Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__init__.py +101 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/nltk/classify/tadm.py +122 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/__init__.py +529 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/europarl_raw.py +56 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/__init__.py +186 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/aligned.py +154 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/api.py +516 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bcp47.py +218 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bnc.py +265 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bracket_parse.py +237 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/chasen.py +158 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/childes.py +630 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/chunked.py +273 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/comparative_sents.py +309 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/conll.py +579 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/dependency.py +115 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/ieer.py +116 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/indian.py +93 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/ipipan.py +356 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/lin.py +183 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/markdown.py +342 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/nps_chat.py +90 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/opinion_lexicon.py +125 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/panlex_lite.py +174 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/panlex_swadesh.py +95 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/pl196x.py +375 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/propbank.py +520 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/pros_cons.py +133 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/reviews.py +331 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/rte.py +146 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/string_category.py +56 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/tagged.py +354 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/timit.py +510 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/toolbox.py +76 -0
- env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/wordlist.py +166 -0
env-llmeval/lib/python3.10/site-packages/nltk/classify/__init__.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Classes and interfaces for labeling tokens with category labels (or
|
10 |
+
"class labels"). Typically, labels are represented with strings
|
11 |
+
(such as ``'health'`` or ``'sports'``). Classifiers can be used to
|
12 |
+
perform a wide range of classification tasks. For example,
|
13 |
+
classifiers can be used...
|
14 |
+
|
15 |
+
- to classify documents by topic
|
16 |
+
- to classify ambiguous words by which word sense is intended
|
17 |
+
- to classify acoustic signals by which phoneme they represent
|
18 |
+
- to classify sentences by their author
|
19 |
+
|
20 |
+
Features
|
21 |
+
========
|
22 |
+
In order to decide which category label is appropriate for a given
|
23 |
+
token, classifiers examine one or more 'features' of the token. These
|
24 |
+
"features" are typically chosen by hand, and indicate which aspects
|
25 |
+
of the token are relevant to the classification decision. For
|
26 |
+
example, a document classifier might use a separate feature for each
|
27 |
+
word, recording how often that word occurred in the document.
|
28 |
+
|
29 |
+
Featuresets
|
30 |
+
===========
|
31 |
+
The features describing a token are encoded using a "featureset",
|
32 |
+
which is a dictionary that maps from "feature names" to "feature
|
33 |
+
values". Feature names are unique strings that indicate what aspect
|
34 |
+
of the token is encoded by the feature. Examples include
|
35 |
+
``'prevword'``, for a feature whose value is the previous word; and
|
36 |
+
``'contains-word(library)'`` for a feature that is true when a document
|
37 |
+
contains the word ``'library'``. Feature values are typically
|
38 |
+
booleans, numbers, or strings, depending on which feature they
|
39 |
+
describe.
|
40 |
+
|
41 |
+
Featuresets are typically constructed using a "feature detector"
|
42 |
+
(also known as a "feature extractor"). A feature detector is a
|
43 |
+
function that takes a token (and sometimes information about its
|
44 |
+
context) as its input, and returns a featureset describing that token.
|
45 |
+
For example, the following feature detector converts a document
|
46 |
+
(stored as a list of words) to a featureset describing the set of
|
47 |
+
words included in the document:
|
48 |
+
|
49 |
+
>>> # Define a feature detector function.
|
50 |
+
>>> def document_features(document):
|
51 |
+
... return dict([('contains-word(%s)' % w, True) for w in document])
|
52 |
+
|
53 |
+
Feature detectors are typically applied to each token before it is fed
|
54 |
+
to the classifier:
|
55 |
+
|
56 |
+
>>> # Classify each Gutenberg document.
|
57 |
+
>>> from nltk.corpus import gutenberg
|
58 |
+
>>> for fileid in gutenberg.fileids(): # doctest: +SKIP
|
59 |
+
... doc = gutenberg.words(fileid) # doctest: +SKIP
|
60 |
+
... print(fileid, classifier.classify(document_features(doc))) # doctest: +SKIP
|
61 |
+
|
62 |
+
The parameters that a feature detector expects will vary, depending on
|
63 |
+
the task and the needs of the feature detector. For example, a
|
64 |
+
feature detector for word sense disambiguation (WSD) might take as its
|
65 |
+
input a sentence, and the index of a word that should be classified,
|
66 |
+
and return a featureset for that word. The following feature detector
|
67 |
+
for WSD includes features describing the left and right contexts of
|
68 |
+
the target word:
|
69 |
+
|
70 |
+
>>> def wsd_features(sentence, index):
|
71 |
+
... featureset = {}
|
72 |
+
... for i in range(max(0, index-3), index):
|
73 |
+
... featureset['left-context(%s)' % sentence[i]] = True
|
74 |
+
... for i in range(index, max(index+3, len(sentence))):
|
75 |
+
... featureset['right-context(%s)' % sentence[i]] = True
|
76 |
+
... return featureset
|
77 |
+
|
78 |
+
Training Classifiers
|
79 |
+
====================
|
80 |
+
Most classifiers are built by training them on a list of hand-labeled
|
81 |
+
examples, known as the "training set". Training sets are represented
|
82 |
+
as lists of ``(featuredict, label)`` tuples.
|
83 |
+
"""
|
84 |
+
|
85 |
+
from nltk.classify.api import ClassifierI, MultiClassifierI
|
86 |
+
from nltk.classify.decisiontree import DecisionTreeClassifier
|
87 |
+
from nltk.classify.maxent import (
|
88 |
+
BinaryMaxentFeatureEncoding,
|
89 |
+
ConditionalExponentialClassifier,
|
90 |
+
MaxentClassifier,
|
91 |
+
TypedMaxentFeatureEncoding,
|
92 |
+
)
|
93 |
+
from nltk.classify.megam import call_megam, config_megam
|
94 |
+
from nltk.classify.naivebayes import NaiveBayesClassifier
|
95 |
+
from nltk.classify.positivenaivebayes import PositiveNaiveBayesClassifier
|
96 |
+
from nltk.classify.rte_classify import RTEFeatureExtractor, rte_classifier, rte_features
|
97 |
+
from nltk.classify.scikitlearn import SklearnClassifier
|
98 |
+
from nltk.classify.senna import Senna
|
99 |
+
from nltk.classify.textcat import TextCat
|
100 |
+
from nltk.classify.util import accuracy, apply_features, log_likelihood
|
101 |
+
from nltk.classify.weka import WekaClassifier, config_weka
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc
ADDED
Binary file (4.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc
ADDED
Binary file (9.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc
ADDED
Binary file (46 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc
ADDED
Binary file (5.21 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc
ADDED
Binary file (7.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc
ADDED
Binary file (5.31 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc
ADDED
Binary file (5.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc
ADDED
Binary file (5.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc
ADDED
Binary file (691 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc
ADDED
Binary file (3.33 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/nltk/classify/tadm.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to TADM Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Joseph Frazee <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from nltk.internals import find_binary
|
12 |
+
|
13 |
+
try:
|
14 |
+
import numpy
|
15 |
+
except ImportError:
|
16 |
+
pass
|
17 |
+
|
18 |
+
_tadm_bin = None
|
19 |
+
|
20 |
+
|
21 |
+
def config_tadm(bin=None):
|
22 |
+
global _tadm_bin
|
23 |
+
_tadm_bin = find_binary(
|
24 |
+
"tadm", bin, env_vars=["TADM"], binary_names=["tadm"], url="http://tadm.sf.net"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def write_tadm_file(train_toks, encoding, stream):
|
29 |
+
"""
|
30 |
+
Generate an input file for ``tadm`` based on the given corpus of
|
31 |
+
classified tokens.
|
32 |
+
|
33 |
+
:type train_toks: list(tuple(dict, str))
|
34 |
+
:param train_toks: Training data, represented as a list of
|
35 |
+
pairs, the first member of which is a feature dictionary,
|
36 |
+
and the second of which is a classification label.
|
37 |
+
:type encoding: TadmEventMaxentFeatureEncoding
|
38 |
+
:param encoding: A feature encoding, used to convert featuresets
|
39 |
+
into feature vectors.
|
40 |
+
:type stream: stream
|
41 |
+
:param stream: The stream to which the ``tadm`` input file should be
|
42 |
+
written.
|
43 |
+
"""
|
44 |
+
# See the following for a file format description:
|
45 |
+
#
|
46 |
+
# https://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054
|
47 |
+
# https://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054
|
48 |
+
labels = encoding.labels()
|
49 |
+
for featureset, label in train_toks:
|
50 |
+
length_line = "%d\n" % len(labels)
|
51 |
+
stream.write(length_line)
|
52 |
+
for known_label in labels:
|
53 |
+
v = encoding.encode(featureset, known_label)
|
54 |
+
line = "%d %d %s\n" % (
|
55 |
+
int(label == known_label),
|
56 |
+
len(v),
|
57 |
+
" ".join("%d %d" % u for u in v),
|
58 |
+
)
|
59 |
+
stream.write(line)
|
60 |
+
|
61 |
+
|
62 |
+
def parse_tadm_weights(paramfile):
|
63 |
+
"""
|
64 |
+
Given the stdout output generated by ``tadm`` when training a
|
65 |
+
model, return a ``numpy`` array containing the corresponding weight
|
66 |
+
vector.
|
67 |
+
"""
|
68 |
+
weights = []
|
69 |
+
for line in paramfile:
|
70 |
+
weights.append(float(line.strip()))
|
71 |
+
return numpy.array(weights, "d")
|
72 |
+
|
73 |
+
|
74 |
+
def call_tadm(args):
|
75 |
+
"""
|
76 |
+
Call the ``tadm`` binary with the given arguments.
|
77 |
+
"""
|
78 |
+
if isinstance(args, str):
|
79 |
+
raise TypeError("args should be a list of strings")
|
80 |
+
if _tadm_bin is None:
|
81 |
+
config_tadm()
|
82 |
+
|
83 |
+
# Call tadm via a subprocess
|
84 |
+
cmd = [_tadm_bin] + args
|
85 |
+
p = subprocess.Popen(cmd, stdout=sys.stdout)
|
86 |
+
(stdout, stderr) = p.communicate()
|
87 |
+
|
88 |
+
# Check the return code.
|
89 |
+
if p.returncode != 0:
|
90 |
+
print()
|
91 |
+
print(stderr)
|
92 |
+
raise OSError("tadm command failed!")
|
93 |
+
|
94 |
+
|
95 |
+
def names_demo():
|
96 |
+
from nltk.classify.maxent import TadmMaxentClassifier
|
97 |
+
from nltk.classify.util import names_demo
|
98 |
+
|
99 |
+
classifier = names_demo(TadmMaxentClassifier.train)
|
100 |
+
|
101 |
+
|
102 |
+
def encoding_demo():
|
103 |
+
import sys
|
104 |
+
|
105 |
+
from nltk.classify.maxent import TadmEventMaxentFeatureEncoding
|
106 |
+
|
107 |
+
tokens = [
|
108 |
+
({"f0": 1, "f1": 1, "f3": 1}, "A"),
|
109 |
+
({"f0": 1, "f2": 1, "f4": 1}, "B"),
|
110 |
+
({"f0": 2, "f2": 1, "f3": 1, "f4": 1}, "A"),
|
111 |
+
]
|
112 |
+
encoding = TadmEventMaxentFeatureEncoding.train(tokens)
|
113 |
+
write_tadm_file(tokens, encoding, sys.stdout)
|
114 |
+
print()
|
115 |
+
for i in range(encoding.length()):
|
116 |
+
print("%s --> %d" % (encoding.describe(i), i))
|
117 |
+
print()
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
encoding_demo()
|
122 |
+
names_demo()
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/__init__.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# TODO this docstring isn't up-to-date!
|
9 |
+
"""
|
10 |
+
NLTK corpus readers. The modules in this package provide functions
|
11 |
+
that can be used to read corpus files in a variety of formats. These
|
12 |
+
functions can be used to read both the corpus files that are
|
13 |
+
distributed in the NLTK corpus package, and corpus files that are part
|
14 |
+
of external corpora.
|
15 |
+
|
16 |
+
Available Corpora
|
17 |
+
=================
|
18 |
+
|
19 |
+
Please see https://www.nltk.org/nltk_data/ for a complete list.
|
20 |
+
Install corpora using nltk.download().
|
21 |
+
|
22 |
+
Corpus Reader Functions
|
23 |
+
=======================
|
24 |
+
Each corpus module defines one or more "corpus reader functions",
|
25 |
+
which can be used to read documents from that corpus. These functions
|
26 |
+
take an argument, ``item``, which is used to indicate which document
|
27 |
+
should be read from the corpus:
|
28 |
+
|
29 |
+
- If ``item`` is one of the unique identifiers listed in the corpus
|
30 |
+
module's ``items`` variable, then the corresponding document will
|
31 |
+
be loaded from the NLTK corpus package.
|
32 |
+
- If ``item`` is a filename, then that file will be read.
|
33 |
+
|
34 |
+
Additionally, corpus reader functions can be given lists of item
|
35 |
+
names; in which case, they will return a concatenation of the
|
36 |
+
corresponding documents.
|
37 |
+
|
38 |
+
Corpus reader functions are named based on the type of information
|
39 |
+
they return. Some common examples, and their return types, are:
|
40 |
+
|
41 |
+
- words(): list of str
|
42 |
+
- sents(): list of (list of str)
|
43 |
+
- paras(): list of (list of (list of str))
|
44 |
+
- tagged_words(): list of (str,str) tuple
|
45 |
+
- tagged_sents(): list of (list of (str,str))
|
46 |
+
- tagged_paras(): list of (list of (list of (str,str)))
|
47 |
+
- chunked_sents(): list of (Tree w/ (str,str) leaves)
|
48 |
+
- parsed_sents(): list of (Tree with str leaves)
|
49 |
+
- parsed_paras(): list of (list of (Tree with str leaves))
|
50 |
+
- xml(): A single xml ElementTree
|
51 |
+
- raw(): unprocessed corpus contents
|
52 |
+
|
53 |
+
For example, to read a list of the words in the Brown Corpus, use
|
54 |
+
``nltk.corpus.brown.words()``:
|
55 |
+
|
56 |
+
>>> from nltk.corpus import brown
|
57 |
+
>>> print(", ".join(brown.words())) # doctest: +ELLIPSIS
|
58 |
+
The, Fulton, County, Grand, Jury, said, ...
|
59 |
+
|
60 |
+
"""
|
61 |
+
|
62 |
+
import re
|
63 |
+
|
64 |
+
from nltk.corpus.reader import *
|
65 |
+
from nltk.corpus.util import LazyCorpusLoader
|
66 |
+
from nltk.tokenize import RegexpTokenizer
|
67 |
+
|
68 |
+
abc: PlaintextCorpusReader = LazyCorpusLoader(
|
69 |
+
"abc",
|
70 |
+
PlaintextCorpusReader,
|
71 |
+
r"(?!\.).*\.txt",
|
72 |
+
encoding=[("science", "latin_1"), ("rural", "utf8")],
|
73 |
+
)
|
74 |
+
alpino: AlpinoCorpusReader = LazyCorpusLoader(
|
75 |
+
"alpino", AlpinoCorpusReader, tagset="alpino"
|
76 |
+
)
|
77 |
+
bcp47: BCP47CorpusReader = LazyCorpusLoader(
|
78 |
+
"bcp47", BCP47CorpusReader, r"(cldr|iana)/*"
|
79 |
+
)
|
80 |
+
brown: CategorizedTaggedCorpusReader = LazyCorpusLoader(
|
81 |
+
"brown",
|
82 |
+
CategorizedTaggedCorpusReader,
|
83 |
+
r"c[a-z]\d\d",
|
84 |
+
cat_file="cats.txt",
|
85 |
+
tagset="brown",
|
86 |
+
encoding="ascii",
|
87 |
+
)
|
88 |
+
cess_cat: BracketParseCorpusReader = LazyCorpusLoader(
|
89 |
+
"cess_cat",
|
90 |
+
BracketParseCorpusReader,
|
91 |
+
r"(?!\.).*\.tbf",
|
92 |
+
tagset="unknown",
|
93 |
+
encoding="ISO-8859-15",
|
94 |
+
)
|
95 |
+
cess_esp: BracketParseCorpusReader = LazyCorpusLoader(
|
96 |
+
"cess_esp",
|
97 |
+
BracketParseCorpusReader,
|
98 |
+
r"(?!\.).*\.tbf",
|
99 |
+
tagset="unknown",
|
100 |
+
encoding="ISO-8859-15",
|
101 |
+
)
|
102 |
+
cmudict: CMUDictCorpusReader = LazyCorpusLoader(
|
103 |
+
"cmudict", CMUDictCorpusReader, ["cmudict"]
|
104 |
+
)
|
105 |
+
comtrans: AlignedCorpusReader = LazyCorpusLoader(
|
106 |
+
"comtrans", AlignedCorpusReader, r"(?!\.).*\.txt"
|
107 |
+
)
|
108 |
+
comparative_sentences: ComparativeSentencesCorpusReader = LazyCorpusLoader(
|
109 |
+
"comparative_sentences",
|
110 |
+
ComparativeSentencesCorpusReader,
|
111 |
+
r"labeledSentences\.txt",
|
112 |
+
encoding="latin-1",
|
113 |
+
)
|
114 |
+
conll2000: ConllChunkCorpusReader = LazyCorpusLoader(
|
115 |
+
"conll2000",
|
116 |
+
ConllChunkCorpusReader,
|
117 |
+
["train.txt", "test.txt"],
|
118 |
+
("NP", "VP", "PP"),
|
119 |
+
tagset="wsj",
|
120 |
+
encoding="ascii",
|
121 |
+
)
|
122 |
+
conll2002: ConllChunkCorpusReader = LazyCorpusLoader(
|
123 |
+
"conll2002",
|
124 |
+
ConllChunkCorpusReader,
|
125 |
+
r".*\.(test|train).*",
|
126 |
+
("LOC", "PER", "ORG", "MISC"),
|
127 |
+
encoding="utf-8",
|
128 |
+
)
|
129 |
+
conll2007: DependencyCorpusReader = LazyCorpusLoader(
|
130 |
+
"conll2007",
|
131 |
+
DependencyCorpusReader,
|
132 |
+
r".*\.(test|train).*",
|
133 |
+
encoding=[("eus", "ISO-8859-2"), ("esp", "utf8")],
|
134 |
+
)
|
135 |
+
crubadan: CrubadanCorpusReader = LazyCorpusLoader(
|
136 |
+
"crubadan", CrubadanCorpusReader, r".*\.txt"
|
137 |
+
)
|
138 |
+
dependency_treebank: DependencyCorpusReader = LazyCorpusLoader(
|
139 |
+
"dependency_treebank", DependencyCorpusReader, r".*\.dp", encoding="ascii"
|
140 |
+
)
|
141 |
+
extended_omw: CorpusReader = LazyCorpusLoader(
|
142 |
+
"extended_omw", CorpusReader, r".*/wn-[a-z\-]*\.tab", encoding="utf8"
|
143 |
+
)
|
144 |
+
floresta: BracketParseCorpusReader = LazyCorpusLoader(
|
145 |
+
"floresta",
|
146 |
+
BracketParseCorpusReader,
|
147 |
+
r"(?!\.).*\.ptb",
|
148 |
+
"#",
|
149 |
+
tagset="unknown",
|
150 |
+
encoding="ISO-8859-15",
|
151 |
+
)
|
152 |
+
framenet15: FramenetCorpusReader = LazyCorpusLoader(
|
153 |
+
"framenet_v15",
|
154 |
+
FramenetCorpusReader,
|
155 |
+
[
|
156 |
+
"frRelation.xml",
|
157 |
+
"frameIndex.xml",
|
158 |
+
"fulltextIndex.xml",
|
159 |
+
"luIndex.xml",
|
160 |
+
"semTypes.xml",
|
161 |
+
],
|
162 |
+
)
|
163 |
+
framenet: FramenetCorpusReader = LazyCorpusLoader(
|
164 |
+
"framenet_v17",
|
165 |
+
FramenetCorpusReader,
|
166 |
+
[
|
167 |
+
"frRelation.xml",
|
168 |
+
"frameIndex.xml",
|
169 |
+
"fulltextIndex.xml",
|
170 |
+
"luIndex.xml",
|
171 |
+
"semTypes.xml",
|
172 |
+
],
|
173 |
+
)
|
174 |
+
gazetteers: WordListCorpusReader = LazyCorpusLoader(
|
175 |
+
"gazetteers", WordListCorpusReader, r"(?!LICENSE|\.).*\.txt", encoding="ISO-8859-2"
|
176 |
+
)
|
177 |
+
genesis: PlaintextCorpusReader = LazyCorpusLoader(
|
178 |
+
"genesis",
|
179 |
+
PlaintextCorpusReader,
|
180 |
+
r"(?!\.).*\.txt",
|
181 |
+
encoding=[
|
182 |
+
("finnish|french|german", "latin_1"),
|
183 |
+
("swedish", "cp865"),
|
184 |
+
(".*", "utf_8"),
|
185 |
+
],
|
186 |
+
)
|
187 |
+
gutenberg: PlaintextCorpusReader = LazyCorpusLoader(
|
188 |
+
"gutenberg", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="latin1"
|
189 |
+
)
|
190 |
+
ieer: IEERCorpusReader = LazyCorpusLoader("ieer", IEERCorpusReader, r"(?!README|\.).*")
|
191 |
+
inaugural: PlaintextCorpusReader = LazyCorpusLoader(
|
192 |
+
"inaugural", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="latin1"
|
193 |
+
)
|
194 |
+
# [XX] This should probably just use TaggedCorpusReader:
|
195 |
+
indian: IndianCorpusReader = LazyCorpusLoader(
|
196 |
+
"indian", IndianCorpusReader, r"(?!\.).*\.pos", tagset="unknown", encoding="utf8"
|
197 |
+
)
|
198 |
+
|
199 |
+
jeita: ChasenCorpusReader = LazyCorpusLoader(
|
200 |
+
"jeita", ChasenCorpusReader, r".*\.chasen", encoding="utf-8"
|
201 |
+
)
|
202 |
+
knbc: KNBCorpusReader = LazyCorpusLoader(
|
203 |
+
"knbc/corpus1", KNBCorpusReader, r".*/KN.*", encoding="euc-jp"
|
204 |
+
)
|
205 |
+
lin_thesaurus: LinThesaurusCorpusReader = LazyCorpusLoader(
|
206 |
+
"lin_thesaurus", LinThesaurusCorpusReader, r".*\.lsp"
|
207 |
+
)
|
208 |
+
mac_morpho: MacMorphoCorpusReader = LazyCorpusLoader(
|
209 |
+
"mac_morpho",
|
210 |
+
MacMorphoCorpusReader,
|
211 |
+
r"(?!\.).*\.txt",
|
212 |
+
tagset="unknown",
|
213 |
+
encoding="latin-1",
|
214 |
+
)
|
215 |
+
machado: PortugueseCategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
216 |
+
"machado",
|
217 |
+
PortugueseCategorizedPlaintextCorpusReader,
|
218 |
+
r"(?!\.).*\.txt",
|
219 |
+
cat_pattern=r"([a-z]*)/.*",
|
220 |
+
encoding="latin-1",
|
221 |
+
)
|
222 |
+
masc_tagged: CategorizedTaggedCorpusReader = LazyCorpusLoader(
|
223 |
+
"masc_tagged",
|
224 |
+
CategorizedTaggedCorpusReader,
|
225 |
+
r"(spoken|written)/.*\.txt",
|
226 |
+
cat_file="categories.txt",
|
227 |
+
tagset="wsj",
|
228 |
+
encoding="utf-8",
|
229 |
+
sep="_",
|
230 |
+
)
|
231 |
+
movie_reviews: CategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
232 |
+
"movie_reviews",
|
233 |
+
CategorizedPlaintextCorpusReader,
|
234 |
+
r"(?!\.).*\.txt",
|
235 |
+
cat_pattern=r"(neg|pos)/.*",
|
236 |
+
encoding="ascii",
|
237 |
+
)
|
238 |
+
multext_east: MTECorpusReader = LazyCorpusLoader(
|
239 |
+
"mte_teip5", MTECorpusReader, r"(oana).*\.xml", encoding="utf-8"
|
240 |
+
)
|
241 |
+
names: WordListCorpusReader = LazyCorpusLoader(
|
242 |
+
"names", WordListCorpusReader, r"(?!\.).*\.txt", encoding="ascii"
|
243 |
+
)
|
244 |
+
nps_chat: NPSChatCorpusReader = LazyCorpusLoader(
|
245 |
+
"nps_chat", NPSChatCorpusReader, r"(?!README|\.).*\.xml", tagset="wsj"
|
246 |
+
)
|
247 |
+
opinion_lexicon: OpinionLexiconCorpusReader = LazyCorpusLoader(
|
248 |
+
"opinion_lexicon",
|
249 |
+
OpinionLexiconCorpusReader,
|
250 |
+
r"(\w+)\-words\.txt",
|
251 |
+
encoding="ISO-8859-2",
|
252 |
+
)
|
253 |
+
ppattach: PPAttachmentCorpusReader = LazyCorpusLoader(
|
254 |
+
"ppattach", PPAttachmentCorpusReader, ["training", "test", "devset"]
|
255 |
+
)
|
256 |
+
product_reviews_1: ReviewsCorpusReader = LazyCorpusLoader(
|
257 |
+
"product_reviews_1", ReviewsCorpusReader, r"^(?!Readme).*\.txt", encoding="utf8"
|
258 |
+
)
|
259 |
+
product_reviews_2: ReviewsCorpusReader = LazyCorpusLoader(
|
260 |
+
"product_reviews_2", ReviewsCorpusReader, r"^(?!Readme).*\.txt", encoding="utf8"
|
261 |
+
)
|
262 |
+
pros_cons: ProsConsCorpusReader = LazyCorpusLoader(
|
263 |
+
"pros_cons",
|
264 |
+
ProsConsCorpusReader,
|
265 |
+
r"Integrated(Cons|Pros)\.txt",
|
266 |
+
cat_pattern=r"Integrated(Cons|Pros)\.txt",
|
267 |
+
encoding="ISO-8859-2",
|
268 |
+
)
|
269 |
+
ptb: CategorizedBracketParseCorpusReader = (
|
270 |
+
LazyCorpusLoader( # Penn Treebank v3: WSJ and Brown portions
|
271 |
+
"ptb",
|
272 |
+
CategorizedBracketParseCorpusReader,
|
273 |
+
r"(WSJ/\d\d/WSJ_\d\d|BROWN/C[A-Z]/C[A-Z])\d\d.MRG",
|
274 |
+
cat_file="allcats.txt",
|
275 |
+
tagset="wsj",
|
276 |
+
)
|
277 |
+
)
|
278 |
+
qc: StringCategoryCorpusReader = LazyCorpusLoader(
|
279 |
+
"qc", StringCategoryCorpusReader, ["train.txt", "test.txt"], encoding="ISO-8859-2"
|
280 |
+
)
|
281 |
+
reuters: CategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
282 |
+
"reuters",
|
283 |
+
CategorizedPlaintextCorpusReader,
|
284 |
+
"(training|test).*",
|
285 |
+
cat_file="cats.txt",
|
286 |
+
encoding="ISO-8859-2",
|
287 |
+
)
|
288 |
+
rte: RTECorpusReader = LazyCorpusLoader("rte", RTECorpusReader, r"(?!\.).*\.xml")
|
289 |
+
senseval: SensevalCorpusReader = LazyCorpusLoader(
|
290 |
+
"senseval", SensevalCorpusReader, r"(?!\.).*\.pos"
|
291 |
+
)
|
292 |
+
sentence_polarity: CategorizedSentencesCorpusReader = LazyCorpusLoader(
|
293 |
+
"sentence_polarity",
|
294 |
+
CategorizedSentencesCorpusReader,
|
295 |
+
r"rt-polarity\.(neg|pos)",
|
296 |
+
cat_pattern=r"rt-polarity\.(neg|pos)",
|
297 |
+
encoding="utf-8",
|
298 |
+
)
|
299 |
+
sentiwordnet: SentiWordNetCorpusReader = LazyCorpusLoader(
|
300 |
+
"sentiwordnet", SentiWordNetCorpusReader, "SentiWordNet_3.0.0.txt", encoding="utf-8"
|
301 |
+
)
|
302 |
+
shakespeare: XMLCorpusReader = LazyCorpusLoader(
|
303 |
+
"shakespeare", XMLCorpusReader, r"(?!\.).*\.xml"
|
304 |
+
)
|
305 |
+
sinica_treebank: SinicaTreebankCorpusReader = LazyCorpusLoader(
|
306 |
+
"sinica_treebank",
|
307 |
+
SinicaTreebankCorpusReader,
|
308 |
+
["parsed"],
|
309 |
+
tagset="unknown",
|
310 |
+
encoding="utf-8",
|
311 |
+
)
|
312 |
+
state_union: PlaintextCorpusReader = LazyCorpusLoader(
|
313 |
+
"state_union", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="ISO-8859-2"
|
314 |
+
)
|
315 |
+
stopwords: WordListCorpusReader = LazyCorpusLoader(
|
316 |
+
"stopwords", WordListCorpusReader, r"(?!README|\.).*", encoding="utf8"
|
317 |
+
)
|
318 |
+
subjectivity: CategorizedSentencesCorpusReader = LazyCorpusLoader(
|
319 |
+
"subjectivity",
|
320 |
+
CategorizedSentencesCorpusReader,
|
321 |
+
r"(quote.tok.gt9|plot.tok.gt9)\.5000",
|
322 |
+
cat_map={"quote.tok.gt9.5000": ["subj"], "plot.tok.gt9.5000": ["obj"]},
|
323 |
+
encoding="latin-1",
|
324 |
+
)
|
325 |
+
swadesh: SwadeshCorpusReader = LazyCorpusLoader(
|
326 |
+
"swadesh", SwadeshCorpusReader, r"(?!README|\.).*", encoding="utf8"
|
327 |
+
)
|
328 |
+
swadesh110: PanlexSwadeshCorpusReader = LazyCorpusLoader(
|
329 |
+
"panlex_swadesh", PanlexSwadeshCorpusReader, r"swadesh110/.*\.txt", encoding="utf8"
|
330 |
+
)
|
331 |
+
swadesh207: PanlexSwadeshCorpusReader = LazyCorpusLoader(
|
332 |
+
"panlex_swadesh", PanlexSwadeshCorpusReader, r"swadesh207/.*\.txt", encoding="utf8"
|
333 |
+
)
|
334 |
+
switchboard: SwitchboardCorpusReader = LazyCorpusLoader(
|
335 |
+
"switchboard", SwitchboardCorpusReader, tagset="wsj"
|
336 |
+
)
|
337 |
+
timit: TimitCorpusReader = LazyCorpusLoader("timit", TimitCorpusReader)
|
338 |
+
timit_tagged: TimitTaggedCorpusReader = LazyCorpusLoader(
|
339 |
+
"timit", TimitTaggedCorpusReader, r".+\.tags", tagset="wsj", encoding="ascii"
|
340 |
+
)
|
341 |
+
toolbox: ToolboxCorpusReader = LazyCorpusLoader(
|
342 |
+
"toolbox", ToolboxCorpusReader, r"(?!.*(README|\.)).*\.(dic|txt)"
|
343 |
+
)
|
344 |
+
treebank: BracketParseCorpusReader = LazyCorpusLoader(
|
345 |
+
"treebank/combined",
|
346 |
+
BracketParseCorpusReader,
|
347 |
+
r"wsj_.*\.mrg",
|
348 |
+
tagset="wsj",
|
349 |
+
encoding="ascii",
|
350 |
+
)
|
351 |
+
treebank_chunk: ChunkedCorpusReader = LazyCorpusLoader(
|
352 |
+
"treebank/tagged",
|
353 |
+
ChunkedCorpusReader,
|
354 |
+
r"wsj_.*\.pos",
|
355 |
+
sent_tokenizer=RegexpTokenizer(r"(?<=/\.)\s*(?![^\[]*\])", gaps=True),
|
356 |
+
para_block_reader=tagged_treebank_para_block_reader,
|
357 |
+
tagset="wsj",
|
358 |
+
encoding="ascii",
|
359 |
+
)
|
360 |
+
treebank_raw: PlaintextCorpusReader = LazyCorpusLoader(
|
361 |
+
"treebank/raw", PlaintextCorpusReader, r"wsj_.*", encoding="ISO-8859-2"
|
362 |
+
)
|
363 |
+
twitter_samples: TwitterCorpusReader = LazyCorpusLoader(
|
364 |
+
"twitter_samples", TwitterCorpusReader, r".*\.json"
|
365 |
+
)
|
366 |
+
udhr: UdhrCorpusReader = LazyCorpusLoader("udhr", UdhrCorpusReader)
|
367 |
+
udhr2: PlaintextCorpusReader = LazyCorpusLoader(
|
368 |
+
"udhr2", PlaintextCorpusReader, r".*\.txt", encoding="utf8"
|
369 |
+
)
|
370 |
+
universal_treebanks: ConllCorpusReader = LazyCorpusLoader(
|
371 |
+
"universal_treebanks_v20",
|
372 |
+
ConllCorpusReader,
|
373 |
+
r".*\.conll",
|
374 |
+
columntypes=(
|
375 |
+
"ignore",
|
376 |
+
"words",
|
377 |
+
"ignore",
|
378 |
+
"ignore",
|
379 |
+
"pos",
|
380 |
+
"ignore",
|
381 |
+
"ignore",
|
382 |
+
"ignore",
|
383 |
+
"ignore",
|
384 |
+
"ignore",
|
385 |
+
),
|
386 |
+
)
|
387 |
+
verbnet: VerbnetCorpusReader = LazyCorpusLoader(
|
388 |
+
"verbnet", VerbnetCorpusReader, r"(?!\.).*\.xml"
|
389 |
+
)
|
390 |
+
webtext: PlaintextCorpusReader = LazyCorpusLoader(
|
391 |
+
"webtext", PlaintextCorpusReader, r"(?!README|\.).*\.txt", encoding="ISO-8859-2"
|
392 |
+
)
|
393 |
+
wordnet: WordNetCorpusReader = LazyCorpusLoader(
|
394 |
+
"wordnet",
|
395 |
+
WordNetCorpusReader,
|
396 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
397 |
+
)
|
398 |
+
wordnet31: WordNetCorpusReader = LazyCorpusLoader(
|
399 |
+
"wordnet31",
|
400 |
+
WordNetCorpusReader,
|
401 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
402 |
+
)
|
403 |
+
wordnet2021: WordNetCorpusReader = LazyCorpusLoader(
|
404 |
+
"wordnet2021",
|
405 |
+
WordNetCorpusReader,
|
406 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
407 |
+
)
|
408 |
+
wordnet_ic: WordNetICCorpusReader = LazyCorpusLoader(
|
409 |
+
"wordnet_ic", WordNetICCorpusReader, r".*\.dat"
|
410 |
+
)
|
411 |
+
words: WordListCorpusReader = LazyCorpusLoader(
|
412 |
+
"words", WordListCorpusReader, r"(?!README|\.).*", encoding="ascii"
|
413 |
+
)
|
414 |
+
|
415 |
+
# defined after treebank
|
416 |
+
propbank: PropbankCorpusReader = LazyCorpusLoader(
|
417 |
+
"propbank",
|
418 |
+
PropbankCorpusReader,
|
419 |
+
"prop.txt",
|
420 |
+
r"frames/.*\.xml",
|
421 |
+
"verbs.txt",
|
422 |
+
lambda filename: re.sub(r"^wsj/\d\d/", "", filename),
|
423 |
+
treebank,
|
424 |
+
) # Must be defined *after* treebank corpus.
|
425 |
+
nombank: NombankCorpusReader = LazyCorpusLoader(
|
426 |
+
"nombank.1.0",
|
427 |
+
NombankCorpusReader,
|
428 |
+
"nombank.1.0",
|
429 |
+
r"frames/.*\.xml",
|
430 |
+
"nombank.1.0.words",
|
431 |
+
lambda filename: re.sub(r"^wsj/\d\d/", "", filename),
|
432 |
+
treebank,
|
433 |
+
) # Must be defined *after* treebank corpus.
|
434 |
+
propbank_ptb: PropbankCorpusReader = LazyCorpusLoader(
|
435 |
+
"propbank",
|
436 |
+
PropbankCorpusReader,
|
437 |
+
"prop.txt",
|
438 |
+
r"frames/.*\.xml",
|
439 |
+
"verbs.txt",
|
440 |
+
lambda filename: filename.upper(),
|
441 |
+
ptb,
|
442 |
+
) # Must be defined *after* ptb corpus.
|
443 |
+
nombank_ptb: NombankCorpusReader = LazyCorpusLoader(
|
444 |
+
"nombank.1.0",
|
445 |
+
NombankCorpusReader,
|
446 |
+
"nombank.1.0",
|
447 |
+
r"frames/.*\.xml",
|
448 |
+
"nombank.1.0.words",
|
449 |
+
lambda filename: filename.upper(),
|
450 |
+
ptb,
|
451 |
+
) # Must be defined *after* ptb corpus.
|
452 |
+
semcor: SemcorCorpusReader = LazyCorpusLoader(
|
453 |
+
"semcor", SemcorCorpusReader, r"brown./tagfiles/br-.*\.xml", wordnet
|
454 |
+
) # Must be defined *after* wordnet corpus.
|
455 |
+
|
456 |
+
nonbreaking_prefixes: NonbreakingPrefixesCorpusReader = LazyCorpusLoader(
|
457 |
+
"nonbreaking_prefixes",
|
458 |
+
NonbreakingPrefixesCorpusReader,
|
459 |
+
r"(?!README|\.).*",
|
460 |
+
encoding="utf8",
|
461 |
+
)
|
462 |
+
perluniprops: UnicharsCorpusReader = LazyCorpusLoader(
|
463 |
+
"perluniprops",
|
464 |
+
UnicharsCorpusReader,
|
465 |
+
r"(?!README|\.).*",
|
466 |
+
nltk_data_subdir="misc",
|
467 |
+
encoding="utf8",
|
468 |
+
)
|
469 |
+
|
470 |
+
# mwa_ppdb = LazyCorpusLoader(
|
471 |
+
# 'mwa_ppdb', MWAPPDBCorpusReader, r'(?!README|\.).*', nltk_data_subdir='misc', encoding='utf8')
|
472 |
+
|
473 |
+
# See https://github.com/nltk/nltk/issues/1579
|
474 |
+
# and https://github.com/nltk/nltk/issues/1716
|
475 |
+
#
|
476 |
+
# pl196x = LazyCorpusLoader(
|
477 |
+
# 'pl196x', Pl196xCorpusReader, r'[a-z]-.*\.xml',
|
478 |
+
# cat_file='cats.txt', textid_file='textids.txt', encoding='utf8')
|
479 |
+
#
|
480 |
+
# ipipan = LazyCorpusLoader(
|
481 |
+
# 'ipipan', IPIPANCorpusReader, r'(?!\.).*morph\.xml')
|
482 |
+
#
|
483 |
+
# nkjp = LazyCorpusLoader(
|
484 |
+
# 'nkjp', NKJPCorpusReader, r'', encoding='utf8')
|
485 |
+
#
|
486 |
+
# panlex_lite = LazyCorpusLoader(
|
487 |
+
# 'panlex_lite', PanLexLiteCorpusReader)
|
488 |
+
#
|
489 |
+
# ycoe = LazyCorpusLoader(
|
490 |
+
# 'ycoe', YCOECorpusReader)
|
491 |
+
#
|
492 |
+
# corpus not available with NLTK; these lines caused help(nltk.corpus) to break
|
493 |
+
# hebrew_treebank = LazyCorpusLoader(
|
494 |
+
# 'hebrew_treebank', BracketParseCorpusReader, r'.*\.txt')
|
495 |
+
|
496 |
+
# FIXME: override any imported demo from various corpora, see https://github.com/nltk/nltk/issues/2116
|
497 |
+
def demo():
|
498 |
+
# This is out-of-date:
|
499 |
+
abc.demo()
|
500 |
+
brown.demo()
|
501 |
+
# chat80.demo()
|
502 |
+
cmudict.demo()
|
503 |
+
conll2000.demo()
|
504 |
+
conll2002.demo()
|
505 |
+
genesis.demo()
|
506 |
+
gutenberg.demo()
|
507 |
+
ieer.demo()
|
508 |
+
inaugural.demo()
|
509 |
+
indian.demo()
|
510 |
+
names.demo()
|
511 |
+
ppattach.demo()
|
512 |
+
senseval.demo()
|
513 |
+
shakespeare.demo()
|
514 |
+
sinica_treebank.demo()
|
515 |
+
state_union.demo()
|
516 |
+
stopwords.demo()
|
517 |
+
timit.demo()
|
518 |
+
toolbox.demo()
|
519 |
+
treebank.demo()
|
520 |
+
udhr.demo()
|
521 |
+
webtext.demo()
|
522 |
+
words.demo()
|
523 |
+
|
524 |
+
|
525 |
+
# ycoe.demo()
|
526 |
+
|
527 |
+
if __name__ == "__main__":
|
528 |
+
# demo()
|
529 |
+
pass
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/europarl_raw.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Europarl Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Nitin Madnani <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import re
|
9 |
+
|
10 |
+
from nltk.corpus.reader import *
|
11 |
+
from nltk.corpus.util import LazyCorpusLoader
|
12 |
+
|
13 |
+
# Create a new corpus reader instance for each European language
|
14 |
+
danish: EuroparlCorpusReader = LazyCorpusLoader(
|
15 |
+
"europarl_raw/danish", EuroparlCorpusReader, r"ep-.*\.da", encoding="utf-8"
|
16 |
+
)
|
17 |
+
|
18 |
+
dutch: EuroparlCorpusReader = LazyCorpusLoader(
|
19 |
+
"europarl_raw/dutch", EuroparlCorpusReader, r"ep-.*\.nl", encoding="utf-8"
|
20 |
+
)
|
21 |
+
|
22 |
+
english: EuroparlCorpusReader = LazyCorpusLoader(
|
23 |
+
"europarl_raw/english", EuroparlCorpusReader, r"ep-.*\.en", encoding="utf-8"
|
24 |
+
)
|
25 |
+
|
26 |
+
finnish: EuroparlCorpusReader = LazyCorpusLoader(
|
27 |
+
"europarl_raw/finnish", EuroparlCorpusReader, r"ep-.*\.fi", encoding="utf-8"
|
28 |
+
)
|
29 |
+
|
30 |
+
french: EuroparlCorpusReader = LazyCorpusLoader(
|
31 |
+
"europarl_raw/french", EuroparlCorpusReader, r"ep-.*\.fr", encoding="utf-8"
|
32 |
+
)
|
33 |
+
|
34 |
+
german: EuroparlCorpusReader = LazyCorpusLoader(
|
35 |
+
"europarl_raw/german", EuroparlCorpusReader, r"ep-.*\.de", encoding="utf-8"
|
36 |
+
)
|
37 |
+
|
38 |
+
greek: EuroparlCorpusReader = LazyCorpusLoader(
|
39 |
+
"europarl_raw/greek", EuroparlCorpusReader, r"ep-.*\.el", encoding="utf-8"
|
40 |
+
)
|
41 |
+
|
42 |
+
italian: EuroparlCorpusReader = LazyCorpusLoader(
|
43 |
+
"europarl_raw/italian", EuroparlCorpusReader, r"ep-.*\.it", encoding="utf-8"
|
44 |
+
)
|
45 |
+
|
46 |
+
portuguese: EuroparlCorpusReader = LazyCorpusLoader(
|
47 |
+
"europarl_raw/portuguese", EuroparlCorpusReader, r"ep-.*\.pt", encoding="utf-8"
|
48 |
+
)
|
49 |
+
|
50 |
+
spanish: EuroparlCorpusReader = LazyCorpusLoader(
|
51 |
+
"europarl_raw/spanish", EuroparlCorpusReader, r"ep-.*\.es", encoding="utf-8"
|
52 |
+
)
|
53 |
+
|
54 |
+
swedish: EuroparlCorpusReader = LazyCorpusLoader(
|
55 |
+
"europarl_raw/swedish", EuroparlCorpusReader, r"ep-.*\.sv", encoding="utf-8"
|
56 |
+
)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/__init__.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
NLTK corpus readers. The modules in this package provide functions
|
11 |
+
that can be used to read corpus fileids in a variety of formats. These
|
12 |
+
functions can be used to read both the corpus fileids that are
|
13 |
+
distributed in the NLTK corpus package, and corpus fileids that are part
|
14 |
+
of external corpora.
|
15 |
+
|
16 |
+
Corpus Reader Functions
|
17 |
+
=======================
|
18 |
+
Each corpus module defines one or more "corpus reader functions",
|
19 |
+
which can be used to read documents from that corpus. These functions
|
20 |
+
take an argument, ``item``, which is used to indicate which document
|
21 |
+
should be read from the corpus:
|
22 |
+
|
23 |
+
- If ``item`` is one of the unique identifiers listed in the corpus
|
24 |
+
module's ``items`` variable, then the corresponding document will
|
25 |
+
be loaded from the NLTK corpus package.
|
26 |
+
- If ``item`` is a fileid, then that file will be read.
|
27 |
+
|
28 |
+
Additionally, corpus reader functions can be given lists of item
|
29 |
+
names; in which case, they will return a concatenation of the
|
30 |
+
corresponding documents.
|
31 |
+
|
32 |
+
Corpus reader functions are named based on the type of information
|
33 |
+
they return. Some common examples, and their return types, are:
|
34 |
+
|
35 |
+
- words(): list of str
|
36 |
+
- sents(): list of (list of str)
|
37 |
+
- paras(): list of (list of (list of str))
|
38 |
+
- tagged_words(): list of (str,str) tuple
|
39 |
+
- tagged_sents(): list of (list of (str,str))
|
40 |
+
- tagged_paras(): list of (list of (list of (str,str)))
|
41 |
+
- chunked_sents(): list of (Tree w/ (str,str) leaves)
|
42 |
+
- parsed_sents(): list of (Tree with str leaves)
|
43 |
+
- parsed_paras(): list of (list of (Tree with str leaves))
|
44 |
+
- xml(): A single xml ElementTree
|
45 |
+
- raw(): unprocessed corpus contents
|
46 |
+
|
47 |
+
For example, to read a list of the words in the Brown Corpus, use
|
48 |
+
``nltk.corpus.brown.words()``:
|
49 |
+
|
50 |
+
>>> from nltk.corpus import brown
|
51 |
+
>>> print(", ".join(brown.words()[:6])) # only first 6 words
|
52 |
+
The, Fulton, County, Grand, Jury, said
|
53 |
+
|
54 |
+
isort:skip_file
|
55 |
+
"""
|
56 |
+
|
57 |
+
from nltk.corpus.reader.plaintext import *
|
58 |
+
from nltk.corpus.reader.util import *
|
59 |
+
from nltk.corpus.reader.api import *
|
60 |
+
from nltk.corpus.reader.tagged import *
|
61 |
+
from nltk.corpus.reader.cmudict import *
|
62 |
+
from nltk.corpus.reader.conll import *
|
63 |
+
from nltk.corpus.reader.chunked import *
|
64 |
+
from nltk.corpus.reader.wordlist import *
|
65 |
+
from nltk.corpus.reader.xmldocs import *
|
66 |
+
from nltk.corpus.reader.ppattach import *
|
67 |
+
from nltk.corpus.reader.senseval import *
|
68 |
+
from nltk.corpus.reader.ieer import *
|
69 |
+
from nltk.corpus.reader.sinica_treebank import *
|
70 |
+
from nltk.corpus.reader.bracket_parse import *
|
71 |
+
from nltk.corpus.reader.indian import *
|
72 |
+
from nltk.corpus.reader.toolbox import *
|
73 |
+
from nltk.corpus.reader.timit import *
|
74 |
+
from nltk.corpus.reader.ycoe import *
|
75 |
+
from nltk.corpus.reader.rte import *
|
76 |
+
from nltk.corpus.reader.string_category import *
|
77 |
+
from nltk.corpus.reader.propbank import *
|
78 |
+
from nltk.corpus.reader.verbnet import *
|
79 |
+
from nltk.corpus.reader.bnc import *
|
80 |
+
from nltk.corpus.reader.nps_chat import *
|
81 |
+
from nltk.corpus.reader.wordnet import *
|
82 |
+
from nltk.corpus.reader.switchboard import *
|
83 |
+
from nltk.corpus.reader.dependency import *
|
84 |
+
from nltk.corpus.reader.nombank import *
|
85 |
+
from nltk.corpus.reader.ipipan import *
|
86 |
+
from nltk.corpus.reader.pl196x import *
|
87 |
+
from nltk.corpus.reader.knbc import *
|
88 |
+
from nltk.corpus.reader.chasen import *
|
89 |
+
from nltk.corpus.reader.childes import *
|
90 |
+
from nltk.corpus.reader.aligned import *
|
91 |
+
from nltk.corpus.reader.lin import *
|
92 |
+
from nltk.corpus.reader.semcor import *
|
93 |
+
from nltk.corpus.reader.framenet import *
|
94 |
+
from nltk.corpus.reader.udhr import *
|
95 |
+
from nltk.corpus.reader.bnc import *
|
96 |
+
from nltk.corpus.reader.sentiwordnet import *
|
97 |
+
from nltk.corpus.reader.twitter import *
|
98 |
+
from nltk.corpus.reader.nkjp import *
|
99 |
+
from nltk.corpus.reader.crubadan import *
|
100 |
+
from nltk.corpus.reader.mte import *
|
101 |
+
from nltk.corpus.reader.reviews import *
|
102 |
+
from nltk.corpus.reader.opinion_lexicon import *
|
103 |
+
from nltk.corpus.reader.pros_cons import *
|
104 |
+
from nltk.corpus.reader.categorized_sents import *
|
105 |
+
from nltk.corpus.reader.comparative_sents import *
|
106 |
+
from nltk.corpus.reader.panlex_lite import *
|
107 |
+
from nltk.corpus.reader.panlex_swadesh import *
|
108 |
+
from nltk.corpus.reader.bcp47 import *
|
109 |
+
|
110 |
+
# Make sure that nltk.corpus.reader.bracket_parse gives the module, not
|
111 |
+
# the function bracket_parse() defined in nltk.tree:
|
112 |
+
from nltk.corpus.reader import bracket_parse
|
113 |
+
|
114 |
+
__all__ = [
|
115 |
+
"CorpusReader",
|
116 |
+
"CategorizedCorpusReader",
|
117 |
+
"PlaintextCorpusReader",
|
118 |
+
"find_corpus_fileids",
|
119 |
+
"TaggedCorpusReader",
|
120 |
+
"CMUDictCorpusReader",
|
121 |
+
"ConllChunkCorpusReader",
|
122 |
+
"WordListCorpusReader",
|
123 |
+
"PPAttachmentCorpusReader",
|
124 |
+
"SensevalCorpusReader",
|
125 |
+
"IEERCorpusReader",
|
126 |
+
"ChunkedCorpusReader",
|
127 |
+
"SinicaTreebankCorpusReader",
|
128 |
+
"BracketParseCorpusReader",
|
129 |
+
"IndianCorpusReader",
|
130 |
+
"ToolboxCorpusReader",
|
131 |
+
"TimitCorpusReader",
|
132 |
+
"YCOECorpusReader",
|
133 |
+
"MacMorphoCorpusReader",
|
134 |
+
"SyntaxCorpusReader",
|
135 |
+
"AlpinoCorpusReader",
|
136 |
+
"RTECorpusReader",
|
137 |
+
"StringCategoryCorpusReader",
|
138 |
+
"EuroparlCorpusReader",
|
139 |
+
"CategorizedBracketParseCorpusReader",
|
140 |
+
"CategorizedTaggedCorpusReader",
|
141 |
+
"CategorizedPlaintextCorpusReader",
|
142 |
+
"PortugueseCategorizedPlaintextCorpusReader",
|
143 |
+
"tagged_treebank_para_block_reader",
|
144 |
+
"PropbankCorpusReader",
|
145 |
+
"VerbnetCorpusReader",
|
146 |
+
"BNCCorpusReader",
|
147 |
+
"ConllCorpusReader",
|
148 |
+
"XMLCorpusReader",
|
149 |
+
"NPSChatCorpusReader",
|
150 |
+
"SwadeshCorpusReader",
|
151 |
+
"WordNetCorpusReader",
|
152 |
+
"WordNetICCorpusReader",
|
153 |
+
"SwitchboardCorpusReader",
|
154 |
+
"DependencyCorpusReader",
|
155 |
+
"NombankCorpusReader",
|
156 |
+
"IPIPANCorpusReader",
|
157 |
+
"Pl196xCorpusReader",
|
158 |
+
"TEICorpusView",
|
159 |
+
"KNBCorpusReader",
|
160 |
+
"ChasenCorpusReader",
|
161 |
+
"CHILDESCorpusReader",
|
162 |
+
"AlignedCorpusReader",
|
163 |
+
"TimitTaggedCorpusReader",
|
164 |
+
"LinThesaurusCorpusReader",
|
165 |
+
"SemcorCorpusReader",
|
166 |
+
"FramenetCorpusReader",
|
167 |
+
"UdhrCorpusReader",
|
168 |
+
"BNCCorpusReader",
|
169 |
+
"SentiWordNetCorpusReader",
|
170 |
+
"SentiSynset",
|
171 |
+
"TwitterCorpusReader",
|
172 |
+
"NKJPCorpusReader",
|
173 |
+
"CrubadanCorpusReader",
|
174 |
+
"MTECorpusReader",
|
175 |
+
"ReviewsCorpusReader",
|
176 |
+
"OpinionLexiconCorpusReader",
|
177 |
+
"ProsConsCorpusReader",
|
178 |
+
"CategorizedSentencesCorpusReader",
|
179 |
+
"ComparativeSentencesCorpusReader",
|
180 |
+
"PanLexLiteCorpusReader",
|
181 |
+
"NonbreakingPrefixesCorpusReader",
|
182 |
+
"UnicharsCorpusReader",
|
183 |
+
"MWAPPDBCorpusReader",
|
184 |
+
"PanlexSwadeshCorpusReader",
|
185 |
+
"BCP47CorpusReader",
|
186 |
+
]
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/aligned.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Aligned Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# URL: <https://www.nltk.org/>
|
5 |
+
# Author: Steven Bird <[email protected]>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from nltk.corpus.reader.api import CorpusReader
|
9 |
+
from nltk.corpus.reader.util import (
|
10 |
+
StreamBackedCorpusView,
|
11 |
+
concat,
|
12 |
+
read_alignedsent_block,
|
13 |
+
)
|
14 |
+
from nltk.tokenize import RegexpTokenizer, WhitespaceTokenizer
|
15 |
+
from nltk.translate import AlignedSent, Alignment
|
16 |
+
|
17 |
+
|
18 |
+
class AlignedCorpusReader(CorpusReader):
|
19 |
+
"""
|
20 |
+
Reader for corpora of word-aligned sentences. Tokens are assumed
|
21 |
+
to be separated by whitespace. Sentences begin on separate lines.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
root,
|
27 |
+
fileids,
|
28 |
+
sep="/",
|
29 |
+
word_tokenizer=WhitespaceTokenizer(),
|
30 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
31 |
+
alignedsent_block_reader=read_alignedsent_block,
|
32 |
+
encoding="latin1",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
Construct a new Aligned Corpus reader for a set of documents
|
36 |
+
located at the given root directory. Example usage:
|
37 |
+
|
38 |
+
>>> root = '/...path to corpus.../'
|
39 |
+
>>> reader = AlignedCorpusReader(root, '.*', '.txt') # doctest: +SKIP
|
40 |
+
|
41 |
+
:param root: The root directory for this corpus.
|
42 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
43 |
+
"""
|
44 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
45 |
+
self._sep = sep
|
46 |
+
self._word_tokenizer = word_tokenizer
|
47 |
+
self._sent_tokenizer = sent_tokenizer
|
48 |
+
self._alignedsent_block_reader = alignedsent_block_reader
|
49 |
+
|
50 |
+
def words(self, fileids=None):
|
51 |
+
"""
|
52 |
+
:return: the given file(s) as a list of words
|
53 |
+
and punctuation symbols.
|
54 |
+
:rtype: list(str)
|
55 |
+
"""
|
56 |
+
return concat(
|
57 |
+
[
|
58 |
+
AlignedSentCorpusView(
|
59 |
+
fileid,
|
60 |
+
enc,
|
61 |
+
False,
|
62 |
+
False,
|
63 |
+
self._word_tokenizer,
|
64 |
+
self._sent_tokenizer,
|
65 |
+
self._alignedsent_block_reader,
|
66 |
+
)
|
67 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def sents(self, fileids=None):
|
72 |
+
"""
|
73 |
+
:return: the given file(s) as a list of
|
74 |
+
sentences or utterances, each encoded as a list of word
|
75 |
+
strings.
|
76 |
+
:rtype: list(list(str))
|
77 |
+
"""
|
78 |
+
return concat(
|
79 |
+
[
|
80 |
+
AlignedSentCorpusView(
|
81 |
+
fileid,
|
82 |
+
enc,
|
83 |
+
False,
|
84 |
+
True,
|
85 |
+
self._word_tokenizer,
|
86 |
+
self._sent_tokenizer,
|
87 |
+
self._alignedsent_block_reader,
|
88 |
+
)
|
89 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
90 |
+
]
|
91 |
+
)
|
92 |
+
|
93 |
+
def aligned_sents(self, fileids=None):
|
94 |
+
"""
|
95 |
+
:return: the given file(s) as a list of AlignedSent objects.
|
96 |
+
:rtype: list(AlignedSent)
|
97 |
+
"""
|
98 |
+
return concat(
|
99 |
+
[
|
100 |
+
AlignedSentCorpusView(
|
101 |
+
fileid,
|
102 |
+
enc,
|
103 |
+
True,
|
104 |
+
True,
|
105 |
+
self._word_tokenizer,
|
106 |
+
self._sent_tokenizer,
|
107 |
+
self._alignedsent_block_reader,
|
108 |
+
)
|
109 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
110 |
+
]
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
class AlignedSentCorpusView(StreamBackedCorpusView):
|
115 |
+
"""
|
116 |
+
A specialized corpus view for aligned sentences.
|
117 |
+
``AlignedSentCorpusView`` objects are typically created by
|
118 |
+
``AlignedCorpusReader`` (not directly by nltk users).
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
corpus_file,
|
124 |
+
encoding,
|
125 |
+
aligned,
|
126 |
+
group_by_sent,
|
127 |
+
word_tokenizer,
|
128 |
+
sent_tokenizer,
|
129 |
+
alignedsent_block_reader,
|
130 |
+
):
|
131 |
+
self._aligned = aligned
|
132 |
+
self._group_by_sent = group_by_sent
|
133 |
+
self._word_tokenizer = word_tokenizer
|
134 |
+
self._sent_tokenizer = sent_tokenizer
|
135 |
+
self._alignedsent_block_reader = alignedsent_block_reader
|
136 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
137 |
+
|
138 |
+
def read_block(self, stream):
|
139 |
+
block = [
|
140 |
+
self._word_tokenizer.tokenize(sent_str)
|
141 |
+
for alignedsent_str in self._alignedsent_block_reader(stream)
|
142 |
+
for sent_str in self._sent_tokenizer.tokenize(alignedsent_str)
|
143 |
+
]
|
144 |
+
if self._aligned:
|
145 |
+
block[2] = Alignment.fromstring(
|
146 |
+
" ".join(block[2])
|
147 |
+
) # kludge; we shouldn't have tokenized the alignment string
|
148 |
+
block = [AlignedSent(*block)]
|
149 |
+
elif self._group_by_sent:
|
150 |
+
block = [block[0]]
|
151 |
+
else:
|
152 |
+
block = block[0]
|
153 |
+
|
154 |
+
return block
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/api.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: API for Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
API for corpus readers.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
from collections import defaultdict
|
16 |
+
from itertools import chain
|
17 |
+
|
18 |
+
from nltk.corpus.reader.util import *
|
19 |
+
from nltk.data import FileSystemPathPointer, PathPointer, ZipFilePathPointer
|
20 |
+
|
21 |
+
|
22 |
+
class CorpusReader:
|
23 |
+
"""
|
24 |
+
A base class for "corpus reader" classes, each of which can be
|
25 |
+
used to read a specific corpus format. Each individual corpus
|
26 |
+
reader instance is used to read a specific corpus, consisting of
|
27 |
+
one or more files under a common root directory. Each file is
|
28 |
+
identified by its ``file identifier``, which is the relative path
|
29 |
+
to the file from the root directory.
|
30 |
+
|
31 |
+
A separate subclass is defined for each corpus format. These
|
32 |
+
subclasses define one or more methods that provide 'views' on the
|
33 |
+
corpus contents, such as ``words()`` (for a list of words) and
|
34 |
+
``parsed_sents()`` (for a list of parsed sentences). Called with
|
35 |
+
no arguments, these methods will return the contents of the entire
|
36 |
+
corpus. For most corpora, these methods define one or more
|
37 |
+
selection arguments, such as ``fileids`` or ``categories``, which can
|
38 |
+
be used to select which portion of the corpus should be returned.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, root, fileids, encoding="utf8", tagset=None):
|
42 |
+
"""
|
43 |
+
:type root: PathPointer or str
|
44 |
+
:param root: A path pointer identifying the root directory for
|
45 |
+
this corpus. If a string is specified, then it will be
|
46 |
+
converted to a ``PathPointer`` automatically.
|
47 |
+
:param fileids: A list of the files that make up this corpus.
|
48 |
+
This list can either be specified explicitly, as a list of
|
49 |
+
strings; or implicitly, as a regular expression over file
|
50 |
+
paths. The absolute path for each file will be constructed
|
51 |
+
by joining the reader's root to each file name.
|
52 |
+
:param encoding: The default unicode encoding for the files
|
53 |
+
that make up the corpus. The value of ``encoding`` can be any
|
54 |
+
of the following:
|
55 |
+
|
56 |
+
- A string: ``encoding`` is the encoding name for all files.
|
57 |
+
- A dictionary: ``encoding[file_id]`` is the encoding
|
58 |
+
name for the file whose identifier is ``file_id``. If
|
59 |
+
``file_id`` is not in ``encoding``, then the file
|
60 |
+
contents will be processed using non-unicode byte strings.
|
61 |
+
- A list: ``encoding`` should be a list of ``(regexp, encoding)``
|
62 |
+
tuples. The encoding for a file whose identifier is ``file_id``
|
63 |
+
will be the ``encoding`` value for the first tuple whose
|
64 |
+
``regexp`` matches the ``file_id``. If no tuple's ``regexp``
|
65 |
+
matches the ``file_id``, the file contents will be processed
|
66 |
+
using non-unicode byte strings.
|
67 |
+
- None: the file contents of all files will be
|
68 |
+
processed using non-unicode byte strings.
|
69 |
+
:param tagset: The name of the tagset used by this corpus, to be used
|
70 |
+
for normalizing or converting the POS tags returned by the
|
71 |
+
``tagged_...()`` methods.
|
72 |
+
"""
|
73 |
+
# Convert the root to a path pointer, if necessary.
|
74 |
+
if isinstance(root, str) and not isinstance(root, PathPointer):
|
75 |
+
m = re.match(r"(.*\.zip)/?(.*)$|", root)
|
76 |
+
zipfile, zipentry = m.groups()
|
77 |
+
if zipfile:
|
78 |
+
root = ZipFilePathPointer(zipfile, zipentry)
|
79 |
+
else:
|
80 |
+
root = FileSystemPathPointer(root)
|
81 |
+
elif not isinstance(root, PathPointer):
|
82 |
+
raise TypeError("CorpusReader: expected a string or a PathPointer")
|
83 |
+
|
84 |
+
# If `fileids` is a regexp, then expand it.
|
85 |
+
if isinstance(fileids, str):
|
86 |
+
fileids = find_corpus_fileids(root, fileids)
|
87 |
+
|
88 |
+
self._fileids = fileids
|
89 |
+
"""A list of the relative paths for the fileids that make up
|
90 |
+
this corpus."""
|
91 |
+
|
92 |
+
self._root = root
|
93 |
+
"""The root directory for this corpus."""
|
94 |
+
|
95 |
+
self._readme = "README"
|
96 |
+
self._license = "LICENSE"
|
97 |
+
self._citation = "citation.bib"
|
98 |
+
|
99 |
+
# If encoding was specified as a list of regexps, then convert
|
100 |
+
# it to a dictionary.
|
101 |
+
if isinstance(encoding, list):
|
102 |
+
encoding_dict = {}
|
103 |
+
for fileid in self._fileids:
|
104 |
+
for x in encoding:
|
105 |
+
(regexp, enc) = x
|
106 |
+
if re.match(regexp, fileid):
|
107 |
+
encoding_dict[fileid] = enc
|
108 |
+
break
|
109 |
+
encoding = encoding_dict
|
110 |
+
|
111 |
+
self._encoding = encoding
|
112 |
+
"""The default unicode encoding for the fileids that make up
|
113 |
+
this corpus. If ``encoding`` is None, then the file
|
114 |
+
contents are processed using byte strings."""
|
115 |
+
self._tagset = tagset
|
116 |
+
|
117 |
+
def __repr__(self):
|
118 |
+
if isinstance(self._root, ZipFilePathPointer):
|
119 |
+
path = f"{self._root.zipfile.filename}/{self._root.entry}"
|
120 |
+
else:
|
121 |
+
path = "%s" % self._root.path
|
122 |
+
return f"<{self.__class__.__name__} in {path!r}>"
|
123 |
+
|
124 |
+
def ensure_loaded(self):
|
125 |
+
"""
|
126 |
+
Load this corpus (if it has not already been loaded). This is
|
127 |
+
used by LazyCorpusLoader as a simple method that can be used to
|
128 |
+
make sure a corpus is loaded -- e.g., in case a user wants to
|
129 |
+
do help(some_corpus).
|
130 |
+
"""
|
131 |
+
pass # no need to actually do anything.
|
132 |
+
|
133 |
+
def readme(self):
|
134 |
+
"""
|
135 |
+
Return the contents of the corpus README file, if it exists.
|
136 |
+
"""
|
137 |
+
with self.open(self._readme) as f:
|
138 |
+
return f.read()
|
139 |
+
|
140 |
+
def license(self):
|
141 |
+
"""
|
142 |
+
Return the contents of the corpus LICENSE file, if it exists.
|
143 |
+
"""
|
144 |
+
with self.open(self._license) as f:
|
145 |
+
return f.read()
|
146 |
+
|
147 |
+
def citation(self):
|
148 |
+
"""
|
149 |
+
Return the contents of the corpus citation.bib file, if it exists.
|
150 |
+
"""
|
151 |
+
with self.open(self._citation) as f:
|
152 |
+
return f.read()
|
153 |
+
|
154 |
+
def fileids(self):
|
155 |
+
"""
|
156 |
+
Return a list of file identifiers for the fileids that make up
|
157 |
+
this corpus.
|
158 |
+
"""
|
159 |
+
return self._fileids
|
160 |
+
|
161 |
+
def abspath(self, fileid):
|
162 |
+
"""
|
163 |
+
Return the absolute path for the given file.
|
164 |
+
|
165 |
+
:type fileid: str
|
166 |
+
:param fileid: The file identifier for the file whose path
|
167 |
+
should be returned.
|
168 |
+
:rtype: PathPointer
|
169 |
+
"""
|
170 |
+
return self._root.join(fileid)
|
171 |
+
|
172 |
+
def abspaths(self, fileids=None, include_encoding=False, include_fileid=False):
|
173 |
+
"""
|
174 |
+
Return a list of the absolute paths for all fileids in this corpus;
|
175 |
+
or for the given list of fileids, if specified.
|
176 |
+
|
177 |
+
:type fileids: None or str or list
|
178 |
+
:param fileids: Specifies the set of fileids for which paths should
|
179 |
+
be returned. Can be None, for all fileids; a list of
|
180 |
+
file identifiers, for a specified set of fileids; or a single
|
181 |
+
file identifier, for a single file. Note that the return
|
182 |
+
value is always a list of paths, even if ``fileids`` is a
|
183 |
+
single file identifier.
|
184 |
+
|
185 |
+
:param include_encoding: If true, then return a list of
|
186 |
+
``(path_pointer, encoding)`` tuples.
|
187 |
+
|
188 |
+
:rtype: list(PathPointer)
|
189 |
+
"""
|
190 |
+
if fileids is None:
|
191 |
+
fileids = self._fileids
|
192 |
+
elif isinstance(fileids, str):
|
193 |
+
fileids = [fileids]
|
194 |
+
|
195 |
+
paths = [self._root.join(f) for f in fileids]
|
196 |
+
|
197 |
+
if include_encoding and include_fileid:
|
198 |
+
return list(zip(paths, [self.encoding(f) for f in fileids], fileids))
|
199 |
+
elif include_fileid:
|
200 |
+
return list(zip(paths, fileids))
|
201 |
+
elif include_encoding:
|
202 |
+
return list(zip(paths, [self.encoding(f) for f in fileids]))
|
203 |
+
else:
|
204 |
+
return paths
|
205 |
+
|
206 |
+
def raw(self, fileids=None):
|
207 |
+
"""
|
208 |
+
:param fileids: A list specifying the fileids that should be used.
|
209 |
+
:return: the given file(s) as a single string.
|
210 |
+
:rtype: str
|
211 |
+
"""
|
212 |
+
if fileids is None:
|
213 |
+
fileids = self._fileids
|
214 |
+
elif isinstance(fileids, str):
|
215 |
+
fileids = [fileids]
|
216 |
+
contents = []
|
217 |
+
for f in fileids:
|
218 |
+
with self.open(f) as fp:
|
219 |
+
contents.append(fp.read())
|
220 |
+
return concat(contents)
|
221 |
+
|
222 |
+
def open(self, file):
|
223 |
+
"""
|
224 |
+
Return an open stream that can be used to read the given file.
|
225 |
+
If the file's encoding is not None, then the stream will
|
226 |
+
automatically decode the file's contents into unicode.
|
227 |
+
|
228 |
+
:param file: The file identifier of the file to read.
|
229 |
+
"""
|
230 |
+
encoding = self.encoding(file)
|
231 |
+
stream = self._root.join(file).open(encoding)
|
232 |
+
return stream
|
233 |
+
|
234 |
+
def encoding(self, file):
|
235 |
+
"""
|
236 |
+
Return the unicode encoding for the given corpus file, if known.
|
237 |
+
If the encoding is unknown, or if the given file should be
|
238 |
+
processed using byte strings (str), then return None.
|
239 |
+
"""
|
240 |
+
if isinstance(self._encoding, dict):
|
241 |
+
return self._encoding.get(file)
|
242 |
+
else:
|
243 |
+
return self._encoding
|
244 |
+
|
245 |
+
def _get_root(self):
|
246 |
+
return self._root
|
247 |
+
|
248 |
+
root = property(
|
249 |
+
_get_root,
|
250 |
+
doc="""
|
251 |
+
The directory where this corpus is stored.
|
252 |
+
|
253 |
+
:type: PathPointer""",
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
######################################################################
|
258 |
+
# { Corpora containing categorized items
|
259 |
+
######################################################################
|
260 |
+
|
261 |
+
|
262 |
+
class CategorizedCorpusReader:
|
263 |
+
"""
|
264 |
+
A mixin class used to aid in the implementation of corpus readers
|
265 |
+
for categorized corpora. This class defines the method
|
266 |
+
``categories()``, which returns a list of the categories for the
|
267 |
+
corpus or for a specified set of fileids; and overrides ``fileids()``
|
268 |
+
to take a ``categories`` argument, restricting the set of fileids to
|
269 |
+
be returned.
|
270 |
+
|
271 |
+
Subclasses are expected to:
|
272 |
+
|
273 |
+
- Call ``__init__()`` to set up the mapping.
|
274 |
+
|
275 |
+
- Override all view methods to accept a ``categories`` parameter,
|
276 |
+
which can be used *instead* of the ``fileids`` parameter, to
|
277 |
+
select which fileids should be included in the returned view.
|
278 |
+
"""
|
279 |
+
|
280 |
+
def __init__(self, kwargs):
|
281 |
+
"""
|
282 |
+
Initialize this mapping based on keyword arguments, as
|
283 |
+
follows:
|
284 |
+
|
285 |
+
- cat_pattern: A regular expression pattern used to find the
|
286 |
+
category for each file identifier. The pattern will be
|
287 |
+
applied to each file identifier, and the first matching
|
288 |
+
group will be used as the category label for that file.
|
289 |
+
|
290 |
+
- cat_map: A dictionary, mapping from file identifiers to
|
291 |
+
category labels.
|
292 |
+
|
293 |
+
- cat_file: The name of a file that contains the mapping
|
294 |
+
from file identifiers to categories. The argument
|
295 |
+
``cat_delimiter`` can be used to specify a delimiter.
|
296 |
+
|
297 |
+
The corresponding argument will be deleted from ``kwargs``. If
|
298 |
+
more than one argument is specified, an exception will be
|
299 |
+
raised.
|
300 |
+
"""
|
301 |
+
self._f2c = None #: file-to-category mapping
|
302 |
+
self._c2f = None #: category-to-file mapping
|
303 |
+
|
304 |
+
self._pattern = None #: regexp specifying the mapping
|
305 |
+
self._map = None #: dict specifying the mapping
|
306 |
+
self._file = None #: fileid of file containing the mapping
|
307 |
+
self._delimiter = None #: delimiter for ``self._file``
|
308 |
+
|
309 |
+
if "cat_pattern" in kwargs:
|
310 |
+
self._pattern = kwargs["cat_pattern"]
|
311 |
+
del kwargs["cat_pattern"]
|
312 |
+
elif "cat_map" in kwargs:
|
313 |
+
self._map = kwargs["cat_map"]
|
314 |
+
del kwargs["cat_map"]
|
315 |
+
elif "cat_file" in kwargs:
|
316 |
+
self._file = kwargs["cat_file"]
|
317 |
+
del kwargs["cat_file"]
|
318 |
+
if "cat_delimiter" in kwargs:
|
319 |
+
self._delimiter = kwargs["cat_delimiter"]
|
320 |
+
del kwargs["cat_delimiter"]
|
321 |
+
else:
|
322 |
+
raise ValueError(
|
323 |
+
"Expected keyword argument cat_pattern or " "cat_map or cat_file."
|
324 |
+
)
|
325 |
+
|
326 |
+
if "cat_pattern" in kwargs or "cat_map" in kwargs or "cat_file" in kwargs:
|
327 |
+
raise ValueError(
|
328 |
+
"Specify exactly one of: cat_pattern, " "cat_map, cat_file."
|
329 |
+
)
|
330 |
+
|
331 |
+
def _init(self):
|
332 |
+
self._f2c = defaultdict(set)
|
333 |
+
self._c2f = defaultdict(set)
|
334 |
+
|
335 |
+
if self._pattern is not None:
|
336 |
+
for file_id in self._fileids:
|
337 |
+
category = re.match(self._pattern, file_id).group(1)
|
338 |
+
self._add(file_id, category)
|
339 |
+
|
340 |
+
elif self._map is not None:
|
341 |
+
for (file_id, categories) in self._map.items():
|
342 |
+
for category in categories:
|
343 |
+
self._add(file_id, category)
|
344 |
+
|
345 |
+
elif self._file is not None:
|
346 |
+
with self.open(self._file) as f:
|
347 |
+
for line in f.readlines():
|
348 |
+
line = line.strip()
|
349 |
+
file_id, categories = line.split(self._delimiter, 1)
|
350 |
+
if file_id not in self.fileids():
|
351 |
+
raise ValueError(
|
352 |
+
"In category mapping file %s: %s "
|
353 |
+
"not found" % (self._file, file_id)
|
354 |
+
)
|
355 |
+
for category in categories.split(self._delimiter):
|
356 |
+
self._add(file_id, category)
|
357 |
+
|
358 |
+
def _add(self, file_id, category):
|
359 |
+
self._f2c[file_id].add(category)
|
360 |
+
self._c2f[category].add(file_id)
|
361 |
+
|
362 |
+
def categories(self, fileids=None):
|
363 |
+
"""
|
364 |
+
Return a list of the categories that are defined for this corpus,
|
365 |
+
or for the file(s) if it is given.
|
366 |
+
"""
|
367 |
+
if self._f2c is None:
|
368 |
+
self._init()
|
369 |
+
if fileids is None:
|
370 |
+
return sorted(self._c2f)
|
371 |
+
if isinstance(fileids, str):
|
372 |
+
fileids = [fileids]
|
373 |
+
return sorted(set.union(*(self._f2c[d] for d in fileids)))
|
374 |
+
|
375 |
+
def fileids(self, categories=None):
|
376 |
+
"""
|
377 |
+
Return a list of file identifiers for the files that make up
|
378 |
+
this corpus, or that make up the given category(s) if specified.
|
379 |
+
"""
|
380 |
+
if categories is None:
|
381 |
+
return super().fileids()
|
382 |
+
elif isinstance(categories, str):
|
383 |
+
if self._f2c is None:
|
384 |
+
self._init()
|
385 |
+
if categories in self._c2f:
|
386 |
+
return sorted(self._c2f[categories])
|
387 |
+
else:
|
388 |
+
raise ValueError("Category %s not found" % categories)
|
389 |
+
else:
|
390 |
+
if self._f2c is None:
|
391 |
+
self._init()
|
392 |
+
return sorted(set.union(*(self._c2f[c] for c in categories)))
|
393 |
+
|
394 |
+
def _resolve(self, fileids, categories):
|
395 |
+
if fileids is not None and categories is not None:
|
396 |
+
raise ValueError("Specify fileids or categories, not both")
|
397 |
+
if categories is not None:
|
398 |
+
return self.fileids(categories)
|
399 |
+
else:
|
400 |
+
return fileids
|
401 |
+
|
402 |
+
def raw(self, fileids=None, categories=None):
|
403 |
+
return super().raw(self._resolve(fileids, categories))
|
404 |
+
|
405 |
+
def words(self, fileids=None, categories=None):
|
406 |
+
return super().words(self._resolve(fileids, categories))
|
407 |
+
|
408 |
+
def sents(self, fileids=None, categories=None):
|
409 |
+
return super().sents(self._resolve(fileids, categories))
|
410 |
+
|
411 |
+
def paras(self, fileids=None, categories=None):
|
412 |
+
return super().paras(self._resolve(fileids, categories))
|
413 |
+
|
414 |
+
|
415 |
+
######################################################################
|
416 |
+
# { Treebank readers
|
417 |
+
######################################################################
|
418 |
+
|
419 |
+
# [xx] is it worth it to factor this out?
|
420 |
+
class SyntaxCorpusReader(CorpusReader):
|
421 |
+
"""
|
422 |
+
An abstract base class for reading corpora consisting of
|
423 |
+
syntactically parsed text. Subclasses should define:
|
424 |
+
|
425 |
+
- ``__init__``, which specifies the location of the corpus
|
426 |
+
and a method for detecting the sentence blocks in corpus files.
|
427 |
+
- ``_read_block``, which reads a block from the input stream.
|
428 |
+
- ``_word``, which takes a block and returns a list of list of words.
|
429 |
+
- ``_tag``, which takes a block and returns a list of list of tagged
|
430 |
+
words.
|
431 |
+
- ``_parse``, which takes a block and returns a list of parsed
|
432 |
+
sentences.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def _parse(self, s):
|
436 |
+
raise NotImplementedError()
|
437 |
+
|
438 |
+
def _word(self, s):
|
439 |
+
raise NotImplementedError()
|
440 |
+
|
441 |
+
def _tag(self, s):
|
442 |
+
raise NotImplementedError()
|
443 |
+
|
444 |
+
def _read_block(self, stream):
|
445 |
+
raise NotImplementedError()
|
446 |
+
|
447 |
+
def parsed_sents(self, fileids=None):
|
448 |
+
reader = self._read_parsed_sent_block
|
449 |
+
return concat(
|
450 |
+
[
|
451 |
+
StreamBackedCorpusView(fileid, reader, encoding=enc)
|
452 |
+
for fileid, enc in self.abspaths(fileids, True)
|
453 |
+
]
|
454 |
+
)
|
455 |
+
|
456 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
457 |
+
def reader(stream):
|
458 |
+
return self._read_tagged_sent_block(stream, tagset)
|
459 |
+
|
460 |
+
return concat(
|
461 |
+
[
|
462 |
+
StreamBackedCorpusView(fileid, reader, encoding=enc)
|
463 |
+
for fileid, enc in self.abspaths(fileids, True)
|
464 |
+
]
|
465 |
+
)
|
466 |
+
|
467 |
+
def sents(self, fileids=None):
|
468 |
+
reader = self._read_sent_block
|
469 |
+
return concat(
|
470 |
+
[
|
471 |
+
StreamBackedCorpusView(fileid, reader, encoding=enc)
|
472 |
+
for fileid, enc in self.abspaths(fileids, True)
|
473 |
+
]
|
474 |
+
)
|
475 |
+
|
476 |
+
def tagged_words(self, fileids=None, tagset=None):
|
477 |
+
def reader(stream):
|
478 |
+
return self._read_tagged_word_block(stream, tagset)
|
479 |
+
|
480 |
+
return concat(
|
481 |
+
[
|
482 |
+
StreamBackedCorpusView(fileid, reader, encoding=enc)
|
483 |
+
for fileid, enc in self.abspaths(fileids, True)
|
484 |
+
]
|
485 |
+
)
|
486 |
+
|
487 |
+
def words(self, fileids=None):
|
488 |
+
return concat(
|
489 |
+
[
|
490 |
+
StreamBackedCorpusView(fileid, self._read_word_block, encoding=enc)
|
491 |
+
for fileid, enc in self.abspaths(fileids, True)
|
492 |
+
]
|
493 |
+
)
|
494 |
+
|
495 |
+
# ------------------------------------------------------------
|
496 |
+
# { Block Readers
|
497 |
+
|
498 |
+
def _read_word_block(self, stream):
|
499 |
+
return list(chain.from_iterable(self._read_sent_block(stream)))
|
500 |
+
|
501 |
+
def _read_tagged_word_block(self, stream, tagset=None):
|
502 |
+
return list(chain.from_iterable(self._read_tagged_sent_block(stream, tagset)))
|
503 |
+
|
504 |
+
def _read_sent_block(self, stream):
|
505 |
+
return list(filter(None, [self._word(t) for t in self._read_block(stream)]))
|
506 |
+
|
507 |
+
def _read_tagged_sent_block(self, stream, tagset=None):
|
508 |
+
return list(
|
509 |
+
filter(None, [self._tag(t, tagset) for t in self._read_block(stream)])
|
510 |
+
)
|
511 |
+
|
512 |
+
def _read_parsed_sent_block(self, stream):
|
513 |
+
return list(filter(None, [self._parse(t) for t in self._read_block(stream)]))
|
514 |
+
|
515 |
+
# } End of Block Readers
|
516 |
+
# ------------------------------------------------------------
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bcp47.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: BCP-47 language tags
|
2 |
+
#
|
3 |
+
# Copyright (C) 2022-2023 NLTK Project
|
4 |
+
# Author: Eric Kafe <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import re
|
9 |
+
from warnings import warn
|
10 |
+
from xml.etree import ElementTree as et
|
11 |
+
|
12 |
+
from nltk.corpus.reader import CorpusReader
|
13 |
+
|
14 |
+
|
15 |
+
class BCP47CorpusReader(CorpusReader):
|
16 |
+
"""
|
17 |
+
Parse BCP-47 composite language tags
|
18 |
+
|
19 |
+
Supports all the main subtags, and the 'u-sd' extension:
|
20 |
+
|
21 |
+
>>> from nltk.corpus import bcp47
|
22 |
+
>>> bcp47.name('oc-gascon-u-sd-fr64')
|
23 |
+
'Occitan (post 1500): Gascon: Pyrénées-Atlantiques'
|
24 |
+
|
25 |
+
Can load a conversion table to Wikidata Q-codes:
|
26 |
+
>>> bcp47.load_wiki_q()
|
27 |
+
>>> bcp47.wiki_q['en-GI-spanglis']
|
28 |
+
'Q79388'
|
29 |
+
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, root, fileids):
|
33 |
+
"""Read the BCP-47 database"""
|
34 |
+
super().__init__(root, fileids)
|
35 |
+
self.langcode = {}
|
36 |
+
with self.open("iana/language-subtag-registry.txt") as fp:
|
37 |
+
self.db = self.data_dict(fp.read().split("%%\n"))
|
38 |
+
with self.open("cldr/common-subdivisions-en.xml") as fp:
|
39 |
+
self.subdiv = self.subdiv_dict(
|
40 |
+
et.parse(fp).iterfind("localeDisplayNames/subdivisions/subdivision")
|
41 |
+
)
|
42 |
+
self.morphology()
|
43 |
+
|
44 |
+
def load_wiki_q(self):
|
45 |
+
"""Load conversion table to Wikidata Q-codes (only if needed)"""
|
46 |
+
with self.open("cldr/tools-cldr-rdf-external-entityToCode.tsv") as fp:
|
47 |
+
self.wiki_q = self.wiki_dict(fp.read().strip().split("\n")[1:])
|
48 |
+
|
49 |
+
def wiki_dict(self, lines):
|
50 |
+
"""Convert Wikidata list of Q-codes to a BCP-47 dictionary"""
|
51 |
+
return {
|
52 |
+
pair[1]: pair[0].split("/")[-1]
|
53 |
+
for pair in [line.strip().split("\t") for line in lines]
|
54 |
+
}
|
55 |
+
|
56 |
+
def subdiv_dict(self, subdivs):
|
57 |
+
"""Convert the CLDR subdivisions list to a dictionary"""
|
58 |
+
return {sub.attrib["type"]: sub.text for sub in subdivs}
|
59 |
+
|
60 |
+
def morphology(self):
|
61 |
+
self.casing = {
|
62 |
+
"language": str.lower,
|
63 |
+
"extlang": str.lower,
|
64 |
+
"script": str.title,
|
65 |
+
"region": str.upper,
|
66 |
+
"variant": str.lower,
|
67 |
+
}
|
68 |
+
dig = "[0-9]"
|
69 |
+
low = "[a-z]"
|
70 |
+
up = "[A-Z]"
|
71 |
+
alnum = "[a-zA-Z0-9]"
|
72 |
+
self.format = {
|
73 |
+
"language": re.compile(f"{low*3}?"),
|
74 |
+
"extlang": re.compile(f"{low*3}"),
|
75 |
+
"script": re.compile(f"{up}{low*3}"),
|
76 |
+
"region": re.compile(f"({up*2})|({dig*3})"),
|
77 |
+
"variant": re.compile(f"{alnum*4}{(alnum+'?')*4}"),
|
78 |
+
"singleton": re.compile(f"{low}"),
|
79 |
+
}
|
80 |
+
|
81 |
+
def data_dict(self, records):
|
82 |
+
"""Convert the BCP-47 language subtag registry to a dictionary"""
|
83 |
+
self.version = records[0].replace("File-Date:", "").strip()
|
84 |
+
dic = {}
|
85 |
+
dic["deprecated"] = {}
|
86 |
+
for label in [
|
87 |
+
"language",
|
88 |
+
"extlang",
|
89 |
+
"script",
|
90 |
+
"region",
|
91 |
+
"variant",
|
92 |
+
"redundant",
|
93 |
+
"grandfathered",
|
94 |
+
]:
|
95 |
+
dic["deprecated"][label] = {}
|
96 |
+
for record in records[1:]:
|
97 |
+
fields = [field.split(": ") for field in record.strip().split("\n")]
|
98 |
+
typ = fields[0][1]
|
99 |
+
tag = fields[1][1]
|
100 |
+
if typ not in dic:
|
101 |
+
dic[typ] = {}
|
102 |
+
subfields = {}
|
103 |
+
for field in fields[2:]:
|
104 |
+
if len(field) == 2:
|
105 |
+
[key, val] = field
|
106 |
+
if key not in subfields:
|
107 |
+
subfields[key] = [val]
|
108 |
+
else: # multiple value
|
109 |
+
subfields[key].append(val)
|
110 |
+
else: # multiline field
|
111 |
+
subfields[key][-1] += " " + field[0].strip()
|
112 |
+
if (
|
113 |
+
"Deprecated" not in record
|
114 |
+
and typ == "language"
|
115 |
+
and key == "Description"
|
116 |
+
):
|
117 |
+
self.langcode[subfields[key][-1]] = tag
|
118 |
+
for key in subfields:
|
119 |
+
if len(subfields[key]) == 1: # single value
|
120 |
+
subfields[key] = subfields[key][0]
|
121 |
+
if "Deprecated" in record:
|
122 |
+
dic["deprecated"][typ][tag] = subfields
|
123 |
+
else:
|
124 |
+
dic[typ][tag] = subfields
|
125 |
+
return dic
|
126 |
+
|
127 |
+
def val2str(self, val):
|
128 |
+
"""Return only first value"""
|
129 |
+
if type(val) == list:
|
130 |
+
# val = "/".join(val) # Concatenate all values
|
131 |
+
val = val[0]
|
132 |
+
return val
|
133 |
+
|
134 |
+
def lang2str(self, lg_record):
|
135 |
+
"""Concatenate subtag values"""
|
136 |
+
name = f"{lg_record['language']}"
|
137 |
+
for label in ["extlang", "script", "region", "variant", "extension"]:
|
138 |
+
if label in lg_record:
|
139 |
+
name += f": {lg_record[label]}"
|
140 |
+
return name
|
141 |
+
|
142 |
+
def parse_tag(self, tag):
|
143 |
+
"""Convert a BCP-47 tag to a dictionary of labelled subtags"""
|
144 |
+
subtags = tag.split("-")
|
145 |
+
lang = {}
|
146 |
+
labels = ["language", "extlang", "script", "region", "variant", "variant"]
|
147 |
+
while subtags and labels:
|
148 |
+
subtag = subtags.pop(0)
|
149 |
+
found = False
|
150 |
+
while labels:
|
151 |
+
label = labels.pop(0)
|
152 |
+
subtag = self.casing[label](subtag)
|
153 |
+
if self.format[label].fullmatch(subtag):
|
154 |
+
if subtag in self.db[label]:
|
155 |
+
found = True
|
156 |
+
valstr = self.val2str(self.db[label][subtag]["Description"])
|
157 |
+
if label == "variant" and label in lang:
|
158 |
+
lang[label] += ": " + valstr
|
159 |
+
else:
|
160 |
+
lang[label] = valstr
|
161 |
+
break
|
162 |
+
elif subtag in self.db["deprecated"][label]:
|
163 |
+
found = True
|
164 |
+
note = f"The {subtag!r} {label} code is deprecated"
|
165 |
+
if "Preferred-Value" in self.db["deprecated"][label][subtag]:
|
166 |
+
prefer = self.db["deprecated"][label][subtag][
|
167 |
+
"Preferred-Value"
|
168 |
+
]
|
169 |
+
note += f"', prefer '{self.val2str(prefer)}'"
|
170 |
+
lang[label] = self.val2str(
|
171 |
+
self.db["deprecated"][label][subtag]["Description"]
|
172 |
+
)
|
173 |
+
warn(note)
|
174 |
+
break
|
175 |
+
if not found:
|
176 |
+
if subtag == "u" and subtags[0] == "sd": # CLDR regional subdivisions
|
177 |
+
sd = subtags[1]
|
178 |
+
if sd in self.subdiv:
|
179 |
+
ext = self.subdiv[sd]
|
180 |
+
else:
|
181 |
+
ext = f"<Unknown subdivision: {ext}>"
|
182 |
+
else: # other extension subtags are not supported yet
|
183 |
+
ext = f"{subtag}{''.join(['-'+ext for ext in subtags])}".lower()
|
184 |
+
if not self.format["singleton"].fullmatch(subtag):
|
185 |
+
ext = f"<Invalid extension: {ext}>"
|
186 |
+
warn(ext)
|
187 |
+
lang["extension"] = ext
|
188 |
+
subtags = []
|
189 |
+
return lang
|
190 |
+
|
191 |
+
def name(self, tag):
|
192 |
+
"""
|
193 |
+
Convert a BCP-47 tag to a colon-separated string of subtag names
|
194 |
+
|
195 |
+
>>> from nltk.corpus import bcp47
|
196 |
+
>>> bcp47.name('ca-Latn-ES-valencia')
|
197 |
+
'Catalan: Latin: Spain: Valencian'
|
198 |
+
|
199 |
+
"""
|
200 |
+
for label in ["redundant", "grandfathered"]:
|
201 |
+
val = None
|
202 |
+
if tag in self.db[label]:
|
203 |
+
val = f"{self.db[label][tag]['Description']}"
|
204 |
+
note = f"The {tag!r} code is {label}"
|
205 |
+
elif tag in self.db["deprecated"][label]:
|
206 |
+
val = f"{self.db['deprecated'][label][tag]['Description']}"
|
207 |
+
note = f"The {tag!r} code is {label} and deprecated"
|
208 |
+
if "Preferred-Value" in self.db["deprecated"][label][tag]:
|
209 |
+
prefer = self.db["deprecated"][label][tag]["Preferred-Value"]
|
210 |
+
note += f", prefer {self.val2str(prefer)!r}"
|
211 |
+
if val:
|
212 |
+
warn(note)
|
213 |
+
return val
|
214 |
+
try:
|
215 |
+
return self.lang2str(self.parse_tag(tag))
|
216 |
+
except:
|
217 |
+
warn(f"Tag {tag!r} was not recognized")
|
218 |
+
return None
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bnc.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Plaintext Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""Corpus reader for the XML version of the British National Corpus."""
|
9 |
+
|
10 |
+
from nltk.corpus.reader.util import concat
|
11 |
+
from nltk.corpus.reader.xmldocs import ElementTree, XMLCorpusReader, XMLCorpusView
|
12 |
+
|
13 |
+
|
14 |
+
class BNCCorpusReader(XMLCorpusReader):
|
15 |
+
r"""Corpus reader for the XML version of the British National Corpus.
|
16 |
+
|
17 |
+
For access to the complete XML data structure, use the ``xml()``
|
18 |
+
method. For access to simple word lists and tagged word lists, use
|
19 |
+
``words()``, ``sents()``, ``tagged_words()``, and ``tagged_sents()``.
|
20 |
+
|
21 |
+
You can obtain the full version of the BNC corpus at
|
22 |
+
https://www.ota.ox.ac.uk/desc/2554
|
23 |
+
|
24 |
+
If you extracted the archive to a directory called `BNC`, then you can
|
25 |
+
instantiate the reader as::
|
26 |
+
|
27 |
+
BNCCorpusReader(root='BNC/Texts/', fileids=r'[A-K]/\w*/\w*\.xml')
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, root, fileids, lazy=True):
|
32 |
+
XMLCorpusReader.__init__(self, root, fileids)
|
33 |
+
self._lazy = lazy
|
34 |
+
|
35 |
+
def words(self, fileids=None, strip_space=True, stem=False):
|
36 |
+
"""
|
37 |
+
:return: the given file(s) as a list of words
|
38 |
+
and punctuation symbols.
|
39 |
+
:rtype: list(str)
|
40 |
+
|
41 |
+
:param strip_space: If true, then strip trailing spaces from
|
42 |
+
word tokens. Otherwise, leave the spaces on the tokens.
|
43 |
+
:param stem: If true, then use word stems instead of word strings.
|
44 |
+
"""
|
45 |
+
return self._views(fileids, False, None, strip_space, stem)
|
46 |
+
|
47 |
+
def tagged_words(self, fileids=None, c5=False, strip_space=True, stem=False):
|
48 |
+
"""
|
49 |
+
:return: the given file(s) as a list of tagged
|
50 |
+
words and punctuation symbols, encoded as tuples
|
51 |
+
``(word,tag)``.
|
52 |
+
:rtype: list(tuple(str,str))
|
53 |
+
|
54 |
+
:param c5: If true, then the tags used will be the more detailed
|
55 |
+
c5 tags. Otherwise, the simplified tags will be used.
|
56 |
+
:param strip_space: If true, then strip trailing spaces from
|
57 |
+
word tokens. Otherwise, leave the spaces on the tokens.
|
58 |
+
:param stem: If true, then use word stems instead of word strings.
|
59 |
+
"""
|
60 |
+
tag = "c5" if c5 else "pos"
|
61 |
+
return self._views(fileids, False, tag, strip_space, stem)
|
62 |
+
|
63 |
+
def sents(self, fileids=None, strip_space=True, stem=False):
|
64 |
+
"""
|
65 |
+
:return: the given file(s) as a list of
|
66 |
+
sentences or utterances, each encoded as a list of word
|
67 |
+
strings.
|
68 |
+
:rtype: list(list(str))
|
69 |
+
|
70 |
+
:param strip_space: If true, then strip trailing spaces from
|
71 |
+
word tokens. Otherwise, leave the spaces on the tokens.
|
72 |
+
:param stem: If true, then use word stems instead of word strings.
|
73 |
+
"""
|
74 |
+
return self._views(fileids, True, None, strip_space, stem)
|
75 |
+
|
76 |
+
def tagged_sents(self, fileids=None, c5=False, strip_space=True, stem=False):
|
77 |
+
"""
|
78 |
+
:return: the given file(s) as a list of
|
79 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
80 |
+
:rtype: list(list(tuple(str,str)))
|
81 |
+
|
82 |
+
:param c5: If true, then the tags used will be the more detailed
|
83 |
+
c5 tags. Otherwise, the simplified tags will be used.
|
84 |
+
:param strip_space: If true, then strip trailing spaces from
|
85 |
+
word tokens. Otherwise, leave the spaces on the tokens.
|
86 |
+
:param stem: If true, then use word stems instead of word strings.
|
87 |
+
"""
|
88 |
+
tag = "c5" if c5 else "pos"
|
89 |
+
return self._views(
|
90 |
+
fileids, sent=True, tag=tag, strip_space=strip_space, stem=stem
|
91 |
+
)
|
92 |
+
|
93 |
+
def _views(self, fileids=None, sent=False, tag=False, strip_space=True, stem=False):
|
94 |
+
"""A helper function that instantiates BNCWordViews or the list of words/sentences."""
|
95 |
+
f = BNCWordView if self._lazy else self._words
|
96 |
+
return concat(
|
97 |
+
[
|
98 |
+
f(fileid, sent, tag, strip_space, stem)
|
99 |
+
for fileid in self.abspaths(fileids)
|
100 |
+
]
|
101 |
+
)
|
102 |
+
|
103 |
+
def _words(self, fileid, bracket_sent, tag, strip_space, stem):
|
104 |
+
"""
|
105 |
+
Helper used to implement the view methods -- returns a list of
|
106 |
+
words or a list of sentences, optionally tagged.
|
107 |
+
|
108 |
+
:param fileid: The name of the underlying file.
|
109 |
+
:param bracket_sent: If true, include sentence bracketing.
|
110 |
+
:param tag: The name of the tagset to use, or None for no tags.
|
111 |
+
:param strip_space: If true, strip spaces from word tokens.
|
112 |
+
:param stem: If true, then substitute stems for words.
|
113 |
+
"""
|
114 |
+
result = []
|
115 |
+
|
116 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
117 |
+
for xmlsent in xmldoc.findall(".//s"):
|
118 |
+
sent = []
|
119 |
+
for xmlword in _all_xmlwords_in(xmlsent):
|
120 |
+
word = xmlword.text
|
121 |
+
if not word:
|
122 |
+
word = "" # fixes issue 337?
|
123 |
+
if strip_space or stem:
|
124 |
+
word = word.strip()
|
125 |
+
if stem:
|
126 |
+
word = xmlword.get("hw", word)
|
127 |
+
if tag == "c5":
|
128 |
+
word = (word, xmlword.get("c5"))
|
129 |
+
elif tag == "pos":
|
130 |
+
word = (word, xmlword.get("pos", xmlword.get("c5")))
|
131 |
+
sent.append(word)
|
132 |
+
if bracket_sent:
|
133 |
+
result.append(BNCSentence(xmlsent.attrib["n"], sent))
|
134 |
+
else:
|
135 |
+
result.extend(sent)
|
136 |
+
|
137 |
+
assert None not in result
|
138 |
+
return result
|
139 |
+
|
140 |
+
|
141 |
+
def _all_xmlwords_in(elt, result=None):
|
142 |
+
if result is None:
|
143 |
+
result = []
|
144 |
+
for child in elt:
|
145 |
+
if child.tag in ("c", "w"):
|
146 |
+
result.append(child)
|
147 |
+
else:
|
148 |
+
_all_xmlwords_in(child, result)
|
149 |
+
return result
|
150 |
+
|
151 |
+
|
152 |
+
class BNCSentence(list):
|
153 |
+
"""
|
154 |
+
A list of words, augmented by an attribute ``num`` used to record
|
155 |
+
the sentence identifier (the ``n`` attribute from the XML).
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self, num, items):
|
159 |
+
self.num = num
|
160 |
+
list.__init__(self, items)
|
161 |
+
|
162 |
+
|
163 |
+
class BNCWordView(XMLCorpusView):
|
164 |
+
"""
|
165 |
+
A stream backed corpus view specialized for use with the BNC corpus.
|
166 |
+
"""
|
167 |
+
|
168 |
+
tags_to_ignore = {
|
169 |
+
"pb",
|
170 |
+
"gap",
|
171 |
+
"vocal",
|
172 |
+
"event",
|
173 |
+
"unclear",
|
174 |
+
"shift",
|
175 |
+
"pause",
|
176 |
+
"align",
|
177 |
+
}
|
178 |
+
"""These tags are ignored. For their description refer to the
|
179 |
+
technical documentation, for example,
|
180 |
+
http://www.natcorp.ox.ac.uk/docs/URG/ref-vocal.html
|
181 |
+
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, fileid, sent, tag, strip_space, stem):
|
185 |
+
"""
|
186 |
+
:param fileid: The name of the underlying file.
|
187 |
+
:param sent: If true, include sentence bracketing.
|
188 |
+
:param tag: The name of the tagset to use, or None for no tags.
|
189 |
+
:param strip_space: If true, strip spaces from word tokens.
|
190 |
+
:param stem: If true, then substitute stems for words.
|
191 |
+
"""
|
192 |
+
if sent:
|
193 |
+
tagspec = ".*/s"
|
194 |
+
else:
|
195 |
+
tagspec = ".*/s/(.*/)?(c|w)"
|
196 |
+
self._sent = sent
|
197 |
+
self._tag = tag
|
198 |
+
self._strip_space = strip_space
|
199 |
+
self._stem = stem
|
200 |
+
|
201 |
+
self.title = None #: Title of the document.
|
202 |
+
self.author = None #: Author of the document.
|
203 |
+
self.editor = None #: Editor
|
204 |
+
self.resps = None #: Statement of responsibility
|
205 |
+
|
206 |
+
XMLCorpusView.__init__(self, fileid, tagspec)
|
207 |
+
|
208 |
+
# Read in a tasty header.
|
209 |
+
self._open()
|
210 |
+
self.read_block(self._stream, ".*/teiHeader$", self.handle_header)
|
211 |
+
self.close()
|
212 |
+
|
213 |
+
# Reset tag context.
|
214 |
+
self._tag_context = {0: ()}
|
215 |
+
|
216 |
+
def handle_header(self, elt, context):
|
217 |
+
# Set up some metadata!
|
218 |
+
titles = elt.findall("titleStmt/title")
|
219 |
+
if titles:
|
220 |
+
self.title = "\n".join(title.text.strip() for title in titles)
|
221 |
+
|
222 |
+
authors = elt.findall("titleStmt/author")
|
223 |
+
if authors:
|
224 |
+
self.author = "\n".join(author.text.strip() for author in authors)
|
225 |
+
|
226 |
+
editors = elt.findall("titleStmt/editor")
|
227 |
+
if editors:
|
228 |
+
self.editor = "\n".join(editor.text.strip() for editor in editors)
|
229 |
+
|
230 |
+
resps = elt.findall("titleStmt/respStmt")
|
231 |
+
if resps:
|
232 |
+
self.resps = "\n\n".join(
|
233 |
+
"\n".join(resp_elt.text.strip() for resp_elt in resp) for resp in resps
|
234 |
+
)
|
235 |
+
|
236 |
+
def handle_elt(self, elt, context):
|
237 |
+
if self._sent:
|
238 |
+
return self.handle_sent(elt)
|
239 |
+
else:
|
240 |
+
return self.handle_word(elt)
|
241 |
+
|
242 |
+
def handle_word(self, elt):
|
243 |
+
word = elt.text
|
244 |
+
if not word:
|
245 |
+
word = "" # fixes issue 337?
|
246 |
+
if self._strip_space or self._stem:
|
247 |
+
word = word.strip()
|
248 |
+
if self._stem:
|
249 |
+
word = elt.get("hw", word)
|
250 |
+
if self._tag == "c5":
|
251 |
+
word = (word, elt.get("c5"))
|
252 |
+
elif self._tag == "pos":
|
253 |
+
word = (word, elt.get("pos", elt.get("c5")))
|
254 |
+
return word
|
255 |
+
|
256 |
+
def handle_sent(self, elt):
|
257 |
+
sent = []
|
258 |
+
for child in elt:
|
259 |
+
if child.tag in ("mw", "hi", "corr", "trunc"):
|
260 |
+
sent += [self.handle_word(w) for w in child]
|
261 |
+
elif child.tag in ("w", "c"):
|
262 |
+
sent.append(self.handle_word(child))
|
263 |
+
elif child.tag not in self.tags_to_ignore:
|
264 |
+
raise ValueError("Unexpected element %s" % child.tag)
|
265 |
+
return BNCSentence(elt.attrib["n"], sent)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/bracket_parse.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Penn Treebank Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
"""
|
9 |
+
Corpus reader for corpora that consist of parenthesis-delineated parse trees.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import sys
|
13 |
+
|
14 |
+
from nltk.corpus.reader.api import *
|
15 |
+
from nltk.corpus.reader.util import *
|
16 |
+
from nltk.tag import map_tag
|
17 |
+
from nltk.tree import Tree
|
18 |
+
|
19 |
+
# we use [^\s()]+ instead of \S+? to avoid matching ()
|
20 |
+
SORTTAGWRD = re.compile(r"\((\d+) ([^\s()]+) ([^\s()]+)\)")
|
21 |
+
TAGWORD = re.compile(r"\(([^\s()]+) ([^\s()]+)\)")
|
22 |
+
WORD = re.compile(r"\([^\s()]+ ([^\s()]+)\)")
|
23 |
+
EMPTY_BRACKETS = re.compile(r"\s*\(\s*\(")
|
24 |
+
|
25 |
+
|
26 |
+
class BracketParseCorpusReader(SyntaxCorpusReader):
|
27 |
+
"""
|
28 |
+
Reader for corpora that consist of parenthesis-delineated parse trees,
|
29 |
+
like those found in the "combined" section of the Penn Treebank,
|
30 |
+
e.g. "(S (NP (DT the) (JJ little) (NN dog)) (VP (VBD barked)))".
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
root,
|
37 |
+
fileids,
|
38 |
+
comment_char=None,
|
39 |
+
detect_blocks="unindented_paren",
|
40 |
+
encoding="utf8",
|
41 |
+
tagset=None,
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
:param root: The root directory for this corpus.
|
45 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
46 |
+
:param comment_char: The character which can appear at the start of
|
47 |
+
a line to indicate that the rest of the line is a comment.
|
48 |
+
:param detect_blocks: The method that is used to find blocks
|
49 |
+
in the corpus; can be 'unindented_paren' (every unindented
|
50 |
+
parenthesis starts a new parse) or 'sexpr' (brackets are
|
51 |
+
matched).
|
52 |
+
:param tagset: The name of the tagset used by this corpus, to be used
|
53 |
+
for normalizing or converting the POS tags returned by the
|
54 |
+
``tagged_...()`` methods.
|
55 |
+
"""
|
56 |
+
SyntaxCorpusReader.__init__(self, root, fileids, encoding)
|
57 |
+
self._comment_char = comment_char
|
58 |
+
self._detect_blocks = detect_blocks
|
59 |
+
self._tagset = tagset
|
60 |
+
|
61 |
+
def _read_block(self, stream):
|
62 |
+
if self._detect_blocks == "sexpr":
|
63 |
+
return read_sexpr_block(stream, comment_char=self._comment_char)
|
64 |
+
elif self._detect_blocks == "blankline":
|
65 |
+
return read_blankline_block(stream)
|
66 |
+
elif self._detect_blocks == "unindented_paren":
|
67 |
+
# Tokens start with unindented left parens.
|
68 |
+
toks = read_regexp_block(stream, start_re=r"^\(")
|
69 |
+
# Strip any comments out of the tokens.
|
70 |
+
if self._comment_char:
|
71 |
+
toks = [
|
72 |
+
re.sub("(?m)^%s.*" % re.escape(self._comment_char), "", tok)
|
73 |
+
for tok in toks
|
74 |
+
]
|
75 |
+
return toks
|
76 |
+
else:
|
77 |
+
assert 0, "bad block type"
|
78 |
+
|
79 |
+
def _normalize(self, t):
|
80 |
+
# Replace leaves of the form (!), (,), with (! !), (, ,)
|
81 |
+
t = re.sub(r"\((.)\)", r"(\1 \1)", t)
|
82 |
+
# Replace leaves of the form (tag word root) with (tag word)
|
83 |
+
t = re.sub(r"\(([^\s()]+) ([^\s()]+) [^\s()]+\)", r"(\1 \2)", t)
|
84 |
+
return t
|
85 |
+
|
86 |
+
def _parse(self, t):
|
87 |
+
try:
|
88 |
+
tree = Tree.fromstring(self._normalize(t))
|
89 |
+
# If there's an empty node at the top, strip it off
|
90 |
+
if tree.label() == "" and len(tree) == 1:
|
91 |
+
return tree[0]
|
92 |
+
else:
|
93 |
+
return tree
|
94 |
+
|
95 |
+
except ValueError as e:
|
96 |
+
sys.stderr.write("Bad tree detected; trying to recover...\n")
|
97 |
+
# Try to recover, if we can:
|
98 |
+
if e.args == ("mismatched parens",):
|
99 |
+
for n in range(1, 5):
|
100 |
+
try:
|
101 |
+
v = Tree(self._normalize(t + ")" * n))
|
102 |
+
sys.stderr.write(
|
103 |
+
" Recovered by adding %d close " "paren(s)\n" % n
|
104 |
+
)
|
105 |
+
return v
|
106 |
+
except ValueError:
|
107 |
+
pass
|
108 |
+
# Try something else:
|
109 |
+
sys.stderr.write(" Recovered by returning a flat parse.\n")
|
110 |
+
# sys.stderr.write(' '.join(t.split())+'\n')
|
111 |
+
return Tree("S", self._tag(t))
|
112 |
+
|
113 |
+
def _tag(self, t, tagset=None):
|
114 |
+
tagged_sent = [(w, p) for (p, w) in TAGWORD.findall(self._normalize(t))]
|
115 |
+
if tagset and tagset != self._tagset:
|
116 |
+
tagged_sent = [
|
117 |
+
(w, map_tag(self._tagset, tagset, p)) for (w, p) in tagged_sent
|
118 |
+
]
|
119 |
+
return tagged_sent
|
120 |
+
|
121 |
+
def _word(self, t):
|
122 |
+
return WORD.findall(self._normalize(t))
|
123 |
+
|
124 |
+
|
125 |
+
class CategorizedBracketParseCorpusReader(
|
126 |
+
CategorizedCorpusReader, BracketParseCorpusReader
|
127 |
+
):
|
128 |
+
"""
|
129 |
+
A reader for parsed corpora whose documents are
|
130 |
+
divided into categories based on their file identifiers.
|
131 |
+
@author: Nathan Schneider <[email protected]>
|
132 |
+
"""
|
133 |
+
|
134 |
+
def __init__(self, *args, **kwargs):
|
135 |
+
"""
|
136 |
+
Initialize the corpus reader. Categorization arguments
|
137 |
+
(C{cat_pattern}, C{cat_map}, and C{cat_file}) are passed to
|
138 |
+
the L{CategorizedCorpusReader constructor
|
139 |
+
<CategorizedCorpusReader.__init__>}. The remaining arguments
|
140 |
+
are passed to the L{BracketParseCorpusReader constructor
|
141 |
+
<BracketParseCorpusReader.__init__>}.
|
142 |
+
"""
|
143 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
144 |
+
BracketParseCorpusReader.__init__(self, *args, **kwargs)
|
145 |
+
|
146 |
+
def tagged_words(self, fileids=None, categories=None, tagset=None):
|
147 |
+
return super().tagged_words(self._resolve(fileids, categories), tagset)
|
148 |
+
|
149 |
+
def tagged_sents(self, fileids=None, categories=None, tagset=None):
|
150 |
+
return super().tagged_sents(self._resolve(fileids, categories), tagset)
|
151 |
+
|
152 |
+
def tagged_paras(self, fileids=None, categories=None, tagset=None):
|
153 |
+
return super().tagged_paras(self._resolve(fileids, categories), tagset)
|
154 |
+
|
155 |
+
def parsed_words(self, fileids=None, categories=None):
|
156 |
+
return super().parsed_words(self._resolve(fileids, categories))
|
157 |
+
|
158 |
+
def parsed_sents(self, fileids=None, categories=None):
|
159 |
+
return super().parsed_sents(self._resolve(fileids, categories))
|
160 |
+
|
161 |
+
def parsed_paras(self, fileids=None, categories=None):
|
162 |
+
return super().parsed_paras(self._resolve(fileids, categories))
|
163 |
+
|
164 |
+
|
165 |
+
class AlpinoCorpusReader(BracketParseCorpusReader):
|
166 |
+
"""
|
167 |
+
Reader for the Alpino Dutch Treebank.
|
168 |
+
This corpus has a lexical breakdown structure embedded, as read by `_parse`
|
169 |
+
Unfortunately this puts punctuation and some other words out of the sentence
|
170 |
+
order in the xml element tree. This is no good for `tag_` and `word_`
|
171 |
+
`_tag` and `_word` will be overridden to use a non-default new parameter 'ordered'
|
172 |
+
to the overridden _normalize function. The _parse function can then remain
|
173 |
+
untouched.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, root, encoding="ISO-8859-1", tagset=None):
|
177 |
+
BracketParseCorpusReader.__init__(
|
178 |
+
self,
|
179 |
+
root,
|
180 |
+
r"alpino\.xml",
|
181 |
+
detect_blocks="blankline",
|
182 |
+
encoding=encoding,
|
183 |
+
tagset=tagset,
|
184 |
+
)
|
185 |
+
|
186 |
+
def _normalize(self, t, ordered=False):
|
187 |
+
"""Normalize the xml sentence element in t.
|
188 |
+
The sentence elements <alpino_ds>, although embedded in a few overall
|
189 |
+
xml elements, are separated by blank lines. That's how the reader can
|
190 |
+
deliver them one at a time.
|
191 |
+
Each sentence has a few category subnodes that are of no use to us.
|
192 |
+
The remaining word nodes may or may not appear in the proper order.
|
193 |
+
Each word node has attributes, among which:
|
194 |
+
- begin : the position of the word in the sentence
|
195 |
+
- pos : Part of Speech: the Tag
|
196 |
+
- word : the actual word
|
197 |
+
The return value is a string with all xml elementes replaced by
|
198 |
+
clauses: either a cat clause with nested clauses, or a word clause.
|
199 |
+
The order of the bracket clauses closely follows the xml.
|
200 |
+
If ordered == True, the word clauses include an order sequence number.
|
201 |
+
If ordered == False, the word clauses only have pos and word parts.
|
202 |
+
"""
|
203 |
+
if t[:10] != "<alpino_ds":
|
204 |
+
return ""
|
205 |
+
# convert XML to sexpr notation
|
206 |
+
t = re.sub(r' <node .*? cat="(\w+)".*>', r"(\1", t)
|
207 |
+
if ordered:
|
208 |
+
t = re.sub(
|
209 |
+
r' <node. *?begin="(\d+)".*? pos="(\w+)".*? word="([^"]+)".*?/>',
|
210 |
+
r"(\1 \2 \3)",
|
211 |
+
t,
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
t = re.sub(r' <node .*?pos="(\w+)".*? word="([^"]+)".*?/>', r"(\1 \2)", t)
|
215 |
+
t = re.sub(r" </node>", r")", t)
|
216 |
+
t = re.sub(r"<sentence>.*</sentence>", r"", t)
|
217 |
+
t = re.sub(r"</?alpino_ds.*>", r"", t)
|
218 |
+
return t
|
219 |
+
|
220 |
+
def _tag(self, t, tagset=None):
|
221 |
+
tagged_sent = [
|
222 |
+
(int(o), w, p)
|
223 |
+
for (o, p, w) in SORTTAGWRD.findall(self._normalize(t, ordered=True))
|
224 |
+
]
|
225 |
+
tagged_sent.sort()
|
226 |
+
if tagset and tagset != self._tagset:
|
227 |
+
tagged_sent = [
|
228 |
+
(w, map_tag(self._tagset, tagset, p)) for (o, w, p) in tagged_sent
|
229 |
+
]
|
230 |
+
else:
|
231 |
+
tagged_sent = [(w, p) for (o, w, p) in tagged_sent]
|
232 |
+
return tagged_sent
|
233 |
+
|
234 |
+
def _word(self, t):
|
235 |
+
"""Return a correctly ordered list if words"""
|
236 |
+
tagged_sent = self._tag(t)
|
237 |
+
return [w for (w, p) in tagged_sent]
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/chasen.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2001-2023 NLTK Project
|
3 |
+
# Author: Masato Hagiwara <[email protected]>
|
4 |
+
# URL: <https://www.nltk.org/>
|
5 |
+
# For license information, see LICENSE.TXT
|
6 |
+
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from nltk.corpus.reader import util
|
10 |
+
from nltk.corpus.reader.api import *
|
11 |
+
from nltk.corpus.reader.util import *
|
12 |
+
|
13 |
+
|
14 |
+
class ChasenCorpusReader(CorpusReader):
|
15 |
+
def __init__(self, root, fileids, encoding="utf8", sent_splitter=None):
|
16 |
+
self._sent_splitter = sent_splitter
|
17 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
18 |
+
|
19 |
+
def words(self, fileids=None):
|
20 |
+
return concat(
|
21 |
+
[
|
22 |
+
ChasenCorpusView(fileid, enc, False, False, False, self._sent_splitter)
|
23 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
def tagged_words(self, fileids=None):
|
28 |
+
return concat(
|
29 |
+
[
|
30 |
+
ChasenCorpusView(fileid, enc, True, False, False, self._sent_splitter)
|
31 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
def sents(self, fileids=None):
|
36 |
+
return concat(
|
37 |
+
[
|
38 |
+
ChasenCorpusView(fileid, enc, False, True, False, self._sent_splitter)
|
39 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
def tagged_sents(self, fileids=None):
|
44 |
+
return concat(
|
45 |
+
[
|
46 |
+
ChasenCorpusView(fileid, enc, True, True, False, self._sent_splitter)
|
47 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def paras(self, fileids=None):
|
52 |
+
return concat(
|
53 |
+
[
|
54 |
+
ChasenCorpusView(fileid, enc, False, True, True, self._sent_splitter)
|
55 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
def tagged_paras(self, fileids=None):
|
60 |
+
return concat(
|
61 |
+
[
|
62 |
+
ChasenCorpusView(fileid, enc, True, True, True, self._sent_splitter)
|
63 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
class ChasenCorpusView(StreamBackedCorpusView):
|
69 |
+
"""
|
70 |
+
A specialized corpus view for ChasenReader. Similar to ``TaggedCorpusView``,
|
71 |
+
but this'll use fixed sets of word and sentence tokenizer.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
corpus_file,
|
77 |
+
encoding,
|
78 |
+
tagged,
|
79 |
+
group_by_sent,
|
80 |
+
group_by_para,
|
81 |
+
sent_splitter=None,
|
82 |
+
):
|
83 |
+
self._tagged = tagged
|
84 |
+
self._group_by_sent = group_by_sent
|
85 |
+
self._group_by_para = group_by_para
|
86 |
+
self._sent_splitter = sent_splitter
|
87 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
88 |
+
|
89 |
+
def read_block(self, stream):
|
90 |
+
"""Reads one paragraph at a time."""
|
91 |
+
block = []
|
92 |
+
for para_str in read_regexp_block(stream, r".", r"^EOS\n"):
|
93 |
+
|
94 |
+
para = []
|
95 |
+
|
96 |
+
sent = []
|
97 |
+
for line in para_str.splitlines():
|
98 |
+
|
99 |
+
_eos = line.strip() == "EOS"
|
100 |
+
_cells = line.split("\t")
|
101 |
+
w = (_cells[0], "\t".join(_cells[1:]))
|
102 |
+
if not _eos:
|
103 |
+
sent.append(w)
|
104 |
+
|
105 |
+
if _eos or (self._sent_splitter and self._sent_splitter(w)):
|
106 |
+
if not self._tagged:
|
107 |
+
sent = [w for (w, t) in sent]
|
108 |
+
if self._group_by_sent:
|
109 |
+
para.append(sent)
|
110 |
+
else:
|
111 |
+
para.extend(sent)
|
112 |
+
sent = []
|
113 |
+
|
114 |
+
if len(sent) > 0:
|
115 |
+
if not self._tagged:
|
116 |
+
sent = [w for (w, t) in sent]
|
117 |
+
|
118 |
+
if self._group_by_sent:
|
119 |
+
para.append(sent)
|
120 |
+
else:
|
121 |
+
para.extend(sent)
|
122 |
+
|
123 |
+
if self._group_by_para:
|
124 |
+
block.append(para)
|
125 |
+
else:
|
126 |
+
block.extend(para)
|
127 |
+
|
128 |
+
return block
|
129 |
+
|
130 |
+
|
131 |
+
def demo():
|
132 |
+
|
133 |
+
import nltk
|
134 |
+
from nltk.corpus.util import LazyCorpusLoader
|
135 |
+
|
136 |
+
jeita = LazyCorpusLoader("jeita", ChasenCorpusReader, r".*chasen", encoding="utf-8")
|
137 |
+
print("/".join(jeita.words()[22100:22140]))
|
138 |
+
|
139 |
+
print(
|
140 |
+
"\nEOS\n".join(
|
141 |
+
"\n".join("{}/{}".format(w[0], w[1].split("\t")[2]) for w in sent)
|
142 |
+
for sent in jeita.tagged_sents()[2170:2173]
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def test():
|
148 |
+
|
149 |
+
from nltk.corpus.util import LazyCorpusLoader
|
150 |
+
|
151 |
+
jeita = LazyCorpusLoader("jeita", ChasenCorpusReader, r".*chasen", encoding="utf-8")
|
152 |
+
|
153 |
+
assert isinstance(jeita.tagged_words()[0][1], str)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo()
|
158 |
+
test()
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/childes.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CHILDES XML Corpus Reader
|
2 |
+
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Tomonori Nagano <[email protected]>
|
5 |
+
# Alexis Dimitriadis <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Corpus reader for the XML version of the CHILDES corpus.
|
11 |
+
"""
|
12 |
+
|
13 |
+
__docformat__ = "epytext en"
|
14 |
+
|
15 |
+
import re
|
16 |
+
from collections import defaultdict
|
17 |
+
|
18 |
+
from nltk.corpus.reader.util import concat
|
19 |
+
from nltk.corpus.reader.xmldocs import ElementTree, XMLCorpusReader
|
20 |
+
from nltk.util import LazyConcatenation, LazyMap, flatten
|
21 |
+
|
22 |
+
# to resolve the namespace issue
|
23 |
+
NS = "http://www.talkbank.org/ns/talkbank"
|
24 |
+
|
25 |
+
|
26 |
+
class CHILDESCorpusReader(XMLCorpusReader):
|
27 |
+
"""
|
28 |
+
Corpus reader for the XML version of the CHILDES corpus.
|
29 |
+
The CHILDES corpus is available at ``https://childes.talkbank.org/``. The XML
|
30 |
+
version of CHILDES is located at ``https://childes.talkbank.org/data-xml/``.
|
31 |
+
Copy the needed parts of the CHILDES XML corpus into the NLTK data directory
|
32 |
+
(``nltk_data/corpora/CHILDES/``).
|
33 |
+
|
34 |
+
For access to the file text use the usual nltk functions,
|
35 |
+
``words()``, ``sents()``, ``tagged_words()`` and ``tagged_sents()``.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, root, fileids, lazy=True):
|
39 |
+
XMLCorpusReader.__init__(self, root, fileids)
|
40 |
+
self._lazy = lazy
|
41 |
+
|
42 |
+
def words(
|
43 |
+
self,
|
44 |
+
fileids=None,
|
45 |
+
speaker="ALL",
|
46 |
+
stem=False,
|
47 |
+
relation=False,
|
48 |
+
strip_space=True,
|
49 |
+
replace=False,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
:return: the given file(s) as a list of words
|
53 |
+
:rtype: list(str)
|
54 |
+
|
55 |
+
:param speaker: If specified, select specific speaker(s) defined
|
56 |
+
in the corpus. Default is 'ALL' (all participants). Common choices
|
57 |
+
are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude
|
58 |
+
researchers)
|
59 |
+
:param stem: If true, then use word stems instead of word strings.
|
60 |
+
:param relation: If true, then return tuples of (stem, index,
|
61 |
+
dependent_index)
|
62 |
+
:param strip_space: If true, then strip trailing spaces from word
|
63 |
+
tokens. Otherwise, leave the spaces on the tokens.
|
64 |
+
:param replace: If true, then use the replaced (intended) word instead
|
65 |
+
of the original word (e.g., 'wat' will be replaced with 'watch')
|
66 |
+
"""
|
67 |
+
sent = None
|
68 |
+
pos = False
|
69 |
+
if not self._lazy:
|
70 |
+
return [
|
71 |
+
self._get_words(
|
72 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
73 |
+
)
|
74 |
+
for fileid in self.abspaths(fileids)
|
75 |
+
]
|
76 |
+
|
77 |
+
get_words = lambda fileid: self._get_words(
|
78 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
79 |
+
)
|
80 |
+
return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids)))
|
81 |
+
|
82 |
+
def tagged_words(
|
83 |
+
self,
|
84 |
+
fileids=None,
|
85 |
+
speaker="ALL",
|
86 |
+
stem=False,
|
87 |
+
relation=False,
|
88 |
+
strip_space=True,
|
89 |
+
replace=False,
|
90 |
+
):
|
91 |
+
"""
|
92 |
+
:return: the given file(s) as a list of tagged
|
93 |
+
words and punctuation symbols, encoded as tuples
|
94 |
+
``(word,tag)``.
|
95 |
+
:rtype: list(tuple(str,str))
|
96 |
+
|
97 |
+
:param speaker: If specified, select specific speaker(s) defined
|
98 |
+
in the corpus. Default is 'ALL' (all participants). Common choices
|
99 |
+
are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude
|
100 |
+
researchers)
|
101 |
+
:param stem: If true, then use word stems instead of word strings.
|
102 |
+
:param relation: If true, then return tuples of (stem, index,
|
103 |
+
dependent_index)
|
104 |
+
:param strip_space: If true, then strip trailing spaces from word
|
105 |
+
tokens. Otherwise, leave the spaces on the tokens.
|
106 |
+
:param replace: If true, then use the replaced (intended) word instead
|
107 |
+
of the original word (e.g., 'wat' will be replaced with 'watch')
|
108 |
+
"""
|
109 |
+
sent = None
|
110 |
+
pos = True
|
111 |
+
if not self._lazy:
|
112 |
+
return [
|
113 |
+
self._get_words(
|
114 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
115 |
+
)
|
116 |
+
for fileid in self.abspaths(fileids)
|
117 |
+
]
|
118 |
+
|
119 |
+
get_words = lambda fileid: self._get_words(
|
120 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
121 |
+
)
|
122 |
+
return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids)))
|
123 |
+
|
124 |
+
def sents(
|
125 |
+
self,
|
126 |
+
fileids=None,
|
127 |
+
speaker="ALL",
|
128 |
+
stem=False,
|
129 |
+
relation=None,
|
130 |
+
strip_space=True,
|
131 |
+
replace=False,
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
:return: the given file(s) as a list of sentences or utterances, each
|
135 |
+
encoded as a list of word strings.
|
136 |
+
:rtype: list(list(str))
|
137 |
+
|
138 |
+
:param speaker: If specified, select specific speaker(s) defined
|
139 |
+
in the corpus. Default is 'ALL' (all participants). Common choices
|
140 |
+
are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude
|
141 |
+
researchers)
|
142 |
+
:param stem: If true, then use word stems instead of word strings.
|
143 |
+
:param relation: If true, then return tuples of ``(str,pos,relation_list)``.
|
144 |
+
If there is manually-annotated relation info, it will return
|
145 |
+
tuples of ``(str,pos,test_relation_list,str,pos,gold_relation_list)``
|
146 |
+
:param strip_space: If true, then strip trailing spaces from word
|
147 |
+
tokens. Otherwise, leave the spaces on the tokens.
|
148 |
+
:param replace: If true, then use the replaced (intended) word instead
|
149 |
+
of the original word (e.g., 'wat' will be replaced with 'watch')
|
150 |
+
"""
|
151 |
+
sent = True
|
152 |
+
pos = False
|
153 |
+
if not self._lazy:
|
154 |
+
return [
|
155 |
+
self._get_words(
|
156 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
157 |
+
)
|
158 |
+
for fileid in self.abspaths(fileids)
|
159 |
+
]
|
160 |
+
|
161 |
+
get_words = lambda fileid: self._get_words(
|
162 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
163 |
+
)
|
164 |
+
return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids)))
|
165 |
+
|
166 |
+
def tagged_sents(
|
167 |
+
self,
|
168 |
+
fileids=None,
|
169 |
+
speaker="ALL",
|
170 |
+
stem=False,
|
171 |
+
relation=None,
|
172 |
+
strip_space=True,
|
173 |
+
replace=False,
|
174 |
+
):
|
175 |
+
"""
|
176 |
+
:return: the given file(s) as a list of
|
177 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
178 |
+
:rtype: list(list(tuple(str,str)))
|
179 |
+
|
180 |
+
:param speaker: If specified, select specific speaker(s) defined
|
181 |
+
in the corpus. Default is 'ALL' (all participants). Common choices
|
182 |
+
are 'CHI' (the child), 'MOT' (mother), ['CHI','MOT'] (exclude
|
183 |
+
researchers)
|
184 |
+
:param stem: If true, then use word stems instead of word strings.
|
185 |
+
:param relation: If true, then return tuples of ``(str,pos,relation_list)``.
|
186 |
+
If there is manually-annotated relation info, it will return
|
187 |
+
tuples of ``(str,pos,test_relation_list,str,pos,gold_relation_list)``
|
188 |
+
:param strip_space: If true, then strip trailing spaces from word
|
189 |
+
tokens. Otherwise, leave the spaces on the tokens.
|
190 |
+
:param replace: If true, then use the replaced (intended) word instead
|
191 |
+
of the original word (e.g., 'wat' will be replaced with 'watch')
|
192 |
+
"""
|
193 |
+
sent = True
|
194 |
+
pos = True
|
195 |
+
if not self._lazy:
|
196 |
+
return [
|
197 |
+
self._get_words(
|
198 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
199 |
+
)
|
200 |
+
for fileid in self.abspaths(fileids)
|
201 |
+
]
|
202 |
+
|
203 |
+
get_words = lambda fileid: self._get_words(
|
204 |
+
fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
205 |
+
)
|
206 |
+
return LazyConcatenation(LazyMap(get_words, self.abspaths(fileids)))
|
207 |
+
|
208 |
+
def corpus(self, fileids=None):
|
209 |
+
"""
|
210 |
+
:return: the given file(s) as a dict of ``(corpus_property_key, value)``
|
211 |
+
:rtype: list(dict)
|
212 |
+
"""
|
213 |
+
if not self._lazy:
|
214 |
+
return [self._get_corpus(fileid) for fileid in self.abspaths(fileids)]
|
215 |
+
return LazyMap(self._get_corpus, self.abspaths(fileids))
|
216 |
+
|
217 |
+
def _get_corpus(self, fileid):
|
218 |
+
results = dict()
|
219 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
220 |
+
for key, value in xmldoc.items():
|
221 |
+
results[key] = value
|
222 |
+
return results
|
223 |
+
|
224 |
+
def participants(self, fileids=None):
|
225 |
+
"""
|
226 |
+
:return: the given file(s) as a dict of
|
227 |
+
``(participant_property_key, value)``
|
228 |
+
:rtype: list(dict)
|
229 |
+
"""
|
230 |
+
if not self._lazy:
|
231 |
+
return [self._get_participants(fileid) for fileid in self.abspaths(fileids)]
|
232 |
+
return LazyMap(self._get_participants, self.abspaths(fileids))
|
233 |
+
|
234 |
+
def _get_participants(self, fileid):
|
235 |
+
# multidimensional dicts
|
236 |
+
def dictOfDicts():
|
237 |
+
return defaultdict(dictOfDicts)
|
238 |
+
|
239 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
240 |
+
# getting participants' data
|
241 |
+
pat = dictOfDicts()
|
242 |
+
for participant in xmldoc.findall(
|
243 |
+
f".//{{{NS}}}Participants/{{{NS}}}participant"
|
244 |
+
):
|
245 |
+
for (key, value) in participant.items():
|
246 |
+
pat[participant.get("id")][key] = value
|
247 |
+
return pat
|
248 |
+
|
249 |
+
def age(self, fileids=None, speaker="CHI", month=False):
|
250 |
+
"""
|
251 |
+
:return: the given file(s) as string or int
|
252 |
+
:rtype: list or int
|
253 |
+
|
254 |
+
:param month: If true, return months instead of year-month-date
|
255 |
+
"""
|
256 |
+
if not self._lazy:
|
257 |
+
return [
|
258 |
+
self._get_age(fileid, speaker, month)
|
259 |
+
for fileid in self.abspaths(fileids)
|
260 |
+
]
|
261 |
+
get_age = lambda fileid: self._get_age(fileid, speaker, month)
|
262 |
+
return LazyMap(get_age, self.abspaths(fileids))
|
263 |
+
|
264 |
+
def _get_age(self, fileid, speaker, month):
|
265 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
266 |
+
for pat in xmldoc.findall(f".//{{{NS}}}Participants/{{{NS}}}participant"):
|
267 |
+
try:
|
268 |
+
if pat.get("id") == speaker:
|
269 |
+
age = pat.get("age")
|
270 |
+
if month:
|
271 |
+
age = self.convert_age(age)
|
272 |
+
return age
|
273 |
+
# some files don't have age data
|
274 |
+
except (TypeError, AttributeError) as e:
|
275 |
+
return None
|
276 |
+
|
277 |
+
def convert_age(self, age_year):
|
278 |
+
"Caclculate age in months from a string in CHILDES format"
|
279 |
+
m = re.match(r"P(\d+)Y(\d+)M?(\d?\d?)D?", age_year)
|
280 |
+
age_month = int(m.group(1)) * 12 + int(m.group(2))
|
281 |
+
try:
|
282 |
+
if int(m.group(3)) > 15:
|
283 |
+
age_month += 1
|
284 |
+
# some corpora don't have age information?
|
285 |
+
except ValueError as e:
|
286 |
+
pass
|
287 |
+
return age_month
|
288 |
+
|
289 |
+
def MLU(self, fileids=None, speaker="CHI"):
|
290 |
+
"""
|
291 |
+
:return: the given file(s) as a floating number
|
292 |
+
:rtype: list(float)
|
293 |
+
"""
|
294 |
+
if not self._lazy:
|
295 |
+
return [
|
296 |
+
self._getMLU(fileid, speaker=speaker)
|
297 |
+
for fileid in self.abspaths(fileids)
|
298 |
+
]
|
299 |
+
get_MLU = lambda fileid: self._getMLU(fileid, speaker=speaker)
|
300 |
+
return LazyMap(get_MLU, self.abspaths(fileids))
|
301 |
+
|
302 |
+
def _getMLU(self, fileid, speaker):
|
303 |
+
sents = self._get_words(
|
304 |
+
fileid,
|
305 |
+
speaker=speaker,
|
306 |
+
sent=True,
|
307 |
+
stem=True,
|
308 |
+
relation=False,
|
309 |
+
pos=True,
|
310 |
+
strip_space=True,
|
311 |
+
replace=True,
|
312 |
+
)
|
313 |
+
results = []
|
314 |
+
lastSent = []
|
315 |
+
numFillers = 0
|
316 |
+
sentDiscount = 0
|
317 |
+
for sent in sents:
|
318 |
+
posList = [pos for (word, pos) in sent]
|
319 |
+
# if any part of the sentence is intelligible
|
320 |
+
if any(pos == "unk" for pos in posList):
|
321 |
+
continue
|
322 |
+
# if the sentence is null
|
323 |
+
elif sent == []:
|
324 |
+
continue
|
325 |
+
# if the sentence is the same as the last sent
|
326 |
+
elif sent == lastSent:
|
327 |
+
continue
|
328 |
+
else:
|
329 |
+
results.append([word for (word, pos) in sent])
|
330 |
+
# count number of fillers
|
331 |
+
if len({"co", None}.intersection(posList)) > 0:
|
332 |
+
numFillers += posList.count("co")
|
333 |
+
numFillers += posList.count(None)
|
334 |
+
sentDiscount += 1
|
335 |
+
lastSent = sent
|
336 |
+
try:
|
337 |
+
thisWordList = flatten(results)
|
338 |
+
# count number of morphemes
|
339 |
+
# (e.g., 'read' = 1 morpheme but 'read-PAST' is 2 morphemes)
|
340 |
+
numWords = (
|
341 |
+
len(flatten([word.split("-") for word in thisWordList])) - numFillers
|
342 |
+
)
|
343 |
+
numSents = len(results) - sentDiscount
|
344 |
+
mlu = numWords / numSents
|
345 |
+
except ZeroDivisionError:
|
346 |
+
mlu = 0
|
347 |
+
# return {'mlu':mlu,'wordNum':numWords,'sentNum':numSents}
|
348 |
+
return mlu
|
349 |
+
|
350 |
+
def _get_words(
|
351 |
+
self, fileid, speaker, sent, stem, relation, pos, strip_space, replace
|
352 |
+
):
|
353 |
+
if (
|
354 |
+
isinstance(speaker, str) and speaker != "ALL"
|
355 |
+
): # ensure we have a list of speakers
|
356 |
+
speaker = [speaker]
|
357 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
358 |
+
# processing each xml doc
|
359 |
+
results = []
|
360 |
+
for xmlsent in xmldoc.findall(".//{%s}u" % NS):
|
361 |
+
sents = []
|
362 |
+
# select speakers
|
363 |
+
if speaker == "ALL" or xmlsent.get("who") in speaker:
|
364 |
+
for xmlword in xmlsent.findall(".//{%s}w" % NS):
|
365 |
+
infl = None
|
366 |
+
suffixStem = None
|
367 |
+
suffixTag = None
|
368 |
+
# getting replaced words
|
369 |
+
if replace and xmlsent.find(f".//{{{NS}}}w/{{{NS}}}replacement"):
|
370 |
+
xmlword = xmlsent.find(
|
371 |
+
f".//{{{NS}}}w/{{{NS}}}replacement/{{{NS}}}w"
|
372 |
+
)
|
373 |
+
elif replace and xmlsent.find(f".//{{{NS}}}w/{{{NS}}}wk"):
|
374 |
+
xmlword = xmlsent.find(f".//{{{NS}}}w/{{{NS}}}wk")
|
375 |
+
# get text
|
376 |
+
if xmlword.text:
|
377 |
+
word = xmlword.text
|
378 |
+
else:
|
379 |
+
word = ""
|
380 |
+
# strip tailing space
|
381 |
+
if strip_space:
|
382 |
+
word = word.strip()
|
383 |
+
# stem
|
384 |
+
if relation or stem:
|
385 |
+
try:
|
386 |
+
xmlstem = xmlword.find(".//{%s}stem" % NS)
|
387 |
+
word = xmlstem.text
|
388 |
+
except AttributeError as e:
|
389 |
+
pass
|
390 |
+
# if there is an inflection
|
391 |
+
try:
|
392 |
+
xmlinfl = xmlword.find(
|
393 |
+
f".//{{{NS}}}mor/{{{NS}}}mw/{{{NS}}}mk"
|
394 |
+
)
|
395 |
+
word += "-" + xmlinfl.text
|
396 |
+
except:
|
397 |
+
pass
|
398 |
+
# if there is a suffix
|
399 |
+
try:
|
400 |
+
xmlsuffix = xmlword.find(
|
401 |
+
".//{%s}mor/{%s}mor-post/{%s}mw/{%s}stem"
|
402 |
+
% (NS, NS, NS, NS)
|
403 |
+
)
|
404 |
+
suffixStem = xmlsuffix.text
|
405 |
+
except AttributeError:
|
406 |
+
suffixStem = ""
|
407 |
+
if suffixStem:
|
408 |
+
word += "~" + suffixStem
|
409 |
+
# pos
|
410 |
+
if relation or pos:
|
411 |
+
try:
|
412 |
+
xmlpos = xmlword.findall(".//{%s}c" % NS)
|
413 |
+
xmlpos2 = xmlword.findall(".//{%s}s" % NS)
|
414 |
+
if xmlpos2 != []:
|
415 |
+
tag = xmlpos[0].text + ":" + xmlpos2[0].text
|
416 |
+
else:
|
417 |
+
tag = xmlpos[0].text
|
418 |
+
except (AttributeError, IndexError) as e:
|
419 |
+
tag = ""
|
420 |
+
try:
|
421 |
+
xmlsuffixpos = xmlword.findall(
|
422 |
+
".//{%s}mor/{%s}mor-post/{%s}mw/{%s}pos/{%s}c"
|
423 |
+
% (NS, NS, NS, NS, NS)
|
424 |
+
)
|
425 |
+
xmlsuffixpos2 = xmlword.findall(
|
426 |
+
".//{%s}mor/{%s}mor-post/{%s}mw/{%s}pos/{%s}s"
|
427 |
+
% (NS, NS, NS, NS, NS)
|
428 |
+
)
|
429 |
+
if xmlsuffixpos2:
|
430 |
+
suffixTag = (
|
431 |
+
xmlsuffixpos[0].text + ":" + xmlsuffixpos2[0].text
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
suffixTag = xmlsuffixpos[0].text
|
435 |
+
except:
|
436 |
+
pass
|
437 |
+
if suffixTag:
|
438 |
+
tag += "~" + suffixTag
|
439 |
+
word = (word, tag)
|
440 |
+
# relational
|
441 |
+
# the gold standard is stored in
|
442 |
+
# <mor></mor><mor type="trn"><gra type="grt">
|
443 |
+
if relation == True:
|
444 |
+
for xmlstem_rel in xmlword.findall(
|
445 |
+
f".//{{{NS}}}mor/{{{NS}}}gra"
|
446 |
+
):
|
447 |
+
if not xmlstem_rel.get("type") == "grt":
|
448 |
+
word = (
|
449 |
+
word[0],
|
450 |
+
word[1],
|
451 |
+
xmlstem_rel.get("index")
|
452 |
+
+ "|"
|
453 |
+
+ xmlstem_rel.get("head")
|
454 |
+
+ "|"
|
455 |
+
+ xmlstem_rel.get("relation"),
|
456 |
+
)
|
457 |
+
else:
|
458 |
+
word = (
|
459 |
+
word[0],
|
460 |
+
word[1],
|
461 |
+
word[2],
|
462 |
+
word[0],
|
463 |
+
word[1],
|
464 |
+
xmlstem_rel.get("index")
|
465 |
+
+ "|"
|
466 |
+
+ xmlstem_rel.get("head")
|
467 |
+
+ "|"
|
468 |
+
+ xmlstem_rel.get("relation"),
|
469 |
+
)
|
470 |
+
try:
|
471 |
+
for xmlpost_rel in xmlword.findall(
|
472 |
+
f".//{{{NS}}}mor/{{{NS}}}mor-post/{{{NS}}}gra"
|
473 |
+
):
|
474 |
+
if not xmlpost_rel.get("type") == "grt":
|
475 |
+
suffixStem = (
|
476 |
+
suffixStem[0],
|
477 |
+
suffixStem[1],
|
478 |
+
xmlpost_rel.get("index")
|
479 |
+
+ "|"
|
480 |
+
+ xmlpost_rel.get("head")
|
481 |
+
+ "|"
|
482 |
+
+ xmlpost_rel.get("relation"),
|
483 |
+
)
|
484 |
+
else:
|
485 |
+
suffixStem = (
|
486 |
+
suffixStem[0],
|
487 |
+
suffixStem[1],
|
488 |
+
suffixStem[2],
|
489 |
+
suffixStem[0],
|
490 |
+
suffixStem[1],
|
491 |
+
xmlpost_rel.get("index")
|
492 |
+
+ "|"
|
493 |
+
+ xmlpost_rel.get("head")
|
494 |
+
+ "|"
|
495 |
+
+ xmlpost_rel.get("relation"),
|
496 |
+
)
|
497 |
+
except:
|
498 |
+
pass
|
499 |
+
sents.append(word)
|
500 |
+
if sent or relation:
|
501 |
+
results.append(sents)
|
502 |
+
else:
|
503 |
+
results.extend(sents)
|
504 |
+
return LazyMap(lambda x: x, results)
|
505 |
+
|
506 |
+
# Ready-to-use browser opener
|
507 |
+
|
508 |
+
"""
|
509 |
+
The base URL for viewing files on the childes website. This
|
510 |
+
shouldn't need to be changed, unless CHILDES changes the configuration
|
511 |
+
of their server or unless the user sets up their own corpus webserver.
|
512 |
+
"""
|
513 |
+
childes_url_base = r"https://childes.talkbank.org/browser/index.php?url="
|
514 |
+
|
515 |
+
def webview_file(self, fileid, urlbase=None):
|
516 |
+
"""Map a corpus file to its web version on the CHILDES website,
|
517 |
+
and open it in a web browser.
|
518 |
+
|
519 |
+
The complete URL to be used is:
|
520 |
+
childes.childes_url_base + urlbase + fileid.replace('.xml', '.cha')
|
521 |
+
|
522 |
+
If no urlbase is passed, we try to calculate it. This
|
523 |
+
requires that the childes corpus was set up to mirror the
|
524 |
+
folder hierarchy under childes.psy.cmu.edu/data-xml/, e.g.:
|
525 |
+
nltk_data/corpora/childes/Eng-USA/Cornell/??? or
|
526 |
+
nltk_data/corpora/childes/Romance/Spanish/Aguirre/???
|
527 |
+
|
528 |
+
The function first looks (as a special case) if "Eng-USA" is
|
529 |
+
on the path consisting of <corpus root>+fileid; then if
|
530 |
+
"childes", possibly followed by "data-xml", appears. If neither
|
531 |
+
one is found, we use the unmodified fileid and hope for the best.
|
532 |
+
If this is not right, specify urlbase explicitly, e.g., if the
|
533 |
+
corpus root points to the Cornell folder, urlbase='Eng-USA/Cornell'.
|
534 |
+
"""
|
535 |
+
|
536 |
+
import webbrowser
|
537 |
+
|
538 |
+
if urlbase:
|
539 |
+
path = urlbase + "/" + fileid
|
540 |
+
else:
|
541 |
+
full = self.root + "/" + fileid
|
542 |
+
full = re.sub(r"\\", "/", full)
|
543 |
+
if "/childes/" in full.lower():
|
544 |
+
# Discard /data-xml/ if present
|
545 |
+
path = re.findall(r"(?i)/childes(?:/data-xml)?/(.*)\.xml", full)[0]
|
546 |
+
elif "eng-usa" in full.lower():
|
547 |
+
path = "Eng-USA/" + re.findall(r"/(?i)Eng-USA/(.*)\.xml", full)[0]
|
548 |
+
else:
|
549 |
+
path = fileid
|
550 |
+
|
551 |
+
# Strip ".xml" and add ".cha", as necessary:
|
552 |
+
if path.endswith(".xml"):
|
553 |
+
path = path[:-4]
|
554 |
+
|
555 |
+
if not path.endswith(".cha"):
|
556 |
+
path = path + ".cha"
|
557 |
+
|
558 |
+
url = self.childes_url_base + path
|
559 |
+
|
560 |
+
webbrowser.open_new_tab(url)
|
561 |
+
print("Opening in browser:", url)
|
562 |
+
# Pausing is a good idea, but it's up to the user...
|
563 |
+
# raw_input("Hit Return to continue")
|
564 |
+
|
565 |
+
|
566 |
+
def demo(corpus_root=None):
|
567 |
+
"""
|
568 |
+
The CHILDES corpus should be manually downloaded and saved
|
569 |
+
to ``[NLTK_Data_Dir]/corpora/childes/``
|
570 |
+
"""
|
571 |
+
if not corpus_root:
|
572 |
+
from nltk.data import find
|
573 |
+
|
574 |
+
corpus_root = find("corpora/childes/data-xml/Eng-USA/")
|
575 |
+
|
576 |
+
try:
|
577 |
+
childes = CHILDESCorpusReader(corpus_root, ".*.xml")
|
578 |
+
# describe all corpus
|
579 |
+
for file in childes.fileids()[:5]:
|
580 |
+
corpus = ""
|
581 |
+
corpus_id = ""
|
582 |
+
for (key, value) in childes.corpus(file)[0].items():
|
583 |
+
if key == "Corpus":
|
584 |
+
corpus = value
|
585 |
+
if key == "Id":
|
586 |
+
corpus_id = value
|
587 |
+
print("Reading", corpus, corpus_id, " .....")
|
588 |
+
print("words:", childes.words(file)[:7], "...")
|
589 |
+
print(
|
590 |
+
"words with replaced words:",
|
591 |
+
childes.words(file, replace=True)[:7],
|
592 |
+
" ...",
|
593 |
+
)
|
594 |
+
print("words with pos tags:", childes.tagged_words(file)[:7], " ...")
|
595 |
+
print("words (only MOT):", childes.words(file, speaker="MOT")[:7], "...")
|
596 |
+
print("words (only CHI):", childes.words(file, speaker="CHI")[:7], "...")
|
597 |
+
print("stemmed words:", childes.words(file, stem=True)[:7], " ...")
|
598 |
+
print(
|
599 |
+
"words with relations and pos-tag:",
|
600 |
+
childes.words(file, relation=True)[:5],
|
601 |
+
" ...",
|
602 |
+
)
|
603 |
+
print("sentence:", childes.sents(file)[:2], " ...")
|
604 |
+
for (participant, values) in childes.participants(file)[0].items():
|
605 |
+
for (key, value) in values.items():
|
606 |
+
print("\tparticipant", participant, key, ":", value)
|
607 |
+
print("num of sent:", len(childes.sents(file)))
|
608 |
+
print("num of morphemes:", len(childes.words(file, stem=True)))
|
609 |
+
print("age:", childes.age(file))
|
610 |
+
print("age in month:", childes.age(file, month=True))
|
611 |
+
print("MLU:", childes.MLU(file))
|
612 |
+
print()
|
613 |
+
|
614 |
+
except LookupError as e:
|
615 |
+
print(
|
616 |
+
"""The CHILDES corpus, or the parts you need, should be manually
|
617 |
+
downloaded from https://childes.talkbank.org/data-xml/ and saved at
|
618 |
+
[NLTK_Data_Dir]/corpora/childes/
|
619 |
+
Alternately, you can call the demo with the path to a portion of the CHILDES corpus, e.g.:
|
620 |
+
demo('/path/to/childes/data-xml/Eng-USA/")
|
621 |
+
"""
|
622 |
+
)
|
623 |
+
# corpus_root_http = urllib2.urlopen('https://childes.talkbank.org/data-xml/Eng-USA/Bates.zip')
|
624 |
+
# corpus_root_http_bates = zipfile.ZipFile(cStringIO.StringIO(corpus_root_http.read()))
|
625 |
+
##this fails
|
626 |
+
# childes = CHILDESCorpusReader(corpus_root_http_bates,corpus_root_http_bates.namelist())
|
627 |
+
|
628 |
+
|
629 |
+
if __name__ == "__main__":
|
630 |
+
demo()
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/chunked.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chunked Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
A reader for corpora that contain chunked (and optionally tagged)
|
11 |
+
documents.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import codecs
|
15 |
+
import os.path
|
16 |
+
|
17 |
+
import nltk
|
18 |
+
from nltk.chunk import tagstr2tree
|
19 |
+
from nltk.corpus.reader.api import *
|
20 |
+
from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader
|
21 |
+
from nltk.corpus.reader.util import *
|
22 |
+
from nltk.tokenize import *
|
23 |
+
from nltk.tree import Tree
|
24 |
+
|
25 |
+
|
26 |
+
class ChunkedCorpusReader(CorpusReader):
|
27 |
+
"""
|
28 |
+
Reader for chunked (and optionally tagged) corpora. Paragraphs
|
29 |
+
are split using a block reader. They are then tokenized into
|
30 |
+
sentences using a sentence tokenizer. Finally, these sentences
|
31 |
+
are parsed into chunk trees using a string-to-chunktree conversion
|
32 |
+
function. Each of these steps can be performed using a default
|
33 |
+
function or a custom function. By default, paragraphs are split
|
34 |
+
on blank lines; sentences are listed one per line; and sentences
|
35 |
+
are parsed into chunk trees using ``nltk.chunk.tagstr2tree``.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
root,
|
41 |
+
fileids,
|
42 |
+
extension="",
|
43 |
+
str2chunktree=tagstr2tree,
|
44 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
45 |
+
para_block_reader=read_blankline_block,
|
46 |
+
encoding="utf8",
|
47 |
+
tagset=None,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
:param root: The root directory for this corpus.
|
51 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
52 |
+
"""
|
53 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
54 |
+
self._cv_args = (str2chunktree, sent_tokenizer, para_block_reader, tagset)
|
55 |
+
"""Arguments for corpus views generated by this corpus: a tuple
|
56 |
+
(str2chunktree, sent_tokenizer, para_block_tokenizer)"""
|
57 |
+
|
58 |
+
def words(self, fileids=None):
|
59 |
+
"""
|
60 |
+
:return: the given file(s) as a list of words
|
61 |
+
and punctuation symbols.
|
62 |
+
:rtype: list(str)
|
63 |
+
"""
|
64 |
+
return concat(
|
65 |
+
[
|
66 |
+
ChunkedCorpusView(f, enc, 0, 0, 0, 0, *self._cv_args)
|
67 |
+
for (f, enc) in self.abspaths(fileids, True)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def sents(self, fileids=None):
|
72 |
+
"""
|
73 |
+
:return: the given file(s) as a list of
|
74 |
+
sentences or utterances, each encoded as a list of word
|
75 |
+
strings.
|
76 |
+
:rtype: list(list(str))
|
77 |
+
"""
|
78 |
+
return concat(
|
79 |
+
[
|
80 |
+
ChunkedCorpusView(f, enc, 0, 1, 0, 0, *self._cv_args)
|
81 |
+
for (f, enc) in self.abspaths(fileids, True)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
def paras(self, fileids=None):
|
86 |
+
"""
|
87 |
+
:return: the given file(s) as a list of
|
88 |
+
paragraphs, each encoded as a list of sentences, which are
|
89 |
+
in turn encoded as lists of word strings.
|
90 |
+
:rtype: list(list(list(str)))
|
91 |
+
"""
|
92 |
+
return concat(
|
93 |
+
[
|
94 |
+
ChunkedCorpusView(f, enc, 0, 1, 1, 0, *self._cv_args)
|
95 |
+
for (f, enc) in self.abspaths(fileids, True)
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
def tagged_words(self, fileids=None, tagset=None):
|
100 |
+
"""
|
101 |
+
:return: the given file(s) as a list of tagged
|
102 |
+
words and punctuation symbols, encoded as tuples
|
103 |
+
``(word,tag)``.
|
104 |
+
:rtype: list(tuple(str,str))
|
105 |
+
"""
|
106 |
+
return concat(
|
107 |
+
[
|
108 |
+
ChunkedCorpusView(
|
109 |
+
f, enc, 1, 0, 0, 0, *self._cv_args, target_tagset=tagset
|
110 |
+
)
|
111 |
+
for (f, enc) in self.abspaths(fileids, True)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
116 |
+
"""
|
117 |
+
:return: the given file(s) as a list of
|
118 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
119 |
+
|
120 |
+
:rtype: list(list(tuple(str,str)))
|
121 |
+
"""
|
122 |
+
return concat(
|
123 |
+
[
|
124 |
+
ChunkedCorpusView(
|
125 |
+
f, enc, 1, 1, 0, 0, *self._cv_args, target_tagset=tagset
|
126 |
+
)
|
127 |
+
for (f, enc) in self.abspaths(fileids, True)
|
128 |
+
]
|
129 |
+
)
|
130 |
+
|
131 |
+
def tagged_paras(self, fileids=None, tagset=None):
|
132 |
+
"""
|
133 |
+
:return: the given file(s) as a list of
|
134 |
+
paragraphs, each encoded as a list of sentences, which are
|
135 |
+
in turn encoded as lists of ``(word,tag)`` tuples.
|
136 |
+
:rtype: list(list(list(tuple(str,str))))
|
137 |
+
"""
|
138 |
+
return concat(
|
139 |
+
[
|
140 |
+
ChunkedCorpusView(
|
141 |
+
f, enc, 1, 1, 1, 0, *self._cv_args, target_tagset=tagset
|
142 |
+
)
|
143 |
+
for (f, enc) in self.abspaths(fileids, True)
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
def chunked_words(self, fileids=None, tagset=None):
|
148 |
+
"""
|
149 |
+
:return: the given file(s) as a list of tagged
|
150 |
+
words and chunks. Words are encoded as ``(word, tag)``
|
151 |
+
tuples (if the corpus has tags) or word strings (if the
|
152 |
+
corpus has no tags). Chunks are encoded as depth-one
|
153 |
+
trees over ``(word,tag)`` tuples or word strings.
|
154 |
+
:rtype: list(tuple(str,str) and Tree)
|
155 |
+
"""
|
156 |
+
return concat(
|
157 |
+
[
|
158 |
+
ChunkedCorpusView(
|
159 |
+
f, enc, 1, 0, 0, 1, *self._cv_args, target_tagset=tagset
|
160 |
+
)
|
161 |
+
for (f, enc) in self.abspaths(fileids, True)
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
def chunked_sents(self, fileids=None, tagset=None):
|
166 |
+
"""
|
167 |
+
:return: the given file(s) as a list of
|
168 |
+
sentences, each encoded as a shallow Tree. The leaves
|
169 |
+
of these trees are encoded as ``(word, tag)`` tuples (if
|
170 |
+
the corpus has tags) or word strings (if the corpus has no
|
171 |
+
tags).
|
172 |
+
:rtype: list(Tree)
|
173 |
+
"""
|
174 |
+
return concat(
|
175 |
+
[
|
176 |
+
ChunkedCorpusView(
|
177 |
+
f, enc, 1, 1, 0, 1, *self._cv_args, target_tagset=tagset
|
178 |
+
)
|
179 |
+
for (f, enc) in self.abspaths(fileids, True)
|
180 |
+
]
|
181 |
+
)
|
182 |
+
|
183 |
+
def chunked_paras(self, fileids=None, tagset=None):
|
184 |
+
"""
|
185 |
+
:return: the given file(s) as a list of
|
186 |
+
paragraphs, each encoded as a list of sentences, which are
|
187 |
+
in turn encoded as a shallow Tree. The leaves of these
|
188 |
+
trees are encoded as ``(word, tag)`` tuples (if the corpus
|
189 |
+
has tags) or word strings (if the corpus has no tags).
|
190 |
+
:rtype: list(list(Tree))
|
191 |
+
"""
|
192 |
+
return concat(
|
193 |
+
[
|
194 |
+
ChunkedCorpusView(
|
195 |
+
f, enc, 1, 1, 1, 1, *self._cv_args, target_tagset=tagset
|
196 |
+
)
|
197 |
+
for (f, enc) in self.abspaths(fileids, True)
|
198 |
+
]
|
199 |
+
)
|
200 |
+
|
201 |
+
def _read_block(self, stream):
|
202 |
+
return [tagstr2tree(t) for t in read_blankline_block(stream)]
|
203 |
+
|
204 |
+
|
205 |
+
class ChunkedCorpusView(StreamBackedCorpusView):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
fileid,
|
209 |
+
encoding,
|
210 |
+
tagged,
|
211 |
+
group_by_sent,
|
212 |
+
group_by_para,
|
213 |
+
chunked,
|
214 |
+
str2chunktree,
|
215 |
+
sent_tokenizer,
|
216 |
+
para_block_reader,
|
217 |
+
source_tagset=None,
|
218 |
+
target_tagset=None,
|
219 |
+
):
|
220 |
+
StreamBackedCorpusView.__init__(self, fileid, encoding=encoding)
|
221 |
+
self._tagged = tagged
|
222 |
+
self._group_by_sent = group_by_sent
|
223 |
+
self._group_by_para = group_by_para
|
224 |
+
self._chunked = chunked
|
225 |
+
self._str2chunktree = str2chunktree
|
226 |
+
self._sent_tokenizer = sent_tokenizer
|
227 |
+
self._para_block_reader = para_block_reader
|
228 |
+
self._source_tagset = source_tagset
|
229 |
+
self._target_tagset = target_tagset
|
230 |
+
|
231 |
+
def read_block(self, stream):
|
232 |
+
block = []
|
233 |
+
for para_str in self._para_block_reader(stream):
|
234 |
+
para = []
|
235 |
+
for sent_str in self._sent_tokenizer.tokenize(para_str):
|
236 |
+
sent = self._str2chunktree(
|
237 |
+
sent_str,
|
238 |
+
source_tagset=self._source_tagset,
|
239 |
+
target_tagset=self._target_tagset,
|
240 |
+
)
|
241 |
+
|
242 |
+
# If requested, throw away the tags.
|
243 |
+
if not self._tagged:
|
244 |
+
sent = self._untag(sent)
|
245 |
+
|
246 |
+
# If requested, throw away the chunks.
|
247 |
+
if not self._chunked:
|
248 |
+
sent = sent.leaves()
|
249 |
+
|
250 |
+
# Add the sentence to `para`.
|
251 |
+
if self._group_by_sent:
|
252 |
+
para.append(sent)
|
253 |
+
else:
|
254 |
+
para.extend(sent)
|
255 |
+
|
256 |
+
# Add the paragraph to `block`.
|
257 |
+
if self._group_by_para:
|
258 |
+
block.append(para)
|
259 |
+
else:
|
260 |
+
block.extend(para)
|
261 |
+
|
262 |
+
# Return the block
|
263 |
+
return block
|
264 |
+
|
265 |
+
def _untag(self, tree):
|
266 |
+
for i, child in enumerate(tree):
|
267 |
+
if isinstance(child, Tree):
|
268 |
+
self._untag(child)
|
269 |
+
elif isinstance(child, tuple):
|
270 |
+
tree[i] = child[0]
|
271 |
+
else:
|
272 |
+
raise ValueError("expected child to be Tree or tuple")
|
273 |
+
return tree
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/comparative_sents.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Comparative Sentence Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for the Comparative Sentence Dataset.
|
10 |
+
|
11 |
+
- Comparative Sentence Dataset information -
|
12 |
+
|
13 |
+
Annotated by: Nitin Jindal and Bing Liu, 2006.
|
14 |
+
Department of Computer Sicence
|
15 |
+
University of Illinois at Chicago
|
16 |
+
|
17 |
+
Contact: Nitin Jindal, [email protected]
|
18 |
+
Bing Liu, [email protected] (https://www.cs.uic.edu/~liub)
|
19 |
+
|
20 |
+
Distributed with permission.
|
21 |
+
|
22 |
+
Related papers:
|
23 |
+
|
24 |
+
- Nitin Jindal and Bing Liu. "Identifying Comparative Sentences in Text Documents".
|
25 |
+
Proceedings of the ACM SIGIR International Conference on Information Retrieval
|
26 |
+
(SIGIR-06), 2006.
|
27 |
+
|
28 |
+
- Nitin Jindal and Bing Liu. "Mining Comprative Sentences and Relations".
|
29 |
+
Proceedings of Twenty First National Conference on Artificial Intelligence
|
30 |
+
(AAAI-2006), 2006.
|
31 |
+
|
32 |
+
- Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences".
|
33 |
+
Proceedings of the 22nd International Conference on Computational Linguistics
|
34 |
+
(Coling-2008), Manchester, 18-22 August, 2008.
|
35 |
+
"""
|
36 |
+
import re
|
37 |
+
|
38 |
+
from nltk.corpus.reader.api import *
|
39 |
+
from nltk.tokenize import *
|
40 |
+
|
41 |
+
# Regular expressions for dataset components
|
42 |
+
STARS = re.compile(r"^\*+$")
|
43 |
+
COMPARISON = re.compile(r"<cs-[1234]>")
|
44 |
+
CLOSE_COMPARISON = re.compile(r"</cs-[1234]>")
|
45 |
+
GRAD_COMPARISON = re.compile(r"<cs-[123]>")
|
46 |
+
NON_GRAD_COMPARISON = re.compile(r"<cs-4>")
|
47 |
+
ENTITIES_FEATS = re.compile(r"(\d)_((?:[\.\w\s/-](?!\d_))+)")
|
48 |
+
KEYWORD = re.compile(r"\(([^\(]*)\)$")
|
49 |
+
|
50 |
+
|
51 |
+
class Comparison:
|
52 |
+
"""
|
53 |
+
A Comparison represents a comparative sentence and its constituents.
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
text=None,
|
59 |
+
comp_type=None,
|
60 |
+
entity_1=None,
|
61 |
+
entity_2=None,
|
62 |
+
feature=None,
|
63 |
+
keyword=None,
|
64 |
+
):
|
65 |
+
"""
|
66 |
+
:param text: a string (optionally tokenized) containing a comparison.
|
67 |
+
:param comp_type: an integer defining the type of comparison expressed.
|
68 |
+
Values can be: 1 (Non-equal gradable), 2 (Equative), 3 (Superlative),
|
69 |
+
4 (Non-gradable).
|
70 |
+
:param entity_1: the first entity considered in the comparison relation.
|
71 |
+
:param entity_2: the second entity considered in the comparison relation.
|
72 |
+
:param feature: the feature considered in the comparison relation.
|
73 |
+
:param keyword: the word or phrase which is used for that comparative relation.
|
74 |
+
"""
|
75 |
+
self.text = text
|
76 |
+
self.comp_type = comp_type
|
77 |
+
self.entity_1 = entity_1
|
78 |
+
self.entity_2 = entity_2
|
79 |
+
self.feature = feature
|
80 |
+
self.keyword = keyword
|
81 |
+
|
82 |
+
def __repr__(self):
|
83 |
+
return (
|
84 |
+
'Comparison(text="{}", comp_type={}, entity_1="{}", entity_2="{}", '
|
85 |
+
'feature="{}", keyword="{}")'
|
86 |
+
).format(
|
87 |
+
self.text,
|
88 |
+
self.comp_type,
|
89 |
+
self.entity_1,
|
90 |
+
self.entity_2,
|
91 |
+
self.feature,
|
92 |
+
self.keyword,
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
class ComparativeSentencesCorpusReader(CorpusReader):
|
97 |
+
"""
|
98 |
+
Reader for the Comparative Sentence Dataset by Jindal and Liu (2006).
|
99 |
+
|
100 |
+
>>> from nltk.corpus import comparative_sentences
|
101 |
+
>>> comparison = comparative_sentences.comparisons()[0]
|
102 |
+
>>> comparison.text # doctest: +NORMALIZE_WHITESPACE
|
103 |
+
['its', 'fast-forward', 'and', 'rewind', 'work', 'much', 'more', 'smoothly',
|
104 |
+
'and', 'consistently', 'than', 'those', 'of', 'other', 'models', 'i', "'ve",
|
105 |
+
'had', '.']
|
106 |
+
>>> comparison.entity_2
|
107 |
+
'models'
|
108 |
+
>>> (comparison.feature, comparison.keyword)
|
109 |
+
('rewind', 'more')
|
110 |
+
>>> len(comparative_sentences.comparisons())
|
111 |
+
853
|
112 |
+
"""
|
113 |
+
|
114 |
+
CorpusView = StreamBackedCorpusView
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
root,
|
119 |
+
fileids,
|
120 |
+
word_tokenizer=WhitespaceTokenizer(),
|
121 |
+
sent_tokenizer=None,
|
122 |
+
encoding="utf8",
|
123 |
+
):
|
124 |
+
"""
|
125 |
+
:param root: The root directory for this corpus.
|
126 |
+
:param fileids: a list or regexp specifying the fileids in this corpus.
|
127 |
+
:param word_tokenizer: tokenizer for breaking sentences or paragraphs
|
128 |
+
into words. Default: `WhitespaceTokenizer`
|
129 |
+
:param sent_tokenizer: tokenizer for breaking paragraphs into sentences.
|
130 |
+
:param encoding: the encoding that should be used to read the corpus.
|
131 |
+
"""
|
132 |
+
|
133 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
134 |
+
self._word_tokenizer = word_tokenizer
|
135 |
+
self._sent_tokenizer = sent_tokenizer
|
136 |
+
self._readme = "README.txt"
|
137 |
+
|
138 |
+
def comparisons(self, fileids=None):
|
139 |
+
"""
|
140 |
+
Return all comparisons in the corpus.
|
141 |
+
|
142 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
143 |
+
comparisons have to be returned.
|
144 |
+
:return: the given file(s) as a list of Comparison objects.
|
145 |
+
:rtype: list(Comparison)
|
146 |
+
"""
|
147 |
+
if fileids is None:
|
148 |
+
fileids = self._fileids
|
149 |
+
elif isinstance(fileids, str):
|
150 |
+
fileids = [fileids]
|
151 |
+
return concat(
|
152 |
+
[
|
153 |
+
self.CorpusView(path, self._read_comparison_block, encoding=enc)
|
154 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
155 |
+
]
|
156 |
+
)
|
157 |
+
|
158 |
+
def keywords(self, fileids=None):
|
159 |
+
"""
|
160 |
+
Return a set of all keywords used in the corpus.
|
161 |
+
|
162 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
163 |
+
keywords have to be returned.
|
164 |
+
:return: the set of keywords and comparative phrases used in the corpus.
|
165 |
+
:rtype: set(str)
|
166 |
+
"""
|
167 |
+
all_keywords = concat(
|
168 |
+
[
|
169 |
+
self.CorpusView(path, self._read_keyword_block, encoding=enc)
|
170 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
171 |
+
]
|
172 |
+
)
|
173 |
+
|
174 |
+
keywords_set = {keyword.lower() for keyword in all_keywords if keyword}
|
175 |
+
return keywords_set
|
176 |
+
|
177 |
+
def keywords_readme(self):
|
178 |
+
"""
|
179 |
+
Return the list of words and constituents considered as clues of a
|
180 |
+
comparison (from listOfkeywords.txt).
|
181 |
+
"""
|
182 |
+
keywords = []
|
183 |
+
with self.open("listOfkeywords.txt") as fp:
|
184 |
+
raw_text = fp.read()
|
185 |
+
for line in raw_text.split("\n"):
|
186 |
+
if not line or line.startswith("//"):
|
187 |
+
continue
|
188 |
+
keywords.append(line.strip())
|
189 |
+
return keywords
|
190 |
+
|
191 |
+
def sents(self, fileids=None):
|
192 |
+
"""
|
193 |
+
Return all sentences in the corpus.
|
194 |
+
|
195 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
196 |
+
sentences have to be returned.
|
197 |
+
:return: all sentences of the corpus as lists of tokens (or as plain
|
198 |
+
strings, if no word tokenizer is specified).
|
199 |
+
:rtype: list(list(str)) or list(str)
|
200 |
+
"""
|
201 |
+
return concat(
|
202 |
+
[
|
203 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
204 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
205 |
+
]
|
206 |
+
)
|
207 |
+
|
208 |
+
def words(self, fileids=None):
|
209 |
+
"""
|
210 |
+
Return all words and punctuation symbols in the corpus.
|
211 |
+
|
212 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
213 |
+
words have to be returned.
|
214 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
215 |
+
:rtype: list(str)
|
216 |
+
"""
|
217 |
+
return concat(
|
218 |
+
[
|
219 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
220 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
def _read_comparison_block(self, stream):
|
225 |
+
while True:
|
226 |
+
line = stream.readline()
|
227 |
+
if not line:
|
228 |
+
return [] # end of file.
|
229 |
+
comparison_tags = re.findall(COMPARISON, line)
|
230 |
+
if comparison_tags:
|
231 |
+
grad_comparisons = re.findall(GRAD_COMPARISON, line)
|
232 |
+
non_grad_comparisons = re.findall(NON_GRAD_COMPARISON, line)
|
233 |
+
# Advance to the next line (it contains the comparative sentence)
|
234 |
+
comparison_text = stream.readline().strip()
|
235 |
+
if self._word_tokenizer:
|
236 |
+
comparison_text = self._word_tokenizer.tokenize(comparison_text)
|
237 |
+
# Skip the next line (it contains closing comparison tags)
|
238 |
+
stream.readline()
|
239 |
+
# If gradable comparisons are found, create Comparison instances
|
240 |
+
# and populate their fields
|
241 |
+
comparison_bundle = []
|
242 |
+
if grad_comparisons:
|
243 |
+
# Each comparison tag has its own relations on a separate line
|
244 |
+
for comp in grad_comparisons:
|
245 |
+
comp_type = int(re.match(r"<cs-(\d)>", comp).group(1))
|
246 |
+
comparison = Comparison(
|
247 |
+
text=comparison_text, comp_type=comp_type
|
248 |
+
)
|
249 |
+
line = stream.readline()
|
250 |
+
entities_feats = ENTITIES_FEATS.findall(line)
|
251 |
+
if entities_feats:
|
252 |
+
for (code, entity_feat) in entities_feats:
|
253 |
+
if code == "1":
|
254 |
+
comparison.entity_1 = entity_feat.strip()
|
255 |
+
elif code == "2":
|
256 |
+
comparison.entity_2 = entity_feat.strip()
|
257 |
+
elif code == "3":
|
258 |
+
comparison.feature = entity_feat.strip()
|
259 |
+
keyword = KEYWORD.findall(line)
|
260 |
+
if keyword:
|
261 |
+
comparison.keyword = keyword[0]
|
262 |
+
comparison_bundle.append(comparison)
|
263 |
+
# If non-gradable comparisons are found, create a simple Comparison
|
264 |
+
# instance for each one
|
265 |
+
if non_grad_comparisons:
|
266 |
+
for comp in non_grad_comparisons:
|
267 |
+
# comp_type in this case should always be 4.
|
268 |
+
comp_type = int(re.match(r"<cs-(\d)>", comp).group(1))
|
269 |
+
comparison = Comparison(
|
270 |
+
text=comparison_text, comp_type=comp_type
|
271 |
+
)
|
272 |
+
comparison_bundle.append(comparison)
|
273 |
+
# Flatten the list of comparisons before returning them
|
274 |
+
# return concat([comparison_bundle])
|
275 |
+
return comparison_bundle
|
276 |
+
|
277 |
+
def _read_keyword_block(self, stream):
|
278 |
+
keywords = []
|
279 |
+
for comparison in self._read_comparison_block(stream):
|
280 |
+
keywords.append(comparison.keyword)
|
281 |
+
return keywords
|
282 |
+
|
283 |
+
def _read_sent_block(self, stream):
|
284 |
+
while True:
|
285 |
+
line = stream.readline()
|
286 |
+
if re.match(STARS, line):
|
287 |
+
while True:
|
288 |
+
line = stream.readline()
|
289 |
+
if re.match(STARS, line):
|
290 |
+
break
|
291 |
+
continue
|
292 |
+
if (
|
293 |
+
not re.findall(COMPARISON, line)
|
294 |
+
and not ENTITIES_FEATS.findall(line)
|
295 |
+
and not re.findall(CLOSE_COMPARISON, line)
|
296 |
+
):
|
297 |
+
if self._sent_tokenizer:
|
298 |
+
return [
|
299 |
+
self._word_tokenizer.tokenize(sent)
|
300 |
+
for sent in self._sent_tokenizer.tokenize(line)
|
301 |
+
]
|
302 |
+
else:
|
303 |
+
return [self._word_tokenizer.tokenize(line)]
|
304 |
+
|
305 |
+
def _read_word_block(self, stream):
|
306 |
+
words = []
|
307 |
+
for sent in self._read_sent_block(stream):
|
308 |
+
words.extend(sent)
|
309 |
+
return words
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/conll.py
ADDED
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: CONLL Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Read CoNLL-style chunk fileids.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import textwrap
|
14 |
+
|
15 |
+
from nltk.corpus.reader.api import *
|
16 |
+
from nltk.corpus.reader.util import *
|
17 |
+
from nltk.tag import map_tag
|
18 |
+
from nltk.tree import Tree
|
19 |
+
from nltk.util import LazyConcatenation, LazyMap
|
20 |
+
|
21 |
+
|
22 |
+
class ConllCorpusReader(CorpusReader):
|
23 |
+
"""
|
24 |
+
A corpus reader for CoNLL-style files. These files consist of a
|
25 |
+
series of sentences, separated by blank lines. Each sentence is
|
26 |
+
encoded using a table (or "grid") of values, where each line
|
27 |
+
corresponds to a single word, and each column corresponds to an
|
28 |
+
annotation type. The set of columns used by CoNLL-style files can
|
29 |
+
vary from corpus to corpus; the ``ConllCorpusReader`` constructor
|
30 |
+
therefore takes an argument, ``columntypes``, which is used to
|
31 |
+
specify the columns that are used by a given corpus. By default
|
32 |
+
columns are split by consecutive whitespaces, with the
|
33 |
+
``separator`` argument you can set a string to split by (e.g.
|
34 |
+
``\'\t\'``).
|
35 |
+
|
36 |
+
|
37 |
+
@todo: Add support for reading from corpora where different
|
38 |
+
parallel files contain different columns.
|
39 |
+
@todo: Possibly add caching of the grid corpus view? This would
|
40 |
+
allow the same grid view to be used by different data access
|
41 |
+
methods (eg words() and parsed_sents() could both share the
|
42 |
+
same grid corpus view object).
|
43 |
+
@todo: Better support for -DOCSTART-. Currently, we just ignore
|
44 |
+
it, but it could be used to define methods that retrieve a
|
45 |
+
document at a time (eg parsed_documents()).
|
46 |
+
"""
|
47 |
+
|
48 |
+
# /////////////////////////////////////////////////////////////////
|
49 |
+
# Column Types
|
50 |
+
# /////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
WORDS = "words" #: column type for words
|
53 |
+
POS = "pos" #: column type for part-of-speech tags
|
54 |
+
TREE = "tree" #: column type for parse trees
|
55 |
+
CHUNK = "chunk" #: column type for chunk structures
|
56 |
+
NE = "ne" #: column type for named entities
|
57 |
+
SRL = "srl" #: column type for semantic role labels
|
58 |
+
IGNORE = "ignore" #: column type for column that should be ignored
|
59 |
+
|
60 |
+
#: A list of all column types supported by the conll corpus reader.
|
61 |
+
COLUMN_TYPES = (WORDS, POS, TREE, CHUNK, NE, SRL, IGNORE)
|
62 |
+
|
63 |
+
# /////////////////////////////////////////////////////////////////
|
64 |
+
# Constructor
|
65 |
+
# /////////////////////////////////////////////////////////////////
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
root,
|
70 |
+
fileids,
|
71 |
+
columntypes,
|
72 |
+
chunk_types=None,
|
73 |
+
root_label="S",
|
74 |
+
pos_in_tree=False,
|
75 |
+
srl_includes_roleset=True,
|
76 |
+
encoding="utf8",
|
77 |
+
tree_class=Tree,
|
78 |
+
tagset=None,
|
79 |
+
separator=None,
|
80 |
+
):
|
81 |
+
for columntype in columntypes:
|
82 |
+
if columntype not in self.COLUMN_TYPES:
|
83 |
+
raise ValueError("Bad column type %r" % columntype)
|
84 |
+
if isinstance(chunk_types, str):
|
85 |
+
chunk_types = [chunk_types]
|
86 |
+
self._chunk_types = chunk_types
|
87 |
+
self._colmap = {c: i for (i, c) in enumerate(columntypes)}
|
88 |
+
self._pos_in_tree = pos_in_tree
|
89 |
+
self._root_label = root_label # for chunks
|
90 |
+
self._srl_includes_roleset = srl_includes_roleset
|
91 |
+
self._tree_class = tree_class
|
92 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
93 |
+
self._tagset = tagset
|
94 |
+
self.sep = separator
|
95 |
+
|
96 |
+
# /////////////////////////////////////////////////////////////////
|
97 |
+
# Data Access Methods
|
98 |
+
# /////////////////////////////////////////////////////////////////
|
99 |
+
|
100 |
+
def words(self, fileids=None):
|
101 |
+
self._require(self.WORDS)
|
102 |
+
return LazyConcatenation(LazyMap(self._get_words, self._grids(fileids)))
|
103 |
+
|
104 |
+
def sents(self, fileids=None):
|
105 |
+
self._require(self.WORDS)
|
106 |
+
return LazyMap(self._get_words, self._grids(fileids))
|
107 |
+
|
108 |
+
def tagged_words(self, fileids=None, tagset=None):
|
109 |
+
self._require(self.WORDS, self.POS)
|
110 |
+
|
111 |
+
def get_tagged_words(grid):
|
112 |
+
return self._get_tagged_words(grid, tagset)
|
113 |
+
|
114 |
+
return LazyConcatenation(LazyMap(get_tagged_words, self._grids(fileids)))
|
115 |
+
|
116 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
117 |
+
self._require(self.WORDS, self.POS)
|
118 |
+
|
119 |
+
def get_tagged_words(grid):
|
120 |
+
return self._get_tagged_words(grid, tagset)
|
121 |
+
|
122 |
+
return LazyMap(get_tagged_words, self._grids(fileids))
|
123 |
+
|
124 |
+
def chunked_words(self, fileids=None, chunk_types=None, tagset=None):
|
125 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
126 |
+
if chunk_types is None:
|
127 |
+
chunk_types = self._chunk_types
|
128 |
+
|
129 |
+
def get_chunked_words(grid): # capture chunk_types as local var
|
130 |
+
return self._get_chunked_words(grid, chunk_types, tagset)
|
131 |
+
|
132 |
+
return LazyConcatenation(LazyMap(get_chunked_words, self._grids(fileids)))
|
133 |
+
|
134 |
+
def chunked_sents(self, fileids=None, chunk_types=None, tagset=None):
|
135 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
136 |
+
if chunk_types is None:
|
137 |
+
chunk_types = self._chunk_types
|
138 |
+
|
139 |
+
def get_chunked_words(grid): # capture chunk_types as local var
|
140 |
+
return self._get_chunked_words(grid, chunk_types, tagset)
|
141 |
+
|
142 |
+
return LazyMap(get_chunked_words, self._grids(fileids))
|
143 |
+
|
144 |
+
def parsed_sents(self, fileids=None, pos_in_tree=None, tagset=None):
|
145 |
+
self._require(self.WORDS, self.POS, self.TREE)
|
146 |
+
if pos_in_tree is None:
|
147 |
+
pos_in_tree = self._pos_in_tree
|
148 |
+
|
149 |
+
def get_parsed_sent(grid): # capture pos_in_tree as local var
|
150 |
+
return self._get_parsed_sent(grid, pos_in_tree, tagset)
|
151 |
+
|
152 |
+
return LazyMap(get_parsed_sent, self._grids(fileids))
|
153 |
+
|
154 |
+
def srl_spans(self, fileids=None):
|
155 |
+
self._require(self.SRL)
|
156 |
+
return LazyMap(self._get_srl_spans, self._grids(fileids))
|
157 |
+
|
158 |
+
def srl_instances(self, fileids=None, pos_in_tree=None, flatten=True):
|
159 |
+
self._require(self.WORDS, self.POS, self.TREE, self.SRL)
|
160 |
+
if pos_in_tree is None:
|
161 |
+
pos_in_tree = self._pos_in_tree
|
162 |
+
|
163 |
+
def get_srl_instances(grid): # capture pos_in_tree as local var
|
164 |
+
return self._get_srl_instances(grid, pos_in_tree)
|
165 |
+
|
166 |
+
result = LazyMap(get_srl_instances, self._grids(fileids))
|
167 |
+
if flatten:
|
168 |
+
result = LazyConcatenation(result)
|
169 |
+
return result
|
170 |
+
|
171 |
+
def iob_words(self, fileids=None, tagset=None):
|
172 |
+
"""
|
173 |
+
:return: a list of word/tag/IOB tuples
|
174 |
+
:rtype: list(tuple)
|
175 |
+
:param fileids: the list of fileids that make up this corpus
|
176 |
+
:type fileids: None or str or list
|
177 |
+
"""
|
178 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
179 |
+
|
180 |
+
def get_iob_words(grid):
|
181 |
+
return self._get_iob_words(grid, tagset)
|
182 |
+
|
183 |
+
return LazyConcatenation(LazyMap(get_iob_words, self._grids(fileids)))
|
184 |
+
|
185 |
+
def iob_sents(self, fileids=None, tagset=None):
|
186 |
+
"""
|
187 |
+
:return: a list of lists of word/tag/IOB tuples
|
188 |
+
:rtype: list(list)
|
189 |
+
:param fileids: the list of fileids that make up this corpus
|
190 |
+
:type fileids: None or str or list
|
191 |
+
"""
|
192 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
193 |
+
|
194 |
+
def get_iob_words(grid):
|
195 |
+
return self._get_iob_words(grid, tagset)
|
196 |
+
|
197 |
+
return LazyMap(get_iob_words, self._grids(fileids))
|
198 |
+
|
199 |
+
# /////////////////////////////////////////////////////////////////
|
200 |
+
# Grid Reading
|
201 |
+
# /////////////////////////////////////////////////////////////////
|
202 |
+
|
203 |
+
def _grids(self, fileids=None):
|
204 |
+
# n.b.: we could cache the object returned here (keyed on
|
205 |
+
# fileids), which would let us reuse the same corpus view for
|
206 |
+
# different things (eg srl and parse trees).
|
207 |
+
return concat(
|
208 |
+
[
|
209 |
+
StreamBackedCorpusView(fileid, self._read_grid_block, encoding=enc)
|
210 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
211 |
+
]
|
212 |
+
)
|
213 |
+
|
214 |
+
def _read_grid_block(self, stream):
|
215 |
+
grids = []
|
216 |
+
for block in read_blankline_block(stream):
|
217 |
+
block = block.strip()
|
218 |
+
if not block:
|
219 |
+
continue
|
220 |
+
|
221 |
+
grid = [line.split(self.sep) for line in block.split("\n")]
|
222 |
+
|
223 |
+
# If there's a docstart row, then discard. ([xx] eventually it
|
224 |
+
# would be good to actually use it)
|
225 |
+
if grid[0][self._colmap.get("words", 0)] == "-DOCSTART-":
|
226 |
+
del grid[0]
|
227 |
+
|
228 |
+
# Check that the grid is consistent.
|
229 |
+
for row in grid:
|
230 |
+
if len(row) != len(grid[0]):
|
231 |
+
raise ValueError("Inconsistent number of columns:\n%s" % block)
|
232 |
+
grids.append(grid)
|
233 |
+
return grids
|
234 |
+
|
235 |
+
# /////////////////////////////////////////////////////////////////
|
236 |
+
# Transforms
|
237 |
+
# /////////////////////////////////////////////////////////////////
|
238 |
+
# given a grid, transform it into some representation (e.g.,
|
239 |
+
# a list of words or a parse tree).
|
240 |
+
|
241 |
+
def _get_words(self, grid):
|
242 |
+
return self._get_column(grid, self._colmap["words"])
|
243 |
+
|
244 |
+
def _get_tagged_words(self, grid, tagset=None):
|
245 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
246 |
+
if tagset and tagset != self._tagset:
|
247 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
248 |
+
return list(zip(self._get_column(grid, self._colmap["words"]), pos_tags))
|
249 |
+
|
250 |
+
def _get_iob_words(self, grid, tagset=None):
|
251 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
252 |
+
if tagset and tagset != self._tagset:
|
253 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
254 |
+
return list(
|
255 |
+
zip(
|
256 |
+
self._get_column(grid, self._colmap["words"]),
|
257 |
+
pos_tags,
|
258 |
+
self._get_column(grid, self._colmap["chunk"]),
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
def _get_chunked_words(self, grid, chunk_types, tagset=None):
|
263 |
+
# n.b.: this method is very similar to conllstr2tree.
|
264 |
+
words = self._get_column(grid, self._colmap["words"])
|
265 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
266 |
+
if tagset and tagset != self._tagset:
|
267 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
268 |
+
chunk_tags = self._get_column(grid, self._colmap["chunk"])
|
269 |
+
|
270 |
+
stack = [Tree(self._root_label, [])]
|
271 |
+
|
272 |
+
for (word, pos_tag, chunk_tag) in zip(words, pos_tags, chunk_tags):
|
273 |
+
if chunk_tag == "O":
|
274 |
+
state, chunk_type = "O", ""
|
275 |
+
else:
|
276 |
+
(state, chunk_type) = chunk_tag.split("-")
|
277 |
+
# If it's a chunk we don't care about, treat it as O.
|
278 |
+
if chunk_types is not None and chunk_type not in chunk_types:
|
279 |
+
state = "O"
|
280 |
+
# Treat a mismatching I like a B.
|
281 |
+
if state == "I" and chunk_type != stack[-1].label():
|
282 |
+
state = "B"
|
283 |
+
# For B or I: close any open chunks
|
284 |
+
if state in "BO" and len(stack) == 2:
|
285 |
+
stack.pop()
|
286 |
+
# For B: start a new chunk.
|
287 |
+
if state == "B":
|
288 |
+
new_chunk = Tree(chunk_type, [])
|
289 |
+
stack[-1].append(new_chunk)
|
290 |
+
stack.append(new_chunk)
|
291 |
+
# Add the word token.
|
292 |
+
stack[-1].append((word, pos_tag))
|
293 |
+
|
294 |
+
return stack[0]
|
295 |
+
|
296 |
+
def _get_parsed_sent(self, grid, pos_in_tree, tagset=None):
|
297 |
+
words = self._get_column(grid, self._colmap["words"])
|
298 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
299 |
+
if tagset and tagset != self._tagset:
|
300 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
301 |
+
parse_tags = self._get_column(grid, self._colmap["tree"])
|
302 |
+
|
303 |
+
treestr = ""
|
304 |
+
for (word, pos_tag, parse_tag) in zip(words, pos_tags, parse_tags):
|
305 |
+
if word == "(":
|
306 |
+
word = "-LRB-"
|
307 |
+
if word == ")":
|
308 |
+
word = "-RRB-"
|
309 |
+
if pos_tag == "(":
|
310 |
+
pos_tag = "-LRB-"
|
311 |
+
if pos_tag == ")":
|
312 |
+
pos_tag = "-RRB-"
|
313 |
+
(left, right) = parse_tag.split("*")
|
314 |
+
right = right.count(")") * ")" # only keep ')'.
|
315 |
+
treestr += f"{left} ({pos_tag} {word}) {right}"
|
316 |
+
try:
|
317 |
+
tree = self._tree_class.fromstring(treestr)
|
318 |
+
except (ValueError, IndexError):
|
319 |
+
tree = self._tree_class.fromstring(f"({self._root_label} {treestr})")
|
320 |
+
|
321 |
+
if not pos_in_tree:
|
322 |
+
for subtree in tree.subtrees():
|
323 |
+
for i, child in enumerate(subtree):
|
324 |
+
if (
|
325 |
+
isinstance(child, Tree)
|
326 |
+
and len(child) == 1
|
327 |
+
and isinstance(child[0], str)
|
328 |
+
):
|
329 |
+
subtree[i] = (child[0], child.label())
|
330 |
+
|
331 |
+
return tree
|
332 |
+
|
333 |
+
def _get_srl_spans(self, grid):
|
334 |
+
"""
|
335 |
+
list of list of (start, end), tag) tuples
|
336 |
+
"""
|
337 |
+
if self._srl_includes_roleset:
|
338 |
+
predicates = self._get_column(grid, self._colmap["srl"] + 1)
|
339 |
+
start_col = self._colmap["srl"] + 2
|
340 |
+
else:
|
341 |
+
predicates = self._get_column(grid, self._colmap["srl"])
|
342 |
+
start_col = self._colmap["srl"] + 1
|
343 |
+
|
344 |
+
# Count how many predicates there are. This tells us how many
|
345 |
+
# columns to expect for SRL data.
|
346 |
+
num_preds = len([p for p in predicates if p != "-"])
|
347 |
+
|
348 |
+
spanlists = []
|
349 |
+
for i in range(num_preds):
|
350 |
+
col = self._get_column(grid, start_col + i)
|
351 |
+
spanlist = []
|
352 |
+
stack = []
|
353 |
+
for wordnum, srl_tag in enumerate(col):
|
354 |
+
(left, right) = srl_tag.split("*")
|
355 |
+
for tag in left.split("("):
|
356 |
+
if tag:
|
357 |
+
stack.append((tag, wordnum))
|
358 |
+
for i in range(right.count(")")):
|
359 |
+
(tag, start) = stack.pop()
|
360 |
+
spanlist.append(((start, wordnum + 1), tag))
|
361 |
+
spanlists.append(spanlist)
|
362 |
+
|
363 |
+
return spanlists
|
364 |
+
|
365 |
+
def _get_srl_instances(self, grid, pos_in_tree):
|
366 |
+
tree = self._get_parsed_sent(grid, pos_in_tree)
|
367 |
+
spanlists = self._get_srl_spans(grid)
|
368 |
+
if self._srl_includes_roleset:
|
369 |
+
predicates = self._get_column(grid, self._colmap["srl"] + 1)
|
370 |
+
rolesets = self._get_column(grid, self._colmap["srl"])
|
371 |
+
else:
|
372 |
+
predicates = self._get_column(grid, self._colmap["srl"])
|
373 |
+
rolesets = [None] * len(predicates)
|
374 |
+
|
375 |
+
instances = ConllSRLInstanceList(tree)
|
376 |
+
for wordnum, predicate in enumerate(predicates):
|
377 |
+
if predicate == "-":
|
378 |
+
continue
|
379 |
+
# Decide which spanlist to use. Don't assume that they're
|
380 |
+
# sorted in the same order as the predicates (even though
|
381 |
+
# they usually are).
|
382 |
+
for spanlist in spanlists:
|
383 |
+
for (start, end), tag in spanlist:
|
384 |
+
if wordnum in range(start, end) and tag in ("V", "C-V"):
|
385 |
+
break
|
386 |
+
else:
|
387 |
+
continue
|
388 |
+
break
|
389 |
+
else:
|
390 |
+
raise ValueError("No srl column found for %r" % predicate)
|
391 |
+
instances.append(
|
392 |
+
ConllSRLInstance(tree, wordnum, predicate, rolesets[wordnum], spanlist)
|
393 |
+
)
|
394 |
+
|
395 |
+
return instances
|
396 |
+
|
397 |
+
# /////////////////////////////////////////////////////////////////
|
398 |
+
# Helper Methods
|
399 |
+
# /////////////////////////////////////////////////////////////////
|
400 |
+
|
401 |
+
def _require(self, *columntypes):
|
402 |
+
for columntype in columntypes:
|
403 |
+
if columntype not in self._colmap:
|
404 |
+
raise ValueError(
|
405 |
+
"This corpus does not contain a %s " "column." % columntype
|
406 |
+
)
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def _get_column(grid, column_index):
|
410 |
+
return [grid[i][column_index] for i in range(len(grid))]
|
411 |
+
|
412 |
+
|
413 |
+
class ConllSRLInstance:
|
414 |
+
"""
|
415 |
+
An SRL instance from a CoNLL corpus, which identifies and
|
416 |
+
providing labels for the arguments of a single verb.
|
417 |
+
"""
|
418 |
+
|
419 |
+
# [xx] add inst.core_arguments, inst.argm_arguments?
|
420 |
+
|
421 |
+
def __init__(self, tree, verb_head, verb_stem, roleset, tagged_spans):
|
422 |
+
self.verb = []
|
423 |
+
"""A list of the word indices of the words that compose the
|
424 |
+
verb whose arguments are identified by this instance.
|
425 |
+
This will contain multiple word indices when multi-word
|
426 |
+
verbs are used (e.g. 'turn on')."""
|
427 |
+
|
428 |
+
self.verb_head = verb_head
|
429 |
+
"""The word index of the head word of the verb whose arguments
|
430 |
+
are identified by this instance. E.g., for a sentence that
|
431 |
+
uses the verb 'turn on,' ``verb_head`` will be the word index
|
432 |
+
of the word 'turn'."""
|
433 |
+
|
434 |
+
self.verb_stem = verb_stem
|
435 |
+
|
436 |
+
self.roleset = roleset
|
437 |
+
|
438 |
+
self.arguments = []
|
439 |
+
"""A list of ``(argspan, argid)`` tuples, specifying the location
|
440 |
+
and type for each of the arguments identified by this
|
441 |
+
instance. ``argspan`` is a tuple ``start, end``, indicating
|
442 |
+
that the argument consists of the ``words[start:end]``."""
|
443 |
+
|
444 |
+
self.tagged_spans = tagged_spans
|
445 |
+
"""A list of ``(span, id)`` tuples, specifying the location and
|
446 |
+
type for each of the arguments, as well as the verb pieces,
|
447 |
+
that make up this instance."""
|
448 |
+
|
449 |
+
self.tree = tree
|
450 |
+
"""The parse tree for the sentence containing this instance."""
|
451 |
+
|
452 |
+
self.words = tree.leaves()
|
453 |
+
"""A list of the words in the sentence containing this
|
454 |
+
instance."""
|
455 |
+
|
456 |
+
# Fill in the self.verb and self.arguments values.
|
457 |
+
for (start, end), tag in tagged_spans:
|
458 |
+
if tag in ("V", "C-V"):
|
459 |
+
self.verb += list(range(start, end))
|
460 |
+
else:
|
461 |
+
self.arguments.append(((start, end), tag))
|
462 |
+
|
463 |
+
def __repr__(self):
|
464 |
+
# Originally, its:
|
465 |
+
##plural = 's' if len(self.arguments) != 1 else ''
|
466 |
+
plural = "s" if len(self.arguments) != 1 else ""
|
467 |
+
return "<ConllSRLInstance for %r with %d argument%s>" % (
|
468 |
+
(self.verb_stem, len(self.arguments), plural)
|
469 |
+
)
|
470 |
+
|
471 |
+
def pprint(self):
|
472 |
+
verbstr = " ".join(self.words[i][0] for i in self.verb)
|
473 |
+
hdr = f"SRL for {verbstr!r} (stem={self.verb_stem!r}):\n"
|
474 |
+
s = ""
|
475 |
+
for i, word in enumerate(self.words):
|
476 |
+
if isinstance(word, tuple):
|
477 |
+
word = word[0]
|
478 |
+
for (start, end), argid in self.arguments:
|
479 |
+
if i == start:
|
480 |
+
s += "[%s " % argid
|
481 |
+
if i == end:
|
482 |
+
s += "] "
|
483 |
+
if i in self.verb:
|
484 |
+
word = "<<%s>>" % word
|
485 |
+
s += word + " "
|
486 |
+
return hdr + textwrap.fill(
|
487 |
+
s.replace(" ]", "]"), initial_indent=" ", subsequent_indent=" "
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
class ConllSRLInstanceList(list):
|
492 |
+
"""
|
493 |
+
Set of instances for a single sentence
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, tree, instances=()):
|
497 |
+
self.tree = tree
|
498 |
+
list.__init__(self, instances)
|
499 |
+
|
500 |
+
def __str__(self):
|
501 |
+
return self.pprint()
|
502 |
+
|
503 |
+
def pprint(self, include_tree=False):
|
504 |
+
# Sanity check: trees should be the same
|
505 |
+
for inst in self:
|
506 |
+
if inst.tree != self.tree:
|
507 |
+
raise ValueError("Tree mismatch!")
|
508 |
+
|
509 |
+
# If desired, add trees:
|
510 |
+
if include_tree:
|
511 |
+
words = self.tree.leaves()
|
512 |
+
pos = [None] * len(words)
|
513 |
+
synt = ["*"] * len(words)
|
514 |
+
self._tree2conll(self.tree, 0, words, pos, synt)
|
515 |
+
|
516 |
+
s = ""
|
517 |
+
for i in range(len(words)):
|
518 |
+
# optional tree columns
|
519 |
+
if include_tree:
|
520 |
+
s += "%-20s " % words[i]
|
521 |
+
s += "%-8s " % pos[i]
|
522 |
+
s += "%15s*%-8s " % tuple(synt[i].split("*"))
|
523 |
+
|
524 |
+
# verb head column
|
525 |
+
for inst in self:
|
526 |
+
if i == inst.verb_head:
|
527 |
+
s += "%-20s " % inst.verb_stem
|
528 |
+
break
|
529 |
+
else:
|
530 |
+
s += "%-20s " % "-"
|
531 |
+
# Remaining columns: self
|
532 |
+
for inst in self:
|
533 |
+
argstr = "*"
|
534 |
+
for (start, end), argid in inst.tagged_spans:
|
535 |
+
if i == start:
|
536 |
+
argstr = f"({argid}{argstr}"
|
537 |
+
if i == (end - 1):
|
538 |
+
argstr += ")"
|
539 |
+
s += "%-12s " % argstr
|
540 |
+
s += "\n"
|
541 |
+
return s
|
542 |
+
|
543 |
+
def _tree2conll(self, tree, wordnum, words, pos, synt):
|
544 |
+
assert isinstance(tree, Tree)
|
545 |
+
if len(tree) == 1 and isinstance(tree[0], str):
|
546 |
+
pos[wordnum] = tree.label()
|
547 |
+
assert words[wordnum] == tree[0]
|
548 |
+
return wordnum + 1
|
549 |
+
elif len(tree) == 1 and isinstance(tree[0], tuple):
|
550 |
+
assert len(tree[0]) == 2
|
551 |
+
pos[wordnum], pos[wordnum] = tree[0]
|
552 |
+
return wordnum + 1
|
553 |
+
else:
|
554 |
+
synt[wordnum] = f"({tree.label()}{synt[wordnum]}"
|
555 |
+
for child in tree:
|
556 |
+
wordnum = self._tree2conll(child, wordnum, words, pos, synt)
|
557 |
+
synt[wordnum - 1] += ")"
|
558 |
+
return wordnum
|
559 |
+
|
560 |
+
|
561 |
+
class ConllChunkCorpusReader(ConllCorpusReader):
|
562 |
+
"""
|
563 |
+
A ConllCorpusReader whose data file contains three columns: words,
|
564 |
+
pos, and chunk.
|
565 |
+
"""
|
566 |
+
|
567 |
+
def __init__(
|
568 |
+
self, root, fileids, chunk_types, encoding="utf8", tagset=None, separator=None
|
569 |
+
):
|
570 |
+
ConllCorpusReader.__init__(
|
571 |
+
self,
|
572 |
+
root,
|
573 |
+
fileids,
|
574 |
+
("words", "pos", "chunk"),
|
575 |
+
chunk_types=chunk_types,
|
576 |
+
encoding=encoding,
|
577 |
+
tagset=tagset,
|
578 |
+
separator=separator,
|
579 |
+
)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/dependency.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Dependency Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Kepa Sarasola <[email protected]>
|
5 |
+
# Iker Manterola <[email protected]>
|
6 |
+
#
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
from nltk.corpus.reader.api import *
|
11 |
+
from nltk.corpus.reader.util import *
|
12 |
+
from nltk.parse import DependencyGraph
|
13 |
+
from nltk.tokenize import *
|
14 |
+
|
15 |
+
|
16 |
+
class DependencyCorpusReader(SyntaxCorpusReader):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
root,
|
20 |
+
fileids,
|
21 |
+
encoding="utf8",
|
22 |
+
word_tokenizer=TabTokenizer(),
|
23 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
24 |
+
para_block_reader=read_blankline_block,
|
25 |
+
):
|
26 |
+
SyntaxCorpusReader.__init__(self, root, fileids, encoding)
|
27 |
+
|
28 |
+
#########################################################
|
29 |
+
|
30 |
+
def words(self, fileids=None):
|
31 |
+
return concat(
|
32 |
+
[
|
33 |
+
DependencyCorpusView(fileid, False, False, False, encoding=enc)
|
34 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
def tagged_words(self, fileids=None):
|
39 |
+
return concat(
|
40 |
+
[
|
41 |
+
DependencyCorpusView(fileid, True, False, False, encoding=enc)
|
42 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
def sents(self, fileids=None):
|
47 |
+
return concat(
|
48 |
+
[
|
49 |
+
DependencyCorpusView(fileid, False, True, False, encoding=enc)
|
50 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
def tagged_sents(self, fileids=None):
|
55 |
+
return concat(
|
56 |
+
[
|
57 |
+
DependencyCorpusView(fileid, True, True, False, encoding=enc)
|
58 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
59 |
+
]
|
60 |
+
)
|
61 |
+
|
62 |
+
def parsed_sents(self, fileids=None):
|
63 |
+
sents = concat(
|
64 |
+
[
|
65 |
+
DependencyCorpusView(fileid, False, True, True, encoding=enc)
|
66 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
67 |
+
]
|
68 |
+
)
|
69 |
+
return [DependencyGraph(sent) for sent in sents]
|
70 |
+
|
71 |
+
|
72 |
+
class DependencyCorpusView(StreamBackedCorpusView):
|
73 |
+
_DOCSTART = "-DOCSTART- -DOCSTART- O\n" # dokumentu hasiera definitzen da
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
corpus_file,
|
78 |
+
tagged,
|
79 |
+
group_by_sent,
|
80 |
+
dependencies,
|
81 |
+
chunk_types=None,
|
82 |
+
encoding="utf8",
|
83 |
+
):
|
84 |
+
self._tagged = tagged
|
85 |
+
self._dependencies = dependencies
|
86 |
+
self._group_by_sent = group_by_sent
|
87 |
+
self._chunk_types = chunk_types
|
88 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
89 |
+
|
90 |
+
def read_block(self, stream):
|
91 |
+
# Read the next sentence.
|
92 |
+
sent = read_blankline_block(stream)[0].strip()
|
93 |
+
# Strip off the docstart marker, if present.
|
94 |
+
if sent.startswith(self._DOCSTART):
|
95 |
+
sent = sent[len(self._DOCSTART) :].lstrip()
|
96 |
+
|
97 |
+
# extract word and tag from any of the formats
|
98 |
+
if not self._dependencies:
|
99 |
+
lines = [line.split("\t") for line in sent.split("\n")]
|
100 |
+
if len(lines[0]) == 3 or len(lines[0]) == 4:
|
101 |
+
sent = [(line[0], line[1]) for line in lines]
|
102 |
+
elif len(lines[0]) == 10:
|
103 |
+
sent = [(line[1], line[4]) for line in lines]
|
104 |
+
else:
|
105 |
+
raise ValueError("Unexpected number of fields in dependency tree file")
|
106 |
+
|
107 |
+
# discard tags if they weren't requested
|
108 |
+
if not self._tagged:
|
109 |
+
sent = [word for (word, tag) in sent]
|
110 |
+
|
111 |
+
# Return the result.
|
112 |
+
if self._group_by_sent:
|
113 |
+
return [sent]
|
114 |
+
else:
|
115 |
+
return list(sent)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/ieer.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: IEER Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Corpus reader for the Information Extraction and Entity Recognition Corpus.
|
11 |
+
|
12 |
+
NIST 1999 Information Extraction: Entity Recognition Evaluation
|
13 |
+
https://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm
|
14 |
+
|
15 |
+
This corpus contains the NEWSWIRE development test data for the
|
16 |
+
NIST 1999 IE-ER Evaluation. The files were taken from the
|
17 |
+
subdirectory: ``/ie_er_99/english/devtest/newswire/*.ref.nwt``
|
18 |
+
and filenames were shortened.
|
19 |
+
|
20 |
+
The corpus contains the following files: APW_19980314, APW_19980424,
|
21 |
+
APW_19980429, NYT_19980315, NYT_19980403, and NYT_19980407.
|
22 |
+
"""
|
23 |
+
|
24 |
+
import nltk
|
25 |
+
from nltk.corpus.reader.api import *
|
26 |
+
|
27 |
+
#: A dictionary whose keys are the names of documents in this corpus;
|
28 |
+
#: and whose values are descriptions of those documents' contents.
|
29 |
+
titles = {
|
30 |
+
"APW_19980314": "Associated Press Weekly, 14 March 1998",
|
31 |
+
"APW_19980424": "Associated Press Weekly, 24 April 1998",
|
32 |
+
"APW_19980429": "Associated Press Weekly, 29 April 1998",
|
33 |
+
"NYT_19980315": "New York Times, 15 March 1998",
|
34 |
+
"NYT_19980403": "New York Times, 3 April 1998",
|
35 |
+
"NYT_19980407": "New York Times, 7 April 1998",
|
36 |
+
}
|
37 |
+
|
38 |
+
#: A list of all documents in this corpus.
|
39 |
+
documents = sorted(titles)
|
40 |
+
|
41 |
+
|
42 |
+
class IEERDocument:
|
43 |
+
def __init__(self, text, docno=None, doctype=None, date_time=None, headline=""):
|
44 |
+
self.text = text
|
45 |
+
self.docno = docno
|
46 |
+
self.doctype = doctype
|
47 |
+
self.date_time = date_time
|
48 |
+
self.headline = headline
|
49 |
+
|
50 |
+
def __repr__(self):
|
51 |
+
if self.headline:
|
52 |
+
headline = " ".join(self.headline.leaves())
|
53 |
+
else:
|
54 |
+
headline = (
|
55 |
+
" ".join([w for w in self.text.leaves() if w[:1] != "<"][:12]) + "..."
|
56 |
+
)
|
57 |
+
if self.docno is not None:
|
58 |
+
return f"<IEERDocument {self.docno}: {headline!r}>"
|
59 |
+
else:
|
60 |
+
return "<IEERDocument: %r>" % headline
|
61 |
+
|
62 |
+
|
63 |
+
class IEERCorpusReader(CorpusReader):
|
64 |
+
""" """
|
65 |
+
|
66 |
+
def docs(self, fileids=None):
|
67 |
+
return concat(
|
68 |
+
[
|
69 |
+
StreamBackedCorpusView(fileid, self._read_block, encoding=enc)
|
70 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
def parsed_docs(self, fileids=None):
|
75 |
+
return concat(
|
76 |
+
[
|
77 |
+
StreamBackedCorpusView(fileid, self._read_parsed_block, encoding=enc)
|
78 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
79 |
+
]
|
80 |
+
)
|
81 |
+
|
82 |
+
def _read_parsed_block(self, stream):
|
83 |
+
# TODO: figure out while empty documents are being returned
|
84 |
+
return [
|
85 |
+
self._parse(doc)
|
86 |
+
for doc in self._read_block(stream)
|
87 |
+
if self._parse(doc).docno is not None
|
88 |
+
]
|
89 |
+
|
90 |
+
def _parse(self, doc):
|
91 |
+
val = nltk.chunk.ieerstr2tree(doc, root_label="DOCUMENT")
|
92 |
+
if isinstance(val, dict):
|
93 |
+
return IEERDocument(**val)
|
94 |
+
else:
|
95 |
+
return IEERDocument(val)
|
96 |
+
|
97 |
+
def _read_block(self, stream):
|
98 |
+
out = []
|
99 |
+
# Skip any preamble.
|
100 |
+
while True:
|
101 |
+
line = stream.readline()
|
102 |
+
if not line:
|
103 |
+
break
|
104 |
+
if line.strip() == "<DOC>":
|
105 |
+
break
|
106 |
+
out.append(line)
|
107 |
+
# Read the document
|
108 |
+
while True:
|
109 |
+
line = stream.readline()
|
110 |
+
if not line:
|
111 |
+
break
|
112 |
+
out.append(line)
|
113 |
+
if line.strip() == "</DOC>":
|
114 |
+
break
|
115 |
+
# Return the document
|
116 |
+
return ["\n".join(out)]
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/indian.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Indian Language POS-Tagged Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Indian Language POS-Tagged Corpus
|
11 |
+
Collected by A Kumaran, Microsoft Research, India
|
12 |
+
Distributed with permission
|
13 |
+
|
14 |
+
Contents:
|
15 |
+
- Bangla: IIT Kharagpur
|
16 |
+
- Hindi: Microsoft Research India
|
17 |
+
- Marathi: IIT Bombay
|
18 |
+
- Telugu: IIIT Hyderabad
|
19 |
+
"""
|
20 |
+
|
21 |
+
from nltk.corpus.reader.api import *
|
22 |
+
from nltk.corpus.reader.util import *
|
23 |
+
from nltk.tag import map_tag, str2tuple
|
24 |
+
|
25 |
+
|
26 |
+
class IndianCorpusReader(CorpusReader):
|
27 |
+
"""
|
28 |
+
List of words, one per line. Blank lines are ignored.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def words(self, fileids=None):
|
32 |
+
return concat(
|
33 |
+
[
|
34 |
+
IndianCorpusView(fileid, enc, False, False)
|
35 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
36 |
+
]
|
37 |
+
)
|
38 |
+
|
39 |
+
def tagged_words(self, fileids=None, tagset=None):
|
40 |
+
if tagset and tagset != self._tagset:
|
41 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
42 |
+
else:
|
43 |
+
tag_mapping_function = None
|
44 |
+
return concat(
|
45 |
+
[
|
46 |
+
IndianCorpusView(fileid, enc, True, False, tag_mapping_function)
|
47 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def sents(self, fileids=None):
|
52 |
+
return concat(
|
53 |
+
[
|
54 |
+
IndianCorpusView(fileid, enc, False, True)
|
55 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
60 |
+
if tagset and tagset != self._tagset:
|
61 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
62 |
+
else:
|
63 |
+
tag_mapping_function = None
|
64 |
+
return concat(
|
65 |
+
[
|
66 |
+
IndianCorpusView(fileid, enc, True, True, tag_mapping_function)
|
67 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class IndianCorpusView(StreamBackedCorpusView):
|
73 |
+
def __init__(
|
74 |
+
self, corpus_file, encoding, tagged, group_by_sent, tag_mapping_function=None
|
75 |
+
):
|
76 |
+
self._tagged = tagged
|
77 |
+
self._group_by_sent = group_by_sent
|
78 |
+
self._tag_mapping_function = tag_mapping_function
|
79 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
80 |
+
|
81 |
+
def read_block(self, stream):
|
82 |
+
line = stream.readline()
|
83 |
+
if line.startswith("<"):
|
84 |
+
return []
|
85 |
+
sent = [str2tuple(word, sep="_") for word in line.split()]
|
86 |
+
if self._tag_mapping_function:
|
87 |
+
sent = [(w, self._tag_mapping_function(t)) for (w, t) in sent]
|
88 |
+
if not self._tagged:
|
89 |
+
sent = [w for (w, t) in sent]
|
90 |
+
if self._group_by_sent:
|
91 |
+
return [sent]
|
92 |
+
else:
|
93 |
+
return sent
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/ipipan.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: IPI PAN Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Konrad Goluchowski <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import functools
|
9 |
+
|
10 |
+
from nltk.corpus.reader.api import CorpusReader
|
11 |
+
from nltk.corpus.reader.util import StreamBackedCorpusView, concat
|
12 |
+
|
13 |
+
|
14 |
+
def _parse_args(fun):
|
15 |
+
@functools.wraps(fun)
|
16 |
+
def decorator(self, fileids=None, **kwargs):
|
17 |
+
kwargs.pop("tags", None)
|
18 |
+
if not fileids:
|
19 |
+
fileids = self.fileids()
|
20 |
+
return fun(self, fileids, **kwargs)
|
21 |
+
|
22 |
+
return decorator
|
23 |
+
|
24 |
+
|
25 |
+
class IPIPANCorpusReader(CorpusReader):
|
26 |
+
"""
|
27 |
+
Corpus reader designed to work with corpus created by IPI PAN.
|
28 |
+
See http://korpus.pl/en/ for more details about IPI PAN corpus.
|
29 |
+
|
30 |
+
The corpus includes information about text domain, channel and categories.
|
31 |
+
You can access possible values using ``domains()``, ``channels()`` and
|
32 |
+
``categories()``. You can use also this metadata to filter files, e.g.:
|
33 |
+
``fileids(channel='prasa')``, ``fileids(categories='publicystyczny')``.
|
34 |
+
|
35 |
+
The reader supports methods: words, sents, paras and their tagged versions.
|
36 |
+
You can get part of speech instead of full tag by giving "simplify_tags=True"
|
37 |
+
parameter, e.g.: ``tagged_sents(simplify_tags=True)``.
|
38 |
+
|
39 |
+
Also you can get all tags disambiguated tags specifying parameter
|
40 |
+
"one_tag=False", e.g.: ``tagged_paras(one_tag=False)``.
|
41 |
+
|
42 |
+
You can get all tags that were assigned by a morphological analyzer specifying
|
43 |
+
parameter "disamb_only=False", e.g. ``tagged_words(disamb_only=False)``.
|
44 |
+
|
45 |
+
The IPIPAN Corpus contains tags indicating if there is a space between two
|
46 |
+
tokens. To add special "no space" markers, you should specify parameter
|
47 |
+
"append_no_space=True", e.g. ``tagged_words(append_no_space=True)``.
|
48 |
+
As a result in place where there should be no space between two tokens new
|
49 |
+
pair ('', 'no-space') will be inserted (for tagged data) and just '' for
|
50 |
+
methods without tags.
|
51 |
+
|
52 |
+
The corpus reader can also try to append spaces between words. To enable this
|
53 |
+
option, specify parameter "append_space=True", e.g. ``words(append_space=True)``.
|
54 |
+
As a result either ' ' or (' ', 'space') will be inserted between tokens.
|
55 |
+
|
56 |
+
By default, xml entities like " and & are replaced by corresponding
|
57 |
+
characters. You can turn off this feature, specifying parameter
|
58 |
+
"replace_xmlentities=False", e.g. ``words(replace_xmlentities=False)``.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, root, fileids):
|
62 |
+
CorpusReader.__init__(self, root, fileids, None, None)
|
63 |
+
|
64 |
+
def channels(self, fileids=None):
|
65 |
+
if not fileids:
|
66 |
+
fileids = self.fileids()
|
67 |
+
return self._parse_header(fileids, "channel")
|
68 |
+
|
69 |
+
def domains(self, fileids=None):
|
70 |
+
if not fileids:
|
71 |
+
fileids = self.fileids()
|
72 |
+
return self._parse_header(fileids, "domain")
|
73 |
+
|
74 |
+
def categories(self, fileids=None):
|
75 |
+
if not fileids:
|
76 |
+
fileids = self.fileids()
|
77 |
+
return [
|
78 |
+
self._map_category(cat) for cat in self._parse_header(fileids, "keyTerm")
|
79 |
+
]
|
80 |
+
|
81 |
+
def fileids(self, channels=None, domains=None, categories=None):
|
82 |
+
if channels is not None and domains is not None and categories is not None:
|
83 |
+
raise ValueError(
|
84 |
+
"You can specify only one of channels, domains "
|
85 |
+
"and categories parameter at once"
|
86 |
+
)
|
87 |
+
if channels is None and domains is None and categories is None:
|
88 |
+
return CorpusReader.fileids(self)
|
89 |
+
if isinstance(channels, str):
|
90 |
+
channels = [channels]
|
91 |
+
if isinstance(domains, str):
|
92 |
+
domains = [domains]
|
93 |
+
if isinstance(categories, str):
|
94 |
+
categories = [categories]
|
95 |
+
if channels:
|
96 |
+
return self._list_morph_files_by("channel", channels)
|
97 |
+
elif domains:
|
98 |
+
return self._list_morph_files_by("domain", domains)
|
99 |
+
else:
|
100 |
+
return self._list_morph_files_by(
|
101 |
+
"keyTerm", categories, map=self._map_category
|
102 |
+
)
|
103 |
+
|
104 |
+
@_parse_args
|
105 |
+
def sents(self, fileids=None, **kwargs):
|
106 |
+
return concat(
|
107 |
+
[
|
108 |
+
self._view(
|
109 |
+
fileid, mode=IPIPANCorpusView.SENTS_MODE, tags=False, **kwargs
|
110 |
+
)
|
111 |
+
for fileid in self._list_morph_files(fileids)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
@_parse_args
|
116 |
+
def paras(self, fileids=None, **kwargs):
|
117 |
+
return concat(
|
118 |
+
[
|
119 |
+
self._view(
|
120 |
+
fileid, mode=IPIPANCorpusView.PARAS_MODE, tags=False, **kwargs
|
121 |
+
)
|
122 |
+
for fileid in self._list_morph_files(fileids)
|
123 |
+
]
|
124 |
+
)
|
125 |
+
|
126 |
+
@_parse_args
|
127 |
+
def words(self, fileids=None, **kwargs):
|
128 |
+
return concat(
|
129 |
+
[
|
130 |
+
self._view(fileid, tags=False, **kwargs)
|
131 |
+
for fileid in self._list_morph_files(fileids)
|
132 |
+
]
|
133 |
+
)
|
134 |
+
|
135 |
+
@_parse_args
|
136 |
+
def tagged_sents(self, fileids=None, **kwargs):
|
137 |
+
return concat(
|
138 |
+
[
|
139 |
+
self._view(fileid, mode=IPIPANCorpusView.SENTS_MODE, **kwargs)
|
140 |
+
for fileid in self._list_morph_files(fileids)
|
141 |
+
]
|
142 |
+
)
|
143 |
+
|
144 |
+
@_parse_args
|
145 |
+
def tagged_paras(self, fileids=None, **kwargs):
|
146 |
+
return concat(
|
147 |
+
[
|
148 |
+
self._view(fileid, mode=IPIPANCorpusView.PARAS_MODE, **kwargs)
|
149 |
+
for fileid in self._list_morph_files(fileids)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
@_parse_args
|
154 |
+
def tagged_words(self, fileids=None, **kwargs):
|
155 |
+
return concat(
|
156 |
+
[self._view(fileid, **kwargs) for fileid in self._list_morph_files(fileids)]
|
157 |
+
)
|
158 |
+
|
159 |
+
def _list_morph_files(self, fileids):
|
160 |
+
return [f for f in self.abspaths(fileids)]
|
161 |
+
|
162 |
+
def _list_header_files(self, fileids):
|
163 |
+
return [
|
164 |
+
f.replace("morph.xml", "header.xml")
|
165 |
+
for f in self._list_morph_files(fileids)
|
166 |
+
]
|
167 |
+
|
168 |
+
def _parse_header(self, fileids, tag):
|
169 |
+
values = set()
|
170 |
+
for f in self._list_header_files(fileids):
|
171 |
+
values_list = self._get_tag(f, tag)
|
172 |
+
for v in values_list:
|
173 |
+
values.add(v)
|
174 |
+
return list(values)
|
175 |
+
|
176 |
+
def _list_morph_files_by(self, tag, values, map=None):
|
177 |
+
fileids = self.fileids()
|
178 |
+
ret_fileids = set()
|
179 |
+
for f in fileids:
|
180 |
+
fp = self.abspath(f).replace("morph.xml", "header.xml")
|
181 |
+
values_list = self._get_tag(fp, tag)
|
182 |
+
for value in values_list:
|
183 |
+
if map is not None:
|
184 |
+
value = map(value)
|
185 |
+
if value in values:
|
186 |
+
ret_fileids.add(f)
|
187 |
+
return list(ret_fileids)
|
188 |
+
|
189 |
+
def _get_tag(self, f, tag):
|
190 |
+
tags = []
|
191 |
+
with open(f) as infile:
|
192 |
+
header = infile.read()
|
193 |
+
tag_end = 0
|
194 |
+
while True:
|
195 |
+
tag_pos = header.find("<" + tag, tag_end)
|
196 |
+
if tag_pos < 0:
|
197 |
+
return tags
|
198 |
+
tag_end = header.find("</" + tag + ">", tag_pos)
|
199 |
+
tags.append(header[tag_pos + len(tag) + 2 : tag_end])
|
200 |
+
|
201 |
+
def _map_category(self, cat):
|
202 |
+
pos = cat.find(">")
|
203 |
+
if pos == -1:
|
204 |
+
return cat
|
205 |
+
else:
|
206 |
+
return cat[pos + 1 :]
|
207 |
+
|
208 |
+
def _view(self, filename, **kwargs):
|
209 |
+
tags = kwargs.pop("tags", True)
|
210 |
+
mode = kwargs.pop("mode", 0)
|
211 |
+
simplify_tags = kwargs.pop("simplify_tags", False)
|
212 |
+
one_tag = kwargs.pop("one_tag", True)
|
213 |
+
disamb_only = kwargs.pop("disamb_only", True)
|
214 |
+
append_no_space = kwargs.pop("append_no_space", False)
|
215 |
+
append_space = kwargs.pop("append_space", False)
|
216 |
+
replace_xmlentities = kwargs.pop("replace_xmlentities", True)
|
217 |
+
|
218 |
+
if len(kwargs) > 0:
|
219 |
+
raise ValueError("Unexpected arguments: %s" % kwargs.keys())
|
220 |
+
if not one_tag and not disamb_only:
|
221 |
+
raise ValueError(
|
222 |
+
"You cannot specify both one_tag=False and " "disamb_only=False"
|
223 |
+
)
|
224 |
+
if not tags and (simplify_tags or not one_tag or not disamb_only):
|
225 |
+
raise ValueError(
|
226 |
+
"You cannot specify simplify_tags, one_tag or "
|
227 |
+
"disamb_only with functions other than tagged_*"
|
228 |
+
)
|
229 |
+
|
230 |
+
return IPIPANCorpusView(
|
231 |
+
filename,
|
232 |
+
tags=tags,
|
233 |
+
mode=mode,
|
234 |
+
simplify_tags=simplify_tags,
|
235 |
+
one_tag=one_tag,
|
236 |
+
disamb_only=disamb_only,
|
237 |
+
append_no_space=append_no_space,
|
238 |
+
append_space=append_space,
|
239 |
+
replace_xmlentities=replace_xmlentities,
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
class IPIPANCorpusView(StreamBackedCorpusView):
|
244 |
+
|
245 |
+
WORDS_MODE = 0
|
246 |
+
SENTS_MODE = 1
|
247 |
+
PARAS_MODE = 2
|
248 |
+
|
249 |
+
def __init__(self, filename, startpos=0, **kwargs):
|
250 |
+
StreamBackedCorpusView.__init__(self, filename, None, startpos, None)
|
251 |
+
self.in_sentence = False
|
252 |
+
self.position = 0
|
253 |
+
|
254 |
+
self.show_tags = kwargs.pop("tags", True)
|
255 |
+
self.disamb_only = kwargs.pop("disamb_only", True)
|
256 |
+
self.mode = kwargs.pop("mode", IPIPANCorpusView.WORDS_MODE)
|
257 |
+
self.simplify_tags = kwargs.pop("simplify_tags", False)
|
258 |
+
self.one_tag = kwargs.pop("one_tag", True)
|
259 |
+
self.append_no_space = kwargs.pop("append_no_space", False)
|
260 |
+
self.append_space = kwargs.pop("append_space", False)
|
261 |
+
self.replace_xmlentities = kwargs.pop("replace_xmlentities", True)
|
262 |
+
|
263 |
+
def read_block(self, stream):
|
264 |
+
sentence = []
|
265 |
+
sentences = []
|
266 |
+
space = False
|
267 |
+
no_space = False
|
268 |
+
|
269 |
+
tags = set()
|
270 |
+
|
271 |
+
lines = self._read_data(stream)
|
272 |
+
|
273 |
+
while True:
|
274 |
+
|
275 |
+
# we may have only part of last line
|
276 |
+
if len(lines) <= 1:
|
277 |
+
self._seek(stream)
|
278 |
+
lines = self._read_data(stream)
|
279 |
+
|
280 |
+
if lines == [""]:
|
281 |
+
assert not sentences
|
282 |
+
return []
|
283 |
+
|
284 |
+
line = lines.pop()
|
285 |
+
self.position += len(line) + 1
|
286 |
+
|
287 |
+
if line.startswith('<chunk type="s"'):
|
288 |
+
self.in_sentence = True
|
289 |
+
elif line.startswith('<chunk type="p"'):
|
290 |
+
pass
|
291 |
+
elif line.startswith("<tok"):
|
292 |
+
if self.append_space and space and not no_space:
|
293 |
+
self._append_space(sentence)
|
294 |
+
space = True
|
295 |
+
no_space = False
|
296 |
+
orth = ""
|
297 |
+
tags = set()
|
298 |
+
elif line.startswith("</chunk"):
|
299 |
+
if self.in_sentence:
|
300 |
+
self.in_sentence = False
|
301 |
+
self._seek(stream)
|
302 |
+
if self.mode == self.SENTS_MODE:
|
303 |
+
return [sentence]
|
304 |
+
elif self.mode == self.WORDS_MODE:
|
305 |
+
if self.append_space:
|
306 |
+
self._append_space(sentence)
|
307 |
+
return sentence
|
308 |
+
else:
|
309 |
+
sentences.append(sentence)
|
310 |
+
elif self.mode == self.PARAS_MODE:
|
311 |
+
self._seek(stream)
|
312 |
+
return [sentences]
|
313 |
+
elif line.startswith("<orth"):
|
314 |
+
orth = line[6:-7]
|
315 |
+
if self.replace_xmlentities:
|
316 |
+
orth = orth.replace(""", '"').replace("&", "&")
|
317 |
+
elif line.startswith("<lex"):
|
318 |
+
if not self.disamb_only or line.find("disamb=") != -1:
|
319 |
+
tag = line[line.index("<ctag") + 6 : line.index("</ctag")]
|
320 |
+
tags.add(tag)
|
321 |
+
elif line.startswith("</tok"):
|
322 |
+
if self.show_tags:
|
323 |
+
if self.simplify_tags:
|
324 |
+
tags = [t.split(":")[0] for t in tags]
|
325 |
+
if not self.one_tag or not self.disamb_only:
|
326 |
+
sentence.append((orth, tuple(tags)))
|
327 |
+
else:
|
328 |
+
sentence.append((orth, tags.pop()))
|
329 |
+
else:
|
330 |
+
sentence.append(orth)
|
331 |
+
elif line.startswith("<ns/>"):
|
332 |
+
if self.append_space:
|
333 |
+
no_space = True
|
334 |
+
if self.append_no_space:
|
335 |
+
if self.show_tags:
|
336 |
+
sentence.append(("", "no-space"))
|
337 |
+
else:
|
338 |
+
sentence.append("")
|
339 |
+
elif line.startswith("</cesAna"):
|
340 |
+
pass
|
341 |
+
|
342 |
+
def _read_data(self, stream):
|
343 |
+
self.position = stream.tell()
|
344 |
+
buff = stream.read(4096)
|
345 |
+
lines = buff.split("\n")
|
346 |
+
lines.reverse()
|
347 |
+
return lines
|
348 |
+
|
349 |
+
def _seek(self, stream):
|
350 |
+
stream.seek(self.position)
|
351 |
+
|
352 |
+
def _append_space(self, sentence):
|
353 |
+
if self.show_tags:
|
354 |
+
sentence.append((" ", "space"))
|
355 |
+
else:
|
356 |
+
sentence.append(" ")
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/lin.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Lin's Thesaurus
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Dan Blanchard <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.txt
|
7 |
+
|
8 |
+
import re
|
9 |
+
from collections import defaultdict
|
10 |
+
from functools import reduce
|
11 |
+
|
12 |
+
from nltk.corpus.reader import CorpusReader
|
13 |
+
|
14 |
+
|
15 |
+
class LinThesaurusCorpusReader(CorpusReader):
|
16 |
+
"""Wrapper for the LISP-formatted thesauruses distributed by Dekang Lin."""
|
17 |
+
|
18 |
+
# Compiled regular expression for extracting the key from the first line of each
|
19 |
+
# thesaurus entry
|
20 |
+
_key_re = re.compile(r'\("?([^"]+)"? \(desc [0-9.]+\).+')
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def __defaultdict_factory():
|
24 |
+
"""Factory for creating defaultdict of defaultdict(dict)s"""
|
25 |
+
return defaultdict(dict)
|
26 |
+
|
27 |
+
def __init__(self, root, badscore=0.0):
|
28 |
+
"""
|
29 |
+
Initialize the thesaurus.
|
30 |
+
|
31 |
+
:param root: root directory containing thesaurus LISP files
|
32 |
+
:type root: C{string}
|
33 |
+
:param badscore: the score to give to words which do not appear in each other's sets of synonyms
|
34 |
+
:type badscore: C{float}
|
35 |
+
"""
|
36 |
+
|
37 |
+
super().__init__(root, r"sim[A-Z]\.lsp")
|
38 |
+
self._thesaurus = defaultdict(LinThesaurusCorpusReader.__defaultdict_factory)
|
39 |
+
self._badscore = badscore
|
40 |
+
for path, encoding, fileid in self.abspaths(
|
41 |
+
include_encoding=True, include_fileid=True
|
42 |
+
):
|
43 |
+
with open(path) as lin_file:
|
44 |
+
first = True
|
45 |
+
for line in lin_file:
|
46 |
+
line = line.strip()
|
47 |
+
# Start of entry
|
48 |
+
if first:
|
49 |
+
key = LinThesaurusCorpusReader._key_re.sub(r"\1", line)
|
50 |
+
first = False
|
51 |
+
# End of entry
|
52 |
+
elif line == "))":
|
53 |
+
first = True
|
54 |
+
# Lines with pairs of ngrams and scores
|
55 |
+
else:
|
56 |
+
split_line = line.split("\t")
|
57 |
+
if len(split_line) == 2:
|
58 |
+
ngram, score = split_line
|
59 |
+
self._thesaurus[fileid][key][ngram.strip('"')] = float(
|
60 |
+
score
|
61 |
+
)
|
62 |
+
|
63 |
+
def similarity(self, ngram1, ngram2, fileid=None):
|
64 |
+
"""
|
65 |
+
Returns the similarity score for two ngrams.
|
66 |
+
|
67 |
+
:param ngram1: first ngram to compare
|
68 |
+
:type ngram1: C{string}
|
69 |
+
:param ngram2: second ngram to compare
|
70 |
+
:type ngram2: C{string}
|
71 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
72 |
+
:type fileid: C{string}
|
73 |
+
:return: If fileid is specified, just the score for the two ngrams; otherwise,
|
74 |
+
list of tuples of fileids and scores.
|
75 |
+
"""
|
76 |
+
# Entries don't contain themselves, so make sure similarity between item and itself is 1.0
|
77 |
+
if ngram1 == ngram2:
|
78 |
+
if fileid:
|
79 |
+
return 1.0
|
80 |
+
else:
|
81 |
+
return [(fid, 1.0) for fid in self._fileids]
|
82 |
+
else:
|
83 |
+
if fileid:
|
84 |
+
return (
|
85 |
+
self._thesaurus[fileid][ngram1][ngram2]
|
86 |
+
if ngram2 in self._thesaurus[fileid][ngram1]
|
87 |
+
else self._badscore
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
return [
|
91 |
+
(
|
92 |
+
fid,
|
93 |
+
(
|
94 |
+
self._thesaurus[fid][ngram1][ngram2]
|
95 |
+
if ngram2 in self._thesaurus[fid][ngram1]
|
96 |
+
else self._badscore
|
97 |
+
),
|
98 |
+
)
|
99 |
+
for fid in self._fileids
|
100 |
+
]
|
101 |
+
|
102 |
+
def scored_synonyms(self, ngram, fileid=None):
|
103 |
+
"""
|
104 |
+
Returns a list of scored synonyms (tuples of synonyms and scores) for the current ngram
|
105 |
+
|
106 |
+
:param ngram: ngram to lookup
|
107 |
+
:type ngram: C{string}
|
108 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
109 |
+
:type fileid: C{string}
|
110 |
+
:return: If fileid is specified, list of tuples of scores and synonyms; otherwise,
|
111 |
+
list of tuples of fileids and lists, where inner lists consist of tuples of
|
112 |
+
scores and synonyms.
|
113 |
+
"""
|
114 |
+
if fileid:
|
115 |
+
return self._thesaurus[fileid][ngram].items()
|
116 |
+
else:
|
117 |
+
return [
|
118 |
+
(fileid, self._thesaurus[fileid][ngram].items())
|
119 |
+
for fileid in self._fileids
|
120 |
+
]
|
121 |
+
|
122 |
+
def synonyms(self, ngram, fileid=None):
|
123 |
+
"""
|
124 |
+
Returns a list of synonyms for the current ngram.
|
125 |
+
|
126 |
+
:param ngram: ngram to lookup
|
127 |
+
:type ngram: C{string}
|
128 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
129 |
+
:type fileid: C{string}
|
130 |
+
:return: If fileid is specified, list of synonyms; otherwise, list of tuples of fileids and
|
131 |
+
lists, where inner lists contain synonyms.
|
132 |
+
"""
|
133 |
+
if fileid:
|
134 |
+
return self._thesaurus[fileid][ngram].keys()
|
135 |
+
else:
|
136 |
+
return [
|
137 |
+
(fileid, self._thesaurus[fileid][ngram].keys())
|
138 |
+
for fileid in self._fileids
|
139 |
+
]
|
140 |
+
|
141 |
+
def __contains__(self, ngram):
|
142 |
+
"""
|
143 |
+
Determines whether or not the given ngram is in the thesaurus.
|
144 |
+
|
145 |
+
:param ngram: ngram to lookup
|
146 |
+
:type ngram: C{string}
|
147 |
+
:return: whether the given ngram is in the thesaurus.
|
148 |
+
"""
|
149 |
+
return reduce(
|
150 |
+
lambda accum, fileid: accum or (ngram in self._thesaurus[fileid]),
|
151 |
+
self._fileids,
|
152 |
+
False,
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
######################################################################
|
157 |
+
# Demo
|
158 |
+
######################################################################
|
159 |
+
|
160 |
+
|
161 |
+
def demo():
|
162 |
+
from nltk.corpus import lin_thesaurus as thes
|
163 |
+
|
164 |
+
word1 = "business"
|
165 |
+
word2 = "enterprise"
|
166 |
+
print("Getting synonyms for " + word1)
|
167 |
+
print(thes.synonyms(word1))
|
168 |
+
|
169 |
+
print("Getting scored synonyms for " + word1)
|
170 |
+
print(thes.scored_synonyms(word1))
|
171 |
+
|
172 |
+
print("Getting synonyms from simN.lsp (noun subsection) for " + word1)
|
173 |
+
print(thes.synonyms(word1, fileid="simN.lsp"))
|
174 |
+
|
175 |
+
print("Getting synonyms from simN.lsp (noun subsection) for " + word1)
|
176 |
+
print(thes.synonyms(word1, fileid="simN.lsp"))
|
177 |
+
|
178 |
+
print(f"Similarity score for {word1} and {word2}:")
|
179 |
+
print(thes.similarity(word1, word2))
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
demo()
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/markdown.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from functools import partial, wraps
|
3 |
+
|
4 |
+
from nltk.corpus.reader.api import CategorizedCorpusReader
|
5 |
+
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
|
6 |
+
from nltk.corpus.reader.util import concat, read_blankline_block
|
7 |
+
from nltk.tokenize import blankline_tokenize, sent_tokenize, word_tokenize
|
8 |
+
|
9 |
+
|
10 |
+
def comma_separated_string_args(func):
|
11 |
+
"""
|
12 |
+
A decorator that allows a function to be called with
|
13 |
+
a single string of comma-separated values which become
|
14 |
+
individual function arguments.
|
15 |
+
"""
|
16 |
+
|
17 |
+
@wraps(func)
|
18 |
+
def wrapper(*args, **kwargs):
|
19 |
+
_args = list()
|
20 |
+
for arg in args:
|
21 |
+
if isinstance(arg, str):
|
22 |
+
_args.append({part.strip() for part in arg.split(",")})
|
23 |
+
elif isinstance(arg, list):
|
24 |
+
_args.append(set(arg))
|
25 |
+
else:
|
26 |
+
_args.append(arg)
|
27 |
+
for name, value in kwargs.items():
|
28 |
+
if isinstance(value, str):
|
29 |
+
kwargs[name] = {part.strip() for part in value.split(",")}
|
30 |
+
return func(*_args, **kwargs)
|
31 |
+
|
32 |
+
return wrapper
|
33 |
+
|
34 |
+
|
35 |
+
def read_parse_blankline_block(stream, parser):
|
36 |
+
block = read_blankline_block(stream)
|
37 |
+
if block:
|
38 |
+
return [parser.render(block[0])]
|
39 |
+
return block
|
40 |
+
|
41 |
+
|
42 |
+
class MarkdownBlock:
|
43 |
+
def __init__(self, content):
|
44 |
+
self.content = content
|
45 |
+
self.truncate_at = 16
|
46 |
+
|
47 |
+
def __repr__(self):
|
48 |
+
return f"{self.__class__.__name__}(content={repr(str(self))})"
|
49 |
+
|
50 |
+
def __str__(self):
|
51 |
+
return (
|
52 |
+
f"{self.content[:self.truncate_at]}"
|
53 |
+
f"{'...' if len(self.content) > self.truncate_at else ''}"
|
54 |
+
)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def raw(self):
|
58 |
+
return self.content
|
59 |
+
|
60 |
+
@property
|
61 |
+
def words(self):
|
62 |
+
return word_tokenize(self.content)
|
63 |
+
|
64 |
+
@property
|
65 |
+
def sents(self):
|
66 |
+
return [word_tokenize(sent) for sent in sent_tokenize(self.content)]
|
67 |
+
|
68 |
+
@property
|
69 |
+
def paras(self):
|
70 |
+
return [
|
71 |
+
[word_tokenize(sent) for sent in sent_tokenize(para)]
|
72 |
+
for para in blankline_tokenize(self.content)
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
class CodeBlock(MarkdownBlock):
|
77 |
+
def __init__(self, language, *args):
|
78 |
+
self.language = language
|
79 |
+
super().__init__(*args)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def sents(self):
|
83 |
+
return [word_tokenize(line) for line in self.content.splitlines()]
|
84 |
+
|
85 |
+
@property
|
86 |
+
def lines(self):
|
87 |
+
return self.content.splitlines()
|
88 |
+
|
89 |
+
@property
|
90 |
+
def paras(self):
|
91 |
+
return [
|
92 |
+
[word_tokenize(line) for line in para.splitlines()]
|
93 |
+
for para in blankline_tokenize(self.content)
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
class MarkdownSection(MarkdownBlock):
|
98 |
+
def __init__(self, heading, level, *args):
|
99 |
+
self.heading = heading
|
100 |
+
self.level = level
|
101 |
+
super().__init__(*args)
|
102 |
+
|
103 |
+
|
104 |
+
Image = namedtuple("Image", "label, src, title")
|
105 |
+
Link = namedtuple("Link", "label, href, title")
|
106 |
+
List = namedtuple("List", "is_ordered, items")
|
107 |
+
|
108 |
+
|
109 |
+
class MarkdownCorpusReader(PlaintextCorpusReader):
|
110 |
+
def __init__(self, *args, parser=None, **kwargs):
|
111 |
+
from markdown_it import MarkdownIt
|
112 |
+
from mdit_plain.renderer import RendererPlain
|
113 |
+
from mdit_py_plugins.front_matter import front_matter_plugin
|
114 |
+
|
115 |
+
self.parser = parser
|
116 |
+
if self.parser is None:
|
117 |
+
self.parser = MarkdownIt("commonmark", renderer_cls=RendererPlain)
|
118 |
+
self.parser.use(front_matter_plugin)
|
119 |
+
|
120 |
+
kwargs.setdefault(
|
121 |
+
"para_block_reader", partial(read_parse_blankline_block, parser=self.parser)
|
122 |
+
)
|
123 |
+
super().__init__(*args, **kwargs)
|
124 |
+
|
125 |
+
# This override takes care of removing markup.
|
126 |
+
def _read_word_block(self, stream):
|
127 |
+
words = list()
|
128 |
+
for para in self._para_block_reader(stream):
|
129 |
+
words.extend(self._word_tokenizer.tokenize(para))
|
130 |
+
return words
|
131 |
+
|
132 |
+
|
133 |
+
class CategorizedMarkdownCorpusReader(CategorizedCorpusReader, MarkdownCorpusReader):
|
134 |
+
"""
|
135 |
+
A reader for markdown corpora whose documents are divided into
|
136 |
+
categories based on their file identifiers.
|
137 |
+
|
138 |
+
Based on nltk.corpus.reader.plaintext.CategorizedPlaintextCorpusReader:
|
139 |
+
https://www.nltk.org/_modules/nltk/corpus/reader/api.html#CategorizedCorpusReader
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, *args, cat_field="tags", **kwargs):
|
143 |
+
"""
|
144 |
+
Initialize the corpus reader. Categorization arguments
|
145 |
+
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
|
146 |
+
the ``CategorizedCorpusReader`` constructor. The remaining arguments
|
147 |
+
are passed to the ``MarkdownCorpusReader`` constructor.
|
148 |
+
"""
|
149 |
+
cat_args = ["cat_pattern", "cat_map", "cat_file"]
|
150 |
+
if not any(arg in kwargs for arg in cat_args):
|
151 |
+
# Initialize with a blank map now,
|
152 |
+
# and try to build categories from document metadata later.
|
153 |
+
kwargs["cat_map"] = dict()
|
154 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
155 |
+
MarkdownCorpusReader.__init__(self, *args, **kwargs)
|
156 |
+
|
157 |
+
# Map file IDs to categories if self._map exists but is still empty:
|
158 |
+
if self._map is not None and not self._map:
|
159 |
+
for file_id in self._fileids:
|
160 |
+
metadata = self.metadata(file_id)
|
161 |
+
if metadata:
|
162 |
+
self._map[file_id] = metadata[0].get(cat_field, [])
|
163 |
+
|
164 |
+
### Begin CategorizedCorpusReader Overrides
|
165 |
+
@comma_separated_string_args
|
166 |
+
def categories(self, fileids=None):
|
167 |
+
return super().categories(fileids)
|
168 |
+
|
169 |
+
@comma_separated_string_args
|
170 |
+
def fileids(self, categories=None):
|
171 |
+
if categories is None:
|
172 |
+
return self._fileids
|
173 |
+
return super().fileids(categories)
|
174 |
+
|
175 |
+
### End CategorizedCorpusReader Overrides
|
176 |
+
|
177 |
+
### Begin MarkdownCorpusReader Overrides
|
178 |
+
@comma_separated_string_args
|
179 |
+
def raw(self, fileids=None, categories=None):
|
180 |
+
return super().raw(self._resolve(fileids, categories))
|
181 |
+
|
182 |
+
@comma_separated_string_args
|
183 |
+
def words(self, fileids=None, categories=None):
|
184 |
+
return super().words(self._resolve(fileids, categories))
|
185 |
+
|
186 |
+
@comma_separated_string_args
|
187 |
+
def sents(self, fileids=None, categories=None):
|
188 |
+
return super().sents(self._resolve(fileids, categories))
|
189 |
+
|
190 |
+
@comma_separated_string_args
|
191 |
+
def paras(self, fileids=None, categories=None):
|
192 |
+
return super().paras(self._resolve(fileids, categories))
|
193 |
+
|
194 |
+
### End MarkdownCorpusReader Overrides
|
195 |
+
|
196 |
+
def concatenated_view(self, reader, fileids, categories):
|
197 |
+
return concat(
|
198 |
+
[
|
199 |
+
self.CorpusView(path, reader, encoding=enc)
|
200 |
+
for (path, enc) in self.abspaths(
|
201 |
+
self._resolve(fileids, categories), include_encoding=True
|
202 |
+
)
|
203 |
+
]
|
204 |
+
)
|
205 |
+
|
206 |
+
def metadata_reader(self, stream):
|
207 |
+
from yaml import safe_load
|
208 |
+
|
209 |
+
return [
|
210 |
+
safe_load(t.content)
|
211 |
+
for t in self.parser.parse(stream.read())
|
212 |
+
if t.type == "front_matter"
|
213 |
+
]
|
214 |
+
|
215 |
+
@comma_separated_string_args
|
216 |
+
def metadata(self, fileids=None, categories=None):
|
217 |
+
return self.concatenated_view(self.metadata_reader, fileids, categories)
|
218 |
+
|
219 |
+
def blockquote_reader(self, stream):
|
220 |
+
tokens = self.parser.parse(stream.read())
|
221 |
+
opening_tokens = filter(
|
222 |
+
lambda t: t.level == 0 and t.type == "blockquote_open", tokens
|
223 |
+
)
|
224 |
+
closing_tokens = filter(
|
225 |
+
lambda t: t.level == 0 and t.type == "blockquote_close", tokens
|
226 |
+
)
|
227 |
+
blockquotes = list()
|
228 |
+
for o, c in zip(opening_tokens, closing_tokens):
|
229 |
+
opening_index = tokens.index(o)
|
230 |
+
closing_index = tokens.index(c, opening_index)
|
231 |
+
blockquotes.append(tokens[opening_index : closing_index + 1])
|
232 |
+
return [
|
233 |
+
MarkdownBlock(
|
234 |
+
self.parser.renderer.render(block, self.parser.options, env=None)
|
235 |
+
)
|
236 |
+
for block in blockquotes
|
237 |
+
]
|
238 |
+
|
239 |
+
@comma_separated_string_args
|
240 |
+
def blockquotes(self, fileids=None, categories=None):
|
241 |
+
return self.concatenated_view(self.blockquote_reader, fileids, categories)
|
242 |
+
|
243 |
+
def code_block_reader(self, stream):
|
244 |
+
return [
|
245 |
+
CodeBlock(
|
246 |
+
t.info,
|
247 |
+
t.content,
|
248 |
+
)
|
249 |
+
for t in self.parser.parse(stream.read())
|
250 |
+
if t.level == 0 and t.type in ("fence", "code_block")
|
251 |
+
]
|
252 |
+
|
253 |
+
@comma_separated_string_args
|
254 |
+
def code_blocks(self, fileids=None, categories=None):
|
255 |
+
return self.concatenated_view(self.code_block_reader, fileids, categories)
|
256 |
+
|
257 |
+
def image_reader(self, stream):
|
258 |
+
return [
|
259 |
+
Image(
|
260 |
+
child_token.content,
|
261 |
+
child_token.attrGet("src"),
|
262 |
+
child_token.attrGet("title"),
|
263 |
+
)
|
264 |
+
for inline_token in filter(
|
265 |
+
lambda t: t.type == "inline", self.parser.parse(stream.read())
|
266 |
+
)
|
267 |
+
for child_token in inline_token.children
|
268 |
+
if child_token.type == "image"
|
269 |
+
]
|
270 |
+
|
271 |
+
@comma_separated_string_args
|
272 |
+
def images(self, fileids=None, categories=None):
|
273 |
+
return self.concatenated_view(self.image_reader, fileids, categories)
|
274 |
+
|
275 |
+
def link_reader(self, stream):
|
276 |
+
return [
|
277 |
+
Link(
|
278 |
+
inline_token.children[i + 1].content,
|
279 |
+
child_token.attrGet("href"),
|
280 |
+
child_token.attrGet("title"),
|
281 |
+
)
|
282 |
+
for inline_token in filter(
|
283 |
+
lambda t: t.type == "inline", self.parser.parse(stream.read())
|
284 |
+
)
|
285 |
+
for i, child_token in enumerate(inline_token.children)
|
286 |
+
if child_token.type == "link_open"
|
287 |
+
]
|
288 |
+
|
289 |
+
@comma_separated_string_args
|
290 |
+
def links(self, fileids=None, categories=None):
|
291 |
+
return self.concatenated_view(self.link_reader, fileids, categories)
|
292 |
+
|
293 |
+
def list_reader(self, stream):
|
294 |
+
tokens = self.parser.parse(stream.read())
|
295 |
+
opening_types = ("bullet_list_open", "ordered_list_open")
|
296 |
+
opening_tokens = filter(
|
297 |
+
lambda t: t.level == 0 and t.type in opening_types, tokens
|
298 |
+
)
|
299 |
+
closing_types = ("bullet_list_close", "ordered_list_close")
|
300 |
+
closing_tokens = filter(
|
301 |
+
lambda t: t.level == 0 and t.type in closing_types, tokens
|
302 |
+
)
|
303 |
+
list_blocks = list()
|
304 |
+
for o, c in zip(opening_tokens, closing_tokens):
|
305 |
+
opening_index = tokens.index(o)
|
306 |
+
closing_index = tokens.index(c, opening_index)
|
307 |
+
list_blocks.append(tokens[opening_index : closing_index + 1])
|
308 |
+
return [
|
309 |
+
List(
|
310 |
+
tokens[0].type == "ordered_list_open",
|
311 |
+
[t.content for t in tokens if t.content],
|
312 |
+
)
|
313 |
+
for tokens in list_blocks
|
314 |
+
]
|
315 |
+
|
316 |
+
@comma_separated_string_args
|
317 |
+
def lists(self, fileids=None, categories=None):
|
318 |
+
return self.concatenated_view(self.list_reader, fileids, categories)
|
319 |
+
|
320 |
+
def section_reader(self, stream):
|
321 |
+
section_blocks, block = list(), list()
|
322 |
+
in_heading = False
|
323 |
+
for t in self.parser.parse(stream.read()):
|
324 |
+
if t.level == 0 and t.type == "heading_open":
|
325 |
+
if block:
|
326 |
+
section_blocks.append(block)
|
327 |
+
block = list()
|
328 |
+
in_heading = True
|
329 |
+
if in_heading:
|
330 |
+
block.append(t)
|
331 |
+
return [
|
332 |
+
MarkdownSection(
|
333 |
+
block[1].content,
|
334 |
+
block[0].markup.count("#"),
|
335 |
+
self.parser.renderer.render(block, self.parser.options, env=None),
|
336 |
+
)
|
337 |
+
for block in section_blocks
|
338 |
+
]
|
339 |
+
|
340 |
+
@comma_separated_string_args
|
341 |
+
def sections(self, fileids=None, categories=None):
|
342 |
+
return self.concatenated_view(self.section_reader, fileids, categories)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/nps_chat.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: NPS Chat Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import re
|
9 |
+
import textwrap
|
10 |
+
|
11 |
+
from nltk.corpus.reader.api import *
|
12 |
+
from nltk.corpus.reader.util import *
|
13 |
+
from nltk.corpus.reader.xmldocs import *
|
14 |
+
from nltk.internals import ElementWrapper
|
15 |
+
from nltk.tag import map_tag
|
16 |
+
from nltk.util import LazyConcatenation
|
17 |
+
|
18 |
+
|
19 |
+
class NPSChatCorpusReader(XMLCorpusReader):
|
20 |
+
def __init__(self, root, fileids, wrap_etree=False, tagset=None):
|
21 |
+
XMLCorpusReader.__init__(self, root, fileids, wrap_etree)
|
22 |
+
self._tagset = tagset
|
23 |
+
|
24 |
+
def xml_posts(self, fileids=None):
|
25 |
+
if self._wrap_etree:
|
26 |
+
return concat(
|
27 |
+
[
|
28 |
+
XMLCorpusView(fileid, "Session/Posts/Post", self._wrap_elt)
|
29 |
+
for fileid in self.abspaths(fileids)
|
30 |
+
]
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
return concat(
|
34 |
+
[
|
35 |
+
XMLCorpusView(fileid, "Session/Posts/Post")
|
36 |
+
for fileid in self.abspaths(fileids)
|
37 |
+
]
|
38 |
+
)
|
39 |
+
|
40 |
+
def posts(self, fileids=None):
|
41 |
+
return concat(
|
42 |
+
[
|
43 |
+
XMLCorpusView(
|
44 |
+
fileid, "Session/Posts/Post/terminals", self._elt_to_words
|
45 |
+
)
|
46 |
+
for fileid in self.abspaths(fileids)
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
def tagged_posts(self, fileids=None, tagset=None):
|
51 |
+
def reader(elt, handler):
|
52 |
+
return self._elt_to_tagged_words(elt, handler, tagset)
|
53 |
+
|
54 |
+
return concat(
|
55 |
+
[
|
56 |
+
XMLCorpusView(fileid, "Session/Posts/Post/terminals", reader)
|
57 |
+
for fileid in self.abspaths(fileids)
|
58 |
+
]
|
59 |
+
)
|
60 |
+
|
61 |
+
def words(self, fileids=None):
|
62 |
+
return LazyConcatenation(self.posts(fileids))
|
63 |
+
|
64 |
+
def tagged_words(self, fileids=None, tagset=None):
|
65 |
+
return LazyConcatenation(self.tagged_posts(fileids, tagset))
|
66 |
+
|
67 |
+
def _wrap_elt(self, elt, handler):
|
68 |
+
return ElementWrapper(elt)
|
69 |
+
|
70 |
+
def _elt_to_words(self, elt, handler):
|
71 |
+
return [self._simplify_username(t.attrib["word"]) for t in elt.findall("t")]
|
72 |
+
|
73 |
+
def _elt_to_tagged_words(self, elt, handler, tagset=None):
|
74 |
+
tagged_post = [
|
75 |
+
(self._simplify_username(t.attrib["word"]), t.attrib["pos"])
|
76 |
+
for t in elt.findall("t")
|
77 |
+
]
|
78 |
+
if tagset and tagset != self._tagset:
|
79 |
+
tagged_post = [
|
80 |
+
(w, map_tag(self._tagset, tagset, t)) for (w, t) in tagged_post
|
81 |
+
]
|
82 |
+
return tagged_post
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def _simplify_username(word):
|
86 |
+
if "User" in word:
|
87 |
+
word = "U" + word.split("User", 1)[1]
|
88 |
+
elif isinstance(word, bytes):
|
89 |
+
word = word.decode("ascii")
|
90 |
+
return word
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/opinion_lexicon.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Opinion Lexicon Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for the Opinion Lexicon.
|
10 |
+
|
11 |
+
Opinion Lexicon information
|
12 |
+
===========================
|
13 |
+
|
14 |
+
Authors: Minqing Hu and Bing Liu, 2004.
|
15 |
+
Department of Computer Science
|
16 |
+
University of Illinois at Chicago
|
17 |
+
|
18 |
+
Contact: Bing Liu, [email protected]
|
19 |
+
https://www.cs.uic.edu/~liub
|
20 |
+
|
21 |
+
Distributed with permission.
|
22 |
+
|
23 |
+
Related papers:
|
24 |
+
|
25 |
+
- Minqing Hu and Bing Liu. "Mining and summarizing customer reviews".
|
26 |
+
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
|
27 |
+
& Data Mining (KDD-04), Aug 22-25, 2004, Seattle, Washington, USA.
|
28 |
+
|
29 |
+
- Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and
|
30 |
+
Comparing Opinions on the Web". Proceedings of the 14th International World
|
31 |
+
Wide Web conference (WWW-2005), May 10-14, 2005, Chiba, Japan.
|
32 |
+
"""
|
33 |
+
|
34 |
+
from nltk.corpus.reader import WordListCorpusReader
|
35 |
+
from nltk.corpus.reader.api import *
|
36 |
+
|
37 |
+
|
38 |
+
class IgnoreReadmeCorpusView(StreamBackedCorpusView):
|
39 |
+
"""
|
40 |
+
This CorpusView is used to skip the initial readme block of the corpus.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
StreamBackedCorpusView.__init__(self, *args, **kwargs)
|
45 |
+
# open self._stream
|
46 |
+
self._open()
|
47 |
+
# skip the readme block
|
48 |
+
read_blankline_block(self._stream)
|
49 |
+
# Set the initial position to the current stream position
|
50 |
+
self._filepos = [self._stream.tell()]
|
51 |
+
|
52 |
+
|
53 |
+
class OpinionLexiconCorpusReader(WordListCorpusReader):
|
54 |
+
"""
|
55 |
+
Reader for Liu and Hu opinion lexicon. Blank lines and readme are ignored.
|
56 |
+
|
57 |
+
>>> from nltk.corpus import opinion_lexicon
|
58 |
+
>>> opinion_lexicon.words()
|
59 |
+
['2-faced', '2-faces', 'abnormal', 'abolish', ...]
|
60 |
+
|
61 |
+
The OpinionLexiconCorpusReader provides shortcuts to retrieve positive/negative
|
62 |
+
words:
|
63 |
+
|
64 |
+
>>> opinion_lexicon.negative()
|
65 |
+
['2-faced', '2-faces', 'abnormal', 'abolish', ...]
|
66 |
+
|
67 |
+
Note that words from `words()` method are sorted by file id, not alphabetically:
|
68 |
+
|
69 |
+
>>> opinion_lexicon.words()[0:10] # doctest: +NORMALIZE_WHITESPACE
|
70 |
+
['2-faced', '2-faces', 'abnormal', 'abolish', 'abominable', 'abominably',
|
71 |
+
'abominate', 'abomination', 'abort', 'aborted']
|
72 |
+
>>> sorted(opinion_lexicon.words())[0:10] # doctest: +NORMALIZE_WHITESPACE
|
73 |
+
['2-faced', '2-faces', 'a+', 'abnormal', 'abolish', 'abominable', 'abominably',
|
74 |
+
'abominate', 'abomination', 'abort']
|
75 |
+
"""
|
76 |
+
|
77 |
+
CorpusView = IgnoreReadmeCorpusView
|
78 |
+
|
79 |
+
def words(self, fileids=None):
|
80 |
+
"""
|
81 |
+
Return all words in the opinion lexicon. Note that these words are not
|
82 |
+
sorted in alphabetical order.
|
83 |
+
|
84 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
85 |
+
words have to be returned.
|
86 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
87 |
+
:rtype: list(str)
|
88 |
+
"""
|
89 |
+
if fileids is None:
|
90 |
+
fileids = self._fileids
|
91 |
+
elif isinstance(fileids, str):
|
92 |
+
fileids = [fileids]
|
93 |
+
return concat(
|
94 |
+
[
|
95 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
96 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
97 |
+
]
|
98 |
+
)
|
99 |
+
|
100 |
+
def positive(self):
|
101 |
+
"""
|
102 |
+
Return all positive words in alphabetical order.
|
103 |
+
|
104 |
+
:return: a list of positive words.
|
105 |
+
:rtype: list(str)
|
106 |
+
"""
|
107 |
+
return self.words("positive-words.txt")
|
108 |
+
|
109 |
+
def negative(self):
|
110 |
+
"""
|
111 |
+
Return all negative words in alphabetical order.
|
112 |
+
|
113 |
+
:return: a list of negative words.
|
114 |
+
:rtype: list(str)
|
115 |
+
"""
|
116 |
+
return self.words("negative-words.txt")
|
117 |
+
|
118 |
+
def _read_word_block(self, stream):
|
119 |
+
words = []
|
120 |
+
for i in range(20): # Read 20 lines at a time.
|
121 |
+
line = stream.readline()
|
122 |
+
if not line:
|
123 |
+
continue
|
124 |
+
words.append(line.strip())
|
125 |
+
return words
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/panlex_lite.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: PanLex Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: David Kamholz <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for PanLex Lite, a stripped down version of PanLex distributed
|
10 |
+
as an SQLite database. See the README.txt in the panlex_lite corpus directory
|
11 |
+
for more information on PanLex Lite.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import sqlite3
|
16 |
+
|
17 |
+
from nltk.corpus.reader.api import CorpusReader
|
18 |
+
|
19 |
+
|
20 |
+
class PanLexLiteCorpusReader(CorpusReader):
|
21 |
+
MEANING_Q = """
|
22 |
+
SELECT dnx2.mn, dnx2.uq, dnx2.ap, dnx2.ui, ex2.tt, ex2.lv
|
23 |
+
FROM dnx
|
24 |
+
JOIN ex ON (ex.ex = dnx.ex)
|
25 |
+
JOIN dnx dnx2 ON (dnx2.mn = dnx.mn)
|
26 |
+
JOIN ex ex2 ON (ex2.ex = dnx2.ex)
|
27 |
+
WHERE dnx.ex != dnx2.ex AND ex.tt = ? AND ex.lv = ?
|
28 |
+
ORDER BY dnx2.uq DESC
|
29 |
+
"""
|
30 |
+
|
31 |
+
TRANSLATION_Q = """
|
32 |
+
SELECT s.tt, sum(s.uq) AS trq FROM (
|
33 |
+
SELECT ex2.tt, max(dnx.uq) AS uq
|
34 |
+
FROM dnx
|
35 |
+
JOIN ex ON (ex.ex = dnx.ex)
|
36 |
+
JOIN dnx dnx2 ON (dnx2.mn = dnx.mn)
|
37 |
+
JOIN ex ex2 ON (ex2.ex = dnx2.ex)
|
38 |
+
WHERE dnx.ex != dnx2.ex AND ex.lv = ? AND ex.tt = ? AND ex2.lv = ?
|
39 |
+
GROUP BY ex2.tt, dnx.ui
|
40 |
+
) s
|
41 |
+
GROUP BY s.tt
|
42 |
+
ORDER BY trq DESC, s.tt
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, root):
|
46 |
+
self._c = sqlite3.connect(os.path.join(root, "db.sqlite")).cursor()
|
47 |
+
|
48 |
+
self._uid_lv = {}
|
49 |
+
self._lv_uid = {}
|
50 |
+
|
51 |
+
for row in self._c.execute("SELECT uid, lv FROM lv"):
|
52 |
+
self._uid_lv[row[0]] = row[1]
|
53 |
+
self._lv_uid[row[1]] = row[0]
|
54 |
+
|
55 |
+
def language_varieties(self, lc=None):
|
56 |
+
"""
|
57 |
+
Return a list of PanLex language varieties.
|
58 |
+
|
59 |
+
:param lc: ISO 639 alpha-3 code. If specified, filters returned varieties
|
60 |
+
by this code. If unspecified, all varieties are returned.
|
61 |
+
:return: the specified language varieties as a list of tuples. The first
|
62 |
+
element is the language variety's seven-character uniform identifier,
|
63 |
+
and the second element is its default name.
|
64 |
+
:rtype: list(tuple)
|
65 |
+
"""
|
66 |
+
|
67 |
+
if lc is None:
|
68 |
+
return self._c.execute("SELECT uid, tt FROM lv ORDER BY uid").fetchall()
|
69 |
+
else:
|
70 |
+
return self._c.execute(
|
71 |
+
"SELECT uid, tt FROM lv WHERE lc = ? ORDER BY uid", (lc,)
|
72 |
+
).fetchall()
|
73 |
+
|
74 |
+
def meanings(self, expr_uid, expr_tt):
|
75 |
+
"""
|
76 |
+
Return a list of meanings for an expression.
|
77 |
+
|
78 |
+
:param expr_uid: the expression's language variety, as a seven-character
|
79 |
+
uniform identifier.
|
80 |
+
:param expr_tt: the expression's text.
|
81 |
+
:return: a list of Meaning objects.
|
82 |
+
:rtype: list(Meaning)
|
83 |
+
"""
|
84 |
+
|
85 |
+
expr_lv = self._uid_lv[expr_uid]
|
86 |
+
|
87 |
+
mn_info = {}
|
88 |
+
|
89 |
+
for i in self._c.execute(self.MEANING_Q, (expr_tt, expr_lv)):
|
90 |
+
mn = i[0]
|
91 |
+
uid = self._lv_uid[i[5]]
|
92 |
+
|
93 |
+
if not mn in mn_info:
|
94 |
+
mn_info[mn] = {
|
95 |
+
"uq": i[1],
|
96 |
+
"ap": i[2],
|
97 |
+
"ui": i[3],
|
98 |
+
"ex": {expr_uid: [expr_tt]},
|
99 |
+
}
|
100 |
+
|
101 |
+
if not uid in mn_info[mn]["ex"]:
|
102 |
+
mn_info[mn]["ex"][uid] = []
|
103 |
+
|
104 |
+
mn_info[mn]["ex"][uid].append(i[4])
|
105 |
+
|
106 |
+
return [Meaning(mn, mn_info[mn]) for mn in mn_info]
|
107 |
+
|
108 |
+
def translations(self, from_uid, from_tt, to_uid):
|
109 |
+
"""
|
110 |
+
Return a list of translations for an expression into a single language
|
111 |
+
variety.
|
112 |
+
|
113 |
+
:param from_uid: the source expression's language variety, as a
|
114 |
+
seven-character uniform identifier.
|
115 |
+
:param from_tt: the source expression's text.
|
116 |
+
:param to_uid: the target language variety, as a seven-character
|
117 |
+
uniform identifier.
|
118 |
+
:return: a list of translation tuples. The first element is the expression
|
119 |
+
text and the second element is the translation quality.
|
120 |
+
:rtype: list(tuple)
|
121 |
+
"""
|
122 |
+
|
123 |
+
from_lv = self._uid_lv[from_uid]
|
124 |
+
to_lv = self._uid_lv[to_uid]
|
125 |
+
|
126 |
+
return self._c.execute(self.TRANSLATION_Q, (from_lv, from_tt, to_lv)).fetchall()
|
127 |
+
|
128 |
+
|
129 |
+
class Meaning(dict):
|
130 |
+
"""
|
131 |
+
Represents a single PanLex meaning. A meaning is a translation set derived
|
132 |
+
from a single source.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, mn, attr):
|
136 |
+
super().__init__(**attr)
|
137 |
+
self["mn"] = mn
|
138 |
+
|
139 |
+
def id(self):
|
140 |
+
"""
|
141 |
+
:return: the meaning's id.
|
142 |
+
:rtype: int
|
143 |
+
"""
|
144 |
+
return self["mn"]
|
145 |
+
|
146 |
+
def quality(self):
|
147 |
+
"""
|
148 |
+
:return: the meaning's source's quality (0=worst, 9=best).
|
149 |
+
:rtype: int
|
150 |
+
"""
|
151 |
+
return self["uq"]
|
152 |
+
|
153 |
+
def source(self):
|
154 |
+
"""
|
155 |
+
:return: the meaning's source id.
|
156 |
+
:rtype: int
|
157 |
+
"""
|
158 |
+
return self["ap"]
|
159 |
+
|
160 |
+
def source_group(self):
|
161 |
+
"""
|
162 |
+
:return: the meaning's source group id.
|
163 |
+
:rtype: int
|
164 |
+
"""
|
165 |
+
return self["ui"]
|
166 |
+
|
167 |
+
def expressions(self):
|
168 |
+
"""
|
169 |
+
:return: the meaning's expressions as a dictionary whose keys are language
|
170 |
+
variety uniform identifiers and whose values are lists of expression
|
171 |
+
texts.
|
172 |
+
:rtype: dict
|
173 |
+
"""
|
174 |
+
return self["ex"]
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/panlex_swadesh.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Word List Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
|
10 |
+
import re
|
11 |
+
from collections import defaultdict, namedtuple
|
12 |
+
|
13 |
+
from nltk.corpus.reader.api import *
|
14 |
+
from nltk.corpus.reader.util import *
|
15 |
+
from nltk.corpus.reader.wordlist import WordListCorpusReader
|
16 |
+
from nltk.tokenize import line_tokenize
|
17 |
+
|
18 |
+
PanlexLanguage = namedtuple(
|
19 |
+
"PanlexLanguage",
|
20 |
+
[
|
21 |
+
"panlex_uid", # (1) PanLex UID
|
22 |
+
"iso639", # (2) ISO 639 language code
|
23 |
+
"iso639_type", # (3) ISO 639 language type, see README
|
24 |
+
"script", # (4) normal scripts of expressions
|
25 |
+
"name", # (5) PanLex default name
|
26 |
+
"langvar_uid", # (6) UID of the language variety in which the default name is an expression
|
27 |
+
],
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
class PanlexSwadeshCorpusReader(WordListCorpusReader):
|
32 |
+
"""
|
33 |
+
This is a class to read the PanLex Swadesh list from
|
34 |
+
|
35 |
+
David Kamholz, Jonathan Pool, and Susan M. Colowick (2014).
|
36 |
+
PanLex: Building a Resource for Panlingual Lexical Translation.
|
37 |
+
In LREC. http://www.lrec-conf.org/proceedings/lrec2014/pdf/1029_Paper.pdf
|
38 |
+
|
39 |
+
License: CC0 1.0 Universal
|
40 |
+
https://creativecommons.org/publicdomain/zero/1.0/legalcode
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
super().__init__(*args, **kwargs)
|
45 |
+
# Find the swadesh size using the fileids' path.
|
46 |
+
self.swadesh_size = re.match(r"swadesh([0-9].*)\/", self.fileids()[0]).group(1)
|
47 |
+
self._languages = {lang.panlex_uid: lang for lang in self.get_languages()}
|
48 |
+
self._macro_langauges = self.get_macrolanguages()
|
49 |
+
|
50 |
+
def license(self):
|
51 |
+
return "CC0 1.0 Universal"
|
52 |
+
|
53 |
+
def language_codes(self):
|
54 |
+
return self._languages.keys()
|
55 |
+
|
56 |
+
def get_languages(self):
|
57 |
+
for line in self.raw(f"langs{self.swadesh_size}.txt").split("\n"):
|
58 |
+
if not line.strip(): # Skip empty lines.
|
59 |
+
continue
|
60 |
+
yield PanlexLanguage(*line.strip().split("\t"))
|
61 |
+
|
62 |
+
def get_macrolanguages(self):
|
63 |
+
macro_langauges = defaultdict(list)
|
64 |
+
for lang in self._languages.values():
|
65 |
+
macro_langauges[lang.iso639].append(lang.panlex_uid)
|
66 |
+
return macro_langauges
|
67 |
+
|
68 |
+
def words_by_lang(self, lang_code):
|
69 |
+
"""
|
70 |
+
:return: a list of list(str)
|
71 |
+
"""
|
72 |
+
fileid = f"swadesh{self.swadesh_size}/{lang_code}.txt"
|
73 |
+
return [concept.split("\t") for concept in self.words(fileid)]
|
74 |
+
|
75 |
+
def words_by_iso639(self, iso63_code):
|
76 |
+
"""
|
77 |
+
:return: a list of list(str)
|
78 |
+
"""
|
79 |
+
fileids = [
|
80 |
+
f"swadesh{self.swadesh_size}/{lang_code}.txt"
|
81 |
+
for lang_code in self._macro_langauges[iso63_code]
|
82 |
+
]
|
83 |
+
return [
|
84 |
+
concept.split("\t") for fileid in fileids for concept in self.words(fileid)
|
85 |
+
]
|
86 |
+
|
87 |
+
def entries(self, fileids=None):
|
88 |
+
"""
|
89 |
+
:return: a tuple of words for the specified fileids.
|
90 |
+
"""
|
91 |
+
if not fileids:
|
92 |
+
fileids = self.fileids()
|
93 |
+
|
94 |
+
wordlists = [self.words(f) for f in fileids]
|
95 |
+
return list(zip(*wordlists))
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/pl196x.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit:
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Piotr Kasprzyk <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from nltk.corpus.reader.api import *
|
9 |
+
from nltk.corpus.reader.xmldocs import XMLCorpusReader
|
10 |
+
|
11 |
+
PARA = re.compile(r"<p(?: [^>]*){0,1}>(.*?)</p>")
|
12 |
+
SENT = re.compile(r"<s(?: [^>]*){0,1}>(.*?)</s>")
|
13 |
+
|
14 |
+
TAGGEDWORD = re.compile(r"<([wc](?: [^>]*){0,1}>)(.*?)</[wc]>")
|
15 |
+
WORD = re.compile(r"<[wc](?: [^>]*){0,1}>(.*?)</[wc]>")
|
16 |
+
|
17 |
+
TYPE = re.compile(r'type="(.*?)"')
|
18 |
+
ANA = re.compile(r'ana="(.*?)"')
|
19 |
+
|
20 |
+
TEXTID = re.compile(r'text id="(.*?)"')
|
21 |
+
|
22 |
+
|
23 |
+
class TEICorpusView(StreamBackedCorpusView):
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
corpus_file,
|
27 |
+
tagged,
|
28 |
+
group_by_sent,
|
29 |
+
group_by_para,
|
30 |
+
tagset=None,
|
31 |
+
head_len=0,
|
32 |
+
textids=None,
|
33 |
+
):
|
34 |
+
|
35 |
+
self._tagged = tagged
|
36 |
+
self._textids = textids
|
37 |
+
|
38 |
+
self._group_by_sent = group_by_sent
|
39 |
+
self._group_by_para = group_by_para
|
40 |
+
# WARNING -- skip header
|
41 |
+
StreamBackedCorpusView.__init__(self, corpus_file, startpos=head_len)
|
42 |
+
|
43 |
+
_pagesize = 4096
|
44 |
+
|
45 |
+
def read_block(self, stream):
|
46 |
+
block = stream.readlines(self._pagesize)
|
47 |
+
block = concat(block)
|
48 |
+
while (block.count("<text id") > block.count("</text>")) or block.count(
|
49 |
+
"<text id"
|
50 |
+
) == 0:
|
51 |
+
tmp = stream.readline()
|
52 |
+
if len(tmp) <= 0:
|
53 |
+
break
|
54 |
+
block += tmp
|
55 |
+
|
56 |
+
block = block.replace("\n", "")
|
57 |
+
|
58 |
+
textids = TEXTID.findall(block)
|
59 |
+
if self._textids:
|
60 |
+
for tid in textids:
|
61 |
+
if tid not in self._textids:
|
62 |
+
beg = block.find(tid) - 1
|
63 |
+
end = block[beg:].find("</text>") + len("</text>")
|
64 |
+
block = block[:beg] + block[beg + end :]
|
65 |
+
|
66 |
+
output = []
|
67 |
+
for para_str in PARA.findall(block):
|
68 |
+
para = []
|
69 |
+
for sent_str in SENT.findall(para_str):
|
70 |
+
if not self._tagged:
|
71 |
+
sent = WORD.findall(sent_str)
|
72 |
+
else:
|
73 |
+
sent = list(map(self._parse_tag, TAGGEDWORD.findall(sent_str)))
|
74 |
+
if self._group_by_sent:
|
75 |
+
para.append(sent)
|
76 |
+
else:
|
77 |
+
para.extend(sent)
|
78 |
+
if self._group_by_para:
|
79 |
+
output.append(para)
|
80 |
+
else:
|
81 |
+
output.extend(para)
|
82 |
+
return output
|
83 |
+
|
84 |
+
def _parse_tag(self, tag_word_tuple):
|
85 |
+
(tag, word) = tag_word_tuple
|
86 |
+
if tag.startswith("w"):
|
87 |
+
tag = ANA.search(tag).group(1)
|
88 |
+
else: # tag.startswith('c')
|
89 |
+
tag = TYPE.search(tag).group(1)
|
90 |
+
return word, tag
|
91 |
+
|
92 |
+
|
93 |
+
class Pl196xCorpusReader(CategorizedCorpusReader, XMLCorpusReader):
|
94 |
+
head_len = 2770
|
95 |
+
|
96 |
+
def __init__(self, *args, **kwargs):
|
97 |
+
if "textid_file" in kwargs:
|
98 |
+
self._textids = kwargs["textid_file"]
|
99 |
+
else:
|
100 |
+
self._textids = None
|
101 |
+
|
102 |
+
XMLCorpusReader.__init__(self, *args)
|
103 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
104 |
+
|
105 |
+
self._init_textids()
|
106 |
+
|
107 |
+
def _init_textids(self):
|
108 |
+
self._f2t = defaultdict(list)
|
109 |
+
self._t2f = defaultdict(list)
|
110 |
+
if self._textids is not None:
|
111 |
+
with open(self._textids) as fp:
|
112 |
+
for line in fp:
|
113 |
+
line = line.strip()
|
114 |
+
file_id, text_ids = line.split(" ", 1)
|
115 |
+
if file_id not in self.fileids():
|
116 |
+
raise ValueError(
|
117 |
+
"In text_id mapping file %s: %s not found"
|
118 |
+
% (self._textids, file_id)
|
119 |
+
)
|
120 |
+
for text_id in text_ids.split(self._delimiter):
|
121 |
+
self._add_textids(file_id, text_id)
|
122 |
+
|
123 |
+
def _add_textids(self, file_id, text_id):
|
124 |
+
self._f2t[file_id].append(text_id)
|
125 |
+
self._t2f[text_id].append(file_id)
|
126 |
+
|
127 |
+
def _resolve(self, fileids, categories, textids=None):
|
128 |
+
tmp = None
|
129 |
+
if (
|
130 |
+
len(
|
131 |
+
list(
|
132 |
+
filter(
|
133 |
+
lambda accessor: accessor is None,
|
134 |
+
(fileids, categories, textids),
|
135 |
+
)
|
136 |
+
)
|
137 |
+
)
|
138 |
+
!= 1
|
139 |
+
):
|
140 |
+
|
141 |
+
raise ValueError(
|
142 |
+
"Specify exactly one of: fileids, " "categories or textids"
|
143 |
+
)
|
144 |
+
|
145 |
+
if fileids is not None:
|
146 |
+
return fileids, None
|
147 |
+
|
148 |
+
if categories is not None:
|
149 |
+
return self.fileids(categories), None
|
150 |
+
|
151 |
+
if textids is not None:
|
152 |
+
if isinstance(textids, str):
|
153 |
+
textids = [textids]
|
154 |
+
files = sum((self._t2f[t] for t in textids), [])
|
155 |
+
tdict = dict()
|
156 |
+
for f in files:
|
157 |
+
tdict[f] = set(self._f2t[f]) & set(textids)
|
158 |
+
return files, tdict
|
159 |
+
|
160 |
+
def decode_tag(self, tag):
|
161 |
+
# to be implemented
|
162 |
+
return tag
|
163 |
+
|
164 |
+
def textids(self, fileids=None, categories=None):
|
165 |
+
"""
|
166 |
+
In the pl196x corpus each category is stored in single
|
167 |
+
file and thus both methods provide identical functionality. In order
|
168 |
+
to accommodate finer granularity, a non-standard textids() method was
|
169 |
+
implemented. All the main functions can be supplied with a list
|
170 |
+
of required chunks---giving much more control to the user.
|
171 |
+
"""
|
172 |
+
fileids, _ = self._resolve(fileids, categories)
|
173 |
+
if fileids is None:
|
174 |
+
return sorted(self._t2f)
|
175 |
+
|
176 |
+
if isinstance(fileids, str):
|
177 |
+
fileids = [fileids]
|
178 |
+
return sorted(sum((self._f2t[d] for d in fileids), []))
|
179 |
+
|
180 |
+
def words(self, fileids=None, categories=None, textids=None):
|
181 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
182 |
+
if fileids is None:
|
183 |
+
fileids = self._fileids
|
184 |
+
elif isinstance(fileids, str):
|
185 |
+
fileids = [fileids]
|
186 |
+
|
187 |
+
if textids:
|
188 |
+
return concat(
|
189 |
+
[
|
190 |
+
TEICorpusView(
|
191 |
+
self.abspath(fileid),
|
192 |
+
False,
|
193 |
+
False,
|
194 |
+
False,
|
195 |
+
head_len=self.head_len,
|
196 |
+
textids=textids[fileid],
|
197 |
+
)
|
198 |
+
for fileid in fileids
|
199 |
+
]
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
return concat(
|
203 |
+
[
|
204 |
+
TEICorpusView(
|
205 |
+
self.abspath(fileid),
|
206 |
+
False,
|
207 |
+
False,
|
208 |
+
False,
|
209 |
+
head_len=self.head_len,
|
210 |
+
)
|
211 |
+
for fileid in fileids
|
212 |
+
]
|
213 |
+
)
|
214 |
+
|
215 |
+
def sents(self, fileids=None, categories=None, textids=None):
|
216 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
217 |
+
if fileids is None:
|
218 |
+
fileids = self._fileids
|
219 |
+
elif isinstance(fileids, str):
|
220 |
+
fileids = [fileids]
|
221 |
+
|
222 |
+
if textids:
|
223 |
+
return concat(
|
224 |
+
[
|
225 |
+
TEICorpusView(
|
226 |
+
self.abspath(fileid),
|
227 |
+
False,
|
228 |
+
True,
|
229 |
+
False,
|
230 |
+
head_len=self.head_len,
|
231 |
+
textids=textids[fileid],
|
232 |
+
)
|
233 |
+
for fileid in fileids
|
234 |
+
]
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
return concat(
|
238 |
+
[
|
239 |
+
TEICorpusView(
|
240 |
+
self.abspath(fileid), False, True, False, head_len=self.head_len
|
241 |
+
)
|
242 |
+
for fileid in fileids
|
243 |
+
]
|
244 |
+
)
|
245 |
+
|
246 |
+
def paras(self, fileids=None, categories=None, textids=None):
|
247 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
248 |
+
if fileids is None:
|
249 |
+
fileids = self._fileids
|
250 |
+
elif isinstance(fileids, str):
|
251 |
+
fileids = [fileids]
|
252 |
+
|
253 |
+
if textids:
|
254 |
+
return concat(
|
255 |
+
[
|
256 |
+
TEICorpusView(
|
257 |
+
self.abspath(fileid),
|
258 |
+
False,
|
259 |
+
True,
|
260 |
+
True,
|
261 |
+
head_len=self.head_len,
|
262 |
+
textids=textids[fileid],
|
263 |
+
)
|
264 |
+
for fileid in fileids
|
265 |
+
]
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
return concat(
|
269 |
+
[
|
270 |
+
TEICorpusView(
|
271 |
+
self.abspath(fileid), False, True, True, head_len=self.head_len
|
272 |
+
)
|
273 |
+
for fileid in fileids
|
274 |
+
]
|
275 |
+
)
|
276 |
+
|
277 |
+
def tagged_words(self, fileids=None, categories=None, textids=None):
|
278 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
279 |
+
if fileids is None:
|
280 |
+
fileids = self._fileids
|
281 |
+
elif isinstance(fileids, str):
|
282 |
+
fileids = [fileids]
|
283 |
+
|
284 |
+
if textids:
|
285 |
+
return concat(
|
286 |
+
[
|
287 |
+
TEICorpusView(
|
288 |
+
self.abspath(fileid),
|
289 |
+
True,
|
290 |
+
False,
|
291 |
+
False,
|
292 |
+
head_len=self.head_len,
|
293 |
+
textids=textids[fileid],
|
294 |
+
)
|
295 |
+
for fileid in fileids
|
296 |
+
]
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
return concat(
|
300 |
+
[
|
301 |
+
TEICorpusView(
|
302 |
+
self.abspath(fileid), True, False, False, head_len=self.head_len
|
303 |
+
)
|
304 |
+
for fileid in fileids
|
305 |
+
]
|
306 |
+
)
|
307 |
+
|
308 |
+
def tagged_sents(self, fileids=None, categories=None, textids=None):
|
309 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
310 |
+
if fileids is None:
|
311 |
+
fileids = self._fileids
|
312 |
+
elif isinstance(fileids, str):
|
313 |
+
fileids = [fileids]
|
314 |
+
|
315 |
+
if textids:
|
316 |
+
return concat(
|
317 |
+
[
|
318 |
+
TEICorpusView(
|
319 |
+
self.abspath(fileid),
|
320 |
+
True,
|
321 |
+
True,
|
322 |
+
False,
|
323 |
+
head_len=self.head_len,
|
324 |
+
textids=textids[fileid],
|
325 |
+
)
|
326 |
+
for fileid in fileids
|
327 |
+
]
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
return concat(
|
331 |
+
[
|
332 |
+
TEICorpusView(
|
333 |
+
self.abspath(fileid), True, True, False, head_len=self.head_len
|
334 |
+
)
|
335 |
+
for fileid in fileids
|
336 |
+
]
|
337 |
+
)
|
338 |
+
|
339 |
+
def tagged_paras(self, fileids=None, categories=None, textids=None):
|
340 |
+
fileids, textids = self._resolve(fileids, categories, textids)
|
341 |
+
if fileids is None:
|
342 |
+
fileids = self._fileids
|
343 |
+
elif isinstance(fileids, str):
|
344 |
+
fileids = [fileids]
|
345 |
+
|
346 |
+
if textids:
|
347 |
+
return concat(
|
348 |
+
[
|
349 |
+
TEICorpusView(
|
350 |
+
self.abspath(fileid),
|
351 |
+
True,
|
352 |
+
True,
|
353 |
+
True,
|
354 |
+
head_len=self.head_len,
|
355 |
+
textids=textids[fileid],
|
356 |
+
)
|
357 |
+
for fileid in fileids
|
358 |
+
]
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
return concat(
|
362 |
+
[
|
363 |
+
TEICorpusView(
|
364 |
+
self.abspath(fileid), True, True, True, head_len=self.head_len
|
365 |
+
)
|
366 |
+
for fileid in fileids
|
367 |
+
]
|
368 |
+
)
|
369 |
+
|
370 |
+
def xml(self, fileids=None, categories=None):
|
371 |
+
fileids, _ = self._resolve(fileids, categories)
|
372 |
+
if len(fileids) == 1:
|
373 |
+
return XMLCorpusReader.xml(self, fileids[0])
|
374 |
+
else:
|
375 |
+
raise TypeError("Expected a single file")
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/propbank.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: PropBank Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import re
|
9 |
+
from functools import total_ordering
|
10 |
+
from xml.etree import ElementTree
|
11 |
+
|
12 |
+
from nltk.corpus.reader.api import *
|
13 |
+
from nltk.corpus.reader.util import *
|
14 |
+
from nltk.internals import raise_unorderable_types
|
15 |
+
from nltk.tree import Tree
|
16 |
+
|
17 |
+
|
18 |
+
class PropbankCorpusReader(CorpusReader):
|
19 |
+
"""
|
20 |
+
Corpus reader for the propbank corpus, which augments the Penn
|
21 |
+
Treebank with information about the predicate argument structure
|
22 |
+
of every verb instance. The corpus consists of two parts: the
|
23 |
+
predicate-argument annotations themselves, and a set of "frameset
|
24 |
+
files" which define the argument labels used by the annotations,
|
25 |
+
on a per-verb basis. Each "frameset file" contains one or more
|
26 |
+
predicates, such as ``'turn'`` or ``'turn_on'``, each of which is
|
27 |
+
divided into coarse-grained word senses called "rolesets". For
|
28 |
+
each "roleset", the frameset file provides descriptions of the
|
29 |
+
argument roles, along with examples.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
root,
|
35 |
+
propfile,
|
36 |
+
framefiles="",
|
37 |
+
verbsfile=None,
|
38 |
+
parse_fileid_xform=None,
|
39 |
+
parse_corpus=None,
|
40 |
+
encoding="utf8",
|
41 |
+
):
|
42 |
+
"""
|
43 |
+
:param root: The root directory for this corpus.
|
44 |
+
:param propfile: The name of the file containing the predicate-
|
45 |
+
argument annotations (relative to ``root``).
|
46 |
+
:param framefiles: A list or regexp specifying the frameset
|
47 |
+
fileids for this corpus.
|
48 |
+
:param parse_fileid_xform: A transform that should be applied
|
49 |
+
to the fileids in this corpus. This should be a function
|
50 |
+
of one argument (a fileid) that returns a string (the new
|
51 |
+
fileid).
|
52 |
+
:param parse_corpus: The corpus containing the parse trees
|
53 |
+
corresponding to this corpus. These parse trees are
|
54 |
+
necessary to resolve the tree pointers used by propbank.
|
55 |
+
"""
|
56 |
+
# If framefiles is specified as a regexp, expand it.
|
57 |
+
if isinstance(framefiles, str):
|
58 |
+
framefiles = find_corpus_fileids(root, framefiles)
|
59 |
+
framefiles = list(framefiles)
|
60 |
+
# Initialize the corpus reader.
|
61 |
+
CorpusReader.__init__(self, root, [propfile, verbsfile] + framefiles, encoding)
|
62 |
+
|
63 |
+
# Record our frame fileids & prop file.
|
64 |
+
self._propfile = propfile
|
65 |
+
self._framefiles = framefiles
|
66 |
+
self._verbsfile = verbsfile
|
67 |
+
self._parse_fileid_xform = parse_fileid_xform
|
68 |
+
self._parse_corpus = parse_corpus
|
69 |
+
|
70 |
+
def instances(self, baseform=None):
|
71 |
+
"""
|
72 |
+
:return: a corpus view that acts as a list of
|
73 |
+
``PropBankInstance`` objects, one for each noun in the corpus.
|
74 |
+
"""
|
75 |
+
kwargs = {}
|
76 |
+
if baseform is not None:
|
77 |
+
kwargs["instance_filter"] = lambda inst: inst.baseform == baseform
|
78 |
+
return StreamBackedCorpusView(
|
79 |
+
self.abspath(self._propfile),
|
80 |
+
lambda stream: self._read_instance_block(stream, **kwargs),
|
81 |
+
encoding=self.encoding(self._propfile),
|
82 |
+
)
|
83 |
+
|
84 |
+
def lines(self):
|
85 |
+
"""
|
86 |
+
:return: a corpus view that acts as a list of strings, one for
|
87 |
+
each line in the predicate-argument annotation file.
|
88 |
+
"""
|
89 |
+
return StreamBackedCorpusView(
|
90 |
+
self.abspath(self._propfile),
|
91 |
+
read_line_block,
|
92 |
+
encoding=self.encoding(self._propfile),
|
93 |
+
)
|
94 |
+
|
95 |
+
def roleset(self, roleset_id):
|
96 |
+
"""
|
97 |
+
:return: the xml description for the given roleset.
|
98 |
+
"""
|
99 |
+
baseform = roleset_id.split(".")[0]
|
100 |
+
framefile = "frames/%s.xml" % baseform
|
101 |
+
if framefile not in self._framefiles:
|
102 |
+
raise ValueError("Frameset file for %s not found" % roleset_id)
|
103 |
+
|
104 |
+
# n.b.: The encoding for XML fileids is specified by the file
|
105 |
+
# itself; so we ignore self._encoding here.
|
106 |
+
with self.abspath(framefile).open() as fp:
|
107 |
+
etree = ElementTree.parse(fp).getroot()
|
108 |
+
for roleset in etree.findall("predicate/roleset"):
|
109 |
+
if roleset.attrib["id"] == roleset_id:
|
110 |
+
return roleset
|
111 |
+
raise ValueError(f"Roleset {roleset_id} not found in {framefile}")
|
112 |
+
|
113 |
+
def rolesets(self, baseform=None):
|
114 |
+
"""
|
115 |
+
:return: list of xml descriptions for rolesets.
|
116 |
+
"""
|
117 |
+
if baseform is not None:
|
118 |
+
framefile = "frames/%s.xml" % baseform
|
119 |
+
if framefile not in self._framefiles:
|
120 |
+
raise ValueError("Frameset file for %s not found" % baseform)
|
121 |
+
framefiles = [framefile]
|
122 |
+
else:
|
123 |
+
framefiles = self._framefiles
|
124 |
+
|
125 |
+
rsets = []
|
126 |
+
for framefile in framefiles:
|
127 |
+
# n.b.: The encoding for XML fileids is specified by the file
|
128 |
+
# itself; so we ignore self._encoding here.
|
129 |
+
with self.abspath(framefile).open() as fp:
|
130 |
+
etree = ElementTree.parse(fp).getroot()
|
131 |
+
rsets.append(etree.findall("predicate/roleset"))
|
132 |
+
return LazyConcatenation(rsets)
|
133 |
+
|
134 |
+
def verbs(self):
|
135 |
+
"""
|
136 |
+
:return: a corpus view that acts as a list of all verb lemmas
|
137 |
+
in this corpus (from the verbs.txt file).
|
138 |
+
"""
|
139 |
+
return StreamBackedCorpusView(
|
140 |
+
self.abspath(self._verbsfile),
|
141 |
+
read_line_block,
|
142 |
+
encoding=self.encoding(self._verbsfile),
|
143 |
+
)
|
144 |
+
|
145 |
+
def _read_instance_block(self, stream, instance_filter=lambda inst: True):
|
146 |
+
block = []
|
147 |
+
|
148 |
+
# Read 100 at a time.
|
149 |
+
for i in range(100):
|
150 |
+
line = stream.readline().strip()
|
151 |
+
if line:
|
152 |
+
inst = PropbankInstance.parse(
|
153 |
+
line, self._parse_fileid_xform, self._parse_corpus
|
154 |
+
)
|
155 |
+
if instance_filter(inst):
|
156 |
+
block.append(inst)
|
157 |
+
|
158 |
+
return block
|
159 |
+
|
160 |
+
|
161 |
+
######################################################################
|
162 |
+
# { Propbank Instance & related datatypes
|
163 |
+
######################################################################
|
164 |
+
|
165 |
+
|
166 |
+
class PropbankInstance:
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
fileid,
|
170 |
+
sentnum,
|
171 |
+
wordnum,
|
172 |
+
tagger,
|
173 |
+
roleset,
|
174 |
+
inflection,
|
175 |
+
predicate,
|
176 |
+
arguments,
|
177 |
+
parse_corpus=None,
|
178 |
+
):
|
179 |
+
|
180 |
+
self.fileid = fileid
|
181 |
+
"""The name of the file containing the parse tree for this
|
182 |
+
instance's sentence."""
|
183 |
+
|
184 |
+
self.sentnum = sentnum
|
185 |
+
"""The sentence number of this sentence within ``fileid``.
|
186 |
+
Indexing starts from zero."""
|
187 |
+
|
188 |
+
self.wordnum = wordnum
|
189 |
+
"""The word number of this instance's predicate within its
|
190 |
+
containing sentence. Word numbers are indexed starting from
|
191 |
+
zero, and include traces and other empty parse elements."""
|
192 |
+
|
193 |
+
self.tagger = tagger
|
194 |
+
"""An identifier for the tagger who tagged this instance; or
|
195 |
+
``'gold'`` if this is an adjuticated instance."""
|
196 |
+
|
197 |
+
self.roleset = roleset
|
198 |
+
"""The name of the roleset used by this instance's predicate.
|
199 |
+
Use ``propbank.roleset() <PropbankCorpusReader.roleset>`` to
|
200 |
+
look up information about the roleset."""
|
201 |
+
|
202 |
+
self.inflection = inflection
|
203 |
+
"""A ``PropbankInflection`` object describing the inflection of
|
204 |
+
this instance's predicate."""
|
205 |
+
|
206 |
+
self.predicate = predicate
|
207 |
+
"""A ``PropbankTreePointer`` indicating the position of this
|
208 |
+
instance's predicate within its containing sentence."""
|
209 |
+
|
210 |
+
self.arguments = tuple(arguments)
|
211 |
+
"""A list of tuples (argloc, argid), specifying the location
|
212 |
+
and identifier for each of the predicate's argument in the
|
213 |
+
containing sentence. Argument identifiers are strings such as
|
214 |
+
``'ARG0'`` or ``'ARGM-TMP'``. This list does *not* contain
|
215 |
+
the predicate."""
|
216 |
+
|
217 |
+
self.parse_corpus = parse_corpus
|
218 |
+
"""A corpus reader for the parse trees corresponding to the
|
219 |
+
instances in this propbank corpus."""
|
220 |
+
|
221 |
+
@property
|
222 |
+
def baseform(self):
|
223 |
+
"""The baseform of the predicate."""
|
224 |
+
return self.roleset.split(".")[0]
|
225 |
+
|
226 |
+
@property
|
227 |
+
def sensenumber(self):
|
228 |
+
"""The sense number of the predicate."""
|
229 |
+
return self.roleset.split(".")[1]
|
230 |
+
|
231 |
+
@property
|
232 |
+
def predid(self):
|
233 |
+
"""Identifier of the predicate."""
|
234 |
+
return "rel"
|
235 |
+
|
236 |
+
def __repr__(self):
|
237 |
+
return "<PropbankInstance: {}, sent {}, word {}>".format(
|
238 |
+
self.fileid,
|
239 |
+
self.sentnum,
|
240 |
+
self.wordnum,
|
241 |
+
)
|
242 |
+
|
243 |
+
def __str__(self):
|
244 |
+
s = "{} {} {} {} {} {}".format(
|
245 |
+
self.fileid,
|
246 |
+
self.sentnum,
|
247 |
+
self.wordnum,
|
248 |
+
self.tagger,
|
249 |
+
self.roleset,
|
250 |
+
self.inflection,
|
251 |
+
)
|
252 |
+
items = self.arguments + ((self.predicate, "rel"),)
|
253 |
+
for (argloc, argid) in sorted(items):
|
254 |
+
s += f" {argloc}-{argid}"
|
255 |
+
return s
|
256 |
+
|
257 |
+
def _get_tree(self):
|
258 |
+
if self.parse_corpus is None:
|
259 |
+
return None
|
260 |
+
if self.fileid not in self.parse_corpus.fileids():
|
261 |
+
return None
|
262 |
+
return self.parse_corpus.parsed_sents(self.fileid)[self.sentnum]
|
263 |
+
|
264 |
+
tree = property(
|
265 |
+
_get_tree,
|
266 |
+
doc="""
|
267 |
+
The parse tree corresponding to this instance, or None if
|
268 |
+
the corresponding tree is not available.""",
|
269 |
+
)
|
270 |
+
|
271 |
+
@staticmethod
|
272 |
+
def parse(s, parse_fileid_xform=None, parse_corpus=None):
|
273 |
+
pieces = s.split()
|
274 |
+
if len(pieces) < 7:
|
275 |
+
raise ValueError("Badly formatted propbank line: %r" % s)
|
276 |
+
|
277 |
+
# Divide the line into its basic pieces.
|
278 |
+
(fileid, sentnum, wordnum, tagger, roleset, inflection) = pieces[:6]
|
279 |
+
rel = [p for p in pieces[6:] if p.endswith("-rel")]
|
280 |
+
args = [p for p in pieces[6:] if not p.endswith("-rel")]
|
281 |
+
if len(rel) != 1:
|
282 |
+
raise ValueError("Badly formatted propbank line: %r" % s)
|
283 |
+
|
284 |
+
# Apply the fileid selector, if any.
|
285 |
+
if parse_fileid_xform is not None:
|
286 |
+
fileid = parse_fileid_xform(fileid)
|
287 |
+
|
288 |
+
# Convert sentence & word numbers to ints.
|
289 |
+
sentnum = int(sentnum)
|
290 |
+
wordnum = int(wordnum)
|
291 |
+
|
292 |
+
# Parse the inflection
|
293 |
+
inflection = PropbankInflection.parse(inflection)
|
294 |
+
|
295 |
+
# Parse the predicate location.
|
296 |
+
predicate = PropbankTreePointer.parse(rel[0][:-4])
|
297 |
+
|
298 |
+
# Parse the arguments.
|
299 |
+
arguments = []
|
300 |
+
for arg in args:
|
301 |
+
argloc, argid = arg.split("-", 1)
|
302 |
+
arguments.append((PropbankTreePointer.parse(argloc), argid))
|
303 |
+
|
304 |
+
# Put it all together.
|
305 |
+
return PropbankInstance(
|
306 |
+
fileid,
|
307 |
+
sentnum,
|
308 |
+
wordnum,
|
309 |
+
tagger,
|
310 |
+
roleset,
|
311 |
+
inflection,
|
312 |
+
predicate,
|
313 |
+
arguments,
|
314 |
+
parse_corpus,
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
class PropbankPointer:
|
319 |
+
"""
|
320 |
+
A pointer used by propbank to identify one or more constituents in
|
321 |
+
a parse tree. ``PropbankPointer`` is an abstract base class with
|
322 |
+
three concrete subclasses:
|
323 |
+
|
324 |
+
- ``PropbankTreePointer`` is used to point to single constituents.
|
325 |
+
- ``PropbankSplitTreePointer`` is used to point to 'split'
|
326 |
+
constituents, which consist of a sequence of two or more
|
327 |
+
``PropbankTreePointer`` pointers.
|
328 |
+
- ``PropbankChainTreePointer`` is used to point to entire trace
|
329 |
+
chains in a tree. It consists of a sequence of pieces, which
|
330 |
+
can be ``PropbankTreePointer`` or ``PropbankSplitTreePointer`` pointers.
|
331 |
+
"""
|
332 |
+
|
333 |
+
def __init__(self):
|
334 |
+
if self.__class__ == PropbankPointer:
|
335 |
+
raise NotImplementedError()
|
336 |
+
|
337 |
+
|
338 |
+
class PropbankChainTreePointer(PropbankPointer):
|
339 |
+
def __init__(self, pieces):
|
340 |
+
self.pieces = pieces
|
341 |
+
"""A list of the pieces that make up this chain. Elements may
|
342 |
+
be either ``PropbankSplitTreePointer`` or
|
343 |
+
``PropbankTreePointer`` pointers."""
|
344 |
+
|
345 |
+
def __str__(self):
|
346 |
+
return "*".join("%s" % p for p in self.pieces)
|
347 |
+
|
348 |
+
def __repr__(self):
|
349 |
+
return "<PropbankChainTreePointer: %s>" % self
|
350 |
+
|
351 |
+
def select(self, tree):
|
352 |
+
if tree is None:
|
353 |
+
raise ValueError("Parse tree not available")
|
354 |
+
return Tree("*CHAIN*", [p.select(tree) for p in self.pieces])
|
355 |
+
|
356 |
+
|
357 |
+
class PropbankSplitTreePointer(PropbankPointer):
|
358 |
+
def __init__(self, pieces):
|
359 |
+
self.pieces = pieces
|
360 |
+
"""A list of the pieces that make up this chain. Elements are
|
361 |
+
all ``PropbankTreePointer`` pointers."""
|
362 |
+
|
363 |
+
def __str__(self):
|
364 |
+
return ",".join("%s" % p for p in self.pieces)
|
365 |
+
|
366 |
+
def __repr__(self):
|
367 |
+
return "<PropbankSplitTreePointer: %s>" % self
|
368 |
+
|
369 |
+
def select(self, tree):
|
370 |
+
if tree is None:
|
371 |
+
raise ValueError("Parse tree not available")
|
372 |
+
return Tree("*SPLIT*", [p.select(tree) for p in self.pieces])
|
373 |
+
|
374 |
+
|
375 |
+
@total_ordering
|
376 |
+
class PropbankTreePointer(PropbankPointer):
|
377 |
+
"""
|
378 |
+
wordnum:height*wordnum:height*...
|
379 |
+
wordnum:height,
|
380 |
+
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, wordnum, height):
|
384 |
+
self.wordnum = wordnum
|
385 |
+
self.height = height
|
386 |
+
|
387 |
+
@staticmethod
|
388 |
+
def parse(s):
|
389 |
+
# Deal with chains (xx*yy*zz)
|
390 |
+
pieces = s.split("*")
|
391 |
+
if len(pieces) > 1:
|
392 |
+
return PropbankChainTreePointer(
|
393 |
+
[PropbankTreePointer.parse(elt) for elt in pieces]
|
394 |
+
)
|
395 |
+
|
396 |
+
# Deal with split args (xx,yy,zz)
|
397 |
+
pieces = s.split(",")
|
398 |
+
if len(pieces) > 1:
|
399 |
+
return PropbankSplitTreePointer(
|
400 |
+
[PropbankTreePointer.parse(elt) for elt in pieces]
|
401 |
+
)
|
402 |
+
|
403 |
+
# Deal with normal pointers.
|
404 |
+
pieces = s.split(":")
|
405 |
+
if len(pieces) != 2:
|
406 |
+
raise ValueError("bad propbank pointer %r" % s)
|
407 |
+
return PropbankTreePointer(int(pieces[0]), int(pieces[1]))
|
408 |
+
|
409 |
+
def __str__(self):
|
410 |
+
return f"{self.wordnum}:{self.height}"
|
411 |
+
|
412 |
+
def __repr__(self):
|
413 |
+
return "PropbankTreePointer(%d, %d)" % (self.wordnum, self.height)
|
414 |
+
|
415 |
+
def __eq__(self, other):
|
416 |
+
while isinstance(other, (PropbankChainTreePointer, PropbankSplitTreePointer)):
|
417 |
+
other = other.pieces[0]
|
418 |
+
|
419 |
+
if not isinstance(other, PropbankTreePointer):
|
420 |
+
return self is other
|
421 |
+
|
422 |
+
return self.wordnum == other.wordnum and self.height == other.height
|
423 |
+
|
424 |
+
def __ne__(self, other):
|
425 |
+
return not self == other
|
426 |
+
|
427 |
+
def __lt__(self, other):
|
428 |
+
while isinstance(other, (PropbankChainTreePointer, PropbankSplitTreePointer)):
|
429 |
+
other = other.pieces[0]
|
430 |
+
|
431 |
+
if not isinstance(other, PropbankTreePointer):
|
432 |
+
return id(self) < id(other)
|
433 |
+
|
434 |
+
return (self.wordnum, -self.height) < (other.wordnum, -other.height)
|
435 |
+
|
436 |
+
def select(self, tree):
|
437 |
+
if tree is None:
|
438 |
+
raise ValueError("Parse tree not available")
|
439 |
+
return tree[self.treepos(tree)]
|
440 |
+
|
441 |
+
def treepos(self, tree):
|
442 |
+
"""
|
443 |
+
Convert this pointer to a standard 'tree position' pointer,
|
444 |
+
given that it points to the given tree.
|
445 |
+
"""
|
446 |
+
if tree is None:
|
447 |
+
raise ValueError("Parse tree not available")
|
448 |
+
stack = [tree]
|
449 |
+
treepos = []
|
450 |
+
|
451 |
+
wordnum = 0
|
452 |
+
while True:
|
453 |
+
# tree node:
|
454 |
+
if isinstance(stack[-1], Tree):
|
455 |
+
# Select the next child.
|
456 |
+
if len(treepos) < len(stack):
|
457 |
+
treepos.append(0)
|
458 |
+
else:
|
459 |
+
treepos[-1] += 1
|
460 |
+
# Update the stack.
|
461 |
+
if treepos[-1] < len(stack[-1]):
|
462 |
+
stack.append(stack[-1][treepos[-1]])
|
463 |
+
else:
|
464 |
+
# End of node's child list: pop up a level.
|
465 |
+
stack.pop()
|
466 |
+
treepos.pop()
|
467 |
+
# word node:
|
468 |
+
else:
|
469 |
+
if wordnum == self.wordnum:
|
470 |
+
return tuple(treepos[: len(treepos) - self.height - 1])
|
471 |
+
else:
|
472 |
+
wordnum += 1
|
473 |
+
stack.pop()
|
474 |
+
|
475 |
+
|
476 |
+
class PropbankInflection:
|
477 |
+
# { Inflection Form
|
478 |
+
INFINITIVE = "i"
|
479 |
+
GERUND = "g"
|
480 |
+
PARTICIPLE = "p"
|
481 |
+
FINITE = "v"
|
482 |
+
# { Inflection Tense
|
483 |
+
FUTURE = "f"
|
484 |
+
PAST = "p"
|
485 |
+
PRESENT = "n"
|
486 |
+
# { Inflection Aspect
|
487 |
+
PERFECT = "p"
|
488 |
+
PROGRESSIVE = "o"
|
489 |
+
PERFECT_AND_PROGRESSIVE = "b"
|
490 |
+
# { Inflection Person
|
491 |
+
THIRD_PERSON = "3"
|
492 |
+
# { Inflection Voice
|
493 |
+
ACTIVE = "a"
|
494 |
+
PASSIVE = "p"
|
495 |
+
# { Inflection
|
496 |
+
NONE = "-"
|
497 |
+
# }
|
498 |
+
|
499 |
+
def __init__(self, form="-", tense="-", aspect="-", person="-", voice="-"):
|
500 |
+
self.form = form
|
501 |
+
self.tense = tense
|
502 |
+
self.aspect = aspect
|
503 |
+
self.person = person
|
504 |
+
self.voice = voice
|
505 |
+
|
506 |
+
def __str__(self):
|
507 |
+
return self.form + self.tense + self.aspect + self.person + self.voice
|
508 |
+
|
509 |
+
def __repr__(self):
|
510 |
+
return "<PropbankInflection: %s>" % self
|
511 |
+
|
512 |
+
_VALIDATE = re.compile(r"[igpv\-][fpn\-][pob\-][3\-][ap\-]$")
|
513 |
+
|
514 |
+
@staticmethod
|
515 |
+
def parse(s):
|
516 |
+
if not isinstance(s, str):
|
517 |
+
raise TypeError("expected a string")
|
518 |
+
if len(s) != 5 or not PropbankInflection._VALIDATE.match(s):
|
519 |
+
raise ValueError("Bad propbank inflection string %r" % s)
|
520 |
+
return PropbankInflection(*s)
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/pros_cons.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Pros and Cons Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for the Pros and Cons dataset.
|
10 |
+
|
11 |
+
- Pros and Cons dataset information -
|
12 |
+
|
13 |
+
Contact: Bing Liu, [email protected]
|
14 |
+
https://www.cs.uic.edu/~liub
|
15 |
+
|
16 |
+
Distributed with permission.
|
17 |
+
|
18 |
+
Related papers:
|
19 |
+
|
20 |
+
- Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences".
|
21 |
+
Proceedings of the 22nd International Conference on Computational Linguistics
|
22 |
+
(Coling-2008), Manchester, 18-22 August, 2008.
|
23 |
+
|
24 |
+
- Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and Comparing
|
25 |
+
Opinions on the Web". Proceedings of the 14th international World Wide Web
|
26 |
+
conference (WWW-2005), May 10-14, 2005, in Chiba, Japan.
|
27 |
+
"""
|
28 |
+
import re
|
29 |
+
|
30 |
+
from nltk.corpus.reader.api import *
|
31 |
+
from nltk.tokenize import *
|
32 |
+
|
33 |
+
|
34 |
+
class ProsConsCorpusReader(CategorizedCorpusReader, CorpusReader):
|
35 |
+
"""
|
36 |
+
Reader for the Pros and Cons sentence dataset.
|
37 |
+
|
38 |
+
>>> from nltk.corpus import pros_cons
|
39 |
+
>>> pros_cons.sents(categories='Cons') # doctest: +NORMALIZE_WHITESPACE
|
40 |
+
[['East', 'batteries', '!', 'On', '-', 'off', 'switch', 'too', 'easy',
|
41 |
+
'to', 'maneuver', '.'], ['Eats', '...', 'no', ',', 'GULPS', 'batteries'],
|
42 |
+
...]
|
43 |
+
>>> pros_cons.words('IntegratedPros.txt')
|
44 |
+
['Easy', 'to', 'use', ',', 'economical', '!', ...]
|
45 |
+
"""
|
46 |
+
|
47 |
+
CorpusView = StreamBackedCorpusView
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
root,
|
52 |
+
fileids,
|
53 |
+
word_tokenizer=WordPunctTokenizer(),
|
54 |
+
encoding="utf8",
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
:param root: The root directory for the corpus.
|
59 |
+
:param fileids: a list or regexp specifying the fileids in the corpus.
|
60 |
+
:param word_tokenizer: a tokenizer for breaking sentences or paragraphs
|
61 |
+
into words. Default: `WhitespaceTokenizer`
|
62 |
+
:param encoding: the encoding that should be used to read the corpus.
|
63 |
+
:param kwargs: additional parameters passed to CategorizedCorpusReader.
|
64 |
+
"""
|
65 |
+
|
66 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
67 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
68 |
+
self._word_tokenizer = word_tokenizer
|
69 |
+
|
70 |
+
def sents(self, fileids=None, categories=None):
|
71 |
+
"""
|
72 |
+
Return all sentences in the corpus or in the specified files/categories.
|
73 |
+
|
74 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
75 |
+
sentences have to be returned.
|
76 |
+
:param categories: a list specifying the categories whose sentences
|
77 |
+
have to be returned.
|
78 |
+
:return: the given file(s) as a list of sentences. Each sentence is
|
79 |
+
tokenized using the specified word_tokenizer.
|
80 |
+
:rtype: list(list(str))
|
81 |
+
"""
|
82 |
+
fileids = self._resolve(fileids, categories)
|
83 |
+
if fileids is None:
|
84 |
+
fileids = self._fileids
|
85 |
+
elif isinstance(fileids, str):
|
86 |
+
fileids = [fileids]
|
87 |
+
return concat(
|
88 |
+
[
|
89 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
90 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
91 |
+
]
|
92 |
+
)
|
93 |
+
|
94 |
+
def words(self, fileids=None, categories=None):
|
95 |
+
"""
|
96 |
+
Return all words and punctuation symbols in the corpus or in the specified
|
97 |
+
files/categories.
|
98 |
+
|
99 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
100 |
+
words have to be returned.
|
101 |
+
:param categories: a list specifying the categories whose words have
|
102 |
+
to be returned.
|
103 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
104 |
+
:rtype: list(str)
|
105 |
+
"""
|
106 |
+
fileids = self._resolve(fileids, categories)
|
107 |
+
if fileids is None:
|
108 |
+
fileids = self._fileids
|
109 |
+
elif isinstance(fileids, str):
|
110 |
+
fileids = [fileids]
|
111 |
+
return concat(
|
112 |
+
[
|
113 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
114 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
def _read_sent_block(self, stream):
|
119 |
+
sents = []
|
120 |
+
for i in range(20): # Read 20 lines at a time.
|
121 |
+
line = stream.readline()
|
122 |
+
if not line:
|
123 |
+
continue
|
124 |
+
sent = re.match(r"^(?!\n)\s*<(Pros|Cons)>(.*)</(?:Pros|Cons)>", line)
|
125 |
+
if sent:
|
126 |
+
sents.append(self._word_tokenizer.tokenize(sent.group(2).strip()))
|
127 |
+
return sents
|
128 |
+
|
129 |
+
def _read_word_block(self, stream):
|
130 |
+
words = []
|
131 |
+
for sent in self._read_sent_block(stream):
|
132 |
+
words.extend(sent)
|
133 |
+
return words
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/reviews.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Product Reviews Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for reviews corpora (syntax based on Customer Review Corpus).
|
10 |
+
|
11 |
+
Customer Review Corpus information
|
12 |
+
==================================
|
13 |
+
|
14 |
+
Annotated by: Minqing Hu and Bing Liu, 2004.
|
15 |
+
Department of Computer Science
|
16 |
+
University of Illinois at Chicago
|
17 |
+
|
18 |
+
Contact: Bing Liu, [email protected]
|
19 |
+
https://www.cs.uic.edu/~liub
|
20 |
+
|
21 |
+
Distributed with permission.
|
22 |
+
|
23 |
+
The "product_reviews_1" and "product_reviews_2" datasets respectively contain
|
24 |
+
annotated customer reviews of 5 and 9 products from amazon.com.
|
25 |
+
|
26 |
+
Related papers:
|
27 |
+
|
28 |
+
- Minqing Hu and Bing Liu. "Mining and summarizing customer reviews".
|
29 |
+
Proceedings of the ACM SIGKDD International Conference on Knowledge
|
30 |
+
Discovery & Data Mining (KDD-04), 2004.
|
31 |
+
|
32 |
+
- Minqing Hu and Bing Liu. "Mining Opinion Features in Customer Reviews".
|
33 |
+
Proceedings of Nineteeth National Conference on Artificial Intelligence
|
34 |
+
(AAAI-2004), 2004.
|
35 |
+
|
36 |
+
- Xiaowen Ding, Bing Liu and Philip S. Yu. "A Holistic Lexicon-Based Appraoch to
|
37 |
+
Opinion Mining." Proceedings of First ACM International Conference on Web
|
38 |
+
Search and Data Mining (WSDM-2008), Feb 11-12, 2008, Stanford University,
|
39 |
+
Stanford, California, USA.
|
40 |
+
|
41 |
+
Symbols used in the annotated reviews:
|
42 |
+
|
43 |
+
:[t]: the title of the review: Each [t] tag starts a review.
|
44 |
+
:xxxx[+|-n]: xxxx is a product feature.
|
45 |
+
:[+n]: Positive opinion, n is the opinion strength: 3 strongest, and 1 weakest.
|
46 |
+
Note that the strength is quite subjective.
|
47 |
+
You may want ignore it, but only considering + and -
|
48 |
+
:[-n]: Negative opinion
|
49 |
+
:##: start of each sentence. Each line is a sentence.
|
50 |
+
:[u]: feature not appeared in the sentence.
|
51 |
+
:[p]: feature not appeared in the sentence. Pronoun resolution is needed.
|
52 |
+
:[s]: suggestion or recommendation.
|
53 |
+
:[cc]: comparison with a competing product from a different brand.
|
54 |
+
:[cs]: comparison with a competing product from the same brand.
|
55 |
+
|
56 |
+
Note: Some of the files (e.g. "ipod.txt", "Canon PowerShot SD500.txt") do not
|
57 |
+
provide separation between different reviews. This is due to the fact that
|
58 |
+
the dataset was specifically designed for aspect/feature-based sentiment
|
59 |
+
analysis, for which sentence-level annotation is sufficient. For document-
|
60 |
+
level classification and analysis, this peculiarity should be taken into
|
61 |
+
consideration.
|
62 |
+
"""
|
63 |
+
|
64 |
+
import re
|
65 |
+
|
66 |
+
from nltk.corpus.reader.api import *
|
67 |
+
from nltk.tokenize import *
|
68 |
+
|
69 |
+
TITLE = re.compile(r"^\[t\](.*)$") # [t] Title
|
70 |
+
FEATURES = re.compile(
|
71 |
+
r"((?:(?:\w+\s)+)?\w+)\[((?:\+|\-)\d)\]"
|
72 |
+
) # find 'feature' in feature[+3]
|
73 |
+
NOTES = re.compile(r"\[(?!t)(p|u|s|cc|cs)\]") # find 'p' in camera[+2][p]
|
74 |
+
SENT = re.compile(r"##(.*)$") # find tokenized sentence
|
75 |
+
|
76 |
+
|
77 |
+
class Review:
|
78 |
+
"""
|
79 |
+
A Review is the main block of a ReviewsCorpusReader.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, title=None, review_lines=None):
|
83 |
+
"""
|
84 |
+
:param title: the title of the review.
|
85 |
+
:param review_lines: the list of the ReviewLines that belong to the Review.
|
86 |
+
"""
|
87 |
+
self.title = title
|
88 |
+
if review_lines is None:
|
89 |
+
self.review_lines = []
|
90 |
+
else:
|
91 |
+
self.review_lines = review_lines
|
92 |
+
|
93 |
+
def add_line(self, review_line):
|
94 |
+
"""
|
95 |
+
Add a line (ReviewLine) to the review.
|
96 |
+
|
97 |
+
:param review_line: a ReviewLine instance that belongs to the Review.
|
98 |
+
"""
|
99 |
+
assert isinstance(review_line, ReviewLine)
|
100 |
+
self.review_lines.append(review_line)
|
101 |
+
|
102 |
+
def features(self):
|
103 |
+
"""
|
104 |
+
Return a list of features in the review. Each feature is a tuple made of
|
105 |
+
the specific item feature and the opinion strength about that feature.
|
106 |
+
|
107 |
+
:return: all features of the review as a list of tuples (feat, score).
|
108 |
+
:rtype: list(tuple)
|
109 |
+
"""
|
110 |
+
features = []
|
111 |
+
for review_line in self.review_lines:
|
112 |
+
features.extend(review_line.features)
|
113 |
+
return features
|
114 |
+
|
115 |
+
def sents(self):
|
116 |
+
"""
|
117 |
+
Return all tokenized sentences in the review.
|
118 |
+
|
119 |
+
:return: all sentences of the review as lists of tokens.
|
120 |
+
:rtype: list(list(str))
|
121 |
+
"""
|
122 |
+
return [review_line.sent for review_line in self.review_lines]
|
123 |
+
|
124 |
+
def __repr__(self):
|
125 |
+
return 'Review(title="{}", review_lines={})'.format(
|
126 |
+
self.title, self.review_lines
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class ReviewLine:
|
131 |
+
"""
|
132 |
+
A ReviewLine represents a sentence of the review, together with (optional)
|
133 |
+
annotations of its features and notes about the reviewed item.
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, sent, features=None, notes=None):
|
137 |
+
self.sent = sent
|
138 |
+
if features is None:
|
139 |
+
self.features = []
|
140 |
+
else:
|
141 |
+
self.features = features
|
142 |
+
|
143 |
+
if notes is None:
|
144 |
+
self.notes = []
|
145 |
+
else:
|
146 |
+
self.notes = notes
|
147 |
+
|
148 |
+
def __repr__(self):
|
149 |
+
return "ReviewLine(features={}, notes={}, sent={})".format(
|
150 |
+
self.features, self.notes, self.sent
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
class ReviewsCorpusReader(CorpusReader):
|
155 |
+
"""
|
156 |
+
Reader for the Customer Review Data dataset by Hu, Liu (2004).
|
157 |
+
Note: we are not applying any sentence tokenization at the moment, just word
|
158 |
+
tokenization.
|
159 |
+
|
160 |
+
>>> from nltk.corpus import product_reviews_1
|
161 |
+
>>> camera_reviews = product_reviews_1.reviews('Canon_G3.txt')
|
162 |
+
>>> review = camera_reviews[0]
|
163 |
+
>>> review.sents()[0] # doctest: +NORMALIZE_WHITESPACE
|
164 |
+
['i', 'recently', 'purchased', 'the', 'canon', 'powershot', 'g3', 'and', 'am',
|
165 |
+
'extremely', 'satisfied', 'with', 'the', 'purchase', '.']
|
166 |
+
>>> review.features() # doctest: +NORMALIZE_WHITESPACE
|
167 |
+
[('canon powershot g3', '+3'), ('use', '+2'), ('picture', '+2'),
|
168 |
+
('picture quality', '+1'), ('picture quality', '+1'), ('camera', '+2'),
|
169 |
+
('use', '+2'), ('feature', '+1'), ('picture quality', '+3'), ('use', '+1'),
|
170 |
+
('option', '+1')]
|
171 |
+
|
172 |
+
We can also reach the same information directly from the stream:
|
173 |
+
|
174 |
+
>>> product_reviews_1.features('Canon_G3.txt')
|
175 |
+
[('canon powershot g3', '+3'), ('use', '+2'), ...]
|
176 |
+
|
177 |
+
We can compute stats for specific product features:
|
178 |
+
|
179 |
+
>>> n_reviews = len([(feat,score) for (feat,score) in product_reviews_1.features('Canon_G3.txt') if feat=='picture'])
|
180 |
+
>>> tot = sum([int(score) for (feat,score) in product_reviews_1.features('Canon_G3.txt') if feat=='picture'])
|
181 |
+
>>> mean = tot / n_reviews
|
182 |
+
>>> print(n_reviews, tot, mean)
|
183 |
+
15 24 1.6
|
184 |
+
"""
|
185 |
+
|
186 |
+
CorpusView = StreamBackedCorpusView
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self, root, fileids, word_tokenizer=WordPunctTokenizer(), encoding="utf8"
|
190 |
+
):
|
191 |
+
"""
|
192 |
+
:param root: The root directory for the corpus.
|
193 |
+
:param fileids: a list or regexp specifying the fileids in the corpus.
|
194 |
+
:param word_tokenizer: a tokenizer for breaking sentences or paragraphs
|
195 |
+
into words. Default: `WordPunctTokenizer`
|
196 |
+
:param encoding: the encoding that should be used to read the corpus.
|
197 |
+
"""
|
198 |
+
|
199 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
200 |
+
self._word_tokenizer = word_tokenizer
|
201 |
+
self._readme = "README.txt"
|
202 |
+
|
203 |
+
def features(self, fileids=None):
|
204 |
+
"""
|
205 |
+
Return a list of features. Each feature is a tuple made of the specific
|
206 |
+
item feature and the opinion strength about that feature.
|
207 |
+
|
208 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
209 |
+
features have to be returned.
|
210 |
+
:return: all features for the item(s) in the given file(s).
|
211 |
+
:rtype: list(tuple)
|
212 |
+
"""
|
213 |
+
if fileids is None:
|
214 |
+
fileids = self._fileids
|
215 |
+
elif isinstance(fileids, str):
|
216 |
+
fileids = [fileids]
|
217 |
+
return concat(
|
218 |
+
[
|
219 |
+
self.CorpusView(fileid, self._read_features, encoding=enc)
|
220 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
def reviews(self, fileids=None):
|
225 |
+
"""
|
226 |
+
Return all the reviews as a list of Review objects. If `fileids` is
|
227 |
+
specified, return all the reviews from each of the specified files.
|
228 |
+
|
229 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
230 |
+
reviews have to be returned.
|
231 |
+
:return: the given file(s) as a list of reviews.
|
232 |
+
"""
|
233 |
+
if fileids is None:
|
234 |
+
fileids = self._fileids
|
235 |
+
return concat(
|
236 |
+
[
|
237 |
+
self.CorpusView(fileid, self._read_review_block, encoding=enc)
|
238 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
239 |
+
]
|
240 |
+
)
|
241 |
+
|
242 |
+
def sents(self, fileids=None):
|
243 |
+
"""
|
244 |
+
Return all sentences in the corpus or in the specified files.
|
245 |
+
|
246 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
247 |
+
sentences have to be returned.
|
248 |
+
:return: the given file(s) as a list of sentences, each encoded as a
|
249 |
+
list of word strings.
|
250 |
+
:rtype: list(list(str))
|
251 |
+
"""
|
252 |
+
return concat(
|
253 |
+
[
|
254 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
255 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
256 |
+
]
|
257 |
+
)
|
258 |
+
|
259 |
+
def words(self, fileids=None):
|
260 |
+
"""
|
261 |
+
Return all words and punctuation symbols in the corpus or in the specified
|
262 |
+
files.
|
263 |
+
|
264 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
265 |
+
words have to be returned.
|
266 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
267 |
+
:rtype: list(str)
|
268 |
+
"""
|
269 |
+
return concat(
|
270 |
+
[
|
271 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
272 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
273 |
+
]
|
274 |
+
)
|
275 |
+
|
276 |
+
def _read_features(self, stream):
|
277 |
+
features = []
|
278 |
+
for i in range(20):
|
279 |
+
line = stream.readline()
|
280 |
+
if not line:
|
281 |
+
return features
|
282 |
+
features.extend(re.findall(FEATURES, line))
|
283 |
+
return features
|
284 |
+
|
285 |
+
def _read_review_block(self, stream):
|
286 |
+
while True:
|
287 |
+
line = stream.readline()
|
288 |
+
if not line:
|
289 |
+
return [] # end of file.
|
290 |
+
title_match = re.match(TITLE, line)
|
291 |
+
if title_match:
|
292 |
+
review = Review(
|
293 |
+
title=title_match.group(1).strip()
|
294 |
+
) # We create a new review
|
295 |
+
break
|
296 |
+
|
297 |
+
# Scan until we find another line matching the regexp, or EOF.
|
298 |
+
while True:
|
299 |
+
oldpos = stream.tell()
|
300 |
+
line = stream.readline()
|
301 |
+
# End of file:
|
302 |
+
if not line:
|
303 |
+
return [review]
|
304 |
+
# Start of a new review: backup to just before it starts, and
|
305 |
+
# return the review we've already collected.
|
306 |
+
if re.match(TITLE, line):
|
307 |
+
stream.seek(oldpos)
|
308 |
+
return [review]
|
309 |
+
# Anything else is part of the review line.
|
310 |
+
feats = re.findall(FEATURES, line)
|
311 |
+
notes = re.findall(NOTES, line)
|
312 |
+
sent = re.findall(SENT, line)
|
313 |
+
if sent:
|
314 |
+
sent = self._word_tokenizer.tokenize(sent[0])
|
315 |
+
review_line = ReviewLine(sent=sent, features=feats, notes=notes)
|
316 |
+
review.add_line(review_line)
|
317 |
+
|
318 |
+
def _read_sent_block(self, stream):
|
319 |
+
sents = []
|
320 |
+
for review in self._read_review_block(stream):
|
321 |
+
sents.extend([sent for sent in review.sents()])
|
322 |
+
return sents
|
323 |
+
|
324 |
+
def _read_word_block(self, stream):
|
325 |
+
words = []
|
326 |
+
for i in range(20): # Read 20 lines at a time.
|
327 |
+
line = stream.readline()
|
328 |
+
sent = re.findall(SENT, line)
|
329 |
+
if sent:
|
330 |
+
words.extend(self._word_tokenizer.tokenize(sent[0]))
|
331 |
+
return words
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/rte.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: RTE Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Corpus reader for the Recognizing Textual Entailment (RTE) Challenge Corpora.
|
10 |
+
|
11 |
+
The files were taken from the RTE1, RTE2 and RTE3 datasets and the files
|
12 |
+
were regularized.
|
13 |
+
|
14 |
+
Filenames are of the form rte*_dev.xml and rte*_test.xml. The latter are the
|
15 |
+
gold standard annotated files.
|
16 |
+
|
17 |
+
Each entailment corpus is a list of 'text'/'hypothesis' pairs. The following
|
18 |
+
example is taken from RTE3::
|
19 |
+
|
20 |
+
<pair id="1" entailment="YES" task="IE" length="short" >
|
21 |
+
|
22 |
+
<t>The sale was made to pay Yukos' US$ 27.5 billion tax bill,
|
23 |
+
Yuganskneftegaz was originally sold for US$ 9.4 billion to a little known
|
24 |
+
company Baikalfinansgroup which was later bought by the Russian
|
25 |
+
state-owned oil company Rosneft .</t>
|
26 |
+
|
27 |
+
<h>Baikalfinansgroup was sold to Rosneft.</h>
|
28 |
+
</pair>
|
29 |
+
|
30 |
+
In order to provide globally unique IDs for each pair, a new attribute
|
31 |
+
``challenge`` has been added to the root element ``entailment-corpus`` of each
|
32 |
+
file, taking values 1, 2 or 3. The GID is formatted 'm-n', where 'm' is the
|
33 |
+
challenge number and 'n' is the pair ID.
|
34 |
+
"""
|
35 |
+
from nltk.corpus.reader.api import *
|
36 |
+
from nltk.corpus.reader.util import *
|
37 |
+
from nltk.corpus.reader.xmldocs import *
|
38 |
+
|
39 |
+
|
40 |
+
def norm(value_string):
|
41 |
+
"""
|
42 |
+
Normalize the string value in an RTE pair's ``value`` or ``entailment``
|
43 |
+
attribute as an integer (1, 0).
|
44 |
+
|
45 |
+
:param value_string: the label used to classify a text/hypothesis pair
|
46 |
+
:type value_string: str
|
47 |
+
:rtype: int
|
48 |
+
"""
|
49 |
+
|
50 |
+
valdict = {"TRUE": 1, "FALSE": 0, "YES": 1, "NO": 0}
|
51 |
+
return valdict[value_string.upper()]
|
52 |
+
|
53 |
+
|
54 |
+
class RTEPair:
|
55 |
+
"""
|
56 |
+
Container for RTE text-hypothesis pairs.
|
57 |
+
|
58 |
+
The entailment relation is signalled by the ``value`` attribute in RTE1, and by
|
59 |
+
``entailment`` in RTE2 and RTE3. These both get mapped on to the ``entailment``
|
60 |
+
attribute of this class.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
pair,
|
66 |
+
challenge=None,
|
67 |
+
id=None,
|
68 |
+
text=None,
|
69 |
+
hyp=None,
|
70 |
+
value=None,
|
71 |
+
task=None,
|
72 |
+
length=None,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
:param challenge: version of the RTE challenge (i.e., RTE1, RTE2 or RTE3)
|
76 |
+
:param id: identifier for the pair
|
77 |
+
:param text: the text component of the pair
|
78 |
+
:param hyp: the hypothesis component of the pair
|
79 |
+
:param value: classification label for the pair
|
80 |
+
:param task: attribute for the particular NLP task that the data was drawn from
|
81 |
+
:param length: attribute for the length of the text of the pair
|
82 |
+
"""
|
83 |
+
self.challenge = challenge
|
84 |
+
self.id = pair.attrib["id"]
|
85 |
+
self.gid = f"{self.challenge}-{self.id}"
|
86 |
+
self.text = pair[0].text
|
87 |
+
self.hyp = pair[1].text
|
88 |
+
|
89 |
+
if "value" in pair.attrib:
|
90 |
+
self.value = norm(pair.attrib["value"])
|
91 |
+
elif "entailment" in pair.attrib:
|
92 |
+
self.value = norm(pair.attrib["entailment"])
|
93 |
+
else:
|
94 |
+
self.value = value
|
95 |
+
if "task" in pair.attrib:
|
96 |
+
self.task = pair.attrib["task"]
|
97 |
+
else:
|
98 |
+
self.task = task
|
99 |
+
if "length" in pair.attrib:
|
100 |
+
self.length = pair.attrib["length"]
|
101 |
+
else:
|
102 |
+
self.length = length
|
103 |
+
|
104 |
+
def __repr__(self):
|
105 |
+
if self.challenge:
|
106 |
+
return f"<RTEPair: gid={self.challenge}-{self.id}>"
|
107 |
+
else:
|
108 |
+
return "<RTEPair: id=%s>" % self.id
|
109 |
+
|
110 |
+
|
111 |
+
class RTECorpusReader(XMLCorpusReader):
|
112 |
+
"""
|
113 |
+
Corpus reader for corpora in RTE challenges.
|
114 |
+
|
115 |
+
This is just a wrapper around the XMLCorpusReader. See module docstring above for the expected
|
116 |
+
structure of input documents.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def _read_etree(self, doc):
|
120 |
+
"""
|
121 |
+
Map the XML input into an RTEPair.
|
122 |
+
|
123 |
+
This uses the ``getiterator()`` method from the ElementTree package to
|
124 |
+
find all the ``<pair>`` elements.
|
125 |
+
|
126 |
+
:param doc: a parsed XML document
|
127 |
+
:rtype: list(RTEPair)
|
128 |
+
"""
|
129 |
+
try:
|
130 |
+
challenge = doc.attrib["challenge"]
|
131 |
+
except KeyError:
|
132 |
+
challenge = None
|
133 |
+
pairiter = doc.iter("pair")
|
134 |
+
return [RTEPair(pair, challenge=challenge) for pair in pairiter]
|
135 |
+
|
136 |
+
def pairs(self, fileids):
|
137 |
+
"""
|
138 |
+
Build a list of RTEPairs from a RTE corpus.
|
139 |
+
|
140 |
+
:param fileids: a list of RTE corpus fileids
|
141 |
+
:type: list
|
142 |
+
:rtype: list(RTEPair)
|
143 |
+
"""
|
144 |
+
if isinstance(fileids, str):
|
145 |
+
fileids = [fileids]
|
146 |
+
return concat([self._read_etree(self.xml(fileid)) for fileid in fileids])
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/string_category.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: String Category Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Read tuples from a corpus consisting of categorized strings.
|
11 |
+
For example, from the question classification corpus:
|
12 |
+
|
13 |
+
NUM:dist How far is it from Denver to Aspen ?
|
14 |
+
LOC:city What county is Modesto , California in ?
|
15 |
+
HUM:desc Who was Galileo ?
|
16 |
+
DESC:def What is an atom ?
|
17 |
+
NUM:date When did Hawaii become a state ?
|
18 |
+
"""
|
19 |
+
|
20 |
+
from nltk.corpus.reader.api import *
|
21 |
+
|
22 |
+
# based on PPAttachmentCorpusReader
|
23 |
+
from nltk.corpus.reader.util import *
|
24 |
+
|
25 |
+
|
26 |
+
# [xx] Should the order of the tuple be reversed -- in most other places
|
27 |
+
# in nltk, we use the form (data, tag) -- e.g., tagged words and
|
28 |
+
# labeled texts for classifiers.
|
29 |
+
class StringCategoryCorpusReader(CorpusReader):
|
30 |
+
def __init__(self, root, fileids, delimiter=" ", encoding="utf8"):
|
31 |
+
"""
|
32 |
+
:param root: The root directory for this corpus.
|
33 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
34 |
+
:param delimiter: Field delimiter
|
35 |
+
"""
|
36 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
37 |
+
self._delimiter = delimiter
|
38 |
+
|
39 |
+
def tuples(self, fileids=None):
|
40 |
+
if fileids is None:
|
41 |
+
fileids = self._fileids
|
42 |
+
elif isinstance(fileids, str):
|
43 |
+
fileids = [fileids]
|
44 |
+
return concat(
|
45 |
+
[
|
46 |
+
StreamBackedCorpusView(fileid, self._read_tuple_block, encoding=enc)
|
47 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def _read_tuple_block(self, stream):
|
52 |
+
line = stream.readline().strip()
|
53 |
+
if line:
|
54 |
+
return [tuple(line.split(self._delimiter, 1))]
|
55 |
+
else:
|
56 |
+
return []
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/tagged.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Tagged Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# Jacob Perkins <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
A reader for corpora whose documents contain part-of-speech-tagged words.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
|
16 |
+
from nltk.corpus.reader.api import *
|
17 |
+
from nltk.corpus.reader.timit import read_timit_block
|
18 |
+
from nltk.corpus.reader.util import *
|
19 |
+
from nltk.tag import map_tag, str2tuple
|
20 |
+
from nltk.tokenize import *
|
21 |
+
|
22 |
+
|
23 |
+
class TaggedCorpusReader(CorpusReader):
|
24 |
+
"""
|
25 |
+
Reader for simple part-of-speech tagged corpora. Paragraphs are
|
26 |
+
assumed to be split using blank lines. Sentences and words can be
|
27 |
+
tokenized using the default tokenizers, or by custom tokenizers
|
28 |
+
specified as parameters to the constructor. Words are parsed
|
29 |
+
using ``nltk.tag.str2tuple``. By default, ``'/'`` is used as the
|
30 |
+
separator. I.e., words should have the form::
|
31 |
+
|
32 |
+
word1/tag1 word2/tag2 word3/tag3 ...
|
33 |
+
|
34 |
+
But custom separators may be specified as parameters to the
|
35 |
+
constructor. Part of speech tags are case-normalized to upper
|
36 |
+
case.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
root,
|
42 |
+
fileids,
|
43 |
+
sep="/",
|
44 |
+
word_tokenizer=WhitespaceTokenizer(),
|
45 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
46 |
+
para_block_reader=read_blankline_block,
|
47 |
+
encoding="utf8",
|
48 |
+
tagset=None,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Construct a new Tagged Corpus reader for a set of documents
|
52 |
+
located at the given root directory. Example usage:
|
53 |
+
|
54 |
+
>>> root = '/...path to corpus.../'
|
55 |
+
>>> reader = TaggedCorpusReader(root, '.*', '.txt') # doctest: +SKIP
|
56 |
+
|
57 |
+
:param root: The root directory for this corpus.
|
58 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
59 |
+
"""
|
60 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
61 |
+
self._sep = sep
|
62 |
+
self._word_tokenizer = word_tokenizer
|
63 |
+
self._sent_tokenizer = sent_tokenizer
|
64 |
+
self._para_block_reader = para_block_reader
|
65 |
+
self._tagset = tagset
|
66 |
+
|
67 |
+
def words(self, fileids=None):
|
68 |
+
"""
|
69 |
+
:return: the given file(s) as a list of words
|
70 |
+
and punctuation symbols.
|
71 |
+
:rtype: list(str)
|
72 |
+
"""
|
73 |
+
return concat(
|
74 |
+
[
|
75 |
+
TaggedCorpusView(
|
76 |
+
fileid,
|
77 |
+
enc,
|
78 |
+
False,
|
79 |
+
False,
|
80 |
+
False,
|
81 |
+
self._sep,
|
82 |
+
self._word_tokenizer,
|
83 |
+
self._sent_tokenizer,
|
84 |
+
self._para_block_reader,
|
85 |
+
None,
|
86 |
+
)
|
87 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
88 |
+
]
|
89 |
+
)
|
90 |
+
|
91 |
+
def sents(self, fileids=None):
|
92 |
+
"""
|
93 |
+
:return: the given file(s) as a list of
|
94 |
+
sentences or utterances, each encoded as a list of word
|
95 |
+
strings.
|
96 |
+
:rtype: list(list(str))
|
97 |
+
"""
|
98 |
+
return concat(
|
99 |
+
[
|
100 |
+
TaggedCorpusView(
|
101 |
+
fileid,
|
102 |
+
enc,
|
103 |
+
False,
|
104 |
+
True,
|
105 |
+
False,
|
106 |
+
self._sep,
|
107 |
+
self._word_tokenizer,
|
108 |
+
self._sent_tokenizer,
|
109 |
+
self._para_block_reader,
|
110 |
+
None,
|
111 |
+
)
|
112 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
113 |
+
]
|
114 |
+
)
|
115 |
+
|
116 |
+
def paras(self, fileids=None):
|
117 |
+
"""
|
118 |
+
:return: the given file(s) as a list of
|
119 |
+
paragraphs, each encoded as a list of sentences, which are
|
120 |
+
in turn encoded as lists of word strings.
|
121 |
+
:rtype: list(list(list(str)))
|
122 |
+
"""
|
123 |
+
return concat(
|
124 |
+
[
|
125 |
+
TaggedCorpusView(
|
126 |
+
fileid,
|
127 |
+
enc,
|
128 |
+
False,
|
129 |
+
True,
|
130 |
+
True,
|
131 |
+
self._sep,
|
132 |
+
self._word_tokenizer,
|
133 |
+
self._sent_tokenizer,
|
134 |
+
self._para_block_reader,
|
135 |
+
None,
|
136 |
+
)
|
137 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
138 |
+
]
|
139 |
+
)
|
140 |
+
|
141 |
+
def tagged_words(self, fileids=None, tagset=None):
|
142 |
+
"""
|
143 |
+
:return: the given file(s) as a list of tagged
|
144 |
+
words and punctuation symbols, encoded as tuples
|
145 |
+
``(word,tag)``.
|
146 |
+
:rtype: list(tuple(str,str))
|
147 |
+
"""
|
148 |
+
if tagset and tagset != self._tagset:
|
149 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
150 |
+
else:
|
151 |
+
tag_mapping_function = None
|
152 |
+
return concat(
|
153 |
+
[
|
154 |
+
TaggedCorpusView(
|
155 |
+
fileid,
|
156 |
+
enc,
|
157 |
+
True,
|
158 |
+
False,
|
159 |
+
False,
|
160 |
+
self._sep,
|
161 |
+
self._word_tokenizer,
|
162 |
+
self._sent_tokenizer,
|
163 |
+
self._para_block_reader,
|
164 |
+
tag_mapping_function,
|
165 |
+
)
|
166 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
167 |
+
]
|
168 |
+
)
|
169 |
+
|
170 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
171 |
+
"""
|
172 |
+
:return: the given file(s) as a list of
|
173 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
174 |
+
|
175 |
+
:rtype: list(list(tuple(str,str)))
|
176 |
+
"""
|
177 |
+
if tagset and tagset != self._tagset:
|
178 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
179 |
+
else:
|
180 |
+
tag_mapping_function = None
|
181 |
+
return concat(
|
182 |
+
[
|
183 |
+
TaggedCorpusView(
|
184 |
+
fileid,
|
185 |
+
enc,
|
186 |
+
True,
|
187 |
+
True,
|
188 |
+
False,
|
189 |
+
self._sep,
|
190 |
+
self._word_tokenizer,
|
191 |
+
self._sent_tokenizer,
|
192 |
+
self._para_block_reader,
|
193 |
+
tag_mapping_function,
|
194 |
+
)
|
195 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
def tagged_paras(self, fileids=None, tagset=None):
|
200 |
+
"""
|
201 |
+
:return: the given file(s) as a list of
|
202 |
+
paragraphs, each encoded as a list of sentences, which are
|
203 |
+
in turn encoded as lists of ``(word,tag)`` tuples.
|
204 |
+
:rtype: list(list(list(tuple(str,str))))
|
205 |
+
"""
|
206 |
+
if tagset and tagset != self._tagset:
|
207 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
208 |
+
else:
|
209 |
+
tag_mapping_function = None
|
210 |
+
return concat(
|
211 |
+
[
|
212 |
+
TaggedCorpusView(
|
213 |
+
fileid,
|
214 |
+
enc,
|
215 |
+
True,
|
216 |
+
True,
|
217 |
+
True,
|
218 |
+
self._sep,
|
219 |
+
self._word_tokenizer,
|
220 |
+
self._sent_tokenizer,
|
221 |
+
self._para_block_reader,
|
222 |
+
tag_mapping_function,
|
223 |
+
)
|
224 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
225 |
+
]
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
class CategorizedTaggedCorpusReader(CategorizedCorpusReader, TaggedCorpusReader):
|
230 |
+
"""
|
231 |
+
A reader for part-of-speech tagged corpora whose documents are
|
232 |
+
divided into categories based on their file identifiers.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, *args, **kwargs):
|
236 |
+
"""
|
237 |
+
Initialize the corpus reader. Categorization arguments
|
238 |
+
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
|
239 |
+
the ``CategorizedCorpusReader`` constructor. The remaining arguments
|
240 |
+
are passed to the ``TaggedCorpusReader``.
|
241 |
+
"""
|
242 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
243 |
+
TaggedCorpusReader.__init__(self, *args, **kwargs)
|
244 |
+
|
245 |
+
def tagged_words(self, fileids=None, categories=None, tagset=None):
|
246 |
+
return super().tagged_words(self._resolve(fileids, categories), tagset)
|
247 |
+
|
248 |
+
def tagged_sents(self, fileids=None, categories=None, tagset=None):
|
249 |
+
return super().tagged_sents(self._resolve(fileids, categories), tagset)
|
250 |
+
|
251 |
+
def tagged_paras(self, fileids=None, categories=None, tagset=None):
|
252 |
+
return super().tagged_paras(self._resolve(fileids, categories), tagset)
|
253 |
+
|
254 |
+
|
255 |
+
class TaggedCorpusView(StreamBackedCorpusView):
|
256 |
+
"""
|
257 |
+
A specialized corpus view for tagged documents. It can be
|
258 |
+
customized via flags to divide the tagged corpus documents up by
|
259 |
+
sentence or paragraph, and to include or omit part of speech tags.
|
260 |
+
``TaggedCorpusView`` objects are typically created by
|
261 |
+
``TaggedCorpusReader`` (not directly by nltk users).
|
262 |
+
"""
|
263 |
+
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
corpus_file,
|
267 |
+
encoding,
|
268 |
+
tagged,
|
269 |
+
group_by_sent,
|
270 |
+
group_by_para,
|
271 |
+
sep,
|
272 |
+
word_tokenizer,
|
273 |
+
sent_tokenizer,
|
274 |
+
para_block_reader,
|
275 |
+
tag_mapping_function=None,
|
276 |
+
):
|
277 |
+
self._tagged = tagged
|
278 |
+
self._group_by_sent = group_by_sent
|
279 |
+
self._group_by_para = group_by_para
|
280 |
+
self._sep = sep
|
281 |
+
self._word_tokenizer = word_tokenizer
|
282 |
+
self._sent_tokenizer = sent_tokenizer
|
283 |
+
self._para_block_reader = para_block_reader
|
284 |
+
self._tag_mapping_function = tag_mapping_function
|
285 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
286 |
+
|
287 |
+
def read_block(self, stream):
|
288 |
+
"""Reads one paragraph at a time."""
|
289 |
+
block = []
|
290 |
+
for para_str in self._para_block_reader(stream):
|
291 |
+
para = []
|
292 |
+
for sent_str in self._sent_tokenizer.tokenize(para_str):
|
293 |
+
sent = [
|
294 |
+
str2tuple(s, self._sep)
|
295 |
+
for s in self._word_tokenizer.tokenize(sent_str)
|
296 |
+
]
|
297 |
+
if self._tag_mapping_function:
|
298 |
+
sent = [(w, self._tag_mapping_function(t)) for (w, t) in sent]
|
299 |
+
if not self._tagged:
|
300 |
+
sent = [w for (w, t) in sent]
|
301 |
+
if self._group_by_sent:
|
302 |
+
para.append(sent)
|
303 |
+
else:
|
304 |
+
para.extend(sent)
|
305 |
+
if self._group_by_para:
|
306 |
+
block.append(para)
|
307 |
+
else:
|
308 |
+
block.extend(para)
|
309 |
+
return block
|
310 |
+
|
311 |
+
|
312 |
+
# needs to implement simplified tags
|
313 |
+
class MacMorphoCorpusReader(TaggedCorpusReader):
|
314 |
+
"""
|
315 |
+
A corpus reader for the MAC_MORPHO corpus. Each line contains a
|
316 |
+
single tagged word, using '_' as a separator. Sentence boundaries
|
317 |
+
are based on the end-sentence tag ('_.'). Paragraph information
|
318 |
+
is not included in the corpus, so each paragraph returned by
|
319 |
+
``self.paras()`` and ``self.tagged_paras()`` contains a single
|
320 |
+
sentence.
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, root, fileids, encoding="utf8", tagset=None):
|
324 |
+
TaggedCorpusReader.__init__(
|
325 |
+
self,
|
326 |
+
root,
|
327 |
+
fileids,
|
328 |
+
sep="_",
|
329 |
+
word_tokenizer=LineTokenizer(),
|
330 |
+
sent_tokenizer=RegexpTokenizer(".*\n"),
|
331 |
+
para_block_reader=self._read_block,
|
332 |
+
encoding=encoding,
|
333 |
+
tagset=tagset,
|
334 |
+
)
|
335 |
+
|
336 |
+
def _read_block(self, stream):
|
337 |
+
return read_regexp_block(stream, r".*", r".*_\.")
|
338 |
+
|
339 |
+
|
340 |
+
class TimitTaggedCorpusReader(TaggedCorpusReader):
|
341 |
+
"""
|
342 |
+
A corpus reader for tagged sentences that are included in the TIMIT corpus.
|
343 |
+
"""
|
344 |
+
|
345 |
+
def __init__(self, *args, **kwargs):
|
346 |
+
TaggedCorpusReader.__init__(
|
347 |
+
self, para_block_reader=read_timit_block, *args, **kwargs
|
348 |
+
)
|
349 |
+
|
350 |
+
def paras(self):
|
351 |
+
raise NotImplementedError("use sents() instead")
|
352 |
+
|
353 |
+
def tagged_paras(self):
|
354 |
+
raise NotImplementedError("use tagged_sents() instead")
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/timit.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: TIMIT Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2007 NLTK Project
|
4 |
+
# Author: Haejoong Lee <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# Jacob Perkins <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
# [xx] this docstring is out-of-date:
|
11 |
+
"""
|
12 |
+
Read tokens, phonemes and audio data from the NLTK TIMIT Corpus.
|
13 |
+
|
14 |
+
This corpus contains selected portion of the TIMIT corpus.
|
15 |
+
|
16 |
+
- 16 speakers from 8 dialect regions
|
17 |
+
- 1 male and 1 female from each dialect region
|
18 |
+
- total 130 sentences (10 sentences per speaker. Note that some
|
19 |
+
sentences are shared among other speakers, especially sa1 and sa2
|
20 |
+
are spoken by all speakers.)
|
21 |
+
- total 160 recording of sentences (10 recordings per speaker)
|
22 |
+
- audio format: NIST Sphere, single channel, 16kHz sampling,
|
23 |
+
16 bit sample, PCM encoding
|
24 |
+
|
25 |
+
|
26 |
+
Module contents
|
27 |
+
===============
|
28 |
+
|
29 |
+
The timit corpus reader provides 4 functions and 4 data items.
|
30 |
+
|
31 |
+
- utterances
|
32 |
+
|
33 |
+
List of utterances in the corpus. There are total 160 utterances,
|
34 |
+
each of which corresponds to a unique utterance of a speaker.
|
35 |
+
Here's an example of an utterance identifier in the list::
|
36 |
+
|
37 |
+
dr1-fvmh0/sx206
|
38 |
+
- _---- _---
|
39 |
+
| | | | |
|
40 |
+
| | | | |
|
41 |
+
| | | | `--- sentence number
|
42 |
+
| | | `----- sentence type (a:all, i:shared, x:exclusive)
|
43 |
+
| | `--------- speaker ID
|
44 |
+
| `------------ sex (m:male, f:female)
|
45 |
+
`-------------- dialect region (1..8)
|
46 |
+
|
47 |
+
- speakers
|
48 |
+
|
49 |
+
List of speaker IDs. An example of speaker ID::
|
50 |
+
|
51 |
+
dr1-fvmh0
|
52 |
+
|
53 |
+
Note that if you split an item ID with colon and take the first element of
|
54 |
+
the result, you will get a speaker ID.
|
55 |
+
|
56 |
+
>>> itemid = 'dr1-fvmh0/sx206'
|
57 |
+
>>> spkrid , sentid = itemid.split('/')
|
58 |
+
>>> spkrid
|
59 |
+
'dr1-fvmh0'
|
60 |
+
|
61 |
+
The second element of the result is a sentence ID.
|
62 |
+
|
63 |
+
- dictionary()
|
64 |
+
|
65 |
+
Phonetic dictionary of words contained in this corpus. This is a Python
|
66 |
+
dictionary from words to phoneme lists.
|
67 |
+
|
68 |
+
- spkrinfo()
|
69 |
+
|
70 |
+
Speaker information table. It's a Python dictionary from speaker IDs to
|
71 |
+
records of 10 fields. Speaker IDs the same as the ones in timie.speakers.
|
72 |
+
Each record is a dictionary from field names to values, and the fields are
|
73 |
+
as follows::
|
74 |
+
|
75 |
+
id speaker ID as defined in the original TIMIT speaker info table
|
76 |
+
sex speaker gender (M:male, F:female)
|
77 |
+
dr speaker dialect region (1:new england, 2:northern,
|
78 |
+
3:north midland, 4:south midland, 5:southern, 6:new york city,
|
79 |
+
7:western, 8:army brat (moved around))
|
80 |
+
use corpus type (TRN:training, TST:test)
|
81 |
+
in this sample corpus only TRN is available
|
82 |
+
recdate recording date
|
83 |
+
birthdate speaker birth date
|
84 |
+
ht speaker height
|
85 |
+
race speaker race (WHT:white, BLK:black, AMR:american indian,
|
86 |
+
SPN:spanish-american, ORN:oriental,???:unknown)
|
87 |
+
edu speaker education level (HS:high school, AS:associate degree,
|
88 |
+
BS:bachelor's degree (BS or BA), MS:master's degree (MS or MA),
|
89 |
+
PHD:doctorate degree (PhD,JD,MD), ??:unknown)
|
90 |
+
comments comments by the recorder
|
91 |
+
|
92 |
+
The 4 functions are as follows.
|
93 |
+
|
94 |
+
- tokenized(sentences=items, offset=False)
|
95 |
+
|
96 |
+
Given a list of items, returns an iterator of a list of word lists,
|
97 |
+
each of which corresponds to an item (sentence). If offset is set to True,
|
98 |
+
each element of the word list is a tuple of word(string), start offset and
|
99 |
+
end offset, where offset is represented as a number of 16kHz samples.
|
100 |
+
|
101 |
+
- phonetic(sentences=items, offset=False)
|
102 |
+
|
103 |
+
Given a list of items, returns an iterator of a list of phoneme lists,
|
104 |
+
each of which corresponds to an item (sentence). If offset is set to True,
|
105 |
+
each element of the phoneme list is a tuple of word(string), start offset
|
106 |
+
and end offset, where offset is represented as a number of 16kHz samples.
|
107 |
+
|
108 |
+
- audiodata(item, start=0, end=None)
|
109 |
+
|
110 |
+
Given an item, returns a chunk of audio samples formatted into a string.
|
111 |
+
When the function is called, if start and end are omitted, the entire
|
112 |
+
samples of the recording will be returned. If only end is omitted,
|
113 |
+
samples from the start offset to the end of the recording will be returned.
|
114 |
+
|
115 |
+
- play(data)
|
116 |
+
|
117 |
+
Play the given audio samples. The audio samples can be obtained from the
|
118 |
+
timit.audiodata function.
|
119 |
+
|
120 |
+
"""
|
121 |
+
import sys
|
122 |
+
import time
|
123 |
+
|
124 |
+
from nltk.corpus.reader.api import *
|
125 |
+
from nltk.internals import import_from_stdlib
|
126 |
+
from nltk.tree import Tree
|
127 |
+
|
128 |
+
|
129 |
+
class TimitCorpusReader(CorpusReader):
|
130 |
+
"""
|
131 |
+
Reader for the TIMIT corpus (or any other corpus with the same
|
132 |
+
file layout and use of file formats). The corpus root directory
|
133 |
+
should contain the following files:
|
134 |
+
|
135 |
+
- timitdic.txt: dictionary of standard transcriptions
|
136 |
+
- spkrinfo.txt: table of speaker information
|
137 |
+
|
138 |
+
In addition, the root directory should contain one subdirectory
|
139 |
+
for each speaker, containing three files for each utterance:
|
140 |
+
|
141 |
+
- <utterance-id>.txt: text content of utterances
|
142 |
+
- <utterance-id>.wrd: tokenized text content of utterances
|
143 |
+
- <utterance-id>.phn: phonetic transcription of utterances
|
144 |
+
- <utterance-id>.wav: utterance sound file
|
145 |
+
"""
|
146 |
+
|
147 |
+
_FILE_RE = r"(\w+-\w+/\w+\.(phn|txt|wav|wrd))|" + r"timitdic\.txt|spkrinfo\.txt"
|
148 |
+
"""A regexp matching fileids that are used by this corpus reader."""
|
149 |
+
_UTTERANCE_RE = r"\w+-\w+/\w+\.txt"
|
150 |
+
|
151 |
+
def __init__(self, root, encoding="utf8"):
|
152 |
+
"""
|
153 |
+
Construct a new TIMIT corpus reader in the given directory.
|
154 |
+
:param root: The root directory for this corpus.
|
155 |
+
"""
|
156 |
+
# Ensure that wave files don't get treated as unicode data:
|
157 |
+
if isinstance(encoding, str):
|
158 |
+
encoding = [(r".*\.wav", None), (".*", encoding)]
|
159 |
+
|
160 |
+
CorpusReader.__init__(
|
161 |
+
self, root, find_corpus_fileids(root, self._FILE_RE), encoding=encoding
|
162 |
+
)
|
163 |
+
|
164 |
+
self._utterances = [
|
165 |
+
name[:-4] for name in find_corpus_fileids(root, self._UTTERANCE_RE)
|
166 |
+
]
|
167 |
+
"""A list of the utterance identifiers for all utterances in
|
168 |
+
this corpus."""
|
169 |
+
|
170 |
+
self._speakerinfo = None
|
171 |
+
self._root = root
|
172 |
+
self.speakers = sorted({u.split("/")[0] for u in self._utterances})
|
173 |
+
|
174 |
+
def fileids(self, filetype=None):
|
175 |
+
"""
|
176 |
+
Return a list of file identifiers for the files that make up
|
177 |
+
this corpus.
|
178 |
+
|
179 |
+
:param filetype: If specified, then ``filetype`` indicates that
|
180 |
+
only the files that have the given type should be
|
181 |
+
returned. Accepted values are: ``txt``, ``wrd``, ``phn``,
|
182 |
+
``wav``, or ``metadata``,
|
183 |
+
"""
|
184 |
+
if filetype is None:
|
185 |
+
return CorpusReader.fileids(self)
|
186 |
+
elif filetype in ("txt", "wrd", "phn", "wav"):
|
187 |
+
return [f"{u}.{filetype}" for u in self._utterances]
|
188 |
+
elif filetype == "metadata":
|
189 |
+
return ["timitdic.txt", "spkrinfo.txt"]
|
190 |
+
else:
|
191 |
+
raise ValueError("Bad value for filetype: %r" % filetype)
|
192 |
+
|
193 |
+
def utteranceids(
|
194 |
+
self, dialect=None, sex=None, spkrid=None, sent_type=None, sentid=None
|
195 |
+
):
|
196 |
+
"""
|
197 |
+
:return: A list of the utterance identifiers for all
|
198 |
+
utterances in this corpus, or for the given speaker, dialect
|
199 |
+
region, gender, sentence type, or sentence number, if
|
200 |
+
specified.
|
201 |
+
"""
|
202 |
+
if isinstance(dialect, str):
|
203 |
+
dialect = [dialect]
|
204 |
+
if isinstance(sex, str):
|
205 |
+
sex = [sex]
|
206 |
+
if isinstance(spkrid, str):
|
207 |
+
spkrid = [spkrid]
|
208 |
+
if isinstance(sent_type, str):
|
209 |
+
sent_type = [sent_type]
|
210 |
+
if isinstance(sentid, str):
|
211 |
+
sentid = [sentid]
|
212 |
+
|
213 |
+
utterances = self._utterances[:]
|
214 |
+
if dialect is not None:
|
215 |
+
utterances = [u for u in utterances if u[2] in dialect]
|
216 |
+
if sex is not None:
|
217 |
+
utterances = [u for u in utterances if u[4] in sex]
|
218 |
+
if spkrid is not None:
|
219 |
+
utterances = [u for u in utterances if u[:9] in spkrid]
|
220 |
+
if sent_type is not None:
|
221 |
+
utterances = [u for u in utterances if u[11] in sent_type]
|
222 |
+
if sentid is not None:
|
223 |
+
utterances = [u for u in utterances if u[10:] in spkrid]
|
224 |
+
return utterances
|
225 |
+
|
226 |
+
def transcription_dict(self):
|
227 |
+
"""
|
228 |
+
:return: A dictionary giving the 'standard' transcription for
|
229 |
+
each word.
|
230 |
+
"""
|
231 |
+
_transcriptions = {}
|
232 |
+
with self.open("timitdic.txt") as fp:
|
233 |
+
for line in fp:
|
234 |
+
if not line.strip() or line[0] == ";":
|
235 |
+
continue
|
236 |
+
m = re.match(r"\s*(\S+)\s+/(.*)/\s*$", line)
|
237 |
+
if not m:
|
238 |
+
raise ValueError("Bad line: %r" % line)
|
239 |
+
_transcriptions[m.group(1)] = m.group(2).split()
|
240 |
+
return _transcriptions
|
241 |
+
|
242 |
+
def spkrid(self, utterance):
|
243 |
+
return utterance.split("/")[0]
|
244 |
+
|
245 |
+
def sentid(self, utterance):
|
246 |
+
return utterance.split("/")[1]
|
247 |
+
|
248 |
+
def utterance(self, spkrid, sentid):
|
249 |
+
return f"{spkrid}/{sentid}"
|
250 |
+
|
251 |
+
def spkrutteranceids(self, speaker):
|
252 |
+
"""
|
253 |
+
:return: A list of all utterances associated with a given
|
254 |
+
speaker.
|
255 |
+
"""
|
256 |
+
return [
|
257 |
+
utterance
|
258 |
+
for utterance in self._utterances
|
259 |
+
if utterance.startswith(speaker + "/")
|
260 |
+
]
|
261 |
+
|
262 |
+
def spkrinfo(self, speaker):
|
263 |
+
"""
|
264 |
+
:return: A dictionary mapping .. something.
|
265 |
+
"""
|
266 |
+
if speaker in self._utterances:
|
267 |
+
speaker = self.spkrid(speaker)
|
268 |
+
|
269 |
+
if self._speakerinfo is None:
|
270 |
+
self._speakerinfo = {}
|
271 |
+
with self.open("spkrinfo.txt") as fp:
|
272 |
+
for line in fp:
|
273 |
+
if not line.strip() or line[0] == ";":
|
274 |
+
continue
|
275 |
+
rec = line.strip().split(None, 9)
|
276 |
+
key = f"dr{rec[2]}-{rec[1].lower()}{rec[0].lower()}"
|
277 |
+
self._speakerinfo[key] = SpeakerInfo(*rec)
|
278 |
+
|
279 |
+
return self._speakerinfo[speaker]
|
280 |
+
|
281 |
+
def phones(self, utterances=None):
|
282 |
+
results = []
|
283 |
+
for fileid in self._utterance_fileids(utterances, ".phn"):
|
284 |
+
with self.open(fileid) as fp:
|
285 |
+
for line in fp:
|
286 |
+
if line.strip():
|
287 |
+
results.append(line.split()[-1])
|
288 |
+
return results
|
289 |
+
|
290 |
+
def phone_times(self, utterances=None):
|
291 |
+
"""
|
292 |
+
offset is represented as a number of 16kHz samples!
|
293 |
+
"""
|
294 |
+
results = []
|
295 |
+
for fileid in self._utterance_fileids(utterances, ".phn"):
|
296 |
+
with self.open(fileid) as fp:
|
297 |
+
for line in fp:
|
298 |
+
if line.strip():
|
299 |
+
results.append(
|
300 |
+
(
|
301 |
+
line.split()[2],
|
302 |
+
int(line.split()[0]),
|
303 |
+
int(line.split()[1]),
|
304 |
+
)
|
305 |
+
)
|
306 |
+
return results
|
307 |
+
|
308 |
+
def words(self, utterances=None):
|
309 |
+
results = []
|
310 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
311 |
+
with self.open(fileid) as fp:
|
312 |
+
for line in fp:
|
313 |
+
if line.strip():
|
314 |
+
results.append(line.split()[-1])
|
315 |
+
return results
|
316 |
+
|
317 |
+
def word_times(self, utterances=None):
|
318 |
+
results = []
|
319 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
320 |
+
with self.open(fileid) as fp:
|
321 |
+
for line in fp:
|
322 |
+
if line.strip():
|
323 |
+
results.append(
|
324 |
+
(
|
325 |
+
line.split()[2],
|
326 |
+
int(line.split()[0]),
|
327 |
+
int(line.split()[1]),
|
328 |
+
)
|
329 |
+
)
|
330 |
+
return results
|
331 |
+
|
332 |
+
def sents(self, utterances=None):
|
333 |
+
results = []
|
334 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
335 |
+
with self.open(fileid) as fp:
|
336 |
+
results.append([line.split()[-1] for line in fp if line.strip()])
|
337 |
+
return results
|
338 |
+
|
339 |
+
def sent_times(self, utterances=None):
|
340 |
+
# TODO: Check this
|
341 |
+
return [
|
342 |
+
(
|
343 |
+
line.split(None, 2)[-1].strip(),
|
344 |
+
int(line.split()[0]),
|
345 |
+
int(line.split()[1]),
|
346 |
+
)
|
347 |
+
for fileid in self._utterance_fileids(utterances, ".txt")
|
348 |
+
for line in self.open(fileid)
|
349 |
+
if line.strip()
|
350 |
+
]
|
351 |
+
|
352 |
+
def phone_trees(self, utterances=None):
|
353 |
+
if utterances is None:
|
354 |
+
utterances = self._utterances
|
355 |
+
if isinstance(utterances, str):
|
356 |
+
utterances = [utterances]
|
357 |
+
|
358 |
+
trees = []
|
359 |
+
for utterance in utterances:
|
360 |
+
word_times = self.word_times(utterance)
|
361 |
+
phone_times = self.phone_times(utterance)
|
362 |
+
sent_times = self.sent_times(utterance)
|
363 |
+
|
364 |
+
while sent_times:
|
365 |
+
(sent, sent_start, sent_end) = sent_times.pop(0)
|
366 |
+
trees.append(Tree("S", []))
|
367 |
+
while (
|
368 |
+
word_times and phone_times and phone_times[0][2] <= word_times[0][1]
|
369 |
+
):
|
370 |
+
trees[-1].append(phone_times.pop(0)[0])
|
371 |
+
while word_times and word_times[0][2] <= sent_end:
|
372 |
+
(word, word_start, word_end) = word_times.pop(0)
|
373 |
+
trees[-1].append(Tree(word, []))
|
374 |
+
while phone_times and phone_times[0][2] <= word_end:
|
375 |
+
trees[-1][-1].append(phone_times.pop(0)[0])
|
376 |
+
while phone_times and phone_times[0][2] <= sent_end:
|
377 |
+
trees[-1].append(phone_times.pop(0)[0])
|
378 |
+
return trees
|
379 |
+
|
380 |
+
# [xx] NOTE: This is currently broken -- we're assuming that the
|
381 |
+
# fileids are WAV fileids (aka RIFF), but they're actually NIST SPHERE
|
382 |
+
# fileids.
|
383 |
+
def wav(self, utterance, start=0, end=None):
|
384 |
+
# nltk.chunk conflicts with the stdlib module 'chunk'
|
385 |
+
wave = import_from_stdlib("wave")
|
386 |
+
|
387 |
+
w = wave.open(self.open(utterance + ".wav"), "rb")
|
388 |
+
|
389 |
+
if end is None:
|
390 |
+
end = w.getnframes()
|
391 |
+
|
392 |
+
# Skip past frames before start, then read the frames we want
|
393 |
+
w.readframes(start)
|
394 |
+
frames = w.readframes(end - start)
|
395 |
+
|
396 |
+
# Open a new temporary file -- the wave module requires
|
397 |
+
# an actual file, and won't work w/ stringio. :(
|
398 |
+
tf = tempfile.TemporaryFile()
|
399 |
+
out = wave.open(tf, "w")
|
400 |
+
|
401 |
+
# Write the parameters & data to the new file.
|
402 |
+
out.setparams(w.getparams())
|
403 |
+
out.writeframes(frames)
|
404 |
+
out.close()
|
405 |
+
|
406 |
+
# Read the data back from the file, and return it. The
|
407 |
+
# file will automatically be deleted when we return.
|
408 |
+
tf.seek(0)
|
409 |
+
return tf.read()
|
410 |
+
|
411 |
+
def audiodata(self, utterance, start=0, end=None):
|
412 |
+
assert end is None or end > start
|
413 |
+
headersize = 44
|
414 |
+
with self.open(utterance + ".wav") as fp:
|
415 |
+
if end is None:
|
416 |
+
data = fp.read()
|
417 |
+
else:
|
418 |
+
data = fp.read(headersize + end * 2)
|
419 |
+
return data[headersize + start * 2 :]
|
420 |
+
|
421 |
+
def _utterance_fileids(self, utterances, extension):
|
422 |
+
if utterances is None:
|
423 |
+
utterances = self._utterances
|
424 |
+
if isinstance(utterances, str):
|
425 |
+
utterances = [utterances]
|
426 |
+
return [f"{u}{extension}" for u in utterances]
|
427 |
+
|
428 |
+
def play(self, utterance, start=0, end=None):
|
429 |
+
"""
|
430 |
+
Play the given audio sample.
|
431 |
+
|
432 |
+
:param utterance: The utterance id of the sample to play
|
433 |
+
"""
|
434 |
+
# Method 1: os audio dev.
|
435 |
+
try:
|
436 |
+
import ossaudiodev
|
437 |
+
|
438 |
+
try:
|
439 |
+
dsp = ossaudiodev.open("w")
|
440 |
+
dsp.setfmt(ossaudiodev.AFMT_S16_LE)
|
441 |
+
dsp.channels(1)
|
442 |
+
dsp.speed(16000)
|
443 |
+
dsp.write(self.audiodata(utterance, start, end))
|
444 |
+
dsp.close()
|
445 |
+
except OSError as e:
|
446 |
+
print(
|
447 |
+
(
|
448 |
+
"can't acquire the audio device; please "
|
449 |
+
"activate your audio device."
|
450 |
+
),
|
451 |
+
file=sys.stderr,
|
452 |
+
)
|
453 |
+
print("system error message:", str(e), file=sys.stderr)
|
454 |
+
return
|
455 |
+
except ImportError:
|
456 |
+
pass
|
457 |
+
|
458 |
+
# Method 2: pygame
|
459 |
+
try:
|
460 |
+
# FIXME: this won't work under python 3
|
461 |
+
import pygame.mixer
|
462 |
+
import StringIO
|
463 |
+
|
464 |
+
pygame.mixer.init(16000)
|
465 |
+
f = StringIO.StringIO(self.wav(utterance, start, end))
|
466 |
+
pygame.mixer.Sound(f).play()
|
467 |
+
while pygame.mixer.get_busy():
|
468 |
+
time.sleep(0.01)
|
469 |
+
return
|
470 |
+
except ImportError:
|
471 |
+
pass
|
472 |
+
|
473 |
+
# Method 3: complain. :)
|
474 |
+
print(
|
475 |
+
("you must install pygame or ossaudiodev " "for audio playback."),
|
476 |
+
file=sys.stderr,
|
477 |
+
)
|
478 |
+
|
479 |
+
|
480 |
+
class SpeakerInfo:
|
481 |
+
def __init__(
|
482 |
+
self, id, sex, dr, use, recdate, birthdate, ht, race, edu, comments=None
|
483 |
+
):
|
484 |
+
self.id = id
|
485 |
+
self.sex = sex
|
486 |
+
self.dr = dr
|
487 |
+
self.use = use
|
488 |
+
self.recdate = recdate
|
489 |
+
self.birthdate = birthdate
|
490 |
+
self.ht = ht
|
491 |
+
self.race = race
|
492 |
+
self.edu = edu
|
493 |
+
self.comments = comments
|
494 |
+
|
495 |
+
def __repr__(self):
|
496 |
+
attribs = "id sex dr use recdate birthdate ht race edu comments"
|
497 |
+
args = [f"{attr}={getattr(self, attr)!r}" for attr in attribs.split()]
|
498 |
+
return "SpeakerInfo(%s)" % (", ".join(args))
|
499 |
+
|
500 |
+
|
501 |
+
def read_timit_block(stream):
|
502 |
+
"""
|
503 |
+
Block reader for timit tagged sentences, which are preceded by a sentence
|
504 |
+
number that will be ignored.
|
505 |
+
"""
|
506 |
+
line = stream.readline()
|
507 |
+
if not line:
|
508 |
+
return []
|
509 |
+
n, sent = line.split(" ", 1)
|
510 |
+
return [sent]
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/toolbox.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Toolbox Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Greg Aumann <[email protected]>
|
5 |
+
# Stuart Robinson <[email protected]>
|
6 |
+
# Steven Bird <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
Module for reading, writing and manipulating
|
12 |
+
Toolbox databases and settings fileids.
|
13 |
+
"""
|
14 |
+
|
15 |
+
from nltk.corpus.reader.api import *
|
16 |
+
from nltk.corpus.reader.util import *
|
17 |
+
from nltk.toolbox import ToolboxData
|
18 |
+
|
19 |
+
|
20 |
+
class ToolboxCorpusReader(CorpusReader):
|
21 |
+
def xml(self, fileids, key=None):
|
22 |
+
return concat(
|
23 |
+
[
|
24 |
+
ToolboxData(path, enc).parse(key=key)
|
25 |
+
for (path, enc) in self.abspaths(fileids, True)
|
26 |
+
]
|
27 |
+
)
|
28 |
+
|
29 |
+
def fields(
|
30 |
+
self,
|
31 |
+
fileids,
|
32 |
+
strip=True,
|
33 |
+
unwrap=True,
|
34 |
+
encoding="utf8",
|
35 |
+
errors="strict",
|
36 |
+
unicode_fields=None,
|
37 |
+
):
|
38 |
+
return concat(
|
39 |
+
[
|
40 |
+
list(
|
41 |
+
ToolboxData(fileid, enc).fields(
|
42 |
+
strip, unwrap, encoding, errors, unicode_fields
|
43 |
+
)
|
44 |
+
)
|
45 |
+
for (fileid, enc) in self.abspaths(fileids, include_encoding=True)
|
46 |
+
]
|
47 |
+
)
|
48 |
+
|
49 |
+
# should probably be done lazily:
|
50 |
+
def entries(self, fileids, **kwargs):
|
51 |
+
if "key" in kwargs:
|
52 |
+
key = kwargs["key"]
|
53 |
+
del kwargs["key"]
|
54 |
+
else:
|
55 |
+
key = "lx" # the default key in MDF
|
56 |
+
entries = []
|
57 |
+
for marker, contents in self.fields(fileids, **kwargs):
|
58 |
+
if marker == key:
|
59 |
+
entries.append((contents, []))
|
60 |
+
else:
|
61 |
+
try:
|
62 |
+
entries[-1][-1].append((marker, contents))
|
63 |
+
except IndexError:
|
64 |
+
pass
|
65 |
+
return entries
|
66 |
+
|
67 |
+
def words(self, fileids, key="lx"):
|
68 |
+
return [contents for marker, contents in self.fields(fileids) if marker == key]
|
69 |
+
|
70 |
+
|
71 |
+
def demo():
|
72 |
+
pass
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
demo()
|
env-llmeval/lib/python3.10/site-packages/nltk/corpus/reader/wordlist.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Word List Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
from nltk.corpus.reader.api import *
|
9 |
+
from nltk.corpus.reader.util import *
|
10 |
+
from nltk.tokenize import line_tokenize
|
11 |
+
|
12 |
+
|
13 |
+
class WordListCorpusReader(CorpusReader):
|
14 |
+
"""
|
15 |
+
List of words, one per line. Blank lines are ignored.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def words(self, fileids=None, ignore_lines_startswith="\n"):
|
19 |
+
return [
|
20 |
+
line
|
21 |
+
for line in line_tokenize(self.raw(fileids))
|
22 |
+
if not line.startswith(ignore_lines_startswith)
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
class SwadeshCorpusReader(WordListCorpusReader):
|
27 |
+
def entries(self, fileids=None):
|
28 |
+
"""
|
29 |
+
:return: a tuple of words for the specified fileids.
|
30 |
+
"""
|
31 |
+
if not fileids:
|
32 |
+
fileids = self.fileids()
|
33 |
+
|
34 |
+
wordlists = [self.words(f) for f in fileids]
|
35 |
+
return list(zip(*wordlists))
|
36 |
+
|
37 |
+
|
38 |
+
class NonbreakingPrefixesCorpusReader(WordListCorpusReader):
|
39 |
+
"""
|
40 |
+
This is a class to read the nonbreaking prefixes textfiles from the
|
41 |
+
Moses Machine Translation toolkit. These lists are used in the Python port
|
42 |
+
of the Moses' word tokenizer.
|
43 |
+
"""
|
44 |
+
|
45 |
+
available_langs = {
|
46 |
+
"catalan": "ca",
|
47 |
+
"czech": "cs",
|
48 |
+
"german": "de",
|
49 |
+
"greek": "el",
|
50 |
+
"english": "en",
|
51 |
+
"spanish": "es",
|
52 |
+
"finnish": "fi",
|
53 |
+
"french": "fr",
|
54 |
+
"hungarian": "hu",
|
55 |
+
"icelandic": "is",
|
56 |
+
"italian": "it",
|
57 |
+
"latvian": "lv",
|
58 |
+
"dutch": "nl",
|
59 |
+
"polish": "pl",
|
60 |
+
"portuguese": "pt",
|
61 |
+
"romanian": "ro",
|
62 |
+
"russian": "ru",
|
63 |
+
"slovak": "sk",
|
64 |
+
"slovenian": "sl",
|
65 |
+
"swedish": "sv",
|
66 |
+
"tamil": "ta",
|
67 |
+
}
|
68 |
+
# Also, add the lang IDs as the keys.
|
69 |
+
available_langs.update({v: v for v in available_langs.values()})
|
70 |
+
|
71 |
+
def words(self, lang=None, fileids=None, ignore_lines_startswith="#"):
|
72 |
+
"""
|
73 |
+
This module returns a list of nonbreaking prefixes for the specified
|
74 |
+
language(s).
|
75 |
+
|
76 |
+
>>> from nltk.corpus import nonbreaking_prefixes as nbp
|
77 |
+
>>> nbp.words('en')[:10] == [u'A', u'B', u'C', u'D', u'E', u'F', u'G', u'H', u'I', u'J']
|
78 |
+
True
|
79 |
+
>>> nbp.words('ta')[:5] == [u'\u0b85', u'\u0b86', u'\u0b87', u'\u0b88', u'\u0b89']
|
80 |
+
True
|
81 |
+
|
82 |
+
:return: a list words for the specified language(s).
|
83 |
+
"""
|
84 |
+
# If *lang* in list of languages available, allocate apt fileid.
|
85 |
+
# Otherwise, the function returns non-breaking prefixes for
|
86 |
+
# all languages when fileids==None.
|
87 |
+
if lang in self.available_langs:
|
88 |
+
lang = self.available_langs[lang]
|
89 |
+
fileids = ["nonbreaking_prefix." + lang]
|
90 |
+
return [
|
91 |
+
line
|
92 |
+
for line in line_tokenize(self.raw(fileids))
|
93 |
+
if not line.startswith(ignore_lines_startswith)
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
class UnicharsCorpusReader(WordListCorpusReader):
|
98 |
+
"""
|
99 |
+
This class is used to read lists of characters from the Perl Unicode
|
100 |
+
Properties (see https://perldoc.perl.org/perluniprops.html).
|
101 |
+
The files in the perluniprop.zip are extracted using the Unicode::Tussle
|
102 |
+
module from https://search.cpan.org/~bdfoy/Unicode-Tussle-1.11/lib/Unicode/Tussle.pm
|
103 |
+
"""
|
104 |
+
|
105 |
+
# These are categories similar to the Perl Unicode Properties
|
106 |
+
available_categories = [
|
107 |
+
"Close_Punctuation",
|
108 |
+
"Currency_Symbol",
|
109 |
+
"IsAlnum",
|
110 |
+
"IsAlpha",
|
111 |
+
"IsLower",
|
112 |
+
"IsN",
|
113 |
+
"IsSc",
|
114 |
+
"IsSo",
|
115 |
+
"IsUpper",
|
116 |
+
"Line_Separator",
|
117 |
+
"Number",
|
118 |
+
"Open_Punctuation",
|
119 |
+
"Punctuation",
|
120 |
+
"Separator",
|
121 |
+
"Symbol",
|
122 |
+
]
|
123 |
+
|
124 |
+
def chars(self, category=None, fileids=None):
|
125 |
+
"""
|
126 |
+
This module returns a list of characters from the Perl Unicode Properties.
|
127 |
+
They are very useful when porting Perl tokenizers to Python.
|
128 |
+
|
129 |
+
>>> from nltk.corpus import perluniprops as pup
|
130 |
+
>>> pup.chars('Open_Punctuation')[:5] == [u'(', u'[', u'{', u'\u0f3a', u'\u0f3c']
|
131 |
+
True
|
132 |
+
>>> pup.chars('Currency_Symbol')[:5] == [u'$', u'\xa2', u'\xa3', u'\xa4', u'\xa5']
|
133 |
+
True
|
134 |
+
>>> pup.available_categories
|
135 |
+
['Close_Punctuation', 'Currency_Symbol', 'IsAlnum', 'IsAlpha', 'IsLower', 'IsN', 'IsSc', 'IsSo', 'IsUpper', 'Line_Separator', 'Number', 'Open_Punctuation', 'Punctuation', 'Separator', 'Symbol']
|
136 |
+
|
137 |
+
:return: a list of characters given the specific unicode character category
|
138 |
+
"""
|
139 |
+
if category in self.available_categories:
|
140 |
+
fileids = [category + ".txt"]
|
141 |
+
return list(self.raw(fileids).strip())
|
142 |
+
|
143 |
+
|
144 |
+
class MWAPPDBCorpusReader(WordListCorpusReader):
|
145 |
+
"""
|
146 |
+
This class is used to read the list of word pairs from the subset of lexical
|
147 |
+
pairs of The Paraphrase Database (PPDB) XXXL used in the Monolingual Word
|
148 |
+
Alignment (MWA) algorithm described in Sultan et al. (2014a, 2014b, 2015):
|
149 |
+
|
150 |
+
- http://acl2014.org/acl2014/Q14/pdf/Q14-1017
|
151 |
+
- https://www.aclweb.org/anthology/S14-2039
|
152 |
+
- https://www.aclweb.org/anthology/S15-2027
|
153 |
+
|
154 |
+
The original source of the full PPDB corpus can be found on
|
155 |
+
https://www.cis.upenn.edu/~ccb/ppdb/
|
156 |
+
|
157 |
+
:return: a list of tuples of similar lexical terms.
|
158 |
+
"""
|
159 |
+
|
160 |
+
mwa_ppdb_xxxl_file = "ppdb-1.0-xxxl-lexical.extended.synonyms.uniquepairs"
|
161 |
+
|
162 |
+
def entries(self, fileids=mwa_ppdb_xxxl_file):
|
163 |
+
"""
|
164 |
+
:return: a tuple of synonym word pairs.
|
165 |
+
"""
|
166 |
+
return [tuple(line.split("\t")) for line in line_tokenize(self.raw(fileids))]
|