diff --git "a/env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_basic.py" "b/env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_basic.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/scipy/special/tests/test_basic.py" @@ -0,0 +1,4320 @@ +# this program corresponds to special.py + +### Means test is not done yet +# E Means test is giving error (E) +# F Means test is failing (F) +# EF Means test is giving error and Failing +#! Means test is segfaulting +# 8 Means test runs forever + +### test_besselpoly +### test_mathieu_a +### test_mathieu_even_coef +### test_mathieu_odd_coef +### test_modfresnelp +### test_modfresnelm +# test_pbdv_seq +### test_pbvv_seq +### test_sph_harm + +import functools +import itertools +import operator +import platform +import sys + +import numpy as np +from numpy import (array, isnan, r_, arange, finfo, pi, sin, cos, tan, exp, + log, zeros, sqrt, asarray, inf, nan_to_num, real, arctan, double, + array_equal) + +import pytest +from pytest import raises as assert_raises +from numpy.testing import (assert_equal, assert_almost_equal, + assert_array_equal, assert_array_almost_equal, assert_approx_equal, + assert_, assert_allclose, assert_array_almost_equal_nulp, + suppress_warnings) + +from scipy import special +import scipy.special._ufuncs as cephes +from scipy.special import ellipe, ellipk, ellipkm1 +from scipy.special import elliprc, elliprd, elliprf, elliprg, elliprj +from scipy.special import mathieu_odd_coef, mathieu_even_coef, stirling2 +from scipy._lib.deprecation import _NoValue +from scipy._lib._util import np_long, np_ulong + +from scipy.special._basic import _FACTORIALK_LIMITS_64BITS, \ + _FACTORIALK_LIMITS_32BITS +from scipy.special._testutils import with_special_errors, \ + assert_func_equal, FuncData + +import math + + +class TestCephes: + def test_airy(self): + cephes.airy(0) + + def test_airye(self): + cephes.airye(0) + + def test_binom(self): + n = np.array([0.264, 4, 5.2, 17]) + k = np.array([2, 0.4, 7, 3.3]) + nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) + ).reshape(2, -1).T + rknown = np.array([[-0.097152, 0.9263051596159367, 0.01858423645695389, + -0.007581020651518199],[6, 2.0214389119675666, 0, 2.9827344527963846], + [10.92, 2.22993515861399, -0.00585728, 10.468891352063146], + [136, 3.5252179590758828, 19448, 1024.5526916174495]]) + assert_func_equal(cephes.binom, rknown.ravel(), nk, rtol=1e-13) + + # Test branches in implementation + np.random.seed(1234) + n = np.r_[np.arange(-7, 30), 1000*np.random.rand(30) - 500] + k = np.arange(0, 102) + nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) + ).reshape(2, -1).T + + assert_func_equal(cephes.binom, + cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)), + nk, + atol=1e-10, rtol=1e-10) + + def test_binom_2(self): + # Test branches in implementation + np.random.seed(1234) + n = np.r_[np.logspace(1, 300, 20)] + k = np.arange(0, 102) + nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) + ).reshape(2, -1).T + + assert_func_equal(cephes.binom, + cephes.binom(nk[:,0], nk[:,1] * (1 + 1e-15)), + nk, + atol=1e-10, rtol=1e-10) + + def test_binom_exact(self): + @np.vectorize + def binom_int(n, k): + n = int(n) + k = int(k) + num = 1 + den = 1 + for i in range(1, k+1): + num *= i + n - k + den *= i + return float(num/den) + + np.random.seed(1234) + n = np.arange(1, 15) + k = np.arange(0, 15) + nk = np.array(np.broadcast_arrays(n[:,None], k[None,:]) + ).reshape(2, -1).T + nk = nk[nk[:,0] >= nk[:,1]] + assert_func_equal(cephes.binom, + binom_int(nk[:,0], nk[:,1]), + nk, + atol=0, rtol=0) + + def test_binom_nooverflow_8346(self): + # Test (binom(n, k) doesn't overflow prematurely */ + dataset = [ + (1000, 500, 2.70288240945436551e+299), + (1002, 501, 1.08007396880791225e+300), + (1004, 502, 4.31599279169058121e+300), + (1006, 503, 1.72468101616263781e+301), + (1008, 504, 6.89188009236419153e+301), + (1010, 505, 2.75402257948335448e+302), + (1012, 506, 1.10052048531923757e+303), + (1014, 507, 4.39774063758732849e+303), + (1016, 508, 1.75736486108312519e+304), + (1018, 509, 7.02255427788423734e+304), + (1020, 510, 2.80626776829962255e+305), + (1022, 511, 1.12140876377061240e+306), + (1024, 512, 4.48125455209897109e+306), + (1026, 513, 1.79075474304149900e+307), + (1028, 514, 7.15605105487789676e+307) + ] + dataset = np.asarray(dataset) + FuncData(cephes.binom, dataset, (0, 1), 2, rtol=1e-12).check() + + def test_bdtr(self): + assert_equal(cephes.bdtr(1,1,0.5),1.0) + + def test_bdtri(self): + assert_equal(cephes.bdtri(1,3,0.5),0.5) + + def test_bdtrc(self): + assert_equal(cephes.bdtrc(1,3,0.5),0.5) + + def test_bdtrin(self): + assert_equal(cephes.bdtrin(1,0,1),5.0) + + def test_bdtrik(self): + cephes.bdtrik(1,3,0.5) + + def test_bei(self): + assert_equal(cephes.bei(0),0.0) + + def test_beip(self): + assert_equal(cephes.beip(0),0.0) + + def test_ber(self): + assert_equal(cephes.ber(0),1.0) + + def test_berp(self): + assert_equal(cephes.berp(0),0.0) + + def test_besselpoly(self): + assert_equal(cephes.besselpoly(0,0,0),1.0) + + def test_btdtr(self): + with pytest.deprecated_call(match='deprecated in SciPy 1.12.0'): + y = special.btdtr(1, 1, 1) + assert_equal(y, 1.0) + + def test_btdtri(self): + with pytest.deprecated_call(match='deprecated in SciPy 1.12.0'): + y = special.btdtri(1, 1, 1) + assert_equal(y, 1.0) + + def test_btdtria(self): + assert_equal(cephes.btdtria(1,1,1),5.0) + + def test_btdtrib(self): + assert_equal(cephes.btdtrib(1,1,1),5.0) + + def test_cbrt(self): + assert_approx_equal(cephes.cbrt(1),1.0) + + def test_chdtr(self): + assert_equal(cephes.chdtr(1,0),0.0) + + def test_chdtrc(self): + assert_equal(cephes.chdtrc(1,0),1.0) + + def test_chdtri(self): + assert_equal(cephes.chdtri(1,1),0.0) + + def test_chdtriv(self): + assert_equal(cephes.chdtriv(0,0),5.0) + + def test_chndtr(self): + assert_equal(cephes.chndtr(0,1,0),0.0) + + # Each row holds (x, nu, lam, expected_value) + # These values were computed using Wolfram Alpha with + # CDF[NoncentralChiSquareDistribution[nu, lam], x] + values = np.array([ + [25.00, 20.0, 400, 4.1210655112396197139e-57], + [25.00, 8.00, 250, 2.3988026526832425878e-29], + [0.001, 8.00, 40., 5.3761806201366039084e-24], + [0.010, 8.00, 40., 5.45396231055999457039e-20], + [20.00, 2.00, 107, 1.39390743555819597802e-9], + [22.50, 2.00, 107, 7.11803307138105870671e-9], + [25.00, 2.00, 107, 3.11041244829864897313e-8], + [3.000, 2.00, 1.0, 0.62064365321954362734], + [350.0, 300., 10., 0.93880128006276407710], + [100.0, 13.5, 10., 0.99999999650104210949], + [700.0, 20.0, 400, 0.99999999925680650105], + [150.0, 13.5, 10., 0.99999999999999983046], + [160.0, 13.5, 10., 0.99999999999999999518], # 1.0 + ]) + cdf = cephes.chndtr(values[:, 0], values[:, 1], values[:, 2]) + assert_allclose(cdf, values[:, 3], rtol=1e-12) + + assert_almost_equal(cephes.chndtr(np.inf, np.inf, 0), 2.0) + assert_almost_equal(cephes.chndtr(2, 1, np.inf), 0.0) + assert_(np.isnan(cephes.chndtr(np.nan, 1, 2))) + assert_(np.isnan(cephes.chndtr(5, np.nan, 2))) + assert_(np.isnan(cephes.chndtr(5, 1, np.nan))) + + def test_chndtridf(self): + assert_equal(cephes.chndtridf(0,0,1),5.0) + + def test_chndtrinc(self): + assert_equal(cephes.chndtrinc(0,1,0),5.0) + + def test_chndtrix(self): + assert_equal(cephes.chndtrix(0,1,0),0.0) + + def test_cosdg(self): + assert_equal(cephes.cosdg(0),1.0) + + def test_cosm1(self): + assert_equal(cephes.cosm1(0),0.0) + + def test_cotdg(self): + assert_almost_equal(cephes.cotdg(45),1.0) + + def test_dawsn(self): + assert_equal(cephes.dawsn(0),0.0) + assert_allclose(cephes.dawsn(1.23), 0.50053727749081767) + + def test_diric(self): + # Test behavior near multiples of 2pi. Regression test for issue + # described in gh-4001. + n_odd = [1, 5, 25] + x = np.array(2*np.pi + 5e-5).astype(np.float32) + assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=7) + x = np.array(2*np.pi + 1e-9).astype(np.float64) + assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15) + x = np.array(2*np.pi + 1e-15).astype(np.float64) + assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15) + if hasattr(np, 'float128'): + # No float128 available in 32-bit numpy + x = np.array(2*np.pi + 1e-12).astype(np.float128) + assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=19) + + n_even = [2, 4, 24] + x = np.array(2*np.pi + 1e-9).astype(np.float64) + assert_almost_equal(special.diric(x, n_even), -1.0, decimal=15) + + # Test at some values not near a multiple of pi + x = np.arange(0.2*np.pi, 1.0*np.pi, 0.2*np.pi) + octave_result = [0.872677996249965, 0.539344662916632, + 0.127322003750035, -0.206011329583298] + assert_almost_equal(special.diric(x, 3), octave_result, decimal=15) + + def test_diric_broadcasting(self): + x = np.arange(5) + n = np.array([1, 3, 7]) + assert_(special.diric(x[:, np.newaxis], n).shape == (x.size, n.size)) + + def test_ellipe(self): + assert_equal(cephes.ellipe(1),1.0) + + def test_ellipeinc(self): + assert_equal(cephes.ellipeinc(0,1),0.0) + + def test_ellipj(self): + cephes.ellipj(0,1) + + def test_ellipk(self): + assert_allclose(ellipk(0), pi/2) + + def test_ellipkinc(self): + assert_equal(cephes.ellipkinc(0,0),0.0) + + def test_erf(self): + assert_equal(cephes.erf(0), 0.0) + + def test_erf_symmetry(self): + x = 5.905732037710919 + assert_equal(cephes.erf(x) + cephes.erf(-x), 0.0) + + def test_erfc(self): + assert_equal(cephes.erfc(0), 1.0) + + def test_exp10(self): + assert_approx_equal(cephes.exp10(2),100.0) + + def test_exp2(self): + assert_equal(cephes.exp2(2),4.0) + + def test_expm1(self): + assert_equal(cephes.expm1(0),0.0) + assert_equal(cephes.expm1(np.inf), np.inf) + assert_equal(cephes.expm1(-np.inf), -1) + assert_equal(cephes.expm1(np.nan), np.nan) + + def test_expm1_complex(self): + expm1 = cephes.expm1 + assert_equal(expm1(0 + 0j), 0 + 0j) + assert_equal(expm1(complex(np.inf, 0)), complex(np.inf, 0)) + assert_equal(expm1(complex(np.inf, 1)), complex(np.inf, np.inf)) + assert_equal(expm1(complex(np.inf, 2)), complex(-np.inf, np.inf)) + assert_equal(expm1(complex(np.inf, 4)), complex(-np.inf, -np.inf)) + assert_equal(expm1(complex(np.inf, 5)), complex(np.inf, -np.inf)) + assert_equal(expm1(complex(1, np.inf)), complex(np.nan, np.nan)) + assert_equal(expm1(complex(0, np.inf)), complex(np.nan, np.nan)) + assert_equal(expm1(complex(np.inf, np.inf)), complex(np.inf, np.nan)) + assert_equal(expm1(complex(-np.inf, np.inf)), complex(-1, 0)) + assert_equal(expm1(complex(-np.inf, np.nan)), complex(-1, 0)) + assert_equal(expm1(complex(np.inf, np.nan)), complex(np.inf, np.nan)) + assert_equal(expm1(complex(0, np.nan)), complex(np.nan, np.nan)) + assert_equal(expm1(complex(1, np.nan)), complex(np.nan, np.nan)) + assert_equal(expm1(complex(np.nan, 1)), complex(np.nan, np.nan)) + assert_equal(expm1(complex(np.nan, np.nan)), complex(np.nan, np.nan)) + + @pytest.mark.xfail(reason='The real part of expm1(z) bad at these points') + def test_expm1_complex_hard(self): + # The real part of this function is difficult to evaluate when + # z.real = -log(cos(z.imag)). + y = np.array([0.1, 0.2, 0.3, 5, 11, 20]) + x = -np.log(np.cos(y)) + z = x + 1j*y + + # evaluate using mpmath.expm1 with dps=1000 + expected = np.array([-5.5507901846769623e-17+0.10033467208545054j, + 2.4289354732893695e-18+0.20271003550867248j, + 4.5235500262585768e-17+0.30933624960962319j, + 7.8234305217489006e-17-3.3805150062465863j, + -1.3685191953697676e-16-225.95084645419513j, + 8.7175620481291045e-17+2.2371609442247422j]) + found = cephes.expm1(z) + # this passes. + assert_array_almost_equal_nulp(found.imag, expected.imag, 3) + # this fails. + assert_array_almost_equal_nulp(found.real, expected.real, 20) + + def test_fdtr(self): + assert_equal(cephes.fdtr(1, 1, 0), 0.0) + # Computed using Wolfram Alpha: CDF[FRatioDistribution[1e-6, 5], 10] + assert_allclose(cephes.fdtr(1e-6, 5, 10), 0.9999940790193488, + rtol=1e-12) + + def test_fdtrc(self): + assert_equal(cephes.fdtrc(1, 1, 0), 1.0) + # Computed using Wolfram Alpha: + # 1 - CDF[FRatioDistribution[2, 1/10], 1e10] + assert_allclose(cephes.fdtrc(2, 0.1, 1e10), 0.27223784621293512, + rtol=1e-12) + + def test_fdtri(self): + assert_allclose(cephes.fdtri(1, 1, [0.499, 0.501]), + array([0.9937365, 1.00630298]), rtol=1e-6) + # From Wolfram Alpha: + # CDF[FRatioDistribution[1/10, 1], 3] = 0.8756751669632105666874... + p = 0.8756751669632105666874 + assert_allclose(cephes.fdtri(0.1, 1, p), 3, rtol=1e-12) + + @pytest.mark.xfail(reason='Returns nan on i686.') + def test_fdtri_mysterious_failure(self): + assert_allclose(cephes.fdtri(1, 1, 0.5), 1) + + def test_fdtridfd(self): + assert_equal(cephes.fdtridfd(1,0,0),5.0) + + def test_fresnel(self): + assert_equal(cephes.fresnel(0),(0.0,0.0)) + + def test_gamma(self): + assert_equal(cephes.gamma(5),24.0) + + def test_gammainccinv(self): + assert_equal(cephes.gammainccinv(5,1),0.0) + + def test_gammaln(self): + cephes.gammaln(10) + + def test_gammasgn(self): + vals = np.array([-4, -3.5, -2.3, 1, 4.2], np.float64) + assert_array_equal(cephes.gammasgn(vals), np.sign(cephes.rgamma(vals))) + + def test_gdtr(self): + assert_equal(cephes.gdtr(1,1,0),0.0) + + def test_gdtr_inf(self): + assert_equal(cephes.gdtr(1,1,np.inf),1.0) + + def test_gdtrc(self): + assert_equal(cephes.gdtrc(1,1,0),1.0) + + def test_gdtria(self): + assert_equal(cephes.gdtria(0,1,1),0.0) + + def test_gdtrib(self): + cephes.gdtrib(1,0,1) + # assert_equal(cephes.gdtrib(1,0,1),5.0) + + def test_gdtrix(self): + cephes.gdtrix(1,1,.1) + + def test_hankel1(self): + cephes.hankel1(1,1) + + def test_hankel1e(self): + cephes.hankel1e(1,1) + + def test_hankel2(self): + cephes.hankel2(1,1) + + def test_hankel2e(self): + cephes.hankel2e(1,1) + + def test_hyp1f1(self): + assert_approx_equal(cephes.hyp1f1(1,1,1), exp(1.0)) + assert_approx_equal(cephes.hyp1f1(3,4,-6), 0.026056422099537251095) + cephes.hyp1f1(1,1,1) + + def test_hyp2f1(self): + assert_equal(cephes.hyp2f1(1,1,1,0),1.0) + + def test_i0(self): + assert_equal(cephes.i0(0),1.0) + + def test_i0e(self): + assert_equal(cephes.i0e(0),1.0) + + def test_i1(self): + assert_equal(cephes.i1(0),0.0) + + def test_i1e(self): + assert_equal(cephes.i1e(0),0.0) + + def test_it2i0k0(self): + cephes.it2i0k0(1) + + def test_it2j0y0(self): + cephes.it2j0y0(1) + + def test_it2struve0(self): + cephes.it2struve0(1) + + def test_itairy(self): + cephes.itairy(1) + + def test_iti0k0(self): + assert_equal(cephes.iti0k0(0),(0.0,0.0)) + + def test_itj0y0(self): + assert_equal(cephes.itj0y0(0),(0.0,0.0)) + + def test_itmodstruve0(self): + assert_equal(cephes.itmodstruve0(0),0.0) + + def test_itstruve0(self): + assert_equal(cephes.itstruve0(0),0.0) + + def test_iv(self): + assert_equal(cephes.iv(1,0),0.0) + + def test_ive(self): + assert_equal(cephes.ive(1,0),0.0) + + def test_j0(self): + assert_equal(cephes.j0(0),1.0) + + def test_j1(self): + assert_equal(cephes.j1(0),0.0) + + def test_jn(self): + assert_equal(cephes.jn(0,0),1.0) + + def test_jv(self): + assert_equal(cephes.jv(0,0),1.0) + + def test_jve(self): + assert_equal(cephes.jve(0,0),1.0) + + def test_k0(self): + cephes.k0(2) + + def test_k0e(self): + cephes.k0e(2) + + def test_k1(self): + cephes.k1(2) + + def test_k1e(self): + cephes.k1e(2) + + def test_kei(self): + cephes.kei(2) + + def test_keip(self): + assert_equal(cephes.keip(0),0.0) + + def test_ker(self): + cephes.ker(2) + + def test_kerp(self): + cephes.kerp(2) + + def test_kelvin(self): + cephes.kelvin(2) + + def test_kn(self): + cephes.kn(1,1) + + def test_kolmogi(self): + assert_equal(cephes.kolmogi(1),0.0) + assert_(np.isnan(cephes.kolmogi(np.nan))) + + def test_kolmogorov(self): + assert_equal(cephes.kolmogorov(0), 1.0) + + def test_kolmogp(self): + assert_equal(cephes._kolmogp(0), -0.0) + + def test_kolmogc(self): + assert_equal(cephes._kolmogc(0), 0.0) + + def test_kolmogci(self): + assert_equal(cephes._kolmogci(0), 0.0) + assert_(np.isnan(cephes._kolmogci(np.nan))) + + def test_kv(self): + cephes.kv(1,1) + + def test_kve(self): + cephes.kve(1,1) + + def test_log1p(self): + log1p = cephes.log1p + assert_equal(log1p(0), 0.0) + assert_equal(log1p(-1), -np.inf) + assert_equal(log1p(-2), np.nan) + assert_equal(log1p(np.inf), np.inf) + + def test_log1p_complex(self): + log1p = cephes.log1p + c = complex + assert_equal(log1p(0 + 0j), 0 + 0j) + assert_equal(log1p(c(-1, 0)), c(-np.inf, 0)) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in multiply") + assert_allclose(log1p(c(1, np.inf)), c(np.inf, np.pi/2)) + assert_equal(log1p(c(1, np.nan)), c(np.nan, np.nan)) + assert_allclose(log1p(c(-np.inf, 1)), c(np.inf, np.pi)) + assert_equal(log1p(c(np.inf, 1)), c(np.inf, 0)) + assert_allclose(log1p(c(-np.inf, np.inf)), c(np.inf, 3*np.pi/4)) + assert_allclose(log1p(c(np.inf, np.inf)), c(np.inf, np.pi/4)) + assert_equal(log1p(c(np.inf, np.nan)), c(np.inf, np.nan)) + assert_equal(log1p(c(-np.inf, np.nan)), c(np.inf, np.nan)) + assert_equal(log1p(c(np.nan, np.inf)), c(np.inf, np.nan)) + assert_equal(log1p(c(np.nan, 1)), c(np.nan, np.nan)) + assert_equal(log1p(c(np.nan, np.nan)), c(np.nan, np.nan)) + + def test_lpmv(self): + assert_equal(cephes.lpmv(0,0,1),1.0) + + def test_mathieu_a(self): + assert_equal(cephes.mathieu_a(1,0),1.0) + + def test_mathieu_b(self): + assert_equal(cephes.mathieu_b(1,0),1.0) + + def test_mathieu_cem(self): + assert_equal(cephes.mathieu_cem(1,0,0),(1.0,0.0)) + + # Test AMS 20.2.27 + @np.vectorize + def ce_smallq(m, q, z): + z *= np.pi/180 + if m == 0: + # + O(q^2) + return 2**(-0.5) * (1 - .5*q*cos(2*z)) + elif m == 1: + # + O(q^2) + return cos(z) - q/8 * cos(3*z) + elif m == 2: + # + O(q^2) + return cos(2*z) - q*(cos(4*z)/12 - 1/4) + else: + # + O(q^2) + return cos(m*z) - q*(cos((m+2)*z)/(4*(m+1)) - cos((m-2)*z)/(4*(m-1))) + m = np.arange(0, 100) + q = np.r_[0, np.logspace(-30, -9, 10)] + assert_allclose(cephes.mathieu_cem(m[:,None], q[None,:], 0.123)[0], + ce_smallq(m[:,None], q[None,:], 0.123), + rtol=1e-14, atol=0) + + def test_mathieu_sem(self): + assert_equal(cephes.mathieu_sem(1,0,0),(0.0,1.0)) + + # Test AMS 20.2.27 + @np.vectorize + def se_smallq(m, q, z): + z *= np.pi/180 + if m == 1: + # + O(q^2) + return sin(z) - q/8 * sin(3*z) + elif m == 2: + # + O(q^2) + return sin(2*z) - q*sin(4*z)/12 + else: + # + O(q^2) + return sin(m*z) - q*(sin((m+2)*z)/(4*(m+1)) - sin((m-2)*z)/(4*(m-1))) + m = np.arange(1, 100) + q = np.r_[0, np.logspace(-30, -9, 10)] + assert_allclose(cephes.mathieu_sem(m[:,None], q[None,:], 0.123)[0], + se_smallq(m[:,None], q[None,:], 0.123), + rtol=1e-14, atol=0) + + def test_mathieu_modcem1(self): + assert_equal(cephes.mathieu_modcem1(1,0,0),(0.0,0.0)) + + def test_mathieu_modcem2(self): + cephes.mathieu_modcem2(1,1,1) + + # Test reflection relation AMS 20.6.19 + m = np.arange(0, 4)[:,None,None] + q = np.r_[np.logspace(-2, 2, 10)][None,:,None] + z = np.linspace(0, 1, 7)[None,None,:] + + y1 = cephes.mathieu_modcem2(m, q, -z)[0] + + fr = -cephes.mathieu_modcem2(m, q, 0)[0] / cephes.mathieu_modcem1(m, q, 0)[0] + y2 = (-cephes.mathieu_modcem2(m, q, z)[0] + - 2*fr*cephes.mathieu_modcem1(m, q, z)[0]) + + assert_allclose(y1, y2, rtol=1e-10) + + def test_mathieu_modsem1(self): + assert_equal(cephes.mathieu_modsem1(1,0,0),(0.0,0.0)) + + def test_mathieu_modsem2(self): + cephes.mathieu_modsem2(1,1,1) + + # Test reflection relation AMS 20.6.20 + m = np.arange(1, 4)[:,None,None] + q = np.r_[np.logspace(-2, 2, 10)][None,:,None] + z = np.linspace(0, 1, 7)[None,None,:] + + y1 = cephes.mathieu_modsem2(m, q, -z)[0] + fr = cephes.mathieu_modsem2(m, q, 0)[1] / cephes.mathieu_modsem1(m, q, 0)[1] + y2 = (cephes.mathieu_modsem2(m, q, z)[0] + - 2*fr*cephes.mathieu_modsem1(m, q, z)[0]) + assert_allclose(y1, y2, rtol=1e-10) + + def test_mathieu_overflow(self): + # Check that these return NaNs instead of causing a SEGV + assert_equal(cephes.mathieu_cem(10000, 0, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_sem(10000, 0, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_cem(10000, 1.5, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_sem(10000, 1.5, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_modcem1(10000, 1.5, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_modsem1(10000, 1.5, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_modcem2(10000, 1.5, 1.3), (np.nan, np.nan)) + assert_equal(cephes.mathieu_modsem2(10000, 1.5, 1.3), (np.nan, np.nan)) + + def test_mathieu_ticket_1847(self): + # Regression test --- this call had some out-of-bounds access + # and could return nan occasionally + for k in range(60): + v = cephes.mathieu_modsem2(2, 100, -1) + # Values from ACM TOMS 804 (derivate by numerical differentiation) + assert_allclose(v[0], 0.1431742913063671074347, rtol=1e-10) + assert_allclose(v[1], 0.9017807375832909144719, rtol=1e-4) + + def test_modfresnelm(self): + cephes.modfresnelm(0) + + def test_modfresnelp(self): + cephes.modfresnelp(0) + + def test_modstruve(self): + assert_equal(cephes.modstruve(1,0),0.0) + + def test_nbdtr(self): + assert_equal(cephes.nbdtr(1,1,1),1.0) + + def test_nbdtrc(self): + assert_equal(cephes.nbdtrc(1,1,1),0.0) + + def test_nbdtri(self): + assert_equal(cephes.nbdtri(1,1,1),1.0) + + def test_nbdtrik(self): + cephes.nbdtrik(1,.4,.5) + + def test_nbdtrin(self): + assert_equal(cephes.nbdtrin(1,0,0),5.0) + + def test_ncfdtr(self): + assert_equal(cephes.ncfdtr(1,1,1,0),0.0) + + def test_ncfdtri(self): + assert_equal(cephes.ncfdtri(1, 1, 1, 0), 0.0) + f = [0.5, 1, 1.5] + p = cephes.ncfdtr(2, 3, 1.5, f) + assert_allclose(cephes.ncfdtri(2, 3, 1.5, p), f) + + def test_ncfdtridfd(self): + dfd = [1, 2, 3] + p = cephes.ncfdtr(2, dfd, 0.25, 15) + assert_allclose(cephes.ncfdtridfd(2, p, 0.25, 15), dfd) + + def test_ncfdtridfn(self): + dfn = [0.1, 1, 2, 3, 1e4] + p = cephes.ncfdtr(dfn, 2, 0.25, 15) + assert_allclose(cephes.ncfdtridfn(p, 2, 0.25, 15), dfn, rtol=1e-5) + + def test_ncfdtrinc(self): + nc = [0.5, 1.5, 2.0] + p = cephes.ncfdtr(2, 3, nc, 15) + assert_allclose(cephes.ncfdtrinc(2, 3, p, 15), nc) + + def test_nctdtr(self): + assert_equal(cephes.nctdtr(1,0,0),0.5) + assert_equal(cephes.nctdtr(9, 65536, 45), 0.0) + + assert_approx_equal(cephes.nctdtr(np.inf, 1., 1.), 0.5, 5) + assert_(np.isnan(cephes.nctdtr(2., np.inf, 10.))) + assert_approx_equal(cephes.nctdtr(2., 1., np.inf), 1.) + + assert_(np.isnan(cephes.nctdtr(np.nan, 1., 1.))) + assert_(np.isnan(cephes.nctdtr(2., np.nan, 1.))) + assert_(np.isnan(cephes.nctdtr(2., 1., np.nan))) + + def test_nctdtridf(self): + cephes.nctdtridf(1,0.5,0) + + def test_nctdtrinc(self): + cephes.nctdtrinc(1,0,0) + + def test_nctdtrit(self): + cephes.nctdtrit(.1,0.2,.5) + + def test_nrdtrimn(self): + assert_approx_equal(cephes.nrdtrimn(0.5,1,1),1.0) + + def test_nrdtrisd(self): + assert_allclose(cephes.nrdtrisd(0.5,0.5,0.5), 0.0, + atol=0, rtol=0) + + def test_obl_ang1(self): + cephes.obl_ang1(1,1,1,0) + + def test_obl_ang1_cv(self): + result = cephes.obl_ang1_cv(1,1,1,1,0) + assert_almost_equal(result[0],1.0) + assert_almost_equal(result[1],0.0) + + def test_obl_cv(self): + assert_equal(cephes.obl_cv(1,1,0),2.0) + + def test_obl_rad1(self): + cephes.obl_rad1(1,1,1,0) + + def test_obl_rad1_cv(self): + cephes.obl_rad1_cv(1,1,1,1,0) + + def test_obl_rad2(self): + cephes.obl_rad2(1,1,1,0) + + def test_obl_rad2_cv(self): + cephes.obl_rad2_cv(1,1,1,1,0) + + def test_pbdv(self): + assert_equal(cephes.pbdv(1,0),(0.0,1.0)) + + def test_pbvv(self): + cephes.pbvv(1,0) + + def test_pbwa(self): + cephes.pbwa(1,0) + + def test_pdtr(self): + val = cephes.pdtr(0, 1) + assert_almost_equal(val, np.exp(-1)) + # Edge case: m = 0. + val = cephes.pdtr([0, 1, 2], 0) + assert_array_equal(val, [1, 1, 1]) + + def test_pdtrc(self): + val = cephes.pdtrc(0, 1) + assert_almost_equal(val, 1 - np.exp(-1)) + # Edge case: m = 0. + val = cephes.pdtrc([0, 1, 2], 0.0) + assert_array_equal(val, [0, 0, 0]) + + def test_pdtri(self): + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "floating point number truncated to an integer") + cephes.pdtri(0.5,0.5) + + def test_pdtrik(self): + k = cephes.pdtrik(0.5, 1) + assert_almost_equal(cephes.gammaincc(k + 1, 1), 0.5) + # Edge case: m = 0 or very small. + k = cephes.pdtrik([[0], [0.25], [0.95]], [0, 1e-20, 1e-6]) + assert_array_equal(k, np.zeros((3, 3))) + + def test_pro_ang1(self): + cephes.pro_ang1(1,1,1,0) + + def test_pro_ang1_cv(self): + assert_array_almost_equal(cephes.pro_ang1_cv(1,1,1,1,0), + array((1.0,0.0))) + + def test_pro_cv(self): + assert_equal(cephes.pro_cv(1,1,0),2.0) + + def test_pro_rad1(self): + cephes.pro_rad1(1,1,1,0.1) + + def test_pro_rad1_cv(self): + cephes.pro_rad1_cv(1,1,1,1,0) + + def test_pro_rad2(self): + cephes.pro_rad2(1,1,1,0) + + def test_pro_rad2_cv(self): + cephes.pro_rad2_cv(1,1,1,1,0) + + def test_psi(self): + cephes.psi(1) + + def test_radian(self): + assert_equal(cephes.radian(0,0,0),0) + + def test_rgamma(self): + assert_equal(cephes.rgamma(1),1.0) + + def test_round(self): + assert_equal(cephes.round(3.4),3.0) + assert_equal(cephes.round(-3.4),-3.0) + assert_equal(cephes.round(3.6),4.0) + assert_equal(cephes.round(-3.6),-4.0) + assert_equal(cephes.round(3.5),4.0) + assert_equal(cephes.round(-3.5),-4.0) + + def test_shichi(self): + cephes.shichi(1) + + def test_sici(self): + cephes.sici(1) + + s, c = cephes.sici(np.inf) + assert_almost_equal(s, np.pi * 0.5) + assert_almost_equal(c, 0) + + s, c = cephes.sici(-np.inf) + assert_almost_equal(s, -np.pi * 0.5) + assert_(np.isnan(c), "cosine integral(-inf) is not nan") + + def test_sindg(self): + assert_equal(cephes.sindg(90),1.0) + + def test_smirnov(self): + assert_equal(cephes.smirnov(1,.1),0.9) + assert_(np.isnan(cephes.smirnov(1,np.nan))) + + def test_smirnovp(self): + assert_equal(cephes._smirnovp(1, .1), -1) + assert_equal(cephes._smirnovp(2, 0.75), -2*(0.25)**(2-1)) + assert_equal(cephes._smirnovp(3, 0.75), -3*(0.25)**(3-1)) + assert_(np.isnan(cephes._smirnovp(1, np.nan))) + + def test_smirnovc(self): + assert_equal(cephes._smirnovc(1,.1),0.1) + assert_(np.isnan(cephes._smirnovc(1,np.nan))) + x10 = np.linspace(0, 1, 11, endpoint=True) + assert_almost_equal(cephes._smirnovc(3, x10), 1-cephes.smirnov(3, x10)) + x4 = np.linspace(0, 1, 5, endpoint=True) + assert_almost_equal(cephes._smirnovc(4, x4), 1-cephes.smirnov(4, x4)) + + def test_smirnovi(self): + assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.4)),0.4) + assert_almost_equal(cephes.smirnov(1,cephes.smirnovi(1,0.6)),0.6) + assert_(np.isnan(cephes.smirnovi(1,np.nan))) + + def test_smirnovci(self): + assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.4)),0.4) + assert_almost_equal(cephes._smirnovc(1,cephes._smirnovci(1,0.6)),0.6) + assert_(np.isnan(cephes._smirnovci(1,np.nan))) + + def test_spence(self): + assert_equal(cephes.spence(1),0.0) + + def test_stdtr(self): + assert_equal(cephes.stdtr(1,0),0.5) + assert_almost_equal(cephes.stdtr(1,1), 0.75) + assert_almost_equal(cephes.stdtr(1,2), 0.852416382349) + + def test_stdtridf(self): + cephes.stdtridf(0.7,1) + + def test_stdtrit(self): + cephes.stdtrit(1,0.7) + + def test_struve(self): + assert_equal(cephes.struve(0,0),0.0) + + def test_tandg(self): + assert_equal(cephes.tandg(45),1.0) + + def test_tklmbda(self): + assert_almost_equal(cephes.tklmbda(1,1),1.0) + + def test_y0(self): + cephes.y0(1) + + def test_y1(self): + cephes.y1(1) + + def test_yn(self): + cephes.yn(1,1) + + def test_yv(self): + cephes.yv(1,1) + + def test_yve(self): + cephes.yve(1,1) + + def test_wofz(self): + z = [complex(624.2,-0.26123), complex(-0.4,3.), complex(0.6,2.), + complex(-1.,1.), complex(-1.,-9.), complex(-1.,9.), + complex(-0.0000000234545,1.1234), complex(-3.,5.1), + complex(-53,30.1), complex(0.0,0.12345), + complex(11,1), complex(-22,-2), complex(9,-28), + complex(21,-33), complex(1e5,1e5), complex(1e14,1e14) + ] + w = [ + complex(-3.78270245518980507452677445620103199303131110e-7, + 0.000903861276433172057331093754199933411710053155), + complex(0.1764906227004816847297495349730234591778719532788, + -0.02146550539468457616788719893991501311573031095617), + complex(0.2410250715772692146133539023007113781272362309451, + 0.06087579663428089745895459735240964093522265589350), + complex(0.30474420525691259245713884106959496013413834051768, + -0.20821893820283162728743734725471561394145872072738), + complex(7.317131068972378096865595229600561710140617977e34, + 8.321873499714402777186848353320412813066170427e34), + complex(0.0615698507236323685519612934241429530190806818395, + -0.00676005783716575013073036218018565206070072304635), + complex(0.3960793007699874918961319170187598400134746631, + -5.593152259116644920546186222529802777409274656e-9), + complex(0.08217199226739447943295069917990417630675021771804, + -0.04701291087643609891018366143118110965272615832184), + complex(0.00457246000350281640952328010227885008541748668738, + -0.00804900791411691821818731763401840373998654987934), + complex(0.8746342859608052666092782112565360755791467973338452, + 0.), + complex(0.00468190164965444174367477874864366058339647648741, + 0.0510735563901306197993676329845149741675029197050), + complex(-0.0023193175200187620902125853834909543869428763219, + -0.025460054739731556004902057663500272721780776336), + complex(9.11463368405637174660562096516414499772662584e304, + 3.97101807145263333769664875189354358563218932e305), + complex(-4.4927207857715598976165541011143706155432296e281, + -2.8019591213423077494444700357168707775769028e281), + complex(2.820947917809305132678577516325951485807107151e-6, + 2.820947917668257736791638444590253942253354058e-6), + complex(2.82094791773878143474039725787438662716372268e-15, + 2.82094791773878143474039725773333923127678361e-15) + ] + assert_func_equal(cephes.wofz, w, z, rtol=1e-13) + + +class TestAiry: + def test_airy(self): + # This tests the airy function to ensure 8 place accuracy in computation + + x = special.airy(.99) + assert_array_almost_equal( + x, + array([0.13689066,-0.16050153,1.19815925,0.92046818]), + 8, + ) + x = special.airy(.41) + assert_array_almost_equal( + x, + array([0.25238916,-.23480512,0.80686202,0.51053919]), + 8, + ) + x = special.airy(-.36) + assert_array_almost_equal( + x, + array([0.44508477,-0.23186773,0.44939534,0.48105354]), + 8, + ) + + def test_airye(self): + a = special.airye(0.01) + b = special.airy(0.01) + b1 = [None]*4 + for n in range(2): + b1[n] = b[n]*exp(2.0/3.0*0.01*sqrt(0.01)) + for n in range(2,4): + b1[n] = b[n]*exp(-abs(real(2.0/3.0*0.01*sqrt(0.01)))) + assert_array_almost_equal(a,b1,6) + + def test_bi_zeros(self): + bi = special.bi_zeros(2) + bia = (array([-1.17371322, -3.2710930]), + array([-2.29443968, -4.07315509]), + array([-0.45494438, 0.39652284]), + array([0.60195789, -0.76031014])) + assert_array_almost_equal(bi,bia,4) + + bi = special.bi_zeros(5) + assert_array_almost_equal(bi[0],array([-1.173713222709127, + -3.271093302836352, + -4.830737841662016, + -6.169852128310251, + -7.376762079367764]),11) + + assert_array_almost_equal(bi[1],array([-2.294439682614122, + -4.073155089071828, + -5.512395729663599, + -6.781294445990305, + -7.940178689168587]),10) + + assert_array_almost_equal(bi[2],array([-0.454944383639657, + 0.396522836094465, + -0.367969161486959, + 0.349499116831805, + -0.336026240133662]),11) + + assert_array_almost_equal(bi[3],array([0.601957887976239, + -0.760310141492801, + 0.836991012619261, + -0.88947990142654, + 0.929983638568022]),10) + + def test_ai_zeros(self): + ai = special.ai_zeros(1) + assert_array_almost_equal(ai,(array([-2.33810741]), + array([-1.01879297]), + array([0.5357]), + array([0.7012])),4) + + def test_ai_zeros_big(self): + z, zp, ai_zpx, aip_zx = special.ai_zeros(50000) + ai_z, aip_z, _, _ = special.airy(z) + ai_zp, aip_zp, _, _ = special.airy(zp) + + ai_envelope = 1/abs(z)**(1./4) + aip_envelope = abs(zp)**(1./4) + + # Check values + assert_allclose(ai_zpx, ai_zp, rtol=1e-10) + assert_allclose(aip_zx, aip_z, rtol=1e-10) + + # Check they are zeros + assert_allclose(ai_z/ai_envelope, 0, atol=1e-10, rtol=0) + assert_allclose(aip_zp/aip_envelope, 0, atol=1e-10, rtol=0) + + # Check first zeros, DLMF 9.9.1 + assert_allclose(z[:6], + [-2.3381074105, -4.0879494441, -5.5205598281, + -6.7867080901, -7.9441335871, -9.0226508533], rtol=1e-10) + assert_allclose(zp[:6], + [-1.0187929716, -3.2481975822, -4.8200992112, + -6.1633073556, -7.3721772550, -8.4884867340], rtol=1e-10) + + def test_bi_zeros_big(self): + z, zp, bi_zpx, bip_zx = special.bi_zeros(50000) + _, _, bi_z, bip_z = special.airy(z) + _, _, bi_zp, bip_zp = special.airy(zp) + + bi_envelope = 1/abs(z)**(1./4) + bip_envelope = abs(zp)**(1./4) + + # Check values + assert_allclose(bi_zpx, bi_zp, rtol=1e-10) + assert_allclose(bip_zx, bip_z, rtol=1e-10) + + # Check they are zeros + assert_allclose(bi_z/bi_envelope, 0, atol=1e-10, rtol=0) + assert_allclose(bip_zp/bip_envelope, 0, atol=1e-10, rtol=0) + + # Check first zeros, DLMF 9.9.2 + assert_allclose(z[:6], + [-1.1737132227, -3.2710933028, -4.8307378417, + -6.1698521283, -7.3767620794, -8.4919488465], rtol=1e-10) + assert_allclose(zp[:6], + [-2.2944396826, -4.0731550891, -5.5123957297, + -6.7812944460, -7.9401786892, -9.0195833588], rtol=1e-10) + + +class TestAssocLaguerre: + def test_assoc_laguerre(self): + a1 = special.genlaguerre(11,1) + a2 = special.assoc_laguerre(.2,11,1) + assert_array_almost_equal(a2,a1(.2),8) + a2 = special.assoc_laguerre(1,11,1) + assert_array_almost_equal(a2,a1(1),8) + + +class TestBesselpoly: + def test_besselpoly(self): + pass + + +class TestKelvin: + def test_bei(self): + mbei = special.bei(2) + assert_almost_equal(mbei, 0.9722916273066613,5) # this may not be exact + + def test_beip(self): + mbeip = special.beip(2) + assert_almost_equal(mbeip,0.91701361338403631,5) # this may not be exact + + def test_ber(self): + mber = special.ber(2) + assert_almost_equal(mber,0.75173418271380821,5) # this may not be exact + + def test_berp(self): + mberp = special.berp(2) + assert_almost_equal(mberp,-0.49306712470943909,5) # this may not be exact + + def test_bei_zeros(self): + # Abramowitz & Stegun, Table 9.12 + bi = special.bei_zeros(5) + assert_array_almost_equal(bi,array([5.02622, + 9.45541, + 13.89349, + 18.33398, + 22.77544]),4) + + def test_beip_zeros(self): + bip = special.beip_zeros(5) + assert_array_almost_equal(bip,array([3.772673304934953, + 8.280987849760042, + 12.742147523633703, + 17.193431752512542, + 21.641143941167325]),8) + + def test_ber_zeros(self): + ber = special.ber_zeros(5) + assert_array_almost_equal(ber,array([2.84892, + 7.23883, + 11.67396, + 16.11356, + 20.55463]),4) + + def test_berp_zeros(self): + brp = special.berp_zeros(5) + assert_array_almost_equal(brp,array([6.03871, + 10.51364, + 14.96844, + 19.41758, + 23.86430]),4) + + def test_kelvin(self): + mkelv = special.kelvin(2) + assert_array_almost_equal(mkelv,(special.ber(2) + special.bei(2)*1j, + special.ker(2) + special.kei(2)*1j, + special.berp(2) + special.beip(2)*1j, + special.kerp(2) + special.keip(2)*1j),8) + + def test_kei(self): + mkei = special.kei(2) + assert_almost_equal(mkei,-0.20240006776470432,5) + + def test_keip(self): + mkeip = special.keip(2) + assert_almost_equal(mkeip,0.21980790991960536,5) + + def test_ker(self): + mker = special.ker(2) + assert_almost_equal(mker,-0.041664513991509472,5) + + def test_kerp(self): + mkerp = special.kerp(2) + assert_almost_equal(mkerp,-0.10660096588105264,5) + + def test_kei_zeros(self): + kei = special.kei_zeros(5) + assert_array_almost_equal(kei,array([3.91467, + 8.34422, + 12.78256, + 17.22314, + 21.66464]),4) + + def test_keip_zeros(self): + keip = special.keip_zeros(5) + assert_array_almost_equal(keip,array([4.93181, + 9.40405, + 13.85827, + 18.30717, + 22.75379]),4) + + # numbers come from 9.9 of A&S pg. 381 + def test_kelvin_zeros(self): + tmp = special.kelvin_zeros(5) + berz,beiz,kerz,keiz,berpz,beipz,kerpz,keipz = tmp + assert_array_almost_equal(berz,array([2.84892, + 7.23883, + 11.67396, + 16.11356, + 20.55463]),4) + assert_array_almost_equal(beiz,array([5.02622, + 9.45541, + 13.89349, + 18.33398, + 22.77544]),4) + assert_array_almost_equal(kerz,array([1.71854, + 6.12728, + 10.56294, + 15.00269, + 19.44382]),4) + assert_array_almost_equal(keiz,array([3.91467, + 8.34422, + 12.78256, + 17.22314, + 21.66464]),4) + assert_array_almost_equal(berpz,array([6.03871, + 10.51364, + 14.96844, + 19.41758, + 23.86430]),4) + assert_array_almost_equal(beipz,array([3.77267, + # table from 1927 had 3.77320 + # but this is more accurate + 8.28099, + 12.74215, + 17.19343, + 21.64114]),4) + assert_array_almost_equal(kerpz,array([2.66584, + 7.17212, + 11.63218, + 16.08312, + 20.53068]),4) + assert_array_almost_equal(keipz,array([4.93181, + 9.40405, + 13.85827, + 18.30717, + 22.75379]),4) + + def test_ker_zeros(self): + ker = special.ker_zeros(5) + assert_array_almost_equal(ker,array([1.71854, + 6.12728, + 10.56294, + 15.00269, + 19.44381]),4) + + def test_kerp_zeros(self): + kerp = special.kerp_zeros(5) + assert_array_almost_equal(kerp,array([2.66584, + 7.17212, + 11.63218, + 16.08312, + 20.53068]),4) + + +class TestBernoulli: + def test_bernoulli(self): + brn = special.bernoulli(5) + assert_array_almost_equal(brn,array([1.0000, + -0.5000, + 0.1667, + 0.0000, + -0.0333, + 0.0000]),4) + + +class TestBeta: + """ + Test beta and betaln. + """ + + def test_beta(self): + assert_equal(special.beta(1, 1), 1.0) + assert_allclose(special.beta(-100.3, 1e-200), special.gamma(1e-200)) + assert_allclose(special.beta(0.0342, 171), 24.070498359873497, + rtol=1e-13, atol=0) + + bet = special.beta(2, 4) + betg = (special.gamma(2)*special.gamma(4))/special.gamma(6) + assert_allclose(bet, betg, rtol=1e-13) + + def test_beta_inf(self): + assert_(np.isinf(special.beta(-1, 2))) + + def test_betaln(self): + assert_equal(special.betaln(1, 1), 0.0) + assert_allclose(special.betaln(-100.3, 1e-200), + special.gammaln(1e-200)) + assert_allclose(special.betaln(0.0342, 170), 3.1811881124242447, + rtol=1e-14, atol=0) + + betln = special.betaln(2, 4) + bet = log(abs(special.beta(2, 4))) + assert_allclose(betln, bet, rtol=1e-13) + + +class TestBetaInc: + """ + Tests for betainc, betaincinv, betaincc, betainccinv. + """ + + def test_a1_b1(self): + # betainc(1, 1, x) is x. + x = np.array([0, 0.25, 1]) + assert_equal(special.betainc(1, 1, x), x) + assert_equal(special.betaincinv(1, 1, x), x) + assert_equal(special.betaincc(1, 1, x), 1 - x) + assert_equal(special.betainccinv(1, 1, x), 1 - x) + + # Nontrivial expected values computed with mpmath: + # from mpmath import mp + # mp.dps = 100 + # p = mp.betainc(a, b, 0, x, regularized=True) + # + # or, e.g., + # + # p = 0.25 + # a, b = 0.0342, 171 + # x = mp.findroot( + # lambda t: mp.betainc(a, b, 0, t, regularized=True) - p, + # (8e-21, 9e-21), + # solver='anderson', + # ) + # + @pytest.mark.parametrize( + 'a, b, x, p', + [(2, 4, 0.3138101704556974, 0.5), + (0.0342, 171.0, 1e-10, 0.552699169018070910641), + # gh-3761: + (0.0342, 171, 8.42313169354797e-21, 0.25), + # gh-4244: + (0.0002742794749792665, 289206.03125, 1.639984034231756e-56, + 0.9688708782196045), + # gh-12796: + (4, 99997, 0.0001947841578892121, 0.999995)]) + def test_betainc_betaincinv(self, a, b, x, p): + p1 = special.betainc(a, b, x) + assert_allclose(p1, p, rtol=1e-15) + x1 = special.betaincinv(a, b, p) + assert_allclose(x1, x, rtol=5e-13) + + # Expected values computed with mpmath: + # from mpmath import mp + # mp.dps = 100 + # p = mp.betainc(a, b, x, 1, regularized=True) + @pytest.mark.parametrize('a, b, x, p', + [(2.5, 3.0, 0.25, 0.833251953125), + (7.5, 13.25, 0.375, 0.43298734645560368593), + (0.125, 7.5, 0.425, 0.0006688257851314237), + (0.125, 18.0, 1e-6, 0.72982359145096327654), + (0.125, 18.0, 0.996, 7.2745875538380150586e-46), + (0.125, 24.0, 0.75, 3.70853404816862016966e-17), + (16.0, 0.75, 0.99999999975, + 5.4408759277418629909e-07), + # gh-4677 (numbers from stackoverflow question): + (0.4211959643503401, 16939.046996018118, + 0.000815296167195521, 1e-7)]) + def test_betaincc_betainccinv(self, a, b, x, p): + p1 = special.betaincc(a, b, x) + assert_allclose(p1, p, rtol=5e-15) + x1 = special.betainccinv(a, b, p) + assert_allclose(x1, x, rtol=8e-15) + + @pytest.mark.parametrize( + 'a, b, y, ref', + [(14.208308325339239, 14.208308325339239, 7.703145458496392e-307, + 8.566004561846704e-23), + (14.0, 14.5, 1e-280, 2.9343915006642424e-21), + (3.5, 15.0, 4e-95, 1.3290751429289227e-28), + (10.0, 1.25, 2e-234, 3.982659092143654e-24), + (4.0, 99997.0, 5e-88, 3.309800566862242e-27)] + ) + def test_betaincinv_tiny_y(self, a, b, y, ref): + # Test with extremely small y values. This test includes + # a regression test for an issue in the boost code; + # see https://github.com/boostorg/math/issues/961 + # + # The reference values were computed with mpmath. For example, + # + # from mpmath import mp + # mp.dps = 1000 + # a = 14.208308325339239 + # p = 7.703145458496392e-307 + # x = mp.findroot(lambda t: mp.betainc(a, a, 0, t, + # regularized=True) - p, + # x0=8.566e-23) + # print(float(x)) + # + x = special.betaincinv(a, b, y) + assert_allclose(x, ref, rtol=1e-14) + + @pytest.mark.parametrize('func', [special.betainc, special.betaincinv, + special.betaincc, special.betainccinv]) + @pytest.mark.parametrize('args', [(-1.0, 2, 0.5), (0, 2, 0.5), + (1.5, -2.0, 0.5), (1.5, 0, 0.5), + (1.5, 2.0, -0.3), (1.5, 2.0, 1.1)]) + def test_betainc_domain_errors(self, func, args): + with special.errstate(domain='raise'): + with pytest.raises(special.SpecialFunctionError, match='domain'): + special.betainc(*args) + + +class TestCombinatorics: + def test_comb(self): + assert_array_almost_equal(special.comb([10, 10], [3, 4]), [120., 210.]) + assert_almost_equal(special.comb(10, 3), 120.) + assert_equal(special.comb(10, 3, exact=True), 120) + assert_equal(special.comb(10, 3, exact=True, repetition=True), 220) + + assert_allclose([special.comb(20, k, exact=True) for k in range(21)], + special.comb(20, list(range(21))), atol=1e-15) + + ii = np.iinfo(int).max + 1 + assert_equal(special.comb(ii, ii-1, exact=True), ii) + + expected = 100891344545564193334812497256 + assert special.comb(100, 50, exact=True) == expected + + @pytest.mark.parametrize("repetition", [True, False]) + @pytest.mark.parametrize("legacy", [True, False, _NoValue]) + @pytest.mark.parametrize("k", [3.5, 3]) + @pytest.mark.parametrize("N", [4.5, 4]) + def test_comb_legacy(self, N, k, legacy, repetition): + # test is only relevant for exact=True + if legacy is not _NoValue: + with pytest.warns( + DeprecationWarning, + match=r"Using 'legacy' keyword is deprecated" + ): + result = special.comb(N, k, exact=True, legacy=legacy, + repetition=repetition) + else: + result = special.comb(N, k, exact=True, legacy=legacy, + repetition=repetition) + if legacy: + # for exact=True and legacy=True, cast input arguments, else don't + if repetition: + # the casting in legacy mode happens AFTER transforming N & k, + # so rounding can change (e.g. both floats, but sum to int); + # hence we need to emulate the repetition-transformation here + N, k = int(N + k - 1), int(k) + repetition = False + else: + N, k = int(N), int(k) + # expected result is the same as with exact=False + with suppress_warnings() as sup: + if legacy is not _NoValue: + sup.filter(DeprecationWarning) + expected = special.comb(N, k, legacy=legacy, repetition=repetition) + assert_equal(result, expected) + + def test_comb_with_np_int64(self): + n = 70 + k = 30 + np_n = np.int64(n) + np_k = np.int64(k) + res_np = special.comb(np_n, np_k, exact=True) + res_py = special.comb(n, k, exact=True) + assert res_np == res_py + + def test_comb_zeros(self): + assert_equal(special.comb(2, 3, exact=True), 0) + assert_equal(special.comb(-1, 3, exact=True), 0) + assert_equal(special.comb(2, -1, exact=True), 0) + assert_equal(special.comb(2, -1, exact=False), 0) + assert_array_almost_equal(special.comb([2, -1, 2, 10], [3, 3, -1, 3]), + [0., 0., 0., 120.]) + + def test_perm(self): + assert_array_almost_equal(special.perm([10, 10], [3, 4]), [720., 5040.]) + assert_almost_equal(special.perm(10, 3), 720.) + assert_equal(special.perm(10, 3, exact=True), 720) + + def test_perm_zeros(self): + assert_equal(special.perm(2, 3, exact=True), 0) + assert_equal(special.perm(-1, 3, exact=True), 0) + assert_equal(special.perm(2, -1, exact=True), 0) + assert_equal(special.perm(2, -1, exact=False), 0) + assert_array_almost_equal(special.perm([2, -1, 2, 10], [3, 3, -1, 3]), + [0., 0., 0., 720.]) + + def test_positional_deprecation(self): + with pytest.deprecated_call(match="use keyword arguments"): + # from test_comb + special.comb([10, 10], [3, 4], False, False) + + +class TestTrigonometric: + def test_cbrt(self): + cb = special.cbrt(27) + cbrl = 27**(1.0/3.0) + assert_approx_equal(cb,cbrl) + + def test_cbrtmore(self): + cb1 = special.cbrt(27.9) + cbrl1 = 27.9**(1.0/3.0) + assert_almost_equal(cb1,cbrl1,8) + + def test_cosdg(self): + cdg = special.cosdg(90) + cdgrl = cos(pi/2.0) + assert_almost_equal(cdg,cdgrl,8) + + def test_cosdgmore(self): + cdgm = special.cosdg(30) + cdgmrl = cos(pi/6.0) + assert_almost_equal(cdgm,cdgmrl,8) + + def test_cosm1(self): + cs = (special.cosm1(0),special.cosm1(.3),special.cosm1(pi/10)) + csrl = (cos(0)-1,cos(.3)-1,cos(pi/10)-1) + assert_array_almost_equal(cs,csrl,8) + + def test_cotdg(self): + ct = special.cotdg(30) + ctrl = tan(pi/6.0)**(-1) + assert_almost_equal(ct,ctrl,8) + + def test_cotdgmore(self): + ct1 = special.cotdg(45) + ctrl1 = tan(pi/4.0)**(-1) + assert_almost_equal(ct1,ctrl1,8) + + def test_specialpoints(self): + assert_almost_equal(special.cotdg(45), 1.0, 14) + assert_almost_equal(special.cotdg(-45), -1.0, 14) + assert_almost_equal(special.cotdg(90), 0.0, 14) + assert_almost_equal(special.cotdg(-90), 0.0, 14) + assert_almost_equal(special.cotdg(135), -1.0, 14) + assert_almost_equal(special.cotdg(-135), 1.0, 14) + assert_almost_equal(special.cotdg(225), 1.0, 14) + assert_almost_equal(special.cotdg(-225), -1.0, 14) + assert_almost_equal(special.cotdg(270), 0.0, 14) + assert_almost_equal(special.cotdg(-270), 0.0, 14) + assert_almost_equal(special.cotdg(315), -1.0, 14) + assert_almost_equal(special.cotdg(-315), 1.0, 14) + assert_almost_equal(special.cotdg(765), 1.0, 14) + + def test_sinc(self): + # the sinc implementation and more extensive sinc tests are in numpy + assert_array_equal(special.sinc([0]), 1) + assert_equal(special.sinc(0.0), 1.0) + + def test_sindg(self): + sn = special.sindg(90) + assert_equal(sn,1.0) + + def test_sindgmore(self): + snm = special.sindg(30) + snmrl = sin(pi/6.0) + assert_almost_equal(snm,snmrl,8) + snm1 = special.sindg(45) + snmrl1 = sin(pi/4.0) + assert_almost_equal(snm1,snmrl1,8) + + +class TestTandg: + + def test_tandg(self): + tn = special.tandg(30) + tnrl = tan(pi/6.0) + assert_almost_equal(tn,tnrl,8) + + def test_tandgmore(self): + tnm = special.tandg(45) + tnmrl = tan(pi/4.0) + assert_almost_equal(tnm,tnmrl,8) + tnm1 = special.tandg(60) + tnmrl1 = tan(pi/3.0) + assert_almost_equal(tnm1,tnmrl1,8) + + def test_specialpoints(self): + assert_almost_equal(special.tandg(0), 0.0, 14) + assert_almost_equal(special.tandg(45), 1.0, 14) + assert_almost_equal(special.tandg(-45), -1.0, 14) + assert_almost_equal(special.tandg(135), -1.0, 14) + assert_almost_equal(special.tandg(-135), 1.0, 14) + assert_almost_equal(special.tandg(180), 0.0, 14) + assert_almost_equal(special.tandg(-180), 0.0, 14) + assert_almost_equal(special.tandg(225), 1.0, 14) + assert_almost_equal(special.tandg(-225), -1.0, 14) + assert_almost_equal(special.tandg(315), -1.0, 14) + assert_almost_equal(special.tandg(-315), 1.0, 14) + + +class TestEllip: + def test_ellipj_nan(self): + """Regression test for #912.""" + special.ellipj(0.5, np.nan) + + def test_ellipj(self): + el = special.ellipj(0.2,0) + rel = [sin(0.2),cos(0.2),1.0,0.20] + assert_array_almost_equal(el,rel,13) + + def test_ellipk(self): + elk = special.ellipk(.2) + assert_almost_equal(elk,1.659623598610528,11) + + assert_equal(special.ellipkm1(0.0), np.inf) + assert_equal(special.ellipkm1(1.0), pi/2) + assert_equal(special.ellipkm1(np.inf), 0.0) + assert_equal(special.ellipkm1(np.nan), np.nan) + assert_equal(special.ellipkm1(-1), np.nan) + assert_allclose(special.ellipk(-10), 0.7908718902387385) + + def test_ellipkinc(self): + elkinc = special.ellipkinc(pi/2,.2) + elk = special.ellipk(0.2) + assert_almost_equal(elkinc,elk,15) + alpha = 20*pi/180 + phi = 45*pi/180 + m = sin(alpha)**2 + elkinc = special.ellipkinc(phi,m) + assert_almost_equal(elkinc,0.79398143,8) + # From pg. 614 of A & S + + assert_equal(special.ellipkinc(pi/2, 0.0), pi/2) + assert_equal(special.ellipkinc(pi/2, 1.0), np.inf) + assert_equal(special.ellipkinc(pi/2, -np.inf), 0.0) + assert_equal(special.ellipkinc(pi/2, np.nan), np.nan) + assert_equal(special.ellipkinc(pi/2, 2), np.nan) + assert_equal(special.ellipkinc(0, 0.5), 0.0) + assert_equal(special.ellipkinc(np.inf, 0.5), np.inf) + assert_equal(special.ellipkinc(-np.inf, 0.5), -np.inf) + assert_equal(special.ellipkinc(np.inf, np.inf), np.nan) + assert_equal(special.ellipkinc(np.inf, -np.inf), np.nan) + assert_equal(special.ellipkinc(-np.inf, -np.inf), np.nan) + assert_equal(special.ellipkinc(-np.inf, np.inf), np.nan) + assert_equal(special.ellipkinc(np.nan, 0.5), np.nan) + assert_equal(special.ellipkinc(np.nan, np.nan), np.nan) + + assert_allclose(special.ellipkinc(0.38974112035318718, 1), 0.4, rtol=1e-14) + assert_allclose(special.ellipkinc(1.5707, -10), 0.79084284661724946) + + def test_ellipkinc_2(self): + # Regression test for gh-3550 + # ellipkinc(phi, mbad) was NaN and mvals[2:6] were twice the correct value + mbad = 0.68359375000000011 + phi = 0.9272952180016123 + m = np.nextafter(mbad, 0) + mvals = [] + for j in range(10): + mvals.append(m) + m = np.nextafter(m, 1) + f = special.ellipkinc(phi, mvals) + assert_array_almost_equal_nulp(f, np.full_like(f, 1.0259330100195334), 1) + # this bug also appears at phi + n * pi for at least small n + f1 = special.ellipkinc(phi + pi, mvals) + assert_array_almost_equal_nulp(f1, np.full_like(f1, 5.1296650500976675), 2) + + def test_ellipkinc_singular(self): + # ellipkinc(phi, 1) has closed form and is finite only for phi in (-pi/2, pi/2) + xlog = np.logspace(-300, -17, 25) + xlin = np.linspace(1e-17, 0.1, 25) + xlin2 = np.linspace(0.1, pi/2, 25, endpoint=False) + + assert_allclose(special.ellipkinc(xlog, 1), np.arcsinh(np.tan(xlog)), + rtol=1e14) + assert_allclose(special.ellipkinc(xlin, 1), np.arcsinh(np.tan(xlin)), + rtol=1e14) + assert_allclose(special.ellipkinc(xlin2, 1), np.arcsinh(np.tan(xlin2)), + rtol=1e14) + assert_equal(special.ellipkinc(np.pi/2, 1), np.inf) + assert_allclose(special.ellipkinc(-xlog, 1), np.arcsinh(np.tan(-xlog)), + rtol=1e14) + assert_allclose(special.ellipkinc(-xlin, 1), np.arcsinh(np.tan(-xlin)), + rtol=1e14) + assert_allclose(special.ellipkinc(-xlin2, 1), np.arcsinh(np.tan(-xlin2)), + rtol=1e14) + assert_equal(special.ellipkinc(-np.pi/2, 1), np.inf) + + def test_ellipe(self): + ele = special.ellipe(.2) + assert_almost_equal(ele,1.4890350580958529,8) + + assert_equal(special.ellipe(0.0), pi/2) + assert_equal(special.ellipe(1.0), 1.0) + assert_equal(special.ellipe(-np.inf), np.inf) + assert_equal(special.ellipe(np.nan), np.nan) + assert_equal(special.ellipe(2), np.nan) + assert_allclose(special.ellipe(-10), 3.6391380384177689) + + def test_ellipeinc(self): + eleinc = special.ellipeinc(pi/2,.2) + ele = special.ellipe(0.2) + assert_almost_equal(eleinc,ele,14) + # pg 617 of A & S + alpha, phi = 52*pi/180,35*pi/180 + m = sin(alpha)**2 + eleinc = special.ellipeinc(phi,m) + assert_almost_equal(eleinc, 0.58823065, 8) + + assert_equal(special.ellipeinc(pi/2, 0.0), pi/2) + assert_equal(special.ellipeinc(pi/2, 1.0), 1.0) + assert_equal(special.ellipeinc(pi/2, -np.inf), np.inf) + assert_equal(special.ellipeinc(pi/2, np.nan), np.nan) + assert_equal(special.ellipeinc(pi/2, 2), np.nan) + assert_equal(special.ellipeinc(0, 0.5), 0.0) + assert_equal(special.ellipeinc(np.inf, 0.5), np.inf) + assert_equal(special.ellipeinc(-np.inf, 0.5), -np.inf) + assert_equal(special.ellipeinc(np.inf, -np.inf), np.inf) + assert_equal(special.ellipeinc(-np.inf, -np.inf), -np.inf) + assert_equal(special.ellipeinc(np.inf, np.inf), np.nan) + assert_equal(special.ellipeinc(-np.inf, np.inf), np.nan) + assert_equal(special.ellipeinc(np.nan, 0.5), np.nan) + assert_equal(special.ellipeinc(np.nan, np.nan), np.nan) + assert_allclose(special.ellipeinc(1.5707, -10), 3.6388185585822876) + + def test_ellipeinc_2(self): + # Regression test for gh-3550 + # ellipeinc(phi, mbad) was NaN and mvals[2:6] were twice the correct value + mbad = 0.68359375000000011 + phi = 0.9272952180016123 + m = np.nextafter(mbad, 0) + mvals = [] + for j in range(10): + mvals.append(m) + m = np.nextafter(m, 1) + f = special.ellipeinc(phi, mvals) + assert_array_almost_equal_nulp(f, np.full_like(f, 0.84442884574781019), 2) + # this bug also appears at phi + n * pi for at least small n + f1 = special.ellipeinc(phi + pi, mvals) + assert_array_almost_equal_nulp(f1, np.full_like(f1, 3.3471442287390509), 4) + + +class TestEllipCarlson: + """Test for Carlson elliptic integrals ellipr[cdfgj]. + The special values used in these tests can be found in Sec. 3 of Carlson + (1994), https://arxiv.org/abs/math/9409227 + """ + def test_elliprc(self): + assert_allclose(elliprc(1, 1), 1) + assert elliprc(1, inf) == 0.0 + assert isnan(elliprc(1, 0)) + assert elliprc(1, complex(1, inf)) == 0.0 + args = array([[0.0, 0.25], + [2.25, 2.0], + [0.0, 1.0j], + [-1.0j, 1.0j], + [0.25, -2.0], + [1.0j, -1.0]]) + expected_results = array([np.pi, + np.log(2.0), + 1.1107207345396 * (1.0-1.0j), + 1.2260849569072-0.34471136988768j, + np.log(2.0) / 3.0, + 0.77778596920447+0.19832484993429j]) + for i, arr in enumerate(args): + assert_allclose(elliprc(*arr), expected_results[i]) + + def test_elliprd(self): + assert_allclose(elliprd(1, 1, 1), 1) + assert_allclose(elliprd(0, 2, 1) / 3.0, 0.59907011736779610371) + assert elliprd(1, 1, inf) == 0.0 + assert np.isinf(elliprd(1, 1, 0)) + assert np.isinf(elliprd(1, 1, complex(0, 0))) + assert np.isinf(elliprd(0, 1, complex(0, 0))) + assert isnan(elliprd(1, 1, -np.finfo(np.float64).tiny / 2.0)) + assert isnan(elliprd(1, 1, complex(-1, 0))) + args = array([[0.0, 2.0, 1.0], + [2.0, 3.0, 4.0], + [1.0j, -1.0j, 2.0], + [0.0, 1.0j, -1.0j], + [0.0, -1.0+1.0j, 1.0j], + [-2.0-1.0j, -1.0j, -1.0+1.0j]]) + expected_results = array([1.7972103521034, + 0.16510527294261, + 0.65933854154220, + 1.2708196271910+2.7811120159521j, + -1.8577235439239-0.96193450888839j, + 1.8249027393704-1.2218475784827j]) + for i, arr in enumerate(args): + assert_allclose(elliprd(*arr), expected_results[i]) + + def test_elliprf(self): + assert_allclose(elliprf(1, 1, 1), 1) + assert_allclose(elliprf(0, 1, 2), 1.31102877714605990523) + assert elliprf(1, inf, 1) == 0.0 + assert np.isinf(elliprf(0, 1, 0)) + assert isnan(elliprf(1, 1, -1)) + assert elliprf(complex(inf), 0, 1) == 0.0 + assert isnan(elliprf(1, 1, complex(-inf, 1))) + args = array([[1.0, 2.0, 0.0], + [1.0j, -1.0j, 0.0], + [0.5, 1.0, 0.0], + [-1.0+1.0j, 1.0j, 0.0], + [2.0, 3.0, 4.0], + [1.0j, -1.0j, 2.0], + [-1.0+1.0j, 1.0j, 1.0-1.0j]]) + expected_results = array([1.3110287771461, + 1.8540746773014, + 1.8540746773014, + 0.79612586584234-1.2138566698365j, + 0.58408284167715, + 1.0441445654064, + 0.93912050218619-0.53296252018635j]) + for i, arr in enumerate(args): + assert_allclose(elliprf(*arr), expected_results[i]) + + def test_elliprg(self): + assert_allclose(elliprg(1, 1, 1), 1) + assert_allclose(elliprg(0, 0, 1), 0.5) + assert_allclose(elliprg(0, 0, 0), 0) + assert np.isinf(elliprg(1, inf, 1)) + assert np.isinf(elliprg(complex(inf), 1, 1)) + args = array([[0.0, 16.0, 16.0], + [2.0, 3.0, 4.0], + [0.0, 1.0j, -1.0j], + [-1.0+1.0j, 1.0j, 0.0], + [-1.0j, -1.0+1.0j, 1.0j], + [0.0, 0.0796, 4.0]]) + expected_results = array([np.pi, + 1.7255030280692, + 0.42360654239699, + 0.44660591677018+0.70768352357515j, + 0.36023392184473+0.40348623401722j, + 1.0284758090288]) + for i, arr in enumerate(args): + assert_allclose(elliprg(*arr), expected_results[i]) + + def test_elliprj(self): + assert_allclose(elliprj(1, 1, 1, 1), 1) + assert elliprj(1, 1, inf, 1) == 0.0 + assert isnan(elliprj(1, 0, 0, 0)) + assert isnan(elliprj(-1, 1, 1, 1)) + assert elliprj(1, 1, 1, inf) == 0.0 + args = array([[0.0, 1.0, 2.0, 3.0], + [2.0, 3.0, 4.0, 5.0], + [2.0, 3.0, 4.0, -1.0+1.0j], + [1.0j, -1.0j, 0.0, 2.0], + [-1.0+1.0j, -1.0-1.0j, 1.0, 2.0], + [1.0j, -1.0j, 0.0, 1.0-1.0j], + [-1.0+1.0j, -1.0-1.0j, 1.0, -3.0+1.0j], + [2.0, 3.0, 4.0, -0.5], # Cauchy principal value + [2.0, 3.0, 4.0, -5.0]]) # Cauchy principal value + expected_results = array([0.77688623778582, + 0.14297579667157, + 0.13613945827771-0.38207561624427j, + 1.6490011662711, + 0.94148358841220, + 1.8260115229009+1.2290661908643j, + -0.61127970812028-1.0684038390007j, + 0.24723819703052, # Cauchy principal value + -0.12711230042964]) # Caucny principal value + for i, arr in enumerate(args): + assert_allclose(elliprj(*arr), expected_results[i]) + + @pytest.mark.xfail(reason="Insufficient accuracy on 32-bit") + def test_elliprj_hard(self): + assert_allclose(elliprj(6.483625725195452e-08, + 1.1649136528196886e-27, + 3.6767340167168e+13, + 0.493704617023468), + 8.63426920644241857617477551054e-6, + rtol=5e-15, atol=1e-20) + assert_allclose(elliprj(14.375105857849121, + 9.993988969725365e-11, + 1.72844262269944e-26, + 5.898871222598245e-06), + 829774.1424801627252574054378691828, + rtol=5e-15, atol=1e-20) + + +class TestEllipLegendreCarlsonIdentities: + """Test identities expressing the Legendre elliptic integrals in terms + of Carlson's symmetric integrals. These identities can be found + in the DLMF https://dlmf.nist.gov/19.25#i . + """ + + def setup_class(self): + self.m_n1_1 = np.arange(-1., 1., 0.01) + # For double, this is -(2**1024) + self.max_neg = finfo(double).min + # Lots of very negative numbers + self.very_neg_m = -1. * 2.**arange(-1 + + np.log2(-self.max_neg), 0., + -1.) + self.ms_up_to_1 = np.concatenate(([self.max_neg], + self.very_neg_m, + self.m_n1_1)) + + def test_k(self): + """Test identity: + K(m) = R_F(0, 1-m, 1) + """ + m = self.ms_up_to_1 + assert_allclose(ellipk(m), elliprf(0., 1.-m, 1.)) + + def test_km1(self): + """Test identity: + K(m) = R_F(0, 1-m, 1) + But with the ellipkm1 function + """ + # For double, this is 2**-1022 + tiny = finfo(double).tiny + # All these small powers of 2, up to 2**-1 + m1 = tiny * 2.**arange(0., -np.log2(tiny)) + assert_allclose(ellipkm1(m1), elliprf(0., m1, 1.)) + + def test_e(self): + """Test identity: + E(m) = 2*R_G(0, 1-k^2, 1) + """ + m = self.ms_up_to_1 + assert_allclose(ellipe(m), 2.*elliprg(0., 1.-m, 1.)) + + +class TestErf: + + def test_erf(self): + er = special.erf(.25) + assert_almost_equal(er,0.2763263902,8) + + def test_erf_zeros(self): + erz = special.erf_zeros(5) + erzr = array([1.45061616+1.88094300j, + 2.24465928+2.61657514j, + 2.83974105+3.17562810j, + 3.33546074+3.64617438j, + 3.76900557+4.06069723j]) + assert_array_almost_equal(erz,erzr,4) + + def _check_variant_func(self, func, other_func, rtol, atol=0): + np.random.seed(1234) + n = 10000 + x = np.random.pareto(0.02, n) * (2*np.random.randint(0, 2, n) - 1) + y = np.random.pareto(0.02, n) * (2*np.random.randint(0, 2, n) - 1) + z = x + 1j*y + + with np.errstate(all='ignore'): + w = other_func(z) + w_real = other_func(x).real + + mask = np.isfinite(w) + w = w[mask] + z = z[mask] + + mask = np.isfinite(w_real) + w_real = w_real[mask] + x = x[mask] + + # test both real and complex variants + assert_func_equal(func, w, z, rtol=rtol, atol=atol) + assert_func_equal(func, w_real, x, rtol=rtol, atol=atol) + + def test_erfc_consistent(self): + self._check_variant_func( + cephes.erfc, + lambda z: 1 - cephes.erf(z), + rtol=1e-12, + atol=1e-14 # <- the test function loses precision + ) + + def test_erfcx_consistent(self): + self._check_variant_func( + cephes.erfcx, + lambda z: np.exp(z*z) * cephes.erfc(z), + rtol=1e-12 + ) + + def test_erfi_consistent(self): + self._check_variant_func( + cephes.erfi, + lambda z: -1j * cephes.erf(1j*z), + rtol=1e-12 + ) + + def test_dawsn_consistent(self): + self._check_variant_func( + cephes.dawsn, + lambda z: sqrt(pi)/2 * np.exp(-z*z) * cephes.erfi(z), + rtol=1e-12 + ) + + def test_erf_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan, -1, 1] + assert_allclose(special.erf(vals), expected, rtol=1e-15) + + def test_erfc_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan, 2, 0] + assert_allclose(special.erfc(vals), expected, rtol=1e-15) + + def test_erfcx_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan, np.inf, 0] + assert_allclose(special.erfcx(vals), expected, rtol=1e-15) + + def test_erfi_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan, -np.inf, np.inf] + assert_allclose(special.erfi(vals), expected, rtol=1e-15) + + def test_dawsn_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan, -0.0, 0.0] + assert_allclose(special.dawsn(vals), expected, rtol=1e-15) + + def test_wofz_nan_inf(self): + vals = [np.nan, -np.inf, np.inf] + expected = [np.nan + np.nan * 1.j, 0.-0.j, 0.+0.j] + assert_allclose(special.wofz(vals), expected, rtol=1e-15) + + +class TestEuler: + def test_euler(self): + eu0 = special.euler(0) + eu1 = special.euler(1) + eu2 = special.euler(2) # just checking segfaults + assert_allclose(eu0, [1], rtol=1e-15) + assert_allclose(eu1, [1, 0], rtol=1e-15) + assert_allclose(eu2, [1, 0, -1], rtol=1e-15) + eu24 = special.euler(24) + mathworld = [1,1,5,61,1385,50521,2702765,199360981, + 19391512145,2404879675441, + 370371188237525,69348874393137901, + 15514534163557086905] + correct = zeros((25,),'d') + for k in range(0,13): + if (k % 2): + correct[2*k] = -float(mathworld[k]) + else: + correct[2*k] = float(mathworld[k]) + with np.errstate(all='ignore'): + err = nan_to_num((eu24-correct)/correct) + errmax = max(err) + assert_almost_equal(errmax, 0.0, 14) + + +class TestExp: + def test_exp2(self): + ex = special.exp2(2) + exrl = 2**2 + assert_equal(ex,exrl) + + def test_exp2more(self): + exm = special.exp2(2.5) + exmrl = 2**(2.5) + assert_almost_equal(exm,exmrl,8) + + def test_exp10(self): + ex = special.exp10(2) + exrl = 10**2 + assert_approx_equal(ex,exrl) + + def test_exp10more(self): + exm = special.exp10(2.5) + exmrl = 10**(2.5) + assert_almost_equal(exm,exmrl,8) + + def test_expm1(self): + ex = (special.expm1(2),special.expm1(3),special.expm1(4)) + exrl = (exp(2)-1,exp(3)-1,exp(4)-1) + assert_array_almost_equal(ex,exrl,8) + + def test_expm1more(self): + ex1 = (special.expm1(2),special.expm1(2.1),special.expm1(2.2)) + exrl1 = (exp(2)-1,exp(2.1)-1,exp(2.2)-1) + assert_array_almost_equal(ex1,exrl1,8) + + +class TestFactorialFunctions: + @pytest.mark.parametrize("exact", [True, False]) + def test_factorialx_scalar_return_type(self, exact): + assert np.isscalar(special.factorial(1, exact=exact)) + assert np.isscalar(special.factorial2(1, exact=exact)) + assert np.isscalar(special.factorialk(1, 3, exact=exact)) + + @pytest.mark.parametrize("n", [-1, -2, -3]) + @pytest.mark.parametrize("exact", [True, False]) + def test_factorialx_negative(self, exact, n): + assert_equal(special.factorial(n, exact=exact), 0) + assert_equal(special.factorial2(n, exact=exact), 0) + assert_equal(special.factorialk(n, 3, exact=exact), 0) + + @pytest.mark.parametrize("exact", [True, False]) + def test_factorialx_negative_array(self, exact): + assert_func = assert_array_equal if exact else assert_allclose + # Consistent output for n < 0 + assert_func(special.factorial([-5, -4, 0, 1], exact=exact), + [0, 0, 1, 1]) + assert_func(special.factorial2([-5, -4, 0, 1], exact=exact), + [0, 0, 1, 1]) + assert_func(special.factorialk([-5, -4, 0, 1], 3, exact=exact), + [0, 0, 1, 1]) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("content", [np.nan, None, np.datetime64('nat')], + ids=["NaN", "None", "NaT"]) + def test_factorialx_nan(self, content, exact): + # scalar + assert special.factorial(content, exact=exact) is np.nan + assert special.factorial2(content, exact=exact) is np.nan + assert special.factorialk(content, 3, exact=exact) is np.nan + # array-like (initializes np.array with default dtype) + if content is not np.nan: + # None causes object dtype, which is not supported; as is datetime + with pytest.raises(ValueError, match="Unsupported datatype.*"): + special.factorial([content], exact=exact) + elif exact: + with pytest.raises(ValueError, match="factorial with `exact=Tr.*"): + special.factorial([content], exact=exact) + else: + assert np.isnan(special.factorial([content], exact=exact)[0]) + # factorial{2,k} don't support array case due to dtype constraints + with pytest.raises(ValueError, match="factorial2 does not support.*"): + special.factorial2([content], exact=exact) + with pytest.raises(ValueError, match="factorialk does not support.*"): + special.factorialk([content], 3, exact=exact) + # array-case also tested in test_factorial{,2,k}_corner_cases + + @pytest.mark.parametrize("levels", range(1, 5)) + @pytest.mark.parametrize("exact", [True, False]) + def test_factorialx_array_shape(self, levels, exact): + def _nest_me(x, k=1): + """ + Double x and nest it k times + + For example: + >>> _nest_me([3, 4], 2) + [[[3, 4], [3, 4]], [[3, 4], [3, 4]]] + """ + if k == 0: + return x + else: + return _nest_me([x, x], k-1) + + def _check(res, nucleus): + exp = np.array(_nest_me(nucleus, k=levels), dtype=object) + # test that ndarray shape is maintained + # need to cast to float due to numpy/numpy#21220 + assert_allclose(res.astype(np.float64), exp.astype(np.float64)) + + n = np.array(_nest_me([5, 25], k=levels)) + exp_nucleus = {1: [120, math.factorial(25)], + # correctness of factorial{2,k}() is tested elsewhere + 2: [15, special.factorial2(25, exact=True)], + 3: [10, special.factorialk(25, 3, exact=True)]} + + _check(special.factorial(n, exact=exact), exp_nucleus[1]) + _check(special.factorial2(n, exact=exact), exp_nucleus[2]) + _check(special.factorialk(n, 3, exact=exact), exp_nucleus[3]) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("dim", range(0, 5)) + def test_factorialx_array_dimension(self, dim, exact): + n = np.array(5, ndmin=dim) + exp = {1: 120, 2: 15, 3: 10} + assert_allclose(special.factorial(n, exact=exact), + np.array(exp[1], ndmin=dim)) + assert_allclose(special.factorial2(n, exact=exact), + np.array(exp[2], ndmin=dim)) + assert_allclose(special.factorialk(n, 3, exact=exact), + np.array(exp[3], ndmin=dim)) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("level", range(1, 5)) + def test_factorialx_array_like(self, level, exact): + def _nest_me(x, k=1): + if k == 0: + return x + else: + return _nest_me([x], k-1) + + n = _nest_me([5], k=level-1) # nested list + exp_nucleus = {1: 120, 2: 15, 3: 10} + assert_func = assert_array_equal if exact else assert_allclose + assert_func(special.factorial(n, exact=exact), + np.array(exp_nucleus[1], ndmin=level)) + assert_func(special.factorial2(n, exact=exact), + np.array(exp_nucleus[2], ndmin=level)) + assert_func(special.factorialk(n, 3, exact=exact), + np.array(exp_nucleus[3], ndmin=level)) + + # note that n=170 is the last integer such that factorial(n) fits float64 + @pytest.mark.parametrize('n', range(30, 180, 10)) + def test_factorial_accuracy(self, n): + # Compare exact=True vs False, i.e. that the accuracy of the + # approximation is better than the specified tolerance. + + rtol = 6e-14 if sys.platform == 'win32' else 1e-15 + # need to cast exact result to float due to numpy/numpy#21220 + assert_allclose(float(special.factorial(n, exact=True)), + special.factorial(n, exact=False), rtol=rtol) + assert_allclose(special.factorial([n], exact=True).astype(float), + special.factorial([n], exact=False), rtol=rtol) + + @pytest.mark.parametrize('n', + list(range(0, 22)) + list(range(30, 180, 10))) + def test_factorial_int_reference(self, n): + # Compare all with math.factorial + correct = math.factorial(n) + assert_array_equal(correct, special.factorial(n, True)) + assert_array_equal(correct, special.factorial([n], True)[0]) + + rtol = 6e-14 if sys.platform == 'win32' else 1e-15 + assert_allclose(float(correct), special.factorial(n, False), + rtol=rtol) + assert_allclose(float(correct), special.factorial([n], False)[0], + rtol=rtol) + + def test_factorial_float_reference(self): + def _check(n, expected): + assert_allclose(special.factorial(n), expected) + assert_allclose(special.factorial([n])[0], expected) + # using floats with exact=True is deprecated for scalars... + with pytest.deprecated_call(match="Non-integer values.*"): + assert_allclose(special.factorial(n, exact=True), expected) + # ... and already an error for arrays + with pytest.raises(ValueError, match="factorial with `exact=Tr.*"): + special.factorial([n], exact=True) + + # Reference values from mpmath for gamma(n+1) + _check(0.01, 0.994325851191506032181932988) + _check(1.11, 1.051609009483625091514147465) + _check(5.55, 314.9503192327208241614959052) + _check(11.1, 50983227.84411615655137170553) + _check(33.3, 2.493363339642036352229215273e+37) + _check(55.5, 9.479934358436729043289162027e+73) + _check(77.7, 3.060540559059579022358692625e+114) + _check(99.9, 5.885840419492871504575693337e+157) + # close to maximum for float64 + _check(170.6243, 1.79698185749571048960082e+308) + + @pytest.mark.parametrize("dtype", [np.int64, np.float64, + np.complex128, object]) + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("dim", range(0, 5)) + # test empty & non-empty arrays, with nans and mixed + @pytest.mark.parametrize("content", + [[], [1], [1.1], [np.nan], [np.nan, 1]], + ids=["[]", "[1]", "[1.1]", "[NaN]", "[NaN, 1]"]) + def test_factorial_array_corner_cases(self, content, dim, exact, dtype): + if dtype == np.int64 and any(np.isnan(x) for x in content): + pytest.skip("impossible combination") + # np.array(x, ndim=0) will not be 0-dim. unless x is too + content = content if (dim > 0 or len(content) != 1) else content[0] + n = np.array(content, ndmin=dim, dtype=dtype) + result = None + if not content: + result = special.factorial(n, exact=exact) + elif not (np.issubdtype(n.dtype, np.integer) + or np.issubdtype(n.dtype, np.floating)): + with pytest.raises(ValueError, match="Unsupported datatype*"): + special.factorial(n, exact=exact) + elif exact and not np.issubdtype(n.dtype, np.integer): + with pytest.raises(ValueError, match="factorial with `exact=.*"): + special.factorial(n, exact=exact) + else: + # no error + result = special.factorial(n, exact=exact) + + # assert_equal does not distinguish scalars and 0-dim arrays of the same value, + # see https://github.com/numpy/numpy/issues/24050 + def assert_really_equal(x, y): + assert type(x) == type(y), f"types not equal: {type(x)}, {type(y)}" + assert_equal(x, y) + + if result is not None: + # keep 0-dim.; otherwise n.ravel().ndim==1, even if n.ndim==0 + n_flat = n.ravel() if n.ndim else n + ref = special.factorial(n_flat, exact=exact) if n.size else [] + # expected result is empty if and only if n is empty, + # and has the same dtype & dimension as n + expected = np.array(ref, ndmin=dim, dtype=dtype) + assert_really_equal(result, expected) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, None], + ids=["1", "1.1", "2+2j", "NaN", "None"]) + def test_factorial_scalar_corner_cases(self, n, exact): + if (n is None or n is np.nan or np.issubdtype(type(n), np.integer) + or np.issubdtype(type(n), np.floating)): + # no error + if (np.issubdtype(type(n), np.floating) and exact + and n is not np.nan): + with pytest.deprecated_call(match="Non-integer values.*"): + result = special.factorial(n, exact=exact) + else: + result = special.factorial(n, exact=exact) + exp = np.nan if n is np.nan or n is None else special.factorial(n) + assert_equal(result, exp) + else: + with pytest.raises(ValueError, match="Unsupported datatype*"): + special.factorial(n, exact=exact) + + # use odd increment to make sure both odd & even numbers are tested! + @pytest.mark.parametrize('n', range(30, 180, 11)) + def test_factorial2_accuracy(self, n): + # Compare exact=True vs False, i.e. that the accuracy of the + # approximation is better than the specified tolerance. + + rtol = 2e-14 if sys.platform == 'win32' else 1e-15 + # need to cast exact result to float due to numpy/numpy#21220 + assert_allclose(float(special.factorial2(n, exact=True)), + special.factorial2(n, exact=False), rtol=rtol) + assert_allclose(special.factorial2([n], exact=True).astype(float), + special.factorial2([n], exact=False), rtol=rtol) + + @pytest.mark.parametrize('n', + list(range(0, 22)) + list(range(30, 180, 11))) + def test_factorial2_int_reference(self, n): + # Compare all with correct value + + # Cannot use np.product due to overflow + correct = functools.reduce(operator.mul, list(range(n, 0, -2)), 1) + + assert_array_equal(correct, special.factorial2(n, True)) + assert_array_equal(correct, special.factorial2([n], True)[0]) + + assert_allclose(float(correct), special.factorial2(n, False)) + assert_allclose(float(correct), special.factorial2([n], False)[0]) + + @pytest.mark.parametrize("dtype", [np.int64, np.float64, + np.complex128, object]) + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("dim", range(0, 5)) + # test empty & non-empty arrays, with nans and mixed + @pytest.mark.parametrize("content", [[], [1], [np.nan], [np.nan, 1]], + ids=["[]", "[1]", "[NaN]", "[NaN, 1]"]) + def test_factorial2_array_corner_cases(self, content, dim, exact, dtype): + if dtype == np.int64 and any(np.isnan(x) for x in content): + pytest.skip("impossible combination") + # np.array(x, ndim=0) will not be 0-dim. unless x is too + content = content if (dim > 0 or len(content) != 1) else content[0] + n = np.array(content, ndmin=dim, dtype=dtype) + if np.issubdtype(n.dtype, np.integer) or (not content): + # no error + result = special.factorial2(n, exact=exact) + # expected result is identical to n for exact=True resp. empty + # arrays (assert_allclose chokes on object), otherwise up to tol + func = assert_equal if exact or (not content) else assert_allclose + func(result, n) + else: + with pytest.raises(ValueError, match="factorial2 does not*"): + special.factorial2(n, 3) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, None], + ids=["1", "1.1", "2+2j", "NaN", "None"]) + def test_factorial2_scalar_corner_cases(self, n, exact): + if n is None or n is np.nan or np.issubdtype(type(n), np.integer): + # no error + result = special.factorial2(n, exact=exact) + exp = np.nan if n is np.nan or n is None else special.factorial(n) + assert_equal(result, exp) + else: + with pytest.raises(ValueError, match="factorial2 does not*"): + special.factorial2(n, exact=exact) + + @pytest.mark.parametrize("k", range(1, 5)) + # note that n=170 is the last integer such that factorial(n) fits float64; + # use odd increment to make sure both odd & even numbers are tested + @pytest.mark.parametrize('n', range(170, 20, -29)) + def test_factorialk_accuracy(self, n, k): + # Compare exact=True vs False, i.e. that the accuracy of the + # approximation is better than the specified tolerance. + + # need to cast exact result to float due to numpy/numpy#21220 + assert_allclose(float(special.factorialk(n, k=k, exact=True)), + special.factorialk(n, k=k, exact=False)) + assert_allclose(special.factorialk([n], k=k, exact=True).astype(float), + special.factorialk([n], k=k, exact=False)) + + @pytest.mark.parametrize('k', list(range(1, 5)) + [10, 20]) + @pytest.mark.parametrize('n', + list(range(0, 22)) + list(range(22, 100, 11))) + def test_factorialk_int_reference(self, n, k): + # Compare all with correct value + + # Would be nice to use np.product here, but that's + # broken on windows, see numpy/numpy#21219 + correct = functools.reduce(operator.mul, list(range(n, 0, -k)), 1) + + assert_array_equal(correct, special.factorialk(n, k, True)) + assert_array_equal(correct, special.factorialk([n], k, True)[0]) + + assert_allclose(float(correct), special.factorialk(n, k, False)) + assert_allclose(float(correct), special.factorialk([n], k, False)[0]) + + @pytest.mark.parametrize("dtype", [np.int64, np.float64, + np.complex128, object]) + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("dim", range(0, 5)) + # test empty & non-empty arrays, with nans and mixed + @pytest.mark.parametrize("content", [[], [1], [np.nan], [np.nan, 1]], + ids=["[]", "[1]", "[NaN]", "[NaN, 1]"]) + def test_factorialk_array_corner_cases(self, content, dim, exact, dtype): + if dtype == np.int64 and any(np.isnan(x) for x in content): + pytest.skip("impossible combination") + # np.array(x, ndim=0) will not be 0-dim. unless x is too + content = content if (dim > 0 or len(content) != 1) else content[0] + n = np.array(content, ndmin=dim, dtype=dtype if exact else np.float64) + if np.issubdtype(n.dtype, np.integer) or (not content): + # no error; expected result is identical to n + assert_equal(special.factorialk(n, 3, exact=exact), n) + else: + with pytest.raises(ValueError, match="factorialk does not*"): + special.factorialk(n, 3, exact=exact) + + @pytest.mark.parametrize("exact", [True, False, None]) + @pytest.mark.parametrize("k", range(1, 5)) + @pytest.mark.parametrize("n", [1, 1.1, 2 + 2j, np.nan, None], + ids=["1", "1.1", "2+2j", "NaN", "None"]) + def test_factorialk_scalar_corner_cases(self, n, k, exact): + if n is None or n is np.nan or np.issubdtype(type(n), np.integer): + if exact is None: + with pytest.deprecated_call(match="factorialk will default.*"): + result = special.factorialk(n, k=k, exact=exact) + else: + # no error + result = special.factorialk(n, k=k, exact=exact) + + nan_cond = n is np.nan or n is None + # factorialk(1, k) == 1 for all k + expected = np.nan if nan_cond else 1 + assert_equal(result, expected) + else: + with pytest.raises(ValueError, match="factorialk does not*"): + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "factorialk will default") + special.factorialk(n, k=k, exact=exact) + + @pytest.mark.parametrize("k", [0, 1.1, np.nan, "1"]) + def test_factorialk_raises_k(self, k): + with pytest.raises(ValueError, match="k must be a positive integer*"): + special.factorialk(1, k) + + @pytest.mark.parametrize("exact", [True, False]) + @pytest.mark.parametrize("k", range(1, 12)) + def test_factorialk_dtype(self, k, exact): + kw = {"k": k, "exact": exact} + if exact and k in _FACTORIALK_LIMITS_64BITS.keys(): + n = np.array([_FACTORIALK_LIMITS_32BITS[k]]) + assert_equal(special.factorialk(n, **kw).dtype, np_long) + assert_equal(special.factorialk(n + 1, **kw).dtype, np.int64) + # assert maximality of limits for given dtype + assert special.factorialk(n + 1, **kw) > np.iinfo(np.int32).max + + n = np.array([_FACTORIALK_LIMITS_64BITS[k]]) + assert_equal(special.factorialk(n, **kw).dtype, np.int64) + assert_equal(special.factorialk(n + 1, **kw).dtype, object) + assert special.factorialk(n + 1, **kw) > np.iinfo(np.int64).max + else: + n = np.array([_FACTORIALK_LIMITS_64BITS.get(k, 1)]) + # for exact=True and k >= 10, we always return object; + # for exact=False it's always float + dtype = object if exact else np.float64 + assert_equal(special.factorialk(n, **kw).dtype, dtype) + + def test_factorial_mixed_nan_inputs(self): + x = np.array([np.nan, 1, 2, 3, np.nan]) + expected = np.array([np.nan, 1, 2, 6, np.nan]) + assert_equal(special.factorial(x, exact=False), expected) + with pytest.raises(ValueError, match="factorial with `exact=True.*"): + special.factorial(x, exact=True) + + +class TestFresnel: + @pytest.mark.parametrize("z, s, c", [ + # some positive value + (.5, 0.064732432859999287, 0.49234422587144644), + (.5 + .0j, 0.064732432859999287, 0.49234422587144644), + # negative half annulus + # https://github.com/scipy/scipy/issues/12309 + # Reference values can be reproduced with + # https://www.wolframalpha.com/input/?i=FresnelS%5B-2.0+%2B+0.1i%5D + # https://www.wolframalpha.com/input/?i=FresnelC%5B-2.0+%2B+0.1i%5D + ( + -2.0 + 0.1j, + -0.3109538687728942-0.0005870728836383176j, + -0.4879956866358554+0.10670801832903172j + ), + ( + -0.1 - 1.5j, + -0.03918309471866977+0.7197508454568574j, + 0.09605692502968956-0.43625191013617465j + ), + # a different algorithm kicks in for "large" values, i.e., |z| >= 4.5, + # make sure to test both float and complex values; a different + # algorithm is used + (6.0, 0.44696076, 0.49953147), + (6.0 + 0.0j, 0.44696076, 0.49953147), + (6.0j, -0.44696076j, 0.49953147j), + (-6.0 + 0.0j, -0.44696076, -0.49953147), + (-6.0j, 0.44696076j, -0.49953147j), + # inf + (np.inf, 0.5, 0.5), + (-np.inf, -0.5, -0.5), + ]) + def test_fresnel_values(self, z, s, c): + frs = array(special.fresnel(z)) + assert_array_almost_equal(frs, array([s, c]), 8) + + # values from pg 329 Table 7.11 of A & S + # slightly corrected in 4th decimal place + def test_fresnel_zeros(self): + szo, czo = special.fresnel_zeros(5) + assert_array_almost_equal(szo, + array([2.0093+0.2885j, + 2.8335+0.2443j, + 3.4675+0.2185j, + 4.0026+0.2009j, + 4.4742+0.1877j]),3) + assert_array_almost_equal(czo, + array([1.7437+0.3057j, + 2.6515+0.2529j, + 3.3204+0.2240j, + 3.8757+0.2047j, + 4.3611+0.1907j]),3) + vals1 = special.fresnel(szo)[0] + vals2 = special.fresnel(czo)[1] + assert_array_almost_equal(vals1,0,14) + assert_array_almost_equal(vals2,0,14) + + def test_fresnelc_zeros(self): + szo, czo = special.fresnel_zeros(6) + frc = special.fresnelc_zeros(6) + assert_array_almost_equal(frc,czo,12) + + def test_fresnels_zeros(self): + szo, czo = special.fresnel_zeros(5) + frs = special.fresnels_zeros(5) + assert_array_almost_equal(frs,szo,12) + + +class TestGamma: + def test_gamma(self): + gam = special.gamma(5) + assert_equal(gam,24.0) + + def test_gammaln(self): + gamln = special.gammaln(3) + lngam = log(special.gamma(3)) + assert_almost_equal(gamln,lngam,8) + + def test_gammainccinv(self): + gccinv = special.gammainccinv(.5,.5) + gcinv = special.gammaincinv(.5,.5) + assert_almost_equal(gccinv,gcinv,8) + + @with_special_errors + def test_gammaincinv(self): + y = special.gammaincinv(.4,.4) + x = special.gammainc(.4,y) + assert_almost_equal(x,0.4,1) + y = special.gammainc(10, 0.05) + x = special.gammaincinv(10, 2.5715803516000736e-20) + assert_almost_equal(0.05, x, decimal=10) + assert_almost_equal(y, 2.5715803516000736e-20, decimal=10) + x = special.gammaincinv(50, 8.20754777388471303050299243573393e-18) + assert_almost_equal(11.0, x, decimal=10) + + @with_special_errors + def test_975(self): + # Regression test for ticket #975 -- switch point in algorithm + # check that things work OK at the point, immediately next floats + # around it, and a bit further away + pts = [0.25, + np.nextafter(0.25, 0), 0.25 - 1e-12, + np.nextafter(0.25, 1), 0.25 + 1e-12] + for xp in pts: + y = special.gammaincinv(.4, xp) + x = special.gammainc(0.4, y) + assert_allclose(x, xp, rtol=1e-12) + + def test_rgamma(self): + rgam = special.rgamma(8) + rlgam = 1/special.gamma(8) + assert_almost_equal(rgam,rlgam,8) + + def test_infinity(self): + assert_(np.isinf(special.gamma(-1))) + assert_equal(special.rgamma(-1), 0) + + +class TestHankel: + + def test_negv1(self): + assert_almost_equal(special.hankel1(-3,2), -special.hankel1(3,2), 14) + + def test_hankel1(self): + hank1 = special.hankel1(1,.1) + hankrl = (special.jv(1,.1) + special.yv(1,.1)*1j) + assert_almost_equal(hank1,hankrl,8) + + def test_negv1e(self): + assert_almost_equal(special.hankel1e(-3,2), -special.hankel1e(3,2), 14) + + def test_hankel1e(self): + hank1e = special.hankel1e(1,.1) + hankrle = special.hankel1(1,.1)*exp(-.1j) + assert_almost_equal(hank1e,hankrle,8) + + def test_negv2(self): + assert_almost_equal(special.hankel2(-3,2), -special.hankel2(3,2), 14) + + def test_hankel2(self): + hank2 = special.hankel2(1,.1) + hankrl2 = (special.jv(1,.1) - special.yv(1,.1)*1j) + assert_almost_equal(hank2,hankrl2,8) + + def test_neg2e(self): + assert_almost_equal(special.hankel2e(-3,2), -special.hankel2e(3,2), 14) + + def test_hankl2e(self): + hank2e = special.hankel2e(1,.1) + hankrl2e = special.hankel2e(1,.1) + assert_almost_equal(hank2e,hankrl2e,8) + + +class TestHyper: + def test_h1vp(self): + h1 = special.h1vp(1,.1) + h1real = (special.jvp(1,.1) + special.yvp(1,.1)*1j) + assert_almost_equal(h1,h1real,8) + + def test_h2vp(self): + h2 = special.h2vp(1,.1) + h2real = (special.jvp(1,.1) - special.yvp(1,.1)*1j) + assert_almost_equal(h2,h2real,8) + + def test_hyp0f1(self): + # scalar input + assert_allclose(special.hyp0f1(2.5, 0.5), 1.21482702689997, rtol=1e-12) + assert_allclose(special.hyp0f1(2.5, 0), 1.0, rtol=1e-15) + + # float input, expected values match mpmath + x = special.hyp0f1(3.0, [-1.5, -1, 0, 1, 1.5]) + expected = np.array([0.58493659229143, 0.70566805723127, 1.0, + 1.37789689539747, 1.60373685288480]) + assert_allclose(x, expected, rtol=1e-12) + + # complex input + x = special.hyp0f1(3.0, np.array([-1.5, -1, 0, 1, 1.5]) + 0.j) + assert_allclose(x, expected.astype(complex), rtol=1e-12) + + # test broadcasting + x1 = [0.5, 1.5, 2.5] + x2 = [0, 1, 0.5] + x = special.hyp0f1(x1, x2) + expected = [1.0, 1.8134302039235093, 1.21482702689997] + assert_allclose(x, expected, rtol=1e-12) + x = special.hyp0f1(np.vstack([x1] * 2), x2) + assert_allclose(x, np.vstack([expected] * 2), rtol=1e-12) + assert_raises(ValueError, special.hyp0f1, + np.vstack([x1] * 3), [0, 1]) + + def test_hyp0f1_gh5764(self): + # Just checks the point that failed; there's a more systematic + # test in test_mpmath + res = special.hyp0f1(0.8, 0.5 + 0.5*1J) + # The expected value was generated using mpmath + assert_almost_equal(res, 1.6139719776441115 + 1J*0.80893054061790665) + + def test_hyp1f1(self): + hyp1 = special.hyp1f1(.1,.1,.3) + assert_almost_equal(hyp1, 1.3498588075760032,7) + + # test contributed by Moritz Deger (2008-05-29) + # https://github.com/scipy/scipy/issues/1186 (Trac #659) + + # reference data obtained from mathematica [ a, b, x, m(a,b,x)]: + # produced with test_hyp1f1.nb + ref_data = array([ + [-8.38132975e+00, -1.28436461e+01, -2.91081397e+01, 1.04178330e+04], + [2.91076882e+00, -6.35234333e+00, -1.27083993e+01, 6.68132725e+00], + [-1.42938258e+01, 1.80869131e-01, 1.90038728e+01, 1.01385897e+05], + [5.84069088e+00, 1.33187908e+01, 2.91290106e+01, 1.59469411e+08], + [-2.70433202e+01, -1.16274873e+01, -2.89582384e+01, 1.39900152e+24], + [4.26344966e+00, -2.32701773e+01, 1.91635759e+01, 6.13816915e+21], + [1.20514340e+01, -3.40260240e+00, 7.26832235e+00, 1.17696112e+13], + [2.77372955e+01, -1.99424687e+00, 3.61332246e+00, 3.07419615e+13], + [1.50310939e+01, -2.91198675e+01, -1.53581080e+01, -3.79166033e+02], + [1.43995827e+01, 9.84311196e+00, 1.93204553e+01, 2.55836264e+10], + [-4.08759686e+00, 1.34437025e+01, -1.42072843e+01, 1.70778449e+01], + [8.05595738e+00, -1.31019838e+01, 1.52180721e+01, 3.06233294e+21], + [1.81815804e+01, -1.42908793e+01, 9.57868793e+00, -2.84771348e+20], + [-2.49671396e+01, 1.25082843e+01, -1.71562286e+01, 2.36290426e+07], + [2.67277673e+01, 1.70315414e+01, 6.12701450e+00, 7.77917232e+03], + [2.49565476e+01, 2.91694684e+01, 6.29622660e+00, 2.35300027e+02], + [6.11924542e+00, -1.59943768e+00, 9.57009289e+00, 1.32906326e+11], + [-1.47863653e+01, 2.41691301e+01, -1.89981821e+01, 2.73064953e+03], + [2.24070483e+01, -2.93647433e+00, 8.19281432e+00, -6.42000372e+17], + [8.04042600e-01, 1.82710085e+01, -1.97814534e+01, 5.48372441e-01], + [1.39590390e+01, 1.97318686e+01, 2.37606635e+00, 5.51923681e+00], + [-4.66640483e+00, -2.00237930e+01, 7.40365095e+00, 4.50310752e+00], + [2.76821999e+01, -6.36563968e+00, 1.11533984e+01, -9.28725179e+23], + [-2.56764457e+01, 1.24544906e+00, 1.06407572e+01, 1.25922076e+01], + [3.20447808e+00, 1.30874383e+01, 2.26098014e+01, 2.03202059e+04], + [-1.24809647e+01, 4.15137113e+00, -2.92265700e+01, 2.39621411e+08], + [2.14778108e+01, -2.35162960e+00, -1.13758664e+01, 4.46882152e-01], + [-9.85469168e+00, -3.28157680e+00, 1.67447548e+01, -1.07342390e+07], + [1.08122310e+01, -2.47353236e+01, -1.15622349e+01, -2.91733796e+03], + [-2.67933347e+01, -3.39100709e+00, 2.56006986e+01, -5.29275382e+09], + [-8.60066776e+00, -8.02200924e+00, 1.07231926e+01, 1.33548320e+06], + [-1.01724238e-01, -1.18479709e+01, -2.55407104e+01, 1.55436570e+00], + [-3.93356771e+00, 2.11106818e+01, -2.57598485e+01, 2.13467840e+01], + [3.74750503e+00, 1.55687633e+01, -2.92841720e+01, 1.43873509e-02], + [6.99726781e+00, 2.69855571e+01, -1.63707771e+01, 3.08098673e-02], + [-2.31996011e+01, 3.47631054e+00, 9.75119815e-01, 1.79971073e-02], + [2.38951044e+01, -2.91460190e+01, -2.50774708e+00, 9.56934814e+00], + [1.52730825e+01, 5.77062507e+00, 1.21922003e+01, 1.32345307e+09], + [1.74673917e+01, 1.89723426e+01, 4.94903250e+00, 9.90859484e+01], + [1.88971241e+01, 2.86255413e+01, 5.52360109e-01, 1.44165360e+00], + [1.02002319e+01, -1.66855152e+01, -2.55426235e+01, 6.56481554e+02], + [-1.79474153e+01, 1.22210200e+01, -1.84058212e+01, 8.24041812e+05], + [-1.36147103e+01, 1.32365492e+00, -7.22375200e+00, 9.92446491e+05], + [7.57407832e+00, 2.59738234e+01, -1.34139168e+01, 3.64037761e-02], + [2.21110169e+00, 1.28012666e+01, 1.62529102e+01, 1.33433085e+02], + [-2.64297569e+01, -1.63176658e+01, -1.11642006e+01, -2.44797251e+13], + [-2.46622944e+01, -3.02147372e+00, 8.29159315e+00, -3.21799070e+05], + [-1.37215095e+01, -1.96680183e+01, 2.91940118e+01, 3.21457520e+12], + [-5.45566105e+00, 2.81292086e+01, 1.72548215e-01, 9.66973000e-01], + [-1.55751298e+00, -8.65703373e+00, 2.68622026e+01, -3.17190834e+16], + [2.45393609e+01, -2.70571903e+01, 1.96815505e+01, 1.80708004e+37], + [5.77482829e+00, 1.53203143e+01, 2.50534322e+01, 1.14304242e+06], + [-1.02626819e+01, 2.36887658e+01, -2.32152102e+01, 7.28965646e+02], + [-1.30833446e+00, -1.28310210e+01, 1.87275544e+01, -9.33487904e+12], + [5.83024676e+00, -1.49279672e+01, 2.44957538e+01, -7.61083070e+27], + [-2.03130747e+01, 2.59641715e+01, -2.06174328e+01, 4.54744859e+04], + [1.97684551e+01, -2.21410519e+01, -2.26728740e+01, 3.53113026e+06], + [2.73673444e+01, 2.64491725e+01, 1.57599882e+01, 1.07385118e+07], + [5.73287971e+00, 1.21111904e+01, 1.33080171e+01, 2.63220467e+03], + [-2.82751072e+01, 2.08605881e+01, 9.09838900e+00, -6.60957033e-07], + [1.87270691e+01, -1.74437016e+01, 1.52413599e+01, 6.59572851e+27], + [6.60681457e+00, -2.69449855e+00, 9.78972047e+00, -2.38587870e+12], + [1.20895561e+01, -2.51355765e+01, 2.30096101e+01, 7.58739886e+32], + [-2.44682278e+01, 2.10673441e+01, -1.36705538e+01, 4.54213550e+04], + [-4.50665152e+00, 3.72292059e+00, -4.83403707e+00, 2.68938214e+01], + [-7.46540049e+00, -1.08422222e+01, -1.72203805e+01, -2.09402162e+02], + [-2.00307551e+01, -7.50604431e+00, -2.78640020e+01, 4.15985444e+19], + [1.99890876e+01, 2.20677419e+01, -2.51301778e+01, 1.23840297e-09], + [2.03183823e+01, -7.66942559e+00, 2.10340070e+01, 1.46285095e+31], + [-2.90315825e+00, -2.55785967e+01, -9.58779316e+00, 2.65714264e-01], + [2.73960829e+01, -1.80097203e+01, -2.03070131e+00, 2.52908999e+02], + [-2.11708058e+01, -2.70304032e+01, 2.48257944e+01, 3.09027527e+08], + [2.21959758e+01, 4.00258675e+00, -1.62853977e+01, -9.16280090e-09], + [1.61661840e+01, -2.26845150e+01, 2.17226940e+01, -8.24774394e+33], + [-3.35030306e+00, 1.32670581e+00, 9.39711214e+00, -1.47303163e+01], + [7.23720726e+00, -2.29763909e+01, 2.34709682e+01, -9.20711735e+29], + [2.71013568e+01, 1.61951087e+01, -7.11388906e-01, 2.98750911e-01], + [8.40057933e+00, -7.49665220e+00, 2.95587388e+01, 6.59465635e+29], + [-1.51603423e+01, 1.94032322e+01, -7.60044357e+00, 1.05186941e+02], + [-8.83788031e+00, -2.72018313e+01, 1.88269907e+00, 1.81687019e+00], + [-1.87283712e+01, 5.87479570e+00, -1.91210203e+01, 2.52235612e+08], + [-5.61338513e-01, 2.69490237e+01, 1.16660111e-01, 9.97567783e-01], + [-5.44354025e+00, -1.26721408e+01, -4.66831036e+00, 1.06660735e-01], + [-2.18846497e+00, 2.33299566e+01, 9.62564397e+00, 3.03842061e-01], + [6.65661299e+00, -2.39048713e+01, 1.04191807e+01, 4.73700451e+13], + [-2.57298921e+01, -2.60811296e+01, 2.74398110e+01, -5.32566307e+11], + [-1.11431826e+01, -1.59420160e+01, -1.84880553e+01, -1.01514747e+02], + [6.50301931e+00, 2.59859051e+01, -2.33270137e+01, 1.22760500e-02], + [-1.94987891e+01, -2.62123262e+01, 3.90323225e+00, 1.71658894e+01], + [7.26164601e+00, -1.41469402e+01, 2.81499763e+01, -2.50068329e+31], + [-1.52424040e+01, 2.99719005e+01, -2.85753678e+01, 1.31906693e+04], + [5.24149291e+00, -1.72807223e+01, 2.22129493e+01, 2.50748475e+25], + [3.63207230e-01, -9.54120862e-02, -2.83874044e+01, 9.43854939e-01], + [-2.11326457e+00, -1.25707023e+01, 1.17172130e+00, 1.20812698e+00], + [2.48513582e+00, 1.03652647e+01, -1.84625148e+01, 6.47910997e-02], + [2.65395942e+01, 2.74794672e+01, 1.29413428e+01, 2.89306132e+05], + [-9.49445460e+00, 1.59930921e+01, -1.49596331e+01, 3.27574841e+02], + [-5.89173945e+00, 9.96742426e+00, 2.60318889e+01, -3.15842908e-01], + [-1.15387239e+01, -2.21433107e+01, -2.17686413e+01, 1.56724718e-01], + [-5.30592244e+00, -2.42752190e+01, 1.29734035e+00, 1.31985534e+00] + ]) + + for a,b,c,expected in ref_data: + result = special.hyp1f1(a,b,c) + assert_(abs(expected - result)/expected < 1e-4) + + def test_hyp1f1_gh2957(self): + hyp1 = special.hyp1f1(0.5, 1.5, -709.7827128933) + hyp2 = special.hyp1f1(0.5, 1.5, -709.7827128934) + assert_almost_equal(hyp1, hyp2, 12) + + def test_hyp1f1_gh2282(self): + hyp = special.hyp1f1(0.5, 1.5, -1000) + assert_almost_equal(hyp, 0.028024956081989643, 12) + + def test_hyp2f1(self): + # a collection of special cases taken from AMS 55 + values = [ + [0.5, 1, 1.5, 0.2**2, 0.5/0.2*log((1+0.2)/(1-0.2))], + [0.5, 1, 1.5, -0.2**2, 1./0.2*arctan(0.2)], + [1, 1, 2, 0.2, -1/0.2*log(1-0.2)], + [3, 3.5, 1.5, 0.2**2, 0.5/0.2/(-5)*((1+0.2)**(-5)-(1-0.2)**(-5))], + [-3, 3, 0.5, sin(0.2)**2, cos(2*3*0.2)], + [3, 4, 8, 1, + special.gamma(8) * special.gamma(8-4-3) + / special.gamma(8-3) / special.gamma(8-4)], + [3, 2, 3-2+1, -1, + 1./2**3*sqrt(pi) * special.gamma(1+3-2) + / special.gamma(1+0.5*3-2) / special.gamma(0.5+0.5*3)], + [5, 2, 5-2+1, -1, + 1./2**5*sqrt(pi) * special.gamma(1+5-2) + / special.gamma(1+0.5*5-2) / special.gamma(0.5+0.5*5)], + [4, 0.5+4, 1.5-2*4, -1./3, + (8./9)**(-2*4)*special.gamma(4./3) * special.gamma(1.5-2*4) + / special.gamma(3./2) / special.gamma(4./3-2*4)], + # and some others + # ticket #424 + [1.5, -0.5, 1.0, -10.0, 4.1300097765277476484], + # negative integer a or b, with c-a-b integer and x > 0.9 + [-2,3,1,0.95,0.715], + [2,-3,1,0.95,-0.007], + [-6,3,1,0.95,0.0000810625], + [2,-5,1,0.95,-0.000029375], + # huge negative integers + (10, -900, 10.5, 0.99, 1.91853705796607664803709475658e-24), + (10, -900, -10.5, 0.99, 3.54279200040355710199058559155e-18), + ] + for i, (a, b, c, x, v) in enumerate(values): + cv = special.hyp2f1(a, b, c, x) + assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) + + def test_hyperu(self): + val1 = special.hyperu(1,0.1,100) + assert_almost_equal(val1,0.0098153,7) + a,b = [0.3,0.6,1.2,-2.7],[1.5,3.2,-0.4,-3.2] + a,b = asarray(a), asarray(b) + z = 0.5 + hypu = special.hyperu(a,b,z) + hprl = (pi/sin(pi*b))*(special.hyp1f1(a,b,z) / + (special.gamma(1+a-b)*special.gamma(b)) - + z**(1-b)*special.hyp1f1(1+a-b,2-b,z) + / (special.gamma(a)*special.gamma(2-b))) + assert_array_almost_equal(hypu,hprl,12) + + def test_hyperu_gh2287(self): + assert_almost_equal(special.hyperu(1, 1.5, 20.2), + 0.048360918656699191, 12) + + +class TestBessel: + def test_itj0y0(self): + it0 = array(special.itj0y0(.2)) + assert_array_almost_equal( + it0, + array([0.19933433254006822, -0.34570883800412566]), + 8, + ) + + def test_it2j0y0(self): + it2 = array(special.it2j0y0(.2)) + assert_array_almost_equal( + it2, + array([0.0049937546274601858, -0.43423067011231614]), + 8, + ) + + def test_negv_iv(self): + assert_equal(special.iv(3,2), special.iv(-3,2)) + + def test_j0(self): + oz = special.j0(.1) + ozr = special.jn(0,.1) + assert_almost_equal(oz,ozr,8) + + def test_j1(self): + o1 = special.j1(.1) + o1r = special.jn(1,.1) + assert_almost_equal(o1,o1r,8) + + def test_jn(self): + jnnr = special.jn(1,.2) + assert_almost_equal(jnnr,0.099500832639235995,8) + + def test_negv_jv(self): + assert_almost_equal(special.jv(-3,2), -special.jv(3,2), 14) + + def test_jv(self): + values = [[0, 0.1, 0.99750156206604002], + [2./3, 1e-8, 0.3239028506761532e-5], + [2./3, 1e-10, 0.1503423854873779e-6], + [3.1, 1e-10, 0.1711956265409013e-32], + [2./3, 4.0, -0.2325440850267039], + ] + for i, (v, x, y) in enumerate(values): + yc = special.jv(v, x) + assert_almost_equal(yc, y, 8, err_msg='test #%d' % i) + + def test_negv_jve(self): + assert_almost_equal(special.jve(-3,2), -special.jve(3,2), 14) + + def test_jve(self): + jvexp = special.jve(1,.2) + assert_almost_equal(jvexp,0.099500832639235995,8) + jvexp1 = special.jve(1,.2+1j) + z = .2+1j + jvexpr = special.jv(1,z)*exp(-abs(z.imag)) + assert_almost_equal(jvexp1,jvexpr,8) + + def test_jn_zeros(self): + jn0 = special.jn_zeros(0,5) + jn1 = special.jn_zeros(1,5) + assert_array_almost_equal(jn0,array([2.4048255577, + 5.5200781103, + 8.6537279129, + 11.7915344391, + 14.9309177086]),4) + assert_array_almost_equal(jn1,array([3.83171, + 7.01559, + 10.17347, + 13.32369, + 16.47063]),4) + + jn102 = special.jn_zeros(102,5) + assert_allclose(jn102, array([110.89174935992040343, + 117.83464175788308398, + 123.70194191713507279, + 129.02417238949092824, + 134.00114761868422559]), rtol=1e-13) + + jn301 = special.jn_zeros(301,5) + assert_allclose(jn301, array([313.59097866698830153, + 323.21549776096288280, + 331.22338738656748796, + 338.39676338872084500, + 345.03284233056064157]), rtol=1e-13) + + def test_jn_zeros_slow(self): + jn0 = special.jn_zeros(0, 300) + assert_allclose(jn0[260-1], 816.02884495068867280, rtol=1e-13) + assert_allclose(jn0[280-1], 878.86068707124422606, rtol=1e-13) + assert_allclose(jn0[300-1], 941.69253065317954064, rtol=1e-13) + + jn10 = special.jn_zeros(10, 300) + assert_allclose(jn10[260-1], 831.67668514305631151, rtol=1e-13) + assert_allclose(jn10[280-1], 894.51275095371316931, rtol=1e-13) + assert_allclose(jn10[300-1], 957.34826370866539775, rtol=1e-13) + + jn3010 = special.jn_zeros(3010,5) + assert_allclose(jn3010, array([3036.86590780927, + 3057.06598526482, + 3073.66360690272, + 3088.37736494778, + 3101.86438139042]), rtol=1e-8) + + def test_jnjnp_zeros(self): + jn = special.jn + + def jnp(n, x): + return (jn(n-1,x) - jn(n+1,x))/2 + for nt in range(1, 30): + z, n, m, t = special.jnjnp_zeros(nt) + for zz, nn, tt in zip(z, n, t): + if tt == 0: + assert_allclose(jn(nn, zz), 0, atol=1e-6) + elif tt == 1: + assert_allclose(jnp(nn, zz), 0, atol=1e-6) + else: + raise AssertionError("Invalid t return for nt=%d" % nt) + + def test_jnp_zeros(self): + jnp = special.jnp_zeros(1,5) + assert_array_almost_equal(jnp, array([1.84118, + 5.33144, + 8.53632, + 11.70600, + 14.86359]),4) + jnp = special.jnp_zeros(443,5) + assert_allclose(special.jvp(443, jnp), 0, atol=1e-15) + + def test_jnyn_zeros(self): + jnz = special.jnyn_zeros(1,5) + assert_array_almost_equal(jnz,(array([3.83171, + 7.01559, + 10.17347, + 13.32369, + 16.47063]), + array([1.84118, + 5.33144, + 8.53632, + 11.70600, + 14.86359]), + array([2.19714, + 5.42968, + 8.59601, + 11.74915, + 14.89744]), + array([3.68302, + 6.94150, + 10.12340, + 13.28576, + 16.44006])),5) + + def test_jvp(self): + jvprim = special.jvp(2,2) + jv0 = (special.jv(1,2)-special.jv(3,2))/2 + assert_almost_equal(jvprim,jv0,10) + + def test_k0(self): + ozk = special.k0(.1) + ozkr = special.kv(0,.1) + assert_almost_equal(ozk,ozkr,8) + + def test_k0e(self): + ozke = special.k0e(.1) + ozker = special.kve(0,.1) + assert_almost_equal(ozke,ozker,8) + + def test_k1(self): + o1k = special.k1(.1) + o1kr = special.kv(1,.1) + assert_almost_equal(o1k,o1kr,8) + + def test_k1e(self): + o1ke = special.k1e(.1) + o1ker = special.kve(1,.1) + assert_almost_equal(o1ke,o1ker,8) + + def test_jacobi(self): + a = 5*np.random.random() - 1 + b = 5*np.random.random() - 1 + P0 = special.jacobi(0,a,b) + P1 = special.jacobi(1,a,b) + P2 = special.jacobi(2,a,b) + P3 = special.jacobi(3,a,b) + + assert_array_almost_equal(P0.c,[1],13) + assert_array_almost_equal(P1.c,array([a+b+2,a-b])/2.0,13) + cp = [(a+b+3)*(a+b+4), 4*(a+b+3)*(a+2), 4*(a+1)*(a+2)] + p2c = [cp[0],cp[1]-2*cp[0],cp[2]-cp[1]+cp[0]] + assert_array_almost_equal(P2.c,array(p2c)/8.0,13) + cp = [(a+b+4)*(a+b+5)*(a+b+6),6*(a+b+4)*(a+b+5)*(a+3), + 12*(a+b+4)*(a+2)*(a+3),8*(a+1)*(a+2)*(a+3)] + p3c = [cp[0],cp[1]-3*cp[0],cp[2]-2*cp[1]+3*cp[0],cp[3]-cp[2]+cp[1]-cp[0]] + assert_array_almost_equal(P3.c,array(p3c)/48.0,13) + + def test_kn(self): + kn1 = special.kn(0,.2) + assert_almost_equal(kn1,1.7527038555281462,8) + + def test_negv_kv(self): + assert_equal(special.kv(3.0, 2.2), special.kv(-3.0, 2.2)) + + def test_kv0(self): + kv0 = special.kv(0,.2) + assert_almost_equal(kv0, 1.7527038555281462, 10) + + def test_kv1(self): + kv1 = special.kv(1,0.2) + assert_almost_equal(kv1, 4.775972543220472, 10) + + def test_kv2(self): + kv2 = special.kv(2,0.2) + assert_almost_equal(kv2, 49.51242928773287, 10) + + def test_kn_largeorder(self): + assert_allclose(special.kn(32, 1), 1.7516596664574289e+43) + + def test_kv_largearg(self): + assert_equal(special.kv(0, 1e19), 0) + + def test_negv_kve(self): + assert_equal(special.kve(3.0, 2.2), special.kve(-3.0, 2.2)) + + def test_kve(self): + kve1 = special.kve(0,.2) + kv1 = special.kv(0,.2)*exp(.2) + assert_almost_equal(kve1,kv1,8) + z = .2+1j + kve2 = special.kve(0,z) + kv2 = special.kv(0,z)*exp(z) + assert_almost_equal(kve2,kv2,8) + + def test_kvp_v0n1(self): + z = 2.2 + assert_almost_equal(-special.kv(1,z), special.kvp(0,z, n=1), 10) + + def test_kvp_n1(self): + v = 3. + z = 2.2 + xc = -special.kv(v+1,z) + v/z*special.kv(v,z) + x = special.kvp(v,z, n=1) + assert_almost_equal(xc, x, 10) # this function (kvp) is broken + + def test_kvp_n2(self): + v = 3. + z = 2.2 + xc = (z**2+v**2-v)/z**2 * special.kv(v,z) + special.kv(v+1,z)/z + x = special.kvp(v, z, n=2) + assert_almost_equal(xc, x, 10) + + def test_y0(self): + oz = special.y0(.1) + ozr = special.yn(0,.1) + assert_almost_equal(oz,ozr,8) + + def test_y1(self): + o1 = special.y1(.1) + o1r = special.yn(1,.1) + assert_almost_equal(o1,o1r,8) + + def test_y0_zeros(self): + yo,ypo = special.y0_zeros(2) + zo,zpo = special.y0_zeros(2,complex=1) + all = r_[yo,zo] + allval = r_[ypo,zpo] + assert_array_almost_equal(abs(special.yv(0.0,all)),0.0,11) + assert_array_almost_equal(abs(special.yv(1,all)-allval),0.0,11) + + def test_y1_zeros(self): + y1 = special.y1_zeros(1) + assert_array_almost_equal(y1,(array([2.19714]),array([0.52079])),5) + + def test_y1p_zeros(self): + y1p = special.y1p_zeros(1,complex=1) + assert_array_almost_equal( + y1p, + (array([0.5768+0.904j]), array([-0.7635+0.5892j])), + 3, + ) + + def test_yn_zeros(self): + an = special.yn_zeros(4,2) + assert_array_almost_equal(an,array([5.64515, 9.36162]),5) + an = special.yn_zeros(443,5) + assert_allclose(an, [450.13573091578090314, + 463.05692376675001542, + 472.80651546418663566, + 481.27353184725625838, + 488.98055964441374646], + rtol=1e-15,) + + def test_ynp_zeros(self): + ao = special.ynp_zeros(0,2) + assert_array_almost_equal(ao,array([2.19714133, 5.42968104]),6) + ao = special.ynp_zeros(43,5) + assert_allclose(special.yvp(43, ao), 0, atol=1e-15) + ao = special.ynp_zeros(443,5) + assert_allclose(special.yvp(443, ao), 0, atol=1e-9) + + def test_ynp_zeros_large_order(self): + ao = special.ynp_zeros(443,5) + assert_allclose(special.yvp(443, ao), 0, atol=1e-14) + + def test_yn(self): + yn2n = special.yn(1,.2) + assert_almost_equal(yn2n,-3.3238249881118471,8) + + def test_negv_yv(self): + assert_almost_equal(special.yv(-3,2), -special.yv(3,2), 14) + + def test_yv(self): + yv2 = special.yv(1,.2) + assert_almost_equal(yv2,-3.3238249881118471,8) + + def test_negv_yve(self): + assert_almost_equal(special.yve(-3,2), -special.yve(3,2), 14) + + def test_yve(self): + yve2 = special.yve(1,.2) + assert_almost_equal(yve2,-3.3238249881118471,8) + yve2r = special.yv(1,.2+1j)*exp(-1) + yve22 = special.yve(1,.2+1j) + assert_almost_equal(yve22,yve2r,8) + + def test_yvp(self): + yvpr = (special.yv(1,.2) - special.yv(3,.2))/2.0 + yvp1 = special.yvp(2,.2) + assert_array_almost_equal(yvp1,yvpr,10) + + def _cephes_vs_amos_points(self): + """Yield points at which to compare Cephes implementation to AMOS""" + # check several points, including large-amplitude ones + v = [-120, -100.3, -20., -10., -1., -.5, 0., 1., 12.49, 120., 301] + z = [-1300, -11, -10, -1, 1., 10., 200.5, 401., 600.5, 700.6, 1300, + 10003] + yield from itertools.product(v, z) + + # check half-integers; these are problematic points at least + # for cephes/iv + yield from itertools.product(0.5 + arange(-60, 60), [3.5]) + + def check_cephes_vs_amos(self, f1, f2, rtol=1e-11, atol=0, skip=None): + for v, z in self._cephes_vs_amos_points(): + if skip is not None and skip(v, z): + continue + c1, c2, c3 = f1(v, z), f1(v,z+0j), f2(int(v), z) + if np.isinf(c1): + assert_(np.abs(c2) >= 1e300, (v, z)) + elif np.isnan(c1): + assert_(c2.imag != 0, (v, z)) + else: + assert_allclose(c1, c2, err_msg=(v, z), rtol=rtol, atol=atol) + if v == int(v): + assert_allclose(c3, c2, err_msg=(v, z), + rtol=rtol, atol=atol) + + @pytest.mark.xfail(platform.machine() == 'ppc64le', + reason="fails on ppc64le") + def test_jv_cephes_vs_amos(self): + self.check_cephes_vs_amos(special.jv, special.jn, rtol=1e-10, atol=1e-305) + + @pytest.mark.xfail(platform.machine() == 'ppc64le', + reason="fails on ppc64le") + def test_yv_cephes_vs_amos(self): + self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305) + + def test_yv_cephes_vs_amos_only_small_orders(self): + def skipper(v, z): + return abs(v) > 50 + self.check_cephes_vs_amos(special.yv, special.yn, rtol=1e-11, atol=1e-305, + skip=skipper) + + def test_iv_cephes_vs_amos(self): + with np.errstate(all='ignore'): + self.check_cephes_vs_amos(special.iv, special.iv, rtol=5e-9, atol=1e-305) + + @pytest.mark.slow + def test_iv_cephes_vs_amos_mass_test(self): + N = 1000000 + np.random.seed(1) + v = np.random.pareto(0.5, N) * (-1)**np.random.randint(2, size=N) + x = np.random.pareto(0.2, N) * (-1)**np.random.randint(2, size=N) + + imsk = (np.random.randint(8, size=N) == 0) + v[imsk] = v[imsk].astype(np.int64) + + with np.errstate(all='ignore'): + c1 = special.iv(v, x) + c2 = special.iv(v, x+0j) + + # deal with differences in the inf and zero cutoffs + c1[abs(c1) > 1e300] = np.inf + c2[abs(c2) > 1e300] = np.inf + c1[abs(c1) < 1e-300] = 0 + c2[abs(c2) < 1e-300] = 0 + + dc = abs(c1/c2 - 1) + dc[np.isnan(dc)] = 0 + + k = np.argmax(dc) + + # Most error apparently comes from AMOS and not our implementation; + # there are some problems near integer orders there + assert_( + dc[k] < 2e-7, + (v[k], x[k], special.iv(v[k], x[k]), special.iv(v[k], x[k]+0j)) + ) + + def test_kv_cephes_vs_amos(self): + self.check_cephes_vs_amos(special.kv, special.kn, rtol=1e-9, atol=1e-305) + self.check_cephes_vs_amos(special.kv, special.kv, rtol=1e-9, atol=1e-305) + + def test_ticket_623(self): + assert_allclose(special.jv(3, 4), 0.43017147387562193) + assert_allclose(special.jv(301, 1300), 0.0183487151115275) + assert_allclose(special.jv(301, 1296.0682), -0.0224174325312048) + + def test_ticket_853(self): + """Negative-order Bessels""" + # cephes + assert_allclose(special.jv(-1, 1), -0.4400505857449335) + assert_allclose(special.jv(-2, 1), 0.1149034849319005) + assert_allclose(special.yv(-1, 1), 0.7812128213002887) + assert_allclose(special.yv(-2, 1), -1.650682606816255) + assert_allclose(special.iv(-1, 1), 0.5651591039924851) + assert_allclose(special.iv(-2, 1), 0.1357476697670383) + assert_allclose(special.kv(-1, 1), 0.6019072301972347) + assert_allclose(special.kv(-2, 1), 1.624838898635178) + assert_allclose(special.jv(-0.5, 1), 0.43109886801837607952) + assert_allclose(special.yv(-0.5, 1), 0.6713967071418031) + assert_allclose(special.iv(-0.5, 1), 1.231200214592967) + assert_allclose(special.kv(-0.5, 1), 0.4610685044478945) + # amos + assert_allclose(special.jv(-1, 1+0j), -0.4400505857449335) + assert_allclose(special.jv(-2, 1+0j), 0.1149034849319005) + assert_allclose(special.yv(-1, 1+0j), 0.7812128213002887) + assert_allclose(special.yv(-2, 1+0j), -1.650682606816255) + + assert_allclose(special.iv(-1, 1+0j), 0.5651591039924851) + assert_allclose(special.iv(-2, 1+0j), 0.1357476697670383) + assert_allclose(special.kv(-1, 1+0j), 0.6019072301972347) + assert_allclose(special.kv(-2, 1+0j), 1.624838898635178) + + assert_allclose(special.jv(-0.5, 1+0j), 0.43109886801837607952) + assert_allclose(special.jv(-0.5, 1+1j), 0.2628946385649065-0.827050182040562j) + assert_allclose(special.yv(-0.5, 1+0j), 0.6713967071418031) + assert_allclose(special.yv(-0.5, 1+1j), 0.967901282890131+0.0602046062142816j) + + assert_allclose(special.iv(-0.5, 1+0j), 1.231200214592967) + assert_allclose(special.iv(-0.5, 1+1j), 0.77070737376928+0.39891821043561j) + assert_allclose(special.kv(-0.5, 1+0j), 0.4610685044478945) + assert_allclose(special.kv(-0.5, 1+1j), 0.06868578341999-0.38157825981268j) + + assert_allclose(special.jve(-0.5,1+0.3j), special.jv(-0.5, 1+0.3j)*exp(-0.3)) + assert_allclose(special.yve(-0.5,1+0.3j), special.yv(-0.5, 1+0.3j)*exp(-0.3)) + assert_allclose(special.ive(-0.5,0.3+1j), special.iv(-0.5, 0.3+1j)*exp(-0.3)) + assert_allclose(special.kve(-0.5,0.3+1j), special.kv(-0.5, 0.3+1j)*exp(0.3+1j)) + + assert_allclose( + special.hankel1(-0.5, 1+1j), + special.jv(-0.5, 1+1j) + 1j*special.yv(-0.5,1+1j) + ) + assert_allclose( + special.hankel2(-0.5, 1+1j), + special.jv(-0.5, 1+1j) - 1j*special.yv(-0.5,1+1j) + ) + + def test_ticket_854(self): + """Real-valued Bessel domains""" + assert_(isnan(special.jv(0.5, -1))) + assert_(isnan(special.iv(0.5, -1))) + assert_(isnan(special.yv(0.5, -1))) + assert_(isnan(special.yv(1, -1))) + assert_(isnan(special.kv(0.5, -1))) + assert_(isnan(special.kv(1, -1))) + assert_(isnan(special.jve(0.5, -1))) + assert_(isnan(special.ive(0.5, -1))) + assert_(isnan(special.yve(0.5, -1))) + assert_(isnan(special.yve(1, -1))) + assert_(isnan(special.kve(0.5, -1))) + assert_(isnan(special.kve(1, -1))) + assert_(isnan(special.airye(-1)[0:2]).all(), special.airye(-1)) + assert_(not isnan(special.airye(-1)[2:4]).any(), special.airye(-1)) + + def test_gh_7909(self): + assert_(special.kv(1.5, 0) == np.inf) + assert_(special.kve(1.5, 0) == np.inf) + + def test_ticket_503(self): + """Real-valued Bessel I overflow""" + assert_allclose(special.iv(1, 700), 1.528500390233901e302) + assert_allclose(special.iv(1000, 1120), 1.301564549405821e301) + + def test_iv_hyperg_poles(self): + assert_allclose(special.iv(-0.5, 1), 1.231200214592967) + + def iv_series(self, v, z, n=200): + k = arange(0, n).astype(double) + r = (v+2*k)*log(.5*z) - special.gammaln(k+1) - special.gammaln(v+k+1) + r[isnan(r)] = inf + r = exp(r) + err = abs(r).max() * finfo(double).eps * n + abs(r[-1])*10 + return r.sum(), err + + def test_i0_series(self): + for z in [1., 10., 200.5]: + value, err = self.iv_series(0, z) + assert_allclose(special.i0(z), value, atol=err, err_msg=z) + + def test_i1_series(self): + for z in [1., 10., 200.5]: + value, err = self.iv_series(1, z) + assert_allclose(special.i1(z), value, atol=err, err_msg=z) + + def test_iv_series(self): + for v in [-20., -10., -1., 0., 1., 12.49, 120.]: + for z in [1., 10., 200.5, -1+2j]: + value, err = self.iv_series(v, z) + assert_allclose(special.iv(v, z), value, atol=err, err_msg=(v, z)) + + def test_i0(self): + values = [[0.0, 1.0], + [1e-10, 1.0], + [0.1, 0.9071009258], + [0.5, 0.6450352706], + [1.0, 0.4657596077], + [2.5, 0.2700464416], + [5.0, 0.1835408126], + [20.0, 0.0897803119], + ] + for i, (x, v) in enumerate(values): + cv = special.i0(x) * exp(-x) + assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) + + def test_i0e(self): + oize = special.i0e(.1) + oizer = special.ive(0,.1) + assert_almost_equal(oize,oizer,8) + + def test_i1(self): + values = [[0.0, 0.0], + [1e-10, 0.4999999999500000e-10], + [0.1, 0.0452984468], + [0.5, 0.1564208032], + [1.0, 0.2079104154], + [5.0, 0.1639722669], + [20.0, 0.0875062222], + ] + for i, (x, v) in enumerate(values): + cv = special.i1(x) * exp(-x) + assert_almost_equal(cv, v, 8, err_msg='test #%d' % i) + + def test_i1e(self): + oi1e = special.i1e(.1) + oi1er = special.ive(1,.1) + assert_almost_equal(oi1e,oi1er,8) + + def test_iti0k0(self): + iti0 = array(special.iti0k0(5)) + assert_array_almost_equal( + iti0, + array([31.848667776169801, 1.5673873907283657]), + 5, + ) + + def test_it2i0k0(self): + it2k = special.it2i0k0(.1) + assert_array_almost_equal( + it2k, + array([0.0012503906973464409, 3.3309450354686687]), + 6, + ) + + def test_iv(self): + iv1 = special.iv(0,.1)*exp(-.1) + assert_almost_equal(iv1,0.90710092578230106,10) + + def test_negv_ive(self): + assert_equal(special.ive(3,2), special.ive(-3,2)) + + def test_ive(self): + ive1 = special.ive(0,.1) + iv1 = special.iv(0,.1)*exp(-.1) + assert_almost_equal(ive1,iv1,10) + + def test_ivp0(self): + assert_almost_equal(special.iv(1,2), special.ivp(0,2), 10) + + def test_ivp(self): + y = (special.iv(0,2) + special.iv(2,2))/2 + x = special.ivp(1,2) + assert_almost_equal(x,y,10) + + +class TestLaguerre: + def test_laguerre(self): + lag0 = special.laguerre(0) + lag1 = special.laguerre(1) + lag2 = special.laguerre(2) + lag3 = special.laguerre(3) + lag4 = special.laguerre(4) + lag5 = special.laguerre(5) + assert_array_almost_equal(lag0.c,[1],13) + assert_array_almost_equal(lag1.c,[-1,1],13) + assert_array_almost_equal(lag2.c,array([1,-4,2])/2.0,13) + assert_array_almost_equal(lag3.c,array([-1,9,-18,6])/6.0,13) + assert_array_almost_equal(lag4.c,array([1,-16,72,-96,24])/24.0,13) + assert_array_almost_equal(lag5.c,array([-1,25,-200,600,-600,120])/120.0,13) + + def test_genlaguerre(self): + k = 5*np.random.random() - 0.9 + lag0 = special.genlaguerre(0,k) + lag1 = special.genlaguerre(1,k) + lag2 = special.genlaguerre(2,k) + lag3 = special.genlaguerre(3,k) + assert_equal(lag0.c, [1]) + assert_equal(lag1.c, [-1, k + 1]) + assert_almost_equal( + lag2.c, + array([1,-2*(k+2),(k+1.)*(k+2.)])/2.0 + ) + assert_almost_equal( + lag3.c, + array([-1,3*(k+3),-3*(k+2)*(k+3),(k+1)*(k+2)*(k+3)])/6.0 + ) + + +# Base polynomials come from Abrahmowitz and Stegan +class TestLegendre: + def test_legendre(self): + leg0 = special.legendre(0) + leg1 = special.legendre(1) + leg2 = special.legendre(2) + leg3 = special.legendre(3) + leg4 = special.legendre(4) + leg5 = special.legendre(5) + assert_equal(leg0.c, [1]) + assert_equal(leg1.c, [1,0]) + assert_almost_equal(leg2.c, array([3,0,-1])/2.0, decimal=13) + assert_almost_equal(leg3.c, array([5,0,-3,0])/2.0) + assert_almost_equal(leg4.c, array([35,0,-30,0,3])/8.0) + assert_almost_equal(leg5.c, array([63,0,-70,0,15,0])/8.0) + + @pytest.mark.parametrize('n', [1, 2, 3, 4, 5]) + @pytest.mark.parametrize('zr', [0.5241717, 12.80232, -9.699001, + 0.5122437, 0.1714377]) + @pytest.mark.parametrize('zi', [9.766818, 0.2999083, 8.24726, -22.84843, + -0.8792666]) + def test_lpn_against_clpmn(self, n, zr, zi): + reslpn = special.lpn(n, zr + zi*1j) + resclpmn = special.clpmn(0, n, zr+zi*1j) + assert_allclose(reslpn[0], resclpmn[0][0]) + assert_allclose(reslpn[1], resclpmn[1][0]) + + +class TestLambda: + def test_lmbda(self): + lam = special.lmbda(1,.1) + lamr = ( + array([special.jn(0,.1), 2*special.jn(1,.1)/.1]), + array([special.jvp(0,.1), -2*special.jv(1,.1)/.01 + 2*special.jvp(1,.1)/.1]) + ) + assert_array_almost_equal(lam,lamr,8) + + +class TestLog1p: + def test_log1p(self): + l1p = (special.log1p(10), special.log1p(11), special.log1p(12)) + l1prl = (log(11), log(12), log(13)) + assert_array_almost_equal(l1p,l1prl,8) + + def test_log1pmore(self): + l1pm = (special.log1p(1), special.log1p(1.1), special.log1p(1.2)) + l1pmrl = (log(2),log(2.1),log(2.2)) + assert_array_almost_equal(l1pm,l1pmrl,8) + + +class TestLegendreFunctions: + def test_clpmn(self): + z = 0.5+0.3j + clp = special.clpmn(2, 2, z, 3) + assert_array_almost_equal(clp, + (array([[1.0000, z, 0.5*(3*z*z-1)], + [0.0000, sqrt(z*z-1), 3*z*sqrt(z*z-1)], + [0.0000, 0.0000, 3*(z*z-1)]]), + array([[0.0000, 1.0000, 3*z], + [0.0000, z/sqrt(z*z-1), 3*(2*z*z-1)/sqrt(z*z-1)], + [0.0000, 0.0000, 6*z]])), + 7) + + def test_clpmn_close_to_real_2(self): + eps = 1e-10 + m = 1 + n = 3 + x = 0.5 + clp_plus = special.clpmn(m, n, x+1j*eps, 2)[0][m, n] + clp_minus = special.clpmn(m, n, x-1j*eps, 2)[0][m, n] + assert_array_almost_equal(array([clp_plus, clp_minus]), + array([special.lpmv(m, n, x), + special.lpmv(m, n, x)]), + 7) + + def test_clpmn_close_to_real_3(self): + eps = 1e-10 + m = 1 + n = 3 + x = 0.5 + clp_plus = special.clpmn(m, n, x+1j*eps, 3)[0][m, n] + clp_minus = special.clpmn(m, n, x-1j*eps, 3)[0][m, n] + assert_array_almost_equal(array([clp_plus, clp_minus]), + array([special.lpmv(m, n, x)*np.exp(-0.5j*m*np.pi), + special.lpmv(m, n, x)*np.exp(0.5j*m*np.pi)]), + 7) + + def test_clpmn_across_unit_circle(self): + eps = 1e-7 + m = 1 + n = 1 + x = 1j + for type in [2, 3]: + assert_almost_equal(special.clpmn(m, n, x+1j*eps, type)[0][m, n], + special.clpmn(m, n, x-1j*eps, type)[0][m, n], 6) + + def test_inf(self): + for z in (1, -1): + for n in range(4): + for m in range(1, n): + lp = special.clpmn(m, n, z) + assert_(np.isinf(lp[1][1,1:]).all()) + lp = special.lpmn(m, n, z) + assert_(np.isinf(lp[1][1,1:]).all()) + + def test_deriv_clpmn(self): + # data inside and outside of the unit circle + zvals = [0.5+0.5j, -0.5+0.5j, -0.5-0.5j, 0.5-0.5j, + 1+1j, -1+1j, -1-1j, 1-1j] + m = 2 + n = 3 + for type in [2, 3]: + for z in zvals: + for h in [1e-3, 1e-3j]: + approx_derivative = (special.clpmn(m, n, z+0.5*h, type)[0] + - special.clpmn(m, n, z-0.5*h, type)[0])/h + assert_allclose(special.clpmn(m, n, z, type)[1], + approx_derivative, + rtol=1e-4) + + def test_lpmn(self): + lp = special.lpmn(0,2,.5) + assert_array_almost_equal(lp,(array([[1.00000, + 0.50000, + -0.12500]]), + array([[0.00000, + 1.00000, + 1.50000]])),4) + + def test_lpn(self): + lpnf = special.lpn(2,.5) + assert_array_almost_equal(lpnf,(array([1.00000, + 0.50000, + -0.12500]), + array([0.00000, + 1.00000, + 1.50000])),4) + + def test_lpmv(self): + lp = special.lpmv(0,2,.5) + assert_almost_equal(lp,-0.125,7) + lp = special.lpmv(0,40,.001) + assert_almost_equal(lp,0.1252678976534484,7) + + # XXX: this is outside the domain of the current implementation, + # so ensure it returns a NaN rather than a wrong answer. + with np.errstate(all='ignore'): + lp = special.lpmv(-1,-1,.001) + assert_(lp != 0 or np.isnan(lp)) + + def test_lqmn(self): + lqmnf = special.lqmn(0,2,.5) + lqf = special.lqn(2,.5) + assert_array_almost_equal(lqmnf[0][0],lqf[0],4) + assert_array_almost_equal(lqmnf[1][0],lqf[1],4) + + def test_lqmn_gt1(self): + """algorithm for real arguments changes at 1.0001 + test against analytical result for m=2, n=1 + """ + x0 = 1.0001 + delta = 0.00002 + for x in (x0-delta, x0+delta): + lq = special.lqmn(2, 1, x)[0][-1, -1] + expected = 2/(x*x-1) + assert_almost_equal(lq, expected) + + def test_lqmn_shape(self): + a, b = special.lqmn(4, 4, 1.1) + assert_equal(a.shape, (5, 5)) + assert_equal(b.shape, (5, 5)) + + a, b = special.lqmn(4, 0, 1.1) + assert_equal(a.shape, (5, 1)) + assert_equal(b.shape, (5, 1)) + + def test_lqn(self): + lqf = special.lqn(2,.5) + assert_array_almost_equal(lqf,(array([0.5493, -0.7253, -0.8187]), + array([1.3333, 1.216, -0.8427])),4) + + +class TestMathieu: + + def test_mathieu_a(self): + pass + + def test_mathieu_even_coef(self): + special.mathieu_even_coef(2,5) + # Q not defined broken and cannot figure out proper reporting order + + def test_mathieu_odd_coef(self): + # same problem as above + pass + + +class TestFresnelIntegral: + + def test_modfresnelp(self): + pass + + def test_modfresnelm(self): + pass + + +class TestOblCvSeq: + def test_obl_cv_seq(self): + obl = special.obl_cv_seq(0,3,1) + assert_array_almost_equal(obl,array([-0.348602, + 1.393206, + 5.486800, + 11.492120]),5) + + +class TestParabolicCylinder: + def test_pbdn_seq(self): + pb = special.pbdn_seq(1,.1) + assert_array_almost_equal(pb,(array([0.9975, + 0.0998]), + array([-0.0499, + 0.9925])),4) + + def test_pbdv(self): + special.pbdv(1,.2) + 1/2*(.2)*special.pbdv(1,.2)[0] - special.pbdv(0,.2)[0] + + def test_pbdv_seq(self): + pbn = special.pbdn_seq(1,.1) + pbv = special.pbdv_seq(1,.1) + assert_array_almost_equal(pbv,(real(pbn[0]),real(pbn[1])),4) + + def test_pbdv_points(self): + # simple case + eta = np.linspace(-10, 10, 5) + z = 2**(eta/2)*np.sqrt(np.pi)/special.gamma(.5-.5*eta) + assert_allclose(special.pbdv(eta, 0.)[0], z, rtol=1e-14, atol=1e-14) + + # some points + assert_allclose(special.pbdv(10.34, 20.44)[0], 1.3731383034455e-32, rtol=1e-12) + assert_allclose(special.pbdv(-9.53, 3.44)[0], 3.166735001119246e-8, rtol=1e-12) + + def test_pbdv_gradient(self): + x = np.linspace(-4, 4, 8)[:,None] + eta = np.linspace(-10, 10, 5)[None,:] + + p = special.pbdv(eta, x) + eps = 1e-7 + 1e-7*abs(x) + dp = (special.pbdv(eta, x + eps)[0] - special.pbdv(eta, x - eps)[0]) / eps / 2. + assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6) + + def test_pbvv_gradient(self): + x = np.linspace(-4, 4, 8)[:,None] + eta = np.linspace(-10, 10, 5)[None,:] + + p = special.pbvv(eta, x) + eps = 1e-7 + 1e-7*abs(x) + dp = (special.pbvv(eta, x + eps)[0] - special.pbvv(eta, x - eps)[0]) / eps / 2. + assert_allclose(p[1], dp, rtol=1e-6, atol=1e-6) + + def test_pbvv_seq(self): + res1, res2 = special.pbvv_seq(2, 3) + assert_allclose(res1, np.array([2.976319645712036, + 1.358840996329579, + 0.5501016716383508])) + assert_allclose(res2, np.array([3.105638472238475, + 0.9380581512176672, + 0.533688488872053])) + + +class TestPolygamma: + # from Table 6.2 (pg. 271) of A&S + def test_polygamma(self): + poly2 = special.polygamma(2,1) + poly3 = special.polygamma(3,1) + assert_almost_equal(poly2,-2.4041138063,10) + assert_almost_equal(poly3,6.4939394023,10) + + # Test polygamma(0, x) == psi(x) + x = [2, 3, 1.1e14] + assert_almost_equal(special.polygamma(0, x), special.psi(x)) + + # Test broadcasting + n = [0, 1, 2] + x = [0.5, 1.5, 2.5] + expected = [-1.9635100260214238, 0.93480220054467933, + -0.23620405164172739] + assert_almost_equal(special.polygamma(n, x), expected) + expected = np.vstack([expected]*2) + assert_almost_equal(special.polygamma(n, np.vstack([x]*2)), + expected) + assert_almost_equal(special.polygamma(np.vstack([n]*2), x), + expected) + + +class TestProCvSeq: + def test_pro_cv_seq(self): + prol = special.pro_cv_seq(0,3,1) + assert_array_almost_equal(prol,array([0.319000, + 2.593084, + 6.533471, + 12.514462]),5) + + +class TestPsi: + def test_psi(self): + ps = special.psi(1) + assert_almost_equal(ps,-0.57721566490153287,8) + + +class TestRadian: + def test_radian(self): + rad = special.radian(90,0,0) + assert_almost_equal(rad,pi/2.0,5) + + def test_radianmore(self): + rad1 = special.radian(90,1,60) + assert_almost_equal(rad1,pi/2+0.0005816135199345904,5) + + +class TestRiccati: + def test_riccati_jn(self): + N, x = 2, 0.2 + S = np.empty((N, N)) + for n in range(N): + j = special.spherical_jn(n, x) + jp = special.spherical_jn(n, x, derivative=True) + S[0,n] = x*j + S[1,n] = x*jp + j + assert_array_almost_equal(S, special.riccati_jn(n, x), 8) + + def test_riccati_yn(self): + N, x = 2, 0.2 + C = np.empty((N, N)) + for n in range(N): + y = special.spherical_yn(n, x) + yp = special.spherical_yn(n, x, derivative=True) + C[0,n] = x*y + C[1,n] = x*yp + y + assert_array_almost_equal(C, special.riccati_yn(n, x), 8) + + +class TestRound: + def test_round(self): + rnd = list(map(int, (special.round(10.1), + special.round(10.4), + special.round(10.5), + special.round(10.6)))) + + # Note: According to the documentation, scipy.special.round is + # supposed to round to the nearest even number if the fractional + # part is exactly 0.5. On some platforms, this does not appear + # to work and thus this test may fail. However, this unit test is + # correctly written. + rndrl = (10,10,10,11) + assert_array_equal(rnd,rndrl) + + +def test_sph_harm(): + # Tests derived from tables in + # https://en.wikipedia.org/wiki/Table_of_spherical_harmonics + sh = special.sph_harm + pi = np.pi + exp = np.exp + sqrt = np.sqrt + sin = np.sin + cos = np.cos + assert_array_almost_equal(sh(0,0,0,0), + 0.5/sqrt(pi)) + assert_array_almost_equal(sh(-2,2,0.,pi/4), + 0.25*sqrt(15./(2.*pi)) * + (sin(pi/4))**2.) + assert_array_almost_equal(sh(-2,2,0.,pi/2), + 0.25*sqrt(15./(2.*pi))) + assert_array_almost_equal(sh(2,2,pi,pi/2), + 0.25*sqrt(15/(2.*pi)) * + exp(0+2.*pi*1j)*sin(pi/2.)**2.) + assert_array_almost_equal(sh(2,4,pi/4.,pi/3.), + (3./8.)*sqrt(5./(2.*pi)) * + exp(0+2.*pi/4.*1j) * + sin(pi/3.)**2. * + (7.*cos(pi/3.)**2.-1)) + assert_array_almost_equal(sh(4,4,pi/8.,pi/6.), + (3./16.)*sqrt(35./(2.*pi)) * + exp(0+4.*pi/8.*1j)*sin(pi/6.)**4.) + + +def test_sph_harm_ufunc_loop_selection(): + # see https://github.com/scipy/scipy/issues/4895 + dt = np.dtype(np.complex128) + assert_equal(special.sph_harm(0, 0, 0, 0).dtype, dt) + assert_equal(special.sph_harm([0], 0, 0, 0).dtype, dt) + assert_equal(special.sph_harm(0, [0], 0, 0).dtype, dt) + assert_equal(special.sph_harm(0, 0, [0], 0).dtype, dt) + assert_equal(special.sph_harm(0, 0, 0, [0]).dtype, dt) + assert_equal(special.sph_harm([0], [0], [0], [0]).dtype, dt) + + +class TestStruve: + def _series(self, v, z, n=100): + """Compute Struve function & error estimate from its power series.""" + k = arange(0, n) + r = (-1)**k * (.5*z)**(2*k+v+1)/special.gamma(k+1.5)/special.gamma(k+v+1.5) + err = abs(r).max() * finfo(double).eps * n + return r.sum(), err + + def test_vs_series(self): + """Check Struve function versus its power series""" + for v in [-20, -10, -7.99, -3.4, -1, 0, 1, 3.4, 12.49, 16]: + for z in [1, 10, 19, 21, 30]: + value, err = self._series(v, z) + assert_allclose(special.struve(v, z), value, rtol=0, atol=err), (v, z) + + def test_some_values(self): + assert_allclose(special.struve(-7.99, 21), 0.0467547614113, rtol=1e-7) + assert_allclose(special.struve(-8.01, 21), 0.0398716951023, rtol=1e-8) + assert_allclose(special.struve(-3.0, 200), 0.0142134427432, rtol=1e-12) + assert_allclose(special.struve(-8.0, -41), 0.0192469727846, rtol=1e-11) + assert_equal(special.struve(-12, -41), -special.struve(-12, 41)) + assert_equal(special.struve(+12, -41), -special.struve(+12, 41)) + assert_equal(special.struve(-11, -41), +special.struve(-11, 41)) + assert_equal(special.struve(+11, -41), +special.struve(+11, 41)) + + assert_(isnan(special.struve(-7.1, -1))) + assert_(isnan(special.struve(-10.1, -1))) + + def test_regression_679(self): + """Regression test for #679""" + assert_allclose(special.struve(-1.0, 20 - 1e-8), + special.struve(-1.0, 20 + 1e-8)) + assert_allclose(special.struve(-2.0, 20 - 1e-8), + special.struve(-2.0, 20 + 1e-8)) + assert_allclose(special.struve(-4.3, 20 - 1e-8), + special.struve(-4.3, 20 + 1e-8)) + + +def test_chi2_smalldf(): + assert_almost_equal(special.chdtr(0.6,3), 0.957890536704110) + + +def test_ch2_inf(): + assert_equal(special.chdtr(0.7,np.inf), 1.0) + + +def test_chi2c_smalldf(): + assert_almost_equal(special.chdtrc(0.6,3), 1-0.957890536704110) + + +def test_chi2_inv_smalldf(): + assert_almost_equal(special.chdtri(0.6,1-0.957890536704110), 3) + + +def test_agm_simple(): + rtol = 1e-13 + + # Gauss's constant + assert_allclose(1/special.agm(1, np.sqrt(2)), 0.834626841674073186, + rtol=rtol) + + # These values were computed using Wolfram Alpha, with the + # function ArithmeticGeometricMean[a, b]. + agm13 = 1.863616783244897 + agm15 = 2.604008190530940 + agm35 = 3.936235503649555 + assert_allclose(special.agm([[1], [3]], [1, 3, 5]), + [[1, agm13, agm15], + [agm13, 3, agm35]], rtol=rtol) + + # Computed by the iteration formula using mpmath, + # with mpmath.mp.prec = 1000: + agm12 = 1.4567910310469068 + assert_allclose(special.agm(1, 2), agm12, rtol=rtol) + assert_allclose(special.agm(2, 1), agm12, rtol=rtol) + assert_allclose(special.agm(-1, -2), -agm12, rtol=rtol) + assert_allclose(special.agm(24, 6), 13.458171481725614, rtol=rtol) + assert_allclose(special.agm(13, 123456789.5), 11111458.498599306, + rtol=rtol) + assert_allclose(special.agm(1e30, 1), 2.229223055945383e+28, rtol=rtol) + assert_allclose(special.agm(1e-22, 1), 0.030182566420169886, rtol=rtol) + assert_allclose(special.agm(1e150, 1e180), 2.229223055945383e+178, + rtol=rtol) + assert_allclose(special.agm(1e180, 1e-150), 2.0634722510162677e+177, + rtol=rtol) + assert_allclose(special.agm(1e-150, 1e-170), 3.3112619670463756e-152, + rtol=rtol) + fi = np.finfo(1.0) + assert_allclose(special.agm(fi.tiny, fi.max), 1.9892072050015473e+305, + rtol=rtol) + assert_allclose(special.agm(0.75*fi.max, fi.max), 1.564904312298045e+308, + rtol=rtol) + assert_allclose(special.agm(fi.tiny, 3*fi.tiny), 4.1466849866735005e-308, + rtol=rtol) + + # zero, nan and inf cases. + assert_equal(special.agm(0, 0), 0) + assert_equal(special.agm(99, 0), 0) + + assert_equal(special.agm(-1, 10), np.nan) + assert_equal(special.agm(0, np.inf), np.nan) + assert_equal(special.agm(np.inf, 0), np.nan) + assert_equal(special.agm(0, -np.inf), np.nan) + assert_equal(special.agm(-np.inf, 0), np.nan) + assert_equal(special.agm(np.inf, -np.inf), np.nan) + assert_equal(special.agm(-np.inf, np.inf), np.nan) + assert_equal(special.agm(1, np.nan), np.nan) + assert_equal(special.agm(np.nan, -1), np.nan) + + assert_equal(special.agm(1, np.inf), np.inf) + assert_equal(special.agm(np.inf, 1), np.inf) + assert_equal(special.agm(-1, -np.inf), -np.inf) + assert_equal(special.agm(-np.inf, -1), -np.inf) + + +def test_legacy(): + # Legacy behavior: truncating arguments to integers + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "floating point number truncated to an integer") + assert_equal(special.expn(1, 0.3), special.expn(1.8, 0.3)) + assert_equal(special.nbdtrc(1, 2, 0.3), special.nbdtrc(1.8, 2.8, 0.3)) + assert_equal(special.nbdtr(1, 2, 0.3), special.nbdtr(1.8, 2.8, 0.3)) + assert_equal(special.nbdtri(1, 2, 0.3), special.nbdtri(1.8, 2.8, 0.3)) + assert_equal(special.pdtri(1, 0.3), special.pdtri(1.8, 0.3)) + assert_equal(special.kn(1, 0.3), special.kn(1.8, 0.3)) + assert_equal(special.yn(1, 0.3), special.yn(1.8, 0.3)) + assert_equal(special.smirnov(1, 0.3), special.smirnov(1.8, 0.3)) + assert_equal(special.smirnovi(1, 0.3), special.smirnovi(1.8, 0.3)) + + +@with_special_errors +def test_error_raising(): + assert_raises(special.SpecialFunctionError, special.iv, 1, 1e99j) + + +def test_xlogy(): + def xfunc(x, y): + with np.errstate(invalid='ignore'): + if x == 0 and not np.isnan(y): + return x + else: + return x*np.log(y) + + z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0)], dtype=float) + z2 = np.r_[z1, [(0, 1j), (1, 1j)]] + + w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1]) + assert_func_equal(special.xlogy, w1, z1, rtol=1e-13, atol=1e-13) + w2 = np.vectorize(xfunc)(z2[:,0], z2[:,1]) + assert_func_equal(special.xlogy, w2, z2, rtol=1e-13, atol=1e-13) + + +def test_xlog1py(): + def xfunc(x, y): + with np.errstate(invalid='ignore'): + if x == 0 and not np.isnan(y): + return x + else: + return x * np.log1p(y) + + z1 = np.asarray([(0,0), (0, np.nan), (0, np.inf), (1.0, 2.0), + (1, 1e-30)], dtype=float) + w1 = np.vectorize(xfunc)(z1[:,0], z1[:,1]) + assert_func_equal(special.xlog1py, w1, z1, rtol=1e-13, atol=1e-13) + + +def test_entr(): + def xfunc(x): + if x < 0: + return -np.inf + else: + return -special.xlogy(x, x) + values = (0, 0.5, 1.0, np.inf) + signs = [-1, 1] + arr = [] + for sgn, v in itertools.product(signs, values): + arr.append(sgn * v) + z = np.array(arr, dtype=float) + w = np.vectorize(xfunc, otypes=[np.float64])(z) + assert_func_equal(special.entr, w, z, rtol=1e-13, atol=1e-13) + + +def test_kl_div(): + def xfunc(x, y): + if x < 0 or y < 0 or (y == 0 and x != 0): + # extension of natural domain to preserve convexity + return np.inf + elif np.isposinf(x) or np.isposinf(y): + # limits within the natural domain + return np.inf + elif x == 0: + return y + else: + return special.xlogy(x, x/y) - x + y + values = (0, 0.5, 1.0) + signs = [-1, 1] + arr = [] + for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values): + arr.append((sgna*va, sgnb*vb)) + z = np.array(arr, dtype=float) + w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) + assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13) + + +def test_rel_entr(): + def xfunc(x, y): + if x > 0 and y > 0: + return special.xlogy(x, x/y) + elif x == 0 and y >= 0: + return 0 + else: + return np.inf + values = (0, 0.5, 1.0) + signs = [-1, 1] + arr = [] + for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values): + arr.append((sgna*va, sgnb*vb)) + z = np.array(arr, dtype=float) + w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) + assert_func_equal(special.rel_entr, w, z, rtol=1e-13, atol=1e-13) + + +def test_huber(): + assert_equal(special.huber(-1, 1.5), np.inf) + assert_allclose(special.huber(2, 1.5), 0.5 * np.square(1.5)) + assert_allclose(special.huber(2, 2.5), 2 * (2.5 - 0.5 * 2)) + + def xfunc(delta, r): + if delta < 0: + return np.inf + elif np.abs(r) < delta: + return 0.5 * np.square(r) + else: + return delta * (np.abs(r) - 0.5 * delta) + + z = np.random.randn(10, 2) + w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) + assert_func_equal(special.huber, w, z, rtol=1e-13, atol=1e-13) + + +def test_pseudo_huber(): + def xfunc(delta, r): + if delta < 0: + return np.inf + elif (not delta) or (not r): + return 0 + else: + return delta**2 * (np.sqrt(1 + (r/delta)**2) - 1) + + z = np.array(np.random.randn(10, 2).tolist() + [[0, 0.5], [0.5, 0]]) + w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1]) + assert_func_equal(special.pseudo_huber, w, z, rtol=1e-13, atol=1e-13) + + +def test_pseudo_huber_small_r(): + delta = 1.0 + r = 1e-18 + y = special.pseudo_huber(delta, r) + # expected computed with mpmath: + # import mpmath + # mpmath.mp.dps = 200 + # r = mpmath.mpf(1e-18) + # expected = float(mpmath.sqrt(1 + r**2) - 1) + expected = 5.0000000000000005e-37 + assert_allclose(y, expected, rtol=1e-13) + + +def test_runtime_warning(): + with pytest.warns(RuntimeWarning, + match=r'Too many predicted coefficients'): + mathieu_odd_coef(1000, 1000) + with pytest.warns(RuntimeWarning, + match=r'Too many predicted coefficients'): + mathieu_even_coef(1000, 1000) + + +class TestStirling2: + table = [ + [1], + [0, 1], + [0, 1, 1], + [0, 1, 3, 1], + [0, 1, 7, 6, 1], + [0, 1, 15, 25, 10, 1], + [0, 1, 31, 90, 65, 15, 1], + [0, 1, 63, 301, 350, 140, 21, 1], + [0, 1, 127, 966, 1701, 1050, 266, 28, 1], + [0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1], + [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1], + ] + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-12}) + ]) + def test_table_cases(self, is_exact, comp, kwargs): + for n in range(1, len(self.table)): + k_values = list(range(n+1)) + row = self.table[n] + comp(row, stirling2([n], k_values, exact=is_exact), **kwargs) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-12}) + ]) + def test_valid_single_integer(self, is_exact, comp, kwargs): + comp(stirling2(0, 0, exact=is_exact), self.table[0][0], **kwargs) + comp(stirling2(4, 2, exact=is_exact), self.table[4][2], **kwargs) + # a single 2-tuple of integers as arguments must return an int and not + # an array whereas arrays of single values should return array + comp(stirling2(5, 3, exact=is_exact), 25, **kwargs) + comp(stirling2([5], [3], exact=is_exact), [25], **kwargs) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-12}) + ]) + def test_negative_integer(self, is_exact, comp, kwargs): + # negative integers for n or k arguments return 0 + comp(stirling2(-1, -1, exact=is_exact), 0, **kwargs) + comp(stirling2(-1, 2, exact=is_exact), 0, **kwargs) + comp(stirling2(2, -1, exact=is_exact), 0, **kwargs) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-12}) + ]) + def test_array_inputs(self, is_exact, comp, kwargs): + ans = [self.table[10][3], self.table[10][4]] + comp(stirling2(asarray([10, 10]), + asarray([3, 4]), + exact=is_exact), + ans) + comp(stirling2([10, 10], + asarray([3, 4]), + exact=is_exact), + ans) + comp(stirling2(asarray([10, 10]), + [3, 4], + exact=is_exact), + ans) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-13}) + ]) + def test_mixed_values(self, is_exact, comp, kwargs): + # negative values-of either n or k-should return 0 for the entry + ans = [0, 1, 3, 25, 1050, 5880, 9330] + n = [-1, 0, 3, 5, 8, 10, 10] + k = [-2, 0, 2, 3, 5, 7, 3] + comp(stirling2(n, k, exact=is_exact), ans, **kwargs) + + def test_correct_parity(self): + """Test parity follows well known identity. + + en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind#Parity + """ + n, K = 100, np.arange(101) + assert_equal( + stirling2(n, K, exact=True) % 2, + [math.comb(n - (k // 2) - 1, n - k) % 2 for k in K], + ) + + def test_big_numbers(self): + # via mpmath (bigger than 32bit) + ans = asarray([48063331393110, 48004081105038305]) + n = [25, 30] + k = [17, 4] + assert array_equal(stirling2(n, k, exact=True), ans) + # bigger than 64 bit + ans = asarray([2801934359500572414253157841233849412, + 14245032222277144547280648984426251]) + n = [42, 43] + k = [17, 23] + assert array_equal(stirling2(n, k, exact=True), ans) + + @pytest.mark.parametrize("N", [4.5, 3., 4+1j, "12", np.nan]) + @pytest.mark.parametrize("K", [3.5, 3, "2", None]) + @pytest.mark.parametrize("is_exact", [True, False]) + def test_unsupported_input_types(self, N, K, is_exact): + # object, float, string, complex are not supported and raise TypeError + with pytest.raises(TypeError): + stirling2(N, K, exact=is_exact) + + @pytest.mark.parametrize("is_exact", [True, False]) + def test_numpy_array_int_object_dtype(self, is_exact): + # python integers with arbitrary precision are *not* allowed as + # object type in numpy arrays are inconsistent from api perspective + ans = asarray(self.table[4][1:]) + n = asarray([4, 4, 4, 4], dtype=object) + k = asarray([1, 2, 3, 4], dtype=object) + with pytest.raises(TypeError): + array_equal(stirling2(n, k, exact=is_exact), ans) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-13}) + ]) + def test_numpy_array_unsigned_int_dtype(self, is_exact, comp, kwargs): + # numpy unsigned integers are allowed as dtype in numpy arrays + ans = asarray(self.table[4][1:]) + n = asarray([4, 4, 4, 4], dtype=np_ulong) + k = asarray([1, 2, 3, 4], dtype=np_ulong) + comp(stirling2(n, k, exact=False), ans, **kwargs) + + @pytest.mark.parametrize("is_exact, comp, kwargs", [ + (True, assert_equal, {}), + (False, assert_allclose, {'rtol': 1e-13}) + ]) + def test_broadcasting_arrays_correctly(self, is_exact, comp, kwargs): + # broadcasting is handled by stirling2 + # test leading 1s are replicated + ans = asarray([[1, 15, 25, 10], [1, 7, 6, 1]]) # shape (2,4) + n = asarray([[5, 5, 5, 5], [4, 4, 4, 4]]) # shape (2,4) + k = asarray([1, 2, 3, 4]) # shape (4,) + comp(stirling2(n, k, exact=is_exact), ans, **kwargs) + # test that dims both mismatch broadcast correctly (5,1) & (6,) + n = asarray([[4], [4], [4], [4], [4]]) + k = asarray([0, 1, 2, 3, 4, 5]) + ans = asarray([[0, 1, 7, 6, 1, 0] for _ in range(5)]) + comp(stirling2(n, k, exact=False), ans, **kwargs) + + def test_temme_rel_max_error(self): + # python integers with arbitrary precision are *not* allowed as + # object type in numpy arrays are inconsistent from api perspective + x = list(range(51, 101, 5)) + for n in x: + k_entries = list(range(1, n+1)) + denom = stirling2([n], k_entries, exact=True) + num = denom - stirling2([n], k_entries, exact=False) + assert np.max(np.abs(num / denom)) < 2e-5