\left(\\frac{1}{4}x^2 - a\\right)y = 0,\n" + "\n" + "for a full definition see section 12.14 in [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like\n" + " Real parameter\n" + "x : array_like\n" + " Real argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "w : scalar or ndarray\n" + " Value of the function\n" + "wp : scalar or ndarray\n" + " Value of the derivative in x\n" + "\n" + "Notes\n" + "-----\n" + "The function is a wrapper for a Fortran routine by Zhang and Jin\n" + "[2]_. The implementation is accurate only for ``|a|, |x| < 5`` and\n" + "returns NaN outside that range.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Digital Library of Mathematical Functions, 14.30.\n" + " https://dlmf.nist.gov/14.30\n" + ".. [2] Zhang, Shanjie and Jin, Jianming. \"Computation of Special\n" + " Functions\", John Wiley and Sons, 1996.\n" + " https://people.sc.fsu.edu/~jburkardt/f_src/special_functions/special_functions.html") +ufunc_pbwa_loops[0] = loop_i_dd_dd_As_ff_ff +ufunc_pbwa_loops[1] = loop_i_dd_dd_As_dd_dd +ufunc_pbwa_types[0] = NPY_FLOAT +ufunc_pbwa_types[1] = NPY_FLOAT +ufunc_pbwa_types[2] = NPY_FLOAT +ufunc_pbwa_types[3] = NPY_FLOAT +ufunc_pbwa_types[4] = NPY_DOUBLE +ufunc_pbwa_types[5] = NPY_DOUBLE +ufunc_pbwa_types[6] = NPY_DOUBLE +ufunc_pbwa_types[7] = NPY_DOUBLE +ufunc_pbwa_ptr[2*0] = _func_pbwa_wrap +ufunc_pbwa_ptr[2*0+1] = ("pbwa") +ufunc_pbwa_ptr[2*1] = _func_pbwa_wrap +ufunc_pbwa_ptr[2*1+1] = ("pbwa") +ufunc_pbwa_data[0] = &ufunc_pbwa_ptr[2*0] +ufunc_pbwa_data[1] = &ufunc_pbwa_ptr[2*1] +pbwa = np.PyUFunc_FromFuncAndData(ufunc_pbwa_loops, ufunc_pbwa_data, ufunc_pbwa_types, 2, 2, 2, 0, "pbwa", ufunc_pbwa_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pdtr_loops[2] +cdef void *ufunc_pdtr_ptr[4] +cdef void *ufunc_pdtr_data[2] +cdef char ufunc_pdtr_types[6] +cdef char *ufunc_pdtr_doc = ( + "pdtr(k, m, out=None)\n" + "\n" + "Poisson cumulative distribution function.\n" + "\n" + "Defined as the probability that a Poisson-distributed random\n" + "variable with event rate :math:`m` is less than or equal to\n" + ":math:`k`. More concretely, this works out to be [1]_\n" + "\n" + ".. math::\n" + "\n" + " \\exp(-m) \\sum_{j = 0}^{\\lfloor{k}\\rfloor} \\frac{m^j}{j!}.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of occurrences (nonnegative, real)\n" + "m : array_like\n" + " Shape parameter (nonnegative, real)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Poisson cumulative distribution function\n" + "\n" + "See Also\n" + "--------\n" + "pdtrc : Poisson survival function\n" + "pdtrik : inverse of `pdtr` with respect to `k`\n" + "pdtri : inverse of `pdtr` with respect to `m`\n" + "\n" + "References\n" + "----------\n" + ".. [1] https://en.wikipedia.org/wiki/Poisson_distribution\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is a cumulative distribution function, so it converges to 1\n" + "monotonically as `k` goes to infinity.\n" + "\n" + ">>> sc.pdtr([1, 10, 100, np.inf], 1)\n" + "array([0.73575888, 0.99999999, 1. , 1. ])\n" + "\n" + "It is discontinuous at integers and constant between integers.\n" + "\n" + ">>> sc.pdtr([1, 1.5, 1.9, 2], 1)\n" + "array([0.73575888, 0.73575888, 0.73575888, 0.9196986 ])") +ufunc_pdtr_loops[0] = loop_d_dd__As_ff_f +ufunc_pdtr_loops[1] = loop_d_dd__As_dd_d +ufunc_pdtr_types[0] = NPY_FLOAT +ufunc_pdtr_types[1] = NPY_FLOAT +ufunc_pdtr_types[2] = NPY_FLOAT +ufunc_pdtr_types[3] = NPY_DOUBLE +ufunc_pdtr_types[4] = NPY_DOUBLE +ufunc_pdtr_types[5] = NPY_DOUBLE +ufunc_pdtr_ptr[2*0] = _func_pdtr +ufunc_pdtr_ptr[2*0+1] = ("pdtr") +ufunc_pdtr_ptr[2*1] = _func_pdtr +ufunc_pdtr_ptr[2*1+1] = ("pdtr") +ufunc_pdtr_data[0] = &ufunc_pdtr_ptr[2*0] +ufunc_pdtr_data[1] = &ufunc_pdtr_ptr[2*1] +pdtr = np.PyUFunc_FromFuncAndData(ufunc_pdtr_loops, ufunc_pdtr_data, ufunc_pdtr_types, 2, 2, 1, 0, "pdtr", ufunc_pdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pdtrc_loops[2] +cdef void *ufunc_pdtrc_ptr[4] +cdef void *ufunc_pdtrc_data[2] +cdef char ufunc_pdtrc_types[6] +cdef char *ufunc_pdtrc_doc = ( + "pdtrc(k, m, out=None)\n" + "\n" + "Poisson survival function\n" + "\n" + "Returns the sum of the terms from k+1 to infinity of the Poisson\n" + "distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc(\n" + "k+1, m). Arguments must both be non-negative doubles.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of occurrences (nonnegative, real)\n" + "m : array_like\n" + " Shape parameter (nonnegative, real)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the Poisson survival function\n" + "\n" + "See Also\n" + "--------\n" + "pdtr : Poisson cumulative distribution function\n" + "pdtrik : inverse of `pdtr` with respect to `k`\n" + "pdtri : inverse of `pdtr` with respect to `m`") +ufunc_pdtrc_loops[0] = loop_d_dd__As_ff_f +ufunc_pdtrc_loops[1] = loop_d_dd__As_dd_d +ufunc_pdtrc_types[0] = NPY_FLOAT +ufunc_pdtrc_types[1] = NPY_FLOAT +ufunc_pdtrc_types[2] = NPY_FLOAT +ufunc_pdtrc_types[3] = NPY_DOUBLE +ufunc_pdtrc_types[4] = NPY_DOUBLE +ufunc_pdtrc_types[5] = NPY_DOUBLE +ufunc_pdtrc_ptr[2*0] = _func_pdtrc +ufunc_pdtrc_ptr[2*0+1] = ("pdtrc") +ufunc_pdtrc_ptr[2*1] = _func_pdtrc +ufunc_pdtrc_ptr[2*1+1] = ("pdtrc") +ufunc_pdtrc_data[0] = &ufunc_pdtrc_ptr[2*0] +ufunc_pdtrc_data[1] = &ufunc_pdtrc_ptr[2*1] +pdtrc = np.PyUFunc_FromFuncAndData(ufunc_pdtrc_loops, ufunc_pdtrc_data, ufunc_pdtrc_types, 2, 2, 1, 0, "pdtrc", ufunc_pdtrc_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pdtri_loops[3] +cdef void *ufunc_pdtri_ptr[6] +cdef void *ufunc_pdtri_data[3] +cdef char ufunc_pdtri_types[9] +cdef char *ufunc_pdtri_doc = ( + "pdtri(k, y, out=None)\n" + "\n" + "Inverse to `pdtr` vs m\n" + "\n" + "Returns the Poisson variable `m` such that the sum from 0 to `k` of\n" + "the Poisson density is equal to the given probability `y`:\n" + "calculated by ``gammaincinv(k + 1, y)``. `k` must be a nonnegative\n" + "integer and `y` between 0 and 1.\n" + "\n" + "Parameters\n" + "----------\n" + "k : array_like\n" + " Number of occurrences (nonnegative, real)\n" + "y : array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the shape parameter `m` such that ``pdtr(k, m) = p``\n" + "\n" + "See Also\n" + "--------\n" + "pdtr : Poisson cumulative distribution function\n" + "pdtrc : Poisson survival function\n" + "pdtrik : inverse of `pdtr` with respect to `k`") +ufunc_pdtri_loops[0] = loop_d_id__As_ld_d +ufunc_pdtri_loops[1] = loop_d_dd__As_ff_f +ufunc_pdtri_loops[2] = loop_d_dd__As_dd_d +ufunc_pdtri_types[0] = NPY_LONG +ufunc_pdtri_types[1] = NPY_DOUBLE +ufunc_pdtri_types[2] = NPY_DOUBLE +ufunc_pdtri_types[3] = NPY_FLOAT +ufunc_pdtri_types[4] = NPY_FLOAT +ufunc_pdtri_types[5] = NPY_FLOAT +ufunc_pdtri_types[6] = NPY_DOUBLE +ufunc_pdtri_types[7] = NPY_DOUBLE +ufunc_pdtri_types[8] = NPY_DOUBLE +ufunc_pdtri_ptr[2*0] = _func_pdtri +ufunc_pdtri_ptr[2*0+1] = ("pdtri") +ufunc_pdtri_ptr[2*1] = _func_pdtri_unsafe +ufunc_pdtri_ptr[2*1+1] = ("pdtri") +ufunc_pdtri_ptr[2*2] = _func_pdtri_unsafe +ufunc_pdtri_ptr[2*2+1] = ("pdtri") +ufunc_pdtri_data[0] = &ufunc_pdtri_ptr[2*0] +ufunc_pdtri_data[1] = &ufunc_pdtri_ptr[2*1] +ufunc_pdtri_data[2] = &ufunc_pdtri_ptr[2*2] +pdtri = np.PyUFunc_FromFuncAndData(ufunc_pdtri_loops, ufunc_pdtri_data, ufunc_pdtri_types, 3, 2, 1, 0, "pdtri", ufunc_pdtri_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pdtrik_loops[2] +cdef void *ufunc_pdtrik_ptr[4] +cdef void *ufunc_pdtrik_data[2] +cdef char ufunc_pdtrik_types[6] +cdef char *ufunc_pdtrik_doc = ( + "pdtrik(p, m, out=None)\n" + "\n" + "Inverse to `pdtr` vs `m`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Shape parameter (nonnegative, real)\n" + "p : array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The number of occurrences `k` such that ``pdtr(k, m) = p``\n" + "\n" + "See Also\n" + "--------\n" + "pdtr : Poisson cumulative distribution function\n" + "pdtrc : Poisson survival function\n" + "pdtri : inverse of `pdtr` with respect to `m`") +ufunc_pdtrik_loops[0] = loop_d_dd__As_ff_f +ufunc_pdtrik_loops[1] = loop_d_dd__As_dd_d +ufunc_pdtrik_types[0] = NPY_FLOAT +ufunc_pdtrik_types[1] = NPY_FLOAT +ufunc_pdtrik_types[2] = NPY_FLOAT +ufunc_pdtrik_types[3] = NPY_DOUBLE +ufunc_pdtrik_types[4] = NPY_DOUBLE +ufunc_pdtrik_types[5] = NPY_DOUBLE +ufunc_pdtrik_ptr[2*0] = _func_pdtrik +ufunc_pdtrik_ptr[2*0+1] = ("pdtrik") +ufunc_pdtrik_ptr[2*1] = _func_pdtrik +ufunc_pdtrik_ptr[2*1+1] = ("pdtrik") +ufunc_pdtrik_data[0] = &ufunc_pdtrik_ptr[2*0] +ufunc_pdtrik_data[1] = &ufunc_pdtrik_ptr[2*1] +pdtrik = np.PyUFunc_FromFuncAndData(ufunc_pdtrik_loops, ufunc_pdtrik_data, ufunc_pdtrik_types, 2, 2, 1, 0, "pdtrik", ufunc_pdtrik_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_poch_loops[2] +cdef void *ufunc_poch_ptr[4] +cdef void *ufunc_poch_data[2] +cdef char ufunc_poch_types[6] +cdef char *ufunc_poch_doc = ( + "poch(z, m, out=None)\n" + "\n" + "Pochhammer symbol.\n" + "\n" + "The Pochhammer symbol (rising factorial) is defined as\n" + "\n" + ".. math::\n" + "\n" + " (z)_m = \\frac{\\Gamma(z + m)}{\\Gamma(z)}\n" + "\n" + "For positive integer `m` it reads\n" + "\n" + ".. math::\n" + "\n" + " (z)_m = z (z + 1) ... (z + m - 1)\n" + "\n" + "See [dlmf]_ for more details.\n" + "\n" + "Parameters\n" + "----------\n" + "z, m : array_like\n" + " Real-valued arguments.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value of the function.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] Nist, Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/5.2#iii\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It is 1 when m is 0.\n" + "\n" + ">>> sc.poch([1, 2, 3, 4], 0)\n" + "array([1., 1., 1., 1.])\n" + "\n" + "For z equal to 1 it reduces to the factorial function.\n" + "\n" + ">>> sc.poch(1, 5)\n" + "120.0\n" + ">>> 1 * 2 * 3 * 4 * 5\n" + "120\n" + "\n" + "It can be expressed in terms of the gamma function.\n" + "\n" + ">>> z, m = 3.7, 2.1\n" + ">>> sc.poch(z, m)\n" + "20.529581933776953\n" + ">>> sc.gamma(z + m) / sc.gamma(z)\n" + "20.52958193377696") +ufunc_poch_loops[0] = loop_d_dd__As_ff_f +ufunc_poch_loops[1] = loop_d_dd__As_dd_d +ufunc_poch_types[0] = NPY_FLOAT +ufunc_poch_types[1] = NPY_FLOAT +ufunc_poch_types[2] = NPY_FLOAT +ufunc_poch_types[3] = NPY_DOUBLE +ufunc_poch_types[4] = NPY_DOUBLE +ufunc_poch_types[5] = NPY_DOUBLE +ufunc_poch_ptr[2*0] = _func_poch +ufunc_poch_ptr[2*0+1] = ("poch") +ufunc_poch_ptr[2*1] = _func_poch +ufunc_poch_ptr[2*1+1] = ("poch") +ufunc_poch_data[0] = &ufunc_poch_ptr[2*0] +ufunc_poch_data[1] = &ufunc_poch_ptr[2*1] +poch = np.PyUFunc_FromFuncAndData(ufunc_poch_loops, ufunc_poch_data, ufunc_poch_types, 2, 2, 1, 0, "poch", ufunc_poch_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_powm1_loops[2] +cdef void *ufunc_powm1_ptr[4] +cdef void *ufunc_powm1_data[2] +cdef char ufunc_powm1_types[6] +cdef char *ufunc_powm1_doc = ( + "powm1(x, y, out=None)\n" + "\n" + "Computes ``x**y - 1``.\n" + "\n" + "This function is useful when `y` is near 0, or when `x` is near 1.\n" + "\n" + "The function is implemented for real types only (unlike ``numpy.power``,\n" + "which accepts complex inputs).\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " The base. Must be a real type (i.e. integer or float, not complex).\n" + "y : array_like\n" + " The exponent. Must be a real type (i.e. integer or float, not complex).\n" + "\n" + "Returns\n" + "-------\n" + "array_like\n" + " Result of the calculation\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 1.10.0\n" + "\n" + "The underlying code is implemented for single precision and double\n" + "precision floats only. Unlike `numpy.power`, integer inputs to\n" + "`powm1` are converted to floating point, and complex inputs are\n" + "not accepted.\n" + "\n" + "Note the following edge cases:\n" + "\n" + "* ``powm1(x, 0)`` returns 0 for any ``x``, including 0, ``inf``\n" + " and ``nan``.\n" + "* ``powm1(1, y)`` returns 0 for any ``y``, including ``nan``\n" + " and ``inf``.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import powm1\n" + "\n" + ">>> x = np.array([1.2, 10.0, 0.9999999975])\n" + ">>> y = np.array([1e-9, 1e-11, 0.1875])\n" + ">>> powm1(x, y)\n" + "array([ 1.82321557e-10, 2.30258509e-11, -4.68749998e-10])\n" + "\n" + "It can be verified that the relative errors in those results\n" + "are less than 2.5e-16.\n" + "\n" + "Compare that to the result of ``x**y - 1``, where the\n" + "relative errors are all larger than 8e-8:\n" + "\n" + ">>> x**y - 1\n" + "array([ 1.82321491e-10, 2.30258035e-11, -4.68750039e-10])") +ufunc_powm1_loops[0] = loop_f_ff__As_ff_f +ufunc_powm1_loops[1] = loop_d_dd__As_dd_d +ufunc_powm1_types[0] = NPY_FLOAT +ufunc_powm1_types[1] = NPY_FLOAT +ufunc_powm1_types[2] = NPY_FLOAT +ufunc_powm1_types[3] = NPY_DOUBLE +ufunc_powm1_types[4] = NPY_DOUBLE +ufunc_powm1_types[5] = NPY_DOUBLE +ufunc_powm1_ptr[2*0] = scipy.special._ufuncs_cxx._export_powm1_float +ufunc_powm1_ptr[2*0+1] = ("powm1") +ufunc_powm1_ptr[2*1] = scipy.special._ufuncs_cxx._export_powm1_double +ufunc_powm1_ptr[2*1+1] = ("powm1") +ufunc_powm1_data[0] = &ufunc_powm1_ptr[2*0] +ufunc_powm1_data[1] = &ufunc_powm1_ptr[2*1] +powm1 = np.PyUFunc_FromFuncAndData(ufunc_powm1_loops, ufunc_powm1_data, ufunc_powm1_types, 2, 2, 1, 0, "powm1", ufunc_powm1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_ang1_loops[2] +cdef void *ufunc_pro_ang1_ptr[4] +cdef void *ufunc_pro_ang1_data[2] +cdef char ufunc_pro_ang1_types[12] +cdef char *ufunc_pro_ang1_doc = ( + "pro_ang1(m, n, c, x, out=None)\n" + "\n" + "Prolate spheroidal angular function of the first kind and its derivative\n" + "\n" + "Computes the prolate spheroidal angular function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_ang1_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_pro_ang1_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_pro_ang1_types[0] = NPY_FLOAT +ufunc_pro_ang1_types[1] = NPY_FLOAT +ufunc_pro_ang1_types[2] = NPY_FLOAT +ufunc_pro_ang1_types[3] = NPY_FLOAT +ufunc_pro_ang1_types[4] = NPY_FLOAT +ufunc_pro_ang1_types[5] = NPY_FLOAT +ufunc_pro_ang1_types[6] = NPY_DOUBLE +ufunc_pro_ang1_types[7] = NPY_DOUBLE +ufunc_pro_ang1_types[8] = NPY_DOUBLE +ufunc_pro_ang1_types[9] = NPY_DOUBLE +ufunc_pro_ang1_types[10] = NPY_DOUBLE +ufunc_pro_ang1_types[11] = NPY_DOUBLE +ufunc_pro_ang1_ptr[2*0] = _func_prolate_aswfa_nocv_wrap +ufunc_pro_ang1_ptr[2*0+1] = ("pro_ang1") +ufunc_pro_ang1_ptr[2*1] = _func_prolate_aswfa_nocv_wrap +ufunc_pro_ang1_ptr[2*1+1] = ("pro_ang1") +ufunc_pro_ang1_data[0] = &ufunc_pro_ang1_ptr[2*0] +ufunc_pro_ang1_data[1] = &ufunc_pro_ang1_ptr[2*1] +pro_ang1 = np.PyUFunc_FromFuncAndData(ufunc_pro_ang1_loops, ufunc_pro_ang1_data, ufunc_pro_ang1_types, 2, 4, 2, 0, "pro_ang1", ufunc_pro_ang1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_ang1_cv_loops[2] +cdef void *ufunc_pro_ang1_cv_ptr[4] +cdef void *ufunc_pro_ang1_cv_data[2] +cdef char ufunc_pro_ang1_cv_types[14] +cdef char *ufunc_pro_ang1_cv_doc = ( + "pro_ang1_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Prolate spheroidal angular function pro_ang1 for precomputed characteristic value\n" + "\n" + "Computes the prolate spheroidal angular function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_ang1_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_pro_ang1_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_pro_ang1_cv_types[0] = NPY_FLOAT +ufunc_pro_ang1_cv_types[1] = NPY_FLOAT +ufunc_pro_ang1_cv_types[2] = NPY_FLOAT +ufunc_pro_ang1_cv_types[3] = NPY_FLOAT +ufunc_pro_ang1_cv_types[4] = NPY_FLOAT +ufunc_pro_ang1_cv_types[5] = NPY_FLOAT +ufunc_pro_ang1_cv_types[6] = NPY_FLOAT +ufunc_pro_ang1_cv_types[7] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[8] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[9] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[10] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[11] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[12] = NPY_DOUBLE +ufunc_pro_ang1_cv_types[13] = NPY_DOUBLE +ufunc_pro_ang1_cv_ptr[2*0] = _func_prolate_aswfa_wrap +ufunc_pro_ang1_cv_ptr[2*0+1] = ("pro_ang1_cv") +ufunc_pro_ang1_cv_ptr[2*1] = _func_prolate_aswfa_wrap +ufunc_pro_ang1_cv_ptr[2*1+1] = ("pro_ang1_cv") +ufunc_pro_ang1_cv_data[0] = &ufunc_pro_ang1_cv_ptr[2*0] +ufunc_pro_ang1_cv_data[1] = &ufunc_pro_ang1_cv_ptr[2*1] +pro_ang1_cv = np.PyUFunc_FromFuncAndData(ufunc_pro_ang1_cv_loops, ufunc_pro_ang1_cv_data, ufunc_pro_ang1_cv_types, 2, 5, 2, 0, "pro_ang1_cv", ufunc_pro_ang1_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_cv_loops[2] +cdef void *ufunc_pro_cv_ptr[4] +cdef void *ufunc_pro_cv_data[2] +cdef char ufunc_pro_cv_types[8] +cdef char *ufunc_pro_cv_doc = ( + "pro_cv(m, n, c, out=None)\n" + "\n" + "Characteristic value of prolate spheroidal function\n" + "\n" + "Computes the characteristic value of prolate spheroidal wave\n" + "functions of order `m`, `n` (n>=m) and spheroidal parameter `c`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "cv : scalar or ndarray\n" + " Characteristic value") +ufunc_pro_cv_loops[0] = loop_d_ddd__As_fff_f +ufunc_pro_cv_loops[1] = loop_d_ddd__As_ddd_d +ufunc_pro_cv_types[0] = NPY_FLOAT +ufunc_pro_cv_types[1] = NPY_FLOAT +ufunc_pro_cv_types[2] = NPY_FLOAT +ufunc_pro_cv_types[3] = NPY_FLOAT +ufunc_pro_cv_types[4] = NPY_DOUBLE +ufunc_pro_cv_types[5] = NPY_DOUBLE +ufunc_pro_cv_types[6] = NPY_DOUBLE +ufunc_pro_cv_types[7] = NPY_DOUBLE +ufunc_pro_cv_ptr[2*0] = _func_prolate_segv_wrap +ufunc_pro_cv_ptr[2*0+1] = ("pro_cv") +ufunc_pro_cv_ptr[2*1] = _func_prolate_segv_wrap +ufunc_pro_cv_ptr[2*1+1] = ("pro_cv") +ufunc_pro_cv_data[0] = &ufunc_pro_cv_ptr[2*0] +ufunc_pro_cv_data[1] = &ufunc_pro_cv_ptr[2*1] +pro_cv = np.PyUFunc_FromFuncAndData(ufunc_pro_cv_loops, ufunc_pro_cv_data, ufunc_pro_cv_types, 2, 3, 1, 0, "pro_cv", ufunc_pro_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_rad1_loops[2] +cdef void *ufunc_pro_rad1_ptr[4] +cdef void *ufunc_pro_rad1_data[2] +cdef char ufunc_pro_rad1_types[12] +cdef char *ufunc_pro_rad1_doc = ( + "pro_rad1(m, n, c, x, out=None)\n" + "\n" + "Prolate spheroidal radial function of the first kind and its derivative\n" + "\n" + "Computes the prolate spheroidal radial function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_rad1_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_pro_rad1_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_pro_rad1_types[0] = NPY_FLOAT +ufunc_pro_rad1_types[1] = NPY_FLOAT +ufunc_pro_rad1_types[2] = NPY_FLOAT +ufunc_pro_rad1_types[3] = NPY_FLOAT +ufunc_pro_rad1_types[4] = NPY_FLOAT +ufunc_pro_rad1_types[5] = NPY_FLOAT +ufunc_pro_rad1_types[6] = NPY_DOUBLE +ufunc_pro_rad1_types[7] = NPY_DOUBLE +ufunc_pro_rad1_types[8] = NPY_DOUBLE +ufunc_pro_rad1_types[9] = NPY_DOUBLE +ufunc_pro_rad1_types[10] = NPY_DOUBLE +ufunc_pro_rad1_types[11] = NPY_DOUBLE +ufunc_pro_rad1_ptr[2*0] = _func_prolate_radial1_nocv_wrap +ufunc_pro_rad1_ptr[2*0+1] = ("pro_rad1") +ufunc_pro_rad1_ptr[2*1] = _func_prolate_radial1_nocv_wrap +ufunc_pro_rad1_ptr[2*1+1] = ("pro_rad1") +ufunc_pro_rad1_data[0] = &ufunc_pro_rad1_ptr[2*0] +ufunc_pro_rad1_data[1] = &ufunc_pro_rad1_ptr[2*1] +pro_rad1 = np.PyUFunc_FromFuncAndData(ufunc_pro_rad1_loops, ufunc_pro_rad1_data, ufunc_pro_rad1_types, 2, 4, 2, 0, "pro_rad1", ufunc_pro_rad1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_rad1_cv_loops[2] +cdef void *ufunc_pro_rad1_cv_ptr[4] +cdef void *ufunc_pro_rad1_cv_data[2] +cdef char ufunc_pro_rad1_cv_types[14] +cdef char *ufunc_pro_rad1_cv_doc = ( + "pro_rad1_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Prolate spheroidal radial function pro_rad1 for precomputed characteristic value\n" + "\n" + "Computes the prolate spheroidal radial function of the first kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_rad1_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_pro_rad1_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_pro_rad1_cv_types[0] = NPY_FLOAT +ufunc_pro_rad1_cv_types[1] = NPY_FLOAT +ufunc_pro_rad1_cv_types[2] = NPY_FLOAT +ufunc_pro_rad1_cv_types[3] = NPY_FLOAT +ufunc_pro_rad1_cv_types[4] = NPY_FLOAT +ufunc_pro_rad1_cv_types[5] = NPY_FLOAT +ufunc_pro_rad1_cv_types[6] = NPY_FLOAT +ufunc_pro_rad1_cv_types[7] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[8] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[9] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[10] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[11] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[12] = NPY_DOUBLE +ufunc_pro_rad1_cv_types[13] = NPY_DOUBLE +ufunc_pro_rad1_cv_ptr[2*0] = _func_prolate_radial1_wrap +ufunc_pro_rad1_cv_ptr[2*0+1] = ("pro_rad1_cv") +ufunc_pro_rad1_cv_ptr[2*1] = _func_prolate_radial1_wrap +ufunc_pro_rad1_cv_ptr[2*1+1] = ("pro_rad1_cv") +ufunc_pro_rad1_cv_data[0] = &ufunc_pro_rad1_cv_ptr[2*0] +ufunc_pro_rad1_cv_data[1] = &ufunc_pro_rad1_cv_ptr[2*1] +pro_rad1_cv = np.PyUFunc_FromFuncAndData(ufunc_pro_rad1_cv_loops, ufunc_pro_rad1_cv_data, ufunc_pro_rad1_cv_types, 2, 5, 2, 0, "pro_rad1_cv", ufunc_pro_rad1_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_rad2_loops[2] +cdef void *ufunc_pro_rad2_ptr[4] +cdef void *ufunc_pro_rad2_data[2] +cdef char ufunc_pro_rad2_types[12] +cdef char *ufunc_pro_rad2_doc = ( + "pro_rad2(m, n, c, x, out=None)\n" + "\n" + "Prolate spheroidal radial function of the second kind and its derivative\n" + "\n" + "Computes the prolate spheroidal radial function of the second kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_rad2_loops[0] = loop_d_dddd_d_As_ffff_ff +ufunc_pro_rad2_loops[1] = loop_d_dddd_d_As_dddd_dd +ufunc_pro_rad2_types[0] = NPY_FLOAT +ufunc_pro_rad2_types[1] = NPY_FLOAT +ufunc_pro_rad2_types[2] = NPY_FLOAT +ufunc_pro_rad2_types[3] = NPY_FLOAT +ufunc_pro_rad2_types[4] = NPY_FLOAT +ufunc_pro_rad2_types[5] = NPY_FLOAT +ufunc_pro_rad2_types[6] = NPY_DOUBLE +ufunc_pro_rad2_types[7] = NPY_DOUBLE +ufunc_pro_rad2_types[8] = NPY_DOUBLE +ufunc_pro_rad2_types[9] = NPY_DOUBLE +ufunc_pro_rad2_types[10] = NPY_DOUBLE +ufunc_pro_rad2_types[11] = NPY_DOUBLE +ufunc_pro_rad2_ptr[2*0] = _func_prolate_radial2_nocv_wrap +ufunc_pro_rad2_ptr[2*0+1] = ("pro_rad2") +ufunc_pro_rad2_ptr[2*1] = _func_prolate_radial2_nocv_wrap +ufunc_pro_rad2_ptr[2*1+1] = ("pro_rad2") +ufunc_pro_rad2_data[0] = &ufunc_pro_rad2_ptr[2*0] +ufunc_pro_rad2_data[1] = &ufunc_pro_rad2_ptr[2*1] +pro_rad2 = np.PyUFunc_FromFuncAndData(ufunc_pro_rad2_loops, ufunc_pro_rad2_data, ufunc_pro_rad2_types, 2, 4, 2, 0, "pro_rad2", ufunc_pro_rad2_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pro_rad2_cv_loops[2] +cdef void *ufunc_pro_rad2_cv_ptr[4] +cdef void *ufunc_pro_rad2_cv_data[2] +cdef char ufunc_pro_rad2_cv_types[14] +cdef char *ufunc_pro_rad2_cv_doc = ( + "pro_rad2_cv(m, n, c, cv, x, out=None)\n" + "\n" + "Prolate spheroidal radial function pro_rad2 for precomputed characteristic value\n" + "\n" + "Computes the prolate spheroidal radial function of the second kind\n" + "and its derivative (with respect to `x`) for mode parameters m>=0\n" + "and n>=m, spheroidal parameter `c` and ``|x| < 1.0``. Requires\n" + "pre-computed characteristic value.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Nonnegative mode parameter m\n" + "n : array_like\n" + " Mode parameter n (>= m)\n" + "c : array_like\n" + " Spheroidal parameter\n" + "cv : array_like\n" + " Characteristic value\n" + "x : array_like\n" + " Real parameter (``|x| < 1.0``)\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Value of the function\n" + "sp : scalar or ndarray\n" + " Value of the derivative vs x") +ufunc_pro_rad2_cv_loops[0] = loop_i_ddddd_dd_As_fffff_ff +ufunc_pro_rad2_cv_loops[1] = loop_i_ddddd_dd_As_ddddd_dd +ufunc_pro_rad2_cv_types[0] = NPY_FLOAT +ufunc_pro_rad2_cv_types[1] = NPY_FLOAT +ufunc_pro_rad2_cv_types[2] = NPY_FLOAT +ufunc_pro_rad2_cv_types[3] = NPY_FLOAT +ufunc_pro_rad2_cv_types[4] = NPY_FLOAT +ufunc_pro_rad2_cv_types[5] = NPY_FLOAT +ufunc_pro_rad2_cv_types[6] = NPY_FLOAT +ufunc_pro_rad2_cv_types[7] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[8] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[9] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[10] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[11] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[12] = NPY_DOUBLE +ufunc_pro_rad2_cv_types[13] = NPY_DOUBLE +ufunc_pro_rad2_cv_ptr[2*0] = _func_prolate_radial2_wrap +ufunc_pro_rad2_cv_ptr[2*0+1] = ("pro_rad2_cv") +ufunc_pro_rad2_cv_ptr[2*1] = _func_prolate_radial2_wrap +ufunc_pro_rad2_cv_ptr[2*1+1] = ("pro_rad2_cv") +ufunc_pro_rad2_cv_data[0] = &ufunc_pro_rad2_cv_ptr[2*0] +ufunc_pro_rad2_cv_data[1] = &ufunc_pro_rad2_cv_ptr[2*1] +pro_rad2_cv = np.PyUFunc_FromFuncAndData(ufunc_pro_rad2_cv_loops, ufunc_pro_rad2_cv_data, ufunc_pro_rad2_cv_types, 2, 5, 2, 0, "pro_rad2_cv", ufunc_pro_rad2_cv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_pseudo_huber_loops[2] +cdef void *ufunc_pseudo_huber_ptr[4] +cdef void *ufunc_pseudo_huber_data[2] +cdef char ufunc_pseudo_huber_types[6] +cdef char *ufunc_pseudo_huber_doc = ( + "pseudo_huber(delta, r, out=None)\n" + "\n" + "Pseudo-Huber loss function.\n" + "\n" + ".. math:: \\mathrm{pseudo\\_huber}(\\delta, r) =\n" + " \\delta^2 \\left( \\sqrt{ 1 + \\left( \\frac{r}{\\delta} \\right)^2 } - 1 \\right)\n" + "\n" + "Parameters\n" + "----------\n" + "delta : array_like\n" + " Input array, indicating the soft quadratic vs. linear loss changepoint.\n" + "r : array_like\n" + " Input array, possibly representing residuals.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "res : scalar or ndarray\n" + " The computed Pseudo-Huber loss function values.\n" + "\n" + "See Also\n" + "--------\n" + "huber: Similar function which this function approximates\n" + "\n" + "Notes\n" + "-----\n" + "Like `huber`, `pseudo_huber` often serves as a robust loss function\n" + "in statistics or machine learning to reduce the influence of outliers.\n" + "Unlike `huber`, `pseudo_huber` is smooth.\n" + "\n" + "Typically, `r` represents residuals, the difference\n" + "between a model prediction and data. Then, for :math:`|r|\\leq\\delta`,\n" + "`pseudo_huber` resembles the squared error and for :math:`|r|>\\delta` the\n" + "absolute error. This way, the Pseudo-Huber loss often achieves\n" + "a fast convergence in model fitting for small residuals like the squared\n" + "error loss function and still reduces the influence of outliers\n" + "(:math:`|r|>\\delta`) like the absolute error loss. As :math:`\\delta` is\n" + "the cutoff between squared and absolute error regimes, it has\n" + "to be tuned carefully for each problem. `pseudo_huber` is also\n" + "convex, making it suitable for gradient based optimization. [1]_ [2]_\n" + "\n" + ".. versionadded:: 0.15.0\n" + "\n" + "References\n" + "----------\n" + ".. [1] Hartley, Zisserman, \"Multiple View Geometry in Computer Vision\".\n" + " 2003. Cambridge University Press. p. 619\n" + ".. [2] Charbonnier et al. \"Deterministic edge-preserving regularization\n" + " in computed imaging\". 1997. IEEE Trans. Image Processing.\n" + " 6 (2): 298 - 311.\n" + "\n" + "Examples\n" + "--------\n" + "Import all necessary modules.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import pseudo_huber, huber\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + "Calculate the function for ``delta=1`` at ``r=2``.\n" + "\n" + ">>> pseudo_huber(1., 2.)\n" + "1.2360679774997898\n" + "\n" + "Calculate the function at ``r=2`` for different `delta` by providing\n" + "a list or NumPy array for `delta`.\n" + "\n" + ">>> pseudo_huber([1., 2., 4.], 3.)\n" + "array([2.16227766, 3.21110255, 4. ])\n" + "\n" + "Calculate the function for ``delta=1`` at several points by providing\n" + "a list or NumPy array for `r`.\n" + "\n" + ">>> pseudo_huber(2., np.array([1., 1.5, 3., 4.]))\n" + "array([0.47213595, 1. , 3.21110255, 4.94427191])\n" + "\n" + "The function can be calculated for different `delta` and `r` by\n" + "providing arrays for both with compatible shapes for broadcasting.\n" + "\n" + ">>> r = np.array([1., 2.5, 8., 10.])\n" + ">>> deltas = np.array([[1.], [5.], [9.]])\n" + ">>> print(r.shape, deltas.shape)\n" + "(4,) (3, 1)\n" + "\n" + ">>> pseudo_huber(deltas, r)\n" + "array([[ 0.41421356, 1.6925824 , 7.06225775, 9.04987562],\n" + " [ 0.49509757, 2.95084972, 22.16990566, 30.90169944],\n" + " [ 0.49846624, 3.06693762, 27.37435121, 40.08261642]])\n" + "\n" + "Plot the function for different `delta`.\n" + "\n" + ">>> x = np.linspace(-4, 4, 500)\n" + ">>> deltas = [1, 2, 3]\n" + ">>> linestyles = [\"dashed\", \"dotted\", \"dashdot\"]\n" + ">>> fig, ax = plt.subplots()\n" + ">>> combined_plot_parameters = list(zip(deltas, linestyles))\n" + ">>> for delta, style in combined_plot_parameters:\n" + "... ax.plot(x, pseudo_huber(delta, x), label=rf\"$\\delta={delta}$\",\n" + "... ls=style)\n" + ">>> ax.legend(loc=\"upper center\")\n" + ">>> ax.set_xlabel(\"$x$\")\n" + ">>> ax.set_title(r\"Pseudo-Huber loss function $h_{\\delta}(x)$\")\n" + ">>> ax.set_xlim(-4, 4)\n" + ">>> ax.set_ylim(0, 8)\n" + ">>> plt.show()\n" + "\n" + "Finally, illustrate the difference between `huber` and `pseudo_huber` by\n" + "plotting them and their gradients with respect to `r`. The plot shows\n" + "that `pseudo_huber` is continuously differentiable while `huber` is not\n" + "at the points :math:`\\pm\\delta`.\n" + "\n" + ">>> def huber_grad(delta, x):\n" + "... grad = np.copy(x)\n" + "... linear_area = np.argwhere(np.abs(x) > delta)\n" + "... grad[linear_area]=delta*np.sign(x[linear_area])\n" + "... return grad\n" + ">>> def pseudo_huber_grad(delta, x):\n" + "... return x* (1+(x/delta)**2)**(-0.5)\n" + ">>> x=np.linspace(-3, 3, 500)\n" + ">>> delta = 1.\n" + ">>> fig, ax = plt.subplots(figsize=(7, 7))\n" + ">>> ax.plot(x, huber(delta, x), label=\"Huber\", ls=\"dashed\")\n" + ">>> ax.plot(x, huber_grad(delta, x), label=\"Huber Gradient\", ls=\"dashdot\")\n" + ">>> ax.plot(x, pseudo_huber(delta, x), label=\"Pseudo-Huber\", ls=\"dotted\")\n" + ">>> ax.plot(x, pseudo_huber_grad(delta, x), label=\"Pseudo-Huber Gradient\",\n" + "... ls=\"solid\")\n" + ">>> ax.legend(loc=\"upper center\")\n" + ">>> plt.show()") +ufunc_pseudo_huber_loops[0] = loop_d_dd__As_ff_f +ufunc_pseudo_huber_loops[1] = loop_d_dd__As_dd_d +ufunc_pseudo_huber_types[0] = NPY_FLOAT +ufunc_pseudo_huber_types[1] = NPY_FLOAT +ufunc_pseudo_huber_types[2] = NPY_FLOAT +ufunc_pseudo_huber_types[3] = NPY_DOUBLE +ufunc_pseudo_huber_types[4] = NPY_DOUBLE +ufunc_pseudo_huber_types[5] = NPY_DOUBLE +ufunc_pseudo_huber_ptr[2*0] = _func_pseudo_huber +ufunc_pseudo_huber_ptr[2*0+1] = ("pseudo_huber") +ufunc_pseudo_huber_ptr[2*1] = _func_pseudo_huber +ufunc_pseudo_huber_ptr[2*1+1] = ("pseudo_huber") +ufunc_pseudo_huber_data[0] = &ufunc_pseudo_huber_ptr[2*0] +ufunc_pseudo_huber_data[1] = &ufunc_pseudo_huber_ptr[2*1] +pseudo_huber = np.PyUFunc_FromFuncAndData(ufunc_pseudo_huber_loops, ufunc_pseudo_huber_data, ufunc_pseudo_huber_types, 2, 2, 1, 0, "pseudo_huber", ufunc_pseudo_huber_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_psi_loops[4] +cdef void *ufunc_psi_ptr[8] +cdef void *ufunc_psi_data[4] +cdef char ufunc_psi_types[8] +cdef char *ufunc_psi_doc = ( + "psi(z, out=None)\n" + "\n" + "The digamma function.\n" + "\n" + "The logarithmic derivative of the gamma function evaluated at ``z``.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex argument.\n" + "out : ndarray, optional\n" + " Array for the computed values of ``psi``.\n" + "\n" + "Returns\n" + "-------\n" + "digamma : scalar or ndarray\n" + " Computed values of ``psi``.\n" + "\n" + "Notes\n" + "-----\n" + "For large values not close to the negative real axis, ``psi`` is\n" + "computed using the asymptotic series (5.11.2) from [1]_. For small\n" + "arguments not close to the negative real axis, the recurrence\n" + "relation (5.5.2) from [1]_ is used until the argument is large\n" + "enough to use the asymptotic series. For values close to the\n" + "negative real axis, the reflection formula (5.5.4) from [1]_ is\n" + "used first. Note that ``psi`` has a family of zeros on the\n" + "negative real axis which occur between the poles at nonpositive\n" + "integers. Around the zeros the reflection formula suffers from\n" + "cancellation and the implementation loses precision. The sole\n" + "positive zero and the first negative zero, however, are handled\n" + "separately by precomputing series expansions using [2]_, so the\n" + "function should maintain full accuracy around the origin.\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/5\n" + ".. [2] Fredrik Johansson and others.\n" + " \"mpmath: a Python library for arbitrary-precision floating-point arithmetic\"\n" + " (Version 0.19) http://mpmath.org/\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import psi\n" + ">>> z = 3 + 4j\n" + ">>> psi(z)\n" + "(1.55035981733341+1.0105022091860445j)\n" + "\n" + "Verify psi(z) = psi(z + 1) - 1/z:\n" + "\n" + ">>> psi(z + 1) - 1/z\n" + "(1.55035981733341+1.0105022091860445j)") +ufunc_psi_loops[0] = loop_d_d__As_f_f +ufunc_psi_loops[1] = loop_d_d__As_d_d +ufunc_psi_loops[2] = loop_D_D__As_F_F +ufunc_psi_loops[3] = loop_D_D__As_D_D +ufunc_psi_types[0] = NPY_FLOAT +ufunc_psi_types[1] = NPY_FLOAT +ufunc_psi_types[2] = NPY_DOUBLE +ufunc_psi_types[3] = NPY_DOUBLE +ufunc_psi_types[4] = NPY_CFLOAT +ufunc_psi_types[5] = NPY_CFLOAT +ufunc_psi_types[6] = NPY_CDOUBLE +ufunc_psi_types[7] = NPY_CDOUBLE +ufunc_psi_ptr[2*0] = scipy.special._ufuncs_cxx._export_digamma +ufunc_psi_ptr[2*0+1] = ("psi") +ufunc_psi_ptr[2*1] = scipy.special._ufuncs_cxx._export_digamma +ufunc_psi_ptr[2*1+1] = ("psi") +ufunc_psi_ptr[2*2] = scipy.special._ufuncs_cxx._export_cdigamma +ufunc_psi_ptr[2*2+1] = ("psi") +ufunc_psi_ptr[2*3] = scipy.special._ufuncs_cxx._export_cdigamma +ufunc_psi_ptr[2*3+1] = ("psi") +ufunc_psi_data[0] = &ufunc_psi_ptr[2*0] +ufunc_psi_data[1] = &ufunc_psi_ptr[2*1] +ufunc_psi_data[2] = &ufunc_psi_ptr[2*2] +ufunc_psi_data[3] = &ufunc_psi_ptr[2*3] +psi = np.PyUFunc_FromFuncAndData(ufunc_psi_loops, ufunc_psi_data, ufunc_psi_types, 4, 1, 1, 0, "psi", ufunc_psi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_radian_loops[2] +cdef void *ufunc_radian_ptr[4] +cdef void *ufunc_radian_data[2] +cdef char ufunc_radian_types[8] +cdef char *ufunc_radian_doc = ( + "radian(d, m, s, out=None)\n" + "\n" + "Convert from degrees to radians.\n" + "\n" + "Returns the angle given in (d)egrees, (m)inutes, and (s)econds in\n" + "radians.\n" + "\n" + "Parameters\n" + "----------\n" + "d : array_like\n" + " Degrees, can be real-valued.\n" + "m : array_like\n" + " Minutes, can be real-valued.\n" + "s : array_like\n" + " Seconds, can be real-valued.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of the inputs in radians.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "There are many ways to specify an angle.\n" + "\n" + ">>> sc.radian(90, 0, 0)\n" + "1.5707963267948966\n" + ">>> sc.radian(0, 60 * 90, 0)\n" + "1.5707963267948966\n" + ">>> sc.radian(0, 0, 60**2 * 90)\n" + "1.5707963267948966\n" + "\n" + "The inputs can be real-valued.\n" + "\n" + ">>> sc.radian(1.5, 0, 0)\n" + "0.02617993877991494\n" + ">>> sc.radian(1, 30, 0)\n" + "0.02617993877991494") +ufunc_radian_loops[0] = loop_d_ddd__As_fff_f +ufunc_radian_loops[1] = loop_d_ddd__As_ddd_d +ufunc_radian_types[0] = NPY_FLOAT +ufunc_radian_types[1] = NPY_FLOAT +ufunc_radian_types[2] = NPY_FLOAT +ufunc_radian_types[3] = NPY_FLOAT +ufunc_radian_types[4] = NPY_DOUBLE +ufunc_radian_types[5] = NPY_DOUBLE +ufunc_radian_types[6] = NPY_DOUBLE +ufunc_radian_types[7] = NPY_DOUBLE +ufunc_radian_ptr[2*0] = _func_radian +ufunc_radian_ptr[2*0+1] = ("radian") +ufunc_radian_ptr[2*1] = _func_radian +ufunc_radian_ptr[2*1+1] = ("radian") +ufunc_radian_data[0] = &ufunc_radian_ptr[2*0] +ufunc_radian_data[1] = &ufunc_radian_ptr[2*1] +radian = np.PyUFunc_FromFuncAndData(ufunc_radian_loops, ufunc_radian_data, ufunc_radian_types, 2, 3, 1, 0, "radian", ufunc_radian_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_rel_entr_loops[2] +cdef void *ufunc_rel_entr_ptr[4] +cdef void *ufunc_rel_entr_data[2] +cdef char ufunc_rel_entr_types[6] +cdef char *ufunc_rel_entr_doc = ( + "rel_entr(x, y, out=None)\n" + "\n" + "Elementwise function for computing relative entropy.\n" + "\n" + ".. math::\n" + "\n" + " \\mathrm{rel\\_entr}(x, y) =\n" + " \\begin{cases}\n" + " x \\log(x / y) & x > 0, y > 0 \\\\\n" + " 0 & x = 0, y \\ge 0 \\\\\n" + " \\infty & \\text{otherwise}\n" + " \\end{cases}\n" + "\n" + "Parameters\n" + "----------\n" + "x, y : array_like\n" + " Input arrays\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Relative entropy of the inputs\n" + "\n" + "See Also\n" + "--------\n" + "entr, kl_div, scipy.stats.entropy\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 0.15.0\n" + "\n" + "This function is jointly convex in x and y.\n" + "\n" + "The origin of this function is in convex programming; see\n" + "[1]_. Given two discrete probability distributions :math:`p_1,\n" + "\\ldots, p_n` and :math:`q_1, \\ldots, q_n`, the definition of relative\n" + "entropy in the context of *information theory* is\n" + "\n" + ".. math::\n" + "\n" + " \\sum_{i = 1}^n \\mathrm{rel\\_entr}(p_i, q_i).\n" + "\n" + "To compute the latter quantity, use `scipy.stats.entropy`.\n" + "\n" + "See [2]_ for details.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Boyd, Stephen and Lieven Vandenberghe. *Convex optimization*.\n" + " Cambridge University Press, 2004.\n" + " :doi:`https://doi.org/10.1017/CBO9780511804441`\n" + ".. [2] Kullback-Leibler divergence,\n" + " https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence") +ufunc_rel_entr_loops[0] = loop_d_dd__As_ff_f +ufunc_rel_entr_loops[1] = loop_d_dd__As_dd_d +ufunc_rel_entr_types[0] = NPY_FLOAT +ufunc_rel_entr_types[1] = NPY_FLOAT +ufunc_rel_entr_types[2] = NPY_FLOAT +ufunc_rel_entr_types[3] = NPY_DOUBLE +ufunc_rel_entr_types[4] = NPY_DOUBLE +ufunc_rel_entr_types[5] = NPY_DOUBLE +ufunc_rel_entr_ptr[2*0] = _func_rel_entr +ufunc_rel_entr_ptr[2*0+1] = ("rel_entr") +ufunc_rel_entr_ptr[2*1] = _func_rel_entr +ufunc_rel_entr_ptr[2*1+1] = ("rel_entr") +ufunc_rel_entr_data[0] = &ufunc_rel_entr_ptr[2*0] +ufunc_rel_entr_data[1] = &ufunc_rel_entr_ptr[2*1] +rel_entr = np.PyUFunc_FromFuncAndData(ufunc_rel_entr_loops, ufunc_rel_entr_data, ufunc_rel_entr_types, 2, 2, 1, 0, "rel_entr", ufunc_rel_entr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_rgamma_loops[4] +cdef void *ufunc_rgamma_ptr[8] +cdef void *ufunc_rgamma_data[4] +cdef char ufunc_rgamma_types[8] +cdef char *ufunc_rgamma_doc = ( + "rgamma(z, out=None)\n" + "\n" + "Reciprocal of the gamma function.\n" + "\n" + "Defined as :math:`1 / \\Gamma(z)`, where :math:`\\Gamma` is the\n" + "gamma function. For more on the gamma function see `gamma`.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Real or complex valued input\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Function results\n" + "\n" + "See Also\n" + "--------\n" + "gamma, gammaln, loggamma\n" + "\n" + "Notes\n" + "-----\n" + "The gamma function has no zeros and has simple poles at\n" + "nonpositive integers, so `rgamma` is an entire function with zeros\n" + "at the nonpositive integers. See the discussion in [dlmf]_ for\n" + "more details.\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] Nist, Digital Library of Mathematical functions,\n" + " https://dlmf.nist.gov/5.2#i\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It is the reciprocal of the gamma function.\n" + "\n" + ">>> sc.rgamma([1, 2, 3, 4])\n" + "array([1. , 1. , 0.5 , 0.16666667])\n" + ">>> 1 / sc.gamma([1, 2, 3, 4])\n" + "array([1. , 1. , 0.5 , 0.16666667])\n" + "\n" + "It is zero at nonpositive integers.\n" + "\n" + ">>> sc.rgamma([0, -1, -2, -3])\n" + "array([0., 0., 0., 0.])\n" + "\n" + "It rapidly underflows to zero along the positive real axis.\n" + "\n" + ">>> sc.rgamma([10, 100, 179])\n" + "array([2.75573192e-006, 1.07151029e-156, 0.00000000e+000])") +ufunc_rgamma_loops[0] = loop_d_d__As_f_f +ufunc_rgamma_loops[1] = loop_d_d__As_d_d +ufunc_rgamma_loops[2] = loop_D_D__As_F_F +ufunc_rgamma_loops[3] = loop_D_D__As_D_D +ufunc_rgamma_types[0] = NPY_FLOAT +ufunc_rgamma_types[1] = NPY_FLOAT +ufunc_rgamma_types[2] = NPY_DOUBLE +ufunc_rgamma_types[3] = NPY_DOUBLE +ufunc_rgamma_types[4] = NPY_CFLOAT +ufunc_rgamma_types[5] = NPY_CFLOAT +ufunc_rgamma_types[6] = NPY_CDOUBLE +ufunc_rgamma_types[7] = NPY_CDOUBLE +ufunc_rgamma_ptr[2*0] = _func_rgamma +ufunc_rgamma_ptr[2*0+1] = ("rgamma") +ufunc_rgamma_ptr[2*1] = _func_rgamma +ufunc_rgamma_ptr[2*1+1] = ("rgamma") +ufunc_rgamma_ptr[2*2] = scipy.special._ufuncs_cxx._export_crgamma +ufunc_rgamma_ptr[2*2+1] = ("rgamma") +ufunc_rgamma_ptr[2*3] = scipy.special._ufuncs_cxx._export_crgamma +ufunc_rgamma_ptr[2*3+1] = ("rgamma") +ufunc_rgamma_data[0] = &ufunc_rgamma_ptr[2*0] +ufunc_rgamma_data[1] = &ufunc_rgamma_ptr[2*1] +ufunc_rgamma_data[2] = &ufunc_rgamma_ptr[2*2] +ufunc_rgamma_data[3] = &ufunc_rgamma_ptr[2*3] +rgamma = np.PyUFunc_FromFuncAndData(ufunc_rgamma_loops, ufunc_rgamma_data, ufunc_rgamma_types, 4, 1, 1, 0, "rgamma", ufunc_rgamma_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_round_loops[2] +cdef void *ufunc_round_ptr[4] +cdef void *ufunc_round_data[2] +cdef char ufunc_round_types[4] +cdef char *ufunc_round_doc = ( + "round(x, out=None)\n" + "\n" + "Round to the nearest integer.\n" + "\n" + "Returns the nearest integer to `x`. If `x` ends in 0.5 exactly,\n" + "the nearest even integer is chosen.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real valued input.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The nearest integers to the elements of `x`. The result is of\n" + " floating type, not integer type.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import scipy.special as sc\n" + "\n" + "It rounds to even.\n" + "\n" + ">>> sc.round([0.5, 1.5])\n" + "array([0., 2.])") +ufunc_round_loops[0] = loop_d_d__As_f_f +ufunc_round_loops[1] = loop_d_d__As_d_d +ufunc_round_types[0] = NPY_FLOAT +ufunc_round_types[1] = NPY_FLOAT +ufunc_round_types[2] = NPY_DOUBLE +ufunc_round_types[3] = NPY_DOUBLE +ufunc_round_ptr[2*0] = _func_round +ufunc_round_ptr[2*0+1] = ("round") +ufunc_round_ptr[2*1] = _func_round +ufunc_round_ptr[2*1+1] = ("round") +ufunc_round_data[0] = &ufunc_round_ptr[2*0] +ufunc_round_data[1] = &ufunc_round_ptr[2*1] +round = np.PyUFunc_FromFuncAndData(ufunc_round_loops, ufunc_round_data, ufunc_round_types, 2, 1, 1, 0, "round", ufunc_round_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_shichi_loops[4] +cdef void *ufunc_shichi_ptr[8] +cdef void *ufunc_shichi_data[4] +cdef char ufunc_shichi_types[12] +cdef char *ufunc_shichi_doc = ( + "shichi(x, out=None)\n" + "\n" + "Hyperbolic sine and cosine integrals.\n" + "\n" + "The hyperbolic sine integral is\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x \\frac{\\sinh{t}}{t}dt\n" + "\n" + "and the hyperbolic cosine integral is\n" + "\n" + ".. math::\n" + "\n" + " \\gamma + \\log(x) + \\int_0^x \\frac{\\cosh{t} - 1}{t} dt\n" + "\n" + "where :math:`\\gamma` is Euler's constant and :math:`\\log` is the\n" + "principal branch of the logarithm [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex points at which to compute the hyperbolic sine\n" + " and cosine integrals.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "si : scalar or ndarray\n" + " Hyperbolic sine integral at ``x``\n" + "ci : scalar or ndarray\n" + " Hyperbolic cosine integral at ``x``\n" + "\n" + "See Also\n" + "--------\n" + "sici : Sine and cosine integrals.\n" + "exp1 : Exponential integral E1.\n" + "expi : Exponential integral Ei.\n" + "\n" + "Notes\n" + "-----\n" + "For real arguments with ``x < 0``, ``chi`` is the real part of the\n" + "hyperbolic cosine integral. For such points ``chi(x)`` and ``chi(x\n" + "+ 0j)`` differ by a factor of ``1j*pi``.\n" + "\n" + "For real arguments the function is computed by calling Cephes'\n" + "[2]_ *shichi* routine. For complex arguments the algorithm is based\n" + "on Mpmath's [3]_ *shi* and *chi* routines.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + " (See Section 5.2.)\n" + ".. [2] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [3] Fredrik Johansson and others.\n" + " \"mpmath: a Python library for arbitrary-precision floating-point\n" + " arithmetic\" (Version 0.19) http://mpmath.org/\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> from scipy.special import shichi, sici\n" + "\n" + "`shichi` accepts real or complex input:\n" + "\n" + ">>> shichi(0.5)\n" + "(0.5069967498196671, -0.05277684495649357)\n" + ">>> shichi(0.5 + 2.5j)\n" + "((0.11772029666668238+1.831091777729851j),\n" + " (0.29912435887648825+1.7395351121166562j))\n" + "\n" + "The hyperbolic sine and cosine integrals Shi(z) and Chi(z) are\n" + "related to the sine and cosine integrals Si(z) and Ci(z) by\n" + "\n" + "* Shi(z) = -i*Si(i*z)\n" + "* Chi(z) = Ci(-i*z) + i*pi/2\n" + "\n" + ">>> z = 0.25 + 5j\n" + ">>> shi, chi = shichi(z)\n" + ">>> shi, -1j*sici(1j*z)[0] # Should be the same.\n" + "((-0.04834719325101729+1.5469354086921228j),\n" + " (-0.04834719325101729+1.5469354086921228j))\n" + ">>> chi, sici(-1j*z)[1] + 1j*np.pi/2 # Should be the same.\n" + "((-0.19568708973868087+1.556276312103824j),\n" + " (-0.19568708973868087+1.556276312103824j))\n" + "\n" + "Plot the functions evaluated on the real axis:\n" + "\n" + ">>> xp = np.geomspace(1e-8, 4.0, 250)\n" + ">>> x = np.concatenate((-xp[::-1], xp))\n" + ">>> shi, chi = shichi(x)\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, shi, label='Shi(x)')\n" + ">>> ax.plot(x, chi, '--', label='Chi(x)')\n" + ">>> ax.set_xlabel('x')\n" + ">>> ax.set_title('Hyperbolic Sine and Cosine Integrals')\n" + ">>> ax.legend(shadow=True, framealpha=1, loc='lower right')\n" + ">>> ax.grid(True)\n" + ">>> plt.show()") +ufunc_shichi_loops[0] = loop_i_d_dd_As_f_ff +ufunc_shichi_loops[1] = loop_i_d_dd_As_d_dd +ufunc_shichi_loops[2] = loop_i_D_DD_As_F_FF +ufunc_shichi_loops[3] = loop_i_D_DD_As_D_DD +ufunc_shichi_types[0] = NPY_FLOAT +ufunc_shichi_types[1] = NPY_FLOAT +ufunc_shichi_types[2] = NPY_FLOAT +ufunc_shichi_types[3] = NPY_DOUBLE +ufunc_shichi_types[4] = NPY_DOUBLE +ufunc_shichi_types[5] = NPY_DOUBLE +ufunc_shichi_types[6] = NPY_CFLOAT +ufunc_shichi_types[7] = NPY_CFLOAT +ufunc_shichi_types[8] = NPY_CFLOAT +ufunc_shichi_types[9] = NPY_CDOUBLE +ufunc_shichi_types[10] = NPY_CDOUBLE +ufunc_shichi_types[11] = NPY_CDOUBLE +ufunc_shichi_ptr[2*0] = _func_shichi +ufunc_shichi_ptr[2*0+1] = ("shichi") +ufunc_shichi_ptr[2*1] = _func_shichi +ufunc_shichi_ptr[2*1+1] = ("shichi") +ufunc_shichi_ptr[2*2] = _func_cshichi +ufunc_shichi_ptr[2*2+1] = ("shichi") +ufunc_shichi_ptr[2*3] = _func_cshichi +ufunc_shichi_ptr[2*3+1] = ("shichi") +ufunc_shichi_data[0] = &ufunc_shichi_ptr[2*0] +ufunc_shichi_data[1] = &ufunc_shichi_ptr[2*1] +ufunc_shichi_data[2] = &ufunc_shichi_ptr[2*2] +ufunc_shichi_data[3] = &ufunc_shichi_ptr[2*3] +shichi = np.PyUFunc_FromFuncAndData(ufunc_shichi_loops, ufunc_shichi_data, ufunc_shichi_types, 4, 1, 2, 0, "shichi", ufunc_shichi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_sici_loops[4] +cdef void *ufunc_sici_ptr[8] +cdef void *ufunc_sici_data[4] +cdef char ufunc_sici_types[12] +cdef char *ufunc_sici_doc = ( + "sici(x, out=None)\n" + "\n" + "Sine and cosine integrals.\n" + "\n" + "The sine integral is\n" + "\n" + ".. math::\n" + "\n" + " \\int_0^x \\frac{\\sin{t}}{t}dt\n" + "\n" + "and the cosine integral is\n" + "\n" + ".. math::\n" + "\n" + " \\gamma + \\log(x) + \\int_0^x \\frac{\\cos{t} - 1}{t}dt\n" + "\n" + "where :math:`\\gamma` is Euler's constant and :math:`\\log` is the\n" + "principal branch of the logarithm [1]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real or complex points at which to compute the sine and cosine\n" + " integrals.\n" + "out : tuple of ndarray, optional\n" + " Optional output arrays for the function results\n" + "\n" + "Returns\n" + "-------\n" + "si : scalar or ndarray\n" + " Sine integral at ``x``\n" + "ci : scalar or ndarray\n" + " Cosine integral at ``x``\n" + "\n" + "See Also\n" + "--------\n" + "shichi : Hyperbolic sine and cosine integrals.\n" + "exp1 : Exponential integral E1.\n" + "expi : Exponential integral Ei.\n" + "\n" + "Notes\n" + "-----\n" + "For real arguments with ``x < 0``, ``ci`` is the real part of the\n" + "cosine integral. For such points ``ci(x)`` and ``ci(x + 0j)``\n" + "differ by a factor of ``1j*pi``.\n" + "\n" + "For real arguments the function is computed by calling Cephes'\n" + "[2]_ *sici* routine. For complex arguments the algorithm is based\n" + "on Mpmath's [3]_ *si* and *ci* routines.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Milton Abramowitz and Irene A. Stegun, eds.\n" + " Handbook of Mathematical Functions with Formulas,\n" + " Graphs, and Mathematical Tables. New York: Dover, 1972.\n" + " (See Section 5.2.)\n" + ".. [2] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + ".. [3] Fredrik Johansson and others.\n" + " \"mpmath: a Python library for arbitrary-precision floating-point\n" + " arithmetic\" (Version 0.19) http://mpmath.org/\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> from scipy.special import sici, exp1\n" + "\n" + "`sici` accepts real or complex input:\n" + "\n" + ">>> sici(2.5)\n" + "(1.7785201734438267, 0.2858711963653835)\n" + ">>> sici(2.5 + 3j)\n" + "((4.505735874563953+0.06863305018999577j),\n" + "(0.0793644206906966-2.935510262937543j))\n" + "\n" + "For z in the right half plane, the sine and cosine integrals are\n" + "related to the exponential integral E1 (implemented in SciPy as\n" + "`scipy.special.exp1`) by\n" + "\n" + "* Si(z) = (E1(i*z) - E1(-i*z))/2i + pi/2\n" + "* Ci(z) = -(E1(i*z) + E1(-i*z))/2\n" + "\n" + "See [1]_ (equations 5.2.21 and 5.2.23).\n" + "\n" + "We can verify these relations:\n" + "\n" + ">>> z = 2 - 3j\n" + ">>> sici(z)\n" + "((4.54751388956229-1.3991965806460565j),\n" + "(1.408292501520851+2.9836177420296055j))\n" + "\n" + ">>> (exp1(1j*z) - exp1(-1j*z))/2j + np.pi/2 # Same as sine integral\n" + "(4.54751388956229-1.3991965806460565j)\n" + "\n" + ">>> -(exp1(1j*z) + exp1(-1j*z))/2 # Same as cosine integral\n" + "(1.408292501520851+2.9836177420296055j)\n" + "\n" + "Plot the functions evaluated on the real axis; the dotted horizontal\n" + "lines are at pi/2 and -pi/2:\n" + "\n" + ">>> x = np.linspace(-16, 16, 150)\n" + ">>> si, ci = sici(x)\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> ax.plot(x, si, label='Si(x)')\n" + ">>> ax.plot(x, ci, '--', label='Ci(x)')\n" + ">>> ax.legend(shadow=True, framealpha=1, loc='upper left')\n" + ">>> ax.set_xlabel('x')\n" + ">>> ax.set_title('Sine and Cosine Integrals')\n" + ">>> ax.axhline(np.pi/2, linestyle=':', alpha=0.5, color='k')\n" + ">>> ax.axhline(-np.pi/2, linestyle=':', alpha=0.5, color='k')\n" + ">>> ax.grid(True)\n" + ">>> plt.show()") +ufunc_sici_loops[0] = loop_i_d_dd_As_f_ff +ufunc_sici_loops[1] = loop_i_d_dd_As_d_dd +ufunc_sici_loops[2] = loop_i_D_DD_As_F_FF +ufunc_sici_loops[3] = loop_i_D_DD_As_D_DD +ufunc_sici_types[0] = NPY_FLOAT +ufunc_sici_types[1] = NPY_FLOAT +ufunc_sici_types[2] = NPY_FLOAT +ufunc_sici_types[3] = NPY_DOUBLE +ufunc_sici_types[4] = NPY_DOUBLE +ufunc_sici_types[5] = NPY_DOUBLE +ufunc_sici_types[6] = NPY_CFLOAT +ufunc_sici_types[7] = NPY_CFLOAT +ufunc_sici_types[8] = NPY_CFLOAT +ufunc_sici_types[9] = NPY_CDOUBLE +ufunc_sici_types[10] = NPY_CDOUBLE +ufunc_sici_types[11] = NPY_CDOUBLE +ufunc_sici_ptr[2*0] = _func_sici +ufunc_sici_ptr[2*0+1] = ("sici") +ufunc_sici_ptr[2*1] = _func_sici +ufunc_sici_ptr[2*1+1] = ("sici") +ufunc_sici_ptr[2*2] = _func_csici +ufunc_sici_ptr[2*2+1] = ("sici") +ufunc_sici_ptr[2*3] = _func_csici +ufunc_sici_ptr[2*3+1] = ("sici") +ufunc_sici_data[0] = &ufunc_sici_ptr[2*0] +ufunc_sici_data[1] = &ufunc_sici_ptr[2*1] +ufunc_sici_data[2] = &ufunc_sici_ptr[2*2] +ufunc_sici_data[3] = &ufunc_sici_ptr[2*3] +sici = np.PyUFunc_FromFuncAndData(ufunc_sici_loops, ufunc_sici_data, ufunc_sici_types, 4, 1, 2, 0, "sici", ufunc_sici_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_sindg_loops[2] +cdef void *ufunc_sindg_ptr[4] +cdef void *ufunc_sindg_data[2] +cdef char ufunc_sindg_types[4] +cdef char *ufunc_sindg_doc = ( + "sindg(x, out=None)\n" + "\n" + "Sine of the angle `x` given in degrees.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Angle, given in degrees.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Sine at the input.\n" + "\n" + "See Also\n" + "--------\n" + "cosdg, tandg, cotdg\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than using sine directly.\n" + "\n" + ">>> x = 180 * np.arange(3)\n" + ">>> sc.sindg(x)\n" + "array([ 0., -0., 0.])\n" + ">>> np.sin(x * np.pi / 180)\n" + "array([ 0.0000000e+00, 1.2246468e-16, -2.4492936e-16])") +ufunc_sindg_loops[0] = loop_d_d__As_f_f +ufunc_sindg_loops[1] = loop_d_d__As_d_d +ufunc_sindg_types[0] = NPY_FLOAT +ufunc_sindg_types[1] = NPY_FLOAT +ufunc_sindg_types[2] = NPY_DOUBLE +ufunc_sindg_types[3] = NPY_DOUBLE +ufunc_sindg_ptr[2*0] = _func_sindg +ufunc_sindg_ptr[2*0+1] = ("sindg") +ufunc_sindg_ptr[2*1] = _func_sindg +ufunc_sindg_ptr[2*1+1] = ("sindg") +ufunc_sindg_data[0] = &ufunc_sindg_ptr[2*0] +ufunc_sindg_data[1] = &ufunc_sindg_ptr[2*1] +sindg = np.PyUFunc_FromFuncAndData(ufunc_sindg_loops, ufunc_sindg_data, ufunc_sindg_types, 2, 1, 1, 0, "sindg", ufunc_sindg_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_smirnov_loops[3] +cdef void *ufunc_smirnov_ptr[6] +cdef void *ufunc_smirnov_data[3] +cdef char ufunc_smirnov_types[9] +cdef char *ufunc_smirnov_doc = ( + "smirnov(n, d, out=None)\n" + "\n" + "Kolmogorov-Smirnov complementary cumulative distribution function\n" + "\n" + "Returns the exact Kolmogorov-Smirnov complementary cumulative\n" + "distribution function,(aka the Survival Function) of Dn+ (or Dn-)\n" + "for a one-sided test of equality between an empirical and a\n" + "theoretical distribution. It is equal to the probability that the\n" + "maximum difference between a theoretical distribution and an empirical\n" + "one based on `n` samples is greater than d.\n" + "\n" + "Parameters\n" + "----------\n" + "n : int\n" + " Number of samples\n" + "d : float array_like\n" + " Deviation between the Empirical CDF (ECDF) and the target CDF.\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value(s) of smirnov(n, d), Prob(Dn+ >= d) (Also Prob(Dn- >= d))\n" + "\n" + "See Also\n" + "--------\n" + "smirnovi : The Inverse Survival Function for the distribution\n" + "scipy.stats.ksone : Provides the functionality as a continuous distribution\n" + "kolmogorov, kolmogi : Functions for the two-sided distribution\n" + "\n" + "Notes\n" + "-----\n" + "`smirnov` is used by `stats.kstest` in the application of the\n" + "Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this\n" + "function is exposed in `scpy.special`, but the recommended way to achieve\n" + "the most accurate CDF/SF/PDF/PPF/ISF computations is to use the\n" + "`stats.ksone` distribution.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import smirnov\n" + ">>> from scipy.stats import norm\n" + "\n" + "Show the probability of a gap at least as big as 0, 0.5 and 1.0 for a\n" + "sample of size 5.\n" + "\n" + ">>> smirnov(5, [0, 0.5, 1.0])\n" + "array([ 1. , 0.056, 0. ])\n" + "\n" + "Compare a sample of size 5 against N(0, 1), the standard normal\n" + "distribution with mean 0 and standard deviation 1.\n" + "\n" + "`x` is the sample.\n" + "\n" + ">>> x = np.array([-1.392, -0.135, 0.114, 0.190, 1.82])\n" + "\n" + ">>> target = norm(0, 1)\n" + ">>> cdfs = target.cdf(x)\n" + ">>> cdfs\n" + "array([0.0819612 , 0.44630594, 0.5453811 , 0.57534543, 0.9656205 ])\n" + "\n" + "Construct the empirical CDF and the K-S statistics (Dn+, Dn-, Dn).\n" + "\n" + ">>> n = len(x)\n" + ">>> ecdfs = np.arange(n+1, dtype=float)/n\n" + ">>> cols = np.column_stack([x, ecdfs[1:], cdfs, cdfs - ecdfs[:n],\n" + "... ecdfs[1:] - cdfs])\n" + ">>> with np.printoptions(precision=3):\n" + "... print(cols)\n" + "[[-1.392 0.2 0.082 0.082 0.118]\n" + " [-0.135 0.4 0.446 0.246 -0.046]\n" + " [ 0.114 0.6 0.545 0.145 0.055]\n" + " [ 0.19 0.8 0.575 -0.025 0.225]\n" + " [ 1.82 1. 0.966 0.166 0.034]]\n" + ">>> gaps = cols[:, -2:]\n" + ">>> Dnpm = np.max(gaps, axis=0)\n" + ">>> print(f'Dn-={Dnpm[0]:f}, Dn+={Dnpm[1]:f}')\n" + "Dn-=0.246306, Dn+=0.224655\n" + ">>> probs = smirnov(n, Dnpm)\n" + ">>> print(f'For a sample of size {n} drawn from N(0, 1):',\n" + "... f' Smirnov n={n}: Prob(Dn- >= {Dnpm[0]:f}) = {probs[0]:.4f}',\n" + "... f' Smirnov n={n}: Prob(Dn+ >= {Dnpm[1]:f}) = {probs[1]:.4f}',\n" + "... sep='\\n')\n" + "For a sample of size 5 drawn from N(0, 1):\n" + " Smirnov n=5: Prob(Dn- >= 0.246306) = 0.4711\n" + " Smirnov n=5: Prob(Dn+ >= 0.224655) = 0.5245\n" + "\n" + "Plot the empirical CDF and the standard normal CDF.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> plt.step(np.concatenate(([-2.5], x, [2.5])),\n" + "... np.concatenate((ecdfs, [1])),\n" + "... where='post', label='Empirical CDF')\n" + ">>> xx = np.linspace(-2.5, 2.5, 100)\n" + ">>> plt.plot(xx, target.cdf(xx), '--', label='CDF for N(0, 1)')\n" + "\n" + "Add vertical lines marking Dn+ and Dn-.\n" + "\n" + ">>> iminus, iplus = np.argmax(gaps, axis=0)\n" + ">>> plt.vlines([x[iminus]], ecdfs[iminus], cdfs[iminus], color='r',\n" + "... alpha=0.5, lw=4)\n" + ">>> plt.vlines([x[iplus]], cdfs[iplus], ecdfs[iplus+1], color='m',\n" + "... alpha=0.5, lw=4)\n" + "\n" + ">>> plt.grid(True)\n" + ">>> plt.legend(framealpha=1, shadow=True)\n" + ">>> plt.show()") +ufunc_smirnov_loops[0] = loop_d_id__As_ld_d +ufunc_smirnov_loops[1] = loop_d_dd__As_ff_f +ufunc_smirnov_loops[2] = loop_d_dd__As_dd_d +ufunc_smirnov_types[0] = NPY_LONG +ufunc_smirnov_types[1] = NPY_DOUBLE +ufunc_smirnov_types[2] = NPY_DOUBLE +ufunc_smirnov_types[3] = NPY_FLOAT +ufunc_smirnov_types[4] = NPY_FLOAT +ufunc_smirnov_types[5] = NPY_FLOAT +ufunc_smirnov_types[6] = NPY_DOUBLE +ufunc_smirnov_types[7] = NPY_DOUBLE +ufunc_smirnov_types[8] = NPY_DOUBLE +ufunc_smirnov_ptr[2*0] = _func_smirnov +ufunc_smirnov_ptr[2*0+1] = ("smirnov") +ufunc_smirnov_ptr[2*1] = _func_smirnov_unsafe +ufunc_smirnov_ptr[2*1+1] = ("smirnov") +ufunc_smirnov_ptr[2*2] = _func_smirnov_unsafe +ufunc_smirnov_ptr[2*2+1] = ("smirnov") +ufunc_smirnov_data[0] = &ufunc_smirnov_ptr[2*0] +ufunc_smirnov_data[1] = &ufunc_smirnov_ptr[2*1] +ufunc_smirnov_data[2] = &ufunc_smirnov_ptr[2*2] +smirnov = np.PyUFunc_FromFuncAndData(ufunc_smirnov_loops, ufunc_smirnov_data, ufunc_smirnov_types, 3, 2, 1, 0, "smirnov", ufunc_smirnov_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_smirnovi_loops[3] +cdef void *ufunc_smirnovi_ptr[6] +cdef void *ufunc_smirnovi_data[3] +cdef char ufunc_smirnovi_types[9] +cdef char *ufunc_smirnovi_doc = ( + "smirnovi(n, p, out=None)\n" + "\n" + "Inverse to `smirnov`\n" + "\n" + "Returns `d` such that ``smirnov(n, d) == p``, the critical value\n" + "corresponding to `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "n : int\n" + " Number of samples\n" + "p : float array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The value(s) of smirnovi(n, p), the critical values.\n" + "\n" + "See Also\n" + "--------\n" + "smirnov : The Survival Function (SF) for the distribution\n" + "scipy.stats.ksone : Provides the functionality as a continuous distribution\n" + "kolmogorov, kolmogi : Functions for the two-sided distribution\n" + "scipy.stats.kstwobign : Two-sided Kolmogorov-Smirnov distribution, large n\n" + "\n" + "Notes\n" + "-----\n" + "`smirnov` is used by `stats.kstest` in the application of the\n" + "Kolmogorov-Smirnov Goodness of Fit test. For historical reasons this\n" + "function is exposed in `scpy.special`, but the recommended way to achieve\n" + "the most accurate CDF/SF/PDF/PPF/ISF computations is to use the\n" + "`stats.ksone` distribution.\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import smirnovi, smirnov\n" + "\n" + ">>> n = 24\n" + ">>> deviations = [0.1, 0.2, 0.3]\n" + "\n" + "Use `smirnov` to compute the complementary CDF of the Smirnov\n" + "distribution for the given number of samples and deviations.\n" + "\n" + ">>> p = smirnov(n, deviations)\n" + ">>> p\n" + "array([0.58105083, 0.12826832, 0.01032231])\n" + "\n" + "The inverse function ``smirnovi(n, p)`` returns ``deviations``.\n" + "\n" + ">>> smirnovi(n, p)\n" + "array([0.1, 0.2, 0.3])") +ufunc_smirnovi_loops[0] = loop_d_id__As_ld_d +ufunc_smirnovi_loops[1] = loop_d_dd__As_ff_f +ufunc_smirnovi_loops[2] = loop_d_dd__As_dd_d +ufunc_smirnovi_types[0] = NPY_LONG +ufunc_smirnovi_types[1] = NPY_DOUBLE +ufunc_smirnovi_types[2] = NPY_DOUBLE +ufunc_smirnovi_types[3] = NPY_FLOAT +ufunc_smirnovi_types[4] = NPY_FLOAT +ufunc_smirnovi_types[5] = NPY_FLOAT +ufunc_smirnovi_types[6] = NPY_DOUBLE +ufunc_smirnovi_types[7] = NPY_DOUBLE +ufunc_smirnovi_types[8] = NPY_DOUBLE +ufunc_smirnovi_ptr[2*0] = _func_smirnovi +ufunc_smirnovi_ptr[2*0+1] = ("smirnovi") +ufunc_smirnovi_ptr[2*1] = _func_smirnovi_unsafe +ufunc_smirnovi_ptr[2*1+1] = ("smirnovi") +ufunc_smirnovi_ptr[2*2] = _func_smirnovi_unsafe +ufunc_smirnovi_ptr[2*2+1] = ("smirnovi") +ufunc_smirnovi_data[0] = &ufunc_smirnovi_ptr[2*0] +ufunc_smirnovi_data[1] = &ufunc_smirnovi_ptr[2*1] +ufunc_smirnovi_data[2] = &ufunc_smirnovi_ptr[2*2] +smirnovi = np.PyUFunc_FromFuncAndData(ufunc_smirnovi_loops, ufunc_smirnovi_data, ufunc_smirnovi_types, 3, 2, 1, 0, "smirnovi", ufunc_smirnovi_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_spence_loops[4] +cdef void *ufunc_spence_ptr[8] +cdef void *ufunc_spence_data[4] +cdef char ufunc_spence_types[8] +cdef char *ufunc_spence_doc = ( + "spence(z, out=None)\n" + "\n" + "Spence's function, also known as the dilogarithm.\n" + "\n" + "It is defined to be\n" + "\n" + ".. math::\n" + " \\int_1^z \\frac{\\log(t)}{1 - t}dt\n" + "\n" + "for complex :math:`z`, where the contour of integration is taken\n" + "to avoid the branch cut of the logarithm. Spence's function is\n" + "analytic everywhere except the negative real axis where it has a\n" + "branch cut.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Points at which to evaluate Spence's function\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "s : scalar or ndarray\n" + " Computed values of Spence's function\n" + "\n" + "Notes\n" + "-----\n" + "There is a different convention which defines Spence's function by\n" + "the integral\n" + "\n" + ".. math::\n" + " -\\int_0^z \\frac{\\log(1 - t)}{t}dt;\n" + "\n" + "this is our ``spence(1 - z)``.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import spence\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + "The function is defined for complex inputs:\n" + "\n" + ">>> spence([1-1j, 1.5+2j, 3j, -10-5j])\n" + "array([-0.20561676+0.91596559j, -0.86766909-1.39560134j,\n" + " -0.59422064-2.49129918j, -1.14044398+6.80075924j])\n" + "\n" + "For complex inputs on the branch cut, which is the negative real axis,\n" + "the function returns the limit for ``z`` with positive imaginary part.\n" + "For example, in the following, note the sign change of the imaginary\n" + "part of the output for ``z = -2`` and ``z = -2 - 1e-8j``:\n" + "\n" + ">>> spence([-2 + 1e-8j, -2, -2 - 1e-8j])\n" + "array([2.32018041-3.45139229j, 2.32018042-3.4513923j ,\n" + " 2.32018041+3.45139229j])\n" + "\n" + "The function returns ``nan`` for real inputs on the branch cut:\n" + "\n" + ">>> spence(-1.5)\n" + "nan\n" + "\n" + "Verify some particular values: ``spence(0) = pi**2/6``,\n" + "``spence(1) = 0`` and ``spence(2) = -pi**2/12``.\n" + "\n" + ">>> spence([0, 1, 2])\n" + "array([ 1.64493407, 0. , -0.82246703])\n" + ">>> np.pi**2/6, -np.pi**2/12\n" + "(1.6449340668482264, -0.8224670334241132)\n" + "\n" + "Verify the identity::\n" + "\n" + " spence(z) + spence(1 - z) = pi**2/6 - log(z)*log(1 - z)\n" + "\n" + ">>> z = 3 + 4j\n" + ">>> spence(z) + spence(1 - z)\n" + "(-2.6523186143876067+1.8853470951513935j)\n" + ">>> np.pi**2/6 - np.log(z)*np.log(1 - z)\n" + "(-2.652318614387606+1.885347095151394j)\n" + "\n" + "Plot the function for positive real input.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0, 6, 400)\n" + ">>> ax.plot(x, spence(x))\n" + ">>> ax.grid()\n" + ">>> ax.set_xlabel('x')\n" + ">>> ax.set_title('spence(x)')\n" + ">>> plt.show()") +ufunc_spence_loops[0] = loop_d_d__As_f_f +ufunc_spence_loops[1] = loop_d_d__As_d_d +ufunc_spence_loops[2] = loop_D_D__As_F_F +ufunc_spence_loops[3] = loop_D_D__As_D_D +ufunc_spence_types[0] = NPY_FLOAT +ufunc_spence_types[1] = NPY_FLOAT +ufunc_spence_types[2] = NPY_DOUBLE +ufunc_spence_types[3] = NPY_DOUBLE +ufunc_spence_types[4] = NPY_CFLOAT +ufunc_spence_types[5] = NPY_CFLOAT +ufunc_spence_types[6] = NPY_CDOUBLE +ufunc_spence_types[7] = NPY_CDOUBLE +ufunc_spence_ptr[2*0] = _func_spence +ufunc_spence_ptr[2*0+1] = ("spence") +ufunc_spence_ptr[2*1] = _func_spence +ufunc_spence_ptr[2*1+1] = ("spence") +ufunc_spence_ptr[2*2] = _func_cspence +ufunc_spence_ptr[2*2+1] = ("spence") +ufunc_spence_ptr[2*3] = _func_cspence +ufunc_spence_ptr[2*3+1] = ("spence") +ufunc_spence_data[0] = &ufunc_spence_ptr[2*0] +ufunc_spence_data[1] = &ufunc_spence_ptr[2*1] +ufunc_spence_data[2] = &ufunc_spence_ptr[2*2] +ufunc_spence_data[3] = &ufunc_spence_ptr[2*3] +spence = np.PyUFunc_FromFuncAndData(ufunc_spence_loops, ufunc_spence_data, ufunc_spence_types, 4, 1, 1, 0, "spence", ufunc_spence_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_sph_harm_loops[3] +cdef void *ufunc_sph_harm_ptr[6] +cdef void *ufunc_sph_harm_data[3] +cdef char ufunc_sph_harm_types[15] +cdef char *ufunc_sph_harm_doc = ( + "sph_harm(m, n, theta, phi, out=None)\n" + "\n" + "Compute spherical harmonics.\n" + "\n" + "The spherical harmonics are defined as\n" + "\n" + ".. math::\n" + "\n" + " Y^m_n(\\theta,\\phi) = \\sqrt{\\frac{2n+1}{4\\pi} \\frac{(n-m)!}{(n+m)!}}\n" + " e^{i m \\theta} P^m_n(\\cos(\\phi))\n" + "\n" + "where :math:`P_n^m` are the associated Legendre functions; see `lpmv`.\n" + "\n" + "Parameters\n" + "----------\n" + "m : array_like\n" + " Order of the harmonic (int); must have ``|m| <= n``.\n" + "n : array_like\n" + " Degree of the harmonic (int); must have ``n >= 0``. This is\n" + " often denoted by ``l`` (lower case L) in descriptions of\n" + " spherical harmonics.\n" + "theta : array_like\n" + " Azimuthal (longitudinal) coordinate; must be in ``[0, 2*pi]``.\n" + "phi : array_like\n" + " Polar (colatitudinal) coordinate; must be in ``[0, pi]``.\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "y_mn : complex scalar or ndarray\n" + " The harmonic :math:`Y^m_n` sampled at ``theta`` and ``phi``.\n" + "\n" + "Notes\n" + "-----\n" + "There are different conventions for the meanings of the input\n" + "arguments ``theta`` and ``phi``. In SciPy ``theta`` is the\n" + "azimuthal angle and ``phi`` is the polar angle. It is common to\n" + "see the opposite convention, that is, ``theta`` as the polar angle\n" + "and ``phi`` as the azimuthal angle.\n" + "\n" + "Note that SciPy's spherical harmonics include the Condon-Shortley\n" + "phase [2]_ because it is part of `lpmv`.\n" + "\n" + "With SciPy's conventions, the first several spherical harmonics\n" + "are\n" + "\n" + ".. math::\n" + "\n" + " Y_0^0(\\theta, \\phi) &= \\frac{1}{2} \\sqrt{\\frac{1}{\\pi}} \\\\\n" + " Y_1^{-1}(\\theta, \\phi) &= \\frac{1}{2} \\sqrt{\\frac{3}{2\\pi}}\n" + " e^{-i\\theta} \\sin(\\phi) \\\\\n" + " Y_1^0(\\theta, \\phi) &= \\frac{1}{2} \\sqrt{\\frac{3}{\\pi}}\n" + " \\cos(\\phi) \\\\\n" + " Y_1^1(\\theta, \\phi) &= -\\frac{1}{2} \\sqrt{\\frac{3}{2\\pi}}\n" + " e^{i\\theta} \\sin(\\phi).\n" + "\n" + "References\n" + "----------\n" + ".. [1] Digital Library of Mathematical Functions, 14.30.\n" + " https://dlmf.nist.gov/14.30\n" + ".. [2] https://en.wikipedia.org/wiki/Spherical_harmonics#Condon.E2.80.93Shortley_phase") +ufunc_sph_harm_loops[0] = loop_D_iidd__As_lldd_D +ufunc_sph_harm_loops[1] = loop_D_dddd__As_ffff_F +ufunc_sph_harm_loops[2] = loop_D_dddd__As_dddd_D +ufunc_sph_harm_types[0] = NPY_LONG +ufunc_sph_harm_types[1] = NPY_LONG +ufunc_sph_harm_types[2] = NPY_DOUBLE +ufunc_sph_harm_types[3] = NPY_DOUBLE +ufunc_sph_harm_types[4] = NPY_CDOUBLE +ufunc_sph_harm_types[5] = NPY_FLOAT +ufunc_sph_harm_types[6] = NPY_FLOAT +ufunc_sph_harm_types[7] = NPY_FLOAT +ufunc_sph_harm_types[8] = NPY_FLOAT +ufunc_sph_harm_types[9] = NPY_CFLOAT +ufunc_sph_harm_types[10] = NPY_DOUBLE +ufunc_sph_harm_types[11] = NPY_DOUBLE +ufunc_sph_harm_types[12] = NPY_DOUBLE +ufunc_sph_harm_types[13] = NPY_DOUBLE +ufunc_sph_harm_types[14] = NPY_CDOUBLE +ufunc_sph_harm_ptr[2*0] = _func_sph_harmonic +ufunc_sph_harm_ptr[2*0+1] = ("sph_harm") +ufunc_sph_harm_ptr[2*1] = _func_sph_harmonic_unsafe +ufunc_sph_harm_ptr[2*1+1] = ("sph_harm") +ufunc_sph_harm_ptr[2*2] = _func_sph_harmonic_unsafe +ufunc_sph_harm_ptr[2*2+1] = ("sph_harm") +ufunc_sph_harm_data[0] = &ufunc_sph_harm_ptr[2*0] +ufunc_sph_harm_data[1] = &ufunc_sph_harm_ptr[2*1] +ufunc_sph_harm_data[2] = &ufunc_sph_harm_ptr[2*2] +sph_harm = np.PyUFunc_FromFuncAndData(ufunc_sph_harm_loops, ufunc_sph_harm_data, ufunc_sph_harm_types, 3, 4, 1, 0, "sph_harm", ufunc_sph_harm_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_stdtr_loops[2] +cdef void *ufunc_stdtr_ptr[4] +cdef void *ufunc_stdtr_data[2] +cdef char ufunc_stdtr_types[6] +cdef char *ufunc_stdtr_doc = ( + "stdtr(df, t, out=None)\n" + "\n" + "Student t distribution cumulative distribution function\n" + "\n" + "Returns the integral:\n" + "\n" + ".. math::\n" + " \\frac{\\Gamma((df+1)/2)}{\\sqrt{\\pi df} \\Gamma(df/2)}\n" + " \\int_{-\\infty}^t (1+x^2/df)^{-(df+1)/2}\\, dx\n" + "\n" + "Parameters\n" + "----------\n" + "df : array_like\n" + " Degrees of freedom\n" + "t : array_like\n" + " Upper bound of the integral\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the Student t CDF at t\n" + "\n" + "See Also\n" + "--------\n" + "stdtridf : inverse of stdtr with respect to `df`\n" + "stdtrit : inverse of stdtr with respect to `t`\n" + "scipy.stats.t : student t distribution\n" + "\n" + "Notes\n" + "-----\n" + "The student t distribution is also available as `scipy.stats.t`.\n" + "Calling `stdtr` directly can improve performance compared to the\n" + "``cdf`` method of `scipy.stats.t` (see last example below).\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function for ``df=3`` at ``t=1``.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import stdtr\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> stdtr(3, 1)\n" + "0.8044988905221148\n" + "\n" + "Plot the function for three different degrees of freedom.\n" + "\n" + ">>> x = np.linspace(-10, 10, 1000)\n" + ">>> fig, ax = plt.subplots()\n" + ">>> parameters = [(1, \"solid\"), (3, \"dashed\"), (10, \"dotted\")]\n" + ">>> for (df, linestyle) in parameters:\n" + "... ax.plot(x, stdtr(df, x), ls=linestyle, label=f\"$df={df}$\")\n" + ">>> ax.legend()\n" + ">>> ax.set_title(\"Student t distribution cumulative distribution function\")\n" + ">>> plt.show()\n" + "\n" + "The function can be computed for several degrees of freedom at the same\n" + "time by providing a NumPy array or list for `df`:\n" + "\n" + ">>> stdtr([1, 2, 3], 1)\n" + "array([0.75 , 0.78867513, 0.80449889])\n" + "\n" + "It is possible to calculate the function at several points for several\n" + "different degrees of freedom simultaneously by providing arrays for `df`\n" + "and `t` with shapes compatible for broadcasting. Compute `stdtr` at\n" + "4 points for 3 degrees of freedom resulting in an array of shape 3x4.\n" + "\n" + ">>> dfs = np.array([[1], [2], [3]])\n" + ">>> t = np.array([2, 4, 6, 8])\n" + ">>> dfs.shape, t.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> stdtr(dfs, t)\n" + "array([[0.85241638, 0.92202087, 0.94743154, 0.96041658],\n" + " [0.90824829, 0.97140452, 0.98666426, 0.99236596],\n" + " [0.93033702, 0.98599577, 0.99536364, 0.99796171]])\n" + "\n" + "The t distribution is also available as `scipy.stats.t`. Calling `stdtr`\n" + "directly can be much faster than calling the ``cdf`` method of\n" + "`scipy.stats.t`. To get the same results, one must use the following\n" + "parametrization: ``scipy.stats.t(df).cdf(x) = stdtr(df, x)``.\n" + "\n" + ">>> from scipy.stats import t\n" + ">>> df, x = 3, 1\n" + ">>> stdtr_result = stdtr(df, x) # this can be faster than below\n" + ">>> stats_result = t(df).cdf(x)\n" + ">>> stats_result == stdtr_result # test that results are equal\n" + "True") +ufunc_stdtr_loops[0] = loop_d_dd__As_ff_f +ufunc_stdtr_loops[1] = loop_d_dd__As_dd_d +ufunc_stdtr_types[0] = NPY_FLOAT +ufunc_stdtr_types[1] = NPY_FLOAT +ufunc_stdtr_types[2] = NPY_FLOAT +ufunc_stdtr_types[3] = NPY_DOUBLE +ufunc_stdtr_types[4] = NPY_DOUBLE +ufunc_stdtr_types[5] = NPY_DOUBLE +ufunc_stdtr_ptr[2*0] = _func_stdtr +ufunc_stdtr_ptr[2*0+1] = ("stdtr") +ufunc_stdtr_ptr[2*1] = _func_stdtr +ufunc_stdtr_ptr[2*1+1] = ("stdtr") +ufunc_stdtr_data[0] = &ufunc_stdtr_ptr[2*0] +ufunc_stdtr_data[1] = &ufunc_stdtr_ptr[2*1] +stdtr = np.PyUFunc_FromFuncAndData(ufunc_stdtr_loops, ufunc_stdtr_data, ufunc_stdtr_types, 2, 2, 1, 0, "stdtr", ufunc_stdtr_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_stdtridf_loops[2] +cdef void *ufunc_stdtridf_ptr[4] +cdef void *ufunc_stdtridf_data[2] +cdef char ufunc_stdtridf_types[6] +cdef char *ufunc_stdtridf_doc = ( + "stdtridf(p, t, out=None)\n" + "\n" + "Inverse of `stdtr` vs df\n" + "\n" + "Returns the argument df such that stdtr(df, t) is equal to `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "p : array_like\n" + " Probability\n" + "t : array_like\n" + " Upper bound of the integral\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "df : scalar or ndarray\n" + " Value of `df` such that ``stdtr(df, t) == p``\n" + "\n" + "See Also\n" + "--------\n" + "stdtr : Student t CDF\n" + "stdtrit : inverse of stdtr with respect to `t`\n" + "scipy.stats.t : Student t distribution\n" + "\n" + "Examples\n" + "--------\n" + "Compute the student t cumulative distribution function for one\n" + "parameter set.\n" + "\n" + ">>> from scipy.special import stdtr, stdtridf\n" + ">>> df, x = 5, 2\n" + ">>> cdf_value = stdtr(df, x)\n" + ">>> cdf_value\n" + "0.9490302605850709\n" + "\n" + "Verify that `stdtridf` recovers the original value for `df` given\n" + "the CDF value and `x`.\n" + "\n" + ">>> stdtridf(cdf_value, x)\n" + "5.0") +ufunc_stdtridf_loops[0] = loop_d_dd__As_ff_f +ufunc_stdtridf_loops[1] = loop_d_dd__As_dd_d +ufunc_stdtridf_types[0] = NPY_FLOAT +ufunc_stdtridf_types[1] = NPY_FLOAT +ufunc_stdtridf_types[2] = NPY_FLOAT +ufunc_stdtridf_types[3] = NPY_DOUBLE +ufunc_stdtridf_types[4] = NPY_DOUBLE +ufunc_stdtridf_types[5] = NPY_DOUBLE +ufunc_stdtridf_ptr[2*0] = _func_stdtridf +ufunc_stdtridf_ptr[2*0+1] = ("stdtridf") +ufunc_stdtridf_ptr[2*1] = _func_stdtridf +ufunc_stdtridf_ptr[2*1+1] = ("stdtridf") +ufunc_stdtridf_data[0] = &ufunc_stdtridf_ptr[2*0] +ufunc_stdtridf_data[1] = &ufunc_stdtridf_ptr[2*1] +stdtridf = np.PyUFunc_FromFuncAndData(ufunc_stdtridf_loops, ufunc_stdtridf_data, ufunc_stdtridf_types, 2, 2, 1, 0, "stdtridf", ufunc_stdtridf_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_stdtrit_loops[2] +cdef void *ufunc_stdtrit_ptr[4] +cdef void *ufunc_stdtrit_data[2] +cdef char ufunc_stdtrit_types[6] +cdef char *ufunc_stdtrit_doc = ( + "stdtrit(df, p, out=None)\n" + "\n" + "The `p`-th quantile of the student t distribution.\n" + "\n" + "This function is the inverse of the student t distribution cumulative\n" + "distribution function (CDF), returning `t` such that `stdtr(df, t) = p`.\n" + "\n" + "Returns the argument `t` such that stdtr(df, t) is equal to `p`.\n" + "\n" + "Parameters\n" + "----------\n" + "df : array_like\n" + " Degrees of freedom\n" + "p : array_like\n" + " Probability\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "t : scalar or ndarray\n" + " Value of `t` such that ``stdtr(df, t) == p``\n" + "\n" + "See Also\n" + "--------\n" + "stdtr : Student t CDF\n" + "stdtridf : inverse of stdtr with respect to `df`\n" + "scipy.stats.t : Student t distribution\n" + "\n" + "Notes\n" + "-----\n" + "The student t distribution is also available as `scipy.stats.t`. Calling\n" + "`stdtrit` directly can improve performance compared to the ``ppf``\n" + "method of `scipy.stats.t` (see last example below).\n" + "\n" + "Examples\n" + "--------\n" + "`stdtrit` represents the inverse of the student t distribution CDF which\n" + "is available as `stdtr`. Here, we calculate the CDF for ``df`` at\n" + "``x=1``. `stdtrit` then returns ``1`` up to floating point errors\n" + "given the same value for `df` and the computed CDF value.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import stdtr, stdtrit\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> df = 3\n" + ">>> x = 1\n" + ">>> cdf_value = stdtr(df, x)\n" + ">>> stdtrit(df, cdf_value)\n" + "0.9999999994418539\n" + "\n" + "Plot the function for three different degrees of freedom.\n" + "\n" + ">>> x = np.linspace(0, 1, 1000)\n" + ">>> parameters = [(1, \"solid\"), (2, \"dashed\"), (5, \"dotted\")]\n" + ">>> fig, ax = plt.subplots()\n" + ">>> for (df, linestyle) in parameters:\n" + "... ax.plot(x, stdtrit(df, x), ls=linestyle, label=f\"$df={df}$\")\n" + ">>> ax.legend()\n" + ">>> ax.set_ylim(-10, 10)\n" + ">>> ax.set_title(\"Student t distribution quantile function\")\n" + ">>> plt.show()\n" + "\n" + "The function can be computed for several degrees of freedom at the same\n" + "time by providing a NumPy array or list for `df`:\n" + "\n" + ">>> stdtrit([1, 2, 3], 0.7)\n" + "array([0.72654253, 0.6172134 , 0.58438973])\n" + "\n" + "It is possible to calculate the function at several points for several\n" + "different degrees of freedom simultaneously by providing arrays for `df`\n" + "and `p` with shapes compatible for broadcasting. Compute `stdtrit` at\n" + "4 points for 3 degrees of freedom resulting in an array of shape 3x4.\n" + "\n" + ">>> dfs = np.array([[1], [2], [3]])\n" + ">>> p = np.array([0.2, 0.4, 0.7, 0.8])\n" + ">>> dfs.shape, p.shape\n" + "((3, 1), (4,))\n" + "\n" + ">>> stdtrit(dfs, p)\n" + "array([[-1.37638192, -0.3249197 , 0.72654253, 1.37638192],\n" + " [-1.06066017, -0.28867513, 0.6172134 , 1.06066017],\n" + " [-0.97847231, -0.27667066, 0.58438973, 0.97847231]])\n" + "\n" + "The t distribution is also available as `scipy.stats.t`. Calling `stdtrit`\n" + "directly can be much faster than calling the ``ppf`` method of\n" + "`scipy.stats.t`. To get the same results, one must use the following\n" + "parametrization: ``scipy.stats.t(df).ppf(x) = stdtrit(df, x)``.\n" + "\n" + ">>> from scipy.stats import t\n" + ">>> df, x = 3, 0.5\n" + ">>> stdtrit_result = stdtrit(df, x) # this can be faster than below\n" + ">>> stats_result = t(df).ppf(x)\n" + ">>> stats_result == stdtrit_result # test that results are equal\n" + "True") +ufunc_stdtrit_loops[0] = loop_d_dd__As_ff_f +ufunc_stdtrit_loops[1] = loop_d_dd__As_dd_d +ufunc_stdtrit_types[0] = NPY_FLOAT +ufunc_stdtrit_types[1] = NPY_FLOAT +ufunc_stdtrit_types[2] = NPY_FLOAT +ufunc_stdtrit_types[3] = NPY_DOUBLE +ufunc_stdtrit_types[4] = NPY_DOUBLE +ufunc_stdtrit_types[5] = NPY_DOUBLE +ufunc_stdtrit_ptr[2*0] = _func_stdtrit +ufunc_stdtrit_ptr[2*0+1] = ("stdtrit") +ufunc_stdtrit_ptr[2*1] = _func_stdtrit +ufunc_stdtrit_ptr[2*1+1] = ("stdtrit") +ufunc_stdtrit_data[0] = &ufunc_stdtrit_ptr[2*0] +ufunc_stdtrit_data[1] = &ufunc_stdtrit_ptr[2*1] +stdtrit = np.PyUFunc_FromFuncAndData(ufunc_stdtrit_loops, ufunc_stdtrit_data, ufunc_stdtrit_types, 2, 2, 1, 0, "stdtrit", ufunc_stdtrit_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_struve_loops[2] +cdef void *ufunc_struve_ptr[4] +cdef void *ufunc_struve_data[2] +cdef char ufunc_struve_types[6] +cdef char *ufunc_struve_doc = ( + "struve(v, x, out=None)\n" + "\n" + "Struve function.\n" + "\n" + "Return the value of the Struve function of order `v` at `x`. The Struve\n" + "function is defined as,\n" + "\n" + ".. math::\n" + " H_v(x) = (z/2)^{v + 1} \\sum_{n=0}^\\infty\n" + " \\frac{(-1)^n (z/2)^{2n}}{\\Gamma(n + \\frac{3}{2}) \\Gamma(n + v + \\frac{3}{2})},\n" + "\n" + "where :math:`\\Gamma` is the gamma function.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order of the Struve function (float).\n" + "x : array_like\n" + " Argument of the Struve function (float; must be positive unless `v` is\n" + " an integer).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "H : scalar or ndarray\n" + " Value of the Struve function of order `v` at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "modstruve: Modified Struve function\n" + "\n" + "Notes\n" + "-----\n" + "Three methods discussed in [1]_ are used to evaluate the Struve function:\n" + "\n" + "- power series\n" + "- expansion in Bessel functions (if :math:`|z| < |v| + 20`)\n" + "- asymptotic large-z expansion (if :math:`z \\geq 0.7v + 12`)\n" + "\n" + "Rounding errors are estimated based on the largest terms in the sums, and\n" + "the result associated with the smallest error is returned.\n" + "\n" + "References\n" + "----------\n" + ".. [1] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/11\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the Struve function of order 1 at 2.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import struve\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> struve(1, 2.)\n" + "0.6467637282835622\n" + "\n" + "Calculate the Struve function at 2 for orders 1, 2 and 3 by providing\n" + "a list for the order parameter `v`.\n" + "\n" + ">>> struve([1, 2, 3], 2.)\n" + "array([0.64676373, 0.28031806, 0.08363767])\n" + "\n" + "Calculate the Struve function of order 1 for several points by providing\n" + "an array for `x`.\n" + "\n" + ">>> points = np.array([2., 5., 8.])\n" + ">>> struve(1, points)\n" + "array([0.64676373, 0.80781195, 0.48811605])\n" + "\n" + "Compute the Struve function for several orders at several points by\n" + "providing arrays for `v` and `z`. The arrays have to be broadcastable\n" + "to the correct shapes.\n" + "\n" + ">>> orders = np.array([[1], [2], [3]])\n" + ">>> points.shape, orders.shape\n" + "((3,), (3, 1))\n" + "\n" + ">>> struve(orders, points)\n" + "array([[0.64676373, 0.80781195, 0.48811605],\n" + " [0.28031806, 1.56937455, 1.51769363],\n" + " [0.08363767, 1.50872065, 2.98697513]])\n" + "\n" + "Plot the Struve functions of order 0 to 3 from -10 to 10.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-10., 10., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, struve(i, x), label=f'$H_{i!r}$')\n" + ">>> ax.legend(ncol=2)\n" + ">>> ax.set_xlim(-10, 10)\n" + ">>> ax.set_title(r\"Struve functions $H_{\\nu}$\")\n" + ">>> plt.show()") +ufunc_struve_loops[0] = loop_d_dd__As_ff_f +ufunc_struve_loops[1] = loop_d_dd__As_dd_d +ufunc_struve_types[0] = NPY_FLOAT +ufunc_struve_types[1] = NPY_FLOAT +ufunc_struve_types[2] = NPY_FLOAT +ufunc_struve_types[3] = NPY_DOUBLE +ufunc_struve_types[4] = NPY_DOUBLE +ufunc_struve_types[5] = NPY_DOUBLE +ufunc_struve_ptr[2*0] = _func_struve_h +ufunc_struve_ptr[2*0+1] = ("struve") +ufunc_struve_ptr[2*1] = _func_struve_h +ufunc_struve_ptr[2*1+1] = ("struve") +ufunc_struve_data[0] = &ufunc_struve_ptr[2*0] +ufunc_struve_data[1] = &ufunc_struve_ptr[2*1] +struve = np.PyUFunc_FromFuncAndData(ufunc_struve_loops, ufunc_struve_data, ufunc_struve_types, 2, 2, 1, 0, "struve", ufunc_struve_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_tandg_loops[2] +cdef void *ufunc_tandg_ptr[4] +cdef void *ufunc_tandg_data[2] +cdef char ufunc_tandg_types[4] +cdef char *ufunc_tandg_doc = ( + "tandg(x, out=None)\n" + "\n" + "Tangent of angle `x` given in degrees.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Angle, given in degrees.\n" + "out : ndarray, optional\n" + " Optional output array for the function results.\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Tangent at the input.\n" + "\n" + "See Also\n" + "--------\n" + "sindg, cosdg, cotdg\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import scipy.special as sc\n" + "\n" + "It is more accurate than using tangent directly.\n" + "\n" + ">>> x = 180 * np.arange(3)\n" + ">>> sc.tandg(x)\n" + "array([0., 0., 0.])\n" + ">>> np.tan(x * np.pi / 180)\n" + "array([ 0.0000000e+00, -1.2246468e-16, -2.4492936e-16])") +ufunc_tandg_loops[0] = loop_d_d__As_f_f +ufunc_tandg_loops[1] = loop_d_d__As_d_d +ufunc_tandg_types[0] = NPY_FLOAT +ufunc_tandg_types[1] = NPY_FLOAT +ufunc_tandg_types[2] = NPY_DOUBLE +ufunc_tandg_types[3] = NPY_DOUBLE +ufunc_tandg_ptr[2*0] = _func_tandg +ufunc_tandg_ptr[2*0+1] = ("tandg") +ufunc_tandg_ptr[2*1] = _func_tandg +ufunc_tandg_ptr[2*1+1] = ("tandg") +ufunc_tandg_data[0] = &ufunc_tandg_ptr[2*0] +ufunc_tandg_data[1] = &ufunc_tandg_ptr[2*1] +tandg = np.PyUFunc_FromFuncAndData(ufunc_tandg_loops, ufunc_tandg_data, ufunc_tandg_types, 2, 1, 1, 0, "tandg", ufunc_tandg_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_tklmbda_loops[2] +cdef void *ufunc_tklmbda_ptr[4] +cdef void *ufunc_tklmbda_data[2] +cdef char ufunc_tklmbda_types[6] +cdef char *ufunc_tklmbda_doc = ( + "tklmbda(x, lmbda, out=None)\n" + "\n" + "Cumulative distribution function of the Tukey lambda distribution.\n" + "\n" + "Parameters\n" + "----------\n" + "x, lmbda : array_like\n" + " Parameters\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "cdf : scalar or ndarray\n" + " Value of the Tukey lambda CDF\n" + "\n" + "See Also\n" + "--------\n" + "scipy.stats.tukeylambda : Tukey lambda distribution\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> from scipy.special import tklmbda, expit\n" + "\n" + "Compute the cumulative distribution function (CDF) of the Tukey lambda\n" + "distribution at several ``x`` values for `lmbda` = -1.5.\n" + "\n" + ">>> x = np.linspace(-2, 2, 9)\n" + ">>> x\n" + "array([-2. , -1.5, -1. , -0.5, 0. , 0.5, 1. , 1.5, 2. ])\n" + ">>> tklmbda(x, -1.5)\n" + "array([0.34688734, 0.3786554 , 0.41528805, 0.45629737, 0.5 ,\n" + " 0.54370263, 0.58471195, 0.6213446 , 0.65311266])\n" + "\n" + "When `lmbda` is 0, the function is the logistic sigmoid function,\n" + "which is implemented in `scipy.special` as `expit`.\n" + "\n" + ">>> tklmbda(x, 0)\n" + "array([0.11920292, 0.18242552, 0.26894142, 0.37754067, 0.5 ,\n" + " 0.62245933, 0.73105858, 0.81757448, 0.88079708])\n" + ">>> expit(x)\n" + "array([0.11920292, 0.18242552, 0.26894142, 0.37754067, 0.5 ,\n" + " 0.62245933, 0.73105858, 0.81757448, 0.88079708])\n" + "\n" + "When `lmbda` is 1, the Tukey lambda distribution is uniform on the\n" + "interval [-1, 1], so the CDF increases linearly.\n" + "\n" + ">>> t = np.linspace(-1, 1, 9)\n" + ">>> tklmbda(t, 1)\n" + "array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625, 0.75 , 0.875, 1. ])\n" + "\n" + "In the following, we generate plots for several values of `lmbda`.\n" + "\n" + "The first figure shows graphs for `lmbda` <= 0.\n" + "\n" + ">>> styles = ['-', '-.', '--', ':']\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-12, 12, 500)\n" + ">>> for k, lmbda in enumerate([-1.0, -0.5, 0.0]):\n" + "... y = tklmbda(x, lmbda)\n" + "... ax.plot(x, y, styles[k], label=rf'$\\lambda$ = {lmbda:-4.1f}')\n" + "\n" + ">>> ax.set_title(r'tklmbda(x, $\\lambda$)')\n" + ">>> ax.set_label('x')\n" + ">>> ax.legend(framealpha=1, shadow=True)\n" + ">>> ax.grid(True)\n" + "\n" + "The second figure shows graphs for `lmbda` > 0. The dots in the\n" + "graphs show the bounds of the support of the distribution.\n" + "\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(-4.2, 4.2, 500)\n" + ">>> lmbdas = [0.25, 0.5, 1.0, 1.5]\n" + ">>> for k, lmbda in enumerate(lmbdas):\n" + "... y = tklmbda(x, lmbda)\n" + "... ax.plot(x, y, styles[k], label=fr'$\\lambda$ = {lmbda}')\n" + "\n" + ">>> ax.set_prop_cycle(None)\n" + ">>> for lmbda in lmbdas:\n" + "... ax.plot([-1/lmbda, 1/lmbda], [0, 1], '.', ms=8)\n" + "\n" + ">>> ax.set_title(r'tklmbda(x, $\\lambda$)')\n" + ">>> ax.set_xlabel('x')\n" + ">>> ax.legend(framealpha=1, shadow=True)\n" + ">>> ax.grid(True)\n" + "\n" + ">>> plt.tight_layout()\n" + ">>> plt.show()\n" + "\n" + "The CDF of the Tukey lambda distribution is also implemented as the\n" + "``cdf`` method of `scipy.stats.tukeylambda`. In the following,\n" + "``tukeylambda.cdf(x, -0.5)`` and ``tklmbda(x, -0.5)`` compute the\n" + "same values:\n" + "\n" + ">>> from scipy.stats import tukeylambda\n" + ">>> x = np.linspace(-2, 2, 9)\n" + "\n" + ">>> tukeylambda.cdf(x, -0.5)\n" + "array([0.21995157, 0.27093858, 0.33541677, 0.41328161, 0.5 ,\n" + " 0.58671839, 0.66458323, 0.72906142, 0.78004843])\n" + "\n" + ">>> tklmbda(x, -0.5)\n" + "array([0.21995157, 0.27093858, 0.33541677, 0.41328161, 0.5 ,\n" + " 0.58671839, 0.66458323, 0.72906142, 0.78004843])\n" + "\n" + "The implementation in ``tukeylambda`` also provides location and scale\n" + "parameters, and other methods such as ``pdf()`` (the probability\n" + "density function) and ``ppf()`` (the inverse of the CDF), so for\n" + "working with the Tukey lambda distribution, ``tukeylambda`` is more\n" + "generally useful. The primary advantage of ``tklmbda`` is that it is\n" + "significantly faster than ``tukeylambda.cdf``.") +ufunc_tklmbda_loops[0] = loop_d_dd__As_ff_f +ufunc_tklmbda_loops[1] = loop_d_dd__As_dd_d +ufunc_tklmbda_types[0] = NPY_FLOAT +ufunc_tklmbda_types[1] = NPY_FLOAT +ufunc_tklmbda_types[2] = NPY_FLOAT +ufunc_tklmbda_types[3] = NPY_DOUBLE +ufunc_tklmbda_types[4] = NPY_DOUBLE +ufunc_tklmbda_types[5] = NPY_DOUBLE +ufunc_tklmbda_ptr[2*0] = _func_tukeylambdacdf +ufunc_tklmbda_ptr[2*0+1] = ("tklmbda") +ufunc_tklmbda_ptr[2*1] = _func_tukeylambdacdf +ufunc_tklmbda_ptr[2*1+1] = ("tklmbda") +ufunc_tklmbda_data[0] = &ufunc_tklmbda_ptr[2*0] +ufunc_tklmbda_data[1] = &ufunc_tklmbda_ptr[2*1] +tklmbda = np.PyUFunc_FromFuncAndData(ufunc_tklmbda_loops, ufunc_tklmbda_data, ufunc_tklmbda_types, 2, 2, 1, 0, "tklmbda", ufunc_tklmbda_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_voigt_profile_loops[2] +cdef void *ufunc_voigt_profile_ptr[4] +cdef void *ufunc_voigt_profile_data[2] +cdef char ufunc_voigt_profile_types[8] +cdef char *ufunc_voigt_profile_doc = ( + "voigt_profile(x, sigma, gamma, out=None)\n" + "\n" + "Voigt profile.\n" + "\n" + "The Voigt profile is a convolution of a 1-D Normal distribution with\n" + "standard deviation ``sigma`` and a 1-D Cauchy distribution with half-width at\n" + "half-maximum ``gamma``.\n" + "\n" + "If ``sigma = 0``, PDF of Cauchy distribution is returned.\n" + "Conversely, if ``gamma = 0``, PDF of Normal distribution is returned.\n" + "If ``sigma = gamma = 0``, the return value is ``Inf`` for ``x = 0``,\n" + "and ``0`` for all other ``x``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Real argument\n" + "sigma : array_like\n" + " The standard deviation of the Normal distribution part\n" + "gamma : array_like\n" + " The half-width at half-maximum of the Cauchy distribution part\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " The Voigt profile at the given arguments\n" + "\n" + "See Also\n" + "--------\n" + "wofz : Faddeeva function\n" + "\n" + "Notes\n" + "-----\n" + "It can be expressed in terms of Faddeeva function\n" + "\n" + ".. math:: V(x; \\sigma, \\gamma) = \\frac{Re[w(z)]}{\\sigma\\sqrt{2\\pi}},\n" + ".. math:: z = \\frac{x + i\\gamma}{\\sqrt{2}\\sigma}\n" + "\n" + "where :math:`w(z)` is the Faddeeva function.\n" + "\n" + "References\n" + "----------\n" + ".. [1] https://en.wikipedia.org/wiki/Voigt_profile\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at point 2 for ``sigma=1`` and ``gamma=1``.\n" + "\n" + ">>> from scipy.special import voigt_profile\n" + ">>> import numpy as np\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> voigt_profile(2, 1., 1.)\n" + "0.09071519942627544\n" + "\n" + "Calculate the function at several points by providing a NumPy array\n" + "for `x`.\n" + "\n" + ">>> values = np.array([-2., 0., 5])\n" + ">>> voigt_profile(values, 1., 1.)\n" + "array([0.0907152 , 0.20870928, 0.01388492])\n" + "\n" + "Plot the function for different parameter sets.\n" + "\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> x = np.linspace(-10, 10, 500)\n" + ">>> parameters_list = [(1.5, 0., \"solid\"), (1.3, 0.5, \"dashed\"),\n" + "... (0., 1.8, \"dotted\"), (1., 1., \"dashdot\")]\n" + ">>> for params in parameters_list:\n" + "... sigma, gamma, linestyle = params\n" + "... voigt = voigt_profile(x, sigma, gamma)\n" + "... ax.plot(x, voigt, label=rf\"$\\sigma={sigma},\\, \\gamma={gamma}$\",\n" + "... ls=linestyle)\n" + ">>> ax.legend()\n" + ">>> plt.show()\n" + "\n" + "Verify visually that the Voigt profile indeed arises as the convolution\n" + "of a normal and a Cauchy distribution.\n" + "\n" + ">>> from scipy.signal import convolve\n" + ">>> x, dx = np.linspace(-10, 10, 500, retstep=True)\n" + ">>> def gaussian(x, sigma):\n" + "... return np.exp(-0.5 * x**2/sigma**2)/(sigma * np.sqrt(2*np.pi))\n" + ">>> def cauchy(x, gamma):\n" + "... return gamma/(np.pi * (np.square(x)+gamma**2))\n" + ">>> sigma = 2\n" + ">>> gamma = 1\n" + ">>> gauss_profile = gaussian(x, sigma)\n" + ">>> cauchy_profile = cauchy(x, gamma)\n" + ">>> convolved = dx * convolve(cauchy_profile, gauss_profile, mode=\"same\")\n" + ">>> voigt = voigt_profile(x, sigma, gamma)\n" + ">>> fig, ax = plt.subplots(figsize=(8, 8))\n" + ">>> ax.plot(x, gauss_profile, label=\"Gauss: $G$\", c='b')\n" + ">>> ax.plot(x, cauchy_profile, label=\"Cauchy: $C$\", c='y', ls=\"dashed\")\n" + ">>> xx = 0.5*(x[1:] + x[:-1]) # midpoints\n" + ">>> ax.plot(xx, convolved[1:], label=\"Convolution: $G * C$\", ls='dashdot',\n" + "... c='k')\n" + ">>> ax.plot(x, voigt, label=\"Voigt\", ls='dotted', c='r')\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_voigt_profile_loops[0] = loop_d_ddd__As_fff_f +ufunc_voigt_profile_loops[1] = loop_d_ddd__As_ddd_d +ufunc_voigt_profile_types[0] = NPY_FLOAT +ufunc_voigt_profile_types[1] = NPY_FLOAT +ufunc_voigt_profile_types[2] = NPY_FLOAT +ufunc_voigt_profile_types[3] = NPY_FLOAT +ufunc_voigt_profile_types[4] = NPY_DOUBLE +ufunc_voigt_profile_types[5] = NPY_DOUBLE +ufunc_voigt_profile_types[6] = NPY_DOUBLE +ufunc_voigt_profile_types[7] = NPY_DOUBLE +ufunc_voigt_profile_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_voigt_profile +ufunc_voigt_profile_ptr[2*0+1] = ("voigt_profile") +ufunc_voigt_profile_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_voigt_profile +ufunc_voigt_profile_ptr[2*1+1] = ("voigt_profile") +ufunc_voigt_profile_data[0] = &ufunc_voigt_profile_ptr[2*0] +ufunc_voigt_profile_data[1] = &ufunc_voigt_profile_ptr[2*1] +voigt_profile = np.PyUFunc_FromFuncAndData(ufunc_voigt_profile_loops, ufunc_voigt_profile_data, ufunc_voigt_profile_types, 2, 3, 1, 0, "voigt_profile", ufunc_voigt_profile_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_wofz_loops[2] +cdef void *ufunc_wofz_ptr[4] +cdef void *ufunc_wofz_data[2] +cdef char ufunc_wofz_types[4] +cdef char *ufunc_wofz_doc = ( + "wofz(z, out=None)\n" + "\n" + "Faddeeva function\n" + "\n" + "Returns the value of the Faddeeva function for complex argument::\n" + "\n" + " exp(-z**2) * erfc(-i*z)\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " complex argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the Faddeeva function\n" + "\n" + "See Also\n" + "--------\n" + "dawsn, erf, erfc, erfcx, erfi\n" + "\n" + "References\n" + "----------\n" + ".. [1] Steven G. Johnson, Faddeeva W function implementation.\n" + " http://ab-initio.mit.edu/Faddeeva\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy import special\n" + ">>> import matplotlib.pyplot as plt\n" + "\n" + ">>> x = np.linspace(-3, 3)\n" + ">>> z = special.wofz(x)\n" + "\n" + ">>> plt.plot(x, z.real, label='wofz(x).real')\n" + ">>> plt.plot(x, z.imag, label='wofz(x).imag')\n" + ">>> plt.xlabel('$x$')\n" + ">>> plt.legend(framealpha=1, shadow=True)\n" + ">>> plt.grid(alpha=0.25)\n" + ">>> plt.show()") +ufunc_wofz_loops[0] = loop_D_D__As_F_F +ufunc_wofz_loops[1] = loop_D_D__As_D_D +ufunc_wofz_types[0] = NPY_CFLOAT +ufunc_wofz_types[1] = NPY_CFLOAT +ufunc_wofz_types[2] = NPY_CDOUBLE +ufunc_wofz_types[3] = NPY_CDOUBLE +ufunc_wofz_ptr[2*0] = scipy.special._ufuncs_cxx._export_faddeeva_w +ufunc_wofz_ptr[2*0+1] = ("wofz") +ufunc_wofz_ptr[2*1] = scipy.special._ufuncs_cxx._export_faddeeva_w +ufunc_wofz_ptr[2*1+1] = ("wofz") +ufunc_wofz_data[0] = &ufunc_wofz_ptr[2*0] +ufunc_wofz_data[1] = &ufunc_wofz_ptr[2*1] +wofz = np.PyUFunc_FromFuncAndData(ufunc_wofz_loops, ufunc_wofz_data, ufunc_wofz_types, 2, 1, 1, 0, "wofz", ufunc_wofz_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_wright_bessel_loops[2] +cdef void *ufunc_wright_bessel_ptr[4] +cdef void *ufunc_wright_bessel_data[2] +cdef char ufunc_wright_bessel_types[8] +cdef char *ufunc_wright_bessel_doc = ( + "wright_bessel(a, b, x, out=None)\n" + "\n" + "Wright's generalized Bessel function.\n" + "\n" + "Wright's generalized Bessel function is an entire function and defined as\n" + "\n" + ".. math:: \\Phi(a, b; x) = \\sum_{k=0}^\\infty \\frac{x^k}{k! \\Gamma(a k + b)}\n" + "\n" + "See Also [1].\n" + "\n" + "Parameters\n" + "----------\n" + "a : array_like of float\n" + " a >= 0\n" + "b : array_like of float\n" + " b >= 0\n" + "x : array_like of float\n" + " x >= 0\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Value of the Wright's generalized Bessel function\n" + "\n" + "Notes\n" + "-----\n" + "Due to the complexity of the function with its three parameters, only\n" + "non-negative arguments are implemented.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Digital Library of Mathematical Functions, 10.46.\n" + " https://dlmf.nist.gov/10.46.E1\n" + "\n" + "Examples\n" + "--------\n" + ">>> from scipy.special import wright_bessel\n" + ">>> a, b, x = 1.5, 1.1, 2.5\n" + ">>> wright_bessel(a, b-1, x)\n" + "4.5314465939443025\n" + "\n" + "Now, let us verify the relation\n" + "\n" + ".. math:: \\Phi(a, b-1; x) = a x \\Phi(a, b+a; x) + (b-1) \\Phi(a, b; x)\n" + "\n" + ">>> a * x * wright_bessel(a, b+a, x) + (b-1) * wright_bessel(a, b, x)\n" + "4.5314465939443025") +ufunc_wright_bessel_loops[0] = loop_d_ddd__As_fff_f +ufunc_wright_bessel_loops[1] = loop_d_ddd__As_ddd_d +ufunc_wright_bessel_types[0] = NPY_FLOAT +ufunc_wright_bessel_types[1] = NPY_FLOAT +ufunc_wright_bessel_types[2] = NPY_FLOAT +ufunc_wright_bessel_types[3] = NPY_FLOAT +ufunc_wright_bessel_types[4] = NPY_DOUBLE +ufunc_wright_bessel_types[5] = NPY_DOUBLE +ufunc_wright_bessel_types[6] = NPY_DOUBLE +ufunc_wright_bessel_types[7] = NPY_DOUBLE +ufunc_wright_bessel_ptr[2*0] = _func_wright_bessel_scalar +ufunc_wright_bessel_ptr[2*0+1] = ("wright_bessel") +ufunc_wright_bessel_ptr[2*1] = _func_wright_bessel_scalar +ufunc_wright_bessel_ptr[2*1+1] = ("wright_bessel") +ufunc_wright_bessel_data[0] = &ufunc_wright_bessel_ptr[2*0] +ufunc_wright_bessel_data[1] = &ufunc_wright_bessel_ptr[2*1] +wright_bessel = np.PyUFunc_FromFuncAndData(ufunc_wright_bessel_loops, ufunc_wright_bessel_data, ufunc_wright_bessel_types, 2, 3, 1, 0, "wright_bessel", ufunc_wright_bessel_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_wrightomega_loops[4] +cdef void *ufunc_wrightomega_ptr[8] +cdef void *ufunc_wrightomega_data[4] +cdef char ufunc_wrightomega_types[8] +cdef char *ufunc_wrightomega_doc = ( + "wrightomega(z, out=None)\n" + "\n" + "Wright Omega function.\n" + "\n" + "Defined as the solution to\n" + "\n" + ".. math::\n" + "\n" + " \\omega + \\log(\\omega) = z\n" + "\n" + "where :math:`\\log` is the principal branch of the complex logarithm.\n" + "\n" + "Parameters\n" + "----------\n" + "z : array_like\n" + " Points at which to evaluate the Wright Omega function\n" + "out : ndarray, optional\n" + " Optional output array for the function values\n" + "\n" + "Returns\n" + "-------\n" + "omega : scalar or ndarray\n" + " Values of the Wright Omega function\n" + "\n" + "See Also\n" + "--------\n" + "lambertw : The Lambert W function\n" + "\n" + "Notes\n" + "-----\n" + ".. versionadded:: 0.19.0\n" + "\n" + "The function can also be defined as\n" + "\n" + ".. math::\n" + "\n" + " \\omega(z) = W_{K(z)}(e^z)\n" + "\n" + "where :math:`K(z) = \\lceil (\\Im(z) - \\pi)/(2\\pi) \\rceil` is the\n" + "unwinding number and :math:`W` is the Lambert W function.\n" + "\n" + "The implementation here is taken from [1]_.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Lawrence, Corless, and Jeffrey, \"Algorithm 917: Complex\n" + " Double-Precision Evaluation of the Wright :math:`\\omega`\n" + " Function.\" ACM Transactions on Mathematical Software,\n" + " 2012. :doi:`10.1145/2168773.2168779`.\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import wrightomega, lambertw\n" + "\n" + ">>> wrightomega([-2, -1, 0, 1, 2])\n" + "array([0.12002824, 0.27846454, 0.56714329, 1. , 1.5571456 ])\n" + "\n" + "Complex input:\n" + "\n" + ">>> wrightomega(3 + 5j)\n" + "(1.5804428632097158+3.8213626783287937j)\n" + "\n" + "Verify that ``wrightomega(z)`` satisfies ``w + log(w) = z``:\n" + "\n" + ">>> w = -5 + 4j\n" + ">>> wrightomega(w + np.log(w))\n" + "(-5+4j)\n" + "\n" + "Verify the connection to ``lambertw``:\n" + "\n" + ">>> z = 0.5 + 3j\n" + ">>> wrightomega(z)\n" + "(0.0966015889280649+1.4937828458191993j)\n" + ">>> lambertw(np.exp(z))\n" + "(0.09660158892806493+1.4937828458191993j)\n" + "\n" + ">>> z = 0.5 + 4j\n" + ">>> wrightomega(z)\n" + "(-0.3362123489037213+2.282986001579032j)\n" + ">>> lambertw(np.exp(z), k=1)\n" + "(-0.33621234890372115+2.282986001579032j)") +ufunc_wrightomega_loops[0] = loop_d_d__As_f_f +ufunc_wrightomega_loops[1] = loop_d_d__As_d_d +ufunc_wrightomega_loops[2] = loop_D_D__As_F_F +ufunc_wrightomega_loops[3] = loop_D_D__As_D_D +ufunc_wrightomega_types[0] = NPY_FLOAT +ufunc_wrightomega_types[1] = NPY_FLOAT +ufunc_wrightomega_types[2] = NPY_DOUBLE +ufunc_wrightomega_types[3] = NPY_DOUBLE +ufunc_wrightomega_types[4] = NPY_CFLOAT +ufunc_wrightomega_types[5] = NPY_CFLOAT +ufunc_wrightomega_types[6] = NPY_CDOUBLE +ufunc_wrightomega_types[7] = NPY_CDOUBLE +ufunc_wrightomega_ptr[2*0] = scipy.special._ufuncs_cxx._export_wrightomega_real +ufunc_wrightomega_ptr[2*0+1] = ("wrightomega") +ufunc_wrightomega_ptr[2*1] = scipy.special._ufuncs_cxx._export_wrightomega_real +ufunc_wrightomega_ptr[2*1+1] = ("wrightomega") +ufunc_wrightomega_ptr[2*2] = scipy.special._ufuncs_cxx._export_wrightomega +ufunc_wrightomega_ptr[2*2+1] = ("wrightomega") +ufunc_wrightomega_ptr[2*3] = scipy.special._ufuncs_cxx._export_wrightomega +ufunc_wrightomega_ptr[2*3+1] = ("wrightomega") +ufunc_wrightomega_data[0] = &ufunc_wrightomega_ptr[2*0] +ufunc_wrightomega_data[1] = &ufunc_wrightomega_ptr[2*1] +ufunc_wrightomega_data[2] = &ufunc_wrightomega_ptr[2*2] +ufunc_wrightomega_data[3] = &ufunc_wrightomega_ptr[2*3] +wrightomega = np.PyUFunc_FromFuncAndData(ufunc_wrightomega_loops, ufunc_wrightomega_data, ufunc_wrightomega_types, 4, 1, 1, 0, "wrightomega", ufunc_wrightomega_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_xlog1py_loops[4] +cdef void *ufunc_xlog1py_ptr[8] +cdef void *ufunc_xlog1py_data[4] +cdef char ufunc_xlog1py_types[12] +cdef char *ufunc_xlog1py_doc = ( + "xlog1py(x, y, out=None)\n" + "\n" + "Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Multiplier\n" + "y : array_like\n" + " Argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "z : scalar or ndarray\n" + " Computed x*log1p(y)\n" + "\n" + "Notes\n" + "-----\n" + "\n" + ".. versionadded:: 0.13.0\n" + "\n" + "Examples\n" + "--------\n" + "This example shows how the function can be used to calculate the log of\n" + "the probability mass function for a geometric discrete random variable.\n" + "The probability mass function of the geometric distribution is defined\n" + "as follows:\n" + "\n" + ".. math:: f(k) = (1-p)^{k-1} p\n" + "\n" + "where :math:`p` is the probability of a single success\n" + "and :math:`1-p` is the probability of a single failure\n" + "and :math:`k` is the number of trials to get the first success.\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import xlog1py\n" + ">>> p = 0.5\n" + ">>> k = 100\n" + ">>> _pmf = np.power(1 - p, k - 1) * p\n" + ">>> _pmf\n" + "7.888609052210118e-31\n" + "\n" + "If we take k as a relatively large number the value of the probability\n" + "mass function can become very low. In such cases taking the log of the\n" + "pmf would be more suitable as the log function can change the values\n" + "to a scale that is more appropriate to work with.\n" + "\n" + ">>> _log_pmf = xlog1py(k - 1, -p) + np.log(p)\n" + ">>> _log_pmf\n" + "-69.31471805599453\n" + "\n" + "We can confirm that we get a value close to the original pmf value by\n" + "taking the exponential of the log pmf.\n" + "\n" + ">>> _orig_pmf = np.exp(_log_pmf)\n" + ">>> np.isclose(_pmf, _orig_pmf)\n" + "True") +ufunc_xlog1py_loops[0] = loop_d_dd__As_ff_f +ufunc_xlog1py_loops[1] = loop_d_dd__As_dd_d +ufunc_xlog1py_loops[2] = loop_D_DD__As_FF_F +ufunc_xlog1py_loops[3] = loop_D_DD__As_DD_D +ufunc_xlog1py_types[0] = NPY_FLOAT +ufunc_xlog1py_types[1] = NPY_FLOAT +ufunc_xlog1py_types[2] = NPY_FLOAT +ufunc_xlog1py_types[3] = NPY_DOUBLE +ufunc_xlog1py_types[4] = NPY_DOUBLE +ufunc_xlog1py_types[5] = NPY_DOUBLE +ufunc_xlog1py_types[6] = NPY_CFLOAT +ufunc_xlog1py_types[7] = NPY_CFLOAT +ufunc_xlog1py_types[8] = NPY_CFLOAT +ufunc_xlog1py_types[9] = NPY_CDOUBLE +ufunc_xlog1py_types[10] = NPY_CDOUBLE +ufunc_xlog1py_types[11] = NPY_CDOUBLE +ufunc_xlog1py_ptr[2*0] = _func_xlog1py[double] +ufunc_xlog1py_ptr[2*0+1] = ("xlog1py") +ufunc_xlog1py_ptr[2*1] = _func_xlog1py[double] +ufunc_xlog1py_ptr[2*1+1] = ("xlog1py") +ufunc_xlog1py_ptr[2*2] = _func_xlog1py[double_complex] +ufunc_xlog1py_ptr[2*2+1] = ("xlog1py") +ufunc_xlog1py_ptr[2*3] = _func_xlog1py[double_complex] +ufunc_xlog1py_ptr[2*3+1] = ("xlog1py") +ufunc_xlog1py_data[0] = &ufunc_xlog1py_ptr[2*0] +ufunc_xlog1py_data[1] = &ufunc_xlog1py_ptr[2*1] +ufunc_xlog1py_data[2] = &ufunc_xlog1py_ptr[2*2] +ufunc_xlog1py_data[3] = &ufunc_xlog1py_ptr[2*3] +xlog1py = np.PyUFunc_FromFuncAndData(ufunc_xlog1py_loops, ufunc_xlog1py_data, ufunc_xlog1py_types, 4, 2, 1, 0, "xlog1py", ufunc_xlog1py_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_xlogy_loops[4] +cdef void *ufunc_xlogy_ptr[8] +cdef void *ufunc_xlogy_data[4] +cdef char ufunc_xlogy_types[12] +cdef char *ufunc_xlogy_doc = ( + "xlogy(x, y, out=None)\n" + "\n" + "Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Multiplier\n" + "y : array_like\n" + " Argument\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "z : scalar or ndarray\n" + " Computed x*log(y)\n" + "\n" + "Notes\n" + "-----\n" + "The log function used in the computation is the natural log.\n" + "\n" + ".. versionadded:: 0.13.0\n" + "\n" + "Examples\n" + "--------\n" + "We can use this function to calculate the binary logistic loss also\n" + "known as the binary cross entropy. This loss function is used for\n" + "binary classification problems and is defined as:\n" + "\n" + ".. math::\n" + " L = 1/n * \\sum_{i=0}^n -(y_i*log(y\\_pred_i) + (1-y_i)*log(1-y\\_pred_i))\n" + "\n" + "We can define the parameters `x` and `y` as y and y_pred respectively.\n" + "y is the array of the actual labels which over here can be either 0 or 1.\n" + "y_pred is the array of the predicted probabilities with respect to\n" + "the positive class (1).\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import xlogy\n" + ">>> y = np.array([0, 1, 0, 1, 1, 0])\n" + ">>> y_pred = np.array([0.3, 0.8, 0.4, 0.7, 0.9, 0.2])\n" + ">>> n = len(y)\n" + ">>> loss = -(xlogy(y, y_pred) + xlogy(1 - y, 1 - y_pred)).sum()\n" + ">>> loss /= n\n" + ">>> loss\n" + "0.29597052165495025\n" + "\n" + "A lower loss is usually better as it indicates that the predictions are\n" + "similar to the actual labels. In this example since our predicted\n" + "probabilities are close to the actual labels, we get an overall loss\n" + "that is reasonably low and appropriate.") +ufunc_xlogy_loops[0] = loop_d_dd__As_ff_f +ufunc_xlogy_loops[1] = loop_d_dd__As_dd_d +ufunc_xlogy_loops[2] = loop_D_DD__As_FF_F +ufunc_xlogy_loops[3] = loop_D_DD__As_DD_D +ufunc_xlogy_types[0] = NPY_FLOAT +ufunc_xlogy_types[1] = NPY_FLOAT +ufunc_xlogy_types[2] = NPY_FLOAT +ufunc_xlogy_types[3] = NPY_DOUBLE +ufunc_xlogy_types[4] = NPY_DOUBLE +ufunc_xlogy_types[5] = NPY_DOUBLE +ufunc_xlogy_types[6] = NPY_CFLOAT +ufunc_xlogy_types[7] = NPY_CFLOAT +ufunc_xlogy_types[8] = NPY_CFLOAT +ufunc_xlogy_types[9] = NPY_CDOUBLE +ufunc_xlogy_types[10] = NPY_CDOUBLE +ufunc_xlogy_types[11] = NPY_CDOUBLE +ufunc_xlogy_ptr[2*0] = _func_xlogy[double] +ufunc_xlogy_ptr[2*0+1] = ("xlogy") +ufunc_xlogy_ptr[2*1] = _func_xlogy[double] +ufunc_xlogy_ptr[2*1+1] = ("xlogy") +ufunc_xlogy_ptr[2*2] = _func_xlogy[double_complex] +ufunc_xlogy_ptr[2*2+1] = ("xlogy") +ufunc_xlogy_ptr[2*3] = _func_xlogy[double_complex] +ufunc_xlogy_ptr[2*3+1] = ("xlogy") +ufunc_xlogy_data[0] = &ufunc_xlogy_ptr[2*0] +ufunc_xlogy_data[1] = &ufunc_xlogy_ptr[2*1] +ufunc_xlogy_data[2] = &ufunc_xlogy_ptr[2*2] +ufunc_xlogy_data[3] = &ufunc_xlogy_ptr[2*3] +xlogy = np.PyUFunc_FromFuncAndData(ufunc_xlogy_loops, ufunc_xlogy_data, ufunc_xlogy_types, 4, 2, 1, 0, "xlogy", ufunc_xlogy_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_y0_loops[2] +cdef void *ufunc_y0_ptr[4] +cdef void *ufunc_y0_data[2] +cdef char ufunc_y0_types[4] +cdef char *ufunc_y0_doc = ( + "y0(x, out=None)\n" + "\n" + "Bessel function of the second kind of order 0.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "Y : scalar or ndarray\n" + " Value of the Bessel function of the second kind of order 0 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "j0: Bessel function of the first kind of order 0\n" + "yv: Bessel function of the first kind\n" + "\n" + "Notes\n" + "-----\n" + "The domain is divided into the intervals [0, 5] and (5, infinity). In the\n" + "first interval a rational approximation :math:`R(x)` is employed to\n" + "compute,\n" + "\n" + ".. math::\n" + "\n" + " Y_0(x) = R(x) + \\frac{2 \\log(x) J_0(x)}{\\pi},\n" + "\n" + "where :math:`J_0` is the Bessel function of the first kind of order 0.\n" + "\n" + "In the second interval, the Hankel asymptotic expansion is employed with\n" + "two rational functions of degree 6/6 and 7/7.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `y0`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import y0\n" + ">>> y0(1.)\n" + "0.08825696421567697\n" + "\n" + "Calculate at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> y0(np.array([0.5, 2., 3.]))\n" + "array([-0.44451873, 0.51037567, 0.37685001])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = y0(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_y0_loops[0] = loop_d_d__As_f_f +ufunc_y0_loops[1] = loop_d_d__As_d_d +ufunc_y0_types[0] = NPY_FLOAT +ufunc_y0_types[1] = NPY_FLOAT +ufunc_y0_types[2] = NPY_DOUBLE +ufunc_y0_types[3] = NPY_DOUBLE +ufunc_y0_ptr[2*0] = _func_y0 +ufunc_y0_ptr[2*0+1] = ("y0") +ufunc_y0_ptr[2*1] = _func_y0 +ufunc_y0_ptr[2*1+1] = ("y0") +ufunc_y0_data[0] = &ufunc_y0_ptr[2*0] +ufunc_y0_data[1] = &ufunc_y0_ptr[2*1] +y0 = np.PyUFunc_FromFuncAndData(ufunc_y0_loops, ufunc_y0_data, ufunc_y0_types, 2, 1, 1, 0, "y0", ufunc_y0_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_y1_loops[2] +cdef void *ufunc_y1_ptr[4] +cdef void *ufunc_y1_data[2] +cdef char ufunc_y1_types[4] +cdef char *ufunc_y1_doc = ( + "y1(x, out=None)\n" + "\n" + "Bessel function of the second kind of order 1.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "Y : scalar or ndarray\n" + " Value of the Bessel function of the second kind of order 1 at `x`.\n" + "\n" + "See Also\n" + "--------\n" + "j1: Bessel function of the first kind of order 1\n" + "yn: Bessel function of the second kind\n" + "yv: Bessel function of the second kind\n" + "\n" + "Notes\n" + "-----\n" + "The domain is divided into the intervals [0, 8] and (8, infinity). In the\n" + "first interval a 25 term Chebyshev expansion is used, and computing\n" + ":math:`J_1` (the Bessel function of the first kind) is required. In the\n" + "second, the asymptotic trigonometric representation is employed using two\n" + "rational functions of degree 5/5.\n" + "\n" + "This function is a wrapper for the Cephes [1]_ routine `y1`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Calculate the function at one point:\n" + "\n" + ">>> from scipy.special import y1\n" + ">>> y1(1.)\n" + "-0.7812128213002888\n" + "\n" + "Calculate at several points:\n" + "\n" + ">>> import numpy as np\n" + ">>> y1(np.array([0.5, 2., 3.]))\n" + "array([-1.47147239, -0.10703243, 0.32467442])\n" + "\n" + "Plot the function from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> y = y1(x)\n" + ">>> ax.plot(x, y)\n" + ">>> plt.show()") +ufunc_y1_loops[0] = loop_d_d__As_f_f +ufunc_y1_loops[1] = loop_d_d__As_d_d +ufunc_y1_types[0] = NPY_FLOAT +ufunc_y1_types[1] = NPY_FLOAT +ufunc_y1_types[2] = NPY_DOUBLE +ufunc_y1_types[3] = NPY_DOUBLE +ufunc_y1_ptr[2*0] = _func_y1 +ufunc_y1_ptr[2*0+1] = ("y1") +ufunc_y1_ptr[2*1] = _func_y1 +ufunc_y1_ptr[2*1+1] = ("y1") +ufunc_y1_data[0] = &ufunc_y1_ptr[2*0] +ufunc_y1_data[1] = &ufunc_y1_ptr[2*1] +y1 = np.PyUFunc_FromFuncAndData(ufunc_y1_loops, ufunc_y1_data, ufunc_y1_types, 2, 1, 1, 0, "y1", ufunc_y1_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_yn_loops[3] +cdef void *ufunc_yn_ptr[6] +cdef void *ufunc_yn_data[3] +cdef char ufunc_yn_types[9] +cdef char *ufunc_yn_doc = ( + "yn(n, x, out=None)\n" + "\n" + "Bessel function of the second kind of integer order and real argument.\n" + "\n" + "Parameters\n" + "----------\n" + "n : array_like\n" + " Order (integer).\n" + "x : array_like\n" + " Argument (float).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "Y : scalar or ndarray\n" + " Value of the Bessel function, :math:`Y_n(x)`.\n" + "\n" + "See Also\n" + "--------\n" + "yv : For real order and real or complex argument.\n" + "y0: faster implementation of this function for order 0\n" + "y1: faster implementation of this function for order 1\n" + "\n" + "Notes\n" + "-----\n" + "Wrapper for the Cephes [1]_ routine `yn`.\n" + "\n" + "The function is evaluated by forward recurrence on `n`, starting with\n" + "values computed by the Cephes routines `y0` and `y1`. If `n = 0` or 1,\n" + "the routine for `y0` or `y1` is called directly.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Cephes Mathematical Functions Library,\n" + " http://www.netlib.org/cephes/\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function of order 0 at one point.\n" + "\n" + ">>> from scipy.special import yn\n" + ">>> yn(0, 1.)\n" + "0.08825696421567697\n" + "\n" + "Evaluate the function at one point for different orders.\n" + "\n" + ">>> yn(0, 1.), yn(1, 1.), yn(2, 1.)\n" + "(0.08825696421567697, -0.7812128213002888, -1.6506826068162546)\n" + "\n" + "The evaluation for different orders can be carried out in one call by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> yn([0, 1, 2], 1.)\n" + "array([ 0.08825696, -0.78121282, -1.65068261])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0.5, 3., 8.])\n" + ">>> yn(0, points)\n" + "array([-0.44451873, 0.37685001, 0.22352149])\n" + "\n" + "If `z` is an array, the order parameter `v` must be broadcastable to\n" + "the correct shape if different orders shall be computed in one call.\n" + "To calculate the orders 0 and 1 for an 1D array:\n" + "\n" + ">>> orders = np.array([[0], [1]])\n" + ">>> orders.shape\n" + "(2, 1)\n" + "\n" + ">>> yn(orders, points)\n" + "array([[-0.44451873, 0.37685001, 0.22352149],\n" + " [-1.47147239, 0.32467442, -0.15806046]])\n" + "\n" + "Plot the functions of order 0 to 3 from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, yn(i, x), label=f'$Y_{i!r}$')\n" + ">>> ax.set_ylim(-3, 1)\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_yn_loops[0] = loop_d_id__As_ld_d +ufunc_yn_loops[1] = loop_d_dd__As_ff_f +ufunc_yn_loops[2] = loop_d_dd__As_dd_d +ufunc_yn_types[0] = NPY_LONG +ufunc_yn_types[1] = NPY_DOUBLE +ufunc_yn_types[2] = NPY_DOUBLE +ufunc_yn_types[3] = NPY_FLOAT +ufunc_yn_types[4] = NPY_FLOAT +ufunc_yn_types[5] = NPY_FLOAT +ufunc_yn_types[6] = NPY_DOUBLE +ufunc_yn_types[7] = NPY_DOUBLE +ufunc_yn_types[8] = NPY_DOUBLE +ufunc_yn_ptr[2*0] = _func_yn +ufunc_yn_ptr[2*0+1] = ("yn") +ufunc_yn_ptr[2*1] = _func_yn_unsafe +ufunc_yn_ptr[2*1+1] = ("yn") +ufunc_yn_ptr[2*2] = _func_yn_unsafe +ufunc_yn_ptr[2*2+1] = ("yn") +ufunc_yn_data[0] = &ufunc_yn_ptr[2*0] +ufunc_yn_data[1] = &ufunc_yn_ptr[2*1] +ufunc_yn_data[2] = &ufunc_yn_ptr[2*2] +yn = np.PyUFunc_FromFuncAndData(ufunc_yn_loops, ufunc_yn_data, ufunc_yn_types, 3, 2, 1, 0, "yn", ufunc_yn_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_yv_loops[4] +cdef void *ufunc_yv_ptr[8] +cdef void *ufunc_yv_data[4] +cdef char ufunc_yv_types[12] +cdef char *ufunc_yv_doc = ( + "yv(v, z, out=None)\n" + "\n" + "Bessel function of the second kind of real order and complex argument.\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "Y : scalar or ndarray\n" + " Value of the Bessel function of the second kind, :math:`Y_v(x)`.\n" + "\n" + "See Also\n" + "--------\n" + "yve : :math:`Y_v` with leading exponential behavior stripped off.\n" + "y0: faster implementation of this function for order 0\n" + "y1: faster implementation of this function for order 1\n" + "\n" + "Notes\n" + "-----\n" + "For positive `v` values, the computation is carried out using the\n" + "AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel\n" + "Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,\n" + "\n" + ".. math:: Y_v(z) = \\frac{1}{2\\imath} (H_v^{(1)} - H_v^{(2)}).\n" + "\n" + "For negative `v` values the formula,\n" + "\n" + ".. math:: Y_{-v}(z) = Y_v(z) \\cos(\\pi v) + J_v(z) \\sin(\\pi v)\n" + "\n" + "is used, where :math:`J_v(z)` is the Bessel function of the first kind,\n" + "computed using the AMOS routine `zbesj`. Note that the second term is\n" + "exactly zero for integer `v`; to improve accuracy the second term is\n" + "explicitly omitted for `v` values such that `v = floor(v)`.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Evaluate the function of order 0 at one point.\n" + "\n" + ">>> from scipy.special import yv\n" + ">>> yv(0, 1.)\n" + "0.088256964215677\n" + "\n" + "Evaluate the function at one point for different orders.\n" + "\n" + ">>> yv(0, 1.), yv(1, 1.), yv(1.5, 1.)\n" + "(0.088256964215677, -0.7812128213002889, -1.102495575160179)\n" + "\n" + "The evaluation for different orders can be carried out in one call by\n" + "providing a list or NumPy array as argument for the `v` parameter:\n" + "\n" + ">>> yv([0, 1, 1.5], 1.)\n" + "array([ 0.08825696, -0.78121282, -1.10249558])\n" + "\n" + "Evaluate the function at several points for order 0 by providing an\n" + "array for `z`.\n" + "\n" + ">>> import numpy as np\n" + ">>> points = np.array([0.5, 3., 8.])\n" + ">>> yv(0, points)\n" + "array([-0.44451873, 0.37685001, 0.22352149])\n" + "\n" + "If `z` is an array, the order parameter `v` must be broadcastable to\n" + "the correct shape if different orders shall be computed in one call.\n" + "To calculate the orders 0 and 1 for an 1D array:\n" + "\n" + ">>> orders = np.array([[0], [1]])\n" + ">>> orders.shape\n" + "(2, 1)\n" + "\n" + ">>> yv(orders, points)\n" + "array([[-0.44451873, 0.37685001, 0.22352149],\n" + " [-1.47147239, 0.32467442, -0.15806046]])\n" + "\n" + "Plot the functions of order 0 to 3 from 0 to 10.\n" + "\n" + ">>> import matplotlib.pyplot as plt\n" + ">>> fig, ax = plt.subplots()\n" + ">>> x = np.linspace(0., 10., 1000)\n" + ">>> for i in range(4):\n" + "... ax.plot(x, yv(i, x), label=f'$Y_{i!r}$')\n" + ">>> ax.set_ylim(-3, 1)\n" + ">>> ax.legend()\n" + ">>> plt.show()") +ufunc_yv_loops[0] = loop_d_dd__As_ff_f +ufunc_yv_loops[1] = loop_D_dD__As_fF_F +ufunc_yv_loops[2] = loop_d_dd__As_dd_d +ufunc_yv_loops[3] = loop_D_dD__As_dD_D +ufunc_yv_types[0] = NPY_FLOAT +ufunc_yv_types[1] = NPY_FLOAT +ufunc_yv_types[2] = NPY_FLOAT +ufunc_yv_types[3] = NPY_FLOAT +ufunc_yv_types[4] = NPY_CFLOAT +ufunc_yv_types[5] = NPY_CFLOAT +ufunc_yv_types[6] = NPY_DOUBLE +ufunc_yv_types[7] = NPY_DOUBLE +ufunc_yv_types[8] = NPY_DOUBLE +ufunc_yv_types[9] = NPY_DOUBLE +ufunc_yv_types[10] = NPY_CDOUBLE +ufunc_yv_types[11] = NPY_CDOUBLE +ufunc_yv_ptr[2*0] = _func_cbesy_wrap_real +ufunc_yv_ptr[2*0+1] = ("yv") +ufunc_yv_ptr[2*1] = _func_cbesy_wrap +ufunc_yv_ptr[2*1+1] = ("yv") +ufunc_yv_ptr[2*2] = _func_cbesy_wrap_real +ufunc_yv_ptr[2*2+1] = ("yv") +ufunc_yv_ptr[2*3] = _func_cbesy_wrap +ufunc_yv_ptr[2*3+1] = ("yv") +ufunc_yv_data[0] = &ufunc_yv_ptr[2*0] +ufunc_yv_data[1] = &ufunc_yv_ptr[2*1] +ufunc_yv_data[2] = &ufunc_yv_ptr[2*2] +ufunc_yv_data[3] = &ufunc_yv_ptr[2*3] +yv = np.PyUFunc_FromFuncAndData(ufunc_yv_loops, ufunc_yv_data, ufunc_yv_types, 4, 2, 1, 0, "yv", ufunc_yv_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_yve_loops[4] +cdef void *ufunc_yve_ptr[8] +cdef void *ufunc_yve_data[4] +cdef char ufunc_yve_types[12] +cdef char *ufunc_yve_doc = ( + "yve(v, z, out=None)\n" + "\n" + "Exponentially scaled Bessel function of the second kind of real order.\n" + "\n" + "Returns the exponentially scaled Bessel function of the second\n" + "kind of real order `v` at complex `z`::\n" + "\n" + " yve(v, z) = yv(v, z) * exp(-abs(z.imag))\n" + "\n" + "Parameters\n" + "----------\n" + "v : array_like\n" + " Order (float).\n" + "z : array_like\n" + " Argument (float or complex).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "Y : scalar or ndarray\n" + " Value of the exponentially scaled Bessel function.\n" + "\n" + "See Also\n" + "--------\n" + "yv: Unscaled Bessel function of the second kind of real order.\n" + "\n" + "Notes\n" + "-----\n" + "For positive `v` values, the computation is carried out using the\n" + "AMOS [1]_ `zbesy` routine, which exploits the connection to the Hankel\n" + "Bessel functions :math:`H_v^{(1)}` and :math:`H_v^{(2)}`,\n" + "\n" + ".. math:: Y_v(z) = \\frac{1}{2\\imath} (H_v^{(1)} - H_v^{(2)}).\n" + "\n" + "For negative `v` values the formula,\n" + "\n" + ".. math:: Y_{-v}(z) = Y_v(z) \\cos(\\pi v) + J_v(z) \\sin(\\pi v)\n" + "\n" + "is used, where :math:`J_v(z)` is the Bessel function of the first kind,\n" + "computed using the AMOS routine `zbesj`. Note that the second term is\n" + "exactly zero for integer `v`; to improve accuracy the second term is\n" + "explicitly omitted for `v` values such that `v = floor(v)`.\n" + "\n" + "Exponentially scaled Bessel functions are useful for large `z`:\n" + "for these, the unscaled Bessel functions can easily under-or overflow.\n" + "\n" + "References\n" + "----------\n" + ".. [1] Donald E. Amos, \"AMOS, A Portable Package for Bessel Functions\n" + " of a Complex Argument and Nonnegative Order\",\n" + " http://netlib.org/amos/\n" + "\n" + "Examples\n" + "--------\n" + "Compare the output of `yv` and `yve` for large complex arguments for `z`\n" + "by computing their values for order ``v=1`` at ``z=1000j``. We see that\n" + "`yv` returns nan but `yve` returns a finite number:\n" + "\n" + ">>> import numpy as np\n" + ">>> from scipy.special import yv, yve\n" + ">>> v = 1\n" + ">>> z = 1000j\n" + ">>> yv(v, z), yve(v, z)\n" + "((nan+nanj), (-0.012610930256928629+7.721967686709076e-19j))\n" + "\n" + "For real arguments for `z`, `yve` returns the same as `yv` up to\n" + "floating point errors.\n" + "\n" + ">>> v, z = 1, 1000\n" + ">>> yv(v, z), yve(v, z)\n" + "(-0.02478433129235178, -0.02478433129235179)\n" + "\n" + "The function can be evaluated for several orders at the same time by\n" + "providing a list or NumPy array for `v`:\n" + "\n" + ">>> yve([1, 2, 3], 1j)\n" + "array([-0.20791042+0.14096627j, 0.38053618-0.04993878j,\n" + " 0.00815531-1.66311097j])\n" + "\n" + "In the same way, the function can be evaluated at several points in one\n" + "call by providing a list or NumPy array for `z`:\n" + "\n" + ">>> yve(1, np.array([1j, 2j, 3j]))\n" + "array([-0.20791042+0.14096627j, -0.21526929+0.01205044j,\n" + " -0.19682671+0.00127278j])\n" + "\n" + "It is also possible to evaluate several orders at several points\n" + "at the same time by providing arrays for `v` and `z` with\n" + "broadcasting compatible shapes. Compute `yve` for two different orders\n" + "`v` and three points `z` resulting in a 2x3 array.\n" + "\n" + ">>> v = np.array([[1], [2]])\n" + ">>> z = np.array([3j, 4j, 5j])\n" + ">>> v.shape, z.shape\n" + "((2, 1), (3,))\n" + "\n" + ">>> yve(v, z)\n" + "array([[-1.96826713e-01+1.27277544e-03j, -1.78750840e-01+1.45558819e-04j,\n" + " -1.63972267e-01+1.73494110e-05j],\n" + " [1.94960056e-03-1.11782545e-01j, 2.02902325e-04-1.17626501e-01j,\n" + " 2.27727687e-05-1.17951906e-01j]])") +ufunc_yve_loops[0] = loop_d_dd__As_ff_f +ufunc_yve_loops[1] = loop_D_dD__As_fF_F +ufunc_yve_loops[2] = loop_d_dd__As_dd_d +ufunc_yve_loops[3] = loop_D_dD__As_dD_D +ufunc_yve_types[0] = NPY_FLOAT +ufunc_yve_types[1] = NPY_FLOAT +ufunc_yve_types[2] = NPY_FLOAT +ufunc_yve_types[3] = NPY_FLOAT +ufunc_yve_types[4] = NPY_CFLOAT +ufunc_yve_types[5] = NPY_CFLOAT +ufunc_yve_types[6] = NPY_DOUBLE +ufunc_yve_types[7] = NPY_DOUBLE +ufunc_yve_types[8] = NPY_DOUBLE +ufunc_yve_types[9] = NPY_DOUBLE +ufunc_yve_types[10] = NPY_CDOUBLE +ufunc_yve_types[11] = NPY_CDOUBLE +ufunc_yve_ptr[2*0] = _func_cbesy_wrap_e_real +ufunc_yve_ptr[2*0+1] = ("yve") +ufunc_yve_ptr[2*1] = _func_cbesy_wrap_e +ufunc_yve_ptr[2*1+1] = ("yve") +ufunc_yve_ptr[2*2] = _func_cbesy_wrap_e_real +ufunc_yve_ptr[2*2+1] = ("yve") +ufunc_yve_ptr[2*3] = _func_cbesy_wrap_e +ufunc_yve_ptr[2*3+1] = ("yve") +ufunc_yve_data[0] = &ufunc_yve_ptr[2*0] +ufunc_yve_data[1] = &ufunc_yve_ptr[2*1] +ufunc_yve_data[2] = &ufunc_yve_ptr[2*2] +ufunc_yve_data[3] = &ufunc_yve_ptr[2*3] +yve = np.PyUFunc_FromFuncAndData(ufunc_yve_loops, ufunc_yve_data, ufunc_yve_types, 4, 2, 1, 0, "yve", ufunc_yve_doc, 0) + +cdef np.PyUFuncGenericFunction ufunc_zetac_loops[2] +cdef void *ufunc_zetac_ptr[4] +cdef void *ufunc_zetac_data[2] +cdef char ufunc_zetac_types[4] +cdef char *ufunc_zetac_doc = ( + "zetac(x, out=None)\n" + "\n" + "Riemann zeta function minus 1.\n" + "\n" + "This function is defined as\n" + "\n" + ".. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x,\n" + "\n" + "where ``x > 1``. For ``x < 1`` the analytic continuation is\n" + "computed. For more information on the Riemann zeta function, see\n" + "[dlmf]_.\n" + "\n" + "Parameters\n" + "----------\n" + "x : array_like of float\n" + " Values at which to compute zeta(x) - 1 (must be real).\n" + "out : ndarray, optional\n" + " Optional output array for the function results\n" + "\n" + "Returns\n" + "-------\n" + "scalar or ndarray\n" + " Values of zeta(x) - 1.\n" + "\n" + "See Also\n" + "--------\n" + "zeta\n" + "\n" + "References\n" + "----------\n" + ".. [dlmf] NIST Digital Library of Mathematical Functions\n" + " https://dlmf.nist.gov/25\n" + "\n" + "Examples\n" + "--------\n" + ">>> import numpy as np\n" + ">>> from scipy.special import zetac, zeta\n" + "\n" + "Some special values:\n" + "\n" + ">>> zetac(2), np.pi**2/6 - 1\n" + "(0.64493406684822641, 0.6449340668482264)\n" + "\n" + ">>> zetac(-1), -1.0/12 - 1\n" + "(-1.0833333333333333, -1.0833333333333333)\n" + "\n" + "Compare ``zetac(x)`` to ``zeta(x) - 1`` for large `x`:\n" + "\n" + ">>> zetac(60), zeta(60) - 1\n" + "(8.673617380119933e-19, 0.0)") +ufunc_zetac_loops[0] = loop_d_d__As_f_f +ufunc_zetac_loops[1] = loop_d_d__As_d_d +ufunc_zetac_types[0] = NPY_FLOAT +ufunc_zetac_types[1] = NPY_FLOAT +ufunc_zetac_types[2] = NPY_DOUBLE +ufunc_zetac_types[3] = NPY_DOUBLE +ufunc_zetac_ptr[2*0] = _func_zetac +ufunc_zetac_ptr[2*0+1] = ("zetac") +ufunc_zetac_ptr[2*1] = _func_zetac +ufunc_zetac_ptr[2*1+1] = ("zetac") +ufunc_zetac_data[0] = &ufunc_zetac_ptr[2*0] +ufunc_zetac_data[1] = &ufunc_zetac_ptr[2*1] +zetac = np.PyUFunc_FromFuncAndData(ufunc_zetac_loops, ufunc_zetac_data, ufunc_zetac_types, 2, 1, 1, 0, "zetac", ufunc_zetac_doc, 0) + +# +# Aliases +# +jn = jv